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Whether obtained by microscopes, space probes, or the human eye, the
same basic tools can be applied to acquire, process, and analyze the data
contained in images. First published in 1992, The Image Processing
Handbook, Sixth Edition is ideal for self study, raising the bar once again
as the gold-standard reference on this subject.

Using extensive new color illustrations and diagrams, this book offers a
logically organized exploration of the important relationship between
two-dimensional images and the three-dimensional structures they reveal.
The author focuses on helping readers visualize and compare processing
and measurement operations and how they are typically combined in
areas ranging from microscopy and astronomy to real-world scientific,
industrial, and forensic applications.

Presenting methods in the order in which they would be applied in a
typical workflow—from acquisition to interpretation—this book compares
a wide range of algorithms used to:

• Improve the appearance, printing, and transmission of an image
• Prepare images for measurement of the features and structures they

reveal
• Isolate objects and structures, and measure their size, shape, color,

and position
• Correct defects and deal with limitations in images
• Enhance visual content and interpretation of details
• Interpret measurements of structures, using stereological methods
• Apply statistical methods for classification and identification

This handbook avoids dense mathematics, using instead new practical
examples that better convey essential principles of image processing. This
approach is more useful to develop readers’ understanding of how and
why to apply processing techniques and, ultimately, clarify the mathematical
foundations behind them. Going far beyond mere image improvement,
this book presents a wide range of powerful example images that illustrate
techniques involved in color processing and enhancement.
Applying his 50-year experience as a scientist, educator, and industrial
consultant, John Russ offers his unparalleled insights and guidance,
continuing to make this a must-have reference.
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Introduction

Image processing is used in a wide variety of applications, for two somewhat differ-
ent purposes:

 1. improving the visual appearance of images to a human observer, including their 
printing and transmission, and

 2. preparing images for the measurement of the features and structures which they 
reveal.

The techniques that are appropriate for each of these tasks are not always the same, but 
there is considerable overlap. This book covers methods that are used for both tasks.

To do the best possible job, it is important to know about the uses to which the pro-
cessed images will be put. For visual enhancement, this means having some familiarity 
with the human visual process and an appreciation of what cues the viewer responds 
to in images. A chapter on human vision addresses those issues. It also is useful to 
know about the printing or display process, since many images are processed in the 
context of reproduction or transmission. Printing technology for images has advanced 
significantly with the consumer impact of digital cameras, and up-to-date information 
is provided.

The measurement of images is often a principal method for acquiring scientific data and 
generally requires that features or structure be well defined, either by edges or unique 
brightness, color, texture, or some combination of these factors. The types of measure-
ments that can be performed on entire scenes or on individual features are important in 
determining the appropriate processing steps. Several chapters deal with measurement 
in detail. Measurements of size, position, and brightness deal with topics that humans 
largely understand, although human vision is not quantitative and is easily fooled. Shape 
is a more difficult concept, and a separate chapter added in this edition summarizes a 
variety of ways that shape may be described by numbers. Measurement data may be 
used for classification or recognition of objects. There are several different strategies that 
can be applied, and examples are shown.

It may help to recall that image processing, like food processing or word processing, 
does not reduce the amount of data present but simply rearranges it. Some arrangements 
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may be more appealing to the senses, and some may convey more meaning, but these 
two criteria may not be identical nor call for identical methods.

This handbook presents an extensive collection of image processing tools, so that the 
user of computer-based systems can both understand those methods provided in pack-
aged software and program those additions which may be needed for particular applica-
tions. Comparisons are presented for different algorithms that may be used for similar 
purposes, using a selection of representative pictures from various microscopy tech-
niques, as well as macroscopic, remote sensing, and astronomical images. It is very 
important to emphasize that the scale of the image matters very little to the techniques 
used to process or analyze it. Microscopes that have a resolution of nm and telescopes 
that produce images covering light years produce images that require many of the same 
algorithms.

The emphasis throughout the book continues to be on explaining and illustrating meth-
ods so that they can be clearly understood, rather than providing dense mathematics. 
With the advances in computer speed and power, tricks and approximations in search 
of efficiency are less important, so that examples based on exact implementation of 
methods with full precision can generally be implemented on desktop systems. The top-
ics covered are generally presented in the same order in which the methods would be 
applied in a typical workflow.

For many years, in teaching this material to students I have described achieving mastery of 
these techniques as being much like becoming a skilled journeyman carpenter. The num-
ber of distinct woodworking tools — saws, planes, drills, etc. — is relatively small, and 
although there are some variations — slotted vs. Phillips-head screwdrivers, for example 
— knowing how to use each type of tool is closely linked to understanding what it does. 
With a set of these tools, the skilled carpenter can produce a house, a boat, or a piece of 
furniture. So it is with image processing tools, which are conveniently grouped into only 
a few classes, such as histogram modification, neighborhood operations, Fourier-space 
processing, and so on, and can be used to accomplish a broad range of purposes. Visiting 
your local hardware store and purchasing the appropriate tools do not provide the skills 
to use them. Understanding their use requires practice, which develops the ability to visu-
alize beforehand what each will do. The same is true of the tools for image processing.

In revising the book for this new edition, I have again tried to respond to some of the 
comments and requests of readers and reviewers. New chapters on the measurement 
of images and the subsequent interpretation of the data were added in the second edi-
tion, and a section on surface images in the third. The fourth edition added the stereo-
logical interpretation of measurements on sections through three-dimensional structures 
and the various logical approaches to feature classification. The fifth edition brought 
expanded sections on deconvolution, extended dynamic range images, and multichannel 
imaging, including principal components analysis. In this sixth edition, a new chapter on 
the meaning of shape has been added, as well as additional material on imaging in more 
than two dimensions. The sections on the ever-advancing hardware for image capture 
and printing have been expanded and information added on the newest hardware and 
software technologies.

As in past editions, I have resisted suggestions to put “more of the math” into the book. 
There are excellent texts on image processing, compression, mathematical morphol-
ogy, etc., that provide as much rigor and as many derivations as may be needed. Many 
of them are referenced here. But the thrust of this book remains teaching by example. 
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Few people learn the principles of image processing from the equations. Just as we use 
images to communicate ideas and to “do science,” so most of us use images to learn 
about many things, including imaging itself. The hope is that by seeing and comparing 
what various operations do to representative images, you will discover how and why to 
use them. Then, if you need to look up the mathematical foundations, they will be easier 
to understand.

A very real concern for everyone involved in imaging, particularly in scientific and foren-
sic fields, is the question of what constitutes proper and appropriate processing and what 
constitutes unethical or even fraudulent manipulation. The short answer is that anything 
that alters an image so as to create a false impression on the part of the viewer is wrong. 
The problem with that answer is that it does not take into account the fact that different 
viewers will tend to see different things in the image anyway, and that what constitutes 
a false impression for one person may not for another.

The first rule is always to store a permanent copy of the original image along with rel-
evant data on its acquisition. The second rule is to carefully document whatever steps 
are taken to process the image and generally to report those steps when the processed 
image is published. Most scientific publications and the editors who review submitted 
papers have become more aware in recent years of the ease with which image process-
ing can be performed and the dangers of inadequate documentation. For example, see 
M. Rossner and K. M. Yamada (2004; J. Cell Biology) for that journal’s policy on image 
ethics and examples of improper manipulation.

For forensic purposes, there is an additional responsibility to fully record the entire step-
by-step procedures that are used and to make sure that those methods are acceptable 
in court according to the U.S. Supreme Court’s Daubert ruling (Daubert v. Merrell Dow 
Pharmaceuticals (92-102), 509 U.S. 579, 1993), which generally means that not only are 
the methods widely accepted by professionals, but also that they have been rigorously 
tested and have known performance outcomes. In a forensic setting, there will often 
be a need to explain a procedure, step by step, to a non-technical jury. This frequently 
requires showing that the details obtained from the image are really present in the origi-
nal but only became visually evident with the processing.

Some procedures, such as rearranging features or combining them within a single image, 
or differently adjusting the contrast of several images to make them appear more alike, 
are clearly misleading and generally wrong. Some, such as using copy-and-paste to dupli-
cate a portion of an image, or selectively erasing portions of an image, are out-and-out 
fraudulent. Even selective cropping of an image (or choosing which field of view to 
record) can create a false impression.

The general guideline to be considered is that it is never acceptable to add anything to 
an image, but it may be acceptable to suppress or remove some information if it makes 
the remaining details more accessible, either visually for presentation and communication 
or to facilitate measurement. Of course, the procedures used must be documented and 
reported. Any of the procedures shown here may be appropriate in a particular instance. 
But they can also be misused and should in any case never be used without understand-
ing and careful documentation. The heart of the scientific method is replicability. If 
adequate information is provided on the processing steps applied and the original image 
data are preserved, then the validity of the results can be independently verified.

An important but often overlooked concern is the need to avoid using programs that 
alter the image without the user being aware of it. For example, carefully correcting the 
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colors in an image using Photoshop® and then placing it in PowerPoint® for presentation 
will cause changes even on the same computer screen (as well as discarding pixels and 
reducing resolution if copy-and-paste is used for the transfer). In addition, the image 
may appear different on another computer monitor or when using a projector. Pasting an 
image into Microsoft® Word will reduce the resolution and color or gray scale dynamic 
range. This may not affect the printed document, which has less gamut than the com-
puter screen anyway, but the image cannot be subsequently retrieved from the document 
in its original form. Saving an image with a lossy compression method such as jpeg will 
discard potentially important information that cannot be recovered.

The reader is encouraged to use this book in concert with a real source of images and 
a computer-based system and to freely experiment with different methods to deter-
mine which are most appropriate for his or her particular needs. Selection of image 
processing tools to explore images when you don’t know the contents beforehand is 
a much more difficult task than using tools to make it easier for another viewer or a 
measurement program to see the same things you have discovered. It places greater 
demand on computing speed and the interactive nature of the interface. But it particu-
larly requires that you become a very analytical observer of images. If you can learn 
to see what the computer sees and predict what various algorithms will do, you will 
become a better viewer and obtain the best possible images, suitable for further pro-
cessing and analysis.

To facilitate this hands-on learning, I have collaborated with my son, Chris Russ, to 
write a companion book, Introduction to Image Processing and Analysis, which teaches 
how to program these algorithms and create Adobe Photoshop compatible plug-ins that 
implement the methods. The downloadable solutions to the book’s worked problems 
can be used to apply the routines on either Macintosh or Windows computers. There are 
additional links to downloadable plug-ins and trial program packages on my Web site at 
http://www.DrJohnRuss.com.
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1
Acquiring Images

Human reliance on images for information

Humans are primarily visual creatures. Not all animals depend on their eyes, as we do, 
for most of the information received about their surroundings (the characteristics of 
human vision are discussed in Chapter 2). This bias in everyday life extends to how 

we pursue more technical goals as well. Scientific instruments commonly produce images 
to communicate their results to the operator, rather than generating audible tones or emit-
ting a smell. Space missions to other planets and equally arduous explorations of the ocean 
depths always include cameras as major components, and the success of those missions is 
often judged by the quality of the images returned. This suggests a few of the ways in which 
humans have extended the range of natural vision. Optical devices such as microscopes and 
telescopes allow us to see things that are vastly smaller or larger than we could otherwise. 
Beyond the visible portion of the electromagnetic spectrum (a narrow range of wavelengths 
between about 400 and 700 nanometers) there are sensors capable of detecting infrared and 
ultraviolet light, X-rays, and radio waves, and perhaps soon even gravity waves. Figure 1.1 
shows an example, an image presenting radio telescope data in the form of an image in which 
color represents the Doppler shift in the radio signal. Such devices and presentations are used 
to further extend imaging capability.

Signals other than electromagnetic radiation can be used to produce images, too. Novel new 
types of microscopes that use atomic-scale probes to “feel” the specimen surface present their 
data as images (Figure 1.2). The data so collected may represent the surface elevation and 
topography, but other signals, such as the lateral drag force on the probe, may also be used. 
Acoustic waves at low frequency produce sonar images, while at gigahertz frequencies the 
acoustic microscope produces images with resolution similar to that of the light microscope, 
but with image contrast that is produced by local variations in the attenuation and refraction 
of sound waves rather than light. Figure 1.3 shows an acoustic microscope image of a sub-
surface defect, and Figure 1.4 shows a sonogram of a baby in the womb.

Some images such as holograms or electron diffraction patterns record brightness as a func-
tion of position, but are unfamiliar to the observer. Figure 1.5 shows an image of an electron 
diffraction pattern from a transmission electron microscope, in which the atomic structure of 
the samples is revealed (but only by measurement and to those who know how to interpret 
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the data). Other kinds of data, including weather maps with specialized symbols, graphs of 
business profit and expenses, and charts with axes representing time, family income, choles-
terol level, or even more obscure parameters, have become part of daily life, as illustrated in 
Figure 1.6. The latest developments in computer interfaces and displays make extensive use 
of graphics, to take advantage of the large bandwidth of the human visual pathway. Tufte 
(1990, 1997, 2001) in particular has demonstrated the power of appropriate graphics to com-
municate complex information.

There are some important differences between human vision, the kind of information it 
extracts from images, and the ways in which it seems to do so, as compared to the use of 
imaging devices based on computers for scientific, technical, or forensic purposes. Humans 

 

Figure 1.1 Radio astronomy pro-
duces images such as this view of 
Messier 33 (generated with data 
from telescopes of the National 
Radio Astronomy Observatory, 
a National Science Foundation 
Facility managed by Associated 
Universities, Inc.). These are 
often displayed with false colors 
to emphasize subtle variations 
in signal strength or - as in this 
example - Doppler shift.

Figure 1.2 Atomic force micro-
scope image of human chromo-
somes (courtesy S, Thalhammer, 
F. Jamitzky, Helmholtz Zentrum 
München, Germany).
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are especially poor at judging color or brightness of objects and features within images unless 
they can be exactly compared by making them adjacent. Human vision is inherently com-
parative rather than quantitative, responding to the relative size, angle, or position of several 
objects but unable to supply numeric measures unless one of the reference objects is a mea-
suring scale. Overington (1976; 1992) disagrees with this widely accepted and documented 
conclusion but presents no compelling counter evidence. Chapter 2 illustrates some of the 
consequences of the characteristics of human vision as they affect what is perceived.

This book’s purpose is not to study the human visual pathway directly, but the overview in 
Chapter 2 can help the reader to understand how humans see things so that we become bet-
ter observers. Computer-based image processing and analysis use algorithms based on human 
vision methods in some cases, but also employ other methods that seem not to have direct 
counterparts in human vision. In particular, some image processing methods are based on the 
physics of the image formation and detection process (Sharma, 2005).

Many of the examples and much of the analysis presented in this text involve images from 
various types of microscopes. The three classes of imaging applications that generally offer 

(a)

(b)

Figure 1.3 Acoustic microscope image of voids in solder bond beneath a GaAs die: (a) die surface; (b) 
acoustic image showing strong signal reflections (white areas) from the surface of the voids (courtesy 
J. E. Semmens, Sonoscan Inc).
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Figure 1.4 Surface reconstruction of sonogram imaging, showing a 26 week old fetus in the womb.

Figure 1.5 A convergent beam electron diffraction (CBED) pattern from an oxide microcrystal, which 
can be indexed and measured to provide high accuracy values for the atomic unit cell dimensions.
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the most straightforward types of images are microscopy, aerial (and satellite) imagery, and 
industrial quality control. That is because in those situations there is the greatest knowledge 
and/or control over the imaging geometry and the illumination of the scene. In more general 
“real world” cases the analysis and interpretation of the image contents can be much more 
difficult. Objects may lie at various distances from the camera, which complicates determin-
ing size, may have different lighting, which alters their color, and may even partially obscure 
other objects. Crime scene and accident photographs are often taken under difficult condi-
tions, from less than optimum points of view, and with variable lighting, so that their analysis 
can be challenging.

The basic techniques for image processing and measurement are much the same for images 
regardless of their source or scale. Images ranging from microscopy to astronomy, images 
formed with light photons or sound waves, magnetic resonance or scanning profilometers, 
have much in common and the techniques for dealing with their imperfections, enhancing 
and extracting the details, and performing measurements utilize the same algorithms and 
techniques, which are set out in the following chapters. The interpretation of the measure-
ments, as presented in later chapters, does require some specialization for different viewing 
geometries, but is fundamentally independent of magnification.

Figure 1.6 Typical graphics used to communicate news information include one-dimensional plots 
such as stock market reports and two-dimensional presentations such as weather maps.
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Video cameras

When the first edition of this book was published in 1990, the most common and affordable 
way of acquiring images for computer processing was with a video camera. Mounted onto a 
microscope or copystand, in a satellite or space probe, or using appropriate optics to view 
an experiment, the camera sent an analog signal to a separate “frame grabber” or analog-to-
digital converter (ADC) interface board in the computer, which then stored numeric values in 
memory (Inoué, 1986; Inoué & Spring, 1997).

The basic form of the original type of video camera is the vidicon, illustrated in Figure 1.7. It 
functions by scanning a focused beam of electrons across a phosphor coating applied to the 
inside of an evacuated glass tube. The light enters the camera through the front glass surface 
(and a thin metallic anode layer) and creates free electrons in the phosphor. These vary the 
local conductivity of the layer, so the amount of current that flows to the anode varies as the 
beam is scanned, according to the local light intensity. This analog (continuously varying) 
electrical signal is amplified and, as shown in Figure 1.8, conforms to standards of voltage 
and timing (the standards and timing are slightly different in Europe than the US, but the basic 
principles remain the same).

Digitizing the voltage is accomplished by sampling it and generating a comparison voltage. 
The child’s game of “guess a number” illustrates that it takes only eight guesses to arrive at a 

52 sec. picture width

63.5 sec. horizontal scan interval

0.7 volt range

0.3 volt sync pulse

Figure 1.8 Standard RS-170 video signal shows the brightness variation along one scan line (ranging 
between 0 volts = black and 0.7 volts = white).

Anode

Phosphor
Coating

Electron Beam

Grid

Cathode

Deflection and Focusing Coils

Glass Tube

Figure 1.7 Functional diagram of a vidicon tube. Light striking the phosphor coating changes its local 
resistance and hence the current that flows as the electron beam scans in a raster pattern.
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value that defines the voltage to one part in 256 (the most widely used type of ADC). The first 
guess is 128, or half the voltage range. If this is (e.g.) too large, the second guess subtracts 
64. Each successive approximation adds or subtracts a value half as large as the previous. In 
eight steps, the final (smallest) adjustment is made. The result is a number that is conveniently 
stored in the 8-bit memory of most modern computers.

The tube-type camera has several advantages and quite a few drawbacks. Scanning the beam 
with electromagnetic or electrostatic fields can produce a distorted scan (pincushion or barrel 
distortion, or more complicated situations) and is subject to degradation by stray fields from 
wiring or instrumentation. Figure 1.9 shows an example of pincushion distortion, as well 
as vignetting and loss of focus. Maintaining focus in the corners of the image takes special 
circuitry, and the corners may also be darkened (vignetting) by the reduction in effective lens 
aperture and the additional thickness of glass through which the light must pass. The sealed 
vacuum systems tend to deteriorate with time, and the “getter” used to adsorb gas molecules 
may flake and fall onto the phosphor if the camera is used in a vertical orientation. The 
response of the camera (voltage vs. brightness) approximates the logarithmic response of film 
and the human eye, but this varies for bright and dark scenes. Recovery from bright scenes 
and bright spots is slow, and blooming can occur in which bright light produces spots that 
spread laterally in the coating and appear larger than the features really are, with “comet tails” 
in the scan direction.

There are, however, some advantages of the tube-type camera. The spatial resolution is very 
high, limited only by the grain size of the phosphor and the size of the focused beam spot. 
Also, the phosphor has a spectral response that can be made similar to that of the human eye, 
which sees color from red (about 0.7 µm wavelength) to blue (about 0.4 µm). Adaptations of the 
basic camera design with intermediate cathode layers or special coatings for intensification are 
capable of acquiring images in very dim light (e.g., night scenes, fluorescence microscopy).

CCD cameras

The tube-type camera has now been largely supplanted by the solid-state chip camera, the 
oldest and simplest form of which is the CCD (charge-coupled device). The camera chip con-
tains an array of diodes that function as light buckets. Light entering the semiconductor raises 
electrons from the valence to the conduction band, so the number of electrons is a direct lin-
ear measure of the light intensity. The diodes are formed by photolithography, so they have a 

 

Figure 1.9 Example of an image show-
ing pincushion distortion, as well as 
loss of focus and vignetting in the 
edges and corners.
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perfectly regular pattern with no image distortion or sensitivity to the presence of stray fields. 
The devices are also inexpensive and rugged compared to tube cameras. CCDs were first 
invented and patented at Bell Labs in 1969 (George Smith was awarded the 2009 Nobel Prize 
in Physics for this invention), and have now largely displaced film in consumer and profes-
sional still and movie cameras.

The basic operation of a CCD is illustrated in Figure 1.10. Each bucket represents one “pixel” 
in the camera (this word has a lot of different meanings in different contexts, as explained 
below, so it must be used with some care). With anywhere from a few hundred thousand to 
several million detectors on the chip, it is impractical to run wires directly to each one in order 
to read out the signal. Instead, the electrons that accumulate in each bucket due to incident 
photons are transferred, one line at a time, to a readout row. On a clock signal, each column 
of pixels shifts the charge by one location. This places the contents of the buckets into the 
readout row, and that row is then shifted, one pixel at a time but much more rapidly, to dump 
the electrons into an amplifier, which produces an analog voltage signal that may be sent out 
directly or measured to produce the numeric output from a digital camera.

The simplest way of shifting the electrons is shown in Figure 1.11. Every set of three elec-
trodes on the surface of the device constitutes one pixel. By applying a voltage to two of the 
electrodes, a field is set up in the semiconductor that acts like a bucket. Electrons are trapped 
in the central region by the high fields on either side. Note that this does not reduce the area 
sensitive to incoming photons, because electrons generated in the high field regions quickly 
migrate to the low field bucket where they are held. By changing the voltage applied to the 
regions in six steps or phases, as shown in the figure, the electrons are shifted by one pixel. 
First one field region is lowered and the electrons spread into the larger volume. Then the 
field on the other side is raised, and the electrons have been shifted by one-third of the pixel 
height. Repeating the process acts like a conveyor belt and is the reason for the name “charge-
coupled device.”

Figure 1.10 The basic principle of CCD operation, illustrated as a set of buckets and conveyors (after 
Janesick, 2001).
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One significant problem with the chip camera is its spectral response. Even if the chip is 
reversed and thinned so that light enters from the side opposite the electrodes, very little blue 
light penetrates into the semiconductor to produce electrons. On the other hand, infrared light 
penetrates easily and these cameras have red and infrared (IR) sensitivity that far exceeds that 
of human vision, usually requiring the installation of a blocking filter to exclude it (because 
the IR light is not focused to the same plane as the visible light and thus produces blurred 
or fogged images). Figure 1.12 shows this spectral response, which can be further tailored 
and extended by using materials other than silicon. The chip can reach a high total efficiency 
when antireflective coatings are applied, limited primarily by the “fill factor” — the area frac-
tion of the chip that contains active devices between the narrow ditches that maintain electri-
cal separation. Also, the chip camera has an output that is linearly proportional to the incident 
light intensity, convenient for some measurement purposes but very different from human 
vision, the vidicon, and photographic film, which are all approximately logarithmic.

Human vision notices brightness differences of a few percent, i.e., a constant ratio of change 
rather than a constant increment. Film is characterized by a response to light exposure which 
(after chemical development) produces a density vs. exposure curve such as that shown in 
Figure 1.13. The low end of this curve represents the fog level of the film, the density that is 
present even without exposure. At the high end, the film saturates to a maximum optical den-
sity, for instance based on the maximum physical density of silver particles or dye molecules. 
In between, the curve is linear with a slope that represents the contrast of the film. A steep 
slope corresponds to a high-contrast film that exhibits a large change in optical density with 
a small change in exposure. Conversely, a low-contrast film has a broader latitude to record a 
scene with a greater range of brightnesses. The slope of the curve is usually called “gamma.” 
Many chip cameras include circuitry or processing that changes their output from linear to 
logarithmic so that the image contrast is more familiar to viewers. The more expensive con-
sumer cameras and most professional cameras include the possibility to read the “raw” linear 
data as well as the converted image.

t t t t t t t1 2 3 4 5 6 1
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Charge

Figure 1.11 Varying voltages on a set of three electrodes shifts electrons from one pixel to another in a 
CCD.
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When film is exposed directly to electrons, as in the transmission electron micrograph, rather 
than photons (visible light or X-rays), the response curve is linear rather than logarithmic. Many 
light photons are needed to completely expose a single silver halide particle for development, 
but only a single electron is needed. Consequently, electron image films and plates are often 
very high in density (values of optical density greater than 4, which means that 9999/10000 of 
incident light is absorbed), which creates difficulties for many scanners and requires more than 
8 bits to record.

The trend in camera chips has been to make them smaller and to increase the number of 
pixels or diodes present. Some scientific cameras, such as that used in the Hubble telescope, 
occupy an entire wafer. But for consumer devices, making each chip one-third, one-quarter, 
or even two-tenths of an inch in overall (diagonal) dimension places many devices on a single 
wafer and allows greater economic yield. It also requires smaller, less costly lenses. Putting 
more pixels into this reduced chip area (for more spatial resolution, as discussed below) 
makes the individual detectors small, but the ditches between then have to remain about the 
same size to prevent electrons from diffusing laterally. The result is to reduce the total effi-
ciency markedly. Some devices place small lenses over the diodes to capture light that would 

Figure 1.12 Spectral response:

  (a) Silicon based chip.

  (b)  Color sensors in the human eye, 
which are commonly identified as 
red, green and blue sensitive but 
cover a range of long, medium and 
short wavelengths.

             (a)

 

            (b)
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otherwise fall into the ditches, but these add cost and also are not so uniform as the diodes 
themselves (which are typically within 1% across the entire chip).

The other, and more important, effect of making the detectors small is to reduce their capacity 
for electrons, called the well capacity. A typical 15 µm pixel in a scientific grade CCD has a 
capacity of about 500,000 electrons, which with low readout noise (as can be achieved in spe-
cial situations) of a few electrons gives a dynamic range greater than photographic film. Even 
larger well capacity and dynamic range can be achieved by combining (binning) more detec-
tors for each stored pixel by using more steps in the phase shifting during readout. Reducing 
the area of the detector reduces the well size, and with it the dynamic range.

Increasing the noise, for instance by reading out the signal at video rates (each horizontal line 
in 52 µs for US standard definition video), dramatically reduces the dynamic range so that a 
typical consumer grade video camera has no more than about 64 distinguishable brightness 
levels (expensive studio cameras meet the broadcast video specification of 100 levels). Since 
with the chip camera these are linear with brightness, they produce even fewer viewable gray 
levels, as shown in Figure 1.14. This performance is much inferior to film, which can distin-
guish thousands of brightness levels.

CMOS (Complementary Metal-Oxide Semiconductor) chips can also be used as image sensors, 
and in terms of sheer numbers are now more common than the original CCD devices. They 
are primarily used in relatively inexpensive consumer cameras and camera phones, although 
some have found their way into digital single lens reflex cameras. The conversion of light 
photons to electrons functions in the same way as in the CCD chip. The differences start with 
the way the signal is read out. In the CMOS designs there are from two to four transistors 
immediately adjacent to the light sensor which convert the charge to a voltage and amplify the 
signal. In principle, this means that any pixel in the array can be read out directly, addressing 
a pixel by row and column just as in a memory chip (Figure 1.15). This is different from the 
CCD method of “sweeping” the charge out to one corner of the array, reading all of the pixels 
in a fixed order.

The space taken up by these control transistors reduces the “fill factor” or active area of the 
chip that is sensitive to light, but this is often compensated for by placing lenses over each 
detector to collect light from the dead areas and direct it to the active sensor. The lenses, and 
the use of individual amplifiers for each pixel, generally make the sensors in a CMOS detec-
tor less uniform than those in the CCD array, producing a fixed pattern that can be compen-
sated for in software (requiring recording an image with uniform illumination). In addition to 
the fixed pattern noise, the CMOS detectors usually have a greater amount of random noise 

Figure 1.13 Response of photographic film. The 
central portion of the curve shows a linear 
increase in density (defined as the base-ten 
logarithm of the fraction of incident light that 
is transmitted) with the logarithm of exposure. 
High (“hard”) contrast corresponds to a steep 
curve, while low (“soft”) contrast gives a less 
steep curve and films have a greater dynamic 
range.

  

Saturation

Fog
Level

Reciprocity
Failure

Linear Range
(Slope = Gamma)

Log (Exposure)

F
ilm

 D
en

si
ty



12 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

superimposed on the image signal because of the separate amplifiers, additional wiring and 
its associated capacitance and thermal noise, and greater dark current. The very small active 
regions (at least in the smaller chips used in pocket cameras and phones, and particularly as 
the pixel counts have risen to several million) have small well capacities, resulting in limited 
dynamic range for the images. The images are usually stored with 8 bits per channel, because 
of the way memory is traditionally organized, but often do not have that much actual bright-
ness resolution.

Larger area CMOS chips are also made which have larger detectors and consequently a greater 
well capacity and greater dynamic range. One advantage of the CMOS designs as used in more 
expensive cameras arises from the fact that the circuitry to access the pixels can be arranged 
along two adjacent sides of the array (addressing the rows and columns, respectively). That 
makes it possible to carefully trim away the chip on the other two sides, and arrange four of 
the chips together to produce a larger sensor with higher pixel counts. This approach, com-
bined with the use of much larger sensors to achieve greater sensitivity and dynamic range, 

Figure 1.14 Comparison of visibility of 
gray level steps from linear (equal 
steps) and logarithmic (equal ratios) 
detectors:

  (a) Plots of intensity.

  (b)  Display of the values from (a).
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has led some manufacturers to prefer CMOS detectors as large as a traditional film negative 
for digital single-lens reflex cameras.

The advantages of CMOS sensors lie primarily in three areas: they consume much less power, 
and so give better battery life; the amplifier and digitization circuitry can be placed on the 
same chip to reduce size and perhaps increase ruggedness; and the production methods for 
the wafers are essentially the same as those used for other standard silicon devices such as 
memory and processors, whereas CCD wafers require unique processing. The latter advantage 
is somewhat offset by the fact that high quality CMOS sensors do require somewhat custom-
ized fabrication for greater uniformity and fewer noise-producing imperfections than can be 
tolerated in other devices. While the cost to fabricate CMOS sensors is less than for CCD, the 
design costs are much higher. Of course, for devices that are to be produced in large quantity, 
this is a minor factor. The overall trend has been for CMOS sensors to continue to improve 
in quality and performance, and while the advantages of the CCD sensor are still important 
for most technical applications, it is wise to consider the trade-offs on a case-by-case basis 
(Nakamura, 2006; Holst & Lomheim, 2007).

Camera artifacts and limitations

There are several problems with video cameras using chips which contribute to the specific 
types of defects present in the images that must be dealt with by subsequent processing. One 
is the fact that many video signals are interlaced (Figure 1.16). With high-definition video, 
and with digital still cameras, the image is scanned progressively. Interlacing is a clever trick 
to minimize visual flicker in broadcast television images, accomplished with tube cameras by 
scanning the electron beam in the same interlace pattern as the display television set. With a 
chip camera, it requires that the array be read out twice for every 30th of a second frame, once 
to collect the even numbered lines and again for the odd numbered lines. In fact, many cam-
eras combine two lines to get better sensitivity, averaging lines 1 and 2, 3 and 4, 5 and 6, and 
so on, in one interlace field, and then 2 and 3, 4 and 5, 6 and 7, etc. in the other. This reduces 

 

Figure 1.15 Schematic diagram of a typical 
CMOS detector. Each active light sensor 
(green) has additional transistors that are 
connected to addressing and output lines.
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vertical resolution but for casual viewing purposes is not noticeable. Motion can cause the 
even and odd fields of a full frame to be offset from each other, producing a significant deg-
radation of the image, as shown in the figure. A similar effect occurs with stationary images 
if the horizontal retrace signal is imprecise or difficult for the electronics to lock onto; this is 
a particular problem with signals played back from consumer video tape recorders. (Moving 
images are also distorted with progressive scan cameras, due to the time required to read from 
the top of the image to the bottom.)

During the transfer and readout process, unless the camera is shuttered either mechanically 
or electrically, photons continue to produce electrons in the chip. This produces a large 
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Figure 1.16 

  (a)  Interlace scan covers even 
numbered lines in one six-
tieth-second field, and even 
numbered lines in a second 
field.

  (b)  When motion is present 
(either in the scene or caused 
by camera motion), this pro-
duces an offset in the com-
plete image.

              (a)

(b)
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background signal that further degrades dynamic range and may produce blurring. Electronic 
shuttering is usually done line-at-a-time so that moving images are distorted. Some designs 
avoid shuttering problems by doubling the number of pixels, with half of them opaque to 
incoming light. A single transfer shifts the electrons from the active detectors to the hidden 
ones, from which they can be read out. Of course, this reduces the active area (fill factor) of 
devices on the chip, reducing sensitivity by 50%.

The high speed of horizontal line readout can produce horizontal blurring of the signal, again 
reducing image resolution. This is partially due to inadequate time for the electrons to diffuse 
along with the shifting fields, to the time needed to recover electrons from traps (impurities 
in the silicon lattice), and partially to the inadequate frequency response of the amplifier, 
which is a trade-off with amplifier noise. Even though the individual electron transfers are 
very efficient, better than 99.999% in most cases, the result of being passed through many 
such transfers before being collected and amplified increases the noise. This varies from one 
side of the chip to the other, and from the top to the bottom, and can be visually detected in 
images if there is not a lot of other detail or motion to obscure it.

Many transfers of electrons from one detector to another occur during readout of a chip, and 
this accounts for some of the noise in the signal. Purely statistical variations in the produc-
tion and collection of charge is a relatively smaller effect. The conversion of the tiny charge 
to a voltage and its subsequent amplification is the greatest source of noise in most systems. 
Readout and amplifier noise can be reduced by slowing the transfer process so that fewer elec-
trons are lost in the shifting process and the amplifier time constant can integrate out more of 
the noise, producing a cleaner signal. Cooling the chip to about –40° also reduces the noise 
from these sources and from dark current, or thermal electrons. Slow readout and cooling are 
used only in non-video applications, of course. Digital still cameras use the same chip technol-
ogy (but much higher numbers of detectors) as solid state video cameras, and produce higher 
quality images because of the slower readout. Janesick (2001) discusses the various sources 
of noise and their control in scientific CCDs of the type used in astronomical imaging (where 
they have almost entirely replaced film) and in space probes.

Color cameras

Color cameras can be designed in three principal ways, as shown in Figures 1.17, 1.18, 
and 1.19. For stationary images (which includes many scientific applications such as 
microscopy, but excludes “real-time” applications such as video), a single detector array 
can be used to acquire three sequential exposures through red, green and blue filters, 
respectively (Figure 1.17), which are then combined for viewing. The advantages of this 
scheme include low cost and the ability to use different exposure times for the different 
color bands, which can compensate for the poorer sensitivity of the silicon chip to short 
wavelength (blue) light.

Many high-end consumer and most professional grade video cameras use three sensors 
(Figure 1.18). A prism array splits the incoming light into red, green, and blue components, 
which are recorded by three different sensors whose outputs are combined electronically to 
produce a standard video image. This approach is more costly, since three chips are needed, 
but for video applications they need not be of particularly high resolution (even a high-defini-
tion video camera has many fewer pixels than a digital still camera). The optics and hardware 
to keep everything in alignment add some cost, and the depth of the prism optics makes it 



16 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

impractical to use short focal length (wide angle) lenses. This design is rarely used in digital 
still cameras.

Video images are often digitized into a 640 × 480 array of stored pixels (the dimensions of 
the VGA display that was once standard for personal computers), but this is not the actual 
resolution of the image. The broadcast bandwidth limits the high frequencies and eliminates 
any rapid variations in brightness and color. A standard definition video image has no more 
than 330 actual elements of resolution in the horizontal direction for the brightness (lumi-
nance) signal, and about half that for the color (chrominance) information. Color information 
is intentionally reduced in resolution because human vision is not very sensitive to blurring 
of color beyond boundary lines.

Of course, video signals can be further degraded by poor equipment. Recording video on 
consumer-grade tape machines can reduce the resolution by another 50% or more, particularly 
if the record head is dirty or the tape has been used many times before (an unfortunately very 

  

Figure 1.17 Schematic diagram of a color 
wheel camera with red, green and blue 
filters. The fourth filter position is empty, 
allowing the camera to be used as a mono-
chrome detector with greater sensitivity for 
dim images (e.g., fluorescence microscopy).

Figure 1.18 Schematic diagram of the prisms 
and dichroic filters for a three chip color 
camera.
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common problem with forensic examination of surveillance video is that the tapes are played 
— over and over — for visual examination by local police so that by the time professionals get 
them, the oxide coating — and the information — has been damaged or even removed). Video 
images are not very high resolution, although HDTV (high definition television) has improved 
things somewhat. Consequently, video technology is usually a poor choice for scientific imag-
ing unless there is some special need to capture “real time” images (i.e., 25–30 frames per 
second) to record changes or motion. Digital still cameras have largely replaced them, as they 
produce much higher resolution images with greater dynamic range.

Most digital cameras use a single pixel array, often of very high pixel (detector) count, with a 
color filter that allows red, green, and blue light to reach specific detectors. Different patterns 
may be used (Figure 1.19), with the Bayer pattern being very common (invented by Kodak 
researcher Bryce Bayer and the basis for U.S. Patent 3,971,065 “Color Imaging Array,” issued in 
1976). Notice that it assigns twice as many detectors for green as for red or blue, which mim-
ics to some extent the human eye’s greater sensitivity to green. The problem with the single-
chip camera, of course, is that the image resolution in each color channel is reduced. The red 
intensity at some locations must be interpolated from nearby sensors, for example. It is also 
necessary to design the filters to give the same brightness sensitivity in each channel. If this is 
not done well, a herring-bone pattern (often referred to as a “zipper”) appears in images of a 
uniform gray test card and color fringes appear along contrast edges in the picture, as shown 
in Figure 1.20.

Interpolation techniques for Bayer pattern color filters reduce the image resolution as com-
pared to the number of individual detectors in the camera (which is generally the speci-
fication advertised by the manufacturer). Inherently, this “demosaicking” process involves 
trade-offs between image sharpness, details, noise, processing time and conversion artifacts. 
The quality of the result, judged by its ability to preserve sharp boundaries in brightness 
while minimizing the introduction of color artifacts, varies inversely with the computational 

 
(a)              (b)

Figure 1.19 

  (a) Stripe and

  (b)  Bayer filter patterns 
used in single chip 
cameras.
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requirements. A comparison of several patented methods can be found in Ramanath (2000) 
and Shao et al. (2005), Tamburino et al. (2010), and Guanara et al. (2010). The combination 
of the specific color filter array arrangement and the camera’s interpolation firmware leaves 
a signature in images that can be used in some cases to identify the model of camera used to 
photograph a scene, even to identify specific fixed pattern noise from an individual camera, 
and to detect alterations made to the image later (Bayram et al., 2006; Swaminathan et al., 
2007; Farid, 2008).

Pattern noise is not unique to single-chip cameras with a color filter array. Three-chip cameras 
also have potential problems because all chips have some slight variations in the output from 
individual transistors. In a three-chip system these produce different variations in the red, 
green, and blue output that increase the color variations in the images.

Another approach to color camera design, developed by Foveon Corp. and used in a few 
cameras, creates three transistors at each pixel location, stacked on top of each other, using 
CMOS technology. Blue light penetrates the shortest distance in silicon and is detected in the 
topmost transistor. Green light penetrates to the second transistor and red light penetrates 
to the bottom one. The output signals are combined to produce the color information. This 
approach does not suffer from loss of spatial resolution due to interpolation, but has potential 
problems with consistent or accurate color fidelity.

Camera resolution

The signal coming from the silicon detector is analog, even if the digitization takes place within 
the camera housing or even on the same chip, so the interpolation is done in the amplifier 
stage. In most cases, the actual image resolution with a single chip camera and filter arrange-
ment is one-half to two-thirds the value that might be expected from the advertised number 
of pixels in the camera, because of this interpolation. And some cameras record images with 
many more stored pixels than the chip resolution warrants in any case. Such interpolation and 
empty magnification contribute no additional information in the image.

Figure 1.20 Example of “zipper” patterns resulting from poor interpolation in a single-chip digital 
camera.
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Comparing cameras based on actual resolution rather than the stated number of recorded 
pixels can be difficult. It is important to consider the multiple meanings of the word “pixel.” 
In some contexts, it refers to the number of light detectors in the camera (without regard to 
any color filtering, and sometimes including ones around the edges that do not contribute 
to the actual image but are used to measure dark current). In some contexts it describes 
the number of recorded brightness or color values stored in the computer, although these 
may represent empty magnification. In other situations it is used to describe the displayed 
points of color on the computer monitor, even if the image is shown in a compressed or 
enlarged size. It makes much more sense to separate these various meanings and to talk 
about resolution elements when considering real image resolution. This refers to the num-
ber of discrete points across the image that can be distinguished from each other and is 
sometimes specified in terms of the number of line pairs that can be resolved. This is one-
third to one-half the number of resolution elements, since at least one element is needed 
for the line and one for the space between lines. It depends on the amount of brightness 
contrast between the lines and the spaces, and the amount of noise (random variation) 
present in the image.

The situation is even more complicated with some digital still cameras that shift the detec-
tor array to capture multiple samples of the image. The most common method is to use 
a piezo device to offset the array by half the pixel spacing in the horizontal and vertical 
directions, capturing four images that can be combined to more or less double the resolu-
tion of the image as data are acquired from the gaps between the original pixel positions. 
For an array with colored filters, additional shifts can produce color images with resolu-
tion approaching that corresponding to the pixel spacing. Some studio cameras displace 
the entire sensor array to different regions of the film plane to collect tiles that are sub-
sequently assembled into an image several times as large as the detector array. Of course, 
the multiple exposures required with these methods means that more time is required to 
acquire the image.

Rather than a two-dimensional array of detectors, it is also possible to use a linear array (or 
sometimes three, one each with red, green, and blue filters) that is swept across the image 
plane to acquire the data. This method is common in desk-top scanners (which for many 
applications are perfectly usable image acquisition devices). It has also been used in studio 
cameras, and some light microscopes accomplish the same thing by moving the stage and 
specimen under the optics so that an image of an entire 1 × 3 inch slide can be obtained 
with high spatial resolution. The image file produced is huge; special software is required 
to efficiently access the stored array (Bacus & Bacus, 2000, 2002) and to interactively deliver 
a selected portion of the image data as the user varies position and magnification. Network 
access to such stored images also presents bandwidth challenges, but facilitates collaboration 
and teaching.

With either a single-chip or three-chip camera, the blue channel is typically the noisiest 
due to the low chip sensitivity to blue light and the consequent need for greater amplifi-
cation. In many cases, processing software that reduces image noise using averaging or 
median filters (discussed in Chapter 4) can be applied separately to each color channel, 
using different parameters according to the actual noise content, to best improve image 
appearance.

Digital cameras using the same chip technology as a video camera can produce much better 
image quality. This is due in part to the longer exposure times, which collect more electrons 
and so reduce noise due to statistics and amplification. Also, the slower readout of the data 
from the chip, which may take a second or more instead of 1/60th of a second, reduces 
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readout noise. Digital still cameras read out the data in one single pass (progressive scan), not 
with an interlace. By cooling the chip and amplifier circuitry to reduce dark currents, integra-
tion (long exposures up to tens of seconds, or for some astronomical applications many min-
utes) can be used to advantage because of the high dynamic range (large well size and large 
number of bits in the digitizer) of some chip designs. In addition, the ability to use a physical 
rather than electronic shutter simplifies chip circuitry and increases fill factor. The number of 
pixels in video cameras need not be any greater than the resolution of the video signal, which, 
as noted above, is rather poor. In a digital still camera, very high pixel counts can give rise to 
extremely high resolution, which rivals film in some cases.

There is also an interesting cross-over occurring between high end consumer and professional 
scientific grade cameras. In addition to dedicated cameras for attachment to microscopes or 
other separate optics, manufacturers are producing consumer single-lens reflex cameras with 
enough resolution (15 to 20 million pixels at this writing) that it is becoming practical to use 
them in technical applications, and simple optical attachments make it easy to connect them 
to microscopes or other instruments (and of course the camera may also be removed and used 
for other purposes). The camera may be tethered directly to a computer, but in many cases it 
is more practical to record the images to memory chips that are later downloaded to the com-
puter. Professional digital cameras with large, high resolution detector arrays, interchangeable 
lenses, etc., are providing capabilities that compete with traditional 35mm and larger film 
cameras. Every manufacturer of cameras has recognized the shift away from film and toward 
digital recording, and an incredibly wide variety of cameras is now available, with new devel-
opments appearing frequently.

The benefits of a camera with a large number of sensors (high pixel count), as well as large 
individual sensors (large well size and consequent high dynamic range), seem obvious and 
desirable. For some applications, high pixel counts are not so important. At high optical 
magnification, the important limitation is the optical resolution. In the rather typical setup 
of my bench microscope, with a 10x (low magnification) objective lens, the image projected 
onto the chip by the transfer optics covers about 1600 µm width on the specimen. With a 
100× (high magnification) objective lens that becomes 160 µm. For a camera with 3600 × 
2400 sensors (less than 10 megapixels) the low magnification image is recorded at about 1 
pixel per micron, adequate for the resolution of the optics. The high magnification image 
is recorded with 90 pixels per micron. Since the optical resolution of the microscope under 
optimum conditions is about 0.5 µm with the 100× lens, this produces a vast and unneces-
sary oversampling. At low magnifications, or for viewing fine detail in large scenes (such as 
aerial and satellite imagery), high pixel counts make sense. When the limitation on resolu-
tion lies with the optics, it may not.

Focusing

Regardless of what type of camera is employed to acquire images, it is important to focus the 
optics correctly to capture the fine details in the image. Often the human eye is used to per-
form this task manually. In some situations, such as automated microscopy of pathology slides 
or surveillance tracking of vehicles, automatic focusing is required. This brings computer 
processing into the initial step of image capture. Sometimes, in the interests of speed, the 
processing is performed in dedicated hardware circuits attached to the camera. But in many 
cases the algorithms are the same as might be applied in the computer (described in Chapter 
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5), and the focusing is accomplished in software by stepping the optics through a range of 
settings and choosing the one that gives the “best” picture.

Several different approaches to automatic focus are used. Cameras used for macroscopic 
scenes may employ methods that use some distance measuring technology, e.g., using high 
frequency sound or infrared light, to determine the distance to the subject so that the lens 
position can be adjusted. In microscopy applications this is impractical, and the variation 
with focus adjustment captured in the image itself must be used. Various algorithms are used 
to detect the quality of image sharpness, and all are successful for the majority of images in 
which there is good contrast and fine detail present. Each approach selects some implementa-
tion of a high-pass filter output which can be realized in various ways, using either hardware 
or software, but must take into account the effect of high frequency noise in the image and 
the optical transfer function of the optics (Green et al., 1985; Firestone et al., 1991; Boddeke 
et al., 1994; Sun et al., 2004; Buena-Ibarra, 2005; Bueno et al., 2005; Brazdilova & Kozubek, 
2009; Shim et al., 2010.)

Electronics and bandwidth limitations

Video cameras of either the solid-state chip or tube type produce analog voltage signals cor-
responding to the brightness at different points in the image. In the standard definition RS-170 
signal convention, the voltage varies over a 0.7-volt range from minimum to maximum bright-
ness, as shown above in Figure 1.8. The scan is nominally 525 lines per full frame, with two 
interlaced 1/60th-second fields combining to make an entire image. Only about 480 of the 
scan lines are usable, with the remainder lost during vertical retrace. In a typical broadcast 
television picture, more of these lines are lost due to overscanning, leaving about 400 lines in 
the actual viewed area. The time duration of each scan line is 62.5 µs, part of which is used 
for horizontal retrace. This leaves 52 µs for the image data, which must be subdivided into 
the horizontal spacing of discernible pixels. For PAL (European) television, these values are 
slightly different based on a 1/25th-second frame time and more scan lines, and the resulting 
resolution is slightly higher.

Until recently in the United States, broadcast television stations were given only a 4-MHz 
bandwidth for their signals, which must carry color and sound information as well as the 
brightness signal. This narrow bandwidth limits the number of separate voltage values that 
can be distinguished along each scan line to a maximum of 330, as mentioned above, and this 
value is reduced if the signal is degraded by the electronics or by recording using standard 
videotape recorders. Consumer-quality videotape recorders reduce the effective resolution 
substantially; in “freeze frame” playback, they display only one of the two interlaced fields, 
so that only about 200 lines are resolved vertically. Using such equipment as part of an image 
analysis system makes choices of cameras or digitizer cards on the basis of resolution (actually 
the number of sampled pixels) irrelevant.

There is a major difference between the interlace scan used in standard definition television 
and a non-interlaced or “progressive” scan. The latter gives better quality because there 
are no line-to-line alignment or shift problems. Most high definition television (HDTV) 
modes use progressive scan. The format requires a higher rate of repetition of frames to 
fool the human eye into seeing continuous motion without flicker, but it has many other 
advantages. These include simpler logic to read data from the camera (which may be incor-
porated directly on the chip), more opportunity for data compression because of redun-
dancies between successive lines, and simpler display and storage devices. Practically all 
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scientific imaging systems such as digital cameras, direct-scan microscopes (the scanning 
electron microscope or SEM, scanning tunneling microscope or STM, the atomic force 
microscope or AFM, etc.), flat-bed scanners, film or slide digitizers, and similar devices use 
progressive scan.

HDTV modes include many more differences from conventional television than the use 
of progressive scan. The pixel density is much higher, with a wider aspect ratio of 16:9 
(instead of the 4:3 used in NTSC television) and the pixels are square. A typical HDTV 
mode presents 1920 × 1080 pixel images at the rate of 60 full scans per second, for a total 
data rate exceeding 2 gigabits per second, several hundred times as much data as analog 
broadcast television. One consequence of this high data rate is the use of data compression 
techniques, which are discussed in Chapter 3, and the use of digital transmission tech-
niques using cable or optical fiber instead of broadcast channels. Over-the-air, satellite, 
and cable transmission of HDTV signals all involve compression, often with a significant 
loss of image quality.

Regardless of the effects on consumer television, the development of HDTV hardware is likely 
to produce spin-off effects for computer imaging, such as high pixel density cameras with pro-
gressive scan output, high bandwidth recording devices, and superior CRT or LCD displays. 
For example, color cameras being designed for HDTV applications output digital rather than 
analog information by performing the analog-to-digital conversion within the camera, with at 
least 10 bits each for red, green, and blue.

Even the best system can be degraded in performance by such simple things as cables, con-
nectors, or incorrect termination impedance. Another practical caution in the use of standard 
cameras is to avoid automatic gain or brightness compensation circuits. These can change the 
image contrast or linearity in response to bright or dark regions that do not even lie within 
the digitized portion of the image, make comparison between images difficult, and increase 
the gain and noise for a dim signal.

Figure 1.21 shows a micrograph with its brightness histogram. This is an important tool for 
image analysis, which plots the number of pixels as a function of their brightness values. It 
is used extensively in subsequent chapters. The histogram shown is well spread out over the 
available 256 brightness levels, with peaks corresponding to each of the structures in the 
metal sample. If a bright light falls on a portion of the detector in the solid-state camera that is 

  

Figure 1.21 A gray scale image digitized from a metallographic microscope and its brightness histo-
gram, which plots the number of pixels with each possible brightness value.
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not part of the image area of interest (e.g., due to internal reflections in the optics), automatic 
gain circuits in the camera may alter the brightness-voltage relationship so that the image 
changes. This same effect occurs when a white or dark mask is used to surround images 
placed under a camera on a copy stand. The relationship between structure and brightness is 
changed, making subsequent analysis more difficult.

Issues involving color correction and calibration are dealt with below, but obtaining absolute 
color information from video cameras is not possible because of the broad range of wave-
lengths passed through each filter, the variation in illumination color (even with slight voltage 
changes on an incandescent bulb), and the way the color information is encoded. Matching 
colors so that the human impression of color is consistent requires calibration, which is dis-
cussed in Chapter 4.

The color temperature of the illumination used is critical to matching colors in images. 
Figure 1.22 shows an image recorded using filtered sunlight, with an effective color tem-
perature (described more fully in Chapter 3) of approximately 5000K, using a white card 
and prior exposure to allow the camera to perform a color balance adjustment. Opening the 
raw image file with different assumed color temperatures produces substantial changes in the 
visual perception of the colors.

Digitization of the analog voltage signal from the detector may be done either in the camera 
or in a separate external circuit (such as a “frame grabber” board placed inside the computer). 
The analog signal is usually digitized with a “flash” ADC (analog-to-digital converter). This 
is a chip using successive approximation techniques (described above) to rapidly sample and 
measure the voltage. For video-rate imaging this must be done in less than 100 ns, producing 
a number value from 0 to 255 that represents the brightness. Slower readout allows for more 
than 8 bit conversion, and many digital still cameras have 12 or even 14 bit ADCs, although the 
dynamic range and noise level in the detector may not be that good. The brightness number is 
stored in memory and another reading made, so that a series of brightness values is obtained 
along each scan line. Figure 1.23 illustrates the digitization of a signal into equal steps in 
both time and value. Additional circuitry is needed to trigger each series of readings so that 
positions along successive lines are consistent. Digitizing several hundred or thousand points 
along each scan line, repeating the process for each line, and transmitting or storing the val-
ues into memory produces a digitized image for further processing or analysis.

Figure 1.22 An image taken with filtered sunlight and an effective color temperature of 5000K, but 
stored as a raw file and opened using different assumed color temperatures. From left to right, 3500, 
4500, 5500, 6500K.
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Pixels

It is most desirable to have the spacing of the pixel values be the same in the horizontal and 
vertical directions (i.e., square pixels), as this simplifies many processing and measurement 
operations. There are some theoretical advantages to having pixels arranged as a hexagonal 
grid, but because of the way that all acquisition hardware actually functions, and to simplify 
the addressing of pixels in computer memory, this is almost never done.

Accomplishing the goal of square pixels with an analog video camera requires a well-adjusted 
clock to control the acquisition. Since the standard-definition video image is not square, but 
has a width-to-height ratio of 4:3, the digitized image may represent only a portion of the 
entire field of view. Digitizing boards (frame grabbers) were first designed to record 512 × 512 
arrays of values, since the power-of-two dimension simplified design and memory addressing. 
Later generations acquired a 640 wide by 480 high array, which matched the image propor-
tions and the size of standard VGA display monitors while keeping the pixels square. Because 
of the variation in clocks between cameras and digitizers, it was common to find distortions of 
several percent in pixel squareness. This can be measured and compensated for after acquisi-
tion by resampling the pixels in the image, as Chapter 4 describes. Most digital still cameras 
acquire images that have a width-to-height ratio of 4:3 (the aspect ratio of conventional video) 
or 3:2 (the aspect ratio of 35mm film) and have square pixels.

Since pixels have a finite area, those which straddle a boundary in the scene effectively aver-
age the brightness levels of two regions and have an intermediate brightness that depends on 
how the pixels lie with respect to the boundary. This means that a high lateral pixel resolution 
and a large number of distinguishable gray levels are needed to accurately locate boundaries. 
Figure 1.24 shows several examples of an image with varying numbers of pixels across its 
width, and Figure 1.25 shows the same image with varying numbers of gray levels.

For the most common types of image acquisition devices, such as cameras, the pixels rep-
resent an averaging of the signal across a finite area of the scene or specimen. However, 
there are other situations in which this is not so. At low magnification, for example, the 
scanning electron microscope beam samples a volume of the specimen much smaller 
than the dimension of a pixel in the image. So does the probe tip in a scanned probe 

 

Figure 1.23 Digitization of an analog 
voltage signal along one line in an 
image (blue) produces a series of 
values that correspond to a series 
of steps (red) equal in time and 
rounded to integral multiples of the 
smallest measurable increment.
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microscope. Range imaging of the moon from the Clementine orbiter determined the 
elevation of points about 10 cm in diameter using a laser rangefinder, but at points spaced 
apart by 100 meters or more.

In these cases, the interpretation of the relationship between adjacent pixels is slightly dif-
ferent. Instead of averaging across boundaries, the pixels sample points that are discrete and 
well separated. Cases of intermediate or gradually varying values from pixel to pixel are rare, 
and the problem instead becomes how to locate a boundary between two sampled points on 
either side. If there are many points along both sides of the boundary, and the boundary can 
be assumed to have some geometric shape (such as a locally straight line), fitting methods can 

Figure 1.24 Four representations of the same image, showing a variation in the number of pixels used. 
From the upper left: 256 × 256; 128 × 128; 64 × 64; 32 × 32. In all cases, a full 256 gray values are 
retained. Each step in coarsening of the image is accomplished by averaging the brightness of the 
region covered by the larger pixels.
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be used to locate it to a fraction of the pixel spacing. These methods are discussed further in 
Chapter 10 on image measurements.

Gray scale resolution

In addition to defining the number of sampled points along each scan line, and hence the 
resolution of the image, the design of the ADC also controls the precision of each measure-
ment. High speed flash analog-to-digital converters usually measure each voltage reading to 
produce an 8-bit number from 0 to 255. This full range may not be used for an actual image, 
which may not vary from full black to white. Also, the quality of most analog video cameras 

Figure 1.25 Four representations of the same image, with variation in the number of gray levels used. 
From the upper left: 32; 16; 8; 4. In all cases, a full 256 × 256 array of pixels is retained. Each step in 
the coarsening of the image is accomplished by rounding the brightness of the original pixel value.
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and other associated electronics rarely produces voltages that are free enough from electronic 
noise to justify full 8-bit digitization anyway. A typical “good” camera specification of 49 dB 
signal-to-noise ratio implies that only 7 bits of real information are available, and the eighth 
bit is random noise. But 8 bits corresponds nicely to the most common organization of com-
puter memory into bytes, so that 1 byte of storage can hold the brightness value from 1 pixel 
in the image.

High end digital still cameras and most scanners produce more than 256 distinguishable 
brightness values, and for these it is common to store the data in 2 bytes or 16 bits, giving a 
possible range of 65536:1, which exceeds the capability of any current imaging device (but not 
some other sources of data that may be displayed as images, such as surface elevation mea-
sured with a scanned probe, a topic in Chapter 15). For a camera with a 10 or 12 bit output, 
the values are shifted over to the most significant bits and the low order bits are either zero or 
random values. For display and printing purposes 8 bits is enough, but the additional depth 
can be very important for processing and measurement, as discussed in subsequent chapters. 
In many systems the histogram of values is still expressed as 0.255 for compatibility with the 
more common 8-bit range, but instead of being restricted to integers the brightness consists 
of floating point values. That is the convention used in this book.

When the stored image is displayed from computer memory, the numbers are used in a dig-
ital-to-analog converter to produce voltages that control the brightness of a display monitor, 
often a cathode ray tube (CRT) or liquid crystal display (LCD). This process is comparatively 
noise-free and high resolution, since computer display technology has been developed to a 
high level for other purposes. These displays typically have 256 steps of brightness for the red, 
green, and blue signals, and when equal values are supplied to all three the result is perceived 
as a neutral gray value.

The human eye cannot distinguish all 256 different levels of brightness in this type of display, 
nor can they be successfully recorded or printed using ink-jet or laser printers (discussed in 
Chapter 3). About 20–40 brightness levels can be visually distinguished on a CRT, LCD, or 
photographic print, suggesting that the performance of the digitizers in this regard is more 
than adequate, at least for those applications where the performance of the eye is enough to 
begin with, or the purpose of the imaging is to produce prints.

A somewhat different situation that results in another limitation arises with images that cover 
a very large dynamic range. Real-world scenes often include brightly lit areas and deep shade. 
Scientific images such as SEM pictures have very bright regions corresponding to edges and 
protrusions and very dark ones such as the interiors of depressions. Astronomical pictures 
range from the very bright light of stars to the very dark levels of dust clouds or interstellar 
space. If only 256 brightness levels are stretched to cover this entire range, there is not enough 
sensitivity to small variations to reveal detail in either bright or dark areas. Capturing images 
with higher bit depth, for instance 12 bits (4096 brightness levels, which is approximately the 
capability of a film camera), can record the data, but it cannot be viewed successfully on a 
display screen or in a print. Processing methods that can deal with such high dynamic range 
images to facilitate visual interpretation are shown in Chapter 5.

Images acquired in very dim light, or some other imaging modalities such as X-ray mapping in 
the scanning electron microscope (SEM), impose another limitation of the gray scale depth of 
the image. When the number of photons (or other particles) collected for each image pixel is 
low, statistical fluctuations and random noise become important. Figure 1.26 shows the effect 
of high ASA settings (high amplifier gain) on random pixel variations in an image. The two 



28 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

images were recorded with the same camera and identical illumination and aperture settings; 
changing the ASA setting on the camera resulted in different exposure times.

Figure 1.27 shows a fluorescence microscope image in which a single video frame illustrates 
substantial statistical noise, which prevents distinguishing or measuring the structures pres-
ent. Averaging together multiple frames collects more signal and results in an improvement in 
the signal- to noise-ratio, and hence in the visibility of detail.

Noise

Images in which the pixel values vary within regions that are ideally uniform in the original scene 
can arise either because of limited counting statistics for the photons or other signals, losses intro-
duced in the shifting of electrons within the chip, or due to electronic noise in the amplifiers or 
cabling. In any case, the variation is generally referred to as noise, and the ratio of the contrast 
which is due to differences present in the scene represented by the image to the noise level is 
the signal-to-noise ratio. When this is low, the features present may be invisible to the observer. 
Figure 1.28 shows an example in which several features of different size and shape are super-
imposed on a noisy background with different signal-to-noise ratios. The ability to discern the 
presence of the features is generally proportional to their area and independent of shape.

In the figure, a smoothing operation is performed on the image with the poorest signal-to-
noise ratio, which somewhat improves the visibility of the features. The methods available 
for improving noisy images by image processing are discussed in the chapters on spatial and 
frequency domain methods. However, the best approach to noisy images, when it is available, 
is to collect more signal and improve the statistics.

Increasing the exposure (either by increasing the exposure time, the lens aperture, or the 
illumination) reduces noise due to statistical effects, as shown in Figures 1.26 and 1.27. The 
improvement in quality is proportional to the square root of the amount of light (or other 

Figure 1.26 The same image recorded with an ASA setting of 1600 (top) and 100 (bottom), showing the 
increase in random pixel noise produced by higher gain in the camera.
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signal) collected. It is necessary to use a detector with a sufficient well size to hold the elec-
trons and to use a sufficiently high bit depth in the image to preserve the contrast details. 
Cooling the detector and associated electronics chips can reduce electronic noise during long 
acquisitions of many minutes. Most uncooled camera chips begin to show unacceptable pixel 
noise due to dark current with integration times of more than a few seconds.

Acquiring images at video rates of 25–30 frames per second is sometimes referred to as “real 
time” imaging, but of course this term should properly be reserved for any imaging rate that 
is adequate to reveal temporal changes in a particular application. For some situations, time-
lapse photography may only require one frame to be taken at periods of many minutes, hours, 
or even days. For others, very short exposures and high rates are needed. Special cameras 
that do not use video frame rates or bandwidths can achieve rates up to ten times that of a 
standard video camera for full frames and even higher for small image dimensions. These 
cameras typically use a single line of detectors and optical deflection (e.g., a rotating mirror 
or prism) to cover the image area.

For many applications, the repetition rate does not need to be that high. Either stroboscopic 
imaging or a fast shutter speed may be enough to stop the important motion to provide a 
sharp image. Electronic shutters can be used to control solid state imaging devices, instead 

Figure 1.27 Averaging of a noisy (low photon intensity) image (light microscope image of bone mar-
row). From the upper left: one frame; averaging of 4; 16; 256 frames.
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of a mechanical shutter. Exposure times under 1/10,000th of a second can easily be achieved, 
but of course this short exposure requires high illumination intensity.

High depth images

Other devices that produce data sets that are often treated as images for viewing and measure-
ment produce data with a much greater range than a camera. For instance, a scanned stylus 
instrument that measures the elevation of points on a surface may have a vertical resolution of 
a few nanometers with a maximum vertical travel of hundreds of micrometers, for a range-to-
resolution value of 105. This requires storing data in a format that preserves the full resolution 
values, and such instruments typically use 4 bytes per pixel. An elevation map of the earth’s 
surface encoded with 8 bits (256 values) spread over the range from sea level to the top of Mt. 
Everest corresponds to about 100 feet per bit and would not not show most of Florida as dis-
tinct from sea level. With 2 bytes per pixel (65,536 values) each bit represents about 6 inches 
and the map can distinguish the curbs along most streets. With 4 bytes per pixel (4 billion 
values) each bit corresponds to less than 200 µm, and the roughness of sand on a beach can 
be recorded.

In some cases with cameras having a large brightness range, the entire 12- or 14-bit depth 
of each pixel is stored. However, since this depth exceeds the capabilities of most CRTs to 
display, or of the user to see or print, reduction may be appropriate. If the actual bright-
ness range of the image does not cover the entire possible range, scaling (either manual or 

 
(a)               (b)

 
(c)               (d)

Figure 1.28 Features on a 
noisy background:

  (a)  signal-to-noise ratio 1:1;

  (b)  signal-to-noise ratio 1:3;

  (c)  signal-to-noise ratio 1:7;

  (d)  image (c) after spatial 
smoothing.



31Acquiring Images
© 2011 by Taylor & Francis Group, LLC

automatic) to select just the range actually used can significantly reduce storage require-
ments. Many computer programs (e.g., Adobe Photoshop®) offer routines to read the raw 
linear format from the camera and convert it with adjustments for lighting, vignetting, and 
contrast.

In other cases, especially when performing densitometry, a conversion table is used. For den-
sitometry, the desired density value varies as the logarithm of the brightness; this is discussed 
in detail in Chapter 10. A range of 256 brightness steps is not adequate to cover a typical 
range from 0 to greater than 3.0 in optical density (i.e., one part in 103 of the incident illumina-
tion is transmitted) with useful precision, because at the dark end of the range, 1 step in 256 
represents a very large step in optical density. Using a digitization with 12 bits (1 step in 4096) 
solves this problem, but it may be efficient to convert the resulting value with a logarithmic 
lookup table to store an 8-bit value (occupying a single computer byte) that represents the 
optical density.

Lookup tables (LUTs) can be implemented either in hardware or software. They use the origi-
nal value as an index into a stored or precalculated table, which then provides the derived 
value. This process is fast enough that acquisition is not affected. Many digital still cameras 
use LUTs to convert the linear output from the detector and ADC to a value that mimics the 
behavior of film. The LUTs discussed here are used for image acquisition, converting a 10-, 
12-, or 14-bit digitized value with a nonlinear table to an 8-bit value that can be stored. LUTs 
are also used for displaying stored images, particularly to substitute colors for gray scale 
values to create pseudo-color displays, but also to apply correction curves to output devices 
(displays and printers) in order to match colors. This topic is discussed later in this chapter 
and in Chapter 3.

Many images do not have a brightness range that covers the full dynamic range of the digi-
tizer. The result is an image whose histogram covers only a portion of the available values 
for storage or for display. Figure 1.29 shows a histogram of such an image. The flat (empty) 
regions of the plot indicate brightness values at both the light and dark ends that are not 
used by any of the pixels in the image. Expanding the brightness scale by spreading the his-
togram out to the full available range, as shown in the figure, may improve the visibility of 
features and the perceived contrast in local structures. The same number of brightness values 
are missing from the image, as shown by the gaps in the histogram, but now they are spread 
uniformly throughout the range. Other ways to stretch the histogram nonlinearly are shown 
in Chapter 5.

 

Figure 1.29 Linear expansion of a 
histogram to cover the full range 
of storage or display.
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Because the contrast range of many astronomical images is too great for photographic print-
ing, special darkroom techniques were developed which have since been adapted to other 
applications and to computer software. “Unsharp masking” (Figure 1.30) increases the ability 
to show local contrast by suppressing the overall brightness range of the image. The suppres-
sion is done by first printing a “mask” image, slightly out of focus, onto another negative. This 
negative is developed and then placed on the original to make the final print. This super-
position reduces the exposure in the bright areas so that the detail can be shown. The same 
method can also be used in digital image processing, either by subtracting a smoothed version 
of the image or by using a Laplacian operator or high pass filter (discussed in Chapters 5 and 
6). When the entire depth of a 12- or 14-bit image is stored, such processing may be needed 
in order to display the image for viewing on a CRT.

Some perspective on camera performance levels is needed. While a standard video camera 
has about 300,000 sensors, and a typical digital still camera may have ten million or so, the 
human eye has about 1.5•108. Furthermore, these are clustered particularly tightly in the 
fovea, the central area where attention is concentrated. While it is true that only a few dozen 
brightness levels can be distinguished in a single field, the eye adjusts automatically to over-
all brightness levels covering about nine orders of magnitude to select the optimal range 
(although color sensitivity is lost in the darkest part of this range). Chapter 2 further explores 
the capabilities of human vision.

Many types of scientific apparatus produce images, or data that can be viewed as an image, 
directly without using a camera. Medical imaging with X-ray tomography or magnetic reso-
nance imagers, for example, is discussed in Chapter 13. The scanning electron (SEM) or 

 
(a)               (b)

 
(c)               (d)

Figure 1.30 Unsharp 
masking:

  (a)  original telescope image 
of M101 (NGC5457);

  (b)  the “out-of-focus” 
negative;

  (c)  combining (a) and (b) 
produces an image of 
just the local contrast;

  (d)  adding (c) back to (a) 
produces the classic 
unsharp mask result.
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scanned probe microscopes (such as the atomic force microscope or AFM) typically use up 
to about 1000 scan lines. Those that digitize the signals use 8 or sometimes 12 bits, and so 
are similar in image resolution and size to many camera systems. Figure 1.31 shows sche-
matically the function of an SEM. The focused beam of electrons is scanned over the sample 
surface in a raster pattern while various signals generated by the electrons are detected. These 
include secondary and backscattered electrons, characteristic X-rays, visible light, and elec-
tronic effects in the sample.

Other point-scanning microscopes, such as the AFM, the confocal scanning light microscope 
(CSLM), and even contact profilometers, produce very different signals and information. All 
provide a time-varying signal that is related to spatial locations on the sample by knowing the 
scanning speed and parameters, which allows storing the data as an image. Many of these 
devices have noise and resolution characteristics that are different in directions parallel and 
perpendicular to the scanning direction.

Significantly larger arrays of pixels are available from flat-bed scanners. These devices use a 
linear solid-state detector array and can typically scan areas at least 8 inches × 10 inches and 
sometimes up to several times that size. While primarily intended for the desktop publishing 
market, they are readily adapted to scan many types of specimens that are flat or nearly flat, 
as well as electrophoresis gels used for protein separation, or photographic prints or nega-
tives. A high-quality negative can record several thousand distinguishable brightness levels 
and several thousand points per inch (both values are much better than prints). Scanners 
are also used for digitizing photographic negatives such as medical X-rays and 35 mm slides. 
Commercial scanners are used in publishing and to convert films to digital values for storage 
(for instance in Kodak’s Photo-CD format). At the consumer level, scanners with 2400 pixels 
per inch are common for large-area reflective originals and up to 4000 pixels per inch for 35 
mm slide film. Most digitize full-color red, green, and blue (RGB) images.

Scanners are inexpensive, but rather slow, taking tens of seconds to digitize the scan area. 
Another characteristic problem they exhibit is pattern noise in the sensors: if all of the detectors 
along the row are not identical in performance, a “striping” effect appears in the image as the 

Incident
Electron
Beam

Specimen

Signal
Detector

 

Figure 1.31 The scanning electron 
microscope (SEM) focuses a fine 
beam of electrons on the speci-
men, producing various signals 
which may be used for imaging 
as the beam is scanned in a ras-
ter pattern.
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sensor is scanned across the picture. If the scan motion is not perfectly smooth, it can produce 
striping in the other direction. By far the greatest difficulty with such scanners arises from the 
illumination. There is often a drop-off in intensity near the edges of the scanned field because 
of the short length of the light source. Even more troublesome is the warm-up time for the light 
source to become stable (less of a problem with LEDs than with fluorescent illumination).

Color imaging

Most real-world images are color rather than monochrome. The light microscope produces 
color images, and many biological specimen preparation techniques make use of color to 
identify structure or localize chemical activity in novel ways. Even for inorganic materials, 
the use of polarized light or surface oxidation produces color images to delineate structure. 
The SEM is usually a strictly monochromatic imaging tool, but color may be introduced based 
on X-ray energy or backscattered electron energy. Figure 1.32 shows individual gray scale 
images from the X-ray signals from a mineral sample imaged in the SEM. The X-ray images 
show the variation in composition of the sample for each of nine elements (Al, Ca, Fe, K, Mg, 

Figure 1.32 Scanning electron microscope images of a polished sample of mica. The individual X-ray 
images or “dot maps” show the localization of the corresponding elements within various minerals 
in the sample.
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Na, O, Si, Ti). There are more individual images than the three red, green, and blue display 
channels, and no obvious “correct” choice for assigning colors to elements. Figure 1.33 shows 
a few possibilities, but it is important to keep in mind that no single color image can show all 
of the elements at once. Assigning several of these arbitrarily, e.g., to the red, green, and blue 
planes of a display, may aid the user in judging the alignment of regions and areas contain-
ing two or more elements. Chapter 5 introduces methods for processing multiple channel 
images to find principal components. Colored X-ray maps are now fairly common with the 
SEM, as are similar concentration maps based on measured intensities from ion microprobes, 
but other uses of color, such as energy loss in the transmission electron microscope (TEM), 
are still experimental.

Similar use of color is potentially useful with other kinds of microscopes, although in many 
cases these possibilities have not been exploited in commercial instruments. This is also true 
for macroscopic imaging tools. A simple example is the use of color to show altitude in air 
traffic control displays. This use of color increases the bandwidth for communicating multi-
dimensional information to the user, but the effective use of these methods requires some 
education of users and would benefit from some standardization. Of course, it also requires 
that users have full color vision capability. Figure 1.34 shows the appearance of colors to 
someone with various forms of color blindness that affect perhaps 5 to 10% of males (and a 
very few females).

The use of color to encode richly multidimensional information must be distinguished from 
the very common use of false-color or pseudo-color to substitute colors for brightness in 
a monochrome image. Pseudo-color is used because of the limitation mentioned before in 
the visual ability to distinguish subtle differences in brightness. Although only about 20–40 
shades of gray can be distinguished in a monochrome image, hundreds of different colors can 
be discerned. Also, it may aid communication to describe a particular feature of interest as 
“the dark reddish-orange one” rather than “the medium gray one.”

Figure 1.33 Composite color images made by assigning various images from Figure 1.32 to the red, 
green, or blue channels of the display. This can assist in the delineation of the various minerals.



36 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

The use of color scales as a substitute for brightness values allows us to show and see small 
changes locally, and identify the same brightness values globally in an image. This should be 
a great benefit, since these are among the goals for imaging discussed below. Pseudo-color 
has been used particularly for many of the images returned from space probes. It would be 
interesting to know how many people think that the rings around Saturn really are brightly 
colored, or that comet Halley really is surrounded by a rainbow-colored halo! The danger in 
the use of pseudo-color is that it can obscure the real contents of an image. The colors force us 
to concentrate on the details of the image and to lose the Gestalt or whole view. Examples of 
image processing in this book use pseudo-color selectively to illustrate some of the processing 
effects and the changes in pixel values that are produced, but often pseudo-color distracts the 
human eye from seeing the real contents of the enhanced image.

Pseudo-color displays as used in this context substitute a color from a stored or precalculated table 
for each discrete stored brightness value. As shown in Figure 1.35, this should be distinguished 
from some other uses of color displays to identify structures or indicate feature properties. These 
also rely on the use of color to communicate rich information to the viewer, but require consider-
able processing and measurement of the image before this information becomes available.

Color is often used to encode elevation of surfaces (see Chapter 15). In scientific visualization 
it is used for velocity, density, temperature, composition, and many less obvious properties. 
These uses generally have little to do with the properties of the image and simply take advan-
tage of the human ability to distinguish more colors than gray scale values.

Most computer-based imaging systems make it easy to substitute various lookup tables (LUTs) 
of colors for the brightness values in a stored image. These work in the same way as input 
lookup tables, described before. The stored gray scale value is used to select a set of red, 
green, and blue brightnesses in the LUT that controls the voltages sent to the display tube. 

(a)

(d )

(b)

(e)

(c)

Figure 1.34 Simluation of the effects of color blindness on the visual appearance of a color image: 
(a) original color image; (b) protanopia; (c) deuteranopia; (d) tritanopia; (e) achromatopsia.
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Many systems also provide utilities for creating tables of these colors, but there are few guide-
lines to assist in constructing useful ones. Caution is needed, and it is important to include a 
ramp showing the color scale that has been used for a particular image. One approach is to 
systematically and gradually vary color along a path through color space. Examples of several 
different color tables are shown in Figure 1.36. Gradual variations can help to organize the 
different parts of the scene. Rapidly shifting colors enhances gradients and makes it easy to 
see local variations, but may completely hide the overall contents of some images, as shown 
in the final example in the figure.

Another application of color to images that are originally monochrome is the artistic manual 
colorization or tinting of features. This is typically done to distinguish different types of 
objects, according to the understanding and recognition of a human observer. Figure 1.37 
shows an example. Such images certainly have a value in communicating information, espe-
cially to people who are not familiar with either the subject matter or the functioning of the 
imaging device, and some may qualify as art, but this type of procedure is outside the scope 
of this book.

Some image sources use color to encode a variety of different kinds of information, such as 
the intensity and polarization of radio waves in astronomy. However, by far the most common 

 
(a)               (b)

 
(c)               (d)

Figure 1.35 Different uses for 
pseudo-color displays:

  (a)  portion of a gray scale 
microscope image of a pol-
ished metallographic spec-
imen with three phases 
having different average 
brightnesses;

  (b)  image a with pseudo-
color palette or LUT which 
replaces gray values with 
colors. Note the mislead-
ing colors along bound-
aries between light and 
dark phases);

  (c)  image with colors 
assigned to phases. This 
requires segmentation of 
the image by threshold-
ing and other logic to 
assign each pixel to a 
phase based on gray scale 
brightness and neighbor-
ing pixel classification;

  (d)  lightest features from 
the original image with 
colors assigned based on 
feature size. This requires 
the steps to create image 
(c), plus grouping of all 
touching pixels into fea-
tures and the measure-
ment of the features.
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type of color image is that produced by recording the intensity at three different wavelengths 
of visible light. Video deserves mention as a medium for this type of image, since standard 
definition broadcast television uses color in a way that has been accepted as visually satisfac-
tory. The NTSC color encoding scheme used in the U.S. was developed as a compatible add-on 
to existing monochrome television broadcasts. It adds the color information within the same, 
already narrow bandwidth limitation. The result is that the color has even less lateral resolu-
tion than the brightness information.

Color subsampling reduces the amount of data in an image by representing color data with 
lower resolution than luminance (brightness) data. This is done in the YUV color space (Y 
= luminance or brightness, U and V = chrominance or color) described later in this chapter. 
Uncompressed YUV color is represented as 4:4:4. The common subsampling options are 4:2:2, 
4:2:0, 4:1:1, and YUV-9.

4:2:2. Full-bandwidth sampling of Y and 2:1 horizontal sampling of U and V. This is the sam-
pling scheme most commonly used in professional and broadcast video and in tape formats 
such as D-1 and Digital Betacam. It looks good, but the data compression ratio is only 33%.

4:2:0. Full-bandwidth sampling of Y and 2:1 sampling of U and V in both the horizontal and 
vertical dimensions. That is, for every four luminance samples, there are two chrominance 
samples every other line. This yields a 50% reduction in data. 4:2:0 is the color space used in 
MPEG compression, used in most DVD recordings.

4:1:1. Full-bandwidth sampling of Y and 4:1 horizontal sampling of U and V. This is the color 
space of the digital video (DV) formats used in many digital camcorders. It uses U and V 

Figure 1.36 Examples of display look-up tables (LUTs), each with the accompanying color scale. From 
the top left: original monochrome or gray scale image; spectrum or rainbow (variation of hue, with 
maximum saturation and constant intensity); heat scale; tri-color blend of three primary colors; 
ramps of brightness for each of six saturated colors; sinusoidal variation of hue with linear variation 
of saturation and intensity.
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samples four pixels wide and one pixel tall, so color bleeding is much worse in the horizontal 
than in the vertical direction.

YUV-9. This is the color format used in most of the video compression on the internet. For 
every 16 luminance Y samples in a 4 × 4 pixel block, there is only one U and one V sample, pro-
ducing smaller files with correspondingly lower color fidelity. YUV-9 subsampling often results 
in noticeable color artifacts around the edges of brightly colored objects, especially red.

These limitations are judged to be acceptable for television pictures, since the viewer tolerates 
colors that are less sharply bounded and uses the edges of features defined by the brightness 
component of the image where they do not exactly correspond. The same tolerance has been 
used effectively by painters and may be familiar to parents whose young children have not yet 
learned to color “inside the lines.” Figure 1.38 shows an example in which the bleeding of 
color across boundaries or variations within regions is not confusing to the eye.

The poor spatial sharpness of NTSC color is matched by its poor consistency in representing 
the actual color values (a common joke is that NTSC means “Never The Same Color” instead 
of “National Television Systems Committee”). Videotape recordings of color images are even 
less useful for analysis than monochrome ones. But the limitations imposed by the broadcast 
channel do not necessarily mean that the cameras and other components may not be use-
ful. An improvement in the sharpness of the color information in these images is afforded 
by Super-VHS or S-video recording equipment, also called component video, in which the 

 

Figure 1.37 Manually colorized SEM 
image of bacteria, in which color 
tints have been applied to dis-
tinguish rod-shaped bacilli and 
spherical cocci from the back-
ground. (Image courtesy Tina 
Carvalho, Pacific Biomedical 
Research Center, University of 
Hawaii at Manoa.)



40 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

brightness or luminance and color or chrominance information are transmitted and recorded 
separately, without subsampling of data.

Some color cameras intended for technical purposes bring out the red, green, and blue signals 
separately so that they can be individually digitized. Recording the image in computer mem-
ory then involves treating each signal as a monochrome one, converting it to a set of numbers, 
and storing it in memory. If the signals have first been combined, the encoding scheme used 
is likely to be YIQ or YUV (defined below), which are closely related to the NTSC broadcasting 
scheme. Much better fidelity in the image can be preserved by not mixing together the color 
and brightness information. Instead of the composite signal carried on a single wire, some 
cameras and recorders separate the chrominance (color) and luminance (brightness) signals 
onto separate wires. This so-called Y-C or S-video format is used for some camcorders (Hi-8 
and S-VHS formats). Many computer interfaces accept this format, which gives significant 
improvement in the quality of digitized images, as shown in Figure 1.39.

Another important development in video is digital video (DV) recording. Like analog video 
tape recorders, digital video writes each scan line onto the tape at an angle using a moving 
head that rotates as the tape moves past it. The signal is encoded as a series of digital bits 
that offers several advantages. Just as CD technology replaced analog audio tapes, the digital 
video signal is not subject to loss of fidelity as images are transmitted or copies are made. 
More important, the high frequency information that is discarded in analog recording because 
of the 4 MHz upper frequency limit imposed by conventional broadcast TV is preserved in 
DV. Digital video records up to 13.5 MHz for the luminance (brightness) information and 
one-fourth that for the chrominance (color) information. This produces much sharper edge 
delineation, particularly for the brightness data in the image, and greatly improves the useful-
ness of the resulting images. The digital video signal is fully preserved on the tape recording, 
unlike conventional analog recorders, which impose a further bandwidth reduction on the 
data and are susceptible to quality loss due to dirty heads, worn tape, or making successive 
copies from an original. Most newer DV video cameras have replaced the tape cartridge with 
flash (solid state) memory to store the data, but the same data format is used.

Figure 1.38 A child’s painting 
of a clown. The painted areas 
are not exactly bounded by the 
lines. The dark lines neverthe-
less give the dimensions and 
shape to the features, and view-
ers are not confused by the col-
ors which extend beyond their 
regions.
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The result is that DV images have about 500 × 500 pixel resolution (but less for the color infor-
mation, as noted above for the 4:1:1 format) and nearly 8 bits of contrast, and can be read into 
the computer without a separate digitizer board since they are already digital in format. The 
IEEE 1394 standard protocol for digital video (also known as Firewire) establishes a standard 
serial interface convention that is available on consumer-priced cameras and decks and is sup-
ported by many computer manufacturers as well. Inexpensive interface boards are available, 
and the capability is built into some personal computers, even laptops. Most of these digital 
cameras can be controlled by the computer to select individual frames for transfer. They can 
also be used to record single frames annotated with date and time, turning the digital video 
tape cartridge or flash memory chip into a tiny but fairly high fidelity storage format for hun-
dreds of single images.

(a)

(b)

Figure 1.39 Comparison of

  (a) composite and

  (b)  component video signals 
from a signal generator, 
digitized using the same 
interface board.

  Note the differences in reso-
lution of the black and white 
stripes and the boundaries 
between different colors.
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Digital camera limitations

The current development of the digital still-frame cameras for the consumer market involves 
practically every traditional maker of film cameras and photographic supplies. Many of these are 
unsuitable for technical applications because of limitations in the optics (fixed focus lenses with 
geometric distortions) and limited resolution (although even a low end camera chip in a cell 
phone offers better resolution than conventional analog video recording). Some cameras inter-
polate between the pixels on the chip to create images with empty magnification. In most cases 
this produces artifacts in the image that are serious impediments to quantitative measurement.

But it is the use of image compression that creates the most important problem. In an effort 
to pack many images into the smallest possible memory, JPEG and other forms of image 
compression are used. Chapter 3 explains that these are lossy techniques which discard 
information from the image. The discarded data is selected to minimally impact the human 
interpretation and recognition of familiar images — snapshots of the kids and the summer 
vacation — but the effect on quantitative image analysis can be severe. Edges are broken up 
and shifted, color and density values are altered, and fine details can be eliminated or moved. 
Many consumer cameras also apply in-camera processing to the image, for example to visually 
sharpen edges using methods shown in Chapter 5, and to convert the linear output from the 
detector to the logarithmic response that is provided by film.

The important advantage of the higher end consumer and professional cameras is that they 
offer storage or transfer to the computer without any lossy compression or other processing, 
and this is much preferred for technical applications. There are a number of different “raw” 
formats used by the various camera manufacturers.

Color spaces

Conversion from RGB (the brightness of the individual red, green, and blue signals, as cap-
tured by the camera and stored in the computer) to YUV or YIQ and to the other color encod-
ing schemes used in television is straightforward and loses no information except for possible 
round-off errors (losses do occur, however, when the color signals are broadcast with limited 
bandwidth). Y, the “luminance” signal, is just the brightness of a panchromatic monochrome 
image as displayed by a black-and-white television receiver. It combines the red, green, and 
blue signals in proportion to the human eye’s sensitivity to them. The I and Q or U and V com-
ponents of the color signal are chosen for compatibility with the hardware used in broadcast-
ing. As shown in Figure 1.40, the V signal is essentially red minus cyan, while U is magenta 
minus green. The relationship between YUV or YIQ and RGB is shown in Equations 1.1 and 
1.2. Conversion from the encoded YUV or YIQ signal to RGB is done by inverting the matrix 
of values, as shown.

      Y = 0.299 R + 0.587 G + 0.114 B  R = 1.000 Y + 0.956 I + 0.621 Q

       I = 0.596  R – 0.274 G – 0.322 B   G = 1.000 Y – 0.272 I – 0.647 Q (1.1)

      Q = 0.211 R – 0.523 G + 0.312 B  B = 1.000 Y – 1.106 I + 1.703 Q

      Y = 0.299 R + 0.587 G + 0.114 R  R = 1.000 Y + 0.000 U + 1.140 V

      U = –0.147 R – 0.289 G + 0.436 B  G = 1.000 Y – 0.395 U – 0.581 V (1.2)

      V = 0.615 R – 0.515 G – 0.100 B   B = 1.000 Y + 2.032 U + 0.000 V
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RGB (and the complementary CMY subtractive primary colors used for printing) and YIQ and 
YUV are both hardware-oriented schemes. RGB comes from the way camera sensors and dis-
play phosphors work, while YIQ and YUV stem from broadcast considerations. Figure 1.41 
shows the “space” defined by RGB signals: it is a Cartesian cubic space, since the red, green, 
and blue signals are independent and can be added to produce any color within the cube. 
There are other encoding schemes that are more useful for image processing and more closely 
related to human perception.

 

Figure 1.40 The UV color space. The V 
axis runs from red to cyan, the U axis 
from magenta to green.

 

Figure 1.41 RGB Color Space. 
Combining Red and Green pro-
duces Yellow, Green plus Blue 
produces Cyan, and Blue plus Red 
produces Magenta. Grays lie along 
the cube diagonal from Black 
to White with equal proportions 
of Red, Green, and Blue. Cyan, 
Yellow, and Magenta are subtrac-
tive primaries used in printing, 
which are subtracted from White 
(the paper color) leaving Red, Blue 
and Green, respectively.
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The CIE (Commission Internationale de L’Éclairage) chromaticity diagram is a two-dimen-
sional plot defining color, shown in Figure 1.42. The third (perpendicular) axis is the lumi-
nance, which corresponds to the panchromatic brightness which, like the Y value in YUV, 
produces a monochrome (gray scale) image. The two primary color axes shown, called x and 
y, are always positive and combine to define any color that can be seen.

Instruments for color measurement utilize the CIE primaries to define the dominant wave-
length and purity of any color. Mixing any two colors corresponds to selecting a new point in 
the diagram along a straight line between the two original colors. This means that a triangle 
on the CIE diagram with its corners at the red, green, and blue locations of emission phos-
phors used in a CRT, or the filters used in an LCD panel, defines all of the colors that the moni-
tor can display. Some colors cannot be created by mixing these three phosphor colors, shown 
by the fact that they lie outside the triangle. The range of possible colors for any display or 
other output device is the gamut; hardcopy printers generally have a much smaller gamut than 
display monitors, as discussed in Chapter 3. The edge of the bounded region in the diagram 
corresponds to pure saturated colors and is marked with the wavelength in nanometers.

Complementary colors are shown in the CIE diagram by drawing a line through the central 
point, which corresponds to white light. Thus, a line from green passes through white to 
magenta. One of the drawbacks of the CIE diagram is that it does not indicate the variation in 
color that can be discerned by the eye. Sometimes this is shown by plotting a series of ellipses 
on the diagram. These are much larger in the green area, where small changes are poorly per-
ceived, than elsewhere. Variation in saturation (distance out from the center toward the edge) 
is usually more easily discerned that variation in hue (position around the diagram).

The CIE diagram provides a means for color definition, but corresponds neither to the opera-
tion of hardware nor directly to human vision. An approach that does is embodied in the 
HSV (hue, saturation, and value), HSI (hue, saturation, and intensity), and HLS (hue, lightness, 
and saturation) coordinate systems. These are closely related to each other and to the artist’s 

  

Figure 1.42 The CIE chromaticity 
diagram. The colors are fully sat-
urated along the edge. Numbers 
give the wavelength of light 
in nanometers. The inscribed 
triangle shows the colors that 
typical color CRT displays can 
produce by mixing of red, green, 
and blue light from phosphors.
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concept of tint, shade, and tone. In this system, hue is what most people mean by color, for 
instance the distinction between red and yellow. Saturation is the amount of the color that is 
present, for instance the distinction between red and pink. The third axis (called lightness, 
intensity, or value) is the amount of light, the distinction between a dark red and light red or 
between dark gray and light gray.

The space in which these three values is plotted can be shown as a circular or hexagonal cone 
or double cone, or sometimes as a sphere or cylinder. It is most useful to picture the space as 
a double cone, in which the axis of the cone is the gray scale progression from black to white, 
distance from the central axis is the saturation, and the direction is the hue, with the primary 
RGB colors spaced 120° apart. Figure 1.43 shows this concept schematically.

This space has many advantages for image processing and for understanding color. For 
instance, if the algorithms presented in Chapter 4, such as spatial smoothing or median 
filtering, are used to reduce noise in an image, applying them to the RGB signals separately 
causes color shifts in the result, but applying them to the HSI components does not. Also, 
the use of hue (in particular) for distinguishing features in the process called segmentation 
(Chapter 7) often corresponds to human perception and ignores shading effects. On the 
other hand, because the HSI components do not correspond to the way that most hardware 
works (either for acquisition or display), it requires computation to convert RGB-encoded 
images to HSI and back.

Conversion between RGB space and Hue-Saturation-Intensity coordinates can be performed 
in several ways, depending on the shape of the HSI space that is used. The most common 
choices are a sphere, cylinder, or double cone. In all cases the intensity axis corresponds to 
the body diagonal of the RGB cube (the gray scale line in Figure 1.41), but none of the HSI 
space geometries exactly fits the shape of that cube. This means in order to represent colors in 
both spaces the saturation values must be distorted somewhat in the conversion process. This 
can be seen in the example of Figure 1.61 (below) in which a high resolution panchromatic 

  

Figure 1.43 Bi-conic representation of Hue-
Saturation-Intensity Space. Grays lie along 
the central axis. Distance from the axis gives 
the Saturation, while direction (angle) speci-
fies the Hue.
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satellite image is used to replace the intensity channel in an image constructed by merging 
three lower resolution R, G, B images.

The HSI spaces are useful for image processing because they separate the color information 
in ways that correspond to the human visual system’s response and also because the axes 
correspond to many physical characteristics of specimens. One example of this is the stain-
ing of biological tissue. To a useful approximation, hue represents the stain color, saturation 
represents the amount of stain, and intensity represents the specimen density. Similarly, in 
remote sensing images the hue often identifies land use (crops, water, urbanization) while 
the intensity variation arises from the local sun angle. But these spaces are awkward ones 
mathematically: not only does the hue value cycle through the angles from 0 to 360 degrees 
and then wrap around, but the conical spaces mean that increasing the intensity or luminance 
alters the saturation.

A geometrically simpler space that is close enough to the HSI approach for most applications 
and easier to deal with mathematically is a spherical L•a•b model. L is the gray scale axis, or 
luminance, while a and b are two orthogonal axes that together define the color and satura-
tion (Figure 1.44). The a axis runs from red (+a) to green (–a) and the b axis from yellow 
(+b) to blue (–b). The hues do not have the same angular distribution in this space as in the 
color wheel shown for HSI space. Instead, they are based on the idea that there are no such 
colors as reddish-green or blueish-yellow. Color opposition correlates with discoveries in the 
mid-1960s that somewhere in the human vision system, retinal color stimuli are translated 
into distinctions between light and dark, red and green, and blue and yellow (although Crane 
and Piantanida (1983) have shown that under some situations blends of reddish-green and 
yellowish-blue can be perceived). The L, a, and b axes offer a practical compromise between 
the orthogonal simplicity of the RGB space that corresponds to hardware and the more physi-
ologically based spaces such as HSI which are used in many color management systems, 
spectrophotometers, and colorimeters. The mathematical relationship between L, a, b and R, 
G, B is shown in Equation 1.3.

Figure 1.44 L•a•b color space. Gray values lie along a vertical north-south line through the sphere. The 
same a and b axes are also used in the more exact CieLAB space.
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From these values, the hue and saturation can be calculated when required for processing or 
analysis as:
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The CIELab color space is another distorted geometry that is considered to be “perceptually 
uniform,” meaning that a just detectable visual difference is represented by a constant dis-
tance in any location or direction in the space. In spite of the apparent precision of the 6-digit 
numerical values in the equations below, this is somewhat oversimplified since it was based 
on a limited number of human testers, and technically this space applies to the viewing of a 
hardcopy print under specific illuminating conditions, not to emissive displays such as a com-
puter monitor. Nevertheless CIELab is widely used as a standard space for comparing colors. 
It has several shortcomings, the most important of which are that simple radial lines do not 
maintain a constant hue, and the need to define a white point. The transformation from RGB 
to CIELab requires an intermediate step, called XYZ:

 X = 0.412453 • R + 0.357580 • G + 0.180423 • B

 Y = 0.212671 • R + 0.715160 • G + 0.072169 • B (1.6)

 Z = 0.019334 • R + 0.119193 • G + 0.950227 • B
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Based on these XYZ values, the L*, a*, b* components are
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in which the function ƒ is defined as
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and where Xn, Yn, Zn are calculated for a reference white point that depends on the illumina-
tion of the scene. This is usually described by the color temperature of the lamp, for instance 
the standard D65 illuminant (6500 K) corresponds to R=G=B=100 in Equation 1.6. (The 
defined daylight illuminant colors D50, D65, etc., are often referred to as black body tem-
peratures, but are not identical to the actual black body radiation at those temperatures; the 
differences do not matter for the purposes considered here.)

With so many choices for color space representation and ways to convert from the RGB values 
measured by cameras or scanners, it is most important to know that for the image processing and 
analysis purposes described in subsequent chapter, the differences are minor and the selection 
can be one of convenience. Ledley et al. (1990) showed that the difference between these various 
RGB-HSI conversions lies principally in the saturation values. A fuller analysis of how this affects 
combinations of RGB images such as the satellite imagery in Figure 1.61 below can be found in 
Tu et al. (2001) where ways to compensate for the saturation changes are proposed.

It is also possible to modify the intensity scale of either L•a•b or HSI spaces to correspond to 
perceptual response to different colors. A typical model used for this is shown in Equation 
1.9. Other weighting factors that are shown with great apparent precision, such as (0.212671•R 
+ 0.715160•G + 0.072169•B), originally were derived from the specific phosphors used in 
television tubes to convert color video signals to monochrome, and even then were properly 
applied only to linear (not gamma corrected) intensities, but have been used in many cases to 
represent the approximate roles of the various color channels. In real cases the actual weights 
depend on the color filters used in a particular camera and also probably vary from individual 
to individual and depend on illumination conditions.

 I (or L) = 0.25 • R + 0.65 • G + 0.10 • B (1.9)

Note that the weighted combination of red, green, and blue does not produce a visually neu-
tral gray color. The intent is to weight the various colors so that uniform steps (ratios) of the 
combined intensities produce a visually uniform set of increments of perceived brightness. 
Equal intensities of red, green, and blue produce visually colorless grays on the computer 
screen.

Hardware for digitizing color images accepts either direct RGB signals from the camera, or 
the Y-C component signals, or a composite signal (e.g., NTSC) and uses electronic filters to 
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separate the individual components and extract the red, green, and blue signals. As for the 
monochrome case discussed above, these signals are then digitized to produce values, usually 
8-bit ones ranging from 0 to 255 each for R, G, and B. This takes 3 bytes of storage per pixel, 
so a 640 × 480 pixel image requires nearly 1 megabyte of storage space in the computer. With 
most video cameras and electronics, the signals do not contain this much information, and the 
lowest 2 (or more) bits are noise. Consequently, some systems keep only 5 bits each for R, G, 
and B, which can be fit into two bytes. This reduction is often adequate for internet graphics 
and some desktop publishing applications, but when packed this way, the color information 
is harder to extract for processing or analysis operations.

Color images are typically digitized as 24 bit RGB, meaning that 8 bits or 256 (linear) levels 
of brightness for red, green, and blue are stored. This is enough to allow display on video or 
computer screens, or for printing purposes, but, depending on the dynamic range of the data 
may not be enough to adequately measure small variations within the image. Since photo-
graphic film can capture large dynamic ranges, some scanners intended for transparency or 
film scanning provide greater range, typically 12 bits (4096 linear levels) each for R, GB, and 
B. Professional quality digital still cameras also capture this much data in their “raw” images. 
These 36 bit images may be reduced to an “optimum” 8 bits per channel when the image is 
stored in the computer. One of the problems with converting the raw dynamic range of color 
or gray scale storage is that the brightness values measured by solid state detectors are linear, 
whereas film, and human vision to a fair approximation, are logarithmic, so that in the dark 
regions of an image the smallest brightness step that can be stored is relatively large and may 
result in visual artifacts or poor measurement precision for density values.

Further reduction of color images to 256 colors using a lookup table, specifying the best 
256 colors to match the contents of the image, may be used for computer images in order to 
reduce the file size. The resulting images are often described as “Indexed Color.” The lookup 
table itself requires only 3 * 256 bytes to specify the R, G, B values for the 256 colors, which 
are written to the display hardware. Only a single byte per pixel is needed to select from this 
palette. The most common technique for selecting the optimum palette is the median cut 
algorithm (Heckbert, 1982), which subdivides color space based on the actual RGB values of 
the pixels in the original image. In some applications, the default color lookup table is pre-
defined (and consists of only 216 standard colors for internet browsers). For visual purposes 
such a reduction often provides a displayed image that is satisfactory, but for image analysis 
purposes this should be avoided.

In many situations, although color images are acquired, the “absolute” color information is 
not useful for image analysis. Instead, it is the relative differences in color from one region 
to another that can be used to distinguish the structures and objects present. In such cases, 
it may not be necessary to use the full color image. Various kinds of color separations are 
available. Separating the RGB components (or the complementary CMY values) is commonly 
used in desktop publishing, but is not often useful for image analysis. Separating the image 
into hue, saturation, and intensity components (often called channels) can also be performed. 
Figures 1.45 shows an example. Some structures are much more evident in one channel than 
another (e.g., the pink spots on the white lily petals are not visible in the red channel, but 
are much more evident in the green or saturation channels). Choosing an appropriate color 
space may simplify some applications; for example, as noted above, in stained biological tis-
sue examined in the light microscope, the hue channel shows where the stains are located and 
the saturation channel shows how much of the stain is present, while the intensity channel 
records the specimen density.
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(a)               (b)               (c)

    

(d)               (e)               (f)

    
(g)               (h)               (i)

      (j)

 

Figure 1.45 Color separations from a real-world color image of 
flowers:

  (a) original;
  (b) red channel;
  (c) green channel;
  (d) blue channel;
  (e) hue channel;
  (f) saturation channel;
  (g) intensity channel;
  (h) L channel;
  (i) a channel;
  (j)  b channel. Notice that the intensity in the HSI representation 

(g) is not the same as the L component in the L•a•b rep-
resentation (h) because of the weighting given to different 
wavelengths.
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It is possible to isolate the amount of any particular “color” (hue) in the image. The calcula-
tion (technically the dot-product of the color vector of interest with that of each pixel in the 
image) is equivalent to the physical insertion of a transmission filter in front of a monochrome 
camera. The filter can be selected to absorb a complementary color (for instance, a blue filter 
darkens yellow regions by absorbing the yellow light) and transmit light of the same blue 
color, so that the resulting image contrast can be based on the color distribution in the image. 
Photographers have long used yellow filters to darken the blue sky and produce monochrome 
images with dramatic contrast for clouds, for example. Figure 1.46 is an example in which the 
computer is used to apply the filter. Selecting a color that maximizes the contrast between the 
structures present produces an image with brightness suitable for thresholding (as discussed 
in Chapter 7). Computer-applied color filters offer greater flexibility than physical filters, since 
any desired hue can be specified, and the operation can be performed using a stored image.

Reducing a color image to monochrome gray scale is useful in many situations and can be 
accomplished in a variety of ways in addition to the obvious methods of selecting an R, G, B, 
H, S, I, L, a, or b channel, or applying a selected color filter. If obtaining the maximum gray 
scale contrast between all of the structures present in the image is desired to facilitate gray 
scale image thresholding and measurement, then a unique function can be calculated for each 
image that fits a line through the points representing all of the pixels’ color coordinates in color 
space. This least-square-fit line gives the greatest separation of the various pixel color values 

 
(a)               (b)

 
(c)               (d)

Figure 1.46 Microtomed tissue 
section of paraffin embed-
ded mouse intestine, Feulgen 
stained and counter stained 
with fast green, Bouin’s fixa-
tive (specimen courtesy of 
Dr. Barbara Grimes, North 
Carolina State Univ.):

  (a)  original color image;

  (b)  application of a 480 nm 
blue filter to the original 
color image;

  (c)  monochrome intensity 
from image (b);

  (d)  optimal gray scale cal-
culated by regression as 
described in the text.
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and the position of each pixel’s coordinates as projected onto the line can be used as a gray 
scale value that gives the optimum contrast (Russ, 1995e). Figure 1.46d shows an example; 
note that the individual color filter result in Figure 1.46c gives greater contrast for a selected 
structure, whereas the regression method maximizes contrast for the image as a whole.

Color correction

When images are acquired under different lighting conditions, the color values recorded are 
affected. Human vision is tolerant of considerable variation in lighting, apparently using the 
periphery of the viewing field to normalize the color interpretation, or by assuming known 
colors for some recognized objects. As pointed out in Chapter 2, the characteristics of the 
human visual system also produce some notable color illusions.

Some digital video and still cameras have an automatic white point correction that allows 
recording an image from a gray card with no color and using that to adjust subsequent col-
ors. A similar correction can be applied after acquisition in software, by adjusting the relative 
amount of red, green, and blue to set a region that is known to be without any color to pure 
gray. As shown in Figure 1.47, the method is straightforward, but works only for images that 
have regions that correspond to white, black, and one or more neutral grays.

This approach can be extended to produce stored calibration curves that allow matching of 
colors for several devices. It is possible with a color target containing many known colors to 
make adjustments that produce color matching between a camera or scanner, various CRT 
and LCD monitors, printers of various types, and even projectors. The typical procedure is 
to photograph or scan a known array of colors, in order to construct the calibration curves 
for the acquisition devices (which includes, of course, the characteristics of the illumination 
used). Printing a similar array from a stored file and then measuring each color with a spectro-
photometer makes it possible to construct similar curves for the printer (which, as Chapter 3 
describes, are specific to the inks and paper being used). Displaying colors on the screen and 
measuring them with the spectrophotometer produces another calibration curve that is used 
to adjust values sent to the display.

The result is images that have visually matching colors everywhere. Several such devices are 
on the market, one of which (the GretagMacbeth Eye-1, GretagMacbeth Corp, New Windsor, 
CT) consists of a single spectrophotometer that can be used on both emissive (CRT, LCD) dis-
plays and reflective (printed) hardcopy, a color calibration target (Figure 1.48), and suitable 
software that performs the necessary actions and calculations with minimal user attention. 
Since the phosphors in CRTs and the backlight used for LCD displays age, printers use differ-
ent inks and papers from time to time, and lighting changes alter camera color response, it is 
necessary to repeat the calibration from time to time.

A similar but simpler approach to color adjustment for image acquisition is tristimulus cor-
rection. This requires measuring a test image with areas of pure red, green, and blue color, 
such as the calibration card shown in Figure 1.49. In practical situations, such a card can be 
included in the scene being recorded. The camera (or scanner) records some intensity for red, 
green, and blue in each of the areas because the color filters on the sensors cover wide and 
overlapping ranges of wavelengths. This produces a matrix of values, as shown in Table 1.1, 
which can be inverted to generate the tristimulus correction matrix. Calculating new red, 
green, and blue values by multiplying this matrix times the measured R, G, B values for each 
pixel produces an image in which the calibration areas are adjusted to pure red, green and 
blue, and other colors in the image are also corrected, as shown.
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(a)                      (b)

  

Figure 1.47 Color adjustment by selecting 
neutral points:

  (a)  original image with markers showing 
three points selected to have neutral 
dark, medium gray, and light values;

  (b) result of adjustment;

  (c)  color adjustments for red, green, and 
blue showing the original values for the 
three selected points (horizontal axis) 
and the curves that produce new dis-
played values (vertical axis).

           (c)

 

Figure 1.48 The GretagMacbeth 
ColorChecker® chart. The colors 
are not reproduced in this text 
adequately for use as a chart, 
and this figure is illustrative 
only. The colors are, in order 
from the left corner: dark skin, 
light skin, blue sky, foliage, blue 
flower, bluish green, orange, 
purplish blue, moderate red, 
purple, yellow green, orange 
yellow, blue, green, red, yellow, 
magenta, cyan, white, neutral 8, 
neutral 6.5, neutral 5, neutral 
3.5, and black.
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For microscope images, a suitable set of color targets can be constructed by depositing known 
stains or dyes on a slide (Hoffmann et al., 2005). It is not necessary to have pure red, green 
or blue. As long as the three colors are known and well separated in color space, a correction 
matrix can be computed.

Color displays

Of course, color is also important as a vehicle for communicating to the computer user. Many 
computers use color cathode ray tube (CRT) displays that have much higher resolution than a 
television set but operate on essentially the same principle. Smaller phosphor dots, a higher 
frequency scan and higher bandwidth amplifiers, and a single progressive scan (rather than 
interlace) produce much greater sharpness and color purity.

Notebook computers and flat panel monitors for desktop computers use a liquid crystal dis-
play (LCD). The active-matrix type of LCD display uses a separate transistor to control each of 
the RGB cells that together make up a pixel. Some color LCDs are inferior to CRTs because of 
their lower brightness and narrower viewing angle. They may also have an inferior brightness 

Table 1 .1:.Color.Correction.Using.Tristimulus.Values

Measure the RGB intensities from three target areas that are to be corrected to pure red, 
green and blue. Enter the intensities in the matrix:

Measured Intensity:  Red Green Blue

Area : Red 131.91 43.08 69.16

 Green 72.91 152.66 53.74

 Blue 56.34 63.74 125.98

Intermediate Normalized Intensity Matrix (the above values divided by 255)
  0.5173 0.1689 0.2712

  0.2859 0.5987 0.2107

  0.2209 0.2500 0.4940

Inverse Matrix Calculated by Excel (MINVERSE) Function 

Channel:  Red Green Blue

Result: Red 2.6066 –0.1680 –1.3593

 Green –1.0154 2.0978 –0.3375

 Blue –0.6520 –0.9863 2.8027

  

Figure 1.49 Tristimulus color 
correction using RGB values:

  (a) original image;

  (b)  corrected image using the 
tristimulus matrix calcu-
lated in Table 1.1.

        (a)               (b)
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and contrast range for each color, which reduces the number of distinct colors that can be 
displayed. The color and intensity of white depend on the color of the backlight, which may 
be produced by fluorescent tubes or by light emitting diodes.

LCDs are also used in some projectors to show images on a screen. One common design 
uses a very bright (and color corrected) light source with small LCD panels and appropriate 
optics. High brightness projectors generally use three separate monochrome CRTs with red, 
green, and blue filters. With these projectors, the resolution is potentially higher because the 
individual CRTs have continuous phosphor coatings. However, careful alignment of the optics 
is needed to keep the three images in registration; readjustment may be needed every time 
the equipment is moved or even as it heats up. Getting enough brightness for viewing large 
images in rooms with imperfect light control is also a challenge.

Another class of displays uses the digital light modulation principle developed by Texas 
Instruments. An array of tiny mirrors produced by photolithography on silicon wafers is used 
to reflect light from the illumination source through appropriate optics to a viewing screen. 
The mirrors can be flipped between the “on” and “off” positions in nanoseconds. Moving each 
mirror back and forth rapidly to control the fraction of the time that it is in the “on” position 
controls the brightness of each pixel. A rotating filter wheel allows the array to sequentially 
project the red, green, and blue channels, which the eye perceives as a color display.

Other kinds of flat-panel computer displays, including electroluminescence and plasma, are 
fundamentally monochrome but can be filtered to produce color images. Arrays of red, green, 
and blue LEDs can in principle be arranged to make a flat-panel display, but the difficulty of 
generating enough blue light and the prohibitive cost of such devices have so far limited their 
use. Arrays of colored lights are used to show images in some sports stadia and for outdoor 
advertising. Times Square in New York and Ginza in Tokyo are outstanding examples, but full 
color active displays are becoming common everywhere.

It takes combinations of three color phosphors (RGB) to produce the range of colors displayed 
on the CRT. The brightness of each phosphor is controlled by modulating the intensity of the 
electron beam in the CRT that strikes each phosphor. Using a separate electron gun for each 
color and arranging the colored dots as triads is the most common method for achieving this 
control. To prevent stray electrons from striking the adjacent phosphor dot, a shadow mask of 
metal with holes for each triad of dots can be used. Each of the three electron beams passes 
through the same hole in the shadow mask and strikes the corresponding dot. The shadow 
mask increases the sharpness and contrast of the image, but reduces the total intensity of light 
that can be generated by the CRT.

A simpler design that increases the brightness applies the phosphor colors to the CRT in verti-
cal stripes. It uses either a slotted pattern in the shadow mask or no mask at all. The simplicity 
of the Sony Trinitron design makes a tube with lower cost, no curvature of the glass in the ver-
tical direction, high display brightness, and fewer alignment problems. However, the vertical 
extent of the phosphor and of the electron beam tends to blur edges in the vertical direction 
on the screen. While this design is fairly common for home television, most high-performance 
computer CRTs use triads of phosphor dots (Figure 1.50) because of the greater sharpness 
they afford the image, particularly for lines and edges.

In the LCD display, the triads of red, green, and blue filters are often arranged as parallel 
vertical stripes as well (shown in Figure 3.01b, Chapter 3). A high resolution computer moni-
tor, whether CRT or LCD, has a pitch (the spacing from one triad to the next) of less than 200 
µm. At normal viewing distances, the individual color dots or stripes are not visually resolved, 
producing a continuous image.
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Image types

In the everyday images with which humans are visually experienced, the brightness of a 
point is a function of the brightness and location of the light source combined with the ori-
entation and nature of the surface being viewed. These “surface” or “real-world” images are 
often difficult to interpret using computer algorithms, because of their three-dimensional 
nature, the interaction of the illumination with the various surfaces, and the fact that some 
surfaces may obscure others. Even for relatively flat scenes in which precedence is not a 
problem and the light source is well controlled or at least known, such as satellite imagery, 
the combination of effects of surface orientation and the color, texture, and other variables 
may make it difficult to quantitatively interpret these parameters independently. In the case 
of a carefully prepared flat surface (as in the typical incident light microscope) interpretation 
of color and contrast as delineating particles, grains, inclusions, or other structures is more 
successful. For additional background on image formation and the role of lighting and optics, 
see Jahne (1997).

A second class of microscopy images shows the intensity of light (or other radiation) that has 
come through the sample (for additional background on light microscopes and their use for 
imaging, see texts such as Smith, 1990; Bracegirdle & Bradbury, 1995; Bradbury & Bracegirdle, 
1998; Heath, 2005). Transmission images start with a uniform light source, usually of known 
intensity and color. The absorption of the light at each point is a measure of the density of 
the specimen along that path. For some kinds of transmission images, such as those formed 
with electrons and X-rays, diffraction effects due to the coherent scattering of the radiation 
by atomic or molecular structures in the sample may also be present. These often complicate 
analysis, because diffraction is strongly dependent on the orientation of the crystalline lattice 
or other periodic structure.

To illustrate the complications that factors other than simple density can cause, Figure 1.51 
shows a transmission electron microscope (TEM) image of a thin cobalt foil. The evident 
structure is the magnetic domains in this ferromagnetic material. In each striped domain, the 
electron spins on the atoms have spontaneously aligned. There is no change in the atomic 
structure, sample density, or thickness, although the image certainly can fool the viewer into 
thinking such variations may be present.

  

Figure 1.50 Triads of red, green and blue 
phosphor dots in a CRT display.
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Likewise, Figure 1.52 shows an image of a colloidal gold particle on an amorphous carbon 
film viewed in a high-resolution TEM. The so-called atomic resolution shows a pattern of 
spots on the substrate that appear more or less random, while within the gold particle they 
are regularly arranged. The arrangement is a result of the crystalline structure of the particle, 
and the spots are related to the atom positions. However, the spots are not simply the atoms; 
the relationship between the structure and the image is complex and depends strongly on the 
microscope parameters and on the amount of defocus in the lens. Calculating the expected 
image contrast from a predicted structure is possible and can be done routinely for simple 
structures. The inverse calculation (structure from image) is more interesting, but can only be 
accomplished by iteration.

Figure 1.51 TEM image of a thin metal foil of cobalt. The striped pattern reveals ferromagnetic domains, 
in which the electron spins of the atoms are aligned in one of two possible directions (image courtesy 
of Hitachi Scientific Instruments).

 

Figure 1.52 TEM image of a col-
loidal gold particle on an amor-
phous carbon substrate, used to 
show very high microscope reso-
lution (image courtesy of Hitachi 
Scientific Instruments).
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In another type of transmission images, some colors (or energies) of radiation may be 
absorbed by the sample according to its chemical composition or the presence of selec-
tive stains and dyes. Sometimes these dyes also emit light of a different color themselves, 
which can be imaged to localize particular structures. In principle, this is very similar 
to the X-ray maps (Figure 1.32) made with the scanning electron microscope (SEM), in 
which electrons excite the atoms of the sample to emit their characteristic X-rays. In many 
of these emission images, density variations, changes in the thickness of the specimen, 
or the presence of other elements or compounds can cause at least minor difficulties in 
interpreting the pixel brightness in terms of concentration or amount of the selected target 
element or compound.

Aerial and satellite images show a surface that is relatively flat (at least as compared with the 
distance from the camera), which simplifies measurements. The lighting, while not directly 
controlled, applies (with some restrictions for clouds, local changes in slope, etc.) to the entire 
scene. And the acquisition of images in various wavelength bands, including the infrared, can 
assist in the selection and identification of structures, crops, and soils on the ground.

Many types of industrial quality control images also lend themselves to measurement and 
analysis. The controlled placement of cameras and light sources simplifies the interpretation 
of images. Measurements of size and position of various components may not be ideally two 
dimensional, but at least are always the same.

Range imaging

Another important class of images uses the pixel brightness to record distances. For example, 
an atomic force microscope image of a surface shows the elevation of each point on the 
surface, represented as a gray scale (or pseudo-color) value. Range images are produced 
by raster-scan microscopes, such as the scanning tunneling (STM) and atomic force (AFM) 
microscopes, or by physical scanning with a profilometer stylus. They are also produced by 
interferometric light microscopes, and at larger scales by laser ranging, synthetic aperture 
radar, side-scan sonar, and other techniques. Images in which pixel brightness values repre-
sent range information may also be obtained indirectly by other means, including stereoscopy, 
shape-from-shading, and motion blur.

Most of the measurement tools available for very flat surfaces provide a single-valued eleva-
tion reading at each point in an x, y raster or grid. Chapter 15 covers the processing and 
measurement of surface range images in detail. This set of data is blind to any undercuts 
that may be present. Just as radar and sonar have wavelengths in the range of centimeters to 
meters (and thus are useful for measurements of large objects such as geologic landforms), so 
a much shorter measuring scale is needed for high precision or very flat surfaces. Attempts to 
use SEM, conventional light microscopy, or confocal scanning light microscopy (CSLM) either 
on the original surfaces or on vertical sections cut through them have been only partially sat-
isfactory. The lateral resolution of the SEM is very good but, because of the narrow aperture 
angles used, the depth resolution is not. Stereo pair measurements are difficult to perform and 
time consuming to compute an elevation map or range image of the surface, and the resulting 
depth resolution is still significantly poorer than the lateral resolution.

Conventional light microscopy has a lateral resolution of better than one micrometer, but the 
depth of field is neither great enough to view an entire rough surface nor shallow enough 
to isolate points along one iso-elevation contour line. The CSLM improves the lateral resolu-
tion slightly and greatly reduces the depth of field while at the same time rejecting scattered 
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light from out-of-focus locations. The result is an instrument that can image an entire rough 
surface by moving the sample vertically and keeping only the brightest light value at each 
location, or can produce a range image by keeping track of the sample’s vertical motion when 
the brightest reflected light value is obtained for each point in the image. It is the latter mode 
that is most interesting for surface measurement purposes. The resolution is one micrometer 
or better in all directions.

Figure 1.53 shows a reconstructed view of the surface of a fracture in a brittle ceramic. It is 
formed from 26 planes, separated by 1 µm in the z direction, each of which records a pixel 
only if that location is brighter than any other plane. The perspective view can be rotated to 
present a very realistic image of the surface. However, plotting the same information in the 
form of a range image (in which each pixel brightness corresponds to the plane in which 
the brightest reflection is recorded) is more useful for measurement. Figure 1.54 shows this 
presentation of the same surface along with an elevation profile along an arbitrary line across 
the surface.

This method is interesting for many macroscopically rough samples, such as fractures and 
some deposited coatings, but it is not adequate for the very flat surfaces that are currently 
being produced in many applications. The surface irregularities on a typical polished silicon 
wafer or precision-machined mirror surface are typically of the order of nanometers.

Three principal methods have been applied to such surfaces. Historically, the profilometer 
provided a tool to accurately measure vertical elevation with a resolution approaching a nano-
meter. Although widely used, profilometers have two serious disadvantages for many surface 
applications. The first is that elevation is determined only along a single profile. While the 
analysis of such elevation profiles is straightforward, their relevance to complex surfaces that 
may have anisotropic properties is questionable. Scanning in a raster to collect an array of 
points to form an image is possible but time consuming. The second limitation is the large 
tip size, which limits lateral resolution and makes it impossible to follow steep slopes or steps 
accurately.

This leaves the interferometric light microscope and the AFM as the methods of choice for 
studying very flat surfaces. The first is a modern implementation of the principles of light 
interference discovered more than a century ago, while the second is a technology invented 
and rapidly commercialized only within the past few decades.

Figure 1.53 Reconstructed 3D image of a 
brittle fracture surface in a ceramic, 
imaged with a confocal scanning light 
microscope.
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The interferometric light microscope (see the review by Robinson et al., 1991) reflects light from 
the sample surface as one leg in a classic interferometer, which is then combined with light from 
a reference leg. Figure 1.55 shows a schematic diagram. The usual principles of phase-sensitive 
interference occur so that changes in path length (due to different elevations of points on the 
surface) produce changes in the intensity of the light. This image is then digitized using an 
appropriate CCD detector array and analog-to-digital conversion, so that a brightness value (and 
from it a derived elevation value) is recorded for each point on the surface. Although the wave-
length of light used is typically about 630 nm, phase differences between the two legs of the 
interferometer of one-thousandth of the wavelength produce a change in intensity so that the 
vertical resolution is less than a nanometer. The lateral resolution, however, is still of the order 
of one micrometer, limited by the wavelength of the light used and the design of the optics.

The interferometric light microscope suffers if the surface has high slopes or a highly specu-
lar finish, since no light is reflected back to the detector. Such points become drop-outs 

Figure 1.55 Schematic diagram of an inter-
ference microscope.
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Figure 1.54 Range image produced from 
the data in Figure 1.53, with an eleva-
tion profile along an arbitrary line.
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in the final image. For visual purposes it may be satisfactory to fill in such missing points 
(Chapter 4), but of course this may bias subsequent measurements.

Although the lateral resolution is much lower that the vertical resolution, the interferometric 
microscope is suitable for many purposes. The absolute height difference between widely 
separated points is not measured precisely, because the overall surface alignment and the 
shape or form of the part is not known. It is common to deal with the problems of alignment 
and shape by fitting a function to the data. Determining a best-fit plane or other low-order 
polynomial function by least squares fitting to all of the elevation data and then subtracting 
it is called “detrending” or “form removal.” It is then possible to display the magnitude of 
deviations of points from this surface. However, the absolute difference between points that 
are widely separated is affected by the detrending plane, and the ability to distinguish small 
differences between points that are far apart is reduced.

Figure 1.56 shows a very flat surface (produced by polishing a silicon wafer) imaged in a 
commercial interferometric light microscope (Zygo Corp.) using both Fizeau and Mirau sets of 
optics. The field of view is the same in both images, and the total vertical range of elevations 
is only about 2 nm. The two bright white spots toward the bottom of the image are prob-
ably due to dirt somewhere in the optics. These artifacts are much less pronounced with the 
Mirau optics. In addition, the ringing (oscillation or ripple pattern) around features that can 
be seen in the Fizeau image is not present with the Mirau optics. These characteristics are 
usually interpreted as indicating that the Mirau optics are superior for the measurement of 
very flat surfaces. On the other hand, the Mirau image has less lateral resolution (it appears 
to be “smoothed”).

The AFM is in essence a profilometer that scans a complete raster over the sample surface, but 
with a very small tip (see the review by Wickramasinghe, 1989). The standard profilometer tip 
cannot follow very small or very steep-sided irregularities on the surface because of its dimen-
sions, which are of the order of µm. The AFM tip can be much smaller and sharper, although 
it is still not usually fine enough to handle the abrupt steps (or even undercuts) present in 
microelectronic circuits and some other surfaces. The tip can be operated in either an attrac-
tive or repulsive mode of interaction between the electrons around the atom(s) in the tip and 

  
(a)                      (b)

Figure 1.56 Comparison of interferometric range images on a flat polished silicon wafer using Fizeau 
(a) and Mirau (b) optics. The grid of horizontal and vertical lines that can be discerned is due to a 
slight misalignment of the diffuser plate with the detector pattern of the camera.
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those in the surface. Usually, repulsive mode (in which the tip is pressed against the surface) 
does a somewhat better job of following small irregularities, but it may also cause deformation 
of the surface and the displacement of atoms.

There are other modalities of interaction for these scanned-tip microscopes. The scanning 
tunneling microscope (STM) is the original, but it can only be used for conductive specimens 
and is strongly sensitive to surface electronic states, surface contamination, and oxidation. 
Lateral force, tapping mode, and other modes of operation developed subsequently offer the 
ability to characterize many aspects of surface composition and properties (Birdi, 2003), but 
the original AFM mode is most often used to determine surface geometry and presents quite 
enough complexities for understanding.

As indicated in the schematic diagram of Figure 1.57, the classic mode of operation for the 
AFM is to move the sample in x, y, and z. The x, y scan covers the region of interest, while 
the z motion brings the tip back to the same null position as judged by the reflection of a 
laser beam. The necessary motion is recorded in a computer to produce the resulting image. 
Modifications that move the tip instead of the sample, or use a linear-array light sensor to 
measure the deflection of the tip rather than wait for the specimen to be moved in z, do not 
change the basic principle. The motion is usually accomplished with piezoelectric elements 
whose dimensions can be sensitively adjusted by varying the applied voltage. However, there 
is a time lag or creep associated with these motions that appears in the modulation transfer 
function (MTF) of the microscope as a loss of sensitivity at the largest or smallest dimensions 
(lowest and highest frequencies). Locating the x, y coordinates of the tip interferometrically 
instead of based on the piezo driver voltages can overcome some of these problems but adds 
complexity to the instrument.

Although the AFM has in principle a lateral resolution of a few ångstroms, as well as vertical 
sensitivity in this range, it is not always possible to realize that performance. For one thing, 
the adjustment of scan speeds and amplifier time constants for the visually best picture may 
eliminate some of the fine-scale roughness and thus bias subsequent analysis. Conversely, it 
may introduce additional noise from electrical or mechanical sources. Special care must also 
be taken to eliminate vibration.

Most of the attention to the performance of the AFM, STM, and related instruments has been 
concerned with the high-resolution limit (Denley, 1990a; Denley, 1990b; Grigg et al., 1992) . 
This is generally set by the shape of the tip, which is not easy to characterize. Many authors 
(Reiss et al., 1990; Pancorbo et al., 1991; Aguilar et al., 1992) have shown that it may be pos-
sible to deconvolve the tip shape and improve the image sharpness in exactly the same way 
that it is done for other imaging systems. This type of deconvolution is shown in Chapter 6.
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Figure 1.57 Schematic diagram of an 
atomic force microscope (AFM).
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Figure 1.58 shows a sample of polished silicon (traditional roughness values indicate 0.2–0.3 
nm magnitude, near the nominal vertical resolution limit for interferometry and AFM) with a 
hardness indentation. In addition to the gray scale range image, the figure shows an isometric 
rendering of the elevation and the application of false color, both of which are common dis-
play modes for these instruments. One limitation of the AFM can be seen in the indentation, 
which shows that the left side of the indentation appears to be smoother than the right. This 
difference is an artifact of the scanning, since the tip response dynamics are different when 
following a surface down (where it may lag behind the actual surface and fail to record devia-
tions) or up (where contact forces it to follow irregularities). In addition, the measured depth 
of the indentation is much less than the actual depth, because the tip cannot follow the deep-
est part of the indentation and because the calibration of the AFM in the vertical direction is 
less precise than in the x, y directions.

Tools for surface characterization are available with sufficient lateral and vertical resolution 
for application to a variety of surface range measurements. The interferometer is more con-
venient to use than the AFM, operates over a wide range of magnifications, and accepts large 
samples. It also introduces less directional anisotropy due to the instrument characteristics. 
The AFM, on the other hand, has higher lateral resolution, which may be required for the 
metrology of very fine features, now becoming commonplace in integrated circuit fabrication 
and nanotechnology.

It is important to keep in mind that the signal produced by many instruments is only indirectly 
related to the surface elevation. In some cases, it may represent different characteristics of the 
sample such as compositional variations or electronic properties. In Figure 1.59, the apparent 

 
(a)               (b)

 
(c)               (d)

Figure 1.58 AFM image of a 
Knoop hardness indentation 
in metal:

  (a) range image;

  (b) false color added;

  (c) isometric rendering;

  (d) false color added.
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step in surface elevation provides an example. The surface is flat, but the electronic properties 
of the sample (a junction in a microelectronic device) produce the variation in signal.

Multiple images

For many applications, a single image is not enough. Multiple images may, for instance, be 
a series of views of the same area, using different wavelengths of light or other signals. 
Examples include the images produced by satellites, such as the various visible and infrared 
wavelengths recorded by the Landsat Thematic Mapper (TM), and images from the SEM in 
which as many as a dozen different elements may be represented by their X-ray intensities. 
These images may each require processing; for example, X-ray maps are usually very noisy. 
They are then often combined either by using ratios, such as the ratio of different wavelengths 
used to identify crops in TM images, or Boolean logic, such as locating regions that contain 
both iron and sulfur in an SEM image of a mineral. Figure 1.60 shows an example in which 
two satellite color photographs of the same region, one covering the usual visual range of 
wavelengths and one extending into the near infrared, are combined by constructing the ratio 
of infrared to green intensity as a vegetation index, relatively insensitive to the local inclina-
tion of the surface to the sun. Chapter 13 has additional examples.

Satellite images are typically acquired in several wavelengths, covering the visible and near 
infrared bands. Landsat images, for example, can be combined to generate a “true color” 
image by placing bands 1, 2, and 3 into the blue, green, and red channels of a color image, 
respectively. Other satellites produce images with higher resolution, although without color 
sensitivity. Figure 1.61 shows three color channels with ground resolution of about 15 meters 
and one panchromatic gray scale image (from a different satellite) with ground resolution 
better than 5 meters. Combining the three low resolution channels to produce a color image, 
converting this to HSI, and then replacing the intensity channel with the higher resolution 
image produces a result shown in Figure 1.62 with both color information and high spatial 
resolution. The fact that the color values are shifted slightly and the color boundaries are not 
as sharp as the brightness data does not hinder viewing or interpretation.

Another multiple image situation is a time sequence. This may be a series of satellite images 
used to track the motion of weather systems, telescope images tracking the motion of a comet, 

Figure 1.59 Scanning tunneling 
microscope (STM) image. The 
specimen is flat surfaced sili-
con, with apparent relief show-
ing altered electron levels in a 2 
µm wide region with implanted 
phosphorus (image courtesy of J. 
Labrasca, North Carolina State 
University, and R. Chapman, 
Microelectronics Center of North 
Carolina).
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surveillance photos used to track the motion of individuals, or a series of microscope images 
used to track the motion of cells or beating of cilia. In all of these cases, the need is usu-
ally to identify and locate the same objects in each of the images, even though there may be 
some gradual changes in feature appearance from one image to the next. If the images can be 
reduced to data on the location of only a small number of features, then the storage require-
ments are greatly reduced.

A technique known as motion flow works at a lower level. With this approach, matching of 
pixel patterns by a correlation method is used to create a vector field showing the motion 
between successive images. This method is particularly used in machine vision and robotics 
work, in which the successive images are very closely spaced in time. Simplifying the vector 
field can result in modest amounts of data, and these are usually processed in real time so 
that storage is not an issue. The principal requirement is that the local texture information 
needed for matching must be present. Hence, the images should be low in random noise 
and each image should contain simple and distinctive surfaces with consistent illumination. 

  
(a)               (b)               (c)

   

Figure 1.60 Landsat Thematic 
Mapper images in visual 
and infrared color of a 20 
km. region at Thermopolis, 
Wyoming (original images 
courtesy of NASA and US 
Geological Survey):

  (a) visible light;

  (b) infrared light;

  (c)  result of filtering the vis-
ible image at 520 nm;

  (d)  filtering the infrared 
image at 1100 nm;

  (e)  the ratio of the green (vis-
ible) to red (IR) filtered 
intensities.

       (d)               (e)
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The matching is performed using cross-correlation, in either the spatial or frequency domain 
(Chapter 6).

A set of images can also produce three-dimensional information. These are usually a series 
of parallel slice images through a solid object (Figure 1.63). Medical imaging methods such 
as computed tomography (CT) and magnetic resonance imageing (MRI) can produce this sort 
of data. So can some seismic imaging techniques. Also common are various serial section 
methods used in microscopy. The classic method for producing such a series of images is to 

 
(a)                        (b)

 

(c)                        (d)

Figure 1.61 Satellite images of Salt Lake City (courtesy of Y. Siddiqul, I-Cubed Corp., Ft. Collins, CO): (a) 
Band 1 (blue) 15 meter resolution; (b) Band 2 (green) 15 meter resolution; (c) Band 3 (red) 15 meter 
resolution; (d) panchromatic, 5 meter resolution.
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(a)                      (b)

Figure 1.62 Combination of planes (enlarged fragment to show detail): (a) RGB composite using 15 
meter resolution images, Figure 1.61a, b, and c; (b) Replacement of the intensity channel of (a) with 
the higher resolution panchromatic image from Figure 1.61d.

 

Figure 1.63 Multiple planes of pix-
els (sections through a human 
head) fill three-dimensional 
space. Voxels (volume elements) 
are ideally cubic for process-
ing and measurement of 3D 
images.
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microtome a series of sections from the original sample, image each separately in the light or 
electron microscope, and then align the images afterwards.

Optical sectioning, especially with the CSLM, which has a very shallow depth of field and can 
collect images from deep in transparent specimens, eliminates the problems of alignment. 
In addition to the benefit to creating 3D visualizations, the alignment of the sections is also 
important for some of the measurement procedures introduced in Chapter 9.

Some imaging methods, such as the SIMS (Secondary Ion Mass Spectrometer), produce a 
series of images in depth by physically eroding the sample, which also preserves alignment. 
Figure 1.64 shows an example of SIMS images. Sequential polishing of opaque samples such 
as metals also produces new surfaces for imaging, but it is generally difficult to control the 
depth in order to space them uniformly. Focused Ion Beam (FIB) machining, which can be 
performed inside an SEM so that the specimen remains fixed in position and can be examined 
to control the process, provides another way to prepare multiple surfaces for viewing.

The ideal situation for three-dimensional interpretation of structure calls for the lateral resolu-
tion of serial section image planes to be equal to the spacing between the planes. This pro-
duces cubic “voxels” (volume elements), which have the same advantages for processing and 
measurement in three dimensions that square pixels have in two. However, it is usually the 
case that the planes are spaced apart by much more than their lateral resolution, and special 
attention is given to interpolating between the planes. In the case of the SIMS, the situation 
is reversed and the plane spacing (as little as a few atom dimensions) is much less than the 
lateral resolution in each plane (typically about 1 µm).

 
(a)               (b)

 
(c)               (d)

Figure 1.64 SIMS (Secondary 
Ion Mass Spectrometer) 
images of Boron implanted in 
a microelectronic device. The 
images are from a sequence 
of 29 images covering a 
total of about 1 µm in depth. 
Each image is produced by 
physically removing layers 
of atoms from the surface, 
which erodes the sample pro-
gressively to reveal structures 
at greater depth.
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There are techniques that directly produce cubic voxel images, such as three-dimensional 
tomography. In this case, a series of projection images, generally using X-rays or electrons, is 
obtained as the sample is rotated to different orientations, and then mathematical reconstruc-
tion calculates the density of each voxel. The resulting large, three-dimensional image arrays 
may be stored as a series of planar slices. When a three-dimensional data set is used, a variety 
of processing and display modes are available. Chapter 14 discusses these in more detail. 
Figure 1.65 shows a typical display in which both section images and surface reconstruction 
are used to aid interpretation.

Stereoscopy

Three-dimensional information can also be obtained from two images of the same scene, 
taken from slightly different viewpoints. Human stereoscopy contributes to depth perception, 
although there is also important data from relative size, precedence, perspective, atmospheric 
haze, and other cues, which were understood and used very effectively by artists during the 
Renaissance. Like other aspects of human vision, stereoscopy is primarily comparative: the 
change of vergence angle of the eyes as attention shifts from one feature to another indicates 
to the brain which is closer. Figure 1.66 shows schematically the principle of stereo fusion, 
in which the images from each eye are compared to locate the same feature in each view. 
The eye muscles rotate the eye to bring this feature to the fovea, and the muscles provide the 
vergence information to the brain. Notice that this implies that stereoscopy is only applied 
to one feature in the field of view at a time and not to the entire scene. From the amount of 

Figure 1.65 Medical imagery display combining section planes with surface reconstruction.
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vergence motion needed, the relative distance of the object is ascertained. Since only com-
parative measurements are made, only the direction or relative amount of motion required to 
fuse the images of each object is required.

Not all animals use this method. The owl, for instance, has eyes that are not movable in their 
sockets. Instead, the fovea has an elongated shape along a line that is not vertical, but angled 
toward the owl’s feet. The owl tilts his head to accomplish fusion (bringing the feature of inter-
est to the fovea) and judges the relative distance by the tilt required.

Although the human visual system makes only comparative use of the parallax, or vergence, 
of images of an object, it is possible to measure the relative displacement of two objects in the 
field of view to calculate their relative distance, or of the angle of vergence of one object to 
calculate its distance from the viewer. This is routinely done at scales ranging from kilometers 
to micrometers.

Measurement of range information from two views is a straightforward application of trigo-
nometry. The lateral position of objects in these two views is different depending on their 
distance. From these parallax displacements, the distance can be computed by a process 
called stereoscopy or photogrammetry. However, computer fusion of images is a difficult task 
that requires locating matching points in the images. Brute-force correlation methods that try 
to match many points based on local texture are fundamentally similar to the motion flow 
approach. This produces some false matches, but these may be removed by subsequent noise 

   

Parallax Displacement

(a)                    (b)

Figure 1.66 Stereoscopic depth perception: (a) The relative distance to each feature identified in both 
the left and right eye views is given by differences in the vergence angles by which the eyes must 
rotate inwards to bring each feature to the central fovea in each eye. This is accomplished one fea-
ture at a time. Viewing stereo pair images provides the same visual cues to the eyes and produces the 
same interpretation. (b) Measurement of images to obtain actual distances uses the different paral-
lax displacements of the features in two images. The distance between the two view points must be 
known. Locating the same feature in both images is the most difficult part of the task for automated 
analysis.
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filtering. The alternate approach is to locate selected points in the images that are “interest-
ing” based on their representing important boundaries or feature edges, which can then be 
matched more confidently. The areas between the matched points are assumed to be planes 
or smooth splines.

However fusion is accomplished, the displacement of the points in the two images, or paral-
lax, gives the range. This method is used for surface elevation mapping, ranging from satellite 
or aerial pictures used to produce topographic maps (in which the two images are taken a 
short time apart as the satellite or airplane position changes) to scanning electron microscope 
metrology of semiconductor chips (in which the two images may be produced by tilting the 
sample). Figure 1.67 shows an example of a stereo pair from an SEM; Figure 1.68 shows a 
topographic map created from stereo aerial photographs.

The ability of a stereoscopic view of the world to communicate depth information resulted 
in the use of stereo cameras to produce “stereopticon” slides for viewing, an activity that was 
very popular more than 70 years ago and is still used (Figure 1.69). Stereo movies (usually 
requiring the viewer to wear polarized glasses) have enjoyed brief vogues from time to time, 
and there is some current interest in promoting stereo home television displays. Publication 
of stereo-pair views to illustrate scientific papers is now relatively common. One format places 
the two images side-by-side about 7.5 cm apart (the distance between human eyes), which 
an experienced viewer can see without optical aids by looking straight ahead and allow-
ing the brain to fuse the two images. Another method uses different colors for each image. 
Overprinting the same image in red and blue (or red and cyan) allows the viewer with colored 
glasses to see the correct image in each eye, and again the brain can sort out the depth infor-
mation (Figure 1.70). Some SEMs display live stereo views of surfaces using this method.

Figure 1.67 Stereo pair images from the scanning electron microscope (SEM). The specimen is the sur-
face of a leaf; the two images were obtained by tilting the beam incident on the specimen by 8° to 
produce two angles of view (images courtesy of Japan Electron Optics Laboratory, Peabody, MA.)
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Figure 1.68 Topographic contour map derived from overlapping stereo aerial photographs, superim-
posed on one of the images.

Figure 1.69 Stereo view (Art Institute of Chicago) with side-by-side images.
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This “anaglyph” method works for gray scale images, but an interesting modification for color 
images (shown in Figure 1.71) combines the red channel from the left eye image with the 
green and blue channels from the right eye image to produce a result that can fool the brain 
into seeing a full color stereo scene (for a viewer with left-eye dominance, the process may be 
reversed). Projection of images using polarized light and glasses is also used to display stereo, 
but requires special screens and is not satisfactory for those viewing at an angle. A variety of 
new devices for presenting stereo images is being developed (Brown, 2007).

There are several different measurement geometries (Boyde, 1973; Piazzesi, 1973). In all cases, 
the same scene is viewed from two different locations or directions and the distance or angle 
between those locations is precisely known. Sometimes this is accomplished by moving the 
viewpoint, for instance the airplane carrying the camera. In aerial photography, the plane’s 
speed and direction are known and the time of each picture is recorded with it to give the 
distance traveled.

In Figure 1.72, S is the shift distance (the distance the plane travels or the distance the cam-
era is moved) and WD is the working distance or altitude. The parallax (d1 – d2) from the 
distances between two points as they appear in the two different images (measured in a direc-
tion parallel to the shift) is proportional to the elevation difference between the two points. 
For the case of d1 and d2 much smaller than S, the simplified relationship is:

	 h W D d d
S

= ⋅ −( )1 2  (1.10)

If h, the vertical relief of the surface being measured, is a significant fraction of WD, then 
foreshortening of lateral distances as a function of elevation is also present in the images. The 
x and y coordinates of points in the images can be corrected with Equation 1.11.
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Much greater displacement between the two eyepoints can be achieved if the two views are 
not in parallel directions, but are instead directed inwards toward the same central point in 
each scene. This is rarely done in aerial photography, because it is impractical when trying 

 

Figure 1.70 Red/cyan stereo image 
of a fly’s head. This image was 
captured as two separate SEM 
images, which were then super-
imposed as different color 
channels. To view the image, 
use glasses with a red filter in 
front of the left eye and a green, 
cyan, or blue filter in front of 
the right eye.
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Figure 1.71 Side by side stereo view with color 
images (top) and the combination of the red 
channel from the left eye image with the green 
and blue channels from the right eye image, 
which can be viewed with red-cyan glasses.

Figure 1.72 Geometry used to measure the 
vertical height difference between objects 
viewed in two different images obtained 
by shifting the sample or viewpoint (typi-
cally used for aerial photography).
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to cover a large region with a mosaic of overlapping pictures and is not usually necessary to 
obtain sufficient parallax for measurement. However, when examining samples from close 
distances (close-range photogrammetry, or viewing in the SEM), it is very easy to accomplish 
this by tilting the sample between two views or taking two photographs directed toward the 
same central feature in the scene. In Figure 1.73, the images represent two views obtained 
by tilting the specimen about a vertical axis. The points A and B are separated by a horizontal 
distance d1 or d2 that is different in the two images. From this parallax value and the known 
tilt angle™ between the two images, the height difference h and the angle ⎝ of a line joining 
the points (usually a surface defined by the points) is calculated (Boyde, 1973) as:

	

θ δ
δ

= −







= ⋅
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1
1

d d

h d δδ
δ
)
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Notice that the angle ⎝ is independent of the magnification, since the distances enter as a 
ratio.

When two angled views of the same region of the surface are available, the relative displacement 
or parallax of features can be made large relative to their lateral magnification. This makes it pos-
sible to measure relatively small amounts of surface relief. Angles of 5 to 10 degrees are commonly 
used; for very flat surfaces, tilt angles as great as 20 degrees may be useful. When large angles are 
used with rough surfaces, the images contain shadow areas where features are not visible in both 
images and locating matching points becomes difficult. Also, when the parallax becomes too great 
in a pair of images, it can be difficult for the human observer to fuse the two images visually.

Many of the measurements made with stereo-pair photographs from both SEM and aerial 
photography are made using extensive human interaction. The algorithms that have been 
developed for automatic fusion require some of the image processing operations described in 
later chapters to make possible the identification of the same locations in each image. For the 
moment, it is enough to understand the principle that identifying the same points in left and 
right images, and measuring the parallax, gives the elevation. With data for many different 
pairs of points, it is possible to construct a complete map of the surface. The elevation data 
can then be presented in a variety of formats, including a range image encoding elevation as 
the brightness or color of each pixel in the array. Other display modes, such as contour maps, 
isometric views, or shaded renderings can be generated to assist the viewer in interpreting 
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Figure 1.73 Geometry used to measure 
the vertical height difference between 
points viewed in two different images 
obtained by tilting the sample (typi-
cally used for microscopy).
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these images, which are not familiar to everyday experience. The range image data are in a 
suitable form for many types of image processing and for the measurement of the surface area 
or the volume above or below the surface.

The majority of elevation maps of the earth’s surface being made today are determined by 
the stereoscopic measurement of images, taken either from aerial photography or satellite 
remote imaging (the other technique in widespread use is laser range finding, which measures 
one point at a time). Of course, two-thirds of the earth is covered by water and cannot be 
measured this way. Portions of the sea bottom have been mapped stereoscopically by side-
scanned sonar. The technology is very similar to that used for the radar mapping of Venus, 
except that sonar uses sound waves (which can propagate through water) and radar uses 
high-frequency (millimeter length) electromagnetic radiation that can penetrate the opaque 
clouds covering Venus.

The synthetic aperture radar (SAR) used by the Magellan probe to map Venus does not directly 
give elevation data to produce a range image. The principle of SAR is not new (it was invented 
by Carl Wiley, at Goodyear Aircraft, in the 1950s), nor restricted to satellites and space probes. 
Aerial mapping of desert regions has been used to penetrate through the dry sand and map 
the underlying land to find ancient watercourses, for instance. The principle of SAR is that the 
moving satellite (or other platform) emits a series of short pulses directed downwards and to 
one side of the track along which it is moving. The direction parallel to the track is called the 
azimuth and the direction perpendicular to it is called the range (not to be confused with the 
range image that encodes the elevation information). The name “synthetic aperture” refers to 
the fact that the moving antenna effectively acts as a much larger antenna (equal in size to the 
distance the antenna moves during the transmission of the pulse) that can more accurately 
resolve directions in azimuth.

The radar records the intensity of the returning pulse, the travel time, and the Doppler shift. The 
intensity is a measure of the surface characteristics, although the radar (or sonar) reflectivity is 
not always easy to interpret in terms of the surface structure and is not directly related to the 
albedo or reflectivity for visible light. The travel time for the pulse gives the range. For a perfectly 
flat surface, there is an arc of locations on the surface that have the same range from the antenna. 
Because of the motion of the satellite or airplane, each point along this arc produces a different 
Doppler shift in the signal frequency. Measuring the Doppler shift of each returned pulse pro-
vides resolution along the arc. Each point on the ground contributes to the return pulse with a 
unique range and Doppler shift, which allows a range map of the ground to be reconstructed.

However, since the surface is not flat, there are multiple possible combinations of location and 
elevation that can produce the same return signal. Combining the measurements from several 
overlapping sweeps (for Magellan, several sequential orbits) allows the elevation data to be 
refined. The database for Venus resolves points on the ground with about 120-meter spacing and 
has elevation data with resolutions that vary from 120 to 300 meters (depending on where along 
the track, and how far from the center of the track, they are located). For each point, the eleva-
tion and the reflectivity are stored (Figure 1.74). In rendering of these data, the elevation values 
are used to construct the surface shape and the reflectivity values are used to color the surface 
(Figure 1.75). Of course, the colors are not the actual visual appearance of the surface.

Synthetic aperture ranging with either radar or sonar is not the only way these signals can 
be used to construct a range map. Directing a beam straight down and measuring the echo, 
or return time, gives the range at a single point. Many such measurements can be used to 
construct a map or image. The simple “fish-finder” type of sonar can be used to construct a 
map of a lake bottom in this way, if the boat is steered back and forth in a raster pattern to 
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cover the whole surface. Other signals can be used, as well. The Clementine mission to the 
moon used a laser beam from the orbiting space craft in a similar fashion, and such laser 
range-finding is also used for aerial mapping on earth. By pulsing the laser and waiting for 
the echo, Clementine measured locations spaced every few hundred meters across the entire 
lunar surface with a vertical resolution of about 40 meters.

Imaging requirements

Given the diversity of image types and sources described above, there are several general 
criteria that can be prescribed for images intended for computer processing and analysis. The 

Figure 1.74 Range image of Venus obtained from synthetic aperture radar (courtesy of the Jet Propulsion 
Laboratory, Pasadena, CA).

Figure 1.75 Rendered surface of Venus from SAR data (courtesy of the Jet Propulsion Laboratory, 
Pasadena, CA).
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first is the need for global uniformity. The same type of object or structure should look the 
same wherever it appears in the image. This implies that brightness and color values should 
be the same and, consequently, that illumination must be uniform and stable for images 
acquired at different times. When surfaces are nonplanar, such as the earth as viewed from a 
satellite or a fracture surface in the microscope, corrections for the changing local orientation 
may be possible, but this usually requires calculation and/or prior knowledge of the surface 
and source of illumination.

Figure 1.76 shows an example of an image with nonuniform illumination. Acquiring a “back-
ground” image by photographing the base of the copystand with no specimen present, but the 
same illumination, allows this nonuniformity to be leveled. The background image is either 
subtracted from or divided into the original, depending on whether the camera has a loga-
rithmic or linear response. This type of leveling is shown in Chapter 4 on correcting image 
defects, along with other ways to estimate the background image when it cannot be acquired 
directly.

The requirement for uniformity limits the kinds of surfaces that are normally imaged. Planar 
surfaces, or at least simple and known ones, are much easier to deal with than complex sur-
faces. Simply connected surfaces are much easier to interpret than ones with arches, bridges, 
caves, and loops that hide some of the structure. Features that have precedence problems, in 
which some features hide entirely or in part behind others, present difficulties for interpre-
tation and measurement. Illumination that casts strong shadows is also undesirable in most 
cases. The exception occurs when well-spaced features cast shadows that do not interfere with 
each other. The shadow lengths can be used with the known lighting geometry to calculate 
feature heights. Figure 1.77 shows an example in aerial photography. One form of sample 
preparation for the TEM deposits a thin film of metal or carbon from a point source, which 
also leaves shadow areas behind particles or other protrusions that can be used in the same 
way (Figure 1.78).

In addition to global uniformity, local sensitivity to variations is desirable. This means that 
edges and boundaries must be well delineated and accurately located. The resolution of the 
camera sensor is discussed above. Generally, anything that degrades high frequencies in the 
signal chain disturbs the subsequent ability to identify feature boundaries or locate edges for 
measurement. On the other hand, such simple problems as dust on the optics can introduce 
local variations that may be mistaken for image features, causing serious errors.

  
(a)              (b)              (c)

Figure 1.76 Macro image (a) with nonuniform illumination. The background image (b) was recorded 
under the same conditions with the sample removed from the copystand. Dividing the background 
image pixel by pixel into the original, and expanding the contrast of the result, produces a leveled 
image (c).



79Acquiring Images
© 2011 by Taylor & Francis Group, LLC

Measurement of dimensions requires that the geometry of the imaging system be well known. 
Knowing the magnification of a microscope, focal length of a camera lens, or the altitude of a 
satellite is usually straightforward. Calibrating the lateral scale can be accomplished either by 
knowledge of the optics or by using an image of a known scale or standard. When the viewing 
geometry is more complicated, either because the surface is not planar or the viewing angle is 
not perpendicular, measurement is more difficult and requires determination of the geometry 
first, or the inclusion of a scale or fiducial marks on the object being viewed.

Figure 1.79 shows the simplest kind of distortion that arises when a planar surface is viewed 
at an angle. Different portions of the image have different magnification scales, which makes 

  

Figure 1.77 Aerial photograph in 
which length of shadows and 
knowledge of the sun position 
permit calculation of the heights 
of trees and the height of the 
piles of logs in the lumberyard, 
from which the amount of wood 
can be estimated.

 

Figure 1.78 Electron microscope 
image showing shadowed par-
ticles delineating the gap junc-
tions between cells, revealed by 
freeze-fracturing the tissue.
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subsequent analysis difficult. Distortion also complicates combining multiple images of a 
complex surface into a mosaic. This problem arises in applications at very different scales. 
Satellite images of the surface of planets are assembled into mosaics covering large areas only 
with image warping to bring the edges into registration. This type of warping is discussed in 
Chapter 4. Images of rough surfaces are more difficult to assemble in this way, because the 
overall surface geometry is not known.

Measuring brightness information, such as density or color values, requires a stable illumi-
nation source and sensor. Recorded colors are affected by changes in the color temperature 
of an incandescent bulb due to minor voltage fluctuations or as the bulb warms up or ages. 
Fluorescent lighting, especially when used in light boxes with X-ray films or densitometry 
gels, may be unstable or may introduce interference in solid-state cameras due to the high-
frequency flickering of the fluorescent tube. Bright specular reflections may cause saturation, 
blooming, or shifts in camera gain.

It helps to bear the purpose in mind when digitizing an image into a computer. Some of 
the possibilities are listed below, and these place different restrictions and demands on the 
hardware and software used. Subsequent chapters consider these topics in greater detail. 
The emphasis throughout this book is on the results produced by various processing and 

(a)

(b)

Figure 1.79 Geometric distortion occurs when 
a surface is viewed from a position away 
from the surface normal. Correcting this dis-
tortion to obtain a rectilinear image which 
can be properly processed and measured, 
or fitted together with adjoining images, 
requires knowing the viewing geometry 
and/or including known fiducial marks in 
the scene that can be used to determine it.
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measurement techniques, with plain English descriptions of the methods and illustrations 
comparing different approaches. There are numerous books that provide computer code that 
implements various algorithms, such as Russ & Russ, 2008; Parker, 1997; Ritter & Wilson, 
2001; Pavlidis, 1982; Myler & Weeks, 1993; Umbaugh, 1998; Seul et al., 2000; Lichtenbelt et al., 
1998, with more rolling off the presses regularly.

There are also a great many books on digital image processing, some of which delve deeply 
into the mathematical underpinnings of the science, and others concentrate on applications 
in a particular field. A representative selection of general texts includes Gonzalez & Woods, 
1993; Pratt, 1991; Rosenfeld & Kak, 1982; Weeks, 1996; Pitas, 2000; Nikolaidis & Pitas, 2001; 
Costa & Cesar, 2001; Sonka et al., 1999; Kriete, 1992; Hader, 1992; Sanchez & Canton, 1999. 

Several application-specific texts present image processing and to a lesser extent image mea-
surement as they apply to particular fields of study. A few examples include forensics (Russ, 
2002), food science (Russ, 2004), geology (Francus, 2004), and medical imaging (Costaridou, 
2004; Rangayyan, 2005). Other texts introduce processing and measurement in terms of using 
specific software packages, such as Photoshop (Russ, 2009) or Matlab (Gonzalez et al., 2004). 
The emphasis in this text is on the generality of the methods, showing that the same tech-
niques apply to a broad range of types of images, and trying to educate the user in selection 
of methods based on performance and results, rather than theory.

Storing and filing of images becomes more attractive as massive storage devices (such as writ-
able DVD disks) drop in price or where multiple archival copies of images may be needed in 
more than one location. In many cases, this application also involves hardcopy printing of the 
stored images and transmission of images to other locations. If further processing or measure-
ment is not required, then compression of the images may be acceptable. The advantage of 
electronic storage is that the images do not degrade with time and can be accessed by appro-
priate filing and cross-indexing routines. On the other hand, film storage is far cheaper and 
offers high storage density and image resolution, and it is likely that devices for examining 
film will still be available in 100 years, which is probably not the case for DVD disks.

Enhancement of images for visual examination requires a large number of pixels and ade-
quate pixel depth so that the image can be acquired with enough information to perform the 
filtering or other operations with fidelity and then display the result with enough detail for 
the viewer. Uniformity of illumination and control of geometry are of secondary importance. 
When large images are used, and especially for some of the more time-consuming processing 
operations, or when interactive experimentation with many different operations is intended or 
real-time results are needed, this application benefits from fast computers with large amounts 
of memory and/or specialized hardware.

Measurement of dimensions and density values can often be performed with modest image 
resolution if the magnification or illumination can be calibrated and adjusted beforehand to 
make the best use of the image sensor. Processing may be required before measurement (for 
instance, derivatives are often used to delineate edges for measurement) but this can usually 
be handled completely in software. The most important constraints are tight control over the 
imaging geometry and the uniformity and constancy of illumination.

Geometric measurements are often desired from images of scenes obtained using surveil-
lance cameras. While it is possible to apply the necessary trigonometric calculations to the 
recorded images, it is often better to use a method known as reverse projection. As illustrated 
in Figure 1.80, this procedure places calibration standards in the same scene after the fact 
and superimposes the images for direct comparison. This technique is especially useful for 



82 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

forensic applications because it is purely visual and requires no complex explanations, or cor-
rections for foreshortening, or other assumptions.

Quality control applications usually do not involve absolute measurements so much as 
detecting variations. In many cases, this is handled by subtracting a reference image from 
each acquired image, point by point, to detect gross changes. This can be done with ana-
log electronics at real-time speeds. Preventing variation due to accidental changes in the 
position of camera or targets, or in illumination, is a central concern. Locating features 
such as holes or components is often accomplished using cross correlation, applied using 
dedicated processors.

Microstructural research in either two or three dimensions usually starts with image measure-
ment and has the same requirements as noted above, plus the ability to subject the measure-
ment values to appropriate stereological and statistical analysis. Interpretation of images in 
terms of structure is different for images of planar cross-sections or projections (Figure 1.81). 
The latter are familiar to human vision, while the former are not. Section images, such as the 
one in Figure 1.82, contain information for measurement in three dimensions that can be 
revealed by appropriate analysis. Chapter 9 describes the methods. Projection images, such 
as the one in Figure 1.83, are more visually familiar but may present greater difficulties for 
interpretation. Most medical imaging technologies correspond to one or the other of these 
methods (CT and MRI images are sections, conventional X-rays are projections).

Three-dimensional imaging utilizes large data sets, and in many cases the alignment of two-
dimensional images is of critical importance. Some three-dimensional structural parameters 
can be inferred from two-dimensional images. Others, principally topological information, 
can only be determined from a three-dimensional data set. Processing and measurement oper-
ations in three dimensions place extreme demands on computer storage and speed. Displays 
of three-dimensional information in ways interpretable by, if not always familiar to, human 

Figure 1.80 Reverse projection photogrammetry. Placing a measurement standard at the same loca-
tion in the scene previously occupied by the subject, capturing its image using the same camera, and 
superimposing the image onto the original provides a direct way to measure the subject’s height.
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users are improving, but need further development. They also place considerable demands on 
processor and display speed. Chapters 13 and 14 discuss 3D imaging.

Classification and recognition is generally considered to be the high-end task for computer-
based image analysis. It ranges in complexity from locating and recognizing isolated objects 
belonging to a few well-established classes to much more open-ended problems. Examples 
of the former are locating objects for robotic manipulation or recognizing targets in surveil-
lance photos. An example of the latter is medical diagnosis, in which much of the important 
information comes from sources other than the image itself. Fuzzy logic, expert systems, and 
neural nets are all being applied to these tasks with some success. The methods are reviewed 
in Chapter 12. Extracting the correct information from the image to feed the decision-making 
logic is more complicated than simple processing or measurement, because the best algorithms 
for a specific application must themselves be determined as part of the overall process.

These tasks all require the computer-based image processing and analysis system, and by 
inference the image acquisition hardware, to duplicate some operations of the human visual 
system. In many cases they do so in ways that copy the algorithms believed to be used in 

  
(a)                      (b)

Figure 1.81 Projection images, such as the spheres shown in (a), are familiar, showing the external 
surfaces of features. However, some features are partially or entirely obscured and it is not easy to 
determine the number or size distribution. Cross-section images, as shown in (b), are unfamiliar 
and do not show the maximum extent of features, but statistically it is possible to predict the size 
distribution and number of the spheres.

 

Figure 1.82 Light microscope image 
of a section through a colored 
enamel coating applied to steel 
(courtesy of V. Benes, Research 
Inst. for Metals, Panenské Brezany, 
Czechoslovakia). The spherical 
bubbles arise during the firing of 
the enamel. They are sectioned to 
show circles whose diameters are 
smaller than the maximum diam-
eter of the spheres, but since the 
shape of the bubbles is known it is 
possible to infer the number and 
size distribution of the spheres from 
the data measured on the circles.
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vision, but in others quite different approaches are used. While no computer-based image 
system can come close to duplicating the overall performance of human vision in its flexibility 
or speed, there are specific tasks at which the computer-based system surpasses any human. 
It can detect many more imaging signals than just visible light; is unaffected by outside influ-
ences, fatigue, or distraction; performs absolute measurements rather than relative compari-
sons; can transform images into other spaces that are beyond normal human experience (e.g., 
Fourier, Wavelet or Hough space) to extract hidden data; and can apply statistical techniques 
to see through the chaotic and noisy data that may be present to identify underlying trends 
and similarities.

These attributes have made computer-based image analysis an important tool in many diverse 
fields. The image scale may vary from the microscopic to the astronomical, with substantially 
the same operations used. For the use of images at these scales, see, for example, Inoue (1986) 
and Sabins (1987). Familiarity with computer methods also makes most users better observ-
ers of images, able to interpret unusual imaging modes (such as cross-sections) that are not 
encountered in normal scenes, and conscious of both the Gestalt and details of images and 
their visual response to them.

 

Figure 1.83 Transmission electron 
microscope image of latex spheres 
in a thick, transparent section. 
Some of the spheres are partially 
hidden by others. If the section 
thickness is known, the size dis-
tribution and volume fraction 
occupied by the spheres can be 
estimated, but some small features 
may be entirely obscured and can-
not be determined.



85
© 2011 by Taylor & Francis Group, LLC

2
Human Vision*

There are two main reasons for including a chapter on the characteristics of human vision 
in a book that is primarily concerned with computer processing and measurement of 
digital images. First, much of image processing is concerned with enhancing the visibil-

ity of details and features within images, and this depends upon some understanding of what 
people see in images (and what they overlook). Second, many of the algorithms described 
in subsequent chapters for image processing and detecting objects in scenes are based to a 
greater or lesser extent on our understanding of how human visual processes work. That is 
not the only source of processing algorithms, of course. Some are based on the physics of light 
(or other signals) interacting with specimens. And some are simply ad hoc procedures that 
have been found useful. But the understanding gained from the study of vision has been an 
important source of methods for computer processing as well.

The chapter also seeks to broaden the reader’s understanding of the similarities and differ-
ences between the hardware of the human eye vs. a digital camera, and the software of a com-
puter vs. the human neural system. Such knowledge should help to make us more thoughtful 
observers as well as better users of these new tools.

What we see and why

Human beings are intensely visual creatures. Most of the information humans acquire comes 
through our eyes (and the related circuitry in our brains), rather than through touch, smell, 
hearing, or taste. For better or worse, that is also the way scientists acquire information from 
their experiments. But the skills in interpreting images developed by millions of years of 
evolution don’t deal as well with scientific images as they do with “real world” experiences. 
Understanding the differences in the types of information to be extracted, the role of expecta-
tion and familiarity, and the biases introduced by our vision systems is a necessary require-
ment for the scientist who would trust his or her results.

The percentage of information that flows through visual pathways has been estimated at 
90–95% for a typical human without any sensory impairment. Indeed, our dependence on 
vision can be judged from the availability of corrective means — ranging from eyeglasses to 

*  Portions of this chapter first appeared as a series of articles in the Proceedings of the Royal Microscopy Society 
in 2004.
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laser eye surgery — for those whose vision isn’t perfect or deteriorates with age. Hearing aids 
and cochlear implants are available (but under-utilized) for those with severe hearing loss, but 
there are no palliatives for the other senses. As taste becomes less sensitive, the only solution 
is to sprinkle on more chili powder.

Not all animals, even all mammals, depend on or use sight to the extent that humans do (Figure 2.1). 
Bats and dolphins use echolocation or sonar to probe the world about them. Pit vipers sense infra-
red radiation. Moles, living underground, trade sight for sensitive touch organs around their nose. 
Bloodhounds follow scents and butterflies have taste organs so sensitive they can detect single 
molecules. Some eels generate and sense electric fields to interact with their surroundings. Fish 
and alligators have pressure sensors that detect very slight motions in their watery environment. 
Birds and bees both have the ability to detect the polarization of light, as an aid to locating the sun 
position on a cloudy day. Birds and some bacteria are able to sense the orientation of the earth’s 
magnetic field, another aid to navigation. And many birds and insects have vision systems that 
detect infrared or ultraviolet colors beyond our range of vision (Goldsmith, 2006).

It is not easy for humans to imagine what the world looks like to a bat, eel, or mole. Even the 
word “imagine” demonstrates the problem. The root word “image” implies a picture, or scene, 
constructed inside the mind. Dependent as we are on images, that is the only organization of 
world data that is comprehensible to most of us, and our language reflects (sic!) or illustrates 
(sic!) that bias. Interviews with persons who have been blind from birth suggest that they con-
struct a mental image of their surroundings from touch, sound, and other clues.

With two forward facing eyes capable of detecting light over a wavelength range of about 
400–700 nm (blue to red), humans are descended from arboreal primates who depended on 
vision and stereoscopy for navigation and hunting. Many animals and insects instead sacrifice 
stereoscopy for coverage, with eyes spaced wide to detect motion. A few, like the chameleon, 
can move their eyes independently to track different objects. But even in the category of hunt-
ers with stereo vision there are many birds with much better sight than humans. Eagles have 
resolution that can distinguish a mouse at a range of nearly a mile. In fact, most birds devote 
a much larger portion of their head space to eyes than people do. In some birds, the eyes are 
so large that it affects other functions, such as requiring blinking the eyelids to force the eyes 
down onto the throat in order to swallow food.

An oft-quoted adage states that “a picture is worth a thousand words,” and is used as an 
illustration of the importance of images and their apparent rich information content. But the 
statement is wrong in many ways. First, a typical image, digitized and stored in a computer, 
occupies the space of several million words of text. Using this chapter as an example, 1000 
words require an average of 6080 bytes to store, exclusive of formatting information, and can 
be ‘zip’ compressed without any loss of information to require about 2150 bytes per thou-
sand words. Furthermore, the resolution of modern digital cameras is far less than that of the 
human eye, which has about 160 million rods and cones. On the other hand, as a means of 
communicating information from one person to another the image is very inefficient. There 
is little reason to expect another person to derive the same information from a picture as we 
did without some supporting information to bring it to their attention and create a context 
for interpreting it. Arlo Guthrie describes this in “Alice’s Restaurant” as “Twenty-seven 8 × 10 
color glossy pictures with circles and arrows and a paragraph on the back of each one.” That 
is not a bad description of many typical scientific papers!

Research suggests that cultural differences strongly affect what we see in an image. Many west-
erners fix their attention on one (or a few) objects that are in the foreground and/or brightly 
colored, and ignore the surroundings. Many Asians pay more attention to the overall scene 
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(a) (b)

(d)(c)

(f)(e)

Figure 2.1 Eyes come in many forms, optimized for different purposes. Spider eyes consist of multiple 
sets with many individual lenses and sensors, producing comparatively low resolution but broad 
coverage. Bird eyes have high acuity and resolution. The chameleon can swivel its eyes indepen-
dently to track different objects in left and right visual fields. The adult flounder has both eyes on one 
side of its head. The eyes of the octopus have very good color sensitivity but evolved with the neural 
circuitry on the opposite side of the retina from mammals. Primates are well adapted for stereo vision 
and have greater sensitivity to red colors than most other mammals.
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and the background details, noting the presence of objects in the foreground but not devot-
ing any special attention to studying or remembering their characteristics. And, of course, 
recognition of something in a scene that appears familiar to the observer strongly influences 
where attention is focused.

Human vision can extract several different kinds of information from images, and much of the 
processing that takes place has been optimized by evolution and experience to perform very 
efficiently. But at the same time, other types of information are either ignored or suppressed 
and are not normally observed. Sherlock Holmes often criticized Watson for “seeing but not 
observing” which is as good a distinction as any between having photons fall upon the retina 
and triggering awareness in the conscious mind. This chapter examines some of the processes 
by which information is extracted and the conscious levels of the mind alerted. The extrac-
tion process overlooks some kinds of information or makes some of the scene contents very 
difficult to detect. And, of course, expectations influence perception — we are more likely to 
find what we are looking for (and conversely).

Recognition

The goal of much of human vision is recognition. Whether searching for food, avoiding preda-
tors, or welcoming a mate, the first thing that catches our attention in an image is something 
familiar. To be recognized, an object or feature must have a name — some label that our 
consciousness can assign. Behind that label is a mental model of the object, which may be 
expressed either in words, images, memories of associated events, or perhaps other forms. 
This model captures the important (to us) characteristics of the object. It is unfortunate in 
many scientific experiments that the task assigned to human vision is rarely the recognition 
of familiar objects, but rather the detection and description of unfamiliar ones, which is far 
more difficult.

Things for which we do not have an existing label are difficult to recognize or identify. The 
accompanying stored representation is the example or instance that contains those character-
istics and features that in our individual memory are the identifying hallmarks of the class of 
objects. Each person may have their own example, of course. To cite a trivial example, one 
person’s “dolphin” may be the mammal (“Flipper”) and another’s the fish (mahi-mahi). Failing 
to specify which is intended opens the way for miscommunication. In addition, the remem-
bered example that corresponds to the label does not in general represent any real object, nor 
any kind of statistically representative combination of real objects, but instead contains those 
specific and particular features that have become important to each individual through acci-
dents of prior experience. In other words, even if our labels for something are the same down 
to genus, species, and variety, they may not be supported by the same set of expected char-
acteristics. In the days when scientists published papers illustrated by drawings, the drawings 
represented their personal model for the class of objects. Now that “real” images are used, the 
illustrations may actually be less representative because they show a particular member of the 
class that is not likely to be representative in any sense, corresponding neither to the writer’s 
mental representation nor to a statistically meaningful prototype for the class.

The basic technique that lies at the root of human vision is comparison. Nothing in images is 
measured by the eye and mind; we have no rulers and protractors in our heads for size, and 
no spectrophotometers for color or brightness. Features that can be viewed next to each other 
with similar orientation, surroundings, and lighting can be compared most easily. Ones that 
must be mentally flipped or rotated are more difficult. Figure 2.2 shows an example in which 
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the length of time required to mentally turn each object over in the mind to match alignments 
and determine which features are the same, and which are mirror images, is proportional to 
the angular differences between them. Comparisons to memory work the same way and take 
time. If the remembered object is a very familiar one, then the underlying model consists of 
a list of characteristics that can be compared, which is much faster. That is, after all, how 
recognition works.

If the remembered object is not familiar, and has no label and model, then comparison 
depends on just which characteristics of the original view are remembered. How well the 
memory process worked, and which features and characteristics are selected for recall, are 
themselves subject to comparisons to still other models. As an example, eyewitness accounts 
of crime and accident scenes are notoriously unreliable. Different observers select different 
attributes of the scene or suspect as being notable based on their similarity or difference from 
other objects in memory, so of course each person’s results vary. Police sketches of suspects 
rarely match well with actual photographs taken after capture. In some respects they are cari-
catures, emphasizing some aspect (often trivial) that seemed either familiar or unusual to an 
individual observer (see, for example, Figure 2.3). The message for a would-be bank robber 
is obvious: provide some easily remembered clues, like a tattoo, wig, bandage, and limp, that 
can be discarded afterwards.

A threshold logic unit implements the process that can signal recognition based on the 
weighted sum of many inputs. This process does not duplicate the exact functions of a real 
neuron, but is based on the McCullough and Pitts “perceptron” which successfully describes 
the overall process (Figure 2.4). This idea appears again in Chapter 12 as a model for soft-
ware that performs similar classification.

Recognition is frequently described in terms of a “grandmother cell.” This is a theoretical 
construct, not a single physical cell someplace in the brain, but it provides a useful framework 
to describe some of the significant features of the recognition process. The idea of the grand-
mother cell is that it patiently examines every image for the appearance of grandmother and 
then signals the conscious mind that she is present. Processing of the raw image that reaches 
the eye proceeds in several places, including the retina and visual cortex, and in a very paral-
lel fashion. In the process, several characteristics that may roughly be described as color, size, 
position, and shape are extracted. Some of these can be matched with those in the stored 
model for grandmother (such as short stature, white hair, a smile, perhaps even a familiar 

  

Figure 2.2 Some of these objects 
are identical and some are mir-
ror images. The length of time 
required to turn each one over 
in the mind for comparison is 
proportional to the angular 
difference.
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dress). Clearly, some characteristics are more important than others, so there must be weight-
ing of the inputs. If enough positive matches exist, and in the absence of strongly weighted 
negative characteristics (such as a red mustache), then the “grandmother” signal is sent.

This simple model for a “threshold logic unit” evolved into the modern neural net, in which 
several layers of these individual decision making units are connected. Their inputs combine 
data from various sensors and the output from other units, and the final output is a decision, 
basically recognition that the inputs match (well enough) some recognized circumstance or 
object. The characteristics of neural net decisions, whether performed on images in the human 
mind or other types of data in a computer circuit, are very high speed (due to the extremely 
parallel way that all of the small logic decisions happen at the same time), the ability to learn 
(by adjusting the weights given to the various inputs), and the tendency to make mistakes.

Everyone has had the experience of thinking they recognized someone (“grandmother”) and 
then on closer inspection realized that it isn’t actually the right person at all. There are enough 
positive clues, and the absence of negative ones, to trigger the recognition process. Perhaps 
in a different situation, or with a different point of view, we wouldn’t have made that mis-
take. But setting the threshold value on the weighted sum of positive inputs too high, while it 
would reduce false positives, is inefficient, requiring too much time to collect more data. The 
penalty for making a wrong identification is a little minor embarrassment. The benefit of the 
fast and efficient procedure is the ability to perform recognitions based on incomplete data.

In some implementations of this logic, it is possible to assign a probability or a degree of 
confidence to an identification, but the utility of this value depends in high degree upon the 
quality of the underlying model. This may be represented as the weights in a neural net, or 

Figure 2.3 Police artist sketches, with comparison mug shots beneath of each individual taken after 
their subsequent apprehension (courtesy of Gil Zamora, San Jose, CA Police Department).
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the rules in an fuzzy logic system, or in some other form. In human recognition, the list of 
factors in the model is not so explicit. Writing down all of the characteristics that help to 
identify grandmother (and especially the negative exclusions) is very difficult. In most scien-
tific experiments, an effort is made to enumerate the important factors, but there is always 
a background level of underlying assumptions that may or may not be shared by those who 
read the results.

It is common in scientific papers that involve imaging to present a picture, usually with the 
caption “typical appearance” or “representative view.” Editors of technical journals understand 
that these pictures are intended to show a few of the factors in the model list that the author 
considers particularly significant (and hopefully describes in the text). But of course no one 
picture can be truly “typical.” For one thing, most naturally occurring structures have some 
variability and the chances of finding the mean value of all characteristics in one individual is 
small, and in any case would not demonstrate the range of variation.

But even in the case of an individual like grandmother, no one picture can suffice. Perhaps 
you have a photo that shows her face, white hair, rimless glasses, and she is even wearing a 
favorite apron. So you present that as the typical picture, but the viewer notices instead that 
she is wearing an arm sling, because on the day you took the picture she happened to have 
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Figure 2.4 Comparison of a physical 
neuron, the McCullough and Pitts 
simplified model of a neuron, and 
its implementation as a threshold 
logic unit. If the weighted sum of 
many inputs exceeds a threshold 
then the output (which connects 
to an input on another logic unit) 
is turned on. Learning consists of 
adjusting the weights, which may 
be either positive or negative.
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strained her shoulder. To you, that is a trivial detail, not the important thing in the picture. But 
the viewer can’t know that, so the wrong information is transmitted by the illustration.

Editors know that the usual meaning of “typical picture” is “this is the prettiest image we have.” 
Picture selection often includes an aesthetic judgment that biases many uses of images.

Technical specs

The human eye is a pretty good optical device (Figure 2.5), although far from the best in 
the animal kingdom. Based on the maximum size of the lens aperture (5 × 10–3 m) and the 
wavelength of light (about 5 × 10–7 m for green) the theoretical resolution should be about 10–4 
radians or 1/3 arc minute. The lens focuses light onto the retina, and it is only in the fovea, 
the tiny portion of the retina (covering approximately 2 degrees) in which the cones are most 
densely packed, that the highest resolution is obtained in the sensed image. One arc minute 
is a typical estimate for the actual resolution performance of the eye, a handy number that 
can be used to estimate distances. Estimate the size of the smallest objects you can resolve, 
multiply by 3000, and that’s how far away you are in the same units. For example, a car about 
13 feet long can be resolved from an airplane at 40,000 feet, the fine lines and spaces in this 
text (about 0.2 mm in dimension) are resolved at a reading distance of two-thirds of a meter, 
and so on.

The number of 160 million rods and cones in the retina does not estimate the actual resolu-
tion of images. To “look at” something, we rotate our head and/or our eyeballs in their sock-
ets so that the image of that point falls onto the fovea, where the cone density is highest. 
The periphery of our vision has relatively fewer cones (which respond to color) as compared 
to rods (which sense only brightness) and is important primarily for detecting motion and 
for judging scene illumination to correct for color balance and shading. Producing a digital 
camera that captured entire visual scenes (which would require a very wide angle lens) with 
resolution to match human foveal vision, so we can later look anywhere in the stored image 
and see the finest detail that would have been visible in the original scene, would require bil-
lions of sensors.

  

Figure 2.5 Simplified diagram of 
the eye, showing the lens, retina, 
fovea, optic nerve, etc.
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Human vision achieves something quite miraculous by rapidly shifting the eye to look at many 
different locations in a scene and, without any conscious effort, combining those bits and pieces 
into a single perceived image. Even when we “look at” something, the eyes are never quite still. 
By continually shifting around, they construct a scene in the mind. There is a blind spot in the 
retina that has no rod or cone sensors, where the optic nerve connects. We don’t notice that 
blind spot because the brain fills it in with pieces interpolated from the surroundings or stored 
from previous glances. Tests in which objects appear or disappear from the blind spot prove that 
we don’t actually get any information from there — our minds make something up for us.

The eye can capture images over a very wide range of illumination levels, covering about 9 or 
10 orders of magnitude from a few dozen photons on a starlit night to a bright sunny day on 
the ski slopes. Some of that adaptation comes from changing the aperture with the iris, but 
most of it depends on processing in the retina. Adaptation to changing levels of illumination 
takes some time, up to several minutes depending on the amount of change. In the darkest 
few orders of magnitude only the rods are used and color sensitivity is lost. Since the fovea is 
rich in cones but has few rods, looking just “next to” what we want to see (“averted vision”) is 
a good strategy in the dark. It shifts the image over to an area with more rods to capture the 
dim image, albeit with less resolution.

Rods are not very sensitive to light at the red end of the visible spectrum, which is why red 
light illumination is used by astronomers, submariners, and others who wish to be able to 
turn off the red light and immediately have full sensitivity in the dark-adapted rod vision. 
Cones come in three kinds, which each respond over slightly different wavelength ranges 
(Figure 2.6). They are typically called long, medium, and short wavelength receptors, or, 
more succinctly but less accurately, red, green, and blue sensitive. By comparing the response 
of each type of cone, the eye characterizes color. Yellow is a combination of red and green, 
magenta is the relative absence of green, and so on. Primates evolved their three-color set 
of cones independently from other animal evolutionary trees (Jacobs & Nathans, 2009) and 
respond to slightly different wavelengths than the color sensors in the eyes of other animals 
such as birds and octopi.

Because of the different densities of red, green, and blue sensitive cones, the overall sensitiv-
ity of the eye is greatest for green light and poorest for blue light (shown in Figure 1.12b of 

  

Figure 2.6 Sensitivity of the rods (shown 
in gray) and three kinds of cones 
(shown in red, green, and blue) as 
a function of wavelength (Dartnall 
et al., 1983). Human vision detects 
roughly the range from about 400 
nm (blue) to 700 nm (red).
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Chapter 1). But this sensitivity comes at a price: it is in this same range of green wavelengths 
that our ability to distinguish one color from another is poorest. A common technique in 
microscopy uses filters to select just the green light because of the eye’s sensitivity, but if 
detection of color variations is important this is not a good strategy.

Like most of the things that the eye does, the perception of color is determined in a com-
parative rather than an absolute way, and this allows many incorrect interpretations of color 
(Werner et al., 2007). It is only by comparing something to a known color reference that we 
can really estimate color at all. The usual color reference is a white object, since that (by 
definition) has all colors. If the scene we are looking at contains something known to be a 
neutral gray in color, then variation in the color of the illumination can be compensated for (as 
illustrated in Chapter 1). This is not so simple as it might seem, because many objects do not 
reflect light of all colors equally and appear to change color with angle or illumination (this 
“metamerism” is often a problem with ink jet printers as well).

Because just three types of color-sensitive cone receptors are available, each with broad and 
overlapping wavelength response, there are many different combinations of wavelengths of 
light that evoke the same visual response, which may furthermore vary from individual to 
individual. Color matching, which is discussed further in Chapter 3 as it relates to making 
printed images that visually match original scenes and presentation of the same image on a 
computer monitor, is a specialized topic that depends on careful calibration.

A commonly asked question is “what RGB proportions correspond to a particular wavelength 
of light?” There is no answer to that question, for several reasons. Perceived color is depen-
dent on human perception and to some extent varies from person to person, as well as being 
dependent on the viewing environment. The wide (and overlapping) wavelength range of sen-
sitivities of the three kinds of cones means that the same perception of color can be produced 
by many different combinations of wavelengths and intensities. Generating colors using RGB 
components on different computer displays is difficult enough because of the different phos-
phors (and their aging) and the differences between CRTs and LCDs (which depend on the 
color of the back illumination). However, as a useful way to represent the variation of colors 
with wavelength, a model such as that shown in Figure 2.7 can be used (Bruton, 2005). For 
printing, the problems (which are discussed in Chapter 3) are much more severe and also 
depend on the paper and illumination under which the image is viewed.

For viewing colors by reflected light, if the illumination is deficient in some portion of the 
color spectrum compared to daytime sunlight (under which our vision evolved), then the miss-
ing colors can’t be reflected or detected and it is impossible to accurately judge the objects, 
true colors. Under monochromatic yellow sodium lights, color is completely confused with 

Figure 2.7 An approximate visual representation of the relationship between wavelength and RGB 
intensities for a computer display.
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albedo (total reflectivity), and color can’t be distinguished from brightness. Even with typi-
cal indoor lighting, colors appear different (which is why the salesperson suggests you might 
want to carry that shirt and tie to the window to see how they look in sunlight!).

When Newton first split white sunlight into its component parts using a prism, he was able to 
show that there were invisible components beyond both ends of the visible spectrum by mea-
suring the rise in temperature caused by the absorption of that light. Since sunlight extends 
well beyond the narrow 400–700 nm range of human vision, it is not surprising that some 
animals and insects have evolved vision systems that can detect it. Plants, in particular, have 
developed signals that are visible only in these extended colors in order to attract birds and 
insects to pollinate them. Extending our human vision into these ranges and even beyond is 
possible with instrumentation. UV microscopy, infrared surveillance, radio astronomy, and 
so on, all use portions of the electromagnetic spectrum beyond the visible, and all produce 
data that is typically presented as images, with colors shifted into the narrow portion of the 
spectrum we can detect.

Being able to detect brightness or color is not the same thing as being able to measure it or 
detect small variations in either brightness or color. While human vision functions over some 
9–10 orders of magnitude, we cannot view a single image that covers such a wide range, nor 
detect variations of 1 part in 109. A change in brightness of about 2–3% over a lateral distance 
of a few arc minutes is the limit of detectability under typical viewing conditions. It is impor-
tant to note that the required variation is a percentage, so that a greater absolute change in 
brightness is required in bright areas than in dark ones. Anyone with photographic darkroom 
experience is aware that different details are typically seen in a negative than in a positive 
image.

Overall, the eye can detect only about 20–40 shades of gray in an image, and in many cases 
fewer can produce a visually satisfactory result. In an image dominated by large areas of dif-
ferent brightness, it is difficult to pick out the fine detail with small local contrast within each 
area. One of the common methods for improving the visibility of local detail is computer 
enhancement that reduces the global (long-range) variation in brightness while increasing the 
local contrast. This is typically done by comparing a pixel to its local neighborhood. If the 
pixel is slightly brighter than its neighbors, it is made brighter still, and vice versa. This is the 
basis for some of the enhancement techniques presented in Chapter 5.

Human vision deals with scenes that include a wide range of brightness by adapting to local 
regions and detecting contrast locally. Such scenes cannot be recorded in their entirety by 
either film or digital cameras, which have limited dynamic range (a maximum of 3–4 orders 
of magnitude). By recording such scenes with different exposures, and combining them with 
appropriate software, it is possible to preserve local contrast by sacrificing long-range contrast, 
as shown in Figure 2.8 (the exposure merging procedure is shown in Chapter 5). Chapter 3 
shows related methods that process high dynamic range images so that they can be displayed 
or printed with reduced overall contrast while preserving local detail and contrast.

Local and abrupt changes in brightness (or, to a somewhat lesser extent, color) are the most 
readily noticed details in images. Variations in texture often represent structural variations that 
are important, but these are more subtle. As shown in Figure 2.9, in many cases variations that 
are classified as textural actually represent changes in the average brightness level. When only 
a change in texture is present, visual detection is difficult. If the boundaries are not straight 
lines (and especially vertical or horizontal in orientation), they are much more difficult to see. 
Chapter 5 includes methods that can distinguish regions based on textural differences.
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(a)                       (b)

   

Figure 2.8 Merging images (a, b) photo-
graphed with different exposures to form a 
single image (c) in which local contrast is 
preserved.

           (c)

  
(a)              (b)              (c)

Figure 2.9 Examples of textural differences: (a) regions are also different in average brightness; (b) no 
brightness difference but simple linear boundaries; (c) irregular boundaries.
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Thirty shades of brightness discrimination in each of the red, green, and blue cones suggests 
that 303 = 27,000 colors might be distinguished, but that is not so. Sensitivity to color changes at 
the ends of the spectrum is much better than in the middle (in other words, greens are hard to 
distinguish from each other). Only about a thousand different colors can be distinguished. Since 
computer displays offer 256 shades of brightness for R, G, and B, or 2563 = 16 million colors, it 
might be expected that they can produce any color we can see. However, this is not the case. 
Both computer displays and printed images suffer from limitations in gamut — the total range 
of colors that can be produced — as compared to what we can see. This is another reason that 
the “typical image” may not actually be representative of the object or class of objects.

Acuity

Many animals, particularly birds, have vision that produces much higher spatial resolution 
than humans. Human vision achieves its highest spatial resolution in just a small area at the 
center of the field of view (the fovea), where the density of light-sensing cones is highest. At 
a 50 centimeter viewing distance, details with a width of 1 mm represent an angle of slightly 
more than one-tenth of a degree. Acuity (spatial resolution) is normally specified in units of 
cycles per degree. The upper limit (finest detail) visible with the human eye is about 50 cycles 
per degree, which corresponds to a grating in which the brightness varies from minimum to 
maximum about 5 times over that same 1 mm. At that fine spacing, 100% contrast is needed, 
in other words black lines and white spaces. This is where the common specification arises 
that the finest lines distinguishable without optical aid are about 100 µm. (“Distinguishable” 
means in this case that lines 100 µm wide and separated by a 100 µm contrasting space can 
be seen to be separate.)

Less contrast is needed between the light and dark locations to detect them when the features 
are larger. Brightness variations about 1 mm wide at a normal reading distance represent a spa-
tial frequency of about 9 cycles per degree, and under ideal viewing conditions can be resolved 
with a contrast of a few percent, although this assumes the absence of any noise in the image 
and a very bright image (acuity drops significantly in dark images or ones with superimposed 
random variations, and is poorer at detecting color differences than brightness variations).

At a normal viewing distance of about 50 cm, 1 mm on the image is about the optimum size 
for detecting the presence of detail. On a typical computer monitor that corresponds to about 
4–6 pixels. As the spatial frequency drops (features become larger) the required contrast 
increases, so that when the distance over which the brightness varies from minimum to maxi-
mum is about 1 cm, the required contrast is about 10 times greater. The variation of spatial 
resolution (“acuity”) with contrast (Barten, 1999) is called the modulation transfer function 
(Figure 2.10).

Enlarging images does not improve the ability to distinguish small detail and frequently 
degrades it. The common mistake made by microscopists is to work at very high magnifi-
cation, expecting to see the finest details. That may be needed for details that are small in 
dimension, but it makes it more difficult to see larger features that have less contrast. For the 
same reason, enlarging a digitized image on the computer display (“pixel-peeping”) does not 
improve, and often degrades, the ability to see details.

Because the eye does not “measure” brightness, but simply makes comparisons, it is very 
difficult to distinguish brightness differences unless the regions are immediately adjacent. 
Figure 2.11a shows four gray squares, two of which are 5% darker than the others. Because 
they are separated, the ability to compare them is limited. Even if the regions are adjacent, as 
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in Figure 2.11b, if the change from one region to another is gradual it is difficult to detect. 
Only when the step is abrupt, as in Figure 2.11c, can the eye easily determine which regions 
are different.

Figure 2.12 shows several sets of patches. In each set, two of the patches are the same and 
one is not, a common way to test for the “just noticeable variation” (Matacara-Hernandez, 
2002). In set 1, patch C is 5% lighter than the others. In set 2, patch B has the hue shifted 5 
degrees toward green. In set 3, patch A has the hue shifted 5 degrees toward blue. In set 4, 
patch C has the hue shifted 5 degrees toward blue. It should be noted that the patches are 
intended for viewing on a computer monitor, and the differences may be either increased or 
decreased by the printing technology used for this book.

Even when the features have sizes and contrast that should be visible, the presence of varia-
tions in the background intensity (or color) can prevent the visual system from detecting them. 
In the example of Figure 2.13, the text has a local contrast of about 2% but is superimposed 
on a ramp that varies from white to black. Application of an image processing operation 
reveals the message. The “Unsharp Mask” routine (detailed in Chapter 5) subtracts a blurred 
(smoothed) copy of the image from the original, suppressing large scale variations in order to 
show local details.

 

Figure 2.10 Illustration of the modu-
lation transfer function for human 
vision, showing the greatest abil-
ity to resolve low-contrast details 
occurs at an intermediate spatial 
frequency and becomes poorer for 
both smaller and larger details.

  
(a)              (b)              (c)

Figure 2.11 Comparison of regions with a 5% brightness difference: (a) separated; (b) adjacent but 
with a gradual change; (c) adjacent with an abrupt boundary.
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It is easy to confuse resolution with visibility. A star in the sky is essentially a point; there is no 
angular size, and even in a telescope most do not appear as a disk. A star is visible because of 
its contrast, appearing bright against the dark sky. Faint stars are not necessarily farther away 
or smaller, but are invisible to the naked eye because there isn’t enough contrast. Telescopes 
make them visible by collecting more light into a larger aperture. A better way to think about 
resolution is the ability to distinguish as separate two stars that are close together. The clas-
sic test for this has long been the star Mizar in the handle of the Big Dipper. In Van Gogh’s 
“Starry Night over the Rhone” each of the stars in this familiar constellation is shown as a 
single entity (Figure 2.14).

But a star chart shows that the second star in the handle is actually double. Alcor and Mizar 
are an optical double — two stars that appear close together but are at different distances and 
have no gravitational relationship to each other. They are separated by about 11.8 minutes of 
arc, and being able to detect the two as separate has been considered by many cultures from 
the American Indians to the desert dwellers of the near east as a test of good eyesight (as well 

  

Figure 2.12 Color patches used to test “just 
noticeable variations” in brightness or 
color, as described in the text.

(a)                                                (b)   

Figure 2.13 Intensity differ-
ences superimposed on a 
varying background are 
visually undetectable:

  (a) original;

  (b)  processed with an 
“un-sharp mask” filter 
to suppress the gradual 
changes and reveal the 
detail.
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as the need for a dark sky with little turbulence or water vapor, and without a moon or other 
light pollution).

And there is more to Mizar than meets the eye, literally. With the advent of the Galilean tele-
scope, observers were surprised to find that Mizar itself is a double star. Giovanni Battista 
Riccioli (1598–1671), the Jesuit astronomer and geographer of Bologna, is generally supposed 
to have split Mizar, the first double star ever discovered, around 1650. The two stars Mizar-A 
and Mizar-B are a gravitational double 14.42 arc seconds apart, and any good modern tele-
scope can separate them (Figure 2.15a). But they turn out to be even more complicated — 
each star is itself a double as well, so close together that only spectroscopy can detect them.

  

Figure 2.14 The Big Dipper, in Van Gogh’s 
“Starry Night Over the Rhone,” and as 
shown in a star chart.

  
(a)                       (b)

Figure 2.15 Double stars: (a) photograph showing the relative separation of Alcor from Mizar-A and -B; 
(b) blocking the light from Alcor-A allows detecting the smaller red dwarf companion Alcor-B.
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A recent discovery found that Alcor is also a double. Alcor has a red dwarf companion Alcor-B 
that is about one-eighth the mass of Alcor-A and can only be seen by blocking the light from 
the brighter star with a coronagraph (Figure 2.15b). There are many double stars in the sky 
that can be resolved with a backyard telescope, and many of them are familiar viewing targets 
for amateur astronomers who enjoy the color differences between some of the star pairs, or 
the challenge of resolving them. This depends on more than just the angular separation. If 
one star is significantly brighter than the other, it is much more difficult to see the weaker star 
close to the brighter one.

What the eye tells the brain

Human vision is a lot more than rods and cones in the retina. An enormous amount of process-
ing takes place, some of it immediately in the retina and some in the visual cortex at the rear of 
the brain, before an “image” is available to the conscious mind. The neural connections within 
the retina were first seen about a hundred years ago by Ramón y Cajal and have been studied 
ever since. Figure 2.16 shows a simplified diagram of the human retina. The light-sensing 
rods and cones are at the back, and light must pass through several layers of processing cells 
to reach them. Only about 10% of the photons that enter the human eye are detected; the rest 
are either reflected (about 3%), absorbed by nonsensing structures, or fall between the active 
molecules. In many nocturnal animals a pigmented layer behind the rods and cones reflects 
light back so that the photons are twice as likely to be captured and detected (and some 
come back out through the lens to produce the reflective eyes we see watching us at night). 
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Figure 2.16 The principal layers in the retina. Light passes through several layers of processing neurons 
to reach the light-sensitive rod and cone cells. The horizontal, bipolar, and amacrine cells combine 
the signals from various size regions, compare them to locate interesting details, and pass that infor-
mation on to higher levels in the visual cortex.
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Incidentally, the eye of the octopus does not have this backwards arrangement; evolution in 
that case put the light sensing cells on top where they can most efficiently catch the light.

The first layer of processing cells, the horizontal cells, connect light sensing cells in various 
size neighborhoods. The bipolar cells transmit outputs from these and from the sensing cells 
to the next layer, where the amacrine cells combine and compare the signals. Finally, the 
ganglion cells collect the outputs for transmission to the visual cortex. There are about 100 
times as many sensors as there are neural connections in the optic nerve, implying consider-
able processing to extract the meaningful information. This physical organization corresponds 
directly to the logical processes of inhibition, discussed below.

In many respects, the retina of the eye is a part of the brain. Understanding the early process-
ing of image data and the extraction of the information transmitted from the eye to the visual 
cortex was awarded the Nobel prize (in 1981, to David H. Hubel and Torsten N. Wiesel, for 
their discoveries concerning information processing in the visual system).

Without elaborating the anatomical details of the retina or the visual cortex discovered by 
Hubel, Wiesel, and others (particularly a seminal paper “What the frog’s eye tells the frog’s 
brain” published in 1959 by Jerome Lettvin), it is still possible to summarize the logical and prac-
tical implications. Within the retina, outputs from the individual light sensors are combined and 
compared by layers of neurons. Comparing the output from one sensor or region to that from 
the surrounding sensors, so that excitation of the center is tested against the inhibition from the 
surroundings, is a basic step that enables the retina to ignore regions that are uniform or only 
gradually varying in brightness, and to efficiently detect locations where a change in brightness 
occurs. Testing over different size regions locates points, lines, and features of varying sizes.

Comparison of output over time is carried out in the same way to detect changes, which, 
if they are either too rapid or too slow, are not seen. Humans do not notice the 60 Hertz 
flickering of fluorescent lamps, although insects and some birds do. Adjustment to any change 
that takes place over more than tens of seconds prevents it from being noticed.

In the frog’s eye, the retina processes images to find just a few highly specific stimuli. These 
include small dark moving objects (food) and the location of the largest, darkest region (safety 
in the pond). Like the fly and a human, the frog’s eye is hard-wired to detect “looming,” the 
presence of something that grows rapidly larger and does not shift in the visual field. That 
represents something coming toward the eye and causes the fly to avoid the swatter or the 
frog to jump into the water. In a human, the eyelid blinks for protection before we become 
consciously aware that an object is even seen.

The outputs from these primitive detection circuits are then further combined in the cortex 
to locate lines and edges. There are specific regions in the cortex that are sensitive to differ-
ent orientations of lines and to their motion. The “wiring” of these regions is not built in, but 
must be developed after birth; kittens raised in an environment devoid of lines in a specific 
orientation do not subsequently have the ability to see such lines. Detection of the location 
of brightness changes (feature edges) creates a kind of mental sketch of the scene, which is 
dominated by the presence of lines, edges, corners, and other simple structures. These in turn 
are linked together in a hierarchy to produce the understanding of the scene in our minds. 
“Image understanding” software attempts to do the same thing with scene images, to con-
struct a model of the scene geometry and object identification and location based on a sketch 
formed by edges.

The extraction of changes in brightness or color with position or with time explains a great 
deal about what is perceived in scenes and what is missed. Any change that occurs gradually 
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with position, such as shading of light on a wall, is ignored. We have to exert a really con-
scious effort to notice such shading, and even then have no quantitative tools with which to 
estimate its magnitude. But even small changes in brightness of a few percent are visible when 
they occur abruptly, producing a definite edge. And when that edge forms a straight line (and 
particularly when it is near vertical) it is noticed. Similarly, any part of a scene that is static 
over time tends to be ignored, but when something moves it attracts our attention.

These techniques for extracting information from scenes are efficient because they are 
highly parallel. For every one of the 160 million light sensors in the eye, there are as many 
as 50,000 neurons involved in processing and comparing. One of Hubel and Wiesel’s con-
tributions was showing how the connections in the network are formed shortly after birth, 
and the dependence of that formation on providing varied imagery to the eyes during that 
critical period.

Mapping of specific circuitry in the brain is accomplished by placing electrodes in various 
locations in the cortex and observing the output of neurons as various images and stimuli 
are presented to the eyes. At a higher level of scale and processing, functional MRI and PET 
scans can identify regions of the brain that become active in response to various activities 
and stimuli. But there is another source of important knowledge about processing of images 
in the mind: identifying the mistakes that are made in image interpretation. One important, 
but limited resource is studying the responses of persons who have specific damage, either 
congenital or as the result of illness or accident. A second approach studies the errors in inter-
pretation of images resulting from visual illusions. Since everyone tends to make the same 
mistakes, those errors must be a direct indication of how the processing is accomplished. 
Several of the more revealing cases are presented in the sections that follow.

Spatial comparisons

The basic idea behind center-surround or excitation-inhibition logic is comparison of the sig-
nals from a central region (which may be a single detector or progressively larger scales by 
averaging detectors together) to the output from a surrounding annular region. That is a basic 
analysis unit in the retina, and by combining the outputs from many such primitive units, the 
detection of light or dark lines, corners, edges, and other structures can be achieved. In the 
frog’s eye, it was determined that a dark object of a certain size (corresponding to an insect 
close enough to be captured) generated a powerful recognition signal. In the cat’s visual cor-
tex there are regions that respond only to dark lines of a certain length and angle, moving in 
a particular direction. Furthermore, those regions are intercalated with regions that perform 
the same analysis on the image data from the other eye, which is presumed to be important 
in stereopsis, the fusion of stereo images.

This fundamental center-surround behavior explains several very common illusions 
(Figure 2.17). A set of uniform gray steps (Mach bands) is not perceived as being uniform. 
The side of each step next to a lighter region is perceived as being darker, and vice versa, 
because it is the step that is noticed. In the case of the Mach bands, the visual response to the 
step aids us in determining which region is darker, although it makes it very difficult to judge 
the amount of the difference. But the same effect can be used in the absence of any difference 
to cause one to be perceived. In the Craik-Cornsweet-O’Brien illusion, two adjacent regions 
have the same brightness but the values are raised and lowered on either side of a boundary. 
The eye interprets this in the same way as for the Mach bands and judges that one region is 
lighter and one darker.
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Similar excitation-inhibition comparisons are made for color values. Boundaries between 
blocks of color are detected and emphasized, while the absolute differences between the 
blocks are minimized. Blocks of identical color placed on a gradient of brightness or some 
other color appear to be different.

Center-surround comparisons are used in several computer image processing algorithms, 
including the unsharp mask and top hat filters shown in Chapter 5. Some implementations of 
edge-finding algorithms illustrated there are also emulations of the processing that seems to 
be performed in vision systems.

Whether described in terms of brightness, hue, and saturation or the artist’s tint, shade, 
and tone, or various mathematical spaces, color requires three parameters. All of the 
color space coordinate systems shown in Chapter 1 use three values to define a color. 
Brightness is a measure of how light or dark the light is, without regard to any color infor-
mation. For the artist, this is the shade, achieved by adding black to the pigment. Hue 
distinguishes the various colors, progressing from red to orange, yellow, green, blue, and 
magenta around the color wheel we probably encountered in kindergarten (or the ROY G 
BIV mnemonic for the order of colors in the rainbow). Saturation is the amount of color 
present, such as the difference between pink and red, or sky blue and royal blue. A fully 
saturated hue corresponds to the artist’s pure pigment, which can be tinted with neutral 
pigment to reduce the saturation (tone describes adding both white and black pigments 
to the pure color).

Even without formal training in color science (or art), this is how people describe color to 
themselves, although not necessarily with the same words. Combination and comparison of 

(a)

(b)

(c)

(d)

Figure 2.17 Two common illusions based on 
inhibition:

  (a, b) Mach bands demonstrate that the 
visual system increases the perceived change 
in brightness at steps;

  (c, d) the Craik-Cornsweet-O’Brien step 
shows that providing the visual system with 
a step influences the judgment of values far-
ther away.
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the signals from the red, green, and blue sensitive cones are used to determine these param-
eters. Simplistically, we can think of the sum of all three, or perhaps a weighted sum that 
reflects the different sensitivities of the red, green, and blue detectors, being the brightness, 
while ratios of one to another are interpreted as hue, with the ratio of the greatest to the least 
corresponding to the saturation. It is important to remember that hue does not correspond 
directly to the wavelength range from red to blue. We interpret a color with reduced green but 
strong red and blue as being magenta or purple, which is not a color in the wavelength sense, 
but certainly is in terms of perception.

Relying on comparisons to detect changes in brightness or color rather than absolute values 
simplifies many tasks of image interpretation. For example, the various walls of a building, 
all painted the same color, can have very different brightness values because of shading, their 
angle to the sun, etc., but what we observe is a building of uniform color with well defined 
corners and detail, because it is only the local changes that count. The “light gray” walls on 
the shadowed side of the building in Figure 2.18 are actually darker than the “black” shutters 
on the sunlit side, but our perception understands that the walls are light gray, the trim white, 
and the shutters black on all sides of the building.

The visual dependence on local comparisons means that it is not possible to determine the 
absolute brightness of a point or region in a scene, as indicated in Figure 2.19. The same prin-
ciple of local comparisons applies to many other situations. Many artists have used something 
like the Craik-Cornsweet-O’Brien illusion to create the impression of a great range of light 
and shadow within the rather limited range of absolute brightness values that can be achieved 
with paint on canvas (Figure 2.20). The effect can be heightened by adding colors, such as 
tinting shadows on skin with colors such as green or magenta that have no physical basis, but 
increase the perception of a brightness difference (Figure 2.21).

Edwin Land (of Polaroid® fame) studied color vision extensively and proposed a somewhat dif-
ferent interpretation than the tri-stimulus model described above (which is usually credited to 
Helmholtz). Relying heavily on the excitation-inhibition model for processing signals, Land’s 
opponent-color “Retinex” theory predicts or explains several interesting visual phenomena. It 
is important to note that in Land’s theory the composition of light from one region in an image 
considered by itself does not specify the perceived color of that area, but rather that the color 
of an area as determined by a trio of numbers, each computed on a single waveband (roughly 

 

Figure 2.18 Comparison of the dark 
and light areas on the shadowed 
and sunlit sides of the building is 
performed locally, as discussed in 
the text.
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the long, medium, and short wavelengths usually described as red, green, and blue) gives the 
relationship between that area and the other areas in the scene.

One of the consequences of Land’s theory is that the spectral composition of the illumination 
becomes very much less important, and the color of a particular region can become relatively 
independent of the light that illuminates it. Our eyes have relatively few cones to sense the 
colors in the periphery of our vision, but that information is apparently important in judging 
colors in the center by correcting for the color of incident illumination. Land demonstrated 
that if a scene is photographed through red, green, and blue filters, and then projectors are 
used to shine colored and/or white light through just two of the negatives, the scene may be 
perceived as having full color. Another interesting phenomenon is that a spinning disk with 
black and white bars may be perceived as having color, depending on the spacing of the bars. 
Many of the questions about exactly how color information is processed in the human visual 
system have not yet been answered.

The discussion of center-surround comparisons above primarily focuses on the processes in 
the retina, which compare each point to its surroundings. But as the extracted information 

Figure 2.19 Visual interpretation of 
brightness is influenced by expecta-
tion and surroundings. We “know” 
about shadows and can compen-
sate automatically for their effect 
on brightness, and we “know” 
about checkerboards, so the squares 
marked A and B are understood 
to be black and white respectively, 
whereas they are actually identical 
shades of gray. (Image courtesy of 
Gregory Francis, Purdue Univ.)

 

 

Figure 2.20 Edward Hopper painted 
many renderings of light and shad ow. 
His “Sun light in an Empty Room” 
illustrates shading along uniform 
surfaces and steps at edges.
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moves up the processing chain, through the visual cortex, there are many other evidences of 
local comparisons. As mentioned above, there are regions in the visual cortex that respond 
to lines of a particular angle. They are located adjacent to regions that respond to lines of a 
slightly different angle. Comparison of the output from one region to its neighbor can thus be 
used to detect small changes in angle.

Humans don’t measure angles with mental protractors, but we do compare them and notice 
differences. As for the case of brightness variations across a step, a difference in angle is 
amplified to detect boundaries and increase the perceived change. In the absence of any 
markings on the dial of a wristwatch, telling time to the nearest minute is about the best we 
can do. One minute corresponds to a six degree motion of the minute hand. But if there are 
two sets of lines that vary by only a few degrees, we notice that difference (and usually judge 
it to be much larger).

Inhibition with regard to angle means that cross-hatching diagonal lines with short marks that 
are vertical or horizontal can alter our perception of the main line orientation. As shown in 
Figure 2.22, this makes it difficult or impossible to correctly compare the angle of the diago-
nal lines (which are actually parallel).

Local to global hierarchies

Interpretation of elements in a scene relies heavily on grouping them together to form struc-
tures and objects. A very simple example (Figure 2.23) using just dots shows that the eye con-
nects nearest neighbors to construct alignments. Similar grouping of points and lines is used 

  

Figure 2.21 Eye shadow (and other 
makeup) comes in many shades 
and colors.

Figure 2.22 Zollner lines. The cross-hatching 
of the diagonal lines with short vertical and 
horizontal ones causes our visual perception 
of them to rotate in the opposite direction. In 
fact, the diagonal lines are exactly parallel.
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to connect together parts of feature boundar-
ies that are otherwise poorly defined, to create 
the outlines of objects for visual interpretation 
(Figure 2.24). It is a simple extension of this 
grouping to include points nearest over time 
that produces the familiar “Star Trek” impres-
sion of motion through a starfield. Temporal 
comparisons are discussed more fully below.

Grouping is necessary for inhibition to work 
effectively. The common illusion of brightness 
alteration due to a surrounding, contrasting 
frame depends on the frame being grouped 
with the central region. In the example shown 
in Figure 2.25, the insertion of a black line separating the frame from the center alters the 
appearance of the image and reduces or eliminates the perceived difference in brightness of 
the gray central regions. Without the line, the brighter and darker frames are grouped with 

  
(a)                       (b)

Figure 2.24 Visual grouping of lines and points: (a) cell boundaries in biological tissue section are 
constructed by grouping disconnected stained regions; (b) the streets in the aerial photo are much 
easier to detect where they are delineated by houses.

Figure 2.23 Visually connecting each point to its 
nearest neighbor produces the impression of 
radial or circumferential alignment.

Figure 2.25 In the top row the lighter and darker surrounds affect our visual comparison of the (identi-
cal) central gray regions. This effect is reduced in the bottom row by the separating borders.
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the center and inhibition alters the apparent brightness, making the region with the dark sur-
roundings appear lighter and vice versa.

Grouping of color regions is illustrated in Figure 2.26. The visual interpretation of the red 
stripes is different according to whether the neighbors are blue or yellow. Another conse-
quence of grouping is the extension of a property such as color into the surrounding region. 
In Figure 2.27, the white areas between the lines are identical but are not perceived that 

 

Figure 2.26 Color interpretation is 
influenced by grouping with sur-
roundings. The red colors marked 
in the two spirals are actually 
identical, but are perceived as 
magenta and orange because 
of the adjacent blue and yellow 
stripes. (Image courtesy of Gregory 
Francis, Purdue Univ.)

Figure 2.27 The regions marked by 
arrows are identical white, but the 
colors from the adjacent lines are 
visually extended into the spaces 
and are perceived as adding color 
to the regions. (Image courtesy of 
Gregory Francis, Purdue Univ.)
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way, because the colors of the nearest lines, either orange 
or magenta, are grouped with them and thus are visually 
spread across the regions.

Combination of grouping with inhibition gives rise to 
the illusion shown in Figure  2.28. The angled shading 
causes the lines to appear slightly turned in the opposite 
direction, and the various pieces of line are connected by 
grouping, so that the entire figure is perceived as a spiral. 
But actually the pattern consists of circles, as can be veri-
fied by tracing around one of them. This is an example of 
spatial grouping, but temporal grouping works in much 
the same way. A rotating spiral (Figure 2.29) is commonly 
seen as producing endless motion.

Grouping together features in an image that are the same 
in color lies at the very heart of the common tests for color 
blindness. In the Ishihara tests, a set of colored circles is 
arranged so that similar colors are grouped to form recog-
nizable numbers (Figure 2.30). For the person who can-
not differentiate the colors, the same grouping does not 
occur and the interpretation of the numbers changes. The 
example shown is one of a set that diagnoses red-green 
deficiency, the most common form of color blindness 
that affects as many as one in ten males. In the example, 
those with normal color vision should read the number 
74. Red-green color deficiency causes the 4 to be read as 
1. Someone with total color blindness is not able to detect 
any numeral. But people with color blindness are often 

Figure 2.28 Fraser’s spiral. The cir-
cular rings are visually “tilted” 
and perceived to form a spiral.

 

Figure 2.29 Moving helical or spiral 
patterns such as the barber pole 
produce an illusion of motion of 
the background perpendicular to 
the lines.
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able to see through camouflage better than those with nor-
mal vision.

By interfering with our visual ability to group parts of the 
image together, camouflage is used to hide objects. The 
military discovered this before the first world war, when 
the traditional white of US Navy ships (Teddy Roosevelt’s 
“Great White Fleet”) was replaced by irregular patterns of 
grays and blues to reduce their visibility. But nature fig-
ured it out long ago, and examples are plentiful. Predators 
wanting to hide from their prey, and vice versa, typically 
use camouflage as a first line of defense. There are other 
visual possibilities of course — butterflies whose spots look 
like the huge eyes of a larger animal (mimicry), or frogs 
whose bright colors warn of their poison — but usually (as 
in Figure 2.31) the goal is to disappear. Breaking the image 
up so that the brain does not group the parts together very 

effectively prevents recognition.

Motion can destroy the illusion produced by camouflage, because moving objects (or portions 
of objects) attract notice, and if several image segments are observed to move in coordinated 
ways they are grouped, and the hidden object emerges. Human vision attempts to deal with 
moving features or points as rigid bodies and easily groups separated pieces that move in a 
coordinated fashion. Viewing scenes or images with altered illumination, or a colored filter, 
often reveals the objects as well. But in nature, the ability to keep still and rely on camouflage 
is a well-developed strategy.

Grouping operates on many spatial (and temporal) scales. In a typical scene there may be 
lines, edges, and other features that group together to be perceived as an object, but then that 
object is grouped with others to form a higher level of organization, and so on. Violations that 
occur in the grouping hierarchy give rise to conflicts that the mind must resolve. Sometimes 
this is done by seeing only one interpretation and ignoring another, and sometimes the mind 
switches back and forth between interpretations. Figure 2.32 shows two examples. If the 
red object is perceived as the foreground, it is seen as an apple core. If the region around the 
apple becomes the foreground, it emerges as two facing human profiles. The drawing may be 
seen as either a young girl or an old woman. For all such images in which multiple interpreta-
tions or foreground-background reversal produce different perceptions, some people initially 

Figure 2.30 One of the Ishihara 
color blindness test images (see 
text).

Figure 2.31 Natural camouflage (snake, lizard, and frog).
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see only one or the other possibility and may have difficulty in recognizing the alternative. 
But once you manage to “see” both interpretations, it is impossible to see both at once, and for 
most people the two possibilities alternate every few seconds as the image is viewed.

These examples have some interest as tricks that may provide insight into how images are 
processed in the mind. But they also provide a warning for anyone who relies on visual 
inspection of images to obtain information about the subject. In order to see past camouflage 
to connect the disparate parts of an object and recognize its presence, you must have a good 
stored model of what the object is. But when you approach an image with a strong model 
and try to connect the parts of the image to it, you are forced to ignore other interpretations. 
Anything in the image that does not conform to that model is likely to be ignored.

In one of Tony Hillerman’s detective stories, his Navajo detective Joe Leaphorn explains how 
he looks for tracks. The FBI man asks, “What are you looking for?” and Leaphorn replies, 
“Nothing in particular. You’re not really looking for anything in particular. If you do that, you 
don’t see things you’re not looking for.” But learning how to look for everything and nothing 
is a hard skill to master. Most of us see only the things we expect to see, or at least the familiar 
things for which we have previously acquired labels and models.

The artist M. C. Escher created many drawings in which grouping hierarchy is consistent locally 
but not globally, to create conflicts and rivalries that make his art interesting. Figure 2.33 
shows diagrams of some of his conundrums. In one, lines that represent one kind of edge at 
the tip of the fork become something different at its base, exchanging inside for outside along 
the way. In the second, the front-to-rear order of edges changes. Edges that occlude others 
and are therefore perceived as being in front are grouped by angles that clearly place them 

   
(a)                   (b)

Figure 2.32 Illusions with two alternative interpretations: (a) either two facing profiles or an apple 
core (symbol of the Share Our Strength charity to feed hungry children); (b) either a young girl or 
old woman.
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at the back, and vice versa. The endless stairway uses perspective distortion to form a closed 
path without top or bottom. In all these cases, the local interpretation of the information is 
consistent, but no global resolution of the inconsistencies is possible.

It’s about time

Comparison and inhibition operate temporally as well as spatially. The periphery of our vision 
is particularly well wired to detect motion. Comparison of the response at one moment to that 
a short time before is accomplished by a short time delay. Slightly more complicated connec-
tions detect the motion of edges, with the ability to distinguish edges at different orientations. 
Gradual changes of brightness and slow motion, like gradual spatial variations, are ignored 
and very difficult to detect.

Temporal inhibition is not the same thing as adaptation or depletion. It takes a little while 
for our eyes to adapt to changes in scene brightness. Part of this is the response of the iris to 
open or close the pupil, letting more or less light into the eye. Part of the adaptation response 
is chemical within the cells, creating more amplification of dim light signals. The former 
requires several seconds and the latter several minutes to operate fully.

Staring at a fixed pattern or color target for a brief time chemically depletes the rods or cones. 
Then looking at a blank page produces an image of the negative or inverse of the original. 
Figure 2.34 shows a simple example. Stare fixedly at the center of the circle for about 60 sec-
onds and then look away. Because the color sensitive cones have been depleted, the afterimage 
of a circle composed of opposing colors appears (green for red, yellow for blue, and so on). 

   

Figure 2.33 Drawings (after M. C. Escher):

  (a) a “three-pronged” fork;

  (b) an impossible cube;

  (c) an endless stair.

           (a)

      

(b)                      (c)
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The brighter the original image, 
the stronger the afterimage.

Motion sensing is obviously impor-
tant. It alerts us to changes in our 
environment that may represent 
threats or opportunities. And 
the ability to extrapolate motion 
lies at the heart of tracking capa-
bilities that enable us to perform 
actions such as catching a thrown 
ball. Tracking and extrapolation 
present a second-order opportu-
nity to notice discontinuities of 
motion. If a moving feature sud-
denly changes speed or direction, 
that is also noticed. It is because 
of this ability to track motion and 
notice even subtle changes that 
the presentation of data as graphs 
is so useful, and why plots of 
the derivatives of raw data often 
reveal information visually.

Sequences of images are inter-
preted very differently if they 
occur at a sufficiently slow rate 

that they are seen as a sequence of individual pictures, or faster so that they present the illu-
sion of continuous motion. Much of the credit (or blame) for motion pictures and television can 
be assigned to Eadweard Muybridge, a photographer who was asked to settle a bet for Leland 
Stanford as to whether a galloping horse ever had all four feet off the ground. Muybridge set 
up a row of cameras with trip wires to photograph a horse as it galloped past, producing a 
sequence of pictures. Viewing them individually was enough to settle the bet, but Muybridge 
discovered that flipping through them rapidly gave the visual illusion of continuous motion. 
The movie industry was born almost immediately. Figure 2.35 shows a sequence of twelve 
images of a trotting horse, taken by Muybridge.

In viewing a series of images, an important phenomenon called aliasing can occur. Generally, 
people assume that a feature in one frame corresponds to a feature in the next if they are 

Figure 2.34 A target to demonstrate an afterimage. Stare at 
the central cross for about a minute and then look away 
toward a blank sheet of paper. The complementary colors 
will be seen.

Figure 2.35 Muybridge’s running horse sequence.
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nearly the same in color and shape, and if they are close together (i.e., grouping). The familiar 
reversal of direction of the spokes on a turning wheel is an example of the visual error that 
results when a feature in one frame is matched to a different one in the next. From observing 
this phenomenon, it is a short step to stroboscopic imaging in which a series of pictures is 
taken at time intervals that match, or nearly match, the repetition rate of some phenomenon. 
This is commonly used to study turning or vibrating objects, falling water drops, and so on. 
Each image shows almost the same thing, albeit with a different tooth on the gear or a differ-
ent water drop as the subject. We visually assume they are the same and perceive no change. 
By slightly varying the timing of the images (typically by controlling the rate at which the 
light source flashes) it is possible to extract subtle patterns and motions that occur within the 
faster repetitions.

If an image sequence is slower than about 15 frames per second, it is not perceived as con-
tinuous. In fact, flickering images at 10–12 times a second can induce epileptic fits in those 
with that affliction. At higher rates, the temporal response of the eye and vision system sees 
continuous action. Movies are typically recorded at 24 frames per second, and television 
broadcasts either 25 (in Europe) or 30 (in the US) frames per second. In all of these cases, 
the sequential images are interpreted as continuous. One of the problems with most video 
surveillance systems in use now is that the images are not recorded at 30 frames per second 
but instead as single frames (or often as single fields with only half the vertical resolution) 
stored every few seconds. The result is a series of still images from which some important 
clues are absent. We recognize people not only by still images but also by how they move, 
and the trajectories of motion are absent from the recording so that it is possible to observe 
posture, but not motion.

Just as human vision is best able to detect objects or brightness and color variations over a 
relatively narrow range of dimensions, so it deals best with events that occur over a relatively 
narrow range of times. Very short duration events are invisible to our eyes without devices 
such as high speed photography to capture them (Figure 2.36). Both high speed imaging and 
stroboscopic imaging techniques were pioneered by Harold E. “Doc” Edgerton, at MIT, in the 
1930s and 1940s.

Likewise, events that take a long time (minutes) to happen are not easy to examine visually 
to detect changes. Even side-by-side images of the clock face in Figure 2.37 do not reveal 

all of the differences, and when 
one of the images must be recalled 
from memory the results are even 
poorer. Capturing the images in a 
computer and calculating the dif-
ference shows clearly the motion of 
the minute hand and even the very 
slight advance of the hour hand. 
Time-lapse photography is an 
important tool for collapsing time 
and enabling visual study of slow 
processes.

Considering the sensitivity of vision 
to motion, it is astonishing that our 
eyes are actually in nearly constant 
motion. It is only in the fovea that 
high resolution viewing is possible, 

Figure 2.36 Doc Edgerton’s famous high speed photograph of 
a milk drop creating a splash.
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and we move our eyes in their sockets so that this small high resolution region can view 
many individual locations in a scene, one after another. Flicking through the points in a scene 
that seem “interesting” gathers the information that our minds require for interpretation and 
judgment. Most of the scene is never examined, unless the presence of edges, lines, colors, 
or abrupt changes in color, brightness, texture, or orientation make locations interesting and 
attract attention.

Somehow, as our eyes move and different images fall onto the retina every few hundred mil-
liseconds, our minds sort it all out and plug the information into the perceptual scene that is 
constructed in our head. Although the entire image shifts constantly on the retina, it is only 
relative motion within the mental scene that is noticed. This motion of the eye also serves to 
fill in the blind spot, the location on the retina where the connection of the optic nerve occurs, 
and where there are no light sensors. Experiments that slowly move a light through the visual 
field while the eyes remain fixed on a single point easily demonstrate that this blind spot 
exists, but it is never noticed in real viewing because eye motion picks up enough information 
to fill the perceptual model of the scene that we interpret. But there may be a great deal of 
information in the actual scene that is not noticed. Clearly there is a lot of interpretation going 
on. (In the octopus, nature has rearranged the eye’s structure so that the optic nerve connects 
on the back side of the retina, and there is no blind spot.)

The perceived image of a scene has very little in common with a photographic recording of 
the same scene. The latter exists as a permanent record and each part of it can be examined 
in detail at a later time. The mental image of the scene is transitory, and much of it is filled 
with low resolution information from our visual periphery or simply assumed from memory 
of other similar scenes. Scientists need to record images rather than just view them, because 
it is often not obvious until much later which are the really important features present (or 
absent).

The evolution of the structure and function of the eye and the brain connections that pro-
cess the raw data have been a response to environment and challenges of survival. Different 
animals clearly have different needs and this has resulted in different types of eyes, as noted 
above, and also different kinds of processing. Apparently the very few but extremely specific 
bits of information that the fly’s eye sends to the fly’s brain are enough to trigger appropri-
ate and successful responses (for example, approaching a surface triggers a landing reflex in 
which the fly re-orients its body so the legs touch first). But for most of the “higher” animals 
the types of information gathered by the visual system and the interpretations that are auto-
matically applied are much more diverse.

Figure 2.37 Pictures taken slightly over a minute apart of the clock on my office wall, and the difference 
between them.
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For example, when people see a 
pencil placed in a glass of water, 
the pencil appears to be bent at an 
angle (Figure 2.38). Intellectually 
we know this is due to the dif-
ference in the refractive indices of 
water and air, but the view pre-
sented to our brain still has the 
bend. South Pacific islanders who 
have spent their lives fishing with 
spears in shallow water learn to 
automatically compensate for the 
bend but the image that their 
eyes present to their brains still 
includes the optical effect. There 
is evidence that fishing birds like 
the heron have a correction for 
this offset built in to their visual 

system and that from the point of view of the perceived image they strike directly toward 
the fish in order to catch it. They “see” a corrected image, not the physical representation we 
observe. Conversely, there are species of fish that see bugs above the water and spit water at 
them to knock them down and catch them for food. This requires a similar correction for the 
optical displacement.

It may seem strange that computation in the brain can distort an image in exactly the proper 
way to correct for a purely optical effect such as the index of refraction of light in water. But 
this is different only in degree from the adjustments already described, in which human vision 
corrects for shading of surfaces and illumination that can vary in intensity and color. The pro-
cess combines the raw visual data with a lot of “what we know about the world” in order to 
create a coherent and usually accurate, or at least accurate enough, depiction of the scene.

Humans are very good at tracking moving objects and predicting their path, taking into 
account air resistance and gravity (for instance, an outfielder catching a fly ball). Most animals 
do not have this ability but a few have learned it. My dog chases a thrown ball by always run-
ning toward its present position, which produces a path that is mathematically a tractrix. It 
works, it doesn’t take much computation, but it isn’t optimum. My cat, on the other hand, runs 
in a straight line toward where the ball is going to be. She has solved the math of a parabola, 
but having pounced on the ball, she won’t bring it back to me, as the dog will.

What is typically described in humans as “eye-hand” coordination involves an enormous 
amount of subtle computation about what is happening in the visual scene. A professional 
baseball or tennis player who can track a ball moving at over 100 miles per hour well enough 
to connect with it and hit it in a controlled fashion has great reflexes, but it starts with great 
visual acuity and processing. In one exercise used to train young baseball players, a pitching 
machine is set up to shoot balls across the plate and the player in the batter’s box must iden-
tify the balls with different colored dots on them in time to react. From such exercises, they 
learn to spot the different rotation of the seams on a ball thrown as a fast ball, curve, or slider. 
Since the total time of flight of the ball from pitcher to catcher is about 2 seconds, and some 
time is required to activate the muscles in response, that calls for very rapid visual process-
ing. As mentioned above, the human eye has some 150+ million light sensors, and for each of 

 

Figure 2.38 The apparent 
bend in the pencil and 
its magnification are 
familiar optical effects.
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them some 25–50,000 processing neurons are at work in parallel extracting the information 
that evolution has decided we can use to better survive.

The third dimension

Most people have two functioning eyes, and have at least a rudimentary idea that somehow 
two eyes allow stereoscopic vision that provides information on the distance of objects that 
we see. Lots of animals have eyes located on the sides of their heads where the overlap in the 
two fields of view is minimal, and don’t rely on stereo vision very much. It is mostly predators 
and animals that live by leaping about in trees that have their eyes forward facing, indicating 
that stereoscopic vision is important. But it is by no means the only way by which distances 
are determined, and it isn’t a particularly quantitative tool.

Humans use stereo vision by rotating the eyes in their sockets to bring the same feature to 
the fovea in each eye (as judged by matching that takes place in the visual cortex). It is the 
feedback from the muscles to the brain that tell us whether one feature is closer than another, 
depending on whether the eyes had to rotate in or out as attention shifted from the first fea-
ture to the second. Notice that this is not a measurement of how much farther or closer the 
feature is and that it works only for comparing one point to another. It is only by glancing 
around the scene and building up a large number of two-point comparisons that our brain 
constructs a map of the relative distances of many locations. Chapter 1 presents the basic 
trigonometric equations for stereoscopic distance measurement. Computer algorithms that 
match points between scenes and build up a similar map of distances are shown in Chapters 
14 and 15.

Stereoscopy can become confused if there are several similar features in the image, so that 
multiple matches (corresponding to different apparent distances). This happens rarely in natu-
ral scenes, but can create problems in imaging repetitive structures.

One of the fascinating discoveries about stereopsis, the ability to fuse stereo pair images 
by matching details from the left and right eye views, is the random-dot stereogram 
(Figure 2.39). At Bell Labs, in 1959, Bela Julesz showed that the visual system is able to 
match patterns of dots that to a single eye appear chaotic and without structure, to form ste-
reo images. Slight lateral displacements of the dots are interpreted as parallax and produce 
depth information.

Sequential images produced by moving a single eye can also produce stereoscopic depth 
information. The relative sideways motion of features in the scene as the head shifts from side 
to side is inversely proportional to distance. One theory holds that snakes whose eyes are not 
well positioned for stereo vision move their heads from side to side to better triangulate the 
distance to strike.

Stereoscopy only works for things that are fairly close. At distances beyond about 100 feet, the 
angular differences become too small to notice. Furthermore, there are plenty of people who, 
for one reason or another, do not have stereo vision (for example, this is a typical consequence 
of childhood amblyopia), who still function quite well in a three-dimensional world, drive cars, 
play golf, and so on. There are several other cues in images that are used to judge distance.

If one object obscures part of another, it must be closer to our eye. Precedence seems like 
an absolute way to decide the distance order of objects, at least those that lie along the same 
line of sight. But there are built-in assumptions of recognition and simple shape of objects, as 
shown in the example in Figure 2.40, whose violations create an incorrect interpretation.
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Relative size also plays an important role in judging distance. Many of the things that are 
recognized in familiar scenes have sizes — most typically heights — that fall into narrow 
ranges. Closely related is an understanding of the rules of perspective — parallel lines 
appear to converge as they recede (Figure 2.41). The presence of such lines is commonly 
interpreted visually as corresponding to a surface that extends away from the viewer, and 
irregularities in the straightness of the lines are interpreted as representing bumps or dips 
on the perceived surface. Driving through the countryside looking at plowed fields provides 
a simple example.

Figure 2.39 Random dot stereogram showing a torus on a plane (stare at the image and the eyes will 
pick out the matching patterns and fuse them into an image with depth).

Figure 2.40 Obviously the blue square 
is in front of the red circle, but it 
may not be a circle, and a view 
from another angle shows that the 
red object is actually in front of the 
blue one.
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By comparing the apparent size of features in our visual field we can judge the relative dis-
tance of the objects and of things that appear to be close to them. But again, the underlying 
assumptions are vital to success, and violations of the straightness of alignments of features 
or the constancy of sizes produce mistaken interpretations (Figure 2.42).

A simple extension of the assumption of size constancy for major features uses the sizes of 
marks or features on surfaces to estimate distance and angle. It is logical, and often correct, 
to assume that the marks or texture present on a surface are random and isotropic, and that 
visual changes in apparent size or aspect ratio indicate differences in distance or orientation 
(Figure 2.43). Once again, violations of the underlying assumptions can lead to the wrong 
conclusions.

There are other clues that may be present in real scenes, although they are less relevant to 
the viewing of close subjects, or images from microscopes or in the laboratory. For instance, 
atmospheric haze makes distant features appear more blue (or brown, if the haze is smog) and 
less sharp. Renaissance painters, who mastered all of these clues, represented atmospheric 
haze in scenes along with correct geometric perspective. Working from a known geometry to 
a realistic representation is a very different task than trying to extract geometric information 
from a scene whose components are only partially known, however.

  

Figure 2.41 Converging lines 
are interpreted as parallel 
lines that converge accord-
ing to the rules of perspective 
and so represent the surface 
perceived as receding from the 
viewer. Straight lines imply a 
flat surface (a), while irregu-
larities are interpreted as 
bumps or dips in the perceived 
surface (b).

        (a)              (b)

Figure 2.42 In these illustrations, the expectation of distance is established by assuming the pink posts 
are constant in size and arranged in straight parallel lines, whose apparent convergence is a func-
tion of perspective. In the left drawing, the appearance of the green boxes is consistent with this inter-
pretation. In the right drawing it is not, and we must either conclude that the boxes differ in size or 
the posts do not conform to our expectation.
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How versus what

Several very plausible models have been proposed for the algorithms functioning in the 
eye and other portions of the visual pathway. The first few layers of neurons in the retina 
are connected in ways that can account for mechanisms behind local and temporal inhi-
bition, and the interleaving of information from right and left eyes in the visual cortex is 
consistent with the fusion of two images for stereopsis. Such models serve several pur-
poses — they can be tested by physiological probes and external stimuli, and they form the 
basis for computer techniques that attempt to extract the same information from images. 
They serve the latter purpose even if they turn out to be failures as actual descriptions of 
the functioning of the neurons. But while they may be effective at describing HOW at least 
some parts of the visual system work, because they work at the level of bits and pieces of 
the image and not the Gestalt or information level, they don’t tell us much about WHAT 
we see.

Several years ago I was retained as an expert witness in a major criminal trial. The issue at 
hand was whether a surveillance video tape from the scene of a murder was useful for the 
identification of the suspects. The images from the tape had been extensively computer-
enhanced and were shown to the jury, who were invited to conclude that the current appear-
ance of the defendants couldn’t be distinguished from those images. The images were actually 
so poor in both spatial and tonal resolution that they couldn’t be distinguished from a signifi-
cant percentage of the population of the city in which the murders took place, and it was the 
job of the defense to remind the jury that the proper question was whether the pictures con-
tained enough matching information to identify the defendants “beyond a reasonable doubt.” 
It was very interesting in this case that none of the numerous witnesses to the crime were able 
to pick any of the defendants out from a lineup. The human eye is indisputably a higher reso-
lution, more sensitive imaging device than a cheap black and white surveillance video camera. 
But for a variety of reasons the humans present could not identify the perpetrators.

In that trial I was accepted by the court as an expert both in the field of computer-based image 
processing (to comment on the procedures that had been applied to the camera images) and 
on human perception (to comment on what the people present might have been able to see, 
or not). The point was raised that my degrees and background are not in the field of physiol-
ogy, but rather physics and engineering. How could I comment as an expert on the processes 

  

Figure 2.43 Rocks on a beach. 
Assuming that the rocks are 
similar in size and round 
on the average informs us 
of the viewing angle and 
the distance to farther 
locations.
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of human vision? The response was made (and accepted by the court) that it was not an issue 
of how the human visual system worked, at the level of rhodopsin or neurons, that mattered, 
but rather of what information human vision is capable of extracting from a scene. I do under-
stand what can be seen in images, because I’ve spent five decades trying to find ways for com-
puters to extract some of the same information (using what are in most cases almost certainly 
very different algorithms). Accomplishing that goal, by the way, will probably require a few 
more lifetimes of effort.

There has often been confusion over the difference between the How and the What of human 
vision, often further complicated by questions of Why. In describing a computer algorithm for 
some aspect of image analysis, the explanation of the steps by which information is extracted (the 
How) is intimately bound up in the computed result (the What). But the algorithm may not be (in 
fact usually is not) the only way that information can be obtained. Many of the important steps in 
image analysis have several more or less equivalent ways of extracting the same result, and more-
over each of them can typically be programmed in several different ways to take advantage of the 
peculiarities of different computer architectures. And, of course, no claim need be made that any 
of those implementations is identical to the processing carried out by the neurons in the brain.

David Marr, in his final book Vision (Freeman, 1982), points out very forcefully and eloquently 
that confusing the How and the What had led many researchers, including himself, into some 
swampy terrain and dead ends in the quest for an understanding of vision (both human and 
animal). Mapping the tiny electrical signals in various parts of the visual cortex as a function 
of stimuli presented to the eye, or measuring the spectral response of individual rod or cone 
cells, is certainly an important part of eventually understanding the How of the visual system. 
And it is an experiment that is performed at least in part because it can be done, but it isn’t 
clear that it tells us very much about the What. On the other hand, tests that measure the 
response of the frog’s eye to a small dark moving target invite speculation about the Why (e.g., 
to detect a moving insect: food).

Researchers have performed many experiments to determine what people see, usually involv-
ing the presentation of artificial stimuli in a carefully controlled setting and comparing the 
responses as small changes are introduced. This has produced some useful and interesting 
results, but falls short of addressing the problem of visual interpretation of scenes. The key is 
not just that people can detect (“see”) a certain stimulus, but that they can interpret its mean-
ing in a complex scene. It might be better to substitute the word “comprehend” for “see” to 
emphasize that the individual cues in images are only important for understanding the world 
when they are combined and processed to become a semantic representation. In other words, 
we do have to turn that picture into its “thousand word” equivalent. For that purpose, it is 
often more revealing to study the errors that humans make in looking at whole images. This 
includes, but is not limited to, various kinds of visual illusions.

There are also important clues in what artists have portrayed (or left out) of representational 
paintings and even cartoons. By exaggerating a few selected features into a caricature, for 
example, editorial cartoonists create very distorted but extremely recognizable representa-
tions of familiar political figures. For many people, such cartoons may represent a greater 
truth about the person than an actual photograph (Figure 2.44).

Seeing what isn’t there, and vice versa

One problem that plagues eyewitness testimony and identification is that people tend to see 
(i.e., pick out from a scene) things that are familiar (i.e., already have mental labels). One 
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facility that is hard-wired into our brains, just 
like the ability of the frog to spot a bug, is 
finding faces. Babies find and track faces from 
birth. We are so good at it that even with just 
a few clues, like two eyes and a mouth, we see 
a face, whether it is real or not. The ubiquitous 
“smiley face” cartoon has enough information 
to be recognized as a face. So does a mountain 
on Mars, when illuminated and viewed a cer-
tain way (Figure 2.45).

But to recognize a particular face, for instance 
as grandmother, we need a lot more clues. 
Computer programs that perform facial recog-
nition use ratios of dimensions, for instance the 
ratio of the distance between the eyes to that 
between the tips of the ears, or the distance 
between the mouth and chin to the distance 
from the tip of the nose to the chin. The advan-
tage of ratios is that they are insensitive to the 
size of the image, and to a considerable extent 
to orientation or point of view. But that is an 
algorithm and so addresses the How rather 
than the What. It seems likely that human facial 
recognition uses more or different clues, but 
certainly altering those proportions by even a 
few percent changes a face so that it becomes 
unrecognizable (Figure 2.46).

Police artists routinely produce sketches from 
eyewitness descriptions. Comparing these 

Figure 2.44 Richard Nixon’s ski nose, dark eye-
brows and shady eyes, receding hairline and 
5 o’clock shadowed jowls were used by car-
toonists to create an instantly recognizable 
caricature.

  
(a)                      (b)

Figure 2.45 It takes very few cues to trigger the recognition of a face: (a) the ubiquitous happy face; (b) 
the “face on Mars,” which appears only if the viewing angle and lighting are correct.



124 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

pictures to actual photographs of perpetrators after capture, as illustrated in Figure 2.3 above, 
suggests that only a few characteristics of the face are likely to be noticed and turned into a 
mental caricature rather than an actual representation. Differences in race between witness and 
perpetrator make it especially difficult to pick out those characteristics that are likely to identify 
the person. We learn to pick out the particular kinds of details that are most useful in identify-
ing those familiar to us, and these are not very helpful for other races (“they all look alike”).

Finally, when something or someone is recognized (rightly or wrongly) in an image, our 
minds mentally endow the semantic representation of that person or object with the full set 
of characteristics that we remember from past encounters. A typical example might be see-
ing a friend’s face from the side, but “knowing” that there is a mole on the other cheek and 
believing we had seen it this time as well. That leads to a lot of eyewitness problems. If a wit-
ness thinks they have recognized someone or something, they often testify with confidence 
and honesty that they have seen things that were actually not present. This can include even 
highly specific items like articles of clothing, tattoos, etc. One witness was sure that a car in 
a hit and run case had a particular bumper sticker on the back, when in actuality she had 
not been in a position to see the back of the car, because she was familiar with a car of the 
same model and color that she believed was the vehicle in question, and which did have such 
a bumper sticker.

We all do this, unconsciously. When you pass a neighbor’s house, if you glimpse someone 
mowing the lawn and you “expect” it to be the teenage son, you are likely to “see” details of 
his appearance, haircut, clothing, etc., that may not be visible, or may not even be there — it 
might not even be the right person. Usually this process is helpful because it gives us a sense 
of place and situation that is most often correct without requiring additional time or effort. A 
few mistakes are made, but fortunately they aren’t usually serious ones and the consequences 
are rarely more than momentary embarrassment. Many decades ago, when my eldest son was 
a preschooler, I shaved off a mustache that I had worn since before his birth. He did not notice 
for two days, until it was pointed out to him (and then he was upset at the change).

  
(a)                       (b)

Figure 2.46 Altering the ratios of dimensions (such as the horizontal distance between the eyes, ears, 
width of mouth, etc., or vertical dimensions such as length of nose, distance from mouth to chin, 
height of forehead, etc.) strongly affects our ability to recognize faces.
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Seeing what we “know” is present, or at least expect to be present, is common. A colleague 
of mine, who for years collaborated in teaching courses on image analysis, has a favorite pic-
ture of herself holding a dearly loved pet, now deceased. Unfortunately the dog is black, she 
is wearing a black sweater, and the photographic print is very dark (and the negative, which 
would have a greater dynamic range, is not available). She has challenged my students and me 
for years to process that image to show the dog that she sees when she looks at the picture, 
but we’ve failed because there is just nothing there in terms of the pixel values — they are all 
the same shade of near black. One of my students took a copy of the scanned print and pains-
takingly drew in a plausible outline of the correct breed of dog. Her immediate response was 
“That’s not the right dog!” She has a stored image in her mind that contains information not 
available to anyone else who looks at the image, and she believes she can see that information 
when she looks at the picture. Certainly her mind sees it, if not her eyes.

The extension of this process to scientific image analysis is obvious and should be of great 
concern. We see what we expect to see (things for which we have existing mental labels), 
fail to see or recognize things that are unfamiliar, misjudge things for which we do not have 
an appropriate set of stored clues, and truly believe that we have seen characteristics in one 
image that have been seen in other instances that are remembered as being similar. That’s 
what it means to be human, and those are the tendencies that a careful scientific observer 
must combat in analyzing images.

Image compression

There are some important lessons about human vision to be found in the rapid acceptance 
of digital still and video cameras. All consumer cameras and many higher end cameras store 
images in a compressed format because memory is expensive and also smaller files can be 
saved more quickly (more than enough improvement to make up for the time needed to carry 
out the compression). People seem willing to pay for high resolution multi-megapixel cameras 
and then try to compress the image by a factor of 10, 20, or more to produce a file that can be 
transmitted efficiently over the internet.

Compression techniques such as MPEG for video and JPEG for still pictures are widely used 
and too little questioned. In addition to MPEG (Moving Pictures Expert Group) compres-
sion, a variety of codecs (compressor-decompressor) are available for Apple’s Quicktime® and 
Adobe’s Flash® software. The original JPEG (Joint Photographers Expert Group) technique 
using a discrete cosine transform has been joined by wavelet and fractal methods.

All of these methods achieve compression by leaving out some of the information in the 
original image, as discussed in Chapters 1 and 3; technically they are “lossy” compression 
techniques. The intent of the compression is to preserve enough information to enable people 
to recognize familiar objects. Most of the techniques depend to some extent on the charac-
teristics of human vision to decide what should be kept and what can be modified or left out. 
Some, like fractal compression, replace the actual details with other detail “borrowed” from 
elsewhere in the image, on the theory that any fine detail helps fool the eye.

Compression discards what people don’t easily see in images. Human vision is sensitive to 
abrupt local changes in brightness, which correspond to edges. These are kept, although they 
may shift slightly in location and in magnitude. On the other hand, absolute brightness is not 
visually perceived so it is not preserved. Since changes in brightness of less than a few percent 
are practically invisible, and even larger variations cannot be seen if they occur gradually over 
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a distance in the image, compression can eliminate such details with only minor effects on 
visual interpretation.

Color information is reduced in resolution because boundaries are primarily defined by 
changes in brightness. The first step in most compression schemes is to reduce the amount 
of color information, either by averaging it over several neighboring pixels or by reducing the 
number of colors used in the image, or both. Furthermore, color perception is not the same in 
all parts of the visible spectrum. Small changes in the green range cannot be discriminated as 
well as other colors. Also, gradual changes in color, like those in brightness, are largely invis-
ible only sharp steps are noticed. So the reduction of color values in the image can be quite 
significant without being noticeable or at least objectionable.

It is also possible to reduce the size of video or movie files by finding regions in the image 
that do not change, or do not change rapidly or very much. In some cases, the background 
behind a moving object can be simplified, even blurred, while the foreground feature can be 
compressed because we don’t expect to see fine detail on a moving object. Prediction of the 
locations in an image that attract the eye (often called “interesting points” and usually associ-
ated with high local contrast or familiar subjects; where do your eyes linger when looking at 
a picture of a movie star? what parts of the image don’t you notice?) allows other areas to be 
even further compressed.

Certainly it can be argued that this type of compression works below the threshold of visual 
discrimination most of the time and does not prevent people from recognizing familiar objects. 
But that is exactly the problem: compression works because enough information remains to 
apply labels to objects and features in the image, and those labels in turn cause our memories 
to supply the details that are not present in the picture. The reason for recording images in 
forensic or scientific applications is not to keep remembrances of familiar objects and scenes, 
but to document the unfamiliar. If it is not possible to know beforehand what details may turn 
out to be important, it is not wise to discard them. And if measurement of features is contem-
plated (to measure size, shape, position, or color information), then lossy compression, which 
alters all of those values, must be avoided.

It is not the point of this section to just make the rather obvious case that compression of digi-
tal images is extremely unwise and should be avoided in scientific or forensic imagery. Rather, 
it is to shed illumination on the fact that compression is only acceptable for snapshots because 
human vision does not notice or depend upon very much of the actual contents of an image. 
Recognition requires only a few clues and ignores much of the fine detail.

A world of light

Eyes are only one part of the overall system involved in producing the sensory input to the visual 
cortex. It is easy to overlook the importance of the light source and its color, location, and bright-
ness. A few concerns are obvious. When shopping for clothes, furniture, or other items, it is best 
not to rely on their appearance under the artificial lighting in the store, but to see how the colors 
appear in sunlight. The difference in color temperature of the light source (sunlight, incandes-
cent lighting, fluorescent lighting) can produce enormous differences in the visual appearance of 
colors. And don’t even think about trying to guess at colors using the illumination from a sodium 
street light, which is essentially monochromatic and provides no clues to color at all.

In a laboratory setting, such as the use of a copy stand or light microscope, color judgments 
can be similarly affected by variations in the color temperature of the bulb, which depends 
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very sensitively on the voltage applied to it (and also tends to change significantly over the 
first few and last few hours of use as the filament and its surface undergo physical alterations). 
Simply reducing the illumination (e.g., to take a photo) by turning down the voltage changes 
the colors in the image. The colors in an image taken with fluorescent lighting are recorded 
as different from those photographed using tungsten light. These effects happen whether the 
image shows light that is transmitted (not reflected or absorbed) through a thin sample, as 
in the transmission light microscope, or the light reflected from a surface, as in macroscopic 
imaging. But generally it is the latter case that our brains are prepared to interpret.

For real-world scenes, there may be a single light source (e.g., sunlight or a single bulb), or 
there may be multiple sources. The source may be highly localized or it may be extended. 
Lighting may be direct or indirect, meaning that it may have been reflected or scattered from 
other surfaces between the time it leaves the source and reaches the object. All of these vari-
ables affect the way the object appears in the final image.

The surface of the object also matters, of course. Most of the light that is not transmitted 
through or absorbed within the object is scattered from an extremely thin layer just at the sur-
face of the object. For a perfect metal, this happens exactly at the surface, but most materials 
allow the light to penetrate at least a short distance beneath the surface. It is the variation of 
absorption within this thin layer for different light wavelengths, and the variation of penetra-
tion with wavelength, that give an object color. For instance, preferential absorption of green 
light causes an object to appear purple. Ideal metals, for which there is no light penetration, 
have no color (the colors of gold, copper, and silver result from a complex electronic structure 
that actually allows slight penetration).

The fraction of the incident light that is reflected or scattered is measured by the surface albedo. 
A very dark object may absorb as much as 90% of the incident light, whereas a very bright one 
may absorb only a few percent. The interaction of the light with the object typically includes a 
mixture of diffuse and specular reflection. The diffuse component sends light in all directions, 
more of less following a cosine pattern, as described in Chapter 14. The specular component 
sends light in the particular direction of mirror reflection with an angle to the local surface 
normal equal to the incident angle. The specularity of the surface is defined by the fraction of 
the light that reflects at the mirror angle and the narrowness of the reflected beam.

Computer programs that generate rendered surface images from measurements and shape 
information use models that correspond to the behavior of typical materials. As shown by 
the examples in Chapter 15, it is possible to change the appearance of the surface and our 
judgment of its composition and nature by altering the specularity. From a series of images 
with different light source locations it is possible to interpret the geometry of the object from 
its appearance. People do this automatically, because our brains have evolved in a world that 
provides many opportunities to learn about the effect of tilting objects on their appearance 
and the effect of coating a surface with different materials.

Changing the appearance of a surface from one material to another, or altering the light 
source color or position, can help us to notice important details on an object. Partly this is due 
to enhancement of the reflections from particular features and partly to violating the expec-
tations we normally have when viewing a surface and consequently forcing our attention to 
all of the details in the image. A surface imaging technique developed by Tom Malzbender at 
Hewlett Packard Labs uses a series of images taken with a single, stationary camera but with 
lighting from many different (known) orientations to compute the orientation and albedo 
of the surface at each location on an object (Malzbender et al., 2001). Figure 2.47 shows an 
example of the results. Moving the source of the light on the enhanced image, which can be 
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done interactively, reveals details that are generally not otherwise observable. In the example, 
this includes the fingerprint left in the wet clay by the scribe who prepared this tablet 4000 
years ago, discernible as a series of ridges near the upper left corner.

The original implementation of this technique used a dome placed over the object to be pho-
tographed and fitted with multiple fixed light sources that were used one at a time. A more 
recent development (Mudge & Malzbender, 2006) involves placing a black, shiny sphere such 
as a billiard ball in the scene to be photographed and then using a portable flash to illuminate 
the image from multiple arbitrary directions, which the software determines based on the 
light reflections from the sphere. This data set is then used to generate the polynomial texture 
map of the surface and to render an image of the surface with any characteristics, including 
those of an ideal metal, as it would appear with lighting from any position.

The technique that underlies this calculation is called “shape from shading” or “photometric 
stereo.” Instead of taking two or more pictures from different viewpoints, as in stereoscopy, 
photometric stereo uses multiple images from the same viewpoint but with different illumina-
tion. Shape from shading uses the known distributions of diffuse and specular reflections for 
a particular type of surface to estimate changes in the local slope of the surface with respect 
to the lines of sight from the light source and the viewpoint. The weakness of the shape-
from-shading approach is that it deals only with differences in intensity (and hence in slope). 
Determining the actual surface elevation at each point requires integrating these slope values, 
with an unknown constant of integration. Nevertheless, the method has numerous applica-
tions and also serves to illustrate a computation performed by the computer that our minds 
have been trained by years of practical observations to make automatically.

Figure 2.47 Specular enhancement: (a) original photograph of a 4000 year old Sumerian tablet; 
(b) reconstruction from the computed texture map; (c) image generated by extracting surface nor-
mals and applying a specular lighting model for each pixel; (d) highlights computed in (c) added to 
(b). (Image courtesy of Tom Malzbender, Hewlett Packard Labs.)
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The mental shortcuts that enable us to 
interpret brightness variations as shape 
are convenient and often correct (or at 
least correct enough for purposes such 
as recognition and range-finding). But 
they are easily fooled. Surface brightness 
can change for reasons other than geom-
etry, such as the effect of intentional or 
unintentional coatings on the surface 
(e.g., oxidation, stains). There may also 
be nonuniformities in the illumination, 
such as shadows on the surface. If these 
are not recognized and compensated for, 
they may influence our judgment about 
the surface geometry.

One thing that we are conditioned to expect from real-world viewing is that lighting comes 
from above, whether it is the sun in the sky or lights above our desk surface. If that expec-
tation is violated, our built-in shape from shading calculation reaches the wrong conclusion 
and interprets peaks and pits and vice versa (Figure 2.48). Such illusions are amusing when 
recognized, but sometimes we may remain fooled.

Images that come from novel modalities, such as the scanning electron microscope, appear 
to be familiar and readily interpretable because the brightness of surfaces varies with slope, 
just as in the true shape from shading situation. But different physical processes are involved, 
the mathematical relationships between brightness and geometry are not quite the same, and 
misinterpretations can occur. For one thing, the appearance of edges and fine protrusions is 
very bright in the SEM, which does not occur in normal light scattering from surfaces.

Many other types of images, such as the surface maps produced by the AFM based on various 
tip-sample interactions, are commonly presented to the viewer as rendered surface represen-
tations. These are typically generated using the strength of a measured signal as a measure 
of actual surface geometry, which it may not be. Electronic or chemical effects become “vis-
ible” as though they are physical elevations or depressions of the surface. This is an aid to 
“visualization” of the effects, taking advantage of our ability to interpret surface images, but it 
is important (and sometimes difficult) to remember that it isn’t really geometry that is repre-
sented but some other, more abstract property (see, for example, Figure 1.59 in Chapter 1).

Size matters

The size of objects is determined by the location of the boundaries. The only problem with 
that rather obvious statement is deciding where the boundary lies. Human vision works by 
finding many types of lines in images, which include the edges of objects, based on locating 
places where brightness or color changes abruptly. Those lines are treated as a sketch (called 
the “primal sketch”). Cartoons work because the drawn lines substitute directly for the edges 
that would be extracted from a real scene.

Using a computer program to extract edge lines is illustrated in Chapter 5. In one commonly 
used algorithm, a computer program finds the location (to the nearest pixel) where the maxi-
mum change in brightness occurs. The sketch extracted by the retina isn’t the same. For one 
thing, gradual changes in brightness are not as visible as abrupt changes, and the change must 

Figure 2.48 Rotating the same image (cuneiform inden-
tations in a clay tablet) by 180 degrees makes the pits 
(at left) appear to be peaks (at right).
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be at least several percent to be noticed at all. Changes in color are not as precisely located, 
and some color changes are much more noticeable than others.

Furthermore, people do not interpret the edge line in a consistent way. A simple demonstra-
tion can be found in the way we cut out patterns, and there is some indication that there is a 
sex-correlated behavior involved. Girls cutting cloth to make a garment tend to cut outside the 
line (better to have seams too wide than too narrow); boys cutting out model airplane parts 
tend to cut inside the line (so parts fit together). The same habits carry over to tracing features 
for computer measurement. A trivial difference, perhaps, but it raises the interesting question 
“Is the edge a part of the feature or a part of the surroundings?” In many cases, that depends 
on whether the feature is dark on a light background (in which case the edge is likely to be 
seen as part of the feature) or the reverse.

In many real images, the boundaries of features are not uniform. Variations in brightness and 
contrast cause variation in judgment of the location of the feature edge, and hence in its size 
and shape. In some cases, the boundary disappears in places (Figure 2.49). Human vision 
is not bothered by such gaps (although computer measurement certainly is). We fill in the 
gaps with simple, smooth curves that may or may not correspond to the actual shape of the 
feature.

Boundaries are certainly important, but there is evidence that features are represented concep-
tually not as a collection of boundaries but as a simplified midline. The pipe-cleaner animals 
shown in Figure 2.50 are recognizable because we fill out the bodies from the “skeletons” 
shown. This is not the actual skeleton of bones, of course, but the one similar to that used 
in computer-based image analysis, a set of midlines sometimes called the medial axis of the 
object. The topology of the skeleton (the num-
ber of branches, ends, and loops) provides 
critical information for feature recognition by 
humans and machines.

Whether the boundaries or the skeletons of fea-
tures are used for representation, comparisons 
of the size of features are strongly affected by 
their shape, position, and brightness. A map 
of the continental United States illustrates this 
well (Figure  2.51). In order to compare the 
sizes of two states we literally drag the image 
of one onto the other, in our minds. Since 

Figure 2.49 TEM image of stained tissue. 
The membrane boundaries of the organ-
elles are not visible in some locations 
(arrows) but human vision “knows” they 
continue and completes them with sim-
ple smooth curves.

  

Figure 2.50 Pipe-cleaner animals (elephant, kan-
garoo, and dachshund) represent solid objects 
by their skeletons.
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the shapes are different, the fit is 
imperfect. How the parts that “stick 
out” are treated depends on their 
perceived importance. For example, 
comparing Oklahoma to Missouri 
is tricky because the panhandle of 
Oklahoma is pretty skinny and eas-
ily overlooked (Oklahoma is slightly 
larger than Missouri).

Florida is about the same size as 
Wisconsin (less than 0.4% larger), 
but they have different colors and 
are far apart so that comparison 
is very difficult. Colorado has a 
simple rectangular shape, difficult 
to compare to Nevada or Oregon, 
which are not so regular and tend 

to appear smaller (Nevada is larger, Oregon is smaller). The greater vertical extent of North 
Dakota is visually important and leads to the erroneous conclusion that the state is larger than 
South Dakota. Vertical extent is also important in comparing Illinois to Iowa and New York 
(both are smaller than Illinois), as are the differences in shape and color (and the fact that 
New York is far away).

Visual judgments of size are very error prone under the best of circumstances and easily 
swayed by seemingly minor factors, several of which have been illustrated in these examples. 
Another very common mistaken judgment of size involves the moon. Most people report that 
it appears to be larger by one-third to one-half when near the horizon than when high in the 
sky (Figure 2.52), probably because at the horizon there are other structures which the eye 
can use for comparison. Vertical extent is generally considered more important than horizon-
tal extent (Figure 2.53). Features that contrast more with their surroundings are generally 
considered to be larger than ones with less contrast. Departures from geometrically simple 
shapes tend to be ignored in judging size.

Also, the context of the scene is very important. The discussion 
of stereoscopic vision and interpretation of the third dimension 

Figure 2.51 The continental United States.

Figure 2.52 Illustration of the increase in the visual impres-
sion of the size of the moon when viewed near the horizon, 
as compared to overhead.

Figure 2.53 The “top hat” 
illusion: In this exag-
gerated drawing of a 
top hat, the height of the 
crown appears to be much 
greater than the width of 
the brim, but in fact they 
are exactly the same.
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noted that expectation of constant size is one of the cues used to judge distance. It works the 
other way, as well. We expect the rules of perspective to apply, so if one feature is higher in the 
scene than another, and is expected to be resting on the ground, then it is probably farther away, 
and thus it should appear to be smaller. If it is the same size in the image, we tend to judge it 
as being larger. Unfortunately, when viewing images for which the rules of perspective do not 
apply, this “correction” can lead to the wrong conclusions.

Shape (whatever that means)

Shape is extremely important in visual recognition of objects. Even if the size or color of some-
thing is changed radically (a miniature pink elephant, for example), the shape provides the 
important information that triggers identification. But what is shape? There are very few com-
mon adjectives in English or any other language that really characterize shape. We have plenty 
for size and color, but few for shape. Instead, we describe shape by saying that something 
is shaped “like a camel” — in other words we don’t describe the shape at all but just supply 
the label for a representative object and hope that the listener has the same mental image or 
model that we do and identifies the same important shape features that we do. The few appar-
ent exceptions to this — adjectives like “round” — actually fall into this same category. Round 
means “like a circle” and everyone knows what a circle looks like.

But what does it mean to depart from being round like a circle? Unfortunately there are lots of 
ways to become less like a circle. Figure 2.54 shows just two of them: one feature has been 
stretched horizontally but is still smooth while the other has remained equiaxed but with a 
rippled edge. Many other variations with jagged edges, stretching in more or other directions, 
and so forth are possible. Which of these features should be considered “rounder”?

When computers measure features in images, there are many mathematical ways that they can 
describe shape. The most commonly used are simple dimensionless ratios of size measure-
ments, as shown Chapter 11. One problem with these is that the names used are arbitrary 
and have no familiar (or consistent) meaning. An additional problem with these dimensionless 
ratios is that they are not unique. It is possible to construct an enormous number of objects 
whose shapes appear very different to a human but produce the same numerical measure. 
Still, these shape factors can be very useful for some computer recognition purposes.

It seems that instead of these numerical prop-
erties of shape, people rely primarily on two 
specific kinds of information for shape rec-
ognition: the roughness of the border and 
topology. The latter is best captured by using 
a computer processing operation to reduce 
a shape to its skeleton. The skeleton, shown 
in Chapter 8, is the midline of the feature, 
typically produced by an iterative removal of 
pixels from the boundary until the only ones 
left cannot be removed without breaking the 
feature into pieces. Outlines (edges) and skele-
tons are simplified object descriptions that are 
used in some of the classification procedures 
shown in Chapter 12.

Figure 2.54 The two lower shapes have the same 
area as the circle but are not circular.
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Even incomplete delineation of feature skel-
etons or boundaries is often enough to con-
struct a visual impression (which may or 
may not be correct). It is this ability to use 
just a few key features (corners, ends, and 
branch points) to characterize feature shape 
that accounts for several common illusions. 
Kanisza’s triangle (Figure  2.55) is con-
structed in the mind by linking together the 
three well defined corner points. The link-
ing is always done with smooth, although 
not necessarily straight, lines.

Once the basic topological form of the object shape has been established, the second prop-
erty of shape that people seem to instinctively recognize is a measure of the smoothness or 
irregularity of the boundary. Because so much of the natural world has a geometry that is frac-
tal rather than Euclidean, this takes the form of an ability to detect differences in boundary 
fractal dimension. The measurement of fractal dimension is discussed in Chapters 8 and 15, 
but it must be remembered that while humans can comparatively rank objects with different 
boundary irregularities, they do not perform measurements visually.

The most widely accepted method for communicating the information about object shape 
characteristics that are used for recognition remains showing a picture of the object to another 
person. For features that are exactly alike, or so nearly alike that the only variations are essen-
tially invisible at the scale of normal viewing, that works fine. Unfortunately in most of the 
sciences the objects of interest, whether they are defects in a material, cancerous cells on a 
slide, or a new species of bug, are not identical. The natural variation is significant, although 
the clues to recognition (if they are correctly chosen) remain present (although not necessarily 
visible in every image).

In presenting the “representative image” the scientist attempts to communicate these clues 
to colleagues. The picture almost always needs an extensive supplement in words (think of 
Arlo’s song again — the “Twenty-seven 8 × 10 color glossy pictures with circles and arrows 
and a paragraph on the back of each one”). But if they are not as familiar with the objects 
(which is of course the reason for the communication), will they be able to pick out the same 
features or clues? And does the selected image adequately represent the range of variation in 
the natural objects? Or correlations between those variations? These dangers are always pres-
ent in the use of “typical” images even if the image really does give a fair representation, and 
in most cases it should probably be admitted that the picture was selected not after analysis 
showed it to be representative in any statistical sense but because the picture satisfied some 
other, unspoken aesthetic criterion (or worse, was the only good quality image that could be 
obtained). Anecdotal evidence, which is all that a single picture can ever provide, is risky at 
best and misleading at worst, and should be avoided if it is possible to obtain and present 
quantitative data. That is another motivation for applying computers to imaging: to obtain 
enough measurement data for meaningful descriptions.

Context

Recognition of objects is often influenced by the context in which they appear. Sometimes 
this context is supplied by the image itself, but more often it arises from prior knowledge 

Figure 2.55 Kanisza’s triangle is an illusory region 
visually formed by linking corner markers with 
straight lines or gentle curves. The inside of 
the triangular region thus formed may appear 
brighter than the surroundings.
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or independent information. In 
Figure  2.56, there are several 
very different representations of 
the number five, including ones in 
languages that we may not know. 
But once the concept of “fiveness” 
is accepted, the various representa-
tions all become understandable. 
Quite a bit of knowledge and expe-
rience that have nothing to do with 
images is involved in this process, 
and it happens at higher levels of 
conscious thought than basic shape 
recognition. Knowing that penta-
gons have five sides may help us 
translate the Greek, or recalling a 
Cinco de Mayo party may help with 
the Spanish, and so on.

An interesting insight into this rec-
ognition process comes from the 
study of patients who suffer from 
synesthesia, a phenomenon in which some kind of cross-wiring in the brain confuses the 
output from one sense with another. People with synesthesia may report that particular notes 
played on the piano trigger the sensation of specific tastes, for example. In one of the most 
common forms of synesthesia, looking at a number produces the sensation of a specific color. 
For instance, in a printed array of black numbers, the fives may all appear red while the threes 
are blue, and the ability to detect and count the features is extremely rapid compared to the 
need to identify and count the features consciously.

This cross-activation of different sensory pathways in the brain occurs well before the infor-
mation rises to conscious levels. The alternative representations of “fiveness” in Figure 2.56 
do not trigger these colors. Even modest distortions of the printed number, such as unusual 
or outline fonts, may be enough to prevent it. The study of these types of brain mis-functions 
is important for an understanding of the processing of sensory information, extraction of 
abstract concepts, and formation of connections between seemingly separate areas of knowl-
edge that can occur at subconscious and conscious levels. In this instance, it shows that basic 
shape recognition happens long before the labels, with their semantic content, are applied 
to features.

It is even possible to have multiple contexts within the same image. This happens particularly 
with reading words. We tolerate misspellings and sloppy handwriting because there is usually 
enough redundancy and context to allow the message to be comprehended even when the 
image itself is wrong, incomplete, or ambiguous, as shown in the example of Figure 2.57.

Figure 2.56 Various representations of “five.”

  

Figure 2.57 The final words in each line 
are identical in shape, but can be 
read correctly because of the context 
established by the other words.
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The importance of context is critical for the correct interpretation of data in scientific images. 
Our expectations based on prior experience and study, knowledge of how the sample was 
prepared and how the image was acquired, and even our hopes and fears about how an 
experiment may turn out can significantly affect visual interpretation and the recognition of 
features (or failure to recognize them). It is important to know enough about the sample and 
image to correctly interpret it, while avoiding the pitfalls that expectation can cause. Some 
people are better at this than others, and anyone can make the occasional mistake, but fortu-
nately the open nature of scientific publication provides a mechanism for correction.

One very frequently encountered problem of context for images arises in microscopy. Sections 
are typically cut through tissue with a microtome for examination in transmission, or sur-
faces of opaque materials are prepared by polishing for examination by reflected light (or the 
equivalent use of the transmission or scanning electron microscope). In all of these cases, the 
images are inherently two dimensional, but the structure that they represent and sample is 
three dimensional. It is very difficult for most people to provide a proper context for under-
standing these images in terms of the three-dimensional structure. Stereology, covered in 
Chapter 9, provides geometrical relationships that can be used to relate proper measurements 
on two-dimensional images to three-dimensional structure, but few observers develop suf-
ficient intuition to visually interpret such images correctly.

This seems to be true even after extensive training and developing familiarity with particular 
three-dimensional structures. Medical doctors rely upon section images from instruments such 
as magnetic resonance imaging (MRI) and computed X-ray tomography (CT) to study the human 
body. But it appears from tests and interviews that few of these people have a three-dimen-
sional mental picture of the structure. Instead, they learn to recognize the normal appearance 
of sections that are almost always taken in a few standard orientations and to spot deviations 
from the norm, particularly ones associated with common diseases or other problems.

Arrangements must be made

One thing that people are extremely good at is finding order in an arrangement of objects. 
Sometimes this quest for simplification finds true and meaningful relationships between 
objects, and sometimes it does not. Historically, the construction of constellations by playing 
connect-the-dots among the bright stars in the sky has been carried out by many different 
cultures (of course, with different results). Figure 2.58 shows the classical Greek version. 
Assembling the data needed to construct Stonehenge as a predictor of solstices and eclipses 
must have taken multiple lifetimes. The Copernican revolution that allowed ellipses to sim-
plify the increasingly complex Ptolemaic circles-and-epicircles model of planetary motion was 
a quest for this same type of simplification.

Most scientists follow Einstein’s dictum that it is important to find the simplest solution that 
works, but not one that is too simple. The idea is much older than that. William of Occam’s 
“principle of parsimony” is that “one should not increase, beyond what is necessary, the 
number of entities required to explain anything.” Instinctively we all seek the simple answer, 
sometimes in situations where there is not one to be found. And of course this applies to the 
examination of images, also.

Finding visual alignments of points in images, or in plots of data, people prefer straight lines 
or smooth, gradual curves. Linear regression is probably the most widely used (and abused) 
method of data interpretation for imposing order on a collection of points. Filling in gaps 
in lines or boundaries is often a useful procedure, but it can lead to mistakes as well. The 
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illusory Kanisza triangles in Figure 2.55 are an example of filling in gaps and connecting 
points. The process of connecting points and lines is closely related to grouping, discussed 
above, for instance in the process of forming a number from the colored circles in the color 
blindness test images (Figure 2.30).

Human vision has a built-in directional bias that prefers the vertical, followed by the horizon-
tal, and a strong preference for symmetry. As shown in Figure 2.59, that can bias our judg-
ment. It also influences our ability to detect 
gradients or clustering.

Some processes produce a random distribution 
of features, like sprinkling salt onto a table. If 
every feature is completely independent of all 
the others, a random distribution results. Non-
random distributions occur because features 
either attract or repel each other. Cacti grow-
ing in the desert are self-avoiding, because 
each one tries to protect its supply of water 
and nutrients. Particles floating on a liquid 
surface may tend to cluster because of surface 
tension effects. Students are self-avoiding (uni-
formly spaced) in the classroom, but cluster at 
parties. In extreme cases, visual observation of 

Figure 2.58 The familiar stellar constellations.

Figure 2.59 These two shapes are not immediately 
perceived to be identical. The “kite shape” on 
the left has a dominant vertical axis of sym-
metry. The irregular four-sided polygon on the 
right has a horizontal base.
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clustering or self-avoidance is possible. In most cases, people do not easily see through appar-
ently chaotic distributions to detect these effects, but measurements on digital images (covered 
in Chapter 10) can frequently provide quantitative characterization.

In general, people do not prefer order. Tests with computer-generated images of apparently 
random paint droplets show that completely ordered images are considered boring and not 
visually stimulating, while completely random ones are considered to be equally uninterest-
ing. When the correlation between size, color, and position obeys a “pink noise” or fractal 
relationship, the pictures are most visually interesting to viewers. Interestingly, the same 
relationships are found in mathematical analysis of several of Jackson Pollock’s paintings 
(Figure 2.60).

Apparently a distribution in which there is just enough hint of order that we must work to 
find it visually is the most appealing. The implication for noticing (or failing to notice) arrange-
ments of features in scientific images is clear. In addition to arrangements that may be pres-
ent throughout an image, gradients are often important, but not always easy to detect. The 
problem is that there can be so many different kinds of gradient. Features may vary in size, 
shape, orientation, color, density, number, or any combination of these factors, as a function of 
position (and the spatial path for the gradient variation may not be simple, either). Chapter 9 
illustrates some of the possibilities.

The innate ability that people have for finding order in images is risky. Sometimes we imag-
ine a regularity or order that is not there (e.g., constellations), and sometimes the presence of 
complexity or superficial disorder hides the real underlying structure. Some orientations are 
more readily detected than others, and complicated gradients are likely to escape detection 
unless we know beforehand what to look for. The result is that many real spatial arrangements 
may be missed, even in two dimensions (and because of the additional problems introduced 
by examining two-dimensional sections through three-dimensional structures, the problem is 
much worse for three-dimensional spatial arrangements).

Seeing is believing

If human vision is so easily fooled in its interpretation of images, questions can be (and are, 
regularly) raised about the effects of various image processing procedures that might bias 
human judgment about the results.

This is in part an ethical question, dealing with composites and forgeries that might be 
intentionally constructed to mislead the observer. That issue is identical to any other case 
of intentional deception. If someone is willing to invest enough time and skill in creating a 
forgery, either as an image or other kinds of data, and whether using a computer or not (many 

 

Figure 2.60 Jackson Pollock’s “Blue 
Poles #11.” His paintings have 
been analyzed to determine that 
they have a fractal structure and 
a complexity that evolved during 
his career.
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excellent forged images have been crafted in the photo-
graphic darkroom, not to mention forged paintings), it can 
be done.

Detecting such forgeries can be very difficult, perhaps 
impossible in some cases. In the specific case of digital 
images, the convenience of software tools for cut-and-paste 
makes the task easy, but usually the results are easy to spot. 
There are plenty of clues that make it possible to detect 
alterations in images or pasting in parts of one image to 
another. Some of the obvious ones are shadow lengths 
and angles that don’t match, geometrical inconsistencies, 
variations in focus, color mismatches, and textures or chan-
nel noise that are different (including the way that the noise 
varies with brightness).

In the example of Figure  2.61, the head of a German 
Shepherd has been pasted onto the body of an Irish Setter. 
It is easy to detect the forgery in this case, but it is useful 
to note the various clues that are present. The first clue is 
of course the relatively abrupt change in color at the dog’s 
neck. Some color adjustments could have been made to 

reduce the differences, and the boundary can sometimes be hidden (for instance by putting a 
collar over it). In this case, some blurring was performed to prevent a sharp line from attract-
ing attention, but the presence of localized blurring and loss of fine detail is itself a clue that 
something has been done to the image.

A second very common problem with composites is that the lighting on the two parts of the 
picture is different. The body of the dog is lit from the right side of the picture while the head 
is lit from the front. It is also noteworthy that the shadow of the dog does not correspond to 
the composite, but still has the shape of the original head.

The head image was originally smaller and had to be enlarged and rotated to line up with 
the body. This resulted in pixellation that does not match the original. The scale of the fine 
detail is different in the two parts of the image, indicating that they do not belong together. 
In general, images taken with different cameras and under different lighting conditions have 
different noise characteristics. The ratio of noise in the red, green, and blue channels, and the 
variation in the noise amplitude with absolute brightness require more effort to measure, but 
are almost impossible to match when combining images from different sources.

With enough effort (and skill), seamless and virtually undetectable results can be achieved. 
However, there are few situations in scientific research in which a single image provides 
conclusive evidence for a result. Creating a family of false images documenting a research 
study is probably an impractically difficult task, and in any case the hallmark of the sci-
entific method is the ability of an experiment to be duplicated by others, so intentionally 
forged images are not usually a serious concern. The questions more often arise in foren-
sic situations.

For scientific and technical work, it is certainly a good idea to keep original images separate 
from copies that are processed for printing, viewing, or measurement, and to keep a careful 
record of the processing steps so that they can be reported in publications and reproduced 
as necessary. Some software packages (e.g., Adobe Photoshop) can be configured to do that 

Figure 2.61 Example of combining 
parts of two different images.
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automatically, saving a history of all processing operations with the image on disk. In most 
forensic work, this is considered essential.

Of greater concern is the unconsciously introduced bias that can be produced by the selection 
of the areas that are photographed or the cropping of the photograph to isolate the object(s) 
of interest. Tabloid newspapers are often faulted for using pictures of celebrities that are taken 
out of context, but even responsible publications must decide whether the removal of back-
ground and surroundings is appropriate or relevant to the story, and it may only be after the 
fact that such relevance becomes evident.

In the sciences, intentional forgeries are probably rare and usually corrected because the 
scientific method requires that others be able to reproduce and verify results. If a scientist 
publishes an image without enough information about the procedure, he or she is criticized. 
So the information is generally there and someone else with a comparable skill level and 
knowledge can serve as a check. That doesn’t mean that every publication has to include such 
a fine level of detail that anyone, regardless of their ignorance of either the application or the 
image processing, needs to be able to follow it.

The scientific method of openness and depending on confirmation and reproducibility auto-
matically deals with the problem of intentional falsification. It is the unintended errors, which 
usually have little to do with the image processing and more with the choice of images, choice 
of specimens, and interpretation of results, that are actually of greater concern. These may 
involve the human vision system as well, of course, but are usually at heart the result of mis-
understanding the experimental background.

An important thing to remember about the image processing techniques discussed and illus-
trated in this book is that they do not ADD anything to images. Rather, by removing some 
of the contents of an image, they make it easier to visually access the remaining details, 
which are presumably relevant and interesting in a particular context. Thus removing or 
suppressing shading, or noise, or high contrast, can reveal the details that were previously 
hidden. Or increasing local contrast, or converting textural variations to brightness, or sub-
stituting one color for another can allow details that were below the threshold of visibility 
to see seen.

So in conclusion...

Human vision is an extremely powerful tool, evolved over millions of years to extract from 
scenes those details that are important to our survival as individuals and as a species. The pro-
cessing of visual information combines a hierarchy of highly parallel neural circuits to detect 
and correlate specific types of detail within images. Many short cuts that work “most of the 
time” are used to speed recognition. Studying the failure of these tricks, revealed in various 
visual illusions, aids in understanding of the underlying processes.

An awareness of the failures and biases is also important to the scientist who relies on visual 
examination of images to acquire or interpret data. Visual inspection is a comparative, not 
a quantitative process, and it is easily biased by the presence of other information in the 
image. Computer image analysis methods are available that overcome most of these specific 
problems, but they provide answers that are only as good as the questions that are asked. In 
most cases, if the scientist does not visually perceive the features or trends in the raw images, 
subsequent measurement will not be undertaken.
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There are several classic books that provide a good introduction to human vision, without 
delving too deeply into the fascinating but specialized literature regarding messy anatomical 
details of the visual cortex. They include:

John P. Frisby (1980) Illusion, Brain and Mind, Oxford Univ. Press
John P. Frisby and James V. Stone (2010) Seeing, 2nd Edition: The Computational 

Approach to Biological Vision, MIT Press, Boston
David Marr (1982) Vision, W. H. Freeman Co.
Irvin Rock (1984) Perception, W. H. Freeman Co.

Of course, there is also an extensive literature in many peer-reviewed journals, and in the 
modern era no one should neglect to perform a Google search of the internet, which will 
locate several sets of course notes on this topic as well as publication reprints and many sites 
of varying quality.
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3
Printing and Storage

Creating hardcopy representations of images, for example to use as illustrations in reports 
and publications, is important to many users of image processing systems. It is also usu-
ally important to store the images so that they can be retrieved later, for instance to 

compare with new ones or to transmit to someone else. Printing and storage of images are 
dynamic areas of hardware and software development, with major advances occurring fre-
quently. As for the developments in cameras and scanners, the major impetus is not the needs 
of the scientific, technical, and forensic applications.

Printing and storage are necessary because it is rarely possible to reduce an image to a com-
pact verbal description or a series of measurements that can communicate to someone else 
what one person sees or believes to be important in the image. In fact, it is often difficult to 
draw someone else’s attention to the particular details or general structure that may be pres-
ent in an image that are felt to be the significant characteristics present, based on examination 
of that image and many more. Faced with the inability to find descriptive words or numbers, 
people resort to passing a representation of the image on, perhaps with some annotation.

Printing

This book is printed in color, using commercial printing technology not normally available to 
a single image processing user. That type of printing equipment presents its own set of chal-
lenges. But many everyday jobs can be handled very well using quite inexpensive machines; 
the quality, speed, and cost of both monochrome and color printers are improving continu-
ously. A typical color laser printer costs a few hundred dollars and has become a common 
accessory to desktop computer systems, particularly serving small networks as found in a 
typical office or laboratory. These printers are designed primarily to print text and simple 
graphics. Most can, however, be used satisfactorily to print images as well. Ink jet print-
ers, which are inexpensive and may be included at modest cost or even free with computer 
purchases, but which use expensive consumables, are also very capable of printing images. 
Service bureaus using dye sublimation or photographic printing methods offer on-line con-
nection and rapid turnaround. Technology has come a very long way since computer graphics 
consisted of printing Christmas posters using Xs and Os on a teletype to represent different 
gray levels. This chapter examines the technology for printing images used in personal com-
puter image processing systems.
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For this purpose it does not matter whether or not the printers use a high level page description 
language such as PostScript®, which is used to produce smooth characters and lines at the maxi-
mum printer resolution, so long as they allow the computer to transmit to the printer an array of 
individual pixel brightness values. Most printers that can create any graphics output in addition to 
simply printing text can be controlled in this way. This means that “daisy wheel” or other formed-
character printers (now virtually obsolete) are not useful for imaging. That is how the teletype 
posters were made, by creatively arranging to overprint groups of characters to produce different 
levels of darkness. But dot-matrix printers using inked ribbons, ink jet printers, thermal printers, 
and other devices that form their output as an array of dots on paper can be used to print images. 
The quality of the result is primarily a function of the size and spacing of the dots.

The idea that the juxtaposition of many small dots of a few colors could be visually blended 
and perceived as continuous tone colored images was first exploited by artists, notably Georges 
Seurat, to create a style of painting known as “pointillism” (Figure 3.1). The same principle is 
used in CRT and LCD displays, which use combinations of red, green, and blue to produce an 
entire gamut of colors. It is also used for printing, ranging from books like this one to most 
desktop printers. For printing, the basic colors used are cyan, magenta, and yellow, which 
combine with the white of the paper to produce a range of colors.

A basic level of confusion that often arises in interpreting the specifications of a printer in 
terms of image quality has to do with “dots per inch” or dpi and “lines per inch” or lpi (and 
sometimes also pixels per inch for even more confusion). For any of the printers mentioned 
above, but particularly for laser and ink jet printers, the specification of dpi resolution is the 
number of tiny black dots (or whatever color ink or toner is used) that the printer can deposit 

  
(a)                  (b)

Figure 3.1 Pointillism: (a) detail from Georges Seurat’s “La Parade” (1889) showing the dots of paint 
used to create the impression of continuous tones; (b) close-up of an LCD display showing the indi-
vidual red, green, and blue colors whose varying brightnesses are visually combined to produce the 
perception of continuous colors.
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on paper. Usually, it is the same in both the line (horizontal) and page (vertical) directions 
on the paper, although some printers have different dpi resolution in the two directions. 
Normally, the dots are used to form characters and lines. A low number of dpi causes the 
characters to look rough and the lines to appear stair-stepped or “aliased.” Resolution of 1200 
dpi or more for laser printers is now common. It is capable of producing acceptable output for 
text, graphs, and drawings used in reports and correspondence. Ink jet printers often specify 
the dot size in terms of the volume of liquid ink in each dot, with values of a few picoliters 
now typical. These dots are small enough to be individually almost invisible, so that the result-
ing image appears to have continuous tones.

However, the dots placed on the paper by these printers consist of black or just a few colors. A 
color laser printer typically uses just black and three color toners (cyan, magenta, and yellow), 
and ink jet printers use no more than seven (e.g., black, gray, yellow, magenta, light magenta, 
cyan, light cyan). Since the brightness and size of the individual dots cannot be varied in order 
to print a continuous range of colors, it is necessary to use groups of these dots, a technique 
generally known as halftoning. This is commonly used in newspapers, magazines, and books 
(including this one) and can be used for color as well as monochrome images. The differences 
in halftone quality between (for instance) a newspaper and a book lie fundamentally in the 
number of dots per inch that can be placed on the paper and the way they are arranged to 
produce a gray scale or color result.

The basis of gray scale (monochrome) halftoning lies in the grouping of the individual black 
dots produced by the printer. A group of (for instance) 16 dots in a 4 × 4 array may form a 
halftone cell representing one image pixel. Within the cell, some or all of the dots are printed. 
Where no dot is printed, the white paper shows through. If the cell is small enough, the 
observer does not see the individual dots but instead visually averages the amount of dark ink 
and light paper, to form a gray scale. In this example, shown in Figure 3.2, there are 17 pos-
sible levels of gray ranging from solid black (all dots printed) to solid white (no dots printed).

In a 300 dpi printer, the individual black dots can be placed on the paper with a spacing 
of 1/300th of an inch in each direction. Grouping these into 4 × 4 halftone cells produces 
300 ÷ 4 = 75 cells per inch. If each pixel corresponds to a halftone cell, then an image 
can be printed with about the same dimension as it appears on the screen (typical moni-
tor resolutions are in the range of 72–100 pixels per inch, more for some laptops). Each 
halftone cell uses one of its 17 possible gray levels to represent the brightness of the 
pixel. Figure 3.3 illustrates how these printed cells represent the gray levels in typical 
anti-aliased text.

Of course, since an original image can typically have 256 gray levels, this is a rather poor 
representation of the brightness information. However, that is not the only nor even the most 
serious limitation. Instant prints from Polaroid® film show only about the same number of  
distinct gray levels (the film negative is much better than the print) and were considered use-
ful for many scientific purposes.

One problem with the halftoning method illustrated above is that the dots and cells are large 
enough to be visually distinguished by the observer. In a magazine or book, the size of the 
cells is smaller. The cell size is usually described as a halftone screen or grid: the spacing of 

Figure 3.2 Halftone gray scale produced with a 4 × 4 dot cell. Printing dots in all, some or none of the 
locations generates 17 different gray values.
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the screen in number of lines per inch (lpi) usually corresponds to the number of cells per 
inch described above (but sometimes the specification is given as line pairs per inch, since it 
is a pair of lines, one light and one dark, that comprises an element of resolution). A screen 
with well over 100 lines per inch (often 133 or even as high as 175 lines per inch) is used to 
produce high quality printed illustrations. Even in a newspaper illustration, a screen of at least 
85 lines per inch is typically used. Figure 3.4 shows several examples of halftone output from 
a laser printer, in which the number of halftone cells is varied to trade off gray scale vs. lateral 
resolution. The output from the current generation of desktop laser printers is often adequate 
for reports, but not for publication. Also, reproduction of such prints is usually difficult and 
beset by problems such as moiré or interference patterns.

Not only are more lines per inch of resolution desired to preserve the sharpness of features in 
the image, at the same time more brightness levels must be represented by these more finely 
spaced cells. That means that the printer (or imagesetter, as these higher quality devices that 
produce films or plates used in offset printing presses are generally called) must be capable 
of placing a much larger number of very much smaller dots. A gray scale of 65 levels can be 
formed with an 8 × 8 array of dots in a cell. With a 125-line screen, this corresponds to 8 × 
125 = 1000 dpi. This is about the starting point for typeset quality used to print images for 
commercial purposes. Color (introduced below) imposes additional restrictions that require 
even higher resolution (smaller dots). Imagesetters used for high quality printing generally are 
capable of 2400–3000 dots per inch.

An additional difficulty with the halftoning method outlined above arises from the dots them-
selves. Each of the various printing methods produces dots in a different way. Dot-matrix 
printers use small pins to press an inked ribbon against the paper. Ink jet printers produce 
tiny ink droplets. Some of these printers deposit the ink in a liquid form that penetrates into 
the paper, making slightly fuzzy dots, while in others the ink solidifies and adheres to the 
paper surface without penetration. The better grades of paper have surface coatings that pre-
vent the ink from spreading or penetrating. Thermal printers, still used in some fax machines, 

  

Figure 3.3 Representation of a gray 
scale display of anti-aliased let-
ters by halftoning. When printing 
text, letters are generally printed 
as solid black; this illustrates 
the halftoning used to represent 
brightness values in images.
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use a pin to pass an electrical current through the coating on a paper. One kind of paper is 
coated with a white oxide of zinc that is reduced by the current to deposit a dark spot of metal 
at the location; other thermal papers are based on the chemistry of silver. Laser printers work 
essentially like a xerographic copier. The light from the laser (or in some versions from a pho-
todiode) falls on a selenium-coated drum and by the photoelectric effect produces a localized 
electrostatic charge. This in turn picks up carbon particles (toner), which are transferred to the 
paper and subsequently heated to remain permanently.

Dots on paper

All of these technologies are limited by their ability to make a small, dark spot on the paper. 
The size of the carbon particles used as the toner in copier or laser printer cartridges limits 
the spatial resolution, and special finely ground toner is needed for resolutions of 1200 dpi 
and higher values. The limitation in making higher resolution laser printers is not primarily 

 
(a)                       (b)

 

(c)                       (d)

Figure 3.4 Enlarged detail of printed halftone images of an image using a laser printer: (a) original 
image; (b) 100 lines per inch; (c) 75 lines per inch; (d) 50 lines per inch. Increasing the number of 
halftone cells improves the lateral resolution at the expense of the number of gray levels which can 
be shown, and vice versa.
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in the additional memory needed in the printer, nor in the need to focus the light to a smaller 
spot on the drum, but in the toner particle size. Some systems disperse the toner using liquid 
carriers to improve the control of placement for very fine toner particles.

Similar restrictions limit the other printing methods. The difficulty of depositing a small 
but dark ink spot by the impact of a pin onto a ribbon, or the fuzziness of the dot written 
by thermal printing, have prevented those techniques from advancing to higher resolutions. 
Ink-jet printers can generate small drops and hence deposit small dots, but the inks tend to 
spread on the paper. The roughness of the paper surface, and the need for special coatings 
to prevent the inks from soaking into the paper fibers or spreading across the surface or the 
toner particles from falling off, become critical issues. It is not enough to purchase a high 
quality printer; the use of special paper with a proper surface finish for the particular printer 
is needed to achieve the quality of image printing that the printer technology makes available 
(Lee & Winslow, 1993).

Because the dots produced by printers are generally imperfect and rough-edged, it is hard to 
control them so that the gray scale produced by the array of dots within the cell is uniform. 
Most dots are larger than their spacing so that solid black areas can be printed. This is good 
for printing text characters, which are intended to be solid black. However, it means that 
the dots overlap some of the white areas in the cell, which darkens the halftone gray scale. 
Figure 3.5 illustrates this for the case of a 6 × 6 dot halftone cell. At the dark end of the scale, 
adjacent gray levels may be indistinguishable, while at the light end the difference between 
the first few levels may be very great. High quality printing of images usually tries to avoid 
pure white and pure black.

For the case of a 4 × 4 dot cell illustrated above using a 300 dpi printer, 17 nominal gray lev-
els, and 75 cells per inch, the darkening or “gain” of the gray scale produces images of rather 
poor quality. If the printer resolution is higher so that finer halftone cells with more steps can 
be created, it is possible to correct for this tendency to darken the images by constructing a 
mapping that translates the pixel gray value to a printed gray value that compensates for this 
effect. These adjustment curves are applied within the software so that more or less equal 
steps of brightness can be printed on the page. The software drivers that control the flow of 
information from the computer to the printer handle many chores, including the application of 

  

Figure 3.5 A 6 × 6 dot halftone can produce 
37 gray levels. The use of approximately 
round dots large enough to touch diago-
nally causes them to overlap and produce 
darker cells than ideal.
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nonlinear corrections for each of the colored inks or toners. Specific correction curves, called 
ICC (International Color Consortium) curves, must be supplied for each combination of inks 
and papers used. These may be generated by specific calibration of each system, or ones sup-
plied by the manufacturer may be used (but in the latter case, substituting third party inks 
and papers may produce unwanted deviations and poor results).

Because the human eye does not respond linearly to gray scale, but approximately logarith-
mically, producing a printed image with a proper visual impression of brightness requires a 
further adjustment of the display curve. Because of these limitations, a printing scale with 65 
gray values defined by an 8 × 8 dot halftone cell may be able to show only about half that 
many shades in the printed image.

Halftone grids in a typesetter or imagesetter are not limited by the size or perfection of the 
dots. Instead of coarse toner particles or spreading ink droplets, typesetters use light to 
expose a photographic emulsion, which is then developed to produce a film. The size of the 
silver grains in the film emulsion is much smaller than the effective dot size and the dots can 
be controlled in both size and shape with great precision. There is still a need for an adjust-
ment curve to compensate for the nonlinear response of human vision, however.

If the variation of brightness across an image is gradual and the total number of gray levels 
is small, a visual effect known as banding or posterization may result. This is illustrated 
in Figure 3.6. The step from one brightness level to the next appears as a contour line 
in the printed image and is visually recognized as a feature in the picture, when in fact 
it is purely an artifact of the printing process. Banding can be avoided by increasing the 
number of gray levels used, or in some cases by modifying the way in which the dots 
within the halftone cell are arranged to generate the gray scale. Generally, the rule for the 
maximum number of gray shades available is 1 + (dpi/lpi)2, where dpi is the printer reso-
lution in dots per inch (e.g., 1200 for a typical laser printer) and lpi is the lines per inch 
of the halftone screen (e.g., 75 lines per inch for the example above). This assumes that 
all of the gray levels can be used, subject to the darkening (“dot gain”) and visual effects 
mentioned above.

In the examples above, an arrangement of dots is used that produces more or less round 
regions of black within a white frame. With a larger dot array in each cell, a more regular 
circular pattern can be constructed. The round dot pattern is one of the more commonly used 
arrangements; however, many others are possible, including lines and crosses. Each of these 
produces some visual artifacts that may be useful for artistic effects but generally interfere 
with viewing the image contents. For instance, the diamond pattern used by most Postscript 

(a)

(b)

Figure 3.6 A gray scale bar showing banding: (a) 32 steps; (b) 16 gray steps.
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printers as an approximation to round dots causes dot densities less than 50% black to appear 
quite different from ones that are 50% or more black. The reason for this is that at the 50% 
point the dots touch from one cell to the next so that the eye perceives a sudden transition 
from dark dots on a white background to the reverse, even if the individual dots are not visu-
ally evident (Figure 3.7). All such artifacts degrade the representation of the original gray 
scale image.

Most ink-jet printers place the individual ink dots randomly within the cell, so that the cell 
dimensions and alignment are not visually evident. Also, when the dots within each halftone 
cell are randomly distributed, fewer visual artifacts are likely. This requires additional pro-
cessing within the printer. Other printers use programs that analyze the neighbor cells. If 
cells on one side are dark and on the other side are light, the program may use a pattern of 
dots that is shifted toward the dark neighbors to produce a smoother edge. This works well 
for generating smooth boundaries for printed text characters and minimizing jagged edges on 
lines, but provides little consistent benefit for gray scale image printing.

Printers of modest dpi resolution cannot produce halftone cells that are small and still repre-
sent many gray levels, and visually distracting patterns may appear in images if regular pat-
terns of dots are used within the cells. Hence, another approach used with these printers is 
to use “dithering” to represent the image. In a simple random dither, each possible position 
where the printer can place a black dot corresponds to a point in the image whose gray scale 
value is examined. If the point is very dark, there is a high probability that the dot should be 
printed (and vice versa). A random number is generated and compared to the gray scale; if 
the number is below the gray scale value for that point (both properly scaled), then the dot is 
printed on the page.

As shown in Figure 3.8, even coarse dithering can produce a viewable representation of an 
image. Many different types of dithering patterns are used, some of them random or pseudo-
random and others with various patterned arrangements of the dots. Usually, the particular 
dither pattern used is determined either by the printer itself or the interface software pro-
vided for it. There is a considerable literature on the design of dither patterns, but the user 
of the image analysis system may not have much control or choice of them. Dithered images 
are generally good at showing gradually varying brightness gradients, since human vision 
responds to an average dot density or spacing. But sharp edges are blurred, broken up, or 
displaced because there is no continuous line or boundary printed, and it is difficult to com-
pare the brightness of regions within the image. Dithered printing is usually considered to 
be a “low-end” method for producing crude hard copy and not suitable for use in reports or 
publications.

Figure 3.7 When 50% coverage is reached, the halftone spots touch, changing the effect from one of 
black dots on a white background to white dots on a black background.
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In spite of the limitations discussed above, monochrome image printing using a halftoning 
method and a printer with 1200 dpi capability is adequate for many kinds of image processing 
applications, and the resulting images are suitable in quality for reports. Because the printouts 
cannot be adequately reproduced by office xerographic copiers, it is necessary to make origi-
nal prints for each report copy.

(a)

(b)

Figure 3.8 Two different dither 
patterns for the “girl” image 
shown in Chapter 1, Figure 
1.24:

  (a) random dots;

  (b) patterned dots.
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For higher quality work, photographic recording can be used. This process may seem like a 
step backwards, especially when digitized images are acquired and processed in the computer. 
But since facilities for handling photographic images, duplicating them, and making halftone 
screens photographically for printing are well developed, fully understood, and comparatively 
inexpensive, this is often the most effective solution. Forcing a “high tech” solution in which 
images are directly merged into a report within the computer may not be worthwhile in terms 
of time or cost if only a small number of copies are needed. Mounting photographs on a few 
pages or inserting them as separate pages is still a viable presentation method. As printing 
technology continues to advance, and document-creating software incorporates images well, 
the balance will continue to shift toward direct printing from the computer.

Color printing

Printers capable of producing color images are considerably more complicated but are rou-
tinely used as standard computer accessories. The method that can be seen by looking at the 
color images in this book with a magnifier creates halftones for each of several different color 
inks and superimposes them to produce the printed color image. Imagesetters typically use 
four color plates (for cyan, magenta, yellow, and black inks), produced by color separation 
software in the computer, for full color printing. That is not the only possibility, particularly in 
advertising, where specific additional “spot” colors may be introduced to assure a perfect color 
match. There are many complexities in the color printing process, however. The following sec-
tion considers those that are important for most networked or desktop color printers.

Displaying a color image on a computer monitor or television set may be accomplished by illu-
minating red, green, and blue phosphors with the electron beam in a cathode ray tube (CRT). 
Large plasma displays, and liquid crystal (LCD) displays used for flat panel monitors, projec-
tors, and notebook computers use different technologies, but also produce red, green, and 
blue primary colors. There are also large-screen displays (such as used for outdoor advertis-
ing and at sporting events) that consist of arrays of discrete LEDs or even light bulbs. Each of 
these methods generates the colors in different ways, but it is still the visual mixing together 
of red, green, and blue that produces the full range of colors that can be shown.

This range is called the “gamut” of the device (Stone et al., 1988). In a display that emits red, 
green, and blue light (RGB), it is possible to generate a useful fraction of the total range of 
colors that the human eye can see. Printed images are more limited. Figure 3.9 shows the 
CIE color diagram introduced in Chapter 1, comparing the typical color gamut for a computer 
monitor and an ink-jet color printer. The missing colors that cannot be generated lie near the 
outside of the diagram; they are the most saturated colors.

As presented in the figure, the concept of gamut applies to the color range that a device can 
reproduce, but does not address the range of brightness values. This is also an important 
issue, since, as discussed in Chapter 2, human vision is capable of responding to an enor-
mously wide range of brightnesses, greater than any display (and much greater than any hard-
copy printout) can reproduce. Cameras, both film and digital, can also record images covering 
a wider range of brightness values than can print out on either photographic or ink-based 
printers (S. Battiato et al., 2003). How, then, can satisfactory representations of scenes with 
such wide latitude be presented to a human observer?

There is a considerable amount of literature on the processing of high dynamic range images 
in order to accomplish this (Debevec & Malik, 1997; Durand & Dorsey 2002; and the pro-
ceedings of SIGGRAPH for the past decade). Most of the techniques rely on maintaining 
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relative brightness differences locally while suppressing them globally, because human vision 
responds to local changes in brightness but tends to ignore gradual variations. The simplest 
approach is a high pass filter (which, as discussed in succeeding chapters, suppresses low 
frequency or gradual changes in the image while keeping or emphasizing high frequencies or 
abrupt changes). Some of these simple methods introduce visible haloes around edges, which 
the more advanced techniques eliminate.

Two representative techniques are the Retinex method and homomorphic range compression. 
The Retinex approach is based on the original work in 1963 of Edwin Land. As mentioned in 
Chapter 2, he postulated that human vision depends on spatial comparisons of brightness 
and color, and his ideas led to many insights into vision that are still the subject of research 
50 years later. For a review, see the January 2004 issue of the Journal of Electronic Imaging 
(volume 13 number 1), which is devoted to “Retinex at 40” and includes a functional imple-
mentation of the Retinex algorithm for brightness compression using Matlab (Funt et al., 2004) 
as well as numerous other pertinent articles (McCann, 2004; Ciurea & Funt, 2004; Sobol, 2004; 
Cooper & Baqal, 2004; Rahman et al., 2004).

The Retinex method operates in the pixel domain and performs comparisons at different 
scales, and is consequently sometimes called a multiscale technique. The homomorphic 
method operates instead in Fourier space and is a particularly efficient way to handle the 
compression of brightness values to fit into a reduced gamut for printing. The procedure is 
described in Chapter 6. As shown in Figure 3.10, the result preserves the local contrast 
while compressing the overall brightness range in the image so that it can be printed. Details 
emerge from deep shadow areas while retaining contrast in bright areas.

The concept of gamut applies equally well to other color display and recording devices. 
However, the gamut is not always as simple in shape, as shown in Figure 3.9. For one thing, 
printing uses subtractive rather than additive color. In terms of the color cube (introduced in 
Chapter 1 and shown in Figure 3.11) the blank paper starts off as white and the addition 
of cyan, magenta, and yellow inks removes the complementary colors (red, green, and blue, 
respectively) from the reflected light to produce the possible range of colors. It is common to 
call these subtractive colors CMY to distinguish them from the additive RGB colors.

 

Figure 3.9 The CIE color diagram with gamuts 
shown for a typical computer monitor and 
an ink jet printer.
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Figure 3.11 Comparison of 
RGB (additive) and CMY 
(subtractive) color spaces. 
The additive color space 
adds red, green, and blue 
emissive colors to a black 
background, while the 
subtractive color space 
removes cyan, magenta, 
and yellow colors from a 
white background.   

Green
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RedBlack
(CRT)

White
(Paper)

Yellow

Magenta
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Color
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RGB Additive Colors CMY Subtractive Colors
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Figure 3.10 Homomorphic reduc-
tion of the brightness range 
reveals detail in shadow areas 
without blowing out contrast in 
the bright areas;

  (a) original;

  (b) result.
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The theory of subtractive printing, summarized in Figure 3.12, suggests that the mixture 
of all three colors can produce black (just as with additive RGB color, the summation of all 
three colors produces white). However, printing with CMY inks does not produce a very good 
black, but instead gives a muddy grayish brown because of impurities in the inks, reflection 
of light from the surface of the ink (so that it does not pass through all of the ink layers to be 
absorbed), and difficulty in getting complete coverage of the white paper.

The most common solution is to add a separate, black ink to the printing process. This reduces 
the need for large amounts of the colored inks, reduces the thickness of ink buildup on the 
page, and reduces cost. But from the standpoint of image quality, the most important factor 
is that it allows dark colors to be printed without appearing muddy. The four-color cyan-
magenta-yellow-black system (CMYK) uses four halftone screens, one for each ink. However, 
while converting from RGB colors (or CIELab, HSI, or any other color space coordinate sys-
tem) to CMY is straightforward, converting to CMYK is not. Rules to calculate how much black 
to put into various color representations depend on the visual response to colors, the kind of 
paper to be printed, the illumination the print is viewed with, and even the contents of the 
images (Sharma, 2003).

Algorithms for converting from CMY to CMYK involve specifying levels of undercolor removal 
(UCR) and gray component replacement (GCR), which are essentially arbitrary, are little docu-
mented, and vary considerably from one software program to another (Agfa, 1992). The calcu-
lations usually are part of the printer driver software. The general approach is to use the value 
of whichever of the three components (CMY) is darkest to determine an amount of black to be 
added. For instance, for a color containing 80% cyan, 50% magenta, and 30% yellow, the 30% 
value can be taken as an index into a built-in calibration curve or lookup table. This might 
indicate that a 13% value for the black ink should be chosen for gray component replacement. 
Then, the amounts of all of the colors are reduced by varying amounts. It is difficult to design 
algorithms for these substitutions that do not cause color shifts. Also, the substitutions do not 
work equally well for printing with different combinations of ink, paper finish, etc.

As indicated by the reduced gamut in Figure 3.9, color prints are not as vivid or saturated as the 
image appears on the monitor. In addition, the colors depend critically on the paper color and 
finish and viewing conditions. Changing the room light can slightly alter the visual appearance 
of colors on an RGB monitor, but because the monitor is generating its own illumination this 
is a secondary effect. Since a print is viewed by reflected light, changing the amount of light 
or the color temperatures of room light with a print can completely alter the appearance of the 
image. The color temperature (a handy way of describing the spectrum of intensity vs. color) of 
incandescent bulbs, fluorescent bulbs, direct sunlight, or open sky are all different. Sunlight is 
about 5500K, while an incandescent bulb is typically 2900K (warmer, redder) and an overcast 

 

Figure 3.12 Combinations of 
RGB additive colors on a 
black background and CMY 
subtractive colors on a white 
background.
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sky may be as high as 8000K (colder, bluer). Many computer CRT monitors are close to 6500K; 
LCD monitors vary depending on whether fluorescent or LED illumination is used.

Human vision can be tricked by combinations of illumination and shadow, inks or other 
colored coatings, surface finish (smooth, or textured in various ways), and even the presence 
of other adjacent colors in the field of view, which change the way humans judge colors in 
an image. These other colors may even lie outside the image itself; consider how a colored 
mat can enhance the appearance of an art print. When “true” color prints of an image are 
required, it is necessary to perform calibration of a specific printer and monitor so that accept-
able fidelity is obtained. This is of great concern in advertising; the purchaser of clothing from 
a mail order catalog expects the colors of the cloth to match the printed photograph, which 
is no easy task. The calibration process usually works by adjusting the monitor output (with 
look-up tables in the display hardware) so that the appearance of colors there is tailored to 
match the ability of a specific printer/paper/ink combination to reproduce them.

For most (but certainly not all) applications of image processing, the purpose of printing in 
color is to distinguish the variously colored regions present; some inaccuracy in the fidelity of 
the colors may be acceptable. If exact color matching is not necessary in a particular application 
then the task becomes much easier, although there is still a need to be concerned about the 
color gamut of the printer, the consistency of colors (to allow comparison of different images or 
regions), and of course the resolution of the printer. The color gamut is important because colors 
of increasing saturation in the original image, which can be distinguished on the video display, 
may become similar in the print image if the saturation exceeds the range of the printer.

Producing CMYK halftones (so-called color separations) and superimposing them to produce 
color prints sounds simple enough, but it harbors many problems that commercial printers 
must deal with routinely. One is how to superimpose the halftone screens so that they do 
not produce visual moiré patterns in the image. Figure 3.13 shows an example of a moiré 
effect produced by different color patterns. The lines that appear are an artifact of the spac-
ing and alignment of the individual patterns. Traditional offset printing defines “ideal” screen 
angles for the four CMYK screens as 45, 70, 90, and 105 degrees, respectively, as shown 
in Figure 3.14. This aligns the colored screens to form small rosettes that together make 

up the color. Figure 3.15 shows an example; 
each cell in the screen varies in the degree 
to which it is filled to control the amount of 
each color, and some of the halftone cells may 
be partly superimposed on each other. Since 
some inks are partially transparent, this can 
produce various color biases depending on 
the order of printing.

In most printing, the colors are not intended 
to be superimposed on each other, but printed 
adjacent to each other, and to allow some 
white paper to show. Most color printing meth-
ods suffer from the fact that as more color is 
added, the white paper is covered and the 
appearance becomes darker. This is another 
reason that high-resolution halftone screens 
and very small printing dots must be used. 
Generally, when four halftone grids or color 
separations are used, the dpi of the printer 

Figure 3.13 Moiré pattern produced by overlay-
ing arrays of cyan, magenta, and yellow color 
dots.
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Magenta 75

Cyan 105

Blac
k 4

5

Yellow 90

Figure 3.14 Ideal screen angles for CMYK color printing place the halftone screens at angles of 45° 
(Black), 75° (Magenta), 90° (Yellow), and 105° (Cyan).

Figure 3.15 Enlarged example of color halftone image printed in a previous edition of this textbook.
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must be doubled for each color to get an equivalent printing resolution to monochrome print-
ing. In other words, each pixel now requires four interleaved halftone cells, one for each color. 
Since the dot size for each of the four colors is only one-fourth of the area, printing a solid 
expanse of one color is not possible, which further reduces the maximum saturation that can 
be achieved and hence the gamut of the printer.

Most desktop printers do not provide control over the screen angles, and many printers use a 
zero angle for all four screens due to the way the printing mechanism works (for instance, a 
typical color ink jet printer). Some page description languages (e.g., PostScript Level 2) include 
provision for such control, but only high-end typesetters and imagesetters generally respond 
to those commands.

All of the problems present in printing monochrome or gray scale images, such as banding, 
posterization, limited numbers of intensity levels, and so forth, are also present in producing 
the color separations. In addition, color printing introduces the additional problems of screen 
angles and moiré patterns. Finally, alignment and registration of the colors must be consid-
ered, since in many printers colors are printed one at a time and the paper must be handled 
in several passes. Some printing methods deposit multiple colors in a single pass, but these 
have their own problems of allowing inks to dry without mixing.

The printing and registration of colors presents one additional problem. Consider a region of a 
uniform color that is a mixture of two or more of the primary printed colors and is adjacent to 
a region of a different color. At the boundary, the colors must change abruptly from one color 
to the other. However, the two color screens are not aligned dot for dot, and along the bound-
ary there will be cases in which one of the two left-side color dots may be present close to one 
of the two right-side color dots. This gives rise to false color lines along boundaries. In graphic 
arts, such artifacts are usually avoided by trapping to remove the colors at the boundaries in 
a particular order, or covering up the boundary with a black line. Obviously, such tricks are 
not available in printing real images where every pixel may be different.

Printing hardware

The description of converting an image to CMY or CMYK values and superimposing them as 
separate halftone screens on the printed page has ignored the physical ways that such color 
printing is performed (Kang, 1997, 1999). Few computer users have ready access to imagesetters 
and offset printing presses with high enough resolution to produce the highest quality results. 
There is a considerable variation in the quality, cost, and performance of different types of desk-
top printers. The most common currently available methods include ink jet, dye sublimation, 
and color laser printers. A comparison of these technologies follows, recognizing that continu-
ous progress in print quality is being made as many vendors compete for their slice of a large 
and growing market. In all of these comparisons it is important to keep cost in mind. Many 
of the printers themselves have dropped significantly in price, but the cost of consumables — 
paper, ink, etc. — keeps the overall cost of each copy high for several of these devices.

To assist in comparing the various printer types, Figure 3.16 shows a portion of an image 
printed using several of the technologies described in the following section.

Dye sublimation (or dye diffusion) printers represent the high end of image quality available 
in desktop printers. They require special coated paper or transparency material. The dyes 
are transferred one at a time from a master color sheet or ribbon to the paper, with a typical 
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resolution of about 300 dpi. A portion of the color ribbon as large as the paper is consumed 
in making each print, even if only a small amount of the color is needed.

The low resolution value of 300 dpi, as compared to 1200+ dpi for most of the other types of 
color printers described here, does not indicate the print quality because the print is formed in 
a different way. Rather than assembling tiny printer dots to build up the color, these printers 
can control the amount of each color more directly. The amount of dye that is transferred from 
the ribbon to each pixel on the hardcopy is controlled by heating the print head to sublime or 
vaporize varying amounts of dye. A control to 1 part in 256 is typical, although the use of a 
corrective gamma function for each color to balance the colors so that the print appears simi-
lar to the screen image (so-called “color-matching”) may reduce the effective dynamic range 
for each color to about 1 part in 100. Still, that means that about 1 million (1003) different 
color combinations can be deposited at each point in the recorded image.

Dye sublimation printers do not use a halftone or dither pattern. The dyes diffuse into the 
polyester coating on the paper and blend to produce continuous color scales. Each of the 300 
printed regions per inch on the paper contains a uniform proportioned blend of the three or 
four dye colors. The lack of any halftone or dither pattern and the blending and spreading of 
the color dyes within the coating (instead of lying on the surface as inks do) produce an image 
that is very smooth and pleasing in its appearance. Magnification (Figure 3.16b) reveals the 
continuous tone and the just-visible pixelation pattern.

(d)(c)

(b ) (b   )

Figure 3.16 Enlarged fragments of the same image printed using different devices: (a) original; (b) dye-
sublimation printer; (c) ink jet printer; (d) laser printer.
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It is sometimes claimed that these printers are “near photographic” in output quality, but in 
several important respects that is not true. The saturation is less than a good photographic 
print, so that the color gamut is lower, and the 300 dpi resolution, compounded by the spread-
ing of the dye in the coating, produces much poorer sharpness than a photographic print 
(which can easily resolve several thousand points per inch). This spreading may be somewhat 
worse along the direction of paper movement than across it, which can cause some distortion 
in images or make some edges less sharp than others. On the dye sublimation print, large 
areas of uniform or gradually varying color appear smooth because there is no dither or half-
tone to break them up, but edges and lines may appear fuzzy.

In addition to these technical limitations, the relatively high cost of dye sublimation print-
ers and of their materials has limited their use as dedicated printers for individual imaging 
systems. At the same time, their rather slow speed (since each print requires three or four 
separate passes with a different color ribbon or a ribbon with alternating color panels) has 
made them of limited use on networks or for making multiple copies. Still, they have been 
the preferred choice for making direct hardcopy printouts of images. They are finding some 
use in commercial outlets, where consumers can insert their slides or color negatives into a 
scanner, or load an image from a memory stick or CD, select the image and mask it if desired, 
and then directly print out a hard copy to take home. The glossy finish of the coated paper 
probably causes many customers to think they have a traditional photographic print, although 
the effects of temperature, ozone, and humidity on useful life are worse.

Ink jet printers are certainly at this time the most widely used devices for producing hard copies 
of images. The printers are inexpensive (although the consumable supplies are not), and the reso-
lution is high (many current models offer more than 1200 dpi). Ink jet printers are by far the most 
sensitive to paper quality among all of the technologies described here. Quality prints require a 
paper with both internal sizing and surface coatings to prevent the ink from wicking into the cel-
lulose fibers (Figure 3.17), while promoting adhesion and providing a bright white background. 
Pigments such as CaCO3 or TiO2 also help to whiten the paper. Surface coatings such as gelatin 
or starch are hydrophobic to prevent the ink from spreading, are smoother than the raw cellulose 
fibers, and may additionally be rolled (calendered) to provide an even more uniform surface. Inks 
must be carefully formulated with very tiny pigment particles (if these are used instead of dyes) 

to allow small droplets (the current state of the art is 1 
to 4 picoliter drops for each tiny printer dot) to be uni-
formly and consistently transferred to the paper.

Longevity of the prints is strongly affected by expo-
sure to ultraviolet light, humidity, temperature, ozone, 
acidity of the paper, etc. Some manufacturers now 
offer “archival” quality inks and papers, meaning that 
the paper has a high pH (usually due to added alka-
line buffers to reduce acidity that causes discoloration 
or physical deterioration of the paper) and a high rag 
content (fibers other than wood cellulose), and the 
ink contains pigments that do not break down with 
exposure to UV radiation. However, it should not 
be expected that even these prints can survive well 
for long periods unless storage conditions are care-
fully controlled. Achieving acceptable lifetimes for 
computer-printed hardcopy continues to present chal-
lenges to equipment manufacturers. One of the recent 

Figure 3.17 Wicking of ink on an uncoated 
paper.
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developments to improve the lifetime of prints is to “print” an additional layer of transparent 
material on top of the colored inks to act as a sealant against oxygen and moisture. This also 
improves the visual appearance of the final prints and is used in inexpensive “photo printers” 
that print 4 × 6 inch prints that rival traditional photographic prints for snapshots.

There are two types of inks used in these printers, some containing pigment particles and 
others containing dyes. The inks containing pigment particles are less affected by paper 
variables (flatness, surface coatings, etc.) and suffer less environmental degradation by light, 
moisture, or ozone, or other airborne contaminants. Hence, they are often called “archival” 
inks, although the practical life of prints and the resistance to color shifts depend upon stor-
age conditions. The pigment particles are not absorbed into the paper or its surface coatings, 
which makes them more sensitive to smearing or scratching. Dye-based inks, which are more 
common, dry quickly, and because they are more reflective than pigment-based inks produce 
brighter colors and a broader range of colors.

In order to expand the gamut of the printers and to improve the ability to render subtle shades 
such as skin tones, many ink jet printers now use more than the four basic CMYK inks. In a typi-
cal six-color system called CcMmYK there are two less saturated cyan and magenta inks avail-
able as well. Eight-color systems introduce less saturated yellow and black inks, and others may 
be used in addition. Algorithms for converting the stored RGB values for each pixel to appropri-
ate blends of multiple inks are complex, proprietary, and highly paper specific. Many ink jet 
printers offer multiple quality levels. The faster settings consume less ink, producing acceptable 
draft images with less saturated colors, while the slower settings are used for final copies.

In light areas of printouts, the individual droplets can be seen (Figure 3.16c). Ideally these 
are all be perfectly round, identical size, well spaced color dots. In practice, they may dete-
riorate rapidly as ink nozzles clog or wear, are affected by temperature, and of course by the 
absorbency and smoothness of the paper being used. When more color is present and more 
different ink colors are used, they superimpose on each other and cover more of the paper, 
producing a darker image. As noted above, this is the opposite behavior to the appearance of 
the image on the CRT display, where more color produces a brighter pixel.

As shown above, the gamut of a printer is usually described by an outline on a color wheel or 
CIE diagram of the maximum color saturations achievable. The actual situation is much more 
complicated because saturation varies with brightness. By printing out swatches covering the 
entire three-dimensional color space, it is possible to construct a more complete representa-
tion of a printer’s gamut. Figure 3.18 shows an example, for an Epson six-color ink jet printer, 
using the L•a•b representation of color space described previously. Printers with multiple inks 
can produce thousands of different hues and modulate colorant density to produce high tonal 
resolution and subtle difference in color. However, as with all such gamut plots, there are col-
ors that cannot be represented on the hard copy.

Ink jet printers can also be equipped with a selection of gray inks, which when controlled by 
appropriate software can do an extremely good job of printing gray scale images. By select-
ing different ink densities as well as controlling the placement of tiny drops, a gray scale can 
be constructed that is very similar to photographic prints, and with a very acceptable spatial 
resolution. Selection of papers with good surface finish and whiteness is still important.

In summary, ink jet printers offer hardcopy possibilities that rival (and in some cases surpass) 
the tonal range and resolution of conventional photographic materials. However, while the 
initial cost is modest, the per-copy costs are comparable to photographic prints, and in many 
cases longevity is a concern. Properly used, which implies the use of properly calibrated ICC 
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curves specific to the inks and papers used, ink jet printers are capable of very acceptable 
results and remain the first choice of many users.

Color laser printers are the most economical for many applications, because they use plain 
paper and have relatively high speeds. The higher initial cost of the printer is offset by very 
low cost per copy. They work by separating the image into CMYK colors and using each to con-
trol the illumination of a separate charged drum that picks up the corresponding color toner 
and deposits it on the paper. One major design issue with these printers is the difficulty of 
keeping everything in alignment, so that the paper doesn’t shrink or shift as it goes from one 
drum through a heater to bake the toner and on to the next drum. The use of a relatively thick 
paper with a smooth finish helps. In addition, the order in which the toners must be applied 
is critical, because with most models presently available the dots are not laid down as a set of 
halftone screens at different angles (as shown above). Instead, they tend to overlap each other, 
which makes it difficult to achieve good color saturation or accurate color blending.

Figure 3.16d shows that saturated colors such as red are formed by combining two or more 
toner colors and give good coverage of the white paper, but more subtle colors are not so 
clear or saturated and may appear muddy. The gamut (maximum saturation limits for colors) 

Figure 3.18 Three-dimensional gamut for 
a six-color CcMmYK ink jet printer, dis-
played as cross-sections through L•a•b 
color space (Rezanaka & Eschbach, 
1996).
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of this type of printer is not too meaningful because the most saturated colors are rather well 
defined but, the less saturated ones are not and are more difficult to distinguish from each 
other. Color laser prints are generally a marginal choice for image reproduction, although they 
may be satisfactory for reports.

Some dry ink printers (also called phase change printers since the ink is melted and trans-
ferred to the paper) and thermal wax printers are used for printing images, although they are 
best suited to computer graphics because of their bright colors and glossy results. They work 
well on overhead transparencies, which are fine for producing business graphics presenta-
tions, but are not usually an acceptable medium for image-processing output. The print head 
in a thermal wax printer contains heating elements that melt the wax and transfer the color 
to the paper. This process is repeated for each color, which may cause alignment problems. 
In many cases, the dots are too large and the resulting number of shades for each color too 
small, and the resolution too poor, to show details well in images. The image appears as flat, 
shiny plates of ink pressed onto but not into the paper surface.

Film recorders

It is sometimes tempting to try to photograph the image from the computer monitor in order to 
create slides or prints using conventional film methods. In addition to the problems and time 
delay of getting film processed in this modern digital age, there are some potential problems 
with this approach. These include avoiding reflections of windows or room lights on the moni-
tor, distortion due to the curvature of a CRT display (and even with a flat LCD panel, a wide 
angle lens introduces distortion so that the photo must be taken from some distance away), and 
the need to use a long enough exposure time (at least 1/2 second) to capture multiple raster 
scans and eliminate a discontinuity from a partial scan. Since the monitor image consists of a 
regular pattern of color dots, the pattern is also recorded on the photo. If the photo is subse-
quently converted to a halftone, the array of dots photographed from the screen interacts with 
the spacing of the halftone screen to produce a moiré pattern that can be objectionable.

Film has high resolution, good color saturation, and dynamic range, and is an excellent record-
ing medium. But photographing a color monitor is not the right way to record the image. 
Dedicated film recorders solve the problems noted above by using a monochrome CRT with 
a continuous phosphor and a flat face. The continuous phosphor gives a very high resolution 
with no structure to cause moiré patterns, while the flat face eliminates distortions. With only 
a single electron beam, sharp focus and uniform intensity can be maintained from center to 
edges much better than with CRT displays; the fixed optics also provide sharp focus across 
the image with no vignetting or distortion.

A motorized filter wheel containing red, green, and blue filters is placed between the CRT 
and the camera. Software much like that used to drive a printer is used to separate the image 
into red, green, and blue components and these are displayed one at a time on the CRT with 
the appropriate filter in place. The much higher display resolution allows entire images to be 
displayed with full pixel resolution, which is not usually possible on the computer monitor. 
The filter densities are adjusted to balance the film sensitivity. All three color components are 
recorded on the same frame of the film. With most recorders, the entire process is automatic, 
including film transport and compensation for different film types and speeds.

The only drawbacks are the exposure time of several seconds and the delay until the film is 
developed, and of course the cost of the entire unit. The cost varies as a function of resolu-
tion (from 2000 dots horizontally up to as much as 16000 dots) and the flexibility to handle 
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different sizes and types of film. High-end recorders are used to expose movie film frame by 
frame to produce movies containing “virtual reality” scenes and rendered computer images 
(e.g., “Toy Story”), or to restore old classics by removing dirt and making color corrections 
(e.g., “Snow White”). As digital technology continues to advance, the movie industry is moving 
to replace film with direct digital delivery to theaters, for projection onto the screen.

Another option that can produce photographic prints from computer images makes use of a 
growing number of on-line services. Photographic labs now offer inexpensive conversion of 
uploaded image files to prints or slides. Most return the printed results within days via mail 
or FedEx. This is a viable alternative to maintaining expensive equipment, but most services 
accept only jpeg-compressed files, and the color fidelity is a variable that is difficult to control. 
The technicians handling the image files are used to dealing with conventional photographs 
of real-world scenes, and even then make color adjustments that are not consistent from lab to 
lab or from time to time. The color information (such as the color space description included 
in the file by Photoshop) is often ignored. Faced with scientific or other unfamiliar images, 
these labs produce results that often introduce color shifts. After spending time performing 
the color calibrations shown in Chapter 1 to match colors between a camera, display, and 
printer, it is frustrating to get results from these labs that are different.

Other presentation tools

In addition to producing hard copy versions of images to include in reports, another impor-
tant use of images is their inclusion in Powerpoint and other similar presentation tools. There 
are several problems that this presents to the unwary user.

First, many image analysis programs can display images on the computer monitor with every 
pixel shown. A “100%” display of a megapixel image is necessary to reveal all of the potentially 
important detail, but is likely to be larger than the monitor, and to require scrolling of the 
image. Reducing the image to fit on the display is done by skipping most of the stored pixels, 
which may hide important details. Many image handling programs also record in the image 
file either the intended output size (in inches) for the entire image or the intended “dpi” (which 
confusingly usually means the number of pixels per inch) with which it is to be printed. These 
are then used to control the output to the printer so that the proper result is obtained.

But when the image is copied from that program and transferred to a presentation tool such 
as Powerpoint, all that information as well as specifications for the color corrections is likely 
to be lost. Establishing the proper size of the image on the “slide” can be a problem. Unless a 
small fragment of the image is used, the image must be reduced in size to fit within the area 
of the slide, and that means that many of the pixels must be discarded as the image is sampled 
down to fit the required dimensions. Consequently, many of the details may not be visible in 
the presentation unless carefully selected regions of interest are chosen.

Second, the color balance and fidelity carefully achieved by calibration of the camera, CRT 
display, and printer (described in Chapter 1) result in stored ICC curves for those devices. 
But most versions of Powerpoint, for example, do not use those curves for their slides, so 
the colors are different in appearance than in the image analysis program. And unless the 
projector is also calibrated, it will not match the screen appearance of the images, either.

If images are incorporated in a presentation designed for delivery by html documents via the 
web, it is also important to remember that web browsers generally do not respect or use ICC 
curves or any other form of color control. There are (only) 216 colors that are supposed to be 



163Printing and Storage
© 2011 by Taylor & Francis Group, LLC

standardized for web browsers to use, but even for these the appearance on any particular 
user’s monitor is likely to be highly variable. Distributing documents as pdf (Adobe Acrobat®) 
files is a better choice, because it does provide some control over the color information and 
the degree of image compression allowed, but you still can’t depend on the calibration of 
someone else’s monitor or printer to view your images.

File storage

When working on a computer-based image analysis system, images can be saved as disk files. 
There seems to be no reason to consider these files as being any different from other disk 
files, which may contain text, drawings, or programs. In one sense this is true: files contain 
a collection of bytes that can represent any of those things as well as images. But from a 
practical point of view, there are several reasons for treating image files somewhat differently, 
because they require somewhat different storage considerations:

 1. Image files are usually large. In terms of computer storage, the old adage that a picture 
is worth one thousand words is clearly a vast understatement. A single video frame 
(typically stored as 640 × 480 pixels) in monochrome occupies about 300 kilobytes (KB), 
while one in full color requires about 1 megabyte (MB). With current digital still cameras 
having well over 10 megapixel detectors and bit depths that require 2 bytes each for red, 
green, and blue, file sizes can be 60 MB or more. Desktop scanners produce even larger 
file sizes. A series of images forming a time sequence or a three-dimensional array of 
voxel data (which can be considered as a series of planes) can be far larger. A 1000 × 
1000 × 1000 voxel tomographic reconstruction requires 1 gigabyte (GB), or twice that 
if the density values for the voxels have a dynamic range that exceeds 256 levels. This 
means that the storage capacity used must be large, preferably open-ended by allowing 
some kind of removable media, and reasonably fast. It also increases the interest in stor-
age methods that utilize compression to reduce file size, and it becomes attractive to save 
reduced resolution copies of the file (e.g., thumbnails) as rapidly accessible indices.

 2. Imaging usually requires saving a large number of files. This reinforces the require-
ment for large amounts of fast storage, but it also means that access to the stored 
images is needed. Constructing a database that can access images in a variety of ways, 
including showing the user small thumbnail representations, using keywords and 
other indexing tools, is an important need that has been recognized by many soft-
ware producers. Automatically extracting classification data from the image to assist 
in searching is a more difficult problem.

 3. Data management in the era of computers has not yet fully exploited the possibilities of 
coping with relatively straightforward records that contain text and numbers. The “file 
cabinet” metaphor is a poor and limited one. Search engines on the internet compile 
lists of the words used on trillions of sites so they can produce fast results, but every-
one who has used them knows that the process finds many extraneous sites and misses 
many of interest. Google®, for example, offers search engine capability that returns 
images, but the indexing is based on associated key words, not on the image contents.

Many widely used programs, such as Adobe Bridge®, allow the addition of keywords from a 
pre-established list to images and make it relatively easy to use those keywords to locate the 
images from a collection on disk. But the user must still then select the one(s) of interest by 
visual examination. And the programs don’t help to locate the correct CD or DVD where the 
images may be stored.
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The real issue for computerized file storage is access to files and finding documents. Adding a 
field that can accommodate an image to a database primarily constructed to hold text entries 
does not make it into an imaging database. For instance, keeping a picture of each employee 
in a personnel file may be worthwhile, but it would hardly allow a user to locate employees 
by knowing what they looked like or by having another photo of them. That would require 
looking at every image.

One type of database that involves images works in essentially the opposite direction. A geo-
graphical information system (GIS) stores multiple images and maps. These record different 
kinds of information, each keyed to locations. There may also be text records linked to those 
locations. By overlaying and correlating the multiple map representations, it becomes possible 
to compare the locations of features on one map (e.g., roads or buildings) with those on others 
(types of soil or vegetation, underground aquifers, etc.). There are important issues to plan in 
constructing a GIS, since the various maps and images (including aerial and satellite photos) 
must be aligned and registered, taking into account their different resolutions. In addition, 
displaying such rich multidimensional data presents challenges different from those faced in 
most image databases.

There may be some other factors to consider in designing an optimum system for image stor-
age. For instance, in forensic, medical, and some other applications, it is usually important to 
keep a record of all accesses to the image and of any processing or editing steps that may be 
applied. Some programs store this information in the same file as the image, as part of the 
“metadata” that accompanies the actual pixel values.

Also, some standardization of storage formats is important if images are to be shared between 
users or between different systems. Some users may want to archive images essentially for-
ever but rarely access any particular image, while others may make continued and repeated 
accesses but be willing to discard images (or at least move them to inactive storage) after a cer-
tain time or when a project is completed. The data may be intended for access by many users, 
over a network, or be restricted to a single user. If a set of images is to be distributed widely 
as a permanent and unalterable resource for reference use, the requirements change again.

There are some beginnings of solutions to these problems and indications that many more 
will be forthcoming. It is easy to imagine someone trying to find an old picture of “Aunt 
Sarah,” for example. If the photo is stored as a faded print in an old shoe box, the searcher 
may have a rough idea of where to look in the attic for the box and then be willing to sort 
through the contents looking for the picture. But in the era of computer technology, it seems 
natural that somehow the computer can find the picture just by being asked for it. Obviously, 
that is not a trivial task, but many companies are trying to respond to the challenge. Even 
simple programs like Apple’s iPhoto® contain rudimentary facilities for facial recognition and 
automatic labeling in snapshot photos, as do some digital cameras.

Storage media

Images can be recorded on CDs and DVDs in a wide variety of formats. Projects as diverse 
as archaeological digs, medical research, and remote sensing (satellite imagery) have found 
it convenient and inexpensive to distribute collections of images on CDs or DVDs as a refer-
ence resource. The CD (Compact Disk) or DVD (Digital Video Disk, including Blu-Ray higher 
capacity DVDs) is just a plastic platter with reflective dots imprinted onto it, physically identi-
cal to audio and video disks. The format of the dots on a CD marks changes from 1s to 0s 
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rather than the actual bit values; the encoding pattern minimizes the number of bits required 
to store the original data.

The reflective dots on a CD or DVD duplicated in quantity are physically imprinted in a press-
ing operation and covered by a hard plastic that is somewhat resistant to damage. This tech-
nique lends itself to creating many copies of a disk inexpensively. Current prices for making 
duplicates from a master are tens of cents per copy and continue to decline. Distributing a 
library of images in this way makes sense, as does distributing software, etc., since practically 
every modern computer has a reader for these disks.

Data on CDs and DVDs are written on one single continuous spiral track, in blocks of 2048 
bytes (plus the block address and some error detection sums). The entire track is written at 
one time, and the data format is not designed to be used as a random-access device for writ-
ing or reading, like a conventional magnetic disk drive with its multiple concentric tracks and 
fixed sectors, which make locating particular blocks of data much easier.

Pressing disks from a master creates pits in the plastic substrate that are coated with alumi-
num and then sealed with a protective plastic layer, which not only provides physical pro-
tection but also prevents oxidation of the aluminum that would reduce its reflectivity. In a 
recordable disk, the writing is done by a laser whose light is absorbed in a dye layer. The dye 
decomposes and is deposited on the metal layer, darkens it, and produces the same pattern of 
reflective and dark regions that the physical lands and pits do in the pressed disk.

Writable CD, DVD, and Blu-Ray disks are widely used as “write-once” storage devices for 
archiving files. CD and DVD drives capable of writing as well as reading are standard equip-
ment on most desktop and laptop computers, and Blu-Ray drives are becoming more common 
as this is written. Files are written to a blank disk (which costs only a few cents). The writing 
process is fairly fast; typically, it takes only minutes to write a full disk.

The CD provides storage of up to 700 megabytes. After it has been written, the CD-R disk 
can be read in exactly the same drive as a pressed CD-ROM, or used as a master to create the 
more durable pressed disks in quantity. CD-R disks have become so reliable and inexpensive 
that they have replaced magnetic floppy disks to transmit even small amounts of data and to 
distribute computer software, when a physical disk is more suitable than transmission over 
the internet. Internet transmission cannot match the bandwidth of a few CDs or DVDs in a 
FedEx envelope.

Rewritable CDs (CD-RW) that use disks of the same size that can be erased and rewritten 
are slightly more expensive and lose the advantage of being tamper-proof. Writable but not 
alterable disks are especially useful in situations (e.g., medical and forensic imaging) in which 
images must be stored permanently. Such drives are also used for financial records and other 
applications in which assurances are needed that data cannot be tampered with, either inten-
tionally or accidentally.

DVDs offer a further increase in storage. Single layer disks hold 4.7 GB, and double layer 
disks hold 8.5 GB. Blu-Ray drives utilize a 405 nm laser (blue) for reading and writing. The 
shorter wavelength than the 650 nm (DVD) or 780 nm (CD) red lasers allows for increased 
data density, and a single layer disk holds 25 GB. Dual layer drives are common, and there are 
proposals for disks with up to 4 layers.

One limitation of the CD and DVD is that, in most cases, this writing operation must be per-
formed in a single session. All of the files to be placed on the disk must be available on the 
host computer and written in the same operation, so that the disk directory can be created for 
subsequent reading. In creating the Photo-CD format, Kodak introduced the idea of multiple 
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directories (or multiple sessions) so that a disk could be taken in to the photo finisher to add 
more images (e.g., another roll of film) to an existing disk. However, not all drives or software 
that can read CDs are able to access the additional directories, they appear as individual drives 
rather than one large volume, and there is overhead (about 9 MB) associated with the direc-
tories for each additional session.

A very practical use of CD, DVD, or Blu-Ray disks is to produce entire disks of images or 
other data for storage or distribution. The images are archival in nature (although the disks, 
particularly Blu-Ray, can be damaged by handling or storage); users are not able to modify 
them on the original disk. Reading from CD, DVD, and Blu-Ray drives is generally rather slow, 
with reading speeds an order of magnitude less than a standard magnetic hard disk used in 
the computer. However, for accessing archival images that speed may be acceptable. The time 
required to locate the correct disk is the principal impediment.

Magnetic recording

The most common type of hard disks in computers use magnetic storage. The disk platter (of 
glass or metal) is coated with a thin layer of magnetic material much like that used in audio 
tapes. Reading and writing are done using a magnetic head that “flies” just above the disk sur-
face, riding on a cushion of air pressure produced by the spinning disk surface, which rotates 
at speeds from 4000 to 10,000 rpm. Even faster access is possible with solid state drives that 
use semiconductor memory and have no moving parts, but these are still somewhat more 
costly and have smaller capacities than conventional hard disk drives. Storage capacities of 
both types of drives continue to grow, but even a terabyte of hard disk storage soon fills up 
with images, and so some removable or external storage is needed for backup.

Removable magnetic storage disks with capacities of several hundred megabytes were fairly 
common (e.g., the popular “Zip” disk) a few years ago, but have been replaced by solid state 
memory devices (the most common are flash memory “sticks” that plug into USB ports, with 
capacities at this writing of 128 GB or more; their cost makes them practical for transferring 
information but not for archival storage). Removable types of storage are desirable, because 
any conventional hard disk, even one with hundreds of gigabytes of storage, will sooner or 
later fill up with images (usually sooner). Any system that is intended for serious image analy-
sis work requires some form of removable and hence unlimited storage.

The speed of access of a conventional hard disk makes it attractive to copy files onto a hard 
disk for access, and to write them to the removable media only when work is at least tempo-
rarily complete. With that approach, the hard disk serves as a short-term local storage location 
for work in progress, but the removable media are still used to store images for long-term 
purposes. The hard disk is also the place where the computer operating system, and all of 
the various programs including those used for image analysis, and any temporary files which 
those programs create, are stored.

One of the most recent developments in storage is network servers with arrays of redundant 
hard disks (RAID storage) that work in parallel for higher speed and error protection. The 
transmission of large images over Ethernet or WiFi takes more time than local storage, but 
the advantages of shifting the responsibilities for maintaining and backing up storage to the 
IT experts in an organization and the availability of images to all computers on the network 
make this an attractive option in some situations. Storage of information, including image 
files, in the “cloud” (i.e., someplace on the web, in some unknown location, and maintained 
by someone else) is possible, but because network transmission is relatively slow (and because 
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the files are large), and because of concerns about security (the risks of loss, unauthorized 
access, or tampering) this is not yet a preferred solution.

Hard disk storage is generally less “archival” than optical storage because stray fields or high 
temperatures can cause accidental erasure, and constant use increases the possibility of dam-
age. The CD or DVD has the best claim to be archival, but this claim applies to the pressed 
disks; the recordable disks claim only a 5–10 year life with good storage conditions, and the 
surfaces are more easily damaged by handling than pressed disks (this is particularly true 
for Blu-Ray disks). The greater concern is whether CD or DVD disks will be readable at some 
point in the future because of changes in technology.

If the purpose is archival storage of images, then regardless of what medium is selected, it is 
wise to invest in extra drives and interfaces. It is not likely that any of the current media will 
be readable by common storage devices in 10–20 years, so a complete set of spare parts, soft-
ware drivers, and working systems is required. The same is true of interfaces and networks: 
the SCSI and parallel interfaces of a few years ago have been replaced by USB and Firewire 
now, while Ethernet and WiFi have replaced token ring and Appletalk, and all of these may be 
replaced by other technologies within a few years. It may be difficult to transfer the images to 
the next generation of computers through different interfaces and networks. If you doubt this, 
consider the storage media in common use 10–20 years ago (8 inch floppy disks, mag-optical 
disks, Bernoulli and hard disk cartridges, etc.), none of which can be read by most comput-
ers today. Storage such as punched cards and DECtape, from 20–40 years ago, is unreadable 
except in a few very unusual circumstances, because the machines are gone or in museums.

Another cost of archival storage is maintaining backup copies at some remote site, with appro-
priate security and fire protection, and having a routine method of storing regular backups 
there. It is really not enough to back up the files to CD every Friday and drop the backup 
off in a safety deposit box on the way home, if the data are really worth keeping for many 
years. This is certainly the case for remote sensing tapes (a good example, by the way, of the 
changing face of storage — most of the early tapes can be read only on a handful of carefully 
preserved drives), medical records and images, and so on. For many kinds of records, and 
particularly images, photographic film is still the method of choice; it offers decades of stor-
age, takes relatively little space, and can be accessed with standard equipment.

But for most people, the purpose of storing large numbers of images (certainly thousands, 
possibly tens of thousands) is not so much for archival preservation as for access. The ability 
to find a previous image, to compare it to a current one, and to find and measure similarities 
and differences, is an obvious need in many imaging tasks. Choosing a storage technology 
is not the really difficult part of filling this need. A selection among any of the technologies 
mentioned above can be based on the tradeoffs among cost, frequency and speed of access, 
and the size of the storage required. The technical challenge lies in finding a particular image 
after it has been stored.

Databases for images

Saving a large number of images raises the question of how to locate and retrieve any particu-
lar image. If the storage uses removable media, the problem is compounded. These problems 
exist for any large database, for instance one containing personnel or sales records. But some 
unique problems are involved in searching for images. Database management programs exist 
with some features intended specifically for images, but much remains to be done in this 
area. For example, Adobe’s Bridge® program displays thumbnails of each image and also 
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has searchable metadata (“data about the data,” or more specifically descriptive numeric and 
textural information that accompanies the image). Some of this data can be specified by the 
user (such as slide identification, operator, magnification, comments, copyright information, 
a selection of key words, etc.) in addition to system information such as date and time and 
image format details. It can also record the full details of all of the image processing opera-
tions that are performed on the image, which is important for many applications such as 
forensics. Measurement programs can automatically add parameter values (such as the num-
ber of objects present, measurement results, or color information) to that record or access it to 
provide additional searching or classification possibilities. Extending the metadata to include 
things like the identity of anyone who accesses the file, or to tie in other kinds of data such as 
reading bar codes from microscope slides, is well within the capability of this approach, but 
has not yet been implemented.

Most database management routines offer the ability to search for entries based on some 
logical combination of criteria using keywords or the contents of search fields. For images, it 
might be useful to search, for example, for images recorded between October 1 and 15, from 
a camera attached to a particular microscope, using transmitted light through a 500 nm color 
filter, obtained from slide #12345 corresponding to patient ABCDE, etc. It might also be nice 
to find the images that contain a particular type of feature, for example satellite images of 
lakes in a certain range of sizes, whose infrared signature indicates that they have a heavy 
crop of algae.

The first of these tasks can be handled by many existing database searching routines, provided 
that the classification data have been entered into the appropriate numeric and text fields for 
each image. The second task calls for much more intensive computer processing to extract the 
desired information from each image, since it is generally unlikely that those particular pieces 
of information will have been determined beforehand and entered into searchable numeric 
fields. It is simply not practical, or perhaps even possible, to anticipate what questions may be 
asked in the future. Performing the analysis retrospectively on a database of images requires 
close coupling of the image analysis software with the database management routine. Such 
a system can be implemented for a specific application (for example, the automatic scanning 
and screening of Pap smear slides), but general and flexible solutions are not yet widely avail-
able in spite of considerable effort.

Searching through multiple numeric fields or lists of keywords is typically specified by using 
Boolean logic, for instance that the creation date must lie before a certain value AND that 
either one OR another particular keyword must be present (and that multiple keywords must 
occur in close proximity in the descriptive text), but that the image must NOT be in color. 
These types of searches are similar to those used in other kinds of database managers and 
internet search engines. A potentially more useful type of search uses fuzzy logic. For instance 
looking for features that are “round” and “yellow” does not specify just what criterion is used 
to judge roundness, nor what range of numeric values is required, nor what combination of 
color components or range of hue values is sufficiently yellow.

Sometimes described as “Query by Image Content” (QBIC) or “Content-Based Image Retrieval” 
(CBIR), this approach seeks to include visually important criteria such as color, texture, and 
shape of image objects and regions (Pentland et al., 1994, 1996; Flickner et al., 1995; Yoshitaka 
& Ichikawa, 1999; Rui et al., 1999; Mitra & Acharya, 2003; Tushabe & Wilkinson, 2008; Datta 
et al., 2008). Depending on the field of use, different criteria may be important for searching. 
For instance, in a medical application the user might want to find “other images that contain 
a tumor with a texture like this one” (which implies the concept of the object named tumor, 
as well as a suitable numeric description of the texture), while in surveillance the target might 
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be “other images that contain objects of similar shape to this airplane.” Key issues for such 
a search include derivation and computation of the attributes of images and objects that pro-
vide useful query functionality, and retrieval methods based on similarity as opposed to exact 
match. Searches may be initiated with one or a few example images (“Query by Example”), 
perhaps with subsequent refinement. Effective human interfaces for such query systems are 
also in development.

In a search by example based on unspecified image contents (color, pattern, feature data, 
etc.) it is difficult to predict what is considered significant by the procedure, so that Query by 
Example is an appealing idea that has many pitfalls. Consider the example in Figure 3.19: the 
image at the upper left is provided as an example. A few of the responses are shown. But what 
is the intended target? Is the white feature on a pink background important? (Color is one of 
the easier things to pick automatically from an image.) If not, the search will exclude many 
pictures from consideration. Is the white cockatoo with dark eyes and beak a good match? Not 
if the goal is just mammals and not birds. The white kitten is long haired, like the puppies, but 
the Labrador is a dog rather than a cat. Or maybe it is the round shape of the exterior of the 
image that matters, or the presence of two animals. And all of this supposes that the search is 
confined to a database of animal pictures to begin with, or it might find automobiles, flowers, 
and so on, included.

To be fair, the same uncertainties are present if the example image is shown without com-
ment to a human, with the direction to find other similar images. But in that case, the human 
would probably ask questions about the image to pin down what the important features of 
interest are.

Implementing a search for the example of “round” and “yellow” features would require first 
measuring a representative sample of features in the images in the database to obtain mea-
sures for roundness (perhaps the ratio of shortest to longest dimension, but other related shape 
criteria are described in Chapter 11) and hue. For instance, “round” might be taken to mean 

Figure 3.19 “Query by Example” 
results as discussed in the text.
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objects falling within the uppermost 5–10% of the range of values, and “yellow” the range of 
hue values bracketing true yellow and enclosing a similar fraction of the observations.

A program that can be shown an example image and then used to search for all similar 
ones is of obvious interest, but not yet available. Part of the problem is that it is difficult to 
know beforehand what aspects of an image may later prove to be important. When a person 
searches through pictures in a shoebox, the criteria used vary widely. This usually allows 
them to be visually distinguished at a glance, but how will a search program know who is 
Aunt Sarah? Or that a picture of a beach scene can be skipped because that is not where she 
was? The meaning of the image content is obscure except to a person with much additional 
background knowledge.

For example, Figure 3.20 shows several images (from a total of more than 600,000!) found 
on the internet (from many different web sites) in a fraction of a second using a search engine 
with the target “ACC + basketball + tournament + photo.” Notice that several of the pictures 
show players and the ball, but the uniform colors vary (and one image is not in color). Some 
do not show the ball, while one shows only the ball and net. Three show neither players nor 
the ball, but other things that are recognizably connected to basketball (a referee, a tourna-
ment bracket chart, and a basketball court). At the present and foreseeable state of the art, 
showing any one picture to a query by example program would not find the others.

Figure 3.20 “Basketball” images as discussed in the text.
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An even more difficult scenario is present in many scientific imaging situations. There may be 
a very large number of superficially similar images, such as liver tissue sections with the same 
colored stain from many patients, or satellite images of populated areas with many build-
ings, in which visual and machine methods of locating a particular image are hardly useful 
at all. An experienced operator may be able to recognize some key features of interest, but 
be unable to describe them to the software in a meaningful or exclusive way. In such cases a 
search based on keywords, dates, patient records, location, etc. may be more appropriate. On 
the other hand, query by content systems have been used successfully for locating paintings 
and other artwork (Holt & Hartwick, 1994) based on elements of the artist’s style.

There are several commercial programs that claim to offer some degree of search capability 
for images. The best known and most fully documented is the IBM QBIC system, a prototype 
development kit from IBM Almaden Research with more than 15 years of experience and 
development (Niblack et al., 1993; Faloutsos et al., 1994; Flickner et al., 1995). It allows a user 
to query a collection of images based on colors, textures, shapes, locations, and layout. For 
example, “find an image with a green background and a round red object in the upper left.” 
This and other similar systems first process the images in the files to extract information such 
as the histogram (for mean and standard deviation of brightness and hue), to segment the 
image into homogeneous regions for measurement of size and shape, and then search through 
these signatures for specific values (Marsicoi et al., 1997). An example of a working system is 
the on-line ability to search the contents of the Hermitage Museum in St. Petersburg, Russia. 
Selection of colors, and the arrangement of a few blocks of these colors to indicate their 
approximate placement, can be used to locate paintings in the collection (Figure 3.21).

A powerful approach to resolving fuzzy criteria into numeric values ranks all of the observa-
tions according to dimension, hue, or some other objective criterion and then uses the rank 
numbers to decide how well a particular object conforms to the adjective used. If a feature 
is ranked 9th in roundness and 17th in yellowness out of a few hundred features, it might 
be considered round and yellow. On the other hand, if it is ranked 79th in one or the other 
attribute, it might not be. Both of these methods ultimately use numeric values, but judge the 
results in terms of the range of observations encountered in the particular type of application. 
They do not use traditional parametric statistics that characterize a population by mean and 
standard deviation, or other narrow descriptors.

Fuzzy logic offers some powerful tools for classification without requiring the user to decide 
on numerical limits. However, although fuzzy logic has been enthusiastically applied to con-
trol circuits and consumer products, its use in database searching is still rather limited. That, 
combined with the time needed to measure large numbers of representative images to give 
meaning to the users’ definition within a particular context, has delayed the use of this 
approach in image database management. Consequently, most searching is done using spe-
cific values (e.g., a creation date after January 1, 2010, rather than “recent”) and Boolean 
matching with user-specified criteria.

Another search strategy uses vectors in N-dimensional parameter space (Kang & Leon, 2005). 
Values for multiple measurement parameters are stored, and for a given target image the near-
est clusters, which have previously been indexed by the database program, are searched for 
the N closest matches. Each axis (or measurement parameter) can have different weighting 
applied to determine the N-dimensional distances. Chapter 12 covers this type of classifica-
tion in greater depth.

Typically, it is up to the user to establish the criteria, measurement parameters, or other fac-
tors such as image metadata (magnification, patient records, date, etc.) that may be interesting 
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for future searches before the database is established and the images are stored away. If the 
proper fields have not been set up, there is no place to record the values. It is impossible 
to overstate the importance of designing the proper search fields and lists of keywords or 
parameters ahead of time, and the difficulty of adding more fields retrospectively. There are 
no simple guidelines for setting up fields, since each imaging application has unique require-
ments. Establishing dozens or even hundreds of search fields with many keywords is a mini-
mum requirement for any image database management routine.

Of course, it is still necessary to fill the search fields with appropriate values and keywords 
when the image is saved. Some of the fields may be filled automatically, with things like date 
and time, operator name, perhaps some instrument parameters such as magnification or 
wavelength, location (this can either be latitude and longitude — many cameras now include 
GPS coordinates in the image file — or coordinates on a microscope slide), and so forth. Even 
patient or sample ID numbers can be logged in automatically; some laboratories use bar code 
labeling and readers to automate this function. Doing this at the time the image is acquired 

Figure 3.21 Web site for the Hermitage Museum showing the use of IBM’s QBIC system for searching the 
collection.



173Printing and Storage
© 2011 by Taylor & Francis Group, LLC

and saved is not too burdensome; supplying such information afterwards for a set of images 
is difficult and error-prone.

But the really interesting keywords and descriptors still require the human observer to fill in 
the fields. Recognition and identification of the contents of the image, selection of important 
characteristics or features while ignoring others, and then choosing the most useful keywords 
or values to enter in the database are highly dependent on the level of operator skill and 
familiarity, both with the images and with the program.

Not surprisingly, the entries can vary greatly. Different operators, or the same operator on 
different days, may produce different classifications. One method that is often helpful in con-
straining operators’ choice of keywords is setting up a glossary of words that the operator can 
select from a menu, as opposed to free-format entry of descriptive text. The same glossary is 
later used in selecting logical combinations of search terms.

Values for measurement parameters that are included in the database can usually be obtained 
from an image analysis program. Later chapters on image measurement show that automatic 
counting of features, measurement of their sizes, location, densities, and so forth, can be per-
formed by computer software. But in general this requires a human to determine what it is in 
the image that should be measured. These programs may or may not be able to pass values 
directly to the database; in many practical situations manual retyping of the values into the 
database is required, offering further opportunities for omissions and errors to creep in.

Even in cases in which the target is pretty well known, such as examining blood smear slides, 
or scanning the surface of metal for cracks containing a fluorescent dye, or military surveil-
lance photos for vehicles, there is enough variation in target characteristics, sample prepara-
tion or imaging conditions, illumination, etc., to require some human oversight to prevent 
errors. And often in those cases the images themselves do not need to be saved, only the 
measurement results. Saving entire images in a database is most common when the images 
are similar, but vary enough to be difficult to describe by a few numbers or keywords.

An important forensic goal is to be able to use one image — it may be a fingerprint or a per-
son’s face captured in a surveillance video — for automatic identification, by locating a com-
puter record containing a similar image. One of the limitations of this technique is that the 
example image is often of rather poor quality. Surveillance video has many problems, includ-
ing extreme wide angle lenses that make faces small, camera locations that create lighting 
difficulties, poor resolution, and sometimes storage on low quality media. Fingerprints from 
a crime scene are rarely as ideal as the ones on cards in the FBI’s files. Another problem with 
this approach is that the comparison to records is based on measurements from the exam-
ple image, and these measurements are difficult to automate, often requiring some human 
involvement. Finally, the matching is rarely perfect, even assuming the person’s record is in 
the files. The best that these programs can do at present is to find a small number of records 
that are the closest matches and present them to a human for examination.

A very different type of database uses the image as the organizing principle, rather than 
words or numbers. Numerical or text data in the database is keyed to locations on the images. 
This approach, mentioned above, is generally called a Geographical Information System (GIS) 
and is used particularly when the images are basically maps. Imagine a situation in which 
a number of aerial and satellite photographs of the same region have been acquired. Some 
of the images may show visible light information, but perhaps with different resolutions or 
at different times of day or seasons of the year. Other images may show the region in infra-
red bands or consist of range images showing elevation. There may also be maps showing 
roads and buildings, land use patterns, and the locations of particular kinds of objects (fire 
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hydrants, electrical transformers). Tied to all of this may be other kinds of data, including mail 
addresses, telephone numbers, and the names of people, for example.

Other kinds of information may include temperatures, traffic patterns, crop yields, mineral 
resources, and so forth. Google’s “Street View®,” which links terrestrial images taken by 
vehicles driving along roads to maps and to satellite images, is an example of the possibilities 
of bringing together diverse types of data.

Organizing this information by location is not a simple task. For one thing, the various images 
and maps must somehow be brought into registration so that they can be superimposed. The 
resolution and scales are typically different, and the “depth” of the information is variable 
as well (and certainly consists of much more than a single brightness value for each pixel). 
Finding ways to access and present this data so that comparisons between quite disparate 
kinds of information can be made presents real challenges. Even searching the database is less 
straightforward than might be imagined.

For instance, selecting coordinates (e.g., latitude and longitude) and then asking for vari-
ous kinds of information at that location is comparatively straightforward. There are pres-
ently computerized maps (distributed on CD or available from several web sites) that can be 
accessed by a laptop computer connected to a GPS receiver that picks up timing signals from 
the network of satellites to figure out location anywhere on the earth with an accuracy of a 
few meters. That can obviously be used to bring up the right portion of the map. But when 
driving a car using such a system to navigate, the question might be “show me the routes to 
follow to the nearest gas station, or hospital, or to avoid the 5:00 p.m. traffic jam and reach the 
main highway.” Clearly, these questions require access to additional information on streets, 
traffic lights and timing, and many other things, which is why “smart” cell phones that include 
a GPS and can access Google maps are so useful. Overlaying information obtained via the 
net onto the image from the phone’s camera is merely the latest step in fusing rich data sets. 
This is current technology; the promise is for much richer databases and more flexible ways 
to access and display the information.

Browsing and thumbnails

This section started out with the idea that saving images so that they can later be compared 
to other images is necessary precisely because there is no compact way to describe all of the 
contents of the image, nor to predict just what characteristics or features of the image may 
be important later. That suggests that using brief descriptors in a database may not provide a 
tool adequate to locate particular images later. Consequently, most image databases provide 
a way for the user to see the image, or at least a low-resolution “thumbnail” representation 
of it, in addition to whatever logical search criteria may be employed. In spite of the obvious 
difficulties of visually searching through thumbnail images of many images that share many 
similarities to locate a particular one of interest, this remains the most widely used approach 
(Hogan, 2005).

Some approaches to image databases write the full image and one or more reduced resolu-
tion copies of the image onto the disk so that they can be quickly loaded when needed. This 
may include, in addition to the full original copy of the image, a very small version to use as 
a display thumbnail for browsing, a version with a resolution and color gamut appropriate for 
the system printer or a web browser, and perhaps others. Since most of the auxiliary versions 
of the image are much smaller in storage requirements than the original, keeping the lower 
resolution copies does not significantly increase the total space required, and it can greatly 
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speed up the process of accessing the images. Kodak’s Photo-CD is an example of a storage 
format that maintains multiple resolution versions of each image. In some cases it is practical 
to use a lossy compression technique to save the lower resolution versions of the images, to 
further reduce their storage requirements or to facilitate internet transmission.

The reason for thumbnails, or some kind of reduced size representation of the images in the 
database, is that allowing the user to “browse” through the images by showing many of them 
on the screen at the same time is often an essential part of the strategy of looking for a par-
ticular image. One current approach to maintaining an image database provides access from 
any web browser, delivering thumbnail views and limited keyword search capabilities simul-
taneously to many widely distributed viewers via internet or intranet servers.

The difficulties noted above with keywords and multiple data fields mean that they can rarely 
be used in a Boolean search to find one particular or unique image. At best, they may isolate a 
small percentage of the stored images, which can then be presented to the user to make a visual 
selection. Even successful and widely reported search systems like the Automated Fingerprint 
Identification System (AFIS) rely on skilled human operators to review the 10–20 best matches 
found by the system based on measured values (the minutiae in each fingerprint) to perform 
conclusive identification. The location and type of minutiae can be automatically extracted from 
ideal, clean fingerprints by image processing, but in many cases human examination is required. 
Matches of from 12 to 16 minutiae are usually required for searching and identification.

Current facial identification software similarly utilizes a set of 20–30 dimensional ratios, as 
illlustrated in Chapter 12. For example, the ratio of the distance from nose to upper lip to the 
distance from eyes to chin is relatively insensitive to the size of the image and the angle of 
view of the face. These ratios are used to select a small number of best matches from a data 
base and then present the stored images to a human operator. The very limited success of 
these approaches to date is an indication of the difficulty of the task.

Browsing through images is very different than the search strategies that are used for most 
other kinds of data. Most computer systems incorporate, either as part of the system software 
itself, or as basic utility routines, or as part of applications, intelligent search capabilities that 
can locate files based not only on the values of data fields (e.g., a creation date for the file) or 
keywords, but also by examining the contents of the files. For instance, the word processor 
being used to write this chapter can search through all of the files on my hard disk for any 
document containing the phrases “image” and “database” in close proximity to each other, 
and then show me those files by name and with the phrases displayed in context.

But that approach is possible because the files are stored as text. There may be special format-
ting characters present (and indeed, it is possible to search for those as well: “Find documents 
containing the word ‘large’ in Times Roman italics in at least 14 point type.”) but the bulk 
of the file content is a straightforward ASCII representation of the letters that make up the 
words and phrases. Searching strategies for text, including ignoring capitalization or requir-
ing an exact match, and allowing for “wild card” characters (e.g., “find documents containing 
the phrase ‘fluorescen# dye’” finds both fluorescent and fluorescence), are widely used. Much 
effort has gone into the development of efficient search algorithms for locating matches.

A relatively new development in text searches uses natural language rules to interpret the 
text. This search technique distinguishes among nouns, verbs, and adjectives to extract some 
meaning from the text. That approach, combined with the use of a thesaurus and dictionary 
so that words can be substituted, allows specifying target text by entering a few topical sen-
tences and then having the search engine look for and rank matches. There are also programs 
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that can analyze the vocabulary used in a document, including the combinations of words and 
grammatical style, to identify the probable author of a document.

How can such techniques be used for images? The image data are typically stored on disk as a 
sequence of pixel values. For many monochrome images, storage requires one byte per pixel, 
and the values from 0 to 255 represent the gray scale of the data. For images that have greater 
dynamic range, two bytes per pixel may be needed; some computers store the high byte and 
then the low byte, and some the reverse. For color, three or six bytes per pixel are needed. 
These may be stored with all three values in a fixed order for each pixel, or the entire row (or 
even the entire image) may be stored separately for the red, green, and blue values (or some 
other color space representation).

There are dozens of different storage formats for images. Few image database management 
routines support more than a handful of formats, expecting that most users select a format 
according to specific needs, or as used by a few particular programs. When images must be 
imported from some “foreign” format, it is usually possible to translate them using a dedicated 
program. This is particularly needed when different computers and programs acquire images 
from various sources and then transmit them to a single database for later analysis. Metadata 
is often lost in the translation process.

There are a few relatively “standard” formats such as TIFF (“tagged image file format”) files 
that are used on several different computer platforms, while others may be unique to a par-
ticular type of computer (e.g., PICT on the Macintosh, BMP on the PC), proprietary to a par-
ticular program (e.g., the PSD format used by Adobe Photoshop®), or designed for use in a 
particular field of application (e.g., the DICOM format used in medical imaging). Every camera 
manufacturer has created its own unique “RAW” format. The widespread use of a program 
such as Photoshop can make its format a kind of standard in its own right. Some of the “stan-
dards” (TIFF is an excellent example) have so many different options that many programs do 
not implement all of them. The result is that a TIFF file written by one program may not be 
correctly read by another program that uses a different subset of the 100 or so options.

Some storage formats include various kinds of header information that describes formats, 
color tables, and other important data more or less equivalent to the formatting of a text docu-
ment. Some compress the original data in various ways, and some of the methods do so in a 
“lossless” manner that allows the image to be reconstructed exactly, while others accept some 
losses and approximate some pixel values in order to reduce the storage requirement.

For instance, the Macintosh PICT format is a lossless method that represents a line of pixels 
with the same value by listing the value once and then the number of times it is repeated. 
For computer graphics, animation, and rendered drawings from drafting programs, this “run-
length encoding” (RLE) method is very efficient. It is also used to transmit faxes over tele-
phone lines. But it does not offer much compression for typical real-world images because 
groups of pixels are not usually uniform.

If compression of the data is present, the computer may be required to read the entire image file 
and reconstruct the image in memory before anything can be done with it. But even if the data 
can be scanned directly within the disk file, how can it be searched to locate a particular image 
based on the contents? There is not generally a specific sequence of pixel values along one line 
of the image (most images are stored in a raster format, as a series of lines) that is the target. 
There is not even usually a specific two-dimensional pattern of pixel values. Features in images 
are more irregular than that and may occur in unexpected locations, sizes, and orientations.
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Statistical averages of the image, as may be summarized in its brightness histogram, most pre-
dominant color, etc., may sometimes be useful, but they are rarely computed while searching 
for a particular image in the database. Instead, if such parameters are considered important, 
they are determined beforehand, when the image is stored, and written into specific numeric 
fields in the metadata so that they can be searched using standard logical tests.

There is one approach to data matching that is sometimes applied to this kind of searching. 
Cross-correlation of a target image with each image in a database is a way to look for images 
that are similar to the target, in a very particular sense. The use of cross-correlation is illus-
trated in Chapter 6, because it is frequently implemented using Fourier transforms. The pro-
cess can be speeded up by using dedicated hardware, but even so it can be time consuming 
to search through a large database for a best match.

One application of this approach is matching surveillance photos to identify targets of pos-
sible military interest. For example, cross-correlation of an aerial image of an airport against a 
database of images of airplanes, each type rotated in many different orientations, will match 
the type of airplanes and their locations in the image. This technique has also been used to 
count nesting snow geese in the arctic, from aerial photographs. For more diverse images, or 
ones containing features that are more variable in their shape, contrast, or color, this method 
is less suitable.

When images are stored in a database that extends over several physical disks, particularly 
when removable media are used, many of the images may not be accessible or on line when 
the search is made. The usual solution to this problem is to keep the descriptive keywords 
and other search fields, plus at least a thumbnail representation of the image, in a file with 
the main program. This allows rapid searching to find a subset of the images that may be 
examined visually by the user, or at least subjected to further, more detailed analysis. Since 
the program has the location of each image stored in its file, it can then request the user to 
insert the particular disks to load the images. Even with this approach, the search file can be 
quite large when hundreds or thousands of images are included in the database. The search 
file can itself require a large (and fast) disk for storage.

On the other hand, there are reasons why the search fields, keywords, thumbnails and other 
ancillary information should be stored with the image rather than in a central data file. Such 
storage makes the file containing the image self-contained, so that it can be copied with all its 
information intact. It is also possible to maintain a record of who has accessed the image and 
when, or to keep a detailed record of whatever changes have been made to an image. Such 
information may be very important in reconstructing the history of processing an image.

Image database programs may also be required to limit access to images, for instance with 
passwords. A networked file server may allow one group of users to read images from the 
files, another group to add images to the database, and a third group to process or modify 
images. Since images are large, moving them across local area networks from a central loca-
tion to many workstations is a far from trivial consideration. This is particularly a concern in 
medical imaging and remote sensing applications, where a large number of images are to be 
accessed by a moderate number of users. Wide area access, such as via the internet, is an even 
greater challenge.

Finally, the question for any image searching routine is just how it is to be used. Finding one 
or several images according to some criteria is usually not the end result but the beginning. 
How can the image(s) now be loaded into whatever program is to be used for processing or 
measurement? Some database management programs can act as a filter that is used by any 
program opening a file. This is convenient for loading images but may not lend itself to adding 
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images to the database. Other management programs can locate the images and copy them 
onto a local disk (and perhaps convert their format or decompress them), so that the user may 
more easily open them into the desired application.

Lossless coding

There has already been some mention of image compression. This is desired for storage or 
transmission in order to reduce the rather large size of most image files and is an active area 
of study. This section does not review all of the techniques for compression described in the 
literature, since most of them are not implemented in standard software packages available 
for dedicated image processing. Most of the methods fall into just a few categories, and repre-
sentative examples are shown below.

There are two criteria by which image compression methods can be judged. One is the time 
needed to accomplish the compression and decompression and the degree of compression 
achieved. This is particularly important when images are being compressed for “real time” 
transmission, as in video conferencing, or perhaps when transmitting large images via the 
internet. The second criterion is the degree of preservation of the image contents. It is this 
latter area of concern that is considered primarily here.

The first and most important distinction between compression methods is whether they are 
lossless or lossy techniques. A lossless method is one that allows exact reconstruction of all of 
the individual pixel values, while a lossy method does not. Lossless methods, often referred to 
as image coding rather than compression, have been around for some time, with much of the 
original development being directed toward the transmission of images from space probes. 
The communication bandwidth provided by these low power transmitters did not allow send-
ing many images from the remote cameras unless some method was used to reduce the num-
ber of bits per pixel.

A simple, early approach sent just the difference between each pixel and the previous one 
(sometimes called “delta compression”). Since most areas of an image have little change, this 
reduces the average magnitude of the numbers, so that instead of requiring (for instance) 8 
bits per pixel, fewer bits are needed. This is another way of saying that image pixels are highly 
correlated. A histogram of the differences between adjacent pixels has a peak near zero and 
few large values, as shown in Figure 3.22 for images that have different histograms of pixel 
brightness values.

Further approaches to compression used algorithms that examined several preceding pixels, 
predicted the next value based on some kind of fitting algorithm, and then just stored the 
difference from that. Advances on those methods use pixels on preceding lines as well, for 
further improvement in the predicted value and hence reduction in the difference values (Daut 
et al., 1993). Most of these compression algorithms were originally designed and utilized with 
live image sources and so made calculations based on one line of pixels at a time. If the image 
is stored in memory, then the full array of pixels is available.

An additional refinement codes the differences between a pixel and either its predicted value 
or its predecessor more efficiently. For instance, in recording each wavelength band in Landsat 
images a 4 bit number is used for most differences, with two values of the 16 possible num-
bers reserved as flags indicating that a (rare) larger difference value follows, either positive or 
negative. An average of about 4.3 bits per pixel is needed to store the images, instead of the 
full 8 bits.
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Figure 3.22 Example images with their histograms and the results of compression by calculating differ-
ences between each pixel and its left-hand neighbor. The original images have quite different histo-
grams, but the compressed ones have most difference values near zero. The compressed images are 
shown with a gray offset so that both positive and negative differences are visible, and with contrast 
expanded to show pixel differences. The entropy values are listed in Table 3.2.
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If further optimization is made to allow variable length codes to be used to represent dif-
ferences, storage requirements can be further reduced to an average of about 3.5 bits per 
pixel for the Landsat data. One of the most widely used variable length coding schemes is 
Huffman coding. This uses the frequency with which different values occur in the image in 
order to assign a code to each value. Shorter codes are used for the more frequently occur-
ring values, and vice versa. This can be done either for the original pixel values or for the 
pixel difference values.

Huffman coding is also used for other types of data, including text files. Because some letters 
are used more than others in English, it is possible to assign shorter codes to some letters (in 
English, the most frequently used letter is E, followed by TAOINSHRDLU…). Morse code for let-
ters represents an example of such a variable length coding for letters (not an optimal one).

As a simple example of the use of Huffman codes for images, consider an image in which 
the pixels (or the difference values) can have one of 8 brightness values. This requires 3 
bits per pixel (23 = 8) for conventional representation. From a histogram of the image, the 
frequency of occurrence of each value can be determined and as an example might show 
the following results (Table 3.1), in which the various brightness values have been ranked 
in order of frequency. Huffman coding provides a straightforward way to assign codes from 
this frequency table, and the code values for this example are shown. Note that each code 
is unique and no sequence of codes can be mistaken for any other value, which is a char-
acteristic of this type of coding.

The most commonly found pixel brightness value requires only a single bit, but some of the 
less common values require 5 or 6 bits, more than the 3 that a simple representation needs. 
Multiplying the frequency of occurrence of each value times the length of the code gives an 
overall average of:

 0.45•1 + 0.21•2 + 0.12•4 + 0.09•4 + 0.06•4 + 0.04•5 + 0.02•6 + 0.01•6 = 2.33 bits/pixel

As the number of values increases, the potential for savings using this type of coding increases.

Coding and decoding takes some time, particularly for the more complex methods, but this 
is more than made up in decreased transmission time or storage requirements. This is true 
of all of the coding and compression methods shown here and is the justification for their 
use. Information theory sets a lower limit to the size to which an image (or any other file of 
data) can be reduced, based on the distribution of values present. If, for example, an image 

Table 3 .1.Example of Huffman Codes Assigned to Brightness Values

Brightness Value Frequency Huffman Code

4 0.45 1

5 0.21 01

3 0.12 0011

6 0.09 0010

2 0.06 0001

7 0.04 00001

1 0.02 000000

0 0.01 000001
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consists of 256 possible gray levels whose frequencies of occurrence (taken from a brightness 
histogram of the image) are p0, p1, …, p255, then the entropy of the image is

	 H p pi i

i

= − ⋅
=

∑ log ( )2

0

255

 (3.1)

This provides a performance criterion for coding methods. Applying this equation to the 
example with eight gray levels used above to illustrate Huffman coding calculates H = 2.28 
bits per pixel as a theoretical minimum. Huffman coding does not match this optimal limit 
except in the unique case in which the frequencies of occurrence of the various values to be 
represented are exactly integral powers of 1/2 (1/4, 1/8, ...). But this example indicates that 
it does offer a useful degree of compression with modest computational needs. Other cod-
ing techniques are available that can approach the theoretical limit, but simple methods like 
Huffman coding are often good enough to be widely used.

Table 3.2 lists the entropy values for a few typical images, which are shown in Figure 3.22 
along with their original brightness histograms and the histograms of difference values 
between horizontally adjacent pixels. Some of these images have large peaks in their original 
histograms that indicate there are many pixels with similar brightness values. This affects 
both the entropy value and the generation of an optimal Huffman code. Notice the reduction 
in information density (H) as the visual appearance of images becomes simpler and larger 
areas of uniform brightness are present. Calculating the H values for the difference coding of 
these images reveals a considerable reduction, as shown in the table, averaging about a factor 
of 2 in compression.

The entropy definition can be expanded to cover neighbor pairs by summing the joint prob-
abilities of all pairs of two (or more) gray values for neighbors in the same way. This applies 
if a coding scheme is used for pairs or larger combinations of pixels, which in theory can 
compress the image even further.

While it is unusual to apply coding methods to all possible pairs of gray values present, a 
related coding scheme can be used with images just as it is with text files. This approach 
scans through the file once looking for any repeating patterns of byte values. In a text file, the 
letter patterns present in English (or any other human language) are far from random. Some 
sequences of letters such as “ing,” “tion,” “the,” and so forth, occur often and can be replaced 
by a single character. In particular cases, common words or even entire phrases may occur 
often enough to allow such representation.

Table 3 .2.Entropy Values (bits per pixel) for Representative Gray 
Scale Images Shown in Figure 3.22

Figure H (original) H (difference coded)

3.21a Girl 7.538 3.059

3.21b Saturn 4.114 2.19

3.21c Bone marrow 7.780 4.690

3.21d Dendrites 7.415 4.262

3.21e Bug 6.929 3.151

3.21f Chromosomes 5.836 2.968
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A dictionary of such terms can be constructed for each document, with segments selected by 
size and frequency to obtain maximum compression. Both the dictionary itself and the coded 
document must be stored or transmitted, but for a large document the combination requires 
much less space than the original. Compression of typical text documents to half of their origi-
nal size is commonly achieved in this way. For small documents, using a standard dictionary 
based on other samples of the language may be more economical than constructing a unique 
dictionary for each file. A dictionary-based method, known as a “Lempel-Ziv” technique (or 
one of its variants, such as Lempel-Ziv-Welch, LZW), is commonly used to compress text to 
reduce file sizes.

Applying the same compression algorithm to images, treating the sequence of bytes just 
as though they represented ASCII characters is not so successful (Storer, 1992). There are 
few exactly repeating patterns in most images; even small amounts of random noise cause 
changes in the pixel values. These noise fluctuations may not be important, and in fact it 
is easy to argue that much of this “noise” arises in the camera, electronics, and digitization 
and is not part of the scene itself. But the goal in coding the image is to preserve every-
thing so that it can be reconstructed exactly, and there is no a priori reason to discard small 
fluctuations. Deciding that some variations in pixel values represent noise while others 
represent information is difficult. Because of these fluctuations, whatever their source, few 
repeating patterns are found, and the compressed image is usually not significantly smaller 
than the original.

A close cousin of these coding methods is run-length encoding. This is mentioned above as 
being used in some of the standard file formats. Run-length encoding (RLE) looks for any row 
of pixel brightness values that repeats exactly and replaces it with the value and the number of 
pixels. For natural gray scale images, such rows do not occur very often and little compression 
is achieved. However, for computer graphics, drawings, and animation images, this method 
can achieve very high compression ratios.

Run-length encoding is particularly appropriate for binary (black and white) images. Fax 
machines use RLE to send images of pages containing text or images via telephone lines (see 
Figure 7.47 in Chapter 7). Thresholding is often used to reduce images to black and white 
representations of features and background. Such binary images can be efficiently represented 
by run-length encoding, and in addition the encoded image is directly useful for performing 
some measurements on images.

Most of the common image formats used in desktop computers and workstations are lossless 
representations of images. Some record all of the pixel values in some regular order, perhaps 
with header information that gives the dimensions of the image in pixels, a look-up table of 
the colors represented by the various values, or other similar information. Some use modest 
coding schemes such as run-length encoding to speed up the reading and writing process and 
reduce file size. Some, like TIFF or HDF, are a collection of possible formats that may or may 
nor include coding and compression, and specify within the header the details of the format 
in the particular file.

Fortunately, program users rarely need to know the details of the format in use. Either the 
images have been stored by the same program that is used later read them back, or several 
programs share one of the more or less standard formats, or there is a translation facility from 
one format to another within the programs or provided by a separate program. Several such 
translation programs have been developed specifically to cope with the problems of translat-
ing image files from one computer platform or program to another. Unfortunately, there are 
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still a few companies whose products used non-standard, proprietary formats that are not 
publicly documented.

Reduced color palettes

Some storage formats try to reduce the number of colors represented within each image. One 
reason that color images occupy so much storage space is that three color components, usu-
ally RGB, are stored for each pixel. In many cases, these occupy 1 byte each, giving 256 pos-
sible values for each component. In a few cases, reduction to 32 gray levels (25 = 32) is used 
to allow reducing the storage requirements to 2 bytes, but the visual artifacts in these images 
due to the magnitude of the changes between colors on smoothly varying surfaces may be 
distracting. In some other cases, more than 8 bits per color component are used, sometimes 
as many as the 12 bits (212 = 4096) which are generally considered to be required to capture 
all of the dynamic range of color slide film, and this of course represents a further increase in 
storage requirements. Because it makes access to the values easy, the most common arrange-
ment for high dynamic range images is 2 bytes each for red, green, and blue, or a total of 6 
bytes per pixel. Most digital camera raw formats use this bit depth.

Some images can be reduced for storage, depending on their ultimate use, by constructing 
a unique color coding table. This allows each pixel to have a stored value from 0 to 255 and 
occupy 1 byte, while the stored value represents an entry in a table of 256 possible colors 
used to display that image. This method may appear to reduce the amount of information 
in the image drastically, but it corresponds to the way that some computer displays work. 
Instead of a 24-bit display with 8 bits (256 intensity values) for R, G, and B, some low cost 
displays use a system in which each of the possible 256 pixel values is used to select one 
of 16 million colors (224). The palette of colors corresponding to each pixel value is stored 
with the image (it occupies only 3 × 256 = 768 bytes) and is written to the interface to 
control the signals that are output to the display. This is called a Lookup Table (LUT) or 
Color Lookup Table (CLUT) since each pixel value is used to “look up” the corresponding 
display color. Manipulation of the same LUT to produce pseudocolor displays is described 
in Chapter 1.

If the LUT or palette of color values is properly selected, it can produce acceptable display 
quality for some visual purposes. Since the selection of which 256 colors are to be used to 
show an entire image (typically containing several million pixels) is critical to the success of 
this method, various algorithms have been devised to meet the need. The color triplet can 
be considered (as shown in Chapter 1) as a vector in a three-dimensional color space, which 
may be based on RGB, HSI, etc., coordinates. The process of selecting the best palette for 
the image consists of examining the points in this space that represent the colors of all the 
pixels in the image and then finding the clusters of points in a consistent way to allow break-
ing the space up into regions. Each collection of points of similar color are then represented 
by a single color in the palette. This process is usually called vector quantization; there are 
several iterative algorithms that search for optimal results, some of which also consider the 
spatial distribution of colors (Heckbert, 1982; Braudaway, 1987; Gentile et al., 1990, Freisleben 
& Schrader, 1997; Puzicha et al., 1998; Montagne et al., 2006).

Improvements in both visual quality and speed are obtained by using a broadcast video color 
space (YCC, YIQ, or YUV) with the Y (luminance, or brightness) axis given more precision 
than the two chrominance signals (yellow-blue and red-green), because, as already men-
tioned, human vision is more sensitive to changes in brightness than in color. This is the same 
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argument used for reducing the bandwidth used to transmit the color information in televi-
sion. The scaling of the values is also nonlinear (Balasubramanian et al., 1994), corresponding 
to the response of the display CRT to changes in signal intensity. In other words, the goal 
of the color palette compression is to reproduce the image so that visual observation of the 
image on a television screen does not show objectionable artifacts such as color banding. For 
that goal, these methods work well enough. But if any further quantitative use of the image 
is intended, the loss of true color information may create obstacles. It may even produce dif-
ficulties for printing the images, since the gamut of colors available and the response of the 
color intensities are different for printing than for video displays.

JPEG compression

Much higher compression ratios can often be achieved for images if some loss of the exact 
pixel values can be tolerated. There is a rich literature discussing the relative merits of different 
approaches (Rabbani & Jones, 1991; Rabbani, 1992; Kou, 1995l; Bhaskaran & Konstantinides, 
1997; Hoggar, 2006; Abhayaratne, 2006; Xiang et al., 2006; Ives et al., 2008). For instance, the 
encoding of differences between neighboring pixels can be made lossy and gain more com-
pression by placing an upper limit on the values. Since most differences are small, one might 
represent the small differences exactly but only allow a maximum change of ±7 brightness 
levels. This restriction reduces the number of bits per pixel from 8 to 4, without any other 
coding tricks. Larger differences, if they occur, are spread out over several pixels. Of course, 
this may distort important edges or boundaries.

Three approaches have become common enough to be implemented in many computer pro-
grams and are fairly representative of the others. The popular JPEG (Joint Photographers 
Expert Group) standard is widely used in digital cameras and web-based image delivery. 
The wavelet transform is newer but is part of the new JPEG 2000 standard (Christopoulos 
et al., 2000; Wallace, 2001), and may minimize some of the visually distracting artifacts 
that appear in JPEG images. For one thing, it uses much larger blocks — selectable but 
typically 1024 × 1024 pixels — for compression, rather than the 8 × 8 pixel blocks used 
in the original JPEG method, which often produced visible boundaries (Zhai et al., 2008). 
Fractal compression also has adherents and claims to be able to enlarge images by insert-
ing “realistic” detail beyond the resolution limit of the original. Each method is described 
and examples shown.

The JPEG technique is fairly representative of many transform-based compression methods. 
It uses a discrete cosine transform (DCT) that is similar to the Fourier transform shown in 
Chapter 6. The JPEG standard is a collaborative effort of the CCITT (International Telegraph 
and Telephone Consultative Committee) and the ISO (International Standards Organization, 
which issues it as ISO/IEC IS 10918-1 T.81) and comprises a variety of methods which are not 
explicitly intended for computer storage; the algorithm deals with a stream of bytes as might 
be encountered in image transmission.

The JPEG transform consists of several steps:

 1. The image is separated into intensity and color channels using the YUV transform 
(shown in Chapter 1) and subdivided into 8 × 8 pixel blocks. If the image is not 
an exact multiple of 8 pixels in width or height, it is temporarily padded out to that 
size.
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 2. Each 8 × 8 pixel block is processed using the discrete cosine transform. This is closely 
related to the more familiar Fourier transform, except that all of the values are real 
instead of complex. The transform produces another 8 × 8 block of values for the fre-
quency components. While the original pixel values are 1 byte = 8 bits (0…255), the 
transformed data are stored temporarily in 12 bits, giving 11 bits of precision plus a 
sign bit. Except for the possibility of round-off errors due to this finite representation, 
the DCT portion of the algorithm does not introduce any loss of data (i.e., the original 
image can be exactly reconstructed from the transform by an inverse DCT). But the 
storage required has been increased, not reduced, by this step.

 3. The 64 coefficients for each block are quantized to a lower precision by dividing by a 
fixed table of values that gives the least precision for high frequency terms. Adjusting 
the “Quality” factor in most implementations increases the factors and reduces more 
terms to low precision or erases them altogether. This is the “lossy” step in the com-
pression. In most cases, more precision is retained for the intensity or luminance than 
for the color data. This is because in the intended use of the compression method 
for human viewing of images, it is generally accepted that more fidelity is needed in 
image brightness than is needed in color, as mentioned above.

 4. The first of the 64 coefficients for each block is the average brightness or “DC” term. 
It is represented as a difference from the same term for the preceding block in the 
image. The blocks are listed in raster-scan order through the image.

 5. The remaining 63 coefficients for each block are scanned in a zig-zag diagonal order 
that starts with the lowest frequencies and progresses to the highest. The entire data 
stream is further compacted by using a Huffman coding, as described above. This step 
is loss-free.

The decompression or image reconstruction procedure reverses these steps to produce an 
image that is similar to the original image. Compression and decompression for the DCT are 
symmetric (have the same computational complexity and time requirements). Some other 
compression methods, such as fractal compression of images and MPEG compression of mov-
ies, are asymmetric and take much longer to perform the compression than is needed for 
decompression during playback.

The loss of high frequency terms results in some image defects and distortions. Since the loss 
of precision depends on the magnitude of the values, results are different in the various 8 × 8 
pixel blocks in the original image, and the exact nature of the differences varies from place to 
place. In general, sharp boundaries, edges, corners, and lines require the highest frequencies 
to accurately reproduce, and it is these that show the greatest degradation. The results depend 
on exactly where the line or corner lies with respect to the 8 × 8 block boundaries. An 8 × 8 
block of pixels with a uniform gray value is compressed to a single coefficient that is encoded 
without loss, with all of the remaining coefficients equal to zero. Small deviations from this 
uniform gray might or might not be preserved.

There are several ways in which JPEG, or any similar other approach based on transforms, 
can be improved. One is to choose the best possible color space in which to represent the 
image before starting. Second, instead of dividing the image into non-overlapping tiles, a 
system using blocks that overlap in both the horizontal and vertical directions can suppress 
some of the artifacts that appear at block boundaries (Young & Kingsbury, 1993). Third, 
and perhaps most important, the quantization of terms can be made more flexible. Different 
scaling factors can be used for each color channel or for different colors, for different fre-
quencies, and perhaps different directions, depending on the intended use of the image (for 
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viewing, printing, etc.). These methods can improve the reconstructed image quality at a 
given level of compression, with no change in reconstruction time. The JPEG 2000 standard, 
which is not in as wide use in cameras as the original JPEG method, adds several exten-
sions: images with more than 8 bits per channel are accommodated, the tile size is made 
variable instead of being fixed at 8 × 8 pixels, and the wavelet transform is included as an 
alternative to the DCT.

The use of JPEG compression or any “lossy” compression technique for images should be 
restricted to images intended for visual examination and printing, and should not be used for 
images intended for measurement and analysis. This is true even for relatively high “quality” 
settings which result in only modest compression. At lower quality, higher compression set-
tings, even visual examination of images may be affected due to aliasing of edges and lines, 
loss of resolution, and suppression of contrast.

Figure 3.23 shows an enlarged fragment of an image that has been JPEG compressed by 
about 10:1 and then reconstructed. The major features are still recognizable, but closer 
inspection shows that there are many artifacts present. Besides the blocky appearance, 
fine details are missing or altered. The writing is no longer legible. There has also been 
a shift in the colors present. For analysis purposes, the image fidelity has been seriously 
compromised.

All of the commonly used compression methods take advantage of the fact that human 
vision tolerates (and detects) less spatial resolution in the color information than in the 
brightness. This provides a useful way to detect that compression has been applied (opening 
a compressed image and saving it in a lossless format does not, of course, restore the lost 
information). Figure 3.24 shows the hue channel (with the saturation set to maximum) from 
after JPEG compression; the uncompressed image has values of hue that vary from pixel to 
pixel, while the blocks in the compressed version show the loss of spatial resolution in the 
color data.

JPEG compression has been accepted for use in consumer applications and for transmission 
of images on the web primarily because most images contain a wealth of redundant infor-
mation, and human vision and understanding can recognize familiar objects in familiar set-
tings based on only a few clues. For scientific, technical, and forensic imaging purposes the 
artifacts introduced by lossy compression are unacceptable. Figure 3.25 shows an example. 
The image of the film has been compressed by less than 17:1 and visually appears little 
changed, but plots of the average density across the film show that minor peaks have been 
completely eliminated.

Judging the quality of compressed and restored images is not a simple matter. Calculating 
the statistical differences between the original pixel values and the reconstructed values is 
often used, but does not provide a measure that agrees very well with human judgment, 
nor with the needs of image measurement and analysis. As discussed in Chapter 2, human 
vision responds differently to the same absolute variation between pixels depending on 
whether they lie in light or dark areas of the image. Differences are usually more objec-
tionable in the dark areas, because of the nonlinear response of human vision. Differences 
are also judged as more important in regions that are smooth, or strongly and regularly 
patterned, than in areas that are perceived as random. Displacing an edge or boundary 
because of pixel differences is usually considered more detrimental than a brightness or 
color change in the interior of a feature.

Ranking of image quality by humans is often employed to compare different methods, but 
even with careful comparisons the results are dependent on lighting conditions, the context of 
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the image and others that have been seen recently, and fatigue. It was the result of extensive 
human comparisons that led to the selection of the JPEG standard that is now widely imple-
mented. The JPEG method is one of many that rely on first transforming the image from the 
familiar spatial domain to another one that separates the information present according to a 
set of basis functions.

Wavelet compression

The virtue of transforming the image into another space is that it organizes the information in 
a different way. The Fourier transform (and its close cousin the DCT used in JPEG compres-
sion) separates the information present according to frequency and orientation. If a complete 

   

Figure 3.23 Enlarged detail from a digital 
photograph:

  (a) original;

  (b) after 10:1 JPEG compression;

  (c) difference.

           (a)

   
(b)                       (c)
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set of these functions is used, it can exactly and completely reconstruct the original image, 
so using the transform by itself is not a lossy method. But if the complete set of functions is 
used, the numbers required to specify the magnitude and phase take up just as much stor-
age space as the original image. In fact, usually they take up more because the magnitude 
and phase values are real numbers, and the original pixel values are integers that require less 
storage space.

There are of course many other sets of basis functions besides the sinusoids used in the 
Fourier or DCT methods. Some provide a more efficient representation of the image, in which 
more of the terms are very small, while some are easier to compute. One of the more recently 
popular methods is the wavelet transform, which offers some computational advantages and 
can even be obtained optically with lenses and masks (McAulay et al., 1993), or electronically 
with a filter bank (Drygajlo, 1992; Strang, 1996).

The wavelet transform provides a progressive or multiscale encoding of the image at various 
scales, which is more flexible than windowed approaches like the Fourier transform. The 
wavelets comprise a normalized set of orthogonal functions on which the image is projected 
(Chui, 1992). The functions are localized rather than extending indefinitely beyond the image 
as sinusoids do, so the wavelet transform tends to deal better with the edges of regions and 
of the image, and its use for compression avoids the “blockiness” or “quilting” often seen in 
JPEG compression, where the image is subdivided into 8 × 8 pixel blocks before performing 
a discrete cosine transform.

There are several different wavelet functions commonly used. The simplest is the Haar, 
which is just a square step, as shown in Figure 3.26, that can be shifted across the image 
and expanded horizontally. Other wavelet functions, such as the Daubechies order-4 wavelet 
shown, are less obvious but work the same way and may reduce visual artifacts (Welstead, 
1999). Just as the Fourier summation of sinusoids can be used to exactly reconstruct any 
arbitrary function, so can the summation of wavelet functions (Daubechies, 1992, 1996; 
Mallat, 1989).

Figure 3.24 Effect of JPEG compression on colors (from left to right): original image; hue channel from 
the original with saturation set to maximum to show colors varying from pixel to pixel; hue channel 
after 30:1 JPEG compression, showing that the hue values are uniform over large blocks.
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To understand the process of the wavelet transform using the Haar functions, consider the fol-
lowing process. First, find the average intensity for the entire image and put this value into a 
single pixel in the upper left corner of the transform (which when complete will be the same 
size as the original). Now subdivide the image into quadrants and find the difference between 
the average values of each quadrant and the global mean. Place these values into a 2 × 2 
block of pixels. Place the difference between each of the two left-hand quadrants and the 

(a)

(b)

Figure 3.25 Image of a Debye-
Scherer X-ray film before (a) 
and after (b) JPEG compres-
sion (from 136.3K to 8.1K 
bytes). The position and 
density of the vertical lines 
provide information about 
crystallographic structure. 
The plot of the density pro-
file across the images shows 
that statistical noise in the 
spectrum has been removed 
along with some small 
peaks, and a new artifact 
peak introduced, by the 
compression.
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corresponding right-hand quadrants into one pixel, and the similar vertical differences into 
one pixel each, as shown in Figure 3.27. Repeat this process by subdividing the quadrants, 
and continue until the individual pixels have been reached.

It is clear that the squares and rectangles in the transform that contain the higher frequency 
differences (which lie downwards and to the right) are much larger and represent much 
more data than those corresponding to low frequency information. The subdividing process 
amounts to working with higher and higher frequencies (shorter distances) in the original 
image, and the reconstruction of the original image can be carried out using selected frequen-
cies. Figure 3.28 shows the process of reconstructing the image in Figure 3.27, by adding 
back the differences between pixels at progressively smaller steps. The process reconstructs 
the original image exactly, without loss. Applications of this approach to a wide variety of 
time- and space-dependent signals take advantage of its efficiency and compactness. In some 
cases, analysis of the coefficients can provide information about the image content, just as is 
commonly done with the Fourier transform.

In principle, all of these transforms are loss-free and take up as much space as the original 
(but unlike the Fourier transform, the Haar wavelet transform consists of integers and so 
does not take up more space). To achieve compression, the coefficients in the transform are 
quantized, just as for the JPEG cosine transform. Lossy compression of the image is accom-
plished by dividing down the magnitudes of the various terms in the transform so they can 
be represented with fewer bits, and eliminating those that are very small. This can reduce the 
amount of space required, but also produces loss in the quality of the reconstructed image 
and introduces various artifacts.

Filtering selected frequencies using the wavelet transform is accomplished by reducing or 
eliminating some of the values from corresponding portions of the transform. This is analo-
gous to filtering in Fourier space, discussed in Chapter 6.

Figure  3.29 shows the effects of lossy wavelet compression. Although the artifacts 
may not be visually objectionable in the reconstructed image, examining the difference 
between the original and the compressed image reveals many differences in detail, such 
as color variations and shifts in the location of edges, which seriously impact quantitative 
measurements.

The justification for compression is that the loss of particular terms from the transform may 
not be visible or at least objectionable to a human viewer, because the information each 
term represents is spread throughout the entire image and may have contributed little to any 

Figure 3.26 Two examples 
of mother wavelets:

   (a) Haar

  (b) Daubechies D4.

  
                     (a)                (b)
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particular feature. This is not always the case. The selection of terms with a small amplitude 
often means the elimination of high frequency information from the image, and this may be 
important to define edges and boundaries in particular. Just as the most visually objectionable 
defect in the JPEG cosine transform is “blocky” artifacts, so the most annoying aspect of the 
wavelet transform is that details are suppressed more in “busy” parts of the image, so that it 
is difficult to predict what details will survive and which will not.

Compression using lossy methods is often suitable for images to be used in particular applica-
tions such as printing in which the printing device itself may set an upper limit to the fidelity 
that can be reproduced. It has already been suggested above that one use of compression may 
be to store multiple copies of an image in a database, each with appropriate quality for a spe-
cific purpose such as printing or viewing as a thumbnail for searching and recognition. It is 
also important to determine just how much loss of quality is produced by varying degrees of 
image compression, so that artifacts capable of altering the analysis of reconstructed images 
are avoided.

Another application in which compression is normally used (wavelet compression, in this 
instance) is fingerprint files, used by law enforcement agencies for identification. The spacing 
of the friction ridges on fingertips varies only slightly from one individual to another, so the 
corresponding set of frequencies is preserved while lower frequencies (e.g., due to shading in 
the image) and higher frequencies (e.g., due to noise or dust) are discarded.

Figure 3.27 The wavelet transform process applied to an example image. The transform (b) consists 
of the differences between average values at different scales. These are marked and labeled for the 
upper left corner of the transform (c) and for the entire transform (d).
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Fractal compression

Barnsley (Barnsley & Hurd, 1993) has shown another way to transform an image, using what 
are often described as self-affine distortions of the image (shrinking and shifting copies of the 
original) as the basis functions. In principle, a complete set of these operations gives a set of 
parameters as large as the original image. But for many images, a small number of functions 
is sufficient to reconstruct the original image with acceptable fidelity, providing significant 
compression. A well-known example of this self-affine image generation is the fern produced 
by iteratively combining smaller copies of the same basic shape.

The four rules in Table 3.3 are able to generate a realistic image of a fern. Each rule cor-
responds to one rotation, displacement, and shrinkage of a sub-element of the structure. 
The rules are applied by starting at any point, selecting one of the rules (with the frequency 
shown by the probability values p, from 1% to 84%), and then moving from the current point 
to the next point according to the rule. This point is plotted and the procedure iterated to 
produce the entire figure. The more points, the better the definition of the result, as shown in 
Figure 3.30. The entire fern with 20,000 points shows the self-similarity of the overall shape. 
As a portion of the image is blown up for examination, more points are required. Finally, the 
limit of magnification is set by the numerical precision of the values used in the computation, 
as illustrated in the figure.

  
(a)              (b)              (c)

 

Figure 3.28 Reconstruction (inverse wavelet transform) adds in 
each higher frequency term successively. In the example, steps 
4, 5, 6, and 7 are shown. Step 8 restores the original image.

       (d)

Figure 3.28 Reconstruction (inverse wavelet transform) adds in each higher frequency term succes-
sively. In the example, steps 4, 5, 6, and 7 are shown. Step 8 restores the original image.
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From a mathematical point of view, the four transformations are basis functions or mappings 
which can be added together in proportion (the p or probability values) to produce the overall 
object. The same principle has been applied to the compression of photographic images with 
gray scale or color pixels, where it is known as the Collage Theorem. That there must be such 
basis functions, or rules for the self-affine distortions, and that they are in principle discover-
able, is known (Barnsley et al., 1986; Barnsley, 1988; Khadivi, 1990; Barnsley & Sloan, 1992; 
Barnsley & Hurd, 1993). The problem of finding the correct mappings is, however, far from 
trivial. Knowing that such functions must exist gives few leads to discovering them. Each map-
ping consists of a combination of translation, scaling, rotation, and warping. One proprietary 
method for finding them has been patented (Barnsley & Sloan, U. S. Patent # 5065447). There 
are formal procedures for performing fractal compression (Fisher et al., 1992; Wu et al., 2005), 
although the results are not necessarily optimal. It has been shown that nonlinear self-affine 
transforms can also be used, and may be more efficient.

Figure 3.29 Losses introduced by wavelet compression; subtracting the original from the reconstructed 
image shows the differences, which are greatest in those areas of the image with more detail.

Table 3 .3. Transformations (Basis Functions) for the Fern Image (Figure 3.30)

1 (p = 0.840) x ’ = +0.821 • x + 0.845 • y + 0.088

y ’= +0.030 • x – 0.028 • y – 0.176

2 (p = 0.075) x ’= –0.024 • x + 0.074 • y + 0.470

y ’ = –0.323 • x – 0.356 • y – 0.260

3 (p = 0.075) x ’= +0.076 • x + 0.204 • y + 0.494

y ’= –0.257 • x + 0.312 • y – 0.133

4 (p = 0.010) x ’= +0.000 • x + 0.000 • y + 0.496

y ’ = +0.000 • x + 0.172 • y – 0.091
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This technique is described as “fractal compression” because the reconstruction is carried out 
iteratively (as shown for the fern), and because it provides ever finer levels of detail. In fact, 
the method can be continued to produce reconstructed images with detail at a much finer 
scale than the original used to find the basis functions. Such detail looks very impressive, 
since the enlarged image never shows flat or smooth areas that indicate loss of resolution. Of 
course, the detail is not real. It is generated under the assumption that whatever patterns are 
present at large scale in the image are also present with progressively less amplitude at all 
finer scales.

Unlike the JPEG and wavelet methods, fractal compression is not symmetrical. The time 
needed to compress the image is typically much greater than that needed to reconstruct it. 
Fractal compression also has characteristic artifacts. Figure 3.31 shows an image after a 40:1 
fractal compression. Subtracting the original from the reconstructed image shows that the col-
ors have been significantly altered, features have been shifted in position, and details inserted 
that are not present in the original.

Digital movies

It has become common to use personal computers to produce, edit, publish on the web, and 
display digital moving pictures. Two emerging standards (or sets of standards) are Apple’s 
Quicktime and Microsoft’s Video for Windows. Both of these methods allow the use of various 
compression techniques, usually called CODECs (COmpressor-DECompressor). A codec is a 
program implementation of one of the compression algorithms such as those described above 
(JPEG is one of the methods provided by currently existing codecs). Most of the codecs run in 
software only, while a few use additional hardware to gain real-time speed. For JPEG, this can 
be either a digital signal processor chip programmed to execute the discrete cosine transform, 
or a dedicated chip designed specifically for the JPEG algorithm.

However, the JPEG method does not provide as much compression for digital movies as is 
needed to compress an entire movie onto a single DVD, to upload videos on the web, to 

Figure 3.30 Image of a fern generated with the four transformation rules shown in the text. The struc-
ture remains self-similar when expanded, except for the limitation of finite numerical precision in 
the calculation, which rounds off the values in the 100 times expanded image. (a) fern image with 
20,000 points; (b) 5x expansion; (c) 100x expansion.



195Printing and Storage
© 2011 by Taylor & Francis Group, LLC

broadcast HDTV images, or to allow digital video conferencing with images transmitted over 
relatively low bandwidth networks, because it does not take into account the considerable 
redundancy of sequential images. In most cases, a series of images on movie film or videotape 
has large areas of pixels that are ideally (i.e., except for noise) not changing at all with time, 
or are doing so in relatively smooth and continuous ways. It is possible to compress these, 
and high compression ratios can be tolerated because for such areas the needed quality of the 
reconstructed image is not high. Human vision tends to ignore portions of images in which 
nothing interesting is happening and no changes are occurring.

The MPEG (Moving Pictures Experts Group) standards follow the same approach as JPEG. 
They are based primarily on the need to compress images in order to transmit “consumer” 
video and high definition television (HDTV), in order to compress the images enough to 
permit transmission within the bandwidth used by television stations, and to fit entire mov-
ies onto DVD disks. Of course, for more technical purposes, such as tracking features in a 
sequence of images or measuring density or color changes as a function of time, different 
requirements may place different limits on the acceptable quality of reconstruction.

For sequences of images, additional compression is based on similarity between successive 
frames and MPEG adds several additional steps to reduce the amount of data that must be 
transmitted. It looks for blocks of similar pixels in successive images, even if they have moved 
slightly. Only an average of 2 frames per second are normally sent in their entirety. The rest 
are encoded as differences from preceding frames. This approach allows overall compression 
to approach 200:1 with “acceptable” visual appearance.

A typical high quality HDTV image presents 1920 × 1080 pixels at the rate of 30 images per 
second, for a total data rate exceeding 1 gigabit per second. The images use progressive scan 
(not interlaced), square pixels, and a wider image aspect ratio of 16:9 instead of the 4:3 used 
in NTSC video. A typical broadcast TV station has a bandwidth that is 250 times too small. 
It is important to remember that the criterion for these compression methods is the visual 

Figure 3.31 Losses introduced by fractal compression include color changes, shifts in position of fea-
tures, and insertion of detail not present in the original.
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acceptance of the reconstructed image, as it is displayed on a television screen. For instance, 
the MPEG standard encodes the chrominance (color) information with less precision than 
it does the luminance (brightness) information. Unchanging (or slightly changing) blocks 
are updated less frequently, which leads to the blocky appearance of HDTV images when 
there are difficulties in transmission. The use of images for technical purposes, or even their 
presentation in other forms such as printed hardcopy viewed by reflected light, may not be 
so forgiving.

The audio compression used in MPEG is used by itself for music recording (the popular MP3 
format). The requirement for fidelity is that high frequencies must be well enough preserved 
so that (for example) overtone sequences allow the listener to distinguish an oboe from a 
muted trumpet.

Most of the moving picture compression methods use key frames, which are compressed 
using the same method as a still picture. Then for every image in the sequence that follows 
the key frame, the differences from the previous image are determined and compressed. For 
these difference images, the magnitude of the values is reduced. Consequently, in performing 
a further compression of this image the number of terms eliminated can be increased signifi-
cantly and much higher levels of compression achieved.

Like JPEG, MPEG consists of several options, some of which require more computation but 
deliver more compression. For instance, motion compensation provides a higher degree of com-
pression because it identifies an overall translation in successive images (for instance, when the 
camera is slowly panned across a scene) and adjusts for that before comparing locations in one 
image with the previous frame. The MPEG approach is asymmetric: it requires more computa-
tion to compress the original data than to decompress it to reconstruct the images.

One of the consequences of this approach to compression is that it is intended only to go 
forward in time. From a key frame and then successive differences, each following image 
can be reconstructed. But it is not easy to reconstruct a previous image except by returning 
to the nearest preceding key frame and working forward from there. In principle, one key 
frame at the beginning of each scene in a movie should be enough. In practice, key frames 
are inserted periodically.

Other compression methods are being developed for sequential images. One is predictive vec-
tor quantization that attempts to locate boundaries in each image, track the motion of those 
boundaries, and use prediction to generate successive images so that smaller differences need 
to be encoded. Sequences of 8-bit gray scale images compressed to an average data rate of less 
than 0.5 bits per pixel have been reported (Nicoulin et al., 1993; Wu & Gersho, 1993; Wen & 
Lu, 1993; Hwang et al., 1993). Fractal compression has also been extended to deal with image 
sequences (Li et al., 1993).

High compression ratios for moving images are appropriate for video conferencing, where 
the image quality only has to show who is speaking and perhaps what they are holding. For 
many consumer applications, in which the final image is viewed on a screen of only modest 
resolution (for instance, a cell phone, or a movie clip uploaded to the web), adequate image 
quality can be achieved at high compression ratios. Tests with human television viewers have 
long suggested that it is the quality of the sound that is most important, and significant defects 
in the individual images are not objectionable. Many of the highly compressed movies down-
loadable from the web contain extreme visual artifacts, but are considered acceptable by those 
who view them.
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However, for most technical and forensic applications, the types of artifacts produced by 
still image compression are not acceptable, and the additional ones introduced as a result of 
temporal compression make matters worse. The user intending to perform analysis of images 
from a sequence should certainly begin with no compression at all, and only accept specific 
compression methods if tests indicate they prove to be acceptable for the particular purposes 
for which the images are to be used.
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4
Correcting Imaging Defects

This chapter considers a first group of image processing operations, those procedures 
applied to correct some of the defects in as-acquired images that may be present due 
to imperfect detectors, limitations of the optics, inadequate or nonuniform illumination, 

or an undesirable viewpoint. It is important to emphasize that these are corrections that are 
applied after the image has been digitized and stored, and therefore are unable to deliver the 
highest quality result that can be achieved by optimizing or correcting the acquisition process 
in the first place. The corrections generally should be applied before enhancement is under-
taken or measurements are made.

Of course, acquiring an optimum-quality image is sometimes impractical. If the camera can 
collect only a small number of photons in a practical time or before the scene changes, then 
the noise present in the image cannot be averaged out by acquiring and adding more photons 
or video frames, and other noise reduction means are needed. If the source of illumination 
cannot be controlled to be perfectly centered and normal to the viewed surface (for instance 
the sun), or if the surface is curved instead of planar, then the image may have nonuni-
form illumination that must be corrected afterwards. If the viewpoint cannot realistically be 
adjusted (for instance the path of a space probe or satellite), or if the surface is irregular (as 
in the case of a metal fracture), then some parts of the scene are foreshortened; this must be 
taken into account in comparing sizes or measuring distances.

Even in a typical laboratory setup, keeping an instrument such as a microscope in ideal align-
ment may be very time consuming, and achieving adequate stability to collect dim images for 
a long time can be very difficult, so that it becomes more practical to trade off some of the 
ideally achievable image quality for convenience and speed, and to utilize image processing 
methods to perform these corrections. When the first space probe pictures were obtained and 
the need for this type of correction was first appreciated, it required lengthy computations on 
moderate sized computers to apply them. It is now possible to implement such corrections on 
desktop or laptop machines in times measured in milliseconds, so that they can be practically 
applied to routine imaging needs.
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Contrast expansion

Chapter 1 explains that the typical digitization process for images produces values from 0 
(black) to 255 (white), producing one byte (8 bit) values, or for color images one byte each for 
red, green, and blue. If the camera and digitizer have more precision, the values may have 10, 
12, or even more bits of precision and typically occupy two bytes each. But while this is the 
full dynamic range available to the output of the camera sensors, there is no reason that the 
actual image data must cover the full range. In many situations the recorded image has a much 
smaller range of brightness values, which may either lie in the middle of the range (intermedi-
ate gray values) or toward either the bright or dark end of the range.

The image histogram, a plot of the number of pixels with each possible brightness level, is a 
valuable tool for examining the contrast in the image. Figure 4.1 shows an example image 
in which the histogram covers the full dynamic range and indicates good contrast. There 
are no pixels that are completely black or white. Most inexpensive pocket digital cameras 
do a good job of capturing well-exposed images of everyday scenes, aided by the use of an 
analog-to-digital converter that digitizes the analog signal from the detector with more bits 
of precision (e.g., 10 or 12) than are used to store the resulting picture (typically 8). This 
allows the final values to be rescaled to cover the full brightness scale. For professional 
digital cameras that save the raw image data, the subsequent conversion of the raw file can 
accomplish the same result.

If the inherent range of variation in brightness of the image is much smaller than the dynamic 
range of the camera, subsequent electronics, and digitizer, then the actual range of numbers 

 
(a)                    (b)

Figure 4.1 A well-exposed image (a) with its brightness histogram (b). This is an example of good 
exposure adjustment, since the brightness values cover the entire range without clipping at black or 
white.
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is much less than the full range of 0 through 255. Figure 4.2a shows an example. The speci-
men is a thin section through tissue, shown in a bright field microscope. Illumination in the 
microscope and light staining of the section produce very little total contrast. The narrow 
peak and empty regions at the ends of the histogram indicate that many of the possible bright-
ness levels are not used.

Visibility of the structures present can be improved by stretching the contrast so that the val-
ues of pixels are reassigned to cover the entire available range. Figure 4.2b shows this. The 
mapping is linear and one-to-one. This means that the darkest pixels in the original image 
are assigned to black, the lightest images are assigned to white, and intermediate gray values 
in the original image are given new values which are linearly interpolated between black and 
white. All of the pixels which have one gray value in the original image are assigned the same 
new gray value in the resulting image.

This histogram plotted with the image in the figure now shows counts of pixels for gray levels 
that are spread out across the available brightness scale. However, many of the gray values 
still show zero counts in the histogram, indicating that no pixels have those values. The reas-
signment of gray values has increased the visual contrast for the pixels present, but has not 
increased the ability to discriminate subtle variations in gray scale that are not recorded in 
the original image. It has also magnified the brightness differences associated with noise in 
the original image.

Figure 4.2c shows the same field of view acquired utilizing the entire range of the camera 
and digitizer. This may require adjusting the illumination, camera gain, or exposure time, etc., 
and may require trial and error in the settings, which are simplified if a live histogram can 
be shown. The mean brightness of various structures is similar to that shown in Figure 4.2b. 
However, all of the 256 possible gray values are now present in the image, and small varia-
tions in sample density can now be distinguished or measured in the specimen.

This problem is not restricted to bright images. Figure 4.3a shows a dark image from a scan-
ning electron microscope, with its histogram. The structures on the integrated circuit are 
revealed when the contrast is stretched out (Figure 4.3b), but this also increases the visibility 
of the noise, random “speckle” variations for pixels that are within the same structure and 
ideally should be uniform in brightness. The problem of image noise is dealt with as the next 
topic in this chapter, although from a workflow standpoint, noise reduction, correction of 
nonuniform illumination, and most of the other procedures in this chapter should generally 
be undertaken before contrast adjustment. It is presented first here because it makes the need 
for the other corrections more obvious, and in any case it is the adjustment that most users 
reach for first.

The examples shown are extreme cases, but it is often not practical to adjust the illumination, 
camera gain, etc., to exactly fill the available pixel depth (the number of gray levels that can 
be digitized or stored). Furthermore, increasing the brightness range too much can cause pixel 
values at the dark and/or light ends of the range to exceed the digitization and storage capac-
ity and to be clipped to the limiting values, which also causes loss of information. Figure 4.4 
shows an example, a night scene in which the brightness scale of the face of the building is 
good but bright lights are brighter than the white limit of the camera and consequently are 
clipped to the maximum value of 255, while the dark areas around the building are underex-
posed and clipped to zero (black), losing any detail that might have been present.

When contrast expansion is applied to color images, the correct procedure is to convert the 
image from its stored RGB format to L•a•b or HSI color space, and expand the intensity or 
luminance, lightness, or intensity scale while leaving the color information unchanged, as 
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Figure 4.2 Light microscope image of stained 
tissue

  (a)  has very low initial contrast, as shown 
by its brightness histogram;

  (b)  linear expansion of the brightness range 
by manipulating the display shows a 
full range of black to white values but 
causes gaps in the histogram;

  (c)  acquiring the image with optimum illu-
mination and camera exposure produces 
a visually similar result but without gaps 
in the histogram. The red line shows the 
cumulative or integrated histogram, ris-
ing from 0 to 100%.

            (a)

   

(b)                     (c)
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(a)                      (b)

Figure 4.3 A dark scanning electron microscope (SEM) image of lines on an integrated circuit with its 
histogram (a). After linear contrast expansion (b), the features and noise are both more visible, and 
the histogram shows gaps.

  

Figure 4.4 A night scene in which the bright 
lights are clipped to white and the shadows 
are clipped to black. Information lost due 
to clipping cannot be recovered.
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shown in Figure 4.5. This prevents color shifts that occur if the individual red, green, and 
blue histograms are linearly expanded to full scale, as shown in Figure 4.6. Such shifts are 
especially prevalent if the original image consists primarily of just a few colors or is predomi-
nantly of one color.

If the images have enough different brightness levels to reveal the important features in the 
specimen, then linear contrast expansion is a useful and acceptable method to increase the 
viewer’s visual discrimination. More important, this expansion may make it possible to more 
directly compare images acquired with slightly different brightness ranges by adjusting them 
all to the same expanded contrast scale. Of course, this only works if the brightest and darkest 
class of structures are present in all of the images and fields of view.

Other manipulations of the pixel brightness values can also be performed. These are described 
as point operations, meaning that the new values assigned depend only on the original pixel 
value and not on any of its neighbors, and one-to-one, meaning that all pixels which origi-
nally had a single brightness scale value are assigned to another single value. However, the 
process may not be linear. An example is converting brightness to density, which involves a 
logarithmic relationship. For color images, a transfer function can be used to correct colors 
for distortion due to the color temperature of the light source (as shown in Figure 1.22 in 
Chapter 1), or for atmospheric scattering and absorption in satellite images. These functions 
may be implemented with either a mathematical function or a lookup table.

Chapter 5 illustrates many of these more flexible contrast manipulations to enhance the vis-
ibility of structures present in the image.

(a)

(b)

Figure 4.5 Light microscope image of 
stained tissue (a) and the result of 
expanding contrast by converting 
to HSI space and linearly expand-
ing the intensity only (b).
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Noisy images

The linear expansion of contrast shown in the examples above is often accompanied by an 
increased visibility for noise (random fluctuations in pixel values) that may be present. Noise is an 
important defect in images that can take many different forms and arise from various sources.

In Chapter 1, Figure 1.27 illustrates the improvement in image quality (technically, signal-
to-noise ratio) obtained by averaging a number of frames. One unavoidable source of noise is 
counting statistics in the image detector due to a small number of incident particles (photons, 
electrons, etc.). This is particularly the case for X-ray images from the SEM, in which the ratio 
of incident electrons to detected X-rays may be up to a million to one. In fluorescence light 
microscopy, the fluoresced-light photons in a narrow wavelength range from a dye or activ-
ity probe may also produce very dim images, compounded by the necessity of acquiring a 
series of very-short-duration images to measure activity as a function of time. In astronomy, 
the desire to capture more photons in a reasonable exposure time has led to the creation of 
ever-larger telescopes.

Noisy images may also occur due to instability in the light source or detector during the time 
required to scan or digitize an image. The pattern of this noise may be different from the 
essentially Gaussian noise due to counting statistics, but it still shows up as a variation in 
brightness in uniform regions of the scene. One common example is the noise in field emis-
sion SEM images due to the variation in field emission current at the tip. With a typical time 
constant of seconds, the electron emission may shift from one atom to another, producing a 
change of several percent in the beam current. The usual approach to minimize the effects of 
this fluctuation in the viewed image is to use scan times that are either much shorter or longer 
than the fluctuation time.

Figure 4.6 Light microscope 
image of an insect (a) 
with histograms of the red, 
green, and blue values 
(b). Expanding the inten-
sity while leaving hue and 
saturation unchanged (c) 
expands the visible con-
trast without altering the 
colors. Expanding the 
RGB values individually 
to full range produces 
color shifts in the image 
(d) because the propor-
tions of red, green and 
blue are changed.

 
        (a)

          (b)

  
(c)               (d)
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Similar effects can be seen in images acquired using fluorescent lighting, particularly in light 
boxes used to illuminate film negatives, resulting from an interference or beat frequency 
between the camera exposure and flickering of the fluorescent tube. This flickering is much 
greater than that of an incandescent bulb, whose thermal inertia smooths out the variation in 
light emission due to the alternating current. When the noise has a characteristic that is not 
random in time and does not exhibit “normal” statistical behavior, it is more difficult to place 
meaningful numeric descriptors on the amount of noise. However, many of the same tech-
niques can be used, usually with somewhat less efficacy, to reduce the noise. Periodic noise 
sources, resulting typically from electrical interference or vibration, may be removed using a 
Fourier transform representation of the image, as shown in Chapter 6.

Random noise also arises in the camera chip itself, both due to inherent variations in the 
sensitivity of each detector and the variations in amplification, losses in the electron transfer 
process, and random thermal noise. Some of this is a fixed pattern across the image, and some 
is random “speckle” noise superimposed on the image data.

Assuming that an image represents the best quality that can practically be obtained, this 
section deals with ways to suppress noise to improve the ability to visualize and demarcate 
for measurement the features which are present. The underlying assumptions in all of these 
methods are that the pixels in the image are much smaller than any of the important details, 
and that for most of the pixels present, their neighbors represent the same structure. Various 
averaging and comparison methods can be applied based on these assumptions.

These are very much the same assumptions as those inherent in classical image averaging 
or long exposure times, in which the assumption is that pixel readings at each location at 
different times represent the same structure in the viewed scene. This justifies averaging or 
integrating pixel readings over time to reduce random noise. When the signal varies in other 
ways mentioned above, other methods such as median filtering (discussed below) can be 
used. These methods are analogous to the spatial comparisons described here except that 
they utilize the time sequence of measurements at each location.

There are important differences between noise reduction by the use of frame averaging to 
combine many sequential readouts from a camera and the use of a camera that can integrate 
the charge internally before it is read out. The latter mode is employed in astronomy, fluo-
rescence microscopy, and other applications with very faint images and is sometimes called 
“staring” mode since the camera is open to the incident light. The two methods might seem 
to be equivalent, since both add together the incoming signal over some period of time. 
However, it is important to understand that there are two very different sources of noise to 
be considered.

In a camera used in staring mode, the electrons collected in each transistor on the CCD 
array include those produced by incoming photons and some from the dark current in the 
device itself. This current is strongly influenced by thermal noise, which can move elec-
trons around at room temperature. Cooling the chip, either by a few tens of degrees with 
a Peltier cooler or by hundreds of degrees with liquid nitrogen or even liquid helium, can 
reduce this thermal noise dramatically. An infrared camera must be cooled more than a 
visible light camera, because the light photons themselves have less energy and so the pro-
duction of a signal electron takes less energy, so that more dark current is present at room 
temperature.

Cameras intended for staring application or long time exposures often specify the operating 
time needed to half-fill the dynamic range of the chip with dark current. For a typical Peltier-
cooled camera, the useful operating time may be several minutes. For a high quality device 
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used for professional astronomy and cooled to much lower temperatures, it may be several 
hours. Collecting an image in staring mode for that length of time raises the dark level to a 
medium gray, and any real signal is superimposed on that background. Since the production 
of thermal electrons is a statistical process, not all pixels have the same background level. 
Fluctuations in the background represent one type of noise in the image that may be domi-
nant for applications to very dim images. In most cases, this source of noise must be compared 
to the readout noise.

All cameras have some readout noise. In a CCD camera, the electrons from each transistor 
must be transferred many times in order to be read out as a voltage to the computer. More 
transfers are needed to shift the electrons from one side of the image to the amplifier and so 
the resulting noise is greater on one side of the image than on the other. In an interline trans-
fer camera, a separate row of transistors adjacent to each detector is used instead, somewhat 
reducing the readout noise. Of course, additional sources of noise from the other associated 
electronics (clock signals, wiring from the camera to the digitizer, pickup of electrical signals 
from the computer itself, and so forth) may degrade the signal even more. But even if those 
other sources of noise are minimized by careful design and proper wiring, there is an irre-
ducible amount of noise superimposed on the signal each time the camera image is read out, 
amplified, and digitized.

This noise is generally random and hence is as likely to reduce as to increase the brightness 
of any particular pixel. Figure  4.7 shows an example of two successive images acquired 
using a good quality digital camera and normal lighting. The images look essentially identi-
cal except for the motion of the clock hands. However, subtracting one frame from the other 
(and expanding the contrast as described above) shows the pixel noise present in the images, 
as well as the motion of the hands. With digital cameras, the normal procedure is to acquire 
a single image using an appropriate exposure time and then transfer the digitized values to 
the computer or to a memory chip. However, some camera designs that are not cooled may 
acquire several shorter exposures and average the results in the computer.

With video cameras, averaging many frames together causes the random noise to partially 
cancel while the signal continues to add up. The small well size of the transistors on the very 

  
(a)               (b)               (c)

Figure 4.7 Two images of the same view, acquired from a digital camera, and the difference between 
them (pixels enlarged and contrast expanded to show detail). Except for the differences associated 
with the motion of the clock hands, the differences are due to random noise in the camera and are 
different in the red, green, and blue channels.
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tiny chip make long exposures impractical. The consequence is that frame averaging can 
reduce the relative magnitude of this source of noise in the image, but cannot eliminate it.

For a very dim image, the optimum situation is to integrate the signal within the camera chip, 
but without allowing any single pixel to reach saturation. Then reading the data out once pro-
duces the minimum readout noise and the best image. For a brighter image, or for a camera 
than can only function at video rates, or one whose detector has a small well size or electron 
capacity, it may be preferable to average together a sufficient number of successive frames to 
reduce the pixel variations due to random noise. This integration may be done in the frame 
grabber or in the computer program. The frame grabber is generally restricted by the amount 
of on-board memory, but can often collect every frame with no loss of data. The computer 
program is more flexible, but the time required to add the frames together may result in dis-
carding some of the video frames, so that the total acquisition takes longer (which may not 
be a problem if the image does not vary with time). In fluorescence microscopy bleaching 
may occur and it may be desirable to collect all of the photons as rapidly as possible, either 
by frame averaging or, for a very dim image, by using staring mode if the camera is capable 
of this.

Figure 4.8 shows a comparison of two SEM images taken at different scan rates. The fast scan 
image collects few electrons per pixel and so has a high random noise level that obscures 
details in the image. Slowing the scan rate down from 1 second to 20 seconds increases the 
amount of signal and reduces the noise. The histograms show that the variation of brightness 
within the uniform region is reduced (the peak is narrowed), which is why the visibility of 
detail is improved.

Many digital cameras allow setting an equivalent ASA rating, corresponding to film sensitivity. 
The higher the ASA rating the shorter the exposure and/or the smaller the aperture used to 
capture the image. This requires a higher gain in the amplification of the signal, producing a 
higher level of random noise. Figure 4.9 shows the reduction of noise and improvement in 
image quality with longer exposure time (achieved by reducing the ASA setting on the camera 
from 1600 to 100). The noisy image in Figure 4.9a is also the starting point for various noise 
reduction methods shown below.

Neighborhood averaging

The simplest form of spatial averaging is to add together the pixel brightness values in 
each small region of the image, divide by the number of pixels in the neighborhood, and 
use the resulting value to construct a new image. Figure 4.10a shows that this essentially 
produces an image with a smaller number of pixels. The block size is 3 × 3, so that nine 
pixel values are added. For the random noise in this image, the improvement in image 
quality or signal-to-noise ratio is the square root of 9, or a factor of 3. However, the image 
lateral resolution is seriously impacted and the small structures in the image can no longer 
be separately discerned.

The more common way to accomplish neighborhood averaging is to replace each pixel with 
the average of itself and its neighbors. This is often described as a “kernel” operation, since 
implementation can be generalized as the sum of the pixel values in the region multiplied 
by a set of integer weights. The process is also called a convolution and can equivalently be 
performed in Fourier space (discussed in Chapter 6).
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Equation 4.1 shows the calculation performed over a square of dimension 2m + 1. This is 
an odd value so the neighborhood sizes range from 3 × 3, upwards to 5 × 5, 7 × 7, etc. It is 
possible to use non-square regions; for larger neighborhoods an approximation of a circle is 
preferable to a square. The array of weights W for a simple neighbor averaging contains only 
1s, and for a 3 × 3 region can be written as
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Figure 4.8 SEM images of a 
scratched metal surface: 

  (a)  1 second scan and 
histogram;

  (b)  20 second scan and 
histogram.

       (a)               (b)
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where the convention is that these coefficients are to be multiplied by pixel values that sur-
round the central pixel (colored), the total normalized by dividing by the sum of weights (9 in 
the example), and the value written to the location of the central pixel to form a new image.

As a matter of practicality, since storage space is never unlimited, it is common to write the 
new image back into the same memory as the original. However, when this is done it is impor-
tant to use the original pixel values for the summation, and not those new ones which have 
already been calculated for some of the neighbors. This requires copying a few lines of the 
image during the process.

Neighborhood operations, including kernel multiplication, are usually applied symmetrically 
around each pixel. This creates a problem for pixels nearer to an edge of the image than 
the half-width of the neighborhood. Various approaches are used to deal with this problem, 
including designing special asymmetrical kernels or rules along edges or in corners, assum-
ing that the image edges are mirrors so that each line of pixels within the image is duplicated 
beyond it, extrapolating values from within the image area to the pixels beyond the edge, or 
assuming that the image wraps around so that the left edge and right edge, and the top and 
bottom edges, are continuous. An even simpler approach is sometimes used: the processing 
is restricted to that portion of the image where no edge conflicts arise. This leaves lines of 
unprocessed pixels along the edges of the images, equal in width to the radius of the neigh-
borhood. None of these approaches is entirely satisfactory, and in general most processing 
operations sacrifice some information from the image borders.

Figure 4.10b shows the effect of smoothing using a 3 × 3 neighborhood average and Figure 4.10c 
shows the result with a 7 × 7 neighborhood size. The noise reduction is much greater with the 
larger region, but is accompanied by a significant blurring of the feature edges.

The amount of blurring can be reduced and more control exerted over the neighborhood aver-
aging procedure by using weight values that are not 1. For example, the values

 
(a)                      (b)

Figure 4.9 Noise reduction by collecting more signal: (a) image recorded at ASA 1600 setting, 1/800 
second exposure; (b) same image recorded at ASA 100 setting, 1/50 second exposure.
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have several attractive characteristics. First, the central 4 which multiplies the original pixel 
contents is the largest factor, causing the central pixel to dominate the average and reduc-
ing blurring. The values of 2 for the four orthogonally touching neighbors and 1 for the four 
diagonally touching neighbors acknowledge the fact that the diagonal pixels are farther away 
from the center of the neighborhood (by the factor √2). Finally, these weights have a total 
value of 16, which is a power of 2. The use of numbers that are powers of 2 makes it possible 
to perform multiplications and divisions by bit shifting in the computer, which is very fast.

  
(a)                      (b)

   

Figure 4.10 Neighborhood averaging (compare 
to the original image in Figure 4.9a):

  (a) each 3 × 3 block of pixels averaged;

  (b)  each pixel replaced by the average in a 
radius = 1 (3 × 3 pixel) neighborhood;

  (c)  each pixel replaced by the average in a 
radius = 3 (7 × 7 pixel) neighborhood.

           (c)
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When the first edition of this book appeared, there was great interest in efficient implementa-
tions of image processing operations because computer power was limited. Sets of weight values 
commonly used small integers to speed implementation, and to make the sum of the products 
not exceed 32,678 (215) to fit into a single precision integer value. Powers of two were favored 
and the values were selected with more regard to efficient implementation than to the actual 
underlying theory. Fortunately, these restrictions are no longer very important. With modern 
computers, greater precision arithmetic and floating point multiplications are fast, and even 
with the megapixel images now common, performance speed is adequate for most purposes.

Chapter 6 shows, in the context of processing images in frequency space, that these kernels 
can be analyzed efficiently in that domain to understand their smoothing properties. One of 
the very useful “shapes” for a weight kernel is that of a Gaussian. This is a set of weights that 
approximates the profile of a Gaussian function along any row, column, or diagonal through 
the center. It is characterized by a standard deviation, expressed in terms of pixel dimensions, 
and calculated as:
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where x and y are the distance in pixels from the center of the kernel. The size of the kernel 
is 3 times the standard deviation on either side of the central pixel, so that adding another 
row of values would insert negligibly small numbers into the array. The standard deviation for 
these kernels is the radius (in pixels) containing 68% of the integrated magnitude of the coef-
ficients, or the volume under the surface if the kernel is pictured as a 3D plot of the weight 
values, as shown in Figure 4.11. This is a two-dimensional generalization of the usual defini-
tion of standard deviation; for a one-dimensional Gaussian distribution, 68% of the area under 
the curve lies within ± 1 standard deviation.

Choosing a set of integers to implement a Gaussian is difficult, since the goal is to approxi-
mate the smooth analytical curve of the Gaussian (Russ, 1995d). Some systems allow entering 
kernel weights as real numbers, and many systems generate Gaussian values as needed, when 
the user enters the standard deviation value.

The smoothing operation can be speeded up considerably in the case of Gaussian filters by 
separating the operation into two simpler ones. Instead of using the entire square array of 
weights, which for a 15 × 15 kernel would require 225 multiplications and additions, the filter 
can be separated into a vertical Gaussian blur with a linear array of weights (15 multiplications 
and additions) followed by a horizontal Gaussian blur (another 15 for a total of 30). Equation 

Figure 4.11 Graphical plot of the weight values in Gaussian smoothing kernels. As the standard devia-
tion increases, the peak value drops so that the total sum of the weights (the volume under the plotted 
surface) remains constant.
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4.3 is used to calculate the values for the weights, which again may be scaled and rounded 
as integers.
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The implementation of some classes of convolution kernels can be separated in this way, but 
most cannot and for purposes of understanding the algorithms it is better to consider the 
entire array of weights. In subsequent sections on image processing, other uses for kernels 
are shown in which the weights are not symmetrical in magnitude and are not all positive. 
The implementation of the kernel remains the same, except that when negative weights are 
present the normalization is usually performed by dividing by the sum of the positive values 
only, or the largest positive value (because in these cases the sum of all the weights is usually 
zero). For smoothing of noise in images, only positive weights are usually involved.

Figure 4.12 shows the result of applying smoothing with Gaussian kernels with a standard 
deviation of 1.0 pixel (a 7 × 7 kernel) and 3.0 pixels (a 19 × 19 kernel) to the same original image 
from Figure 4.9a. This type of averaging does reduce the visible random noise in the image, but 
it also blurs edges, displaces boundaries, and reduces contrast. It can even introduce artifacts 
when two nearby structures are averaged together in a way that creates an apparent feature 
between them. Figure 4.13 shows an example in which the lines of the test pattern are blurred 
by the 11 × 11 averaging window, causing false lines to appear between them.

As Chapter 6 illustrates, multiplication of the frequency transform by a convolution function 
is equivalent to application of a kernel in the spatial domain. The most common noise-filtering 
method is to remove high frequency information, which represents pixel-to-pixel variations 
associated with random noise. Such removal may be done by applying a filter or mask to 
reduce or eliminate higher frequencies, and retransforming. The result is the same as that 
which can be accomplished in the spatial domain.

 
(a)                      (b)

Figure 4.12 Result of Gaussian smoothing (compare to the original image in Figure 4.9a): (a) standard 
deviation = 1.0 pixels; (b) is tandard deviation = 3.0 pixels.
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As a practical matter, for kernel sizes that are small, or ones that are separable into vertical and 
horizontal passes like the Gaussian, multiplication and addition of the pixel values in the spatial 
domain is a faster operation. For kernels that are larger than about 11 × 11 (the limit depends 
to some extent on the particulars of the individual computer, whether the image can be held 
entirely in memory or must be accessed from disk, whether multiple processors can be used, etc.) 
the frequency domain method is faster. However, since both procedures are mathematically iden-
tical, it is may be easier to understand the process based on spatial domain kernels of weights.

In Chapter 5 on image enhancement, the use of kernels in which a ring of negative weight 
values surrounds a positive central peak is shown. The purpose of this modification is to 
sharpen edges and avoid some of the blurring that is produced by smoothing out noise. The 
same method has long been used for the smoothing of one-dimensional signal profiles, such as 
X-ray diffraction patterns, spectra, or time-varying electronic signals. This is often performed 
using a Savitsky and Golay (1964) fitting procedure. Tables of coefficients published for this 
purpose are designed to be used just as the weighting coefficients shown above, except that 
they operate in only one dimension. The process is equivalent to performing a least-squares 
fit of the data points to a polynomial. The smoothed profiles preserve the magnitude of steps 
while smoothing out noise. Table 1.1 lists these coefficients for second (quadratic) and fourth 
(quartic) power polynomials, for fits extending over neighborhoods ranging from 5 to 19 
points. These profiles are plotted in Figure 4.14. This same method can be extended to two 
dimensions (Edwards, 1982); Figure 4.15 shows the application of a 7 × 7 Savitsky and Golay 
quadratic polynomial to smooth a noisy image.

Neighborhood ranking

Smoothing filters do reduce random noise, but the underlying assumption is that all of the 
pixels in the neighborhood represent multiple samples of the same value, in other words 
that they all belong to the same structure or object. Clearly, at edges and boundaries this is 
not true, and all of the smoothing filters shown above produce some blurring and shifting of 
edges, which is undesirable. The Gaussian filters produce the least edge blurring for a given 
amount of noise reduction, but cannot eliminate the blurring altogether.

The use of weighting kernels to average together pixels in a neighborhood is a convolution 
operation, which, as noted above, has a direct counterpart in frequency space image process-
ing. It is a linear operation that uses all of the pixels in the neighborhood, and in which no 
information is lost from the original image. There are other processing operations that can be 
performed in neighborhoods in the spatial domain that also provide noise reduction. These 

  

Figure 4.13 Artifacts due to 
smoothing. Applying an 11 
× 11 smoothing kernel to the 
test pattern in (a) produces 
apparent lines between the 
original features, as shown 
in (b).

       (a)              (b)
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Table 4 .1.Savitsky & Golay Fitting Coefficients

Quadratic Polynomial Fit

5 7 9 11 13 15 17 19

0 0 0 0 0 0 0 –.0602

0 0 0 0 0 0   –.065 –.0226

0 0 0 0 0 –.0706 –.0186  .0106

0 0 0 0 –.0769 –.0118  .0217  .0394

0 0 0 –.0839 0  .038  .0557  .0637

0 0 –.0909 .021  .0629  .0787  .0836  .0836

0 –.0952  .0606  .1026  .1119  .1104  .1053  .0991

–.0857  .1429  .1688  .1608  .1469  .133  .1207  .1101

 .3429  .2857  .2338  .1958  .1678  .1466    .13  .1168

 .4857  .3333  .2554  .2075  .1748  .1511  .1331 .119

 .3429  .2857  .2338  .1958  .1678  .1466    .13  .1168

–.0857  .1429  .1688  .1608  .1469  .133  .1207  .1101

0 –.0952  .0606  .1026  .1119  .1104  .1053  .0991

0 0 –.0909 .021  .0629  .0787  .0836  .0836

0 0 0 –.0839 0  .038  .0557  .0637

0 0 0 0 –.0769 –.0118  .0217  .0394

0 0 0 0 0 –.0706 –.0186  .0106

0 0 0 0 0 0   –.065 –.0226

0 0 0 0 0 0 0 –.0602

Quartic Polynomial Fit

5 7 9 11 13 15 17 19

0 0 0 0 0 0 0  .0458

0 0 0 0 0 0  .0464 –.0343

0 0 0 0 0  .0464 –.0464 –.0565

0 0 0 0  .0452 –.0619 –.0619    –.039

0 0 0  .042 –.0814 –.0636 –.0279  .0024

0 0  .035 –.1049 –.0658 –.0036  .0322  .0545

0  .0216 –.1282 –.0233  .0452  .0813  .0988  .1063

   .25 –.1299  .0699  .1399  .1604  .1624  .1572  .1494

   –.5  .3247  .3147  .2797  .2468  .2192  .1965  .1777

  1.5  .5671  .4172  .3333  .2785  .2395  .2103  .1875

   –.5  .3247  .3147  .2797  .2468  .2192  .1965  .1777

   .25 –.1299  .0699  .1399  .1604  .1624  .1572  .1494

0  .0216 –.1282 –.0233  .0452  .0813  .0988  .1063

0 0  .035 –.1049 –.0658 –.0036  .0322  .0545

0 0 0 .042 –.0814 –.0636 –.0279  .0024

0 0 0 0  .0452 –.0619 –.0619    –.039

0 0 0 0 0  .0464 –.0464 –.0565

0 0 0 0 0 0  .0464 –.0343

0 0 0 0 0 0 0  .0458
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are not linear and do not utilize or preserve all of the original data, and do not have equivalent 
formulations in frequency space.

The most widely used of these methods is based on ranking of the pixels in a neighborhood 
according to brightness. Then the median value in this ordered list can be used as the new 
value for the central pixel. As in the case of the kernel operations, this is used to produce a 

  

Figure 4.14 Savitsky and 
Golay linear smooth-
ing weights for least 
squares fitting to qua-
dratic and quartic 
polynomials.

         (a)                 (b)

(a)

(b)

Figure 4.15 Smoothing with a 7 point wide, quadratic Savitsky and Golay fit: (a) original image, with 
enlarged detail; (b) result, with enlarged detail.
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new image and only the original pixel values are used in the ranking for the neighborhood 
around each pixel.

The median filter is an excellent rejecter of certain common kinds of noise, both random 
superimposed variations and “shot” or impulse noise in which individual pixels are corrupted 
or missing from the image. If a pixel contains an extreme value, it is replaced by a “reasonable” 
value, the median value in the neighborhood. This type of noise occurs in CMOS cameras 
with “dead” transistors that have no output or “locked” ones that always put out maximum 
signals, and in interference microscopes for points on a surface with a locally high slope that 
return no light, for example. Dust on scanned film negatives also creates this image defect.

Figure 4.16 shows an extreme example of this type of noise. Ten percent of the pixels in 
the original image, selected randomly, are set to black, and another ten percent to white. A 

(d)(c)

(a) (b)

)
Figure 4.16 Removal of shot noise with a median filter: (a) original image; (b) image (a) with 10% of 

the pixels randomly selected and set to black, and another 10% randomly selected and set to white; 
(c) application of median filtering to (b) using a 3 × 3 square region; (d) application of median filter-
ing to (b) using a 5 × 5 octagonal region.
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median filter is able to remove the noise and replace the bad pixels with reasonable values 
while causing a minimal distortion or degradation of the image. Two different neighborhoods 
are used: a 3 × 3 square containing a total of 9 pixels, and a 5 × 5 octagonal (approximately 
circular) region containing a total of 21 pixels. Figure 4.17 shows several of the neighborhood 
regions often used for ranking. The time required rises quickly with the number of values to 
be sorted, even using specialized methods which keep partial sets of the pixels ranked sepa-
rately so that as the neighborhood is moved across the image, only a few additional pixel com-
parisons are needed (Weiss, 2006). Square neighborhoods are more easily implemented than 
ones that approximate a circle, but particularly as the size of the neighborhood is increased 
the use of a circular pattern is important for producing isotropic results.

Application of a median filter can also be used to reduce the type of random or speckle 
noise shown before in the context of averaging. Figure 4.18 shows the result of applying a 
median filter with 3 and 7 pixel wide neighborhoods to the same original image shown in 
Figure 4.9a. There are two principal advantages to the median filter as compared to mul-
tiplication by weights. First, the method does not reduce or blur the brightness difference 
across steps, because the values available are only those present in the neighborhood region, 

Figure 4.17 Neighborhood patterns used for median filtering: (a) 4 nearest-neighbor cross; (b) 3 × 3 
square containing 9 pixels; (c) 5 × 5 octagonal region with 21 pixels; (d) 5 × 5 square containing 25 
pixels; (e) 7 × 7 octagonal region containing 37 pixels.

  
(a)                      (b)

Figure 4.18 Median filter results (compare to the original image in Figure 4.9a): (a) radius = 1 (3 × 3 
pixel square) neighborhood; (b) radius = 3 (7 pixel wide octagon) neighborhood.
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not an average between those values. Second, median filtering does not shift boundaries as 
averaging may, depending on the relative magnitude of values present in the neighborhood 
and the local curvature of the boundary. Overcoming these problems makes the median filter 
preferred both for visual examination and subsequent measurement of images (Huang, 1979; 
Yang & Huang, 1981; Weiss, 2006).

Figure 4.19 compares Gaussian filtering and median filtering applied to a noisy SEM image. 
The better preservation of edge sharpness by the median filter is apparent. Even with a very 
large neighborhood (Figure 4.19d) the edges do not shift position, but when the neighbor-
hood radius is larger than the size of any features present, they are eliminated and replaced 
by values from the surrounding background. This is an essential feature of the median filter, 
which can sometimes be used to advantage to remove small, unwanted features from images.

(d)(c)

(a) (b)

Figure 4.19 Comparison of noise reduction techniques (SEM image enlarged to show pixel detail): (a) 
original; (b) Gaussian filter, standard deviation = 2 pixels; (c) median filter, radius = 2 pixels (5 × 5 
octagonal neighborhood); (d) median filter, radius = 15 pixels.
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Because of the minimal degradation to edges from median filtering, it is possible to apply the 
method repeatedly. Figure 4.20 shows an example in which a 5 × 5 octagonal median filter 
is applied 12 times to an image, until no further changes in pixels occur (sometimes called 
an “iterated median filter”). Fine detail is erased in this process, and large regions take on the 
same brightness values. However, the edges remain in place and are well defined. This type 
of leveling of brightness due to repetition of median filtering is sometimes called contouring 
or posterization (but those terms also have other meanings that are presented elsewhere).

The concept of a median filter requires a ranking order for the pixels in the neighborhood, 
which for gray scale images is provided by the pixel value. Color images present a challenge 
to this idea (Sartor & Weeks, 2001; Comer & Delp 1999; Heijmans, 1994). Simple application of 
the ranking operations to the red, green, and blue channels is rarely useful and does not gen-
eralize easily to HSI because hue is an angle that wraps around modulo 360 degrees. Ranking 
based only on the brightness, ignoring the color, is a commonly used method but does not 
always produce good results.

A color median filter can be devised by using as the definition of the median value that pixel 
whose color coordinates give the smallest sum-of-squares of distances to the other pixels in 
the neighborhood (Astolo et al., 1990; Oistämö & Neuvo, 1990; Russ, 1995b; Celebi et al., 2007; 
Morillas et al., 2007; Celebi & Aslondogan, 2008). The choice of the color space in which these 
coordinate distances are measured must be considered. As mentioned before, HSI space is 
generally preferred for processing to RGB space, but there is no unique answer to the ques-
tion of the relative scaling factors of these different spaces, or how to deal with the angular 
measure of hue values. Figure 4.21 shows an example of a color median filter used to remove 
random speckle noise from an image.

The extension of median filtering (or rank-order filtering in general) from a simple ranking 
of scalar numbers (the gray scale pixel values) to vectors representing color space values 
opens the door to more complex uses of vector ranking. Instead of the vector length, it is 
possible to construct rankings based on vector angles to remove vectors (colors) that point 
in atypical directions, or hybrid methods that combine direction and distance (Smolka et al., 
2001; Hanbury & Serra, 2002; Jin et al., 2008). Vectors need not be restricted to three dimen-
sions, so it is possible to combine many criteria into a total measure of pixel similarity. The 

 

Figure 4.20 Result of applying a 3 × 3 median 
filter twelve times (compare to the original 
image in Figure 4.9a).
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performance of these methods is bought at the price of computational complexity, but it is 
possible in some cases to reconstruct images corrupted by considerable amounts of speckle 
or shot noise with good accuracy.

Controlling the size of the neighborhood provides the essential tool for defining the size of the 
defects to be removed. In the example of Figure 4.22, the painting has developed a network 
of fine cracks that have formed in the paint. A smoothing convolution applied to the image 
would blend in the gray values from the cracks, as well as blurring edges. The application of 
a median filter allows filling in the cracks without blurring edges, much as the pixel noise is 
removed from the gray scale images shown above. The result is a restoration of the appear-
ance of the original painting.

Noise reduction while retaining edge sharpness can be accomplished even better, at least in 
principle, with a mode filter (Davies, 1988). The mode of the distribution of brightness values 
in each neighborhood is, by definition, the most likely value. However, for a small neighbor-
hood, the mode is poorly defined. A useful approximation to this value can be obtained with 
a truncated median filter. For any asymmetric distribution, such as obtained at most locations 
near but not precisely straddling an edge, the mode is the highest point, and the median 
lies closer to the mode than the mean value, as illustrated in Figure 4.23. The truncated 
median technique consists of discarding a few extreme values from the neighborhood so 
that the median value of the remaining pixels is shifted toward the mode. For a symmetrical 
distribution values are discarded from both ends and the median value does not change. In 
the example shown in Figure 4.24, this is done for a 3 × 3 neighborhood by skipping the 
two pixels whose brightness values are most different from the mean, ranking the remaining 
seven values, and assigning the median to the central pixel.

Another modification to the median filter is used to overcome its tendency to erase lines 
which are narrower than the half-width of the neighborhood and to round corners. The 
so-called hybrid median, or corner-preserving median, is a multiple step ranking operation 
(Nieminen et al., 1987). In a 3 × 3 pixel neighborhood, pixels may be ranked in two different 
groups, as shown in Figure 4.25. The median values of the 45-degree neighbors forming an 

  
(a)                      (b)

Figure 4.21 Fragment of a digital camera image enlarged to show noise: (a) original; (b) color median 
filter (radius = 2 pixels) applied.
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“X” and the 90-degree neighbors forming a “+” (both groups include the central pixel) are 
compared to the central pixel, and the median value of that set is then saved as the new pixel 
value. As illustrated in Figure 4.26, this method preserves lines and corners which are erased 
or rounded off by the conventional median. In a larger neighborhood, more orientations can 
be employed; four directions can be used in a 5 × 5 region, producing four values that can be 
ranked along with three repetitions of the original central pixel value.

The hybrid median can also be extended to color images by using the vector distances for 
selecting the median from each subgroup, as described above. It offers the same advantages 

Mode
Median

Mean

Values farthest
from the mean

  

Figure 4.23 Schematic diagram of an asym-
metric histogram distribution of brightness 
values, showing the relationship between the 
mode, median, and mean. The truncated 
median filter works by discarding the values 
in the distribution which are farthest from 
the mean and then using the median of the 
remainder as an estimate for the mode.

 
(a)                      (b)

Figure 4.22 “Portrait of a Lady,” painted in 1470 by Petrus Christus, a Flemish Renaissance painter 
(Gemäldegalerie der Staatlichen Museen, Berlin-Dahlem): (a) present appearance, showing cracks 
and fading of the colors; (b) application of a color median filter to fill the dark cracks.
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(a)                      (b)

  

Figure 4.24 Application of the truncated 
median filter (original image shown in 
Figure 4.16a):

  (a) conventional 3 × 3 median filter;

  (b) truncated median;

  (c)  difference between (a) and (b) with the 
contrast expanded to show the differ-
ence in values along edges.

           (c)

 

Figure 4.25 Diagram of neighbor-
hood pixels used in the 3 × 3 
hybrid median filter. Both groups 
include the central pixel and are 
ranked separately. The median of 
each group, and the central pixel, 
are then ranked again to select the 
final median value.
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of preserving sharp edges and fine lines while reducing random and shot noise, as shown in 
Figure 4.27.

The fact that the hybrid median involves multiple ranking operations, first within each of the 
groups of pixels and then to compare those medians to the central pixel, does not impose a 
significant computational penalty. Each of the ranking operations is for a smaller number of 
values than used in a square or octagonal region of the same size. For example, a 5 pixel wide 
neighborhood contains either 25 (in the square neighborhood) or 21 pixels (in the octagonal 
neighborhood) which must be ranked in the traditional method. In the hybrid method, each 
of the subgroups contains only 9 pixels, and the final comparison involves only seven values. 
Even with the additional logic and manipulation of values, the hybrid method is about as fast 
as the conventional median.

(d)(c)

(a) (b)

Figure 4.26 Application of the hybrid median filter to an image of an integrated circuit, showing the 
improved retention of lines and corners: (a) original image with unwanted surface texture in the 
deposited metal; (b) application of the 5 × 5 hybrid median filter; (c) application of a 9 × 9 hybrid 
median; (d) application of a conventional 5 × 5 median, which removes most of the texture but also 
rounds corners and fills in lines and gaps.
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If the hybrid median filter is applied repeatedly, it can also produce posterization. Because 
the details of lines and corners are preserved by the hybrid median, the shapes of regions are 
not smoothed as they are with the conventional median, although the brightness values across 
steps are still sharpened and posterized. Posterizing an image, or reducing the number of 
gray levels so that regions become uniform in gray value and edges between regions become 
abrupt, falls more into the category of enhancement than correcting defects, but is mentioned 
here as a side-effect of median filtering. Other methods can produce this effect. For example, 
the extremum filter replaces each pixel value with either the minimum or maximum value 
in the neighborhood, whichever is closer to the mean value. This filter is not edge preserv-
ing and may shift boundaries. When the extremum filter is iterated, it is sometimes called a 
“toggle” filter (Arce et al., 2000).

Sometimes it is useful to construct a neighborhood that is not round, but has a specific shape 
based on independent knowledge about the nature of the image. A common defect in video 
images is the appearance of horizontal lines that indicate variations in signal between the two 
interlaced fields. A similar defect occurs in atomic force microscope images due to DC signal 
offsets. Movie film often exhibits longitudinal scratches resulting from wear and tear and rub-
bing against transport guides (Bergman et al., 2008). If the direction of the lines or scratches 
is known, a neighborhood may be constructed to remove it. Removal of overhead power lines 
from movies can also be carried out using this method.

Figure 4.28 shows an example of video line noise in a poor quality surveillance tape. This is 
a common defect that can arise from dirty recording heads, for example. A median neighbor-
hood that is predominantly vertical can eliminate much of the line noise. Similar horizontal 
streaks often arise in scanning microscope images in which the scan rate is too high for the 
amplifier time constant, which blurs information along the scan line direction. A median filter 
applied in a vertical stripe corrects the problem.

In most simple cases the neighborhood used in a ranking operation such as a median filter is 
circular with a radius selected on the basis of the size of the smallest features to be retained. 
For computational simplicity, a square neighborhood is sometimes used, but this can introduce 
some directional bias into the results. It is also possible to use an adaptive neighborhood, one 
that includes pixels based on their value and/or position. Conditional or adaptive selection 
starts with a larger neighborhood of candidate pixels, which are then included in the ranking 

  
(a)              (b)              (c)

Figure 4.27 A hybrid color median removes random and shot noise without erasing fine lines and 
detail: (a) enlarged original image fragment; (b) conventional 3 × 3 median; (c) hybrid 3 × 3 color 
median.
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if they meet additional criteria, which may be used in combination. If the number of pixels in 
the adaptive neighborhood is even rather than odd, so that there is no single median value, 
several options are available; the most common is to average the two values in the center of 
the ranked list. Methods for selecting the pixels in the adaptive neighborhood include:

 1. Pixels whose difference from the central pixel is less than some adjustable threshold;
 2. The N pixels within the larger neighborhood that are closest in value to the central 

pixel;
 3. The N pixels within the larger neighborhood that are closest in value to the central 

pixel and are contiguous with it and with each other (Kober et al., 2001);
 4. Weighting the pixels within the neighborhood according to their distance from the 

central pixel, by entering nearby pixel values more than once into the list to be 
ranked.

At the expense of computational complexity, these methods produce good rejection of impul-
sive or shot noise and amelioration of additive random noise, while preserving lines and 
edges. Figure 4.29 shows an example of the first method listed above.

Other neighborhood noise reduction methods

A modification to the simple averaging of neighborhood values that attempts to achieve some 
of the advantages of the median filter is the so-called Olympic filter. The name comes from the 

   
(a)                        (c)

  

Figure 4.28 Surveillance video image with 
horizontal scan line noise (a), a custom 
neighborhood to perform median filtering 
primarily in a vertical direction (b), and the 
result (c).

           (b)
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system of scoring used in some events in the Olympic games, in which the highest and low-
est scores are discarded and the remainder averaged. The same thing is done with the pixel 
values in the neighborhood. By discarding the extreme values, shot noise is rejected. Then 
the average of the remaining pixel values is used as the new brightness. Figure 4.30 shows 
an application to the shot noise in Figure 4.16b. The performance is poor compared to the 
median filter: the features are blurred and the noise is not all removed.

  
(a)                        (b)

Figure 4.29 Conditional smoothing using an adaptive neighborhood: (a) original (same as Figure 
4.26a); (b) median value of pixels in a 9 pixel wide circle that are within ±40 gray level values of 
the central pixel.

  
(a)                       (b)

Figure 4.30 Application of Olympic filter to shot noise. The original image is shown in Figure 4.16b: 
(a) the 2 brightest and 2 darkest pixels in each 3 × 3 neighborhood are ignored and the remaining 
5 averaged; (b) the 4 brightest and 4 darkest pixels in each 5 × 5 neighborhood are ignored and the 
remaining 17 averaged.
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There are other versions of modified or conditional smoothing that omit some of the pixel 
values in the moving neighborhood from the smoothing operation. The justification is always 
based on the omitted pixels being different from those that are used, so that they presumably 
belong to a different region. Most of the techniques take into account both the location of the 
pixel in the region and the difference in the value from the original central pixel. For example, 
fitting a function to the pixels may be used to detect a sharp change in the slope and to omit 
pixels that lie beyond the edge (“Kriging”). All of these methods make some assumptionsab-
out the nature of the image and of the noise present, and the better the assumptions fit the 
actual subject, the better the result.

One particular instance in which knowledge about the image acquisition is useful for noise 
reduction applies to digital cameras. As Chapter 1 shows, the typical camera records separate 
red, green, and blue signals. Silicon detectors are least sensitive at the blue end of the spec-
trum, and, in addition, typical detector designs use fewer blue filtered transistors than green, 
resulting in much more speckle noise in the blue channel than in the green. Different noise 
reduction parameters may therefore be used for the different channels. In Chapter 5, the use 
of Principal Components Analysis is introduced as a way to further separate the noise from 
the information content of the image so that it can be selectively filtered. In all of these cases, 
the actual filtering procedures are those that are described in this chapter, either neighbor-
hood-based weighted averaging or rank-based median methods.

Another problem that arises because of the sampling inherent in camera design is color moiré 
patterns such as shown in Figure 4.31. The spacing of the pattern in the cloth of the subject’s 

  
(a)              (b)              (c)

Figure 4.31 Removal of moiré interference patterns: (a) original, showing colored fringes on the fabric 
of the person’s coat; (b) the “a” (red-green) channel after converting to L•a•b space; (c) the result after 
applying Gaussian smoothing to the fringe area in the color channels. Because the brightness values 
are unaltered, the apparent sharpness of the image is not affected.
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coat is close to the spacing of the sensors in the detector and at a slight angle, resulting in an 
interference pattern that typically shifts with slight movements of the subject and can be very 
distracting. This type of image defect is commonly seen in television images, for example. 
Separating the image into L•a•b channels shows that the interference pattern is almost entirely 
localized in the color channels rather than the L, or brightness, channel. Smoothing it there 
using a Gaussian filter corrects the problem, as shown in the figure. Of course, it is impracti-
cal to perform this operation in real time for television images (a better solution is to advise 
people not to wear checkered or striped clothing).

There are more complicated combinations of operations that are used for very specific types 
of images. For instance, synthetic aperture radar (SAR) images contain speckle noise which 
varies in a known way with the image brightness. To remove the noise, the brightness of each 
pixel is compared to the average value of a local neighborhood. If it exceeds it by an amount 
calculated from the average and the standard deviation, then it is replaced by a weighted aver-
age value. Using some coefficients determined by experiment, the method is reported (Nathan 
& Curlander, 1990) to perform better at improving signal-to-noise than a simple median filter. 
This is a good example of a specific processing method based on knowledge of the character-
istics of the signal and the noise in a particular situation. In general, any filtering method that 
chooses between several algorithms or modifies its algorithm based on the actual contents of 
the image or the neighborhood is called an adaptive or conditional filter (Mastin, 1985).

Noise is often modeled as a Gaussian additive function, and noise reduction methods are 
often tested by adding Gaussian noise to an image, but in fact various noise sources have very 
widely differing characteristics. Noise that arises from photon or particle counting is generally 
Poisson, which becomes Gaussian for large numbers. The distribution of exposed grains in 
film is also approximately Gaussian. The effect of electronic circuitry in cameras and ampli-
fiers can be either additive or multiplicative and generally affects dark areas differently from 
bright ones. Noise resulting from light scattering in the atmosphere or from surfaces is gener-
ally multiplicative rather than additive. Speckle interferometry encountered in radar imaging 
is more complex, since it interacts through shifts in phase and polarization. It also tends to 
have a spatial correlation, which makes it more difficult to model. The removal of atmospheric 
speckle by acquiring and combining many short duration images is used in astronomy but is 
beyond the scope of this text.

Another way of filtering by ranking is to use the maximum and minimum brightness rather 
than the median. These are often called gray scale morphological operations, erosion and 
dilation by analogy to the erosion and dilation steps which are performed on binary images, 
as described in Chapter 8 (Heijmans, 1991). The sequence of erosion followed by dilation is 
called an opening, and the reverse is called a closing. Figure 4.32 shows the results of an 
opening, which removes the dark particles from both the gray organelles and lighter cyto-
plasm in the image without distorting the shapes of the structures. This requires two passes 
through the image, and during each pass only the previous pixel brightness values are used 
to derive the new ones.

As a method for removing noise, this technique would seem to be the antithesis of a median 
filter, which discards extreme values. The difference is that this approach makes it possible to 
selectively remove bright (or dark) artifacts or noise, whereas the median filter removes both. 
It may be helpful to visualize the image as a surface for which the brightness represents an ele-
vation, and this method is particularly useful with surface elevation data such as that obtained 
from scanned probe instruments. Figure 4.33 shows a one-dimensional representation of 
such a situation. In the first pass, the brightest values in each region are used to construct a 
new profile which follows the “tops of the trees.” In the second pass, the darkest values in 
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each region are used to bring the profile back down to those points which are large enough 
to survive the first one, giving a new profile that ignores the dark noise spikes in the original 
while retaining the bright features. Applying the same operations in the other order (erosion 

followed by dilation, called a closing) removes 
bright noise while retaining dark features.

Another method that uses ranking, but in two 
different size neighborhoods, is useful for locat-
ing and removing noise. It is often called a “top 
hat” or “rolling ball” filter. Imagine the bright-
ness values of the pixels to represent the eleva-
tion of a surface. A top hat filter consists of a flat 
disk that rests on the surface and a central crown 
of a smaller diameter, as shown in Figure 4.34. 
This filter is centered on each pixel in the image, 
with the brim “resting” on the surface. Any pix-
els that “stick up” through the crown of the hat 
are considered to be noise, and replaced. The 
replacement value may be either the mean or the 
median value of the pixels covered by the brim 
of the hat. (The “rolling ball” name comes from 
imagining the spots to represent depressions, 
where a rolling ball on the surface does touch 
the pixel values at the bottom of the hole; those 
values are then replaced.)

The implementation of this filter uses two neigh-
borhoods, one a round (or approximately round) 

Figure 4.33 Schematic diagram of the opera-
tion of gray scale erosion and dilation in 
one dimension, showing (starting from the 
top): the original profile with the result of the 
first (maximum) pass, producing a new pro-
file through the brightest points; the second 
step in which a new profile passes through 
the darkest (minimum) points in the result 
from step 1; comparison of the final result 
to the original profile, showing rejection of 
noise and dark spikes but retention of bright 
features.

  
(a)                    (b)

Figure 4.32 Gray scale opening: (a) original TEM image of gold particles in tissue; (b) result after open-
ing. Two separate ranking operations are performed: first, erosion replaces each pixel value with 
the brightest value in the neighborhood (5 × 5 octagonal); then, using this image, dilation replaces 
pixel value by the darkest value in the same size neighborhood. The small dark gold particles are 
removed.
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region corresponding to the inside or crown of 
the hat, and a second annular neighborhood sur-
rounding it that corresponds to the brim. In each, 
the maximum (brightest or darkest, depending 
on the noise that is to be rejected) value is found. 
If the difference between the brightest (or dark-
est) pixel in the interior “crown” region and the 
outside “brim” exceeds a threshold (the height of 
the hat’s crown) then the pixel value is replaced 
with the mean or median of the outside region 
(Bright & Steel, 1987; Deshpande et al., 1999; Bai 
et al., 2008). As shown in Figure 4.35, if a feature 
fits entirely within the smaller neighborhood (the 
crown of the hat), it is detected by this operation. 
If it does not, or if the spacing between features 
is less than the width of the brim of the hat, then 
there is no large difference between the inside 
and outside and nothing is detected.

Finding the features using the top hat or rolling 
ball also allows them to be removed, typically by 

replacing them with values interpolated from the brim. An adaptation of this same logic to 
a trench-shaped neighborhood (a line of pixels forming the inner region, with parallel lines 
on both sides forming the outer region) can be used to effectively find and remove scratches, 
provided they have a known direction. This technique is sometimes used to remove scratches 
when digitizing film and is built into the firmware of some film scanners.

Figure 4.36 shows an example. The dust particles on the slide are all smaller than 9 pixels 
across, so a filter consisting of an inner circle with a radius of 4 pixels and an outer one with a 
radius of 6 pixels forms the top hat. The dust particles are removed, but since the bug itself is 
too large to fit inside the inner circle, there is no large difference between the darkest values 
in the two neighborhoods and the pixels are not altered.

The next chapters show the use of this same filter for a different purpose. Instead of remov-
ing extreme points as noise or dirt, the same operation can be used to find and keep points 
of interest that are smaller than the crown of the hat and brighter or darker than the local 
neighborhood. Figure 4.36b illustrates this function of the top hat. Using the same settings 
for neighborhood size, but keeping the extreme values and suppressing those that do not have 
a difference greater than the top hat threshold reveals just the dust particles on the slide.

Figure 4.34 Diagram of a top hat filter. The 
brim rests on the “surface” that corresponds 
to the brightness of pixels in the image. Any 
pixel with a brightness value able to rise 
through the crown of the hat is detected and 
can be replaced with the mean or median 
of the outer neighborhood. The inner and 
outer radius of the brim and the height of 
the crown are all adjustable parameters.

Figure 4.35 Operation of the top hat filter: Any feature contained entirely within the inner region 
(“crown”) is detected as in the first example. Features that are too large for the crown or are not sepa-
rated by more than the width of the brim are not.
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Defect removal, maximum entropy, and maximum likelihood

As shown above, the rolling ball/top hat filter can be used to remove small defects by replacing 
the pixels with a value taken from the surrounding neighborhood. Interpolation is a general 
tool that can sometimes be used to replace localized defects, either originating in the specimen 
itself or in the camera (e.g., dirt on the lens). If the defect is large and/or irregular in shape, 
smoothing may leave some of the pixel values from the defect remaining in the resulting 
image, and it may be impractical to use a neighborhood for rank-based filtering that is large 
enough to encompass it. In many cases, better results can be obtained by filling in the region 
of the defect using the adjacent values. In the example shown in Figure 4.37, a hole in a leaf 
has been manually selected and the pixels replaced by linear interpolation between the edge 
pixels of the outline. The algorithm is similar in effect to stretching a membrane across an 
irregular opening with an edge of variable height. The elastic membrane forms a lowest-energy 
surface. Calculating the pixel values within the region is accomplished in the same way.

   

Figure 4.36 Application of the top hat filter: 

  (a)  original image showing dust particles on 
the slide containing the insect;

  (b)  isolation of the dust particles by the top 
hat filter;

  (c)  removal of the dust particles by interpo-
lating values from the brim to replace the 
darker ones in the crown.

          (a)

   
(b)                      (c)
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Instead of manual outlining, regions may be selected by any of the thresholding techniques 
presented in Chapter 7. These include specifying a range of brightness or color values that 
discriminate the defects from their surroundings, or using a region-growing method in which 
selecting one point in the defect allows the software to include all touching similar pixels. 
This approach can be useful for removing manually selected features from images when that 
is justified by circumstances. It should be noted, however, that it is not proper in the context 
of scientific imaging to add anything to an image, for instance to replace or cover the feature 
that has been eliminated.

Images may contain other defects, such as blur due to motion or out-of-focus optics, in addi-
tion to noise. The “inverse filtering” methods described in Chapter 6 under the topic of 
deconvolution are noise sensitive. When the noise that is present can itself be characterized, 
it may be possible to use a maximum entropy approach to remove the artifacts.

Entropy-based methods represent a computer-intensive approach to removing artifacts such as 
noise or blur from images, based on some foreknowledge about the image contents and some 
assumptions about the nature of the degradation that is to be removed and the image restored 
(Skilling, 1986; Frieden, 1988). The conventional description of the method is to imagine an 
image containing N pixels, that has been formed by a total of M photons (where usually M is 
much larger than N). The number of photons in any single pixel (i.e., the pixel’s brightness 
value) is Pi , where i is the pixel index.

The measured image has normalized pixel brightness values

	 p P
Pi
i

i
=

Σ
 (4.4)

that only approximate the “true” image that could be collected if there were no artifacts. The pi 
values are just the image histogram. The method used to approach this ideal image is to alter 
pixel brightness values to maximize the entropy in the image, subject to some constraints. The 
justification for this method is given in terms of statistical probability and Bayes’ theorem, and is 
not derived here. In some cases this method produces dramatic improvements in image quality.

  
(a)                      (b)

Figure 4.37 Defect removal by interpolating from the edges of a region: (a) enlarged image of a maple 
leaf showing a manually drawn region around a hole; (b) interpolation of values from the edge.
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The “entropy” of the brightness pattern is given in a formal sense by calculating the number 
of ways that the pattern could have been formed by rearrangement, or

	 S M
P P PN

= !
!/ !..., !1 2

 (4.5)

where ! indicates factorial. For large values of M, this reduces by Stirling’s approximation to 
the more familiar

	 S p pi i= −Σ log  (4.6)

This is the same calculation of entropy used in statistical mechanics. In the particular case of 
taking the log to the base 2, the entropy of the image is the minimum number of bits per pixel 
needed to represent the image, according to information theory.

The entropy in the image can be minimized in an absolute sense by setting the brightness of 
each pixel to the average brightness and maximized by spreading the values uniformly across 
the entire brightness range. Clearly, neither is not a “right” solution. It is the application of 
constraints that produces usable results. The most common constraint for images containing 
noise is based on a chi-squared statistic, calculated as

	 χ
σ

2
2

21= −Σ( )p pi i  (4.7)

In this expression the pi values are the original pixel values, the pi
2 are the altered brightness 

values, and ⎧ is the standard deviation of the values. An upper limit can be set on the value 
of |2 allowed in the calculation of a new set of pi

2 values to maximize the entropy. A typical 
(but essentially arbitrary) limit for |2 is N, the number of pixels in the array.

This constraint is not the only possible choice. A sum of the absolute value of differences, or 
some other weighting rule, may also be chosen. This is not enough information to produce 
an optimal image, and so other constraints may be added. One is that the totals of the pi and 
pi

2 values must be equal. Bryan and Skilling (1980) also require, for instance, that the distri-
bution of the pi – pi

2 values corresponds to the expected noise characteristics of the imaging 
source (e.g., a Poisson or Gaussian distribution for simple counting statistics). And, of course, 
it is important to include such seemingly “obvious” constraints as non-negativity (no pixel can 
collect fewer than zero photons). Jaynes (1985) makes the point that there is practically always 
a significant amount of real knowledge about the image which can be used as constraints but 
which is assumed to be so obvious that it is ignored.

An iterative solution for the values of pi
2 produces a new image with the desired smoothness 

and noise characteristics which are often improved from the original image. Other formula-
tions of the maximum entropy approach may compare one iteration of the image to the next, 
by calculating not the total entropy but the cross entropy

	 S p p
qi
i

i
= −









Σ log  (4.8)

where qi is the previous image brightness value for the same pixel, or the modeled brightness 
for a theoretical image. In this formulation, the cross entropy is to be minimized. The basic 
principle remains the same.
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Maximum likelihood reconstruction of an image is another related approach in which the 
assumption is made that the boundaries between regions should be sharp. In most real 
images, pixels that straddle any boundary average values from both sides according the exact 
placement of the edge with respect to the finite size of the pixel. This leads to intermediate 
brightness or color values that appear to blur the boundary. Reclassifying the pixels to the 
brightness or color of one region or the other sharpens the boundaries.

One of the most common statistical approaches to the classification measures the variance of 
pixels in many subregions of a neighborhood around each pixel, as shown in Figure 4.38. 
Whichever region has the lowest variance is taken to represent the region to which the central 
pixel should belong, and it is assigned the mean value from that subregion (Kuwahara et al., 
1976). Figure 4.39 shows an application of the method. The size of the neighborhood and 
subregions can be made larger for broader boundaries.

Nonuniform illumination

The most common strategy for image analysis uses the pixel values of regions in the image 
as a means of identification: it is assumed that the same type of feature should have the same 
brightness or color wherever it appears in the field of view. If this brightness is different from 
that of other regions in the image, or can be made so by appropriate image processing, as 
shown in Chapter 5, then it can be used to discriminate the objects or structures for count-
ing, measurement, or identification. Even if there are a few other types of objects that cannot 
be distinguished on the basis of brightness or color alone, subsequent measurements may be 
able to select the ones of interest.

This approach is not without pitfalls, which are discussed further in Chapter 7 in conjunc-
tion with converting continuous tone gray scale or color images to binary (black and white) 
images. Other approaches are available, such as region growing or split-and-merge, that do 
not have such stringent requirements for uniformity of illumination. But because when it can 
be used, simple brightness thresholding is by far the easiest and fastest method to isolate fea-
tures in an image, it is important to consider the problems of shading of images.

 

Figure 4.38 Nine 3 × 3 subregions (green) 
within a 5 × 5 neighborhood. The Kuwahara 
filter assigns the mean value of whichever 
region has the smallest variance to the cen-
tral pixel (dark).
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When irregular surfaces are viewed, the amount of light scattered to the viewer or camera 
from each region is a function of the distance and orientation of the surface with respect to 
the source of light and the viewer, even if the surface material and finish are uniform. In fact, 
this principle can be used to estimate the surface orientation, using a technique known as 
shape-from-shading. Human vision seems to apply these rules very easily and rapidly, since 
people are not usually confused by images of real-world objects.

Most of the techniques in this book concern the processing of images that are essentially two-
dimensional. Whether they come from light or electron microscopes, macroscopic imaging, 
or satellite images, the variation in surface elevation is usually small compared to the lateral 
dimensions, giving rise to what is often called “two-and-one-half D.” This is not always the 
case of course (consider a woven fabric examined in the SEM or a photograph of trees in a 
forest), but such problems can be treated as exceptions to the general rule, recognizing that 
more elaborate processing may be needed.

Even surfaces of low relief need not be flat, an example being the curvature of the earth as 
viewed from a satellite. This produces shading variation across the field of view. So does illu-
mination of a macroscopic or microscopic surface from one side. Even elaborate collections of 
lights, or ring lights, can only approximate uniform illumination of the scene. Diffusers and 
umbrellas are useful in studio lighting setups, but in those cases the goal is usually selective 
rather than uniform illumination.

For transmission microscope imaging, the uniformity of the light source with a condenser lens 
system can be made very good, but it is easy for these systems to get out of perfect alignment 
and produce shading as well. Finally, Chapter 1 mentions that lenses or cameras may cause 
vignetting, in which the corners of the image are darker than the center because the light 
is partially absorbed by greater path length in the optics and reduced by the change in the 
effective aperture of the lens. There may also be effects from the camera sensor itself, such 
as the influence of non-perpendicular incidence when using wide angle lenses. All of these 

  
(a)                      (b)

Figure 4.39 Application of a maximum likelihood filter: (a) original image of bubbles in a foam, with 
poorly defined edges because of translucency; (b) filter applied, resulting in sharply defined region 
boundaries.
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effects can be corrected by recording a “background” image (this can also be used to remove 
or reduce the fixed pattern noise, also mentioned in Chapter 1).

Many of the lighting defects can be minimized by careful setup of the imaging conditions, or 
if they cannot be eliminated altogether, can be assumed to be constant over some period of 
time. This assumption allows correction by image processing. In some instances, it is possible 
to acquire a background image in which a uniform reference surface or specimen is viewed 
in place of the actual samples to be imaged and the light intensity recorded. This image can 
then be used to level the brightness in subsequent images. The process is often called “back-
ground subtraction” but in many cases this is a misnomer. If the image acquisition device is 
logarithmic (such as film), then subtraction of the background image point by point from each 
acquired image is correct. If the camera or sensor is linear, then the correct procedure is to 
divide the acquired image by the background.

The difference is easily understood because in the linear case the corrected result is (Image) 
/ (Background), and when the signals are logarithmic, the division is accomplished by sub-
traction: Log(Image) — Log(Background). If, as often is the case, the detector response of 
the camera (and its associated electronics) is not known, trying both subtraction and divi-
sion and observing which one gives the correct result may be a suitable procedure. For other 
sensor response functions, there is no exactly correct arithmetic method, and the calibrated 
response must first be determined and applied to convert the measured signal to a linear or 
logarithmic space.

In the process of subtracting or dividing one image by another, some of the dynamic range 
of the original data is lost. The greater the variation in background brightness, the less the 
remaining variation from that level can be recorded in the image and retained after the 
leveling process. This loss, and the inevitable increase in statistical noise that results from 
subtracting one signal from another, require that all practical steps should be taken first to 
make illumination uniform and to reduce noise when acquiring the images, before resorting 
to processing methods.

Figure 1.76 in Chapter 1 shows an example of leveling in which the background illumination 
function can be acquired separately. This acquisition is most commonly done by removing 
the specimen from the light path, for instance replacing a microscope slide with a blank one, 
and storing an image representing the variation. This image can then be used for leveling. 
Figure 4.40 shows an example using a copy stand. The base of the stand is painted a flat 
uniform gray, so removing the object provides an opportunity to record an image of the illu-
mination from the side, and removing it effectively levels the original image. In this example, 
the camera recorded the image logarithmically and so the background image is subtracted 
point by point from the original.

Figure 4.41 shows a situation in which the brightness variation can be extracted directly from 
the original image. By separating the red, green, and blue channels in the image it is seen 
that the green image contains the important detail: the blood vessels in the retina of the eye, 
which are difficult to view because of the brightness variation. The red image has little detail 
but records the general variation, so the ratio of the green to red (i.e., division by the back-
ground) levels the varying background and makes the vessels more uniform in contrast.

Ratios of the intensities in different color channels are often used with remote sensing 
images to reduce the effect of surface geometry (Chapter 1, Figure 1.60 shows an example). 
Another situation in which direct measurement of two images allows dividing to correct for 
nonuniform brightness arises in the transmission electron microscope. It is common, par-
ticularly for inorganic samples in materials science, for the specimens to vary in thickness. 
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Computing the ratio of the conventional brightfield image to the zero-loss electrons isolated 
by a spectrometer attached to the microscope gives a direct measure of the variation in 
specimen thickness, which can subsequently be used to quantify concentration and struc-
tural measurements.

Fitting a background function

In many cases the background image is not recorded. It may not be practical to remove the 
specimen, or its presence can be a factor in the brightness variation. This includes transmit-
ted light, X-ray or electron images in which the specimen thickness varies and so the overall 
absorption is affected. Another case is that in which the surface being examined is tilted, 
curved, or irregular, which causes images to show a varying background. And, of course, 
sometimes this step is simply overlooked at the time the image is acquired. Using the example 

    
(a)                        (b)

    

Figure 4.40 Leveling image brightness by 
removing a measured background:

  (a)  original image showing uneven lighting 
of an object on a copy stand;

  (b)  removing the object and recording the 
background;

  (c)  subtracting the background point by 
point produces a uniform result.

          (c)
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of Figure 4.40, if the background image is not recorded, it may still be possible to generate 
a background by interpolation.

Rather than the edge interpolation method shown in Figure 4.37 which uses just the pixel 
values around the border, a polynomial function using all of the available background loca-
tions can be applied to define the background brightness. Polynomials are usually a good 
model for the gradual variation of brightness associated with off-center optics or illumination. 
Removing this calculated brightness value from the each point in the original image levels the 
brightness, as shown in Figure 4.42. This method can be applied whenever representative 
patches of background (or any structure that has a consistent brightness) can be located to 
provide adequate coverage of the image area.

By selecting a number of points in the image, a list of brightness values and locations is 
acquired. These are used to perform least-squares fitting of a function B(x,y) that approxi-
mates the background and can be subtracted (or divided) just as a physically acquired back-
ground image would be. When the user marks these points, for instance by using a pointing 
device such as a mouse, trackball, touchscreen, or light pen, it is important to select locations 
that should all have the same brightness and are well distributed across the image. Locating 

(d)(c)

(a) (b)

Figure 4.41 Leveling with a measured background: (a) retina image from an ophthalmoscope, show-
ing shading which makes the capillaries difficult to discern; (b) the red channel contains little detail 
but does show the shading; (c) the green channel has most of the contrast in the image; (d) the ratio 
of green to red shows more uniform contrast (original image courtesy of George Mansoor, Univ. of 
Connecticut Health Care).
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many points in one small region and few or none in other parts of the image requires the 
function to extrapolate the polynomial and can introduce significant errors. For a third-order 
polynomial, the functional form of the fitted background is:

  B(x,y) = a0 + a1•x + a2•y + a3•x2 + a4•y2 + a5•xy + a6•x3 + a7•x2y + a8•xy2 + a9•y3 (4.9)

A second order polynomial (the first six terms in Equation 4.9) has six fitted constants, 
and so in principle can be fitted with only that number of marked points. A third-order 
polynomial has ten coefficients. However, in order to get a good fit and diminish sensitivity 
to minor fluctuations in individual pixels, and to have enough points to sample the entire 
image area properly, it is usual to require several times this minimum number of points. 
Figure 4.43 shows that one effect of leveling is to make the peaks in the image histogram 
much narrower and better separated, since all of the pixels in each region have more nearly 
the same value.

    

Figure 4.42 Leveling image brightness by 
fitting:

  (a)  selecting a background region in Figure 
4.40a surrounding the stamp (red over-
lay indicates area masked out);

  (b)  smooth polynomial brightness function 
fit to the background points;

  (c)  leveled result after subtracting the back-
ground function from the entire image.

          (a)

    
(b)                        (c)
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Figure 4.44 shows an example in which the background points can be selected automatically, 
rather than by a human. The SEM image shows particles on a substrate, which, because of the 
geometry of the surface and of the SEM chamber, cause the edges and corners of the image 
to appear darker than the rest. As Chapter 2 mentions, the human eye is tolerant of gradual 
brightness variation, and so it is sometimes helpful to apply pseudo-color lookup tables to 
reveal the shading present in the image, as shown in the example.

The variation of background brightness is a smooth function of location and can be approxi-
mated by a polynomial. In this instance the particles are brighter than the local background, 

   
(a)                        (b)

Figure 4.43 Effect of leveling on the image histogram: (a) histogram of Figure 4.40a; (b) histogram of 
Figure 4.40c.

  
(a)                       (b)

  
(c)                       (d)

Figure 4.44 Leveling image contrast: (a) SEM image of particulates on a substrate; (b) pseudo-color 
applied to (a) to make the shading more visually evident; (c) image leveled by polynomial fitting; (d) 
pseudo-color applied to (c).
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although the particles near the edges of the image are darker than the background near the 
center. Using the knowledge that the background consists of the locally dark pixels and that 
it should be uniform, the automatic algorithm functions by dividing the image up into many 
regions (a 9×9 grid in the example shown) and finding the darkest pixels in each region. 
These 81 values, with their locations, are then used to generate the polynomial in Equation 
4.9 and remove it from the original, which levels the image brightness.

Automatic leveling is easiest when there is a distinct structure or phase present that is 
well distributed throughout the image area and contains the darkest (or lightest) pixels 
present. Figure 4.45 shows an example in which the features (pores) are dark on a light 
background. The specimen (a polished ceramic) has an overall variation in brightness due 
to curvature of the surface. The brightest pixels in each region of the specimen represent 
the matrix, and so should all be the same. In this example the same grid subdivision of the 
image is used to select the brightest local values, which are then used to calculate a second-
order polynomial (six coefficients) by least-squares. The fitting routine in this case reported 
a fitting error (rms value) of less than 2 brightness values out of the total 0...255 range for 

    
(a)                       (b)

    

Figure 4.45 Automatic leveling of nonuniform 
illumination:

  (a)  reflection light microscope image of 
ceramic specimen, with nonuniform 
background brightness due to a non-
planar surface;

  (b)  background function calculated as a 
polynomial fit to the brightest point in 
each of 81 squares (9 × 9 grid);

  (c)  leveled image after subtracting (b) from 
(a).

           (c)
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pixels in the image. Figure 4.45b shows the 
calculated brightness using the B(x,y) func-
tion, and Figure 4.45c shows the result after 
removing the background from the original, 
pixel by pixel, to level the image. This lev-
eling removes the variation in background 
brightness and permits setting brightness 
thresholds to delineate the pores for mea-
surement, as covered in Chapter 7.

As shown by the examples, this approach to 
automatic leveling can be applied to either a 
light or a dark background. By simultaneously 
applying it to both the lightest and darkest 
pixels in each region of the image, it is pos-
sible to stretch the contrast of the image as a 
function of location, as shown schematically 
in Figure 4.46 using a line profile of bright-
ness as an example. This autocontrast method 

works particularly well when the image loses contrast due to nonuniform illumination or 
varying sample thickness. Figures 4.47 and 4.48 show examples. In Figure 4.47 the varia-
tion in contrast is produced by varying specimen thickness, and in Figure 4.48 by surface 
curvature. In both cases, removal of the shading allows the overall contrast to be increased to 
better show the image details. Chapter 5 introduces additional methods to perform adaptive 
contrast enhancement that varies the adjustments to brightness from one location to another 
in an image.

Another approach that is sometimes used to remove gradual variation in overall brightness 
employs the frequency transforms discussed in Chapter 6. It assumes that the background 

Figure 4.46 Schematic diagram of automatic 
contrast adjustment by fitting polynomials to 
both the brightest and darkest values across 
an image and stretching the brightness values 
between those limits.

  
(a)                        (b)

Figure 4.47 TEM image of latex particles: (a) original, with varying contrast due to changing sample 
thickness; (b) application of automatic contrast by fitting polynomial functions to light and dark 
pixel values (after applying a median filter to reduce random pixel noise).
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variation in the image is a low frequency signal and can be separated in frequency space from 
the higher frequencies that define the features present. When this assumption is justified, and 
the frequencies corresponding to the background can be identified, they can be removed by 
a simple filter in the frequency space representation.

Figure 4.49 shows an example of this approach. The brightness variation in the original 
image is due to off-centered illumination in the microscope. Transforming the image into fre-
quency space with a 2D Fourier transform (covered in Chapter 6), reducing the magnitude of 
the first four frequency components by filtering the frequency space image, and retransform-
ing produces the result shown.

This method is not entirely successful for this image. The edges of the image show signifi-
cant variations present because the frequency transform attempts to match the left and right 
edges and the top and bottom edges. In addition, the brightness of dark and light regions 
throughout the image which have the same appearance and are expected to properly have the 
same brightness show local variations because the brightness is a function of the local details, 
including the actual brightness, spacing, and the shapes of the features. There are few practi-
cal situations in which leveling is satisfactorily performed by this method.

Rank leveling

When the background varies more abruptly than can be fit to simple functions, a different 
approach can be used. This method is especially useful when the surface is irregular, such as 
details on a fracture surface examined in the SEM, mountainous terrain illuminated by sun-
light, or a thin section with a fold viewed in transmission. The assumption behind this method 
is that features of interest are limited in size and smaller (at least in one dimension) than the 
scale of background variations, and that the background is everywhere either lighter than or 
darker than the local features. Both requirements are often met in practical situations.

  
(a)                        (b)

Figure 4.48 Telescope image of the lunar surface: (a) original, with varying contrast due to surface 
curvature; (b) application of automatic contrast by fitting polynomial functions to light and dark 
pixel values.
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Rank neighborhood operations (such as the median filter) are illustrated above in this chapter 
and are also used in Chapter 5. The basic idea behind neighborhood ranking operations is 
to compare each pixel to its neighbors in some small region, usually approximating a circle 
of adjustable size. This operation is performed for each pixel in the image, and a new image 
with the pixel replaced by a neighboring value is produced as a result.

For background leveling, if the background is known to be locally darker than the features, 
the darkest pixel value in the neighborhood replaces the value of the original pixel. For the 
case of a background lighter than the features, the brightest pixel in the neighborhood is used 
instead. As noted above, these operations are sometimes called gray scale erosion and dila-
tion, by analogy to the morphological processing applied to binary (black and white) images 
discussed in Chapter 8. The result of applying this operation to the entire image is to shrink 
the features by the radius of the neighborhood region and to extend the local background 
brightness values into the area previously covered by features.

Figure 4.50 illustrates this procedure for an image of rice grains on a dark and uneven back-
ground. A neighborhood is used here which consists of 21 pixels in an octagonal 5 × 5 pattern 
centered on each pixel in the image. The darkest pixel value in that region replaces the origi-
nal central pixel. This operation is repeated for every pixel in the image, using the original 
image pixels and not the new ones from application of the procedure to other pixels. After 
this procedure is complete, the rice grains are reduced in size, as shown in Figure 4.50b. 
Repeating the operation continues to shrink the grains and to extend the background based 
on the local background brightness.

After four repetitions (Figure 4.50d), the rice grains have been removed. This removal is 
possible because the maximum width of any grain is not larger than four times the radius of 
the 5 pixel wide neighborhood used for the ranking. Apply this procedure requires knowing 

  
(a)                        (b)

Figure 4.49 Leveling of image brightness and contrast by removal of low frequency terms in a 2D 
Fourier transform: (a) original image, showing nonuniform illumination; (b) leveling the brightness 
by reducing the magnitude to zero of the lowest frequency components. Notice that in addition to 
the variations near the borders, the brightness of similar structures is not constant throughout the 
image.
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the width (smallest dimension) of the largest features present, which must be less than the 
radius of the neighborhood used, or if a small neighborhood is applied iteratively, by watching 
the progress of the operation and repeating until the features are removed. The background 
produced by this method has the large-scale variation present in the original image, and sub-
tracting it produces a leveled image (Figure 4.50e) that clearly defines the features and allows 
them to be separated from the background by thresholding. In this particular case, only the 
darkest values are needed. Usually erosion and dilation are used in combination, as shown in 
the following examples.

Rank-based methods are particularly suitable for the irregular background brightness varia-
tions that occur in many natural cases. Figure 4.51 shows a telescope image of the moon. 
The uneven illumination produced by the angle of the surface to the sun is one cause of 
variation, but so is the variation in the albedo of the surface, varying from the mares to the 
highlands. The background in this case is estimated by applying of a gray scale morphological 
“closing” operation, which is a sequence of dilation followed by erosion. The first step keeps 
the darkest pixel in a 7 pixel wide octagonal neighborhood (dilation), followed by keeping 
the brightest values in the same size region (erosion). Subtracting this background from the 
original makes the markings more visible everywhere on the surface by removing the over-
all variations. The use of a closing or opening (erosion followed by dilation), depending on 

  
(a)               (b)               (c)

   

       (d)               (e)

Figure 4.50 Constructing a background image with a rank operation: (a) an image of rice grains with 
nonuniform illumination; (b) each pixel replaced with the darkest neighboring pixel in an octago-
nal 5 × 5 neighborhood; (c) another repetition of the “darkest neighbor” gray scale dilation opera-
tion; (d) after four repetitions only the background remains; (e) result of subtracting (d) from (a). 
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whether the background is locally lighter or darker than the features of interest, is the proper 
procedure to use, rather than just an erosion or dilation by itself, because the overall dimen-
sions of structures are retained.

This method is also useful for examination of particles and other surface decorations on 
freeze-fractured cell walls in biological specimens, examination of surface roughness on irreg-
ular particles or pollen, isolation of marks such as blood spatter patterns in forensic photo-
graphs, and other similar problems. In some cases it can be used to enhance the visibility of 
dislocations in TEM images of materials, which appear as dark lines in different grains whose 
overall brightness varies due to lattice orientation.

The technique is particularly appropriate for transmission imaging of specimens such as 
tissue sections in which the density of different organelles produces a background intensity 
that does not vary in a simple or gradual pattern, as shown in Figure 4.52. The objects of 
interest are the small gold particles used in this immunogold labeling experiment. Those 
that lie on cytoplasm are much lighter than those on the darker organelles, and threshold-
ing based on brightness is not successful. Applying a gray scale morphological opening 
(erosion of the dark features followed by dilation to restore the organelles to their origi-
nal sizes), as shown above in Figure 4.32, removes the dark gold particles. This image 
(Figure 4.32b) can then be used as a background and divided into the original to produce 
a leveled result.

Figure 4.53 shows an example in which both leveling techniques are used to complement 
each other. First a ranked background is created by replacing the dark axons with the locally 

  

Figure 4.51 Application of rank leveling:

  (a) the moon;

  (b)  background produced by a gray scale 
closing;

  (c)  leveled result after subtraction of the 
background from the original.

           (a)

  

(b)                      (c)
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lighter background, which is divided into the original image. Then a polynomial fit to the 
brightest and darkest pixel values is used to locally expand the contrast, which helps to reveal 
even the small dark axon lines.

The ability to level brightness variations by subtracting a background image, whether 
obtained by measurement, mathematical fitting, or image processing, is not a cost-free pro-
cess. Subtraction uses up part of the dynamic range, or gray scale, of the image. Figure 4.54 
shows an example. The original image has a shading variation that can be fit rather well by 
a quadratic function, but this has a range of about half of the total 256 gray levels. After the 
function has been subtracted, the leveled image does not have enough remaining brightness 
range to cover the dark areas of some features. This clipping may interfere with further analy-
sis of the image. The use of high dynamic range images providing more than 8 bits of bright-
ness values is helpful when processing may use up part of the range.

Color images

Color images sometimes present significant problems for shading correction. A typical exam-
ple of a situation in which this arises is aerial or satellite imagery, in which the irregularity of 
the ground or the curvature of the planet surface produces an overall shading. In some cases, 
this affects only the intensity in the image and leaves the color information unaffected. But, 
depending on the camera response, possible texturing or specular reflection from the surface, 
atmospheric absorption, and other details of the imaging, it is also possible to find that there 
are color shifts between different areas in the image.

The same methods used above for gray scale images can be applied to the intensity channel 
from a color image. Leveling is practically never useful for application directly to the red, 
green, and blue channels, because that produces color shifts that alter the image.

Chapter 1, Figure 1.60 shows an example of another approach. While the various color 
channels have each been altered by the local orientation of the surface topography to the 
sun, to a first approximation the effect is the same across the spectrum of colors. In that 
case, it is appropriate to use ratios of one color channel to another to level the effects 
of nonuniform surface orientation or illumination. Filtering the color image in different 
wavelengths and then dividing one by another cancels out much of the nonuniformity and 
produces a leveled image in which similar features located in different areas have the same 
final appearance.

  

Figure 4.52 Leveling in a trans-
mission image:

  (a)  original TEM image with 
immunogold particles (from 
Figure 4.32a);

  (b)  leveled result after dividing 
the background in Figure 
4.32b into the original.

       (a)               (b)
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(a)

(b)

(c)

(d)

Figure 4.53 Combined rank and poly-
nomial methods:

  (a) original TEM image of axons;

  (b)  background produced by replac-
ing dark pixels with their bright-
est neighbors within a 5 pixel 
radius;

  (c)  result of dividing (a) by (b);

  (d)  contrast expanded between auto-
matically fit polynomial limits.
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The rank-based leveling method can also be applied to color images, but as for all color 
images the ranking is based on vector distances in color space. In the example of Figure 4.55, 
the red blood vessels are present on a varying background, making the smaller vessels and 
those at the periphery difficult to detect. Removing the blood vessels from the image by 
replacing each pixel with the color values from its neighbor that is farthest in color space 
from the selected red color (color erosion) followed by the complementary operation in which 
each pixel is replaced by its neighbor with the nearest color value (color dilation) produces a 
background. Removing this background image from the original produces good contrast for 
the blood vessels.

Non-planar views

A use of computer graphics which most of us take for granted can be seen each evening on 
the local news. Most TV stations in the United States have a weather forecast that uses satellite 
images from a NOAA weather satellite. These pictures show the United States as it appears 
from latitude 0, longitude 108 W (the satellite is shifted to 98 W in summertime to get a better 
view of hurricanes developing in the south Atlantic), at a geosynchronous elevation of about 
22,000 miles.

(b)

(c)

(a)

Figure 4.54 Effect of leveling on an image with 
limited gray scale range:

  (a) original image;

  (b) fitted polynomial background;

  (c)  removing the background image (b) from 
(a). The background is uniform, but the 
dark features are not because the origi-
nal pixels were fully black in the original 
image.
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The images show cloud patterns, and a series of images taken during the day shows move-
ment of storms and other weather systems. The coastline, Great Lakes, and a few other 
topographic features are evident but may be partially obscured by clouds. Given the average 
citizen’s geographical knowledge, that picture might not help most viewers to recognize their 
location. So computer graphics are used to superimpose political outlines, such as the state 
borders and perhaps other information such as cities, counties, or major highways, to assist 
the viewer. Most US TV stations have heavy investments in computer graphics for advertising, 
news, etc., but they rarely generate these lines themselves, instead obtaining the images with 
the lines already present from a company which specializes in that niche market.

Generating the lines is not simply a matter of overlaying a conventional map, say a Mercator’s 
projection as used in the school classroom, over the satellite image. The curvature of the earth 
and the foreshortening of the image need to be taken into account. Figure 4.56 shows a weather 
satellite image of North America that is foreshortened toward the top and also shows noticeable 
curvature from west to east across the width of the country. A square on the ground appears as 
a skewed trapezoid, and if the square is large enough the sides are noticeably curved.

The coordinates, in latitude and longitude, of points on the earth’s surface are used to calculate 
a perspective view of the spherical globe as it is seen from the satellite. Since the viewpoint 

  
(a)              (b)              (c)

Figure 4.55 Example of rank leveling in a color image as described in the text: (a) original image (cour-
tesy Kathy Spencer, The Scripps Research Institute, La Jolla, CA); (b) background produced by color 
opening; (c) image (a) minus image (b).

Figure 4.56 GOES-7 image of North 
America with political bound-
ary lines superimposed. The dark 
area just west of Baja, California 
is the shadow of the moon, dur-
ing the eclipse of 11 June, 1991 
(image courtesy of the National 
Environmental Satellite Data and 
Information Service).
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is fixed, this is a one-time calculation, which nevertheless 
needs to be done for a great many points to construct good 
outline maps for superposition. The calculation can be visu-
alized as shown in the diagram of Figure 4.57.

The location of a point on the spherical earth (specified by 
its latitude and longitude) is used to determine the intersec-
tion of a view line to the satellite with a flat image plane, 
inserted in front of the sphere. This calculation requires 

only simple trigonometry, as indicated in Figure 4.58. The coordinates of the points in that 
plane are the location of the point in the viewed image.

Computer graphics

Computer graphics is routinely used to construct perspective drawings and renderings of 
three-dimensional objects so that they can be viewed on the computer screen, for instance 
in CAD (computer aided design) programs. The subject goes far beyond the needs here; the 
interested reader should refer to standard texts such as Foley & Van Dam (1984, 1995) or 
Hearn & Baker (1986). The display process is the same as that just described, with the addi-
tion of perspective control that allows the user to adjust the apparent distance of the camera 
or viewpoint so as to control the degree of foreshortening that occurs (equivalent to choosing 
a long or short focal length lens for a camera; the short focal length lens produces more dis-
tortion in the image).

Ignoring foreshortening distortion (i.e., using a telephoto lens), the translation of a point in 
three dimensions can be represented by matrix multiplication of its x, y, z coordinates by a set 
of values that correspond to rotation and translation. This is simpler to examine in detail in 
two dimensions, since the main interest here is with two-dimensional images. Consider points 
with Cartesian X,Y coordinates and how they move with shifts or rotations.

Translation of an object adds offsets to X and Y, to produce

 X´ = X + ∆X (4.10)

Sphere
(Earth)

Image
Plane

Satellite
Position

Figure 4.57 Diagram of satellite 
imaging. As in any perspective 
geometry, the “flat” image is 
formed by projecting view lines 
from the three-dimensional 
object to the viewpoint and con-
structing the image from the 
points at which they intersect 
the image plane.

Figure 4.58 Trigonometry 
is used to calculate the 
location of points in the 
image plane from the 
longitude of the point 
on the earth, and the 
location of the satellite. 
This is the view from 
the north pole; a similar 
view from the equator 
gives the y-coordinate 
from the latitude.

 

Longitude

X-coordinate
in image

Sphere

Image Plane
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 Y´ = Y + ∆Y 

while stretching the object requires multiplicative coefficients which may not be the same

 X´ = αX (4.11)

 Y´ = βY

and rotation of an object by the angle ϑ introduces an interdependence between the original 
X and Y coordinates of the form

 X´ = X cos ϑ – Y sin ϑ (4.12)

 Y´ = X sin ϑ + Y cos ϑ

In general, the notation for two-dimensional translations is most commonly written using so-
called homogeneous coordinates and matrix notation. The coordinates X, Y are combined in 
a vector along with an arbitrary constant 1 to allow the translation values to be incorporated 
into the matrix math, producing the result

	 ′ ′  =  ⋅

















X Y X Y
ab
cd
e f

1 1
0
0
1

 (4.13)

which multiplies out to

 X´ = aX + cY + e (4.14)

 Y´ = bX + dY + f

Comparing this matrix form to the examples above shows that the e and f terms are the trans-
lational shift values. The a, b, c, d values are the stretching and rotation coefficients. When a 
series of transformations is combined, including rotation, translation, and stretching, a series 
of matrices is produced that can be multiplied together. When this happens, for instance to 
produce rotation about some point other than the origin, or to combine nonuniform stretching 
with rotation, the individual terms are combined in ways that complicate their simple interpre-
tation. However, only six coefficients are needed.

If only these terms are used, they cannot produce curvature or twisting of the objects. By 
introducing higher order terms, more complex stretching and twisting of figures is possible. 
This produces a more complex equation of the form

 X´ = a1 + a2X + a3Y + a4XY + a5X2 + a6Y2 + ... (4.15)

and a similar relationship for Y .́ There is no fundamental reason to limit this polynomial 
expansion to any particular maximum power, except that as the complexity grows the num-
ber of coefficients needed rises (and the difficulty of obtaining them), and the mathematical 
precision needed to apply the transformation increases. It is unusual to have terms beyond 
second power, which can handle most commonly encountered cases of distortion and even 
approximate the curvature produced by looking at a spherical surface such as a satellite view 
of the earth, at least over small ranges of angles.

Of course, some surface mappings are better handled by other functions. The standard 
Mercator’s projection of the spherical earth onto a cylinder (Figure 4.59) sends the poles to 
infinity and greatly magnifies areas at high latitudes. Many polynomial terms are required to 
approximate it, but since the actual geometry of the mapping is known, it is easy to use the 
cosecant function that efficiently and correctly performs the transformation.
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Geometric distortion

These mathematical operations are of interest in this text for converting images so that accu-
rate measurements can be made. Images are frequently obtained that are not of flat surfaces 
viewed normally. The example of the satellite image used above is one obvious case. Many 
crime scene photographs and surveillance images are necessarily taken from non-perpendicu-
lar viewpoints. Viewing specimens in the electron microscope often tilts the specimen surface 
to increase image contrast image. If a surface is not flat, different regions may be tilted at 
arbitrary angles, or continuous curvature may be present. Many airborne cameras and radars 
introduce a predictable distortion (which is therefore correctable) due to the use of a moving 
or sideways scan pattern, or by imaging a single line onto continuously moving film. In all of 
these cases, knowing the distortion is the key to correcting it.

This situation does not commonly arise with light microscopy because the depth of field of the 
optics is so low that surfaces must be flat and normal to the optical axis to remain in focus. 
There are other imaging technologies, however, which do frequently encounter non-ideal sur-
faces or viewing conditions.

Making maps from aerial or satellite images is one application (Thompson, 1966). There is no 
perfect projection of a spherical surface onto a flat one that preserves distances and orienta-
tions, so various approximations are employed. In each case, there is a known relationship 
between the coordinates on the globe and those on the map which can be expressed math-
ematically. If the viewpoint is exactly known, as for the case of the weather satellite, or can be 
calculated for the moment of exposure, as for the case of a space probe passing by a planet, 
then the mathematical relationship can be determined.

Generating rectified images is usually impractical for aerial photographs, as the plane posi-
tion is not that precisely controlled, although the location from which images are taken can 
be recorded by GPS. The alternative is to locate a few reference points in the image whose 

Figure 4.59 The standard Mercator’s projection of the earth used in maps projects the points on the 
sphere onto a cylinder, producing increasing distortion at high latitudes.
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locations on the globe or the map are known and use them to determine the equations relat-
ing position in the image to location on the map. This technique is generally known as image 
warping or rubber sheeting, and while the equations are the same as those used in computer 
graphics, the techniques for determining the coefficients are different.

A pair of equations calculating X ,́ Y´ coordinates for a transformed view from original coor-
dinates X,Y may include constants, linear terms in X and Y, plus higher order terms such as 
XY, X2, etc. Adding more terms of higher order makes it possible to introduce more complex 
distortions in the transformation. If the problem is one of rotation, only linear terms are 
needed, and a constraint on the coefficients can be introduced to preserve angles. In terms of 
Equation 4.11, this requires that the stretching coefficients must be equal. Consequently only 
a few constants are needed, and they can be determined by locating a few known reference 
points and setting up simultaneous equations.

More elaborate stretching to align images with each other or with a map requires correspond-
ingly more terms and more points. In electron microscopy, the great depth of field permits 
acquiring pictures of samples which are locally flat but oriented at an angle to the point of 
view, producing distortion that is essentially trapezoidal, as shown in Figure 4.60. The por-
tion of the surface that is closest to the lens is magnified more than regions farther away, and 
distances are foreshortened in the direction of tilt. In order to measure and compare features 
on these surfaces, or even to properly apply image processing methods (which generally 
assume that the neighbor pixels in various directions are at equal distances from the central 
pixel), it may be necessary to transform this image to correct the distortion. Since the exact 
tilt angle and working distance may not be known, a method that uses only reference points 
within the image itself is needed.

All that is required is the identification of four points whose real X,Y coordinates on the sur-
face are known and whose image coordinates X ,́Y´ can be measured. Then the following 
equations are written

 X = a1 + a2X´ + a3Y´ + a4X´Y´ (4.16)

 Y = b1 + b2X´ + b3Y´ + b4X´Y´

for each of the four sets of coordinates. This allows solving for the constants ai and bi. Of 
course, if more points are available, then they can be used to obtain a least-squares solution 
that minimizes the effect of small errors in measurement of coordinates in the image. Whatever 
the expected or observed distortion, using the fewest possible terms in the modeling equation 

Final Lens

Surface
Tilt Angle

Viewing
GeometryActual Surface Coordinates Observed Trapezoidal Distortion

Figure 4.60 Trapezoidal distortion commonly encountered when observing a tilted surface with a short 
focal length.
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is, both in terms of the efficiency of the calculation (the number of reference points needed) 
and the precision of the coefficients.

In the example of Figure 4.61, a photograph of a tire tread mark taken at a crime scene views 
the tread imprint at an angle. This view is adequate to identify the maker and model of the tire, 
but does not facilitate measuring the location of minor wear marks that can be used to match the 
tread imprint to a specific tire. Marking a region on the image that has edges parallel to the tire 
imprint defines the viewpoint and the distortion, so that the view can be rectified as shown.

The chief problem that arises with such perspective correction is for features that do not 
lie on the inclined planar surface, but extend in front of or behind it. In the example of 
Figure 4.62, the front of the building is corrected to show the correct angles and dimen-
sions for the structure, but the light pole that extends out over the street in front appears 
to be at an angle to the building when in fact it is perpendicular to it. Notice also that 
the right side of the building appears to be less sharply focused, which is due to the 
enlargement and interpolation of that portion of the image. Interpolation techniques are 
discussed below.

Alignment

Another situation requiring geometric transformations is the alignment of images. This arises 
with serial section images, as well as the need to align multiple mappings of a surface to con-
struct a GIS, or to align multiple images as tiles to combine them into a single large image. In 
some cases there may be no “ground truth” to align to, but only relative alignment between 
the various images. The alignment is performed by using features within the images that can 
be recognized. The points to be aligned may be located manually by the user or automatically 
by the imaging system using techniques such as cross-correlation (described in Chapter 6). 
Relative alignment is discussed in more detail in Chapter 14.

Some imaging situations produce sets of images that have different native resolutions and 
also require scaling as well as rotation and alignment. The result is a need for an alignment 
equation of the form

 X = a1 + a2X´ + a3Y´ (4.17)

Figure 4.61 Outlining a region parallel to the edges of the tire track defines the image distortion, from 
which the necessary rectification can be calculated.
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with three constants (and a similar equation for Y). Figure 4.63 shows a set of images in 
which three points have been marked as alignment references and the resulting transforma-
tion of the images by stretching and rotating.

Serial sections cut with a microtome from a block of embedded biological material commonly 
are foreshortened in the cutting direction by 5 to 15%, due to compression of the block by the 
knife. Then they are rotated arbitrarily before they are imaged. Locating matching points may 
be aided by introducing fiducial marks into the specimen such as holes drilled through the 
specimen block or fibers inserted into it before the sections are cut.

More extensive warping may be required to align slightly overlapping images along their 
edges to permit assembling them as a mosaic (Milgram, 1975). Alignment of side-by-side 

(a)

(b)

Figure 4.62 Correcting trapezoidal distortion due to a non-perpendicular view.
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sections of a mosaic is often attempted with wide-angle images (which includes the typical 
case in the electron microscope) but fails because of the trapezoidal distortion mentioned 
above. The result is that features along the image boundaries do not quite line up, and the 
mosaic is imperfect. Using rubber sheeting can correct this defect.

Such corrections are routinely done for satellite and space probe pictures. Figure 4.64 shows 
an example of a mosaic constructed from multiple images taken by the Spirit rover on Mars. 
Recently, there has been increased interest in creating mosaics from separate images to gen-
erate panoramic views and to extend the resolution of digital cameras. Figure 4.65 shows 
four individual images taken from a single location (by swiveling the camera on a tripod) that 
form a 2 × 2 array with considerable overlap. The wide angle lens has produced distortion 
within each image and a simple overlapping of the fields does not fit. Figure 4.66 shows 

  
              (a)                      (b)

Figure 4.63 Registration of three images with different scales and alignments: (a) PET (small), MRI 
(medium), and CT (large) scans of a human head. The small red, green, and blue dots are the regis-
tration points used to determine the stretching and rotation vectors; (b) result after registration, with 
the images displayed in individual color channels.

Figure 4.64 Mosaic image of Gusev Crater on Mars, assembled from pictures taken by the Spirit rover 
(image courtesy of NASA).
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Figure 4.65 Four images that overlap to provide a 2 × 2 array covering a larger scene. Note the different 
angles and incompatible lens distortions in each.

Figure 4.66 The mosaic produced from the images in Figure 4.65 (using the “Autostitch” software from 
Matthew Brown and David Lowe, University of British Columbia).
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the resulting mosaic which forms a complete image of the building. Note that the images 
have been distorted to fit together smoothly. This type of mosaic assembly is very useful for 
automatically constructing panorama photographs (Brown & Lowe, 2003; Brown et al., 2005; 
Chow et al., 2006; Kim & Hong, 2006), but is rarely useful for measurement purposes.

For scientific imaging purposes, the use of a microscope stage or other specimen positioning 
device that can shift the sample being imaged with reasonable precision while the camera 
remains fixed offers the possibility of acquiring images of unlimited size (Bacus 1995, 2000, 
2001; Gu & Ogilvie, 2005; Thevenaz & Unser, 2006). There are constraints in this situation 
to assist in the fitting together of the image. It is known, for example, that the images may 
be slightly rotated (the mechanism may have slight wobble or misalignment and the shifting 
mechanism cannot be depended on to provide exact edge-to-edge alignment) but they are 
not distorted (i.e., straight lines remain straight and angles are unchanged). Hence the fitting 
together process can only shift and rotate the individual image tiles in their entirety.

If the overlap between tiles is between 10 and 20%, and the angular mismatch is no more than 
a few degrees, matching each of the tiles together can produce large high-resolution mosaics, 
as shown in Figure 4.67. The matching technique is based on cross-correlation (discussed in 
Chapter 6), and an iterative procedure is used to match all of the tiles together for a best fit. This 
is particularly effective for images acquired in the atomic force microscope, because the area 

 
(a)

 
(b)

Figure 4.67 

  (a)  Portion of a large mosaic 
image assembled from eight 
individual images, each 
3200 × 2400 pixels, from a 
digital camera, as discussed 
in the text;

  (b)  detail of fit between two 
image tiles.
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covered by these devices tends to be rather small, and with the very high spatial resolution it is not 
feasible to design specimen shifting hardware that is absolutely precise (Condeco et al., 2000).

Interpolation

When images are being geometrically transformed, it is possible to write the equations either in 
terms of the coordinates in the original image as a function of the geometrically corrected one, 
or vice versa. In practice it is usually preferable to use the grid of x,y coordinates in the final cor-
rected image to calculate, for each pixel, the corresponding coordinates in the original image.

Unfortunately, these calculated coordinates for the original location are rarely integers. This 
means that the location lies “between” the pixels in the original image. Several methods are 
used to deal with this problem. The simplest is to truncate the calculated values so that the frac-
tional part of the address is discarded and the pixel lying toward the origin of the coordinate 
system is used. Slightly better results are obtained by rounding the address values to select the 
nearest pixel, whose brightness is then copied to the transformed image array. This is called 
a “nearest neighbor” procedure. As shown in Figure 4.68, this method produces aliasing or 
“stair-stepping” of the lines in the test pattern, and apparent variations in their width.

When this distortion is unacceptable, interpolation may be used. The brightness value for the 
transformed pixel can be calculated by interpolating between the four pixels surrounding the 
calculated address. This is called bilinear interpolation and is calculated from the fractional 
part of the X and Y coordinates. First the interpolation is done in one direction, and then in 
the other, as indicated in Figure 4.69. For a location with coordinates j + x, k + y where x and 
y are the fractional part of the address, the equations for the first interpolation are:

	 Bj	+	x,k	=	(1	–	x)	·	Bj,k	+	x	·Bj	+	1,k (4.18)

 Bj	+	x,k +	1	=	(1	–	x)	·	Bj,k +	1	+	x	·Bj	+	1,k +	1 

and then the second interpolation, in the y direction, gives the final value

	 Bj	+	x,k +	y	=	(1	–	y)	·	Bj +	x,k	+	y	·Bj	+	x,k +	1 (4.19)

Weighted interpolations over larger regions are also used in some cases. One of the most 
popular is bicubic fitting. Whereas bilinear interpolation uses a 2 × 2 array of neighboring 
pixel values to calculate the interpolated value, the bicubic method uses a 4 × 4 array. Using 
the same notation as the bilinear interpolation in Equations 4.18 and 4.19, the summations 
go from k – 1 to k + 2 and from j – 1 to j + 2. The intermediate values from the horizontal 
interpolation are

 Bj + x,k = (1/6) (Bj – 1,k • R1 + Bj,k • R2 + Bj + 1,k •R3 + Bj + 2,k •R4) (4.20)

and the interpolation in the vertical direction is

 Bj + x,k + y = (1/6) (Bj + x,k – 1 • R1 + Bj + x,k • R2 + Bj + x,k + 1 •R3 + Bj + x,k + 2 •R4) (4.21)

where the weighting factors Ri are calculated from the real part (x or y, respectively) of the 
address as

 R1 = (3 + x)3 – 4•(2 + x)3 + 6•(1 + x)3 – 4•x3 

 R2 = (2 + x)3 – 4•(1 + x)3 + 6•x3 (4.22)

 R3 = (1 + x)3 – 4•x3 

 R4 = x3 
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The bicubic fit is more isotropic than the bilinear method and makes the derivatives continous 
at the corners of the 4 × 4 area around the fitted pixel. Interpolation always has the effect of 
smoothing the image and removing some high frequency information, but minimizes aliasing 
or “stair-stepping” along lines and edges. The coefficients in Equation 4.22 may be varied to 
produce sharper or smoother results, if desired. Larger neighborhoods are also possible, but 
are most often implemented by performing the interpolation in Fourier space rather than by 
directly accessing the neighboring pixels.

Figure 4.70 shows the results of rotating a line (originally a black vertical line one pixel 
wide) by 17 degrees with no interpolation (selecting the nearest neighbor pixel value), and 

   
(a)                        (b)

   
(c)                        (d)

Figure 4.68 Rotation and stretching of a test image using nearest neighbor pixel values: (a) original; 
(b) rotation only, no change in scale; (c) rotation and uniform stretching while maintaining angles; 
(d) general rotation and stretching in which angles may vary (but lines remain straight).
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with bilinear or bicubic interpolation. The aliasing with the nearest neighbor method is evi-
dent. Bilinear interpolation reduces the line contrast more than bicubic, but bicubic interpola-
tion blurs the line width more, and both assign gray values to adjacent pixels to smooth the 
appearance of the line.

The advantage of interpolation is that dimensions are altered as little as possible in the trans-
formation, and boundaries and other lines are not biased or distorted. Figure 4.71 shows the 
same examples as Figure 4.68, with bilinear interpolation used. The figure shows that the 
lines appear straight and not aliased or stair-stepped, because some of the pixels along the 
sides of the lines have intermediate gray values resulting from the interpolation. Computer 
graphics programs often use this method to draw lines and characters in text on CRT displays 
so that the stair-stepping inherent in drawing a discrete pixel array is avoided. The technique 
is called anti-aliasing, is sometimes handled by the display hardware, and generates pixels 
with gray values according to how close they lie to the mathematical location of the line. This 
fools the viewer into perceiving a smooth line or character.

Fitting of higher order polynomials, or adaptive spline fits to the pixel intensity values, can 
also be used. This can be particularly useful when enlarging images in order to reduce the 
perceived fuzziness that results when sharp edges are spread out by conventional interpola-
tion. Figure 4.72 shows an example in which a 4× enlargement has been performed using 
no interpolation, bilinear interpolation, adaptive spline fitting, and fractal interpolation. The 
latter inserts false “detail” into the image (Freeman et al., 2001; Fattal, 2007; Chen et al., 2008), 
while spline fitting maintains the best visual sharpness of edges.

x

y j,k x,k j+1,k

j,k+1 x,k+1 j+1,k+1

x,y

  

Figure 4.69 Diagram of bilinear pixel inter-
polation. The brightness values of the neigh-
bors are first interpolated horizontally to 
determine the brightness values at the loca-
tions outlined in red, and then these two val-
ues are interpolated vertically to determine 
the brightness at the target pixel outlined in 
blue, using the fractional part of the pixel 
addresses.

Nearest
Neighbor

Bilinear Bicubic

  

Figure 4.70 Effect of rotating a 
one pixel wide black line using 
nearest neighbor, bilinear, and 
bicubic interpolation.



264 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

For image warping, alignment, or enlargement, interpolation has the advantage that dimen-
sions are preserved. However, brightness values are not. With the nearest pixel method 
achieved by rounding the pixel addresses, the dimensions are distorted but the brightness 
values are preserved. Choosing which method is appropriate to a particular imaging task 
depends primarily on which kind of information is more important, and secondarily on the 
additional computational effort required for the interpolation.

Figure 4.73 illustrates the effect of adding higher order terms to the warping equations. With 
quadratic terms, the trapezoidal distortion of a short focal length lens or SEM can be cor-
rected. It is also possible to model the distortion of a spherical surface closely over modest 
distances. With higher order terms, arbitrary distortion is possible, but this is rarely useful in 

   
(a)                        (b)

   
(c)                        (d)

Figure 4.71 The same generalized rotation and stretching as in Figure 4.68, but with bilinear interpo-
lation. Note the smoothing of the lines and boundaries.
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an image processing situation since the multiple reference points necessary to determine such 
a distortion are not likely to be available.

Morphing

Programs that can perform controlled warping according to mathematically defined relation-
ships or calculate those matrices of values from a set of identified fiducial or reference marks 
that apply to the entire image are generally rather specialized. But an entire class of programs 
has become available for performing image morphing based on a set of user-defined control 

  
(a)                        (b)

  
(c)                        (d)

Figure 4.72 Enlargement of an image (the fragment shown is enlarged 4× with respect to the origi-
nal): (a) no interpolation (nearest neighbor); (b) bilinear interpolation; (c) spline fitting; (d) fractal 
interpolation.
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points. The points are generally placed at corresponding locations that are distinctive in the 
two images. For aligning two faces, for example, points at the tips of the eyes, corners of the 
mouth, along the hairline and chinline, and so forth, are used, as shown in the illustration in 
Figure 4.74.

The program uses the points to form a tessellation of the first image into triangles (the choice 
of which points to use as corners for each triangle is defined by a procedure called a Voronoi 
tessellation). Each triangle is uniformly stretched to fit the location of the corner points in the 
second image. Medical imaging often utilizes this type of morphing, using internal structures 

   
(a)                   (b)

   

(c)                   (d)

Figure 4.73 Some additional examples of image warping using the same original image as Figure 
4.68: (a) quadratic warping showing trapezoidal foreshortening; (b) cubic warping in which lines 
are curved (approximation shown is to a spherical surface); (c) twisting the center of the field while 
holding the edges fixed (also cubic warping); (d) arbitrary warping in which higher order and trigo-
nometric terms are required.
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as a series of reference points, in order to align patient images with reference standards so 
that subtle changes can be detected (Rangayyan, 2005; Hajnal et al., 2001).

With a triangular mesh and linear stretching of each triangle, lines crossing the boundaries 
of the triangles are continuous but may be sharply bent. Using spline or cubic equations to 
control the stretch gives a better appearance by making the curves smooth, but often at the 
expense of preserving dimensions that allow measurements to be made on such images.

The art of using these morphing programs lies primarily in using enough control points, 
and their careful placement, so that the results look realistic. This is especially true when a 
sequence of images is created with progressive motion of the control points from the original 
to final locations. These morphing “movies” show one image transforming gradually into the 
second. These effects are used routinely in creating television advertisements. There are few 
if any technical applications requiring image measurement that can be satisfactorily accom-
plished with these programs, considering the somewhat arbitrary placement of points and 
distortion of dimensions and directions.

The ability to use morphing to align images of different objects and produce visually con-
vincing images can be a powerful presentation tool and can be useful to show the similar-
ity between two objects, but it is extraordinarily susceptible to misuse, producing apparent 
matching between different images that are really not the same.

  
(a)              (b)              (c)

Figure 4.74 Transformation of George into Abe (pictures from US currency). The corresponding points 
marked on each original image control the gradual distortion from one to the other. The midpoint 
frame is plausible as a person, and shares feature characteristics with both endpoints. Note that the 
banner, which is curved in different directions in the two originals, is approximately straight in the 
composite. Many more points of correspondence would be used to produce much better results in a 
realistic application.
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5
Image Enhancement in 
the Spatial Domain

The preceding chapter discusses methods for correcting or alleviating the principal defects 
in as-acquired images. There is a fuzzy area between correcting these defects and going 
beyond to enhance the images. Enhancement is the subject of this chapter. Methods are 

available that increase the visibility of one portion, aspect, or component of an image, gener-
ally by suppressing others whose visibility is diminished. In this regard, image processing 
is a bit like word processing or food processing. It is possible to rearrange things to make a 
product that is more pleasing or interpretable, but the total amount of data does not change.

In the case of images, this generally means that the number of bytes (or pixels) is not reduced, 
although the individual values may be altered or rearranged. In contrast to image processing, 
most image analysis procedures, which are the subject of later chapters, attempt to extract only 
the “important” information from the image. An example might be to identify and count objects 
in an image, reducing the amount of data from perhaps a million bytes to a few dozen, or even 
a single “Yes” or “No” answer in some quality control, medical, or forensic applications.

Image enhancement may be performed for several reasons. One is simply to make the image 
easier to visually examine and interpret. Many of the procedures described here are based to 
some degree on the response and/or the requirements of the human visual system. Some are 
purely ad hoc methods that have been found over time to be useful. Others are based on the 
physics of image generation (e.g., light interaction with subjects) or the operation of optical 
components and image detectors (e.g., removing lens distortion or correcting for the response 
of solid state cameras). The latter are not necessarily more complicated to apply. For example, 
Sharma (2005) demonstrates a calculation based on the passage of light through a document 
and its reflection from print on both surfaces in order to separate the two images and remove 
“show through” in a scanned document. Other reasons for image enhancement are to facilitate 
printing of images or to allow automatic methods to perform measurements, which is consid-
ered in several later chapters.

Image processing for purposes of enhancement can be performed in either the spatial domain 
(the array of pixels comprising the conventional representation of the image) or other domains, 
such as the Fourier domain discussed in Chapter 6. In the spatial domain, pixel values may 
be modified according to rules that depend on the original pixel value (local or point pro-
cesses). Another class of operations combines or compares pixel values to others in their local 
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neighborhood in a variety of ways. Examples of each of these approaches are used in Chapter 
4 to replace brightness values in order to expand image contrast or to smooth noise by kernel 
averaging or median filtering. The techniques used in this chapter employ the same basic sets 
of tools to perform further enhancements.

It is worth noting that 2D images typically consist of a very large number of pixels, usually 
several million. Even a point process that simply modifies the value of each pixel according 
to its previous contents requires that the computer address each pixel location. For a neigh-
borhood process, each pixel must be addressed many times, and the processing speed slows 
down accordingly. Fast processors and high speed memory access (and a lot of memory) are 
essential requirements for this type of work, but most modern computers can perform the 
algorithms shown in acceptably short times (often less than a second). Some machines use 
dedicated hardware such as shift registers and array processors, or boards with dedicated 
memory and custom addressing circuits, or multiple processors with special programming, 
to permit near-real-time processing of images when that is economically justified. As CPU 
speeds have increased, the need for special hardware has diminished. With more memory, 
entire images can be accessed rapidly without the need to bring in pieces, one at a time, from 
disk storage.

As personal computer power has increased, the implementation of increasingly complex algo-
rithms for image enhancement has become practical. Many of these algorithms are not new, 
dating from decades ago and often developed in conjunction with the need to process images 
from satellites and space probes, but until recently have only been performed using large com-
puters or special purpose systems. Most can now be applied to images routinely, in a matter 
of seconds, using desktop or laptop computers. Some of them are even implemented within 
the firmware of consumer level digital cameras.

This text does not concern itself with implementation methods that can speed up various pro-
cessing operations, but it is significant that such coding “tricks” were very important 30 and 
even 15 years ago, as a way to make computer image processing practical. With the develop-
ment of faster computers, larger memory, and smarter compilers, there is less need for such 
concerns. As more complex algorithms are being implemented, it is generally more important 
that the programmer attempt to write clear and well documented code than to squeeze out 
tiny performance increments at the cost of producing specialized routines that cannot be 
easily transferred from one platform to another. There is also greater impetus to implement 
algorithms exactly and with all appropriate precision, rather than to accept compromises and 
approximations. Unfortunately, there are some legacy routines in programs that have not been 
brought up to the latest standards.

Contrast manipulation

Chapter 4 shows examples of expanding the contrast of a dim image by reassigning pixel 
brightness levels. In many systems, this can be done by writing a table of values into the dis-
play hardware. This lookup table or LUT substitutes a display brightness value for each stored 
value and thus does not require modifying any of the values stored in memory for the image. 
Expanding the contrast range by assigning the darkest pixel value to black, the brightest value 
to white, and each of the others to linearly interpolated shades of gray makes good use of the 
display and enhances the visibility of features in the image.

Chapter 1 shows that the same LUT approach can be used with colors by assigning a triplet of 
red, green, and blue values to each stored gray scale value. This pseudo-color also increases 
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the visible difference between similar pixels; sometimes it is an aid to the user who wishes to 
see or show small or gradual changes in image brightness.

A typical computer display can show 28 or 256 different shades of gray and can produce col-
ors with the same 28 brightness values for each of the red, green, and blue components to 
produce a total of 224 or 16 million different colors. This is often described as “true color,” 
since the colors that can be displayed are adequate to represent most natural scenes. It does 
not imply, of course, that the colors displayed are photometrically accurate or identical to the 
original color in the scene, or that the display is capable of showing the full gamut of colors 
that the eye can perceive or the camera capture. That is very difficult and requires special 
hardware and calibration. If the original image has more than 256 brightness values (is more 
than 8 bits deep) in each color channel, some type of lookup table is required even to display 
it on the screen.

More important, the 16 million different colors that such a system is capable of displaying, and 
even the 256 shades of gray, provide a finer gradation than the human eye can distinguish. 
Under good viewing conditions, humans can typically distinguish only a few tens of different 
gray levels and a few hundreds of distinguishable colors. Consequently, the display hardware 
of the image processing system is not being used very well to communicate the image infor-
mation to the user. If many of the pixels in the image are bright, for example, they cannot 
be distinguished. If there are also some dark pixels present, it is not possible to just linearly 
expand the contrast. Instead, a more complicated relationship between stored and displayed 
values is needed.

The manipulation of pixel brightness can be described in terms of a transfer function relating 
the stored brightness value for each pixel to a displayed value. If this relationship is one-to-
one, then for each stored value there is be a corresponding and unique (although not neces-
sarily visually discernible) displayed value. In some cases, it is advantageous or necessary to 
use transfer functions that are not one-to-one: several stored values are displayed with the 
same brightness value, so that other stored values can be spread further apart to increase their 
visual difference.

Figure 5.1a shows an image (the surface of dried paint, viewed in the SEM) in which the 256 
distinct pixel brightness values cannot all be discerned on the computer monitor; the printed 
version of the image is necessarily worse. As Chapter 3 shows, the number of distinct printed 
gray levels in a halftone image is determined by the variation in the dot size of the printer. The 
imagesetter used for this book is capable of much higher resolution and more gray levels than a 
typical office laser printer, but not as many as a computer monitor or a photographic negative.

Details in the bright and dark regions of the image in Figure 5.1a cannot be seen even on 
the monitor (and certainly not on the print). Modifying the LUT can increase the visibility in 
one region or the other, or in both dark and bright regions, provided something else is given 
up in exchange. Figure 5.1 shows several modifications to the original image produced by 
manipulating the transfer function and the LUT by creating a new relationship between stored 
and displayed brightness. Some of these modifications are useful in that they reveal additional 
detail, but the adjustments are made primarily for visual effect. A nonlinear relationship can 
expand one portion of the gray scale range while compressing another. In photographic pro-
cessing and also in analog display electronics, this can be done by varying the gamma (the 
slope of the exposure-density curve). A computer, however, can create transfer functions that 
are far more complicated, nonlinear, and arbitrary than can be achieved in the darkroom.

Reversing all of the contrast range produces the equivalent of a photographic negative, which 
sometimes improves the visibility of details. Figure 5.2 illustrates this with an example of an 
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(a)                       (b)

     
(c)                       (d)

     
(e)                       (f)
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X-ray image; these are commonly examined using negatives. Reversing only a portion of the 
brightness range produces a visually strange effect, called solarization by photographers, that 
can also be used to show detail in both shadowed and saturated areas (Figure 5.1h).

Increasing the slope of the transfer function so that it “wraps around” produces an image 
(Figure 5.1g) in which several different stored brightness values may have the same display 
brightness. If the overall organization of the image is familiar to the viewer, this contouring 
may not be too disruptive, and it can increase the visibility for small differences. However, as 
with the use of pseudo-color, this kind of treatment is easily overdone and may confuse rather 
than enhance most images.

Certainly, experimentally modifying the transfer function until the image best shows those 
features of most interest to the viewer provides an ultimately flexible tool. This is often the 
enhancement path that is chosen, because it increases the visibility of some image details but 
hides others, according to the judgment of the operator. Of course, the same can be said of 
manipulating image contrast in darkroom printing. In most cases, it is desirable to have more 
reproducible and meaningful transfer functions available which can be applied equally to a 
series of images, so that proper comparison is possible. Manual “fiddling” until the image “looks 
good” is suspect in scientific and forensic imaging because it allows conscious or unconscious 
preconceptions about what the image “should” show to control the process and results.

The most common kinds of transfer functions are curves of displayed vs. stored brightness 
following simple mathematical relationships such as logarithmic or power law curves. An 
increased gamma curve (Figure 5.1c) compresses the displayed brightnesses at the bright end 
of the scale, while expanding those at the dark end. A reduced gamma curve (Figure 5.1d) 
does the opposite.

     
(g)                       (h)

Figure 5.1 An original image with a full range of brightness values and several examples of arbitrary 
display transfer functions which expand or alter the contrast in various parts of the range. The plot 
with each image shows the stored pixel brightness values on the horizontal axis and the displayed 
brightness on the vertical axis. The histogram of each resulting image is also shown. (a) The origi-
nal image has a transfer function that is the identity function, so that actual stored brightnesses 
are displayed; (b) inverted (negative) image; (c) increasing gamma brightens middle grays, shows 
increased detail in shadows; (d) reducing gamma darkens middle grays, shows increased detail 
in bright areas; (e) increased contrast; (f) decreased contrast; (g) banded or wrap-around; (h) 
solarization.
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Figure  5.3 illustrates some of the more com-
monly used arithmetic functions that are applied 
to modify image brightness values. Any of these 
functions may be used in addition to contrast 
expansion if the image did not originally cover 
the full range from black to white, which stretches 
the original scale to the full range of the display. 
Curves or tables of values for these transfer func-
tions can be precalculated and stored, so that 
they can be loaded quickly to modify the display 
LUT. Several tables may be kept on hand for use 
when needed, just as a series of color LUTs may 
be available on disk for pseudo-color displays.

Histogram equalization

In addition to standard mathematical functions, it 
is sometimes advantageous to construct a trans-

fer function for a specific image. Unlike the arbitrary functions shown above, however, the 
goal is a specific algorithm that gives reproducible and (hopefully) optimal results. The most 
popular of these methods is histogram equalization (Stark & Fitzgerald, 1996). To understand 
it, it is helpful to begin with the image brightness histogram.

Figure 5.4 shows an example using the same original image as Figure 5.1a. The conventional 
histogram plot shows the number of pixels in the image having each of the 256 possible val-
ues of stored brightness (or, for images with a greater dynamic range, the number of pixels 
with brightness values that fit into 256 linear counting bins). Peaks in the histogram corre-
spond to the more common brightness values, which may correspond to particular structures 
that are present. Valleys indicate brightness values that are less common in the image. The 

  
(a)                       (b)

Figure 5.2 X-ray image of a human hand, viewed as a positive and a negative.
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data can also be plotted as a cumulative curve (shown in red in Figure 5.4a), which is just the 
integral or summation of the values. If this curve is used as the display transfer function, the 
result (Figure 5.4b) is a display in which all of the available 256 brightness values are equally 
used. The histogram of this processed image (Figure 5.4c) shows this uniform distribution 
(hence the name histogram equalization) and a linear cumulative plot. (Since all pixels having 
the same initial brightness value are reassigned to the same new value, the histogram is only 
approximately flat.)

Generally, images have unique brightness histograms. Even images of different areas of 
the same sample or scene have different histograms, depending on the area covered by 
each image. Changing the overall illumination or camera settings shifts the peaks in the 
histogram. In addition, many real images exhibit some variation in brightness within fea-
tures (e.g., from the edge to the center). From the standpoint of efficiently using the avail-
able brightness levels on the display, some values are under-utilized. The rationale behind 
histogram equalization is to spread out the displayed brightness levels in the peak areas, 
compressing them in the valleys so that the same number of pixels in the display show each 
of the possible brightness levels.

Histogram equalization accomplishes this redistribution by reassigning the brightness values 
of pixels based on the image histogram. Individual pixels retain their brightness order (that 
is, they remain brighter or darker than other pixels, except in cases where pixels with several 
initial values are assigned the same equalized value) but the values are shifted, so that as an 
average, an equal number of pixels have each possible brightness value. In many cases, this 
spreads out the values in regions where different regions meet, showing detail in areas with 
a high brightness gradient.

An image having a few regions in which the pixels have very similar brightness values pres-
ents a histogram with peaks. The sizes of these peaks give the relative area of the different 
phase regions and are useful for image analysis. Performing a histogram equalization on the 
image spreads the peaks out, while compressing other parts of the histogram by assigning the 
same or very close brightness values to those pixels that are few in number and have interme-
diate brightnesses. This equalization makes it possible to see minor variations within regions 
that appeared nearly uniform in the original image.

The process is simple: if the range of brightness values is the conventional 0...255, then for 
each brightness level j in the original image (and its histogram), the new assigned value k is 
calculated as

(a)

(c) (b)

Figure 5.4 Histogram 
equalization:

  (a)  histogram of the original 
image in Figure 5.1a with 
the cumulative total shown 
in red;

  (b)  application of the equal-
ization function to the 
image;

  (c)  histogram after process-
ing, showing a uniform 
distribution of values and 
a linear cumulative plot.
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where the sum counts the number of pixels in the image (by integrating the histogram) with 
brightness equal to or less than j, and T is the total number of pixels (or the total area under 
the histogram).

Figure 5.5 shows an example of an image with significant peaks and valleys in the histogram. 
The original metallographic specimen has three phase regions with dark, intermediate, and 
light gray values. Histogram equalization spreads out the values in the peaks, making the 
differences between pixels great enough to be visible. This shows the shading within the 
bright phase regions, indiscernible in the original image. Because the original image did not 
cover the full black-to-white range and contained only 8 bits of data, the resulting histogram 
(Figure 5.5d) shows numerous gaps, even though the cumulative plot shows that the general 
distribution of values has been made roughly uniform. In addition, some pixels that originally 
had different values are assigned the same value.

For a color image, it is possible to show three histograms corresponding to the three color 
axes or channels. As shown in Figure 5.6, this can be done for RGB, HSI, or L•a•b color 
coordinates. Any of these sets of histograms fails to fully characterize the image, however, 
because they do not show the combinations of values that are associated in the same pixels. 
A three-dimensional histogram in which points in the histogram have coordinates that cor-
respond to the color values showing the number of pixels with each combination of values 
is illustrated in Figure 5.7. Darker values indicate a greater number of pixels with a par-
ticular combination of channel values. The projections of the three-dimensional histogram 
onto each of the two-dimensional faces of the cube are shown. This approach is used in 
Chapter 7 in the context of selecting color combinations for thresholding and in Chapter 
10 for measuring the co-localization of intensity in different color channels (e.g., different 
fluorescent dyes).

 
(a)                 (c)

 
(b)                 (d)

Figure 5.5 Histogram 
equalization applied 
to an 8 bit gray scale 
image:

  (a) original image;

  (b)  histogram, showing 
peaks and valleys 
and incomplete utili-
zation of the bright-
ness range;

  (c)  after equalization;

  (d)  resulting histogram.
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Performing histogram equalization on the individual color channels produces unfortunate and 
often bizarre results (Figure 5.8), because the proportions of the various colors are altered in 
different regions of the image. The correct procedure is to work in HSI or L•a•b space, leav-
ing the color information unchanged and processing just the brightness or luminance values. 
As shown in Figure 5.9, this can produce substantial improvements in the visibility of details, 
particularly for images with a very large range of brightness values.

Equalization is just one example of histogram shaping. Other predetermined shapes, 
including ones that try to equalize the values in terms of human brightness perception, are 

 

Figure 5.6 Histograms of channels in a color 
image:

  (a) the image;

  (b) Red, green, and blue;

  (c)  Hue, Saturation, and Intensity;

  (d)  L, a and b. Note that the Intensity channel 
in (c) and the L channel in (d) are not the 
same, because of different color weighting.

          (a)

      

(b)              (c)              (d)

Figure 5.7 Three-way histograms of the same data shown in Figure 5.6.
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also used (Frei, 1977). Figure 5.10 compares several different functions, all of which are 
most easily understood by the shape of the cumulative histogram. Figure 5.11 shows the 
result of center-emphasis equalization applied to the intensity channel of the image from 
Figure 5.9. It is also possible to reassign brightness values in an image to shape the histo-
gram to match that from another image, but this is useful in only a few circumstances, such 
as matching two photographs of the same scene taken at different times or under different 
lighting conditions.

In most cases, the reassignment of some pixel brightness values opens up gaps in the his-
togram and combines some values so that pixels initially different in brightness are given 
the same value. One of the reasons for using higher bit depth images is that their brightness 
values can be manipulated without creating gaps in a 256-value histogram or creating visible 
contouring or posterization of the resulting image.

  
(a)                       (b)

Figure 5.8 Histogram equalization applied to the individual R, G, B channels (a) in the image shown 
in Figure 5.6a, compared to the result of applying it to the intensity only and leaving the color infor-
mation unchanged (b).

  

Figure 5.9 Histogram equaliza-
tion applied to the brightness 
channel of a color image:

  (a)  original (from Reinhard et 
al, 2002);

  (b) processed result.

         (a)              (b)
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Local equalization
Any of these histogram manipulation procedures, whether simple linear stretching, applica-
tion of a predetermined mathematical transfer function, or histogram shaping, need not be 
performed on an entire image. Enhancing a portion of the original image, rather than the 
entire area, is also useful in many situations. This is particularly true when large regions of 

(a) (b)

(d) (e)

(c)

Figure 5.10 Histogram modification (each representation of the image is shown with its histogram, and 
the cumulative histogram in red): (a) original; (b) linear equalization; (c) exponential function (bright 
emphasis); (d) power-law function (ends emphasis); (e) error-curve function (center emphasis).
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the image correspond to different types of structures 
or scenes and are generally brighter or darker than the 
rest of the image. When portions of an image can be 
selected, either manually or by some algorithm based 
on the variation in the brightness or contents, a selective 
equalization can be used to bring out local detail.

Figure 5.12 shows regions of the image from Figure 5.1a, 
with several regions separately selected and modified. 
Two of these regions are arbitrary rectangular and ellip-
tical shapes, drawn by hand. The other areas follow the 
outlines of the structure itself, either particles or holes, 
which can be isolated from the rest of the image because 
locally the boundary is sharply defined. Methods for 
locating boundary edges are discussed later in this chap-
ter. Each of the regions is processed based solely on the 
histogram of the pixels within it, producing greater local 
contrast and increased detail visibility.

Histogram modification of selected regions within an 
image can dramatically improve the local visibility of 
details, but alters the relationship between brightness 
and structure. In most cases, it is desirable for the bright-

ness level of pixels associated with a particular type of feature in the image to be the same, 
wherever in the field of view it may occur. This allows rapid classification of the features for 
counting or measurement, whether it is done by a human or by the computer. Local modifica-
tion of the gray scale relationship voids this assumption, making the display brightness of fea-
tures dependent on other features that happen to 
be nearby or within the selected region.

A better approach performs the adjustment in a 
region around each pixel in the image, with the 
result applied separately to each individual pixel 
based on its surrounding neighborhood. This 
is normally done by specifying a neighborhood 
size (preferably round but often square because 
the implementation is simpler). All of the pixels 
in that region are counted into a histogram, but 
after the adjustment procedure the new value is 
applied only to the central pixel. This process is 
then repeated for each pixel in the image, always 
using the original brightness values to construct 
each region histogram.

Figure  5.13 shows an example in which local 
histogram equalization has been applied to every 
pixel in the image. A round neighborhood with 
a radius of 6 pixels is centered on each pixel 
in the image and the histogram of the 137 pix-
els within the neighborhood is used to perform 
the equalization. However, the new pixel value 
is kept only for the central pixel, which is then 

Figure 5.11 Center-emphasis histo-
gram equalization applied to the 
same image as Figure 5.9a, with 
the resulting brightness histogram.

Figure 5.12 Selective contrast enhancement by 
histogram modification performed in desig-
nated regions of an image. In this example, 
several regions have been selected (outlined 
in red) in the image from Figure 5.1a and 
histogram equalization performed within 
each one separately.
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used to form a new image. The actual calculation is simple, since for each pixel the equalized 
brightness value is just the number of darker pixels in the neighborhood. Since the neighbor-
hood contains 137 pixels, the procedure produces an image in which the maximum number 
of distinct brightness values is 137, spread linearly over the full brightness range, instead of 
the original 256, but this is still more than can be visually distinguished in the display. Even 
for a small neighborhood (for instance, a 5 pixel wide circle containing 21 pixels), the number 
of gray values is often enough for visual examination.

As is evident in the example, the process of local equalization makes pixels that are slightly 
— even imperceptibly — brighter than their surroundings brighter still, and vice versa. This 
enhances contrast near points and edges, revealing details in both light and dark regions. In 
nearly uniform regions, this can produce artificial contrast variations that magnify the vis-
ibility of noise artifacts in the image. In general, it is important to remove or reduce noise, as 
covered in Chapter 4, before performing enhancement operations.

The example image also shows that the result of local equalization is to reduce the overall or 
large-scale contrast in the image. The bright particle surfaces and dark holes are all reduced 
to an average gray, which hides much of the overall shape of the structure. Sometimes 
this reduction is not desirable and can be offset by adding back a percentage of the origi-
nal image to the processed result, as shown in Figure 5.13b. In other cases, as shown in 
Figure 5.14, the elimination of large-scale changes in brightness is desirable. Alternatively, 
the local equalization result can be blended with the global histogram equalization result 
(Woon & Song, 2007).

For comparison, Figure 5.14 also shows the result of background leveling to remove the large 
scale contrast in the image. A gray scale opening (erosion in which each pixel is replaced 
by its brightest neighbor, followed by dilation in which each pixel is replaced by the darkest 
neighbor, as described in Chapter 4) is used to remove the fingerprint markings. Both rank 
operations use a circular neighborhood with a radius of 7 pixels. This background is then 

  
(a)                     (b)

Figure 5.13 Local equalization applied to the same image as in Figure 5.1a. The local detail is enhanced 
while large-scale contrast is suppressed. (a) Local equalization result; (b) combining one-third of the 
local equalized result with two-thirds of the original image.
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divided into the original image to produce the result. Generally, this method produces a result 
that is visually harsher than the local equalization method.

Changing the size of the neighborhood used in local processing offers some control over the 
process, as shown in the figure. As long as the neighborhood is large enough to encompass 
the scale of the texture present, and small enough to suppress the long-range variations in 
brightness, the results are usually satisfactory (Wu et al., 2005). Other modifications that are 
more effective (and generally combined under the term “adaptive” processing) are to weight 
the pixels according to how close they are to the center of the neighborhood, or according to 
how similar they are in brightness to the central pixel, or to include in the neighborhood only 
pixels “similar” to the central one.

Another local equalization technique that enhances the visibility of detail is variance equal-
ization (Laine & Huda, 2000). This also uses a moving neighborhood in which a calcula-
tion is performed that modifies only the central pixel. The statistical variance of the pixels 
in the region is calculated and compared to that for the entire image, and the pixel values 
are adjusted up or down to match the local variance to the global. The result is again to 
increase the contrast in uniform areas, as shown in Figure 5.15. The surface indentations 

  
(a)              (b)              (c)

Figure 5.14 The effect of neighborhood size on local 
equalization:

  (a)  the original image shows a fingerprint on a magazine 
cover, which is difficult to visually distinguish on the 
dark and light printed regions;

  (b)  a neighborhood with radius 2 contains 21 pixels;

  (c)  a radius of 7 pixels contains 177 pixels. Both results 
suppress the contrast from the background and make 
the friction ridge markings in the fingerprint evident. 
For comparisonm the result obtained using gray scale 
erosion and dilation is shown:

  (d) removal of the ridge markings with an opening;

  (e) division of (a) by (d).

(d)

(e)
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and scratches on the coin are much more visible after processing. The surface enhance-
ment of the surface markings is even more readily seen when the surface geometry is 
reconstructed with the enhanced contrast applied to the rendered surface, as shown in 
Figure 15.18 in Chapter 15.

When it is used with color images, local equalization is properly applied only to the intensity 
data. The image is converted from its original RGB format in which it is stored internally to 
an HSI or L•a•b space; the intensity values are modified and then combined with the original 
hue and saturation values so that new RGB values can be calculated to permit display of the 
result (Buzuloiu et al., 2001).

Laplacian

Local equalization of image contrast produces an increase in local contrast at boundaries, 
as shown in Figure 5.16b. This has the effect of making edges easier for the viewer to see, 

   

Figure 5.15 Local enhancement applied to a 
surface image:

  (a) original (raised letter on a coin);

  (b) local equalization applied;

  (c) local variance equalization applied.

           (a)

   
(b)                      (c)
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consequently making the boundaries appear sharper (although in the example the increased 
noise within the nearly uniform regions offsets this improvement). There are several other 
approaches to edge enhancement that are less sensitive to overall brightness levels, noise, and 
the type or scale of detail present than the equalization discussed above.

The first set of operations uses neighborhoods with multiplicative kernels similar to those 
used in Chapter 4 for noise smoothing. In the section on smoothing, convolution kernels are 
written as an array of integers. For example,

  

Figure 5.16 Enhancement of fine detail:

  (a) original image (dendritic cell);

  (b)  local equalization reveals fine structure 
but increases noise in nearly uniform 
regions;

  (c)  Laplacian increases contrast along edges 
with less noise amplification.

           (a)

  

(b)                      (c)
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This 3 × 3 kernel is understood to mean that the central pixel brightness value is multiplied 
by four, the values of the four touching neighbors to the sides and above and below are mul-
tiplied by 2, and the 4 diagonally touching neighbors by 1. The total value is added up and 
then divided by 16 (the sum of the nine weights) to produce a new brightness value for the 
pixel. Other arrays of weights are also used, some involving much larger arrays than this 
simple 3 × 3. For smoothing, all of the kernels are symmetrical about the center (at least, they 
approximate symmetry within the constraints of a square pixel grid and integer values), and 
most have only positive weight values.

A very simple kernel that is still roughly symmetrical, but does not have exclusively positive 
values, is the classic 3 × 3 Laplacian operator
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This subtracts the brightness values of each of the eight neighboring pixels from eight times 
the central pixel. Consequently, in a region of the image that is uniform in brightness or has a 
uniform gradient of brightness, the result of applying this kernel is to reduce the value to zero. 
When a variation is present within the neighborhood in the form of a point, line, or edge, the 
result of the Laplacian is a non-zero value. It may be either positive or negative, depending on 
where the central point lies with respect to edge, etc.

In order to display the result when both positive and negative pixel values can arise, it is com-
mon to add a medium gray value (128 for the case of an image in which gray values are rep-
resented with a range from 0 to 255) so that the zero points are middle gray and the brighter 
and darker values produced by the Laplacian can be seen, as illustrated in Figure 5.16c. Some 
programs instead plot the absolute value of the result, but this tends to produce double lines 
along edges that are confusing both to the viewer and to subsequent processing and measure-
ment operations.

As the name of the Laplacian operator implies, it is an approximation to the second order dif-
ferential operator of brightness B in directions x and y:

	 ∇ ≡ ∂
∂

+ ∂
∂

2
2

2

2

2
B B

x
B
y

 (5.2)

which is invariant to rotation, and hence insensitive to the direction in which the discontinuity 
runs. This highlights the points, lines, and edges in the image and suppresses uniform and 
smoothly varying regions, with the result shown in Figure 5.17. By itself, this Laplacian image 
loses information about the overall shape of the subject. Adding the Laplacian enhancement 
of the edges to the original image restores the overall gray scale variation which the human 
viewer can comfortably interpret. It also sharpens the image by locally increasing the contrast 
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at discontinuities, as shown in the figure. This can be done by changing the weights in the 
kernel (and eliminating the offset of 128), so that it becomes
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This kernel is often described as a sharpening operator, because of the increased image 
contrast that it produces at edges. Justification for the procedure can be found in two dif-
ferent explanations. First, consider blur in an image to be modeled by a diffusion process 
in which brightness spreads out across the image, which obeys the partial differential 
equation

	 ∂
∂

= ⋅ ∇f
t

k f2  (5.3)

where the blur function is f(x,y,t) and t is time. If this is expanded into a Taylor series around 
time, the unblurred image can be expressed as

	 B x y f x t f
t

f
t

( , ) ( ,, ) ...= − ∂
∂

+ ∂
∂

−τ τ τ2 2

22
 (5.4)

If the higher-order terms are ignored, this is just

 B = f – k · τ∇2f (5.5)

In other words, the image B can be restored by combining the Laplacian (times a constant) 
with the blurred image. While the modeling of image blur as a diffusion process is at best 
approximate and the scaling constant is unknown or arbitrary, this at least gives some plau-
sibility to the approach.

Equally, if not more important, is the simple fact that the processed image “looks good.” 
As Chapter 2 points out, the human visual system itself concentrates on edges and ignores 
uniform regions (Marr & Hildreth, 1980; Marr, 1982; Hildreth, 1983). Inhibition is a process 

(b) (c)(a)

Figure 5.17 Enhancement of contrast at edges, lines, and points using a Laplacian: (a) original SEM 
image of ceramic fracture; (b) application of Laplacian operator; (c) addition of the Laplacian to 
the original image.
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that takes place within the eye itself. Connections between the neurons within the retina 
suppress the output from one region according to its neighbors. This capability is hard-wired 
into our retinas. Connected directly to the sensors of the retina are two layers of processing 
neurons that perform an operation very similar to the Laplacian. The horizontal cells in the 
second layer average together the signals from several neighboring sensors in the first layer, 
and the amacrine and bipolar cells combine that signal with the original sensor output. This 
local inhibition helps to extract boundaries and edges. It also accounts for some of the visual 
illusions shown in Chapter 2. Inhibition is useful for edge detection, but also affects visual 
comparisons of size and orientation.

To demonstrate the effect of the simple 3 × 3 sharpening kernel illustrated above, Figure 5.18 
shows an image fragment (enlarged to show individual pixels) and the actual pixel values 
(shown as integers in the usual 0...255 range) before and after the filter is applied. The effect 
of the filter is to make the pixels on the dark side of an edge darker still, and those on the 
bright side brighter still, thus increasing the edge contrast.

A modification of this technique can be used to restrict the edge enhancement to just the 
brighter or darker side, which may improve the visual appearance of the result, as shown in 
Figure 5.19, depending on whether the local region is dark or light, respectively. The com-
parison is shown for both light and dark skinned models. In most cases light detail looks 
best on a dark background and vice versa. This same selective addition may be used with the 
unsharp mask and difference of Gaussians filters shown below.

Also notice in this example that the filter is applied only to the intensity channel of the image, 
leaving color information unchanged. As for all image processing operations, this is important 
because operating on the original red, green, and blue channels (as recommended in some 
texts, such as Wu et al., 2008) produces variations in the proportions of the values that alter 
the colors and seriously degrade the appearance of the processed image. Figure 5.20 illus-
trates this difference.

Another way to describe the operation of the Laplacian is as a high-pass filter. In Chapter 6, 
image processing in the Fourier domain is discussed in terms of the high- and low-frequency 
components of the image brightness. A low-pass filter, such as the smoothing kernels in 
Chapter 4, removes or suppresses the high-frequency variability associated with random 
noise, which can cause nearby pixels to vary in brightness. Conversely, a high-pass filter 
allows these high frequencies to remain (pass through the filter), while removing the low fre-
quencies corresponding to the gradual overall variation in brightness.

As with smoothing kernels, there are many different sets of integers and different size kernels 
that can be used to apply a Laplacian to an image. The smallest just uses the four immediately 
touching pixels that share a side with the central pixel
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One problem with small kernels is that the differences are strictly local, comparing the central 
pixel to its immediate neighbors. The most common type of noise consists of random varia-
tions between adjacent pixels, even within visually uniform regions of an image, and so it is 
made more visible by this approach.
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A somewhat more general method for enhancing the visibility of details and edges is the 
unsharp mask. The name “unsharp mask” may seem odd for a technique that makes images 
appear visually sharper. It comes from the origins of the method, which has traditionally been 
applied in the photographic darkroom. Figure 1.30 in Chapter 1 illustrates the steps. First, a 
contact print is made from the original negative onto film, at 1:1 magnification but slightly out 
of focus or blurred. After the film is developed, a new print is made with the two negatives 

  
(a)                    (b)

original values
119 124 145 131  91  86  84  79

118 126 145 134  92  89  86  86

124 132 145 134 100  96  93  87

126 134 139 133 107 106 106 106

134 139 134 113 106 113 114 108

139 139 115 102 109 110 112 109

142 145 113 101 100 104 109 106

141 145 102  95  92  92 102 101

after sharpening
125  84 249 226  6  75  83  56

106  85 239 228  2  80  73  96

125 127 232 214  23  83  74  41

 96 129 190 231  60 123 136 165

136 194 200  82  66 145 154 122

139 192  55  36 126 129 142 111

152 255  77  74  95 112 140 111

192 255  49  70  71  61 122 101

(c)

Figure 5.18 Operation of the 3 × 3 sharpening filter: (a) fragment of an original image (an epoxy 
containing bubbles); (b) after application of the filter the edges are delineated by bright and dark 
borders; (c) pixel values from the region outlined in red. On the dark side of the edge, pixel values are 
reduced, and on the bright side, they are increased.
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aligned and sandwiched together. The light areas on the original negative are covered by 
dark areas on the printed film (the unsharp mask), allowing little light to come through. Only 
regions where the slightly out of focus mask does not match the original are printed. This is 
somewhat similar to the Laplacian, which subtracts a smoothed (out of focus) image from the 
original to suppress gradual changes and pass high frequencies or edges, but it allows the 
blurring to extend smoothly over a greater (and adjustable) distance.

  

Figure 5.19 Allowing only dark or light edge 
enhancement:

  (a) original image of light skinned model; 

  (b) image fragment;

  (c) dark border only;

  (d) light border only;

  (e) both light and dark borders;

                (Continued)

            (a)

    

(b)                  (c)

    

(d)                  (e)
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Computer implementation of the unsharp mask typically applies a Gaussian blur to one copy 
of the image, which is then subtracted from the original. Just as for the Laplacian, the result 
usually is added back to the original to provide emphasis to the edges and detail while retain-
ing some of the overall image contrast. Figure 5.21 shows how the process increases the 
local contrast around lines and edges. Applying the unsharp mask operator increases the 
visibility of fine detail while suppressing overall variations in brightness. Figure 5.22 shows 

  

Figure 5.19 (Continued) 

  (f) original image of dark skinned model;

  (g) original image;

  (h) dark border only;

  (i) light border only;

  (j) both light and dark borders.

            (f)

    

(g)                    (h)

    

(i)                    (j)
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an example using the same X-ray image from Figure 5.2. In the original image the bones in 
the fingers are thinner and hence not as dense as those in the wrist, and the written label is 
hardly noticeable. The processed image makes these more readily visible.

Closely related to unsharp masking, the most general form of this technique is the subtraction 
of one smoothed version of the image from another having a different degree of smoothing. 
This is called the Difference of Gaussians (DoG) method and is believed (Marr, 1982) to be 
similar to the way the human visual system locates boundaries and other features. The DoG is 
practically identical in shape to another function that is also used, the Laplacian of a Gaussian, 
or LoG (also known as a Marr–Hildreth operator).

The DoG technique is superior to the unsharp mask in its ability to suppress random pixel 
noise variations in the image. Smoothing the image using a Gaussian kernel with an appropri-
ate but small standard deviation suppresses high-frequency noise, while the second Gaussian 

  

Figure 5.20 Sharpening a color image

  (a)  original image (enlarged fragment of a 
microscope image of stained tissue from 
Figure 4.5a);

  (b)  processing the intensity channel but not 
hue or saturation increases noise vis-
ibility as well as edge sharpness;

  (c)  processing the individual RGB channels 
introduces new, random colors for indi-
vidual pixels.

           (a)

  

(b)                      (c)
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smooth (with a larger standard deviation, usually 3 to 6 times greater than first one) removes 
both the noise and important edges, lines, and detail. The difference between the two images 
then keeps only those structures (lines, points, etc.) that are in the intermediate size range 
between the two operators. Rather than being a high pass filter like the Laplacian and unsharp 
mask, the DoG is more properly described as a band pass filter that allows a selected range of 
frequencies or spacings to be kept.

  
(a)                      (b)

  
(c)                      (d)

Figure 5.21 Operation of an unsharp mask, with line profiles of brightness: (a) original image; (b) 
Gaussian smoothed; (c) subtracting smoothed copy (b) from original (a); (d) adding difference (c) 
to original (a).

  

Figure 5.22 Application of an 
unsharp mask to an X-ray 
image of a human hand:

  (a) original;

  (b) processed.

       (a)              (b)
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A plot of two Gaussian curves with different standard deviations and their difference is 
shown in Figure 5.23; the difference is similar to a cross-section of the Laplacian when the 
standard deviations are small and to the unsharp mask when the smaller one is negligible. 
Because of the shape of these kernels when they are plotted as isometric views, they are 
sometimes called a Mexican hat or sombrero filter; this name is usually reserved for kernels 
with more than one positive-weighted pixel at the center. Figure 5.24 compares the results 
of a simple 3 × 3 Laplacian-based sharpening filter, an unsharp mask, and a DoG filter on 
a noisy image.

Historically, kernels used for convolution have been relatively small, consisting of integer 
weights to make the arithmetic as fast as possible. Constructing such a kernel so that the nega-
tive values have the same total as the positive ones (to avoid shifting the overall brightness), 
are reasonably isotopic (so that feature and edge orientations are equally enhanced regard-
less of their directionality), and conform to the shape of Gaussian curves or to the difference 
of Gaussians is at best an art form. Previous editions of this book included a few examples. 
Fortunately, with the advent of faster computers with floating point arithmetic capacity, this is 
not an issue. The appropriate filters can be constructed as needed interactively while observ-
ing the resulting enhancement of the image. The same option shown above of applying the 
effect selectively to the bright or dark sides of a step may be added. The operation of the filter 
on the intensity or brightness channel only in a hue-saturation-intensity or L•a•b space, rather 
than RGB, is assumed.

Derivatives

The Laplacian, unsharp mask, and DoG filters are good for general purpose visual enhance-
ment, but not the best tool to use in all cases. One situation that arises involves images 
in which the detail has a single, known orientation. Examples include chromatography 
preparations in which proteins are spread along lanes in an electrical field (Figure 5.25) 
or tree ring patterns from drill cores (Figure 5.26). Applying a first derivative to such an 

Figure 5.23 The Difference of Gaussian (“DoG”) 
operator:

  (a)  two Gaussian curves with different standard devia-
tions, with their difference;

  (b)  difference between two Gaussian kernels, plotted as 
an isometric view. The “moat” of values around the 
central peak contains negative values.
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image, in the direction of important variation, enhances the visibility of small steps and 
other details, as shown in the figures. Of course, for an image with digitized finite pix-
els, a continuous derivative cannot be performed. Instead, the difference value between 
adjacent pixels is calculated as a finite derivative. This difference is somewhat noisy, but 
averaging in the direction perpendicular to the derivative can smooth the result, as shown 
in the examples.

 
(a)                      (b)

 
(c)                      (d)

Figure 5.24 Difference of Gaussians applied to a test image: (a) original image (same as Chapter 4, 
Figure 4.9a); (b) 3 × 3 sharpening filter; (c) unsharp mask with σ = 6.0 pixels; (d) difference of 
Gaussians using σ1 = 6.0 and σ2 = 1.0 pixels.
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Figure 5.25 Image of a protein separation 
gel:

  (a) original;

  (b)  horizontal derivative using a a 1 pixel 
high kernel;

  (c)  horizontal derivative using a 5 pixel 
high kernel for noise reduction.

  
                                 (a)

 
(b)                 (c)

(a)

(b)

Figure 5.26 Image of tree rings in a 
drill core:

  (a) original;

  (b)  horizontal derivative using a 
3 × 3 kernel.
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Typical kernels used for a horizontal directional first derivative are:

 

+ − 

+ −
+ −
+ −

















+ −
+ −

1 1
1 0 1
2 2
1 0 1

1 0 1
2 0

0 0
22

4 4
2 0 2
1 0 1

0+ −
+ −
+ −























As in the preceding chapter, the location of the pixel whose value is calculated is shown in 
color. The difference between these three kernels is the amount of averaging that is per-
formed in the vertical direction. In all of them, the original central pixel’s value does not enter 
into the calculation at all. Instead, the differences are formed between neighbors to the left 
and right. Obviously, the patterns can be rotated to other directions, such as
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and so on. An offset of 128 (medium gray) is added to the results so that both positive and 
negative results can be seen.

Other kernel values can be devised, and by using real numbers rather than integers it is possible 
to calculate a derivative in any intermediate direction. The appearance of the derivative images 
is often described as producing an “embossed” effect. Since these are fundamentally one-dimen-
sional derivatives, it is possible to use the coefficients of Savitsky and Golay (1964), which were 
originally published for use with such one-dimensional data as spectrograms or other strip-
chart recorder output. These coefficients, like the smoothing weights shown in Chapter 4, are 
equivalent to least-squares fitting a high-order polynomial to the data. In this case, however, 
the first derivative of the polynomial is evaluated at the central point. Both second degree (qua-
dratic) and fourth degree (quartic) polynomials are shown in Tables 5.1 and 5.2.

Adjusting the orientation of the derivative to be perpendicular to the predominant structure in 
an image can produce useful results, as shown in Figure 5.27. However, note that while this so-
called “embossing” effect enhances the visibility of the cloud patterns and a portion of the rings 
in this picture of Saturn, it effectively hides details oriented parallel to the derivative direction, 
whereas the Laplacian-based sharpening highlights the details regardless of orientation.

The ability to suppress detail that has a particular orientation is a useful attribute that can 
sometimes be exploited to reveal or enhance other information in an image. Figures 5.28 and 
5.29 illustrate the possibilities.

Finding edges with gradients

As illustrated above, the Laplacian, which is a second derivative, is not an ideal tool for demar-
cating edges (Berzins, 1984; Heath et al., 1997). In most cases, boundaries or edges of features 



297Image Enhancement in the Spatial Domain
© 2011 by Taylor & Francis Group, LLC

or regions appear at least locally as a step in brightness, sometimes spread over several pixels. 
The Laplacian gives a larger response to a line than to a step, and to a point than to a line. 
In an image that contains noise, which is typically present as points varying in brightness 
due to counting statistics, detector characteristics, etc., the Laplacian shows such points more 
strongly than the edges or boundaries that are of interest.

Directional first derivatives only highlight edges in a direction perpendicular to their ori-
entation and can reduce their sensitivity to noise by averaging along the edge. But using 
directional derivatives to extract one-dimensional data from two-dimensional images is a rela-
tively specialized operation that does not address the needs of most real pictures.

Extending the same principles used in the directional derivative to locating boundaries with 
arbitrary orientations in two-dimensional images is one of the most common of all image 
enhancement operations. The problem, of course, is finding a method that is insensitive to 
the (local) orientation of the edge. One of the earliest approaches to this task was the Roberts’ 
Cross operator (Roberts, 1965). It uses the same difference technique shown above for the 
one-dimensional case, but with two pixel differences at right angles to each other, using the 
kernels shown:

Table 5 .1.Coefficients for First Derivative Quadratic Fit

# 5 7 9 11 13 15 17 19 21 23 25

–12 –.0092

–11 –.0109 –.0085

–10 –.0130 –.0099 –.0077

–9 –.0158 –.0117 –.0089 –.0069

–8 –.0196 –.0140 –.0104 –.0079 –.0062

–7 –.0250 –.0172 –.0123 –.0091 –.0069 –.0054

–6 –.0330 –.0214 –.0147 –.0105 –.0078 –.0059 –.0046

–5 –.0455 –.0275 –.0179 –.0123 –.0088 –.0065 –.0049 –.0038

–4 –.0667 –.0364 –.0220 –.0143 –.0098 –.0070 –.0052 –.0040 –.0031

–3 –.1071 –.0500 –.0273 –.0165 –.0107 –.0074 –.0053 –.0039 –.0030 –.0023

–2 –.2000 –.0714 –.0333 –.0182 –.0110 –.0071 –.0049 –.0035 –.0026 –.0020 –.0015

–1 –.1000 –.0357 –.0250 –.0091 –.0055 –.0036 –.0025 –.0018 –.0013 –.0010 –.0008

0 0 0 0 0 0 0 0 0 0 0 0

+1 +.1000 +.0357 +.0250 +.0091 +.0055 +.0036 +.0025 +.0018 +.0013 +.0010 +.0008

+2 +.2000 +.0714 +.0333 +.0182 +.0110 +.0071 +.0049 +.0035 +.0026 +.0020 +.0015

+3 +.1071 +.0500 +.0273 +.0165 +.0107 +.0074 +.0053 +.0039 +.0030 +.0023

+4 +.0667 +.0364 +.0220 +.0143 +.0098 +.0070 +.0052 +.0040 +.0031

+5 +.0455 +.0275 +.0179 +.0123 +.0088 +.0065 +.0049 +.0038

+6 +.0330 +.0214 +.0147 +.0105 +.0078 +.0059 +.0046

+7 +.0250 +.0172 +.0123 +.0091 +.0069 +.0054

+8 +.0196 +.0140 +.0104 +.0079 +.0062

+9 +.0158 +.0117 +.0089 +.0069

+10 +.0130 +.0099 +.0077

+11 +.0109 +.0085

+12 +.0092
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These two differences represent a finite approximation to the derivative of brightness. The two 
directional derivatives can be combined to obtain a magnitude value that is insensitive to the ori-
entation of the edge by squaring, adding, and taking the square root of the total. This method has 
many of the same problems as the difference method used in one direction. Noise in the image 
is magnified by the single-pixel differences. Also, because the kernel is asymmetric, the result is 
shifted by half a pixel in both the x and y directions. As a practical matter, the computers in com-
mon use when this model was first proposed were not very fast, especially for floating point math 
operations such as finding a square root. Two alternatives were used: adding the absolute values 
of the two directional differences or comparing the two absolute values of the differences and 
keeping the larger one. Both of these methods make the result somewhat sensitive to direction.

Just as for the example of the horizontal derivative above, the use of a larger kernel offers 
reduced sensitivity to noise by averaging several pixels and eliminates the image shift. Three-
by-three derivative kernels are widely used. Some common examples of the coefficients are 
shown in Table 5.3.

Table 5 .2.Coefficients for First Derivative Quartic Fit

# 5 7 9 11 13 15 17 19 21 23 25

–12 +.0174

–11 +.0200 +.0048

–10 +.0231 +.0041 –.0048

–9 +.0271 +.0028 –.0077 –.0118

–8 +.0322 –.0003 –.0119 –.0159 –.0165

–7 +.0387 –.0042 –.0182 –.0215 –.0209 –.0190

–6 +.0472 –.0123 –.0276 –.0292 –.0267 –.0231 –.0197

–5 +.0583 –.0275 –.0423 –.0400 –.0340 –.0280 –.0230 –.0189

–4 +.0724 –.0571 –.0657 –.0549 –.0431 –.0335 –.0262 –.0208 –.0166

–3 +.0873 –.1195 –.1033 –.0748 –.0534 –.0388 –.0320 –.0219 –.0170 –.0134

–2 +.0833 –.2659 –.1625 –.0977 –.0620 –.0414 –.0289 –.0210 –.0157 –.0120 –.0094

–1 –.6667 –.2302 –.1061 –.0575 –.0346 –.0225 –.0154 –.0110 –.0081 –.0062 –.0048

0 0 0 0 0 0 0 0 0 0 0 0

+1 +.6667 +.2302 +.1061 +.0575 +.0346 +.0225 +.0154 +.0110 +.0081 +.0062 +.0048

+2 –.0833 +.2659 +.1625 +.0977 +.0620 +.0414 +.0289 +.0210 +.0157 +.0120 +.0094

+3 –.0873 +.1195 +.1033 +.0748 +.0534 +.0388 +.0320 +.0219 +.0170 +.0134

+4 –.0724 +.0571 +.0657 +.0549 +.0431 +.0335 +.0262 +.0208 +.0166

+5 –.0583 +.0275 +.0423 +.0400 +.0340 +.0280 +.0230 +.0189

+6 –.0472 +.0123 +.0276 +.0292 +.0267 +.0231 +.0197

+7 –.0387 +.0042 +.0182 +.0215 +.0209 +.0190

+8 –.0322 +.0003 +.0119 +.0159 +.0165

+9 –.0271 –.0028 +.0077 +.0118

+10 –.0231 –.0041 +.0048

+11 –.0200 –.0048

+12 –.0174
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(a) (b)

(c) (d)

Figure 5.27 Comparison of a directional derivative with the Laplacian operator: (a) original; (b) deriv-
ative from the upper left applied; (c) non-directional Laplacian kernel applied; (d) adding (c) and 
(a).

(a) (b)

Figure 5.28 Applying a horizontal derivative to this image of handwriting (a) hides the ruled lines on 
the paper (b).
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It makes little difference which of these patterns of values is used, as long as the magnitude 
of the result does not exceed the storage capacity of the software being used. If this is limited 
to a single byte per pixel, the results must lie between –127 and +128, since the result of the 
above operation may be either negative or positive. Large steps in brightness can result in 
the clipping of the calculated values, so that major boundaries are broadened or distorted in 
order to see smaller ones. The alternative is to employ automatic scaling, using the maximum 
and minimum values in the derivative image to set the white and dark values. To avoid loss 
of precision, this requires two passes through the image: one to perform the calculations and 
find the extreme values and the second to scale the results for storage.

  
(a)                      (b)

Figure 5.29 Applying a derivative parallel to the rolling direction on this image of aluminum foil sup-
presses the rolling marks and makes the grain structure of the metal more accessible.

Table 5 .3.Several Examples of Directional Derivative Filter Weights
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and so forth for eight rotations...
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As for the Roberts’ Cross method, if the derivatives in two orthogonal directions are com-
puted, they can be combined as the square root of the sums of their squares to obtain a result 
independent of orientation. This is just the normal method for combining two vectors, one in 
the horizontal and one in the vertical direction, to get the length of the vector that represents 
the local gradient of the brightness change.

	 M agnitude= ∂
∂







 + ∂

∂










B
x

B
y

2 2

 (5.6)

This is the Sobel (1970) method. It is one of the most commonly used techniques. (As for the 
Roberts’ Cross, some early computer programs attempted to compensate for hardware limi-
tations by adding or comparing the two values, instead of squaring, adding, and taking the 
square root.) Figure 5.30 shows the directional derivatives and their combination.

With appropriate hardware, such as a shift register or array processor, the Sobel operation can 
be performed in essentially real time. This usually is understood to mean 1/30th or 1/60th of a 
second per image, so that conventional video images can be processed and viewed. Some pro-
cessing operations require viewing one frame while the following one is digitized and processed, 
but in the case of the Sobel, it is possible to view the image live, delayed only by two video scan 
lines. Two lines of data can be buffered and used to calculate the horizontal and vertical deriva-
tive values using the 3 × 3 kernels shown above. Specialized hardware to perform this real-time 
edge enhancement is used in some military applications, making it possible to locate edges in 
images for tracking, alignment of hardware in midair refueling, and other purposes.

The Kirsch operator (Kirsch, 1971) avoids the mathematical operations needed to calculate 
the square root of the sum of squares needed by the Sobel. This method applies each of the 
eight orientations of a derivative kernel and keeps the maximum value. It requires only inte-
ger multiplication and comparisons. For many images, the results for the magnitude of edges 
are very similar to the Sobel.

Figure 5.31 compares the Laplacian, Roberts’ Cross, and Kirsch operators. The example image 
contains many continuous edges running in all directions around the holes in the carbon film, 
as well as some straight edges at various orientations along the asbestos fibers. The Laplacian 
image is quite noisy, and the Roberts’ Cross does not show all of the edges equally well. The 
result from the Kirsch operator is visually similar to the Sobel for this image.

Gradient operators like the Sobel are not perfectly isotropic because of the effects of the 
square pixel grid and limited number of points sampled, and because only the local pixel val-
ues are used can be sensitive to noise. With a larger kernel of values, weights can be assigned 
to better correspond to how far away the pixels are from the center. With a 5 or 7 pixel wide 
neighborhood, a more smoothly varying and isotropically uniform result can be obtained, and 
the effect of random noise in the image is minimized, although the line breadth increases, as 
shown in Figure 5.32.

In addition to the magnitude of the Sobel operator, it is also possible to calculate a direction 
value (Lineberry, 1982) for the gradient vector at each pixel as

	 Direction = ArcTan ∂ ∂
∂ ∂









B y
B x
/
/

 (5.7)

Figure  5.33 shows the vector results from applying the Sobel operator to the image of 
Figure 5.31. The magnitude and direction are encoded, but the vector field is too sparse to 
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(a)                      (b)

  
(c)                      (d)

  
(e)                      (f)

  
(g)                      (h)

Figure 5.30 Directional derivatives and the Sobel edge operator: (a) original image; (b) horizontal deriva-
tive (“embossed” image); (c) absolute value of the horizontal derivative; (d) vertical derivative (“embossed” 
image); (e) absolute value of the vertical derivative; (f) combining the absolute values of the derivative by 
keeping whichever is greater; (g) combining the absolute values of the derivatives by adding; (h) combin-
ing the derivatives by squaring, adding, and taking the square root (Sobel operator).
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show any image details. If the calculation is used to assign a value to each pixel for the gradi-
ent direction, the values can be scaled to the gray scale of the image. If typical pixel values 
from 0 to 255 are used to represent angles from 0 to 359 degrees, each step in gray scale cor-
responds to about 1.4 degrees in vector orientation.

The progression of values around each more or less circular hole in Figure 5.33c is evident. 
The use of a pseudo-color scale for this display is particularly suitable, since a rainbow of 
hues can show the progression without the discontinuity at zero degrees required by the 

   
(a)               (b)               (c)

             

(d)               (e)               (f)

Figure 5.31 Comparison of edge-delineation operators: (a) original image (asbestos fibers on a holey 
carbon film, imaged in a TEM); (b) Laplacian; (c) Roberts’ Cross; (d) Sobel; (e) Kirsch; (f) Frei and 
Chen (this technique is introduced below, and the result included here to facilitate comparison). 

  
(a)               (b)               (c)

Figure 5.32 Effect of neighborhood size on edge delineation: (a) original (SEM image of spherical par-
ticles); (b) 3 pixel wide neighborhood; (c) 7 pixel wide neighborhood.
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gray scale. Combining the magnitude and angle of the Sobel gradient vector in a color image 
(Figure 5.33d) more clearly shows the location and the orientation of edges. The magnitude 
of the vector at each point is assigned to the intensity channel and the angle to hue, with the 
saturation set to maximum.

It is also possible to set a threshold value on the magnitude of the vector and only save the 
angle information for those pixels above the threshold. In Figure 5.34 this is done both to 
assign colors to the edge pixels and also to save a histogram of the angle values, from which 
the orientation of the edges can be determined.

Figure 5.35 shows the measurement of the orientation of fibers by this technique. Since the 
fibers cover the entire image, no threshold is needed to select the pixels to be measured. The 
edge orientation as defined by the brightness gradient is 180 degrees different for pixels on 
opposite sides of a fiber. The histogram plot covering the range from 0 to 360 degrees shows 
two peaks spaced 180 degrees (128 brightness values) apart, indicating that the fibers are 
not isotropically oriented. The rose plot shows that more than twice as many points along 
the fibers have an orientation about 70 degrees from the horizontal. The efficiency with 
which the Sobel operator can be applied and the histogram plotted makes this a very useful 
technique.

  
(a)               (b)               (c)

  

Figure 5.33 Local gradient orientation deter-
mined by applying a Sobel operator to the 
image in Figure 5.31a:

  (a)  a coarse vector field, in which each vector 
has the direction and magnitude given 
by the Sobel operator;

  (b)  a finer mesh field, but still inadequate to 
show the structure;

  (c)  assigning the vector angle to the bright-
ness of each pixel;

  (d)  color presentation combining magnitude 
(as intensity) and direction (as hue).

          (d)
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Figure 5.34 Lamellar structure in a titanium alloy: (a) SEM image (courtesy of H. Fraser, Ohio State 
University); (b) edges selected by magnitude of the Sobel gradient and color coded with orientation; 
(c) histogram of edge orientations from 0 to 180 degrees.

(a)

(c)

(b)

(a)

(b)

(c)

(d)

Figure 5.35 Measurement of fiber 
orientation:

  (a) image of collagen fibers;

  (b)  the Sobel orientation values 
assigned to pixel brightness;

  (c)  histogram of the values in (b) 
from 0 to 360 degrees;

  (d) a rose plot of the values.
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More edge detectors

The use of an edge-enhancing operator to modify images is useful in many situations. For 
example, sharpening with the Laplacian increases the contrast at edges and makes images 
appear sharper to the viewer. Gradient or edge-finding methods do this as well, but also 
modify the image so that its interpretation becomes somewhat different. Since this contrast 
increase is selective, it responds to local information in the image in a way that manipulating 
the overall brightness histogram cannot.

Performing derivative operations using kernels can be considered as a template matching or 
convolution process. The pattern of weights in the kernel is a template that gives the maxi-
mum response when it matches the pattern of brightness values in the pixels of the image. 
The number of different kernels used for derivative calculations indicates that there is no 
single best definition of what constitutes a boundary. Also, it can be helpful at the same time 
to look for other patterns that are not representative of an edge.

These ideas are combined in the Frei and Chen algorithm (Frei & Chen, 1977), which applies 
a set of kernels to each point in the image. Each kernel extracts one kind of behavior in the 
image, only a few of which are indicative of the presence of an edge. For a 3 × 3 neighborhood 
region, the kernels, which are independent basis functions, are shown below.
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Only kernels 1 and 2 (horizontal and vertical gradient detectors) are considered to indicate the 
presence of an edge. The results of applying each kernel to each pixel are therefore summed 
to produce a ratio of the results from kernels 1 and 2 to those from the other kernels. The 
cosine of the square root of this ratio is used as a measure of “edgeness” and is assigned to 
the pixel location in the derived image.

The advantage compared to more conventional edge detectors such as the Sobel is sensitivity 
to a configuration of relative pixel values independent of the magnitude of the brightness, 
which may vary from place to place in the image. Figure 5.31f and Figure 5.36a show exam-
ples of the Frei and Chen operator, which can be compared to several other techniques.

All of the preceding edge-finding methods produce lines along edges that are broad and 
only approximately locate the actual boundary. The Canny filter (Canny, 1986; Olsson, 1993) 
attempts to locate the edge to the most probable single-pixel location (Figure 5.36b). This 
is a powerful multi-step function that utilizes several techniques described and illustrated 
above. It begins by performing Gaussian smoothing on the image for noise reduction, then 
calculates derivatives in two orthogonal directions using large kernels and combines them to 
obtain a vector magnitude and direction. The resulting lines along edges and discontinuities 
are then thinned by non-maximum suppression. The magnitude of the gradient at each point 

  
(a)                      (b)

  

(c)                      (d)

Figure 5.36 Comparison of edge-finding methods applied to the image in Figure 5.30a: (a) Frei and 
Chen; (b) Canny; (c) variance; (d) max-min (techniques (c) and (d) are introduced below, and the 
results included here to facilitate comparison).
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is compared to the value at the next pixel in the gradient direction and kept only if it is larger. 
This is a technique that can be applied to any of the edge-finding operators to reduce the line 
widths (Bertrand et al., 1997; Neubeck & VanGool, 2006; Guo e al., 2010; Sun & Vallotton, 
2010). Finally, only lines that somewhere have a gradient value exceeding a pre-set threshold 
are retained. The Canny method has several arbitrary user-defined constants that limit its 
generality, but it is used in some machine vision applications to accurately (or at least repro-
ducibly) locate edges. Figures 5.36 and 5.37 compare the results of the Canny to those from 
other edge detectors.

Figures 5.36c and 5.37c show examples using a different method that is not based on convo-
lution with a kernel of weights but on a statistical calculation. The variance operator is a local 
neighborhood operation that calculates the sum of squares of the brightness differences from 
the mean for the neighborhood surrounding each pixel in the original image. The variance value 
is small in uniform regions of the image and becomes large whenever a step or line is present.

Figure 5.38 shows the use of the variance operator to locate the boundaries between grains 
in a polished aluminum metal examined in the light microscope The individual grains exhibit 
different brightnesses because their crystallographic lattices are randomly oriented in space 
so that the etching procedure applied darkens some grains more than others. It is the grain 
boundaries that are usually important in studying metal structures, since the configuration 

  
(a)                      (b)

  

(c)                      (d)

Figure 5.37 Comparison of edge-finding methods applied to the image in Figure 5.27a: (a) Sobel; (b) 
Canny; (c) variance; (d) max-min.
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of grain boundaries results from prior heat treatment and processing and controls many 
mechanical properties. The boundaries are not identified by any unique brightness value or 
even by any consistent difference in values on either side. The variance values with a circular 
neighborhood and radius of 2.5 pixels outline the individual grains. Applying additional steps 
(thresholding, discussed in Chapter 7, and skeletonization, shown in Chapter 8) reduces the 
outlines to single pixel width.

There are several reasons for the interest in edge-finding operators. One is that the locations 
of the boundaries are useful for various measurement operations. A second is that the edges 
form a “primal sketch” of the scene, which may be useful for high-level software such as that 
used in robotics to “understand” a scene in terms of the geometry of the objects present. An 
artist’s or cartoonist’s sketch of a scene uses edges to convey the sense of objects and struc-
tures. As shown in Figure 5.39, edge-finding procedures accomplish much the same thing.

An additional purpose is to facilitate further image processing. Image sharpening, as described 
above, works by increasing the contrast at edges. But this procedure also tends to increase 
the visibility of random noise in areas of the image away from the edge. By using a weight 
based on the result of an edge-locating operator to blend together the results from a sharpen-
ing operator and a smoothing operator, edges can be sharpened at the same time that noise 
is reduced in regions away from edges, improving the overall appearance of images (Kotera 

  
(a)                      (b)

  

(c)                      (d)

Figure 5.38 Delineating boundaries between grains: (a) aluminum metal, polished and etched to show 
different grains; (b) result of variance edge-finding algorithm; (c) thresholding and skeletonization 
produces a single line of pixels at the boundaries; (d) boundaries shown superimposed on the origi-
nal image.
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& Wang, 2005; Kim &Allebach, 2005). This approach has become popular with digital pho-
tographers and is even incorporated in the firmware of some consumer cameras. Figure 5.40 
shows an example. This is an example of an adaptive or conditional processing method, which 
varies the application of filters (in this case, selects between several possibilities) depending 
on the local neighborhood around each pixel.

Most of the neighborhood operations discussed in the preceding section use arithmetic opera-
tions (multiplication, addition, etc.) to combine the values of various pixels. Another class of 
operators also uses neighborhoods but instead performs comparisons and ranking. Several of 
these operations are analogous to the methods described above.

The median filter, introduced in Chapter 4, sorts the pixels in a region into brightness order, 
finds the median value, and replaces the central pixel with that value. Used to remove noise 
from images, this operation eliminates extreme values from the image. Rank operations also 
include the maximum and minimum, or dilation and erosion operators, which find the darkest 
or brightest pixels in each neighborhood and place that value into the central pixel. One use 
of these operations is demonstrated by Figure 4.50 in Chapter 4, for the purpose of remov-
ing narrow features from an image to produce a background for leveling.

A simple rank-based edge-finding filter finds the difference between the brightest and darkest 
pixel values in the neighborhood. As shown in Figures 5.36d and 5.37d, this difference is 
small within uniform regions and increases at edges and steps. This max-min operator shares 
some similarities with the variance operator but generally does not perform as well for edge 
locating because of sensitivity to noise pixels.

Chapter 4 compares the median filter to Gaussian smoothing for noise removal. There is 
also a rank-based edge enhancement technique that can be compared to the unsharp mask. 
The difference between original pixel value and the value calculated by a median filter can 
be added back to the image just as the difference between the original pixel and the result 
of Gaussian smoothing is added in the unsharp mask. The result increases contrast at edges 
just as the unsharp mask does, but with several important advantages: there are no haloes 
introduced around the edges, small details adjacent to edges are preserved, and the resulting 
contrast is more uniform across the entire brightness range. Figure 5.41 compares the two 
procedures. Both are applied only to the brightness channel, leaving the colors unmodified.

  
(a)                      (b)

Figure 5.39 Converting an image to a sketch with edge operators (the original image is shown in Figure 
5.6a): (a) Sobel operator applied separately to the red, green, and blue channels; (b) Canny operator 
applied to the L channel.
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One of the important variables in the use of a rank operator is the size of the neighborhood. 
Generally, shapes that are squares (for convenience of computation) or approximations to a 
circle (to minimize directional effects) are used. As the size of the neighborhood increases, the 
computational effort in performing the ranking increases rapidly.

Range images, such as those from the atomic force microscope (AFM) or interference micro-
scope, or from laser range finders or radar imaging, assign each pixel a brightness value 
representing elevation. Rank operations are particularly well suited to such images and can 
often be used to locate boundaries. Figure 5.42 shows an example, an AFM image of the 

  
(a)               (b)               (c)

  

(d)               (e)               (f)

   

Figure 5.40 Example of conditional processing to sharpen edges 
while smoothing uniform areas:

  (a)  original image;

  (b) intensity channel;

  (c) Gaussian smoothing applied to (b);

  (d) Laplacian sharpening applied to (b);

  (e)  Sobel edge detection applied to (b), whose magnitude is used 
as a weight to blend the smoothed and sharpened results;

  (f) blended results;

  (g)  color image with the processed intensity channel combined 
with the original color channels.

       (g)
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topography of a deposited coating. Performing a gray scale erosion (replacing each pixel with 
the brightest pixel in a 5 pixel wide neighborhood) and subtracting from the original produces 
a set of lines along the boundaries. With further processing by thresholding and skeletoniza-
tion (covered in Chapters 7 and 8, respectively), the tessellation of lines is useful for counting 
and measuring the individual structures in the coating.

Texture

Many images contain regions characterized not by a unique value of brightness or color, but by 
a pattern of brightness values that is often called texture. This is a somewhat loosely defined 
term that refers to the local variation in brightness (or sometimes color) from one point to the 
next or within a small region. If the brightness is interpreted as elevation in a representation 

  

Figure 5.41 Sharpening with a rank 
operator: 

  (a) original image;

  (b)  unsharp mask result, Gaussian stan-
dard deviation = 3 pixels;

  (c)  rank-based sharpening result, median 
radius = 3 pixels.

           (a)

  

(b)                      (c)
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of the image as a surface, then the texture is a measure of the surface roughness, another term 
with multiple meanings and measures, as covered in Chapter 15.

Rank operations are one tool that can be used to detect this texture in images. The operator 
introduced above for edge finding is the difference between maximum and minimum bright-
ness values in the neighborhood. For a smooth, flat, or uniform region, the difference is small. 
Larger values correspond to regions with a larger perceived texture or roughness. The size of 
the neighborhood region must be large enough to include dark and light pixels, which gener-
ally means being larger than any small uniform details that may be present.

Figure 5.43 shows an example in which the original image has a histogram with a single 
broad peak and it is not possible to distinguish the visually smooth and textured regions 
based on brightness. The max-min image (using a 7 pixel wide circular neighborhood) pro-
duces different brightness values which allow thresholding. The smooth regions (the curds 
in this microscope image of cheese) produce a low max-min value, while the highly textured 
protein produces a larger value. Because it is a local neighborhood process, the operation also 
removes the side-to-side shading of the image.

A second texture extraction method, also shown in the figure, is the calculation of the statisti-
cal variance of the pixel values in a moving neighborhood (a 7 pixel wide circular neighbor-
hood), which also is able to distinguish the regions in this image. Note that both the max-min 
and variance operators are also used above with a smaller neighborhood size to locate edges. 
The figure also shows the result from applying a fractal texture algorithm described below 
but included for comparison.

   
(a)               (b)               (c)

   

Figure 5.42 Locating edges with a rank operator:

  (a)  original image (AFM image of a deposited coating);

  (b)  use of a rank filter to replace each pixel with its bright-
est neighbor;

  (c)  difference between (b) and (c), showing boundary 
delineation;

  (d)  thresholding and skeletonizing image (c) to get bound-
ary lines.

       (d)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.43 Application of texture operators:

  (a) original microscope image of cheese;

  (b) histogram;

  (c)  max-min operator applied (7 pixel diameter 
circular neighborhood);

  (d)  variance operator applied (7 pixel diameter 
circular neighborhood);

  (e)  intercept from fractal texture operator (4 
pixel maximum radius);

  (f)  region outlines from thresholding image (d) 
superimposed on the original.
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Satellite images are often candidates for characterization by texture operators. Crops, construc-
tion, and other land uses produce distinctive textures that humans can recognize. Methods 
have been sought that duplicate this capability in software algorithms. In a classic paper on 
the subject, Haralick lists 14 such texture operators that utilize the pixels within a region and 
their brightness differences (Haralick et al., 1973; Haralick, 1979; Weszka et al., 1976; Jiang et 
al., 2008). The region used is not a neighborhood around each pixel, but comprises all of the 
pixels within a contiguous block delineated by some boundary or other identifying criterion 
such as brightness, etc. A table is constructed with the number of adjacent pixel pairs within 
the region as a function of their brightnesses. This pixel table is then used to calculate the 
texture parameters.

In the expressions in Equation 5.8, the array P(i,j) contains the number of nearest-neighbor 
pixel pairs (in 90 degree directions) whose brightnesses are i and j, respectively. R is a renor-
malizing constant equal to the total number of pixel pairs in the image or any rectangular 
portion used for the calculation. In principle, this can be extended to pixel pairs that are 
separated by a distance d and to pairs aligned in the 45 degree direction (whose separation 
distance is greater than ones in the 90 degree directions). The summations are carried out 
for all pixel pairs in the region. Haralick applied this to rectangular regions, but it is equally 
applicable to pixels within irregular outlines.

The first parameter shown is a measure of homogeneity using a second moment. Since the 
terms are squared, a few large differences contribute more than many small ones. The second 
one shown is a difference moment, which is a measure of the contrast in the image. The third 
is a measure of the linear dependency of brightness in the image, obtained by correlation.
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In these expressions, N is the number of gray levels, and µ and σ are the mean and standard 
deviation, respectively, of the distributions of brightness values accumulated in the x and y 
directions. Additional parameters describe the variance, entropy, and information measure of 
the brightness value correlations. Haralick has shown that when applied to large rectangular 
areas in satellite photos, these parameters can distinguish water from grassland, different 
sandstones from each other, and woodland from marsh or urban regions, as well as the plant-
ing patterns for different crops.

When calculated within a small moving neighborhood centered on each pixel, the same val-
ues can be scaled to create a derived image in which brightness differences represent the 
original textural variations. Applications in medical imaging (Zizzari, 2004), microscopy, 
remote sensing, and others make use of these tools. In any given instance, experimenta-
tion with several texture operators may be required to find the one that gives the best 
separation between the features of interest and their surroundings, although it may not 
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apply the same logic as the human vision system does to perform the same discrimination. 
Figure 5.44 illustrates the use of the Haralick angular second moment operator (ƒ2 above) 
applied in a moving neighborhood centered on each pixel to calculate a texture value, 
which is then assigned to the pixel. The figure also shows the entropy calculated in a cir-
cular neighborhood (radius = 3), and the result of the fractal texture calculation described 
below, for comparison.

A broad range of statistical, frequency, and other local measures of pixel variations are used 
to extract various aspects of texture from images, either for measurement or to assist in seg-
menting the original image into regions (Heeger & Bergen, 1995; Barth et al., 1998; de Bonet 

  
(a)                      (b)

  
(c)                      (d)

Figure 5.44 Application of texture operators: (a) original TEM image of liver tissue; (b) Haralick angu-
lar second moment; (c) entropy; (d) slope from the fractal texture calculation with a maximum 
radius of 6 pixels.
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& Viola, 1998; Ursani et al., 2008; Bergman et al., 2008). This is not surprising, as there are 
so many possible types of texture, some regular and some random, that may be encountered. 
There are few guidelines for selecting a parameter that works best in individual situations.

Another type of texture that can be present in structures and in images is a directional-
ity or nonrandom orientation. The Sobel orientation operator introduced above can often 
be used to convert different orientations of the local brightness gradient to intensity 
differences that are useful for segmenting the objects or structures. Figure 5.45 shows 
an example. The weave in the herringbone cloth produces brightness gradients that are 
oriented perpendicular to the pattern direction. When the angle determined from the 
gradient vector is used to assign brightness values based on an angle range from 0 to 
360 degrees, the outward pointing gradient vectors produce two possible results in each 
region, 180 degrees (or 128 gray scale values) apart. If the angles are instead assigned 
gray scale values that duplicate the 0 to 180 and 180 to 360 degree ranges, each region 
with a different pattern orientation receives a single, unique range of brightness values. 
A median filter applied to the result cleans up the noise and uniquely marks the regions. 
Assigning the orientation values to the hue channel of the original image shows that the 
regions are distinguished.

Fractal analysis

The characterization of surface roughness by a fractal dimension has been applied to fracture 
surfaces, wear and erosion, corrosion, etc. (Mandelbrot et al., 1984; Underwood & Banerji, 
1986; Mecholsky & Passoja, 1985; Mecholsky et al., 1986, 1989; Srinivasan et al., 1991; Fahmy 
et al., 1991; Russ, 1994). It has also been shown (Pentland, 1983; Peleg et al., 1984) that the 
brightness pattern in images of fractal surfaces is mathematically a fractal and that this also 
holds for SEM images (Russ, 1990a). A particularly efficient method for computing the fractal 
dimension of surfaces from elevation images is the Hurst coefficient, or rescaled range analy-
sis (Hurst et al., 1965; Feder, 1988; Russ, 1990c). This procedure plots the greatest difference 
in elevation (or brightness, etc.) between points along a linear traverse of the image or surface 
as a function of the search distance, on log–log axes. When the maximum difference is scaled 
by dividing by the standard deviation of the data, the slope and intercept of the resulting line 
are related to the fractal dimension of the profile.

Performing such an operation at the pixel level is interesting, because it permits local clas-
sification that can be of use for image segmentation. Processing an image so that each pixel 
value is converted to a new brightness scale indicating local roughness (in the sense of a Hurst 
coefficient) permits segmentation by simple brightness thresholding. It uses two-dimensional 
information on the brightness variation, compared to the one-dimensional comparison used 
in measuring brightness profiles.

The algorithm examines the pixels in the neighborhood around each location in the original 
image, out to a maximum radius typically from 4 to 7 pixels (a total neighborhood diameter 
of 15 pixels, counting the central one). The brightest and darkest pixel values in each of the 
distance classes are found and their difference used to construct a Hurst plot. Alternatively, 
the standard deviation of the pixel values in the neighborhood can be used. Performing a 
least-squares fit for the log (brightness variation) vs. log (radius) relationship characterizes the 
slope and intercept of the texture, and either value can be selected and scaled to fit the bright-
ness range of the display. The procedure is time consuming compared to simple neighbor-
hood operations such as smoothing, etc., but still well within the capability of typical personal 
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(a)                      (b)

   
(c)                      (d)

       

Figure 5.45 Orientation texture processing:

  (a) original herringbone weave pattern;

  (b)  Sobel orientation scaled from 0 to 360 
degrees;

  (c)  Sobel orientation scaled from 0 to 180 
degrees and repeated for 180 to 360 
degrees;

  (d) median filter applied to (c);

  (e)  placing the orientation values from (d) 
into the hue channel of (a).

           (e)
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computers. Figures 5.43e illustrates the results using the intercept value, and Figure 5.44d 
shows an example using the slope.

Implementation notes

Many of the techniques discussed in this chapter and in Chapter 4 are neighborhood operators 
that access pixels in a small area around each central pixel, perform some calculation or com-
parison with those values, and then derive a new value for the central pixel. In all cases, this 
new value is used to produce a new image, and it is the original values of pixels which are used 
in the neighborhood around the next pixel as the operation is repeated throughout the image.

Most image analysis systems operating in personal computers have limited memory (particularly 
when the large size of images is considered). Creating a new image for every image processing 
operation is an inefficient use of this limited resource. Consequently, the strategy generally used 
is to perform the operation “in place,” to process one image and replace it with the result.

This requires only enough temporary memory to hold a few lines of the image. The opera-
tions are generally performed left to right along each scan line and top to bottom through the 
image. Duplicating the line that is being modified, and keeping copies of the preceding lines 
whose pixels are used, allows the new (modified) values to be written back to the original 
image memory. The number of lines is (n +1)/2 where n is the neighborhood dimension (e.g., 
3 × 3, 5 × 5, etc.). Usually, the time required to duplicate a line from the image is small and 
by shuffling through a series of pointers, it is only necessary to copy each line once when the 
moving process reaches it, then re-use the array for subsequent lines.

Some of the image processing methods described above utilize two or more intermediate 
results. For example, the Roberts’ Cross or Sobel filters apply two directional derivatives 
whose magnitudes are subsequently combined. It is possible to do this pixel by pixel, so that 
no additional storage is required. Even the conditional operation shown above that applies 
Gaussian smoothing, Laplacian sharpening, and a Sobel edge detector at each pixel location 
requires only a single pass through the image. However, in some implementations, particu-
larly those that can be efficiently programmed into an array processor acting on an entire line 
through the image at one time, it is faster to obtain the intermediate results for each operator 
applied to each line and then combine them for the whole line. This requires only a small 
amount of additional storage for the intermediate results.

Another consideration in implementing neighborhood operations is how to best treat pixels 
near the edges of the image. The possibilities include having special neighborhood rules 
near edges to sort through a smaller set of pixels, duplicating rows of pixels at edges (e.g., 
assuming each edge is a mirror), extrapolating values beyond the edge, or using wrap-around 
addressing (i.e., assuming that the left and right edges and the top and bottom edges of the 
image are contiguous). None of these methods is universally optimum.

Image math

The image processing operations presented so far in this chapter operate on one image and 
produce a modified result, which may be stored in the same image memory. Another class 
of operations uses two images to produce a new image (which may replace one of the origi-
nals). These operations are usually called image arithmetic, since operators such as addition, 
subtraction, division, and multiplication are included. They are performed pixel by pixel, so 
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that the sum of two images contains pixels whose brightness values are the sums of the cor-
responding pixels in the original images.

There are some additional operators used as well, such as comparing two images to keep 
the brighter (or darker) pixel, calculating the absolute difference, or basing the comparison 
on neighborhood values (for instance, keeping the pixel with the greater local variance as a 
means of combining images with different focus settings, or adding pixels in proportion to 
mean neighborhood values to blend together images taken with different exposures). Other 
two-image operations, such as Boolean OR or AND logic, are generally applied to binary 
images; Chapter 8 presents them in that context.

Image addition is used for the averaging of images to reduce noise, shown in Chapter 4. 
The addition operation is straightforward, but a decision is required about how to deal with 
the result. If two 8-bit images (with brightness values from 0 to 255 at each pixel) are added 
together, the resulting value can range from 0 to 510. This exceeds the capacity of the image 
memory if single byte integers are used. One possibility is to divide the result by 2, obtaining 
a resulting image that is scaled to the 0 to 255 range. A similar approach is applied in image 
averaging, in which the N images added together produce a total, which is then divided by N 
to rescale the data.

Another possibility is to find the largest and smallest actual values in the sum image and then 
dynamically rescale the result to this maximum and minimum, so that each pixel is assigned 
a new value

	 B = ⋅Range (Sum –M inim um )
(M axim um –M inim um )

 (5.9)

where range is the capacity of the image memory, typically 255. This is superior to performing 
the division by 2 and then subsequently performing a linear expansion of contrast, as shown 
in Chapter 4, because the precision of the resulting values is higher. When the integer division 
by 2 is performed, fractional values are truncated and some information may be lost.

On the other hand, when dynamic ranging or automatic scaling is performed, it becomes more 
difficult to perform direct comparison of images after processing, since the brightness scales 
may not be the same. In addition, autoscaling takes longer, since two complete passes through 
the image are required: one to determine the maximum and minimum and one to apply the 
autoscaling calculation. Many of the images printed in this book have been autoscaled in 
order to maximize printed contrast. In most cases this operation has been performed as part 
of the processing operation to maintain precision.

Adding together images superimposes information and can in some cases be useful to cre-
ate composites, which help to communicate complex spatial relationships. Combining the 
Laplacian or a derivative image with the original can help provide some spatial information 
to interpret the results from the filter. Usually, this kind of addition is handled directly in the 
processing by changing the central value of the kernel. For the Laplacian, this modification is 
called a sharpening filter, as noted above.

Subtracting images

Subtraction is used in Chapter 4 to level images by removing background. This chapter has 
already shown several applications of subtraction, such as that employed in unsharp masking, 
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where the smoothed image is subtracted, pixel by pixel, from the original. In such an operation, 
the possible range of values for images whose initial range is 0 to 255 becomes –255 to +255. 
The data can be rescaled to fit into a single byte, replacing the original image, by dividing by 
2 and adding 128, or the same autoscaling method shown in Equation 5.9 for addition may be 
employed. The same advantages and penalties for fixed and flexible scaling are encountered.

In some cases, the absolute difference may be preferred to simple subtraction of a back-
ground. Figure 5.46 shows a phase-contrast image of cells on a slide. Images such as this, in 
which features have pronounced bright and dark shadows on opposite sides, are difficult to 
measure, because on two sides there are different criteria to define an edge, and on the top 
and bottom the edges are not revealed at all but are inferred by the viewer. Using a median 
filter to remove the shadows produces a “background” image without the features. The abso-
lute difference between this and the original shows both shadows as bright. Thresholding this 
image produces two disconnected arcs, but dilation of the binary image (discussed in Chapter 
8) merges the two sides. After filling and eroding this back to the original size, the outlines 
of the cells are adequately delineated for measurement.

Subtraction is also a way to discover differences between images. Figure 5.47 shows two 
images of coins and their difference. The parts of the picture that are essentially unchanged in 
the two images cancel out and appear as a uniform medium gray except for minor variations 
due to noise, the precision of digitization, changes in illumination, etc. The coin that has been 
moved between the two image acquisitions is clearly shown. The dark image shows where the 
feature was; the bright one shows where it has gone.

  
(a)              (b)              (c)

Figure 5.46 Isolating features in a phase contrast image: (a) original image; (b) absolute difference 
between original and a median-filtered copy; (c) resulting boundaries after thresholding, dilation, 
and erosion, superimposed on the original image.

  
(a)              (b)              (c)

Figure 5.47 Showing image differences by subtraction: (a) original image; (b) image after moving one 
coin; (c) difference image after pixel by pixel subtraction.
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Subtracting one image from another effectively removes from the difference image all features 
that do not change, while highlighting those that do. If the lighting and geometry of view are 
consistent, the only differences in pixel values where no changes occur are statistical varia-
tions in the brightness, due to camera or electronic noise. The bright and dark images show 
features that have been removed from or added to the field of view, respectively.

Even in the presence of some noise, subtraction of two images can be an effective way to 
identify small differences that might otherwise escape notice. Figure 5.48 shows an example. 
The image shows two films from a Debye-Scherer X-ray camera. The vertical lines show the 
exposure of the film by X-rays diffracted from a tiny sample, each line corresponding to reflec-
tion from one plane of atoms in the structure of the material. Comparing the films from these 
similar samples shows that most of the lines are similar in position and intensity, because 
the two samples are similar in composition. The presence of trace quantities of impurities is 
revealed by additional faint lines in the image. Subtraction of one set of lines from the sec-
ond increases the relative amount of noise, but reveals the presence of lines from the trace 
compounds as well as the difference in intensity of the lines that match. These can then be 
measured and used for identification.

A major use of image subtraction is quality control. A master image is acquired and stored 
that shows the correct placement of parts on circuit boards (Figure 5.49), the alignment of 
labels on packaging, etc. When the image is subtracted from a series of images acquired from 
subsequent objects, the differences are strongly highlighted, revealing errors in production. 
This subtraction is often carried out at video frame rates using dedicated hardware. Since it is 
unrealistic to expect parts to be exactly aligned, a tolerance is specified by the area of bright 
and dark (mismatched) pixels present after the subtraction. The same technique is used in 
reconnaissance photos to watch for the appearance or disappearance of targets in a complex 
scene. Image warping, as covered in Chapter 4, may be required to align images taken from 
different points of view before subtraction can be performed.

A similar technique is used in astronomy. “Blinking” images taken of the same area of the 
sky at different times is the traditional way to search for moving planets or asteroids. This 
technique alternately switches between the images so that the viewer notices the apparent 
motion of the point of light that is different in the two images while ignoring the stationary 

(a)

(b)

(c)

Figure 5.48 Image subtraction 
to enhance the visibility of 
details:

  (a  & b) scanned images of 
films from a Debye Scherer 
X-ray camera, taken with 
similar compounds;

  (c)  the difference between (b) 
and (a) showing the low 
intensity lines present in 
one film due to the pres-
ence of trace compounds 
in the sample.
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stars. Some computer searching using subtraction has been done, but for dim objects in the 
presence of background noise this has not proved as sensitive as a human observer.

In the example shown in Figure 4.7 of Chapter 4, two images were acquired a little more 
than 1 minute apart. The difference between the two clearly shows the motion of the minute 
hand. The very small motion of the hour hand is also shown, which is much too small to be 
noticed when viewing the images side by side.

Object motion can be measured using subtraction, if the features are large enough and the 
sequential images are acquired fast enough that they overlap in successive frames. In this 
case, the subtraction shows a bright area of mismatch that can be measured. The length of 
the unmatched region divided by the elapsed time gives the velocity; direction can be deter-
mined by the orientation of the region. This technique is used at microscopic scales to track 
the motion of cells on slides in response to chemical cues, and also in animal studies to track 
the motion within a cage or pen (in the latter case, applying unique color tags to each animal 
makes it easier to keep track of individuals).

At a different scale, subtraction is used to track ice 
floes in the north Atlantic from satellite photos. For 
motion between two successive images that is too 
great for this method, it may be possible to iden-
tify the same objects in successive images based 
on size, shape, etc. and thus track motion. Or, one 
can assume that where paths cross, the points caus-
ing the least deviation of the path give the correct 
match (Figure 5.50).

Multiplication and division

Image multiplication is perhaps the least used of 
the mathematics modes, but it is generally included 
for the sake of completeness in systems offering the 

  

Figure 5.49 Difference images for quality control. A master image is subtracted from images of each 
subsequent part. In this example, the missing chip in a printed circuit board is evident in the differ-
ence image.

Figure 5.50 Analysis of motion of multiple 
objects. Where the paths of the swimming 
microorganisms cross, they are sorted 
out by assuming that the path continues 
in a nearly straight direction (Gualtieri 
& Coltelli, 1991).
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other arithmetic operations. Multiplication is used to superimpose one image on another, for 
example to add texture to a surface (often called “bump-mapping”). Similar multiplicative 
superimposition may be used to add fluorescence or other emission images to a reflection or 
transmission image.

One of the difficulties with multiplication is the extreme range of values that may be gener-
ated. With 8-bit images whose pixels can have a range between 0 and 255, the possible prod-
ucts can range from 0 to more than 65,000. This is a 2-byte product, only the high byte of 
which can be stored back into the same image memory unless automatic scaling is used. A 
significant loss of precision may result for values in the resulting image.

The magnitude of the numbers also creates problems for division. First, division by 0 must 
be avoided. This is usually done by adding 1 to all brightness values, so that the values are 
interpreted as 1 to 256 instead of 0 to 255. Then it is necessary to first multiply each pixel 
in the numerator by some factor that produces quotients covering the 0 to 255 range, while 
maintaining some useful precision for the ends of the range. Automatic scaling is particularly 
useful for these situations, but it cannot be used in applications requiring comparison of one 
image to another or to a calibration curve.

An example of division in which automatic scaling is useful is the removal of background 
(as shown in Chapter 4) when linear detectors or cameras are used. An example of division 
when absolute values are required is calculating ratios of brightness from two or more Landsat 
bands (an example is shown in Chapter 1) or two or more filter images when examining fluo-
rescent probes in the light microscope. In fluorescence microscopy, the time variation of emit-
ted light intensity is normalized by alternately collecting images through two or more filters 
at different wavelengths above and below the line of interest, and calibrating the ratio against 
the concentration of the compounds of interest. In satellite imagery, ratios of intensities (par-
ticularly Thematic Mapper Band 4 = 0.5 to 0.6 µm, Band 5 = 0.6 to 0.7 µm, Band 6 = 0.7 to 0.8 
µm, and Band 7 = 0.8 to 1.1 µm) are used for terrain classification and the identification of 
some rock types. The thermal inertia of different rock formations may also be determined by 
ratioing images obtained at different local times of day, as the formations heat or cool.

As an example of mineral identification, silicates exhibit a wavelength shift in the absorption 
band with composition. Granites, diorites, gabbros, and olivene peridotes have progressively 
decreasing silicon content. The absorption band shifts to progressively longer wavelengths 
in the 8 to 12 µm thermal infrared band as the bond-stretching vibrations between Si and 
O atoms in the silicate lattice change. The Thermal Infrared Multispectral Mapper satellite 
records six bands of image data in this range, which are combined and normalized to locate 
the absorption band and identify rock formations. Carbonate rocks (dolomite and limestone) 
have a similar absorption response in the 6 to 8 µm range. At radar wavelengths, different 
surface roughnesses produce variations in reflected intensity in the Ka, X, and L bands and 
can be combined in the same ways to perform measurements and distinguish the coarseness 
of sands, gravels, cobbles, and boulders (Sabins, 1987).

In the same way, bands of 0.55 to 0.68 µm, or visible red, and 0.72 to 1.10 µm, or reflected 
infrared, from multispectral satellite imagery are used to recognize vegetation. The first band 
records the chlorophyll absorption and the second gives the reflection from the cell structure 
of the leaves. The ratio (B2 – B1)/(B2 + B1) eliminates variations due to differences in solar 
elevation (illumination angle) and is used to measure the distribution of vegetation in images. 
Typically, this approach also combines data from successive scans to obtain the spectral veg-
etation index as a function of time. Other ratios have been used to image and to measure chlo-
rophyll concentrations due to phytoplankton in the ocean (Sabins, 1987). Figure 5.51 shows 
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an approximation to this method using the ratio of near infrared to blue to isolate vegetation 
in satellite imagery.

Ratios are also used in astronomical images. Figure 5.52 shows infrared images of the star-
forming region in NGC-2024. Infrared light penetrates the dust that blocks much of the visible 
light. Ratios or differences of the different wavelength images show details in the dust and 
enhance the visibility of the young stars. This can be a useful supplement to combining the 
channels for color viewing.

Principal components analysis

When multi-band images are acquired, whether the various visible and infrared channels 
detected in remote sensing, or just the red, green, and blue channels of a typical digital 
camera, there is no reason to expect any individual band to contain the most significant rep-
resentation of the structure in the subject. This is particularly true when channels contain 

  
(a)                     (b)

    

Figure 5.51 Landsat Thematic Mapper images 
of New York City (images courtesy of NASA 
and US Geological Survey):

  (a) Band 1 (visible blue);

  (b) Band 4 (near infrared);

  (c)  ratio of Band 4 to Band 1 (showing veg-
etation areas such as Central Park).

           (c)
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other information, such as the various signals that can be acquired by an AFM or the multiple 
elements that can be detected by their X-ray emission in the SEM.

Principal components analysis (PCA) of multivariate data sets is a standard statistical method 
that was developed in the early half of the 20th century (Joliffe, 2002). The purpose is to 
find combinations of the existing variables (in this context the individual color channels) that 
uncorrelate the various signals and maximize their individual variances. An N × N (the num-
ber of channels) matrix is set up holding all of the covariance values between the channels. 
The eigenvectors of the matrix are the principal components axes. This provides research-
ers with a method for transforming their source data axes into a set of orthogonal principal 
axes. If each pixel’s values are used as coordinates to plot its location in the color space, the 
principal axis is fitted through the data so it fits the greatest dispersion of values, then the 
second is orthogonal to it and fits the greatest remaining dispersion, and so on. For a three-
channel image, transforming to a principal component space amounts to a rotation of the 
color axes and creates three new channels in which the first (most significant) contains the 

(a) (b)

(c) (d)

(e) (f)

Figure 5.52 Combining views of NGC-2024 to show star forming regions and dust. (a) 1.2 µm infrared 
image; (b) 1.6 µm infrared image; (c) 2.2 µm infrared image; (d) 2.2 µm image minus 1.6 µm image; 
(e) 1.6 µm image divided by 1.2 µm image; (f) the original three channels combined as RGB color 
channels.
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most structural contrast and information. The principle is the same when more channels are 
present, but may be more difficult to visualize.

The rank for each axis in the principal set represents the significance of that axis as defined by 
the variance in the data along that axis. Thus, the first principal axis is the one with the greatest 
amount of scatter in the data and consequently the greatest amount of contrast and informa-
tion, while the last principal axis represents the least amount of information. This technique is 
particularly useful for extracting the maximum contrast and structural information from a set of 
images, as well as finding correlations between the source variables and for determining if any 
are degenerate or redundant in their contribution. Except for remote sensing applications, the 
technique has not been widely applied to the field of imaging (Neal & Russ, 2004).

Noise and image artifacts (including those from JPEG compression) are typically relegated to 
the least significant channel(s). Processing the least significant channel before transforming 
back to RGB can be used to remove image noise, as shown in Figure 5.53. In this example, a 
very noisy image from a consumer-grade pocket digital camera, taken by available dim light 
(but with brightly lit windows), shows considerable pixel noise. A conventional approach 
to such an image is to apply noise reduction primarily to the blue channel, which typically 
contains more noise than the others, or to use a color median filter, as described in the previ-
ous chapter. A markedly superior result is obtained by transforming to principal components 
and applying a median filter to the least significant channel, then retransforming to RGB. 

(a)

Figure 5.53 Noise reduction in PCA 
space:

  (a)  original image with outline showing 
detail region;

  (b) detail of original noisy image;

  (c)  after processing as described in 
text.

(b)

(c)
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This method is also capable in some instances of 
removing JPEG artifacts and the residual pattern 
of the color filters (e.g., a Bayer pattern) used 
on the chip before color interpolation. This is, 
of course, a specialized technique rather than a 
routine application.

It is often useful to examine the information that 
PCA produces about the source channels. X-ray 
maps produced by an SEM provide an example. 
Typically more than three elements are of inter-
est, both in terms of their distribution and their 
colocalization, since this gives information about 
the compounds or phases present. Further, while 
it is possible to pick many combinations of three 
elements to display as RGB channels, the goal is 
to distinguish all the regions in a single image. 
By definition, the principal components trans-
form provides a way to do both of these things.

Figures 1.31 and 1.32 of Chapter 1 show 9 SEM X-ray maps, each representing the distribu-
tion of an element. The original individual channels are reproduced here as Figure 5.54. It is 
not possible to display more than three of the channels in unique colors. This limitation arises 
from the fact that human vision has three kinds of cones, and so displays use three kinds of 
phosphors (red, green, and blue); it is not possible to assign another color (e.g., yellow) to a 
fourth element because yellow results wherever the red and green elements are co-located, 
and so on. Principal component analysis produces much more useful images by combining 
the basic elements to show structural and phase locations. Figure 5.55 combines the three 
most significant channels to show the phase distribution. This is done by placing those three 
channels into the L, a, and b channels of a color image, producing unique colors for each 
combination of elements.

The analysis of the principal components data 
starts with the covariance matrix generated by 
the transform. The matrix in Table 5.4 shows the 
result for the nine elements in these X-ray maps. 
Each row shows the significance of the princi-
pal channel (first column) and the contributions 
of each source channel to that principal vector. 
Notice that the three most significant channels, 
used to generate Figure 5.55, account for more 
than 83% of the information in the nine original 
images. The components of the source channels 
are a function of the phase composition. This 
numerical data can be visualized using colocal-
ization plots. Plotting nine-dimensional space is 
difficult, but the projection of this space onto 
any pair of axes shows the frequency with which 
various combinations of those values occur as a 
gray scale intensity. Dark clusters of points cor-
respond to regions in the original image with 

Figure 5.54 Nine individual elemental SEM 
X-ray maps from a mica specimen (in order 
from top left): Al, Ca, Fe, K, Mg, Na, O, Si, Ti). 
Duplicated from Figure 1.32 in Chapter 1.

Figure 5.55 Combining the three most signifi-
cant channels after applying principal com-
ponents analysis (PCA) to the nine channels 
in Figure 5.54 to produce a color display 
showing the phase distribution (compare to 
Figure 1.33 in Chapter 1).
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characteristic values of the original data. The six clusters shown in the colocalization plots in 
Figure 5.56 represent the phases present in the sample. These correspond to the six colored 
regions in Figure 5.55.

There are many other common applications for which multispectral images are useful. For 
biological samples, the use of different excitation wavelengths for various stains and dyes pro-
duces multiple source channels suitable for principal components analysis. In addition, many 
of the most effective stains do not produce as much color contrast as desired for visualization 
or for subsequent thresholding and measurement. To make effective use of PCA techniques, 
the selection of specimen preparation and imaging techniques should be broadened to include 
as wide a variety of stains, wavelengths, bright and darkfield illumination, and other condi-
tions as possible. The principal components transform, by definition, maximizes contrast in 
the most significant channels. PCA is also used to extract the most meaningful components 
from complete spectral scans, when the imaging method records entire spectra (such as infra-
red, X-ray or electron energy loss information) for each pixel in an image (Watanabe et al., 
2009; Parish & Brewer, 2010).

Table 5 .4. Principal Components Analysis of Mica Images

Original Channel

PCA 
Channel Significance Al Ca Fe K Mg Na O Si Ti

1 49.46% 0.2355 0.2220 –0.6026 0.0382 0.2542 0.1113 –0.0576 0.6330 –0.2228

2 20.92% 0.3970 –0.6890 0.0469 0.4005 0.1582 0.0778 0.2075 0.1687 0.3202

3 12.86% 0.0696 –0.1735 0.5571 –0.2819 0.0398 0.0488 0.2768 0.3730 –0.5963

4 7.08% –0.3950 –0.1648 0.0958 –0.5195 0.2579 –0.0264 –0.1497 0.4030 0.5346

5 4.77% –0.5419 0.0872 0.1360 0.5372 0.5940 –0.1062 0.0736 0.0025 –0.1489

6 2.21% 0.1996 0.6134 0.3236 0.1417 –0.0364 0.1429 0.4673 0.1924 0.4267

7 1.33% –0.1258 0.0303 0.2784 0.4181 –0.4934 –0.0253 –0.5417 0.4388 0.0271

8 0.79% 0.4676 0.1694 0.3360 –0.0694 0.4913 0.1527 –0.5807 –0.1812 0.0144

9 0.57% –0.2411 –0.0733 –0.0388 0.0236 –0.0572 0.9606 –0.0116 –0.0829 –0.0366

  
(a)              (b)              (c)

Figure 5.56 Example colocalization plots for the PCA results: (a) Channel 1 vs. Channel 2; (b) Channel 
2 vs. Channel 3; (c) Channel 2 vs. Channel 5.
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Even with conventional RGB images, use of the principal components to maximize contrast can 
make processing and measuring samples with difficult or complex staining more tractable. In 
Figure 5.57, the original image shows a stained intestinal tissue sample. The brown background 
is a common effect of many stains, but makes thresholding the structure difficult, since brown 
contains red, green, and blue. Applying a principal components transform to the image produces 
an increase in contrast, as shown. Assigning the resulting channels to red, green, and blue pro-
duces a color image in which the boundaries of the cells are distinct from the background, and 
the internal structure of the cell is distinct, making thresholding an easier task. Compare this 
result to Figure 1.46 in Chapter 1, where an arbitrary color filter is applied to the same image.

One of the most difficult problems in measurement of stained tissue arises when the stain 
produces only subtle differences in saturation or brightness and very little color variation. 
Transforming to another color space, such as L•a•b or HSI, does not produce enough contrast 
or variation to threshold the different structures. Even visualization is difficult. By using a prin-
cipal components transform and assigning the channels to the red, green, and blue channels for 
display (Figure 5.58), the structure is revealed clearly and measurements can be made.

  
(a)                      (b)

Figure 5.57 Maximizing contrast using PCA: (a) original (light micrograph of stained mouse intestine); 
(b) principal components channels displayed as RGB.

  
(a)                      (b)

Figure 5.58 Converting subtle contrast using PCA: original (light micrograph of stained tissue); (b) 
principal components channels displayed as RGB.
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Figure 5.59 shows another application. The original image of a fingerprint on the back of a 
check is difficult to interpret because of the underlying printed pattern. Applying PCA and 
assigning the values to the red, green, and blue axes of the display enhances the visibility, 
and using just the single principal channel as a gray scale image allows easier analysis of the 
minutiae in the fingerprint.

Other image combinations

Image math also includes the logical comparison of pixel values. For instance, two (or more) 
images may be combined by keeping the brighter (or darker) of the corresponding pixels at 
each location. One example arises in polarized light microscopy, as shown in Figure 5.60. 
The use of polarizer and analyzer with specimens such as mineral thin sections produces 
images in which some grains are colored and others dark, as a function of analyzer rotation. 
Combining images from several orientations and keeping just the brightest value for each 
pixel produces an image that shows all of the grains. The same technique can be used with 
transmission electron microscope images of thin metal foils, to combine images in which 
some grains are darkened due to electron diffraction effects, or to remove dark contours that 
result from bending of the foil. Macroscopic images of rough objects with lighting from sev-
eral sides can be similarly combined.

  

Figure 5.59 Fingerprint on the back of a check 
with a printed pattern:

  (a)  original (image courtesy of George 
Reis);

  (b)  principal components assigned to the 
red, green, and blue channels;

  (c)  the principal axis values as a gray scale 
image with optimum contrast.

           (a)

   

(b)                      (c)
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             (a)

  

Figure 5.60 Thin section of sandstone 
viewed by polarized light:

  (a,  b) different orientations of the 
analyzer;

  (c)  maximum brightness image from 
six rotations.

             (b)

 

             (c)
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The same logic is used to build up a confocal scanning light microscope (CSLM) image with 
great depth of field. Normal light microscope images have limited depth of field because of 
the high numerical aperture of the lenses. In the CSLM, the scanning light beam and aperture 
on the detector reduce this depth of field even more by eliminating light scattered from any 
point except the single point illuminated in the plane of focus.

A single, two-dimensional image is formed by scanning the point of light over the sample. For 
a specimen with an irregular surface, this image is very dark, except at locations where the 
surface lies in the plane of focus. By moving the specimen vertically, many such planar images 
can be acquired. However, at each pixel location, the brightest value of light reflectance occurs 
at the in-focus point. Consequently, the images from many focal depths can be combined by 
keeping only the brightest value at each pixel location to form an image with an unlimited 
depth of field. Figure 5.61 shows an example. An additional effect can be produced by shift-
ing each image slightly before performing the comparison and superposition. Combining 26 
individual images in this way produces the perspective view of a surface shown in Chapter 1, 
Figure 1.53.

An extended focus image can also be produced with conventional optics (Liu et al., 2007; Xie 
et al., 2007; Piper, 2008). If a series of images is captured with planes of focus that cover the 
range of depth of the specimen, they can be combined by keeping at each pixel location the 
value from whichever image in the series is in best focus. Figure 5.62 shows a simple example 
in which two images are used. It is possible in this example to cut and paste to combine the 
in-focus regions of the two images, which are well separated, but in general an algorithmic 
way is preferred to select the best focus at each location in the series.

There are several ways to make this selection, which are local adaptations of the algorithms 
used for automatic focusing of optics discussed in Chapter 1, and typically look for maxima 
in the image contrast or some selection of high-frequency information as the criterion for 
focus. One rapid method that generally works well is to go through all of the images in the 

(a)

(b)

Figure 5.61 Combining CSLM images by keeping the brightest 
value at each pixel location. Image (a) shows 1 individual 
focal plane image from a series of 25 on an integrated circuit. 
Only the portion of the surface which is in focus is bright. 
Since the in-focus point is brightest, combining all of the indi-
vidual planes produces a result that shows the entire surface 
in focus (b).



334 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

sequence, at each pixel location, using a small neighborhood to calculate the local variance 
from the brightness values. This statistical value rises sharply when the image is in focus and 
allows selecting the pixel value that should be kept to build up an extended focus image, as 
shown in Figure 5.63.

  
(a)              (b)              (c)

Figure 5.62 Merging two images to obtain extended depth of field: (a, b) original images; (c) combined 
result.

(a) (b)

(c) (d)

Figure 5.63 Extended focus with microscope images: (a,b,c) individual focal planes showing a fly’s wing 
and leg; (d) merged result using the maximum of local variance to select pixel values from each plane.
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This procedure is easily adapted to use with the light microscope, which has fixed lenses and 
shifts the distance of the specimen from the objective lens in order to focus the image. That 
provides a series of images that are aligned and at the same magnification. With macroscopic 
imaging it is more difficult to acquire a proper sequence. The camera to subject geometry 
must be tightly controlled and it is not proper to focus each image by adjusting the lens optics 
(which also changes the magnification). Instead, with a telephoto lens the camera must be 
moved toward or away from the subject. However, when these conditions are met it is possible 
to produce an unlimited depth of field, as shown in Figure 5.64.

Another situation that calls for merging multiple images of the same scene or subject arises 
with extreme levels of brightness. Depending on the well size of the camera sensor and the 
bit depth of the digitization, it may not be possible to capture the entire range of bright-
ness in a scene in a single image. Film cameras are also limited in the maximum range of 
brightness that can be recorded. If the scene is static, acquiring two or more digital images 
with different exposure times may offer a solution. In the example of Figure 5.65, two 
such images are combined by examining the average brightness in a small neighborhood 
around each pixel location and calculating a weighted average of the individual scenes so 
that values that are clipped to black or white are replaced, local contrast is maintained, 
and the overall scene appearance is preserved. This makes it possible to see detail in both 
the shadow areas (which are completely dark in one image) and in the bright areas (which 
are completely white or “blown out” in the other). Figure 2.8 in Chapter 2 shows another 
example.

 
(a)                      (b)

Figure 5.64 Merging a series of macroscopic images to obtain extended depth of field: (a) sequence of 
images obtained by shifting distance from camera lens to subject; (b) merged result.

  
(a)              (b)              (c)

Figure 5.65 Merging two images with different exposures: (a, b) originals; (c) merged result.
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A further, but somewhat different problem arises with images that have a high range of con-
trast. Whether these are obtained by merging multiple images or by using a camera that can 
accommodate a high dynamic range, it can be difficult to display or print such images because 
of the limitations of the output devices. This limitation is more severe for hardcopy printing 
than for CRT and LCD displays, but neither can adequately handle the range of brightnesses 
that a human viewer can visually interpret in a scene. This has generated interest in finding 
ways to compress the overall brightness range of an image in such a way that local contrast is 
preserved and detail remains visible, using several of the methods illustrated above.
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6
Processing Images in 
Frequency Space

About frequency space

I t is unusual to pick up a book on image analysis without finding a significant portion of 
it devoted to a presentation of Fourier transforms (see especially Pratt, 1991; Gonzalez & 
Wintz, 1987; Jain, 1989). In part, this is due to the utility of working in frequency space to 

perform certain image processing and measurement operations. Many of these same opera-
tions can be performed on the spatial (pixel) domain image only with much greater compu-
tational effort. Another reason for the lengthy sections on these methods is that the authors 
frequently come from a background in electrical engineering and signal processing and so 
are most comfortable with the mathematics and the use of these methods for other types of 
signals, particularly the one-dimensional (time varying) electrical signals that make up much 
of modern electronics.

However, the typical image analyst interested in applying computer methods to images for 
purposes of enhancement or measurement may not be at ease with the pages of mathematics 
(and notation) used in these presentations. Furthermore, he or she may not have the fortitude 
to relate these concepts to the operation of typical image analysis software. Unable to see the 
connection between the topics discussed and the image problems encountered in real life, 
the potential user might therefore find it easier to skip the subject. This is a loss, because the 
use of frequency space methods can offer benefits in many real-life applications and provide 
another way to interpret and understand image contents. It is not essential to delve deeply 
with the mathematics to arrive at a practical working knowledge of these techniques.

The Fourier transform and other frequency space transforms are applied to two-dimensional 
images for many different reasons. Some of these have little to do with the purposes of 
enhancing visibility and selection of features or structures of interest for measurement. For 
instance, some of these transform methods are used as a means of image compression, in 
which less data than the original image may be transmitted or stored. In this type of applica-
tion, it is necessary to reconstruct the image (bring it back from the frequency to the spatial 
domain) for viewing. It is desirable to be able to accomplish both the forward and reverse 
transform rapidly and with a minimum loss of image quality.
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Image quality is a somewhat elusive concept that certainly includes the alteration of bright-
ness levels and color values, definition and location of feature boundaries, and introduction 
or removal of fine-scale texture and detail in the image. Generally, the greater the degree of 
compression, the greater the loss of image fidelity, as covered in Chapter 3. The amount of 
image degradation that can be tolerated by most visual uses of the compressed and restored 
images is far greater than is usually acceptable for image analysis purposes.

Since for most cases considered in this text, the transmission of an image from the point of 
acquisition to the computer used for analysis is not a major concern, compression is ignored 
in most of this chapter and it is assumed that the transform retains all of the data. Since the 
transforms encode the image information completely, it can be exactly reconstructed, at least 
to within the arithmetic precision of the computer being used (which is generally better than 
the precision of the original image sensor or analog-to-digital converter).

Although there are many different types of image transforms that can be used, the best 
known (at least, the one with the most recognizable name) is the Fourier transform. This is 
due in part to the availability of a powerful and very efficient algorithm for computing it, 
known as the Fast Fourier Transform or FFT (Cooley & Tukey, 1965; Bracewell, 1989), which 
is presented below. Although some programs actually perform the computation using the 
equivalent Fast Hartley Transform or FHT (Hartley, 1942; Bracewell, 1984, 1986; Reeves, 
1990), the frequency space representations are usually presented in the same format that 
the Fourier method yields. For the sake of explanation, this chapter describes the better-
known method.

The usual approach to developing the mathematical background of the Fourier transform 
begins with a one-dimensional waveform and then expands to two dimensions (an image). In 
principle, this can also be extended to three dimensions or more, although it becomes more 
difficult to visualize or display. Three-dimensional transforms between the spatial domain 
(now a volume image constructed of voxels instead of pixels) and the three-dimensional fre-
quency space representation are used, for example, in some tomographic reconstructions.

The mathematical development that follows has been kept as brief as possible, but the reader 
who suffers from “integral-o-phobia” may skip this section and go on to the examples, return-
ing here only when (and if) a deeper understanding is desired.

The Fourier transform

Using a fairly standard nomenclature and symbology, begin with a function f(x), where x is 
a real variable representing either time, or distance in one direction across an image. It is 
common to refer to this function as the spatial or time domain function and the transform F 
introduced below as the frequency space function. The function f is a continuous and well-
behaved function. In a digitized image, the values of x are not continuous but discrete (based 
on pixel spacing), and the possible brightness values are quantized as well, so the values are 
samples of the real or analog image that exists outside the computer.

Fourier’s theorem states that it is possible to construct any well-behaved one dimensional 
function f(x) as a summation of a series of sine and cosine terms of increasing frequency. 
The Fourier transform of the function f(x) is written F(u) and specifies the amount of each 
frequency term u that must be added together to make f(x). It can be written as:
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	 F u f x e dxiux( ) ( )= ⋅ −

−∞
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∫ 2π  (6.1)

where i is (as usual) √–1. The use of the exponential notation relies on the mathematical iden-
tity (Euler’s formula):

	 e ux i uxi x− = − ⋅2 2 2π µ π πcos( ) sin( )  (6.2)

One of the very important characteristics of this transform is that, given F(u), it is possible 
to recover the spatial domain function f(x) in the same way (note the change of sign in the 
exponent):

	 f x F u e duiux( ) ( )= ⋅
−∞

+∞

∫ 2π  (6.3)

These two equations together comprise the forward and reverse Fourier transform. The func-
tion f(x) is a real function, such as a time-varying voltage or a spatially varying image bright-
ness. However, the transform function F(u) is generally complex, the sum of a real part R and 
an imaginary part I:

	 F u R u iI u( ) ( ) ( )= +  (6.4)

It is usually more convenient to express this in polar rather than Cartesian form:

	 F u F u ei u( ) ( ) ( )= ⋅ ϕ  (6.5)

where |F| is the amplitude and φ is the phase. The square of the amplitude |F(u)|2 is com-
monly referred to as the power spectrum, or spectral density of f(x).

The integrals from minus to plus infinity can in practice be reduced to a summation of terms 
of increasing frequency, limited by the finite spacing of the sampled points in the image. The 
discrete Fourier transform is written as

	 F u
N

f x e i ux N

x

N

( ) ( ) /= ⋅ −

=

−

∑1 2

0

1
π  (6.6)

where N depends on the number of sampled points along the function f(x), which are assumed 
to be uniformly spaced. Again, the reverse transform is similar (but not identical; note the 
absence of the 1/N term and the change in sign for the exponent).

	 f x
N

F u ei ux N

u

N

( ) ( ) /= ⋅
=

−

∑1 2

0

1
π  (6.7)

The values of the frequency u from 0 to N–1 represent the discrete frequency components 
added together to construct the function f(x). As in the continuous case, F(u) is complex and 
may be written as real and imaginary or as amplitude and phase components.

The summation is normally performed over terms up to one-half the dimension of the image 
(in pixels), since it requires a minimum of two pixel brightness values to define the highest 
frequency present. This limit is the Nyquist frequency. Because the summation has half as 
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many terms as the width of the original image, but each term has a real and imaginary part, 
the total number of numeric values produced by the Fourier transform is the same as the 
number of pixels in the original image width, or the number of samples of a time-varying 
function, so there is no compression. Since the original pixel values are usually small integers 
(e.g., one byte for an 8 bit gray scale image), while the values produced by the Fourier trans-
form are floating point numbers (and double precision ones in the best implementations), this 
represents an expansion in the storage requirements for the data.

In both the continuous and the discrete cases, a direct extension from one-dimensional func-
tions to two- (or three-) dimensional ones can be made by substituting f(x,y) or f(x,y,z) for 
f(x) and F(u,v) or F(u,v,w) for F(u), and performing the summation or integration over two (or 
three) variables instead of one. Since the dimensions x,y,z are orthogonal, so are the u,v,w 
dimensions. This means that the transformation can be performed separately in each direc-
tion. For a two-dimensional image, for example, it is possible to perform a one-dimensional 
transform on each horizontal line of the image, producing an intermediate result with complex 
values for each pixel. Then a second series of one-dimensional transforms can be performed 
on each vertical column, finally producing the desired two-dimensional transform.

The program fragment listed below shows how to compute the FFT of a function. It is writ-
ten in C, but can be translated into any other language. On input to the subroutine, the array 
data holds values to be transformed, arranged as pairs of real and imaginary components 
(usually the imaginary part of these complex numbers is initially 0) and size is a power of 2. 
The transform is returned in the same array. The first loop reorders the input data, while the 
second performs the successive doubling that is the heart of the FFT method. For the inverse 
transform, the sign of the angle theta must be changed, and the final values must be rescaled 
by the number of points.

//even positions in data[] are real, odd are imaginary.
//input size must be a power-of-two
void FFT_Cooley_Tukey(float* data, unsigned long size) {
 unsigned long mmax, n = size << 1;
 unsigned long i, j = 1;

  for (i = 1; i < n; i += 2) { //Decimation-In-Time
 unsigned long m;
 if (j > i) { //complex swap
  swap(data[j-1], data[i-1]);
  swap(data[j], data[i]);
 }
 m = size;
 while ((m >= 2) && (j > m)) {
  j -= m;
  m >>= 1;
 }
 j += m;
}
mmax=2; //Danielson-Lanczos, divide-and-conquer
while (mmax < n) {
 unsigned long istep = mmax << 1;
 float   theta = -(2*3.141592653589793 / mmax);
 float  wtemp = sin(0.5 * theta);
   //complex: W = exp(-2*pi*m / levelp)
 float   wpr = -2.0 * wtemp * wtemp;
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   //real component of W
 float  wpi = sin(theta);
 float  wr = 1.0;
 float   wi = 0.0;
 for (m = 1; m < mmax; m += 2) {
  for (i = m; i <= n; i += istep) {
   unsigned long k = i + mmax; //second index
   float  tempr = wr * data[k-1] - wi * data[k];
   float  tempi = wr * data[k] + wi * data[k-1];

   data[k-1] = data[i-1] - tempr;
   data[k] = data[i] - tempi;
   data[i-1] += tempr;
   data[i]  += tempi;
  }
  wtemp = wr;
  wr += wr * wpr - wi * wpi;
  wi += wi * wpr + wtemp * wpi;
 }
 mmax = istep; //step to the next level
  } //while mmax continues to increase
}//FFT

Applying this one-dimensional transform to each row and then each column of a two-dimen-
sional image is not the fastest way to perform the calculation, but it is by far the simplest to 
understand and is used in many programs. A somewhat faster approach, known as a butterfly 
because it uses various sets of pairs of pixel values throughout the two-dimensional image, 
produces identical results. Storing an array of W values as predetermined constants can also 
provide a slight increase in speed. Many software math libraries include highly optimized FFT 
routines. Some of these allow for array sizes that are not an exact power of 2.

The resulting transform of the original image into frequency space has complex values at each 
pixel. This is difficult to display in any readily interpretable way. In most cases, the display 
shows the amplitude of the value, ignoring the phase. If the square of the amplitude is used, 
this is referred to as the image’s power spectrum, since different frequencies are represented 
at different distances from the origin, different directions represent different orientations in 
the original image, and the power at each location shows how much of that frequency and ori-
entation are present in the image. This display is particularly useful for detecting and isolating 
periodic structures or noise, which is illustrated below. However, the power spectrum by itself 
cannot be used to restore the original image. The phase information is also needed, although 
it is rarely displayed and is usually difficult to interpret visually. Because the amplitude or 
power values usually cover a very large numeric range, many systems display the logarithm 
of the value instead, and that is the convention used here.

Fourier transforms of simple functions

A common illustration in math textbooks on the Fourier transform (which usually deal with 
the one-dimensional case) is the quality of the fit to an arbitrary function by the sum of a 
finite series of terms in the Fourier expansion. The parameters for the sinusoids combined 
in the series are the amplitude, frequency, and phase, as shown in Figure 6.1. Figure 6.2 
shows the case of a step function, illustrating the ability to add up a series of sine waves to 
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produce the desired step. Step functions are important in images, since a step in brightness 
often corresponds to the edge of an object or structure. One of the important characteristics of 
the Fourier transform is that the terms in the series are independent, and adding more terms 
progressively improves the quality of the fit.

The function is assumed to be repetitive or cyclical. The fit goes on past the right and left ends 
of the interval as though the functions are endlessly repeated in both directions. This is also 
the case in two dimensions; the image in the spatial domain is effectively one tile in an end-
lessly repeating pattern. If the right and left edges or the top and bottom edges of the image 
are different, this can produce very noticeable effects in the resulting transform. One solution 
is to embed the image in a larger one consisting of either zeroes or the average brightness 
value of the pixels. This “padding” also allows applying the FFT procedure to images whose 
dimensions are not an exact power of 2 (64, 128, 256, 512, 1024, …) but makes the image 
up to twice as large in each direction, requiring four times as much storage and calculation. 
Padding is particularly useful when correlation is performed between images of different 
sizes, as shown below.

Figure 6.1 The parameters for the sinusoid y = amplitude • sin (frequency • 2π x + phase) are: (a) 
amplitude; (b) frequency; (c) phase.

Figure 6.2 Approximating a step function with 1, 2, 3, 5, 10, 20, and 40 terms in the Fourier series.
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The amplitude of the Fourier coefficients from the transform shown in Figure 6.2 is plotted 
vs. frequency in Figure 6.3. For the step function, this consists only of the odd terms. As is 
typical for Fourier transforms, the first few terms (the low frequencies) are large and the higher 
order terms (the high frequencies) have smaller amplitudes. Figure 6.4 reiterates the duality 
of the Fourier transform process. The spatial and frequency domains show the information in 
very different ways, but the information is the same. Of course, the plot of amplitude in the 
frequency transform does not show the important phase information, but it is understood that 
the values are actually complex. Shifting the spatial domain image does not alter the ampli-
tude values, but does change the phase values for each sinusoidal component.

It is important to recall, in examining these transforms, that the axes represent frequency. 
The low-frequency terms provide the overall shape of the function, while the high-fre-
quency terms are needed to sharpen edges and provide fine detail. It is important that these 
terms are independent of each other (this is equivalent to the statement that the basis func-
tions — the sinusoidal waves — are independent). Extending the transform summation to 
include coefficients at higher frequencies does not change the previous ones, and selecting 
any particular range of terms to reconstruct the function does so to the greatest accuracy 
possible with those frequencies.

Figure 6.3 Amplitude of the first 25 
terms in the Fourier series for the 
step function.
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and inverse transform and 
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domain representations of a 
step function.
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Proceeding to two dimensions, Figure 6.5 shows four images of sinusoidal variations in bright-
ness. The first three vary in spacing (frequency) and orientation; the fourth is the summation of 
all three. For each, the two-dimensional frequency transform is particularly simple. Each of the 
“pure tones” has a transform consisting of a single point (identifying the frequency and orienta-
tion). Because of the convention of the plotting coordinates, the point is shown in two symmetri-
cal locations around the origin, which by convention lies at the center of the power spectrum 
plot. The transform of the sum image is just the sum of the three individual transforms.

It is common to display the two-dimensional transform with the frequencies plotted radially 
from the center, which is consequently redundant (the top and bottom or left and right halves 
are duplicates, with rotational symmetry about the origin). In some implementations, this pat-
tern is shifted so that the origin is at the corners of the image and the highest frequencies are 
in the center. One format can be converted to the other by swapping quadrants of the display. 
For the purposes of image processing (removing or selecting specific frequencies, etc.) the 
display with the origin centered is most convenient and has been adopted here.

Two-dimensional power spectra are easiest to describe using polar coordinates. The frequency 
increases with radius ρ, and the orientation depends on the angle θ. The power spectrum of 
the low frequency (largest spacing) sinusoid has a point close to the origin, and the higher 
frequency sinusoids have points farther away, and in directions that identify the orientation of 
the lines. The value at the origin is called the DC level and represents the average brightness 
of the original image. The summation of the three sinusoids in Figure 6.5 produces an image 
whose frequency transform is the sum of the three individual transforms. This principle of 
additivity is important for much of the discussion below. Erasing the information from a loca-
tion in the frequency transform is equivalent to removing the corresponding information from 
every part of the spatial domain image.

Figure 6.6 shows a two-dimensional step consisting of a rectangle. The two-dimensional 
frequency transform of this image produces the same series of diminishing peaks in the x 
and y axis directions as the one-dimensional step function. The darkness of each point in the 
power spectrum display represents the log of the power (the square of the amplitude) of the 
corresponding frequency. Limiting the reconstruction to only the central (lower frequency) 
terms produces the reconstructions shown. Just as for the one-dimensional case, this limits 
the sharpness of the edge of the step and produces some ringing (oscillations near the edge) 

Figure 6.5 Three sinusoidal line patterns (top), with their frequency transforms, and their sum.
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in the overall shape. The line profiles through the 
image show the same shapes illustrated in Figure 6.2 
for the one-dimensional case.

Figure 6.7 shows two images with the same shape in 
different orientations. The frequency transforms rotate 
with the feature. The power spectrum display shows 
three lines of values that correspond to the series of 
sinusoids needed to specify each of the edges (step 
functions) of the original (spatial domain) triangle.

Frequencies and orientations

It is helpful to develop some familiarity with the power 
spectrum display of the frequency space transform 
using simple images. In Figure  6.8a, the lines can 
be represented by a single peak because their bright-
ness profile is perfectly sinusoidal; thus only a single 
frequency is present. If the line profile is different, for 

example more like a square wave than a sinusoid, more terms are needed to represent the 
shape and consequently more peaks appear in the power spectrum at increasing frequencies, 
called harmonics. Figure 6.8b shows an example in which the frequency transform consists 
of a series of peaks at multiples of the lowest frequency, in the same orientation (perpendicu-
lar to the line angle).

Figure 6.9 shows an example using a real image, a light micrograph of stained skeletal 
muscle, in which there is a just-visible band spacing that is difficult to measure because 
of the spotty staining contrast (even with contrast expansion). The Fourier transform 

Figure 6.6 At left is a two-dimensional step function and its frequency transform (top). Each panel 
shows a reconstruction with different numbers of terms (shown as a portion of the frequency trans-
form). The bottom row shows horizontal line profiles through the center of the reconstructed spatial 
domain image.

Figure 6.7 Rotation of a spatial domain 
image (left) and the corresponding 
rotation of the frequency transform 
(right).
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shows the spots that identify the band structure. The spacing can be easily and accurately 
determined by measuring the distance to the first major peak. Reconstruction with only 
the first peak shows the basic band spacing, and adding the second and third harmonics 
better defines the band shape. This introduces the idea of using a mask or filter to select 
(or eliminate) some of the frequencies to reconstruct an image, which is illustrated exten-
sively below.

The examples above show that any periodic structure in the original spatial domain image is 
represented by a peak in the power spectrum image at a radius corresponding to the frequency 
or spacing and in a direction corresponding to the orientation. In a real image, which typically 
consists of mostly non-periodic information, any such peaks are superimposed on a broad 
and sometimes noisy background. However, finding the peaks is generally much easier than 
finding the original periodic structure, and measuring the peak locations accurately is much 
easier and more accurate than trying to extract the same information from the original image, 
because all of the occurrences are effectively averaged together in the frequency domain.

Figure 6.10 shows a two-dimensional example of peak location measurement. The spatial 
domain image is a high-resolution TEM image of the lattice structure in pure silicon. The 
regular spacing of the bright spots represents the atomic structure of the lattice. Measuring all 
of the individual spacings of the atoms is very time consuming and not particularly accurate. 
The frequency domain representation of this image shows the periodicity clearly. The series of 
peaks indicates that the variation of brightness is not a simple sine wave, but contains many 
higher harmonics. The first-order peak gives the basic atomic spacing (and orientation), which 

(a)

(b)

Figure 6.8 A set of lines (left) 
and the frequency trans-
form (right):

  (a) sinusoidal lines;

  (b)  lines with a non-
sinusoidal brightness 
profile.
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can be measured by interpolating the peak position in the power spectrum to a fraction of 
a pixel width, corresponding to an accuracy for the atom spacing of a few parts in ten thou-
sand. The spacing of the features that produce the point in the power spectrum is the width 
of the image (e.g., 256 pixels in the example, times whatever magnification calibration applies) 
divided by the distance in pixels from the origin to the peak in the power spectrum.

The figure also shows several other characteristic features found in many FFT power spectrum dis-
plays. The dark vertical and horizontal lines correspond to the sequence of terms needed because 
the left and right edges and the top and bottom edges of the image do not match. Because the 

(a)

(b)

(c)

(d)

(e)

Figure 6.9 Light micrograph of stained (toluidine 
blue) 1 µm section of skeletal muscle:

  (a) original image;

  (b)  expanded contrast (the band spacing is 
still difficult to measure due to spotty stain 
contrast);

  (c)  the FT power spectrum showing spots that 
identify the band spacing, with a plot of the 
amplitude vs. frequency (harmonic peaks 
marked);

  (d)  reconstruction with just the first harmonic 
shows the basic band spacing;

  (e)  adding the second and third harmonics 
improves the band shape.
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mathematics of the Fourier transform assume that the functions being transformed are continu-
ous and boundless, the image is repeated to the left and right and above and below the original. 
Also, notice that the power spectrum display has a rather abrupt drop in magnitude beyond about 
one-third of the radius. That is an indication that there is no information (only random pixel noise) 
at high frequencies in the horizontal dimension and reveals the actual resolution of the original 
image. As Chapter 1 mentions, many images are recorded with more pixels than the actual reso-
lution, and as shown below, the Fourier transform can be used to measure that resolution.

If the regularly spaced peaks in the transform are selected (using procedures shown below) 
and all other frequencies suppressed, the inverse transform shown in the figure has just the 
regular periodic spacing of the atoms in the original image. This follows directly from the 
principle of separability and additivity shown in Figure 6.5. Removing the terms in the fre-
quency transform that correspond to random variations in the original image removes that 
information from the retransformed image and reveals just the periodic structure.

To an electron microscopist, the power spectrum image of the frequency domain transform 
looks just like an electron diffraction pattern, which in fact it is. The use of microscope optics 
to form the diffraction pattern is an analog method of computing the frequency domain rep-
resentation. This can be done with any image by setting up suitable optics. While it is a fast 
way to obtain the frequency domain representation, this method has two serious drawbacks 
for use in image processing.

Figure 6.10 High resolution TEM image of atomic lattice in silicon (upper left), with the frequency 
transform (upper right). Isolating just the periodic frequencies (lower left) and retransforming shows 
just the atoms (lower right). (Image courtesy of Dr. Sopa Chevacharoenkul, Microelectronics Center 
of North Carolina).
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First, the phase information is lost when the diffraction pattern is recorded, so it is not pos-
sible to reconstruct the spatial domain image from a photograph of the diffraction pattern. 
(Recording the entire diffraction pattern including the phase information results in a holo-
gram, from which the original image can be reconstructed.) It is possible to perform the 
reconstruction from the diffraction pattern in the microscope by using suitable lenses (indeed, 
that is how the microscope functions), so in principle it is possible to insert the various masks 
that would produce the same result as that shown in the figure. However, making these masks 
or filters is difficult and exacting work that must usually be performed individually for each 
image to be enhanced. Consequently, it is much easier (and more controllable) to use a com-
puter to perform the transform and to apply any desired masks.

It is also easier to perform measurements on the frequency domain representation using the 
computer. Locating the centers of peaks by curve fitting requires recording the diffraction 
pattern (which may introduce nonlinearities or saturation over the extremely wide dynamic 
range of many patterns). Considering the speed with which a spatial domain image can be 
recorded, the frequency transform calculated, and interactive or automatic measurement per-
formed, the computer is generally the tool of choice. This analysis is made easier by the ability 
to manipulate the display contrast so that both brighter and dimmer spots can be seen in the 
power spectrum, and to apply image processing tools such as background leveling and a top 
hat filter to the power spectrum display to isolate the peaks of interest.

When spots from a periodic structure are superimposed on a general background, the total 
power in the spots expressed as a fraction of the total power in the entire frequency transform 
gives a useful quantitative measure of the degree of periodicity in the structure. This may also 
be used to compare different periodicities (different spacings or orientations) by comparing 
summations of values in the power spectrum. For electron diffraction patterns, this is a func-
tion of the atomic density of various planes and the atomic scattering cross-sections.

While the display of the power spectrum corresponds to a diffraction pattern and is the 
most familiar presentation of frequency space information, it must not be forgotten that the 
phase information is also needed to reconstruct the original image. Figure  6.11a shows 
a test image, consisting of a regular pattern of spots. Figures 6.11b and 6.11c show the 
amplitude and phase values, respectively (phase information is not often displayed, as it is 
difficult to interpret visually). If the phase information in the Fourier transform is erased, 
setting all phase values to zero, the reconstruction (Figure 6.11d) shows some of the same 
periodicity, but the objects are no longer recognizable. The various sine waves that add to 
define the image have been shifted in phase, so that the individual feature boundaries are 
not reconstructed.

The assumption that the image is one repetition of an endless sequence is also important. 
Most real images do not have perfectly matching left and right or top and bottom edges. This 
produces a large step function at the edge, which is more apparent if the image is shifted by 
an arbitrary offset (Figure 6.11e). This does not alter the power spectrum image, although 
the phase values are shifted. The discontinuity requires high frequency terms to fit, and since 
the edges are precisely horizontal and vertical, the power spectrum display shows vertical and 
horizontal lines superimposed on the rest of the data, which are visible in Figure 6.11b. For 
the test pattern, the result of eliminating these lines from the original frequency transform 
and then retransforming is shown in Figure 6.11f. The central portion of the image is unaf-
fected, but at the edges the discontinuity is no longer sharp because the many frequencies 
needed to create the step functions at the edges are missing. The pattern from each side has 
been reproduced crossing over to the other side of the boundary and superimposed on the 
original pattern.
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Preferred orientation

Figure 6.12 shows another example of a periodic structure, a thin film of magnetic material 
viewed in polarized light. The stripes are oppositely oriented magnetic domains in the mate-
rial that are used to store information in the film. The frequency transform of this image shows 
the spacing of the domains, but instead of a single peak, the arcs that show the variation in 
orientation of the stripes, which is evident in the original image but difficult to quantify.

The angular range of the arcs in the power spectrum and the variation of brightness (power) 
with angle along them can be measured to characterize the degree of orientation in the struc-
ture. Even for structures that are not perfectly periodic, the integrated power as a function of 
angle can be used to measure the preferred orientation. This is identical to the results of auto-
correlation operations carried out in the spatial domain, in which a binary image is shifted 
and combined with itself in all possible displacements to obtain a matrix of fractional values, 
but it is much faster to perform with the frequency domain representation. Also, this makes it 
easier to deal with gray scale values.

   
(a)               (b)               (c)

           
(d)               (e)               (f)

Figure 6.11 Test image illustrating the role of phase: (a) original regular pattern; (b) Fourier transform 
power spectrum of (a); (c) phase values in the transform, shown using color to represent angles from 
0 to 360 degrees; (d) retransformation of (b) with all phase information set to zero; (e) the original 
test image with an arbitrary spatial shift showing the discontinuities at the original image boundar-
ies; (f) retransformation of (b) with the horizontal and vertical lines reduced to zero magnitude, so 
that the right and left edges of the image, and the top and bottom edges, are forced to match.
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Reconstructing periodic structures that are not perfectly aligned can be performed by select-
ing the entire arc in the frequency transform. Figure 6.13 illustrates this with a virus particle. 
The TEM image of the negatively stained virus hints at the internal helical structure, but does 
not show it clearly. In the frequency transform, the periodic spacing and the variation in direc-
tion are evident. The spacing can be determined by measuring the distance from the center 
to the arc, and the helix angle determined from the angular extent of the arc. Retransforming 
only these arcs shows the periodicity, and limiting the reconstruction to the interior of the 
virus makes the internal helical pattern evident.

Poor image focus is revealed in Fourier transform power spectra by loss of high frequency 
data. As shown in Figure 6.14, the average amplitude as a function of frequency (radius) gen-
erally drops off gradually for a well-focused image, but falls abruptly when the high frequen-
cies that are needed to produce sharp edges in the image are lost. Many automatic focusing 
algorithms try to maximize high frequencies, although the presence of noise in images can 
confuse this algorithm

Astigmatism is a defect in images that results in the defocusing of the image and a consequent 
loss of sharpness in one direction. This is a particular problem with electron microscopes 
because of the operating principles of electromagnetic lenses. Even skilled operators devote 
considerable time to making adjustments to minimize astigmatism, and it is often very diffi-
cult to recognize it in images in order to correct it. Astigmatism becomes immediately evident 
in the frequency transform, since the decrease in brightness or power falls off radially (at 
higher frequencies) and the asymmetry is evident.

Figure 6.15 shows an example. The image shows a high resolution image of a polycrystalline 
material. The regular structures in the crystalline lattice give the expected diffraction pattern, 
but the power drops off rapidly in the vertical direction, indicating that the image is blurred 
in that direction by astigmatism. Correcting the astigmatism produces an image whose power 
spectrum shows a more uniform radial decrease in magnitude.

Texture and fractals

Besides the peaks in the power spectrum resulting from periodic structures that may be 
present and the limitation at high frequencies due to finite image resolution, it may seem as 

Figure 6.12 Polarized light image of magnetic domains in thin film material (left), with the frequency 
transform (right).
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though there is only a background containing little useful information. This is not the case. 
Many images represent the brightness of light scattered from surfaces, or other data such as 
surface elevation. In these images, the roughness or texture of the surface is revealed by and 
may be measurable from the power spectrum.

The concept of a fractal surface dimension is discussed in Chapter 15. Surfaces that are fractal 
have an area that is mathematically undefined. It is greater than the projected area covered 
by the irregular surface and increases as the measurement scale becomes finer. The fractal 
dimension may be determined from the slope of a line on a log-log plot of measured area vs. 
the size of the measuring tool. Many naturally occurring surfaces resulting from wear, ero-
sion, agglomeration of particles, or fracture are observed to have this character. It has been 
shown that images of these surfaces, whether produced by the scattering of diffuse light or 
the production of secondary electrons in an SEM, are also fractal. That is, the variation of 
brightness with position obeys a similar mathematical relationship. Also, as pointed out in 

   
(a)                    (b)

   

Figure 6.13 TEM image of a virus (courtesy 
of Dr. R. L. Grayson, Virginia Polytechnic 
Institute, Blacksburg, VA):

  (a)  original image, in which the internal 
helical structure is difficult to discern;

  (b)  frequency transform of image (a), in 
which the regular repeating structure of 
the virus and its angular variation in 
orientation is evident;

  (c)  retransformation of just the peaks in the 
frequency transform, limiting the recon-
struction to the interior of the virus.

            (c)
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Chapter 5 (where it is measured by comparing pixel brightness values as a function of the 
distance between them), the fractal dimension is also a useful tool for characterizing the visu-
ally recognized texture that is present in images.

Fractal dimension is a powerful and compact representation of the surface roughness, which 
can often be related to the history of the surface and the properties that result. Measuring 
surface fractals directly is rarely practical, although it can be done physically by determining 
the number of molecules of various gases that can adhere to the surface as a function of their 
size. One common imaging approach is to reduce the dimensionality and measure the fractal 

(a) (b)

(c) (d )

Figure 6.14 Detecting focus: (a) in-focus image; (b) Fourier transform power spectrum of the bright-
ness values with plot of average power vs. radius; (c) slightly out-of-focus image; (d) Fourier trans-
form power spectrum with plot of average power vs. radius, showing lack of information at high 
frequencies.
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dimension of a boundary line produced by intersecting the surface with a sampling plane. 
This may either be produced by cross-sectioning or by polishing down into the surface to 
produce islands. In either case, the rougher the surface, the more irregular the line of inter-
section. In the case of polishing parallel to the surface to produce islands, the perimeter has a 
fractal dimension (the slope of a log–log plot relating the measured line length and the length 
of the measurement tool), which is just 1.0 less than that of the surface.

For a range image (brightness represents elevation) of a fractal surface, the power spec-
trum shows the superposition of sinusoids of all frequencies and orientations and has a 
specific characteristic: the amplitudes of the coefficients in the Fourier transform decrease 

   
(a)                    (b)

   
(c)                    (d)

Figure 6.15 The effect of astigmatism on the power spectrum: (a) image without astigmatism; (b) power 
spectrum of (a) showing uniformity in all directions; (c) astigmatic image; (d) power spectrum of (c) 
showing loss of information at top and bottom.
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exponentially with the log of frequency, while the phases of the terms are randomized. This 
can be understood qualitatively, since by definition a fractal curve is self-similar and has 
detail extending to ever-finer scales (or higher frequencies). This also implies that the pro-
portion of amplitudes of higher frequency terms must be self-similar. An exponential curve 
satisfies this criterion.

Plotting the log of the amplitude (or the power spectrum, which is the square of the amplitude) 
versus the logarithm of frequency produces a straight line plot that can be analyzed. There is 
a simple relationship between the fractal dimension of a profile and the exponential decrease 
in amplitude of the terms in a Fourier expansion, as shown by Feder (1989). This correlation 
makes it practical to use the radial decrease of amplitude in a two-dimensional Fourier-
transform image as a measure of roughness and the directional variation of that decrease as 
a measure of orientation (Mitchell & Bonnell, 1990; Russ, 1990, 1994).

Figure  6.16 shows a range image for a fractal surface, with its Fourier transform power 
spectrum. Plotting log (amplitude) vs. log (frequency) as shown in Figure 6.16c produces a 
straight line, and a plot of the histogram of the phase values shows a uniform random dis-
tribution, which is required for a fractal geometry. The slope of the plot gives the dimension 
of the surface (which must lie between 2.0 for a Euclidean surface and 2.999... for one so 
irregular that it effectively fills three-dimensional space) as Fractal Dimension = (6 + Slope) / 
2, or about 2.2 for the example shown. This is an isotropic surface produced by shotblasting 
a metal, so the slope is the same in all directions.

Figure 6.17 shows another surface, produced by machining, with tool marks oriented in a 
specific direction. Similar analysis of this surface (Figure 6.17c) shows that while it is still 

   
(a)                  (b)

Log (Power) vs. Log (Frequency)

Histogram of Phase values

Slope

Intercept

  

Figure 6.16 Fractal analysis of a 
range image:

  (a)  original image (shotblasted 
metal surface);

  (b)  Fourier transform power 
spectrum;

  (c)  analysis of the Fourier trans-
form as described in the 
text.

             (c)
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fractal (with average dimension about 2.25), it is not isotropic. There are two ways to depart 
from isotropy; one is changing the slope of the log (amplitude) vs. log (frequency) plot, and 
the other its intercept, as a function of direction. Chapter 15 deals with fractal surface geom-
etry in more detail (see also Russ, 1994, 2001b).

Measuring the two-dimensional Fourier transform is more efficient than measuring many indi-
vidual brightness profiles in the original image. It also allows any periodic structures that may 
be present to be ignored, since these show up as discrete points in the frequency transform 
image and can be skipped in determining the overall exponential decrease in the amplitude 
values. In other words, it is possible to look beyond periodic structures or noise (e.g., arising 
from data acquisition) in the images and still characterize the underlying chaotic but self-
similar nature of the surface.

Isolating periodic noise

As noted above (and illustrated in Figure 6.5), the frequency transform has a property of 
separability and additivity. Adding together the transforms of two original images or functions 
produces the same result as the transform of the sum of the originals. This idea opens the way 
to using subtraction to remove unwanted parts of images. It is most commonly used to remove 
periodic noise, which can be introduced by the equipment used to record or transmit images, 
or by some kinds of environmental interference (such as illumination or vibration). Several 
examples are shown below. If the frequencies associated with the noise can be determined 
(often possible directly from the Fourier transform), then setting the amplitude of those terms 

   
(a)                  (b)

Log (Power) vs. Log (Frequency)

Histogram of Phase values

Slope

Intercept

 

Figure 6.17 Fractal analysis of 
a non-isotropic surface:

  (a)  original image (machined 
metal surface);

  (b)  Fourier transform power 
spectrum;

  (c)  analysis of the Fourier 
transform as described in 
the text.

             (c)
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to zero leaves only the desired remaining parts of the information. This can then be inverse 
transformed back to the spatial domain to obtain the image without the noise.

The same method of removing selected frequencies can be used for a more basic type of filter-
ing as well. Figure 6.18 shows an image with its Fourier transform power spectrum. There are 
no evident “spikes” or noise peaks, just a gradual reduction in amplitude at higher frequen-
cies. Keeping the low frequencies and removing the high frequencies can be accomplished 
by zeroing the amplitude of all sinusoids above a selected frequency. This “low pass” filtering 
operation (i.e., passing or keeping the low frequencies) produces the result in Figure 6.18d. 
Conversely, keeping the high frequencies and removing the low frequencies (a “high pass” 
filter) produces the result in Figure 6.18f.

Except for the ringing around boundaries (addressed below), the results are exactly the same 
as those for Gaussian smoothing and Laplacian sharpening, shown in the two preceding 
chapters. It can be shown mathematically that the operations are exactly the same whether 
performed in the frequency domain or in the pixel domain.

In this illustration of filtering, portions of the Fourier transform array are selected based 
on frequency, which is why these filters are generally called low pass and high pass filters. 
Usually, selecting arbitrary regions of the frequency domain for reconstruction produces “ring-
ing” artifacts, unless some care is taken to shape the edges of the filter region to attenuate 

   
(a)             (b)             (c)

   
(d)             (e)             (f)

Figure 6.18 Frequency filtering using the Fourier transform: (a) original image; (b) Fourier transform 
power spectrum; (c) reducing to zero the amplitude of all frequencies above a chosen value; (d) 
retransforming just the low frequencies (a low-pass filter); (e) reducing to zero the amplitude of all 
frequencies below a chosen value; (f) retransforming just the high frequencies (a high-pass filter).
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the data smoothly. This can be seen 
in the one-dimensional example 
of the step function in Figure 6.2 
and the corresponding two-dimen-
sional example of Figure  6.6. If 
only the first few terms are used 
then, in addition to not model-
ing the steepness of the step, the 
reconstruction has oscillations near 
the edge, which are usually called 
ringing. These can be seen in the 
reconstructions in Figures  6.18d 
and 6.18f.

Shaping the edge of the filter can 
prevent ringing at sharp discontinu-
ities. This behavior is well-known 

in one-dimensional filtering (used in digital signal processing, for example). Several different 
shapes are commonly used. Over a specified distance, the filter magnitude is reduced using 
a weighting function. The simplest function is linear interpolation (also called a Parzen win-
dow function). Better results can be obtained using a parabolic or cosine function (also called 
Welch and Hanning window functions, respectively, in this context). The most elaborate filter 
shapes do not drop to zero, but extend a very long tail beyond the cutoff point. One such 
shape is a Gaussian. Figure 6.19 shows several of these shapes.

Another filter shape often used in these applications is a Butterworth filter, whose magnitude 
can be written as
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where R is the distance from the center of the filter (the center of the power spectrum image, 
or zero-frequency point), and R0 is the nominal filter cutoff value. The constant C is usu-

ally set equal to 1.0 or to 0.414; the 
value defines the magnitude of the 
filter at the point where R = R0 as 
either 50% or 1/√2. The integer n is 
the order of the filter; its most com-
mon values are 1 or 2. Figure 6.20 
shows comparison profiles of sev-
eral Butterworth low pass filters 
(ones that attenuate high frequen-
cies). The inverse shape having 
negative values of n passes high fre-
quencies and attenuates low ones. 
Figure  6.21 shows the effect that 
shaping the frequency cutoff has on 
the quality of the high and low pass 
filtered images from Figure 6.18.

Figure 6.19 Some common filter edge profiles.

Figure 6.20 Shapes for Butter- worth filter profiles of order 
1, 2, and 3.
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Figure 6.22 shows an image with both fine detail and some noise along with its frequency 
transform. Applying second-order Butterworth low-pass filters with radii of 10 and 25 pixels 
in the frequency domain image smooths the noise with some blurring of the high-frequency 
detail (Figure 6.23), while the application of Butterworth high pass filters with the same radii 
emphasizes the edges and reduces the contrast between the large (low frequency) regions 
(Figure 6.24). All of these filters are applied to the amplitude values as multiplicative masks; 
phases values are not altered. Adjusting the radius of the filter cutoff controls the range of 

 
(a)                    (b)

Figure 6.21 Shaping the frequency cutoff with a Butterworth order 2 filter: (a) low pass filter (com-
pare to Figure 6.18d); (b) high pass filter (compare to Figure 6.18f).

 
(a)                    (b)

Figure 6.22 Image and its transform used for filtering in Figures 6.23 and 6.24: (a) original image; 
(b) Fourier transform power spectrum of the brightness data (the red circles indicate the radii of 
the 50% cutoff points used for the Butterworth filters).
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frequencies in the inverse transformed image, just as changing the size of the convolution 
kernel alters the degree of smoothing or sharpening when the equivalent procedure is carried 
out in the spatial or pixel domain.

It is not necessary for the amplitude to be reduced to zero. Sometimes the lower limit is set to 
a fraction, so that the high (or low) frequencies are not completely attenuated. It is also pos-
sible to use values greater than 1. A high frequency emphasis filter with the low frequency 
value set to a reduced value, such as 0.5, and a high frequency value greater than 1, may be 

 
(a)                     (b)

Figure 6.23 Filtering of Figure 6.22a with low pass Butterworth Filters: (a) 50% cutoff diameter equal 
to 10% of the maximum (smaller circle in Figure 6.22b); (b) 50% cutoff diameter equal to 20% of the 
maximum (larger circle in Figure 6.22b).

 
(a)                     (b)

Figure 6.24 Filtering of Figure 6.22a with high-pass Butterworth Filters: (a) 50% cutoff diameter 
equal to 10% of the maximum (smaller circle in Figure 6.22b); (b) 50% cutoff diameter equal to 20% 
of the maximum (larger circle in Figure 6.22b).
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applied to an image whose brightness values have previously been converted to their loga-
rithms. The use of the log of brightness data is important because it makes the multiplicative 
effect of illumination and reflectance into additive terms. The high pass filter applied to these 
values suppresses the (large) variation in illumination and makes more evident the (smaller) 
variation in reflectance, sharpening the appearance of detail. Figure 3.10 in Chapter 3 illus-
trates the result. While the physical reasoning behind this homomorphic filter is a separation 
of illumination and reflectance components in the image, as with most of these filters the real 
justification is that it improves the appearance of many images of practical interest.

It is also possible to select a region of the Fourier transform image that is not centered on 
the origin. Figure 6.25 shows a selection of intermediate frequency values lying in a range 
of directions, along with the resulting reconstruction. This kind of filtering may be useful to 
select directional information from images. The orientation of the frequency component in 
the transform is perpendicular to the orientation of the corresponding periodic lines in the 
spatial domain. Removing selected frequencies and orientations is performed the same way, 
as shown below. This figure also demonstrates the basic characteristic of Fourier transform 
images: locations in the Fourier transform image identify periodicity and orientation informa-
tion from any or all parts of the spatial domain image. As shown, the correct shape for off-
centered regions is a combination of annuli and wedges that have cutoffs corresponding to 
frequencies and angles, rather than the more easily constructed circles or rectangles, and the 
edges require the same type of shaping shown above.

Selective masks and filters
Once the location of periodic noise in an original image is isolated into a few points in 
the Fourier transform image, it becomes possible to remove the noise by removing those 

  
(a)               (b)               (c)

 

Figure 6.25 Directional filtering:

  (a) original test pattern;

  (b) Fourier transform power spectrum;

  (c) mask retaining terms in a range of orientations;

  (d) retransforming the frequencies preserved by the mask.

       (d)
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frequency terms. A filter removes selected frequencies and orientations by reducing the 
magnitude values for those terms, usually to zero. The phase information is not altered by 
the filter.

(a)

(c)

(b)

Figure 6.26 Removal of periodic noise: (a) original image with outline of processed region; (b) Fourier 
transform power spectrum; (c) mask corresponding to noise spikes;         (Continued)
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There are many different ways to specify and to apply this reduction. Sometimes it is practical 
to specify a range of frequencies and orientations numerically, but most often it is convenient 
to do so using the magnitude or power spectrum display of the Fourier transform image. 
Manually or automatically selecting regions on this display allows specific peaks in the power 
spectrum, corresponding to the periodic information, to be selected for elimination. The terms 
“filter” and “mask” as used here are essentially synonymous (in some texts and programs a 
mask is understood to consist of just 0 or 1 values, whereas a filter may have continuous val-
ues for attenuation; since a mask chosen to eliminate selected frequencies must still in general 
have the cutoff edges shaped, the two terms are used interchangeably here).

In a few cases a filter can be constructed mathematically and applied directly to the stored 
transform, but usually it is created as an array of pixels as large as the transform, containing 
values that are multiplied by the magnitude of the FFT data. The values may consist of just 
“on” or “off,” to remove or leave unchanged the original terms, but in many cases they can 
have intermediate values, and instead of values in the range 0...1, they can be represented by 
the same 0...255 range of values as used in an image. That means the mask or filter can itself 
be treated like an image, and all of the tools for processing images, such as Gaussian filters to 
smooth edges, can be applied to it and to the power spectrum display.

Rather than the use of combinations of arcs and radial lines, for isolated noise peaks (often 
referred to as noise “spikes”) it is convenient and usually acceptable to use small circles to 
define the regions when they consist of small points. It is important to use a smoothing func-
tion to modify the edges of the regions. When the transition takes place over a distance of 
only a few pixels, the differences between the various transition curves shown above are of 
little importance, and a simple Gaussian smooth is most conveniently applied.

Figure 6.26 illustrates the removal of periodic noise from an image by removing the cor-
responding frequencies from the Fourier transform. A square region with power-of-two 

(d) (e)

Figure 6.26 (Continued) (d) removal of noise spikes; (e) retransformed result.
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dimensions within the original image is selected and the FFT computed. The two dark “spikes” 
(each of which appears twice in the power spectrum) correspond in orientation and radius to 
the dominant noise in the image. Removing the spikes eliminates the noise, which is still vis-
ible in the region around the processed area (and extends slightly across the boundaries of the 
region). Notice that all of the fine lines and details are preserved, because they are composed 
of different frequencies.

Usually, there are multiple spikes and it is only by first examining the power spectrum that the 
presence and exact location of these points can be determined. Figure 6.27 shows an image 
of a halftoned print from a magazine. The pattern results from the halftone screen used in the 
printing process. In the frequency transform of the image, this regular pattern shows up as 
well-defined narrow peaks or spikes. Filtering removes the peaks by setting the amplitude at 
those locations to zero (but not altering any of the phase information). This allows the image 
to be retransformed without the noise.

The example in Figure 6.26 relies on human observation of the peaks in the Fourier trans-
form image, recognition that the peaks are responsible for the periodic noise, and manually 
selecting them to produce the filter. In many cases, it is possible to construct an appropriate 
image filter automatically from the Fourier transform power spectrum. The guiding principle 
is that peaks in the power spectrum that are narrow and rise significantly above the local 
background should be removed. If the Fourier transform power spectrum image is treated like 
an ordinary spatial domain gray scale image, this peak removal can often be accomplished 
automatically using a rank-based filter like the top hat, as described in Chapter 4. This is the 
method used in Figure 6.27; the filter located the spikes, including the point at the origin, 
but this must be removed from the filter and retained in the transform, as it represents the 
average brightness of the image.

When the original image is a color print, the situation is slightly more complicated. As shown in 
Chapter 3 and illustrated in Figure 6.28, colored halftone prints are typically made using cyan, 
magenta, yellow, and black inks, with each color having a halftone screen oriented at a differ-
ent angle. The procedure required is to separate the color channels, process each one, and then 
recombine them for the final result. In the figure, the power spectra for each of the channels are 
shown superimposed, in the corresponding color, to show the different screen orientations. A 
top hat filter is applied to the Fourier transform power spectrum from each channel to select the 
noise peaks, which are then removed. The individual channels are retransformed. Recombining 
the resultant color channel images produces the result shown. Of course, this method depends 
on the regular periodic spacing of the halftone dots and is not applicable to methods such as 
ink jet printers that use irregularly or randomly spaced colored dots.

Selection of periodic information

In some classes of images, it is the periodic information that is useful and the non-periodic 
noise that must be suppressed. The methods for locating the periodic peaks, constructing 
filters, smoothing the filter edges, and so forth are unchanged. The only difference is that the 
filter sense changes and the values are inverted before being multiplied with the transform 
amplitudes, so that the spikes corresponding to the periodic information are kept and the 
background corresponding to random noise is eliminated.

Figure 6.29 shows a high resolution TEM lattice image from a crystalline ceramic (mullite). 
The two-dimensional periodicity of the lattice can be seen, but it is superimposed on a variable 
and noisy background, which alters the local contrast, making it more difficult to observe the 
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(a) (b)

(c) (d)

(e) (f)

Figure 6.27 Removal of complex periodic noise: (a) original halftoned printed image; (b) Fourier trans-
form power spectrum; (c) removal of the spikes from the FFT; (d) retransformed result; (e) enlarged 
detail of image (a); (f) enlarged detail of image (d).
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details in the rather complex unit cell of this material. The Fourier transform has peaks that 
represent the periodic structure. As mentioned before, this image is essentially the same as can 
be recorded photographically using the TEM to project the diffraction pattern of the specimen to 
the camera plane. Of course, retransforming the spatial domain image from the photographed 
diffraction pattern is not possible because the phase information has been lost.

A filter or mask is constructed to select a small circular region around each of the periodic 
spots. This is done using a top hat filter with size just large enough to cover the peaks. In 
this case the filter is used to keep the amplitude of terms in the peaks but reduce all of the 
other terms to zero, which removes the random or non-periodic noise, both the short-range 
(high frequency) graininess and the gradual (low frequency) variation in overall brightness. 
Retransforming this image produces a spatial domain image which shows the lattice structure 
clearly. It is equivalent to averaging together the several hundred repetitions of the basic unit 
cell structure that is present in the original image to improve the signal-to-noise ratio.

  
(a)                      (b)

 

Figure 6.28 Halftone removal in a color image:

  (a)  original image (a magnified portion of a 
postage stamp, printed in CMYK);

  (b)  Fourier transform power spectra for each 
color channel, superimposed in color;

  (c)  removal of noise from each channel and 
recombining the color channels. Of course, 
since this book is printed using CMYK inks 
and halftoning, another set of frequencies 
and spacings is introduced in the print-
ing process which limits the ability to see 
details of the result.

           (c)
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Figure 6.30 shows another example. In the original image (a cross-section of muscle myo-
fibrils) it is nearly impossible to discern the periodic structure due to the presence of noise. 
There are isolated locations where a few of the fibrils can be seen to have a regular spacing 
and arrangement, but human observers do not easily see through the noise and variability to 
find this regularity. The Fourier transform shows the peaks from the underlying structure (as 
well as revealing the limited image resolution). Selecting only these peaks by applying a top 
hat filter to the power spectrum image (and keeping the original phase information) produces 
the result shown. The retransformed image clearly shows the six-fold symmetry expected for 
the myofibril structure. The inset shows an enlargement in which both the thick and thin fila-
ments are visible. The thin filaments, especially, cannot be seen clearly in the original image.

   
(a)                       (b)

   
(c)                       (d)

Figure 6.29 Transmission electron microscope lattice image: (a) original image; (b) Fourier transform 
power spectrum; (c) result of applying top hat filter to (b) to construct a filter; (d) retransformation 
of just the selected periodic information.



368 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

A caution is needed in using this type of filtering to extract periodic structures. It is possible to 
construct a mask that eliminates real information from the image while keeping artifacts and 
noise. Selecting points in the power spectrum with six-fold symmetry ensures that the filtered 
and retransformed spatial image shows that type of structure. This means that the critical step 
is the recognition and selection of the peaks in the Fourier transform.

There are other possible approaches to processing the power spectrum image to construct a 
mask. Figure 6.31 shows an example in which the spikes are too close together for a top hat 
filter to select them. Applying a median filter to a copy of the power spectrum image removes 
the spikes, producing a background image. Subtracting this from the original (proper in this 

  
(a)                       (b)

  
(c)                       (d)

Figure 6.30 Periodicity in cross-section of muscle myofibrils: (a) original image; (b) Fourier transform 
power spectrum; (c) spikes located with a top hat filter; (d) reconstructed image, with enlarged detail 
(images courtesy of Arlo Reeves, Dartmouth Univ.).
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(a)                       (b)

  
(c)                       (d)

  
(e)                       (f)

Figure 6.31 Reconstruction of a periodic structure: (a) original image; (b) Fourier transform power 
spectrum; (c) application of a median filter to (b); (d) subtraction of (c) from (b); (e) thresholding 
applied to (d) to produce a mask; (f) retransformed result.
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case because the power spectrum image shows the logarithm of the amplitude) levels the 
contrast so that thresholding can select all of the spikes. Applying the thresholded image as a 
mask and retransforming the image produces the averaged result. In this case the brightness 
channel from the original image is processed, and the filtered result inserted back into the 
brightness channel, leaving the color information unchanged.

It is also possible to construct a filter to select a narrow range of frequencies. An annular filter 
makes it possible to enhance a selected periodic structure. Figure 6.32 shows a high resolu-
tion TEM image of graphitized carbon in particles used for tire manufacture. The power spec-
trum is identical to the diffraction pattern and shows the predominant atom plane spacing of 
approximately 3.5 Å, in the form of a ring of spots. Applying an annular filter to select just 
that spacing, retransforming, and adding the atom positions to the original image enhances 
the visibility of the lattice structure. This is an example of a “band pass” filter that keeps a 
selected range of frequencies (in the spatial domain, the difference of Gaussians is an equiva-
lent band pass filter).

Convolution

The preceding chapters illustrate convolution performed in the spatial domain, in which a 
kernel of numbers is multiplied by each pixel and its neighbors in a small region, the results 

 
(a)               (b)

 
(d)               (e)

(c)

Figure 6.32 Bandpass filter:

  (a)  original TEM image of 
graphitized carbon;

  (b)  the Fourier transform 
power spectrum show-
ing the incomplete ring of 
spots corresponding to the 
3.5 Å plane spacing in the 
graphite;

  (c)  the power spectrum plotted 
as a perspective drawing 
to emphasize the ring of 
peaks;

  (d)  inverse transform of just 
the ring of spots;

  (e)  image (d) inserted into the 
red channel of the original 
image to enhance the vis-
ibility of the atomic lattice.
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summed, and the result placed in the original pixel location. This is applied to all of the 
pixels in the image, using the original pixel values and producing a new image. This type of 
convolution is particularly common for the smoothing and derivative operations illustrated in 
Chapters 4 and 5. For instance, a simple smoothing kernel might contain the following val-
ues, with the new value being assigned to the location marked in color:
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There are many spatial domain kernels, including ones that apply Gaussian smoothing (to 
reduce noise), or take first derivatives (for instance, to locate edges) or second derivatives (for 
instance, the Laplacian, which is a non-directional operator that acts as a high pass filter to 
sharpen points and lines). They are usually presented as a set of integers, although greater 
accuracy is attainable with floating point numbers, with it understood that there is a divisor 
(usually equal to the sum or largest of the positive values) that normalizes the result. Kernels 
of numbers that include negative values can produce results that are negative, so an offset 
value such as 128, a medium gray for images that use a 0...255 range for pixel values, may be 
added to the result, or autoscaling may be applied to fit the results of the arithmetic results to 
the 0...255 range. Some of these operators may be significantly larger than the 3 × 3 example 
shown above, involving the adding together of the weighted sum of neighbors in a much 
larger region that is usually, but not necessarily, square.

Applying a large kernel takes time. Figure 6.33 illustrates the process graphically for a single 
placement of the kernel. Even with fast modern computers and with careful coding of the 
process to carry out additions and multiplications in the most efficient order, performing the 
operation with a 25 × 25 kernel on a 10 megapixel image requires a significant amount of com-
putation (and even larger kernels and images are encountered). Although it can be speeded 
up somewhat by the use of special hardware, such as a pipelined array processor, a special-
purpose investment is required. A similar hardware investment can be used to speed up the 
Fourier transform. The focus here is in the algorithms, rather than in their implementation.

For any computer-based system, increasing the kernel size eventually reaches a point at which 
it is more efficient to perform the operation in the Fourier domain. The time needed to 

perform the FFT transformation from the spa-
tial domain to the frequency domain and back 
is more than balanced by the speed with which 
the convolution can be carried out. If there are 
any other reasons to perform the transformation 
to the frequency domain representation of the 
image, then even small kernels can be most effi-
ciently applied there.

This is because the operation equivalent to spa-
tial domain convolution (which requires many 
multiplications and additions) is a single multi-
plication of each amplitude value in the Fourier 
transform by the corresponding value in the 
transform of the kernel, which becomes a filter 
or mask. The transform of the kernel (i.e., the 
filter) can be stored beforehand just as the kernel 

Convolution
Kernel

Array of
Pixels in Image

Figure 6.33 Illustration of applying a con-
volution kernel to an image in the spatial 
domain (illustration courtesy of Arlo Reeves, 
Dartmouth Univ.).
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is stored. Convolution in the spatial domain is exactly equivalent to multiplication in the fre-
quency domain. Using the notation presented before, in which the image is a function f(x,y) 
and the kernel is g(x,y), the convolution operation in which the kernel is positioned every-
where on the image and multiplied by it is

	 g x y f x y f g x y d d( , ) ( , ) ( , ) ( , )⊗ = ⋅ − −∫∫ α β α β α β  (6.9)

where α and β are dummy variables for the integration, the range of which is across the entire 
image, and the symbol ⊗ indicates convolution. If the Fourier transforms of the image f(x,y) 
and the filter g(x,y) are F(u,v) and G(u,v), respectively, then the convolution operation in the 
Fourier domain is simple point-by-point multiplication, or

	 g x y f x y G u v F u v( , ) ( , ) ( , ) ( , )⊗ ⇔ i  (6.10)

There are a few practical differences between the two operations. The usual application of a 
kernel in the spatial domain applies special rules to the edge pixels (those nearer to the edge 
than the half-width of the kernel), since their neighbors do not exist. But in transforming 
the image to the frequency domain, the assumption is made that the image wraps around at 
edges, so that the left edge is contiguous with the right and the top edge is contiguous with 
the bottom. Applying a convolution by multiplying in the frequency domain is equivalent to 
addressing pixels in this same wraparound manner when applying the kernel to the spatial 
image, and usually produces some artifacts at the edges. The most common solution for this 
problem is to embed the image of interest in a larger one in which the borders are either filled 
with the mean brightness value of the image or smoothly interpolated from the edge values. 
(As mentioned above, this is called “padding.”)

Figure 6.34 shows the equivalence of convolution in the spatial domain and multiplication in 
the frequency domain for the case of a smoothing kernel. The kernel, a Gaussian filter with 
a standard deviation of 2.0 pixels, is shown as an array of gray scale values, along with its 
transform. Applying the kernel to the image in the spatial domain produces the result shown 
in the example. Multiplying the kernel transform by the image transform produces the fre-
quency domain image whose power spectrum is shown. Retransforming this image produces 
the identical result to the spatial domain operation.

Notice that the equivalence of frequency domain multiplication to a spatial domain neigh-
borhood process is restricted to convolution filters, which are also known as “linear” filters. 
Other neighborhood operations, such as rank-based filtering (saving the brightest, darkest, or 
median brightness value in a neighborhood) and histogram modification (e.g., local equaliza-
tion), are nonlinear and have no frequency domain equivalent.

Deconvolution

Convolution can also be used as a tool to understand how imaging systems alter or degrade 
images. For example, the blurring introduced by imperfect lenses can be described by a 
function H(u,v) which is multiplied by the frequency transform of the image, as shown sche-
matically in Figure 6.35. The operation of physical optics is often modeled in the frequency 
domain. Sometimes it is possible to determine the separate characteristics of each component 
of the system; often it is not. In many cases, determining the point spread function of the 
system (the degree to which a perfect point in the object plane is blurred in the image plane) 
may make it possible to sharpen the image by removing some of the blur. This is called decon-
volution and is done by dividing by H(u,v), the transform of the point-spread image.
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A side note for any optical engineers: the point spread function or PSF is the spread of an 
ideal point as measured in the spatial domain of the image. The modulation transfer func-
tion or MTF of an optical system, which is often used to characterize its resolution and per-
formance, is the absolute magnitude of the Fourier transform of the point spread function. 
One of the many reasons that a Gaussian shape is often used as a convenient model for the 
PSF is that its Fourier transform is also a Gaussian shape; a second reason is that several 

(a) (b) (c)

(d)

(g)

(e) (f)

Figure 6.34 Smoothing by applying a large kernel in the spatial domain and convolution in the fre-
quency domain: (a) original image; (b) smoothing kernel (Gaussian, standard deviation = 2.0 pix-
els), with enlargement to show pixel detail; (c) smoothed image produced by spatial convolution 
with kernel; (d) Fourier transform of (a); (e) Fourier transform of (b); (f) product of (d) and (e); (g) 
inverse transform of (f), which is identical to (c).
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iterative deconvolution techniques such as the 
Van Cittert method require a symmetrical, cen-
ter-weighted PSF like the Gaussian; still another 
reason comes from the central limit theorem 
of statistics which says that whenever a large 
number of independent variables are present, 
their combined effect tends toward a Gaussian 
shape, and so in a real system comprised of 
illumination, specimen or subject, optics, cam-
era, and electronics, a Gaussian shape is often 
a useful approximation. However, the PSF for 
out-of-focus blur in the absence of aberrations 
and diffraction effects is a disk.

Figure 6.36 illustrates the relationship between 
convolution and deconvolution. In Figure 6.36a, 
a point spread function is convolved with an 
image to produce a blurred result. The ✳ indi-
cates the convolution operation, which is mul-
tiplication performed with complex arithmetic. 
Figure  6.36b illustrates the deconvolution of 
the blurred image (the ÷ indicates deconvolu-
tion, which requires complex division) with the 
same point-spread function. This recovers a less 
blurred image. Note, however, that the noise in 
the deconvolved image is increased, that not all 
of the original resolution can be recovered (some 

Each point in the object space
is acted on by
the imaging
system.

Image of a single point
in object space shows
the point spread function
(PSF) of the system.

The acquired image is the 
convolution of the original
with the point spread
function (PSF) of the 
imaging system.

Figure 6.35 System characteristics introduce 
a point spread function (PSF) into the 
acquired image (illustration courtesy of 
Arlo Reeves, Dartmouth Univ.).

(a)

(b)

Figure 6.36 The processes of convolution (a) and deconvolution (b).
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data are lost in the blurring process), and that there are artifacts around the edges of the 
image. These are all features of deconvolution that are dealt with below.

One of the best-known examples of correction of an out-of-focus condition due to an imper-
fect imaging system is the Hubble telescope. As originally deployed, the Hubble telescope had 
an incorrectly figured main mirror that produced poorly focused images. Eventually a com-
pensating optical device (an altered secondary mirror) was installed in the imaging system 
to compensate for most of the defect, but even with the original telescope it was possible to 
obtain high resolution results by using deconvolution with the known point spread function 
(or PSF). The corrected optical package, however, restored much of the telescope’s light-gath-
ering power, which was severely reduced due to the incorrect mirror curvature.

In this particular instance, it was possible to calculate the PSF from available measurement 
data on the mirror. But in many astronomical situations the problem is simplified because 
the point spread function can be measured by examining the image of a single star, which 
is effectively a point as seen from earth. This requires a considerable gray scale depth to the 
image, but in astronomy, cooled cameras often deliver at least 14 bits of information (sixteen 
thousand linear steps in brightness), which is important for obtaining enough precision to 
perform the deconvolution.

Figure 6.37 shows the result of this method. The original, blurred image is sharpened by 
dividing its Fourier transform by that of the measured PSF, and the resulting inverse transform 
shows a considerably sharpened image. Unlike operations such as the unsharp mask (a high 
pass filter) that increase the contrast at edges and may make the image appear to be sharper 
visually, deconvolution recovers additional resolution and reveals faint details not visible in 
the original.

For deconvolution, the complex frequency domain image from the out-of-focus test pattern is 
divided by that for the point spread function (as indicated schematically in Figure 6.36). This 
is complex division, performed by dividing the amplitude values and subtracting the phase 
values. One of the problems with this process is that division by very small values can cause 
numeric overflow problems, and the Fourier transform of a symmetrical and well-behaved 
point spread function often contains zero values. The usual solutions to this problem are either 
apodization to restrict the division operation to those pixels in the complex transform that do 
not cause overflow, or adding a small constant to the denominator. Both are shown below.

(c)(b)(a)

Figure 6.37 Hubble telescope image sharpening: (a) original; (b) measured point spread function, with 
enlargement to show pixel detail; (c) deconvolution result.
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Deconvolution of image blur, which may arise from out-of-focus optics, motion, the size and 
arrangement of transistors in the camera chip, insufficient bandwidth in the electronics, or 
other causes, is an imperfect science. There is no mathematically optimum procedure, nor 
even a proof that one exists in all cases. The practical techniques that are used have been 
developed under a variety of assumptions and apply to many real situations, producing impres-
sive improvements in image quality. But the results, while good, represent tradeoffs between 
different limitations, one of which is the time required for the computations. Successful appli-
cation of the method requires images with as little random noise as possible and sufficient 
numerical precision in the arithmetic.

Deconvolution is discussed here in terms of gray scale images. In most cases, color images 
need to be separated into discrete color channels that correspond to the physics of the acqui-
sition device, usually red, green, and blue, and each one deconvolved separately. It is not 
uncommon to find that the point spread function is different for each channel, especially if a 
single-chip camera with a Bayer pattern color filter has been used for acquisition.

It is important to always start with the best image possible. This means obtaining the best 
available focus, least motion blur, etc. Deconvolution is never as good a solution as correcting 
the source of the problem beforehand. The image should be recorded with the best possible 
range of contrast, from nearly full white to nearly full black without clipping. The tonal or 
gray scale range should have good precision and a wide dynamic range. Eight bit images from 
uncooled digital cameras are marginal, and poorer images from video cameras are usually 
unacceptable unless special procedures such as averaging multiple frames are used. It is par-
ticularly important to have high precision and bit depth for the point spread function, whether 
it is obtained by measurement or by calculation.

Finally, random pixel noise (speckle) should be minimized. Noise in either the acquired image 
or (especially) in the point spread function is significantly amplified in the deconvolution 
process and may dominate the result if it is too great. Long exposures and image averag-
ing can be useful in some cases. The usual description of the magnitude of image noise is a 
signal-to-noise ratio expressed in decibels. This is defined in terms of the standard deviation 
of values in the blurred image and in the noise (which of course may not be known).

	 SNR dB im age

noise

  = ⋅








10 10log σ

σ
 (6.11)

When the signal-to-noise ratio is greater than 50 dB, the noise is, practically speaking, invis-
ible in the image and has a minimal effect on deconvolution. On the other hand, a low signal-
to-noise ratio of 10–20 dB makes the noise so prominent that deconvolution is impractical.

The ideal and simplest form of deconvolution is to measure (or in a few cases calculate from 
known optical parameters) the point spread function of the system. Computing the Fourier 
transform of the blurred image and that of the PSF, dividing the second into the first, and 
performing an inverse transform, produces the deconvolved result. The key requirement is 
that the blur due to the imaging system is assumed to be the same everywhere in the image, 
which is a good assumption for telescope images. When some portion of the blur is due to the 
passage of light through the sample itself, as occurs in thick sections examined in the light 
microscope, the blur can vary from point to point and this method becomes less useful.

An indirect measurement of the PSF can be accomplished by capturing an image of a precisely 
known object using the same optical setup as that used for the real image. Dividing the Fourier 
transform of the image of the object by that of the ideal shape, and inverse transforming the 
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result, produces the system PSF, which can then be used to deconvolve images obtained with 
the optical system.

In some microscope situations, the insertion of fluorescing microbeads, or even an image of 
a small dust particle on the slide, may be useful as an estimate of the PSF. In the atomic force 
microscope, a direct measurement of the PSF is accomplished by scanning an image of a known 
shape, usually a circular test pattern produced expressly for this purpose by the same methods 
used to etch integrated circuits. As shown in Figure 6.38, if the Fourier transform of the result-
ing image is divided by that for the ideal shape, the result is an image of the point spread func-
tion, which in this case corresponds to the shape of the scanning tip. This shape can then be 
used to deconvolve other images, at least until the tip is further damaged or replaced.

The blur produced by purely optical effects is frequently uniform in all directions, although 
astigmatism can modify this. In many cameras the shape and spacing of the sensors produce 
different blur magnitudes in the horizontal and vertical directions, and the effects of the color 
filter pattern used can also alter the shape of the PSF. In any scanned image acquisition, the 
electronic parameters of the amplifiers used can produce different amounts of blur in the fast 
scan direction (generally horizontal) as compared to the slow scan direction (vertical). Time 
constants in phosphors, amplifiers, or other components can also produce asymmetrical blurs 
(“comet tails”) in the output signal.

If it is not possible to obtain a PSF by measurement, it may be possible to apply a useful 
approximate one based on assumptions such as a Gaussian blur function, a disk representing 
the camera aperture or straight line motion. It is not necessary in many cases to have the exact 
PSF, just a sufficiently useful approximation to remove most of the blur by deconvolution.

  
(a)               (b)               (c)

 

Figure 6.38 Measuring the PSF of an atomic force microscope:

  (a) ideal image of a circular test pattern;

  (b) measured image using an imperfect tip;

  (c) deconvolution of (b) by (a), producing an image of the tip;

  (d) perspective view of the shape in (c).

        (d)



378 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

Noise and Wiener deconvolution

If there is significant noise content in the image to be sharpened, or worse yet in the measured 
PSF, it can exacerbate the numerical precision and overflow problems and greatly degrade the 
resulting inverse transform (Vanderlinde & Caron, 2008). Removal of more than a portion of 
the blurring in a real image is almost never possible, but of course there are some forensic 
situations in which even a small improvement may be of considerable practical importance.

Division by the frequency transform of the blur is referred to as an inverse filter. Using the 
notation that the image is f(x,y), the blurred image is g(x,y), and the point spread function is 
h(x,y), with Fourier transforms F(u,v), G(u,v) and H(u,v), respectively, the “ideal” deconvolu-
tion procedure can be written as

	 F u v
H u v

G u v( , )
( , )

( , )≈






1
 (6.12)

If the presence of noise in the blurred image prevents satisfactory deconvolution by dividing 
the Fourier transforms, then it may be practical to perform a Wiener deconvolution. Instead 
of calculating the deblurred image by dividing the Fourier transform of the original image 
by that of the blur function, a scalar value is used to increase the denominator. Theoretically, 
the additive factor K is dependent on the statistical properties of the images and their rela-
tive noise contents (it is the ratio of the power of the image noise component to the image 
signal component), but in practice these are not usually known and so the additive constant 
is typically treated as an adjustable parameter that controls the tradeoff between sharpening 
and noise.
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Figure 6.39 shows an example of the effect of random noise on a image with out-of-focus 
blur. An ideal inverse filter amplifies the noise so that it dominates the result and obscures 
any useful detail, although the edges are sharp. Apodization (skipping those frequency terms 
for which the division would produce numeric overflow) achieves a better result, but there is 
evidence of ringing and some blur remains. Wiener deconvolution (Figure 6.40) reduces this 

  
(a)               (b)               (c)

Figure 6.39 Effect of noise on deconvolution: (a) severely blurred image (Figure 6.34c with added ran-
dom noise); (b) ideal inverse deconvolution with noise present; (c) deconvolution with apodization.
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problem and allows adjustment which trades off the sharpness of the restoration (higher K 
values leave more blurring) against the amount of noise (higher K values reduce the noise). 
Because of the low signal-to-noise ratio and large amount of blurring in the original, it is not 
possible in this case to recover all the internal details of the original image.

Wiener deconvolution has a long history as a practical method for achieving useful, if not per-
fect blur removal. The Wiener method is the optimal restoration technique when the signal (the 
image) is blurred and corrupted by random additive noise, in the statistical sense that it mini-
mizes the errors between the actual (true) image and the reconstructed result. Another approach 
of long standing is the Van Cittert iterative technique. This method has apparently been dis-
covered many times and is also known as a Bially or Landweber iteration. Instead of trying to 
remove the entire blur in one step, a series of iterative removal steps is performed. In the limit, 
this iteration would reach the same result as an ideal deconvolution, but instead it is terminated 
before convergence, resulting in a (partially) deblurred image that does not exhibit an unaccept-
able noise level. The quality of the results is generally similar to that of the Wiener method.

There are many deconvolution methods, most of them rather complicated mathematically (and 
requiring significant computation and time). A few are non-iterative (e.g., Carasso, 2001, 2002, 
2006; Zhang & Zhang, 2007) but most involve iteration, represented by the Lucy-Richardson 
(Richardson, 1972; Lucy, 1974), Landweber (Landweber, 1951; Vonesch & Unser, 2008), and 
Van Cittert (Van Cittert, 1931; Bennia & Riad, 1992) methods. Some assume that the PSF is 
known, some that it is symmetrical, and some try to find the best form of the blur function as 
well the deblurred image.

   
(a)               (b)               (c)

  

Figure 6.40 Wiener deconvolution of the image in Figure 6.39a: 
(a–d) increasing the empirical K value reduces noise at the 
expense of sharpness.

        (d)
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This is equivalent to trying to solve a very large number of simultaneous equations, which are 
frequently under-determined. The techniques for such solutions occupy a significant math-
ematical literature, and arise again in the context of 3D imaging (Chapter 13). One of the 
issues is how to efficiently guide the iteration and how to determine when to terminate it. 
Another related question is the best measure of image quality, which in different implementa-
tions may be based on Bayesian statistics, maximization of entropy, etc. The calculations may 
be performed in either the frequency or the spatial domain. Even a small PSF in the spatial 
domain becomes as large as the entire image in the frequency domain, and the number of 
simultaneous equations is the number of pixels in the image.

Most of these methods are highly specific to particular types of applications and depend on 
the a priori information that can be supplied, usually in the form of constraints on the solu-
tion of the equations (Bertero & Boccacci, 1998). For example, a commonly used constraint is 
that negative values for pixels have no physical meaning and so values are not permitted to 
become negative. If more information on the image can be incorporated, such as the presence 
of a constant background over much of the image area (as in astronomical or fluorescence 
images), or that only specific pixel values corresponding to phase densities in a specimen 
should be permitted, it improves the quality of the result and the efficiency of reaching it. The 
details of these methods are far beyond the scope of this text, but excellent review and com-
parisons can be found in Lagendijk & Biemond (1991) and Campisi & Eglaarian (2007).

Another area of current interest is the deconvolution of multiple images that are related to 
each other. This includes multiple channel images (e.g., different wavelengths or colors) of 
the same scene, or a series of images from parallel closely spaced planes in semi-transparent 
specimens (e.g., a series of focal planes in the light microscope). Using information from one 
channel or plane can be used to guide the deconvolution of another.

If the blur is not known a priori, it can often be estimated from the power spectrum or by 
trial and error to find an optimum (or at least useful) result. The Wiener deconvolution is suf-
ficiently fast that interactive adjustment of the constant K and the shape of the PSF function 
is practical. Functions that have a peak “sharper” than a Gaussian with a broad “skirt” often 
produce good results with real images. Figure 6.41 shows one example and compares the 
results with a Gaussian.

A recent development of this type of function that has great efficiency because it is not an 
iterative method has been published by Carasso (2001, 2002, 2006) and applied to Hubble 
telescope images. Analysis of the shape of the radial profile of the values in the Fourier trans-
form of the blurred image (avoiding the regions dominated by noise) allows constructing an 
approximate PSF that can be used for deconvolution. This method cannot be used for all types 
of blur functions (particularly motion blur) but produces very good results for those situations 
where it is applicable.

In contrast to the function shown in Figure 6.41, a PSF in the shape of a slightly blurred disk, 
which may either be round or polygonal to match the aperture of a camera, corresponds to 
some cases of out-of-focus lens blur. Figure 6.42 shows an example in which the PSF is a 
slightly blurred hexagonal shape.

One application for these image restoration techniques is deblurring the images formed by 
optical sectioning. This is the technique in which a series of images is recorded from different 
depths of focus in a semitransparent specimen using a light microscope. The passage of light 
through the overlying layers of the specimen results in a blurring that adversely affects the 
sharpness and contrast of the images, preventing their being assembled into a three-dimen-
sional stack for visualization and measurement of the three-dimensional structures present.
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The confocal light microscope overcomes some of these problems by rejecting light from 
points away from the point of focus, which improves the contrast of the images (it also 
reduces the depth of field of the optics, producing higher resolution in the depth axis, which 
is important, particularly at the highest magnifications). But the scattering and diffraction of 
light by the upper layers of the specimen still degrade the image resolution.

In principle, the images of the upper layers contain information that can be used to decon-
volve those from below. This can allow sharpening of those images. The entire process is 
iterative and computationally challenging, the more so because the blurring of each point on 
each images may be different from other points. In practice, it is usual to make some assump-
tions about the blurring and noise content of the images which are used as global averages for 
a given specimen or for a given optical setup.

Even with these assumptions, the computations are still intensive and iterative. There is a 
considerable theoretical and limited practical literature in this field (Carrington, 1990; Holmes 
et al., 1991; Monck et al., 1992; Joshi & Miller, 1993; Richardson, 1972; Snyder et al., 1992). A 
review of several of the leading methods can be found in Van Kempen et al. (1997). The exam-
ples shown deal only with idealized structures and averaging assumptions about the noise 
characteristics of the images and the point spread function of the microscope, which suggests 
that restoration of real images may not be as good as those examples. Similar concerns and 
methods can in principle be applied to other in situ three-dimensional imaging techniques 
such as tomography and seismic imagery.

  
(a)               (b)               (c)

                   
                                        (d)               (e)

Figure 6.41 Comparison of deconvolution results using different PSF functions: (a) original (macro 
photo of an illuminated manuscript with significant pixel noise); (b) best result using the Gaussian 
PSF shown in (d); (c) best result using the function shown in (e); (d) Gaussian PSF shape z = exp(–r2); 
(e) mathematical function with sharper peak z = exp(–r1.7).
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On a simpler level, many digital cameras store images with more pixels than correspond to the 
actual resolution of the chips, for instance because of the interpolation of color information from 
a filtered single chip (described in Chapter 1). Even when the images are well focused optically, 
significant improvement in the image sharpness and resolution can often be produced by decon-
volution, as shown in Figure 6.43. As noted previously, the improvement in resolution is quite 
different from the effect of a high pass filter such as the unsharp mask. Figure 6.44 compares 
the results of the two procedures. The unsharp mask increases contrast for existing edges (and 
creates haloes adjacent to edges) but does not resolve additional detail, as deconvolution does.

Additional defects besides out-of-focus optics can be corrected by deconvolution as well. These 
operations are not always performed in the frequency domain, but the basic understanding of 
the process of removing the blur convolution imposed by the system is most clearly illustrated 
there. One of the most common defects is blur caused by motion. This can be very important 
in remote sensing, in which light levels are low and the exposure time must be long enough 
for significant camera motion to occur with respect to the scene.

Fortunately, in most of these circumstances the amount and direction of motion are known. That 
makes it possible to draw a line in the spatial domain that defines the blur. If that is not pos-
sible, then sometimes the streak produced by a bright or dark feature can be used to measure 

  
(a)                        (b)

  

Figure 6.42 Deconvolution using a PSF mod-
eling lens blur with a hexagonal aperture 
opening:

  (a) original;

  (b) result;

  (c) the point spread function.

          (c)
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the angle and direction of the blur. The frequency transform of this line is then divided into the 
transform of the blurred image. Retransforming the resulting image restores the sharp result. 
Figure 6.45 illustrates the possibilities. Notice in this example that a slight rotational motion of 
the camera during the exposure has caused imperfect restoration at the top and bottom edges 
of the image. The deconvolution process assumes that the same PSF applies to the entire image 
area; deconvolution of rotation requires a separate approach (Yuan & Li, 2008).

It is important to note the similarity and the difference between this example and the removal 
of out-of-focus blur. Both involve dividing the transform of the blurred image by that of the 
defect. This follows directly from the equation presented for convolution, in which the trans-
form of the convolved image is the product of those from the original image and the defect. 

(a)

Figure 6.43 Deconvolution sharpening of a digi-
tal still camera image:

  (a)  original image, captured without com-
pression with a high-end single-lens-reflex 
Nikon digital still camera (the original 
image file is 38.7 MB);

  (b) enlarged details from (a);

  (c) same areas as (b) after Wiener deconvolu-
tion using a Gaussian PSF with a standard 
deviation of 0.95 pixels.

(b)

(c)
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(a)

(b)

(c)

(d)

Figure 6.44 Comparison of deconvolution to application of a high pass filter: (a) original image; (b) 
enlarged detail from (a); (c) same area as (b) after the application of an unsharp mask;(d) same 
area as (b) after Wiener decon volution.

(a) (b)

Figure 6.45 Removal of motion blur: (a) original image (aerial photo of an orchard) with superimposed 
motion vector (enlarged); (b) after Wiener deconvolution.
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The major difference is that in the motion blur case 
it is sometimes possible to know the exact blurring 
vector to be removed, or at least estimate the blur 
vector from the image. As in the example shown 
above for out-of-focus blur, the use of a Wiener 
deconvolution can partially alleviate the effects of 
noise.

Template matching and correlation

Closely related to the spatial domain convolution 
application of a kernel for smoothing, derivatives, 
etc. is the idea of template matching or cross-cor-
relation. In this case, a target pattern is shifted to 
every location in the image, the values are multi-
plied by the pixels that are overlaid, and the total 
is stored at that position to form an image showing 
where regions identical or similar to the target are 
located. Figure 6.46 illustrates this process in one 
dimension: the pulse sent out by a radar transmit-
ter is cross-correlated with the signals received, to 
pinpoint the exact time for the signal to propagate 
to the target and return.

The methodology for images is the same, but based 
on two spatial dimensions rather than time. The 
multiplication and summation process is identical 
to convolution, except that the target is rotated 180 
degrees first so that the upper left corner value in 
the target pattern is multiplied by the lower right 
value in the neighborhood on the image, and so 
forth. When the process is performed in frequency 
space, this is equivalent to convolution but with a 
180° phase shift of the Fourier transform values.

This method is used in many contexts to locate fea-
tures within images. One is searching reconnais-
sance images for particular objects such as vehicles. 
Tracking the motion of hurricanes in a series of 
weather satellite images or cells moving on a micro-

scope slide can also use this approach. Modified to deal optimally with binary images, it may 
be used to find letters in text. When the target is a pattern of pixel brightness values from one 
image in a stereo pair and the searched image is the second image from the pair, the method 
can be used to perform fusion (locating matching points in the two images) to measure paral-
lax and calculate elevation, as shown in Chapter 14, Figure 14.09.

For continuous two-dimensional functions, the cross-correlation image is calculated as

	 c i j f x y g x i y jdxdy(, ) ( , ) ( , )= − −∫∫ i  (6.14)

Figure 6.46 Cross-correlation in one dimen-
sion as used in a radar transmitter. The 
waveform of the pulse that is sent out is 
cross-correlated with the signal that is 
received, in order to determine the time 
delay and hence the range to the target.
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Replacing the integrals by finite sums over the dimensions of the image gives Equation 6.15. 
In order to normalize the result of this template matching or correlation without the absolute 
brightness value of the region of the image biasing the results, the operation in the spatial 
domain is usually calculated as the sum of the products of the pixel brightnesses divided by 
their geometric mean.
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When the dimensions of the summation are large, this is a slow and inefficient process com-
pared to the equivalent operation in frequency space. The frequency space operation is

	 C(u,v) = F(u,v) G*(u,v) (6.16)

where * indicates the complex conjugate of the function values. The complex conjugate affects 
only the phase of the complex values, so the operation is very similar to convolution, and it is 
usually performed with many of the same program subroutines. Operations that involve two 
images (division for deconvolution, multiplication for convolution, and multiplication by the 
conjugate for correlation) are sometimes called dyadic operations, to distinguish them from 
filtering and masking operations (monadic operations) in which a single frequency transform 
image is operated on. A filter or mask image is not a frequency domain image, does not con-
tain complex values, and is multiplied only by the magnitude of the image transform.

When correlation is performed, the wraparound assumption joining the left and right edges 
and the top and bottom of the image is usually not acceptable. In these cases, each image 
should be padded to a larger size for transformation (the next exact power of two, required 
by many FFT routines). Since the correlation operation requires that the actual magnitude 
values of the transforms be used, slightly better mathematical precision can be achieved by 
padding with the average values of the original image brightnesses rather than with zeroes. It 
may also be useful to subtract the average brightness value from each pixel, which removes 
the zeroth (DC) term from the transformation. Since this value is usually the largest in the 
transform (it is the value at the central pixel), its elimination allows the transform data more 
dynamic range.

Correlation is primarily used for locating features in one image that appear in another (Caves 
et al., 1992; Yu et al., 2004). Figure 6.47 shows an example. The image contains text with 
some random noise, while the target contains the letter “A” by itself. The result of the cross-
correlation (after retransforming the image to the spatial domain) shows peaks where the 
target letter is found, which may be more apparent when the same image is presented as an 
isometric display. The darkest points in the correlation image correspond to the occurrences 
of the letter “A” in the same size and font as the target. There are lower but still significant 
peaks corresponding to two of the other letter As, in different fonts, but in general cross-
correlation is quite size and shape specific.

When combined with other image processing tools to analyze the cross-correlation image, this 
is an extremely fast and efficient tool for locating known features in images. In the example 
of Figure 6.48, a large number of SEM images of Nuclepore filters with latex spheres are a 
problem for automatic counting because of the variation in contrast and noise, the presence 
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of dirt, and the texture due to the filters themselves. Also, the contrast of an isolated sphere 
is different than that of one surrounded by other spheres.

A target image (Figure 6.48a) is created by averaging together ten representative latex spheres. 
This is cross-correlated with each image, a top hat filter (inner radius = 3 pixels, outer radius 
= 5 pixels, height = 8 gray scale values) applied to isolate each peak in the image, and the 
resulting spots counted automatically. The figure shows a few example images from the set, 
with marks showing the particles found and counted. After the top hat has been applied to 
select the peaks in the cross-correlation image, the resulting spots can be convolved with the 
stored target image to produce the result shown in Figure 6.48e, which shows just the latex 
spheres (or, more precisely, repetitions of the image of the target sphere) without the other 
features (dirt, background texture, etc.) present in the original image.

In some cases, the target example can be found within an image and used to search for things 
that are similar. Figure 6.49 shows blisters on a painted surface. The lighting is from one side 
and the image is noisy, so the blisters have complex shading. Using one (marked with a red 
outline) as a target and performing cross correlation on the entire image, followed by a top hat 
filter, locates the other blisters, even if they are not exactly of the same shading or size.

  
(a)               (b)               (c)

  

Figure 6.47 Cross-correlation 
example:

  (a)  image containing many 
letters with superimposed 
random noise;

  (b)  target letter;

  (c)  cross-correlation result 
(gray scale representation 
of goodness of match);

  (d)  isometric view of (c) show-
ing peaks on the A’s in the 
original;

  (e)  thresholded peaks in (c) 
superimposed on (a). Note 
that only the letter A’s in 
the same size and font 
have been located.

        (d)               (e)
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Figure 6.48 Cross-correlation to detect and 
count latex spheres on Nuclepore filters:

  (a)  average of ten representative latex 
spheres, used as a target, enlarged to 
show pixels;

  (b– d) representative example images, 
with red spots marking the result of 
the procedure described in the text;

  (e)  convolution of the target image with 
the points in image (d).

            (a)

  

(b)                     (c)

  

(d)                     (e)



389Processing Images in Frequency Space
© 2011 by Taylor & Francis Group, LLC

Cross-correlation is also used as a tool for aligning images (Reddy et al., 1996; Choi & Kim, 
2002). Even if the images are not identical (as for instance with serial sections), there are 
usually enough common features that a sharp cross-correlation peak occurs when two suc-
cessive images are in best x,y alignment. The location of the peak can be determined to sub-
pixel accuracy and used to shift the images into optimum alignment. Figure 6.50 shows an 
example. The two sequential slices of swiss cheese have subtle differences in the position and 
size of holes, and several holes present in each slice are not present in the other, which is 
important for a stereological measurement tool (the Disector) shown in Chapter 9. However, 
comparisons are difficult to make until the two slices have been properly aligned, as shown.

Alignment is important for all of the reconstruction methods presented in Chapter 14. It 
is also necessary for the merging of multiple focal planes into an extended focus image, as 
shown in Chapter 5. Figure 6.51 is an example of a focal series from a light microscope in 
which the successive planes are offset because of mechanical and optical effects in the micro-
scope. Superposition of the edge-filtered images (using the Sobel edge delineation filter from 
Chapter 5) in the red and green channels of Figure 6.51c shows the offset. Automatically cor-
recting this offset for each plane to sub-pixel accuracy by cross-correlation allows an extended 
focus image to be formed from the entire set of images. Applying the cross-correlation 
procedure to the images after applying the Sobel filter produces a better result because it is 
the edges which contain the most information needed for successful alignment.

  

Figure 6.49 Cross-correlation to detect paint 
blisters:

  (a)  original image with the target example 
used for cross-correlation outlined;

  (b)  cross-correlation result showing dark 
spikes on the blisters;

  (c)  result of a top hat filter superimposed on 
the original image.

           (a)

  

(b)                      (c)
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One of the most demanding alignment tasks applies to remote sensing images. These are 
often acquired at different times by different cameras and other instruments, with varying 
scales and orientations. The alignment is normally done based on the location of a few ref-
erence points in each image, rather than by correlation. The alignment process may involve 
image warping to correct for different view angles.

Figure 6.50 Two superimposed images 
of sequential slices of swiss cheese 
after automatic alignment by cross-
correlation.

  

 
(a)              (b)

 
(c)              (d)

Figure 6.51 Alignment of 
images in a focus series:

  (a,  b) original light micro-
scope images at different 
focal depths (top and bot-
tom focus);

  (c)  superposition of the two 
images (edge filtered) in 
red and green channels to 
show lateral image shift;

  (d)  extended focus result 
after alignment of all 
images in the set.
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Standard video consists of alternate fields containing the even and odd numbered scan lines. 
If the camera is rapidly panned or the image subject is moving (often the case with surveil-
lance video), this can produce an offset between the fields, which shows up in the digitized 
image, as shown in Figure 6.52. By treating the two fields (i.e., the even and odd numbered 
scan lines) as separate images, cross-correlation can be used to correct the offset, as shown 
in Figure 6.52b.

In extreme cases, such as a video of a running person, many different subregions of the 
image (body, arms, legs, etc.) move in different ways. In some cases it is possible to break 
the image into regions and align each one separately. The cross-correlation method does not 
deal with rotation, but it is possible to iteratively rotate the images and use the peak cross-
correlation value as a measure of quality to determine the best value, or for small rotations to 
perform alignment on subregions of the image and from the offsets calculate an overall rota-
tion amount. Alignment of serial sections that may include arbitrary shifts, rotations, and dis-
tortions can also be performed based on a small number of matched points between images, 
as described in Chapter 14.

Autocorrelation

In the special case when the image functions f and g (and their transforms F and G) are the 
same, the correlation operation is called autocorrelation. This is used to combine together all 
parts of the image, in order to find repetitive structures. Interpretation of the autocorrelation 
image can be understood by imagining the image to be printed on transparency and placed 
on top of itself, rotated by 180°. By sliding the top image laterally in any direction, the degree 
of match with the underlying original is measured by the autocorrelation function. When 
features still align with themselves, the match is high. Likewise, when a large shift brings a 
feature onto another similar one, the match is again high.

For images in which there is a more or less regular arrangement of features, the autocorrela-
tion image finds this pattern and also facilitates its measurement, as shown in Figure 6.53. In 
the image, the darkness and shape of each spot show the probability of finding another par-
ticle at a given distance and direction. The circularly averaged radial plot shows the gradual 
increase in the disorder of the arrangement with distance.

   
(a)               (b)               (c)

Figure 6.52 De-interlacing a video image: (a) original image of bubbles moving in a flowing channel, 
producing offset of even and odd scan lines (with inset showing enlarged detail); (b) result after 
automatic alignment of the fields by correlation; (c) thresholding and processing of the binary image 
(using procedures from Chapters 7 and 8) produces bubble outlines for measurement.
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(a)                  (b)

Figure 6.53 Finding a regular arrangement pattern with autocorrelation: (a) TEM image of latex 
spheres, which self-organize in an approximately hexagonal pattern; (b) autocorrelation image 
showing the pattern of neighbor distance and direction, with an inset showing the measurement of 
the circularly averaged radial profile.

        
(a)                   (b)

        
(c)                   (d)

Figure 6.54 Measurement of overlapped features: (a, b) SEM images of two cheeses, produced with dif-
ferent pH, and consisting of different size curds (insets show outlines of mean feature size obtained 
by thresholding the peaks in images (c,d) as described in the text); (c, d) autocorrelation results for 
images (a,b), with the contour line drawn at 50% of the maximum value.
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For images in which individual particles partially obscure each other, so that individual 
measurements of size is impractical, autocorrelation sometimes provides a simple and 
powerful way to measure the size, shape, and even size distribution. Figure 6.54 shows 
the surfaces of two different cheeses, produced with different pH. Each image shows a 
large number of more or less identical elements. Visually, there is a difference in the size 
of the curds in the two specimens, but because this is an irregular surface and the par-
ticles are piled up rather than dispersed, with many of them at least partially hidden by 
others, traditional feature measurements are not possible. The autocorrelation images are 
also shown.

The central peak represents the distance that the image can be shifted laterally before features 
no longer lie on top of themselves, so the dimension of the central peak provides a handy 
measure for the size of the structuring elements in the cheese. In the figure, this is shown for 
the two structures by drawing a contour line on the autocorrelation image at the 50% mag-
nitude level, to represent an average size. Note that the autocorrelation image is a real-space 
image, so that dimension has the same meaning as in the original images. The intensity pro-
file of the peak also contains information on the size distribution of the particles.

In Chapter 15, autocorrelation is used to measure the texture of surface roughness in terms 
of the characteristic distance over which amplitude of the peak drops. Figure 6.55 shows 
another use of the autocorrelation function, to measure preferred orientation. The image is a 
felted textile material. Due to the fabrication process the fibers do not have a randomized or 
uniform orientation; neither are they regularly arranged. The intensity profiles of the auto-
correlation central spot along its major and minor axes measure the preferred orientation 
quantitatively. The radial profile of the autocorrelation function has been interpreted to esti-
mate the permeability of sandstone (Berryman and Blair, 1986).

  
(a)               (b)               (c)

Figure 6.55 Measurement of preferred orientation: (a) image of felted textile fibers; (b) the autocorrela-
tion peak (enlarged); (c) horizontal and vertical intensity profiles of the peak.
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7
Segmentation and Thresholding

Thresholding

Selecting objects or features within a scene or image is an important prerequisite for most 
kinds of measurement or analysis. Traditionally, one simple way this selection has been 
accomplished is to define a range of brightness values in the original image, select the 

pixels within this range as belonging to the foreground, and reject all of the other pixels to 
the background. Such an image is then usually displayed as a binary or two-level image, using 
black and white (or sometimes other colors) to distinguish the regions. There is no standard 
convention on whether the features of interest are white or black; the choice depends on the 
particular display hardware in use and the designer’s preference; in the examples shown here 
the features are black and the background is white, which matches most modern computer 
displays and printing that show black text on a white background.

The selection process is usually called thresholding. Thresholds may be set interactively by a 
user watching the image and using a colored overlay to show the result of turning a knob or 
otherwise adjusting the settings. As a consequence of the ubiquitous use of a mouse as the 
human interface to a graphical computer display, the user may adjust virtual sliders or mark 
a region on a histogram to select the range of brightness values. The brightness histogram of 
the image (or a region) is often used for making adjustments. As shown in previous chapters, 
the histogram is a plot of the number of pixels in the image having each brightness level. For 
a typical 8-bit monochrome image, this equals 28 or 256 gray scale values. The plot may be 
presented in a variety of formats, either vertical or horizontal, and some displays use color or 
gray scale coding to assist the viewer in distinguishing the white and black sides of the plot. 
Figure 7.1 illustrates the basics of the technique; many programs add provisions to adjust the 
color of the preview, to enlarge and scroll the image, and sometimes to implement automatic 
threshold settings, as discussed later in this chapter.

Images from systems that provide a greater tonal range than 256 levels (8 bits per color chan-
nel), such as scanners, some digital cameras, and other instruments, may be saved as 16 bit 
files (65,536 distinct pixel values), although in most cases not all will be significant. As a mat-
ter of convenience and consistency, both for thresholding purposes and to preserve the mean-
ing of the various numeric constants introduced in preceding chapters, such images can still 
be described as having a brightness range of 0...255 to cover the range from black to white. 
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But instead of being limited to integer brightness values, the greater precision of the data 
allows brightnesses to be reported as real numbers (e.g., a pixel value of 31,605 out of 65,536 
is divided by 256 and reported as 123.457). This facilitates comparison of values independent 
of the original image depth or dynamic range, but does not solve the problem of displaying 
such a range of values in a histogram. A full histogram of more than 65,000 values is too 
wide for any computer screen, and for a typical image size would have so few counts in each 
channel as to be uninterpretable. Generally, the counts are binned into a smaller number of 
channels for viewing, but still more than the 256 used for 8 bit images. Figure 7.2 shows the 
additional detail and the visibility of additional peaks that appear as more channels are used 
for the histogram.

Several examples of histograms have been shown in previous chapters. The histogram 
counts pixels in the entire image (or in a defined region of interest), ignoring the original 
location of the pixels or the brightness values of their neighbors. Peaks in the histogram 
may identify the various homogeneous regions (often referred to as phases, although they 
correspond to a phase in the chemical sense only in a few applications) and thresholds 
can then be set between the peaks. There are also automatic methods to adjust thresh-
old settings (Prewitt & Mendelsohn, 1966; Weszka, 1978; Otsu, 1979; Kittler et al., 1985; 

Figure 7.1 Example of thresholding an image by setting brightness limits on the histogram. A mouse is 
used to drag the sliders, the selected pixels are shaded in color, and the numeric values of the limits 
are shown.
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Russ & Russ, 1988a, 2007; Rigaut, 1988; Lee et al., 1990; Sahoo et al., 1988; Russ, 1995c; 
Melgani, 2006; Luessi et al., 2009), using either the histogram or the image itself as a 
guide, as shown below. Methods that compare to a priori knowledge the measurement 
parameters obtained from features in the image at many threshold levels (Wolf, 1991) are 
more specialized.

The presumption that a peak in the histogram corresponds to a structure in the image may 
be true in some settings, but it often does not hold for many real-world images, such as 
Figure 7.3. Under more controlled lighting conditions, such as encountered in astronomy, 
remote sensing, flat bed scanners, or in a laboratory, this situation is more likely to be met. It 
is particularly applicable to microscope images, with sample preparation that includes selec-
tive staining or other procedures. In some of the difficult cases, direct thresholding of the 
image is still possible, but the settings are not obvious from examination of the histogram 
peaks (if the histogram has distinct peaks). In many circumstances, the brightness levels of 
individual pixels are not uniquely related to structure. In some of these instances, the prior 
image processing operations described in Chapter 5 can transform the original brightness 
values in the image to form a new image, in which pixel brightness represents some derived 
parameter such as the local texture, brightness gradient, or orientation.

It is not always necessary to threshold the image in order to make measurements such as 
determining the area fraction of each structure. Histogram analysis may be done by fitting 
Gaussian (or other shape) functions to the histogram. Given the number of Gaussian peaks 
to combine for a best overall fit, the position, width, and height of each can be determined 

Figure 7.2 A 16 bit image of a density calibration standard and the histogram of brightness values: (a) 
conventional 256 channel histogram; (b) 512 channels; (c) 1024 channels.
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by multiple regression. This permits estimating the area of each phase but of course cannot 
determine the spatial position of the pixels in each phase if the peaks overlap. The result is 
generally poor because few real imaging situations produce ideally Gaussian peaks (or any 
other consistent shape). One exception is MRI images, where this method has been applied to 
produce images in which pixels in the overlap areas are not converted to black or white, but 
shaded according to the relative contributions of the two overlapping Gaussian peaks at that 
brightness value (Frank et al., 1995). This does not, of course, produce a segmented image 
in the conventional sense, but it can produce viewable images that delineate the overlapped 
structures (e.g., dark and white matter in brain scans).

Automatic settings

Manual adjustment of thresholds to produce a result that is considered to be correct based 
on visual inspection by a human operator is common, but in most cases should be avoided. 
In addition to taking time and being incompatible with automatic processing, different 
results are likely to be obtained at different times or by different people. Manual threshold-
ing errors are probably responsible for more problems in subsequent image analysis than 
any other cause.

A number of algorithms have been developed for automating the thresholding procedure, as 
discussed below. Some of them, primarily used in machine vision setups for industrial qual-
ity control, are more concerned with reproducibility than with absolute accuracy. Most of the 
automatic methods utilize the histogram in their calculations, but some also make use of the 
location information for the pixels (and their neighbors). All automatic methods make some 
assumptions about the nature of the image, and in order to choose the proper algorithm it is 
important to know as much as possible about the nature of the image, how it was acquired, 
and what kinds of scenes or subjects are dealt with.

In machine vision systems it is rarely practical to set constant threshold levels to select the 
features of interest. Changes over time in the illumination, the camera, or the positioning or 

  
        (a)         (b)               (c)

Figure 7.3 Thresholding a real-world image based on a histogram peak: (a) the original image and the 
pixels selected by setting the levels shown in (b); (c) histogram showing a peak with threshold limits. 
The locations of pixels with the selected brightness values do not correspond to any single object or 
structure unit in the original scene.
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cleanliness of the parts being examined make it necessary to have a method that adapts to 
the actual images. However, it is sometimes possible, by controlling the placement and color 
of the lighting, to produce images that have simple histograms. If the histogram has a fixed 
number of well defined peaks, automatic tracking of peak locations can adjust the threshold 
values for changes such as those listed above.

Probably the simplest method of all is to locate the peaks in the histogram and set the thresh-
olds midway between them. This approach is robust, because the peaks usually have well 
defined shapes and easily found positions. While it is a very reproducible method, it is not 
very accurate at defining the actual structures present. There is no particular reason to expect 
the midpoint to correspond to the boundary between regions, and as Chapter 1 points out, 
some cameras have a linear and some a logarithmic response. But if the goal is consistency, a 
simple method like this has obvious appeal.

Another method that is sometimes used selects a fixed percentage of the brightest or darkest 
pixels to produce a binary image. The procedure is to start at one end of the histogram and 
sum the histogram bins until the intended fraction of the image area is reached. The thresh-
old setting is then the brightness level of the last bin counted. This approach works well in 
applications such as locating holes in a backlit workpiece or labels on a bottle, because the 
position of the holes or label may vary but the total area remains constant.

One common method for calculating a threshold based on the contents of the histogram 
divides the pixels into two groups that have equal (or nearly equal, given the finite counts in 
the histogram) values for the variance. There is no basis for expecting this to be correct, and 
it requires an iterative approach in which an initial level is selected, the variances of the two 
halves are calculated, the level is adjusted, and so on.

Many of the algorithms developed for automatic setting of thresholds were intended for 
the discrimination of printed text on paper, as a first step in optical character recognition 
(OCR) programs that scan pages and convert them to text files for editing or communication. 
Figure 7.4 shows an example of a page of scanned text with the results of several of these 
algorithms. Note that there is no “valley between two peaks” present in this histogram, so 
methods that look for a bimodal histogram can’t be used. Many of the automatic methods 
assume there are two populations of pixels and apply a statistical test to select a threshold 
that “best” distinguishes them.

Each method makes different assumptions about the nature of the histogram and the appro-
priate statistical or other tests that can be used to divide it into two parts, each representing 
one of the two structures present (paper and ink). An excellent summary of the more widely 
used methods can be found in Parker (1997), Yager (1979), Otsu (1979), Trussell (1979), and a 
comprehensive survey of all techniques is available in Sezgin & Sankur (2004). Only a brief 
summary of a few representative methods is given here.

The Trussell algorithm (Trussell, 1979) is probably the most widely used automatic method, 
because it usually produces a fairly good result (Figure 7.4d) and is easy to implement. It 
finds the threshold setting that produces two populations of pixels (brighter and darker) with 
the largest value of the Student’s t statistic, which is calculated from the means of the two 
groups (µ), their standard deviations (σ), and the number of pixels in each (n), as shown in 
Equation 7.1. This is a standard statistical test that measures the probability that the two 
populations are different, so finding the threshold setting that produces the maximum value 
for t should correspond to the desired separation of the two groups of pixels. But it makes the 
hidden assumption that the populations are properly represented by the mean and standard 
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deviation, or in other words that they are normally distributed, and many histograms do not 
consist of Gaussian peaks.
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Another approach that often produces good results (but slightly different) and is non-parametric 
(i.e., does not assume a shape for the histogram) uses the entropy of the two sets of pixels (above 
and below the threshold setting) and is illustrated in Figure 7.4e. There are several different 
models for calculating the relevant entropy, which produce somewhat different results (Kapur et 
al., 1985; Abutaleb, 1989; Brink & Pendcock, 1996). Equation 7.2 shows the calculation for the 

 (e)  (f)

 (c)  (d)

 (a)    

 (b)

Figure 7.4 Automatic thresholding of printed text on paper using algorithms from Parker (1997): (a) 
original gray scale scan; (b) histogram, showing the settings used in the following examples; (c) Yager 
algorithm, threshold = 134; (d) Trussell algorithm, threshold = 172; (e) Shannon entropy algorithm; 
threshold = 184; (f) Kittler algorithm, threshold = 196.
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simplest form, in which the total entropy H for the foreground and background is maximized by 
selecting a threshold value t. The pi values are calculated from the actual histogram counts h(i) 
by dividing by the total number of pixels in that portion of the histogram.
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Many of the algorithms summarized in Parker produce similar results on this image, but some 
of the results do not separate the characters entirely and others cause them to break up. The 
situation for handwriting is even more difficult, because of the greater variation in the thick-
ness and density of lines (Solihin et al., 1996). There is no one method that works for all types 
of printing, paper, and image acquisition settings. And even if there were, the problem being 
addressed is much more specialized than the variety of images containing just two types of 
structures, and many images contain more than two. Some of these methods can be general-
ized to more than two populations of pixels. For example, the Student’s t test method when 
applied to more than two groups becomes Analysis of Variance (ANOVA). But in general it is 
necessary to have a priori knowledge of the number of groups present.

The accuracy and precision of automatic thresholding depend on choosing the appropri-
ate method, which amounts to using independent knowledge about the specimen or scene 
and the imaging hardware. Von Bradke (2004) reported that manual settings produced more 
consistent (in the sense of reproducible, not necessarily accurate) results than automatically 
setting the threshold to the minimum point in the histogram. Of course, the selection of the 
minimum is an inherently flawed method anyway, because the minimum point is noisy and 
unstable, and moves relative to the peaks when the area fractions vary (exactly what should 
not happen). In addition, changing the overall image brightness (contrast, gain, and gamma) 
also changes the minimum point.

But the most noteworthy problem with the von Bradke result is that the histogram for the 
typical image considered has a large bright peak (corresponding to the polished surface) and a 
long, nearly flat tail for darker values including the porosity. In many cases there is no clearly 
evident minimum, so the technique chooses a value based on the statistical fluctuations in the 
counts, with the predictable result that the threshold bounces around wildly. When the values 
are set by hand, while looking at the image, a different algorithm (probably something based 
on the smoothness of the periphery of the pores) is used by the operator. Note that achiev-
ing reproducibility in this case does not imply accuracy—the low image magnification (many 
pores are only one or a few pixels across) and questions about rounding of edges in sample 
preparation, as well as considerations of electron beam penetration in the sample, may also 
produce bias in the results. Other critical tests of automatic methods (e.g., Ozkaya et al., 2005; 
Francus & Pinard, 2004; Jalba et al., 2004) have also examined the performance of specific 
algorithms on real, as opposed to artificial test images.
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Methods that take into account more than just the shape of the histogram, such as the bright-
ness differences between each pixel and its neighbors, or the brightness values of pixels along 
the boundaries between foreground and background regions, or the shape of those boundar-
ies, are discussed later in this chapter. They can be more successful in automatically selecting 
accurate values for thresholding but also require somewhat more knowledge about the nature 
of the image in order to choose the proper algorithm.

In many situations, such as that shown in Figure 7.5, the objects of interest do not share a 
single brightness or color value, nor a common range of those values. But if the background 
around the features, or the surface on which the objects lie, is fairly uniform in color or 

  
(a)                      (b)

  
(c)                      (d)

Figure 7.5 Thresholding the background: (a) image of pores in epoxy resin; (b) thresholded intermedi-
ate gray background pixels; (c) inverted image delineating the pores; (d) watershed segmentation 
applied to separate the pores.
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brightness, it may be practical to select that by thresholding. The contrast of the result-
ing binary image can then be inverted to produce the representation of the objects. In the 
example shown, the pores in the epoxy must then be separated using a watershed technique 
explained in Chapter 8.

Multiband images

In some cases, segmentation can be performed using multiple images of the same scene. The 
most familiar example is that of color imaging, which uses different wavelengths of light. For 
satellite imaging in particular, this may include several infrared bands containing important 
information for selecting regions according to vegetation, types of minerals, and so forth 
(Haralick & Dinstein, 1975). Figure 7.6 shows an example in which the measured values in 
each band contain overlaps between different types of terrain, but they are fully separated by 
using the combination of two channels.

A series of images obtained by performing different processing operations on the same 
original image can also be used in this way in some cases. Examples include combining 
one image containing brightness data, a second containing local texture information, etc., 
as shown below.

In general, the more independent color bands or other images that are available, the bet-
ter the job of segmentation that can be performed. Points that are indistinguishable in one 
image may be fully distinct in another. However, with multi-spectral or multi-layer images, 
it can be difficult to specify the selection criteria. The logical extension of thresholding is to 
place brightness thresholds on each image, for instance to specify the range of red, green, 
and blue intensities. These multiple criteria are then usually combined with an AND opera-
tion (i.e., the pixel is defined as part of the foreground if its three RGB components all lie 
within the selected ranges). This is logically equivalent to segmenting each image channel 
individually, creating separate binary images, and then combining them with a Boolean 
AND operation afterward. Such operations to combine multiple binary images are covered 
in Chapter 8.

The reason for wanting to combine the various selection criteria in a single process is to assist 
the user in defining the ranges for each. The optimum settings and their interaction are not 
particularly obvious when the individual color bands or other multiple image brightness val-
ues are set individually. Designing a user interface which makes it possible to select a specific 
range of colors for thresholding a typical visible light image (most often specified by the RGB 
components) is not easy. A variety of partial solutions to aid in setting threshold criteria for 
colored images are in use.

This problem has several aspects. First, while red, green, and blue intensities represent the 
way the detector works and the way the data are stored internally, they do not correspond 
to the way that people recognize or react to color. As Chapter 1 explains, a system based on 
hue, saturation, and intensity or lightness (HSI) is more familiar. It is sometimes possible to 
perform satisfactory thresholding using only one of the hue, saturation, or intensity channels, 
as shown in Figure 7.7, or a principal components channel, as illustrated in Chapter 5, but in 
the general case it may be necessary to use all of the information. A series of histograms for 
each of the RGB color channels may show peaks, but the user is not often able to judge which 
of the peaks correspond to individual features of interest.
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Even if the RGB pixel values are converted 
to the equivalent HSI values and histo-
grams are constructed in that space, the 
use of three separate histograms and sets 
of threshold levels still does little to help 
the user see which combinations of values 
are present, or which pixels have those 
combinations.

For a three-dimensional color space, either 
RGB or HSI, interactive thresholding is 
more difficult than for the two-dimensional 
situation shown in Figure 7.6. There is no 
easy or obvious way with present display or 
control facilities to interactively enclose an 
arbitrary region in three-dimensional space 
and see which pixels are selected, or to 
adjust that region and see the effect on the 
image. It is also helpful to mark a pixel or 
region in the image and see the color values 
(RGB or HSI) labeled directly in the color 
space. For more than three colors (e.g., the 
multiple bands sensed by satellite imagery), 
the situation is even more challenging.

Using three one-dimensional histograms and sets of threshold levels, for instance in the RGB 
case, and combining the three criteria with a logical AND selects pixels that lie within a por-
tion of the color space that is a simple prism, as shown in Figure 7.8. If the actual distribu-
tion of color values has some other shape in the color space, for instance if it is elongated in 
a direction not parallel to one axis, then this simple rectangular prism may be inadequate to 
select the desired range of colors.

(a) (b) (c)

Figure 7.7 Thresholding a color image using a single channel: (a) original stained biological thin sec-
tion; (b) hue values calculated from stored red, green, blue values; (c) thresholding the hue image 
delineates the stained structures.

Figure 7.6 Example of terrain classification from 
satellite imagery using multiple spectral bands. 
Overlaps between classes in each band require that 
both be used to distinguish the types of terrain.
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Two-dimensional thresholds

A more flexible threshold can be set by using a two-dimensional criterion. This can be done in 
any color space (RGB, HSI, etc.), but with RGB coordinates it is difficult to interpret the mean-
ing of the settings. This is one of the (many) arguments against the use of RGB space for color 
images. However, the method is well-suited for color images encoded by hue and saturation. 
The HS plane can be represented as a circle, in which direction (angle) is proportional to hue 
and radius is proportional to saturation (Figure 7.9). The intensity or lightness of the image is 
perpendicular to this plane and requires another dimension to show or to control.

Instead of a one-dimensional histogram of 
brightness in a monochrome image, the figure 
represents a two-dimensional display in the HS 
plane. The number of pixels with each pair of 
values of hue and saturation can be plotted as 
a gray scale value on this plane, representing 
a histogram with dark peaks. Thresholds can 
be selected as a region that is not necessarily 
simple, convex, or even connected, and so can 
be adapted to the distribution of the actual data. 
Figure  7.10 illustrates this method; note that 
a narrow range of hue values is selected but a 
greater range of saturations, to deal with the 
variations introduced by the rounded shape of 
each candy piece. It is also possible to find loca-
tions in this color space as a guide to the user, 
by pointing to pixels in the image so that the 
program can highlight the location of the color 
values on the HS circle.

Red

GreenBlue

Threshold
settings for
Green

Threshold
settings for
Blue

Threshold
settings
for Red

 

Figure 7.8 Illustration of the com-
bination of separate thresholds 
on individual color channels. 
The shaded area is the AND of 
the three threshold settings for 
red, green, and blue. The only 
shape that can be formed in 
the three-dimensional space is 
a rectangular prism.

Red

YellowGreen

Cyan

Blue Magenta

Grey Pink

Hue

Saturation

Selected
Color
Range

Figure 7.9 Schematic illustration of selecting 
an arbitrary region in a two-dimensional 
parameter space (here the hue/saturation 
circle) to define a combination of colors to 
be selected for thresholding.
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As in the example of Figure 7.5, the background is more uniform in color and brightness than 
the candy pieces. These pixels lie near the center of the HS circle, since they have very low 
saturation. Thresholding them, as shown in Figure 7.11, produces a binary image of all the 
candy pieces. Separating the touching objects using the watershed segmentation explained in 
Chapter 8, and combining this image with the original image, for instance by keeping which-
ever pixel is lighter, shows the candy pieces with their colors restored.

Similar histogram displays and threshold settings can be accomplished using other channels 
and coordinates. For color images, the HS plane is sometimes shown as a hexagon (with red, 
yellow, green, cyan, blue, and magenta corners) rather than a circle. The CIE color diagram 
in Chapter 1 is also a candidate for this purpose. For some satellite images, the near and far 
infrared intensities form a plane in which combinations of thermal and reflected IR can be 
displayed and selected.

The HS plane can be plotted as a square face on a cube that represents the HSI space. This is 
simpler for the computer graphics display and is used in several of the examples that follow. 

     
(a)                      (b)

     

Figure 7.10 Example of hue-saturation 
selection:

  (a) original image;

  (b)  selection of the HS values for a single 
candy color (blue) from the histogram 
(which is shown on the hue-saturation 
circle as gray scale values represent-
ing the number of image pixels—note 
the clusters for each color including 
the low-saturation gray background 
close to the center of the circle);

  (c) resulting binary image.

           (c)
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However, the HSI cube with square faces is topologically different from the cone or bi-cone 
used to represent HSI space in Chapter 1, and the square HS plane is topologically different 
from the circle in Figure 7.10. In the square, the minimum and maximum hue values (orange-
red and magenta-red) are far apart, whereas in the circle, hue is a continuous function that 
wraps around. This makes using the square for thresholding somewhat less intuitive, but it is 
still superior in most cases to the use of RGB color space.

For the two-dimensional square plot, the axes may have unfamiliar meanings, but the 
ability to display a histogram of points based on the combination of values and to select 
threshold boundaries based on the histogram is a significant advantage over multiple 
one-dimensional histograms and thresholds, even if it does not generalize easily to the 
n-dimensional case.

The dimensions of the histogram array are usually somewhat reduced from the actual resolu-
tion of the various RGB or HSI values for the stored image. This is not only because the array 
size would become very large (2562 = 65,536 for the square, 2563 = 16,777,216 for the cube). 
Another reason is that for a typical real image, there are not that many distinct pairs or triples 
of values present, and a useful display showing the locations of peaks and clusters can be 
presented using fewer bins. The examples shown here use 32 × 32 or 64 × 64 bins for each of 
the square faces of the RGB or HSI cubes, each of which requires 322 = 1024 or 642 = 4096 
storage locations.

It is possible to imagine a system in which each of the two-dimensional planes defined by pairs 
of signals is used to draw a contour threshold, then project all of these contours back through 
the multi-dimensional space to define the thresholding, as shown in Figure 7.12. However, as 
the dimensionality increases, so does the complexity for the user, and the AND region defined 
by the multiple projections still cannot fit irregular or skewed regions satisfactorily.

  
(a)                      (b)

Figure 7.11 Thresholding the background in a color image (starting with the image in Figure 7.10a): 
(a) after thresholding and contrast reversal the binary image delineates the candy; (b) after water-
shed segmentation and combining the binary image with the original to keep whichever pixel value 
is lighter, the separated candy pieces are ready for measurement or counting.
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Multiband thresholding

Figure 7.7 shows a color image from a light 
microscope. The microtomed thin speci-
men of intestine is stained with two dif-
ferent colors, so that there are variations 
in shade, tint, and tone. The next series 
of figures illustrates how this image can 
be segmented by thresholding to isolate 
a particular structure using this informa-
tion. Figure  7.13 shows the original red, 
green, and blue color channels in the image 
and their individual brightness histograms. 
Figure 7.14 shows the histograms of pixel 
values, projected onto the red/green, green/
blue, and blue/red faces of the RGB color 
cube. Notice that there is a trend on all 
faces for the majority of pixels in the image 
to cluster along a diagonal axis through 
the cube. In other words, for most pixels, 
the trend toward more of any one color 
is part of a general increase in brightness 
by increasing the values of all colors. This 
means that RGB space poorly disperses the 
various color values and does not facilitate 
setting thresholds to discriminate the dif-
ferent regions present.

  
(a)              (b)              (c)

Figure 7.13 Red, green and blue color channels from the image in Figure 7.7, with their brightness 
histograms.

Hue

Saturation Intensity

Figure 7.12 Illustration of the combination of two-
parameter threshold settings. Outlining of regions 
in each plane defines a shape in the three-dimen-
sional space which is more adjustable than the 
Boolean combination of simple one-dimensional 
thresholds in Figure 7.8, but still cannot conform 
to arbitrary three-dimensional cluster shapes.
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Figure 7.15 shows the conversion of the 
color information from Figure 7.13 into 
hue, saturation, and intensity images, 
and the individual brightness histograms 
for these channels. Figure  7.16 shows 
the values projected onto individual two-
dimensional hue/saturation, saturation/
intensity, and intensity/hue square plots. 
Notice how the much greater disper-
sion of peaks in the various histograms 
uses more of the color space and sepa-
rates several different clusters of values. 
In general, for stains used in biological 
samples, the hue image identifies where 
a particular stain is located while the sat-
uration image corresponds to the amount 
of the stain, and the intensity image indi-
cates the overall density of the stained 
specimen.

Principal components analysis (PCA) pro-
cessing of images, shown in Chapter 5, 
also produces images in which the vari-
ous derived channels have more dis-
persed values which are often more suitable for thresholding than the original red, green, 
and blue channels. One of the advantages of the principal components analysis is that the 
axes are uncorrelated, and selecting a range along each axis or a region in each plane does 
delineate the volume correctly in the higher dimension volume. Figure  7.17 shows the 

Figure 7.14 Pairs of values for the pixels in the images 
of Figure 7.12, plotted on RG, BG, and RB planes 
and projected onto the faces of a cube.

  
(a)              (b)              (c)

Figure 7.15 Hue, saturation, and Intensity channels from the image in Figure 7.7, with their brightness 
histograms.
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principal components channels and their 
histograms, and Figure  7.18 shows the 
two-dimensional plots. Figure  5.57b in 
Chapter  5 shows this same image dis-
played with the three principal compo-
nents channels assigned arbitrarily to red, 
green, and blue.

Multiband images are not always differ-
ent colors. A very common example is the 
use of multiple elemental X-ray maps from 
the SEM, which can be combined to select 
phases of interest based on composition. 
In many cases, this combination can be 
accomplished by separately thresholding 
each individual image and then apply-
ing Boolean logic to combine the images. 
Of course, the rather noisy original X-ray 
maps may first require image process-
ing (such as median filtering for noise 
removal) to reduce the statistical variations 
from pixel to pixel (shown in Chapter 4), 
and binary image processing (illustrated 
in Chapter 8).

Using X-rays or other element-specific signals, such as secondary ions or Auger electrons, 
essentially the entire periodic table can be detected. It becomes possible to specify very 
complicated combinations of elements that must be present or absent, or the approximate 

  
(a)              (b)             (c)

Figure 7.17 Principal components channels from the image in Figure 7.7, with their brightness 
histograms.

Figure 7.16 Pairs of values for the pixels in the images 
of Figure 7.15, plotted on HS, SI, and HI planes 
and projected onto the faces of a cube.
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intensity levels needed (since intensi-
ties are roughly proportional to elemen-
tal concentration) to specify the region 
of interest. Thresholding these combina-
tions of elemental images produces results 
that are sometimes described as chemical 
maps. Of course, the fact that several ele-
ments may be present in the same area of 
a specimen, such as a metal, mineral, or 
biological tissue, does not directly imply 
that they are chemically combined.

In principle, it is possible to store an 
entire analytical spectrum (e.g., from an 
X-ray spectrometer, a mass spectrometer, 
or an optical visible light or infrared spec-
trophotometer) for each pixel in an image 
and then use appropriate computation to 
derive actual compositional information at 
each point, or apply principal components 
analysis to find the most significant data 
in the spectra, which is eventually used in 
a thresholding operation to select regions 
of interest (Watanabe et al., 2009; Parish 
& Brewer, 2010; Booth et al., 2010). At present, this approach is limited in application by the 
large amount of storage and lengthy calculations required. As faster and larger computers and 
storage devices become common, such methods are becoming more widely used.

Visualization programs used to analyze complex data may also employ Boolean logic to com-
bine multiple parameters. A simple example is a geographical information system (GIS), in 
which such diverse data as population density, mean income level, and other census data are 
recorded for each city block (which may be treated as a single pixel). Combining these different 
values to select regions for test marketing commercial products is a standard technique. Another 
example is the rendering of calculated tensor properties in metal beams subject to loading, as 
modeled in a computer program. Supercomputer simulations of complex dynamical systems, 
such as evolving thunderstorms, produce rich data sets that also benefit from such analysis.

There are other uses of image processing that derive several types of information from a 
single original gray scale image to aid in performing selective thresholding of a region of 
interest. The processing produces additional images that can be treated as multiband images 
useful for segmentation.

Thresholding from texture

Few real images of practical interest can be satisfactorily thresholded using just the original 
brightness values. The texture information present in images is one of the most powerful 
additional tools available. Several kinds of texture may be encountered, including different 
ranges of brightness, different spatial frequencies, and different orientations (Haralick et al., 
1973). The next few figures show images that illustrate the use of these variables, introduced 
in Chapter 5, for thresholding.

Figure 7.18 Pairs of values for the pixels in the images 
of Figure 7.17, projected onto the faces of a cube.
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Figure 7.19 shows a test image containing five irregular regions that can be visually distin-
guished by texture. The average brightness of each of the regions is identical, as shown by the 
brightness histograms. Region (e) contains pixels with uniformly random brightness values 
covering the entire 0 to 255 range. Regions (a) through (d) have Gaussian brightness varia-
tions, which for regions (a) and (d) are also randomly assigned to pixel locations. For region 
(b) the values have been spatially averaged with a Gaussian smooth, which also reduces the 
amount of variation. For region (c) the pixels have been averaged together in one direction to 
create a directional texture.

One approach that is often suggested (and sometimes useful) for textural characterization is the 
Fourier transform introduced in Chapter 6. Figure 7.20 shows the power spectra for each of the 
patterns in Figure 7.19. The smoothing in region (b) acts as a low pass filter, so the high frequen-
cies are attenuated. In region (c) the directionality is visible in the frequency transform image. 
For the other regions, the random pixel assignments do not create any distinctive patterns in the 
frequency transforms. They cannot be used to select the different regions in this case.

The variance in a moving 4 pixel radius neighborhood is calculated for this image as a spatial-
domain texture-sensitive operator in Figure 7.21. This operation, described in Chapter 5, 
produces a derived image that has unique gray scale values for each region, as shown in the 
brightness histogram. The five peaks are separated and allow direct thresholding. The figure 
shows an image with outlines of the regions selected by thresholding the variance image 
superimposed on the original, and colored overlays. Because the spatial scale of the texture is 
several pixels wide, the location of the boundaries of regions is necessarily uncertain by sev-
eral pixels. It is also difficult to estimate the exact boundary location visually in the original 
image, for the same reason.

Figures 5.43 and 5.44 in Chapter 5 show images typical of many in which regions that 
have no distinct brightness difference are visually distinguished by a textural difference. 
Converting that texture to a brightness with a suitable texture operator converts the original 
image to one that can be thresholded. Chapter 5 illustrates several texture operators (max-
min, fractal dimension) that can be used for this purpose.

  
(a)                      (b)

Figure 7.19 Test image containing five different regions to be distinguished by differences in the tex-
tures. The brightness histograms are shown (b); the average brightness of each region is the same.
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(a)               (b)               (c)

  
       (d)               (e)

Figure 7.20 2D FFT power spectra of the pattern in each area of Figure 7.19a. While some minor dif-
ferences are seen (e.g., the loss of high frequencies in region (b), and the directionality in region (c), 
these cannot be used for satisfactory segmentation.

  
(a)               (b)               (c)

Figure 7.21 Processing to convert the textures in Figure 7.19a to brightness differences: (a) result of 
applying a variance operator; (b) histogram showing that the five regions are distinct in brightness; 
(c) each of the regions selected by thresholding the histogram in (b), shown using colored overlays.
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Multiple thresholding criteria

Figure 7.22 shows a somewhat more complex test image, in which some of the regions are 
distinguished by a different spatial texture and some by a different mean brightness. No single 
parameter can be used to discriminate all four regions. The texture can be extracted by apply-
ing a variance operator to produce a useful gray scale distinction. Smoothing with a Gaussian 
blur to eliminate the texture creates an image in which the brightness differences stand out. It 
is necessary to use both images to select individual regions. This can be done by thresholding 
each region separately and then using Boolean logic (described in Chapter 8) to combine the 
two binary images. Another approach is to use the same kind of two-dimensional histogram 
described above for color images (Panda & Rosenfeld, 1978). The figure shows the individual 
image histograms and the two-dimensional histogram. In each of the individual histograms, only 
three peaks are present because the regions are not all distinct in either brightness or variance. 
In the two-dimensional histogram, individual peaks are visible for each of the four regions.

The situation is analogous to the use of different color channels shown above in Figure 7.6. 
In practice, the different derived images used to successfully segment an image such as this 
one are sometimes displayed using different color channels. This is purely a visual effect, 
since the data represented have nothing to do with color. However, it does take advantage 
of the fact that human vision distinguishes colors well (for most people, at least), and it also 

   
(a)               (b)               (c)

     
(d)               (e)               (f)

Figure 7.22 Segmenting with multiple criteria: (a) original image; (b) texture image produced by vari-
ance operator; (c) intensity image produced by smoothing; (d) histograms of (b) and (c); (e) two-
dimensional histogram; (f) color composite as described in the text.



415Segmentation and Thresholding
© 2011 by Taylor & Francis Group, LLC

reveals the similarity between this example of thresholding based on multiple textural and 
brightness criteria with the more commonplace example of thresholding color images based 
on the individual color channels. Figure 7.22f shows the information with the original image 
in the L channel, the smoothed brightness values in the a (red-green) channel, and the texture 
information from the variance operator in the b 
(yellow-blue) channel of an L•a•b color image.

Figure 7.23 shows an application of threshold-
ing using two criteria, one of them texture, to an 
image of ice crystals in a food product. The frac-
tal texture operator partially delineates the ice 
crystals, as does the hue channel. Thresholding 
each, and then combining them with Boolean 
logic (shown in Chapter 8) produces a useful 
segmentation of the crystals, as shown by the 
outlines on the figure.

Textural orientation

Figure 7.24 shows another test image contain-
ing regions having identical mean brightness, 
brightness distribution, and spatial scale of the 
local variation, but different textural orienta-
tions. This is evident in a two-dimensional fre-
quency transform, as shown in Figure 7.25a. 

  
       (a)               (b)

  
(c)               (d)               (e)

Figure 7.23 Segmentation of ice crystals in a food product: (a) original image; (b) fractal texture opera-
tor applied to the intensity channel; (c) hue channel; (d) color composite with original brightness in 
the L channel, texture in the a channel, and hue in the b channel of an L•a•b image; (e) final thresh-
olded and combined result shown as outlines on the original image.

Figure 7.24 An image containing regions which 
have different textural orientations, but the 
same average brightness, standard deviation 
and spatial scale.
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The three ranges of spatial domain orientation are revealed in the three spokes in the 
transform.

Using a sector-shaped mask with smoothed edges (as illustrated in Chapter 6) to select 
each of the spokes and re-transform the image produces the three spatial domain images 
shown in Figure 7.25. Each texture orientation in the original image is isolated, having a 
uniform gray background in other locations. However, these images cannot be thresholded 
to delineate the regions because the brightness values in the textured areas cover a range 
that includes the surroundings.

Applying a max-min operator to a 5 × 5 pixel octagonal neighborhood, as shown in 
Figure  7.26, suppresses the uniform background regions and highlights the individual 
texture regions. Thresholding these images and applying a closing operation (shown in 
Chapter 8) to fill in internal gaps and smooth boundaries produces images of each region. 
Figure 7.26d shows the composite result. Notice that the borders of the image are poorly 
handled, a consequence of the fact that the Fourier transform treats the edges as contigu-
ous, as discussed in Chapter 6. Also, the boundaries of the regions are irregular and only 
approximately delineated in this result.

In most cases, spatial domain processing is preferred for texture orientation. Figure 7.27a shows 
the result from applying a Sobel operator to the image, as covered in Chapter 5. Two directional 
first derivatives in the x and y directions are obtained using a 3 × 3 neighborhood operator. 
These are then combined using the arc tangent function to obtain an angle that is the direction 
of maximum brightness gradient. The resulting angle is scaled to fit the 0 to 255 brightness 
range of the image, so that each step in brightness corresponds to about 1.4 degrees.

 

Figure 7.25 Isolating the directional texture in frequency space: 
(a) two-dimensional frequency transform of the image in 
Figure 7.24, showing the radial spokes corresponding to each 
textural alignment; (b, c, & d) retransformation using sector 
masks to select each of the orientations.

       (a)

  

(b)               (c)               (d)
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The brightness histogram shown in Figure 7.27b shows six peaks. These occur in pairs 180 
degrees (128 gray scale values) apart, since in each texture region the direction of maximum 
gradient may lie in either of two opposite directions. The angle values can be reduced to 
three directions by assigning the full range of gray scale values to the 0...180 and 180...360 
degree angle ranges (Figure 7.27c). Figures 7.27d and 7.27e show the results after applying 
a median filter.

Applying any neighborhood processing operation such as smoothing or median filtering to 
an image in which gray scale represents direction requires special rules to account for the 
modulo change in values at 0. For example, the average value in a neighborhood contain-
ing pixel values of 15 and 251 is 5, not 133. One way to accomplish this is to process each 
neighborhood twice, once with the stored values and once with the original pixel values 
shifted to become (value+128) mod 255, and then keep whichever result is smaller. 

Figure 7.27f shows the results of three thresholding operations to select each of the three 
textural orientations, each result assigned to a color channel. A few black pixels along bound-
aries are not selected by the automatic algorithm, but these are relatively minor, and the con-
sequence of the fact that the region boundaries are imperfectly defined in the original image. 
This result is superior to the frequency transform method and has smoother boundaries and 
better agreement with the visual judgment of location.

  
(a)               (b)               (c)

 

Figure 7.26 Application of a max-min operator to the images in 
Figure 7.25: (a,b,c) processed results for Figure 7.25b, c, and 
d, respectively; (d) the color combination of the regions selected 
by thresholding these images.

       (d)
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(a)                 (d)

 

(b)                 (e)

 

(c)                 (f)

Figure 7.27 Use of the Sobel orientation operator to isolate directional texture: (a) result for the image 
in Figure 7.24a with angle values from 0 to 360 degrees assigned unique gray scale values; (b) his-
togram of (a) showing six peaks; (c) result with angle values from 0 to 180 and 180 to 360 assigned 
the same gray scale values; (d) application of a median filter to (c); (e) histogram of (d) showing three 
peaks; (f) result of thresholding each of the regions based on (d), assigning each binary result to a 
color channel and overlaying the result on the original image.
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Figure 7.28 illustrates the use of this procedure with a real image. The herringbone cloth 
has two predominant orientation regions, which are otherwise indistinguishable in color and 
brightness. The Sobel orientation operator assigns gray scale values representing orienta-
tions, as shown in Figure 5.45 in Chapter 5. Thresholding the resulting image delineates the 
regions in the original image.

Figure  7.29 shows another compound example, a metallographic sample with a lamellar 
structure. This requires several steps to segment into the various regions. Brightness thresh-
olding can delineate the texture-free region directly. Applying the Sobel orientation operator 
produces an image that can be thresholded to delineate the other two regions The result is a 
complete map of the sample, as shown.

These compound methods involving brightness (often in several different color channels) and 
texture are particularly applicable to the identification of agricultural crops seen in satellite 
imagery. The different planting patterns produce different textures, which, combined with the 
use of visible and infrared channels, produce highly specific results.

Region boundaries

Since pixel-based images represent at best an approximation to the continuous real scene 
being represented, and since thresholding classifies each pixel as either part of the foreground 
or the background, only a finite level of accuracy can be achieved. An alternate representation 
of features based on boundary lines can be more accurate. These may be polygons with many 

  
(a)               (b)               (c)

 

Figure 7.28 Thresholding based on orientation:

  (a) original image of cloth;

  (b)  application of a Sobel operator coding angles from 0 to 180 
degrees;

  (c) thresholded result;

  (d)  overlay of binary image on original to show selected 
regions.

       (d)
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sides and corner points defined as x,y coordinates with sub-pixel accuracy, or spline curves, 
etc., as compared to the comparatively coarse pixel spacing.

Such boundary line representation is superior for accurate measurement because the line itself 
has no width. However, determining the line not always easy. The location of individual points 
can be determined by interpolation between pixels, perhaps fitting mathematical functions to 
pixels on either side of the boundary to improve the results. This type of approach is commonly 
used in geographic applications in which elevation values measured at discrete points are used to 
construct topographic maps. It is also used in metrology applications, such as measuring dimen-
sions of microelectronic circuit elements on silicon wafers, and is possible because the shape of 
those features (usually consisting of straight lines) is known a priori. This type of specialized 
application goes beyond the typical image processing operations dealt with in this chapter.

One approach to interpolating a smoothed boundary line through the pixels is used by the 
super-resolution perimeter measurement routine used in Chapter 10 for feature measure-
ment. This method uses neighborhood processing (the Laplacian of a Gaussian or LoG opera-
tor mentioned in Chapter 5) to fit an adaptive boundary line through each pixel, achieving 
improved precision and fractional-pixel accuracy. There is a further discussion of interpolated 
boundary contours below.

Based on traditional thresholding which produces a pixel-based representation of the image, 
the finite size of the pixels allows only a finite accuracy. But since it is desirable to avoid bias 
in the result, performing the same operation on many repeated images of the same scene 
should produce an average result that approaches the true value for size or other feature mea-
surements. The question is always what to do with the pixels along the boundaries between 

  
(a)               (b)               (c)

 

Figure 7.29 Thresholding on multiple criteria:

  (a) original metallographic image;

  (b) one region selected by brightness thresholding;

  (c)  Sobel orientation operator applied to the remaining region, 
with angles coded from 0 to 360 degrees;

  (d) final segmentation result with all regions color coded.

       (d)
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regions, whose brightness values typically lie 
between the peaks in the brightness histo-
gram. In most instances, these are pixels that 
straddle the boundary and have averaged 
together the two principal brightness levels 
in proportion to the area subtended within 
the pixel, as indicated in Figure 7.30.

The histogram shows only the frequency of 
occurrence of different values; it does not 
preserve any information about position, the 
brightness of neighboring pixels, the mag-
nitude of the local brightness gradient, and 
other factors. Yet it is this spatial information 
that is important for determining boundary 
location. It is possible to build a co-occur-
rence matrix for the image in which all pos-
sible combinations of pixel brightness are 
counted in terms of the distance between 
them. The information is used to select the 
pixels that are part of the feature instead of 
simply relying on the pixel brightness values.

Using the shape of the histogram to select a threshold generally places the value between 
peaks. The difficulty is that because this region of the histogram is (hopefully) very low, with 
few pixels having these values, the counting statistics are poor and the shape of the curve in 
the histogram is poorly defined. Consequently, the threshold value is hard to locate and may 
move about considerably with only tiny changes in overall illumination, a change in the field 
of view to include objects with a different shape, or more or fewer pixels along the boundary. 
Smoothing the histogram with a polynomial fit can provide a somewhat more robust location 
for a minimum point.

Figure 7.31 shows a test image having two visibly distinguishable regions. Each contains 
a Gaussian noise pattern with the same standard deviation but a different mean, and the 
brightness values in the two regions overlap. This means that setting a threshold value at the 
minimum between the two peaks causes some pixels in each region to be misclassified, as 
shown. This image is used in several examples below to compare thresholding and process-
ing methods.

This type of image often results from situations in which the total number of photons or other 
signals is low and counting statistics cause a variation in the brightness of pixels in uniform 
areas, resulting in broad peaks in the histogram. Counting statistics produce a Poisson distribu-
tion, but when moderately large numbers are involved, this is very close to the Gaussian func-
tion used in these images. For extremely noisy images, such as X-ray dot maps from the SEM, 
some additional processing may be required before attempting thresholding (O’Callaghan, 
1974). Other sources of noise in the amplification and digitization of the signals also produce 
variations in brightness, which may not be Gaussian in shape.

Figure 7.32 shows a typical sparse X-ray map. The boundaries in the image are visually evi-
dent, but their exact location is at best approximate, requiring the human visual system to 
group the dots together. Imaging processing can do this by counting the number of dots in 
a circular neighborhood around each pixel. Convolution with a kernel consisting of 1s in a 5 

Figure 7.30 Example of finite pixels straddling 
a boundary line, with brightness values that 
average those of the two regions based on the 
area of the pixel that lies within each region.
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pixel diameter circle accomplishes this, producing the result shown in Figure 7.32c. This gray 
scale image can be thresholded to locate the boundaries shown, but there is inadequate data 
to decide whether the small regions, voids, and irregularities in the boundaries are real or 
simply due to the limited counting statistics. Typically, the threshold level is set by determin-
ing the mean brightness level in the background region and then setting the threshold several 
standard deviations above this to select just the significant regions. The figure compares the 
averaging approach to one that uses a median filter for noise reduction (Figure 7.32e), fol-
lowed by thresholding and applying morphological editing, as covered in Chapter 8. The 
results (Figure 7.32h) are slightly different for the two procedures, but the original image 
does not contain enough data to distinguish between them.

Several possible approaches may be used to improve the segmentation of noisy regions, 
which are illustrated using Figure  7.31 as a example. Chapter 8 discusses binary image 
editing operations, including morphological processing. Starting with the thresholded binary 
in Figure 7.31b, the sequence of a dilation followed by an erosion, known as a closing, fills 
holes, erases isolated pixels, and smooths the boundary line to produce the result shown in 
Figure 7.33a.

For comparison, an operation applied to the original gray scale image in Figure 7.31a reas-
signs pixels from one region to the other based on the entropy in both regions. In this case, 

  
(a)                     (c)

 

Figure 7.31 A test image containing two 
regions whose mean brightness levels are 
different, but which have variations in 
individual pixels that overlap:

  (a)  original image (enlarged to show 
pixels);

  (b)  histogram showing overlap between 
regions;

  (c)  result of setting a simple threshold at 
the minimum point.

            (b)
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the collection of pixels into two regions can be considered as an entropy problem (Kanpur 
et al., 1985): The total entropy in each region is calculated as –∑pi log pi, where pi is the 
fraction of pixels having brightness i. Solving for the boundary that classifies each pixel into 
one of two groups to minimize this function for the two regions, subject to the constraint 
that the pixels in each region must touch each other, produces the boundary line shown in 
Figure 7.33b. Additional constraints, such as minimizing the number of touching pixels in 
different classes, would smooth the boundary. The problem is that such constraints assume 
that something is known about the specimen (for instance, that the boundary is smooth), 
and can usually be applied more efficiently in other ways (for instance by smoothing the 
binary image).

  

(a)               (b)               (c)

  

(d)               (e)               (f)

   
       (g)               (h)

Figure 7.32 Delineating regions in a noisy image: (a) original X-ray map (oxygen in mica); (b) thresh-
olding applied to (a); (c) original image smoothed using a 2 pixel radius averaging filter; (d) thresh-
olding applied to (c); (e) original image after noise reduction by a hybrid median filter with 2 pixel 
radius; (f) thresholding applied to (e); (g) morphological closing applied to (f); (h) comparison of 
thresholded results from (d) and (g) by placing them into color channels.
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Setting a threshold value at the minimum in the 
histogram is sometimes described as selecting for 
minimum area sensitivity in the value (Weszka, 
1978; Wall et al., 1974). This means that changing 
the threshold value causes the least change in the 
feature (or background) area, although, as noted, 
above this says nothing about the spatial arrange-
ment of the pixels that are thereby added to or 
removed from the features. Any minimum in the 
histogram is by definition a point of minimum 
area sensitivity.

Processing the image in Figure 7.31a can change 
the histogram to produce a minimum that is 
deeper, broader, and has a more stable minimum 
value. Figure 7.34 shows the results of smoothing 
the image (using a Gaussian kernel with a stan-
dard deviation of 1 pixel) or applying a median 

filter with a radius of 1 pixel (both of these processes are shown in Chapter 4). The peaks are 
narrower and the valley is broad and deep. The consequences for the image, and the boundar-
ies that are selected by setting the threshold level between the resulting peaks, are shown in 
Figure 7.35. Placing the various boundary lines into different color channels shows that they 
differ in location by 1 or 2 pixels in places, but there is insufficient information in the original 
image to choose between them.

The areas of various regions in the image, which are what the histogram represents, do not 
seem to be the criterion used by skilled human operators when they watch an image and 
interactively adjust a threshold value. Instead of the total area of features changing least 
with adjustment, which is difficult for humans to judge, another approach is to use the total 
change in perimeter length around the features (Russ & Russ, 1988a), which corresponds to 
the “smoothest” boundary. The variation in total perimeter length with respect to threshold 
value provides an objective criterion that can be efficiently calculated. The minimum in this 
response curve provides a way to set the thresholds that is reproducible, adapts to varying illu-
mination, etc., and mimics to some extent the way humans set the values when they assume 
that the boundaries should be smooth. For the case in which both upper and lower threshold 
levels are to be adjusted, this produces a response surface in two dimensions (the upper and 

  

Figure 7.33 The boundary in the 
image of Figure 7.31 deter-
mined by various methods:

  (a)  thresholding at the mini-
mum point in the histogram 
followed by closing (dila-
tion and erosion);

  (b)  iteratively setting the mini-
mum entropy point.

        (a)              (b)

Figure 7.34 Histogram of the image in Figure 
7.31a:

  (a) original, with overlapped peaks;

  (b) after smoothing;

  (c) after median filtering.
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lower values), which can be solved to find the 
minimum point, as indicated schematically in 
Figure 7.36.

Figure 7.37 shows an image whose brightness 
threshold has been automatically positioned 
to minimize the variation in total boundary 
length. The specimen (oil droplets in mayon-
naise) is one in which boundaries are expected 
to be smooth because of surface tension at the 
oil-water interface. Similar smooth boundaries 
occur in many situations, including membranes 
in biological tissue, and phase changes in mate-
rials (solidification or melting), but such an 
assumption is not appropriate for (e.g.) abraded 
or fractured surfaces which are rough.

  

(a)               (b)               (c)

   

       (d)               (e)

Figure 7.35 Thresholding the processed image from Figure 7.31a: (a) smoothing with a Gaussian ker-
nel, standard deviation = 1 pixel; (b) the boundary produced by thresholding image (a), superim-
posed on the original; (c) Median processing (iteratively applied until no further changes occurred); 
(d) the boundary produced by thresholding image (c), superimposed on the original; (e) compari-
son of the boundaries in Figures 7.33a (red), 7.35b (green), and 7.35d (blue) by placing the lines 
into color channels (white, cyan, yellow, and magenta pixels indicate overlaps between the various 
boundaries).

Figure 7.36 A two-way plot of the absolute 
change in perimeter length vs. the settings of 
upper and lower level brightness thresholds. 
The minimum indicates the optimal settings.
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The brightness histogram shown in the figure has 
a valley between peaks, which are not symmet-
ric or Gaussian in shape. The selected threshold 
point is not at the lowest point in the histogram. 
Repeated measurements using this algorithm 
on many images show that the reproducibility 
in the presence of moderate image noise and 
changing illumination is usually good.

Conditional histograms

Most of the difficulties with selecting the opti-
mum threshold brightness value between 
regions represented in a typical histogram arise 
from the intermediate brightness values in the 
histogram. Many of these pixels lie along the 
boundaries of the two regions, so methods 
that eliminate them from the histogram ideally 
leave only peaks from the uniform regions and 
facilitate selecting a threshold value (Weszka & 
Rosenfeld, 1979; Milgram & Herman, 1979).

One way to perform this selection is to use 
another derived image, such as the Sobel gra-
dient or any of the other edge-finding opera-
tors described in Chapter 5. Pixels having a 
high local gradient value generally lie along 
boundaries between regions and can be elimi-
nated from the histogram of the original image 
to reduce the background level in the range 
between the two phase peaks. Figure  7.38 
shows an example. The original image contains 

three phases with visually distinct gray levels. Several methods can be used to eliminate 
edge pixels. Thresholding the gradient image selects pixels with high values. This produces a 
binary image that can be used as a mask that restricts the pixels in the original image to be 
used for the histogram to be analyzed.

In the example, the 20% of the pixels with the largest magnitude in the Sobel gradient image 
are selected to produce a mask to remove those pixels from the original image and the histo-
gram. The result is the reduction of those portions of the histogram between peaks, with the 
peaks themselves little affected. This makes it easier to characterize the shapes of the peaks 
from the phases and select a consistent point between them.

This approach requires setting a threshold on the gradient image to select the pixels to be 
bypassed, typically by choosing some fixed percentage of the pixels with the highest gradient 
value. In the example shown, the gradient operator responds more strongly to the larger dif-
ference between the white and gray regions than to the smaller difference between the gray 
and dark regions. Hence the edge-straddling pixels (and their background in the histogram) 
are reduced much more between the white and gray peaks than between the gray and black 
peaks.

(a)

(b)

Figure 7.37 Test image for automatic threshold 
adjustment:

  (a)  original image (oil droplets in mayon-
naise) with outlines corresponding to the 
threshold setting shown in (b);

  (b)  brightness histogram showing the opti-
mum threshold point based on minimiz-
ing the change in perimeter length.
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Figure 7.39 shows another method. Beginning with the gradient image in Figure 7.38b, non-
maximum suppression (also known as gray scale thinning, skeletonization, or ridge finding) 
is used to narrow the boundaries and eliminate pixels that are not actually on the boundary. 
This line is uniformly dilated to 3 pixels wide and used as a mask to remove all edge-strad-
dling pixels from the original. The plot of the resulting histogram, in Figure 7.38d, shows a 
greater suppression of the valley between the gray and black peaks. All of these methods are 
somewhat ad hoc; the particular combination of different region brightnesses present in an 
image dictates what edge-finding operation works best and what fraction of the pixels should 
be removed.

Boundary lines

One of the shortcomings of selecting pixels by brightness or color, and only secondarily by 
location, is that there is no requirement for regions to be continuous. Instead of defining a 

  

(a)               (b)               (c)

Original

Figure 7.38c

Figure 7.39c

(d)

Figure 7.38 Thresholding by ignoring boundary pixels: (a) original image containing three visually 
distinct phase regions with different mean gray levels; (b) application of a Sobel gradient operator to 
(a); (c) The image without the 20% of the pixels having the largest gradient value, which eliminates 
the edge-straddling pixels in the original; (d) comparison of histograms from the original image in 
(a) and the masked image in (c) as well as the image in Figure 7.39c, showing the reduction of the 
number of pixels with brightness in the ranges between the main peaks.
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region as a collection of pixels whose brightness values are similar in one or more images, an 
alternate definition can be based on boundaries between regions.

Manually outlining regions for measurement is one way to use this approach. Various interac-
tive pointing devices, such as graphics tablets, touch screens, or light pens, may be used to 
supplement the ubiquitous mouse, and the drawing may take place while the viewer looks at 
the computer screen, at a photographic print on a tablet, or through an optical device such 
as a microscope, with the pointer device optically superimposed. None of these methods is 
without problems. Display monitors have rather limited resolution. Drawing on a screen rep-
resentation of a live image does not provide a record of where the marks have been unless the 
software draws in a line. Mice are clumsy pointing devices, light pens lose precision in dark 
areas of the display, touch screens have poor resolution (and your finger gets in the way), and 
so on. Drawing tablets that incorporate displays are used to some extent in creating graphic 
arts. The ultimate problem with all these techniques is that they rely on the judgment and 
skill level of the observer.

It is beyond the purpose here to describe the operation or compare the utility of the different 
devices. Regardless of what physical device is used for manual outlining, the method relies 
on the human visual system to locate boundaries and produces a result that consists of an 
approximation to the region outline. Many individuals tend to draw just outside the actual 
boundary of whatever features they perceive to be important, making dimensions larger than 
they should be, and the amount of error is a function of the contrast at the edge. (There are 
exceptions to this, of course. Some people draw inside the boundary. But bias is commonly 
present in all manually drawn outlines.)

The other problems with manual outlining include susceptibility to bias because of expecta-
tion, lack of reproducibility from person to person (or for one person, from time to time), and 
the amount of time needed to mark all of the objects or structures present.

Attempts to emulate the human outlining operation with a computer algorithm require a start-
ing point, usually provided by the human. Then the program examines each adjoining pixel 
to find which has the characteristics of a boundary, usually defined as a step in brightness. 
Whichever pixel has the highest value of local gradient is selected and added to the growing 
polygon, and then the procedure is repeated. Sometimes a constraint is added to minimize 
sharp turns, such as weighting the pixel values according to direction.

  
(a)               (b)               (c)

Figure 7.39 Removal of edge pixels: (a) non-maximum suppression (gray scale thinning) applied to 
Figure 7.38b; (b) dilation of lines to 3 pixels wide; (c) removal of edges leaving uniform interior 
regions in the original. The histogram of the resulting masked image is shown in Figure 7.38d.
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Automatic edge following suffers from several problems. First, the edge definition is essen-
tially local. People have a rather adaptable capability to look ahead various distances to find 
pieces of edge to be connected together. Gestalt psychologists call this grouping and it is 
discussed in Chapter 2. Such a response is difficult for an algorithm that looks only within 
a small neighborhood. Even in rather simple images, there may be places along boundaries 
where the local gradient or other measure of edgeness decreases.

In addition, edges may touch where regions abut. The algorithm is equally likely to follow either 
edge, which gives a nonsensical result. There may also be a problem of when to end the process. If 
the edge is a single, simple line, then it ends when it reaches the starting point. If the line reaches 
another feature that already has a defined boundary (from a previous application of the routine) 
or if it reaches the edge of the field of view, then there is no way to complete the outline.

The major problems with edge following are: (a) it cannot by itself complete the segmentation 
of the image because it has to be given each new starting point and cannot determine whether 
there are more outlines to be followed and (b) the same edge-defining criteria used for follow-
ing edges can be applied more easily by processing the entire image and then thresholding. 
This produces a line of pixels that may be broken and incomplete (in which case the edge 
following is unable to continue) or may branch (if several boundaries touch). However, there 
are methods presented in Chapter 8 that apply erosion/dilation morphology or watershed 
segmentation to deal with some of these deficiencies. The global application of the processing 
operation finds all of the boundaries.

Figure 7.40 illustrates a few of these effects. The image consists of several hand-drawn dark 
lines, to which a small amount of random noise is added and a ridge-following algorithm 
applied (Van Helden, 1994). Each of the user-selected starting points is shown with the path 
followed by the automatic routine. The settings used for this example instruct the algorithm 
to consider points out to a distance of 5 pixels in deciding which direction to move in at each 
point. Increasing this number produces artificially smooth boundaries and also takes more 
time as more neighbors must be searched. Conversely, reducing it makes it more likely to 
follow false turnings. Many of the paths are successful, but a significant number are not. By 
comparison, thresholding the image to select dark pixels and then skeletonizing the resulting 
outline, as shown in Chapter 8, produces reasonable boundary lines for all of the regions 
at once.

  
(a)               (b)               (c)

Figure 7.40 Test image for automatic line following: (a) hand-drawn lines with the addition of random 
noise; (b) lines found by automatic tracing, showing the starting points for each (notice that some 
portions of crossing or branching line patterns are not followed); (c) lines found by thresholding and 
skeletonization.
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The same comparison can be made with a real image. Figure 7.41 shows a fluorescence 
image from a light microscope. In this case, the inability of the fully automatic ridge-following 
method to track the boundaries has been supplemented by a manually assisted technique. 
The user draws a line near the boundary, and the algorithm moves the points onto the nearest 
(within some preset maximum distance) darkest point. This method, sometimes called “active 
contours” or “snakes” (Kass et al., 1987; Lee, 2006; Myronenko & Song, 2009), allows the user 
to overcome many of the difficulties in which the automatic method may wander away from 
the correct line, never to return. But it is still faster to use thresholding and skeletonizing to 
get the boundary lines, and while the details of the lines differ, it is not evident that either 
method is consistently superior for delineation.

Since fitting is accomplished for all of the points on the boundary at once using a minimization 
technique, the snakes can accommodate some missing or confusing points. They are particu-
larly useful for tracking moving boundaries in a sequence of images, since the deformation of 
the snake from one moment to the next must be small. The minimum length of any side, the 
maximum angular change at any vertex, and other arbitrary fitting constants must reflect some 
independent knowledge or judgment about the region that is to be fitted. They must generally 
be adjusted for each application until the results are acceptable as compared to visual examina-
tion. Figure 7.42 shows an example. This adaptability often makes snakes useful for tracking 
moving, known objects in robotics vision. When applied to three-dimensional arrays of voxels, 
as in 3D medical imaging, snakes become deformable polyhedra and are called balloons.

Contours

One type of image segmentation that is guaranteed to be continuous is a contour line. This 
is analogous to the iso-elevation contour lines drawn on topographic maps. The line marks a 

 

Figure 7.41 Light microscope fluorescence image with three 
features:

  (a) original;

  (b)  edge-following algorithm (red shows automatic results, 
green shows a feature that required manual assistance to 
outline) with outlines from superimposed on the original;

  (c) brightness thresholding the original image;

  (d)  skeletonized outlines from (c) superimposed on the 
original.

              (a)

  

(b)               (c)               (d)
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constant elevation on the map, or in the case of images, a constant brightness in the image. 
These lines cannot end, although they may branch or loop back upon themselves. In a continu-
ous image or an actual topographic surface, there is always a point through which the line can 
pass. For a discrete image, the brightness value of the line may not happen to correspond to any 
specific pixel value. Nevertheless, if there is a pair of pixels with one value brighter than and 
one value darker than the contour level, then the line must pass somewhere between them.

The contour line can, in principle, be fit as a polygon through the points interpolated between 
pixel centers for all such pairs of pixels that bracket the contour value. This permits measuring 
the locations of these lines, and the boundaries that they may represent, to less than the dimen-
sions of 1 pixel, called sub-pixel sampling or measurement. This is used in Chapter 10 for fea-
ture measurement, but it is not often used to represent an entire image because of the need to 
represent each boundary by such a series of points, which must be assembled into a polygon.

The most common use of contour lines is to mark the pixels that lie closest to, or closest to 
and above, the line. These pixels approximate the contour line to the resolution of the pix-
els in the original image, form a continuous band of touching pixels (touching in an eight-
neighbor sense, as discussed below), and can be used to delineate features in many instances. 
Creating the line from the image is a matter of scanning the pixels once, comparing each 
pixel and its neighbors above and to the left to the contour value, and marking the pixel if the 
values bracket the test value.

Figure 7.43 shows an image with contour lines drawn at a selected brightness value to mark 
the boundaries of the pores. Chapter 9 introduces the relationship that allows the length of 
these lines to be used to measure the total surface area of the pores. Setting a threshold range 
around this same brightness level, even with a fairly large range, does not produce continuous 
lines, because the brightness gradient in some regions is steep and no pixels fall within the 
range. The brightness gradient is very gradual in other regions, so an edge-finding operator 
such as the Canny does not show all of the same boundaries and introduces more noise.

Drawing a series of contour lines on an image can be an effective way to show minor varia-
tions in brightness, as shown in Figure 7.44. Even for complex three-dimensional scenes such 
Figure 7.45, a series of contour lines is often able to delineate regions of similarity or convey 
structural meaning. For one important class of images, range images in which pixel bright-
ness represents elevation, such a set of lines is the topographic map. Such images may result 
from radar or lidar imaging, the CSLM, interferometry, the STM or AFM, and other devices. 
Figure 7.46 shows a scanned stylus image of a coin, with contour lines drawn to delineate the 
raised surface, and a similar image of the tip of a ball-point pen. The contour lines on the ball 

Figure 7.42 Active contour fitting. The sequence of images shows, from left to right: the input X-ray 
image, the initialization point superimposed on the gradient image used for the fitting process, the 
shape of the snake after 10, 20, and 40 iterations, and the final result superimposed on the original 
image.
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show the roughness and out-of-roundness of the surface, and can be measured quantitatively 
for such a purpose. Chapter 15 deals with the measurement of such range images.

Image representation

Different representations of the binary image are possible; some are more useful than others 
for specific purposes. Most measurements, such as feature area and position, can be directly 
calculated from a thresholded binary pixel-based representation by simple counting proce-
dures. This representation can be stored in less space than the original array of pixels by using 
run-length encoding (also called chord encoding). This treats the image as a series of scan 

  
(a)                       (b)

  
(c)                       (d)

Figure 7.43 Pores in a slice of bread: (a) original image; (b) contour lines; (c) pixels selected by thresh-
olding; (d) edges from a Canny edge detector.
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lines. For each sequential line segment across each region or feature, it stores the line number, 
start position, and length of the segment.

For typical images, the pixels representing objects and structures are collected together into 
regions or features so that the run-length encoded table is much smaller than the original 
image. This is the method used, for instance, to transmit fax messages over telephone lines. 
Figure 7.47 shows how a black and white image is encoded for this purpose. In this example, 
the original image is 256 × 256 = 65,536 pixels, while the run-length table is only 1460 bytes 
long. The run-length table can be used directly for area and position measurements, with less 
calculation than the pixel array. Since the chords are in the order in which the raster crosses 
the features, some logic is required to identify the chords with each feature when there are 
several features present, but this is often done as the table is built.

The chord table is poorly suited for measuring feature perimeter or shape. Boundary repre-
sentation, consisting of the coordinates of the polygon comprising the boundary, is better for 
this task. However, it is awkward for dealing with regions containing internal holes, since 
there is nothing to relate the interior boundary to the exterior. Logic must be used to identify 
the internal boundaries, keep track of which ones are exterior and which are interior, and 
construct a hierarchy of features within features, if needed.

A polygonal version of the boundary can be produced when it is needed (for instance to cal-
culate perimeter) from the run-length table by using the end points of the series of chords. 
The boundary polygon can also be formed from all of the boundary points, consisting of a 
series of short vectors (chain code) from one boundary point to the next. On a square pixel 

  

Figure 7.44 Ion microprobe image 
of boron implanted in a silicon 
wafer:

  (a)  original image, in which 
brightness is proportional to 
concentration;

  (b)  isobrightness or isoconcen-
tration contour lines super-
imposed which make it 
easier to compare values in 
different parts of the image.

              (a)              (b)

  

Figure 7.45 Real-world image (a) 
and four contour lines drawn at 
different brightness values (b). 
However irregular they become, 
the lines are always continuous 
and distinct.

              (a)              (b)
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Figure 7.46 Range images (from a scanning profilometer) and 
contour (isoelevation) lines:

  (a) surface of a coin;

  (b) contour lines delineating raised areas on the surface;

  (c) surface of a ball bearing;

  (d)  contour lines showing roughness and out-of-roundness 
(color coded according to elevation).

              (a)

  

(b)               (c)               (d)

 
(a)                      (b)

Figure 7.47 Representing a black and white image for fax transmission: (a) original; (b) run-length 
encoded (each horizontal line is marked with a red point at its start, just the position of each red 
point and the length of the line are sent).
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array, each of these lines is either 1 or √2 pixels long and can only have one of eight direc-
tions. Assigning a digit from 1 to 8 (or 0 to 7, or –3 to +4, depending on the particular imple-
mentation) to each direction and writing all of the numbers for the closed boundary in order 
produces the chain code, as shown in Figure 7.48.

This form is particularly well-suited for calculating perimeter or describing shape (Freeman, 
1961, 1974; Cederberg, 1979). The perimeter is determined by counting the number of even 
and odd digits, multiplying the number of odd ones by the square root of 2 to correct for 
diagonal directions, and adding. The chain code also contains shape information, which can 
be used to locate corners, simplify the shape of the outline, match features independent of 
orientation, or calculate various shape descriptors, as described in Chapter 11.

Most current-generation imaging systems use an array of square pixels, because that is well 
suited both to raster-scan acquisition devices and to processing images and performing mea-
surements. If rectangular pixels are acquired by using a different pixel spacing along scan 
lines than between the lines, processing in either the spatial domain with neighborhood 
operations or in the frequency domain becomes much more difficult, because the different 
pixel distances as a function of orientation must be taken into account. The use of rectangular 
pixels also complicates measurements.

With a square pixel array, there is a problem noted in the previous chapters on image process-
ing: the four pixels diagonally adjacent to a central pixel (corner-touching) are farther away 
than the four neighbors sharing an edge. An alternative arrangement that has been used in a 
few systems is to place the pixels in a hexagonal array. This has the advantage of equal spac-
ing between all neighboring pixels and makes all of the neighboring pixels equivalent in shar-
ing an edge, which simplifies processing and calculations. Its great disadvantage, however, is 
that standard cameras and other acquisition and display devices do not operate that way.

For a traditional square pixel array, it is necessary to decide whether pixels adjacent at a corner 
are actually touching. This is important for the binary processing operations in Chapter 8. It 
is necessary in order to link pixels into features or follow the points around a boundary, as 
discussed above. While it is not obvious that one choice is superior to the other, whichever 
one is made for the pixels that comprise a feature, the background (the pixels which surround 
the features) must have the opposite relationship.

 

Figure 7.48 Encoding the same 
region in a binary image by 
run-length encoding, bound-
ary polygonal representation, 
or chain code.
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Figure 7.49a shows this dual situation. If pixels within a feature are assumed to touch any 
of their eight adjacent neighbors (called eight-connectedness), then the line of pixels in the 
figure separates the background on either side, and the background pixels that are diagonally 
adjacent do not touch. They are therefore four-connected (touch only their four edge-sharing 
neighbors). Conversely, if the background pixels touch diagonally, the pixels are isolated and 
only touch along their edges. For the pixels shaded in Figure 7.49b, choosing an eight-con-
nected rule for features (Figure 7.49c) produces one feature with an internal hole and a sec-
ond feature within the hole. If a four-connected rule is used (Figure 7.49d), there are four 
features and the white background, now eight-connected, is continuous. Most of the examples 
shown in the following chapters use an eight-connected rule for features and a four-connected 
rule for background.

This duality means that simply inverting an image (interchanging white and black) does not 
reverse the meaning of the features and background. Figure 7.50 shows a situation in which 
the holes within a feature (separated from the background) become part of a single region in 
the reversed image. This can cause confusion in measurements and binary image processing. 
When feature dimensions as small as 1 pixel are important, there is a basic uncertainty. This 
is unavoidable and argues for using large arrays of small pixels to define small dimensions 
and represent feature topology accurately.

Other segmentation methods

There are other methods used for image segmentation besides the ones based on thresholding 
shown above. These are generally associated with attempts to understand images in the sense 

  
(a)               (b)               (c)

 

Figure 7.49 Ambiguous images:
  (a)  If the pixels are assumed to touch at their corners, then this 

is a line which separates the background pixels on either 
side. But those pixels also touch at their corners. If eight-
connectedness or four-connectedness is selected for feature 
pixels, then the opposite convention applies to background 
pixels;

  (b)  This example shows either four separate features or one fea-
ture containing a second inside an internal hole, depend-
ing on the touching convention;

  (c) Eight-connectedness results in two features;
  (d) Four-connectedness results in four features.

              (d)
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of machine vision and robotics (Ballard & Brown, 1982; Wilson & Spann, 1988). Two of the 
most widely described are split-and-merge and region growing, which seem to lie at opposite 
extremes in method but share many deep similarities.

Split-and-merge is a top-down method that begins with the entire image. Some image 
property is selected as a criterion to decide whether everything is uniform. This criterion 
is often based on the statistics from the brightness histogram, although color information 
or local statistical properties may also be used. If the histogram is multimodal, or has a 
high standard deviation, etc., then the region (initially the entire image) is assumed to be 
nonuniform and is divided into four quadrants. Each quadrant is examined in the same 
way and subdivided again if necessary. The procedure continues until the individual pixel 
level is reached. The relationship between the parent region and the four quadrants, or 
children, is typically encoded in a quadtree structure, another name sometimes applied to 
this approach.

This is not the only way to subdivide the parent image and encode the resulting data struc-
ture. Thresholding can be used to divide each region into arbitrary subregions, which can be 
subdivided iteratively. This can produce final results having less blocky boundaries, but the 
data structure is much more complex, since all of the regions must be defined, and the time 
required for the process is greater.

Subdividing regions alone does not create a useful image segmentation. After each iteration 
of subdividing, each region is compared to adjacent ones (usually just the edge-sharing ones) 
that lie in different squares at the next higher level in the hierarchy. If they are similar, they 
are merged together. The definition of “similar” may use the same tests applied to the splitting 
operation, or comparisons may be made only for pixels along or near the common edge. The 
latter has the advantage of accommodating gradual changes across the image.

Figure 7.51b shows an example in which only four iterations have been performed. A few 
large areas have already merged, and their edges will be refined as the iterations proceed 
(Figure 7.51c). Other parts of the image contain individual squares that require additional 
subdivision before regions become visible.

  
(a)                 (b)

Figure 7.50 Reversing an image (interchanging features and background) without changing the con-
nectedness rules alters meaning. In image (a) the foreground black pixels all touch at corners (eight-
connectedness) and so this is one feature with an irregular boundary. In image (b) the background 
white pixels do not touch (four-connectedness) and so these are multiple separate holes within the 
feature.
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An advantage of this approach is that a complete segmentation is achieved after a finite num-
ber of iterations (for instance, a 512-pixel-square image takes nine iterations to reach indi-
vidual pixels, since 29 = 512). Also, the quadtree list of regions and subregions can be used 
for some measurements, and the segmentation identifies all of the different types of regions at 
one time. By comparison, thresholding methods typically isolate one type of region or feature 
at a time. The process must be applied several times to deal with images containing more than 
one class of objects.

On the other hand, the split-and-merge approach depends on the quality of the test used to 
detect inhomogeneity in each region. Small subregions within large uniform areas can eas-
ily be missed with this method. Standard statistical tests that assume, for example, a normal 
distribution of pixel brightness within regions are rarely appropriate for real images, so more 
complicated procedures must be used (Yakimovsky, 1976). Any tests used for subdividing and 
merging regions can also be expressed as image processing operations. A processed image 
can reveal the same edges and texture used for the split-and-merge tests in a way that allows 
direct thresholding. This is potentially less efficient, since time-consuming calculations may 
be applied to parts of the image that are uniform, but the results are the same. Thresholding 
also has the advantage of identifying similar objects in different parts of the field of view as 
the same, which may not occur with split-and-merge.

  
(a)               (b)               (c)

  
              (d)               (e)

Figure 7.51 Other segmentation methods: (a) original gray scale image; (b) Split and merge after four 
iterations; (c) after six iterations; (d) region growing from a point in the girl’s sweater (region out-
lined in red); (e) result after multiple regions have been selected.
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Conversely, region growing starts from the bottom, or individual pixel level, and works 
upwards. Starting at some seed location (usually provided by the operator but in some cases 
located by image processing algorithms), neighboring pixels are examined one at a time and 
added to the growing region if they are sufficiently similar. Again, the comparison may be 
made to the entire region or just to the local pixels, with the latter method allowing gradual 
variations in brightness. It is also possible but more time consuming to make the test “adap-
tive” in the sense that the tolerance for adding another pixel depends on the standard devia-
tion of pixels in the growing region, or a weighted average that favors the pixels nearest to the 
one being evaluated. The procedure continues until no more pixels can be added. Then a new 
region is begun at another location. Figure 7.51d shows an example in which one region has 
been identified; notice that it includes part of the cat as well as the girl’s sweater. Figure 7.51e 
shows the result after multiple regions have been identified.

The region-growing algorithm is logically equivalent to a point-sampled dilation (although 
usually implemented differently), constrained to regions within a set threshold range. Dilation 
is a morphological procedure described in detail in Chapter 8.

If the same comparison tests are implemented to decide whether a pixel belongs to a region, 
the result of the region-growing procedure is the same region as produced by top-down split-
and-merge. The difficulty with this approach is that the starting point for each region must 
be provided. Depending on the comparison tests employed, different starting points may not 
grow into identical regions. Figure 7.52 shows several different starting points (shown by the 
blue marks) within what is visually the same structure (the unbrowned cheese on a pizza), 
and the resulting different regions (red outlines) obtained with the same tolerance value. Also, 

  
(a)               (b)               (c)

  

Figure 7.52 Region growing from various seeds. The blue marks 
indicate the original seed, and the red lines show the boundar-
ies of the contiguous selected regions, all using the same toler-
ance values.

              (d)
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there is no ideal structure to encode the data from this procedure beyond keeping the entire 
pixel array until classification is complete; the complete classification is slow, since each pixel 
must be examined individually.

Region growing also suffers from the conflicting needs to keep the test local, to see if an 
individual pixel should be added to the growing region, and to make it larger in scale, if not 
truly global, to ensure that the region has some unifying and distinct identity. If too small a 
test region is used, a common result is that regions leak out into adjoining areas or merge with 
different regions. This leaking or merging can occur if even a single pixel on the boundary 
can form a bridge.

Finally, there is no easy way to decide when the procedure is complete and all of the mean-
ingful regions in the image have been found. Region growing (also known as a seed-fill 
technique) may be a useful method for selecting a few regions in an image, as compared to 
manual tracing or edge following, for example, but it is rarely the method of choice for com-
plex images containing many regions (Zucker, 1976).

The general classification problem

The various methods described rely to some extent on human judgment to recognize the pres-
ence of regions and to define them by delineating the boundary or selecting a range of bright-
ness values. There are also methods that can start with an incomplete definition and refine the 
segmentation to achieve greater accuracy or consistency, and fully automatic techniques that 
determine how many classes of objects are present and fully subdivide the image to isolate 
them. However, they are little used in small computer-based systems and are often much less 
efficient than using some human input. The task of general image segmentation can be treated 
as an example of a classification problem. Like most techniques involving elements or artificial 
intelligence, this may not use the same inputs or decision methods that a human employs, but 
it seeks to duplicate the results (and sometimes succeeds).

One successful approach to general classification has been used with satellite imagery, in 
which many wavelength bands of data are available (Reeves, 1975). If each pixel in the image 
is plotted in a high-dimensionality space, where each axis is the measured brightness in 

one of the wavelength bands, it is expected that 
points corresponding to different classes of land 
use, crop type, soil or rock type, and so forth, will 
cluster together and the clusters will be well sepa-
rated from each other, as indicated in Figure 7.53. 
The problem then reduces to finding the clusters 
and fitting boundaries between them that can be 
used for classification. Finding such clusters and 
boundaries is discussed in a more general context 
in Chapter 12.

Reduced to a single dimension (a simple gray scale 
image), this classification begins with the brightness 
histogram. The cluster analysis looks for peaks and 
tries to draw thresholds between them. This is suc-
cessful in a few specialized tasks, such as count-
ing cells of one type on a microscope slide. As the 
number of dimensions increases, for instance using 

Figure 7.53 Schematic illustration of pixel 
classification in color space. Each pixel 
is plotted according to its color values, 
and clusters identify the various regions 
present.
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the RGB or HSI data from color imagery or adding values from a derived texture or gradi-
ent image, the separation of the clusters usually becomes more distinct but the location of a 
“peak” and the definition of its boundaries become more difficult. Satellite imagery with sev-
eral discrete visible and infrared wavelength bands is especially well suited to this approach.

Clusters are easier to recognize when they contain many similar points, but minor regions or 
uncommon objects may be overlooked. Also, the number of background points surrounding 
the clusters (usually lying along lines between them in the n-dimensional plots) confuse the 
automatic algorithms. These points arise from the finite size of pixels that straddle the bound-
aries between regions. Finding a few major clusters may be straightforward. Being sure that 
all have been found is not.

Even after the clusters have been identified (and here some a priori knowledge or input from 
a human can be of great assistance, particularly to specify the number of clusters expected), 
there are different strategies to using this information to classify new points. One is to sur-
round each cluster with a boundary, typically either a polyhedron formed by planes lying per-
pendicular to the lines between the cluster centers, or n-dimensional ellipsoids. Points falling 
inside any of these regions are immediately classified.

Particularly for the ellipsoid case, it is also possible to have a series of concentric boundar-
ies that enclose different percentages of the points in the cluster, which can be used to give 
a probability of classification to new points. This is sometimes called a “fuzzy” classifica-
tion method. If the new pixels added to a cluster change the mean value and the limits, this 
becomes an iterative method.

A third approach is to find the nearest classified point to each new point and assign that iden-
tity to the new one. This method has several drawbacks, particularly when there are some 
densely populated clusters and others with very few members, or when the clusters are close 
or overlapping. It requires considerable time to search through a large universe of existing 
points to locate the closest one, as well. An extension of this technique is also used, in which 
a small number of nearest neighbors are identified and “vote” for the identity of the new point. 
It is even possible to weight the existing values inversely by their distance from the pixel being 
tested (Chen et al., 2005).

Segmentation of gray scale images into regions for measurement or recognition is probably 
the most important single problem area for image analysis. Many novel techniques have 
been used that are rather ad hoc and narrow in their range of applicability. Review articles 
by Fu and Mui (1981) and Haralick and Shapiro (1988) present good guides to the literature. 
Most standard image analysis textbooks, such as Rosenfeld and Kak (1982), Castleman (1979), 
Gonzalez and Wintz (1987), Russ (1990b), Pratt (1991), Parker (1997), and Russ and Russ (2007) 
also contain sections on thresholding.

All of these various methods and modifications are used extensively in other artificial intel-
ligence situations (see, for example, Fukunaga, 1990). They may be implemented in hardware, 
software, or some combination of the two. Limited application of general artificial intelligence 
techniques has been made to the segmentation problem. However, it is likely that the use of 
such methods will increase in the future as more multiband imaging is done and computing 
power continues to increase.
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8
Processing Binary Images

B inary images, as discussed in the preceding chapter, consist of pixels and groups of 
pixels selected on the basis of some property. The selection may be performed by 
thresholding brightness values, perhaps combining different color channels, or after 

processing to extract texture or other information. The goal of binarization is to separate fea-
tures representing objects or structures from the background, so that counting, measurement, 
or matching operations can be performed.

However, as shown by the examples in Chapter 7, the result of the segmentation operation 
is rarely perfect. For images of realistic complexity, even the most elaborate segmentation 
routines misclassify some pixels as foreground or background. These may be pixels along the 
boundaries of regions, or the result of noise within regions, or pixels that happen to acciden-
tally share with the intended selection the specific property or properties used for threshold-
ing. The major tools for working with binary images to correct these thresholding errors fit 
broadly into two groups: Boolean operations for combining images and morphological opera-
tions that modify individual pixels within an image.

Boolean operations

In the section in Chapter 7 on thresholding color images, a Boolean AND operation is intro-
duced to combine the data from individual color channel images. Setting thresholds on bright-
ness values in each of the RGB channels allows pixels to be selected that fall into those ranges. 
This technique produces three binary images (one for each channel), which are combined 
with a logical AND operation. The procedure examines the three images pixel by pixel, keep-
ing pixels for the selected regions if, and only if, they are selected in all three images.

The color thresholding example is one example of a situation in which pixel brightness values 
at the same location in several different images (the color channels) must be compared and 
combined. In other situations it is also useful to compare the location and brightness value 
of pixels in two or more images. Figure 8.1 shows an example. Two X-ray maps of the same 
area on a mineral sample show the intensity distributions, and hence represent the concen-
tration distributions for aluminum and silicon. A colocalization (or co-occurrence) plot uses 
the pixel brightness values for each location in both images as coordinates to produce a his-
togram display in which the darkness of each point represents the number of pixels having 
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that combination of values. Dark regions in the resulting plot have many pixels with similar 
combinations of elemental concentrations in the original sample. The size of each region in 
the plot is affected by noise present in the signals (Adler et al., 2008), as well as any real varia-
tion in the various concentrations. In the example plot, there are four regions present based 
on Si/Al combinations, and these can be observed in the original images.

Colocalization is also used for biological samples prepared with multiple stains or imaged 
with multiple wavelengths of light (Mossberg & Ericsson, 1990; Manders et al., 1993; Zinchuk 
& Zinchuk, 2006; Zinchuk et al., 2007; Zinchuk & Zinchuk, 2008). It is used in Chapter 5 
as part of the example of principal components analysis. When a colocalization plot shows 
specific combinations of intensity values that share the same location, each image can be 
thresholded and the two binary images combined with an AND to produce an image of the 
selected regions. Figures 7.22 and 7.23 in Chapter 7 illustrate the AND combination of mul-
tiple criteria.

An aside: The terminology used here is that of foreground, selected or ON pixels, and unse-
lected, background, or OFF pixels. There is no accepted standard for whether the selected 

  
(a)                     (b)

  

(c)                     (d)

Figure 8.1 Colocalization: (a) X-ray map showing the intensity distribution for aluminum (Al) in a 
mineral; (b) similar map for silicon (Si); (c) colocalization plot in which the number of pixels in each 
cell is represented by the gray scale value, and the clusters are marked with colors corresponding to 
(d); (d) location of the pixels in each of the four clusters in (c).
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pixels are displayed as white, black, or some other color. In many cases, systems that por-
tray the selected regions as white on a black background on the display screen may reverse 
this and print hardcopy of the same image with black features on a white background. This 
reversal apparently arises from the fact that in each case, the selection of foreground pixels is 
associated with some positive action in the display (turning on the electron beam) or printout 
(depositing ink on the paper). This inconsistency seems to cause most users little difficulty, 
provided that something is known about the image. Since many of the images used here are 
not common objects and some are illustrative examples, it is important to consistently define 
the foreground pixels (those of interest) in each case. The convention used here is that ON or 
selected pixels (which constitute a feature, object, or structure for subsequent measurement) 
are shown as black, while OFF pixels (background) are white.

When combining the information from several images or channels, the AND operation requires 
that a pixel at location i,j be ON in each individual channel to show up in the result. Pixels 
having the correct amount of blue but not of red are omitted, and vice versa. This defines a 
rectangle in two-dimensional space, or a rectangular prism in higher dimensions, encompass-
ing the pixel values to be included. More complicated combinations of color values can be 
described by delineating an irregular region in n dimensions for pixel selection, as shown in 
the preceding chapter. The advantage of ANDing discrete ranges is that it can be performed 
very efficiently and quickly using binary images.

Other Boolean logical rules can be employed to combine binary images. The four princi-
pal possibilities are AND, OR, Ex-OR (Exclusive OR, often abbreviated as XOR) and NOT. 
Figure 8.2 illustrates each of these basic operations. Figure 8.3 shows a few of the possible 
combinations. All are performed pixel by pixel. The illustrations are based on combining two 
images at a time, since any logical rule involving more than two images can be broken down 
to a series of steps using just two at a time. The illustrations in the figures are identical to the 
Venn diagrams (also called Euler diagrams) used in teaching logic and set theory.

As described above, AND requires that pixels be ON in both of the original images in order to be 
ON in the result. Pixels that are ON in only one or the other original image are OFF in the result. 
The OR operator turns a pixel ON in the result if it is ON in either of the original images.

Ex-OR turns a pixel ON in the result if it is ON in either of the original images, but not if it 
is ON in both. That means that combining (with an OR) the results of ANDing together two 
images with those from Ex-ORing them produces the same result as an OR in the first place. 
There are, in fact, many ways to arrange different combinations of the four Boolean operators 
to produce identical results.

AND, OR, and Ex-OR require two original images and produce a single image as a result. 
They are also commutative, meaning that the order of the two images is unimportant. A AND 
B produces the same result as B AND A. The NOT operator requires only a single image. It 
simply reverses each pixel, turning pixels that are ON to OFF and vice versa. Some systems 
implement NOT by swapping black and white values for each pixel. For dealing with pixel-
level detail, this works correctly. For feature-level combinations, as described below, the dif-
ference between an eight-connected feature and its four-connected background (discussed in 
Chapter 7) must to be taken into account.

Given two binary images A and B, the combination (NOT A) AND B produces an image con-
taining pixels that lie within B but outside A. This is different from NOT (A AND B), which 
selects pixels that are not ON in both A and B. It is also different from A AND (NOT B), as 
shown in Figure 8.3. The order in which the operators are applied is important and the 
liberal use of parentheses to clarify the order and scope of operations is crucial. Actually, 
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the four operations listed above are redundant. Three are enough to produce all of the same 
results. Consequently, some systems may omit one of them (usually Ex-OR). For clarity, how-
ever, all four are used in the examples shown here.

Combining Boolean operations

When multiple criteria are available for selecting the pixels to be kept as foreground, they may 
be combined using any of these Boolean combinations. The most common situations are multi-
band or multichannel images, such as produced by a satellite. Figure 8.4 shows an example.

Another multichannel situation arises in the SEM, where an X-ray detector is often used to 
create several images (usually called X-ray dot maps) each showing the spatial distribution of 
a selected element. These images may be quite noisy (Chapter 4) and difficult to threshold 
(Chapter 7). However, by suitable long-term acquisition or image processing, they can be 
thresholded to yield binary images that indicate locations where the concentration of the ele-
ment is above some user-selected level.

This selection is usually performed by comparing the measured X-ray intensity to a threshold 
several standard deviations above the background, since there is a finite level of background 
signal resulting from the process of slowing down the electrons in the sample. The physical 
background of this phenomenon is not important here. The very poor statistical characteristics 

(a)             (b)              (c)

(d)             (e)              (f)

Figure 8.2 Simple Boolean operations: (a) binary image A; (b) binary image B; (c) A AND B; (d) A OR 
B; (e) A Ex- OR B; (f) NOT A.
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of the dot map (hence the name) make it difficult to directly specify a concentration level as 
a threshold. The X-ray intensity in one part of the image may vary from another region for 
several reasons: a) a change in that element’s concentration, b) a change in another element 
that selectively absorbs or fluoresces the first element’s radiation, or c) a change in specimen 
density or surface orientation. Comparison of one specimen to another is further hampered 
by the difficulty in exactly reproducing instrument conditions. These effects all complicate the 
relationship between elemental concentration and recorded intensity.

  

Figure 8.4 Satellite image of 
New York City (a) and the 
combination (b) of water 
(thresholded from a visi-
ble light channel) OR veg-
etation (thresholded from 
an infrared channel).

        (a)              (b)

(a)             (b)              (c)

(d)             (e)              (f)

Figure 8.3 Combined Boolean operations: (a) (NOT A) AND B; (b) A AND (NOT B); (c) (NOT A) AND 
(NOT B); (d) NOT (A AND B); (e) (NOT A) OR B; (f) A OR (NOT B).
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Furthermore, the very poor statistics of the images (due to the low efficiency for producing 
X-rays with an electron beam) mean that these images often require processing, either as gray 
scale images (e.g., smoothing) or after binarization (using the morphological tools introduced 
below). The following discussion assumes that binary images, each showing the spatial distri-
bution of some meaningful concentration level of one of several elements, can be obtained.

As shown in Figure 8.5, the SEM also produces more conventional images. The backscat-
tered electron image gives better definition of the structure, but with less elemental speci-
ficity. The binary images from these sources can be combined with the X-ray or elemental 
information, as shown in Figure 8.6. The X-ray maps for iron (Fe) and silicon (Si) were 
obtained by smoothing the dot map and thresholding the gray scale image. Notice that in 
the gray scale image (Figure 8.5c), there is a just-discernible difference in the intensity level 
of the Fe X-rays in two different areas. This is too small a difference for reliable thresh-
olding. Even the larger differences in Si intensity (Figure 8.5b) are difficult to separate. 
However, Boolean logic easily combines the images to produce an image of the region con-
taining Fe but not Si.

The regions containing silver (Ag) are generally bright in the backscattered electron image, 
but some other areas are also bright. On the other hand, the Ag X-ray map does not have pre-
cise region boundaries because of the poor statistics. Combining the two binary images with 
an AND produces the desired regions (Figure 8.6d). More complicated sequences of Boolean 
logical operations can easily be imagined (Figure 8.6e shows an example).

It is straightforward to imagine a complex specimen containing many elements. Paint pigment 
particles with a diverse range of compositions provide one example. In order to count or mea-
sure a particular class of particles (pigments, as opposed to brighteners or extenders), it might 
be necessary to specify those containing iron or chromium or aluminum, but not titanium or 
sulfur. This can be written as:

 (Fe OR Cr OR Al) AND (NOT (Ti OR S)). 

    
(a)             (b)              (c)

   

Figure 8.5 SEM results from a 
mineral:

  (a) backscattered electrons;

  (b) silicon X-ray map;

  (c) iron X-ray map;

  (d) copper X-ray map;

  (e) silver X-ray map.

        (d)             (e)
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The resulting image can then be combined with a higher-resolution binary image produced 
by thresholding a secondary or backscattered electron image to delineate particle boundaries. 
Similar combinations of multiple signals arise in biological samples based on multiple stains 
or fluorescing molecules and in remote sensing imagery and geographic information systems. 
Performing multiple operations requires care to keep the order of combinations straight, but 
is not difficult.

Most of the examples shown in previous chapters that used multiple channels (e.g., different 
colors or elements) or different processing operations (e.g., combining brightness and tex-
ture) use a Boolean AND to combine the separately thresholded binary images. As described 
above, the AND requires that the pixels meet all of the criteria in order to be kept. There are 
some cases in which the Boolean OR is more appropriate. One is illustrated in Chapter 5, 
Figure 5.60. This is an image of sand grains in a sandstone, viewed through polarizers. Each 
rotation of the analyzer causes different grains to become bright or colored. Chapter 5 shows 
that keeping the brightest pixel value at each location as the analyzer is rotated produces an 
image that shows all of the grains.

Figure 8.7 shows an alternative approach to the same problem. Each individual image is 
thresholded to select those grains that are bright for that particular analyzer rotation angle. 
Then all of the binary images are combined using a Boolean OR. The resulting combination 
delineates most of the grains, although the result is not as good as the gray-level operation 
for the same number of analyzer rotations. In general, image processing including combin-
ing multiple images is best performed before thresholding whenever possible, because there 
is more information available from the original pixel brightness values than remains after 
thresholding.

    
(a)             (b)              (c)

  
        (d)             (e)

Figure 8.6 Thresholded binary images and Boolean combinations from Figure 8.5: (a) iron; (b) iron 
AND NOT silicon; (c) silver; (d) silver AND bright levels from backscattered electron image; (e) (cop-
per OR silver) AND NOT iron.
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Masks

The description above of using Boolean logic to combine images makes the assumption 
that both images are binary (that is, black and white). It is also possible to use a binary 
image as a mask to modify a gray scale or color image. This is most often done to blank 
out (i.e., set to background) some portion of the continuous tone image, for example to 
create a display in which only the regions of interest are visible, or to select regions whose 
brightness, color, density, and so forth are to be measured. Figure 8.8 shows an example (a 
protein separation gel) in which the dark spots are thresholded, and then the binary image 
is applied as a mask to produce separated features for measurement that retain their origi-
nal density values. Figure 8.9 shows a similar operation applied to a color image (a thin 
section of potato stained to show cell walls and starch granules. Thresholding the green 
channel produces a binary mask for the granules, which is then applied to the color image 
to isolate them for analysis.

There are several physical ways that this operation can be performed. The binary mask can 
be used in an overlay, or alpha channel, to select pixels to be displayed, or the mask can be 
used to modify the stored image. This can done by multiplying the gray scale image by the 
binary image, with the convention that the binary image values are 0 (OFF) or 1 (ON) at each 

  
(a)                     (b)

  

(c)                     (d)

Figure 8.7 Combining multiple binary images: (a) and (b) binary images obtained by thresholding two 
of the polarized light images of a petrographic thin section of a sandstone (Figure 5.60 in Chapter 
5); (c) the result of ORing together six such images from different rotations of the analyzer; (d) com-
parison binary image produced by thresholding the gray scale image obtained by combining the 
same six color images to keep the brightest pixel at each location.
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pixel. Alternatively, the same result is obtained combining the gray scale and binary images 
to keep whichever value is darker or brighter. For instance, if the mask is white (value = 255) 
for background and black (value = 0) for foreground pixels, then the brighter pixel values at 
each location erase all background pixels and keep the gray scale or color value for the fore-
ground pixels.

This capability is often used to display the results of various processing and thresholding 
operations. It is often easier to judge the performance of thresholding by viewing selected 
pixels with the original gray scale or color information, rather than just looking at the binary 
image. It is also useful to apply a mask obtained by thresholding one version of an image to 
view another version. Figure 8.10 shows an example, in which values represent the orienta-
tion angle (from the Sobel derivative) of grain boundaries in the aluminum alloy are masked 
by thresholding the magnitude of the gradient to isolate only the boundaries.

Another use of masking and Boolean image combination is shown in Figure 8.11. An essen-
tially cosmetic application, it is still useful and widely employed. A label superimposed on an 
image using either black or white may be difficult to read if the image contains a full range 
of brightness values. In this example, the label is used to create a mask that is 1 pixel larger 
in all directions, using dilation (introduced below). This mask is then used to erase the pixels 
in the gray scale image to white before writing in the label in black (or vice versa). The result 
maintains legibility for the label while obscuring a minimum amount of the image.

    
(a)             (b)              (c)

Figure 8.8 Preserving feature intensity values: (a) original 2D gel; (b) thresholded spots; (c) masked 
image in which pixels within the spots retain their original brightness values but the background is 
erased.

    
(a)             (b)              (c)

Figure 8.9 Mask applied to a color image: (a) original image of stained potato thin section; (b) binary 
image produced by thresholding the green channel of (a); (c) binary mask from (b) applied to the 
original image.
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From pixels to features

The Boolean operations described above deal with individual pixels in the image. For many 
purposes, and especially for measurement, it is necessary to identify the pixels forming part of 
a connected whole. As shown in Chapter 7, it is possible to adopt a convention for touching 
that is either eight-connected or four-connected for the pixels in a single feature (sometimes 
referred to as a blob to indicate that no interpretation of the connected group of pixels 
has been inferred as representing anything specific in the image). Whichever convention is 
adopted, grouping pixels into features is an important step (Levialdi, 1992; Ritter, 1996).

One way to identify all of the connected groups of pixels starts with 1 pixel (any ON pixel, 
selected at random) and checks its four- or eight-neighbor positions, labeling each pixel that 

Figure 8.10 Masking one image 
with another. The direction of 
a Sobel gradient applied to the 
light microscope image of an 
aluminum alloy is shown only 
in the regions where the magni-
tude of the gradient is large:

  (a) original image;

  (b)  orientation values (gray 
scale) for all points in the 
image;

  (c)  masking to show the val-
ues only along boundar-
ies where the magnitude 
of the Sobel gradient is 
large;

  (d)  color LUT applied to 
assign colors to the ori-
entation values along the 
grain boundaries.

 
(a)            (b)

 
(c)            (d)

  
(a)             (b)              (c)

Figure 8.11 Using a mask to apply a label to an image. The original image (a) contains both white and 
black areas, so that simple superimposition of text would not be visible. A mask is created by dilating 
the label and Ex-ORing that with the original (b). The result (or its inverse) can then be superimposed 
on the gray scale image (c).
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is ON as part of the same feature, and then iteratively repeating the operation until no neigh-
bors remain. Then a new unlabeled pixel is chosen and the operation repeated, continuing 
until every ON pixel in the image has been labeled as part of some feature. The usual way 
of proceeding with this deeply recursive “seed-fill” operation is to create a stack in which to 
place pixel locations as they are found to be neighbors of already labeled pixels. Pixels are 
removed from the stack as their neighbors are examined. The process ends when the stack is 
empty and all connected pixels have been located and identified.

This same method, applied to gray scale or color images, examines each of the neighbors to 
test whether the pixel values lie within a thresholded range. The result of this region growing 
is a selective image segmentation, as shown in Chapter 7, Figure 7.52.

It is more efficient to deal with pixels in groups. If the image has already been run-length or 
chord encoded, as discussed in Chapter 7, then all of the pixels within the chord are known 
to touch, touching any of them is equivalent to touching all, and the only candidates for touch-
ing are those on adjacent lines above or below. This fact makes possible a very straightforward 
labeling algorithm that passes one time through the image. Each chord’s end points are com-
pared to those of chords in the preceding line; if they touch, the label from the preceding line 
is attached to this chord. If not, then a new label is used.

If a chord touches two chords in the previous line that have different labels, then the two 
labels are identified with each other (this handles the bottom of a letter U for example). All of 
the occurrences of one label can be changed to the other, either immediately or later. When 
the pass through the image or the list of chords is complete, all of the chords, and therefore all 
of the pixels, are identified and the total number of labels (and therefore features) is known. 
Figure 8.12 shows this logic in the form of a flow chart.

For boundary representation, including chain code, the analysis is partially complete, since 
the boundary already represents a 
closed path around a feature. If features 
contain no holes and no feature is sur-
rounded by another, this can provide 
complete information. Unfortunately, 
this is not always the case. It is usually 
necessary to reconstruct the pixel array 
to identify the pixels with feature labels 
(Kim et al., 1988).

In any case, once the individual fea-
tures have been labeled, several addi-
tional Boolean operations are possible. 
One is to find and fill holes within fea-
tures. Any pixel that is part of a hole is 
OFF (i.e., part of the background) but is 
surrounded by ON pixels. For boundary 
representation, that means the pixel is 
within a boundary. For pixel represen-
tation, it means it is not connected to 
other pixels that eventually form a path 
to the edge of the field of view.

Recalling that the convention for touch-
ing (eight- or four-connectedness) must 

Do ends overlap
any chord in the
previous line?

Do ends overlap
any more chords in
the previous line?

Does previous
chord have the

same ID#

Change Old ID#
to New ID #

Assign New
Feature ID#

Next Chord

Assign Old
Feature ID#

Y

Y

N

N

N

Y

Figure 8.12 Flow chart for grouping touching pixels in a 
run-length or chord-encoded array into features and 
assigning ID numbers.
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be different for the background than for the foreground, holes are identified most easily by 
inverting the image (replacing white with black and vice versa) and labeling the resulting 
pixels as though they are features but with the opposite connectedness logic, as shown step 
by step in Figure 8.13. Features in this inverted image are the original holes. If the pixels are 
added back to the original image (using a Boolean OR), the result is to fill any internal holes 
in the original features.

Another example of the application of this technique is shown in Figure 8.14, a microscope 
image of spherical pores in an enamel coating. The light spots in the center of many of the 
pores vary in brightness, depending on the depth of the pore. They must be corrected by 

  
(a)             (b)              (c)

  
(d)             (e)              (f)

        (g)

 

Figure 8.13 Light microscope image of red blood cells:
  (a) original;
  (b)  thresholded, which shows the thicker outer edges of the blood 

cells but not the thinner central regions;
  (c) image (b) with the contrast reversed;
  (d)  removing the edge-touching background from image (c) to 

leave the holes;
  (e) combining the holes in image (d) with the features in image 

(b) using a Boolean OR;
  (f)  removing small features (dirt), edge-touching features (which 

cannot be measured), and separating touching features in 
(e);

  (g)  the outlines of the red blood cells which can be measured, 
superimposed on the original image.
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filling the features in a thresholded binary image. Notice that holes in pores that intersect 
the edge of the image are not filled, because the software cannot know what lies beyond the 
edge and whether the feature is closed. But those pores cannot be measured anyway, for the 
same reason.

Hole filling is often used with edge finding. The algorithms in Chapter 5 delineate the bound-
aries of objects, but for many types of measurement the interior pixels must also be turned 
ON. This type of processing is commonly required for SEM images, as shown in the example 
of Figure 8.15. The brightness varies as a function of local surface slope so that particles fre-
quently appear with bright edges and dark centers.

The Boolean AND operation is extremely useful for applying measurement templates to 
images. For instance, consider the measurement of coating thickness on a wire or plate viewed 
in cross-section, or paint layers, etc. In the examples of Figures 8.16 and 8.17, the layer can 

  
(a)             (b)              (c)

        (d)  

Figure 8.14 Light microscope image of a polished section through 
an enamel coating on steel (courtesy of V. Benes, Research Inst. 
for Metals, Panenské Brezany, Czechoslovakia:

  (a)  bright spots of reflected light are present within many pores 
(depending on their depth);

  (b) thresholding leaves holes within the pores;

  (c)  filling the holes within features creates an image of the 
pores;

  (d)  removing the edge-touching features leaves just the measur-
able pores.

  
(a)             (b)              (c)

Figure 8.15 SEM image of spherical particles: (a) original image; (b) edges obtained with a gradient 
operator; (c) particles delineated by thresholding the edges and filling the centers.
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be readily thresholded, but it is not uniform in thickness. In order to obtain a series of discrete 
thickness values for statistical interpretation, it is convenient to AND the binary image of the 
coating with a template or grid consisting of lines perpendicular to the coating. These lines 
can be easily measured. In Figure 8.16, for the case of a coating on a flat surface, the lines are 
vertical. For a cylindrical structure such as a similar coating on a wire, or the wall thickness 
of a tube, a set of radial lines can be used.

In the example of Figure 8.17, the vein is approximately circular in cross-section and the lines 
do not perpendicularly intersect the wall, introducing an error in the measurement which may 
not be acceptable. Another approach to measurement of the width of irregular or curved lay-
ers is shown below. The non-round cross-section may also indicate that the section plane is 
not perpendicular to the vein axis, which introduces another type of error in the analysis. The 
measurement of three-dimensional structures from two-dimensional section images is dealt 
with by stereological techniques, covered in more detail in Chapter 9.

Selection of an appropriate grid is crucial to the success of measurements. Chapter 9 
introduces the principal stereological measurements made on structures, to determine the 
volumes, surface areas, lengths, and topological properties of the components present. 
Many of these procedures are performed by counting the intersections made by various 
grids with the structures of interest. The grids typically consist of arrays of points or 
lines. The lines used include regular and random grids of straight lines, circular arcs, and 
cycloids, depending on the type of measurement desired, the procedure used to select 

  
(a)             (b)              (c)

Figure 8.16 Measurement of layer thickness: (a) paint layer viewed in cross-section; (b) thresholded 
layer, with superimposed grid of vertical lines; (c) AND of lines with layer producing line segments 
for measurement.

      
(a)             (b)              (c)

Figure 8.17 Measurement of layer thickness: (a) cross-section of vein in tissue; (b) thresholded wall 
with superimposed grid of radial lines; (c) AND of lines with layer producing line segments for mea-
surement (note the errors introduced by non-perpendicular alignment of grid lines to wall, which is 
not exactly circular).
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and prepare the specimens being imaged, and particularly the orientation of the sections 
used to generate the surfaces for examination. In all cases, if the image can be thresh-
olded successfully to delineate the structure, then a Boolean AND with the appropriate 
grid produces a result that can be measured. In some situations this requires measuring 
the lengths of lines, but in many cases counting the number of intersections produced by 
the grid suffices.

Even for very complex or subtle images for which automatic processing and thresholding 
cannot delineate the structures of interest, the superimposition of grids as a mask may be 
important. Many stereological procedures that require only counting of intersections of vari-
ous types of grids with features of interest are extremely efficient and capable of providing 
unbiased estimates of valuable structural parameters. Combining image capture and process-
ing to enhance the visibility of structures with overlays of the appropriate grids — arrays of 
points or lines, the latter including straight lines, circles, and cycloids — allows the human 
user to recognize the important features and intersections (Russ, 1995a). The counting may 
be performed manually or the computer may also assist by tallying mouse clicks or counting 
marks that the user places on the image. The combination of human recognition with com-
puter assistance to acquire, process, and display the image and generate the appropriate grid 
provides efficient solutions to many image analysis problems.

Boolean logic with features

Having identified or labeled the pixel groupings as features, it is possible to carry out Boolean 
logic at the feature level, rather than at the pixel level. Figure 8.18 shows the principle of a 
feature-based AND. Instead of keeping the pixels that are common to the two images, entire 
features are kept if any part of them touches. This preserves the entire feature, so that it can 
be correctly counted or measured if it is selected by the second image.

This method is also called a “marker-based” approach, which uses pixels or groups of pixels 
in one image as a set of markers to select features in a second one. Efficient implementation 
applies a feature labeling operation to at least one of the images to be combined. Touching 
pixels in one image are identified as features, as described previously. Then each pixel that 
is “ON” in one of those features is checked against the second image. If any of the pixels in 
the feature match an “ON” pixel in the second image, the entire feature in the first image is 
copied to the result.

This is not the only possible implementation. It is equally possible to check each pixel in the 
second image against the first, but that is less efficient. The method outlined limits the com-
parison to those pixels which are on and halts the test for each feature whenever any pixel 
within it is matched. Still another way to accomplish the same result is to perform dilation 
(described later in this chapter) of the markers but only allow the dilation to propagate within 
a mask defined by the features in the second image. This method is slow (because it is itera-
tive) and for features that have very intricate or tortuous shapes may take many iterations to 
reach an unchanging end point.

Unlike the more common pixel based AND, marker selection does not commute; this means 
that (A feature-AND B) does not produce the same result as (B feature-AND A), as illustrated 
in Figure  8.19. The use of NOT with feature-AND is straightforwardly implemented, for 
instance by carrying out the same procedure and erasing each feature in the first image that 
is matched by any pixel in the second. There is no need for a feature-OR statement, since this 
produces the identical result as the conventional pixel-based OR.
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(a)             (b)              (c)

  

Figure 8.18 Schematic diagram of feature-based AND:

  (a) marker image;

  (b) test image;

  (c) pixel-based Boolean AND of images (a) and (b);

  (d)  feature-based AND in which markers in image (a) select ones 
in image (b).

         (d)

   
(a)             (b)              (c)

  

Figure 8.19 Feature-based Boolean logic used to combine two test 
images (a) and (b): (c) using image (b) as markers to select fea-
tures in image (a); (d) using image (a) as markers to select fea-
tures in image (b). In images (c) and (d) the common pixels that 
would be kept by a pixel AND are colored.

         (d)



459Processing Binary Images
© 2011 by Taylor & Francis Group, LLC

A major use for the feature-AND capability is to use markers within features to select them. For 
example, these might be cells containing a stained organelle or fibers in a composite contain-
ing a characteristic core. In any case, two binary images are produced by thresholding. In one 
image, all the features are delineated, and in the second the markers are defined. Applying the 
feature-AND logic then selects all of the features which contain one or more markers.

This use of markers to select features is a particularly valuable capability in an image analysis 
system. Figure 8.20 illustrates one way that it can be used. The original image has several 
red features, only some of which contain darker regions within. If one copy of the image is 
thresholded for dark spots and a second copy is thresholded for red features, then the first 
can be used as a set of markers to select the features of interest. A feature-AND can be used 
to perform that operation.

In real applications the marker image that selects the features of interest may be obtained 
by processing or by using another channel in a multichannel image. Figure 8.21 shows an 
example. Only those cells containing green-stained nuclei are selected, but they are selected 
in their entirety so that they can be measured. A related procedure that uses the feature-AND 
capability is the use of the nucleator (Gundersen et al., 1988), a stereological tool that selects 
and counts cells in thin sections of tissue according to the presence of a unique marker within 
the cell such as the nucleus.

Figure  8.22 shows another example of using markers to select objects. The thresholded 
image of candies has interior holes that result from the printed “m” character on some of 
the pieces. Inverting the image and deleting the edge-touching background leaves these as 

  

Figure 8.20 Example of feature selection using markers:

  (a) original image;

  (b) dark spots thresholded to act as markers;

  (c) features with high red intensity thresholded;

  (d)  binary image of only those red features which contain dark 
spots, produced by performing a feature-based AND.

         (a)

   
(b)             (c)              (d)
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markers. After filling the holes and applying a watershed segmentation, described below, to 
the original binary, these markers can be used to select only the features that originally con-
tained the holes. Using the resulting image as a mask applied to the original shows just the 
candy pieces that had the printed side up.

At a very different scale, the method might be used with aerial photographs to select and count 
or measure all building lots that contain any buildings or fields that contain animals. The tech-
nique can also be used with X-ray images to select particles in SEM images, for instance, if the 
X-ray signal comes only from the portion of the particle which is visible to the X-ray detector. The 
entire particle image can be preserved if any part of it generates an identifying X-ray signal.

Marker selection is also useful for isolating features that are within or partially within some 
region, or adjacent to it. For example, in Figure 8.23 the colonies contain bacterial cells that 
are to be counted and measured, although some of them extend beyond the boundaries of the 
colony. The logic of feature-AND allows them to be assigned to the appropriate colony and 
counted, and not to be counted more than once if they exit and re-enter the region.

Figure 8.24 shows a common situation in which just those objects touching a boundary are 
to be selected. In the sequence of images, the outline of a region is generated and used as a 
marker to select the features that touch. Combining the boundary line and the features with 
a pixel AND identifies the locations where touching occurs, and the total length of those line 
segments divided by the total length of the boundary line is a measure of the area fraction of 
the surface that is in contact with the objects. Using the boundary line as a marker selects the 
objects which touch so that they can be counted or measured.

  
(a)              (b)               (c)

(d)

 
(e)

 

Figure 8.21 Application of marker 
selection:

  (a)  original image of cells with 
stained nuclei;

  (b)  nuclei thresholded based on 
green intensity;

  (c)  cells thresholded based on 
red intensity;

  (d)  Feature-AND result showing 
only those cells containing 
green-stained nuclei;

  (e)  outlines of features from 
image (d) superimposed on 
original.
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Selecting features by location

A generalization of the method for identification of boundary-crossing or boundary-touching 
features shown in Figure 8.24 uses marker selection to identify features within a specified 
distance of a line or region. Dilation, which is described below, converts a line to a broad 
stripe with selected width or extends a region uniformly in all directions by a specified 
amount. A line, such as a grain boundary or cell wall seen in a microscope, or a road in an sat-
ellite image, can be processed to generate a broad line of selected thickness. Using the dilated 
line or region to select features that touch, it selects those features which, regardless of size 
or shape, come within that distance of the original line or boundary. Repeating this operation 

   
(a)              (b)               (c)

  

Figure 8.22 Marker selection:

  (a)  thresholded image of candies (from Figure 7.11 in Chapter 
7);

  (b)  the printed letters (“m”) identified as holes in the features of 
image (a);

  (c)  using image (b) as markers to select the features in (a) after 
hole filling and watershed segmentation;

  (d)  applying (c) as a mask to the original, which shows just those 
candies with the “m” side up.

              (d)

   

Figure 8.23 Colony counting:

  (a)  image representing colo-
nies of bacterial cells, 
some of which extend 
beyond the stained area;

  (b)  counted results showing 
the number of cells in 
each colony.

               (a)                           (b)
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with different dilation distances provides a way to classify or count features as a function of 
distance from irregular boundaries.

Figure 8.25 shows an example. The red line and blue features may be understood to repre-
sent a grain boundary and particulates, or highway network and shopping centers, because 
the method can be applied at any scale. Dilating the line provides the marker, and the feature-
AND operation selects all the objects which have any pixels within the set distance.

Both the conventional pixel-based Boolean logic and the feature-based marker selection are 
useful for selecting features based on location. Figure 8.26 shows a situation in which the 
pixel-based AND is appropriate. The image shows a metallurgical cross-section of a plasma-
sprayed coating applied to a turbine blade. There is always a certain amount of oxide present 
in such coatings, which in general causes no difficulties. But if the oxide, which is an identifi-
able shade of gray, is preferentially situated at the coating-substrate interface, it can produce a 
region of weakness that may fracture and cause spalling failure of the coating. Thresholding 
the image to select the oxide, then ANDing this with the line representing the interface 

   
(a)              (b)               (c)

     
(d)              (e)               (f)

Figure 8.24 Identifying adjacent features: (a) diagram representing a cross-section of a blue substrate 
with some orange features touching or near to it; (b) thresholded orange features; (c) pixels imme-
diately adjacent to the substrate, produced by thresholding, dilating, and Ex-ORing; (d) pixel AND 
of images (b) and (c) identifies the points where touching occurs — the ratio of the selected segments 
shown in white to the total length of the line from image (b) measures the area fraction of the surface 
which is contacted; (e) selection of features from image (b) using the line in image (c) as the marker; 
(f) features identified in image (e) superimposed on the original for confirmation.
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(obtained by thresholding the metal substrate phase, dilating by 1 pixel, and Ex-ORing) gives 
a direct measurement of the contaminated fraction of the interface.

An aperture or mask image can be used to restrict the analysis of a second image to only those 
areas within the aperture. Consider counting spots on a leaf: either spots due to an aerial 
spraying operation to assess uniformity of coverage, or perhaps spots of fungus or mold to 
assess the extent of disease. The acquired image is rectangular, but the leaf is not. There may 
well be regions outside the leaf that are similar in brightness to the spots. Creating a binary 
image of the leaf, then combining it with the total image using feature-AND selects those 
spots lying on the leaf itself. If the spots are small enough, this can be done as a pixel-based 
AND. However, if the spots can touch the edge of the leaf, the feature-based operation is 
safer since systems may not count or measure edge-touching features (discussed in Chapter 
10). Counting can then provide the desired information, normally expressed as number per 
unit area, where the area of the leaf forms the denominator. This procedure is similar to the 
colony-counting problem in Figure 8.23.

Figure 8.27 shows another situation, in which two different thresholding operations and a 
logical combination are used to select features of interest. The micrograph shows tissue con-
taining immunogold particles. Some of these are located on the dark organelles while oth-
ers are in the lighter cytoplasm. In order to select only those that are on the organelles, two 
images are needed, both derived from the same original. Applying a gray scale opening to 
the image (shown in Chapter 5) produces an image of just the organelles by eliminating the 
smaller gold particles. This can be divided into the original image to remove the nonuniform 
background and produce a second image of just the gold particles. Thresholding each and 

  

Figure 8.25 Comparison of pixel- and feature-AND:

  (a) diagram containing features and a line;

  (b) broadening the line by dilation;

  (c)  pixel-AND of image (b) with blue features in image (a) selects 
incomplete features and one divided into two parts;

  (d)  feature-AND selection of blue features in image (a) using 
image (b) as a marker selects all features within a specified 
distance of the boundary.

              (a)

   
(b)              (c)               (d)
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combining the two isolates the gold particles that are originally on the organelles. A pixel-
based AND would retain only portions of the particles at the edges of the organelles, so a 
feature-AND is used with the organelles as markers to select the particles.

Similar procedures allow identifying grains in ores that are contained within other minerals, 
for instance, to determine the fraction which are “locked” within a harder matrix that cannot 
easily be recovered by mechanical or chemical treatment, as opposed to those that are not so 
enclosed and are easily liberated from the matrix.

A rather different use of feature-based Boolean logic implements the Disector, a stereological 
tool used in Chapter 9 to obtain an unbiased and direct measure of the number of features 
per unit volume (Sterio, 1984). It requires matching features in two images that represent 
parallel planes separated by a known distance T. The features represent the intersection of 
three-dimensional objects with those planes. Those objects which intersect both planes are 
ignored, but those which intersect only one plane or the other are counted. The total number 
of objects per unit volume is then

	 N Count
Area Tv =

⋅ ⋅2
 (8.1)

   
(a)              (b)               (c)

    
(d)              (e)               (f)

Figure 8.26 Isolating the oxide in a coating/substrate boundary: (a) original gray scale microscope 
image of a cross-section of the plasma-sprayed coating on steel (coating is at the bottom); (b) thresh-
olding of the metal in the coating and the substrate; (c) applying erosion and dilation to image (b) to 
fill holes and remove small features, producing a representation of the steel substrate; (d) boundary 
line produced by dilating image (c) and Ex-ORing with the original; (e) thresholding the oxide in the 
coating, including that along the interface; (f) a pixel-based AND of image (d) with image (b), show-
ing just the fraction of the interface which is occupied by oxide.
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where Area is the area of each of the images. This method has the advantage of being insen-
sitive to the shape and size of the objects, but it requires that the planes be close enough 
together that no information is lost between the planes. In effect, this means that the distance 
T must be small compared to any important dimension of the objects.

When T is small, most objects intersect both planes. The features in those planes do not cor-
respond exactly, but are expected to overlap at least partially. In the case of a branching three-
dimensional object, both of the intersections in one plane are expected to overlap with the 
intersection in the second plane. Of course, since most of the objects do pass through both 
planes when T is small, and only the few that do not are counted, it is necessary to examine 
a large image area to obtain a statistically useful number of counts. That requirement makes 
the use of an automated method based on the feature-based logic attractive.

Since the features which overlap in the two images are those which are not counted, the 
desired result is a feature-based Exclusive-OR. A procedure using marker selection can count 
the features in the two planes that are not selected by the feature-AND. Since the logical 
operation does not commute, it is necessary to perform two operations: (#1 NOT feature-AND 
#2) OR (#2 NOT feature-AND #1), and count the features remaining. This is illustrated sche-
matically in Figure 8.28.

   
(a)              (b)               (c)

   
(d)              (e)               (f)

Figure 8.27 Selecting immunogold particles: (a) original image; (b) gray scale opening applied to 
remove small dark particles, leaving the organelles; (c) thresholded binary from image (b); (d) divid-
ing image (b) into image (a) levels the image background and produces uniform image contrast for 
the particles; (e) thresholded binary from image (d); (f) using image (c) as a marker to select features 
in image (e) selects just the particles on the organelles.



466 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

Figure 8.29 shows a typical application. The two images are optical sections, separated by 
a known distance, from confocal light microscope imaging of oil droplets in a food product. 
Each image is thresholded to generate a binary image of particle intersections, and touching 
features are separated with a watershed (described below). Each of the feature-AND opera-
tions is performed, and the final image is the OR combination showing those features that 
appear in one (and only one) of the two slices.

Double thresholding

Another application for marker selection logic arises in the thresholding of difficult images 
such as grain boundaries in materials or cell boundaries in tissue. It is not unusual to have 
nonuniform etching or staining of the cell or grain boundaries in specimen preparation. In 
the example of Figure 8.30, this is due to thermal etching of the interiors of the grains. The 
result is that direct thresholding of the image cannot produce a complete representation of 
the etched boundaries that does not also include “noise” within the grains. A related problem 
arises in scanning printed text, in which printing on the reverse side of the page may show 
through (Estrada & Tomasi, 2009).

A technique for dealing with such situations has been described as “double thresholding” 
(Olsson, 1993) or “hysteresis thresholding” (Canny, 1986). It can be implemented by marker 
selection using feature-AND. As illustrated in Figure 8.30, the procedure is first to threshold 
the image to select only the darkest pixels that are definitely within the etched boundaries, 
even if they do not form a complete representation of the boundaries These areas become the 
markers. Then a second binary image is produced to obtain a complete delineation of all the 
boundaries, accepting some noise within the grains. In the example, a variance operator is 

   
(a)              (b)               (c) 

  

Figure 8.28 Diagram showing implementation of the Disector:

  (a)  two section images, overlaid in different colors to show 
matching features;

  (b)  (#1 feature-AND #2) selects features in plane 2 matched with 
plane 1;

  (c)  (#2 feature-AND #1) selects the features matched in the other 
plane;

  (d)  combining the two results and removing the matched features 
leaves just the unmatched features in both planes, which are 
counted.

              (d)
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applied to a copy of the original image to increase the contrast at edges. This process allows 
thresholding more of the boundaries, but also some of the intra-grain structures.

The two binary images are combined with a feature-AND to keep any feature in the second 
image that is selected by the markers in the first. This uses the few dark pixels that definitely 
lie within the boundaries to select the broader boundaries, while rejecting the noise within 
the grains. A morphological closing (shown later in this chapter) is applied to fill in gaps 
within the boundaries. The increase in apparent width of the boundaries is not important, 
since skeletonization (introduced below) is used to reduce the boundary lines to minimum 
width (the actual grain boundaries are only a few atoms thick). The pruned result may then 
be used for measurements of the grains and grain boundaries.

In the preceding example, the grain boundary network is a continuous tessellation of the 
image. Hence, it can be selected by using other criteria than the double-threshold method (for 
instance, touching opposite edges of the field). Figure 8.31 shows an example that requires 
the double-threshold method. The acoustic microscope image shows a cross-section through 
a fiber-reinforced material. These images are inherently noisy, but double thresholding (in this 
example selecting the bright pixels) allows the boundaries around the fibers to be selected. 
Since the fibers touch each other, it is also necessary to separate them for measurement using 
a watershed segmentation, as shown below.

(a) (b)

(d) (e)

(c)

Figure 8.29 Applying Disector logic: (a, b) two parallel section images from a confocal light microscope; 
(c, d) thresholded and separated particles in images (a) and (b); (e) using marker selection to keep 
just those features in (c) and (d) that do NOT touch features in the other image produces the more 
than 200 features to be counted (in this example colored to show which plane they intersect).
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Erosion and dilation

The most widely used processing operations for binary images are often collectively described 
as morphological procedures (Serra, 1982; Coster & Chermant, 1985; Dougherty & Astola, 
1994, 1999; Soille, 1999; Shih, 2009). These include erosion and dilation, and modifications 
and combinations of these operations. The classic versions of these are fundamentally neigh-
bor operations, as shown in Chapters 4 and 5 where similar procedures that rank pixel 
values in a neighborhood are used to process gray scale and color images in the spatial 
domain. Because the values of pixels in the binary images are restricted to black and white, 
the operations are simpler and usually involve counting rather than sorting. However, the 
basic ideas are the same, and in some software packages the ranking method is used for 
both continuous tone gray scale and color images (using the pixel brightness values) and for 
binary images.

There is a rich literature in the field of mathematical morphology. It has developed a specific 
language and notation for the operations and is generally presented in terms of set theory. 
A much simpler approach is taken here: operations can be described in terms of adding or 
removing pixels from the binary image according to certain rules, which depend on the 

   
(a)              (b)               (c)

    
(d)              (e)               (f)

Figure 8.30 Double thresholding of grain boundaries in alumina: (a) original image; (b) thresholding 
dark grain boundary markers; (c) variance operator applied to original; (d) thresholding of (c) for all 
boundaries plus other marks; (e) marker selection of features in image (d) that touch features in image 
(b); (f) after processing (e) with a closing and skeletonization (discussed below), the pruned boundary 
is shown overlaid on the original.
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pattern of neighboring pixels. Each operation is performed on each pixel in the original 
image, using the original pattern of pixels. In practice, it may not be necessary to create an 
entirely new image; the existing image can be replaced in memory by copying a few lines at 
a time. Only the original pixel values are used in evaluating the neighbor pattern.

Erosion removes pixels from features in an image by turning pixels OFF that are originally 
ON. The purpose is to remove pixels that should not be there. The simplest example is pixels 
that have been selected by thresholding because they fall into the brightness range of interest, 
but do not lie within large regions with that brightness. Instead, they may have that bright-
ness value either accidentally, because of finite noise in the image, or because they happen to 
straddle a boundary between a lighter and darker region and thus have an averaged bright-
ness that happens to lie in the range selected by thresholding.

These pixels cannot be distinguished by simple thresholding because their brightness value is 
the same as that of the desired regions. It may be possible to remove them by using Boolean 
logic, for instance using the gray level as one criterion and the gradient as a second one, and 
requiring that the pixels to be kept have the desired gray level and a low gradient. But it often 
happens the binary image still includes extraneous pixels.

The simplest kind of erosion is to remove (set to OFF, shown in the examples here as white 
background) any pixel touching another pixel that is part of the background (is already OFF). 
This removes a layer of pixels from around the periphery of all features and regions, which 

    
(a)              (b)               (c)

    
(d)              (e)               (f)

Figure 8.31 Double thresholding of fiber boundaries: (a) original image; (b) first thresholding; (c) sec-
ond thresholding; (d) marker selection result; (e) filled boundaries; (f) segmented fibers.
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causes some shrinking of dimensions and may create other problems if it causes a feature to 
break up into parts. That problem is addressed below. Erosion can entirely remove extrane-
ous pixels representing point noise or line defects (e.g., scratches) because these defects are 
frequently only 1 or 2 pixels wide.

Instead of removing pixels from features, a complementary operation known as dilation (or some-
times dilatation) can be used to add pixels. The classical dilation rule, analogous to that for erosion, 
is to add (set to ON, shown in the examples here as black or in some cases color) any background 
pixel which touches another pixel that is already part of a foreground region (is already ON). This 
adds a layer of pixels around the periphery of all features and regions, which causes an increase 
in some dimensions and may cause features to merge. It also fills in small holes within features.

Because erosion and dilation cause a reduction or increase in the size of regions, respectively, 
they are sometimes known as etching and plating or shrinking and growing. There are a 
variety of rules for deciding which pixels to add or remove and for forming combinations of 
erosion and dilation.

In the example illustrated in Figure 8.32, thresholding the gray regions also includes the gray 
lines of pixels that lie between the light and dark regions. Erosion to remove those extraneous 

  
(a)                       (b)

  
(c)                       (d)

Figure 8.32 Removal of lines of pixels that straddle a boundary: (a) original microscope image of a 
three-phase metal; (b) binary image obtained by thresholding the intermediate gray phase; (c) ero-
sion of image (b) using two iterations; (d) dilation of image (c) using the same two iterations, restor-
ing the feature size but without the lines.
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lines of pixels causes a shrinking of the features. Following the erosion with a dilation adds 
pixels around the feature periphery, so that the dimensions are (approximately) restored. 
However, isolated pixels and lines that have been completely removed do not have any new 
pixels added and have been permanently removed from the image.

Opening and closing

The combination of an erosion followed by a dilation is called an opening, referring to the 
ability of this combination to open up gaps between just-touching features, as shown in 
Figure 8.33. It is one of the most commonly used sequences for removing fine lines and iso-
lated pixel noise from binary images. Performing the same operations in the opposite order 
(dilation followed by erosion) produces a different result. This sequence is called a closing 
because it can close breaks in features. There are several parameters that can be used to 
adjust erosion and dilation operations, particularly the neighbor pattern or rules for adding or 
removing pixels and the number of iterations, as discussed below. In most opening or closing 
operations, these are kept the same for both the erosion and the dilation.

Openings can be used in some cases to separate touching features. In the example shown in 
Figure 8.34, the features are all similar in size and touch but do not have extensive overlaps. 
This fact makes it possible to continue the erosion until all features have separated but none 
have been completely erased. After the separation is complete, dilation grows the features 
back toward their original size. They will merge again unless logic is used to prevent it. A 
rule that prevents turning a pixel ON if its neighbors belong to different features maintains 
the separation shown in the figure. This “non-merging dilation” requires performing feature 
identification for the pixels, so additional logic is required at each step of the dilation. An 
additional rule prevents turning on any pixel that is not on in the original image, so that the 
features are restricted to their original sizes.

If the features have different original sizes, the separation lines produced by this method are 
not positioned correctly at the junctions, and some features may disappear completely before 
others are separated. The watershed segmentation technique introduced below performs bet-
ter in such cases.

As shown in Figure 8.33, the closing sequence is performed in the other order from an open-
ing, a dilation followed by an erosion, and the result is not the same. Instead of removing 
isolated pixels that are ON, the result is to fill in places where isolated pixels are OFF, such 
as missing pixels within features or narrow gaps between portions of a feature. Figure 8.35 
shows an example of a closing used to connect together the parts of the cracked fibers shown 
in cross section. The cracks are all narrow, so dilation causes the pixels from either side to 
spread across the gap. The increase in fiber diameter is then corrected by erosion, but the 
cracks do not reappear.

The classical erosion and dilation operations illustrated in the examples turn a pixel ON or 
OFF if it touches any pixel in the opposite state. Usually, touching in this context includes any 
of the adjacent 8 pixels, although some systems deal only with the 4 edge-sharing neighbors. 
These operations would be much simpler and more isotropic on a hexagonal pixel array, 
because the pixel neighbor distances are all the same, but practical considerations lead to the 
general use of a grid of square pixels.

A wide variety of other rules are possible. One approach, a conditional erosion or dilation, is 
to count the number of neighbor pixels with the opposite color or state, compare this number 
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to a threshold value, and only change the state of the central pixel if that test coefficient is 
exceeded. In this method, classical erosion corresponds to a coefficient of zero. One effect of 
different coefficient values is to alter the rate at which features grow or shrink and to some 
extent to control the isotropy of the result. This is illustrated below.

 

Figure 8.33 Combining ero-
sion and dilation to pro-
duce an opening or a 
closing. The result is dif-
ferent depending on the 
order of application of the 
two operations. Since the 
original image is ambigu-
ous, it is necessary to use 
a priori knowledge to select 
the proper combination.

   
(a)              (b)               (c)

    
(d)              (e)               (f)

Figure 8.34 Separation of touching features by erosion/dilation: (a) original test image; (b) after two 
cycles of erosion; (c) after four cycles; (d) after seven cycles (features are now all fully separated); (e) 
four cycles of dilation applied to image (d); (f) additional cycles of non-merging dilation restricted 
to the original pixel locations, which restores the feature boundaries.
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It is also possible to choose a large coefficient, from 5 to 7, to select only the isolated noise 
pixels and leave most features alone. For example, choosing a coefficient of 7 causes only 
single isolated pixels to be reversed (removed or set to OFF in an erosion, and vice versa for a 
dilation). Erosion with a coefficient value of 5 or 6 may be able to remove lines of pixels (such 
as those straddling a boundary) without affecting anything else.

An example of this method is shown in Figure 8.36. Thresholding the original image of the 
pigment cell produces a binary image showing the features of interest and also leaves many 
smaller and irregular groups of pixels. Performing a conventional opening to remove them 
also causes the shapes of the larger features to change and some of them to merge. Applying 
erosion with a neighbor coefficient of 5 removes the small and irregular pixel groups without 
affecting the larger and more rounded features, as shown. The erosion is repeated until no 
further changes take place (the number of ON pixels in the binary image does not change).

The test image in Figure 8.37 shows a variety of fine lines and narrow gaps that can be 
removed or filled using various neighbor coefficients and numbers of iterations (number of 
erosions followed by dilations, or vice versa).

Isotropy

It is not possible for a small 3 × 3 neighborhood to define an isotropic neighbor pattern. Classic 
erosion applied to a circle does not shrink the circle uniformly, but proceeds at a faster rate in 
the 45° diagonal directions because the pixel spacing is greater in those directions. As a result, 
a circle erodes toward a diamond shape, as shown in Figure 8.38. Once the feature reaches 
this shape, it continues to erode uniformly, preserving the shape. However, in most cases, 
features are not really diamond shaped, which represents a potentially serious distortion.

Likewise, classic dilation applied to a circle also proceeds faster in the 45° diagonal direc-
tions, so that the shape dilates toward a square (also shown in Figure 8.38). Square shapes 
are stable in dilation, but the distortion of real images toward a blocky appearance in dilation 
can present a problem for further analysis.

Conditional erosion and dilation with a neighbor coefficient of 1 instead of 0 produce differ-
ent results. For dilation, a background pixel that touches more than 1 foreground pixel (i.e., 
2 or more out of the possible 8 neighbor positions) is turned ON and vice versa for erosion. 
Eroding a circle with this procedure tends toward a square and dilation tends toward a dia-
mond, the reverse of using a coefficient of 0. This is shown in Figure 8.39.

  
(a)              (b)               (c)

Figure 8.35 Joining parts of features with a closing: (a) original image, cross-section of cracked glass 
fibers; (b) brightness thresholding, showing divisions within the fibers; (c) after application of a 
closing.
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There is no conditional test value between 0 and 1 if the pixels are counted as either ON or 
OFF. If the corner pixels are counted as 2 and the edge-touching pixels as 3, it is possible to 
design a conditional test that is more isotropic. This produces a ratio of 3/2 = 1.5, which is a 
better approximation to √2, the distance ratio to the corner-touching pixels. In practice, this 
is rarely done because of the convenience of dealing with pixels in binary images as black or 
white with no need to take into account their position in the neighborhood.

Another approach that is used for achieving an intermediate result between the coefficients of 
0 and 1 with their directional bias is to alternate the two tests. As shown in Figure 8.40, this 
alternating pattern produces an octagonal shape in both erosion and dilation. These examples 
also illustrate the point that erosion or dilation need not be performed only once. The num-
ber of repetitions or iterations controls the distance by which boundaries grow or shrink. But 
because of the effect of different neighbor coefficients on the process, the number of iterations 
does not directly correspond to an actual distance on the image, and so it is of limited useful-
ness for measurements.

Using a larger neighborhood can also moderate the anisotropy. In Figure 8.41 a 5 pixel wide 
circular neighborhood is used with ten iterations of erosion and dilation. As for the alternating 
0 and 1 coefficients, the shapes evolve toward octagons. Even larger neighborhoods can be 
used, but they increase the time needed to count the various neighbors, provide less control 

  
(a)                       (b)

  
(c)                       (d)

Figure 8.36 Removal of debris from an image: (a) original image of a pigment cell; (b) brightness 
thresholding shows the pigment granules plus other small and irregular features; (c) opening (neigh-
bor coefficient = 5) leaves the large and regular granules; (d) color overlay on the original image 
showing the features remaining after the erosion in red and the ones removed in blue.



475Processing Binary Images
© 2011 by Taylor & Francis Group, LLC

  
(a)                     (b)

       
(c)                     (d)

     
(e)                     (f)

Figure 8.37 Illustration of the effect of different neighbor coefficients and number of iterations: (a) 
original test image; (b) Erosion, neighbor coefficient = 3, 1 iteration, removes isolated lines and 
points; (c) Closing, neighbor coefficient = 2, 2 iterations, fills in gaps to connect features while remov-
ing isolated points; (d) Closing using classical operations (neighbor coefficient = 0, 1 iteration) con-
nects most features but leaves isolated points; (e) opening, neighbor coefficient = 7, 1 iteration, 
removes point noise without affecting anything else; (f) opening, neighbor coefficient = 1, 4 itera-
tions, removes all small features including the frame of the picture.



476 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

  

Figure 8.38 Anisotropy of classical (neigh-
bor coefficient = 0) dilation and erosion 
applied to a circle after 50 iterations of 
dilation (blue) and after 25 iterations of 
erosion (red).

  

Figure 8.39 Anisotropy produced by a 
neighbor coefficient of 1 applied to a cir-
cle after 50 iterations of dilation (blue) 
and after 25 iterations of erosion (red).

  

Figure 8.40 Anisotropy produced by alter-
nating neighbor coefficients of 0 and 1 
applied to a circle after 50 iterations of 
dilation (blue) and after 25 iterations of 
erosion (red).
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over the distance affected by erosion and dilation, and when iterated do not produce isotropic 
erosion and dilation. In principle classic erosion or dilation (coefficient = 0) and a circular 
neighborhood with a radius large enough to allow a single application rather than iteration 
can produce an isotropic result, but this is not always practical.

Each neighbor pattern or coefficient has its own characteristic anisotropy. Figure 8.42 shows 
the interesting results using a neighborhood coefficient of 3. Like an alternating 0,1 pattern, 
this operation produces an eight-sided polygon. However, the rate of erosion is much lower, 
and in dilation the figure grows to the bounding octagon and then becomes stable, with no 
further pixels being added. This coefficient is sometimes used to construct bounding poly-
gons around features.

  

Figure 8.41 Classical erosion (red) and 
dilation (blue) using ten iterations and a 
larger neighborhood size (a 5 pixel wide 
approximation to a circle).

  

Figure 8.42 Octagonal shape and slow rate 
of addition or removal using a coefficient 
of 3 applied to a circle after 50 iterations 
of dilation (blue — no changes occur 
after the first few iterations) and after 25 
iterations of erosion (red).
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Measurements using erosion and dilation

Erosion performed n times, using either a coefficient of 0 or 1, or alternating them, causes 
features to shrink radially by about n pixels (with local variations depending on the shape of 
the original feature). This causes features whose smallest dimension is less than 2n pixels to 
disappear altogether. Counting the features that disappear at each iteration gives an estimate 
of the number of features smaller than that size. This means that erosion and counting can 
be used to get an estimate of size distributions without actually performing feature measure-
ments (Ehrlich et al., 1984).

Figure 8.43 illustrates the method. The successive layers of pixels removed from the outer 
boundary of the features are shown in color. Counting the number of features that disappear 
at each iteration produces the plot shown, which approximately corresponds to the size distri-
bution of the touching and slightly overlapped circles. For comparison, the watershed proce-
dure that is shown below in Figure 8.57 produces separate features, and measuring their size 
produces the results shown (for the diameter of a circumscribed circle), which is much more 
precise, distinguishing the various circles based on their sizes.

   
(a)                       (b)

 
(c)                       (d)

Figure 8.43 Iterative erosion and counting of features as they disappear: (a) a set of touching and 
slightly overlapped circles; (b) color coding to show the layers of pixels removed on successive itera-
tions; (c) the number of features that disappear at each iteration; (d) size distribution of the circles 
as measured after a watershed segmentation (shown in Figure 8.57, below).
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The same methodology can be applied using gray scale morphology (a ranking operation 
described in Chapter 5 which replaces each feature with its brighter or darker neighbor) and 
counting features as they disappear. This is illustrated below.

For irregularly shaped and concave features, the erosion process may cause a feature to sub-
divide into parts. Just counting the number of features as a function of the number of itera-
tions of erosion is therefore not a good way to determine the size distribution. One approach 
to this problem is to follow erosion by a dilation with the same coefficient(s) and number of 
steps. This merges together many (but not necessarily all) of the separated parts and gives a 
better estimate of their number. However, there is still considerable sensitivity to the shape 
of the original features. A dumbbell-shaped object separates into two parts when the handle 
between the two main parts erodes; they do not merge. This separation may be desirable if 
the purpose is to count the two main parts.

It is also possible to use feature-AND or marker selection, shown above. After each iteration of 
erosion, the remaining features are used to select only those original features that touch them. 
The count of original features then gives the correct number. This is functionally equivalent to 
keeping feature labels on each pixel in the image and counting the number of different labels 
present in the image after each cycle of erosion. This method of estimating size distributions 
without measuring features, using either of these correction techniques, has been particularly 
applied to measurements in geology, such as the sizes of mineral particles or sediments.

The opposite operation, performing dilations and counting the number of separate features as 
a function of the number of steps, is less common. It provides an estimate of the distribution of 
the nearest distances between features in the image. When this is done by conventional feature 
measurement, the x,y location of each feature is determined; then sorting of the resulting data 
file is used to determine the nearest neighbor and its distance. In this case, the distance is from 
center to center. When the features are significantly large compared to their spacing or when 
their shapes are important, it can be more interesting to characterize the distances between their 
boundaries (the edge-to-edge distance). The dilation method can provide that information.

The methods described in the preceding paragraphs were used in spite of problems with 
anisotropy when computer power was limited and more accurate methods were impractical, 
but have largely been replaced by methods using the Euclidean distance map; are shown 
below.

Instead of counting the number of features that disappear at each iteration of erosion, it is 
much easier to count the number of ON pixels remaining, which provides some information 
about the shape of the boundaries. Smooth Euclidean boundaries erode at a constant rate. 
Irregular and especially fractal boundaries do not, since many more pixels are located on 
boundaries and touch opposite neighbors. This effect has been used to estimate fractal dimen-
sions, although more accurate methods are available, as discussed below.

Fractal dimensions and the description of a boundary as fractal based on a self-similar rough-
ness are fairly new ideas that have found many applications in science and art (Mandelbrot, 
1982; Feder, 1988; Russ, 1994). No description of the rather interesting background and uses 
of the concept is included here. The basic idea behind measuring a fractal dimension by ero-
sion and dilation comes from the Minkowski definition of a fractal boundary dimension. By 
dilating a region and Ex-ORing the result with another image formed by eroding the region, 
the pixels along the boundary are obtained.

To measure the fractal dimension, the operation is repeated with an increasing number of 
iterations of erosion and dilation (Flook, 1978), and the effective width (total number of pixels 
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divided by length and number of iterative erosion/dilation cycles) of the boundary is plotted 
vs. the number of iterations on a log-log scale. For a Euclidean boundary, this plot shows no 
trend; the number of pixels along the boundary selected by the Ex-OR increases linearly with 
the number of erosion/dilation cycles (i.e., the same number of pixels is affected at each itera-
tion). However, for a rough boundary with self-similar fine detail, the graph shows a linear 
variation on log-log axes whose slope gives the fractal dimension of the boundary directly. 
Figure 8.44 shows an example.

There are a variety of other methods for determining the boundary fractal dimension, includ-
ing box-counting or mosaic amalgamation (Kaye, 1986; Russ, 1990) in which the number of 
pixels through which the boundary passes (for boundary representation) is counted as the 
pixel size is increased by coarsening the image resolution, and a structured walk method 
(Schwarz & Exner, 1980), which requires the boundary to be represented as a polygon instead 
of as pixels. For a fractal boundary, these also produce straight line plots on a log-log scale, 
from whose slope the dimension is determined. Several more accurate techniques for per-
forming the measurement are shown in Chapter 11.

Counting the number of pixels as a function of dilations provides a rather indirect measure of 
feature clustering, since as nearby features merge, the amount of boundary is reduced and the 
region’s rate of growth slows. Counting only the pixels and not the features makes it difficult 
to separate the effects of boundary shape and feature spacing. If all of the features are initially 

  
(a)              (b)               (c)

(d)

(e)

Figure 8.44 Measurement of Minkowski fractal dimension 
by erosion/dilation:

  (a)  test figure with upper boundary a classical Koch frac-
tal and lower boundary a Euclidean straight line;

  (b)  gray pixels show difference between erosion and 
dilation produced by 1 iteration;

  (c),  (d) differences between erosion and dilation after 2 
and 4 iterations;

  (e)  plot of log of effective width (area of gray pixels 
divided by width of image and number of iterations) 
vs. log of number of iterations (approximate width of 
gray band). The fractal dimension equals 1.0 minus 
the slope, or 1.412.
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very small or if they are represented by single points such as the centroids, this method can 
provide a fractal dimension (technically a Sierpinski fractal) for the clustering.

Extension to gray scale images

One of the image processing operations introduced in Chapters 4 and 5 is the ranking opera-
tor, which finds the brightest or darkest pixel in a neighborhood and replaces the central 
pixel with that value. This operation is called a gray scale erosion or dilation, depending on 
whether the use of the brightest or darkest pixel value results in a growth or shrinkage of the 
visible features. Morphological operations on gray scale and colored images are analogous to 
those performed in binary images, and if the routines for gray scale morphology are applied 
to binary images, they correspond to the classical erosion/dilation operations.

Just as an estimate of the distribution of feature sizes can be obtained by eroding features in 
a binary image, the same technique is also possible using gray scale erosion on a continuous 
tone image. Figure 8.45 shows an example. The lipid spheres in this SEM image are partially 
piled up and touch one another, which poses a problem for conventional image measurement 
techniques. Applying gray scale erosion reduces the feature sizes, and counting the bright 

    
(a)              (b)               (c)

    
(d)              (e)               (f)

Figure 8.45 Use of gray scale erosion to estimate size distribution of overlapped particles: (a) original 
SEM image of lipid droplets; (b)–(f) result of applying repetitions of gray scale erosion by keeping 
the darkest pixel value in a 5 pixel wide octagonal neighborhood. The resulting size distribution is 
shown in Figure 8.61d below, for comparison to another method.
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central points that disappear at each step of repeated erosion provides a size distribution 
(which is shown below in Figure 8.61d for comparison to a better method).

The assumption in this approach is that the features ultimately separate before disappearing. 
This works for relatively simple images with convex features, none of which is more than half 
hidden by others. No purely two-dimensional image processing method can count the number 
of cannon balls in a pile if the inner ones are hidden. It is possible to estimate the volume 
of the pile and guess at the maximum number of balls contained, but impossible to know 
whether they are really there or whether something else is hidden underneath the outermost, 
visible layer.

Morphology neighborhood parameters

Specific neighbor patterns can also be used for erosion and dilation operations. The most 
common are ones that compare the central pixel to its 4 edge-touching neighbors (usually 
called a “+” pattern because of the neighborhood shape) or to the 4 corner-touching neighbors 
(likewise called an “x” pattern), changing the central pixel if any of those 4 neighbors is of the 
opposite color. They are rarely used alone, but can be employed in an alternating sequence to 
obtain greater directional uniformity than classical erosion, similar to the effects produced by 
alternating coefficient tests of 0 and 1.

Any specific neighbor pattern can be used if it is appropriate to the particular application. It 
is not even required to restrict the comparison to immediately touching neighbors. As for gray 
scale operations, larger neighborhoods make it possible to respond to more subtle textures 
and achieve greater control over directionality. Figure 8.46 shows a simple example. The gen-
eral case for this type of operation is called the hit-or-miss operator, which specifies a pattern 
of neighboring pixels divided into three classes: those that must be ON, those that must be 
OFF, and those that do not matter (are ignored). If the pattern is found, then the pixel is set 
to the specified state (Serra, 1982; Coster & Chermant, 1985).

The use of a non-isotropic neighborhood for erosion/dilation operations is particularly use-
ful for removing known patterns from an image. The most common example is the removal 
of scratches from scanned photographic negatives. The scratches are usually narrow and 
oriented longitudinally on the film strip. A neighborhood that is longer than the width of the 
scratch and oriented perpendicular to it can replace the dark pixels in the scratch with values 

(c)(b)(a)

Figure 8.46 Example of specifying the neighborhood pixels for morphological operations: (a) a vertical 
neighborhood for erosion; (b) original pattern; (c) eroded result.
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from the adjacent image. This method is also useful for removing other linear structures, as 
shown in Figure 8.47. In this example, the methods described in Chapter 4 for ranking in 
gray scale or color images are used to perform an opening (erosion and dilation).

This type of operation is more generally called template matching, or correlation when carried 
out on gray scale images (shown in Chapter 6 implemented with Fourier transforms) and is a 
way to search for specific patterns in the image. This is also true for binary images; template 
matching with thresholded binary images is one of the earliest methods for optical character 
reading and is still used for situations in which the character shape, size, and location are 
tightly controlled (such as the characters at the bottom of bank checks). Much more flexible 
methods are needed to read more general text, however.

A fate table is one method that allows very fast implementation of neighborhood comparison. 
The 8 nearest neighbors are considered to each have a value of 1 or 0, depending on whether 
the pixel is ON or OFF. Placing these 8 values into separate bits produces a byte, which can 
have any of 256 possible values. This value is used as an address into a table, which provides 
the result (i.e., turning the central pixel ON or OFF). Efficient ways to construct the address 
make this method very fast. The ability to create several tables of possible fates to deal with 
different erosion and dilation rules, perhaps saved on disk and loaded as needed, makes 
the method very flexible. However, it does not generalize well to larger neighborhoods or to 
three-dimensional voxel array images because the tables become too large.

Applications for specific erosion/dilation operations that are not symmetrical or isotropic 
always require some independent knowledge of the image, the desired information, and the 
selection of operations that can selectively extract it. However, this is not as important a criti-
cism or limitation as it may seem, since all image processing is to some extent knowledge 
directed. The human observer tries to find operations to extract information he or she has 
some reason to know or expect to be present.

Figure 8.48 shows an example. The horizontal textile fibers vary in width as they weave 
above and below the vertical ones. Measuring this variation is important to modeling the 
mechanical properties of the weave, which will be embedded into a composite. The dark 
vertical fibers can be thresholded based on brightness, but delineating the horizontal fibers is 
difficult. The procedure shown in the figure uses the known directionality of the structure.

  
(a)                    (b)

Figure 8.47 Removing power lines: (a) original image; (b) result of applying an opening and closing 
using a vertical neighborhood. Only the horizontal lines are removed; a different neighbor pattern 
is needed to remove the other wires.



484 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

After thresholding the dark fibers, an erosion is performed to remove only those pixels whose 
neighbor immediately below or above is part of the background. These pixels, shown in 
Figure 8.48c, can then be isolated by performing an Ex-OR with the original binary. They 
include the few points distinguishable between horizontal fibers and the ends of the vertical 
fibers where they are covered by horizontal ones.

Next, a directional dilation is performed in the horizontal direction. Any background pixel 
whose left or right touching neighbor is ON is itself set to ON, and this operation is repeated 
enough times to extend the lines across the distance between vertical fibers. Finally, the 
resulting horizontal lines are ORed with the original binary image to outline all of the indi-
vidual fibers (Figure 8.48d). Inverting this image produces measurable features.

Examples of use

Combinations of closings and openings are often necessary to define regions for measure-
ment. In Figure 8.49, iron carbide particles in a steel specimen are etched to appear dark 
and are easily thresholded. However, it is not the individual dark features that are impor-
tant for measurement. The size of the islands of lamellar structure and those without such 
structure control the properties of the metal, but these are not completely defined by the 
individual dark carbide particles. Dilation followed by erosion (closing) merges together the 
individual lamellae, but there are also dark features within the largely white grains because 
of the presence of a few dark points in the original image. Following the closing with an 

  
(a)              (b)               (c)

 

Figure 8.48 Using directional erosion and dilation to segment an 
image:

  (a) original gray scale image of a woven textile;

  (b) brightness thresholding of image (a);

  (c)  end pixels isolated by performing a vertical erosion and 
ExORing with the original;

  (d)  completed operation by repeated horizontal dilation of 
image (c) and then ORing with the original.

        (d)
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opening (for a total sequence of dilation, erosion, erosion, dilation) produces a useful result, 
as shown.

In the example, the closing and opening used 6 iterations with a neighborhood coefficient of 
either 1 or 0. The number of iterations is based on the size of the gap to be filled or feature 
to be removed. The choice of appropriate parameters is largely a matter of experience with 
a particular type of image and human judgment of the correctness of the final result. The 
presence of primarily 45 degree or 90 degree orientations along the edges of the regions in 
the processed binary image reveals the anisotropic effects of the erosion/dilation operations. 
Using different coefficients in the various operations changes but does not eliminate the geo-
metric bias. A more isotropic result for this same image using a different approach to erosion 
and dilation is shown below (Figure 8.54).

In some images, the use of morphological operations on a thresholded binary image can be 
used to accomplish results similar to the application of the texture operators used in Chapter 
5 on gray scale images before thresholding. For instance, Figure 8.50 shows the same image 
of curds used in Chapter 5, Figure 5.43. Background leveling and thresholding the smooth, 
white areas (the curds) produces the result shown. There are many regions in the textured 
portion of the image that are just as bright as the curds. In gray scale texture processing, these 
are eliminated based on consideration of the local variation in pixel brightness. In this figure, 
that variation produces narrow and irregular regions. An opening, consisting of an erosion to 

  
(a)              (b)               (c)

  

(d)              (e)               (f)

Figure 8.49 Combined closing and opening to delineate regions: (a) original gray scale image of chemi-
cally etched metallographic steel specimen (dark regions are iron carbide, brighter areas are iron); 
(b) brightness threshold applied to image (a); (c) closing (6 iterations, coefficient = 1) applied to fill 
in gaps between lamellae; (d) opening applied to remove small isolated features (6 iterations, coef-
ficient = 1); (e) result of closing followed by opening using coefficient = 0; (f) overlay of the outlines 
from (d) and (e) on the original image.
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remove edge-touching pixels and a dilation to restore pixels to the boundaries of features that 
are still present, effectively removes the background clutter, as shown in the figure.

The erosion/dilation approach to defining the structure in this image amounts to making some 
assumptions about the characteristic dimensions of the features, their boundary irregularities, 
and their spacings, but a similar decision about the spatial scale of the texture is required for 
successful gray scale processing in Chapter 5. However, in general it is better to apply pro-
cessing to images before thresholding, taking advantage of the information contained in the 
pixel brightness values, rather than to process the binary image after thresholding

Erosion/dilation procedures are often used with Boolean combinations. In the examples of 
Figures 8.24 and 8.26 the lines used to test for adjacency are obtained by dilating the binary 
image and then Ex-ORing the result with the original. The superimposed outlines shown in 
Figures 8.49f and 8.50d and many others to show the results of processing on the original 
image can be produced by performing an erosion followed by an Ex-OR with the dilated 
binary image. This leaves the outlines of pixels that are originally adjacent to the background, 
which can be used as a color overlay. It is also possible to obtain an outline image directly, by 
a modified erosion operation that erases any pixel that does not have an adjacent background 
pixel. However it is produced, the outline is called the custer of a feature, perhaps in reference 
to George Armstrong Custer, who was also surrounded back in 1876.

The custer can be used to determine neighbor relationships between features or regions. As an 
example, Figure 8.51 shows a three-phase metal alloy imaged in the light microscope. Each of 
the individual phases can be delineated by thresholding (and in the case of the medium gray 

  
(a)              (b)               (c)

   

Figure 8.50 Segmenting an image by erosion/dilation:

  (a) original image (curds in cheese);

  (b) thresholded;

  (c) morphological opening;

  (d) outlines superimposed on original image.

        (d)
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image, applying an opening to remove lines of pixels straddling the white-black boundary, 
as shown in Figure 8.32). Then the custer of each phase can be formed, as described above.

Combining the custer of each phase with the other phases using an AND keeps only the por-
tion of the custer that is common to the two phases. The result is to mark the boundaries 
as white-gray, gray-black, or black-white, so that the extent of each type can be determined. 
Chapter 9 shows that the length of the boundary lines in the section image is used to measure 

  
(a)              (b)               (c)

  
(d)              (e)               (f)

  
        (g)              (h)

Figure 8.51 Use of Boolean logic to measure neighbor adjacency relationships: (a) original light micro-
scope image of a three-phase metal; (b–d) thresholded white, gray and black phases; (e–g) surround-
ing outlines of each phase; (h) AND of outlines of pairs of phases combined using different colors to 
identify each phase/phase interface.
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the surface area of the boundary in a three-dimensional solid. In other cases, the marker-
selection or feature-AND logic can be used to select all the features that are adjacent to one 
region (and hence touch its custer), as illustrated previously.

Euclidean distance map

The directional bias present in morphological operations because of their restriction to pixels 
on a square grid, and the variation in the distances produced by the various neighborhood 
rules and direction, can be overcome by performing equivalent operations (erosion, dilation, 
opening, closing, etc.) using a different technique. It makes use of a gray scale image, pro-
duced from the original binary, in which every pixel within a feature is assigned a value that 
is its straight line distance from the nearest background pixel. This is called the Euclidean 
distance map, or EDM.

Most of the image processing functions shown in this and preceding chapters either operate 
on continuous tone color and gray scale images to produce other continuous tone images, or 
reduce a continuous tone image to a binary representation, or operate on binary images to 
produce other binary images. The Euclidean distance map is a tool that works on a binary 
image to produce a gray scale image. The definition is simple enough: each point in the fore-
ground is assigned a brightness value equal to its straight line (hence “Euclidean”) distance 
from the nearest point in the background. In an analog or continuous image, as opposed 
to a digitized one containing finite pixels, this is unambiguous. In most pixel images, the 
distance is taken from each pixel in the feature to the nearest pixel in the background (or 
vice versa).

Searching through all of the background pixels to find the nearest one to each pixel in a fea-
ture and calculating the distance in a Pythagorean sense would be an extremely inefficient 
and time-consuming process for constructing the EDM. Some researchers have implemented 
a different type of distance map in which distance is measured in only a few directions. For 
a lattice of square pixels, this may either be restricted to the 90° directions, or it may also 
include the 45° directions (Rosenfeld and Kak, 1982). This measuring convention is equivalent 
to deciding to use a 4-neighbor or 8-neighbor convention for considering whether pixels are 
touching. In either case, the distance from each pixel to one of its 4 or 8 neighbors is taken as 
1, regardless of the direction. Consequently, as shown in Figure 8.52, the distance map from 

(c)(b)(a)

Figure 8.52 Gray scale images showing the distance from the center pixel measured in different ways: 
(a) city-block or 4-neighbor paths; (b) chess-board or 8-neighbor paths; (c) Pythagorean distance.
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a point gives rise to either square or diamond-shaped artifacts and is distorted, as compared 
to the correct Pythagorean distance. These measuring conventions are sometimes described 
as city-block models (connections in four directions) or chessboard models (eight directions), 
because of the limited moves available in those situations. These versions of a distance map do 
not offer any advantage over classical erosion and dilation in terms of being more isotropic.

A straightforward, iterative technique for constructing such a distance map can be programmed 
as follows.

 1. Assign a brightness value of 0 to each pixel in the background.
 2. Set a variable N equal to 0.
 3. For each pixel in the foreground that touches (in either the 4- or 8-neighbor sense, as 

described above) a pixel whose brightness value is N, assign a brightness value of N 
+ 1.

 4. Increment N and repeat step 3, until all pixels in the image have been assigned.

The time required for this iteration (which is just classical erosion) depends on the size of the 
features (the maximum distance from the background). A more efficient method is available 
that gives the same result with two passes through the image (Danielsson, 1980). This tech-
nique uses the same comparisons, but propagates the values through the image more rapidly.

 1. Assign the brightness value of 0 to each pixel in the background and a large positive 
value (greater than the maximum feature width) to each pixel in a feature.

 2. Proceeding from left to right and top to bottom, assign each pixel within a feature a 
brightness value one greater than the smallest value of any of its neighbors.

 3. Repeat step 2, proceeding from right to left and bottom to top.

A further modification provides a better approximation to the Pythagorean distances between 
pixels (Russ & Russ, 2007). The edge-sharing neighbors are a distance 1 away, but the corner-
sharing diagonally adjacent pixels are a distance √2 = 1.414 away. Using floating point values 
rather than integers for the pixels allows adding the more accurate distance values for diago-
nal or corner-touching neighbors, even if the final result must be rounded to integer values 
when written back to image memory for display, and produces a much improved, more iso-
tropic EDM.

There is another algorithm that produces a Euclidean distance map with real number val-
ues (Rosenfeld & Pfaltz, 1968). During the passes through the image, the X and Y distances 
(integer values) from the nearest background point are accumulated separately for each pixel 
within the features, and then the actual Pythagorean distance is calculated as the square root 
of the sum of squares. Of course, it is still necessary to convert the real number result to an 
integer representation for display purposes. In general, the better the quality of the EDM val-
ues the better the results obtained using the EDM for erosion, dilation, and watershed segmen-
tation, as described below. Many of the cases in which watershed segmentation produces poor 
results are in fact cases in which the EDM is of poor quality because of limited accuracy and 
the use of integer arithmetic, which is a holdover from the days when computer power was 
less than currently available. Much of the current development on EDM methods is directed 
toward speed of implementation (Fabbri et al., 2008).

Erosion is accomplished by thresholding the EDM to select all pixels that are farther from the 
background by more than some distance. Dilation uses the EDM of the background to select 
pixels farther from the edge than some distance. Comparison of erosion and dilation using 
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the EDM with pixel-by-pixel methods (Figures 8.38 to 8.42) shows that the EDM method is 
much more isotropic (Figure 8.53). Furthermore, the distance map is constructed quickly and 
the thresholding requires no iteration, so the execution time of the method does not increase 
with feature size (as do iterative classical morphological methods).

When more irregular shapes are subjected to erosion and dilation, the difference between the 
iterative methods and thresholding the EDM is also apparent, with EDM methods avoiding 
the 90- or 45-degree boundaries present with the traditional morphological tools. Figure 8.54 

(a) (b) (c)

Figure 8.53 Isotropic erosion and dilation achieved by using the Euclidean distance map for dilation 
and erosion of a circle (compare to Figures 8.38–8.42): (a) the EDM of the background around the 
circle; (b) the EDM of the circle; (c) dilation achieved by thresholding the background EDM at a value 
of 50 (blue) and the erosion achieved by thresholding the circle EDM at a value of 25 (red).

(a)

(d)

(b) (c)

Figure 8.54 Closing and opening using the EDM: (a) thresholded original image (same as Figure 
8.49b); (b) closing, distance of 5.5 pixels; (c) opening; distance of 5.5 pixels; (d) outlines superim-
posed on original image.
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shows the same example of closing and opening applied to the image in Figure 8.49. The 
distance used for both closing and opening is 5.5 pixels, and the final outlines trace the edges 
of the structures with much greater fidelity. Note that with the EDM it is possible to specify 
distances as real numbers rather than being restricted to integers, and that unlike the number 
of iterations, the EDM values are actual distances. This feature of the EDM is used below to 
enable measurements to be made.

Watershed segmentation

A difficulty often arises in measuring images because objects touch and therefore cannot be 
separately identified, counted, or measured. This situation may occur when examining an 
image of a volume or thick section in transmission, where actual feature overlap may occur, 
or when particles resting on a surface tend to agglomerate and touch each other. The method 
that is usually preferred for separating touching, but mostly convex, features in an image is 
known as watershed segmentation (Beucher & Lantejoul, 1979; Lantejoul & Beucher, 1981; 
Sun & Luo, 2009).

The classical method for accomplishing this separation (Jernot, 1982) is an iterative one. It 
extends the logic from the example shown above in Figure 8.43. The image is repetitively 
eroded, and at each step those separate features that disappeared from the previous step are 
designated ultimate eroded points (UEPs) and saved as an image, along with the iteration num-
ber. Saving these is necessary because the features in general have different sizes and do not all 
disappear in the same number of iterations. The process continues until the image is erased.

Then, beginning with the final image of UEPs, the image is dilated using classical dilation, 
but with the added logical constraint that no new pixel may be turned ON if it causes a con-
nection to form between previously separate features or if it is not ON in the original image 
(non-merging dilation). At each stage of the dilation, the image of UEPs that corresponds to 
the equivalent level of erosion is added to the image using a logical OR. This process causes 
the features to grow back to their original boundaries, except that lines of separation appear 
between the touching features.

The method just described has several practical drawbacks: the iterative process is slow, 
requiring each pixel in the image to be accessed many times; anisotropy in the erosion and 
dilation processes is present; and the amount of storage required for all of the intermediate 
images is quite large. The same result can be obtained more efficiently using an EDM. The 
name “watershed” comes from the EDM implementation. Imagine that the brightness values 
of each pixel within features in an EDM correspond to a physical elevation. The features then 
appear as a mountain peak. Figure 8.55 illustrates this for a circular feature.

If two features touch or overlap slightly, the EDM shows two peaks, as shown in Figure 8.56. 
The slope of the mountainside is constant, so the larger features have higher peaks. The ultimate 
eroded points are the peaks of the mountains, and where features touch, the flanks of the moun-
tains intersect. The saddles between these mountains are the lines selected as boundaries by the 
segmentation method. They are locations where water running down from the mountains arrives 
from two different peaks, and hence are called watershed lines. The placement of these lines 
according to the relative height of the mountains (size of the features) gives the best estimate of 
the separation lines between features, which are divided according to the regions that belong to 
each mountain top. An equivalent description of the watershed process replaces the mountains 
by basins which gradually fill with water, and the lines of separation by ridges between them.
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Implementing the segmentation process using an EDM approach (Russ & Russ, 1988b) is very 
efficient, both in terms of speed and storage. The distance map image required is constructed 
without iteration. The ultimate eroded points are located as a special case of local maxima 
(there is a further discussion of UEPs below) and the brightness value of each directly cor-
responds to the iteration number at which it would disappear due to erosion. Dilating these 
features is fast, because the distance map supplies a constraint. Starting at the maximum value 
and “walking down the mountain” covers all of the brightness levels. At each one, only those 
pixels at the current brightness level in the distance map need to be considered. Those that do 
not join different features are added to the image. The process continues until all of the pixels 
in the features, except for those along the separation lines, have been restored.

Figure 8.57 shows an example of this method, applied to an image consisting of touching cir-
cles. Since these are of different sizes, the method shown above in Figure 8.34 does not work, 
but watershed segmentation separates the features and allows them to be measured. The size 
distribution of the circles determined after watershed separation is shown in Figure 8.43d, 
for comparison with the results of iterative erosion. For an image of real particles, as shown 

  
(a)              (b)               (c)

Figure 8.55 Interpreting the Euclidean distance map as the height of pixels: (a) binary image of a cir-
cular feature; (b) Euclidean distance map with pixels color coded to show distance from boundary; 
(c) rendered display showing pixel heights.

  
(a)              (b)               (c)

Figure 8.56 EDM for touching features: (a) binary image of two touching circular features; (b) Euclidean 
distance map with pixels color coded to show distance from boundary; (c) rendered display showing 
pixel heights. Note the boundary between the two cones.
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in Figure 8.58, the method works subject to the assumption that the features are sufficiently 
convex that the EDM does not produce multiple peaks within each feature.

Watershed segmentation is used as part of several previous examples. Of course, this method 
is not perfect. Watershed segmentation cannot handle concave and irregular particles (more 
specifically, it can handle non-convex particles as long as there is only a single maximum 
in the EDM), and it does not separate particles whose overlap is so great that there is no 
minimum in the EDM between them. Depending on the quality of the original distance map, 
watershed segmentation may subdivide lines of constant width into many fragments because 
of the apparent minima produced by aliasing along the line edges. In most cases, the effort 
needed to correct such defects is much less than that required to perform manual separation 
of the original features.

By combining watershed segmentation with other Boolean and morphological procedures, 
many of the limitations inherent in the method can be overcome. The following two examples 
consist of multiple steps and may seem excessively complicated at first glance, but the individ-
ual steps are straightforward and very rapid, and the entire operation is fast and effective.

The presence of holes within features confuses the watershed algorithm and breaks the fea-
tures up into many fragments. It is therefore necessary to fill holes before applying the water-
shed. However, there may also be gaps in the binary image between features as well as those 
within them. Normal hole filling fills them in since any region of background not connected to 
the edge of the image is considered a hole. This difficulty can be overcome if some difference 
in hole size or shape can be identified to permit filling only the holes within features and not 
those between them (Russ, 1995f). In the example shown in Figure 8.59, the holes within 
features (organelles within the cells) are much rounder than spaces between the touching 
cells. Isolating these holes by measurement, and ORing them with the original image, allows 
watershed segmentation to separate the cells.

  
(a)              (b)               (c)

   

Figure 8.57 Watershed segmentation of an image of touching 
circles of different sizes:

  (a) original (same as Figure 8.43a);

  (b) “surface” representation of the EDM;

  (c) watershed result;

  (d)  watershed result superimposed on the EDM, with false 
colors representing the distance values.

        (d)
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Figure  8.60 shows another problem for the watershed method. The image shows cross-
sections of touching sheaths around nerve fibers. Filling the holes does not permit a water-
shed operation to separate them because of their irregular shapes. The watershed not only 
separates the features but also cuts them into pieces. Using the image of the interiors of 
the original sheaths as a set of markers to select the watershed lines that cut across the fea-
tures allows ORing those lines back into the image, so that the desired separation can be 
accomplished. Note that this procedure uses both pixel and feature-based Boolean operations. 
Understanding the individual steps in this sequence is a good test for general knowledge of 
these operations.

Ultimate eroded points

The ultimate eroded points (UEPs) described above in the watershed segmentation technique 
can be used as a measurement tool directly. The number of points gives the number of sepa-
rable features in the image, while the brightness of each point gives a measure of the original 
feature size (the radius of an inscribed circle). In addition, the location of each point can be 
used as a location for the feature if clustering or gradients are to be investigated. Figure 8.61 
shows an example, and compares the measurement results to that produced by the successive 
erosion method illustrated above in Figure 8.45.

The formal definition of a UEP in a continuous, rather than pixel-based image is a local 
maximum of brightness in the EDM image. Since the image is subdivided into finite pixels, 
the definition must take into account the possibility that more than one pixel may have equal 

   
(a)              (b)               (c)

     

Figure 8.58 Watershed segmenta-
tion of an image of touching 
sand grains:

  (a) original gray scale image;
  (b) thresholded;
  (c)  “surface” representation of 

the EDM;
  (d)  watershed segmentation 

applied;
  (e)  separated feature outlines 

superimposed on the origi-
nal image.

        (d)              (e)
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brightness, forming a plateau. In other words, the set of pixels which are UEPs must be as 
bright or brighter than all neighbors; if the neighbors are equal in brightness, then they must 
also be part of the set. The location may then be taken as the centroid of the plateau (calculated 
as shown in Chapter 10). The location of the UEP is a useful marker for the location of the 
object, because unlike the centroid it is guaranteed to lie within the feature’s boundaries.

The brightness of each pixel in the distance map is the distance to the nearest boundary. For a 
UEP, this must be a point that is equidistant from at least two and more generally three bound-
ary locations. The brightness is the radius of the feature’s inscribed circle, so a histogram of 
the brightness values of the UEP pixels gives an immediate measure of the size distribution 
of the features. This is much faster than performing the watershed segmentation, since the 
dilation procedure is eliminated, and much faster than measurement, since no feature identi-
fication or pixel counting is required.

   
(a)              (b)               (c)

     
(d)              (e)               (f)

      
        (g)              (h)

Figure 8.59 Separation of touching cells: (a) original gray scale image; (b) thresholded binary; (c) erro-
neous watershed segmentation produced by holes within cells; (d) inverting image (b) to show holes 
within and between cells; (e) holes within cells selected by their rounder shapes; (f) combining image 
(b) with (e) using a Boolean OR; (g) successful watershed segmentation of image (f); (h) separated 
cell outlines superimposed on original image.
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(a)              (b)               (c)

    
(d)              (e)               (f)

     
        (g)              (h)

Figure 8.60 Separation of touching irregular features: (a) binary image of touching nerve sheaths; (b) 
holes filled; (c) interiors of features [image (a) Ex-ORed with image (b)]; (d) watershed segmentation 
of image (b); (e) watershed lines [image (b) Ex-ORed with image (d)]; (f) lines in image (e) which 
cross the interiors of features [selected by markers in image (b)]; (g) image (f) ORed with image (d); 
(h) image (g) ANDed with image (a), producing the intact and separated nerve sheaths.
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The Euclidean distance map provides values that can be effectively used for many types of 
measurements. For example, the method described above for determining a fractal dimen-
sion from successive erosion and dilation operations has two shortcomings: it is slow and has 
orientational bias because of the anisotropy of the operations. The EDM offers a simple way 
to obtain the same information (Russ, 1988), as shown in detail in Chapter 11.

Because the distance map encodes each pixel with the straight line distance to the nearest 
background point, it can be used to measure the distance of many points or features from 
irregular boundaries. In the example shown in Figure 8.62 the image is thresholded to 
define the boundary lines (which might represent grain boundaries, cell membranes, roads 
on a map or satellite image, etc.) and points (particles, organelles, structures, etc.). The 
image of the thresholded features is applied as a mask to the Euclidean distance map of the 
interior so that all pixels in the features have the distance values. Measuring the brightness 
of the features gives the distance of each feature from the boundary. This is much faster and 
more accurate than the method shown above in Figure 8.25, which is based on dilation and 
marker selection.

EDM values can also be combined with the skeleton of features or of the background, as 
illustrated below.

  

(a)              (b)               (c)

    

Figure 8.61 Measurement of touching particles:

  (a) original (SEM image of lipid particles);

  (b)  binary image produced by thresholding and 
watershed;

  (c)  estimated size and location (shown by red 
circles and green points) using the ultimate 
eroded points;

  (d)  comparison of size distributions measured by 
this procedure (top, in red) and the iterative 
gray scale erosion method shown for the same 
image in Figure 8.45 (bottom, in blue).

        (d)
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Skeletons

Erosion can be performed with conditional rules that remove edge pixels, except when doing 
so would cause a separation of one region into two. The rule for this is to examine the 
touching neighbors; if they form a continuous touching group, then the central pixel can be 
removed, otherwise it cannot (Pavlidis, 1980; Nevatia & Babu, 1980; Davidson, 1991; Lan et 
al., 1992; Ritter & Wilson, 1996; Udre & Vizireanu, 2007). The interpretation of this definition 
is dependent on whether four- or eight-connectedness is used. In either case, the selected 
patterns can be used in a fate table to conduct the erosion (Russ, 1984). The most common 
convention is that features, and hence skeletons, are eight-connected while background is 
four-connected, and that is the convention used in the following examples.

Skeletonization by erosion is an iterative procedure, and the number of iterations required is 
proportional to the largest dimension of any feature in the image. An alternative method for 
constructing the skeleton uses the Euclidean distance map. The ridge of values in the EDM 
contains those points that are equidistant from at least two points on the boundaries of the 
feature. This ridge constitutes the medial axis transform (MAT). As for the UEPs, the MAT is 
precisely defined for a continuous image but only approximately defined for an image com-
posed of finite pixels (Mott-Smith, 1970).

(a) (b) (c)

(a) (b) (c)

Figure 8.62 Measurement of distance from a boundary: (a) example image; (b) thresholded interior 
region; (c) thresholded features; (d) Euclidean distance map of the interior (color coded); (e) distance 
value assigned to features; (f) histogram of distances for features.
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In most cases, the MAT corresponds rather 
closely to the skeleton obtained by sequential 
erosion. Since it is less directionally sensitive 
than any erosion pattern, and because of the 
pixel limitations in representing a line, it may 
be shifted slightly in some cases. The uses of 
the MAT are the same as the skeleton, and 
in many cases the MAT procedure is used 
because it is more isotropic and faster, but the 
result is still usually called a skeleton.

Figure 8.63 shows several features with their 
(eight-connected) skeletons. The skeleton is a 
powerful shape factor for feature recognition, 
containing both topological and metric infor-
mation. The topological values include the 
number of end points, the number of nodes 
where branches meet, and the number of 

internal holes in the feature 
(loops in the skeleton). The 
metric values are the mean 
length of branches (both 
those internal to the fea-
ture and those having a free 
end) and the angles of the 
branches. These parameters 
correspond closely to what 
human observers see as the 
significant characteristics of 
features. Figure 8.64 shows 
the nomenclature used.

The numbers of each type of feature in a two-dimensional image are related by Euler’s 
equation:

 # Loops = # Branches – # Ends – # Nodes + 1 (8.2)

There are a few specific cases that appear to violate this basic rule of topology, requiring 
careful interpretation of the digitized skeleton. Figure 8.65 shows two of them. The ring 
skeletonizes to a single circular branch that has one loop, a single branch, and no apparent 
node. However, the rules of topology require that there be a “virtual” node someplace on the 
ring where the two ends of the linear branch are joined. 
Likewise, the symmetrical circle skeletonizes to a single 
point, which, having fewer than two neighbors, would be 
classified as an end. In reality, this point represents a short 
branch with two ends. Special rules can correctly deal with 
these cases.

Locating the nodes and end points in a skeleton is just a mat-
ter of counting neighbors. Points along the eight-connected 
skeleton branches have exactly two neighbors. End points 
have a single neighbor, while nodes have more than two 

Figure 8.63 A binary image of the light gray den-
drites from Figure 8.51, with their skeletons 
superimposed.

Figure 8.65 Skeletons for a ring 
and a circle, as discussed in 
the text.

 

Figure 8.64 The skeleton of a 
feature with five end points 
(magenta), five nodes or 
branch points (yellow), five 
external branches (green), 
five internal branches (red), 
and one loop. The skeleton has 
been dilated and color coded 
for visibility.
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(either three or four). The topology of features is an instantly recognizable shape descriptor 
that can be determined quickly from the skeleton. For example, in Figure 8.66 the number 
of points in each star is something that humans identify easily as a defining shape parameter. 
Counting the number of skeleton pixels that have just one neighbor allows labeling them with 
this topological property. This method also works (as shown in the figure) when the features 
are less easily recognized visually. Similarly, an easy distinction between the letters A, B, 
and C is the number of loops (1, 2 and 0, respectively). As topological properties, these do 
not depend on size, position, or distortion of the letters (for example by the use of different 
fonts).

Depending on how the skeleton is constructed (or the EDM from which the MAT may be 
derived), it may show some directional anisotropy. Figure 8.67 shows the skeleton for an 
image of a gear. The number of end points (49) in the skeleton immediately provides a count 

(a)                                                                  (b)

Figure 8.66 Labeling star-shaped and branched features according to the number of end points in the 
skeleton: (a) a simple case; (b) more complex shapes.

(a)                                                            (b)

Figure 8.67 Skeleton of a gear: (a) skeleton generated by Reindeer Graphics Fovea Pro software super-
imposed on the original gear image; (b) skeleton for the same image generated by ImageJ software.
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for the number of teeth in the gear. The skeleton shown in Figure 8.67a is constructed from 
a high-precision EDM and has spokes that are correctly radial (within the limits of square 
pixels) from a circular core. The skeleton in Figure 8.67b is constructed with a widely used 
freeware program that uses successive erosions and integer arithmetic to form the skeleton 
and results in lines that show strong directional bias. Examination of such a skeleton is often 
a good test of the underlying implementation used in image processing software.

Segment lengths are important measures of feature size, as shown in Chapter 10. These can 
also be determined by counting, keeping track of the number of pixel pairs that are diago-
nally or orthogonally connected, or by fitting smoothed curves through the points to measure 
the length, which gives more accurate results. The skeleton length is slightly shorter than the 
length of the feature arm it represents, because the skeleton end pixel is located at the center 
of the inscribed circle at the terminus of the arm. Adding the EDM value (which is the radius 
of that circle) for the corresponding pixel corrects for this.

Counting the number of nodes, ends, loops, and branches defines the topology of features. 
These topological events simplify the original image and assist in characterizing structure, as 
illustrated in Figure 8.68 for a fingerprint image. The minutiae in the fingerprint are used 
for matching and identification and depend on locating breaks, loops, and branches in the 
pattern. The skeleton identifies these and enables measurement of the segment lengths and 
orientations (from which the core of the print can be located).

Skeletons are very useful for dealing with images of crossed fibers. Figure 8.69 shows a 
diagram in which several lines representing fibers cross each other. Because these lines are 
drawn in different colors, counting them is not difficult, but in a typical real case with many 
indistinguishable fibers counting can present a challenge. In a few situations it is necessary to 
follow individual fibers in such a tangle. This can be done (generally using specialized soft-
ware and some prior knowledge about the nature of the fibers) by skeletonizing the image. 
The regions around each node where the skeletons cross are then examined and the branches 
identified that represent the continuation of a single fiber (Talbot et al., 2000; Beil et al., 2005; 
Ochoa et al., 2010). The criteria are typically that the local direction change be small, and 

  
(a)                       (b)

Figure 8.68 Skeletonizing a fingerprint image: (a) classification of minutiae; (b) Skeleton of the image, 
with ends and nodes marked.
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perhaps that the width, color, or density of 
the fiber be consistent. When fibers cross at a 
shallow angle, the skeleton often shows two 
nodes with a segment that belongs to both 
fibers (several instances are present in the fig-
ure). Images of straight fibers are much easier 
to disentangle than curved ones, as shown in 
Chapter 10.

A much simpler result is possible if the 
required information is just the total number 
and average length of the fibers. Regardless 
of the number of nodes or fiber crossings, the 
number of fibers is half the number of end 
points, which can be counted directly (with a 
small error introduced by the probability that 
an end of one fiber may lie on a second fiber). 
Measuring the total length of the skeleton 
and dividing by the number gives the average 
value. In Figure 8.69 there are 12 ends, hence 
6 fibers, and a total of 40.33 inches of skeleton 
length, for an average length of 6.72 inches.

For images of fibers that extend beyond the 
image area, half the number of visible end 
points is still the correct value to determine 
the number of fibers per unit area, because 
the other end point for each fiber would be 
counted in some other field of view, produc-
ing a result of one-half fiber in each field 
of view. Figure  8.70 shows an example. 
Nonwoven or felted fabrics are characterized 
by the density of fibers. The figure shows cel-
lulose fibers used in papermaking, with the 
skeletons superimposed. There are 193 ends 
(96.5 fibers) with a total length of 68.29 mm 
in an area of 6 square mm.

In other situations, such as the diagram in Figure 8.71, it may be useful to separate the 
branches of the skeleton for individual measurements of parameters such as length or orien-
tation angle. Removing the node pixels is not sufficient to accomplish this, because for some 
configurations of pixels at a node the remaining branches may still be connected. This arises 
from the nature of 8-connected logic. Figure 8.72 shows an enlargement of a portion of a 
skeleton network from Figure 8.71 in which the node points for topological counting and 
near-node points are color coded for illustration. These adjacent points must also be removed 
to separate the branches. This technique is particularly appropriate for branched structures 
such as the roots of plants, provided that they can be spread out to produce a two-dimen-
sional image.

Just as the skeleton of features may be determined in an image, it is also possible to skeleton-
ize the background. This is often called the “skiz” of the features. Figure 8.73 shows an exam-
ple. Consisting of points equidistant from feature boundaries, it effectively divides the image 

Figure 8.69 Diagram of crossing fibers, as dis-
cussed in the text, with superimposed skeleton 
lines.

Figure 8.70 Image of cellulose fibers with the 
superimposed skeleton.
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into regions of influence around each feature (Serra, 1982). 
It may be desirable to eliminate from the skiz those lines 
that are equidistant from two portions of the boundary of 
the same feature. This elimination is easily accomplished, 
since branches have an end; other lines in the skiz are con-
tinuous and have no ends except at the image boundaries. 
Pruning branches from a skeleton (or skiz) requires starting 
at each end point (points with a single neighbor) and elimi-
nating touching pixels until a node (a point with more than 
two neighbors) is reached. Pruning is also used to clean up 
tessellations, as shown below.

Boundary lines and thickening

A major use for skeletonization is to thin down boundaries 
that may appear broad or of variable thickness in images. 
This phenomenon is particularly common in microscope 
images of metals whose grain boundaries are revealed by 
chemical etching, or cells whose bounding walls or mem-
branes are stained. In order to produce continuous dark 
lines, the preparation method and imaging broadens them. 

A similar situation arises when digitizing and processing images of maps, in which the printed 
boundaries, roads, etc. may be widened for visibility. In order to measure the actual size of 

  

Figure 8.71 Separating the 
branches of the skeleton 
of a network for measure-
ment of their lengths.

Figure 8.72 Detail of a skeleton 
showing nodes. Removing the 
red node points does not dis-
connect all of the branches; for 
some pixel configurations, the 
green “near-node” points must 
also be deleted to assure that no 
8-connections remain between 
different branches.

  

Figure 8.73 The skiz of the 
image shown in Figure 
8.63:

  (a)  complete skeleton of the 
background;

  (b) pruned skeleton.

         (a)              (b)
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the cells, the adjacency of different grain types, or the area encompassed by boundary lines, 
it is preferable to thin the lines by skeletonization.

Figure 8.74 shows an example. The original polished and etched metal sample has dark 
and wide grain boundaries, as well as dark patches corresponding to carbides and pearlite. 
Thresholding the image produces broad lines, which can be skeletonized to reduce them to 
single-pixel width. Since this is properly a continuous tessellation, it is cleaned up by pruning 
to remove all branches with end points.

The resulting lines delineate the grain boundaries, but because they are eight-connected, 
they do not separate the grains for individual measurement. Converting the lines to four-

  
(a)              (b)               (c)

  
(d)              (e)               (f)

   

Figure 8.74 Skeletonization of grain boundaries:

  (a) metallographic image of etched 1040 steel;

  (b)  thresholded image showing boundaries and dark 
patches containing iron carbide;

  (c) skeletonized result from image (b);

  (d) pruned result from image (c);

  (e) enlarged to show 8-connected line;

  (f) converted to 4-connected line;

  (g)  grains separated by thickened lines and identified by 
assigned colors.

        (g)
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connected, called thickening, can be accomplished with a dilation that adds pixels only for 
a few neighbor patterns corresponding to eight-connected corners (or the skeleton can be 
produced using four-connected rules to begin with). The resulting lines separate the grains, 
which can be identified and measured.

Figure 8.75 shows how this approach can be used to isolate the basic structure in an image 
for measurement. The original image is a light micrograph of cells in plant tissue. It can be 
used to measure the variation in cell size with the distance from the two stomata (open-
ings). This process is greatly simplified by reducing the cell walls to single lines. Leveling the 
background brightness of the original image and then thresholding leaves boundary lines of 
variable width. Skeletonizing them produces a network of single-pixel-wide lines that delin-
eate the basic cell arrangement.

Unfortunately, the grain boundary or cell tessellation produced by simple thresholding and 
skeletonization may be incomplete in some cases. Some of the boundaries may fail to stain 
because of their angle with respect to the plane of section, or for metals may not etch because 
the crystallographic mismatch across the boundary is small or the concentration of defects or 
impurities is low. The result is a tessellation with some missing lines, which would bias subse-
quent analysis. Figure 8.76 shows one approach to dealing with this situation. Skeletonizing 
the incomplete network is used to identify the end points (points with a single neighbor). 
It is reasoned that these points should occur in pairs, so each is dilated by some arbitrarily 
selected distance which, it is hoped, can span half of the gap in the network.

   
(a)                    (b)

   

Figure 8.75 Light microscope image of cells 
in plant tissue:

  (a) original;

  (b) thresholded;

  (c)  skeleton superimposed on original 
(original image courtesy of Data 
Translation, Inc.)

            (c)
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The resulting dilated circles are ORed with the original network and the result is again skele-
tonized. Wherever the dilation has caused the circles to touch, the result is a line segment that 
joins the corresponding end points. This method is imperfect, however. Some of the points 
may be too far apart for the circles to touch, while in other places, the circles may obscure 
details by touching several existing lines, oversimplifying the resulting network. It is not easy 
to select an appropriate dilation radius, since the gaps are not all the same size (and not all of 
the cells are, either). In addition, unmatched ends, or points due to dirt or particulates within 
the cells, can cause difficulties.

Other methods are also available. A computationally intensive approach locates all of the end 
points and uses a relaxation method to pair them up, so that line direction is maintained, 
lines are not allowed to cross, and closer points are matched first. This method suffers some 
of the same problems as dilation if unmatched end points or noise are present, but it deals 
well with gaps of different sizes. A third approach, the use of watershed segmentation based 
on the Euclidean distance map (EDM), is perhaps the most efficient and reasonably accurate 
method. As shown in Figure 8.77, it correctly draws in most of the missing lines, but erro-
neously segments grains or cells with concave shapes (which are fortunately rare in real cell 
or grain structures). In considering each of these methods, it must be remembered that the 
original image contains ambiguities.

Combining skeleton and EDM

The skeleton and the EDM are both important tools for measuring images as well as process-
ing them, and by combining the skeleton with the EDM in various ways it is possible to effi-
ciently extract a variety of numeric values to quantify image data. A few examples illustrate 
the variety of techniques available.

The Euclidean distance map introduced above provides values that measure the distance of 
every pixel from the background. For features of irregular shape or width, the pixels along 
the center line correspond to the centers of inscribed circles, and the EDM values along the 
midline can be used to measure the width and its variation. The skeleton provides a way to 
sample these pixels, for example by using the skeleton as a mask and then examining the 

  
(a)              (b)               (c)

Figure 8.76 Dilation method for completing grain boundary tessellation: (a) incomplete network; (b) 
dilation of end points by an arbitrary radius, shown as circles overlaid on the original; (c) re-skele-
tonization of the network, showing some typical errors such as removal of small grains (1), large gaps 
still not joined (2), and dangling single ends (3).
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histogram of the centerline pixels, as shown in Figure 8.78. This facilitates the measurement 
of the width of irregular features, by determining the mean, minimum, maximum, and stan-
dard deviation from the histogram.

The skeleton provides a basic tool for measuring the length of such irregular features, but in 
general is too short. As noted above, the length of the skeleton can be corrected to get the 
length of the feature by adding the value of the EDM for the pixel at the end of the skeleton. 
The EDM values for the pixels at the end points of the skeleton give the radii of the inscribed 
circles at the ends. Adding these values to the skeleton length corrects for the shortness of the 
skeleton or MAT and provides an accurate measure of the length of the irregular feature.

The skeleton of the background (the skiz) can be combined with the EDM of the background 
to determine the minimum separation distance between features. Minimum EDM values along 
the pruned skiz correspond to the centers of the smallest circles that touch two features, and 
twice those values correspond to the separation distances.

The example in Figure 8.79 shows a diagram representing a neuron with branching processes, 
or cracks extending from a gunshot hole in a window. Thresholding the central cell body or 

  
(a)              (b)               (c)

Figure 8.77 Watershed segmentation applied to the same image as Figure 8.76: (a) the image is inverted 
to process the grains rather than the boundaries; (b) watershed lines are drawn in, connecting most 
of the broken boundaries; (c) in the re-inverted result a few typical errors appear, such as gaps not 
joined (1) and segmentation of irregularly shaped grains (2).

  

Figure 8.78 An irregular 
feature:

  (a)  the skeleton super-
imposed on the EDM 
shown in pseudo-
color, with a few 
placements of the 
circles defined by the 
EDM value along the 
midline;

  (b)  the histogram of the 
EDM values selected 
by the skeleton.

      (a)                (b)
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(a)              (b)               (c)

     

(d)              (e)               (f)

  

        (g)              (h)

Figure 8.79 Relating distance to length: (a) diagram of a neural cell; (b) skeleton; (c) terminal end 
points (dilated for visibility); (d) separated branches after removal of nodes in image (b); (e) terminal 
branches selected by markers in image (c) and dilated for visibility; (f) EDM of pixels outside the cell 
body; (g) skeleton segments of the terminal branches, color coded according to distance from the cell 
body (values obtained from the EDM as described in the text); (h) plot of distance vs. length.
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hole, inverting the image, and generating the EDM produces a measurement of the distance 
of points from the cell body. The skeleton of the processes or cracks can be separated into 
its component branches by removing the nodes, and the resulting segments that are terminal 
branches can be selected by using the original skeleton end points as markers. When these are 
applied as a mask to the EDM, the numeric values of the pixels in the branches correspond to 
the distance from the cell body or hole. It may be desirable to use either the minimum or the 
mean value as an effective distance measurement (the figure uses the minimum value as the 
closest distance to the center). Plotting the skeleton length for each branch against the EDM 
values shows that the lengths are correlated with distance.

Measuring the distance of each feature in an image from the nearest point on the skiz 
(using the method shown above in Figure 8.62) provides a measure of clustering in images. 
Clustering is described in Chapter 10. Many other combinations of the EDM and skeleton 
can be devised to solve measurement problems in images that combine distance and topo-
logical information.
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9
Global Image Measurements

The distinction between image processing, which has occupied most of the preceding chap-
ters, and image analysis lies in the extraction of information from the image. As mentioned 
previously, image processing, like word processing (or food processing) is the science of 

rearrangement. Pixel values may be altered according to neighboring pixel brightnesses, or 
shifted to another place in the array by image warping, but the result is still an array of pixels. 
So in word processing it is possible to cut and paste paragraphs, perform spell-checking, or alter 
type styles without reducing the volume of text. And food processing is also an effort at rear-
rangement of ingredients to produce a more palatable mixture, not to convert it to a list of those 
ingredients. Image analysis, by contrast, attempts to find those descriptive parameters, usually 
numeric, that succinctly represent the information of importance in the image.

The processing steps considered in the preceding chapters are in many cases essential to 
carrying out this task. Defining the objects or structures to be measured frequently requires 
image processing to correct acquisition defects, enhance the visibility of particular structures, 
threshold them from the background, and perform further steps to separate touching objects 
or select those to be measured. In addition, several of the procedures shown also present 
opportunities to use the processing methods themselves to obtain numeric information.

Before the measurements can be made that extract the important information from an image, 
it is necessary to decide what information is important. As Chapter 2 points out, people tend 
to see things they are looking for. One image, whether taken by a satellite or an electron 
microscope, may present very different kinds of information to different people depending on 
what they are trying to learn. In the one case it might be the presence of a specific agricultural 
crop or a cancerous cell, and in another the same image might reveal the number of buildings 
or the areas of specific organelles. The tools to extract either type of information exist and are 
shown in this and subsequent chapters, but deciding which procedures to use is still a human 
function. It follows deciding what question to ask.

Global measurements and stereology

There are two major classes of image measurements: ones performed on the entire image field 
(sometimes called the “scene”) and ones performed on each of the separate features present. 
The feature-specific measurements are covered in the following chapters. The first group of 
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measurements are most typically involved in the characterization of three-dimensional struc-
tures viewed as section planes, or sometimes as projections; they are also applicable to satellite 
images and other views of essentially flat two-dimensional subjects. The most widespread use 
of the analysis methods shown in this chapter involves images from a microscope, although 
the methods are completely general and some of the relationships have been discovered and 
are routinely applied by workers in earth sciences, medical imaging, and astronomy.

The science of stereology relates the measurements that can be performed on two-dimensional 
images to the three-dimensional structures that are represented and sampled by those images. 
It is primarily a geometrical and statistical science, whose most widely used rules and calcu-
lations have a deceptive simplicity. Guides to modern stereological methods can be found in 
Baddeley & Vedel Jensen (2005), Russ & Dehoff (2001), Howard & Reed (1998), Mouton (2002), 
Kurzydlowski & Ralph (1995), Mandarim-de-Lacerda (2003), Glaser et al. (2007), while classi-
cal methods are described in Dehoff & Rhines (1968), Underwood (1970), Weibel (1979), Russ 
(1986), Hilliard & Lawson (2003), Schneider & Weil (2008).

The key to understanding stereological measurements is the relationship between a three-
dimensional structure and a two-dimensional section through it, as used in many types of 
microscopy for examining materials and biological specimens. As shown in Figure 9.1, a 
section plane that intersects a volume shows an area, while an intersection with a surface 
generates a line, and an intersection with a linear structure presents a point. Measuring and 
counting these “events” provides the raw data that are interpreted to provide estimates of the 
three-dimensional structures themselves.

The simplest and perhaps most frequently used stereological procedure is the measurement of 
the volume fraction that some structure occupies in a solid. This can be the volume of nuclei 
in cells, a particular phase in a metal, porosity in ceramic, mineral in an ore, etc. Stereologists 
often use the word “phase” to refer to the structure in which they are interested, even if it is 
not a phase in the chemical or thermodynamic sense. If a structure or phase can be identified 
in an image, and if that image is representative of the whole, then the area fraction which 
the structure occupies in the image is a measure of the volume fraction that it occupies in the 
solid. This relationship is, in fact, one of the oldest known relationships in stereology, used in 
mineral analysis more than 150 years ago.

Of course, this requires some explanation and clarification of the assumptions. The image must 
be representative in the sense that every part of the solid has an equal chance of being exam-
ined, so the sections must be uniformly and randomly placed in the solid. Trying to measure 
the volume fraction of bone in the human body requires that head, torso, arms, and legs all 

have an equal chance of being viewed; that is 
the “uniform” part of the assumption. Random 
means that nothing is done to bias the mea-
surements by including or excluding particu-
lar areas in the images. For example, choosing 
to measure only those images in which at least 
some bone is visible would obviously bias the 
measurements. More subtle, in many cases, is 
the tendency to select areas for imaging that 
have some aesthetic quality (collecting pretty 
pictures). Almost certainly this will tend to 
bias the results. A proper random stereologi-
cal sampling procedure does not allow the 
human to select or shift the view.

Figure 9.1 A section that passes through three-
dimensional structures produces intersections. 
The volume (red), surface (blue), and linear 
structure (green) are intersected to produce an 
area, line, and point, respectively.
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Many published papers in all fields of science, particularly ones that use microscopy, include 
images with the caption “representative microstructure” or “typical structure,” and in no case 
is this likely to be true. Either the particular image selected has been chosen because it shows 
most clearly some feature of the structure that the author believes is important, or it displays 
the best qualities of specimen preparation and image contrast, or some other characteristic that 
makes it (almost by definition) non-typical. In most real structures there is no such thing as one 
typical field of view in a true statistical sense. That is why it is important to collect many images 
from multiple fields of view, spread throughout the specimen in a randomized and unbiased 
way. Data are collected from many fields and combined to represent the entire structure.

Assuming that one image could be a uniform, random sample of the structure, then the 
“expected value” of the area fraction of the structure is equal to its volume fraction. Of course, 
in any given image that may not be the result. In some images, the phase or structure of inter-
est may not even be present, while in others it may occupy the entire field of view. In general 
it is necessary to select an appropriate magnification so that the structures are visible and 
measurable, to examine multiple fields of view, and to average the measurements. The average 
then approaches the true value as more measurements are included.

One way to measure the area fraction of a structure is, of course, to use the image histogram. 
If the phase has a unique gray scale or color value, then the area of the peak in the histogram 
provides a direct measure of the number of pixels covered, and hence the total area, regardless 
of whether it occupies one large or many small regions in the image. However, as shown in 
previous chapters, it is common to require image processing before thresholding can selectively 
delineate a structure, and to require editing of the binary image after thresholding. These steps 
also affect the area measurement, so in most cases the determination of area fraction must be 
made from the final binary image. All that is required is to count the black and white pixels.

While this is a simple procedure, it is difficult to assess the accuracy of the measurement. 
Pixels along the boundaries of the features or regions present a challenge because threshold-
ing and subsequent morphological processing may include or exclude them from the total. 
An image consisting of a single large, compact region has many fewer edge pixels (and hence 
less potential measurement error) than an image in which the same total area is distributed as 
many small or irregular features (Figure 9.2).

There is a preferred way to determine area fraction (and hence volume fraction) that is very effi-
cient and does allow an estimation of the measurement precision. Traditionally, this method has 
been performed manually, but it is also easy to accomplish using a computer. A grid of points is 
superimposed on the image, and the fraction of the points that fall on the structure of interest is 
counted. The expected value of this point fraction is also the volume fraction. Often, the number 
of points in the grid is very small so that manual counting can be done at a glance. The grid 
may be on an eyepiece reticule in the microscope, or overlaid on a video screen or photograph, 
or generated within the computer. The points should be far enough apart that they provide 
independent measures of the structure (in other words, at the image magnification being used, 
two points should rarely fall into the same feature). If the structure is random, then any grid of 
points can be used and a regular square grid is convenient. If the structure has some regularity 
or periodicity, then the grid itself should be randomized to prevent bias.

When a grid is superimposed on the original gray scale or color image (with whatever enhance-
ment has been provided by processing), the human viewer can use independent knowledge 
and judgment to decide whether each point is within the region of interest. People are very 
good at this recognition. But they are not very good at counting, so it may still be useful to 
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have the human mark the points and the 
computer perform the counting opera-
tion, as shown in Figure 9.3.

The points become a probe into the 
three-dimensional microstructure, and 
the number of points that “hit” the phase 
of interest allows an estimate of the 
measurement precision, since for inde-
pendent events the standard deviation is 
just the square root of the count. This 
permits making a quick estimate of the 
number of images (multiple fields of view 
on multiple sections) that are needed to 
achieve the desired final measurement 
precision. For example, if a grid of 35 
points is used (a 7 × 5 array, as shown in 
the figure), and about 11 points, on aver-
age, lie on the phase of interest, that cor-
responds to a volume fraction of about 
30%. To determine the actual value with 

a relative precision of, e.g., 5% (in other words 30 ± 1.5% volume fraction) it is only neces-
sary to apply the grid to multiple fields of view until a total of 400 hits has been tallied (the 
square root of 400 is 20, or 5%). This should require about 36 fields of view (400/11). This is 
the proper way to design the experimental procedure.

A grid of points can also be efficiently applied to a thresholded and processed binary image using 
Boolean logic, as illustrated in Chapter 8. If the grid is combined with the binary image using a 
Boolean AND, and the surviving points are counted, the result is just those points that fell onto 
the phase of interest, as shown in Figure 9.4. The usual notation for these relationships is

 VV = AA = PP (9.1)

  
(a)               (b)

Figure 9.2 Two images with the same area fraction (27%) of black pixels: (a) one large compact region; 
(b) many small irregular features. Measurement precision depends on the periphery of the black-
white boundary. The number of edge pixels (black pixels adjacent to the white background) is 3.4% 
of the total black area in (a) and 36.1% of the total black area in (b). It is also interesting to note 
that most human observers do not estimate area fractions very accurately, nor judge that these two 
images have the same area of black pixels.

Figure 9.3 Computer counting of marks: A human 
places color marks near the grid points that fall on 
each phase of interest, and the computer counts 
them. For the white phase (green dots) the estimated 
volume fraction is 15/35 = 42.8%.
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meaning that the volume of the phase of 
interest per unit volume of material, VV, 
equals (or more precisely is measured by) 
the area fraction AA or the point fraction 
PP.

Volume fraction is a dimensionless ratio, 
so the magnification of the image need not 
be known. However, it is also possible to 
measure the volume of a specific structure 
by cutting a series of sections through it 
and measuring the area in each section 
(Gundersen, 1986). As shown in Figure 9.5, 
the volume of the sampled space is defined 
by the size and spacing of the sections, 
and the number of “hits” made by the grid 
points provides an absolute measure of the 
feature volume. Each grid point samples the 
structure and represents a volume in space 
equal to the area of a grid square times the 
section spacing. In this case, of course, the 
magnification must be calibrated.

Figure 9.4 Binary image of the white phase in the 
metal structure from Figure 9.3, with a super-
imposed grid (points dilated and colored for vis-
ibility). A Boolean AND of the grid points and the 
binary image leaves just the points that lie on the 
phase (shown in orange), which the computer then 
counts to determine Pp = 33 /80 = 41.3%. The den-
sity of points illustrated in this figure is somewhat 
too high for optimum precision estimation, as 
there are cases in which multiple points fall on the 
same feature. That affects the precision estimate 
but not the accuracy of the measurement.

h

(a)  

d

17

20

19

21

17

(b)  

Figure 9.5 Cavalieri’s method 
for measuring the volume 
of an object. The grids 
on each section plane 
divide the object into cells. 
Counting the grid points 
that fall on the structure 
of interest provides a mea-
sure of the number of cells 
within the structure, and 
hence a measure of the vol-
ume. In the example, if the 
plane spacing (h) is 5 µm 
and the grid spacing (d) is 
2 µm, then each cell has a 
volume of 5 × 2 × 2 = 20 
µm3, and the total number 
of hits (17 + 20 + 19 + 21 + 
17 = 94) estimates the total 
volume as 1880 µm3, with 
an estimated precision 
from the 94 hits of ± 194 
µm3. Measuring the area 
of each intersection and 
integrating the volume 
with Simpson’s rule gives 
an estimate of 1814 µm3.
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In many cases, as shown in Figure 9.6, it is necessary to measure two volumes, that of the 
structure of interest and of an enclosing structure. In the example, a sectioned rat lung, the 
area of lung tissue in each section is added including internal voids, and the net area is also 
summed. The areas can be measured by pixel counting or with a suitable grid. The void area 
within the lung is then calculated as

 Volum e
Filled Area NetArea

Filled Area
=

∑∑
∑

–
 (9.2)

Surface area

Another structural parameter that is measured stereologically is surface area. Surfaces are 
generally the boundary between two volumes, such as the surface area of the nucleus, the 

  
(a)                   (b)

  

(c)                (d)

Figure 9.6 One section of rat lung tissue: (a) original image; (b) contrast leveled; (c) thresholded; (d) 
internal gaps filled. The areas of images (c) and (d) are used to determine the void volume within the 
lung as described in the text.
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total area of cell wall in plant tissue, the total grain boundary area in a metal, or the surface of 
porosity in a sandstone. In some of these examples the surface separates two different phases 
or structures, while in others it separates different regions (e.g., cells or grains) that are the 
same in structure and composition. Surfaces are usually very important, because they are the 
interfaces where chemistry and diffusion take place, and control many properties such as 
strength, fracture, light scattering, thermal and electrical conductivity, etc.

In a two-dimensional section image through a three-dimensional structure, boundaries and 
surfaces are seen as lines. The total length of these lines is proportional to the amount of 
surface area present in the three-dimensional solid. The surface does not in general intersect 
the section plane perpendicularly. If the surfaces are isotropic (have an equal probability of 
being oriented in any direction), or the section planes are randomly oriented with respect to 
the surfaces, then the relationship between total surface area per unit volume of sample and 
the total length of line per unit area of image is

 S BV A= 4
π

 (9.3)

where SV is the notation for the surface area per unit volume, and BA denotes the total length 
of boundary per unit area of image. Notice that both terms have dimensions of 1/length, 
and that it is consequently important to know the image magnification. Figure 9.7 shows an 
example. The boundary lines (dilated and colored for visibility) have a total length of 9886 
µm, and the image area is 15,270 µm2. This gives a calculated surface area per unit volume of 
0.0824 µm2/µm3, or 82.4 mm2/mm3.

Once again, it is difficult to specify the precision of such a measurement. Measuring the 
length of a boundary line in a digitized image is one of the most error-prone tasks in image 
measurement because of the pixellation of the image. Also, in some structures it is observed 
that as magnification is increased, more irregularities in the boundary become visible so that 
the measured boundary length increases. The preferred method for determining surface area 
is to place a grid of lines on the image and to count the number of intersection points which 
they make with the line representing the surface of interest. The relationship between the 

surface area per unit volume (SV, square microm-
eters per cubic micrometer) and the number of 
intersections (PL, number of intersection points per 
micrometer of grid line length) is just

 SV = 2 · PL (9.4)

where the factor 2 compensates for the various 
angles at which the grid lines can intersect the 
boundary. Because this is now a counting experi-
ment, the measurement precision can be estimated 
from the square root of the number of intersection 
points, provided that the lines (which are the probes 
into the microstructure in this measurement) are 
far enough apart that the intersections are indepen-
dent events.

Generating a grid of lines on the same image as in 
Figure 9.7 and counting intersections (Figure 9.8) 
produces a similar measurement result as the 
boundary line technique. The total length of the 

Figure 9.7 The boundary lines around the 
white phase in the same image as Figures 
9.3 and 9.4 can be isolated using the 
techniques from Chapter 8, and mea-
sured to determine the surface area, 
as described in the text. (The lines are 
dilated and colored here for visibility.)
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grid lines is 4646 µm. Performing a Boolean AND and counting the intersections gives 197 
hits (some are a single pixel and some more than one, depending on the angle between the 
boundary and the line, but the count is of intersection events, not pixels). Using Equation 9.4, 
this corresponds to a surface area per unit volume of 0.0848 µm2/µm3. Based on the number 
of counts, the estimated relative precision is ±7.2% (0.0848 ± 0.0061 µm2/µm3 or 84.8 ± 6.1 
mm2/mm3).

Placing grid lines on images and counting intersections can be performed in all of the same 
ways (manually, manual marking with computer counting, or automatically using Boolean 
logic) as shown above for point counting. The problem with this method as described is 
that it relies on the assumption that the surfaces being measured are isotropic or the section 
planes and grid lines are randomly oriented with respect to the surfaces. In real structures 
this criterion is rarely met. Consequently, if the structure is not isotropic, then it is necessary 
to construct a grid of lines that does sample the structure isotropically (in addition to the 
requirements of uniform and random sampling noted above). Many of the developments in 
modern stereology are aimed at finding practical ways to meet this Isotropic, Uniform, Random 
(“IUR”) requirement. To visualize the meaning of isotropic directions, consider a hemisphere, 

as shown in Figure 9.9. Each direction in space 
is represented by a point on the sphere. Points 
should be distributed evenly across the spherical 
surface.

One way to randomize the orientation of the 
section planes with respect to the structure is 
to cut the material into many small pieces, use 
mechanical means to orient them randomly (for 
example, by rolling them on a surface or mixing 
them in a fluid), and then section them. This is 
not always practical and is generally wasteful of 
material.

The preferred approach to generating isotropic, 
uniform, and random lines to probe the surfaces 
in a three-dimensional structure is called “vertical 

  
(a)                    (b)

Figure 9.8 ANDing a grid of lines with the boundary lines from Figure 9.7 and counting the intersec-
tions also measures the surface area, as described in the text. Some of the intersections cover more 
than a single pixel, as shown in the enlarged detail (b), but are counted as a single event.

Figure 9.9 A hemisphere showing a direction 
in three-dimensional space represented by 
a point on the sphere.
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sectioning” (Baddeley et al., 1986). It requires selecting some direction in the structure that can 
always be identified. This might be the axis of the backbone in an animal, or the normal to a 
surface in a rolled metal sheet, or the direction of gravity for sedimentary layers of rock. Then all 
sections are cut parallel to this direction, but rotated uniformly and randomly about it, as shown 
in Figure 9.10. This is not the way most sections are cut when biological tissue is embedded 
and microtomed (like slices from a salami slicer, those sections are all perpendicular to the same 
direction). It is also possible to cut the vertical sections as a pie is normally cut, with radial slices, 
but these would oversample the center of the pie compared to the periphery.

The vertical axis direction is present on all sections, so these cut planes are directionally biased. If 
lines are drawn on these sections with uniform directions in the plane, as shown in Figure 9.11, 
they cluster near the north pole on the hemisphere. Directions near the equator are undersampled. 
That bias can be compensated by drawing lines that are sine weighted, as shown in Figure 9.12. 
Instead of drawing lines in uniform angle steps, they are drawn with uniform steps in the sine 
of the angle. This produces more directions around the equator and spreads out the directions 
near the north pole so that the points are uniformly distributed on the sphere. However, while 
the radial lines shown in Figure 9.12 provide isotropic directions, they do not produce uniform 
sampling (the center of each section is oversampled compared to the corners).

The most convenient way to draw sine-weighted lines that uniformly sample the area is to gener-
ate cycloids, as shown in Figure 9.13. The cycloid is the path followed by a point on the circum-
ference of a rolling circle. It is sine weighted and when drawn on vertical sections has exactly the 
correct set of orientations to provide isotropic sampling of directions in the three-dimensional 
solid from which the sections were cut. Counting the intersections made by the cycloid grid with 
the boundary lines in the image provides the PL value needed to calculate the surface area per 
unit volume. The length of each quarter arc of the cycloid line is just twice its height.

If the specimen is actually isotropic, the method of cutting vertical sections and counting 
intersections using a grid of cycloids produces the correct answer at the expense of doing a bit 
more work (mostly in sample preparation) than that needed if the isotropy is known before-
hand. But if the specimen has any anisotropy, the usual method of cutting parallel sections 
and drawing straight line grids produces an incorrect answer with an unknown amount of 
bias, while the vertical section method gives the proper answer.

  

(a)               (b)               (c)

Figure 9.10 Methods for cutting vertical sections: (a, b) correct—all sections are parallel to and rotated 
uniformly about a single selected axis; (c) incorrect—sections are all perpendicular to a common 
direction.
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There are many new and continually evolving techniques for using oriented sections and 
lines, including random lines as well as point-sampled lines, for stereological measurements 
(e.g. Cruz-Orive, 2005; Howard & Reed, 2005). These offer ways to measure volumes and 
surfaces of arbitrary (not necessarily convex) objects. The major difficulty with most of these 
methods lies in their practical implementation. When confocal microscopy is used to image 
samples with a transparent matrix, or when a series of parallel sections is imaged by com-
puted tomography (CT) or magnetic resonance imaging (MRI), it is possible to implement 
isotropic “virtual” probes such as cycloids or a spherical surface directly in the 3D data set 
(Gokhale et al., 2004; Kubinova & Janacek, 2001). A sphere, for example, is implemented as a 
set of aligned circles of appropriately varying size in each of the parallel planes. Much of the 
emphasis in modern stereology is directed toward strategies for obtaining unbiased sampling 
of arbitrary structures.

Figure 9.11 Drawing lines with uniform angles on each plane and the resultant clustering of direc-
tions near the north pole of the hemisphere of orientations.

Figure 9.12 Drawing lines with sine-weighted angles on each plane and the resultant uniform distri-
bution of orientations in three-dimensional space.
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ASTM Grain Size

More than 100 years ago, when naval gunnery was introducing larger and larger guns onto 
battleships, brass cartridge casings were used to hold the gunpowder and projectile, essen-
tially a large version of a modern rifle cartridge. It was observed that after firing it was some-
times difficult to extract the used brass cartridge from the gun chamber, because the material 
fractured when it was pulled from the rear rim. The metal flowed and thinned because of 
the high pressures generated when the charge was detonated, and clearly some difference in 
material structure was related to the tendency to tearing.

From that observation, a method for measuring a microstructural parameter known as the 
ASTM (American Society for Testing and Materials) “grain size” was developed, used for 
quality control of naval brass, and later applied to many other metals and nonmetals. In fact, 
there are several different standard techniques, which have been adjusted with appropriate 
constants so that they agree approximately with each other’s numeric values. But, in fact, the 
methods measure two entirely different characteristics of microstructure (neither of which is 
the “size” of the grains).

(a)

 

Figure 9.13 Cycloids:
  (a)  procedure for drawing an arc of the cycloid, 

which has a length of 4 units, a height of 2 
units, and covers a horizontal distance of π 
units;

  (b)  a grid of cycloid arcs superimposed on a 
vertical section image. The intersections 
(marked in color) of the cycloid lines with the 
membranes provide an unbiased measure of 
the total surface area per unit volume, SV = 2 
PL = 2 • 39 / 331.5 µm = 0.235 µm2/µm3.

           (b)
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The first method proposed counts the number of visible grains per square inch on a polished 
section at 100× magnification. The number of grains N is then related to the “grain size num-
ber” G by

 N = 2(G–1) (9.5)

where the value G is never reported with a precision better than 0.5. An equivalent version 
adjusted to metric dimensions is also in use.

A second method for determining the value G is based on drawing a grid of lines on the 
image. Because many metals are anisotropic due to the forming processes, the grains are 
elongated in one direction. In order to avoid directional bias in the measurement, a circular 
grid is used. The number of intersections made by the line with the grain boundaries per unit 
length of the line (NL where length is in millimeters) is used to calculate

 G = 6.6457 · log10 NL – 3.298 (9.6)

The constants are needed to convert the metric units and to make the results approxi-
mately agree with the grain count method. Again, the results are rounded to the nearest 0.5; 
Figure 9.14 shows an example.

There are also other methods that are part of the ASTM standard (E112), such as counting the 
number of triple points (places where three grains meet at a point) per unit area, and most of 
these methods may be implemented either by hand count or by computer. The presence of a 
duplex structure in which there are two populations of grains, one coarse and one fine, is not 
properly handled by any of the methods.

The intercept count method (Equation 9.6) actually measures the total surface area of grain 
boundary. The number of intersections per length of grid line, NL, is the same as the PL value 
in Equation 9.4 and is proportional to the surface area per unit volume. The importance of 
grain boundary area makes sense from a mechanical property standpoint since creep in mate-
rials occurs due to grain boundary sliding and grain rotation, and grain deformation occurs 
by motion of dislocations which start and end at these same boundaries. The grain count 

  
(a)                    (b)

Figure 9.14 Grain Size measurement: (a) light microscope image of a low carbon steel; (b) after back-
ground leveling and thresholding, and skeletonizing to delineate the grain boundaries, with a grid 
superimposed. Counting the number of grains inside the largest circle (445, counting each one that 
intersects the circle as 1/2) gives a grain size number G = 8.8. Counting the intercepts with the con-
centric circle grids (147 with a grid length of 2300 µm) gives a grain size number G = 9.1. Both values 
are reported as a grain size number of 9.
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(Equation 9.5) and triple-point count methods actually measure the total length per unit vol-
ume of the edges of the polygonal grains, which is a parameter related primarily to diffusion. 
Measurement of the length of structures is discussed below.

The fact that one of these structural properties can be even approximately tied to the other is 
due to the limited intended application of the method to metals that have been heat-treated 
so that they are fully recrystallized and in thermodynamic equilibrium. In this condition, the 
distribution of actual three-dimensional grain sizes approaches a constant, approximately 
log-normal state in which the structure may coarsen with time (large grains grow and small 
ones vanish) but the structure remains self-similar. Hence there is an approximately consistent 
relationship between the length of edges of the grains and the area of their surfaces.

The same relationship does not apply to metals without this heat treatment, and so the notion 
of a single numerical value that can characterize the microstructure is flawed, even for quality 
control purposes, and the measurement method used does matter. But 100 years of use have 
sanctified the technique, and many practitioners are not aware of what their procedure really 
measures in the microstructure, or that it is certainly not the grain size in a literal sense.

Measuring the “size” (usually the volume) of individual grains or cells in a three-dimensional 
solid is difficult. It has been done in a few cases by literally taking the material apart (e.g., 
by chemically dissolving a thin layer along the boundaries so the grains are separated) and 
measuring or weighing each one. Other researchers have used an exhaustive serial section-
ing technique that produces a complete three-dimensional volumetric image of the structure, 
from which measurements of size can be made. Both of these approaches are far too labori-
ous for routine practical use. Determining the mean volume of cells can be done using the 
Disector method presented below. This measures the number per unit volume, and the inverse 
of that quantity is the mean volume per feature. This method relies heavily on computer-based 
image processing to deal with the large number of images required.

It is also possible to measure the variance of the size distribution of the features using a point-
sampled intercept method applied to IUR section planes, described below. But if the actual 
size distribution of the three-dimensional features is needed, then the more intensive methods 
must be undertaken.

The “grain size” of metals is by no means the only case in which an apparently obvious mea-
sure of feature size turns out to be a measure of something that is very different. For example, 
drawing a grid of parallel lines on tissue sections of lung parenchyma and measuring the 
mean distance between intersections of the grid lines with air-tissue boundaries produces 
a mean chord length, which has been shown to correlate with the severity of emphysema 
(Rosenthal & Begum, 2005). The chord length may seem to represent some characteristic size 
of the airways within the lung, but actually, since it is the inverse of the PL value in Equation 
9.4, it is a measure of the total alveolar surface area (which is involved in gas exchange effi-
ciency). Similar attempts to use chord length distributions for the porosity in sandstone as a 
tool to describe the pore throat sizes that control the flow of oil, and are important for recov-
ery in drilling wells, are similarly flawed.

Multiple types of surfaces

In most kinds of real samples, there are several different phases or structures present, and 
consequently many different types of boundary surfaces. In a three-phase material, contain-
ing regions which for convenience can be labeled as types α, β, and γ, there are six possible 
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interfaces (α-α, α-β, α-γ, β-β, β-γ, and γ-γ) and 
the number goes up rapidly in more complex 
structures. Some of the possible interface types 
may be absent, meaning that those two phase 
regions never touch (e.g., nuclei in separate cells 
do not touch each other, it makes no sense to 
consider a contact surface between two pores, 
etc.). Measuring the amounts of each different 
type of interface can be very useful in character-
izing the overall three-dimensional structure.

Figure  9.15 shows the phase boundaries in 
a three-phase metal structure. Notice that no 
white dendritic region touches another one, for 
example. Figure 8.50 in Chapter 8 shows how 
Boolean logic with the dilated region outlines 
can be used to delineate each type of interface. 
Once the image of the boundaries has been iso-
lated, measuring the line lengths or counting 
intersections with a grid provides the measure-
ment of surface area per unit volume for each 
type of interface.

Figure  9.16 shows a simpler, idealized, two-phase microstructure. By thresholding each 
phase, using morphological operations such as a closing to eliminate boundaries between 
common regions, and Boolean logic to combine two derived images, each of the three dis-
tinct boundary types can be isolated (in the figure, they are shown in color for visualization 
purposes). Assuming that this is a vertical section, a cycloid grid such as the one shown can 
be used to estimate the surface area per unit volume, using Equation 9.4.

It is instructive to illustrate and compare the various measurement procedures described 
above for volume and surface area measurement, using the magnification calibration shown 
on the image in Figure 9.16. Counting pixels estimates the area fraction and hence the vol-
ume fraction of the gray phase at 17.3%. Placing a square grid of 90 points produces 14 hits, 

Figure 9.15 The three-phase aluminum-zinc 
alloy from Figure 9.3, with the region bound-
aries highlighted and color coded, as shown 
in Chapter 8, Figure 8.51.

  
(a)              (b)              (c)

Figure 9.16 Idealized drawing of a two-phase microstructure (a), the three different types of inter-
face boundaries present (b), and the result of counting the intersections of these boundaries with a 
cycloid grid (c). The measurements and calculated results are detailed in the text (original drawing 
courtesy of Robert Dehoff, Materials Science and Engineering Dept., University of Florida).
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for an volume fraction estimate using Equation 9.1 of 15.6 ± 4.2%. Measuring the length of 
the boundary lines for each type of interface and applying Equation 9.3 produces the results 
listed in Table 9.1. Counting intersections of the grid lines with each type of boundary and 
applying Equation 9.4 gives another estimate of surface area, also shown in the table. The 
image area is 5453.6 µm2 and the grid used has a total length of 614 µm.

The agreement between these different methods is satisfying, but only the counting methods 
allow a simple estimate of the measuring precision to be made, from which it is straightfor-
ward to determine the number of sections that should be examined to obtain results with the 
desired final precision. Note that it is possible to pack a considerable amount of surface area 
into a small volume.

Length

Length measurement is usually applied to structures that are elongated in one direction and 
relatively small in lateral width, such as neurons or blood vessels in tissue, fibers in compos-
ites, or dislocations in metals. However, it is also possible to measure the total length of edges, 
such as the edges of polyhedral grains in a metal (as mentioned above in connection with the 
ASTM grain size measurement), or any line formed by the intersection of surfaces.

When a linear structure intersects the sampling plane, the result is a point, as shown in 
Figure 9.17. The number of such intersection points is proportional to the total length of the 

line(s). If the linear structures in the three-
dimensional solid are isotropic, or the section 
planes are randomly oriented with respect to 
the structures, then the relationship between 
the total length of line per unit volume LV (with 
units of micrometers per cubic micrometer or 
length–2) and the total number of points per 
unit area PA (with units of number per square 
micrometer or length–2) is

       LV = 2 · PA (9.7)

where the constant 2 arises, as it did in the 
case of surface area measurements, from con-
sidering all of the angles at which the plane 
and line can intersect. In some cases a direct 
count of points can be made on a polished 
surface. For example, fibers in a composite are 
visible, and dislocations can be made so by 
chemical etching.

Table 9 .1.Comparison of Surface Area Measurements

Boundary Length (µm) SV = (4/π) • Length/Area Grid Counts SV = 2 PL

White-white 441.96 µm 103.2 mm2/mm3 28 101.8 ± 19.2 mm2/mm3

Gray-white 551.24 128.7 37 134.5 ± 22.1

Gray-gray 123.30 28.8  8 29.1 ± 10.3

Figure 9.17 Diagram of linear structures in a 
volume, intersected by a sampling plane to 
produce intersections that can be counted to 
measure the total length.
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In the example of Figure 9.14, the triple points where three grains meet represent the 
triple lines in space that are the edges of the grains. These are paths along which diffusion 
is most rapid. To isolate them for counting, the skeleton of the grain boundaries can be 
obtained, as shown in Chapter 8. The branch points or nodes in this tessellation can be 
counted, as shown in Figure 9.18, because they are points in the skeleton that have more 
than two neighbors. Counting them is another way (less commonly used) to calculate a 
“grain size” number.

For many other types of linear structures, the point of intersection with the plane is not so 
easy to see in the image of the plane unless some sample preparation is able to enlarge, 
stain, or otherwise decorate the point for visibility. For example, dislocations in silicon are 
etched to create pits large enough to image. The problem with this approach is that it is 
appropriate only when the points are spaced far enough apart to be individually enlarged 
without touching.

One convenient way to measure the length of a struc-
ture, independent of its complexity or connectedness, 
is to image a thick section (considerably thicker than 
the breadth of the linear portions of the structure). In 
this projected image, the length of the features is not 
shown directly because they may incline upwards or 
downwards through the section. Any line drawn on 
the image represents a surface through the section 
(Figure  9.19), with area equal to the product of its 
length and the section thickness. Counting the num-
ber of intersections made by the linear structure with 
the grid line on the image, and then calculating the 
total length using the relationship in Equation 9.7, 
provides a direct measurement of the total length per 
unit volume.

If the sampling is isotropic, any grid line can be used. 
If not, then if the sections have been taken with isotro-
pic or random section planes, a circle grid can be used 
since that samples all orientations in the plane. But the 

 

(a)                    (b)

Figure 9.18 (a) The image from Figure 9.14, thresholded and skeletonized with the 1732 node points in 
the skeleton color coded; (b) shows an enlarged portion with the points dilated for visibility.

A line on the projected
image represents a plane

through the section

Figure 9.19 Schematic diagram of a 
thick section containing linear struc-
tures. Drawing a line on the projected 
image and counting intersections 
of the line with the structures corre-
sponds to counting the intersections 
of the structures with a plane through 
the section.



527Global Image Measurements
© 2011 by Taylor & Francis Group, LLC

most practical way to perform the measurement without 
the tedium of isotropic section orientation or the danger of 
assuming that the sample is isotropic is to cut the sections 
parallel to a known direction (vertical sectioning) and then 
use cycloidal grid lines, as shown in Figure 9.20. In this 
case, since it is the normal to the surface represented by 
the lines that must be made isotropic in three-dimensional 
space, the generated cycloids must be rotated by 90 degrees 
to the “vertical” direction.

In the example of Figure  9.20, the intersections of the 
grid lines with the projections of the microtubules allow 
the calculation of the total length per unit volume using 
Equation 9.7. There are 41 marked intersections; these can 
also be counted by thresholding the image, skeletonizing 
the tubules, and ANDing them with the grid, as shown pre-
viously in this chapter and in Chapter 8. For an image area 
of 12293 µm2, an assumed section thickness of 3 µm, and a 
total length of grid lines of 331.2 µm, the length calculation 
from Equation 9.7 gives:

    LV = 2 • 41/(12293 * 3) µm/µm3 = 2.22 mm/mm3

This same procedure has been applied to measuring the total length of limbs in trees.

It is rare to find a real three-dimensional structure that is isotropic. If the structure is (or may 
be) anisotropic, it is necessary to generate section planes that are isotropic. Procedures for 
doing so have been published, but in general they are tedious, wasteful of sample material, 
and hard to make uniform (that is, they tend to oversample the center of the object as com-
pared to the periphery).

Another way to generate isotropic samples of a solid, either for surface area or length mea-
surement, is to subdivide the three-dimensional material into many small pieces, randomly 
orient each one as mentioned above, and then make convenient sections for examination. This 
is perhaps the most common approach that people really use. With such randomly isotropic 
section planes, it is not necessary to use a cycloid grid; any convenient line grid will do. If 
there is preferred directionality in the plane, circular line grids can be used to avoid bias. If 
not, then a square grid of lines can be used, or a set of parallel lines. If the structure is highly 
regular, then it is necessary to use randomly generated lines (which can be conveniently 
performed by the computer). Figure 9.21 shows examples of a few such grids. Much of the 
art of modern stereology lies in performing appropriate sample sectioning and choosing the 
appropriate grid to measure the desired structural parameter.

Thickness

The measurement of layer thickness can sometimes be performed using a grid of parallel or 
radial lines, as shown in Chapter 8, Figure 8.16. ANDing a set of lines with a thresholded 
binary image of a cross-section through the layer yields a set of line segments that are eas-
ily measured to determine a mean value and standard deviation. In other situations, when 
the layer is curved, a suitable measurement of its width can be obtained by thresholding and 
using the skeleton of the binary image of the layer to select the pixels along the midline of the 

Figure 9.20 Application of a cycloid 
grid to a TEM image of a section 
containing filamentous microtu-
bules. Counting the number of 
intersections made with the grid 
allows calculation of the total 
length per unit volume, as dis-
cussed in the text.
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Euclidean distance map, as shown in Chapter 8, Figure 8.78. The midline values represent 
the radii of inscribed circles at each point along the layer’s length.

Both of these procedures are efficient and accurate, but properly apply only to circum-
stances in which the section through the layer shows the actual thickness. This means that 
the section must be normal to the layer orientation. For layers deposited on surfaces, such 
as the paint in Figure 8.16, this is not difficult to achieve. But for many situations, such as 
measuring the thickness of various structures in biological organisms, it is not possible or 
practical to control the sectioning to achieve the desired orientation. Determining the width 
of the layer as it appears in the section is a classic example of performing a measurement 
because it can be done, rather than because it should be done. The measurement does not 
characterize the actual thickness of the layer in three dimensions. The dimension in the 
section is greater than the true thickness, but the bias in the measurement cannot be deter-
mined or corrected.

Stereology offers a surprisingly simple solution, which is illustrated in Figure 9.22. Randomly 
oriented sections through the structure of interest are imaged. Random lines are then drawn 
on the section images. In the example, this is done by first thresholding the layer to be mea-
sured and then having the computer generate a random line grid. These lines are randomly 
oriented in three dimensions. The lengths of the intersections of the lines with the layer 
are shown in the figure. The result is a distribution that has no values shorter than the true 
three-dimensional layer thickness, but, depending on the orientation of the section plane and 
the line with respect to the layer, much longer intercept lengths may be obtained. The distri-
bution trails off toward infinity.

  
(a)              (b)              (c)

 

Figure 9.21 Examples of line grids:

  (a) concentric circles;

  (b) array of circles;

  (c) square line grid;

  (d) random lines.

        (d)
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Instead of plotting the intercept length, Gundersen (Gundersen et al., 1978) showed that 
plotting a histogram of the reciprocal of the intercept length produces a much simpler 
distribution, as shown in the figure. The triangular shape for the distribution has a mean 
value that is two-thirds of the maximum. But the maximum inverse intercept length is just 
the reciprocal of the shortest actual intercept length, and that is the true three-dimensional 
thickness of the layer.

It is possible to determine the mean value of the inverse intercept length from a relatively 
small number of intercepts on a practical number of sections, none of which may actually be 
perpendicular to the layer to reveal the true thickness. Calculating the true three-dimensional 
thickness as the inverse of 1.5 times the mean value of the inverse intercept length is a remark-
ably efficient way to measure layer thickness stereologically, even when the actual thickness 
is not seen in any image.

  
(a)                       (b)
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Figure 9.22 Measuring layer thickness with 
random lines and sections:

  (a) image of urinary bladder;

  (b)  thresholded epithelial lining with super-
imposed random lines;

  (c)  distribution of intercept lengths (top) 
from multiple sections, and the distri-
bution of inverse (reciprocal) intercept 
lengths. The mean value of the inverse 
intercept length plot is two-thirds of the 
maximum value, which in turn is the 
reciprocal of the true three-dimensional 
thickness.

          (c)
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Sampling strategies

Several of the examples shown thus far have represented the common method of microscopy 
in which views are taken through thin slices, generally using the light or electron microscope. 
The requirement is that the sections be much thinner than the dimensions of any structures 
of interest, except for the case above of thick sections used for length measurement. Confocal 
light microscopy does not require physical sectioning of thin slices, but produces equivalent 
images which are interpreted similarly. MRI and CT techniques also generate section images.

For opaque materials, the same strategies are used for sectioning but the images are obtained 
by reflected light, or by scanning electron microscopy, or any other form of imaging that 
shows just the surface. Many imaging techniques represent the structure to some finite depth 
beneath the surface, and most preparation methods such as polishing produce some surface 
relief in which the softer structures are lower than the harder ones. Again, the criterion is 
that the depth of information (e.g., the depth from which electrons are emitted in the scan-
ning electron microscope, or the depth of polishing relief) is much less than the dimensions 
of any structures of interest. Corrections to the equations above for measuring volume, area, 
and length can be made for the case of finite section thickness or surface relief, but they add 
complication and require exact determination of the depth or thickness.

While procedures for obtaining isotropic sampling have been outlined, little has been said 
thus far about how to achieve uniform, random sampling of structures. It is of course possible 
to cut the entire specimen up into many small pieces, select some of them by blind random 
sampling, cut each one in randomly oriented planes, and achieve the desired result. However, 
that is not the most efficient method (Gundersen & Jensen, 1987; Cruz-Orive, 1993; Gundersen 
et al., 1999; Gundersen 2002). A systematic or structured random sample can be designed to 
produce the desired unbiased result with the fewest samples and the least work. The method 
works at every level through a hierarchical sampling strategy, from the selection of a few test 
animals from a population (or cells from a petri dish, etc.) to the selection of tissue blocks, the 
choice of rotation angles for vertical sectioning, the selection of microtomed slices for viewing, 
the location of areas for imaging, and the placement of grids for measurement. Other advanced 
techniques improve the efficiency of analysis by weighted sampling (Gardi et al., 2008).

Figure 9.23 illustrates the basic principle as it might be applied to selecting some apples 
from a population. Dividing the number of apples in a basket (30) by the number of desired 
samples (5) produces a value (6) that is used to control the sampling interval. A random num-
ber from 1 to 6 is generated to control the starting point for the sampling. Then every 6th 
apple after that is selected. This produces a uniform but randomized sampling of the basket. A 
new random number is generated for the next basket of apples. The result is that every apple 
has the same probability of being selected, but the actual selection most efficiently samples 
the entire population.

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

10

20

21 22 23 24 25 26 27 28 29 30  

Figure 9.23 Example of 
systematic or structured 
random sampling, as 
described in the text.
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To illustrate the procedure as it applies to image measurement, consider the problem of deter-
mining the volume fraction of bone in the human body. Clearly, there is no single section 
location that can be considered representative of such a diverse structure: a section through 
the head shows proportionately much more bone than one at the waist. For volume fraction, 
it is not necessary to have isotropic sections, so transverse sections can be used. In practice, 
these can be obtained nondestructively using a CT or MRI scanner. If the section planes are 
placed at random, there are some portions of the body that are not viewed while some planes 
lie close together and oversample other regions. The most efficient sampling spaces the planes 
uniformly apart, but it is necessary to avoid the danger of bias in their placement, always strik-
ing certain structures and avoiding others.

Suppose that in order to obtain a certain desired level of precision it is determined by prelimi-
nary sampling that eight sections are sufficient for each body. Systematic random sampling 
proceeds by generating a random number to decide the placement of the first plane some-
where in the top one-eighth of the body. For a person 160 cm tall, that is some position within 
the top 20 cm. Then position the remaining planes with uniform spacing of 20 cm, so that 
each has the same offset within its one-eighth of the body height. These planes constitute a 
systematic random sample. A different random number placement is used on the next body, 
and the set of planes is shifted as a unit. This procedure guarantees that every part of each 
body has an equal chance of being measured, which is the requirement for uniform random 
sampling.

When applied to the placement of a grid on each image, two random numbers are generated 
which specify the position of the first point (e.g., the upper left corner) of the grid. The other 
grid points then shift as a unit with uniform spacing. The same logic applies to selecting posi-
tions to be imaged on a slide in the microscope. If, in order to obtain adequate statistical sam-
pling, it is decided to acquire images from (e.g.) eight fields of view on slide, then the area is 
divided into eight equal areas, as shown in Figure 9.24, two random numbers are generated 
to position the first field of view in the first rectangle, and the subsequent images are acquired 
at the same relative position in each of the other areas.

For rotations of vertical sections, if it is decided to use five orientations, as shown in Figure 9.10 
above, then a random number is used to select an angle between 0 and 72 degrees for the 
first cut, and then the remaining orientations are placed systematically at 72 degree intervals. 
The method can obviously be generalized to any situation. It is uniform and random because 
every part of the sampled population has an equal probability of being selected. Of all of 
the possible slices and lines that could be used to probe the structure, each one has an equal 
probability of being used.

The goal of the stereologist in designing an experiment is to achieve “IUR” (Isotropic, Uniform, 
Random) sampling of the structure. For some types of probes the requirement of isotropy can 
be relaxed because the probe itself has no directionality and hence is not sensitive to any 

x y

 

Figure 9.24 Systematic random sampling 
applied to selecting fields of view on a 
slide. The area is divided into as many 
regions as the number of images to be 
acquired. Two random numbers are used 
to select the location for the first image 
in the first region (orange). Subsequent 
images (green) are then captured at the 
same relative position in each region.
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anisotropy in the specimen. Using a grid of points, for example, to determine the volume frac-
tion of a structure of interest, does not require the vertical sectioning strategy described above 
because the point probe has no orientation. Any convenient set of planes that uniformly and 
randomly sample the structure can be probed with a uniformly and randomly placed grid to 
obtain an unbiased result.

Situations also arise in which volume imaging and creation of the appropriate grid make it 
possible to obtain isotropic measurements. For a series of parallel plane images, as from the 
confocal microscope, placing a set of circle grids of appropriate diameters forms a sphere in 
space, and counting intersections with linear structures can be used to measure length per 
unit volume (Mouton et al., 2002).

The Disector, described below, is a volume probe and hence also has no directionality asso-
ciated with it. Pairs of section planes can be distributed (uniformly and randomly) through 
the structure without regard to orientation. Being able to avoid the complexity of isotropic 
sectioning is a definite advantage for experimental design.

But, as noted above, for measurement of length or surface area the probes (surfaces and lines) 
have orientation, so they must be placed isotropically, as well as uniformly and randomly. It is 
in these cases that a strategy such as vertical sectioning and the use of cycloidal grids becomes 
desirable. Using a systematic random sampling approach reduces the number of such sections 
that need to be examined, as compared to completely random sampling, but it does not allevi-
ate the need to guarantee that all orientations have an equal probability of being selected. It 
bears repetition that unless it can be proven that the sample itself is isotropic (and uniform 
and random), then unless an appropriate IUR sampling strategy is employed the results will 
be biased, and the amount of the bias cannot be determined or compensated, nor assumed to 
be constant so that comparisons can be made between experiments.

Determining number

Figure 9.25a shows several sections through a three-dimensional structure. Subject to the 
caveat that the sections must be IUR, it is straightforward from the areas of the intersections 
or by using a point count with a grid to determine the total volume of the structure (Equation 
9.1). From the length of the boundary line, or by using intercept counts of the boundary with 
a suitable line grid, the total surface area of the structure can be determined (Equations 9.3 
and 9.4). From the number of separate features produced by the intersection of the object with 
the planes, the length of the tubular structure can be estimated (Equation 9.7). But there is 
nothing in the individual section planes that reveals whether this is one object or many and 
if it is one object, whether the tube is branched or not. The fact that the single tube is actu-
ally tied into a knot is, of course entirely, hidden. It is only by connecting the information in 
the planes together, by interpolating surfaces between closely spaced planes, and creating a 
reconstruction of the three-dimensional object (Figure 9.25b) that these topological proper-
ties can be assessed.

Volume, surface area, and length are metric properties. The plane surfaces cut through the 
structure and the grids of lines and points placed on them represent probes that sample the 
structure and provide numerical information that can be used to calculate these metric prop-
erties, subject to the precision of the measurement and to the need for uniform, random, and 
(for area and length measurements) isotropic sampling. Topological properties of number 
and connectedness cannot be measured using plane, line, or point probes. It is necessary to 
directly examine a volume of the sample.



533Global Image Measurements
© 2011 by Taylor & Francis Group, LLC

In the limit, of course, this can be a complete volumetric imaging of the entire structure. 
Nondestructive techniques such as confocal light microscopy, medical CT, MRI or sonic scans, 
or stereoscopic viewing through transparent volumes can be used in some instances. They 
produce dramatic visual results when coupled with computer graphics techniques (which are 
shown in Chapters 13 and 14). However, these are costly and time-consuming methods that 
cannot easily be applied to many types of samples. Serial sectioning methods in which many 
sequential thin sections are cut, or many sequential planes of polish are prepared and exam-
ined, are even more difficult and costly because of the problems of aligning the images and 
compensating for distortion or variation in spacing or lack or parallel orientation.

It is a common mistake to count the number of features visible on a section plane and from 
that try to infer the number of objects in the three-dimensional volume. The fact that the units 
are wrong is an early indication of trouble. The number of features imaged per unit area does 
not correspond to the number per unit volume. The section plane is more likely to strike a 
large object than a small one so the size of the objects strongly influences the number that are 
observed to intersect the sectioning plane, as shown in Figure 9.26.

There is a relationship between number per unit area and number per unit volume based on the 
concept of a mean diameter for the features. For spheres, the mean diameter has a simple mean-
ing. The number per unit volume, NV can be determined from the number per unit area, NA as

 N N
DV

A

m ean
=  (9.8)

More precisely, the expected value of NA is the product of NV • Dmean. Figure 9.27 illustrates a 
case in which this method can be applied. The image is a section through a foam. The bubble 
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(a)

Figure 9.25 Multiple sections

  (a)  through a tubular structure, from which 
the volume, surface area, and length can 
be determined. Only by arranging them in 
order, aligning them, and reconstructing 
the volume

  (b)  can the presence of a single string arranged 
in a right-handed knot be recognized.

(b)
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size is controlled by the air pressure and nozzle size, and is known. If the size is not known, 
but the bubbles are known to be uniform in size, a good estimate can be obtained by using 
the largest diameter bubble observed, which corresponds to a cut near the equator. Counting 
the number of bubbles per unit area can thus 
be used to determine the number of bubbles 
per unit volume using Equation 9.8. The cor-
rect technique for counting and correcting for 
edge-touching features is shown below.

For convex but not spherical shapes, the mean 
diameter is the mean caliper or tangent diam-
eter averaged over all orientations. This can 
be calculated for various regular or known 
shapes, but is not something that is known a 
priori for most structures. So determining the 
number of grains or cells or nuclei per unit 
volume (whose inverse is the mean volume 
of each object) is rarely practical from section 
images.

For objects that are not convex, have protru-
sions or internal voids, or holes and bridges 
(multiply connected shapes), the concept of a 
mean diameter becomes even more nebulous 

  
          (a)                   (b)

  

Figure 9.26 Sectioning a volume:

  (a)  a volume contains large (green), medium 
(orange), and small (purple) objects;

  (b)  an arbitrary section can be cut through the 
volume;

  (c)  the appearance of the objects in the plane shows 
that the sizes of the intersections are not the size 
of the objects, and the number of intersections 
with each does not correspond to the number per 
unit volume since large objects are more likely to 
be intersected by the plane.

          (c)

Figure 9.27 Section through a foam. Counting the 
number of bubbles per unit area can be used to 
determine the number per unit volume in this 
case, because the mean bubble size is known.
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and less useful. It turns out that the integral of the mean surface curvature over the entire 
surface of the object is related to this mean diameter. The surface curvature is defined by two 
principal radii. Calculating the mean local curvature as

 H
r r

= −










1
2

1 1
1 2

 (9.9)

and integrating over the entire surface gives a value called the integral mean curvature, M, 
which equals 2π • Dmean. In other words, the feature count NA on a section plane is a measure of 
the mean curvature of the particles’ surface and hence the mean diameter as it has been defined 
above. If the number per unit volume can be independently determined, for instance using the 
Disector method below, it can be combined with NA to calculate the mean diameter, if that is of 
interest for characterizing the objects.

Curvature, connectivity, and the Disector

Surfaces and lines in three-dimensional structures are rarely flat or straight, and in addition 
to the relationship to mean diameter introduced above, their curvature may hold important 
information about the evolution of the structure, or chemical and pressure gradients. For grain 
structures in equilibrium, the contact surfaces are ideally flat but the edges still represent 
localized curvature. This curvature can be measured by stereology.

Surface curvature is defined by two radii (maximum and minimum). If both are positive as 
viewed from “inside” the object bounded by the surface, the surface is convex. If both are 
negative, the surface is concave, and if they have opposite signs, the surface has saddle curva-
ture (Figure 9.28). The total integrated curvature for any closed surface around a simply con-
nected object (no holes, bridges, etc.) is always 4π. For a set of more complicated shapes, the 
total curvature is 4π • (N – C) where N is the number of separate objects and C is topological 
property called the connectivity.

For a simple array of separate objects, regardless of the details of their shape, C is zero (they 
are not connected) and the total integrated curvature of the structure gives a measure of how 
many objects are present. A single plane surface is not adequate to measure the curvature. The 
total curvature can be measured by considering a sweeping plane probe moving through the 
sample (this can be physically realized by moving the plane of focus of a confocal microscope 
through the sample, or by using a medical imaging device) and counting the events when the 

   
(a)              (b)              (c)

Figure 9.28 Surface curvature: (a) convex; (b) concave; (c) saddle.
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plane probe is tangent to the surface of interest. Convex and concave tangent points (T + +  and 
T – –, respectively) are counted separately from saddle tangencies (T + –). The net tangent count 
is (T + + + T –  – – T + –) and gives the quantity (N – ––C +–), also called the Euler characteristic of 
the structure, as

 ( )N C T T T Tnet− = + −( ) =+ + − − + −1
2

1
2

 (9.10)

There are two extreme cases in which this is useful. One is the case of separate (but arbitrarily 
and complexly shaped) objects, in which C is zero and N is one-half the net tangent count. This 
provides a straightforward way to determine the number of objects in the measured volume. 
The other situation of interest is the case of a single object, typically an extended complex 
network with many branchings such as neurons, capillaries, textiles used as reinforcement in 
composites, the pore network in a sandstone, etc. In this case N is 1 and the connectivity can 
be measured. Connectivity is the minimum number of cuts needed to separate the network. 
For flow or communication through a network, it is the number of alternate paths or the num-
ber of blockages required to stop the flow or transmission.

In many situations, such as the case of an opaque matrix, it is not practical to implement a 
sweeping tangent plane. The simplest practical implementation of a volume probe that can 
reveal the important topological properties of the structure is the Disector (Sterio, 1984; 
Geuna, 2005). This consists of two parallel planes of examination, which can be two sequen-
tial or closely spaced thin sections examined in transmission. For many materials samples, it 
is implemented by polishing an examination plane which is imaged and recorded, polishing 
down a small distance (usually using hardness indentations or scratches to gauge the distance 
and also to facilitate aligning the images), and acquiring a second image.

The Disector logic compares the images in the two parallel planes and ignores any feature that 
continues through both planes, even if the position and shape have changed somewhat. The 
planes must, of course, be close enough together that this determination can be made unequivo-
cally. Usually this means that the spacing must be significantly less than any characteristic 
dimension of the features or structure of interest, and so most features that intersect one plane 
will intersect both. Figure 9.29 shows the possible combinations of events that may be found.

Any feature that is present in one plane and not matched in the other implies that the three-
dimensional structure has a end point somewhere between the two planes. This represents 
a convex curvature and is counted as a T + + event. For a set of convex, discrete objects, only 
these ends are present. Generally rare is the case in which a hollow feature in one plane 
becomes solid in the other plane. This represents the end of a void or, more generally, a hol-
low with concave curvature, and is counted as a T –  – event. Any branching in the structure, 
in which one feature in one of the two planes can be identified as connecting to two features 

T ––
T ++

T +–

  

Figure 9.29 Possible combinations of features 
in the two planes of the Disector. Features 
that continue through with no topological 
change are ignored. Feature ends are counted 
as convex (T +  +) events and void ends are 
counted as concave (T –  –) ones. Branching 
indicates the presence of saddle surface with 
T +   – curvature.
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in the other, represents a saddle surface and is counted as a T + – event. The tangent events 
from the Disector are summed in the same way shown in Equation 9.10 to determine the net 
tangent count and the Euler characteristic of the structure.

Because most of the features seen in the Disector images continue through both sections 
and so contribute no information, it is necessary to examine many pairs of sections, which of 
course must be aligned to compare intersections with the features. When the matrix is trans-
parent and viewed in a confocal microscope, examining and comparing the parallel section 
planes is straightforward. Figure 8.29 in Chapter 8 shows an example. When conventional 
serial sections are used, it is attractive to use computer processing to align and compare the 
images. The marker selection (feature-AND) logic described in Chapter 8 is particularly use-
ful in this regard to find features and ignore those that continue through both sections. It is 
also necessary to sample a large image area, well distributed to meet the usual criteria of ran-
dom, uniform sampling. Since the Disector is a volume probe, isotropy is not a concern.

Figure 9.30 shows an example using sections obtained by non-destructive imaging of bub-
bles in a candy bar. The area of each circular image is 1.54 cm2, and the spacing between 
the section planes is 6.3 µm. After thresholding the images and applying the Boolean logic, 
there are 65 ends counted. Applying Equation 9.10 calculates a value of 3.35 bubbles per 
cubic millimeter. Since the volume fraction of the voids can also be determined from the 
images (6.1%), the mean volume of a bubble is calculated as 0.0018 mm3 (corresponding to 
a diameter of 0.15 mm).

For opaque matrices that must be physically sectioned, the problems are more severe. Generally 
it is necessary to prepare a polished section, image it, place some fiducial marks on it for ref-
erence, and then polish down to some greater depth in the sample and repeat the process. 
If the fiducial marks are small pyramidal hardness indentations (commonly used to measure 
hardness of materials), the reduction in their size provides a measure of the distance between 
the two planes. Aligning and comparing the two images to locate new features can be tedious. 
Focused ion beam (FIB) machining of the surface presents another way to prepare closely 
spaced parallel planes for imaging, which can be very useful for this purpose.

Figure 9.31 shows an example. The specimen is a titanium alloy in which the size of colonies 
of Widmanstätten laths is of interest. Each colony is identified by its lath orientation. After 

  
(a)              (b)              (c)

Figure 9.30 Two sections through a candy bar (a, b) imaged by computed tomography (images cour-
tesy of Dr. G. Ziegler, Food Science Dept., Pennsylvania State Univ.) and the intersections (c) that 
are unique to one or the other of the section planes, obtained using the same procedures shown in 
Chapter 8, Figure 8.29.
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one set of images has been acquired on a metallographically polished plane, the material is 
polished down a further 5 µm and additional corresponding images acquired. In the example, 
another colony (identified by the red arrow) appears. From the total number of such positive 
tangent events and the volume sampled by the Disector, the mean colony volume is deter-
mined. Obviously this is a time-consuming and difficult process.

Anisotropy and gradients

There is considerable emphasis above on methods for performing sectioning and applying grids 
that eliminate bias in those structures that may not be isotropic, uniform, and random (IUR). 
Of course, when the specimen meets those criteria, then any sampling method and grid can be 
used, but in most cases it is not possible to assume an IUR structure. Hence, techniques such as 
vertical sectioning and cycloid grids are used, since they provide unbiased results whether the 
specimen is IUR or not, at the cost of somewhat more effort in preparation and measurement.

In some situations it may be important to measure the anisotropy (preferred orientation) in 
the specimen or to characterize the nonuniformity (gradients) present in the structure. This 
requires more effort. First, it is usually very important to decide beforehand what kind of 
anisotropy or gradient is of interest. Sometimes this is known a priori based on the physics of 
the situation. Deformation of materials in fabrication and the growth of plants typically pro-
duce grains or cells that are elongated in a known direction, for example. The dip and strike 
of sedimentary rock layers are determined from the stratigraphy on a few exposed faces. Many 
physical materials and biological tissues have structures that vary significantly near surfaces 
and outer boundaries, so a gradient in that direction may be anticipated. Anisotropy can be 
qualitatively determined visually, for example by examining images of planes cut in orthogo-
nal directions, as shown in Figure 9.32. It is usually necessary to examine at least two planes 
to distinguish the nature of the anisotropy, as shown in Figure 9.33.

  
(a)                   (b)

Figure 9.31 Scanning electron micrographs of colonies of laths in a titanium alloy (images courtesy of 
Dr. H. Fraser, Dept. of Materials Science and Engineering, The Ohio State University). The two images 
represent parallel planes with a measured spacing of 5 µm. A new colony (red arrow and outline) 
appears in image (b), producing a single positive tangent count (T++).
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(a)

  
(b)                    (c)

Figure 9.32 Anisotropy: (a) muscle tissue, visible as a difference in structure in longitudinal (a, c) and 
transverse (b, d) sections; (b) rolled steel, revealed by microscopic examination of three orthogonal 
polished surfaces; (c) sedimentary rock, characterized by the dip and strike angles of the layers.

a b c

Figure 9.33 It is necessary to examine at least two orthogonal surfaces to reveal the nature of anisot-
ropy. In the diagrams, the same appearance on one face can result from different three-dimensional 
structures: (a) equiaxed structure; (b) needle-like structure; (c) plate-like structure.
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When there is an expectation that directionality is present in the structure, the classic approach 
is to use grids to measure selectively in different directions. For example, in the case shown in 
Figure 9.34, the number of intercepts per unit line length (which measures the surface area 
per unit volume) can be measured in different directions by using a rotated grid of parallel 
lines. Since each set of lines measures the projected surface area normal to the line direction, 
the result shows the anisotropy of surface orientation. Plotting the reciprocal of the number 
of intersections per unit line length (called the intercept length) as a function of orientation 
produces a polar (or rose) plot, as shown in the figure, which characterizes the mean elonga-
tion of the grains or cells.

Gradients can sometimes be observed by comparing images from different parts of a speci-
men, but because visual judgments of metric properties such as length of boundary lines and 
area fraction of a phase are not very reliable, it is usually safest to perform the measurements 
and compare the data statistically to find variations. The major problem with characterizing 
gradients is that they are rarely simple. An apparent change in the number of features per 
unit area or volume may hide a more significant change in feature size or shape, for example. 
Figure 9.35 shows several diagrams in which gradients of size, number, shape, and orienta-
tion are present. A secondary problem is that once the suspected gradient has been identified, 
a great many samples and fields of view may be required to obtain adequate statistical preci-
sion to properly characterize it.

Figure 9.36 shows a simple example representing the distribution of cell colonies in a petri 
dish. Are they preferentially clustered near the center or uniformly distributed across the area? 

  
(a)              (b)              (c)
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Figure 9.34 Characterizing anisotropy:

  (a) an anisotropic metal grain structure;

  (b)  the grain boundaries produced by thresholding and 
skeletonization;

  (c)  measuring the number of intercepts per unit line length in 
different orientations by rotating a grid of parallel lines;

  (d)  the results shown as a polar plot of mean intercept length 
vs. angle.

        (d)
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By using the method shown in Chapter 8 to assign a value from the Euclidean distance map 
of the area inside the petri dish to each feature, and then plotting the number of features as 
a function of that value, the plot of count vs. radial distance from the center shown in the 
figure is obtained. This might appear to show a increase in the number of features toward the 
edges of the dish. But that does not correctly represent the actual situation, because it is not 

   
(a)              (b)              (c)

  

Figure 9.35 Schematic diagrams of gradients in

  (a) size,

  (b) area fraction,

  (c) shape, and

  (d) orientation.

        (d)
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Figure 9.36 Distribution of features within an 
area (e.g., cell colonies in a petri dish):

  (a)  each feature color coded according to dis-
tance from the periphery;

  (b)  plot of number and number per unit area 
as a function of distance.
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the number but the number per unit area that is important, and there is much more area near 
the periphery of the dish than near the center. If the distribution of the number of features as 
a function of radius from the center is divided by the number of pixels as a function of radius 
(which is just the histogram of the Euclidean distance map), the true variation of number per 
unit area is obtained, as shown in the figure, showing a decrease in density toward the edges 
of the dish.

Size distributions

As mentioned above, much of the contemporary effort in stereological development and 
research has been concerned with improved sampling strategies to eliminate bias in cases of 
non-IUR specimens. There have also been interesting developments in so-called second order 
stereology that combine results from different types of measurements, such as using two dif-
ferent types of grids to probe a structure or two different and independent measurements. 
One example is to use a point grid to select features for measurement in proportion to their 
volume (points are more likely to hit large than small particles). For each particle that is thus 
selected, a line is drawn in a random direction from the selection point to measure the radius 
from that point to the boundary of the particle.

Figure 9.37 shows this procedure applied to the white dendritic phase in the image used 
above. The grid of points selects locations. For each point that falls onto the phase of inter-
est, a radial line in uniformly randomized directions is drawn to the feature boundary. For 
non-convex shapes, the length of this line may consist of multiple segments which must be 
added together. For isotropic structures or isotropic section planes, the line angles uniformly 
sample directions. For vertical sections through potentially anisotropic structures, a set of 
sine-weighted angles should be used. The length of each line gives an estimate of particle 
volume:

 V r= 4
3

3π  (9.11)

which is independent of particle shape. Averaging this measurement over a number of par-
ticles and radius measurements gives a robust estimate of the volume-weighted mean volume 
(in other words, the volume-weighted average counts large particles more often than small 

  
(a)                (b)

Figure 9.37 Measuring point-sampled intercepts: (a) an array of grid points, each having a direction 
associated with it; (b) applying the grid to the image from Figure 9.3 and measuring the radial dis-
tance from those grid points that fall on the phase of interest to the boundary in the chosen direction. 
Note that, for non-convex shapes, the radial distance is the sum of all portions of the intercept line.
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ones, in proportion to their volume, which determines the probability that a grid point falls 
on the particle).

A more familiar way to define a mean volume is on a number-weighted basis, where each 
particle counts equally. This can be determined by dividing the total volume of the phase by 
the number of particles. Examples above show the methods for determining the total volume 
fraction using a point count and the number of particles per unit volume using the Disector. 
Dividing the total by the number gives the number-weighted mean volume.

Once both the mean volumes have been determined, they can be combined to determine the 
standard deviation of the distribution of particle sizes, independent of particle shape, since 
for the conventional number-weighted distribution the variance is given by the difference 
between the square of the volume-weighted mean volume and the square of the number-
weighted mean volume:

 σ2 2 2= −V VV N  (9.12)

Although this may seem to be a rather esoteric measurement, in fact it gives an important 
characterization of the size distribution of particles or other features that may be present in 
a solid, which, as explained above, are not directly measurable from the size distribution of 
their intersections with a plane section.

Classical stereology (unfolding)

Historically, much of classical stereology has been concerned with determining the size dis-
tribution of three-dimensional features when only two-dimensional sections through them 
are measurable (Weibel, 1979; Cruz-Orive, 1976, 1983). The classical method is to assume a 
shape for the particles (i.e., that all of the particles are the same shape, which does not vary 
with size). The most convenient shape to assume is, of course, a sphere. The distribution of 
the sizes of circles produced by random sectioning of a sphere can be calculated as shown in 
Figure 9.38.

Knowing the sizes of circles that should be produced if all of the spheres are of the same 
size makes it possible to unfold the distribution (this realization apparently dates back to 
Wicksell, 1925). In principle (and sometimes in practice), the method can be carried out in 
a series of steps. If the number per unit area of the largest size circles is converted to num-
ber per unit volume (NV = NA/D as in Equation 9.8 above) then the number of intersections 
counted in each smaller size bin in the distribution due to this size sphere can be predicted 
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Figure 9.38 Sectioning a 
sphere randomly pro-
duces a distribution of 
circle sizes, which can be 
calculated from analyti-
cal geometry.
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and subtracted from the measured distribution. The number per unit area that remain in 
the next smaller bin can be similarly converted to number per unit volume and the process 
repeated, as shown in Figure 9.39. The final result is an unfolded distribution of number 
per unit volume.

One problem with this approach is the propagation of errors due to counting statistics, which 
accumulate in the smaller size bins due to the repeated subtractions. In order to prevent this, 
and also to more efficiently perform the unfolding, a better procedure is to calculate a matrix 
of α values to be used in Equation 9.13 that enable solving a set of simultaneous equations for 
the distribution of sphere sizes that must have been present in the three-dimensional structure 
to produce the observed distribution of circle sizes, as shown in Figure 9.40. A spreadsheet 
program can easily carry out the calculation, given the matrix of α values.

 N NV i j Asphere i circle j, ,
,= ⋅∑α  (9.13)

NVi
 = NAi

/D
i

Step 1

Step 2

Step 3

Circle Diameter Sphere Diameter

Circle Diameter Sphere Diameter

Circle Diameter Sphere Diameter

NA

NA

NV

NV

NA NV

Figure 9.39 Unfolding a size distribution in steps proceeds by converting the counted number per 
unit area of the largest size objects to number per unit volume, subtracting the predicted number of 
smaller intersections, moving down to the next size class, and repeating the calculation.
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Beyond spheres, other shapes have also been proposed as a compromise between math-
ematical ease of calculation and possible realistic modeling of real-world shapes. These have 
included ellipsoids of revolution (both oblate and prolate), disks, cylinders (Kok, 1990), and a 
wide variety of polyhedra (Wasen & Warren, 1990; Wasen et al., 1996), some of which can be 
assembled to fill space (as real cells and grains do). Tables of alpha coefficients for all these 
exist and can be rather straightforwardly applied to a measured distribution of the size of 
two-dimensional features viewed on the section plane.

However, there are several critical drawbacks to this approach. First, the ideal shapes do 
not usually exist. Nuclei are not ideal spheres, cells, foams, and grains are not all the same 
polyhedral shape (the larger ones usually have more faces and edges than smaller ones), 
precipitate particles in metals are rarely perfect disks or rods, etc. Even isolated bubbles are 
not always perfect spheres. Knowledge of the shape of the three-dimensional object is criti-
cal to the success of the unfolding method, since the distribution of intersection sizes varies 
considerably with shape (Figure 9.41 shows an example of cubes vs. spheres). It is very com-
mon to find that size varies with shape, which strongly biases the results. Small errors in the 
shape assumption produce very large 
errors in the results. For example, the 
presence of a few irregularities or pro-
trusions on spheres results in many 
smaller intersection features, which 
are misinterpreted as many small 
spherical particles.

The second problem is that, from a 
mathematical point of view, the unfold-
ing calculation is ill posed and unsta-
ble. Uncertainties in the distribution 
of the number of two-dimensional fea-
tures as a function of size result from 
counting statistics. The variations are 
typically greatest at the top end of the 
distribution, for the few largest fea-
tures which are rarely encountered. 
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Figure 9.40 Unfolding a 
size distribution. The 
sample is a cast iron 
containing graphite 
nodules; note that the 
features are not perfectly 
circular, even though a 
sphere model has been 
used in the unfolding.
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But in the unfolding process these errors are magnified, often resulting in negative numbers 
of features in some size classes, and greatly amplifying the statistical uncertainty.

For these reasons, although unfolding was a widely used classical stereological method 
for decades, it has fallen out of favor in the last 25 years. Instead there has been increased 
emphasis on finding unbiased ways to measure structural parameters using more robust 
tools. Nevertheless, in spite of these limitations (or perhaps because their magnitude and 
effect are not sufficiently appreciated), unfolding of size distributions is still often per-
formed (Ehtezazi et al., 1999; Nooijer et al., 2008). When the shape of the three-dimen-
sional objects is not known, it is common to assume they are simple spheres, even when 
the observed section features are clearly not circles. The argument that this gives some 
data that can be compared from one sample to another, even if it is not really accurate, is 
wrong and betrays the general level of ignorance about the rules and application of stereo-
logical procedures.
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10
Feature-Specific Measurements

Measurements that can be performed on each of the individual features in images can 
be grouped into four general classes: brightness (including color values and param-
eters such as density that are related to brightness), location (both absolute position 

and relative to other features present), size, and shape. Within each class, quite a variety of 
different specific measurements can be made, and there are also a variety of different ways 
to perform the operations. Most image analysis systems offer at least a few measures in each 
class. Users find themselves at some time or another having to select from several different 
measurement parameters. The problem is frequently to decide which of the measured param-
eters is most useful or appropriate for solving a particular problem.

The various measurements of size, location, and brightness shown below are not all common-
place, but at least the concepts of size, location, and brightness are basically familiar ones. 
Shape is a much more difficult and complex subject and is described in the next chapter.

Measurements usually produce a numeric output suitable for statistical analysis, feature selec-
tion, or presentation graphics. Frequently, the interpretation of the data is left to a separate 
program, such as a spreadsheet or a dedicated statistics or data analysis package. In a few 
cases, the numbers are converted to go/no go decisions or become the basis for classification, 
discussed in Chapter 12. Examples include quality control testing of the size and placement 
of holes in a part, medical pathology decisions based on the identification of the presence of 
cancerous cells, or recognition of different objects (or people) in a scene.

Brightness measurements

Normally in the kinds of images considered in this book, each pixel records a numeric value 
that represents the brightness of the corresponding point in the original scene. Several such 
values can be combined to represent color information. The most typical range of brightness 
values is from 0 to 255 (8 bit range), but depending on the type of camera, scanner, or other 
acquisition device a larger dynamic range of 10 or more bits, up to perhaps 16 (0 to 65,535) or 
even more, may be encountered. Most programs that accept images from sources such as cooled 
cameras and scanners having more than 8 bits of depth store them as 16 bit images (occupying 2 
bytes per pixel for gray scale images, or 6 bytes per pixel of red, green, and blue values for color 
images), even if the actual gray scale or tonal resolution is somewhat less than 16 bits.
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Some systems use the 0 to 255 value range for all bit depths but report decimal values rather 
than integers for images having more than 8 bits of depth. This has the advantage of permit-
ting easy comparisons between images acquired with different depths and is the convention 
adopted here. Rarely, the stored values may be real numbers rather than integers (for instance, 
elevation data). However, in most cases these images are still stored with a set of integer val-
ues because it is easier to manipulate such arrays and convert them to displays. In many cases 
a calibration table or function is maintained to convert the pixel values to meaningful real 
numbers when needed. This is true whether the values represent elevation, density, or any 
other property that may be represented.

The process of creating such a calibration function for a particular imaging device, or 
indeed for a particular image, is far from trivial (Inoue, 1986; Chieco et al., 1994; Swing, 
1997; Boddeke, 1998; Ortiz & O’Connell, 2004). Many of the cameras and other devices that 
are used for acquiring images are neither perfectly linear nor exactly logarithmic, nor com-
pletely consistent in the relationship between the pixel’s numeric value and the input signal 
(e.g., photon intensity). Many cameras have an output function that varies in response with 
the overall illumination level. The presence of automatic gain circuits or user-adjustable 
gamma controls makes it more difficult to establish and maintain any kind of calibration. 
In-camera or automatic software adjustments to color images based on some effort to estab-
lish a white point are ultimately dependent on the image subject and can be affected by 
background colors or shadows, in addition to changes in lighting. In general, any kind of 
automatic gain or dark level circuitry, automatic color balancing, etc., will frustrate efforts 
for calibration of the camera. With consumer-level video and still cameras, it is not always 
possible to turn such “features” off.

For color imaging, cameras may incorporate automatic white balance adjustments (which 
are intended for a type of scene much different from the majority of scientific and technical 
images). Control of the color temperature of the light source and maintaining consistency 
of the camera response to perform meaningful color measurement are rarely possible with 
consumer-grade still or video cameras. Chapter 1 shows examples of correcting color val-
ues using measured R, G, B intensities from a standard color chart. It is important to note 
that the typical color camera has R, G, B sensors that respond to a relatively broad range of 
wavelengths, and that many different combinations of actual wavelengths and intensities can 
produce identical stored R, G, B values. Consequently, it is not practical to attempt to perform 
colorimetry (the measurement of color) using such cameras, and of course complications aris-
ing from light sources, viewing geometry, optics, etc., make the problem even more difficult. 
The color correction procedures in Chapter 1 produce visual color matching, not spectropho-
tometric measurements.

Even when the use of a stable light source and consistent camera settings can be assured, the 
problem of brightness calibration remains. Some standards are reasonably accessible, for exam-
ple, density standards in the form of a step-wedge of film. Measurement of the brightness of 
regions in such a standard can be performed as often as needed to keep a system in calibration. 
In scanning large area samples such as electrophoresis gels or X-ray films, it is practical to incor-
porate some density standards into every scan so that calibration can be performed directly. In 
other cases, separate standard samples can be introduced periodically to check calibration.

Optical density is defined as

 OD I
I

= −








log10

0
 (10.1)
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where I/I0 is the fraction of the incident light 
that penetrates through the sample with-
out being absorbed or scattered. If a camera 
or scanner and its light source are carefully 
adjusted so that the full range of linear bright-
ness values covers the range of optical density 
from 0.1 (a typical value for the fog level of 
unexposed film) to 2.5 (a moderately dense 
exposed film), the resulting relationship 
between brightness and optical density is as 
shown in Figure 10.1. The shape of the curve 
is logarithmic.

At relatively low density/bright pixel values the 
sensitivity is quite good. A difference of 1 pixel 
brightness value at the bright end of the scale 
corresponds to less than 0.01 in optical density. 
But at the high density/dark pixel end of the scale, a difference of 1 pixel brightness value corre-
sponds to an optical density change of 0.3, which is very large. This is an indication that when try-
ing to apply a linear camera or scanner to optical density measurement, more than 8 bits of gray 
scale are needed. An input device with more precision can be used with a lookup table that con-
verts the values to the logarithmic optical density scale and then stores that in an 8 bit image.

This problem becomes more severe as higher density values are encountered. Films contain-
ing large amounts of silver, such as X-ray film or TEM film, can easily reach densities of 3.5 to 
4.0. Satisfactorily digitizing such films requires using scanners with at least 12 and preferably 
14 bits per channel precision. It is always preferable to scan negatives rather than prints, but 
sometimes these are inaccessible and prints must be used, which do not have as great a range 
of brightness values. Ortiz and O’Connell (2004) discuss the difficulties these create, in terms 
of nonlinearities and loss of dynamic range.

It is fairly common to include a gray wedge in a film to be scanned for one- or two-dimen-
sional separation of organic molecules. Figure 10.2 shows an example. The known density 
values allow the construction of a calibration scale for the scanner that can then be used to 
measure the optical density of each object. In this application, the total amount of protein in 
each spot is proportional to the integrated optical density, which is the product of the average 
density and the area. There are few sources of densitometric standards suitable for micros-
copy, and even fewer sources of color standards, although it is sometimes practical to prepare 
ones using dyes (Hoffmann et al., 2005).

The use of a calibration scale raises another point. It is common for features in an image to 
contain some variation in pixel brightness. The average density (or whatever other quantity is 
calibrated against pixel brightness) is not usually recorded linearly. It is important to take this 
into account when determining an average value for the density, or an integrated total dose, 
or any other calibrated quantity. If all of the pixels within the feature are simply averaged in 
brightness, and then that value is converted using the calibration scale, the wrong answer is 
obtained. It is instead proper to convert the value from each pixel to the calibrated values, and 
then sum or average those. It is also important not to include adjacent background pixels that 
are not part of the feature, which means that the delineation should be exact and not some 
arbitrary shape (e.g., a circle or square) drawn around the features. Reliance on manual out-
lining is not usually acceptable, since humans often draw outlines larger than the boundaries 
around features. The solution is to use the routines from previous chapters to threshold and 

Figure 10.1 Relationship between optical density 
and pixel brightness with the latter adjusted to 
linearly span the range from 0.1 (fog level) to 
2.5 (typical exposed film).



550 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

segment the image into discrete features. The pixels in the binary image define the features 
and can be used as a mask to define the pixels in the gray scale array.

For one-dimensional measurements of density, the procedure is the same. Figure 10.3 shows 
an example of a film exposed in a Debye–Scherer X-ray camera. The vertical lines occur at 
positions (angles) that are related to the atomic spacing in the lattice structure of the target 
material; small differences in intensity and the presence of additional lines indicate the pres-
ence of trace amounts of additional compounds. Knowing that the lines extend vertically, it is 
reasonable to average the values in the vertical direction to reduce noise and obtain a more 
precise plot of the density variations along the film. Converting the individual pixel values 
to density before summing them is the correct procedure that gives the proper values for the 
relative line intensities. The linear plots of density values may be subtracted to find differences 
or used with spectrum processing routines to detect peaks. Similar procedures are appropri-
ate for measuring a variety of samples, including growth rings in plants (Figure 10.4) and 
varves in lake sediments, that have essentially one-dimensional variations. Some of these may 
not require intensity calibration, as it is the position and spacing of peaks and valleys that 
are of interest. The presence of internal structure (cell walls) in the wood may add variations 
in the plots that can be considered as noise for the purposes of the intended measurement. 
Applying a Gaussian smooth to the image improves the profile plot (Figure 10.5).

Figure  10.6 shows brightness profile for a track or column in an electrophoresis separa-
tion. Using the brightness profile measured between the tracks allows a simple correction 

  
(a)                      (c)

 

Figure 10.2 Scanned image of a 2D electro-
phoresis separation:

  (a)  original, with a gray scale calibration 
wedge;

  (b)  calibration plot from the gray scale 
steps in (a), showing the relation-
ship between optical density and 
pixel brightness for this particular 
scanner;

  (c)  measured data from (a) using the cali-
bration plot to compute the mean opti-
cal density of each spot.

           (b)
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to be made for background variations due to nonuniformities in thickness or illumination. 
The brightness values are averaged across the center of the columns, avoiding the edges. 
Calibration of the position of bands within the columns is usually done with respect to mark-
ers of known molecular weight that are placed in adjacent columns. This is necessary because 
the distance scale is generally not linear or consistent in such specimens.

Profile plots also offer a convenient alternative to the method of applying grid lines for the 
measurement of dimensions such as coating thickness. Figure 10.7 shows a cross-section of 
paint layers, with plots of the variation along a vertical direction of the mean pixel values 
(averaged horizontally). The various profiles show transitions that can be used to determine 
the mean thickness, and the breadth of each transition zone in the plot offers a measure of 

 

Figure 10.3 Brightness 
(density) profiles:

  (a)  two Debye-Scherer 
X-ray films;

  (b)  integrated density 
plots along the 
films;

  (c)  the difference 
between the two 
profiles (expanded 
scale).
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the variation in the thickness. The plot of hue values has the sharpest transitions and best 
defines the layer thicknesses.

Not all images have a convenient relationship between recorded pixel intensity and a property 
of the sample being imaged, such as density. In microscope images, compositional or struc-
tural differences can also produce contrast, and diffraction or polarization effects may also be 

  

Figure 10.5 Higher magnification image 
of wood showing the individual cells 
as well as the growth rings. The upper 
plot shows a brightness profile on the 
image. In the lower plot the image has 
been smoothed to reduce the influence 
of the individual cells and better char-
acterize the annual rings.

  

Figure 10.4 Intensity scan across growth 
rings in a tree. The density and spac-
ing of the rings are used for age-dat-
ing the wood.
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Figure 10.6 A one-dimensional protein separation. 
Intensity scans along the center of each track are 
leveled by subtracting scans between the tracks 
(the density profiles correspond to the top track).

    

Figure 10.7 Cross-section through multiple 
layers of paint, with the profile data. The 
plot axis is the vertical position from the 
top down. The upper plot shows the red, 
green, and blue intensities, and the lower 
one shows the hue, saturation, and lumi-
nance components.
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present. In real-world images of surfaces, the local surface orientation and texture influence 
the brightness, as does the interplay between the light source color and the surface color. 
Satellite imagery must contend with clouds and surface coverings such as snow. In most of 
these cases, the measurement of brightness does not provide information about the sample. 
The goal is generally to use the relative channel brightness values to delineate regions that are 
to be grouped together or separated from each other.

When color images are digitized, the problem of having enough bits to give adequate preci-
sion for each of the color planes is amplified. Many flat bed scanners acquire more than 8 bits, 
often at least 12, for each of the RGB channels, use these to determine the color information, 
and then may create an optimized 8 bit representation to send to the computer. But even with 
this increase in precision, it is difficult to achieve accurate color representation. As Chapter 1 
points out, the digitization of color requires far greater control of camera settings and lighting 
than can normally be achieved with a video camera or a digital still camera unless RAW mode 
is used for storage and care is taken to characterize the illumination. Even a flat bed scanner, 
which offers greater consistency of illumination and typically uses a linear CCD array with fil-
ters to obtain the RGB information, is not a good choice for measurement of actual color infor-
mation. The filters select broad ranges of wavelengths, and entirely different combinations of 
intensity and color can produce the same results. However, such scanners can be calibrated to 
reproduce colors adequately on the computer monitor and on printed output.

The calibration is most often done by scanning or photographing a standard, such as the 
GretagMacbeth ColorChecker® shown in Chapter 1, Figure 1.48. This chart has been used 
since 1976 (McCamy et al., 1976), originally as a test for photography, television, and print-
ing. It is still produced and used for a variety of color tests and color profiling. In addition to 
the gray scale brightnesses and the primary colors, twelve of the color patches are chosen to 
cover intermediate positions in color space, particularly ones such as skin tones that are often 
important in real-world photographs (particularly in advertising, where the matching of col-
ors between products and printed catalogs is critical). The measured values from each color 
patch are used to construct calibration curves for the camera or scanner, so that consistency 
can be achieved. The software to construct and apply the curves usually comes with the color 
checker chart.

But it is important to reiterate that these calibration curves are for visual color matching, 
not color measurement. Spectrophotometers measure a spectrum of intensity vs. wavelength. 
Digitized images record only the integrated intensity across a wide range of wavelengths that 
are passed by the RGB filters.

The pixel brightness value need not be optical density or color component information, of 
course. Images are so useful to communicate information to humans that they are used for 
all kinds of data. Satellite images record diverse information such as cloud cover and the tem-
peratures of cloud tops, as well as sea surface temperatures. In infrared imaging, brightness 
may be a measure of temperature. Both maps and metrology instruments show surface eleva-
tion as an image (Chapter 15 deals with range images of surfaces).

In an X-ray image from the SEM, the brightness values are approximately proportional to 
elemental concentration. These relationships are not necessarily linear nor easy to calibrate. 
X-ray emission intensities are affected by the presence of other elements. Backscattered elec-
tron images from the scanning electron microscope have brightness values that increase with 
the average atomic number, so that with calibration against known standards they can also be 
used to determine the chemical composition of small regions on the sample.
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Even within the most conventional expression of the idea of imaging, pixel values can be 
related to the concentration of dyes and stains introduced into a specimen. Fluorescence 
intensities depend not only on staining techniques and tissue characteristics, but also on 
time, since bleaching is a common phenomenon. Zwier et al. (2004) review the calibration 
procedures and corrections appropriate for fluorescence microscopy, and Carlsson (1990) spe-
cifically deals with confocal microscopes. The wide range of specialized techniques based on 
measurement of pixel values used in cell biology includes fluorescence intensity, fluorescence 
lifetime imaging (FLIM), emission depletion, fluorescence resonance energy transfer (FRET), 
fluorescence recovery after bleaching (FRAP), fluorescence correlation spectroscopy (FCS), 
and many more (all with their own acronyms); see Cox (2007) for details.

To support many of these applications, some calibration between the represented property 
and the pixel values is needed. For example, it is generally useful to be able to measure the 
mean intensity or a calibrated value, as well as finding the brightest and/or darkest pixel 
values in each region or feature, and perhaps the standard deviation of the brightness values 
as a measure of variation or texture. For color images, it may be useful to report the R, G, B 
components (usually as values ranging from 0 to 255), but in most cases the hue, saturation, 
and intensity are more directly useful. The saturation and intensity are generally measured on 
either the 0 to 255 scale or reported as percentages, but the hue may be reported as an angle 
from 0 to 360 degrees, as is shown in Figure 10.8. Note that there are several different HSI 
spaces, as described in Chapter 1, and it is important to know which one is being used to 
convert the stored RGB pixel values, particularly for the saturation values.

These examples are at best a tiny sample of the possible uses of pixel values. But the measure-
ment of the stored values and conversion to some calibrated scale is a broadly useful tech-
nique. Statistical analysis of the data provides mean values and standard deviations, trends 
with position, comparisons between locations, within or between images, and so forth. For 
such procedures to work, it is important to establish useful calibration curves, which requires 
standards and/or fundamental knowledge about the sample and the physics of the creation 
and recording of the image, a subject beyond the scope of this text.

 

          (a)                    (b)

 

Figure 10.8 Mean color values for a series of color 
spots:

  (a)  hue, labeled as angles from 0 to 360 
degrees, for features with full saturation;

  (b)  saturation, labeled as percent, for features 
with constant hue and intensity;

  (c)  intensity, labeled as percent, for features 
with constant hue and saturation.

          (c)
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Determining location

In the examples shown in Figures  10.2 through 10.7 that involve measuring brightness 
values, the location of features is also needed for interpretation of the results. For a typical 
irregular feature extending over many pixels, there can be several different definitions of loca-
tion, some easier to calculate than others. For instance, the x, y coordinates for the midpoint 
of a feature may be determined as halfway between the minimum and maximum limits of 
the pixels comprising the feature. Normally, the pixel addresses themselves are just integer 
counts of position, most often starting from the top left corner of the array. This convention 
arises from the way that most computer displays work, using a raster scan from the top left 
corner. There may be some global coordinate system of which the individual image is just a 
part, and these values may also be integers or floating point number values that calibrate the 
pixel dimensions to some real-world units such as latitude and longitude, or millimeters from 
the edge of a microscope slide or workpiece.

Establishing a real-world calibration for pixel dimensions is often difficult, and maintaining 
them while shifting the specimen or the camera (by moving the microscope stage or the 
satellite, for instance) presents a variety of challenges. The technology used to produce the 
first-down line and other graphics that are superimposed on a football field during TV broad-
casts of games requires careful surveying measurement of camera locations beforehand, as 
well as encoders for camera orientation as they are turned to follow action, and sophisticated 
computer software. Generation of political boundary lines superimposed on weather maps is 
a time consuming process that fortunately has to be done only a few times a year (when the 
satellite positions are changed seasonally).

Often, locating a few known features in the image itself can serve to establish fiduciary marks 
that allow calibration, so that all of the other features in the image can be accurately located. 
Shifting the sample, stage, or camera so that successive viewing frames overlap allows posi-
tion calibration to be transferred from one field to the next, but any errors are cumulative 
and may grow rapidly due to the difficulty of accurately locating the same feature(s) in each 
field to a fraction of a pixel. This also assumes that there are no optical distortions or scan 
nonlinearities in the images. Relying on the stage motion for position information depends 
upon the precision of that mechanism (which may be much worse if the direction of motion is 
reversed, due to backlash) and the fidelity with which the sample motion corresponds to that 
of the stage. Real-world imaging is facilitated in some applications by the incorporation of GPS 
receivers into some cameras to automatically record location information in image files.

A feature’s minimum and maximum limits are easy to determine by finding the pixels with 
the largest and smallest coordinates in the horizontal and vertical directions. These limiting 
coordinates define a bounding rectangle around the feature, and the midpoint of the box may 
then be used as a location for the feature, as one of the easiest things to calculate. However, 
the midpoint is not usually the preferred representation of location, because it is too easily 
biased by just a few pixels (for instance, a whisker sticking out from the rest of the feature). 
One application in which these box coordinates are used, however, is in computer drawing 
programs. Many such programs allow the user to select a number of drawn objects and then 
move them into alignment automatically. The options are typically to align the objects verti-
cally by their top, center, or bottom, and horizontally by their left, center, or right edges. These 
are just the box coordinates and midpoint.

The center of the so-called bounding box is useful in a few situations such as the gel scan 
in Figure 10.2, because the X and Y coordinates have meaning in terms of how the gel is 
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created. For most real images, this is not the case. When the X-Y axes are arbitrary, the bound-
ing box is biased and sensitive to object orientation, as shown in Figure 10.9. Some texts 
describe a “minimum bounding box” that is rotated as needed to fit the feature in the least 
possible area, but in practice this is not easy to determine and still makes the assumption that 
a rectangle has some meaning with respect to the object’s shape.

More representative of the geometric center 
of a feature is the location of the center of a 
bounding or circumscribed circle (illustrated 
Figure  10.10). Fitting such a circle to the 
points on the object periphery is made more 
efficient by using only those points that repre-
sent the vertices of a bounding polygon, fitted 
as described later in this chapter by rotating 
axes to a limited number of directions (typi-
cally about every ten degrees) and finding the 
maximum and minimum coordinate limits for 
each orientation. The size and center loca-
tion of the bounding circle are not sensitive 
to changes in the orientation of the axes or 
the feature.

For a non-convex feature or one containing 
internal holes, the geometric center may not 
lie within the feature bounds. Nor is it sensi-
tive to changes in the interior of the actual 
feature shape. For irregularly shaped features, 
it is usually preferable to take into account the 
feature shape and the location of all the pixels 

(b)

(a)

Figure 10.9 Rotation of a feature and the bounding box 
(a) and the changes in the size and shape of the bound-
ing box plotted against rotation (b).

Figure 10.10 Centroid (green), density weighted 
centroid (red) using the pixel density values, 
and geometric center (blue) determined as the 
center of the minimum bounding circle, for an 
irregular feature.
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present. This approach defines the centroid 
(or center of gravity) of the feature, a unique 
x, y point that would balance the feature on 
a pinpoint if it were cut out of a rigid, uni-
form sheet of cardboard. The coordinates of 
this point can be determined by averaging the 
coordinates of each pixel in the object.
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where the area is just the total number of 
pixels. This equation provides a set of coor-
dinates that are not restricted to integers. The 
center of gravity or centroid of an object can 
be determined to sub-pixel accuracy, which 
can be very important for locating features 
in a scene. Figure 10.10 compares the geo-
metric center and the centroid for an irregular 

feature.

If the centroid is calculated according to Equation 10.2 using only the boundary pixels, as is 
sometimes done (especially if features are represented by chain code, as described in Chapter 
7), the result is incorrect. The calculated point is biased toward whichever part of the bound-
ary is most complex and contains the most pixels (Figure 10.11). This bias also varies with 
the orientation of the boundary with respect to the pixel array because square pixels are 
larger in the diagonal direction than in their horizontal and vertical dimensions.

The centroid location can be calculated correctly from a boundary representation such as chain 
code. The correct calculation uses the pairs of coordinates xi, yi for each point in the boundary 
(or, for a polygonal shape, for each vertex), where x0, y0 and xn, yn are the same point (i.e., the 
boundary representation is a closed loop with the two ends at the same place).
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and the area is calculated as
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Figure 10.11 The centroid location determined 
by using just the boundary pixels (magenta) is 
shifted to the right, as compared to the correct 
location determined using all of the pixels in 
the feature (green).
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Some of the attractiveness of chain code or boundary representation as a compact way to 
describe a feature is lost when using that data to calculate parameters such as the area or 
centroid of the feature.

The definition of the centroid or center of gravity in Equation 10.2 treats each pixel within the 
feature equally. For some purposes, the pixel brightness, or a value calculated from it using a 
calibration curve, makes some pixels more important than others. For example, the accurate 
location of the spots and lines in the densitometric examples shown earlier benefits from this 
kind of weighting. That modification is easy to introduce by including the brightness-derived 
value in the summations in Equation 10.5. Figure 10.10 shows the density-weighted centroid 
(using the pixel gray values as density) in comparison to the conventional centroid in which 
all pixels are treated as equal.
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The denominator is now the integrated density (or whatever the parameter related to bright-
ness may be). This calculation requires access to the individual pixel brightness values as 
well as a suitable calibration curve, and so cannot be used with a boundary representation 
of the feature.

For a non-convex shape, the centroid may not lie within the bounds of the feature. When a 
unique representative point that always lies within the bounds of a potentially irregular shape 
is required, the ultimate eroded point or UEP determined from the Euclidean distance map 
(Chapter 8), or the UEP with the largest value if there is more than one, is the center of the 
largest inscribed circle in the feature and may be used to represent location.

Orientation

Closely related to the location of the centroid of a feature is the idea of determining its orien-
tation. There are a number of different parameters that are used, including the orientation of 
the longest dimension in the feature (the line between the two points on the periphery that 
are farthest apart, also known as the maximum Feret’s diameter or maximum caliper dimen-
sion) and the orientation of the major axis of an ellipse fitted to the feature boundary. But, just 
as the centroid is a more robust descriptor of the feature’s location than is the midpoint, an 
orientation defined by all of the pixels in the image is often better than any of these because 
it is less influenced by the presence or absence of a single pixel around the periphery where 
accidents of acquisition or noise may make slight alterations in the boundary.

The moment axis of a feature is the line around which the feature, if it were cut from rigid, 
uniform cardboard, has the lowest moment of rotation. It is the axis which best fits all of 
the pixels in the sense that the sum of the squares of their individual distances from the 
axis is minimized. This is the same criterion that may be used to fit lines to data points 
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when constructing graphs. Determining this axis and its orientation angle is straightfor-
ward and just involves summing pixel coordinates and the products of pixel coordinates for 
all of the pixels in the image. As for the example in Equation 10.5, it is possible to weight 
each pixel with some value such as the density, instead of letting each one vote equally. 
The most convenient procedure for the calculation is to add up a set of summations, as 
listed in Equation 10.6.
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Once these sums have been accumulated for the feature, the net moments about the x and y 
axes and the angle of the minimum moment are calculated as shown in Equation 10.7.

	

M S S
Area

M S S
Area

M S S S
Ar

x xx
x

y yy
y

xy xy
x y

= −

= −

= −
⋅

2

2

eea

M M M M M
M

xx yy xx yy xy

xy
Θ =

− + −( ) + ⋅

⋅




−tan 1

2 24
2












 (10.7)

Figure  10.12 shows an example of the measurement of orientation angle on features. 
Features that intersect the edges of the image field are not measured, as explained below. 
The measurement can also be applied to lines, as shown in Figure 10.13. In this case the 
axons are thresholded and skeletonized, and the nodes removed, leaving line segments. 
To characterize the distribution of orientations for the axons, it is more meaningful to 
plot the total length of segments as a function of angle rather than the number. Since the 
segments are not straight lines, the angle calculated using all of the pixels in the skeleton 
using Equations 10.6 and 10.7 is more meaningful than an angle determined using the end 
points only. Figure 10.14 shows an example combining position and angle. The orientation 
of the cells in the tissue varies with vertical position. This is an example of a gradient, as 
discussed in Chapter 9, characterized in this instance by the measurement of individual 
features within the image.



561Feature-Specific Measurements
© 2011 by Taylor & Francis Group, LLC

  
(a)              (b)              (c)

Figure 10.12 Measurement of feature orientation: (a) rice grains; (b) color (hue) coded according to 
angle; (c) distribution of grains according to angle.

  

(a)                     (b)

Figure 10.13 Measurement of fiber orientation: (a) image of axons, with skeleton segments superim-
posed (nodes removed, as described in Chapter 8); (b) cumulative length of fibers as a function of 
their angle, showing preferred orientation.

(a)

(b)

Figure 10.14 Cells in tissue (a), showing a gradi-
ent of angle with vertical position (b).
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Neighbor relationships

The location coordinates of individual features may be less important in some applications 
than the relationships between neighboring features. For instance, Figure 10.15 shows sev-
eral distributions of features. How can such distributions be compactly described to reveal the 
extent to which they are random, spaced apart (“self-avoiding”), or clustered?

Schwarz and Exner (1983) showed that a histogram of the distribution of the distances between 
nearest neighbors can provide an answer. The distance between any pair of neighbors (second 
nearest, etc.) can be used as well, but in most cases the nearest-neighbor pairs are the easiest 
to identify. Once the coordinates of the centroid points or other coordinates representing each 
feature have been determined, sorting through the resulting table to locate the nearest neigh-
bor for each point is a straightforward but potentially time-consuming task (best left to the 
computer). The straight line Pythagorean distances between these points are calculated and 
used to construct the histogram. This in turn can be characterized by the mean and variance 
(or standard deviation) of the distribution. The results can be used to analyze dispersion 
within and between clusters of objects (Luo & Koo, 2007).

A word of caution is needed in dealing with feature points located adjacent to the edge of 
the field of view (Reed & Howard, 1997): if the distance to the edge is less than the distance 
found to the nearest neighbor within the field of view, the distance should not be used in the 
distribution, because it may cause bias. It is possible that another feature outside the field of 
view may actually be closer. For large images (fields of view) containing many features, this 
problem is usually only a minor concern. The nearest-neighbor distance method also general-
izes to three dimensions, in the case of 3D imaging; the method has been used with a confocal 
microscope (Baddeley et al., 1987; Russ et al., 1989; Reed et al., 1997). Statistical tests on all 
neighbor pairs can also be used (Shapiro et al., 1985).

  
(a)              (b)              (c)

  

Figure 10.15 Feature distributions illustrating

  (a) random;

  (b) clustered; and

  (c) spaced or self-avoiding arrangements; and

  (d)  histogram of nearest-neighbor distances for each of 
the point distributions. The mean value of the clus-
tered distribution is less than, and that for the self-
avoiding distribution is greater than, that for the 
random one.

        (d)
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Consider the particular distributions shown in Figure 10.15. The image in Figure 10.15a is a 
random distribution of points, often called a Poisson random distribution because the histo-
gram of nearest-neighbor distances is a Poisson distribution. This is the sort of point distribu-
tion observed, for instance, by sprinkling salt on the table. Each point is entirely independent 
of the others, hence “random.” For such a distribution, the mean distance between nearest 
neighbors is just

	 M ean Area
N

= 05.  (10.8)

where N is the number of points within the area of the field of view. For a Poisson distribu-
tion, the variance is equal to the mean. Consequently, for a random distribution of points, the 
number of points per unit area of the surface is all that is needed to determine the mean and 
variance of the histogram of nearest-neighbor distances.

When clustering is present in the point distribution, most points have at least one neighbor 
that is quite close by. Consequently, the mean nearest-neighbor distance is reduced. In most 
cases, the variance also becomes less, as a measure of the uniformity of the spacing between 
the clustered points. As shown for the image in Figure 10.15b, this clustering produces a his-
togram of nearest neighbor distances (Figure 10.15d) that is narrower and has a smaller mean 
value than the Poisson distribution obtained for the random case. Examination of stars in the 
heavens indicates that they strongly cluster (into galaxies and clusters of galaxies). Some spe-
cies of birds and fish cluster in flocks and schools. People also cluster, gathering together in 
towns and cities.

When the points are self-avoiding, as shown in Figure 10.15c, the nearest-neighbor distances 
are also affected. The mean value of the histogram increases to a larger value than for the 
random case, as shown in Figure 10.15d. The variance also usually drops, as a measure of the 
uniformity of the spacings between points. Self-avoiding or regular distributions are common 
in nature, whether you look at the arrangement of mitochondria in muscle tissue or precipitate 
particles in metals, because the physics of diffusion plays a role in determining the arrange-
ment. The mitochondria are distributed to provide energy as uniformly as practical to the 
fibers. Forming one precipitate particle depletes the surrounding matrix of that element. The 
same effect occurs in the growth of cacti in the desert, because of competition for resources 
such as water. Ideally, the location of shopping centers within a town or city would be self-
avoiding, in order to attract a fresh market of customers, but in reality they often cluster along 
major roads (Figure 10.16).

The ratio of the mean value of the nearest-neighbor distance distribution to that which would 
be obtained if the same number of points were randomly distributed in the same area pro-
vides a useful measure of the tendency toward clustering or self-avoidance for the features, 
and the variance of the distribution provides a measure of the uniformity of the tendency. 
Because the mean and variance for the random case depend only upon the number of features 
present in the image area, this comparison is easily made.

Finding nearest-neighbor pairs using the location coordinates of features can also be used 
to characterize anisotropy in feature distributions. Instead of the distance between nearest 
neighbors, the direction is measured from each feature to its nearest neighbor. For an isotro-
pic arrangement of features, the nearest-neighbor directions should be a uniform function of 
angle. Plotting the histogram as a rose plot shows any deviations from this uniform function 
and indicates the degree of anisotropy.
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For instance, if the regularly spaced distribution of feature points in Figure 10.15c is mea-
sured, the rose plot is approximately circular and indicates that the distribution is isotropic. 
If the image is stretched 10% in the horizontal direction and shrunk 10% in the vertical direc-
tion, the total number of features per unit area is unchanged. The visual appearance of the 
image (Figure 10.17) does not reveal the anisotropy to a casual observer. But a plot of the 
rose of nearest-neighbor directions (Figure 10.18) shows that most of the features now have 
a nearest neighbor that is situated above or below rather than being approximately uniform in 
all directions. The shape of the rose plot is a sensitive indicator of this type of anisotropy.

Measuring nearest-neighbor distances using the feature centroids is appropriate when the fea-
tures are small compared to the distances between them. When features are large compared to 

Figure 10.16 Locations of shopping centers in Raleigh, North Carolina (according to Google Maps®). 
The mean nearest-neighbor distance is 0.91 miles, less than the expected value of 1.43 miles for a 
random distribution, which indicates clustering.
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the distances that separate them, and particularly 
when they are irregular in shape, vary in size, and 
have different orientations, it may be more appro-
priate to measure the distance from edge to edge 
rather than between centroids. Yang et al. (2001) 
suggest that it is the variance of the distribution of 
these distances that is most sensitive to inhomoge-
neity and to anisotropic clustering. The minimum 
separation distance is the shortest edge-to-edge 
distance between a point on one feature and that 
on its neighbor. As indicated in Figure 10.19, this 
may be much different from the centroid-to-cen-
troid distance, and in fact may involve a different 
neighbor.

The Euclidean distance map (EDM) introduced in 
Chapter 8 can be used to determine those edge-
to-edge distances, as shown in Figure 10.20. The 
skiz, or skeleton of the background between fea-

tures, is a Voronoi tessellation of the image with one feature in each cell. The EDM of the cells 
in this tessellation measures the distance of every pixel from the lines in the skiz. Assigning 
these EDM values to the features (the masking operation used in Chapter 8) gives each fea-
ture a minimum pixel value from the EDM that is half the distance to the feature with the 
closest boundary point, because the skiz passes midway between features.

A second method for measuring minimum separation distance constructs the EDM of the back-
ground and finds the local minima along the points in the skiz. These are midway between 
points of closest approach and provide another measurement of minimum separation distance 
between features. With this technique, it is possible to separately measure multiple minimum 
separations between different points on one feature and those on one or several neighbors.

In the case of a space-filling structure such as cells in tissue, grains in a metal, or fields in 
an aerial survey, the number of adjacent neighbors is also of interest. Since the features are 
separate, there must be a line of background pixels that separate them. In many cases, this 
line is produced by skeletonizing the original thresholded image of the boundaries and then 
inverting it to define the pixels. Counting the number of neighbors for each feature can be 

Figure 10.17 Stretching the point distribution in 
Figure 10.15c horizontally and compressing 
it vertically introduces nonuniformity in the 
nearest neighbor directions.

Figure 10.18 Rose plots of the number of features 
as a function of nearest neighbor direction:

  (a) Figure 10.15c;

  (b) Figure 10.17.

Figure 10.19 Centroid-to-centroid distance 
and minimum separation distance for 
two features.
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accomplished by checking the feature identification number of pixels that touch each of the 
background pixels in the boundaries. Building a table of the features that abut each other 
feature allows counting the number of such neighbors.

Labeling the features according to the number of neighbors can reveal some interesting prop-
erties of the structure. Figure 10.21 shows the labeling of the number of neighbors in a dia-
tom, an essentially two-dimensional structure in which the majority of cells are six sided. The 
pairing of the five- and seven-neighbor cells is apparent in the color-coded image, but might 
go unnoticed in the original. Figure 10.22 shows a similar labeling for grains in a three-
dimensional metal structure, as revealed on a two-dimensional section. For the equilibrium 
structure in a fully recrystallized metal, the distribution of nearest neighbors should be log 
normal (as it is for the example shown).

  
(a)              (b)              (c)

Figure 10.20 Determining minimum separation distance: (a) diagram showing several features; (b) 
the skiz of the features and the Euclidean distance map of the cells in the resulting Voronoi tessella-
tion; (c) EDM values assigned to pixels in the features (shown in false color). The minimum value for 
each feature is half the edge-to-edge distance to its nearest neighbor.

(a)                   (b)

Figure 10.21 Counting neighbors: (a) image of a diatom; (b) the holes in the structure color coded 
according to the number of sides. The predominant shape is six sided, but there are some five and 
seven-sided holes which generally lie adjacent to each other.
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Alignment

One thing that people are very good at finding visually in images is alignment and arrange-
ment of features. Humans are so good at it that we sometimes find such alignments and 
arrangements when they don’t really exist. Chapter 2 illustrates constellations in the sky as 
an example of this tendency to impose order on disorder.

There are many image analysis situations in which an algorithmic procedure for determining an 
alignment or arrangement is needed. One of the most common is completing broken lines or 
fitting a line through a series of points, especially straight lines. Such a procedure is useful at all 
magnifications, from trying to locate electric transmission lines in reconnaissance photos (which 
show the towers but do not resolve the wires) to delineating atomic lattices in transmission 
electron microscopy. In general, the points along the line are not spaced with perfect regularity 
and may not lie precisely on the line. This irregularity and the sensitivity to noise in the form of 
other points or features in the field of view that are not part of the line present challenges.

Transforming the image into a different space provides the key. The use of Fourier space is 
shown in Chapter 6, but it is not generally a good choice for this purpose because of the 
irregularity of the point spacings. However, there are many other transform spaces that are 
less familiar. Converting the image data into Hough space can be used to find alignments 
(Hough, 1962; Duda & Hart, 1972; Ballard, 1981). Different Hough spaces are used to fit differ-
ent kinds of shapes, and it is necessary in most cases to have a prior knowledge of the type of 
line or other arrangement that is to be fit to the data. The following example shows the case 
of a straight line, since it is the simplest case as well as one of the most widely useful.

The conventional way to fit a line to data points on a graph is the so-called “least-squares” 
method where the sum of the squares of the deviations of each point from the line is mini-
mized. The Hough method accomplishes this automatically because it minimizes the devia-
tions of points from the line and deals correctly with the case of the points not being uniformly 
distributed along the line.

Two parameters are required to define a straight line. In Cartesian coordinates, the equation 
of a straight line is

 y = m · x + b (10.9)

where m is the slope and b the intercept. Because m becomes infinitely large for lines that 
are parallel to the y axis, this representation is not usually employed in the Hough transform. 

 
(a)                   (b)

Figure 10.22 Counting 
neighbors:

  (a)  grains in a steel 
alloy color coded 
according to the 
number of nearest 
neighbors;

  (b)  the plot of the fre-
quency distribution 
of number of neigh-
bor is log-normal 
in both two and 
three dimensions 
for an equilibrium 
grain structure.
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Instead, the polar coordinate representation of a line is used. 
The radius ρ and angle ϕ (the length and angle of a normal to 
the line from the origin) define the line. It is possible either to 
allow the angle to vary from 0 to 2π and to keep ρ positive, or to allow ρ to be either positive 
or negative and to restrict the angle ϕ to a range of 0 to π. The latter convention is used in the 
examples that follow. The single black point in real (or pixel) space shown in Figure 10.23a 
generates the sinusoid in Hough space shown in Figure 10.23b. Each point along this sinu-
soid corresponds to the ρ, ϕ values for a single line passing through the original point. Several 
of these are shown in color, where the color of the point in Hough space matches the corre-
sponding line in real space.

Hough space is an accumulator space. This means that it sums up the votes of many pixels 
in the image, so that points in Hough space that have a large total vote are then interpreted 
as indicating the corresponding alignment in the real space image. For the linear Hough 
transform, used to fit straight lines to data, the space is an array of cells (pixels, since this is 
another image) with coordinates of angle and radius. Every point in Hough space defines a 
single straight line with the corresponding angle ϕ and radius ρ that can be drawn in the real 
space image. Although Hough space and its construction and use are described here in terms 
of finding alignments, the sinusoidal (polar coordinate) version of Hough space is identical to 
the Radon transform used in tomography and illustrated in Chapter 13.

To construct the Hough transform, every point present in the real space image casts its votes 
into the Hough space for each of the lines that can possibly pass through it. As shown in 
Figure 10.23, this means that each point in the real space image generates a sinusoid in 
Hough space. Each point along the sinusoid in Hough space gets one vote added to it for each 
point in the real space image, or alternatively a fractional vote based on the intensity associ-
ated with the point in real space. The superposition of the sinusoids from several points in 
real space causes the votes to add together where they cross. These crossing points in Hough 
space occur at values of ρ and ϕ that identify the lines that pass through multiple points in the 
real space image, as shown in Figure 10.24.

In this example, the duality of lines and points in real and Hough space is emphasized. Each 
of the five original points (labeled A…E) in real space produces a sinusoid (similarly labeled) 
in Hough space. Where these sinusoids cross, they identify points in Hough space (labeled 
1…6). These points correspond to straight lines back in real space (similarly labeled) that pass 
through the same points. Notice, for instance, that three lines pass through point A in real 
space, and that the sinusoid labeled A in Hough space passes through the points for each of 

 
(a)              (b)

Figure 10.23 Principle of the 
Hough transform. Each point 
in the real space image

  (a)  produces a sinusoidal 
line in Hough space

  (b)  representing all possible 
lines that can be drawn 
through it. Each point in 
Hough space corresponds 
to a line in real space. 
The real space lines cor-
responding to a few of the 
points along the sinusoid 
are shown, with color 
coding to match them to 
the points.
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those three lines. Likewise, the point labeled 6 in Hough space has three sinusoids passing 
through it, and the corresponding line labeled 6 in real space passes through three points.

If there are several such alignments of points in the real space image, then there are several 
locations in the Hough transform that receive numerous votes. It is possible to find these 
points either by thresholding (which is equivalent to finding lines that pass through a selected 
minimum number of points) or by looking for local maxima (peaks in the Hough transform), 
for example using a top hat filter.

If the original real space image contains a step in brightness, and an image-processing opera-
tion such as a gradient (e.g., Sobel filter) has been applied, then an improved detection and fit 
of a line to the edge can be achieved by letting each point in the image vote according to the 
magnitude of the gradient. This means that some points have more votes than others, accord-
ing to how probable it is that they lie on the line. The only drawback to this approach is that 
the accumulator space must be able to handle much larger integer values or real numbers 
when this type of voting is used, as compared to the simpler case where pixels in a binary 
image of feature points either have one vote or none. Figure 10.25 shows an example of fit-
ting a line to a noisy edge using an gradient operator and the Hough transform. Notice that 
the location of the maximum point in Hough space can take advantage of the same techniques 
for using the pixel values to interpolate a location to sub-pixel dimensions, as discussed at the 
start of this chapter. It is also possible to make the Hough space image as large as desired to 
achieve improved accuracy for the ρ, ϕ values.

Figure 10.26 shows an application of this technique. The task is to determine the height 
of the person in the surveillance video image in Figure 10.26c. A convenient ruler for this 
calculation is the known height of the tables. Figure 10.26a shows an earlier frame from the 
video in which the tables can be seen. Applying a Sobel gradient filter to the region around 
the edges highlights the pixels marked in green. Using these to generate the Hough trans-
form (shown in Figure 10.26b) fits the line marked in red. Superimposing this on the image 
of the person allows measurement of the height of the table at his location, which is then 

(a) (b) (c)

Figure 10.24 Duality of lines and points in Hough and real space. Each of the labeled points in the real 
space image (a) generates a sinusoidal line in the Hough space image (b). The numbered crossing 
points in this space generate the lines in the real space image (c) which go through the original points. 
The labels A...E identify points in the real space image (and their corresponding sinusoids in Hough 
space), while the labels 1.6 identify crossing points in the Hough space image (and their correspond-
ing straight lines in real space).
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combined with the height of the person (and a small correction made for the angle of view of 
the camera) to provide the height measurement.

For measurement of the spacings of parallel lines, Hough space reduces the problem to mea-
suring the vertical distance between peaks in the transform. As shown in Figure 10.27, the 
application of a derivative to an SEM image of a line on an integrated circuit produces peaks 
at the same ϕ value (corresponding to the line orientation), and measuring the distance in ρ 
provides direct measures of the width and spacing of the lines. Similarly, measuring the angu-
lar orientation of lines is accomplished by determining the ϕ values on the horizontal axis in 
the transform. Proportional voting is especially useful when there are many points to be fit, 
with some points being more important than others, as for example when a gradient operator 
is used to locate an edge. Summing the votes according to brightness (or some value obtained 
from brightness) allows some points to be weighted more and produces an improved fit.

The linear Hough transform also provides a solution to one of the problems that often arises 
in image analysis, as illustrated in Figure 10.28. Preparing specimens of straight fibers, as 
occur in a variety of industrial situations, often results in fibers either crossing over each other 
or lying adjacent to one another.

Strategies that use the skeleton of the fiber images, disconnect the fragments by erasing the 
crossing points, and then try to match up the pieces based on nearby end points and similar 
orientations, sometimes work but are highly specific to individual cases (Sandau & Ohser, 
2007; Wang et al., 2008). When two fibers cross at a shallow angle, the skeleton of the image 

(d)

(a) (b) (c)

Figure 10.25 Fitting a line to a noisy edge using the Hough transform: (a) the original noisy image; (b) 
smoothing to reduce the noise and application of a Sobel gradient filter; (c) Hough transform pro-
duced from the gradient image; (d) line defined by the maximum point in the Hough transform.
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does not cleanly define the two individual fibers, as shown in Figure 10.29. The skeleton in 
the central region where the overlap occurs is part of both fibers, does not exactly match the 
orientation of either, but must be included in the measurement for both.

A different approach to this type of image utilizes the linear Hough transform. As shown in 
Figure 10.30, the transform of the fiber image includes a sinusoid for every pixel in all of the 
fibers, and their summation produces maxima that correspond to the orientation and position 
of each individual fiber. Furthermore, the values of these maxima represent the number of 
pixels that have contributed to that particular line and so provide a measurement of the indi-
vidual fiber sizes. If required, scanning along each line identified by the transform can locate 
the ends of each fiber.

The Hough transform can be adapted straightforwardly to other shapes, but the size and 
dimensionality of the Hough space used to accumulate the votes increase with the complex-
ity of the shape. Fitting a circle to a series of points is used to measure electron diffraction 

     
          (a)                 (b)

 

Figure 10.26 Height measurement in surveillance video:

  (a)  reference frame showing the tables used as a calibra-
tion ruler. A Sobel filter highlights the pixels marked 
in green, which are used to generate the Hough 
transform. The red line is the result;

  (b)  the Hough transform, showing the sinusoids gener-
ated by each of the pixels highlighted by the Sobel 
edge filter, and the point where they cross, producing 
a high accumulated vote (red arrow);

  (c)  the line between the table edges superimposed on the 
video image of the person whose height is to be mea-
sured. The ratio of the green and blue arrow lengths 
is used to determine his height. A perspective adjust-
ment for the greater distance from the camera to the 
center of the blue arrow (table height) as compared to 
the distance to the center of the green arrow (man’s 
height) is also needed.

          (c)
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patterns and to locate drilled holes 
in machined parts (and can in 
principle locate and measure the 
center-pivot irrigation systems in 
a satellite image of Nebraska). It is 
not required that the points form 
a complete circle; for example, the 
method has been used to measure 
the curvature of pot sherds by view-
ing them edge-on.

The circular Hough transform 
requires a three-dimensional 
space, since three parameters are 
required to define a circle (the x, 
y coordinates of the center and the 
radius). Each point in the real space 
image produces a cone of votes 
into this Hough space, as shown 
in Figure 10.31, corresponding to 
all of the circles of various radii and center positions that can be drawn through the point 
(Bresenham, 1977; Kimme et al., 1975; Rizon et al., 2005).

If one or two of these values are known (for instance, the center of the electron diffraction 
pattern, or the radius of the drilled hole) or at least can vary over only a small range of pos-
sible values, then the dimensionality and size of the Hough space are reduced and the entire 
procedure becomes more efficient. Accurately fitting a circle to an irregularly spaced set of 
points of varying brightness is a good example of the power that the Hough approach brings 
to image measurement. Since the brightness of the point resulting from multiple votes in 

(a)

              (b)

(c)

Figure 10.27 Measuring line 
width and spacing on an inte-
grated circuit:

  (a) original SEM image;

  (b)  horizontal derivative 
applied;

  (c)  Hough transform, showing 
peaks corresponding to line 
edges and the distances that 
measure width and spacing.
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Hough space that defines the circle is also the summation of those votes from all of the points 
on the corresponding circle in real space, this approach offers a useful way to integrate the 
total brightness of points in the electron diffraction pattern as well.

Figure 10.32 shows an example of using a circular Hough transform to locate the “best fit” 
circles in a selected area diffraction pattern. The pattern itself has bright spots with irregular 
locations around each circle. A human has little difficulty in estimating where the circles lie, 
but this is generally a difficult thing for computer algorithms that examine only local pixel 
regions. The Hough transform locates the circles and also provides a way to easily measure 
the integrated brightness around each circle. The values along the line located at the center of 
the pattern and parallel to the radius axis in Hough space give the integrated radial intensity 
plot for the pattern. This approach has been used to identify asbestos fibers from the very 
spotty electron diffraction patterns obtained from a few fibers (Russ et al., 1989).

An alternative way to measure the radii and integrated brightness of the points in the diffrac-
tion pattern (and similar tasks) is to plot the total brightness of pixels as a function of their 
radius from the center. This requires locating the center, which may require the use of the 
circular Hough transform. As shown in Figure 10.33, subtracting a background created by 
applying a morphological gray scale opening to eliminate the individual spots leaves just the 
spots. Plotting the average brightness of pixels requires summing the brightness values and 
counting the pixels as a function of radius.

Figure 10.34 shows an example from machine vision in which both the linear and circular 
Hough transforms are used to locate edges and holes accurately for quality control purposes or 
robotics guidance. In spite of overall noise in the image, the fit is rapid and robust. A separate 
region of interest (ROI) is set up covering the area where each feature is expected. In each ROI, 
a gradient operator is applied to identify pixels along the edge. These are then used to per-
form two Hough transforms, one for a straight line and one for a circle. The resulting feature 

Figure 10.28 Scanning 
electron microscope 
image of crossing 
straight fibers.

 

  

Figure 10.29 Illustration of two cross-
ing fibers. The skeleton segment in 
the central section must be included 
in the measurement for both.
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boundaries are shown, along with the measured distance between them. Since many pixels have 
contributed to each feature, the accuracy of location is much better than the pixel dimensions.

The Hough transform approach can be used to fit other alignment models to data as well. The 
limitation is that as the algebraic form of the model changes, each of the adjustable constants 
requires another dimension in Hough space. Constructing the transform and finding the maxi-
mum points can become quite memory intensive.

Counting

In many images, counting objects requires identifying some unique brightness or color or pat-
tern that can be recognized by a computer program or, if necessary, by a human. People are 
generally not good at counting accurately, but they are good at recognition. So the strategy 
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(c)

Figure 10.30 Illustration of the linear Hough transform applied to crossing straight fibers: (a) eight 
fibers, including instances of crossing at large and shallow angles, one fiber ending on another, 
and adjacent nearly parallel fibers; (b) the linear Hough transform from image (a) with the eight 
peak values marked and numbered; (c) the inverse Hough transform for the eight points marked in 
(b) superimposed on the original image with the corresponding lines for each maximum point num-
bered. Blue arrows indicate the ends of each fiber determined by scanning along the lines.
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of marking the image in some unique color 
and then having the computer do the counting 
is often a good one. In some cases the use of 
a method such as cross-correlation, shown in 
Chapter 6, can facilitate automated counting.

Counting the number of objects or features (the 
terms are used interchangeably in the discussion 
here) that are present in an image or field of view 
is one of the most common procedures in image 
analysis. The concept seems entirely straightfor-
ward, and it is surprising how many programs 
get it wrong. The problem has to do with the 
finite bounds of the field of view. In the case in 
which the entire field of interest is within the 
image, there is little difficulty. Each object or fea-
ture has simply to be defined by some unique 
point, and those points counted. Depending on 
how features are recognized, some algorithms 

may ignore features that are entirely contained within holes in other features. This problem most 
often arises when boundary representation is used to define the feature boundaries in the binary 
image. Determining whether or not it is appropriate to count features that lie inside other features 
depends on the particular application, and whether the image is a projection or a section view, 
and consequently must be left up to the user.

When the field of view is a sample of the entire structure, which extends beyond the bounds 
of the image, the result for the number of features or objects is generally given as number per 

  

Figure 10.32 Selected area elec-
tron diffraction pattern with 
principal circles (and their 
center) located by a circular 
Hough transform.

Figure 10.31 Circular Hough space. Each of 
the three points in the image plane (marked 
in blue) generates a cone. The intersection of 
the cones (marked in red) specifies the radius 
and locates the center of the circle (marked in 
green) passing through the original points.
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(a)                       (b)

    

(d)

Figure 10.33 Radial intensity profile:
  (a) original electron diffraction pattern;
  (b)  background produced by a gray scale mor-

phological opening;
  (c) result of subtracting (b) from (c);
  (d) radial intensity profile.

           (c)

Figure 10.34 Use of the linear and circular 
Hough transforms to locate an edge and 
a circular hole in a machined part, in 
order to measure the distance between 
them to sub-pixel accuracy.
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unit area. When features intersect the edge 
of the field of view, it is not proper to count 
all of the features that can be seen. The most 
common solution to produce an unbiased 
result is to count those features that touch 
two adjacent edges, for instance the top and 
left, and to ignore those that touch the other 
two edges, for instance the right and bottom. 
This is equivalent to counting each feature by 
its lower right corner. Since each feature has 
one and only one lower right corner, count-
ing those points is equivalent to counting the 
features. Figure 10.35 shows an example. An 
alternative method that is sometimes used is 
to count features that intersect any edge as 
1/2. Both methods are equivalent for convex 
features but can be fooled if the features have 
non-convex shapes that produce more than a 
single intersection with the edge.

The “lower right corner” method is the same as determining the number of people in a room 
by counting noses. Since each person has one nose, the nose count is the same as the people 
count. If a smaller region is marked within the room, so that people might happen to straddle 
the boundary, counting the noses still works. Anyone whose nose is inside the region is 
counted, regardless of how much of the person lies outside the region. Conversely, any per-
son whose nose is outside is not counted, no matter how much of the person lies inside the 
region. It is important to note that in this example, the portions of the people that are outside 
the region may be visible, but in the case of the objects in the image, this is not the case. Any 
part of the object outside the field of view captured by the image is by definition not visible, 
and nothing is known about the amount or shape of the object outside the field of view. That 
is why it is important to define a unique point for each object to use in counting.

The convention of counting features that touch two edges only is not implemented in all sys-
tems. Some software packages offer a choice of counting all features regardless of edge touch-
ing, or counting only those features that do not touch any edge. Both are incorrect. When 
measuring objects, as opposed to counting them, a more complicated procedure is needed. A 
feature that intersects any edge cannot be measured, because it is not all imaged and there-
fore no size, shape, or position information can be correctly obtained. If only the features in 
Figure 10.36 that do not touch any edge are counted, the proportions of large and small fea-
tures are wrong. It is more likely for a large object to touch an edge, and so a disproportionate 
fraction of the large features intersect an edge of the field of view and are not measured.

There are two ways to correct for this bias. They produce the same result, but are imple-
mented differently. The older method, which was used originally for manual measurements 
on photographic prints, sets up a “guard frame” within the image, as shown in Figure 10.37. 
Features that touch the lower and right edges of the field of view are not counted or measured, 
as before. Features that cross the top and left edges of the guard frame are counted and mea-
sured in their entirety. Features that lie only within the guard region are not counted, whether 
they touch the actual edge of the field of view or not. The number of features or objects 
counted is then an accurate and unbiased measure of the number per unit area, but the area 
reported for the measurement is the area within the counting frame, not the entire area of 

Figure 10.35 Counting features by a unique 
point. The red dots mark the right end of the 
lowest line of pixels in each feature. Features 
that touch the top and left boundaries are 
counted, but those that touch the bottom and 
right edges are not.
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the image. This is exactly equivalent to the 
“lower right corner” method shown above for 
counting, but also permits measurements to 
be made on the objects. Since it is necessary 
for the guard region to be wide enough that 
no feature can extend from within the active 
region across the guard region to the edge of 
the field, the active region may be reduced sig-
nificantly compared to the total image area.

The second method uses the entire image area 
and measures all of those features that do not 
touch any of the edges. In order to compensate 
for the bias arising from the fact that larger fea-
tures are more likely to touch the edge and be 
bypassed in the measurement process, features 

are counted in proportion to the likelihood that a feature of that particular size and shape would 
be likely to touch the edge of a randomly placed field of view. The adjusted count for each fea-
ture is calculated, as shown in Figure 10.38, as:

	 Count W W
W F W F

x y

x x y y
=

⋅
−( ) ⋅ −( )  (10.10)

where Wx and Wy are the dimensions of the image in the x and y directions, and Fx and Fy are 
the maximum projected dimensions of the feature in those directions.

The F values are the same bounding-box coordinates as mentioned above in connection with 
finding a feature’s location. When the feature dimensions are small compared to the dimen-
sions of the field of view, the fraction is nearly 1.0 and counting is little affected. When the 
feature extends across a larger fraction of the field of view in either direction, it is more likely 

Figure 10.37 Measurement using a guard frame 
(shown in red). Features that lie partially or 
entirely within the inner region (black) are 
counted. Features that touch the outer edge 
of the image or lie entirely in the guard frame 
(blue or green) are not. The width of the guard 
region must be large enough that no feature 
can span it.

Figure 10.38 Dimensions of the image and the 
feature used to adjust the count for unbiased 
results in Equation 10.10.

Figure 10.36 When an image area (shown by the 
green frame) lies within a larger field of objects 
to be measured, some will be intersected by the 
edge. These cannot be measured because their 
extent outside the image area is unknown. In 
the example shown, although there are three 
times as many small red features as long blue 
ones, the frame intersects (and prevents the 
measurement of) twice as many blue ones, 
biasing the result.
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that a random placement of the field of view on the sample would cause it to intersect an edge; 
thus the features that can be measured must be counted as more than one to correct for those 
that have been eliminated. The adjusted count factor makes that compensation.

Figure 10.39 shows an example of an image containing features of varying sizes and shapes, with 
the adjusted count for each. A plot of the size distribution shows that using the adjusted count sig-
nificantly affects the mean size, the shape of the distribution, and the total number of features.

Special counting procedures

The examples of counting in the previous section make the tacit assumption that the features 
are separate and distinct. In earlier chapters, general procedures for processing images in either 
color or gray scale or the binary format resulting from thresholding are shown whose goal is 
to accomplish the separate delineation of features to permit counting and measurement (for 
example, watershed segmentation). However, there are many specific situations in which these 
methods are not successful, or at least very difficult. Sometimes, if there is enough independent 
knowledge about the specimen, counting can be accomplished even in these difficult cases.

Figure 10.39 Example of the adjusted count for features that vary in size: (a) adjusted count for each 
feature; (b) size distribution data with no adjustment to correct for bias due to features intersect-
ing the edge; (c) using the adjusted count. Note the difference in the total number of features (90 vs. 
104.2) and mean feature size (12.8 vs. 14.3 µm).



580 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

As an example, Figure 8.70 in Chapter 8 shows a collection of crossing fibers. Such struc-
tures are common in biological samples, wood fibers used in paper production, textiles, food 
technology, and many more situations. Since the fibers cross, from the point of view of the 
image analysis algorithms there is only a single feature present, and furthermore it usually 
extends beyond all sides of the field of view. However, it is possible to estimate the number of 
fibers per unit area and the average fiber length. By thresholding the fibers and skeletonizing 
the resulting binary image, a series of crossing midlines is revealed. As illustrated in Chapter 
8, the end points of fibers can be counted as those pixels in the skeleton that have exactly one 
touching neighbor. This is not a perfect method, as there may be some ends of real fibers that 
are hidden because they lie exactly on another fiber, but in principle it is possible to detect 
these occurrences as well because they produce pixels with exactly three neighbors, and one 
of the angles at the junction is about 180 degrees. However, even without this refinement, half 
of the end point count gives a useful approximation for the number of fibers.

In the preceding section each feature is counted by one unique point. Counting the end points 
of fibers uses two unique points per fiber. If a fiber has one end in the field of view and the 
other end out, it is counted (correctly) as 1/2 fiber, because the other end would be counted in 
a different field of view. Dividing by the image area gives the number of fibers per unit area. 
If the total length of fiber (the total length of the skeletonized midline) is divided by the num-
ber of fibers (one-half the number of ends), the result is the average fiber length. If the fibers 
are much longer than the field of view so that there are no end points (or very few) present in 
most fields of view, it then becomes necessary to combine the data from many fields of view 
to obtain a statistically meaningful result.

Chapter 8 presents several techniques for separating touching features. One of the more pow-
erful, watershed segmentation, utilizes the Euclidean distance map. This operation assigns a 
gray scale value to each pixel within a feature proportional to the distance from that pixel to 
the nearest background point. The valleys, or points that lie between two higher pixels in this 
distance map, then are used to locate boundaries that are drawn between features in order to 
separate them. Because there is a built-in assumption in this method that major indentations 
around the periphery of the feature cluster indicate a separation point, this technique is also 
known as convex segmentation.

If the purpose of the processing and segmentation is to count the features, there is a short-cut 
method that saves much of the computation. In the Euclidean distance map (EDM), every local 
maximum point (pixels equal to or greater than all eight of their neighbors) is a unique point 
that represents one feature that will eventually be separated from its touching companions by 
watershed segmentation. Finding these ultimate eroded points (UEPs) provides another rapid 
way to count the features present. In addition, the gray scale value of that point in the EDM is 
a measure of the size of the feature, since it corresponds to the radius of the largest inscribed 
circle that can be drawn within the feature. Figure 10.40 repeats an example from Chapter 
8 of some touching circles, with the ultimate points found from the Euclidean distance map 
and the corresponding circle sizes.

Counting touching particles presents many difficulties for image analysis algorithms. If the 
particles are not simple convex shapes that lie in a single plane and happen to touch at 
their boundaries, watershed segmentation may not be able to separate them successfully. The 
actual requirement is that the shape of the feature produce an EDM with only a single peak, 
which means that some features, such as those shown in Figure 10.41 that are not perfectly 
convex, can be successfully separated, but this is not always the case.
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(a)              (b)              (c)

 

Figure 10.40 Counting and sizing touching particles:
  (a) binary image of touching circles;
  (b)  Euclidean distance map (color indicates distance of pixel 

from nearest background point);
  (c)  ultimate points (local maxima in the Euclidean distance 

map), whose color gives the radius;
  (d)  intersecting circular particle boundaries based on the ulti-

mate points.

        (d)

 
(a)                        (b)

 

Figure 10.41 Watershed segmentation of non-
convex shapes:

  (a)  thresholded image of touching cashew 
nuts;

  (b) successful watershed separation;
  (c)  Euclidean distance map showing that the 

touching features each has only a single 
maximum.

          (c)
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A typical example of a more difficult problem is shown in Figure 10.42. The clay particles 
that coat this paper sample form a layer that is essentially one particle thick, but the overlaps 
are extensive. In order to obtain a useful estimate of the number of particles per unit area of 
the paper, it is again necessary to use the idea of finding one unique point per particle.

In this case, the way the image is formed by the scanning electron microscope provides an 
answer. Most of the particles are somewhat angular and have a single highest point that 
appears bright in the secondary electron image. These points (shown in the figure) can be 
isolated using a top hat filter, as introduced in Chapter 5. In the example, the top hat filter 
finds one unique point with a local maximum in brightness for most of the clay particles. A 
few are missed altogether because they have a shape or orientation that does not produce a 
characteristic bright point, and a few particles have sufficiently irregular shapes that they pro-
duce more than a single characteristic point. This means that counting the points gives only 
an estimate of the particle density on the paper, but for many quality control purposes this 
sort of estimate is sufficient to monitor changes.

The top hat filter used in the preceding example is a specific case of a feature-matching or 
template operation that looks throughout the image for a particular pattern of bright and 
dark pixels. A more general case uses cross-correlation, shown in Chapter 6. The example 
in Figure 10.43 shows an aerial photograph of trees in the forests on Mount Mitchell, North 
Carolina. It is desired to count the trees to monitor damage from acid rain due to power plant 
smokestacks in Tennessee. A useful short cut method is to use the image of the pointed top 
of one tree as a target, cross correlate with the entire image, and count the resulting spots. Of 
course, this method is only approximate; it does a good job of finding trees that are partially 
hidden or in front of another tree, but will miss trees that do not have a characteristic pointed 
top like the target example.

Figure 10.44 shows another example. The edges of the particles are not uniformly bright or well 
defined because of the presence of neighboring particles, some of which touch. Also, the particles 
vary significantly in size, but the variation of brightness near the center of each is fairly consistent. 
Selecting a region in the center of one representative particle (shown in the figure) as the target for 
cross-correlation with the entire image produces the result shown (false color has been applied to 

  
(a)                     (b)

Figure 10.42 Counting overlapping particles: (a) SEM image of clay particles on paper; (b) superim-
posed points from a top-hat filter used to locate a local brightest point, which can be used to estimate 
the number of particles per square inch.
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make the subtle variations in gray scale brightness more apparent). Thresholding this image and 
marking the centroid of each region identifies the particles for counting. But the additional prob-
lem with this image is that the surface being examined is not flat and the specimen has depth, so 
that there are more particles beneath the top layer which are not counted. While it is possible to 
count the marked particles automatically, it is not clear that this number means anything.

Three-dimensional problems must usually be solved either by three-dimensional imaging or 
by stereological relationships. One successful approach to counting particles in clusters is 
shown in Figure 10.45. This is a TEM image of carbon black particles, which are present in 

 
(a)                     (b)

Figure 10.43 Counting with cross-correlation: (a) aerial photograph of trees—the red outline marks 
the tree top selected as the target for matching; (b) cross-correlation result, with identified tree tops 
marked.

 
(a)                     (b)

 

Figure 10.44 Cross-correlation for counting: 

  (a)  SEM image of particles, showing region 
selected as a target;

  (b)  cross-correlation results, false colored to 
show orange islands that correspond to 
the particles;

  (c)  centroids of the orange regions after 
thresholding, superimposed on the origi-
nal image.

            (c)
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the form of clusters of varying sizes. If it can 
be assumed that the particles in the clusters 
are similar in size and density to the isolated 
one, then it becomes possible to estimate 
the number of particles in a cluster from the 
integrated density of the cluster. Measuring 
the average value of the integrated optical 
density of an isolated particle (or better, 
getting an average from several such mea-
surements), and dividing that value into the 
integrated density of each cluster, provides a 
number that is an estimate of the number of 
particles present.

This method also works well with transmitted 
light images and with X-ray images. A cali-
bration curve for density can be set up easily 
using Beer’s law (exponential absorption with 
mass density), setting the background inten-
sity value for the image to correspond to zero 
density and the darkest value to an arbitrary 
positive density. Since only ratios are used, 
no actual calibration standard is needed. Of 
course, it is assumed that no points in the 
image are completely black.

Feature size

The most basic measure of the size of features in images is simply the area. For a pixel-based 
representation, this is the number of pixels within the feature, which is determined by count-
ing. For boundary representation, the area can be calculated with Equation 10.4. For run-
length encoded representation, it is the sum of the chord lengths for the feature.

The size of a feature in a two-dimensional image may be related to the size of the corresponding 
object in three-dimensional space in various ways, depending on how the image is obtained. 
The most common type of images are projections, in which the features show the outer dimen-
sions of the objects, or planar sections, in which the features are slices across the objects. In the 
latter case, it is possible to estimate the volume of the objects using the stereological methods 
discussed in the preceding chapter. This chapter deals with measuring the size of features rep-
resented in the image, independent of the subsequent analysis of the size data.

Figure 10.46 shows an image of spherical particles dispersed on a flat substrate. The diam-
eters can be measured straightforwardly from such an image subject to the usual restriction 
that there must be enough pixels in each feature to give a precise measure of its size. When 
the particles cover a large size range, as they do in this image, this creates a problem. The 
smallest features are only one or a few pixels in size and are not well defined (in fact, some 
may not even be thresholded). A high resolution camera or the combination of multiple 
images is needed to image both the large and small features at the same time. Even the high 
resolution digital camera does not provide enough pixels to accurately measure the smallest 
particles in this case.

Figure 10.45 Clusters of carbon black particles 
viewed in the transmission electron microscope. 
Dividing the integrated optical density of each 
cluster (shown in red) by the integrated density 
for the single particle provides an estimate of the 
number of particles in each cluster (shown in 
blue).
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One solution is to increase the optical magnification to enlarge the small particles, but 
then the large ones are likely to intersect the edges of the screen so that they cannot be 
measured. Multiple sets of data taken at several magnifications are required. When mea-
surements are made at different magnifications, the proper procedure for combining them 
is on a per-unit-area basis. Just measuring the same number of pictures at each magnifi-
cation produces an incorrect result because, at the higher magnification, a much smaller 
area is covered.

Even for such a simple idea as counting pixels to determine feature area, some decisions must 
be made. For instance, consider the feature shown diagrammatically in Figure 10.47. Should 

the pixels within internal holes be included 
in the area or not? Of course, this depends on 
the intended use of the data. If the hole is a 
section through an internal void in an object, 
then it should be included if the area of the 
feature is to be related to the object volume, 
but not if the area is to be related to the object 
mass. But it is hard to know whether the hole 
may be a section through a surface indenta-
tion in that object, in which case it would be 
more consistent to also include in the area 
those pixels in indentations around the feature 

 

Figure 10.46 Effect of resolution on feature 
measurement:

  (a)  spherical particles dispersed on a flat 
surface;

  (b)  enlarged portions of images obtained at 
video camera resolution and megapixel 
digital camera resolution;

  (c)  same regions after thresholding, hole fill-
ing, and watershed segmentation. The 
smallest particles are all the same size, 
but because of limited resolution the 
image representations vary and do not 
adequately represent them.

          (a)

 

(b)                       (c)

Figure 10.47 Three possible measures for feature 
area:

  (a) net (8529 pixels);

  (b) filled (9376 pixels);

  (c) convex (11227 pixels).
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boundary. As shown in the figure, this produces three different possible area measurements, 
the net area, the filled area, and the convex area.

Measuring the first two can be accomplished as a simple pixel-counting exercise. In the pro-
cess of labeling the pixels that touch each other and comprise the feature, the presence of 
internal holes can be detected and the pixels within them counted. These pixels can be added 
back to the original image to fill in the holes, if desired. Determining whether to include those 
pixels in the area then becomes a user decision based on other knowledge.

Determining the convex area is a slightly more difficult calculation. In some cases, a combina-
tion of dilation and erosion steps can be used to construct a convex hull for the feature and fill 
any boundary irregularities, so that pixel counting can be used to determine the area. However, 
on a square pixel grid these methods can cause some distortions of the feature shape, as 
shown in Chapter 8. Another approach that constructs an n-sided polygon around the feature 
is sometimes called the taut-string or rubber-band boundary of the feature, since it effectively 
defines the minimum area for a convex shape that covers the original feature pixels.

By rotating the pixel coordinate axes, it is possible to locate the minimum and maximum 
points in any direction. The procedure of rotating the coordinate system, calculating new x ,́ 
y´ values for the points along the feature boundary and searching for the minimum and maxi-
mum values is simple and efficient. For any particular angle of rotation α, the sine and cosine 
values are needed. In most cases these are simply stored in a short table corresponding to the 
specific angles used in the program. Then the new coordinates are calculated as

	
′ = ⋅ + ⋅

′ = ⋅ − ⋅

x x y

y y x

cos sin

sin cos

α α

α α
 (10.11)

When this process is carried out at a series of rotational angles, the points with the larg-
est difference in each rotated coordinate system form the vertices of the bounding polygon 
shown above. For purposes of constructing the convex or taut-string outline, using a modest 
number of rotation steps can produce a useful result. For instance, by rotating the axes in 10 
degree steps a bounding polygon with 36 vertices and sides is obtained. Figure 10.48 shows 
the process, indicating just a few of the 
steps. The area inside the polygon can 
be calculated from the coordinates of the 
vertices using Equation 10.4.

Figure  10.49 compares the bounding 
polygon to the equivalent area circle and 
longest dimension for various feature 
shapes. It is only for extremely long and 
narrow features that more vertices may 
be required to produce a bounding poly-
gon that is a good approximation to the 
outer boundary.

However the area is defined and deter-
mined, a conversion factor between the 
size of the pixels and the dimensions 
of the real-world structures must be 
established. Calibration of dimension 
is usually done by capturing an image 

Figure 10.48 Constructing the bounding polygon by 
rotating x,y axes and locating the minimum and 
maximum points.
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of a known standard feature and measuring it with the same algorithms as later used for 
unknown features. For macroscopic or microscopic images, a measurement scale may be 
used. Of course, it is assumed that the imaging geometry and optics do not vary; this is 
a good assumption for glass lenses in light microscopes, but not necessarily for electron 
lenses used in electron microscopes, and rarely for real-world imaging, in which case a suit-
able calibration must be provided for each image. It is routine best practice to include a scale 
in crime scene photos, for example. For some remote sensing operations, the position and 
characteristics of the camera are known and the magnification is calculated geometrically. 
If the magnification scale varies from place to place in the image or in different directions, 
either because of the scene geometry (e.g., an oblique viewing angle) or instrumental vari-
ability (e.g., rate-dependent distortions in the scan of an AFM; see Nederbracht et al., 2004), 
significant problems in obtaining useful measurements may arise.

Most modern systems use square pixels that have the same vertical and horizontal dimen-
sions, but for distances to be the same in any direction on the image it is also necessary that 
the viewing direction be normal to the surface. If it is not, then image warping, as discussed 
in Chapter 4, is required. Some systems, particularly those that do not have square pixels, 
allow different spatial calibrations to be established for the horizontal and vertical directions. 
For area measurements based on pixel counting, this is easy to handle. But for area calculation 
from boundary representation, or for length measurements or distance measurement, and for 
the shape parameters in Chapter 11, this discrepancy can create serious difficulties.

Circles and ellipses

Once the area has been determined, it is often convenient to express it as the equivalent cir-
cular diameter. This is a linear size measure, calculated from the area as

	 Eq Diam Area. .= ⋅4
π

 (10.12)

Figure 10.49 shows several features of different sizes and shapes with the equivalent circle 
diameter shown based on the net feature area (pixel count). Features of different shape or ori-
entation can fool the eye and make it difficult to judge relative size. The equivalent diameter 
values offer an easily compared parameter to characterize size.

Circles are often used to represent size, because the diameter provides a convenient linear 
measure that ignores any details of shape. Besides the equivalent circle with the same area 
as the feature, the inscribed or circumscribed circle may be used (Figure 10.50). The circum-
scribed circle is determined by using the corners of the bounding polygon, sorting through 

  

Figure 10.49 Comparison of the 
bounding polygon (red), the lon-
gest chord (yellow), and equivalent 
area circle (green—the circle cen-
tered at the feature centroid hav-
ing the same area as the feature) 
for an irregular feature (a) and an 
assortment of features (b).

       (a)             (b)
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them to find the two or three that define the circle that encloses all of the others (a concise 
algorithm for finding the circle is in Arvo, 1991). The inscribed circle is defined by the maxi-
mum value of the Euclidean distance map of the feature; the maximum pixel marks the center 
and its value gives the radius.

Since most real features have irregular shapes, it is not easy to find size measures that com-
pactly and robustly describe them and allow for their classification and comparison. The use 
of an equivalent circular diameter is one attempt. Recognizing that not all features are equi-
axed or evenly approximately round, an ellipse may also be used to represent the feature. The 
fact that the ellipse has two axes allows describing a size, a degree of departure from circular-
ity, and even an orientation that can be useful in some applications.

The major and minor axes of the ellipse may be determined in several different ways, how-
ever. These actually represent some quite different aspects of the feature size and shape, and 
may be more misleading than helpful unless the user is fully aware of (and careful with) their 
various biases.

One definition of the ellipse axes can be taken from the minimum and maximum caliper 
dimensions of the feature found, for instance, using the distances between the vertices of the 
bounding polygon. The maximum caliper dimension does a good job of representing a maxi-
mum dimension and indicates the feature orientation at least within the step size of the search 
(e.g. 10 degrees). If this is taken as the major dimension of the ellipse, then the minor axis 
can be set to the minimum caliper dimension. This approach can lead to several difficulties. 
First, this value may seriously overestimate the actual minimum dimension for a long, narrow 
feature. Second, the direction of the minimum dimension is not, in general, perpendicular to 
the maximum dimension (for example, the diagonal and side of a square). Third, the area of 
the resulting ellipse is not the same as the area of the feature.

Since basing the breadth of the ellipse on the minimum caliper dimension is suspect, a modi-
fication of this approach uses the maximum caliper dimension as the ellipse major axis and 
determines the minor axis in order to make the ellipse area agree with the feature area. Since 
the area of an ellipse is (π/4)•a•b where a and b are the axes, once the major axis has been 
determined, the minor axis can be calculated to agree with the feature area. The orientation 
angle can be either the approximate value determined from the steps used in the maximum 
caliper dimension search or the orientation angle determined from the moment calculation 

(a)          (b)          (c)          (d)

Figure 10.50 An irregular feature with several measures of size: (a) original binary feature with its 
convex hull (orange); (b) minimum circumscribed circle (red), maximum inscribed circle (green), 
maximum inscribed circle ignoring internal voids (blue); (c) minimum (magenta) and maximum 
(green) caliper dimensions (note that they are not perpendicular); (d) equivalent area circles for the 
net area (green), filled area (red), and convex hull (blue), each one positioned on the centroid of the 
corresponding area.
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shown in Equation 10.7. This tends to produce ellipses that have a longer and narrower shape 
than the visual perception of the feature.

The moments from Equation 10.7 can also be used to produce a fitted ellipse. This is perhaps 
the most robust measure, although it requires the most calculation and is rarely used. Instead, 
many systems fit an ellipse not to all of the pixels in the feature area, but instead to the pixels 
along the feature boundary. This procedure is computationally simpler but very hard to justify 
analytically, and irregularities along any portion of the feature’s boundary will significantly 
bias the ellipse size, shape, and orientation.

Caliper dimensions

The caliper dimensions described and illustrated above represent another description of fea-
ture size. The maximum caliper or maximum Feret’s diameter is sometimes called the feature 
length, since it is the longest distance between any two points on the periphery. A projected 
or shadow dimension in the horizontal or vertical direction can be determined simply by sort-
ing through the pixels or the boundary points to find the minimum and maximum coordinate 
values, and then taking the difference. These dimensions are introduced above in terms of the 
bounding box around the feature, used to correct for its probability of intersecting the edge 
of a randomly placed image field.

The extreme points determined in a variety of directions are used to construct the bounding 
polygon shown above. With such a polygon, the minimum and maximum caliper diameters 
can be found simply by sorting through the pairs of corner points. The pair of vertices with 
the greatest separation distance is a close approximation to the true maximum dimension of 
the feature. The worst-case error occurs when the actual maximum chord is exactly halfway 
between the angle steps, and in that case the measured length is short by

	 M easured True= ⋅






cos α

2
 (10.13)

For the example mentioned above of 10 degree steps, the cosine of 5 degrees is 0.996. This 
means that the measurement is less than one-half percent low. For a feature whose actual 
maximum dimension is 250 pixels, the value obtained by the rotation of coordinate axes is 
one pixel short in the worst-case orientation.

If the same method is used to determine a minimum caliper dimension for the feature (some-
times called the breadth), this is equivalent to finding the pair of opposite vertices on the 
bounding polygon that are closest together. The error here can be much greater than for the 
maximum caliper dimension, because it depends on the sine of the angle and on the length 
of the feature rather than on its actual breadth. A narrow feature of length L and actual width 
W oriented at an angle the same 5 degrees away from the nearest rotation step has its breadth 
estimated as L•sin (5°)= 0.087•L. This doesn’t even depend on the width W, and if the actual 
length L is large and the width W is small, the potential error is significant.

Figure 10.51 shows a case in which length is the appropriate measure and can be determined 
as described. The sample is grains of rice (imaged by spreading them on a flat bed scanner 
and separating them by briefly holding a vibrator against the unit). USDA standards for long 
grain rice specify the maximum fraction of grains that can be shorter than 6 mm. Measuring 
the distribution of lengths for these grains provides a fast and conclusive determination.
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Of course, it is also possible to search directly for the maximum chord by sorting through 
the boundary points to find the two with maximum separation. There are various ways to 
speed up this search, which would otherwise have to calculate the sum of squares of the x- 
and y- coordinate differences between all pairs of boundary points. One is to consider only 
those points that lie outside the equivalent circle. Determining the area (in this case, the filled 
area including any internal holes) and converting it to the equivalent diameter with Equation 
10.12 provides a circle size. Locating that circle with its center on the feature centroid will 
cover any points inside the circle and leave just those points that lie farther away. These are 
candidates for the most widely separated pair.

An even more restrictive selection of the points to be searched can be obtained from the 
dimensions of the bounding rectangle. As shown in Figure 10.52, arcs drawn tangent to each 
side with their centers in the middle of the opposite side enclose most of the boundary of 
the feature. Only points that lie on or outside the arcs need to be considered in the search, 
and points lying outside one arc need only to be combined with those that lie outside the 

 

Figure 10.51 Measurement of feature 
length:

  (a) original image (rice grains);

  (b)  thresholded binary with superim-
posed lengths determined for each 
grain;

  (c)  distribution plot for individual 
grain lengths.

            (a)

   

(b)                    (c)

 

Figure 10.52 Construction used to limit the search for boundary 
points giving the maximum chord. The blue arcs are drawn 
with centers in the middle of the horizontal edges of the bound-
ing box, and the green arcs are drawn with centers in the mid-
dle of the vertical edges. Only the red points along the perimeter, 
which lie outside those arcs, are candidates for endpoints of the 
longest chord (shown in Figure 10.49).
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opposite arc. For a reasonably complex fea-
ture whose boundary may contain thousands 
of points, these selection algorithms offer 
enough advantage to be worth their compu-
tational overhead when the exact maximum 
dimension is needed.

A way to determine the width of a feature that 
is applicable either to straight or curved objects 
is the sampling of the Euclidean distance map 
with the skeleton to obtain the values along 
the midline. As shown in Chapter 8, these 
are the radii of inscribed circles at each point 
along the feature’s length. Depending on the 
nature of the specimen and the purpose of the 
measurement, it may be appropriate to use the 
minimum, mean, or maximum of these values 

as a measure of width. The standard deviation of the width values can also be used to char-
acterize the variation in width.

Consider a feature shaped like the letter ‘S’ shown in Figure 10.53. If this is a rigid body, for 
example a cast-iron hook for use in a chain, the length and breadth as defined by the mini-
mum and maximum caliper dimensions may have a useful meaning. On the other hand, if the 
object is really a worm or fiber that is flexible, and the overall shape is an accident of place-
ment, it is much more meaningful to measure the length along the fiber axis and the width 
across it. To distinguish these from the maximum and minimum caliper dimensions, often 
called length and breadth (or width), these are sometimes called the fiber length and fiber 
width. It is up to the user to determine which set of parameters offers the most useful and 
meaningful values for describing the features in a particular situation.

There are two different approaches to measuring these dimensions. The method in Chapter 
8 uses the length of the skeleton to measure of the length of the fiber. The skeleton is shorter 
than the actual length of the fiber, but this can be corrected by adding the value of the 
Euclidean distance map at each endpoint of the skeleton.

The length of the skeleton itself can be estimated by counting the pixel pairs that are present, 
keeping track of those that touch along their edges and their corners (because on a square pixel 
grid the distance between pixels that touch diagonally is greater by √2 than the distance orthog-
onally). This produces a slight overestimate of the length. Instead of using the strictly geometric 
distances of 1.0 and 1.414, Smeulders (1989) has shown that calculating the length as

	 Length = 0.948 · NOrthogonal + 1.340 NDiagonal (10.14)

gives a mean error of only 2.5% for straight lines that run in all directions across the square pixel 
grid, but of course larger errors can be encountered for specific worst-case orientations.

A more accurate measurement can be performed by fitting a smooth curve to the pixels. 
There are several ways to accomplish this, including polynomial and Bezier curves. The 
most efficient robust method is to use the same technique described below for perimeter 
measurement, in which the image is smoothed and a super-resolution line interpolated 
through the pixels.

Figure 10.53 Comparison of caliper dimensions 
(length and breadth) with values determined 
from the skeleton and Euclidean distance map 
(fiber length and fiber width).
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An older and less accurate (but still used) approach to estimating values for the length and 
width of a fiber is based on making a geometric assumption about the fiber shape. If the fea-
ture is assumed to be a uniform-width ribbon (Figure 10.54) of dimensions F (fiber length) 
and W (fiber width), then the area (A) and perimeter (P) of the feature are A = F • W and 
P = 2•(F + W). The area and perimeter parameters can both be measured directly. As noted 
below, the perimeter is one of the more troublesome values to determine, but for a ribbon 
with smooth boundaries as assumed here, the perimeter can be measured with reasonable 
accuracy. Then the fiber length and width can be calculated from the measured perimeter and 
area as:

	
F P P A

W A
F

= − − ⋅

=

2 16
4  (10.15)

Minor modifications to this model can be made, for example by assuming that the ends of 
the ribbon are rounded instead of square, but the principle remains the same. The difficulties 
with this approach are its sensitivity to the difference between the shape model used and the 
actual fiber shape, and the problems associated with perimeter measurement. If the feature 
is not of uniform width or is branched, for instance, the average width obtained from the 
skeleton and EDM still produces a consistent and meaningful result, while the calculation in 
Equation 10.15 may not.

Perimeter

The perimeter of a feature is a familiar geometrical parameter that is well defined in continuous 
real space but less so in a pixellated image. Measuring a numerical value that properly describes 
the object is not simple. Ultimately, measurements depend on whether a pixel is treated as a 
point or a little square (Hetzner, 2008). Some systems estimate the length of the boundary around 
the object by counting the pixels that touch the background. This underestimates the actual 
perimeter because, as noted above for the measurement of skeleton length, the distance between 
corner-touching pixels is greater than it is for edge-touching pixels. This error depends on fea-
ture orientation, and the perimeter of a simple object like a square changes as it is rotated under 
the camera. Figure 10.55 illustrates the variation in perimeter that is obtained by counting the 
edges of pixels compared to the more accurate value obtained from the chain code, as a square 

 

Figure 10.54 Geometric model for a fiber, 
with constant width and square ends. 
The length F and width W are calculated 
from the measured area and perimeter 
based on the straight rectangle shown 
at the top, but are approximately cor-
rect for a curved shape as well.



593Feature-Specific Measurements
© 2011 by Taylor & Francis Group, LLC

of approximately constant size is rotated. The sensitivity of measurement values to varying the 
orientation of identical features in an image is often used as a test of system performance.

When boundary representation is used to represent the feature, the Pythagorean distance 
between successive points can be summed to estimate the perimeter, as

	 Perim .= +( ) + −( )− −∑ x x y yi i i i

i

1
2

1
2

 (10.16)

In the limiting case of chain code, the links in the chain used for boundary representation are 
either 1.0 or 1.4142 pixels long, and can be used to estimate the perimeter. It is only necessary 
to count separately the number of odd chain code values and the number of even chain code 
values, since these distinguish the orthogonal or diagonal directions. The same argument 
as used above for the irregularity of the pixel representation of the midline applies to the 
boundary line, and using the modified values of 0.948 and 1.340 from Equation 10.14 may be 
applied to reduce but not eliminate bias.

The most accurate perimeter measurements, with the least sensitivity to the orientation of 
feature edges, are obtained by fitting smooth curves to the feature boundaries. One way to 
do this is by antialiasing the edge so that the pixels near the edge have gray values that fill 
in the steps (Neal et al., 1998), as shown in Figure 10.56. The process uses the Laplacian 
of a Gaussian (LoG) filter, which is also used in operators such as the Canny edge locator 
described in Chapter 5 to most accurately define the location of feature boundaries.

The actual boundary is constructed by drawing and measuring straight line segments across 
the antialiased pixels. These line segments are drawn between points along the pixel edges 
that are linearly interpolated based on the gray scale values. The points correspond to the 
location where the midpoint value lies, treating the pixels as spaced points. The result is 
equivalent to enlarging the image using super resolution and bilinear interpolation to fill in 
the new, smaller pixels, as shown in Figure 10.57.

 

Figure 10.55 Comparison of perimeter estima-
tion by chain code or summation of pixel edge 
lengths, as a function of orientation:

  (a)  sum of outer edges (red) = 28 units, sum 
of center to center chain code distances 
(blue) = 24 units;

  (b)  distance around outer edges (red) = 30 
units, sum of center to center chain code 
distances (blue) = 20•√2 = 28.28 units.

 

Figure 10.56 Fitting a smooth 
boundary for perimeter 
measurement:

  (a)  contour line on a 
smoothed (antialiased) 
feature;

  (b)  the contour line super-
imposed on the original 
pixels.
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While the super-resolution boundary mea-
surement technique is accurate and robust 
to feature rotation, the basic difficulty with 
perimeter measurements is that for most 
objects the perimeter itself is poorly defined 
and magnification dependent. Pixels located 
along feature boundaries usually have bright-
ness or color values that lie between those of 
the object and the background, because the 
finite area of the detector overlaps the border 
to varying degrees. How well or consistently 
the image processing and thresholding iden-
tify the border location limits any subsequent 
measurements. Subsequent morphological 
operations such as opening and closing affect 
the perimeter much more than the area.

For matural objects, higher image magnifica-
tion often reveals more boundary irregulari-
ties and hence a larger value for the perimeter. 
This is not the case for area, length, or the 
other size dimensions discussed above. As the imaging scale is changed so that the size 
of individual pixels becomes smaller compared to the size of the features, measurement 
of these other parameters will of course change, but the results tend to converge toward a 
single best estimate. For perimeter, the value usually increases rather than approaching a 
consistent value.

In many cases, plotting the measured perimeter against the size of the pixels, or a similar index 
of the resolution of the measurement, produces a plot that is linear on logarithmic axes. This 
kind of self-similarity is an indication of fractal behavior, and the slope of the line gives the frac-
tal dimension of the boundary. This is used in Chapter 11 as one measure of feature shape.

Even if the feature boundary is not strictly fractal (implying the self-similarity expressed by 
the linear log-log plot of perimeter vs. measurement scale), there is still often some increase 
in measured perimeter with increased imaging magnification. The only exceptions are smooth 
(Euclidean) objects such as membranes or surfaces in which tension or an energy term pro-
duces local smoothness for physical reasons. This dependency on resolution makes the 
perimeter values suspect as real descriptors of the object, and at least partially an artifact of 
the imaging method and scale used.

Furthermore, any noise in the image may be expected to cause a roughening of the boundary 
and increase the apparent perimeter. Figure 10.58 shows an example. Random gray scale noise 
is superimposed on six identical circles. The original circles are drawn with a diameter of 80 
pixels and have a measured area of 5024 pixels and perimeter of 254 pixels (close to the ideal 
values calculated from the diameter of 5026.5 and 251.3, respectively). Measuring the series of 
noisy images produces a value for the area that averages to the correct mean, as pixels are added 
to or removed from the feature. But the perimeter is always increased, as shown by the results in 
Table 10.1. The variation in area measurements is only 0.5%, while that for the perimeter mea-
surements is more than 5%, and the mean value is much too high. This bias introduced by noise 
in the imaging procedure is another cause for concern in perimeter measurements. Smoothing 
the boundary with a morphological opening or closing can reduce the perimeter values as 
shown, but this assumes independent knowledge that the boundaries should be smooth.

Figure 10.57 Interpolating the boundary between 
points on the edges of smoothed pixels, showing 
how a sharp corner is smoothly rounded. Blue 
lines mark the dimensions of the original pix-
els before interpolation.
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When the perimeter is measured, it is still necessary to choose among the same three alterna-
tives considered for area measurements. The total perimeter includes the length of boundaries 
around any internal holes or voids in the feature. The exterior, net, or filled perimeter excludes 
internal holes. The convex perimeter is the length of the convex hull or bounding polygon, 
and bridges over indentations around the periphery of the feature. It is less sensitive to noise 
or image resolution, because it does not follow all points along the boundaries of the feature. 
The convex perimeter can be calculated as the sum of the Pythagorean distances between the 
vertices of the bounding polygon using Equation 10.16. The same considerations as men-
tioned in connection with area measurement apply to selecting whichever of these measures 
describes the aspect of the feature that is important in any particular application.

 

Figure 10.58 Effect of noise on 
measurements:

  (a)  six identical circles with additive gray 
scale noise;

  (b)  circles after thresholding and filling 
internal holes;

  (c)  circles from (b) after smoothing with an 
EDM-based opening (radius = 6 pixels). 
Table 10.1 lists the measurement data 
for area and perimeter.

            (a)

   

(b)                     (c)

Table 10 .1.Results from Circle Measurements in Figure 10.58

As Thresholded As Thresholded Opening Applied Opening Applied

Circle Area Perimeter Area Perimeter

1 5027 365.36 4997 275.93

2 5042 344.53 5041 249.57

3 4988 350.08 4996 274.44

4 5065 355.92 5040 252.35

5 5020 375.76 4994 279.46

6 5030 321.60 5051 249.56

Average 5028.67 352.21 5019.83 263.55

Std. Dev. 25.42 18.66 26.77 14.43

Original 5024 254
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11
Characterizing Shape

Describing shape

Shape is not something that human languages are well equipped to deal with. We have 
few adjectives that describe shape, even in an approximate way (e.g., rough vs. smooth, 
or fat vs. skinny). In most conversational discussion of shapes, it is common to use a 

prototypical object instead. If someone says “shaped like an elephant” it is with the expec-
tation that you share the same mental image. But not everyone will always agree about the 
important aspects of shape found in the prototype. As shown in Figure  11.1, a defining 
characteristic of “elephantness” seems to be the trunk. When the name is applied to another 
species, like a shrew or a seal, it is because of the size of the nose. But there are many more 
features that humans call to mind in response to the word “elephant,” such as size, tusks, and 
perhaps ears (as in Disney’s “Dumbo”). So while the phrase “like an elephant” may facilitate 
communication in some cases, it may hamper it in others.

The artist Georgia O’Keefe said “I found I could say things with color and shapes that I 
couldn’t say any other way — things I had no words for.”

Some words seem to be adjectives describing shape, but on closer reflection are not. “Round” 
is usually understood to mean “like a circle,” or in the three-dimensional case it might mean 
“like a sphere.” It may also mean like a cylinder or a torus, depending on the circumstances 
and the point of view, and sometimes is used to distinguish shapes with curved and convex 
boundaries from shapes with boundaries composed of straight lines. Figure 11.2 illustrates 
a few shapes that, depending on the circumstances, would be described using the word 
“round.” But when it is used to mean “like a circle,” the word “round” is a reference to a 
noun. Many of the simple measures that are introduced below measure the departure of a 
two-dimensional shape from being circular and are given names such as “roundness” or “cir-
cularity.” Unfortunately, there are many different ways of being unlike a circle. Elongating the 
circle into an ellipse, or flattening the sides to form a polygon, or roughing up the periphery 
to create something like the petals on a flower are just a few examples.

The geometric definition of a circle is straightforward: the locus of points equidistant from 
a center. But an alternative definition that might be considered is: a shape whose diameter 
in all directions is the same. Measuring the diameter of a feature in many directions would 
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then provide an easy procedure by which to recognize a circular shape. Alas, intuition aside, 
that is not necessarily the same thing. Great Britain has issued several coins in 50p and 20p 
denominations that are equidiametrically curved heptagons (Figure 11.3). The curved sides 
produce the same diameter in all directions, allowing the coins to work in vending machines. 
Any polygon with an odd number of vertices can be adapted in this way.

High precision measuring machines that determine whether manufactured items such as auto-
mobile engine cylinders are really circular must avoid falling into this sort of trap, measuring 
something that is relatively simple to measure and seems to correspond to the desired shape, 

Figure 11.1 Elephants (from upper left): child’s rocking toy; African elephant; elephant seals; Asian 
elephant; baby elephant; elephant shrew.

Figure 11.2 Four shapes that evoke the use of the word “round” (from the left): a beach ball, a Celtic 
knot, the Cretan labyrinth; a sunflower.

Figure 11.3 Seven-sided equidiametrical coins.
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but does not in fact provide the required information. Measuring a shape in two or three 
dimensions to determine whether it can be described as “round” is not so simple. And if the 
actual shape is only “approximately” round, describing the deviation from the perfect shape 
in a concise but meaningful way presents additional difficulties.

One of the most important uses of shape in human vision is for recognition. This is generally 
more important than size. Recognizing a tiger stalking you is presumably more important 
than determining whether it is a large tiger or a small one. When gathering plants for dinner, 
shape differentiates edible plants from weeds. And so on...

Finding numerical descriptors of shape is an important goal for computer vision. Software that 
can analyze or match numbers is efficient and comparatively straightforward. Selecting the 
best set of numbers that provide adequate uniqueness and at the same time offer some cor-
relation with whatever it is that humans use to characterize shape is difficult because the cor-
respondence between the numbers and our everyday experience is slight, and the parameters 
all have an abstract “made-up” character. When adjectival descriptors for classes of shapes 
are assigned based on subjective human examination, it can be difficult to find any measure-
ment procedure that yields results in agreement with those labels and that permits automatic 
(and consistent) computer-based measurement. For instance Les & Les (2005) propose classes 
such as “thin, convex, cyclic, complex” and so forth, but do not indicate how these groups are 
defined except by example.

Dimensionless ratios

The oldest class of numeric shape descriptors are combinations of size parameters, 
arranged so that the dimensions cancel out. Length/Breadth, for example, gives Aspect 
Ratio, and changing the size of the feature does not change the numerical value of aspect 
ratio. Of course, this assumes a proper measurement of length and breadth, as described 
in Chapter 10.

Since there are dozens of size parameters, there are hundreds of ways that these can be 
combined into a formally dimensionless expression that might be used as a shape descriptor. 
There are only a few relatively common combinations, but even these are plagued by incon-
sistency in naming conventions. Table 11.1 summarizes some of the most widely used shape 
parameters calculated as combinations of size measurements, with the names used in this 
text. It is important to be aware that some systems define the parameters as the inverse of the 
formula shown, or may omit constant multipliers such as π. Also, in any particular system the 
same calculation may be called by some quite different name, or may use the name shown for 
a different relationship in the table. One of the most generally used shape descriptors, called 
the formfactor in this text, was introduced with that name at least 40 years ago in early image 
analysis systems; it is named “circularity” in Photoshop, and its inverse is called “roundness” 
in Image Pro Plus.

Some of the descriptors have a history of successful use in particular fields of application. 
For example, the modification ratio (ratio of inscribed to circumscribed circle, also called 
the radius ratio) is used to measure the cross-section of extruded man-made fibers, such as 
are used in making carpeting. The increase in the inscribed diameter of these “star-shaped” 
cross-sections indicates wear on the spinnerets and corresponds to less flexibility in the fibers 
and an increase in their weight. Before the advent of computer measurement, this ratio was 
determined by visually fitting circle templates to the cross-sections.
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The burden placed on the user, of 
course, is to be sure that the mean-
ing of any particular shape descrip-
tor is clearly understood and that it is 
selected because it bears some rela-
tionship to the observed changes in 
the shape of features, since it is pre-
sumably being measured in order to 
facilitate or quantify some comparison. 
Because formfactor is so widely used, 
it is important to understand what it 
measures. The sequence of shapes 
in Figure  11.4 shows an increase in 
perimeter with constant area. All of 
these features are approximately equi-
axed, with aspect ratios close to one. 
The shapes in Figure  11.5 show the 
process of stretching to increase the 
aspect ratio, while keeping the area 
constant. The formfactor varies only 
slightly in this sequence.

What these two figures reveal is that 
while there is only one way to be “like 
a circle,” there are many ways to depart 
from circularity. The various dimen-
sionless shape parameters behave dif-
ferently as features become elongated 
in various ways, or develop irregular 
boundaries. For an ideal circle, the 
formfactor, roundness, and aspect ratio 

are all exactly 1.0. On a real pixel grid a feature can only approximate a circle and, depending 
on the method used to measure the perimeter, the formfactor is less than one. Figure 11.6 
shows this using the super-resolution boundary measurement described in Chapter 10; in 
spite of the pixellated approximation inherent in the shapes, the formfactor values are fairly 
consistent for features larger than about 10 pixels in diameter (but less than the ideal value 
of 1.0).

The most serious limitation of using formfactor (or, indeed, any of the dimensionless ratio 
parameters) to characterize shape is not the accuracy of measurements. Nor is it the fact that 
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Figure 11.4 Formfactor: the shapes have the same area, but the increasing perimeter changes the mea-
sured formfactor as shown.
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this differs from human methods for judging shape. Rather, it is that none of these param-
eters is unique. Figure 11.7 shows twelve features that are visually quite different shapes, 
but which have identical values of formfactor. This is a reminder that the dimensionless ratios 
capture only a single and very limited piece of information about shape.

Other shape parameters represent differ-
ent characteristics of shape. For example, 
Figure 11.8 shows several shapes with differ-
ent values of the curl. Figure 11.9 illustrates 
the differences between these parameters 
in a different way. The “features” are simply 
the 26 capital letters, printed in a font with 
a serif (Times Roman). In each horizontal 
row, the colors code the value of a different 
measured shape parameter. The variation in 
each set is from red (largest numeric value) to 
magenta (smallest numeric value). The inde-
pendent variation of each of the shape fac-
tors is remarkable. This suggests on the one 
hand that shape factors can be a powerful 
tool for feature identification. However, the 

 

Figure 11.6 Variation in 
formfactor with diame-
ter for circles (the small-
est circles are enlarged 
to show the exact pixels 
that form them).

Figure 11.5 Aspect Ratio: the shapes have the same area and vary only slightly in formfactor, but greatly 
in aspect ratio, as shown.

Figure 11.7 A set of features that are visually dis-
tinct, but have identical values for the formfac-
tor (= 0.44).
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large variety of such factors, and the inabil-
ity of human vision to categorize or estimate 
them, remind us that people do not use these 
parameters for recognition. The relative values 
measured for the various shapes are different 
if another font, particularly one without serifs, 
is substituted.

Another group of simple dimensionless shape 
parameters can be calculated based on the 
various definitions of location introduced in 
Chapter 10. For a perfectly symmetrical fea-
ture, such as a circle or regular polygon, the 
centroid and geometric center (the center 
of the bounding circle) coincide. If the fea-
ture is not symmetric, the distance between 
these two points, normalized by dividing by 
the radius of the bounding circle, produces a 

value between 0 and 1 that measures the asymmetry. The distance between the unweighted 
centroid (in which all pixels in the feature are counted equally) and the weighted centroid (in 
which pixels are counted according to some calibrated density function) can be used in the 
same way.

Similar ratios using other location measures are less useful. For example, the center deter-
mined as an average of the location of perimeter pixels is very resolution sensitive. Likewise, 
the center of the largest inscribed circle in the feature also creates difficulties. Many non-
convex features have more than one maximum in their Euclidean distance map. Each local 
maximum is the center of an inscribed circle (tangent to at least three points on the feature 
boundary). Using the largest as a measure of size is meaningful in some circumstances, but 
the location of the center is rarely useful. As shown in Figure 11.10, the inscribed circle cen-
ter is undefined when the feature has more than one equal maximum in the EDM, and even 
when it does not, the location is insensitive to many aspects of feature shape.

In spite of these limitations of dimensionless ratios, their ease of calculation has made their use 
fairly widespread. As an example of their successful use, a total of 148 leaves were collected 

Figure 11.9 Measurement of a series of shapes (letters of the alphabet). In each row, the colors of the 
features code the relative numeric value (red = high, magenta = low) of a different shape parameter, 
corresponding to the labels.

Figure 11.8 Four features with different values of 
Curl, indicating the degree to which they are 
“curled up.”
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from nine individual trees in my yard (usually 
even from the same branch, so they represent a 
very small sample of the world of trees in gen-
eral). The tree types are listed in Table 11.2. The 
leaves were scanned bottom side down using a 
desktop flatbed scanner, at 200 pixels per inch, 
and the images thresholded to produce binary 
representations for measurement. Figure 11.11 
shows an example leaf from each group. Note 
that human visual recognition of these various 
tree types is easy.

The dimensionless ratio parameters shown above were calculated for each leaf, and the data 
set analyzed using the SAS JMP-8 software package to perform discriminant analysis (SAS 
Institute, Cary, NC). Stepwise analysis was performed to determine the minimum set of the 

Figure 11.10 Location of the geometric center 
(yellow), center of the inscribed circle (cyan), 
and centroid (red), showing the effects of 
asymmetry and shape.

Table 11 .2. Tree Types

Cherry (Prunus ‘Kwanzan’)

Dogwood (Cornus florida)

Hickory (Carya glabra)

Mulberry (Morus rubra)

Red Oak (Quercus falcata)

White Oak (Quercus alba)

Sweet Gum (Liquidambar styraciflua)

Silver Maple (Acer saccahrinum)

Red Maple (Acer rubrum)

Figure 11.11 Examples of leaf shapes (not at the same scale).
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most important terms which group the leaves correctly without misclassification. Figure 11.12 
shows that with just three parameters — roundness, solidity, and convexity — every individ-
ual leaf is correctly identified.

This is a tiny illustrative example compared to more ambitious efforts toward automatic recog-
nition of plant leaves. Belhumeur et al. (2008) describe the LeafView system based on a tablet 
PC (and perhaps ultimately a PDA or smart phone) that can be used to capture an image of a 
leaf, process that image and perform the necessary measurements, access a database of hun-
dreds of plant types, and show the user images of the ten most likely matches. Even this effort 
pales in comparison to the potential of on-line databases of plants. These include 90,000 type 
specimens from the US National Herbarium at the Smithsonian Institution, 120,000 images 
at the New York Botanical Garden, 35,000 at the Royal Botanical Garden Kew, and 35,000 at 
the Missouri Botanical Garden, as well as other resources worldwide. Expert systems that can 
negotiate such large data sets will revolutionize the traditional “field guide.”

Chapter 12 considers in greater detail the process of object classification and identification. 
The purpose here is to indicate that the dimensionless ratio parameters can be effective 
descriptors of shape in many practical cases.

Fractal dimension

Several of the shape parameters shown above include the perimeter of the feature. As pointed 
out in Chapter 10, this is often a problematic measurement, with a value that is an artifact of 
image resolution and magnification. In fact, the concept of perimeter may be fundamentally 
flawed when it is applied to many real objects. If a real-world object is actually fractal in shape, 
the perimeter is undefined. Measuring the object boundary at higher magnification always 
reveals a greater length of perimeter. Consider a cloud, for example: what is the length of the 
boundary around the projected image of the cloud? Measurements covering many orders of 

Figure 11.12 Discriminant analysis results for the leaf samples using three classic size and shape 
measurements.
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magnitude, from a single small cloud in the sky observed by visible light, up to entire storm 
systems viewed by radar or from weather satellites, show that the perimeter of clouds obeys 
fractal geometry. Presumably this trend would continue at smaller and smaller scales, at least 
down to the dimensions of the water molecules. What, then, does the perimeter really mean? 
Is it a true characteristic of the object, or an artifact of the measurement scale?

Objects that are fractal seem to be the norm rather than the exception in nature. Euclidean 
geometry, with its well-defined and mathematically tractable planes and surfaces, is usually 
only found as an approximation over a narrow range of dimensions where mankind has 
imposed it, or in limited situations where a single energy or force term dominates (e.g., sur-
face tension of bubbles). Roads, buildings, and the surface of the paper on which this book 
is printed are flat, straight, and Euclidean, but only at the dimension or scale that humans 
perceive and control. Magnify the paper surface and it becomes rough. Look at the roads from 
space and they cease to be straight. The use of fractal dimensions to describe these departures 
from Euclidean lines and planes is a relatively recent conceptual breakthrough that promises 
a new tool for describing roughness and also shape.

Briefly, the fractal dimension is the rate at which the perimeter (or surface area in three dimen-
sions) of an object increases as the measurement scale is reduced. There are a variety of ways to 
measure it. Some are physical, such as the number of gas molecules that can adhere to the sur-
face in a monolayer, as a function of the size of the molecule (smaller molecules probe more of 
the small surface irregularities and indicate a larger surface area). Some are most easily applied in 
frequency space, by examining the power spectrum from a two-dimensional Fourier transform, 
as shown in Chapter 15. Others can be measured on a thresholded binary image of features.

Perhaps the most widely known fractal measurement tool is the so-called Richardson plot. 
This was originally introduced as a procedure applied manually to the measurement of maps. 
Setting a pair of dividers to a known distance, the user starts at some point on the bound-
ary and strides around the perimeter. The number of steps multiplied by the stride length 
produces a perimeter measurement. As the stride length is reduced, the path follows more 
of the local irregularities of the boundary and the measured perimeter increases, as shown 
in Figure 11.13. The result, plotted on log-log axes, is a straight line whose slope gives the 
fractal dimension. Deviations from linearity occur at each end: at long stride lengths, the step 
may miss the boundary altogether, while at short stride lengths the finite resolution of the 
map limits the measurement.

When boundary representation is used for a feature, a Richardson plot can be constructed 
from the points by calculating the perimeter using the expression in Equation 10.16 and then 
repeating the same procedure using every second point in the list, every third point, and so 
forth. As points are skipped, the average stride length increases and the perimeter decreases, 

Figure 11.13 Measuring fractal dimension with a Richardson plot, as described in the text. The fractal 
dimension equals 2 minus the slope of the plot.
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and a Richardson plot can be constructed. When every nth point in the list is used to estimate 
the perimeter, there are n possible starting positions. Calculating the perimeter using each of 
them, and averaging the result, gives the best estimate. The stride length for a particular value 
of n is usually obtained by dividing the total perimeter length by the number of strides. In all 
these procedures, it is recognized that there may be a partial stride needed at the end of the 
circuit, and this is included in the process.

When the x, y coordinates of the boundary points are digitized in a grid, a variability in the 
stride length is introduced. Unlike the manual process of walking a pair of dividers along 
a map boundary, there may not be a point recorded at the location one stride length away 
from the last point, and so it is necessary either to interpolate from the actual data or to use 
some other point and alter the stride length. Interpolation makes the tacit assumption that 
the boundary is locally straight, which is in conflict with the entire fractal model. Altering the 
stride length may bias the plot. Combined with the general difficulties inherent in the perim-
eter measurement procedure, the classical stride length method is usually a poor choice for 
measuring digitized pixel images.

However, using the super-resolution perimeter measurement approach, another method closely 
related to the Richardson technique can be employed. By applying smoothing kernels with 
progressively larger Gaussian standard deviations to blur the boundary, small irregularities 
are removed and the perimeter decreases. Plotting the measured perimeter vs. the standard 
deviation of the smoothing kernel, on log-log axes, produces a straight line whose slope gives 
the feature fractal dimension, as shown in Figure 11.14. The dimension is a value greater 
than 1 (the topological or Euclidean dimension of a line) and less than 2 (the dimension of a 
plane) and may be thought of as the degree to which the line spreads out into the plane, or 
the uncertainty of knowing on which side of the line a point lies.

  
(a)                       (b)

Figure 11.14 Progressive Gaussian smoothing of the outline (a) of a Koch snowflake (theoretical fractal 
dimension = 1.262). Plotting the perimeter measurement (b) produces a measurement of the fractal 
dimension.
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A second measurement technique is described in Chapter 8 on binary image processing. 
Dilating the boundary line by various amounts is equivalent to sweeping a circle along it. The 
area of the band swept over by the circle does not increase directly with the radius, because of 
the irregularities of the boundary. Plotting the area swept out by the circle (sometimes called 
the sausage) vs. the radius (again on log-log axes) produces a line whose slope gives the frac-
tal dimension. This Minkowski technique is older than the Richardson method. It works well 
on pixel-based images, particularly when the Euclidean distance map is used to perform the 
dilation. Using the cumulative histogram of the Euclidean distance map of the region on either 
side of the feature outline to construct the log-log plot is quite insensitive to feature orienta-
tion and much faster than iterative dilation, since it assigns to each pixel a gray scale value 
equal to the distance from the boundary. Examples of this method are shown in Chapter 8; 
Figure 11.15 shows the measurement of the same Koch snowflake.

The Minkowski method produces a dimension that is not necessarily identical to the Richardson 
method (or to other fractal dimension procedures), and so it is important when comparing 
values obtained from different specimens to use only one of these methods. Neither method 
gives the exact result expected theoretically for the Koch snowflake fractal, due to the finite 
resolution available in the pixel image, but both are fairly close.

A third approach to fractal dimension measurement produces another dimension, similar in 
meaning but generally quite different in value from the others. The Kolmogorov dimension 
is determined by grid counting. A mesh of lines is drawn on the image and the number of 
grid squares through which the boundary passes is counted. When this number is plotted on 

(b)

(a)

Figure 11.15 The cumulative histogram of the 
Euclidean distance map around the outline of 
the Koch snowflake (a) produces a Minkowski 
measurement of the fractal dimension (b).
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log-log axes vs. the size of the grid, the slope of the line again gives a dimension, as shown in 
Figure 11.16. Automatic implementation and application to a pixel image can be performed 
by progressively coarsening the image into 2 × 2, 3 × 3, etc. blocks of pixels and is sometimes 
called mosaic amalgamation. This is perhaps the fastest method but has both the poorest 
accuracy as well as the least numeric precision because it has the fewest steps and hence the 
fewest points to establish the line.

However it is determined, the fractal dimension produces a single numeric value that sum-
marizes the irregularity or “roughness” of the feature boundary. This is one of the aspects of 
feature “shape” that humans notice and use in a qualitative way for classifying or comparing 
features. Figures 11.17, 11.18, and 11.19 show examples of several natural fractals. Fractal 
dimensions have been reported for deposited coatings (Sander, 1986; Vicsek, 1992), surfaces 
produced by various kinds of chemical or physical erosion (Sapoval, 1991), some types of 
fracture and wear (Ray & Mandal, 1992; Przerada & Bochenek, 1990; Mecholsky & Passoja, 
1989; Wehbi et al., 1992), and so on. Fractal shapes may have diagnostic possibilities for can-
cer detection (Bauer & Mackenzie, 1995; Baish & Jain, 2000; Kikuchi et al., 2002; Jayalaitha & 
Uthayakumar, 2007; Martin-Landrove et al., 2007; Abdaheer & Khan, 2009; Uppal et al., 2010). 
At larger scales, the shapes of some lakes are fractal and the dimension has been observed to 
correlate with altitude (Goodchild, 1980). As already mentioned, clouds are fractal (Lovejoy, 
1982), as are patterns of sea ice (Ivanov et al., 2007). So too (in a different sense) are river pat-
terns, tree branches, airways in the lungs, and so on.

The relationship between the cross-section boundary shown in Figure 11.18 and what it may 
represent in three dimensions is not simple. For the case of a section through an isotropic sur-
face, the boundary fractal dimension is smaller than the surface fractal dimension by exactly 

(b)

(a)

Figure 11.16 Counting the boxes of increasing size 
through which the boundary of the Koch snowflake 
passes, and the log–log plot. The plot is a straight 
line but the slope does not give an accurate fractal 
dimension for the shape.
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1.0, the difference between the topological dimension of the sectioning plane and the volume 
in which the object resides. However, few real surfaces are perfectly isotropic, and in the 
presence of preferred orientation this simple relationship breaks down. Even more serious, 
if the boundary measured is a projected outline of a particle, the boundary irregularities are 
partially hidden by other surface protrusions, and the measured fractal dimension is too small 
by an amount that depends on the size of the particle and on its roughness. There is no gen-
eral correction for this, and in spite of the fact that this procedure is very commonly used, the 
data obtained (and their subsequent interpretation) remain very open to question. Chapter 15 
discusses the meaning and method of measurement for fractal surfaces, which have dimen-
sions between 2.0 and 2.999… (two-dimensional outlines have dimensions between 1.0 and 
1.999…).

 

Figure 11.17 Fractal shapes of dust 
particles sampled at different 
altitudes (original images cour-
tesy of Brian Kaye, Physics Dept., 
Laurentian University).

Figure 11.18 Cross-section of oxide coating on a metal (fractal dimension = 1.505).
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Harmonic analysis

The fractal dimension attempts to condense all of the details of the boundary shape into a 
single number that describes the roughness in one particular way. There can, of course, be 
an unlimited number of visually or topologically different boundary shapes with the same 
fractal dimension or local roughness. At the other extreme it is possible to use a few numbers 
to preserve all of the boundary information in enough detail to effectively reconstruct the 
details of its appearance.

Harmonic analysis is also known as spectral analysis, Fourier descriptors, or shape unroll-
ing, and is a very powerful method for describing shapes mathematically (Schwartz & Shane, 
1969; Ehrlich & Weinberg, 1970; Zahn & Roskies, 1972; Granlund, 1972; Beddow et al., 1977; 

Figure 11.19 Natural fractals (from upper left): fern leaves; river drainage patterns; dendritic ice crys-
tal formation; mountains and lakes; tree branches; airways in the lungs.
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Persoon, 1977; Flook, 1982; Kuhl & Giardina, 1982; Kaye et al., 1983; Rohlf & Archie, 1984; 
Barth & Sun, 1985; Ferson et al., 1985; Bird et al., 1986; Diaz et al., 1989, 1990; Rohlf, 1990; 
Verscheulen et al., 1993; Lestrel, 1997; Haines & Crampton, 2000; Bowman et al., 2000; Pincus 
& Theriot, 2007). The classical method begins by converting the boundary to a function of the 
form Radius(Angle) or ρ(ϕ). As shown in Figure 11.20, a radius from the feature centroid is 
drawn as a function of angle, and the length plotted to unroll the shape. This plot obviously 
repeats every 2π and as a periodic or repeating function is straightforwardly subjected to 
Fourier analysis. This allows the determination of the a and b terms in the series expansion

 ρ(φ) = a0 + a1 cos(φ) + b1 sin(φ) + a2 cos(2φ) + b2 sin(2φ) + ... (11.1)

It is often more convenient to represent the values as amplitude c and phase δ for each sinusoid:
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This series continues up to an Nth term equal to half the number of points along the periph-
ery. However, it is a characteristic of Fourier analysis that only the first few terms are needed 
to preserve most of the details of feature shape. As shown in Figure 11.21, with only one or 
two dozen terms in the series, the original shape can be redrawn to as good a precision as 
the original pixel representation. In many cases, the phase information δi for each term in the 
series can be discarded without much effect on the shape characterization (although of course 
the phase is essential for actually reconstructing the original shape), and a single coefficient ci 
used for each frequency. The first few values of c in the harmonic or Fourier expansion of the 
unrolled boundary thus contain a great deal of information about the feature shape.

One objection to plotting radius vs. angle is that portions of the profile that are very irregu-
lar are undersampled, relative to smooth areas. A more natural method is to plot radius vs. 
distance along the perimeter. There is another, more serious problem with shape unrolling. 
As shown in Figure 11.22, if the outline is re-entrant or undercut, the radius vs. angle curve 
becomes multivalued. Selecting a convention of always using the minimum (or the maximum) 
radius at each angle eliminates the multiple values, but makes the plot discontinuous. Fourier 
analysis depends upon the function being continuous. In order to avoid that problem, an 
alternative approach to shape unrolling plots instead the slope of the line as a function of the 
distance along the line. This plot is also a repeating function and can be analyzed in exactly 
the same way, but has the problem that the slope may be infinite at some points. Plotting the 
change in slope as a function of position overcomes that limitation.

ρ

ρ

ϕ

ϕ

 

Figure 11.20 Illustration of the 
procedure for unrolling a 
feature profile.
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The chain code boundary representation of a 
feature already contains the slope vs. position 
information along the boundary, but with the 
problem that the data are not uniformly spaced 
(the diagonal links being longer than the hori-
zontal and vertical ones). An effective way to 
deal with this is to replace each horizontal link 
with five shorter conceptual sublinks, each in 
the same direction, and each diagonal line 
with seven of the sublinks. The ratio of 7:5 is 
close enough to √2 for practical purposes, and 
the total number of sublinks along the bound-
ary is still reasonably short. A plot of the link 
value (which indicates direction) vs. position 
gives the unrolled feature shape. Performing 
a Fourier analysis of the sequence of values 

along the chain code for the feature produces a list of ci values that contain the shape infor-
mation. The interpretation of these values is hampered because of the discontinuity in the 
direction numbers.

Chain code need not be recorded as a set of values corresponding to each of the eight pos-
sible pixel neighbor directions. The difficulty in analysis that results from the discontinuity 
between directions eight and one can be overcome by converting to the differential chain 
code as shown in Figure 11.23. This is just the differences between values using modulo 
arithmetic, so that a zero indicates the edge proceeding straight ahead in whatever direction 
exists already, positive values indicate bends of increasing angle in one direction, and nega-
tive values indicate the opposite direction. In this form, the shape is rotation invariant, except 
for the aliasing due to the finite pixel grid, as shown in Figure 11.24. Differential chain code 
also makes it easier to find corners, by defining them as a minimum absolute magnitude for 
the net change in value over some distance (Freeman & Davis, 1977).

Figure 11.22 A re-entrant shape and the result-
ing multi-valued plot of radius vs. angle.

Figure 11.21 Reconstruction of a real object out-
line (an extraterrestrial dust particle) from the 
first 5, 10, and 25 terms in the Fourier expan-
sion (Kaye, 1983).
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The set of digits in the expanded dif-
ferential chain code can be used to 
calculate a discrete Fourier transform 
of the shape, but as a practical mat-
ter the use of a fast Fourier transform 
(FFT) is much preferred (it can be 
hundreds of times faster). The classic 
form of the FFT (Cooley & Tukey, 1965; 
Bracewell, 1989) works by a divide-
and-conquer strategy that requires 
the number of values in the original 
function or graph to be a power of 2 
(64, 128, 256, 512, ...). The expanded 
differential chain code is unlikely to 
have a number of digits that meets 
this requirement, and in any case dif-
ferent objects have varying lengths. 
The solution is to interpolate a fixed 
number of values along the graph, 
producing a sample of the values that 
maintains enough resolution to char-
acterize the important details of the 
shape but is always an exact power of 
two in length.

The most general of the harmonic analysis techniques, and the one used in the examples 
below, combines the x and y coordinates of the points along the boundary as complex num-
bers in the form (x + iy) and performs the Fourier transform on the sequence of coordinates 
directly. This may be visualized as constructing a plot of the x- and y-projections of the feature 
outline and performing a Fourier transform on the resulting values as a function of position 
along the boundary, as shown in Figure 11.25. As for the chain code transforms above, this 
may require interpolating a power-of-two number of points along the boundary to use a clas-
sic FFT, or one of the adaptations of the fast Fourier transform that does not have the power-
of-two restriction may be used (Frigo & Johnson, 2005; Johnson & Frigo, 2007). The result is 
a set of ci values that summarize the feature shape.

These can be compared between classes of objects using standard statistical tests, such as 
stepwise regression or principal components analysis, to determine which of the terms may be 

Figure 11.23 Chain code representations for a feature out-
line starting at the blue pixel and proceeding clockwise, 
showing the conventional direction codes and below 
them the differential chain code, with a plot inserting 
sublinks, as described in the text.

Figure 11.24 Details of a small shape defined by differential chain code as it is rotated on a pixel grid 
in 5 degree steps, showing aliasing of the pixels.
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useful for feature classification or recognition. In a significant number of cases, this approach 
proves to be successful. The identification of particles in sediments, the correlation of the 
shape of foraminifera with the water temperature in which they grew, distinguishing the 
seeds from various closely related plant species, and the discrimination of healthy from can-
cerous cells in Pap smears are but a few of the successes of this approach.

Using the same leaf images shown in Figure 11.11, the magnitude of the first 30 Fourier 
coefficients were determined and normalized Fourier terms obtained with the “Shape” pro-
gram (Iwata & Ukai, 2002). The data set was analyzed using the same discriminant analysis 
described above. The minimum set of coefficients needed to produce classifications without 
any errors is coefficients 1, 2, 4, 6, 10, and 14. Figure 11.26 shows the groupings in param-
eter space. Comparison with the results shown in Figure 11.12 using dimensionless ratios 
as shape descriptors shows that the class separation is not as good, in spite of using twice 
the number of parameters (and ones that are probably more difficult to comprehend).

To illustrate a more complex classification problem, and one in a field where harmonic analysis 
has often been used, light microscope images of a dozen samples of sand grains, comprising 
nearly 900 particles, were recorded at a resolution of 1.32 micrometers per pixel. The sands 
were selected from my personal collection and, as shown in Table 11.3, come from locations 
around the world. Grains were scattered randomly on a glass slide and the profiles viewed 
with transmitted light. Visually, the grains are too diverse in shape to be readily recognized 
by origin. Unlike the tree leaves, which are readily identified by an observer, the sand grains 
have only a few few obvious distinguishing features that human vision can extract and use for 
classification. Figure 11.27 shows the grains from several of the sand samples; the individual 

 

Figure 11.25 Unrolling a feature shape 
by plotting the x- and y-coordinates 
of boundary points as a function of 
position along the boundary (the red 
and blue graphs) and combining 
them as real and imaginary parts 
of complex numbers (the magenta 
line).
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binary profiles have been manually arranged in a single image after acquisition, for conve-
nient display and measurement. The goal was not to be able to identify individual grains, but 
to be able to identify classes based on measurement of a small number of grains.

Sand is not a mineral. Rather, it defines a range of particle sizes from approximately 0.05 
to 2 mm (finer particles are called silt, larger ones are gravel or pebbles). The minerals that 
comprise sands vary widely and are not limited to the silica (quartz) of the familiar ocean 
beach (indeed, many of those beach sands are not just quartz, either). In my collection, there 
are sands of quartz, calcium carbonate, gypsum, olivine, basalt, and other minerals. There 
is a famous (and well guarded!) beach in Namibia with diamond sand. Many sands contain a 
mixture of grains of various minerals.

Sands that have been rolled back and forth by wave action on a beach and have been graded 
by this process so that they contain a fairly uniform set of particles (in terms of size and hard-

ness) are distinguishable from ones 
formed in a stream bed where all 
motion is in one direction and there 
are large as well as small particles. 
Erosion by wind, which causes sand 
grains to jump and roll on dunes, 
produces surface pitting. Young 
sands (one of my black sands from 
Hawaii contains volcanic glass par-
ticles only a few months old when 
collected) are angular and have 
sharp or angular corners, distinct 
from old sands that have become 
smoothly rounded.

The defining shape characteris-
tics that are used by geologists to 

Figure 11.26 Discriminant analysis results for the leaf samples using six Fourier coefficients.

Table 11 .3.Sand Samples

Rub-Al-Khali, Saudi Arabia (Burning sands of the Empty Quarter)

Ocean Isle, NC (South of Sunset Beach)

Pisgah National Forest, Brevard, NC (Davidson River)

Dead Sea Valley (Moshav Hatza, Israel)

Wrightsville Beach, NC

Hawaii (Puna Coast, Big Island, Waha’ula Visitors’ Center, Volcanoes National Park)

Zion National Park, UT (West Wall Kayenta Formation)

Grand Bahama Island (Northwest Providence Channel)

Cape Cod (Marconi Station, Wellspoint, MA)

Iceland (East Coast Beach, Dyrholoey)

White Sands, NM

Mauritania (Akchar Eng, Relict dune)
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Figure 11.27 Binary images of sand grains: (a) Rub-Al-Khali, Saudi Arabia; (b) Wrightsville Beach, North 
Carolina; (c) Zion National Park, Utah; (d) Akchar Eng, Mauritania; (e) White Sands, New Mexico.
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describe sand, and which are related to how the grains have been shaped by natural weather-
ing processes, use terms such as angular vs. rounded. Figure 11.28 reproduces a portion of a 
handy pocket guide to sand classification prepared by the Sigma Gamma Epsilon fraternity at 
Kent State University, which seems to be universally carried and used by geologists. Note that 
the terms used are not based on measurement, but on visual comparison to exemplar sands 
or shapes (and that the terms Roundness and Sphericity are used, another example of trying 
to describe a departure from “being like a circle”).

Measurements on the binary images of the sand grains listed in Table 11.3 resulted in a set 
of classical shape descriptors (the dimensionless ratios in Table 11.1), as well as the various 
measures of size described in Chapter 10. These were combined into a data set for dis-
criminant analysis, as performed for the tree leaves. Stepwise addition and removal of terms 
produces the best result using convex area and convex perimeter (two size measurements), 
and the solidity (the ratio of area to convex area). As shown in the plots in Figure 11.29, it is 
not possible to completely separate all of the various classes of sand grains by this method. 
Approximately 66% of the individual grains are misclassified.

However, it is still possible to distinguish between each pair of samples using this method. 
Measurements of a small number of representative grains clearly separated them as groups 
(Figure 11.30), and even most of the individual grains were successfully classified. For exam-
ple, 90% of the individual grains in the aeolian (wind blown) dune sand from Rub-al-Khali and 
the beach sand from Ocean Isle are correctly classified using the perimeter, convex perimeter, 
and solidity. One hunded percent of the individual grains in the Hawaiian (extremely young) 
and Mauritanian (extremely old) sands are correctly classified using the convex area, equiva-
lent circular diameter, and fractal dimension. Roundness, solidity, and radius ratio allow 87% 
of the individual grains in the dune sand from White Sands and the river sand from Pisgah 
to be distinguished correctly. And so on for each pair, recognizing that in each case different 
measurement parameters are used to separate the groups.

 

Figure 11.28 A portion of the pocket 
sand classification guide prepared 
by the Gamma Zeta Chapter of the 
Sigma Gamma Epsilon Fraternity at 
Kent State University, Ohio.
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The same type of analysis was also performed using Fourier shape descriptors. These have a 
long history of use for particles in sediments; in some cases, particles eroded in different riv-
ers have been mapped by Fourier shape descriptors to show where the sediments are depos-
ited. A data set containing the first 20 magnitude terms in the Fourier series for each grain was 
subjected to the same analysis procedure as used for the leaves. Using the 3rd, 4th, 11th, and 
15th series terms, as shown in Figure 11.31, gives the best results but does not separate the 
groups (78% of the individual grains are misclassified). Adding more terms does not improve 
the results.

It is possible to distinguish one group from another when they are considered in pairs 
(Figure  11.32). With a few dozen particles, the groups are clearly separated, and the 
majority of the individual grains are correctly classified. The figure shows results for the 
same pairs of sand samples shown above. Seventy-seven percent of the individual grains are 
correctly identified between the Rub-al-Khali and Ocean Isle sands using the coefficients 
1, 5, 10, 11, 14; 17.9% of the individual grains are correctly classified between the Hawaiian 

Figure 11.29 Discriminant analysis results for the sand samples using three classical size and shape 
measurements.

Figure 11.30 Examples of successful discriminant analysis using classical measurements for pairs of 
sand samples.
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and Mauritanian sands using coefficients 1, 8, 13; 15.9% of the individual grains are correctly 
classified between the White sands and Pisgah samples using coefficients 8, 9, and 12. As is 
the case for the classical dimensionless ratio measurements, different combinations of terms 
are useful for each pairwise comparison, which makes it difficult to generalize about the 
possible interpretation of the results.

In spite of its successes, the harmonic analysis approach has not become a commonly used 
tool for most image analysts, nor is it included in most standard image processing and mea-
surement software. In part this neglect is due to the significant amount of computing needed 
to determine the parameters and the need to apply extensive statistical analysis to interpret 
them. However, as computer power has continued to increase and cost to decrease, this 
cannot be the major reason any longer. The probable cause is that the frequency terms are 
unfamiliar and have no obvious counterpart in human vision. The shape information that we 
extract visually from images does not reveal these numeric factors. The distinction between 
two sands based on the 8th and 13th harmonic coefficients can be understood intellectually 
to somehow represent a difference in the amplitude of those frequency terms in the boundary 

Figure 11.31 Discriminant analysis results for the sand samples using four Fourier coefficients.

Figure 11.32 Examples of successful discriminant analysis using Fourier coefficients for pairs of sand 
samples.
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irregularities of the object, but to a human observer that is masked by other variables. The 
success of the approach illustrates the power of computer-based measurement algorithms to 
surpass human skills not only quantitatively (in terms of accuracy and precision) but even 
qualitatively (in terms of the types of things that can be measured). But that doesn’t mean that 
humans feel comfortable using such tools.

Topology

Harmonic analysis uses characteristics of feature shape that are quite different from those that 
human vision selects. On the other hand, topological parameters are those which seem most 
obvious to most observers. When asked to differentiate the stars on the U.S.A., Australian, 
and Israeli flags we don’t refer to the color, dimension, or angles, but the number of points 
(Figure 11.33). The most obvious difference between a disk and the letter “O” is not the slight 
ellipticity of the latter, but the presence of the central hole. Topological properties are quite 
different from metric ones. If the feature is drawn onto a sheet of rubber, stretching it to any 
size and with any distortion does not change the topology. Smoothing an irregular outline 
does not alter the topological information.

The origins of topology begin with Euler’s proof in 1735 that there was no solution to the his-
torical problem known as the “Seven Bridges of Konigsberg.” As shown in Figure 11.34, the 
problem asks for a walking path through the city that would cross each bridge exactly once. 
Euler showed that this was impossible and in the process established simple rules connecting 
the number of nodes, branches, and ends, which apply both to two-dimensional graphs or 
images and to the edges, vertices, and faces of three-dimensional solids. In two dimensions, 
Euler’s rule is

 # Loops = # Branches – # Ends – # Nodes + 1 (11.3)

A simple exercise in two dimensions can be performed with the letters of the alphabet. As 
shown in Figure 11.35, several letters share the same properties of loops, ends, and nodes 
such that one can be continuously warped into the other. For a font with serifs, the removal 
of short external branches from the skeleton may be applied to simplify the shapes. The ease 
with which topological properties can be determined for features in images means that they 
are primary choices for classification when they can be used to distinguish objects.

Some topological properties of features can be determined directly from the pixel array, such 
as the number of internal holes. Other properties, such as the number of points on the stars 

Figure 11.33 Stars from the U.S.A., Australian, and Israeli flags, with the skeletons superimposed and 
the end points marked.
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shown in Figure 11.33, are most readily determined 
using the skeleton. The skeleton consists of pixels 
along the midline of the features. Pixels with only a 
single touching neighbor are end points, while those 
with more than two neighbors are branch points or 
nodes. Counting the branch and end points, and the 
number of loops (holes), provides a compact topologi-
cal representation of feature characteristics. Chapter 
8 shows several examples of using the skeleton end 
points to characterize shape.

These characteristics of features are important to 
visual classification and recognition, as can be eas-
ily shown by considering our ability to recognize the 
printed letters in the alphabet regardless of size and 
modest changes in font or style. Many character recog-
nition programs that convert images of text to letters 
stored in a file make heavy use of topological rules.

Figure  11.36 illustrates the various components of 
the skeleton that can be distinguished and may be 
useful for topological shape characterization. Some, 
like the number of end points, number of loops or 
holes, and number of nodes, are determined simply 
by counting. Others, such as the relative length of 
external branches (which terminate at an end point) 
and internal branches (which extend from one node 
to another) require measurement and can be used in 

Figure 11.34 Konigsberg (now Kaliningrad), showing the famous seven bridges (highlighted in red) 
over the river connecting the island and parts of the city.

Figure 11.35 The letters of the alphabet, 
printed in a plain, sans serif font, 
arranged by topology. Each group 
of letters shares the same number of 
ends, loops, and nodes.
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dimensionless ratios like those introduced above. 
Combining the skeleton with the Euclidean dis-
tance map can determine properties such as the 
width of irregular structures.

Figure 11.37 illustrates this with several features 
that vary in the number, length and breadth of their 
arms. The features are sufficiently complex that 
immediate visual recognition and labeling is not 
straightforward, and trying to find the single pair 
of features that shares the same values for all three 
parameters is difficult. Measuring each feature’s 
shape parameters using the skeleton and EDM 
indicates which two features are the pair. This is 
shown in the figure by assigning three measured 
parameters — the number of arms, the length of 
arms, and the width of arms — to the pixel values 
in different color channels. The two features with 
the same color match in all three properties

Another topological property of a feature is its num-
ber of sides. In the case of a space-filling structure 
such as cells in tissue, grains in a metal, or fields in 
an aerial survey, the number of sides each feature 
has is the number of other features it adjoins. Labeling the features according to the number 
of neighbors can reveal interesting properties of the structure, as shown in Chapter 10.

The number of sides that a feature has can also be determined in another way. If corner points 
are defined as arbitrarily abrupt changes in boundary direction, then counting the number 
of sides can be accomplished directly from the chain code. An approach that is less sensi-
tive to minor irregularities in the boundary pixels uses the convex or bounding polygon. As 

Figure 11.36 The skeleton of a shape, show-
ing the ends (red), nodes (blue), internal 
branches (green), and external branches 
(yellow). Equation 11.3 calculates the 
number of Loops (1) equal to (Number 
of Branches (8) – Number of Ends (4) – 
Number of Nodes (4) + 1).

  
(a)                       (b)

Figure 11.37 Complex branched features with combinations of three levels of external branch length, 
line width, and number of branches. Using the pixel values in color channels to represent each of the 
measured parameters shows that the two red features in (b) match in all three properties.
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described in Chapter 10, this polygon is usually constructed with some fixed and relatively 
large number of sides. For instance, performing rotation of axes in 10 degree steps forms a 
36-sided polygon. Several of the vertices in this polygon coincide or lie close together if the 
feature shape has a relatively sharp corner. Setting an arbitrary limit on the distance between 
vertices that can be merged (usually expressed as a percentage of the total polygon perimeter) 
allows collecting nearby vertices together. Of course, counting the vertices is equivalent to 
counting the sides. Setting a threshold for the minimum length of the polygon side (again, 
usually as a percentage of the total perimeter) to consider it as a representation of a side of 
the feature is an equivalent way to count sides.

None of the four types of shape characterization (dimensionless ratios, fractal dimension, 
harmonic analysis, and topology) is completely satisfactory. One (harmonic analysis) is too 
unfamiliar and different from the human interpretation of shape. One (dimensionless ratios) 
is convenient for calculation but not very specific. One (fractal dimension) corresponds well 
with the human idea of boundary roughness but does not capture more macroscopic aspects 
of shape. And one (topology) is just the opposite in that it represents the gross aspects of 
feature shape but not the fine details. In real situations, several complementary parameters 
may be needed.

Three dimensions

Many of the measurement procedures illustrated above and in Chapter 10 for two-dimen-
sional images generalize directly into three dimensions. Images acquired by confocal light 
microscopy, seismic imaging, medical or industrial tomography, and even in some cases serial 
sectioning can be represented in many different ways, as discussed in Chapter 14. But for 
image processing and measurement purposes, an array of cubic voxels (volume elements, the 
three-dimensional analog to pixels or picture elements) is the most useful. Image processing 
in these arrays uses neighborhoods just as in two dimensions, although these contain many 
more neighbors and consequently take longer to apply (in addition to the fact that there are 
many more voxels present in the 3D image).

Image measurements still require identifying those pixels that are connected to each other. 
In two dimensions, it is necessary to decide between an eight-connected and a four-con-
nected interpretation of touching pixels. In three dimensions, voxels can touch on a face, 
edge, or corner (6-, 18- or 26-connectedness), and again the rules for features and back-
ground cannot be the same. It is more difficult to identify internal holes in features, since 
the entire array must be tested to see if there is any connection to the outside. However, the 
logic remains the same.

This consistency of principle applies to most of the measurements in this and the preceding 
chapters. Summing up the numeric values of voxels in a CT or MRI data set, or a series of 
confocal microscope images (or some property calculated from the voxel values) to obtain the 
total density, or water content, or whatever property has been calibrated, is straightforward. 
So are location measurements using the voxel moments. Orientations in three-dimensional 
space require two angles instead of one. Neighbor relationships (distance and direction) have 
the same meaning and interpretation as in two dimensions.

The three-dimensional analog to feature area is feature volume, obtained by counting voxels. 
The caliper dimensions in many directions and the bounding polyhedron can be determined 
by rotation of coordinate axes and searching for minimum and maximum points. Of course, 
getting enough rotations in three dimensions to fit the polyhedron adequately to the sample is 
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somewhat more work than in two dimensions. In fact, everything done in three-dimensional 
voxel arrays taxes the current limits of small computers: their speed, memory (to hold all 
of the voxels), displays (to present the data using volumetric or surface rendering), and the 
human interface. For instance, with a mouse, trackball, or other pointing device it is easy to 
select a location in a two-dimensional image. How do you accomplish this in three dimen-
sions? Various schemes have been tried (some requiring a real-time stereo display), none with 
wide acceptance. The development of gaming consoles, and of a generation of people familiar 
with their use, may offer some techniques for the future.

It is noted in Chapter 10 that perimeter is a somewhat troublesome concept and a difficult 
measurement in two dimensions. The analog to perimeter in three dimensions is the surface 
area of the feature, and it has all of the problems of perimeter plus some additional ones. The 
idea that the surface area may be an artifact of voxel resolution remains and is exacerbated by 
the somewhat coarser resolution usually available in three-dimensional images. If the voxels 
are not cubic, the problem gets harder. Measuring the length of the perimeter accurately is 
difficult in two dimensions. For a three-dimensional surface, the boundary representation is 
the list of coordinates of vertices of a polyhedron with triangular facets. Calculating the area 
of a triangle from its three corners is straightforward, but knowing which three points to use 
for any particular triangle is not. As a very simple example, consider four points, as shown 
in Figure 11.38. There are two different ways the surface can be constructed between them, 
with different surface areas (sometimes both are calculated and the average used).

Boundary representation in two dimensions relies on the fact that there is only one path 
around any feature, no matter how complicated. This is not true in three dimensions. There 
is no unique order in which triangular facets between boundary voxels must or can be fol-
lowed. In fact, for objects that are topologically shaped like a torus (have at least one open 
hole through them), there is no guarantee that a continuous surface path will completely cover 
the surface and reach all points on it. This means that there is no convenient analog to chain 
code, and many of the two-dimensional measurements of size and shape that are based on it 
become difficult to perform in three dimensions.

Likewise, the three-dimensional skeleton is harder to obtain. There are actually two 
“kinds” of skeleton that can be calculated for voxel arrays. One is the set of midlines, 
and the other is a set of midplanes. The latter is formed by connecting the skeleton lines 
in each plane section, while the former is a connection between the junction points or 
nodes of the skeletons in each plane section. A set of midlines can also be obtained as a 

 

Figure 11.38 Tiling a surface with tri-
angular facets has two different solu-
tions. In this simple example, the 
elevations of the four corners of a 
square are shown. Triangles can be 
constructed using either diagonal as 
the common line. As shown, this pro-
duces a surface that is either convex 
or concave, with a surface area of 
either 1.366 or 1.414 square units.
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medial axis transform, by using the three-dimensional analog of the Euclidean distance 
map to find the centers of inscribed spheres. Neither type of skeleton by itself captures 
all of the topological properties of the feature. The planes can show twists and protru-
sions not visible in the line skeleton, for example. For three-dimensional objects, the Euler 
number is the number of objects plus the number of internal cavities, minus the number 
of tunnels.

Measuring the length of a voxel line is similar to a pixel line. Since there are three ways 
the voxels can touch, the rule shown in Chapter 10, Equation 10.14 must be extended, to 
become:

 Length = 0.877 • Number of face-touching neighbors

 + 1.342 • Number of edge-touching neighbors (11.4)

   + 1.647 • Number of corner-touching neighbors 

A bounding polyhedron (analogous to the bounding polygon in two dimensions) can be 
formed in much the same way by finding limiting points in many directions to define vertices. 
Euler’s relationship for the convex bounding polyhedron is:

 # Vertices – # Edges + # Faces = 2 (11.5)

Most of the shape parameters calculated as ratios of dimensions have simple (although equally 
limited) generalizations to three dimensions. Harmonic analysis can also be performed in 
three dimensions, by expressing the radius as a function of two angles and performing the 
Fourier expansion in two dimensions. In two dimensions the x- and y-coordinates can be 
combined into a series of complex numbers and used in a Fourier transform. There is no 
analogous way to do this in three dimensions. Similarly, since there is no analog to chain 
code or the description of slope as a function of position, the harmonic analysis method is 
restricted to shapes that are not re-entrant or otherwise multiple valued (only one radius value 
at each angle).

Fractal dimensions are very important for dealing with three-dimensional surfaces and net-
works, although in most cases it remains easier to measure them in two-dimensional sections. 
In fact, this generalization holds for most image measurement tasks. The practical difficul-
ties of working with three-dimensional voxel arrays are considerable. The size of the array 
and the amount of computing needed to obtain results are significant. Because of memory 
restriction or limitations in the resolution of the 3D imaging techniques, the voxel resolution 
is usually much poorer than the attainable pixel resolution in a two-dimensional image of the 
structure. Consequently, to the extent that the needed information can be obtained from two-
dimensional images and related by stereology to the three-dimensional structure, that is the 
preferred technique. It is faster and often more precise.

This approach does not work for all purposes. Strongly anisotropic materials require signifi-
cant planning and effort to section in enough carefully controlled orientations and are still 
so difficult to describe quantitatively that three-dimensional imaging may be preferred. And 
above all, topological properties of the structure such as the number of objects per unit vol-
ume, or the connectivity of a network, are simply not accessible on two-dimensional sections 
(although the Disector technique using two such parallel planes to sample three-dimensional 
topology is described in Chapter 9). Many aspects of three-dimensional topology can only be 
studied in three dimensions and consequently require three-dimensional imaging, processing, 
and measurement.
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The measurement of two-dimensional images is based on an array of pixels, and the discussion 
of 3D images has thus far assumed they consist of voxels. But, as shown in Chapter 14, many 
three-dimensional structures are studied by obtaining a set of parallel section planes that are 
relatively widely spaced. This is generally termed a “serial section” technique, although physi-
cal sectioning is not always required. Constructing the object(s) from the sections is shown in 
that chapter as well.

Measuring the objects from sections is computationally straightforward. The volume is esti-
mated as the summation of section area times section spacing, and the surface area can be 
estimated as the summation of the section perimeter times section spacing. But few objects 
have perfectly smooth surfaces. The section perimeter reveals the roughness in the plane of 
the section. But the reconstruction technique generally connects the section profiles together 
with planes that are perfectly smooth, which underestimates the surface area. Even if the sur-
face is smooth, the volume and surface area are underestimated if it is curved.

Aligning the sections correctly is vital both to correctly understand the topology of the struc-
ture and to measure the volume and surface. Chapter 14 illustrates some of the potential dif-
ficulties. When the sections are very closely spaced, these problems are reduced. In the limit, 
when the section spacing is the same as the resolution within the individual section images, it 
is equivalent to a cubic voxel array. This is generally preferred for measurement purposes.
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12
Feature Recognition 
and Classification

Recognition and classification are complementary functions that lie at the “high end” (i.e., 
require the most complicated algorithms) in the field of image analysis, although they 
have been of significant interest since the beginnings (Duda & Hart, 1973). Classification 

is concerned with establishing criteria that can be used to identify or distinguish different 
populations of objects that may appear in images. These criteria can vary widely in form 
and sophistication, ranging from example images of presumably prototypical representatives 
of each class, to numeric parameters from measurement, to syntactical descriptions of key 
features. The classification of leaf species shown in Chapter 11 is an example of the use of 
statistical tools and numeric values. Recognition is the process by which these tools are sub-
sequently used to find a particular object or structure within an image. It functions at many 
different levels, including such different processes as finding a face in an image or matching 
that face to a specific individual.

Computers are sometimes better than humans at classification because they are not distracted 
by random variations in non-critical parameters and can extract meaningful statistical behav-
ior to isolate groups. Sometimes these groups are meaningful, but in other cases they may not 
correspond to the intended classes. On the other hand, people are generally much better (or at 
least faster) at recognition than are computers, because they can detect the few critical factors 
that they have learned will provide identification of familiar objects. Human identification of 
the leaf species shown in Chapter 11 is fast and generally error-free, and almost certainly does 
not depend on the same criteria as the statistical analysis of measurement data. But humans 
don’t fare well with unfamiliar objects or even with unfamiliar views of common ones.

Various recognition and classification techniques involve an extremely broad range of com-
plexities. At the low end, operations such as locating and scanning UPC (Universal Product 
Code) bar codes on supermarket packaging or automatic sorting and routing mail to the 
proper zip code, are based on careful design of the target to facilitate the reading function 
and to provide detection and correction of errors. These are often detected by linear scans 
rather than acquiring full images as used elsewhere in this text, and UPC codes are symmet-
ric (with black and white reversal) so that the scan can be read in either direction. Barcodes 
are used on patient identification bands in hospitals, on railroad cars for automatic tracking, 
and in many other situations. Two-dimensional bar codes have also been developed that are 
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capable of much higher information density. But reading bar codes is a specialized field that 
is not covered in this text.

The basic statistical processing behind classification is independent of image analysis, since 
the parameters used for classification and identification can come from any source. A good 
introduction to the statistics can be found in textbooks such as Divijver & Kittler (1980), 
Schalkoff (1992), Haykin (1993), Stefik (1995), Hand (1981), Pao (1989), Lehman et al. (2005), 
and many others.

Template matching and cross-correlation

Probably the lowest level function that performs recognition in two-dimensional pixel images 
is the restricted optical character recognition (OCR) of the type applied to processing checks. 
The characters printed on bank checks are restricted to numerals 0 to 9 and a few punctuation 
marks. Furthermore, the characters are in a fixed size, location, and orientation, and in a spe-
cial font designed to make them easily distinguishable. In such highly constrained situations, 
template matching provides fast results with minimum computation.

The example in Figure  12.1 shows an application of template matching to the letters A 
through E. The template consisting of black pixels that cover the shape of each target charac-
ter is stored in memory. Each letter to be recognized is combined with all of the stored tem-
plates using AND and exclusive-OR functions to count the number of pixels that match and 
the number which do not. The template that gives the highest net score (number of matches 
minus number of misses) is selected as the identification of the character. In some implemen-
tations, the net score may be normalized by dividing by the number of black pixels in the 
template, if this varies substantially for the various characters.

In the example, the templates are not exact and have enough width and extra pixels to cover 
a modest range of variation in the target character, but obviously cannot handle widely diver-
gent fonts or styles. The similarities in shape between several letters (e.g., B and E) do not 
create a serious problem and the error rate for this approach is very low, provided that the 
characters meet the assumptions of size, orientation, font, etc., that are built into the templates. 

 

Figure 12.1 Matching each of the five letter 
templates (top row) with a target letter 
(center) produces a net score (number 
of red matched pixels minus number of 
blue unmatched pixels) that is greatest 
for the correct match.
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The presence of small amounts 
of noise due to dirt, etc., is toler-
ated as well (Secilla & Garcia, 1987; 
Zhang, 2009).

This type of template matching is 
a rather specialized and restricted 
case of cross-correlation, which 
can be used for gray scale or color 
images as well as binary pixel 
arrays. Chapter 6, on image pro-
cessing in Fourier space, introduces 
the cross-correlation procedure as 
a technique for matching a target 
image with a second image to locate 
brightness patterns. The method 
can be applied to images of text or 
any other features, provided that a set of representative target images can be established.

It is not necessary to perform cross-correlation using a Fourier transform. When the target is 
relatively small, it is efficient to perform the mathematics in the spatial domain. The target 
pattern (rotated by 180°) is moved to every possible position in the image and at each location 
i, j the cross-correlation value is summed according to Equation 12.1, to produce a result, as 
shown in Figure 12.2.
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B and T are the pixel brightness values for the image and target, respectively, and the summa-
tions are carried out over the size s of the target. The resulting value is very high where bright 
pixels in the target and image are similar, and the denominator normalizes the result for varia-
tions in overall brightness of the target or the image. In addition to providing a quantitative 
measure of the degree of match, the correlation score can be scaled appropriately to produce 
a derived gray scale image in which brightness is a measure of how well the target matches 
each location in the image. This image can be processed with a top hat filter, or thresholded, 
to detect matches that are present.

Figure 12.3 shows an example image in which several different fonts have been used for the 
letters A through E. The marked letter B is used as a target. The cross-correlation results show 
that the method does not do a good job of matching the same letter in most of the other fonts, 
and that matching of some of the other letters is nearly as good. Humans have no difficulty in 
reading the letters in any of the fonts, even when the topology varies somewhat.

Cross-correlation looks for very specific details of feature shape and brightness, and while it is 
reasonably robust when a feature is partially obscured (e.g., by noise or camouflage), it is not 
very tolerant of changes in size or orientation. Figure 12.4 shows the same target letter B, this 
time applied to locate letters in the same font but with superimposed patterns of noise, lines, 
and points. A top hat filter is applied to the cross-correlation results and a color scale used to 

Figure 12.2 Cross-correlation example using pixels with sin-
gle digit values. The best match is marked in red (note that 
it is not an exact match).
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show the strength of the match with each letter. The occurrences of the letter B are all found, 
with greater values than any of the other letters.

Figure 12.5 shows an example of one of the uses of the technique, the identification of mili-
tary targets. The target image (an F-15) produces a cross-correlation value that drops to 84% 
with a 10 degree rotation and 80% for a 20 degree rotation. Both values are still higher than 
the correlation with different airplanes, which are 72% for an F-14 and 47% for a B-1. The 

  

Figure 12.3 Cross-correlation with 
letters in different fonts. The out-
lined letter B is used as the tar-
get, and the resulting values of 
the normalized cross-correlation 
value are color coded using the 
color scale shown.

Figure 12.4 Cross-correlation: The same 
target letter B used in Figure 12.3 
locates the occurrences of the letter B 
in spite of variable contrast, super-
imposed noise, lines, and points. The 
color scale shows the magnitude of the 
cross-correlation values.
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images must be scaled to the same approximate size before the calculation is performed. In 
practice, it is either necessary to rotate the images to some common alignment or to use target 
images at many different orientations, for instance rotated in 15 degree steps. Views in other 
directions (from the side, front, oblique views, etc.) might also be required.

Parametric description

Recognition of features in images covers an extremely wide range of applications. In some 
cases the targets are fully known and can be completely represented by one or several images, 
so that cross-correlation is an appropriate method. In others, the goal is to have the computer 
“understand” natural three-dimensional scenes in which objects may appear in a wide variety 
of presentations. Applications such as automatic navigation or robotics require that the com-
puter be able to extract surfaces and connect them hierarchically to construct three-dimen-
sional objects, which are then recognized (see, for example, Roberts, 1982; Ballard and Brown, 
1982; Ballard et al., 1984). The topics and goals discussed here are much more limited: to allow 
the image analysis system to be able to recognize discrete features in essentially two dimen-
sional scenes. If the objects are three dimensional and can appear in different orientations, 
then each different two-dimensional view may be considered as a different target object.

An application that has become important is facial recognition, used, for example, to screen 
surveillance videos for the faces of known individuals. One successful approach uses ratios 
of vertical and horizontal distances between selected landmarks, as indicated in Figure 12.6. 
By using the ratios of distances, the method becomes relatively insensitive to the orientation 
of the face with respect to the camera. The use of multiple combinations of dimensions com-
pensates for the fact that some of the landmarks may be obscured in any particular view. The 

Figure 12.5 Cross-correlation for aircraft: (a) target image (F-15); (b) matching scores for four other 
images showing the effects of shape and orientation. The top two images are the same as the target 
except for rotation; the bottom two are different aircraft types (F-14 and B-1).
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goal of this method is not fully automatic identification, but rather to create a vector in a high-
dimensionality space using the various ratios that can select a fixed but small number of the 
most similar faces on file, which are then presented to a human for comparison and match-
ing. This is the same screening approach used in many other applications, some of which are 
described below.

Fingerprint identification, for example, uses a small number of “minutiae,” the location and 
orientation of details such as branches or ends in the friction ridge pattern, as shown in 
Figure 8.68 in Chapter 8. These may be located either manually or by image processing. The 
coordinates of these features form a vector to select a group of the most similar stored prints, 
which a human then views. The fingerprint identification system has proven itself useful, 
although statistics on the success rate are not available.

For facial recognition, the method based on ratios of dimensions assumes that a suitable data-
base of images has been established. Dimensional ratios are chosen so that they are resistant to 
disguise. Figure 2.46 in Chapter 2 shows that slight changes in dimension alter the appearance 
entirely, but the dimensions chosen are difficult to alter. Both the facial recognition and finger-
print recognition methods use computers as an essential part of the process, but the ultimate 
decision step (and sometimes the measurements as well) depend upon decisions by a human.

The simplest situation for feature classification in two-dimensional images, but one that satis-
fies a very large percentage of practical applications, uses the feature-specific measurement 
parameters introduced in the previous chapters. These methods are called parametric descrip-
tions. Figure 12.7 shows a simple example, in which the features can be grouped into two 
classes based on their shape. Several of the shape descriptors introduced in Chapter 11 can 
be used here; the example shows the formfactor (4π·Area/Perimeter2). A distribution of form-
factor values for the features in the image shows two well-separated populations. Setting a 
limit between the two groups can separate them into the respective classes. In the figure, the 
“rounder” features have been identified with a red mark.

Note that other measurement parameters such as area (Figure  12.7c) do not distinguish 
between the groups. Finding a single parameter that can be successfully used to separate 
classes is not always possible, and when it is, selecting the best one from the many possible 

  
(a)                     (b)

Figure 12.6 A human face labeled with several of the principal vertical and horizontal dimensions 
used in facial identification.
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candidates by trial and error can be a time-con-
suming process. Statistical analysis programs 
can assist in the process.

In most cases, a combination of parameters is 
needed for successful classification, and statisti-
cal methods are used to find the best ones. As 
a simple thought experiment (from Castleman, 
1996), consider a system to sort fruit, where the 
target classes are apples, lemons, grapefruit, 
and cherries. Apples and cherries can be dis-
tinguished on the basis of size (e.g., diameter), 
as can lemons and grapefruit. But apples have 
a range of sizes that overlap lemons and grape-
fruit, so a second parameter is needed to distin-
guish them, for instance the average hue, distinguishing between red and yellow (at least this 
works if green and golden apples are excluded from the process). This can best be shown as 
a two-dimensional plot of parameter space, as shown in Figure 12.8.

The various classes are distinct in this example, so that drawing “decision lines” between them 
is straightforward once the range of values for the different classes has been established. This 
is most commonly done by measuring actual samples. Rather than just measuring “typical” 
specimens, it is most efficient in this case to intentionally select examples of each fruit that are 
considered to be extremes (largest, smallest, reddest, yellowest) to map out the boundaries.

The goals in deciding upon the measurement parameters to use are:

 1. to be able to discriminate the various classes, preferably with no overlap at all but at least 
with minimum overlap (handling of situations in which there is overlap is dealt with 
below);

(a)

(b)

(c)

Figure 12.7 Some hand-drawn 
features

  (a)  with their histograms for 
formfactor

  (b) and area

  (c)  The formfactor histo-
gram shows two sepa-
rate classes; the features 
with values greater than 
0.785 are marked with 
red dots and are visu-
ally “rounder” than the 
others. The area histo-
gram shows only a single 
grouping and does not 
distinguish two groups of 
features.

Figure 12.8 Schematic diagram of classes for 
fruit sorting as described in the text.
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 2. to have the smallest practical number of parameters, which simplifies the training 
process in which determining extremes in all combinations of parameters is desired;

 3. to be independent of each other, so that each one measures a different characteristic 
of the objects; and

 4. to be reliable, so that the parameter values do not vary over time or due to uncon-
trolled variables, and they can be measured consistently if system hardware is 
modified or replaced.

Sometimes these goals conflict with one another. For example, adding more parameters often 
provides less overlap of classes, but it may complicate the training process. Finding mul-
tiple parameters that are truly independent can be difficult. In the case of the apples, one 
parameter is a measure of size and the other of color, so it is reasonable to expect them to be 
independent. But shape parameters, which are often very important for classification, may be 
interrelated to each other and to the size parameters from which they are calculated. It usually 
requires a statistical procedure to determine which function best in any particular situation 
(examples are shown below).

Reliability is difficult to predict when a classification scheme is initially established. By defi-
nition, changes in object appearance due to unexpected variations cannot be excluded. For 
instance, if color is being used to distinguish fabricated components and the pigmentation 
used in the ink being applied is changed by the supplier, or incandescent lights are replaced 
by fluorescent ones, or a different camera is substituted for one that has failed, the R, G, B 
values and whatever hue or other information is derived from them will change. It may or may 
not be practical to introduce a calibration step to adjust the new values to match the old. The 
alternative is to re-measure a training population using the new ink, lights, or camera and re-
establish class limits, which is generally an expensive task.

Three situations are encountered in general classification; each is considered in this chapter:

 1. Imposed criteria (the classical expert system). A human expert supplies rules. Software 
may optimize the order in which they are applied and search for the relevant rules, 
but does not derive them.

 2. Supervised classification. A training set of examples which are selected to be proto-
types of the range of classes and class variations is presented to the system, which 
then develops a strategy for identifying them. The number of classes and examples 
identified for each class is specified by a human.

 3. Unsupervised classification. The system is presented with a set of examples as above, 
but not told which class each belongs to, or perhaps even the number of classes. The 
system attempts to define the class regions in order to maximize the similarity of 
objects within each cluster and the differences between groups.

The second approach is one that corresponds to implementation of many existing industry 
standards, which are based on “type images” that have been selected or created by experts (or 
committees) to guide identification by technicians. Usually these are presented as prototypical 
examples (or idealized drawings of such examples) for the various classes but no specific guid-
ance is given (and no numeric measurement values or procedures are provided) on how the 
matching is to be performed. The sand samples shown in Figure 11.28 in Chapter 11 are an 
example. If the type images are used as the training examples (e.g., Gomes & Paciornik, 2005), 
the system can usually derive the required measurements and limits, but the performance on 
real samples depends in large measure on how representative those images actually are.



635Feature Recognition and Classification
© 2011 by Taylor & Francis Group, LLC

Medical applications are making increased use of the same approach to automatic feature 
recognition, at least as a way to select suspicious or comparison images to present to a 
trained pathologist. For example, to identify masses in mammograms, Alto et al. (2005) use 
the measured values of the shape parameters defined in Chapter 11 as formfactor (4π·Area/
Perimeter2) and convexity (Convex Perimeter/Total Perimeter), as well as the number and 
angles of spicules, edge contrast, texture (entropy), and density as a vector in parameter space 
that selects a fixed number of the most similar previously stored reference images, which are 
presented for visual comparison.

Automatic screening systems for Pap smears use parameters such as the integrated optical 
density of the nucleus, nuclear texture (standard deviation of the optical density), nuclear 
formfactor, and the area ratio of nucleus to cytoplasm to select a small fixed number of the 
most suspicious cells on a slide, which are then presented for a technician to view (Luck et 
al., 1993; Rutenberg et al., 2001). The expectation is that if these cells do not include any 
that indicate a pathological condition, then the slide is “normal” and no further review by 
a pathologist is warranted. But while this “automatic” process provides a great increase in 
speed by scanning the entire slide and selecting a few suspicious sites to view, it still defers 
the ultimate decision to a human.

There are also other situations in which the classification of images is not based on the statis-
tics of individual feature measurement parameters, but on characteristics of the entire scene. 
The most often cited example of this type of discrimination uses the Brodatz texture images 
(Brodatz, 1966) representing various kinds of natural and man-made surfaces. A few are 
shown in Figure 12.9. The Fourier transform power spectra of these images (Figure 12.10) 
reveal characteristic frequencies and orientations, or ratios of amplitudes at specific frequen-
cies, that can be used to distinguish them. This same logic can be implemented in hardware 
using a set of filter banks to select the various frequencies and performing identification in 
real time.

The principle use of this technology seems to be in classification of remote sensing imagery 
(satellite and aerial photographs). When combined with multiband spectral intensity ratios, as 
discussed below, the textures can be used to identify various types of crops, rocks, and other 
land use patterns. However, while they apply to the entire scene rather than a single feature, 
the various numeric values, such as ratios of amplitudes at various frequencies and orienta-
tions, are used in the decision process in the same way as feature-specific measurements in 
the classification processes described in this chapter.

Decision points

In many practical cases, the classes are not as completely distinct, as in the example shown in 
Figure 12.7. Commonly, when training populations are measured, the histograms of param-
eter values may overlap, as shown in Figure 12.11. The reported average heights for adult 
males and females in the United States are 69.1 and 63.7 inches, respectively, which suggests 
that height might be useful as a way to distinguish the sexes. But as the histograms show, 
there is considerable overlap. Such overlaps indicate the need to find other parameters that 
offer better discrimination, but it is not always possible to avoid some degree of overlap, and 
in that case it is necessary to establish a decision threshold that produces an acceptable prob-
ability of error.

As shown in Figure 12.12, the decision threshold combines with the probability distribu-
tion function for the measurement parameter to establish the expected error rate. The area 
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of the tail of the distribution function (as a percentage of the total) gives the probability of 
identifying a member of one population as being in the other class. Sometimes the decision 
threshold is set to make the two errors (wrongly identifying A as B, or B as A) equal, which is 
not necessarily the same as minimizing the total error. For the height data in Figure 12.11b, a 
threshold at 66.7 inches would cause about 15% of men and women to be misidentified based 
on height.

  
(a)              (b)              (c)

  

(d)              (e)              (f)

  

(g)              (h)              (i)

Figure 12.9 A few of the Brodatz textures: (a) bark; (b) wool cloth; (c) wood grain; (d) bricks; (e) straw; 
(f) herringbone cloth; (g) sand; (h) bubbles; (i) pigskin.
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In other situations, economic factors must be taken into account. For example, consider the 
case of two “O” rings, identical in size but made from different polymers. One is used in a 
tractor engine and the other in a helicopter engine, and they are distinguished by an imag-
ing operation that looks for a colored tag embedded in the polymer. The economic cost of 
occasionally shipping a part intended for a helicopter to be used in a tractor is probably very 
small. The part will likely function there, in which case the only extra cost is perhaps the use 
of a more costly polymer or the loss of the more valuable part. But shipping a tractor part for 
use in a helicopter would produce much greater liability if the engine failed and probably a 

  
(a)              (b)              (c)

  

(d)              (e)              (f)

  

(g)              (h)              (i)

Figure 12.10 The Fourier transform power spectra for each of the images in Figure 12.9.
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(a)

(b)

Figure 12.11 Histograms of height data: (a) a “living histogram” of college students (girls in white, boys 
in black); (b) reported heights of adult white males and females in the United States.

 

Figure 12.12 Setting a decision point when 
distributions overlap, as discussed in the 
text. The probability of misclassifying a 
feature is measured by the percentage 
area in the tail of each distribution that 
lies past the decision threshold.
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greater likelihood of failure in a more demanding environment. In such a case it is desirable 
to set the error rate for mistakenly identifying a tractor part as a helicopter one to something 
very low (one in 1 million or less) and accepting a much higher rate (perhaps one in 1 thou-
sand) for the opposite error.

Similar considerations arise in biomedical imaging. There is much concern about automated 
diagnosis, such as the identification using image analysis of cancer cells in Pap smears or 
lesions in mammograms (Karssemeijer, 1998), because of liability issues. The most widely 
accepted course of action has been to set the decision thresholds for identifying suspicious 
features very low, accepting many false positives which can subsequently be screened again 
by an experienced human, or by applying another test, but hopefully minimizing false nega-
tives in which disease might be missed (Rutenberg & Hall, 2001).

Multidimensional classification

In the examples shown above, the histogram or probability distribution function has been 
plotted as a function of a single measurement parameter. The diagram in Figure 12.8 used 
two parameters (size and color). In such cases, it is often possible to reduce the problem to a 
single derived parameter by fitting a new axis line through the data, usually called either a lin-
ear discriminant line or a context line. As shown in Figure 12.13, a distribution of data points 
measured on a training population and plotted on two parameter axes may have values that 
overlap in both individual parameters, but 
are much better separated when projected 
onto another derived axis which is a linear 
combination of the two. This line can be 
fit by regression using linear discriminant 
analysis.

Linear discriminant analysis (LDA) is 
related to principal components analysis 
(PCA), described in Chapter 5 as a way to 
combine multiple color channels to obtain 
maximum contrast in images. Whereas PCA 
tries to find combinations of the measured 
variables that maximize the variance of 
the derived values, LDA instead finds the 
combinations of variables that produce the 
greatest separation between the classes of 
objects measured. It is commonly used to 
reduce the number of measured parameters 
and to find the most useful combinations.

The data from the measurements of oak 
and maple leaves shown in Chapter 11 
provide a concrete illustration. As shown in 
Figure 12.14, the histograms of formfactor 
values for just the red maple and red oak 
leaves show no overlap and indicate that 
these two species can be distinguished from 
each other based on that single parameter. 

Figure 12.13 Two populations of points which over-
lap on both parameter axes, with a linear dis-
criminant or context line along which they are 
best separated.
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However, when the silver maple and white 
oak data are included, the situation changes: 
not only are the distributions no longer sepa-
rated, but the two maple species have values 
that are bracketed by the two oak species. The 
single parameter is not sufficient.

Introducing a second measurement param-
eter, the radius ratio, provides a solution. This 
parameter is the ratio of the diameter of the 
maximum inscribed circle to that of the mini-

mum circumscribed circle and is independent of the formfactor, which is calculated from the 
area and perimeter of the feature. A linear combination of the two produces the canonical 
optimum axes on which the four species are distinct, as shown in Figure 12.15.

Nonlinear regression lines can be used as axes in principle, but in practice it is difficult to 
perform robust nonlinear regression unless the form of the functional dependence is known a 
priori, and in that case it is usually better to transform the measurement variables beforehand. 
For instance, instead of area, it might be better to use equivalent diameter (which varies as the 
square root of area) to obtain a plot for which a linear regression line provides a better fit, as 
illustrated in Figure 12.16.

Once the new axis has been fit to the data points, a histogram of values projected along the 
new derived parameter (as shown in Figure 12.13) can be used for classification just as shown 
for a directly measured parameter. For example, the formfactor used in Figure 12.7 is itself a 
combination of area and perimeter measurements, so this process is one step toward obtain-
ing a derived parameter that most directly distinguishes the classes of interest.

Using a decision point determined along the best-fit line between two populations generates a 
decision line (or in higher dimension spaces when more than two parameters are used, a decision 

(a)

(b)

Figure 12.14 Histograms of formfactor values for the 
leaf species introduced in Chapter 11:

  (a)  individual plots for red maple, red oak, silver 
maple, and white oak;

  (b) combined histogram for maple and oak 
leaves.
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plane or surface) that separates the two populations. The decision-line method generalizes to 
more than two classes, as shown in Figure 12.17. In this case, two measured parameters (one a 
size parameter, the inscribed radius, and the second a shape parameter, the ratio of the inscribed 
to the circumscribed radius) suffice to distinguish five classes of nuts, as shown on the graph. 
When applied to the image (obtained by placing the nuts on a flat bed scanner) this model suc-
cessfully labels each object. In the example, the parameter space is subdivided into rectangles. 
In the more general case, polygons are often used. A different approach using distances from 
the elliptical regions that define each class is described below.

Simple linear or planar decision thresholds work well when the populations are reasonably 
compact and equiaxed, but, as shown in Figure 12.18, require greater complexity to separate 
populations that have irregularly shaped regions in parameter space. Techniques that can 
locate an optimum decision plane or surface (the Bayes classifier) for such cases require more 
computation. It is also possible to distinguish multiple populations by piecewise-linear deci-
sion boundaries or by quadratic or higher power boundaries. Fortunately, in most such cases 
the addition of additional parameters separates the various population classes well enough 
that the simpler linear or planar methods can be used.

Population classes like those shown in Figure 12.18b, which are elongated and oriented at 
an angle to the axes defined by the measurement parameters, reveal a correlation between 
the parameters. This creates problems for classification, as noted above, so it is desirable to 
make the population area more equiaxed and preferably circular. The covariance of the data 
set is defined as

 c i j
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where x is the measurement value, i and j identify the two parameters, µ are the mean values 
for each parameter, and k runs through the n features in the population. The covariance can 

 

Figure 12.15 Separation of the four leaf 
classes from Figure 12.14 plotted on 
axes that are linear combinations of 
formfactor and roundness (linear dis-
criminant analysis performed using 
SAS JMP 8 software).
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vary between +σiσj and –σiσj where σ are the standard deviation values for each parameter 
(normalized covariance values divided by the product of the two standard deviations are also 
used). A value of zero for c(i,j) indicates no correlation and the minimum or maximum value 
indicates perfect correlation, as shown in Figure 12.19.

The examples above show only two measured or combined parameters, but in general there 
may be N axes for a high dimensionality space. In that case, all of the covariances c(i, j) for 
the various parameters measured can be collected into a covariance matrix C. This matrix 
can be used to transform an irregular population cluster to an equiaxed, circular one. For 
each measurement vector x (defined by all of the n measurement parameters), the quantity r 
calculated as

 r2 = (x – μ)ʹ C–1(x – μ) (12.3)

  

Figure 12.16 Scanning electron 
microscope image of particulates 

  (a)  with regression plots for form-
factor vs. area

  (b)  and formfactor vs. equivalent 
diameter

  (c)  the latter provides a better fit 
to the data.

             (a)
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is the Mahalanobis distance from the point representing the feature measurement parameters 
to the mean of the population µ. This is a generalization of the usual concept of distance, 
appropriate for measurements in which the axes have different meanings and scales or are not 
independent. In the case of an equiaxed population cluster (zero covariance), the Mahalanobis 
distance is the same as the usual Euclidean or Pythagorean distance.

It is helpful in measuring distances along the various axes to compensate for the different 
scales of the various measurement parameters by normalizing the distance measurements. 
This is done by dividing each one by an appropriate scaling constant, typically the standard 
deviation of the parameter values. This is called the standardized Euclidean distance.

 

Figure 12.17 Two-parameter classification:
  (a)  classes established from a training popu-

lation that identify Brazil Nuts, Walnuts, 
Filberts, Cashews, and Almonds based 
on the inscribed circle radius and the 
ratio of the inscribed to circumscribed 
circle;

  (b)  automatically coloring and labeling an 
image of these nuts using the classifica-
tion scheme. The classes can be described 
either by the colored elliptical regions on 
the parameter plot or by the red decision 
lines.

            (a)

(b)
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Of course, the classification methods can be generalized to more than two dimensions (it 
just becomes harder to illustrate with simple graphics). Figure  12.20 shows an example 
from remote imaging, in which the intensities of reflected light detected in different Landsat 
Thematic Mapper wavelength bands are used to classify terrain types (Grasselli, 1969; Sabins, 
1986). Patterns of spectral intensity are associated with particular types of vegetation, miner-
als, etc. A supervised training program is used in which an operator marks locations and the 
image analysis system plots the point in terms of the measured intensities in each wavelength 
band. The clusters of points (which are shown schematically) then mark the various classes, 
which are used to label the images point by point.

There is no reason to expect the clusters of points corresponding to each class to form a 
regular spherical shape in the N-dimensional parameter space, of course, and examples below 
show alternative ways of establishing these regions. One of the simplest methods is to estab-
lish maximum and minimum limit values for each parameter. This corresponds to a set of 
rectangular boxes in parameter space (Figure 12.21) that define each class. Training such a 
system is simplified because it is not necessary to find a representative population, but rather 
to find or predict extreme values.

Another method for establishing region boundaries is to measure a representative training 
population for each class and to characterize the distribution of values by the mean and 
standard deviation for each classification parameter, as shown above in Figure 12.15. Using 
the mean values as the coordinates of the center and a multiple of each parameter’s standard 
deviation as the lengths of the axes, this generates ellipsoids, as shown in Figure 12.22. The 
surfaces of these ellipsoids may be used as absolute class boundaries, but it is often more 
useful to measure the distance of each new feature’s parameter coordinates from the various 
classes in terms of the standard deviation.

Figure 12.23 shows a two-dimensional example for simplicity. The training populations are 
shown at the top, along with the plots of the points and the 2-sigma ellipses for each class. 

Figure 12.18 Classification examples in two dimensions: (a) separable classes showing the decision 
boundary perpendicular to the linear discriminant or regression line; (b) classes that are not sepa-
rable by the boundary in diagram (a), with an optimal Bayes classifier that does separate them; (c) 
multiple classes separated by piecewise linear decision boundaries; (d) multiple classes separated by 
quadratic decision boundaries.

X1

X2

c = – σ  σ1   2 c = – 0.5 σ  σ1   2 c = 0 c = +0.5 σ  σ1   2 c = + σ  σ1   2  

Figure 12.19 The value 
of covariance can vary 
between perfect positive 
and perfect negative corre-
lation, as discussed in the 
text. A zero value repre-
sents uncorrelated values.



645Feature Recognition and Classification
© 2011 by Taylor & Francis Group, LLC

Note that for the training population and for additional features measured subsequently, some 
of the points lie outside the 2-sigma limit, as expected. Also, some of the classes are much 
larger (more variation in the parameter values) than others, and the ellipses may be elongated 
because one parameter varies more than another. The standard deviation, shown by the 
length of each ellipse axis, normalizes the various axis units and becomes a scale with which 
to interpret the otherwise confusing distances of parameter space. The concept of a “distance” 
in parameter space is not immediately obvious and may be distorted in different directions 
or regions of the plot. Unfortunately, this is often the case when shape factors are used for 
identification since they are often not all independent (so the axes are not orthogonal) and 
are certainly not linear (a change in aspect ratio from 1.1 to 1.5 is far different from a change 
from 4.1 to 4.5, for instance).

If a new feature is measured and its parameter coordinates do not place it inside one of the 
class boundaries, it may still be identified as being “most like” one class by measuring the 
distance in parameter space from the feature coordinates to the center of each class (the mean 

    

          (a)                (c)

(b)

Figure 12.20 Land use classification using Landsat Thematic Mapper images: (a) image showing 
reflectivity in a single wavelength range; (b) reflectance vs. wavelength plots and cluster diagram 
for reflectivity values from different terrain types; (c) classification of land use based on these data 
(original image courtesy of NASA and the U. S. Geological Survey).
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values) and scaling these distances by dividing by the standard deviations. Because of the dif-
ferent cluster sizes, this means that a point may be closer to one class on the plot but more 
“like” a different one. In the example, a point close to the compact blue class might be fewer 
standard deviations away from the large red one and would be identified accordingly.

Learning systems

It can be very difficult to collect a truly 
representative set of features with which to 
establish training populations that produce 
classes which can be applied without alter-
ation to many new features and situations. 
In particular, the extreme-valued features 
that lie near the ends of the distributions 
are usually rare. Furthermore, an approach 
using mean and standard deviation rather 
than the actual shape of the distribution 
may oversimplify the measurements, which 
in many image analysis situations do not 
produce Gaussian distributions that are 
adequately described by just these two sta-
tistical parameters.

Figure 12.12, above, illustrated the ability 
to estimate the probability of classification 
error from the shape of the distribution 
histogram. Using the actual histogram thus 
extends traditional “hard” classification, in 
which a feature is assigned to one class or 

Figure 12.23 Two-dimensional example of statis-
tical limits. Note that some points lie outside the 
2-sigma boundaries. Solid points indicate the 
training populations shown at the top; shaded 
points represent identification of additional fea-
tures. Points are identified with the nearest clus-
ter, as discussed in the text.

Figure 12.21 Diagram of range limits for class 
regions in parameter space (illustrating three 
independent parameters). This is a three-
dimensional version of the example shown by 
the red lined boxes in Figure 12.17a.

Figure 12.22 Diagram of ellipsoidal class regions 
calculated from the standard deviation of mea-
sured data. This is a three-dimensional version 
of the example shown by the colored elliptical 
regions in Figure 12.17a.
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excluded from it, to the “fuzzy” logic situation in which shades of probability are admitted. 
Fuzzy logic is an important extension of classical logic in which the various classification rules 
in the knowledge base contain probabilities. An example: “If X can fly, there is a 70% chance 
that it is a bird; if X cannot fly, there is a 5% chance that it is a bird,” which accommodates 
butterflies, which fly but are not birds, and penguins, which are birds but do not fly. In the 
case of parameter measurements, the histogram of values gives a direct way to measure the 
conditional probabilities.

Fuzzy logic has been applied to expert systems and neural nets (both discussed below as 
engines for assigning classifications based on multiple rules). Usually this slows the conver-
gence process because it is necessary to evaluate all paths and find the most likely, not simply 
to find one successful path through the rules. In a formal sense, fuzzy logic is equivalent to 
Bayesian logic with multi-leveled classic sets. For comprehensive information on fuzzy logic, 
refer to Zadeh (1965), Negoita & Ralescu (1975, 1987), Sanchez & Zadeh (1987), Zimmerman 
(1987), Bishop (1996, 2007).

As an illustration of a learning system that uses histograms to establish decision points and works 
in multi-parameter space using linear discriminant or context line methods, populations of nine 
kinds of nuts were used (Figure 12.24). This is a much more difficult combination of nut types 
than the example in Figure 12.17 and requires more measurement parameters. Some of the nuts 
used represent more than one species (e.g., one class includes both white and red oak acorns, 
both with and without their caps, and another includes several kinds of pecans) so that histograms 
are generally not Gaussian and sometimes are mult-imodal (Figure 12.25). Images from an initial 

training population of about 20 of each variety 
of nut were captured with a monochrome video 
camera (this work was done in the 1980s, so 
much of the hardware was primitive by current 
standards) and the features measured to obtain 
a total of 40 parameters for each feature.

Some parameters, such as location and ori-
entation, can be discarded based on human 
judgment that they are not meaningful. Others 
are discarded by subsequent statistical analy-
sis, leaving a net of 17 that are actually used, 
so discrimination is performed in a 17-dimen-
sional space. However, not all of the dimen-
sions are truly independent (orthogonal) 
because many of the shape parameters are 
based on size measures used in various com-
binations. Linear discriminant lines are con-
structed in this space between each pair of 
nut classes, using stepwise regression (Draper 
& Smith, 1981). Parameters are added to or 
removed from the equation of the context line 
based on the F-value (an arbitrary cutoff value 
of 4.0 is used), eliminating variables that do 
not improve the ability to distinguish particu-
lar population groups.

This elimination helps toward the goal of 
using independent parameters, as well as 

Figure 12.24 A few of the nuts used in the learn-
ing example discussed in the text.

Figure 12.25 A bimodal length distribution for 
two species of pecans.
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simplifying the total problem and reducing the number of training examples required. Many 
of the shape parameters, for example, use some of the same size information. For example, 
the convexity and formfactor defined in Chapter 11 both use the perimeter. If one of them 
shows a high correlation with category discrimination, there is a good chance that others that 
incorporate perimeter will also show a correlation. Stepwise regression can select the one that 
has the highest correlation and predictive power and discard the others.

The resulting context lines use as few as two or as many as eight terms. Some parameters 
are used in several cases (e.g., average brightness) while others appear in only one or two 
equations but are then often the most important single parameter (e.g., convex area is highly 
important in distinguishing pistachios from almonds). On the average, each of the 17 param-
eters is used 11 times in the total of 36 pairwise context lines, and each context line equation 
uses an average of 5 parameters. Figure 12.26 shows several examples. The coefficients in 
the equations for the linear discriminant or context lines are derived by regression and repre-
sent the angles between the line and each of the parameter axes in N-space.

Discrimination of hickory nuts from almonds and acorns from peanuts is easy because the 
distributions are entirely separate, even though the distributions are somewhat irregular in 
shape. The acorn-pecan distribution (Figure 12.27) shows a slight overlap, which is the case 
in about 16% of the pairwise discriminant plots. Using the logic shown in Figure 12.12, the 
decision point is located to make the probability of misclassification errors equal for both 

Figure 12.26 Context lines and frequency distributions for hickory nuts-almonds and acorns-peanuts, 
examples of entirely separated classes. The regression equations are:

Hickory Nuts (type 2) vs. Almonds (type 6) = –2.266 – 2.372• Breadth + 2.184• Width + 0.226• Brightness 
+0.318• Contrast +2.374•Texture

Acorns (Type 1) vs. Peanuts (type 3) = 3.928 + 0.773 • Aspect Ratio - 5.007 • Fractal Dimension + 0.068 
• Brightness

 

Figure 12.27 Context line and frequency distribution 
for acorns-pecans, showing overlap. The regression 
equation is:

Acorns (Type 1) vs. Pecans (type 4) = 1.457 + 6.141 
• Formfactor - 2.153 • Convex Perimeter + 1.768 
• Convex Area + 2.926 • Length – 1.575 • Breadth 
– 1.131 • Extent
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classes. In the acorn-pecan case, this amounts 
to about 1% and arises when a large acorn is 
viewed from the side without its end cap, as 
shown in Figure 12.28. The most likely error 
is confusion of an acorn with a filbert.

Once the discriminant functions (the equa-
tions of the context lines) have been estab-
lished and distributions of derived parameter 
values along those lines established, the sys-
tem can go to work identifying nuts. The deci-
sion points along each context line specify 
planes (perpendicular to the lines) which 
form polyhedra around each class in the high-
dimensionality parameter space. The prob-
lem is that with a training population of only 
20 nuts from each class, the locations of the 
clusters for each nut type are reasonably well 

established, and hence the context lines are adequately defined, but the positions of the deci-
sion points are imperfect.

As the system examines more images (eventually a total of more than 1000 nuts), the derived 
parameter values (positions along each context line) are calculated and the histograms are 
updated. This does not require any additional computer memory, since the histogram bins 
have already been established. Identification of nut types proceeds on the basis of the stored 
decision points. But whenever a value is added to the end of a histogram (within the last 5% 
of its area), the program asks the operator to confirm the identification and then reestablishes 
the decision threshold using the then-current histograms, keeping the probabilities for each 
type of error equal. In this way the system learns from the additional specimens to which it 
has been exposed, which gradually increases the number of observations near the important 
limits of each distribution.

Figure  12.29 shows the final results. A 
total of 3.7% of the nuts are misidentified, 
but most of these errors occurred very 
early in the learning process; there was 
only one error in the last 200 nuts. The 
system starts out with an approximate idea 
of the limits of each class and refines these 
limits with more information. It should be 
noted that many of the parameters used for 
each identification are not familiar to the 
human operators and almost certainly did 
not represent the logic they use to identify 
the nuts. But the system quickly became 
as proficient as the humans.

In other examples, an automated system 
based on this same logic has surpassed 
the humans who trained it (Russ & Rovner, 
1987). In the study of archaeological sites 
in the American southwest and much of 

Figure 12.28 View of several large acorns with-
out their end caps and pecans, showing a 
situation in which confusion between the two 
classes may arise.

Figure 12.29 “Confusion matrix” showing successes 
(green) and errors (red) in initial nut identifica-
tion as described in the text.
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Central America, a subject of considerable interest is the process of domestication of corn, Zea 
mays. It is widely believed, although not proven, that corn is a domesticated offshoot of the 
wild grass Teosinte, of which there are many varieties. Little remains of corn in an archaeo-
logical context that can be dated, but it happens that corn, like all grasses (and many other 
plants) produces small silica bodies called opal phytoliths in and between the cells on the 
stalk, leaves, and other parts of the plant. They are generally a few micrometers in size and 
act to stiffen the plant tissue. They are also selectively produced at any site of injury (includ-
ing cropping by animals).

From an anthropological point of view, phytoliths are of interest for two reasons. First, they 
survive in the soil for long periods of time and can be recovered from layers that are datable 
and show other signs of human habitation. Second, they have shapes that are distinctive.

Research over several decades has shown that phytoliths can be used taxonomically to iden-
tify species of grasses, including corn and its precursors (Twiss et al., 1969; Rovner, 1971; 
Pearsall, 1978; Piperno, 1984). Most of this identification has been carried out by humans, 
who have accumulated photographs and built catalogs from which matching comparison to 
unknowns can be performed. Much of this work has been performed using the scanning 
electron microscope, since the particles are only a few micrometers in size and have signifi-
cant three-dimensional structure so that they cannot be studied satisfactorily with the light 
microscope. The success rate for skilled observers in blind tests is generally better than 95% 
(but there are very few skilled observers). Furthermore, this has been at the cost of a very 
substantial amount of effort, and the knowledge and experience are not readily transferred 
to other researchers. The human eye does not deal well with the need to characterize varia-
tion, and the individual phytoliths vary widely in shape. Such a situation is ripe for the use of 
computer image analysis methods.

Slides were prepared with phytoliths extracted from a training suite of five known species of 
maize and teosinte. SEM images were analyzed to determine several size and shape param-
eters, which were used as described above to establish discriminant classes. On the original 
set of objects, this produced a better than 99% correct identification. After applying the results 
to a total of 300 objects from 5 additional species of plants (3 maize and 2 teosinte), the results 
improved to better than 99.6% accuracy in distinguishing the two classes. Furthermore, the 
system can examine hundreds of phytoliths (enough to produce statistically significant results) 
from more species of corn or other grasses in 1 month than have been done by hand and eye 
in the last 20 years. The same system has more recently been used for classification of squash 
seeds (Rovner, personal communication).

These examples are based on populations of objects and establish classes that cover the natu-
rally occurring variations in biological specimens. A much more ambitious project seeks to 
identify the individuals within a class, based on identifying and measuring key size and shape 
parameters of their footprints. Figure 12.30 shows footprints from several wild animals. The 
footprint identification technique (FIT) is a cost-effective and non-invasive means of monitor-
ing endangered wild animal species.

Global biodiversity faces an unprecedented crisis, with as many as 25% of the world’s mam-
mals currently in danger of extinction. Gathering data on numbers and distribution of these 
species is fundamental to effective conservation policy. Tracking, using footprints to identify 
and follow animals, is probably one of the oldest professions in the world. FIT is a distilla-
tion of ancient techniques of animal tracking into a robust, objective scientific approach to 
wildlife monitoring. Originally developed after invasive methods such as drugging and fitting 
radio collars were shown to reduce fertility in black rhinoceros, FIT has shown flexibility in 
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adapting to the foot geometry of different species. Algorithms have been adapted for black 
and white rhino, lowland and Baird’s tapir, polar bear, mountain lion in Texas, etc., with many 
more species currently under development (Alibhai & Jewell, 2001, 2006, 2007, 2008).

Each animal species has a unique footprint geometry, and within a species, each individual has 
a unique foot structure (analogous to the human fingerprint or facial structure). Furthermore, 
each time a foot makes an impression on the substrate (which may be dust, mud, shingle, 
snow, etc.) it creates a different and unique footprint. These three levels of variability (species, 
individual, and substrate) create a complex scenario for footprint identification. To further 
complicate the issue, such factors as animal gait and weight, wind strength and direction, 
lighting, etc., also affect the appearance of a footprint. To attempt to encompass some of this 
variability, 15–20 footprints from each 15–20 ‘known’ individuals (usually captive animals) of 
that species are collected to develop the initial species FIT algorithm.

Digital images of footprints are taken in the field, processed, and measurements of lengths, 
angles, and areas taken, to provide a geometric profile of the foot. For the present, the measure-
ments are performed manually; there is hope of automating the measurements in the future. 
Selection of variables which discriminate at the required level is made with the JMP software 
(SAS Institute, Cary, NC). Multivariate statistical analyses and modeling processes allow classifi-
cation with accuracy levels for both captive and wild animals usually above 95% for individual 
identification, and FIT has shown the ability to also classify at the species, age-class, and sex 
levels. FIT routines can provide census data to ascertain numbers of animals in an unknown 
population, as well as monitoring to track individuals. These data can provide population 

Figure 12.30 Animal footprints used for identifying individuals in wild populations (from upper left: 
cougar, tapir, cheetah, tiger, white rhino, polar bear). As shown by the rulers, the images are not 
printed at the same scale. The tracks are recorded in sand, soil, and snow (images courtesy of Sky 
Alibhai & Zoe Jewell, WildTrack.org).
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estimates and density distributions to inform 
wildlife conservation strategies (WildTrack.
org). In many respects this is similar to efforts 
to identify individuals in surveillance photos. It 
is made more difficult by the smaller number of 
reference points in the prints and the variability 
introduced by the substrate, but simpler because 
of the tiny populations of potential matches.

kNN and cluster analysis

There are other methods used to establish 
limits for classes in parameter space. The two 
most widely used, k-nearest neighbor (kNN) 
and cluster analysis, share the drawback that, 
unlike the histogram and linear discriminant 
method described above, it is necessary to save 
the actual n-dimensional coordinates (measure-
ment values for multiple parameters) for each 
identified feature, which means that storage 
requirements grow continually if the system is 
to continue learning. The other difficulty with 
these methods is that the time required to make 
an identification rises with the number of stored 
values, even with efficient algorithms to sort or 
prune the data set that limit searches to only 
a reasonable number of candidate points. On 
the other hand, these methods do not presup-
pose any particular shape for the class regions, 
such as the rectangular prism, ellipsoid, or 
polyhedral methods described above. It is even 
possible to handle such situations as shown in 
Figure 12.31, in which a class may be noncon-
vex, disjoint, or is partially or completely sur-
rounded by another.

k-nearest neighbor classification works by 
searching the database of previously identified 
features for those which are “most like” the current measurement, as shown in Figure 12.32. 
This amounts to finding the distance between the coordinates of the current feature’s param-
eters and those for other features. The distance is generally calculated in a Pythagorean sense 
(square root of the sum of squares of differences), but this overlooks the important fact that 
the different axes in parameter space have very different units and metrics. Often the distance 
along each axis is expressed as a fraction of the total range of values for that parameter, but 
there is no real justification for such an assumption. It is better to use a normalizing scale such 
as the standard deviation of values within each class, if this is available (the same logic with 
Mahalanobis distance is used above for the ellipsoid class limits).

In the simplest form of k-nearest neighbor comparison, k is equal to 1, and the search is just for 
the one single prior measurement that is most similar, and which is then assumed to identify 

Figure 12.31 Examples of nonconvex, disjoint, 
or surrounded classes (indicated by different 
colors) that are difficult to represent by simple 
geometric shapes.

Figure 12.32 k-nearest neighbor classification: 
three of the five nearest neighbors to the new 
point lie in Class B, so it is assigned to that 
class.
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the class of the new feature. For features near 
the boundary between classes, single-nearest-
neighbor matching proves to be quite noisy 
and produces irregular boundaries that do 
not promote robust identification, as shown 
in Figure  12.33. Using the identification of 
the majority of five, nine or even more near-
est neighbors produces a smoother boundary 
between classes, but is still highly sensitive 
to the relative size of the populations. If one 
population has many more members than the 
other, it effectively shrinks the class limits for 
the minor group by making it more likely that 
the majority of matches are with members of 
the more numerous population. Minor popu-
lations representing only a few percent of the 
total number of observations are strongly dis-
criminated against.

The methods described so far presume that 
some training population, in which the fea-

tures belong to known classes, can be used to construct the class limits. This is “supervised 
learning” in which the operator identifies the actual class or population to which each feature 
belongs (based on whatever other information, independent human judgment, or prior knowl-
edge is available), and the software uses that information along with whatever measurement 
parameters are available to determine an identification strategy (which is generally quite 
different from the strategy used by the human). There are some situations in which it is not 
known a priori what the classes are, or perhaps even how many of them are present. In these 
cases, it is still useful to plot each feature’s measured parameters as values in a parameter 
space and then look for clusters of points. Cluster analysis with non-supervised training is a 
rich topic that extends beyond the scope of this text (see, for instance, Pentland, 1986; James, 
1988; Bow, 1992; Fukunaga, 1990).

One typical way that cluster analysis proceeds uses the distance between points to identify 
the members of a cluster. For example, start with the two points closest together. Assume 
these represent a class and add to the class other nearby points until the distance from the 
nearest point already assigned to the cluster exceeds some (arbitrary) limit, which may be cal-
culated from the size or statistics of the growing class region (e.g., more than 2 or 3 standard 
deviations). The method can be generalized to use more than a single nearest neighbor. Once 
a given class has stopped growing, begin again with the remaining points and continue until 
all have been assigned. There are many refinements of this approach which allow for assigned 
class regions to be merged or split.

A complementary method for finding clusters uses all of the points simultaneously. It starts 
by constructing a minimal spanning tree for all of the points present (an intensive amount 
of computation for large data sets). The links in this tree can be weighted either by their 
Euclidean or Mahalanobis length, or by the number of matches present in a table of k-nearest-
neighbors for each point. In other words, if the same points are each listed in each other’s 
nearest neighbor lists, they are probably in the same cluster. The spanning tree is then pruned 
by cutting the links with the greatest length or the smallest number of matches, to leave the 
identified clusters. Figure 12.34 shows an example of a sparse cluster of points, the minimal 

Figure 12.33 The irregular boundary that forms 
between two classes (whose individual mem-
bers have parameter values indicated by the 
colored points) using single-nearest-neighbor 
classification.
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spanning tree, and the clusters that result 
from pruning (after Bow, 1992). The pruning 
process is halted based on an independently 
specified number of clusters or a minimum 
length of the remaining links.

Another slightly different approach to find 
clusters in data, particularly when there is 
only one significant measured variable, or a 
combination of several variables derived by 
stepwise regression or linear discriminant 
analysis, is the dendrogram. Figure  12.35 
shows an example. The features are ranked 
into order based on the value of the mea-
sured variable, such as equivalent diameter, 
or some canonical variable which is a com-
bination of measured variables. Then the 
features that have the smallest value differ-
ences are connected (numbers 7 and 21 in 
the example, followed by 4 and 23, 27 and 
14, 13 and 16, etc.) by horizontal lines whose 
vertical position corresponds to the magni-
tude of the difference in values. Groups of features are usually linked based on the smallest 
difference between any two members of the group, although it is also possible to use the 
difference between the mean or median values in each group. Eventually all of the features 
and groups are connected into a single tree.

This approach, which combines the actual 
measurement parameters with their rank 
order, is typical of many classification and 
statistical comparison methods that are con-
sidered to be non-parametric. That means 
they are not dependent on statistical prop-
erties such as mean and standard deviation 
which presuppose a Gaussian distribution 
for the values. If multiple independent mea-
surement parameters (e.g., shape, size, and 
color) are used, the difference between fea-
tures is calculated as the distance between 
the vector representation of the multiple 
values in N-dimensional space. This typi-
cally presents a problem because the units 
of the various parameters are very differ-
ent, and the lengths of the various axes 
are not compatible so there is no natural 
way to scale them in proportion. This can 
sometimes be handled by normalizing each 
measured parameter based on (for exam-
ple) the total range or standard deviation 
of the measured parameters, but such a 
method is inherently arbitrary. Without a 

Figure 12.34 Parameter values plotted as points 
and the minimal spanning tree connecting 
them. Cutting the branches with the greatest 
length separates the clusters (indicated by dif-
ferent colors).
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Figure 12.35 Example dendrogram as discussed in 
the text. The red, green, and blue lines indicate 
the effect of selecting different threshold values 
for the difference between feature measurements 
which establishes the number of classes.
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full characterization of the statistical distributions of each parameter, it is not possible to cal-
culate a true Mahalanobis distance for the parameter space.

Once the dendrogram has been constructed, it can be used to determine any number of clus-
ters by selecting a different threshold value for the difference. For example, in Figure 12.35 
a value of 0.6 yields two clusters while a value of 0.4 yields four clusters and a value of 0.3 
yields five clusters. Since by definition in the unsupervised clustering situation it is not known 
a priori how many classes are present, the decision for the threshold value (or equivalently, 
the number of clusters) requires human judgment.

Expert systems

After clusters have been identified by one of these methods, the class limits must still be con-
structed by one of the methods shown above. This can be a geometric shape (e.g., a rectangu-
lar prism, ellipsoid, or polyhedron) or a kNN boundary. Next it is necessary to consider how 
to apply these class boundaries as a set of rules for the identification of subsequent features.

The simplest and most common method is the traditional expert system. A set of rules (such 
as the limits — either hard or fuzzy — for the class boundaries) is created which must be 
applied to each new set of feature measurements. Returning to the example of the letters A 
through E, Figure 12.36 shows a very simple expert system with four rules, requiring mea-
surement of only three parameters. In the most efficient implementation, only those param-
eters required are measured, so for the letter B (which is identified by the number of holes 
in the shape) the roundness and aspect ratio parameters, which are not needed, are not 
determined at all. The decision values of the parameters in the rules for each letter type are 

(a)

(b)

Figure 12.36 Expert system to classify the letters A 
through E. The colors shown in (a) are assigned 
using the logic in (b). Note that the shape fac-
tors used as parameters do not depend on size, 
orientation, or position and that several differ-
ent fonts (with and without serifs) are present.
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determined experimentally, by measuring characters from a few different fonts, but specified 
by the human “expert” who establishes the rules.

The system software determines the order in which the rules are applied. It is often important 
to apply the rules so that the least “expensive” parameters are determined first, to reduce the 
time and effort needed for the overall identification. That requires that each rule has asso-
ciated with it a cost. Counting holes requires less computation than measuring dimensions 
needed for the shape factors. Also notice that, unlike the template matching and cross-corre-
lation examples shown above, this method is insensitive to position, size, or orientation of the 
letters and tolerates several different fonts.

Figure 11.35 in Chapter 11 shows that this particular problem — the identification of the 
letters A through E — can be solved entirely by the topological properties of ends, nodes and 
loops for simple sans serif fonts. Removing the serifs from the font examples used here by a 
controlled pruning (eliminating short terminal branches) would have allowed the same pro-
cedure to be used; the method shown is intended to illustrate that there may be several ways 
to accomplish a given task.

Simple classification systems like this are sometimes called decision trees or production rules, 
consisting of an ordered set of IF…THEN relationships. Classic expert systems separate the data 
base (rules, and perhaps their costs) from the inference engine used to find a solution (Black, 
1986; Winstanley, 1987; Rolston, 1988; Slatter, 1987; Walters, 1988). One of the drawbacks to 
such systems is that the addition of another class (e.g., the letter F) does not just graft on another 
step, but may completely reshuffle the order in which the rules should be applied, or even elimi-
nate some rules from the decision process altogether and replace them with others. The opti-
mum decision tree is not necessarily the one with the fewest branches. “Knowledge shaping” 
procedures such as including the cost of obtaining each input value can greatly improve overall 
efficiency and determine an optimum search and solution tree (Cockett, 1987).

Most real expert systems have far more rules 
than this one and the order in which they are 
to be applied is not necessarily obvious. The 
complexity of decision paths increases rapidly 
with a large number of rules. General purpose 
expert systems try to find a path between the 
various input values and a conclusion in one 
of two ways. If, as shown in Figure 12.37, the 
number of observations is less than the num-
ber of possible conclusions, forward chaining 
that starts at the left and explores pathways 
through various rules toward a conclusion is 
used. In other cases, backwards chaining that 
works from conclusions back toward observa-
tions may be more efficient. In the very sche-
matic diagram shown in the figure, there are 6 initial observations (measurements), 21 rules, 
and 12 possible conclusions; real systems are several orders of magnitude more complex. 
Some of the rules shown in the figure have more than two possible outcomes; in some sys-
tems, each possible outcome is represented as a separate rule.

Normal forward searching for a successful path through this network starts at some point on 
the left, follows a path to a rule, and follows the outcome until a contradiction is met (a rule 
cannot be satisfied). The system then backtracks to the preceding node and tries a different 

Figure 12.37 Schematic diagram for an expert 
system.



657Feature Recognition and Classification
© 2011 by Taylor & Francis Group, LLC

path until a conclusion is reached. This approach does not test all possible paths from obser-
vations to conclusions. Heuristics to control the order in which possible paths are tested are 
very important. In cases of realistic complexity, it is not possible to test all consequences of 
applying one rule, and so simplifications such as depth-first or breadth-first strategies are 
employed. Pruning, or rejecting a path before working through it to exhaustion, is also used. 
(Consider as a rough analogy the search for a move in a chess program: Some initial moves are 
rejected immediately, while others are searched to various depths to evaluate the various pos-
sible responses and the outcomes.) Reverse searching works in the same way, starting from 
possible conclusions and searching for paths that lead to observations. Some search “engines” 
combine both forward and reverse searching methods.

When fuzzy logic is used, the various rules contain probabilities. In that case, it is ideally 
necessary to construct a total probability by combining the values for nodes along each path, 
to select the most likely path and hence the most probable result. The heuristics that control 
search order are less important, but the total computation load can be much greater. The 
advantages of the fuzzy logic approach are the ability to handle incomplete information and 
to give a confidence or probability level for each conclusion.

Neural nets

Searching the multiple pathways through an expert 
system, especially one utilizing fuzzy logic prob-
abilities, is an inherently parallel problem. An 
attractive way to solve it uses neural networks, an 
implementation of a simplified and idealized model 
of the functioning of biological processes. Each ele-
ment in a neural net is a threshold logic unit, illus-
trated in Figure 12.38 (introduced in Chapter 2). 
It is analogous to a simplified model of a function-
ing neuron, as shown in the classic McCulloch-Pitts 
model (McCulloch & Pitts, 1943; Rosenblatt, 1958; Lettvin et al., 1959; Minsky & Papert, 1969; 
Grossberg, 1988). Multiple inputs (which in the image analysis case may be either measured 
parameter values, or pixel intensities, or the outputs from other logic units) are weighted and 
summed, and the total compared to a threshold value. If the threshold is exceeded, the neuron 
“fires.” In a biological system it sends a train of pulses as inputs to other neurons; in a neural 
network it transmits a calculated output value (a probability) to an input on another threshold 
logic unit.

To understand the functioning of these simple units, it is worthwhile to consider again a clas-
sical description of a theoretical construct called the “grandmother cell.” Imagine a cell (or 
a logical unit) that has been trained to recognize your grandmother and patiently examines 
every image that is transmitted from your eyes searching for clues. Earlier logic units, some 
of them in the eye and some in the visual cortex, find low level structures. So the presence of 
white hair, blue eyes, and the spacing of eyes, nose, mouth, cheekbones, etc., are all inputs to 
the grandmother cell. It has been shown that human vision is very efficient at locating facial 
features (even babies do it, immediately after birth, and that, as illustrated above, it is the ratios 
of spacings between these features that are important clues to recognition of individuals.

As described in Chapter 2, other clues might include the presence of a familiar dress, jewelry, 
or glasses. Some of these are more important than others (have larger weighting), and some 
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Figure 12.38 Diagram of a threshold logic 
unit.
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factors may be missing (e.g., if your view of 
the person prevents seeing the color of her 
eyes). There may also be some factors with 
large negative weights, such as the presence 
of a bushy red mustache or a height over six 
feet tall. When all of the inputs are summed, 
if the total is large enough (exceeds a thresh-
old value), the cell alerts your conscious brain 
that grandmother is present. Such a system 
accounts for the occurrence of false positives 
(thinking that you see someone familiar, who 
on close examination turns out not to be the 
expected person). The result won’t always be 

correct (you may miss grandma in some situations, or mistake someone else for her occasion-
ally), but it is very efficient and works quickly and well enough.

Connecting together a network of these simple devices in multiple layers, with some low 
level decisions passing information to higher levels, produces a system capable of making 
decisions based on diverse types of inputs. The classic topology of a neural network is 
shown in Figure 12.39. Each logic unit calculates an output that is a weighted combination 
(not necessarily linear) of its input values. These outputs are routed through at least one 
hidden layer before reaching the output layer. The output layer produces outputs that are 
discrete, selecting one (or at most a few) values. Training the neural net adjusts the weights 
in the neurons to produce the desired output patterns for the various training patterns 
(Hebbs, 1949). This is typically accomplished by giving the system examples. When a cor-
rect conclusion is reached, the weights of the inputs from the neurons that contributed to 
the decision are increased, and vice versa. This feedback system eventually results in path-
ways that correspond to descriptions of the objects being recognized. Various methods for 
adjusting the weights are in use, some working forward and some backwards through the 
network (Rumelhart et al., 1986).

In principle, the combinations of weights in the various units along each path describe the 
shape of that class space in a high-dimensional space (corresponding to the number of inputs). 
In practice, it is very difficult if not impossible to interpret the weights, particularly in the 
inner layers of the system. Dealing with overlapping classes (the possibility that the same set 
of inputs may lead to more than one output) is exactly analogous to the situation shown in 
Figure 12.12, reporting the probability of each result.

Many systems cannot explain the reasons for the answers they deliver; indeed, it is hard to 
pinpoint just where the “knowledge” resides in the system (like our own brains, it seems to 
be distributed widely throughout the network). It is difficult to assign probabilities or confi-
dence limits to the result (except for the ones based on fuzzy logic), but neural net systems 
usually fail gracefully. Testing a neural net is often accomplished by perturbing the input val-
ues slightly (singly or in combination) and seeing whether the output remains stable. Unlike 
classic expert systems, the solution time for a neural system decreases as more information 
is made available and the weights are better established. The principal shortcoming of the 
neural net approach is the need for unusual computer architectures for efficient realization. 
Although the neural network is in theory a parallel device, many actual implementations use 
traditional serial computers to perform all of the calculations, simulating a parallel structure, 
and in this case the speed advantage is lost.
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Figure 12.39 Schematic diagram of a minimal 
neural network with one hidden layer.
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The weights in a neural network typically take a long time to stabilize, which is another way 
to say that it takes a lot of training to produce a network that gives correct answers most of 
the time. The same requirements for finding representative training populations exist as for 
the statistical classification methods shown above. The quality of the training is usually more 
important than how the solution is implemented. The only real difference between a neural 
network and one of the statistical methods shown above is the intricacy with which parameter 
space can be dissected into the various class regions. Neural networks can fit very complex 
functions to specify the surfaces separating regions, which may perform better in some cases 
than simple rectangular prisms, ellipsoids, or polyhedra, without encountering the problems 
of unlimited storage requirements, sensitivity to outliers, difficulty in handling low percentage 
classes, and slow speed inherent in kNN methods.

The description above tacitly assumes that the input values to the neural net are a set of measure-
ments on the image or on the features within the image, each of which is obtained using the 
conventional procedures outlined in previous chapters. It is also possible to use the entire image 
itself as the input, namely, the individual pixel values (Egmont-Petersen et al., 2002; Bollman, 
2004; France, 2004). In that case, the early layers of the net are also responsible for determining 
what in the image should be measured and how to measure it. This approach hides the details 
from the user, which may seem convenient but in practice makes the training process longer and 
the resulting decisions harder to decipher, explain, and debug. Applications involving global color 
and texture are generally more appropriate for this than applications involving discrete features.

Syntactical models

There is another approach to feature recognition that is dif-
ferent from the parameter space methods described above 
(Fu, 1974, 1982; Pavlidis, 1977; Tou & Gonzalez, 1981; 
Schalkoff, 1991). Syntactical models deal primarily with 
shape information, usually derived from the feature outline 
or skeleton. This is broken down into the important pieces, 
and their positions relative to each other recorded. This 
recording can be likened to a set of characters that spell 
a word and compared to other words on the basis of the 
number of missing, substituted, or rearranged characters.

To give an example, Figure 12.40 shows the key elements 
of the letter “A.” The two branch points at the sides, two 
ends at the bottom, and the corner or apex at the top iden-
tify this letter visually; no other letter in the alphabet has 
the same key points nor the same arrangement of them. 
The “springs” in the figure indicate that the key points can 
move around quite a bit without changing their usefulness 
for identification, as long as their relative positions remain 
in the same topological order. Extracting these key points 
and their arrangement provides a very robust identifier of 
the letter, which is relatively insensitive to size and font. 
Some OCR (optical character recognition) programs that 
convert printed text to computer-readable files use similar 
methods.

Figure 12.40 The important end, 
branch, and corner points that 
identify the letter “A.” The springs 
that connect them indicate that 
shifting their positions does not 
interfere with the identification, 
as long as their relative order 
and connections remain the 
same.
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Key points such as branches and ends can be obtained directly from the skeleton, as shown in 
Chapter 8. Corners can be isolated in several ways. Figure 12.41 shows one, in which convo-
lution with a simple 3 × 3 kernel can select a corner in any specified orientation. A more gen-
eral corner-finding method traverses the skeleton or outline of the feature using chain code, 
introduced in Chapter 8. A sequence of links in the chain that gives a net 90 degree (or more) 
change in direction within a certain distance along the chain (arbitrary, but usually taken as 
a fraction of the total length) is interpreted as a corner. Fitting functions such as polynomials 
or splines to the edge points can also be used to locate corners.

Figure 12.42 shows another example of letters A through E, in several fonts, with the key 
identifying points of each (ends, branches, and corners). There is more information than 
needed to uniquely identify each character; some of the points can be missing (e.g., due to 
extreme alterations in letter shape in handwritten characters) without compromising read-
ability. Similar schemes are used in some of the efforts to develop computer programs that 
read handwriting. Syntactical characterization of the shape and density patterns in human 
chromosomes are routinely used in karyotyping.

Figure 12.41 Extracting corner points from a skel-
eton or outline by using a 3 × 3 convolution ker-
nel. Each kernel finds the points in the square 
and diamond shape that are marked in red. In 
general, any pattern can be found with a kernel 
that has the same shape as the desired pattern.

Figure 12.42 The letters A through E with their 
key branch (red), corner (blue), and end points 
(green) indicated.
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13
Tomographic Imaging

More than two dimensions

The preceding chapters deal primarily with two-dimensional images. The subjects of the 
images may also be two dimensional, such as printed text on a page. Some images rep-
resent things that can be treated as two dimensional, such as particulates scattered on a 

substrate, or the surface of the earth viewed from a satellite. And of course, many images are 
two-dimensional projections of three-dimensional scenes or sections through three-dimen-
sional structures. In all cases, the 2D array of pixels can be processed and measured. It is the 
interpretation of the measurements that changes according to the nature of the subject.

There are many situations in which more than two dimensions are involved in imaging. One 
example is the use of cels for classical cartoon animation (Figure  13.1). As practiced by 
Disney and Warner Brothers, and more recently by Hayao Miyazaki (Spirited Away, Ponyo) 
and Matt Groening (the Simpsons), the cartoon technique used transparent cels (short for 
cellophane, once used as the material, although the “cels” may now be layers in a computer 
graphics program) on which are painted the various characters and scene elements. Some of 
the cels, such as the background, can remain fixed for an entire scene. Others may be shifted 
slightly from one exposed frame to the next to move one element. By drawing the characters 
on their own cels (sometimes with separate cels for body, hands, feet, etc.), it is possible to 
minimize the amount of redrawing needed from one frame to another. Photographing the 
stack of cels for each frame of the movie produces a single 2D image as a result. This is a very 
different technique than the 3D renderings carried out entirely in software (e.g., Pixar Studio’s 
Toy Story) or claymation stop-action (e.g., Wallace and Gromit).

A movie (photographed or cartoon) can also be considered as a 3D array. Each frame is one 
slice with two physical dimensions (height and width), while the third axis is time. Combining 
the movie frames this way, as a superimposed set of layers, has one advantage in that exam-
ining a slice parallel to the time axis makes scene transitions easy to detect. In addition, for 
compression purposes the portions of a scene that are static or move only slowly can be 
compressed separately from the more active segments, which allows for a greater reduction 
in file size.
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Layers of superimposed images are not really three dimensional and consist of separate arrays 
of pixels, not a single assemblage of voxels. Each layer can contain quite different kinds of 
information. A geographical information system (GIS) may include maps, satellite images 
(including infrared wavelengths), records such as surveys and tax records, locations of ser-
vices such as underground pipelines, and the locations of specific features. Google Maps® 
provides a familiar example (Figure 13.2) that can be extended to include more of these vari-
ous types of data if and when there is consumer demand. Already it provides StreetView®, 
which shows the 360 degree view from almost any point along any road, all located with 
respect to an underlying map.

Satellite images typically record images at a few selected wavelengths. Figure 13.3 shows 
images (taken by the Enhanced Thematic Mapper on the Landsat 7 satellite) of Los Alamos, 
NM. Channels 1 (blue), 2 (green), and 3 (red) are combined as RGB color channels to show the 
true-color image, in which the smoke plume from a forest fire is evident. Combining channel 
2 with channels 4 (near infrared) and 7 (medium infrared) produces a false-color image in 
which the hot spots and burn scars are visible.

Combining multiple separate images in this way (which requires that they be aligned) is a 
powerful tool for effective visualization, but does not really convert them to a 3D data set. 
Accomplishing that requires capturing a full spectrum of intensity vs. wavelength at each 

(c ) (d)

(a) (b)

Figure 13.1 Cartoon characters: (a) Disney; (b) Warner Bros.; (c) Hayao Miyazaki; (d) Matt Groening.
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pixel in the image (Bonnet et al., 1992; Kim et al., 2003; Bearman, 2003; Booth et al., 2010). 
This is technically possible using a scanning spectrophotometer and is sometimes performed 
in microscopy and forensic science, but it is time consuming and results in an enormous file 
of data.

While this is an example of a data set comprising more than two dimensions, but with one 
dimension that is not a measure of distance or of time, there are few tools for processing or 
analysis. The usual reduction that takes place is to map the spatial distribution of intensity at 
a few specific wavelengths that are indicative of some structure or composition, to produce a 
two-dimensional image. For many purposes it is more efficient to select the wavelengths of 
interest and collect the corresponding two-dimensional images directly. The advantage of the 
full data set is that information can be extracted at a later date.

The electron microprobe, scanning electron microscope, and analytical transmission electron 
microscope are often used in exactly this way. While they are capable of performing a detailed 
analysis at any point, and in principle can carry this out at every point in a scanned image 
and record the data, the most common mode of operation is to select a few wavelength bands 
corresponding to elements of interest and record the intensity as a function of position, gen-
erating “X-ray maps” such as those shown in Chapter 1, Figure 1.32. The same choices are 
available for other scanning analytical instruments, such as recording energy loss spectra in 
the transmission electron microscope and some nuclear medicine imaging technologies.

(a)

Figure 13.2 Google Maps® display of an area in Santa Fe, NM: (a) road map with labels; (Continued)
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In this chapter and the next, three-dimensional imaging is concerned primarily with three spa-
tial dimensions. True three-dimensional voxel imaging by tomographic techniques is covered 
in this chapter. Visualization and the use of a series of planar images are covered in Chapter 
14. Chapter 15 deals with surface imaging and measurement, in which a two-dimensional 
array of composition or elevation values may be thought of as “two and a half-D.”

Volume imaging vs. sections

Studying the three-dimensional structures of solid objects can be accomplished using either 
2D or 3D imaging. Some of the two-dimensional images in the preceding chapters have been 
sections through three-dimensional structures. This is frequently the case in the various types 
of microscopy, where either polished flat planes or cut thin sections are used in order to form. 
But the specimens thus sampled are three dimensional, and the goal of the microscopist is 
to understand the three-dimensional structure. Two-dimensional images of slices and projec-
tions are also used extensively in medical imaging, but they are rarely measured. Rather, the 
goal is for the physician to visually detect qualitative deviations from the normal appearance 
of organs and bones, and the orientation of the images is tightly controlled to make the com-
parisons easier.

(b)

Figure 13.2 (Continued) (b) satellite view;
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There are quantitative tools of considerable power and utility that can efficiently interpret 
measurements on two-dimensional (2D) images to characterize three-dimensional (3D) struc-
tures. As Chapter 9 summarizes, these enable the measurement of volume fractions of struc-
tures, surface area of interfaces, mean thickness of membranes, and even the size distribution 
of particles seen only in a random section. But there are many aspects of structure, both 
quantitative and qualitative, that are not accessible from a two-dimensional section image. 
Topological properties are a major category of such information, including such “simple” 
values as the number of separate objects in a volume. Features visible in a single two-dimen-
sional section do not reveal the actual three-dimensional structure present, as illustrated in 
Figure 13.4.

Chapter 9 shows a method for unfolding the distribution of circles to determine the size dis-
tribution and total number of spheres in a sample. However, this procedure requires making a 
critical assumption that the objects are all spheres, or have some other known geometric form. 
If the shape of features is unknown, is variable, or is a function of size, then the method fails.

Furthermore, as valuable as numerical measurement data may be, they cannot provide the 
typical viewer with a real sense of the structure. As Chapter 2 points out, humans are over-
whelmingly visual creatures — we want to see the 3D structure. Our world is 3D and we are 
accustomed to looking at external surfaces, or occasionally through transparent media, not 
at thin sections or polished cut surfaces. Try to imagine (again the need to resort to a word 
with its connotation of vision) standing by a busy street in which an imaginary plane exists 

(c)

Figure 13.2 (Continued) (c) terrain map;
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transverse to traffic flow, and that plane of intersection is visible but nothing else. What do 
people, cars, and bicycles look like as they pass through that plane?

If you have a well developed geometric sense, or experience as a radiologist or draftsman, you 
may be able to accurately visualize the appearance of that plane as it cuts through portions 
of torsos, engine blocks, and so on. Most people have difficulty imagining such collections 
of sections, and when asked to sketch the sections produced by even simple shapes produce 
wildly inaccurate results.

If you doubt this, give yourself a simple test. Get some Cheerios®, or rotini noodles, or some 
other simple food object that has a well-defined shape (Figure 13.5). Then mix up an opaque 
matrix (fudge is good) and stir in the objects. While it is hardening, try to draw what various 
representative random slices through the structure might look like. After it has hardened, cut 
slices through the sample and compare the actual results to your sketches. My experience in 
conducting this experiment with students is that they have a strong tendency to imagine sec-
tions through the object that are parallel or perpendicular to principal axes, and ones that 
pass through the geometrical center of the objects. For the Cheerios (little torii), few actual 
sections consist of two side-by-side circles or one annulus (the bagel cut) and are not necessar-
ily even convex (Figure 13.6). For the rotini, most people do not realize that sections through 
the curved surfaces produce straight lines.

(d)

Figure 13.2 (Continued) (d) markers locating art galleries;
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As difficult as this particular visualization task may be, even fewer people can make the 
transition in the opposite direction: given a collection of random section profiles, to recon-
struct in the mind a correct representation of the three-dimensional structure. This is true 
even for those who feel comfortable with the 2D images themselves. Within the world of the 
two-dimensional images, recognition and understanding can be learned as a separate knowl-
edge base that need not relate to the 3D world. Observing the characteristic appearance of 
dendrites in polished metal samples, or that of mitochondria in thin electron microscope 
sections of cells, or internal organs in medical images (especially since these latter images 
are almost always oriented in transaxial, coronal, or sagittal views, as shown in Figure 13.7) 
does not necessarily mean that the complex 3D shapes of these objects become familiar. There 
are numerous instances of erroneous three-dimensional interpretations that have persistently 
been made from two-dimensional section images.

Because of this difficulty in using 2D images to study 3D structure, there is interest in per-
forming 3D imaging. It may be performed directly, as described in this chapter, by collecting 
a three-dimensional set of information all at once, or indirectly by gathering a sequence of 2D 
(slice) images and then combining them, as shown in the next chapter. Sometimes these slices 
must be obtained by physically sectioning (such as an archaeologist excavating a site), and 
sometimes (as in the confocal light microscope or magnetic resonance imager) they can be 
nondestructive. There are a variety of ways to acquire 2D images to assemble the data needed 
for 3D imaging, and also a great variety of ways to present the information to the user. Several 

(e)

Figure 13.2 (Continued) (e) Street View® of the cathedral.
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of each are shown in Chapter 14. The large number of approaches suggests that no one way 
is best, either for most viewers or for most applications.

Any method that reconstructs internal structural information within an object by mathemati-
cally reconstructing it from a series of projections is generally referred to as tomography 
(literally, from the Greek tomos, the study of slices). The same basic methods may be used to 
obtain true three-dimensional arrays of voxels (the 3D analog of the pixel in a 2D image), or to 
obtain a two-dimensional image from a series of one-dimensional line projections. The latter 
method is used in most medical imaging, which is by far the most common application of CT 

(a)

(b)

Figure 13.3 Satellite images of Los Alamos, NM on May 9, 2000 showing the Cerro Grande fire (Landsat 
Thematic Mapper images courtesy of NASA and the US Geological Survey): (a) channels 1, 2, and 
3 (visible, true color); (b) channels 2, 4, 7 (1 visible, 2 infrared, false color). Forested area is dark 
green, herbaceous vegetation is light green, rangeland is pink or salmon, developed urban areas 
are blue, white, or purple, and golf courses are bright green. Recently burned areas are black; red 
patches are the hottest actively burning areas of the fire.
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(a)              (b)              (c)

Figure 13.4 Examples of sections through three different structures that show the same 2D section 
image: (a) three discrete objects; (b) one object with simple connectivity; (c) one object with multiple 
connectivity.

 

Figure 13.5 Food objects (Cheerios and rotini noodles) that are useful for experimenting with the rela-
tionship between three-dimensional shapes and two-dimensional section images. These are simpler 
and much more uniform than most natural structures.

    

  

Figure 13.6 A few sections through a torus, producing one or two 
intersections that may be either convex or concave.
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(computed tomography) at the present time. However, the same basic techniques are used for 
3D imaging and for a variety of imaging signals.

Medical tomography primarily uses X-ray absorption, magnetic resonance (MRI), emission of 
photons (SPECT) or positrons (PET), and sound waves (ultrasound). Comparisons of the vari-
ous methods and the information they provide can be found in recent textbooks (Jan, 2005; 
Rangayyan, 2005). Other fields of application and research use many different frequencies of 
electromagnetic radiation, from X- and gamma rays (nm wavelengths), through visible light 
and even microwave radiation (wavelengths from cm up). Besides photons, tomography is 
regularly performed using electrons and neutrons. In addition to absorption of the particles 
or radiation, tomography can be based on the scattering or emission of radiation as well. 
Tomography of mixing fluids can sometimes be performed by measuring the electrical resis-
tance or impedance between multiple points around the containment vessel (Mann et al., 
2001; York, 2001).

Sound waves produced by small intentional explosions or by “ground thumpers” are used to 
image underground strata for prospecting, while naturally occurring noise sources such as 
earthquakes are used to perform seismic tomography, imaging underground faults, rock den-
sity beneath volcanoes, and locating discontinuities between the mantle and core of the earth. 
There are also devices listening for moon- and Mars-quakes to reveal their internal structure, 
and studies of the seismic structure of the sun have been performed.

Basics of reconstruction

X-ray absorption tomography is one of the oldest, most widely used methods and is used here 
to illustrate the various parameters, artifacts, and performance possibilities. Images produced 
by Computer Assisted Tomography (CAT or CT scans) and similar methods using magnetic 
resonance, sound waves, isotope emission, X-ray scattering, or electron beams deserve special 
attention. They are formed by computer processing of information from many individual mea-
surements of projection along lines and are obtained nondestructively through the body of 
an object, but must be unfolded to see the internal structure. The mathematical description of 
the process presented here is that of X-ray absorption tomography, as it is used both in medi-
cal applications and in industrial testing (Herman, 1980; Kak & Slaney, 1988, 2001; Natterer, 
2001; Natterer & Wubbeling, 2001; Hsieh, 2003, 2009). Similar sets of equations and methods 
of solution apply to the other signal modalities.

Absorption tomography is based on physical processes that reduce intensity as radiation or 
particles pass through the sample in straight lines. In some other kinds of tomography, the 
paths are not straight and the reconstruction takes place along curved lines (e.g., magnetic 
resonance imaging and X-ray scattering tomography), or even along many lines at once (seis-
mic tomography). This makes the equations and graphics slightly more complicated, but does 
not affect the basic principles involved.

   

Figure 13.7 Standard 
orientations for viewing 
medical slice images:

  (a) transaxial;
  (b) sagittal;
  (c) coronal.
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X-rays pass through material but are absorbed along the way according to the composition 
and density which they encounter. The intensity (number of photons per second) is reduced 
according to a linear attenuation coefficient µ, which for an interesting specimen is not uni-
form but has some spatial variation that can be written µ(x,y,z) for a 3D structure, or µ(x,y) for 
a two-dimensional plane through the object. The linear attenuation coefficient is the product 
of the density and the mass absorption coefficient, which depends on the local elemental 
composition. In medical tomography, the composition varies only slightly, and density varia-
tions are primarily responsible for producing images. For industrial applications, significant 
variations in composition, including voids, are also usually present. The measured intensity 
along a straight line path through this distribution is given by

	 µ x y dS I
Ie
o

d
, log( ) =∫  (13.1)

where Io is the incident intensity (from an X-ray tube or radioisotope) that is known and gener-
ally held constant, and Id is the detected intensity. This is called the ray integral equation and 
describes the result along one line projection through the object.

If a series of parallel lines is measured, either 
one at a time by scanning the source and detec-
tor, or all at once using many detectors, a profile 
of intensity is obtained which is called a view. As 
shown schematically in Figure 13.8, this func-
tion is usually plotted as the inverse of the inten-
sity, or the summation of absorption along each 
of the lines. The function is written as P(φ,t) to 
indicate that it varies with position along the 
direction t as rays sample different portions of 
the object, and also with angle φ as the mecha-
nism is rotated around the object to view it from 
different directions (or equivalently as the object 
is rotated).

Each of the views is a one-dimensional profile of measured attenuation as a function of 
position, corresponding to a particular angle. The collection of many such views can be 
presented as a two-dimensional plot or image in which one axis is position t and the other 
is angle φ. This image is called a sinogram or the Radon transform of the two-dimensional 
slice. Figures 13.9 and 13.10 show a simple example. The construction of a planar figure, as 

Figure 13.8 Illustration of a set of projections 
through an object at a viewing angle φ form-
ing the density function P.

   

Figure 13.9 A phantom

  (a)  or test object with geometrical 
shapes of known density and a 
magnetic resonance image

  (b)  of a tumor (bright area) in a 
section through a head.

         (a)             (b)
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shown in Figure 13.9a, is called a phantom and is used to evaluate the important variables 
and different methods for reconstructing the object slice from the projection information. 
Such phantoms typically mimic the important structures of real interest, as an aid to evaluat-
ing reconstruction algorithms. Compare it to Figure 13.9b showing an actual MRI image of 
a brain tumor.

The individual projection profiles shown in Figure 13.10a show some variation as the angle 
is changed, but this presentation is difficult to interpret. The sinogram in Figure  13.10b 
organizes the data so that it can be examined more readily. The name sinogram comes from 
the sinusoidal variation of position of projections through the various structures within the 
phantom as a function of rotation, which is evident in the example. The name Radon trans-
form acknowledges the fact that the principles of this method of imaging were published in 
1917 by Johann Radon. However, the equations he presented did not provide a practical way 
to implement a reconstruction since they required a continuous array of projections, and it 
was not until Hounsfield and Cormack developed a practical reconstruction algorithm and 
hardware that CAT scans became a routine medical possibility. A. M. Cormack developed a 
mathematically manageable reconstruction method at Tufts University in 1963–64, and G. N. 
Hounsfield designed a working instrument at EMI, Ltd. in England in 1972. They shared the 
Nobel prize in 1979.

The Fourier transform of the set of projection data in one view direction can be written as

	 S P t e dtj tφ ϖ φ πω, ,( ) = ( ) −∫ 2  (13.2)

Radon showed that this can also be written as

	 S f x y e dxdyj x yφ ϖ πω φ φ, , cos sin( ) = ( ) − +( )∫∫ 2  (13.3)

  

Figure 13.10 Sixteen attenu-
ation profiles

  (a)  for the phantom in 
Figure 13.9a and the 
sinogram or Radon 
transform

  (b)  produced by plotting 
180 such profiles (each 
as one horizontal line).

         (a)                (b)
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which is simply the two-dimensional Fourier transform F(u,v) for the function f(x,y) with the 
constraints that u = ω cos φ and v = ω sin φ. This is consequently the equation of the line for 
the projection.

What this relationship means is that starting with the original image of the phantom, forming its 
two-dimensional Fourier transform as shown in Chapter 6, and then looking at the information 
in that image along a radial direction from the origin normal to the direction φ gives the func-
tion S, which is just the one-dimensional Fourier transform of the projection data in direction φ 
in real space. This can be used in practice by measuring the projections P in many directions, 
calculating the one-dimensional transforms S, plotting the complex coefficients of S into a two-
dimensional transform image in the corresponding direction, and after enough directions have 
been measured, performing an inverse 2D Fourier transform to recover the spatial domain image 
for the slice. This permits a reconstruction of the slice image from the projection data, so that a 
non-destructive internal image can be obtained. It is the principle behind tomographic imaging.

Figure 13.11 illustrates the relationship between the Fourier transform data and the recon-
struction. Eight views or sets of projections are taken at equal angle steps, and the Fourier 
transform of each is calculated and plotted into a 2D complex image, which is then recon-
structed. The image quality is only fair, because of the limited number of views. When 180 
views at 1 degree intervals are used, the result is quite good. The artifacts which are still pres-
ent arise because of the gaps in the frequency space image. This missing information is espe-
cially evident at high frequencies (far from the center in the frequency space image) where the 
lines from the individual views become more widely spaced. All tomographic reconstruction 
procedures are sensitive to the number of views.

   
(a)              (b)              (c)

  

Figure 13.11 Reconstruction in frequency space using the pro-
jection data in Figure 13.10. The (complex) one-dimensional 
Fourier transforms of projection sets or views at different angles 
are plotted into a two-dimensional frequency domain image, 
which is then reconstructed:

  (a) 8 views in frequency space;

  (b) 180 views in frequency space;

  (c) reconstruction from (a);

  (d) reconstruction from (b).

        (d)
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By collecting enough views and performing this Fourier space reconstruction, it is possible to 
perform tomographic imaging. In practice, few systems actually work this way. An mathemati-
cally equivalent procedure that requires less computation and is more suitable for “real time” 
implementation is known as filtered backprojection. This is the method used in most medical 
scanners and some industrial applications.

The principle behind backprojection is simple to demonstrate. The attenuation plotted in each 
projection in a view is due to the structure of the sample along the individual lines, or ray 
integrals. It is not possible to know from one projection just where along the line the attenu-
ation occurs, but it is possible to evenly distribute the measured attenuation along the line. 
If this is done for only a single view, the result is not very interesting. But if it is done along 
projections from several views, the superposition of the density or attenuation values should 
correspond to the features present in the structure.

Figure 13.12 illustrates this result for the same phantom. It is possible to see the dense (dark) 
cylinder with its hollow (light) core in the projections. Data from several views overlap to 
delineate the cylinder in the reconstructed image. There is a problem with this result, how-
ever. The attenuation or density of uniform regions in the original phantom is not constant, 
but increases toward the center of the section. Also, edges are blurred.

The cause of this problem can be described in several different but equivalent ways. The pro-
jections from all of the views contribute too much to the center of the image, where all projec-
tions overlap. The effect is the same as if the image is viewed through an out-of-focus optical 
system whose blur or point spread function is proportional to 1/r where r is the frequency, or 
the distance from the center of the frequency transform.

   
(a)              (b)              (c)

  

Figure 13.12 Backprojection in the spatial domain. The attenua-
tion values in each view are projected back through the object 
space along each projection line. Adding together the data from 
many view directions does show the major features, but the 
image is blurred:

  (a) 1 view;

  (b) 6 views;

  (c) 30 views;

  (d) 180 views.

        (d)
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Chapter 6 shows how to remove a known blur from an image: apply an inverse function 
to the frequency space transform that corrects for the blur, in this case by attenuating low 
frequencies before retransforming. Based on the Fourier approach, and writing the reverse 
transformation in terms of polar coordinates, this gives

	 f x y S e d dj t, ,( ) = ( ) ⋅ ⋅
−∞

+∞

∫∫ φ ϖ ϖ ϖ φ
π

πω

0

2  (13.4)

or, in terms of x and y,

	 f x y Q x y d, cos sin( ) = ⋅ + ⋅( )∫ φ

π

φ φ φ
0

 (13.5)

where

	 Q S e dj t
φ

πωφ ϖ ϖ ϖ= ( ) ⋅ ⋅
−∞

+∞

∫ , 2  (13.6)

This is just the convolution of S, the Fourier transform of the projection, by |ω|, the absolute 
value of frequency. In frequency space, this is an ideal inverse filter which is shaped as shown in 
Figure 13.13. But, as pointed out in Chapters 5 and 6, convolutions can also be applied in the 
spatial domain. The inverse transform of this ideal filter is also shown in Figure 13.13. Note its 
similarity to the shape of the Laplacian or Difference of Gaussians illustrated in Chapter 5.

As a one-dimensional kernel or set of weights, this function can be multiplied by the projec-
tion P just as kernels are applied to two-dimen-
sional images in Chapters 4 and 5. The weights 
are multiplied by the values, and the sum is saved 
as one point in the filtered projection. This is 
repeated for each line in the projection set or 
view. Figure 13.14 shows the result for the pro-
jection data, presented in the form of a sinogram. 
Edges (high frequencies) are strongly enhanced, 
and low-frequency information is suppressed.

When the filtered data are then projected back, the 
blurring is corrected, as shown in Figure 13.15. 

Figure 13.13 An ideal inverse filter, which 
selectively removes low frequencies, and 
its spatial domain equivalent kernel.

Figure 13.14 The filtered projection data from 
Figure 13.10b, shown as a sinogram.
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Filtered backprojection using an ideal or inverse filter produces results identical to the inverse 
Fourier transform method described above. The practical implementation of filtered back-
projection is easier because the projection data from each view can be filtered by convolu-
tion (a one-dimensional operation) and the data spread back across the image as the view is 
acquired, with no need to store the complex (i.e., real and imaginary values) frequency space 
image needed for the Fourier method, or retransforming it afterwards.

Notice in Figure 13.15 that the quality of the image and the effect of number of views on 
the artifacts are identical to those shown for the frequency space method in Figure 13.11. 
In the absence of noise in the data and other effects discussed below, these two methods are 
exactly equivalent. Filtered backprojection is the method used in the majority of current CT 
instruments.

Algebraic reconstruction methods

The problem of solving for the density (more precisely, for the linear attenuation coefficient) 
of each location in the image can also be viewed as a set of simultaneous equations. Each ray 
integral (or summation, in the finite case considered here) provides one equation. The sum of 

  
(a)              (b)              (c)

  
(d)              (e)              (f)

Figure 13.15 Filtered back projection. The method is the same as in Figure 13.12, except that the values 
for each view have been filtered by convolution with the function in Figure 13.13: (a) 1 view; (b) 4 
views; (c) 8 views; (d) 16 views; (e) 32 views; (f) 180 views.
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the attenuation coefficients for the voxels along 
the ray, each multiplied by a weighting factor 
that takes into account the actual path length of 
that ray through the voxel, is equal to the mea-
sured absorption. Figure  13.16 illustrates the 
relationship between the voxels and the ray inte-
gral equations.

The number of unknowns in this set of equa-
tions is the number of voxels in the slice through 
the specimen. The number of equations is the 
number of ray integrals, which is generally the 
number of detectors used along each projection 
profile times the number of view angles. This is a 
very large number of equations, but many of the 
weights are zero (most voxels are not involved 
in any one particular ray integral equation). The 
number of equations rarely equals the number of 
unknowns, but fortunately there are a number of practical and well-tested computer methods 
for solving such sets of sparse equations when they are under- or overdetermined.

It is not the purpose of this text to compare the various solution methods. A suitable under-
standing of the method can be attained using the simplest of the methods, known as the 
algebraic reconstruction technique or ART (Gordon, 1974). In this approach, the equations are 
solved iteratively. The set of equations can be written as

	 Am·n xn = bm (13.7)

where n is the number of voxels, m is the number of projections, and A is the matrix of 
weights that correspond to the contribution of each voxel to each ray path (which can be 
precalculated for any particular instrument and geometry). The voxel values are the x values 
and the projection measurements are the b values. The classic ART method calculates each 
iterative set of x values from the preceding ones as

	 xk + 1 = xk + Ai (bi – Ai
λxk) || Ai ||2 (13.8)

The value of λ, the relaxation coefficient, generally lies between 0 and 2 and controls the 
speed of convergence. When λ is very small, this becomes equivalent to a conventional least 
squares solution. Practical considerations, including the order in which the various equations 
are applied, are dealt with in detail in the literature (Censor, 1983, 1984).

Figure 13.17 shows a simple example of this approach. The 16 × 16 array of voxels has been 
given density values from 0 to 20, as shown in Figure 13.17b, and three projection sets at 
view angles of 0, 90, and 180 degrees are calculated for the fan beam geometry shown in 
Figure 13.17a. For an array of 25 detectors, this gives a total of 75 equations in 256 unknowns. 
Starting with an initial guess of uniform voxels (with density 10), the results after 1, 5, and 50 
iterations are shown. The void areas and internal square appear rather quickly, and the defi-
nition of boundaries gradually improves. The errors, particularly in the corners of the image 
where fewer ray equations contain any information, and at the corners of the internal dense 
square, where the attenuation value changes abruptly, are evident. Still, considering the extent 
to which the system is underdetermined, the results are encouraging.

Kacmarz’ method for this type of solution is illustrated in Figure 13.18, for the very modest case 
of three equations and two unknowns, and λ = 1. Beginning at some initial guess, for instance 

Figure 13.16 Schematic drawing of voxels in a 
planar section of the specimen and the ray 
integral equations which sum up the attenu-
ation along a few paths through the array.
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that all of the voxels have the same attenuation value, one of the equations is applied. This is 
equivalent to moving perpendicular to the line representing the equation. This new point is 
then used as a starting point to apply the next equation, and so on. Since in the real case, the 
equations do not all meet in a perfect point, because of finite precision in the various measure-
ments, counting statistics, machine variation, etc., there is no single point that represents a stable 
answer. Instead, the solution converges toward a region that is mostly within the region between 
the various lines and then oscillates there. However, in a high-dimensionality space with some 
noisy equations, it is possible for the solution to leave this region and wander away after many 
iterations.

In real cases with many dimensions, the convergence may not be very fast. The greatest dif-
ficulty in using the iterative algebraic technique is deciding when to stop. Logically, the goal is 
to continue until the answer is as good as it can get, but without knowing the “truth” this stop-
ping point is not possible to judge exactly. Some methods examine the change in the calculated 
image after each iteration and attempt to judge from that when to stop (for instance, when the 
normalized total variation in voxel values falls below some arbitrary limit, or when it begins to 
increase from the previous iteration). This method is prone to serious errors in a few cases, but 
performs well most of the time and is often used. The penalty for continuing the iteration is not 
just the computational cost, but also the possibility that for some sets of data, the answer may 

start to diverge (leave 
the bounded region near 
the crossover point).

Given the drawbacks to 
the algebraic approach, 
and the relative simplic-
ity and straightforward 
approach of the filtered 
backprojection method, 
why would this method 

Figure 13.17 Example of the application of an iterative solution. Three projection sets are calculated for 
an array of 25 detectors, with view directions of 0, 90, and 180 degrees (a). The simulated specimen 
(b) contains a 16 × 16 array of voxels. The calculation results after (c) 1, (d) 5 and, (e) 50 iterations 
are shown. 

(a)

 
(b)            (c)

 
(d)            (e)

 

Figure 13.18 Schematic diagram 
of Kacmarz’ method for itera-
tively solving a set of equations.
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be used? There are several potential advantages of algebraic methods such as ART. First, the 
filtered backprojection method, and the Fourier transform method which it embodies, require 
that the number of views be rather large, and preferably that they be equally spaced so that 
frequency space is well filled with data. Missing angles, or entire sets of angles which may 
be unattainable due to physical limitations, present problems for filtered backprojection and 
introduce significant artifacts. ART methods can still produce an acceptable reconstruction. 
There may be a lack of detail in portions of the reconstructed image which are undersampled 
by the projections, but the artifacts do not spread throughout the entire image. In fact, accept-
able reconstructions are often obtained with only a very few views (examples are shown 
below).

Another advantage with ART is the ability to apply constraints. For instance, it is possible in 
a filtered backprojection or Fourier transform method to calculate negative values of density 
(attenuation) for some voxels, because of the finite measurement precision. Such values have 
no physical meaning. In the iterative algebraic method, any such values can be restricted to 
zero. In the schematic diagram of Figure 13.18, this amounts to restricting the solution to the 
quadrant of the graph with positive values.

In addition, any prior knowledge can be applied. If it is known that the only possible values 
of density and attenuation in the specimen correspond to specific materials, then the values 
can be easily constrained to correspond. Any geometric information, such as the outside 
dimensions of the object, can also be included (e.g., by forcing the voxels outside the object 
boundaries to zero density).

It is also possible to set up a grid of voxels that are not all of the same size and spacing. This 
setup might allow, for instance, the use of a fine voxel spacing in the interior of an object 
where great detail is desired, but a much coarser grid outside (or vice versa). This still allows 
the calculation of the contribution of the outside material to the ray integrals, but reduces the 
number of unknowns to produce a better solution for any given number of views and projec-
tions. Sets of non-cubic voxels can also be used when desirable to conform to specific object 
shapes and symmetries.

The flexibility of the algebraic method and its particular abilities to use a priori information 
often available in an industrial tomography setting compensate for its slowness and require-
ments for large amounts of computation. The calculation of voxel weights (the A matrix) 
can be tedious, especially for fan beam or other complex geometries, but no more so than 
backprojection in such cases, and it is a one-time calculation whose results can be stored 
and used for many reconstructions using the same geometry. The use of solution methods 
other than the simple iterative approach described here can provide improved stability and 
convergence.

Maximum entropy

There are other ways to solve these huge sets of sparse equations. One is the so-called maxi-
mum entropy approach. Maximum entropy is mentioned in Chapter 4 as an image processing 
tool to remove noise from a two-dimensional image. Bayes’ theorem is the cornerstone for the 
maximum entropy approach, given that there is relevant prior information which can be used 
as constraints. In the case where no prior information is available but noise is a dominant 
factor, Bayes’ theorem leads to the classical or “least squares” approximation method. It is the 
use of prior information that permits a modified approach.
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The philosophical justification for the maximum entropy approach comes from Bayesian sta-
tistics and information theory. It has also been derived from Gibbs’ concept of statistical 
thermodynamics (Jaynes, 1967). In summary, it can be described as follows: find the result 
(distribution of brightnesses in pixels of image, distribution of density values in a voxel array, 
or practically anything else) that is feasible (consistent with the known constraints, such as the 
total number of photons, the non-negativity of brightness or density at any point, the physics 
involved in the detector or measurement process, etc.) and has the configuration of values 
which is most probable.

This probability is defined as being able to be formed in the most ways. For an image formed 
by photons, all photons are considered indistinguishable, and the order in which they arrive 
is unimportant, so the distribution of photons to the various pixels can be carried out in many 
ways. For some brightness patterns (images) the number of ways to form the pattern is much 
greater than others. The images with greater multiplicity have a higher entropy. Nature can 
form them in more ways, so they are more likely. The entropy is defined as S = – ∑ pi log pi, 
where pi is the fraction of pixels with brightness value i.

The most likely image (from a simple statistical point of view) is for all of the pixels to get the 
same average number of photons, producing a uniform gray scene. However, this result may 
not be permitted by the constraints, one of which is the measured brightness pattern actually 
recorded. The difference between the calculated scene and the measured one can only be 
allowed to have a set upper limit, usually based on the estimated noise characteristics of the 
detector, the number of photons, etc. Finding the feasible scene which has the highest multi-
plicity is the maximum entropy method.

For instance, in solving for the tomographic reconstruction of an object from the set of ray 
integral equations obtained from various view angles, there is a large set of simultaneous 
equations in many unknowns. Instead of formally solving the set of simultaneous equations, 
for instance by a traditional Gauss-Jordan elimination scheme which would take far too many 
steps to be practical, the maximum entropy approach recasts the problem. Start with any 
initial guess (in most “well-behaved” cases, the quality of that guess matters little to the end 
result) and then iteratively, starting at that point, find another solution (within the class of fea-
sible solutions as defined by the constraints) that has a higher entropy. Deciding which way to 
move in the space defined by the parameters (the values of all the voxels) is usually done with 
LaGrange multipliers by taking partial derivatives and trying always to move “uphill” where 
the objective function used to evaluate each set of values is the entropy.

It is usually found that the solution having the maximum feasible entropy (i.e., permitted by 
the constraints) is hard against one or more of the boundaries formed by those constraints, 
and if they are relaxed the solution moves higher (toward a more uniform image). Knowing 
or assuming that the solution lies along the constraint boundaries allows use of more efficient 
schemes for finding the best solution. For the noise removal problem illustrated in Chapter 
4, the limiting constraint is commonly the chi-squared value of the smoothed image as com-
pared to the measured one. This is generally assumed to be due to classical noise and so 
should have an upper limit and a known distribution.

For tomographic reconstruction, the constraints are based on satisfying the ray integral equa-
tions. These are not all consistent, so a weighting scheme must be imposed on the error; linear 
weighting is the simplest and most often used. It turns out that in most cases, the cluster of 
solutions with high entropies, all permitted by the constraints, are virtually indistinguishable. 
In other words, the maximum entropy method does lead to a useful and robust solution. While 
the solution is still iterative, the method is efficient as compared to other solution techniques.
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Defects in reconstructed images

The reconstructed example shown above in Figures 13.11 and 13.15 is calculated using projection 
data simulated by computation, with no noise or any other defects. In real tomography, a variety 
of defects may be present in the projection sets that propagate errors back into the reconstructed 
image. Using the same phantom, several of the more common ones can be demonstrated.

Ideally, a large number of view angles and enough detector positions along each projection set 
are used to provide enough information for the reconstruction. In the event that fewer projec-
tions in a set or fewer views are used, the image has more reconstruction artifacts and poorer 
resolution and boundary definition, and poorer precision and uniformity of voxel values. 
Figure 13.19 shows the effect of fewer projections in each set but still uses 180 view angles. 
The reconstructed images are displayed with 100 × 100 voxels. This ideally requires a number 
of ray integrals in each projection set equal to at least √2 times the width, or 141 equations for 
each view. With fewer, the resolution of the reconstruction degrades.

If fewer view angles are used (but the angular spacing is still uniform), the artifacts in the 
reconstruction increase, as shown above in Figure 13.15. If the view angles are not uniformly 
spaced for full coverage, the results are much worse, as shown in Figure 13.20.

In real images, the number of X-ray photons detected at each point in the projection set is 
subject to fluctuations due to counting statistics. In many cases, both in medical and industrial 
tomography, the number of photons is limited. In medical applications, it is important to limit 
the total exposure to the subject. In industrial applications, the limitation is due to the finite 
source strength of either the X-ray tube or radioisotope source and the need to acquire as 

   
(a)              (b)              (c)

  

Figure 13.19 Effect of the number of ray integrals in the projection 
set on reconstructed image quality. Each image is reconstructed 
with 100 × 100 voxels and is calculated from 180 view angles. 
The images show the use of

  (a) 25,

  (b) 49,

  (c) 75,

  (d) 99 ray projections, respectively.

        (d)
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many views as possible within a reasonable time. In either case, the variation in the number 
of detected X-rays varies in an approximately Gaussian or normal distribution whose stan-
dard deviation is the square root of the number counted. Counting an average of 100 X-rays 
produces a variation whose standard deviation is 10% (√100 = 10), while an average of 10,000 
X-rays is needed to reduce the variation to 1% (√104 = 102).

The process of reconstruction amplifies the effect of noise in the projections. This is the same 
effect of noise seen in Chapter 6 for removing blur by deconvolution and arises from the same 
mathematical causes. Filtered backprojection using the full 180 degrees of data is employed. 
The filtering process suppresses the low frequencies and keeps the high frequencies, and the 
counting fluctuations vary randomly from point to point and so are represented in the highest 
frequency data. Figure 13.21 shows the result. Adding a statistical or counting fluctuation of a 
few percent to the simulated projection data produces a much greater noise in the reconstructed 
image. Although the density differences in the three regions of the phantom vary by 100%, some 
of the regions disappear altogether when 10% or 20% noise is added to the projection data.

Suppression of the high-frequency noise in the projection data by the filtering process can 
reduce the effect of the noise somewhat, as shown in Figure 13.22. The noise variations in 
the reconstructed images are reduced, but the high-frequency data needed to produce sharp 
edges and reveal the smaller structures are gone as well.

Several different filter shapes are used for this purpose. Figure 13.23 shows plots of the 
filters in Table 13.1 for comparison to the shape of the ideal inverse filter described above. 
The plots are in terms of frequency. All of the band-pass filters reduce low-frequency values, 

  

Figure 13.20 Effect of using a set of view angles which do not uni-
formly fill the angular range:

  (a) 150 degree coverage;

  (b) 120 degree coverage;

  (c) 90 degree coverage;

  (d) a different 90 degree range.

        (d)

   
(b)              (c)              (d)
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(a)              (b)              (c)

  

Figure 13.21 Effect of counting statistics on reconstruction. The 
images are reconstructed from simulated projection data to 
which Gaussian random fluctuations have been added:

  (a) 2%;

  (b) 5%;

  (c) 10%;

  (d) 20%.

        (d)

Figure 13.22 Reconstructions from the same projection data 
with superimposed counting statistics variations as in Figure 
13.21, but using a Hann filter instead of an ideal inverse filter 
to reduce the high-frequency noise.

  
                                      (a)

   
(b)              (c)              (d)
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as required to prevent blurring, and all of the noise reduction filters also attenuate high fre-
quencies in order to suppress noise.

Another important source of errors in the reconstruction of images is imprecise knowledge of 
the location of the center of rotation, or variation in that center due to imperfect mechanical 
mechanisms (Barnes et al., 1990). As shown in Figure 13.24, this variation also produces an 
effect in the reconstructed image which is magnified. The characteristic “U” shaped arcs result 
from an off-center rotation, because view angles in a range of 180 degrees are used. If 360 
degree rotation is used, a complete circular arc is present (Figure 13.25) that also distorts the 
reconstruction. Data are not always collected over a complete 360 degree set of angles, because 
in the absence of off-center rotation or beam hardening (discussed below) the data are redun-
dant. The effect of a variable center is just as great with 360 degree rotation, but harder to recog-
nize. In general, the constancy of the location of the center of rotation should be less than about 
one-tenth of the expected spatial resolution or voxel size in the reconstructed images.

Similarly, the motion of the object should be restricted during the collection of the multiple 
views. In medical imaging, where the most common imaging geometry is to place the subject 
inside a circular track on which the source and/or detectors rotate, this means that the patient 
must not breathe during the scanning process. If the images are expected to show the heart, 
the entire collection of views must be obtained in a time much shorter than a single beat, or 
else a stroboscopic triggering scheme must be used to collect images at the same relative tim-
ing over many beats. Both methods are used.

 

Figure 13.23 Filter profiles for noise 
reduction in filtered backprojec-
tion, as listed in Table 13.1.

Table 13 .1. Filter Profiles for Backprojection Shown in Figure 13.23
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(a)              (b)              (c)

  

Figure 13.24 Effect of errors in the center of rotation on the recon-
structed image. In each of these images, the center is consistent, 
but displaced from the location assumed in the rotation by a 
fraction of the image width:

  (a) 0.5%;

  (b) 1.0%,

  (c) 2.5%;

  (d) 5.0%.

        (d)

Figure 13.25 Repeating the reconstructions of Figure 13.24 using 
the same number of views (180) but spread over 360 degrees 
instead of 180 degrees, with the center of rotation displaced 
from the assumed location by a fraction of the image width:

  (a) 0.5%;

  (b) 1.0%,

  (c) 2.5%;

  (d) 5.0%.

  
                                      (a)

   
(b)              (c)              (d)
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Beam hardening

Beam hardening is the term used to describe the effect in which the lower energy or “softer” 
X-rays from a polychromatic source such as a conventional X-ray tube are preferentially absorbed 
in a sample. The consequence is that the effective attenuation coefficient of a voxel is different 
depending on whether it is on the side of the specimen near the source or farther away. This 
variation along the path is indicated schematically in Figure 13.26. Beam hardening is not a 
major problem in medical tomography because the variation in composition of the various parts 
of the human body is only slight. Everything is mostly water with some addition of carbon, a 
trace of other elements, and for bones, some calcium. The density varies and is in fact what the 
reconstructed image shows, but the range of variation is small. This uniformity makes X-ray tubes 
an acceptable source and simple filtered backprojection a suitable reconstruction method.

Industrial applications commonly encounter samples with a much greater variation in com-
position, ranging across the entire periodic table and with physical densities that vary from 
zero (voids) to more than ten times the density of biological tissue. This large range of varia-
tion makes beam hardening an important problem. One solution is to use a monochromatic 
source such as a radioisotope or a filtered X-ray tube. Another is to use two different energies 
(Schneberk et al., 1991) or a combination of absorption and X-ray scattering data (Prettyman 
et al., 1991) and to use the two projection sets to correct for the change in composition in 
the reconstruction process. However, this method increases the complexity significantly and 
requires an algebraic solution method rather than backprojection or Fourier techniques.

Figure 13.27 shows an example of the beam hardening effect in the same phantom used above. 
In this case, the sample composition is specified as void (the light gray interior regions and the 
surroundings), titanium (the large medium gray elliptical object), and iron (the small dark interior 
regions). The total width is 1 cm, and the X-ray tube is assumed to be operating at 100 kV. This is a 
modest amount of beam hardening. A larger specimen, a lower tube voltage, higher atomic num-
ber elements, or a greater variation in atomic number or density would produce a greater effect.

Figure 13.28 shows backprojection reconstructions of the phantom using view angles which 
cover 180 degrees and 360 degrees, respectively. In most tomography, 180 degrees is adequate 
since the projections are expected to be the same regardless of direction along a ray path. This 
assumption is not true in the case of beam hardening (as for the case of off-center rotation), 
and so better results are obtained with a full 360 degrees of data. Notice, however, that arti-
facts are still present. This is particularly true of the central feature, in which the narrow void 
is hardly visible. Figure 13.29 shows the same phantom with no beam hardening, produced 
with a monochromatic X-ray source.

 

Figure 13.26 Schematic diagram of beam harden-
ing. The energy spectrum of X-rays from an X-ray 
tube is shown at the beginning, middle, and end 
of the path through the specimen. As the lower 
energy X-rays are absorbed, the attenuation 
coefficient of the sample changes independently 
of any actual change in composition or density.
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Figure 13.27 Example of beam 
hardening effect on the 
sinogram or Radon trans-
form (a) and the inverse 
filtered data (b). Notice that 
the contrast of each feature 
changes according to where 
it lies within the rotated 
object.

  (a) (b)

(a) (b)   

Figure 13.28 Reconstruction of 
the beam hardened data from 
Figure 13.27:

  (a)  180 views covering 180 
degrees;

  (b)  180 views covering 360 
degrees.

Figure 13.29 Reconstruction of the same phantom as 
Figure 13.28 but using a monochromatic 50 kV 
X-ray source. Notice particularly the void in the 
center of the object, which is not visible in Figure 
13.28.
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When X-rays pass through material, the attenuation coefficient that reduces the transmitted 
intensity consists of two principal parts: the absorption of the X-rays by the excitation of a 
bound electron, and the scattering of the X-rays either coherently or incoherently into a dif-
ferent direction. In either case, the photons are lost from the direct ray path, and the mea-
sured intensity decreases. However, in the case of scattering, the X-rays may be redirected to 
another location in the detector array (see the description of the geometries of various genera-
tions of instrument designs, below).

When this scattering takes place, the measured projection profiles contain additional back-
ground on which the attenuation data are superimposed. The presence of the background 
also produces artifacts in the reconstruction, as shown in Figure 13.30. The effect is visually 
similar to that produced by beam hardening.

In addition, the uniform regions in the object are reconstructed with a variable density 
due to the background. Figure  13.31 shows this reconstruction for a simple annular 
object (a simplified model for bone cross-section), and Figure 13.32 shows plots across 
the center of the reconstructions. The deviation from a uniform density in the reconstruc-
tion is called cupping. This example uses materials similar in composition and density to 
those in the human body. However, medical tomography is not usually required to pro-
duce a quantitatively accurate measure of density, but only to show the location of internal 
structures and boundaries. In some applications, this is not true: for example, radiography 
and computed tomography are used to measure bone density loss due to osteoporosis. 
Industrial tomography is often called upon to measure densities accurately so as to quan-
tify gradients in parts due to processing (e.g., pressing powders to make sintered ceramic 

   
(a)              (b)              (c)

  

Figure 13.30 Reconstruction of the phantom in Figure 13.29 when 
the measured projection sets include scattered background radi-
ation of

  (a) 5;

  (b) 10;

  (c) 20; and

  (d) 40% of the average intensity.

  The effect on the image is similar to beam hardening. Small 
features are obscured by artifacts, and the overall contrast 
changes.

        (d)
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parts), and this source of error is therefore 
of concern. Figure  13.33 shows an inter-
esting application (Sirr & Waddle, 1999), in 
which precise measurements of both density 
and dimensions are important.

Although medical applications rarely need 
to measure densities exactly, they do require 
the ability to show small variations in density. 
A test phantom often used to demonstrate 
and evaluate performance in this category is 
the Shepp and Logan (1974) head phantom. 
Composed of ellipses with densities close to 
1.0, it mimics in simplified form the human 
head, surrounded by a much denser skull, 
and containing regions very slightly lower or 
higher in density that model the brain struc-
ture and the presence of tumors. The ability to 
image these areas is critical to the detection of 
anomalies in real head scans.

Figure 13.34 shows a reconstruction of this 
phantom. Using the full dynamic range of the 
display (values from 0 to 255) linearly to rep-
resent the image does not reveal the internal 
detail within the phantom. Applying histo-

gram equalization (as introduced in Chapter 5) expands the contrast in the center of the 
histogram so that the different regions become visible. A profile plot across the center of the 
structure shows the different regions with nominally uniform density values (Figure 13.35).

As noted above, tomography can be performed using other modalities than X-ray absorption. 
One is emission tomography, in which a radioactive isotope is placed inside the object and 
then reveals its location by emitting gamma ray photons. Collimated detectors around the 
object can specify the lines along which the source of the photons lie, producing data func-
tionally equivalent to the attenuation profiles of the conventional case.

Figure 13.36 shows an example of emission tomography, in which another artifact is evi-
dent. The bright areas in the reconstruction are cavities within a machined part that contain a 

  

Figure 13.31 Reconstruction of 
a simple annulus with outer 
composition of calcium car-
bonate (an approximation to 
bone) and an inner composi-
tion of water (an approxima-
tion to tissue):

  (a) no scattered background;

  (b)  10% scattered background 
in projection data.

       (a)              (b)

Figure 13.32 Line profiles of the density in the 
images in Figure 13.31.

Figure 13.33 CT scan of a Stradivarius violin 
called the “Harrison.” This violin was con-
structed in Cremona, Italy in the 17th century 
and is thought to be nearly completely original, 
without patches or “modern” additions. (Image 
courtesy of Dr. Steven Sirr, Minneapolis, MN).
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radioactive isotope. The same technique is used to measure the internal contents of 55-gallon 
drums used to store radioactive waste materials. The sinogram shows the detected emission 
profiles as a function of view angle. Notice that the apparent width of the regions varies with 
angle. This variation is due to the finite width of the collimators on the detectors, which pro-
duces an angle covering a wider dimension on the far side of the object, as indicated schemati-
cally in Figure 13.37. This effect is also present in X-ray absorption tomography, due to the 
finite size of apertures on the source and the detectors. Using narrow collimators that restrict 
the angle of acceptance more also reduces the measured signal. If the angle of the collimators 
is known, this effect can be included in the reconstruction, either by progressively spreading 
the data as the filtered profile is spread back across the voxel array, or by adjusting the voxel 
weights in the algebraic reconstruction technique.

(a)

(b)

Figure 13.34 Reconstruction of the Shepp & 
Logan phantom, intended to represent the 
difficulty of visualizing a tumor inside the 
human head. The regions of varying density 
inside the “brain” range of relative densities 
of 1.0 to 1.04, while the “skull” has a den-
sity of 2.0. They are not visible in the recon-
structed image 

  (a)  unless some contrast expansion is 
applied. Histogram equalization

  (b)  spreads the gray scale nonlinearly to 
show the various ellipses and their over-
laps (and also increases the visibility of 
artifacts in the reconstruction).

Figure 13.35 Brightness profiles across the 
images in Figure 13.34, showing the 
uniformity and sharpness of transitions 
for the regions, and the effect of histo-
gram equalization, which increases the 
visibility of noise.
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Imaging geometries

First-generation tomographic systems col-
lect projection sets at a variety of view 
angles by moving a source and detector, as 
shown above in Figure  13.8. The proce-
dure used to collect a complete set of pro-
jection data is illustrated in Figure 13.38. 
This is called a pencil-beam or parallel-
beam geometry, in which each ray integral 
is parallel and the projection set can be 
directly backprojected. It is not very effi-

cient, since only a small solid angle of the generated X-rays can be used, and only a single 
detector is in use, but is still used in some industrial imaging situations where time of data 
acquisition is not a major concern.

Second-generation instruments add a set of detectors so that a fan beam of X-rays can 
be detected and attenuation measured along several lines at the same time, as shown in 
Figure 13.39. This procedure requires fewer view angles to collect the same amount of data, 
but the attenuation measurements from each detector are for different angles and some re-
arrangement of the data is needed before it can 
be used.

Fan-beam geometry is appealing in its efficiency, 
and the next logical step, in third-generation 
instruments used for medical imaging, uses a 
single X-ray tube with a larger array of detec-
tors (and arranges them on an arc so that each 
covers the same solid angle with normal X-ray 
incidence). The detectors and tube rotate together 
about the object as the X-ray tube is pulsed to 
produce the series of views (Figure  13.40). In 
fourth-generation systems, a complete ring of 
detectors is installed and only the source rotates 
(Figure  13.41). The X-rays are no longer nor-
mally incident on the detectors in this case. 
There is a fifth-generation design in which even 
less hardware motion is required: the X-rays are 
generated by magnetically deflecting an electron 

Figure 13.36 Emission tomography. The 
sample is a block of aluminum with 
several cylindrical cavities containing 
radioactive cobalt. The detector collects 
a series of intensity profiles as a func-
tion of rotation, shown in the form of 
a sinogram (a). Note that the width of 
the trace for each cylinder varies as 
the sample is rotated, due to the finite 
angle of the entrance collimator to 
the detector. The reconstruction of the 
cross-section is shown in (b).  

Figure 13.37 Schematic diagram showing the effect 
of a finite collimator angle on the dimensions and 
voxels covered in different parts of the object.

Figure 13.38 First-generation geometry. The 
detector and source move together to collect 
each projection set one point at a time and 
rotate to many view angles to collect all of 
the required data.
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beam against a fixed target ring, rotating the source of X-rays to produce the same effective 
geometry as in fourth-generation systems, but with even shorter exposure times and without 
moving mechanical parts.

These latter types of geometry are less used in industrial tomography, since they are primarily 
intended for imaging speed, to minimize exposure and acquire all of the projections before 
anything can move in the person being imaged. First- or second-generation (pencil- or fan-
beam) methods in which a series of discrete views is collected provide greater flexibility in 
dealing with industrial problems. However, all of the methods are equivalent if the various 
ray integrals using individual detectors in the fan-beam geometry are sorted out according to 
angle, and either backprojected, used in a Fourier transform method, or used to calculate an 
algebraic reconstruction with appropriate weights.

Some imaging technologies use different geometries and reconstructions. For instance, ultra-
sound images, most familiarly used for exam-
ining a fetus in utero or imaging blood flow 
to monitor heart problems, are obtained as 
fan-beam sections (Figure 13.42), with reflec-
tion signals from internal surfaces. They can 
be processed to visualize those surfaces, as 
shown in the next chapter. Positron emission 
tomography (PET), single-photon emission 
spectroscopy (SPECT), and magnetic reso-
nance imaging (MRI) are different in geometry 
from CT scans and record different informa-
tion about internal structure.

PET and SPECT localize specific atomic iso-
topes by their decay. In PET, the positron pro-
duced by the atomic nucleus gives rise to a 
pair of 511 keV photons that travel in exactly 
opposite directions. Detecting them with a 

Figure 13.39 Second-
generation geometry. The 
detector array simultane-
ously measures attenuations 
in a fan beam, requiring 
fewer view angles than first-
generation systems to collect 
the data.

Figure 13.40 Third-generation 
geometry. The X-ray tube 
and detector array rotate 
together around the object 
being imaged, as the tube 
is rapidly pulsed to produce 
each view.

Figure 13.41 Fourth-generation 
geometry. The detector array 
forms a complete ring and is 
fixed. The X-ray tube rotates 
around the object and is 
pulsed. Data from the detec-
tors is sorted out to produce 
the projection sets.

Figure 13.42 Ultrasound image of an 11 week old 
fetus (image shows the author’s granddaughter 
Colette).
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ring of detectors locates the original isotope tag somewhere on the line between the two 
points, which becomes the line integral used in the reconstruction. PET scans are used most 
often to detect cancer and to examine the effects of cancer therapy by characterizing biochem-
ical changes in the tumor. PET is also used in research to localize brain activity and to study 
decreased metabolism associated with Alzheimer disease (Figure 13.43), and for detecting 
damaged portions of heart muscle after heart attacks. Radionuclides used in PET scanning 
are typically isotopes with short half-lives such as carbon-11, nitrogen-13, oxygen-15, and fluo-
rine-18 (half-lives of 20 min, 10 min, 2 min, and 110 min, respectively).

SPECT detects gamma rays from isotope decay with collimated detectors. The most commonly 
used isotopes are Technetium-99 (6 hour half-life) and Iodine-123 (13 hour half-life). An array 
of detectors collects information from a parallel set of projections and is scanned across and 
around the subject to collect multiple views. The most common use of SPECT is to visual-
ize the blood flow reaching the heart muscle (Figure 13.44), to detect areas of insufficiency 
and coronary artery disease, often as part of a stress test in which images are taken before 
and after exercise. Both PET and SPECT have poor resolution when compared to MRI or CT 
methods, but are adequate for their diagnostic and research purposes, particularly when 
combined with other higher-resolution imaging modalities. PET and MRI data can be very 
complementary to the density information from X-ray tomography, and in many cases scans 
using the different modalities are combined by overlaying the section images in registration 
(Figure 13.45). Registration of these images, which typically have different resolutions and 
voxel dimensions, as well as showing contrast for different structures, can be challenging 
(Hajnal et al., 2001).

When protons are placed in a magnetic field, they oscillate (resonate — hence “magnetic 
resonance imaging” or MRI, considered to be a more socially acceptable name than NMR or 

Figure 13.43 PET scans 
showing the reduced 
metabolism associated 
with advanced Alzheimer 
disease:

  (a)  normal adult human 
brain;

  (b)  brain of a patient with 
advanced Alzheimers.

 

 

Figure 13.44 SPECT images 
showing blood flow to the 
heart. The series of images 
are parallel sections, with 
color and brightness 
representing the isotope 
concentration.
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Nuclear Magnetic Resonance, which is the underlying technology) at a frequency that depends 
on the field strength and absorb energy at the oscillation frequency. This energy is reradiated 
as the protons return to their ground state. The reradiation takes place by relaxation of the 
magnetization components parallel and perpendicular to the field, which have different time 
constants T1 and T2. MRI signal strength depends on the proton concentration (essentially the 
water concentration in the tissue for medical imaging) but the contrast depends on T1 and T2 
(as shown in Figure 13.46), which are strongly influenced by the fluid viscosity or tissue rigid-
ity. A weighted combination of the two signals provides control over the observed image.

 

Figure 13.45 Co-registration 
of PET and MRI scans 
(images courtesy of K. 
A. Paller, Northwestern 
University).

  
(a)                      (b)

Figure 13.46 MRI slices with (a) T1 and (b) T2 weighting.
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Reconstruction of MRI images depends upon having a well-calibrated magnetic field gradient 
across the region being imaged to localize the various frequencies. A Fourier transform of the 
radio frequency signal extracts the positions of the protons, and the principle of collecting 
signals in many directions and recombining them to image 2D or 3D spatial distributions is 
similar to CT. MRI is used to image virtually all of the soft tissues in the body, which do not 
generally produce good contrast in CT (although ingestion or injection of contrast agents may 
be used in specific situations). Combining CT with MRI images has been reported to aid in 
some medical diagnoses (Bartling et al., 2005).

Three-dimensional tomography

While the most common application of tomography is still to form images of planar sections 
through objects without physical sectioning, the method can be directly extended to gener-
ate complete three-dimensional images. Chapter 14 shows several examples of 3D displays 
of volume data. Most of these, including many of the tomographic images, are actually serial 
section images. Whether formed by physical sectioning, optical sectioning (for instance, using 
the confocal light microscope), or conventional tomographic reconstruction of slices, these 
methods are not ideal 3D data sets.

The distinction is that the pixels in each image plane are square, but as they are extended into 
the third dimension as voxels, they do not necessarily become cubes. The distance between 
the planes, or the depth resolution, is not inherently the same as the pixel size or resolution 
within the plane. In fact, few of these methods have depth resolution equal to the lateral reso-
lution. Some techniques, such as physical or optical sectioning, have poorer depth resolution. 
Others, such as secondary ion mass spectrometry, have depth resolution that is far better than 
the lateral resolution of images. This has profound effects for three-dimensional image pre-
sentation, for image processing, and for three-dimensional measurement.

True three-dimensional imaging is possible with tomographic reconstruction. The object 
is represented by a three-dimensional array of cubic voxels, and the individual projection 
sets become two-dimensional arrays (projection images). Each projection is from a point 
and is referred to as a cone-beam geometry (Shih et al., 2001) by analogy to the fan-beam 
method used for single slice projections. The set of view directions must include orienta-
tions that move out of the plane and into three dimensions, specified by two polar angles. 
This does not necessarily require rotating the object with two different polar angles, since 
using a cone-beam imaging geometry provides different angles for the projection lines, 
just as a fan-beam geometry does in two dimensions. However, the best reconstructions 
are obtained with a series of view angles that cover the three-dimensional orientations as 
uniformly as possible.

Several geometries are possible. The simplest rotates the sample (or the source and detector 
array) about a single axis, as shown in Figure 13.47. This method offers the advantage of 
precise rotation, since, as shown above, the quality of the reconstruction depends on the con-
sistency of the center of rotation. On the other hand, artifacts in the reconstructed voxels can 
be significant, especially in the direction parallel to the axis and near the top and bottom of 
the sample. The single-axis rotation method is most often used with X-ray, neutron, or gamma 
ray tomography, because the samples may be rather large and are relatively equiaxed so that 
the distance that the radiation must pass through the sample is the same in each direction. 
Improved resolution in the axial direction can be obtained using a helical scan (Wang et al., 
1991) in which the specimen rotates while moving in the axial direction (Figure 13.48). This 
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has become the preferred 
geometry for small to medium 
size industrial objects.

For electron tomography, 
most samples are thin sec-
tions, and few transmission 
electron microscope stages 
permit complete movement 
of the sample about its axis. 
For a sample that is essen-
tially slab-like, the geometry 
that is usually adopted is a 
series of tilt angles that proj-
ect along the limbs of a cone 
(Barth et al., 1989), as shown 
in Figure  13.49. Collecting 
these projections by control-
ling the tilt and rotation of 
the sample in its holder with 
enough precision to allow 
good reconstructions is dif-
ficult. Some TEM samples 
consist of many repeating 

structures (macromolecules, virus particles, etc.), so that a single image of the sample can 
collect enough different projected views to be used for reconstruction. Because of the use of 
many different individual (but presumably identical) objects with various orientations, this 
method is described as random projections, as compared to the use of equal angular incre-
ments. The very small aperture angle of the beam in the TEM produces essentially parallel 
rather than cone-beam projections, which does simplify the reconstruction and makes back-
projection straightforward. But the use of a limited set of views arranged in a cone produces 
artifacts because little information is available in the axial direction (sometimes referred to 
as the missing cone of information). Frank (1992) and Kubel et al. (2005) present thorough 
reviews of the state of the art in electron microscope tomography.

From a theoretical viewpoint, the best reconstruction for any given number of projections 
is obtained when they are uniformly distributed in three-dimensional space (Figure 13.50). 
Constructing a mechanism to achieve accurate rotations about two precisely centered axes is 
difficult and this technique is rarely used.

Three-dimensional reconstruction can be performed with any of the methods used in two 
dimensions. For Fourier inversion, the frequency space is also a three-dimensional array, and 
the two-dimensional images produced by each projection are transformed and the complex 

 

Figure 13.47 Geometry for volume imaging using 
radial cone-beam projections obtained by rotat-
ing the sample about a single axis.

 

Figure 13.48 In helical 
scanning, the specimen 
is raised as it rotates so 
that multiple cone-beam 
projections measure 
absorption along differ-
ent angles through the 
voxels.

Figure 13.49 Tilting the sample in a 
conical pattern produces a series 
of parallel-beam projections used 
for reconstruction in transmis-
sion electron microscopy. The 
spacing along the cone trace is 
not necessarily uniform.
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values plotted on planes in the array. As for 
the two-dimensional case, filling the space as 
completely and uniformly as possible is desir-
able. The Fourier transform is performed in 
three dimensions, but this is a direct exten-
sion of methods in lower dimensions and the 
transform can be performed in one dimension 
at a time (successively along rows in the u, v, 
and w directions).

Backprojection can also be used for 3D recon-
struction and, as in the two-dimensional case, 
is an implementation of the Fourier trans-
form mathematics. The filtering of the two-
dimensional images must be performed with 
a two-dimensional convolution, which can be carried out either by kernel operation in the 
spatial domain or by multiplication in the Fourier domain. The principal difficulty with the 
backprojection method is that calculation of the matrix of weights is complex for cone-beam 
geometry, especially when combined with helical scanning. These values represent the attenu-
ation path length along each of the ray integrals through each of the voxels. The use of back-
projection requires a large number of views to avoid artifacts and is most commonly used 
with single-axis rotation or with helical scans about a single rotational axis, with either cone-
beam or parallel-beam projections (Feldkamp et al., 1984; Smith, 1990; Shih et al., 2001). It 
is difficult to apply to a full three-dimensional set of cone beams because they are spaced at 
relatively large angles.

Algebraic reconstruction (ART) methods are also applicable to voxel arrays. The difficulty 
in obtaining a uniform set of view angles can make ART methods more attractive than the 
inverse Fourier approach. In fact, when using an iterative technique such as ART, good results 
are often obtained with a surprisingly small number of views. Figures 13.51 and 13.52 show 
an example. The specimen (2 cm on a side) consists of three different metal cylinders in a 
plastic block. Chromium, manganese, and iron are consecutive elements in the periodic table, 
with similar densities. Tomographic reconstruction from only 12 views with 3D rotations, 
using a low power industrial X-ray source, shows the inserts well (Ham, 1993).

Of course, more views can produce a better reconstruction. But in most tomography situ-
ations, the total dose is a fixed constraint. In some cases, this can be because of concerns 

about radiation damage to the sample. Dosage to 
the sample is a concern for medical X-ray tomog-
raphy, of course. But it also creates problems for 
electron tomography. The amount of energy depos-
ited in each cubic nanometer of the sample from 
a focused electron beam is great enough to cook 
biological tissue, disrupt molecules, and change the 
structure being imaged.

But even for industrial tomography, the total flux of 
radiation that can be generated and the time spent 
acquiring the images usually are limited. There is a 
necessary tradeoff between the number of projec-
tions and the time spent acquiring each one. More 
time on each projection improves the statistical 

Figure 13.50 Optimum 3D reconstruction is pos-
sible with a series of 3D projections, obtained 
by rotating the sample about two axes.

Figure 13.51 Geometry of a test sample. 
Three cylindrical inserts of different met-
als (Cr, Mn, and Fe) are placed in a plas-
tic block (2 cm on a side).
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quality of the view image, so acquiring more projections makes each one noisier, and vice 
versa. In some cases with a limited total photon budget, the best quality reconstructions with 
full three-dimensional rotation are obtained with a very small number of projections (Ham, 
1993). This approach requires an ART method rather than backprojection.

The limited number of photons becomes particularly critical when low-intensity sources are 
used. Synchrotrons (Helfen et al., 2003; Betz et al., 2007) are excellent sources of X-rays with 
high brightness and the ability to select a specific monochromatic energy, but are not usually 
conveniently available for tomographic work. Radioactive sources of gamma rays are portable 
but present handling difficulties and have low intensities. X-ray tubes are a convenient source 
for tomography, with adjustable voltage and a variety of target materials that emit different 
X-ray spectra. Tubes are not monochromatic, which may cause significant beam hardening 
effects for many specimens, as discussed above.

Absorption filters can be used to select just a single band of energies from a polychromatic 
source. For each view angle, two projection images are collected using filters whose absorp-
tion edge energies are different. The ratio of the two images yields the attenuation informa-
tion for the elements whose absorption edges lie between the two filter energies, as indicated 
in Figure 13.53. A series of such image pairs can provide separate information on the spatial 
distribution of many elements. Figure 13.54 shows an example in which the use of filters 
has selected two of the three metal inserts in the sample from Figure 13.51. The use of the 
filters reduces the already low intensity from the X-ray tube, and the use of the ratio of the two 
images presents a further limitation on the statistical quality of the projections. Consequently, 
it is important to use a small number of views to obtain the best possible projection images. 

  
(a)              (b)              (c)

Figure 13.52 Tomographic reconstruction of three planes in the xy, yz, and zx orientations passing 
through the metal inserts in the plastic block shown in Figure 13.51, reconstructed using ART with 
just 12 cone beam projections with rotations in 3D.

 

Figure 13.53 Diagram of balanced absorption 
edge filters used to isolate a single energy 
band. The plots show the absorption coeffi-
cient as a function of energy for two differ-
ent filters containing the elements chromium 
and nickel. Elements in the sample with 
absorption edges between these two energies 
(manganese, iron, and cobalt) are imaged in 
the ratio of the two intensities.
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In this example, 12 projections with 3D rotation of 
axes are used. Figure 13.55 shows the increased 
artifacts present in the reconstruction when the 
same number of views are recorded with single axis 
rotation.

The electron microscope produces images in which 
contrast is due to attenuation, and a series of views 
at different angles can be reconstructed to show 
three-dimensional structure. The use of an arbitrary 
series of angles is difficult to achieve for materials 
specimens because of diffraction of the electrons 
from planes of atoms in the crystal structure. This 
source of contrast is not easily modeled by the usual 
attenuation calculation since one voxel may have 
different values in different directions. However, for 
noncrystalline materials such as biological speci-
mens, the reconstruction is straightforward (Engel 
& Massalski, 1984; Hegerl, 1989).

Even more efficient than collecting a series of dif-
ferent views using multiple orientations of a single specimen is using images of many differ-
ent but identical specimens that happen to have different orientations, as mentioned above. 
Figure 13.56 shows an example. The two-dimensional image is an electron micrograph of a 
single virus particle. The specimen is an adenovirus that causes respiratory ailments.

The low dose of electrons required to prevent damage to the specimen makes the image 
very noisy. However, in a typical specimen there are many such particles, each in a different, 
essentially random orientation. Collecting the various images, indexing the orientation of each 
image by referring to the location of the triangular facets on the virus surface, and perform-
ing a reconstruction produces a 3D reconstruction of the particle in which each voxel value 
is the electron density. Modeling the surface of the outer protein coat of the virus produces 

  
(a)              (b)              (c)

Figure 13.54 Reconstruction of the same three planes as shown in 13.52, but using images obtained as 
a difference between two projections through different filters (Cr and Fe metal foils), which form a 
bandpass filter to select a narrow band of X-ray energies. Note that one of the inserts (Cr) is excluded 
but the Mn and Fe inserts are visible. Reconstructed using 12 cone-beam projections with rotations 
in 3D.

Figure 13.55 Reconstruction of the same 
plane as shown in Figure 13.54a, recon-
structed in the same way using two fil-
ters, but using 12 co-planar projections 
(rotating the sample about one axis only). 
Note the increased artifacts between and 
within the inserts.
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the surface-rendered image shown in Figure 13.56b 
(Stewart & Burnett, 1991).

At a very different scale, tomography has also been per-
formed on the earth itself using seismography. Seismic 
waves are created by earthquakes or large explosions 
such as nuclear weapons tests. Such large-magnitude 
events generate two types of waves that propagate 
through the earth to receivers (seismographs) at many 
different locations. P-waves (pressure waves) are 
compressional pulses which can penetrate through 
every part of the earth’s interior, while S-waves (shear 
waves) are transverse deformations that cannot propa-
gate through the liquid core. In fact, the presence of 
a liquid core was deduced in 1906 by the British seis-
mologist R. D. Oldham from the shadow cast by the 
core in seismic S-wave patterns.

The paths of seismic waves are not straight 
(Figure  13.57), but bend because of the variations 
in temperature, pressure, and composition within the 
earth which affect the speed of transmission just as 
the index of refraction of glass affects light and causes 
it to bend in a lens system. Also similar to the behav-
ior of light, the seismic waves may reflect at interfaces 
where the speed of propagation varies abruptly. This 
happens at the core-mantle boundary and the surface 
of the inner core. The propagation velocities of the P- 
and S-waves are different and respond differently to 
composition and density.

Collecting many seismograms from different events 
creates a set of ray paths that do not uniformly cover 

the earth, but rather depend on chance and the highly non-
uniform distribution of earthquakes and the distribution of 
seismographs. Nevertheless, analysis of the travel times of 
waves that have taken different paths through the earth 
permits forming a tomographic reconstruction. The density 
of the material (shown by shading in Figure 13.58) indi-
cates the temperature and the direction of motion (cool, 
dense material is sinking through the mantle toward the 
core, while hot, light material is rising). Convection in the 
mantle is the driving force behind volcanism and continen-
tal drift.

Also of great utility are waves that have reflected (one or 
more times) from the various surfaces. For instance, the 
difference in travel times of S-waves that arrive directly vs. 
those which have reflected from the core-mantle boundary 
permits mapping the elevation of that boundary with a res-
olution better than 1 kilometer and reveals that the bound-
ary is not a smooth spherical surface. Since the relatively 

(a)

(b)

Figure 13.56 Transmission electron 
microscope image of a single ade-
novirus particle (a) and the recon-
struction of the adenovirus particle 
surface (b) from many randomly 
oriented transmission images.

Figure 13.57 Diagram (not to scale) 
of paths taken by pressure and 
shear waves from earthquakes, 
which reveal information the 
density along the paths through 
the core and mantle, and the 
location of discontinuities.
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viscous mantle is floating on a liquid core, and it is 
the relatively fast motion of the latter that produces 
the earth’s magnetic field, the study of this interface is 
important in understanding the earth’s dynamics.

Global tomographic reconstruction is generally insen-
sitive to the small details of structure such as faults, 
but another ongoing program to perform high-resolu-
tion tomography under the state of California (where 
there are many faults of more than casual interest to 
surface-dwelling humans) employs an array of high-
sensitivity seismographs and uses the very frequent 
minor earthquakes there to map out the faults using 
the reflections that they produce.

High-resolution tomography

Medical tomography has a typical resolution of about 
1 mm, which is adequate for its purpose, and radiolo-
gists generally feel comfortable with a series of planar section images in standardized orienta-
tions in which they have been trained to recognize normal and abnormal features. But there 
is also interest in applying true three-dimensional tomographic imaging to study the micro-
structure of various materials, including metals, ceramics, composites, and polymers, as well 
as larger industrial components. Some of the structural features cannot be determined from 
conventional two-dimensional microscopy of cross-section surfaces. This includes determin-
ing the number of particles of arbitrary or variable shape in a volume and the topology of 
networks or pore structures, which control the permeability of materials to fluids (including, 
for instance, the flow of oil through porous rock strata).

This information can only be determined by having a three-dimensional data set, with ade-
quate resolution, and ideally with cubic voxels. Resolution of better than 1 µm is achieved 
using a synchrotron as a very bright point source of X-rays. Similar resolution is possible using 
more readily available sources such as microfocus X-ray tubes. Filtering such sources to pro-
duce element-specific imaging is also possible, as illustrated above.

Cone-beam geometry is well suited to this type of microstructural imaging, since it provides 
magnification of the structure (Johnson et al., 1986; Russ, 1988; Kinney et al., 1989, 1990; 
Deckman, 1989). Figure 13.59 shows this schematically. The magnification is strictly geo-
metric, since X-rays are not refracted by lenses, but can amount to as much as 100:1. The 
projected images can be collected using conventional solid state detectors, after conversion 
to visible light by a phosphor or channel plate and suitable intensification. Since the inten-
sity of conventional small-spot X-ray sources is very low, the use of high-brightness sources 
such as are available at a synchrotron is particularly desirable for high-resolution imaging. 
So is image averaging, which may be done by using the same cooled CCD cameras used for 
astronomical imaging.

Three-dimensional imaging requires many voxels, and the reconstruction process is com-
puter intensive. The time required to perform the reconstruction is still usually shorter 
than that required to collect the various projection images. These images are generally 
photon limited, with considerable noise affecting the reconstruction, as indicated above. 
In order to collect reasonable-quality projections from a finite intensity source, the number 

Figure 13.58 Computed tomogram of the 
mantle, showing rock densities (light 
shades are hot, light rocks which are 
rising, and conversely).
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of view angles is limited. The views should 
be ideally arranged to cover the polar angles 
optimally in three-dimensional space. This 
arrangement of course places demands on 
the quality of the mechanism used to per-
form the rotations and tilts, because the cen-
ter of rotation must be constant and located 
within a few micrometers to preserve the 
image quality as shown above. Helical scan-
ning is usually easier to accomplish and 
more commonly used.

The presentation of three-dimensional infor-
mation requires extensive use of computer 
graphics methods, as shown in Chapter 14. 
Figure 13.60 shows a set of planes of voxels 

from a 3D tomographic reconstruction of a porous alumina ceramic. The individual particles 
are approximately 100 µm diameter spheres that fill about 60% of the volume of the sample. 
The voxels are 10 µm cubes. Figure 13.61 shows one of the projection views through this 
specimen, a two-dimensional image in which the spherical particles overlap along the lines 
of sight and are partially transparent. A three-dimensional presentation of this data is shown 
in Figure 13.62.

Since the first edition of this book (1990) showed these examples from an experimental setup, 
technology has progressed and several commercial implementations of such instruments have 
become available (Wang & Vannier, 2001; Chappard et al., 2005). Figure 13.63 shows an image 
of wood in which the resolution is comparable to light microscopy. A wide range of applica-
tions have benefited from this technology, including examination of microelectronic devices, 
materials, and more, creating a 3D microscope with sub-micron resolution. Reconstructions 
of 1000 slices of 1000 × 1000 voxels that in 1990 required a Cray supercomputer are now rou-
tinely performed on a desktop computer. Figure 13.64 shows a few additional examples of 
the types of samples and presentations encountered.

The overwhelming majority of applications for the various tomographic imaging methods 
produce visualizations, either as a set of 2D slices or 3D renderings (as shown in Chapter 14), 
for human examination and interpretation. Some quantitative measurement procedures are 
carried out (Hanke, 2003; Rangayyan, 2005; Leonard et al., 2007) but in general the stereo-
logical methods described in Chapter 9 are more efficient for obtaining numeric values that 
characterize the metric properties of 3D structures.

Figure 13.59 Diagram of a cone-beam imaging 
system. The projection image magnification is 
the ratio (b/a). The attainable resolution is lim-
ited by the spot size of the X-ray source and pos-
sibly by the spatial resolution of the detector.
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Figure 13.60 Twenty individual planes of reconstructed voxels showing a sintered alumina ceramic 
consisting of 100 µm diameter spheres.
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Figure 13.61 A single 2D cone beam projection set 
through the structure shown in Figure 13.60.

Figure 13.62 Three-dimensional presentation of 
the data from Figure 13.60, stretched in the 
vertical direction.

Figure 13.63 Microtomographic images showing three othogonal slices through a woody stem (images 
courtesy of Skyscan, Aartselaar, Belgium).
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(a)

  
(c)

               (b)

Figure 13.64 Examples of microtomographic imaging: (a) three orthogonal slices through a coffee bean; 
(b) projected image of a foraminifera with reconstructed transverse slices at the positions marked; 
(c) 3D visualization of the vasculature in a mouse lung, (images courtesy of Skyscan, Aartselaar, 
Belgium).
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14
3D Visualization

Sources of 3D data

Three-dimensional imaging has become more accessible with the continued development 
of instrumentation for generating 3D image data (tomographic equipment of various 
kinds, confocal microscopes, etc.) and more complete and versatile software for increas-

ingly powerful computers. Just as the pixel is the unit of brightness measurement for a two-
dimensional image, the voxel (volume element, the three-dimensional analog of the pixel or 
picture element) is the unit for three-dimensional imaging. And just as processing and analysis 
in 2D are much simpler if the pixels are square, so the use of cubic voxels is preferred for 
three dimensions, although it is not as often achieved.

There are several basic approaches to volume imaging. Three-dimensional imaging by tomo-
graphic reconstruction is described in Chapter 13. This is the best method for measuring 
the density and in some cases the composition of solid specimens. It can produce a set of 
cubic voxels, although that is not the only or even the most common way that tomography is 
presently used. Most medical and industrial applications produce a series of two-dimensional 
sections, which are spaced farther apart or represent a greater thickness than the lateral reso-
lution within the plane (Baba et al., 1984, 1988; Briarty & Jenkins, 1984; Johnson & Capowski, 
1985; Kriete, 1992).

As covered in the preceding chapter, tomography can be performed using a variety of different 
signals, including seismic waves, ultrasound, magnetic resonance, conventional X-rays, gamma 
rays, neutron beams, and electron microscopy, as well as other even less familiar methods. 
The resolution may vary from kilometers (seismic tomography), to centimeters (most conven-
tional medical scans), millimeters (typical industrial applications), micrometers (microfocus 
X-ray or synchrotron sources), and even nanometers (electron microscope reconstructions of 
viruses and atomic lattices). The same basic presentation tools are available for visualizing the 
resulting data regardless of the imaging modality or the dimensional scale.

An important distinction for all of the 3D methods discussed here is whether the data set is 
planes of pixels or an array of true voxels. As shown in Chapter 13, it is possible to set up 
an array of cubic voxels, collect projection data from a series of views in three dimensions, 
and solve (either algebraically, by filtered backprojection, or by inverse Fourier transforms) 
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for the density of each voxel. However, the most common way to perform tomography is to 
define one plane at a time as an array of voxels, collect a series of linear views, solve for the 
two-dimensional array of densities in that slice, and then proceed to the next plane. Each 
plane has some depth associated with it, because of the finite resolution of the technique, 
but the solutions are based on a two-dimensional model. When used in this way, tomogra-
phy shares many similarities (and problems) with other essentially two-dimensional imag-
ing methods that are collectively defined as serial imaging or serial section techniques.

A radiologist viewing an array of such images is expected to combine them in his or her 
mind to “see” the three-dimensional structures present. (This process is aided enormously 
by the fact that the radiologist already knows what the structure is and is generally looking 
for things that differ from the familiar, particularly in a few characteristic ways that identify 
disease or injury.) An increasing percentage of the current-generation medical systems use the 
techniques shown in this chapter to present three-dimensional views directly. In industrial 
tomography, the greater diversity of structure (and correspondingly lesser ability to predict 
what is expected) and the greater amount of time available for study and interpretation have 
encouraged the use of computer graphics. This chapter emphasizes methods that use a series 
of parallel two-dimensional images presented in combination to show three-dimensional 
structure, but the same algorithms can be applied to three-dimensional voxel arrays.

Rendered visualizations of three-dimensional (3D) structure can be quite dramatic in their 
appearance and are often used to communicate the important details of the structure. 
Animations in which the presentations rotate (Figure 14.1), or dynamically change trans-
parency, etc., are even more powerful tools for this purpose, although they cannot be well 
represented in printed documents. Most software and computer systems that generate these 
images are not fast enough to do so in real time, although some workstations do offer inter-
active rotational capability. Typically the final graphics or animations are produced after a 
human observer has detected the important structural information and decided how it can be 
effectively presented. So the graphics become primarily a means to communicate the results 
of an investigation rather than a research or diagnostic tool.

In the most common approach to 3D imaging, a series of images is obtained by dissecting 
the sample into a series of planar sections, which are then piled up as a stack of voxels. 
Sometimes the sectioning is physical. Blocks of embedded biological materials, textiles, and 
even some metals can be sliced with a microtome and each slice imaged (just as individual 

 

Figure 14.1 Selected still frames from an 
animation in which a reconstructed 
view of one-half of a brain is continu-
ously rotated (image courtesy of Mark 
Dow, Univ. of Oregon).
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slices are normally viewed). Collecting and aligning the images produces a three-dimensional 
data set in which the voxels are typically very elongated in the “z” direction because the slices 
are much thicker or more widely spaced than the lateral resolution within each slice.

At the other extreme, the secondary ion mass spectrometer uses an incident ion beam to 
remove one layer of atoms at a time from the sample surface. These pass through a mass 
spectrometer to select atoms from a single element, which is then amplified and imaged on 
a fluorescent screen or recorded by a camera. Collecting a series of images from many ele-
ments can produce a complete three-dimensional map of the sample. One difference from the 
imaging of slices is that there is no alignment problem, because the sample block is held in 
place as the surface layers are removed. On the other hand, the erosion rate through different 
structures can vary so that the surface does not remain planar, and this relief or differential 
erosion is very difficult to account for. In this type of instrument, the voxel depth can be very 
small (essentially atomic dimensions) while the lateral resolution is many times larger.

Serial sections

Most physical sectioning approaches are similar to one or the other of these examples. They 
are known collectively as serial section methods. Although this applies equally well to many 
different situations, including, for example, the sequential removal of material from an archae-
ological site, the name serial section comes from the use of light microscopy imaging of bio-
logical tissue, in which blocks of tissue embedded in resin are cut using a microtome into 
a series of individual slices. Collecting these slices for viewing in the microscope enables 
researchers to assemble a set of photographs which can then be used to reconstruct the 3D 
structure. A variety of commercial and free (Fiala, 2005) software tools are available to assem-
ble the images and generate the graphics.

The serial section technique illustrates most of the problems that may be encountered with any 
3D imaging method based on a series of individual slices. If the surface revealed by removing 
each slice is imaged, there is minimal distortion or difficulty in aligning the sequential images. 
However, if the slices are imaged separately, the individual images must first be aligned. The 
microtomed slices are collected on slides or grids and viewed with varying rotational orienta-
tion. So, even if the same structures can be located in the different sections (not always an 
easy task, given that some variation in structure with depth must be present or there would 
be no incentive to do this kind of work), the pictures do not line up.

Using the details of structure visible in each section provides only a coarse guide to align-
ment. The automatic methods generally seek to minimize the mismatch between sections 
either by aligning the centroids of features in the planes so that the sum of squares of dis-
tances is minimized, or by overlaying binary images from the two sections and shifting or 
rotating to minimize the area resulting from combining them with an Ex-OR (exclusive OR) 
operation, introduced in Chapter 8. This procedure is illustrated in Figure 14.2. When gray 
scale values are present in the image, cross-correlation can be used, as explained in Chapter 
6. Unfortunately, neither of these methods is easy to implement in the general case when 
sections may be shifted in X and Y, may be stretched or compressed causing local distortion, 
and are in general also rotated by large and arbitrary angles. Solving for the “best alignment” 
is difficult and must usually proceed iteratively and hence slowly (Brown, 1992; Averbuch & 
Keller, 2002).

Furthermore, there is no reason to expect the optimum point reached by these algorithms to 
really represent the true alignment. As shown in Figures 14.3 and 14.4, shifting or rotating 
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each image to visually align the structures in one 
section with the next can completely alter the recon-
structed 3D structure. It is generally assumed that, 
given enough detail present in the images, some 
kind of average alignment can avoid these major 
errors. However, it is far from certain that a best 
visual alignment is the correct one, nor that auto-
mated methods that overlap sequential images pro-
duce the proper alignment.

One approach that improves on the use of image 
detail for alignment is incorporating fiducial marks 
before sectioning. These can take the form of holes 
drilled by a laser, threads or fibers placed in the 
resin before it hardens, or grooves machined down 
the edges of the block, for example. For some 

opaque materials that are processed by imaging a surface and then polishing down to reveal 
another surface, surface indentations or scratches can be used for alignment. With several 
fiducial marks that can reasonably be expected to maintain their shape from section to section 
and continue in some known direction through the stack of images, improved alignment is 
possible. Placing and finding fiducial marks in the close vicinity of the structures of interest 
is often difficult. In practice, if the sections are not contiguous there may still be difficulties, 
and alignment errors may propagate through the stack of images. Distortions in the sections 
may be produced by cutting. These create additional difficulties, particularly if they are not 
uniform, but vary from location to location.

Most fiducial marks are large enough to cover several pixels in each image. As shown in 
Chapter 10, this size allows locating the centroid with the accuracy of a fraction of one pixel. 
Once the alignment points are identified (either from fiducial marks or internal image detail), 
the rotation and translation of one image to line up with the next is performed, as shown in 
Chapter 4. Resampling of the pixel array and interpolation to prevent aliasing produce a new 
image. This process takes some computational time, but this is small in comparison to the 
difficulty of obtaining the images in the first place.

Relative position

Normalized
area when the
two regions are
combined with
a Boolean Ex-Or

Two sequential
serial sections to
be aligned

"Best"
alignment

 

Figure 14.2 Alignment of serial sections 
for “best fit” minimizes the mismatched 
area of features, measured by an Ex-OR 
function, as a function of translation 
and rotation.

Figure 14.3 Alignment of serial sections with 
translation: sections through an inclined 
circular cylinder may be misconstrued 
as a vertical elliptical cylinder.
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Unfortunately, for classic serial sectioning the result of this rotation and translation is still 
not a true representation of the original 3D structure. The act of sectioning using a micro-
tome generally produces some distortion in the block. This 5–20% compression in one 
direction is usually assumed to be nearly the same for all sections (since they are cut in 
the same direction and generally have only small differences in structure that would alter 
their mechanical properties). If the fiducial marks have known absolute coordinates, then 
stretching of the images to correct for the distortion is possible. It is usually assumed that 
the entire section is compressed uniformly, although for some samples this may not be 
true.

If the only purpose of the 3D reconstruction is to view, rather than measure, the structure, the 
distortion may not be considered important. And in some situations it may be possible to use 
internal information to estimate the distortion. For example, if there is no reason to expect 
cells or cell nuclei to be elongated in any preferred direction in the tissue, then measurement 
of the dimensions of many cells or nuclei may be used to determine an average amount of 
compression. Obviously, this approach includes some assumptions and can only be used in 
particular circumstances.

Another difficulty with serial sections is calibration of dimension in the depth direction. The 
thickness of the individual sections is only known approximately (for example, by judging 
the color of the light produced by interference from the top and bottom surfaces, or based on 
the mechanical feed rate of the microtome but usually ignoring any compliance in the mate-
rial being cut). It may vary from section to section, and even from place to place within the 
section, depending on the local hardness of the material being cut. Constructing an accurate 
depth scale is difficult, and dimensions in the depth direction may be much less accurate than 
those measured within one section plane.

If only some sections are used, such as every second or fifth (in order to reduce the amount 
of work required to image them and then align the images), then this error increases. It also 
becomes difficult to follow structures from one image to the next with confidence. However, this 
kind of skipping is often necessary to reduce the amount of data that must be processed.

Using only a fraction of the sections is particularly common when ultra-thin sections are cut 
for viewing in an electron microscope instead of the light microscope. As the sections become 
thinner, they increase in number, and are more prone to distortion. Some may be lost (for 

  
(a)              (b)              (c)

Figure 14.4 Alignment of serial sections with rotation: (a) actual outlines in 3D serial section stack; 
(b) surface modeling applied to outlines, showing twisted structure; (c) erroneous result with twist 
removed when outlines are aligned to each other.
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instance due to folding) or intentionally skipped. Portions of each section are obscured by the 
support grid, which also prevents some from being used. One consequence is that the spac-
ing of the images that are acquired may not be uniform. At higher magnification, the fiducial 
marks become larger, less precisely defined, and more widely separated so that they may not 
be in close proximity to the structure of interest.

Figure 14.5 shows a few examples from a series of TEM images of tissue in which the 3D con-
figuration of the membranes (dark stained lines) is of interest. The details of the edges of cells 
and organelles have been used to approximately align pairs of sections through the stack, but 
different details must be used for different pairs, as there is no continuity of detail through the 
entire stack. The membranes can be isolated in these images by thresholding (Figure 14.6), 
but the sections are too far apart to link the lines together to reconstruct the 3D shape of the 
surface. This problem is common with conventional serial section images.

For imaging of opaque materials by reflected light, serial sectioning may be accomplished by 
removing layers of materials sequentially by physical polishing, or by erosion using focused 
ion beams. If this is done with the sample fixed in position for imaging, locating the same 
position and monitoring the depth of polishing are simplified. If not, then surface indenta-
tions or laser ablation pits can serve as fiduciary marks for alignment. In archaeological exca-
vation the fiduciary marks may be a network of strings and a transit, and the removal tool may 
be a trowel or shovel. Some mining and quarrying examples may use a surveyor’s transit for 
alignment and a bulldozer for removal, but the principles remain the same regardless of scale. 
Sequential removal of material from a surface is discussed below.

  

Figure 14.5 Four serial section images from a stack (courtesy of 
Dr. C. D. Bucana, Univ. of Texas M. D. Anderson Cancer Center, 
Houston, TX), which have already been rotated for alignment. 
The membranes at the top of the images are thresholded and 
displayed for the entire stack of images in Figure 14.6.

        (a)

   

(b)              (c)              (d)



7133D Visualization
© 2011 by Taylor & Francis Group, LLC

In most of these surface imaging methods, the sequential 2D images represent the sample at 
planes that are separated in the z (depth) direction. The intervening material that has been 
removed must be inferred or interpolated from the planes. In these cases, the pixel value is 
not an average over the distance. Interpolation between sections that are too far apart (in 
terms of the scale of the structure) can lead to some serious errors and misinterpretation.

For the serial sectioning method in which slices are viewed in transmission the pixel value is a 
volume average through the thickness and may be treated as a voxel, which is easier to inter-
pret. In most cases, the voxel value is a measure of density of the material. Depending on what 
radiation is used (visible light, X-rays, electrons, neutrons, sound, and so forth), the value may 
represent the local concentration of some element or compound, including ones introduced as 
tracers or markers. In some cases, emitted radiation from voxels also gives concentration infor-
mation (examples include fluorescence light microscopy and positron emission tomography).

Optical sectioning

Physical sectioning on any scale is a difficult technique that destroys the sample. Controlling 
and measuring the section thickness and aligning the sections or at least locating the same 
position on the sample can become a major source of error. In some cases, it is possible to 
image sections through a sample without performing physical sectioning. The confocal scan-
ning light microscope (CSLM) offers one way to accomplish this (tomographic reconstruction 
of slice images, described in the preceding chapter, is another). Depth information can also be 
obtained in some cases by interpreting the phase shift introduced by objects viewed in light 
microscopy, as well as by neutron or X-ray transmission imaging (Barty et al., 2000).

The normal operation of the transmission light microscope does not lend itself to optical sec-
tioning. The depth of field of high numerical aperture optics is small (a few times the lateral 
resolution), so that only a small “slice” of the image is sharply focused. However, light from 
locations above and below the plane of focus is also transmitted to the image, out of focus, 
and this both blurs the image and includes information from an extended distance in the z 
direction. In some cases, deconvolution of the three-dimensional point spread function can 
be accomplished (as shown in Chapter 6), but in many cases this is of limited value since 
the blurring varies from one location to another. An example shown below (Figure 14.38) 

Figure 14.6 Membranes from the sequen-
tial images illustrated in Figure 14.5, 
showing the changes from section to 
section. Because of the separation dis-
tance between the sections, these varia-
tions are too great to model the shape of 
the surfaces in 3D.
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illustrates processing images to remove some of the artifacts that result from the passage of 
light through the sample above and below the plane of focus.

The confocal microscope eliminates this extraneous light and so produces useful optical sec-
tion images without the need for processing. This is possible because the sample is imaged 
one point at a time (hence the presence of “scanning” in the name). The principle of the confo-
cal microscope is that light from a point source (often a laser) is focused on a single point in 
the specimen and collected by an identical set of optics, reaching a pinhole detector. Any por-
tion of the specimen away from the focal point, and particularly out of the focal plane, does 
not return light to the pinhole to interfere with the formation of the image. Scanning the beam 
with respect to the specimen (by moving the light source or the specimen, or using scanning 
mirrors or prisms in the optical path) builds up a complete image of the focal plane.

If the numerical aperture of the lenses is high, the depth of field of this microscope is very 
small, although still greater than the lateral resolution within individual image planes. Much 
more important, the portion of the specimen that is away from the focal plane contributes 
very little to the image. This makes it possible to image a plane within a bulk specimen, even 
one that would ordinarily be considered translucent because of light scattering. This method 
of isolating a single plane within a bulk sample, called optical sectioning, works because 
of the confocal light microscope’s shallow depth of field and a high rejection of stray light. 
Translating the specimen in the z direction and collecting a series of images make it possible 
to build up a three-dimensional data set for viewing.

Several imaging modalities are possible with the confocal light microscope. The most com-
mon are reflected light, in which the light reflected from the sample returns through the same 
objective lens as used to focus the incident light and is then diverted by a mirror to a detector, 
and fluorescence in which light is emitted from points within the specimen and is recorded 
using the same geometry. It is less common to use the microscope to view transmitted light 
images (Figure 14.07 shows an example of a transmitted light focal plane section).

Images of focal plane sections can be used in 3D imaging for different types of specimens. 
The characteristic of reflected-light confocal images is that the intensity of light reflected to the 
detector drops off very rapidly as points are shifted above or below the focal plane. Therefore, 
for structures in a transparent medium, only the surfaces reflect light. For any single image 
plane, only the portion of the field of view where some structure passes through the plane 
appears bright, and the rest of the image is dark. This characteristic permits straightforward 
reconstruction algorithms.

In emission or fluorescence imaging, the wavelength of the incident light is able to cause exci-
tation of a dye or other fluorescing probe introduced to the specimen. The lower-energy (lon-
ger wavelength) light emitted by this probe is separated from the incident light, for instance 
by a dichroic mirror, and used to form an image in which the location of the probe or dye 
appears bright (Figure 8.29 in Chapter 8 shows an example). Building up a series of images 
in depth allows the structure labeled by the probe to be reconstructed.

The principal advantages of optical sectioning are speed and ease of use, avoiding physical 
distortion of the specimen due to cutting, preserving alignment of images from the various 
imaging planes, and directly controlling the z position of the slices. The depth resolution, 
while poorer than the lateral resolution in each plane by about a factor of two to three, is still 
useful for many applications. However, this difference in resolution does raise some difficul-
ties for 3D image processing, even if the distance between planes is controlled so that the 
stored voxels are cubic.
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By measuring or modeling the 3D shape of the microscope’s point spread function, it is 
possible by deconvolution to improve the resolution of the confocal light microscope. The 
method is identical to that shown in Chapter 6 for 2D images, but carried out with a three-
dimensional Fourier transform. (The Fourier transform is separable, meaning that it can be 
performed individually and sequentially along rows and columns of pixels or voxels.)

Sequential removal

Many materials are opaque and cannot be imaged by optical sectioning. Metals, composites, 
and ceramics are usually examined in the reflected light microscope. However, it is still pos-
sible to collect a series of depth images for 3D reconstruction by sequential polishing of such 
materials, as mentioned above.

The means of removal of material from the surface depends strongly on the hardness of the 
material. For some soft metals, polymers, and textiles, the microtome can be used just as for 
a block of biological material, except that instead of examining the slice of material removed, 
the surface left behind is imaged. This approach avoids most problems of alignment and dis-
tortion, especially if the cutting can be done in situ without removing the specimen from the 
viewing position in the microscope. It is still difficult to determine precisely the thickness of 
material removed in each cut and to assure its uniformity, but it is generally estimated from 
the mechanical settings on the device (ignoring any permanent or temporary distortion in the 
material).

  
(a)                    (b)

  

Figure 14.7 Images of a paramecium 
swimming in a droplet of water:

  (a)  conventional transmission light 
microscope;

  (b)  transmission confocal microscope 
(only the portion in the focal plane 
is seen);

  (c)  extended focus image produced by 
merging all of the planes from the 
confocal series.

            (c)
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For harder materials, the grinding or polishing operations used to produce conventional sec-
tions for 2D images can be used. Such operations generally require removing and replacing 
the specimen, so fiducial marks are needed to locate the same region. Probably the most com-
mon approach to this marking is the use of hardness indentations. Several pyramid-shaped 
impressions are made in the surface of the specimen so that after additional abrasion or pol-
ishing, the deepest parts of the indentations are still visible. These can be aligned with the 
marks in the original image. In addition, the reduction in size of the impression, whose shape 
is known, gives a measure of the depth of polish and hence of the spacing between the two 
images. With several such indentations, the overall uniformity of polish can also be judged, 
although local variations due to the hardness of particular phases may be present.

For harder materials or ones in which conventional polishing might cause surface damage, 
other methods may be used. Electrolytic or chemical etching is generally difficult to control 
and little used. Ion beam erosion is slow, but is already in use in many laboratories for the cut-
ting and thinning of transmission electron microscope specimens and may be utilized for this 
purpose. Controlling the erosion to obtain uniformity and avoid surface roughening presents 
challenges for many specimens.

In situ ion beam erosion is used in the scanning electron microscope and scanning Auger 
microscope, for instance to allow the removal of surface contamination. Focused ion beams 
(FIB) are also used to remove material from surfaces or cut slices in the z direction to exam-
ine microstructures. This capability can be used to produce a series of images in depth. The 
time involved in performing the erosion or slicing may be long, and the uniformity of eroding 
through complex structures (the most interesting kind for imaging) may be poor.

FIB machining has been used extensively for cutting through microelectronic devices to mea-
sure critical thicknesses and dimensions with the SEM. In those cases, the geometry of the cut 
is controlled according to the known geometry of the specimen, often producing a vertical cut 
through a structure on which the important dimensions are directly revealed. Of course, it is 
also possible to use FIB machining to produce sections on which stereological measurements 
can be made, or to use a series of sections as a serial sectioning device to directly reveal three-
dimensional structure. This has been done to a limited degree for measurements of metal and 
ceramic microstructures (Holzer et al., 2004, 2006, 2007). A stack of images of the surfaces 
revealed by this type of machining can be used for 3D reconstruction, including measurement 
of the sizes and topology of structural elements. Figure 14.8 shows an example in which the 
particles are measured and color coded according to size, and the particle-particle interfaces 
are also color coded (Holzer, 2006). FIB has also been used for sectioning of some tissue 
specimens. However, the primary use of these images has been for visual presentation rather 
than measurement.

The ion microscope or secondary ion mass spectrometer (SIMS) erodes the specimen surface 
automatically as part of its imaging process, using a beam of heavy ions to erode a layer of 
atoms from the specimen surface. The secondary ions are then separated according to ele-
ment in a mass spectrometer and recorded, for example using a channel plate multiplier and 
digital camera, to form an image of one plane in the specimen for one element at a time. The 
depth of erosion is usually calibrated for these instruments by measuring the signal profile 
of a known standard, such as may be produced by the same methods used to produce mod-
ern microelectronics.

The rate of surface removal is highly controllable (if somewhat slow) and capable of essen-
tially atomic resolution in depth. The lateral resolution, by contrast, is about the same as 
in the conventional light microscope, so in this case instead of having voxels which are 
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high in resolution in the plane but poorer in the depth direction, the situation is reversed. 
Furthermore, the erosion rate for ion beam bombardment in the ion microscope or SIMS var-
ies from place to place in the specimen as a function of composition, structure, or even crys-
tallographic orientation. This variation does not necessarily show up in the reconstruction, 
since each set of data is assumed to represent a plane, but can cause significant distortion 
in the final interpretation. In principle, stretching of the data in 3D can be performed just as 
images can be corrected for deformation in 2D. However, without fiducial marks or accurate 
quantitative data on local erosion rates, it is hard to accomplish this with real data.

The ability to image many different elements with the SIMS creates a rich data set for 3D dis-
play. A color 2D image has three channels (as described in Chapter 1), but the SIMS data may 
have practically any number, representing elements, isotopes, and molecular fragments. The 
ability of the instrument to detect trace levels (typically ppm or better) of these means that 
even for relatively simple specimens the multiband data present a challenge to store, display, 
and interpret.

Another type of microscope that removes layers of atoms as it images them is the atom probe 
ion microscope. In this instrument, a strong electrical field between a sharply curved sample 
tip and a display screen causes atoms to be desorbed from the surface and accelerated toward 
the screen where they are imaged. The screen may include an electron channel plate to 
amplify the signal so that individual atoms can be seen or may be used as a time-of-flight mass 
spectrometer with pulsed application of the high voltage so that the different atom species can 
be distinguished. With any of the instrument variations, the result is a highly magnified image 
of atoms from the sample, showing atom arrangements in 3D as layer after layer is removed. 
Examples of images from many of these types of instruments are shown in Chapter 1.

Stereo measurement

There is another way to see three-dimensional structures, the same way that humans perceive 
depth in some real-world situations. Having two eyes which face forward so that their fields 
of view overlap permits us to use stereoscopic vision to judge the relative distance to objects. 
As Chapter 2 shows, humans do this point by point, by moving the eyes in their sockets to 

Figure 14.8 A stack of serial section images using FIB surface machining and the reconstruction using 
different colors for particles of different sizes and the various interfaces present (images courtesy of 
L. Holzer, Swiss Federal Laboratories for Materials Testing and Research).
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bring each subject to the fovea, the portion of the retina with the densest packing of cones. 
The muscles in turn tell the brain what motion is needed to achieve convergence, indicating 
whether one object is closer or farther than another. Stereo vision is also used below as a 
means to present 3D data to a human viewer.

It is wrong to think that all human depth perception relies on stereoscopy. In fact, much of 
our judgment about the 3D world around us comes from other cues such as shading, relative 
size, precedence, atmospheric effects (e.g., fog or haze), and motion flow (nearer objects move 
more in the visual field as the head is moved) that work just fine with one eye and are used 
in some computer-based measurement methods (Roberts, 1965; Horn, 1970, 1975; Woodham, 
1978; Carlsen, 1985; Pentland, 1986). But stereo images can be used to determine depth infor-
mation to put information into a 3D computer database.

The light microscope has a rather shallow depth of field, so that looking at a specimen 
with deep relief is not very satisfactory except at low magnifications. However, the electron 
microscope has lenses with very small aperture angles and hence has very great depth of 
field. Stereoscopy is commonly used with the scanning electron microscope (SEM) to produce 
images of rough surfaces. Tilting the specimen, or equivalently deflecting the scanning beam, 
can produce a pair of images from different points of view that form a stereo pair. Looking at 
one picture with each eye tricks the brain into perceiving the original rough surface.

Measuring the relief of surfaces from such images is the same in principle as using stereo pair 
images taken from aircraft or satellites to measure the elevation of topographic features on the 
earth or another planet. The rich detail in the satellite photos makes it easier to find match-
ing points practically anywhere in the images, but by the same token requires more match-
ing points to define the surface than the simpler geometry of typical specimens observed in 
the SEM. The mathematical relationship between the measured parallax (the displacement of 
points in the left and right eye image) and the relative elevation of the points on the surface 
is presented in Chapter 1.

Automatic matching of points from stereo pairs is a difficult task for computer-based image 
analysis (Marr & Poggio, 1976; Grimson, 1981; Medioni & Nevatia, 1985; Kayaalp & Jain, 1987, 
Smith & Elstrom, 2001). It is usually performed by using the pattern of brightness values in 
one image, for instance the left one, as a template to perform a cross-correlation search for 
the most nearly identical pattern in the right image. The area of search is restricted to a hori-
zontal band in the second image covering the possible displacement, which depends on the 
angle between the two views and the maximum roughness of the surface. Some points are 
not matched by this process because they may not be visible in both images. Other points 
match poorly because the local pattern of brightness values in the pixels includes some noise. 
Specular reflections, which may move on the surface as the point of view changes, also inter-
fere with matching of locations.

Matching many points produces a new image in which each pixel can be assigned a value 
based on the lateral shift and hence represents the elevation of the surface. This range image 
may contain many false matches, but operations such as a median filter usually do a good 
job of removing the outlier points to produce an overall range image of the surface. In the 
example of Figure 14.9, cross-correlation matching of every point in the left eye view with 
points in the right produces a disparity map (the horizontal distance between the location 
of the matched points) that contains false matches, which are filled in by a median filter as 
shown. The resulting elevation data can be used for measurement of points or line profiles, or 
used to reconstruct surface images, as illustrated. This use of surface range data is discussed 
further in Chapter 15.
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A second approach to matching stereo pairs is based on the realization that many of the points 
in each image do not match well because they are not the “interesting” points where surfaces 
meet or other discontinuities are present. This approach is presumably related to human 
vision, which spends most of its time concentrating on only the few points in each scene 
where discontinuities are found. Locating these interesting points based on some local prop-
erty, such as the variance, entropy, or result of a high pass filter, produces a comparatively 
short list of points to be matched between the two images (Moravec, 1977; Quam & Hannah, 
1974). A typical case may have only thousands of points, instead of the million or so pixels in 
the original images.

Somewhat better selection of points is obtained by fitting a cubic polynomial to the pixel 
brightness values in each neighborhood. Then if the polynomial is written as
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(a)              (b)              (c)

     

(d)              (e)              (f)

  

Figure 14.9 Elevation measurement using stereo pair 
images:

  (a, b) left and right eye views of a microfossil;
  (c) raw cross-correlation disparity values;
  (d) median filter applied to (c);
  (e)  surface height values measured from a mean plane, 

displayed as gray scale values;
  (f)  rendered perspective-corrected surface model using 

the values in (e);
  (g)  the same surface reconstruction using elevation val-

ues from (e) with surface brightness values from (a).    
(g)
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the Zuniga-Haralick operator (Zuniga & Haralick, 1983; Haralick & Shapiro, 1992) used to 
detect corner points is
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The points on the resulting short list are matched as above, by correlation of their neighbor-
hood brightness patterns. Additionally, for most surfaces (i.e., simply connected ones that do 
not have loops or bridges) the order of points from top to bottom and left to right is preserved. 
This, and the limits on possible parallax for a given pair of images, reduce the typical candi-
date list for matching to a small number (often ten or fewer), and the result produces a list of 
surface points and their elevations. It is then assumed that the surface between these points 
is well behaved and can be treated as consisting of planar facets or simple spline patches, 
which are constructed by linking the points in a Delaunay tessellation. If the facets are small 
enough, it is possible to generate a contour map of the surface, as shown in Figure 14.10, by 
interpolating straight line segments or spline curves between points along the edges of each 
planar facet. A complete display of elevation, called a range image, can be produced by inter-
polation, as shown in Figure 14.11.

The transmission electron microscope (TEM) also has a very large depth of field. In most 
cases, the specimens observed in the TEM are very thin (in order to permit electron penetra-
tion), and the optical depth of field is unimportant. However, with high voltage microscopes, 
comparatively thick samples (of the order of micrometers) may be imaged. This thickness is 
enough to contain a considerable amount of three-dimensional structure at the resolution of 
the TEM (of the order of a few nanometers). By the same approach of tilting the specimen to 
acquire stereo pair images, it is possible to obtain information about the depth of points and 
the 3D structure.

Presenting images to the viewer’s eyes showing scenes with objects at different distances, so 
that two pictures acquired from different viewpoints can be fused in the mind and examined 
in depth is not difficult (Chapter 1 shows several examples). The technique seems to undergo a 
resurgence of interest every decade or so, both for still images or movies and perhaps soon for 
television. In many cases these are images of surfaces, not of objects in a transparent volume.

Part of the problem in automatically matching 
points and measuring depth is the presence of 
background detail from the (mostly) transpar-
ent medium surrounding the features of inter-
est. This may dominate the local pixel values 
and make matching impossible. Another source 
of difficulty is that it is no longer possible to 
assume that points maintain their order from 
left to right. In a three-dimensional structure, 
points may change their order as they pass in 
front of or behind each other.

The consequence of these limitations has been 
that only in a few, idealized cases has automatic 
fusion of stereo pair images from the TEM 
been attempted successfully. Simplification of 
the problem using very high contrast markers, 

Figure 14.10 Diagram showing contour lines (iso-
elevation lines) on the triangular facets joining 
an arbitrary arrangement of points whose ele-
vations have been determined by stereoscopy.
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such as small gold particles bound to selected surfaces using 
antibodies, or some other highly selective stain, helps. In this 
case only the markers are considered. There are only a few 
dozens or at most hundreds of these, and like the interesting 
points mentioned above for mapping surfaces, they are easily 
detected (being usually far darker than anything else in the 
image), and only a few can possibly match.

Even with these markers, a human may still be needed to 
identify or edit the matches. Given the matching points in 
the two images, the computer can construct a series of lines 
that represent the surface which the markers define, but 
this surface may be only a small part of the total struc-
ture. Figure 14.12 shows an example of this method using 
human matching of points (Peachey & Heath, 1989). Similar 
methods can be applied to stained networks (Huang et al., 
1994) or the distribution of precipitate particles in materi-
als, for example.

The error in the vertical (height) dimension determined by 
stereoscopy is typically an order of magnitude greater than 

the precision of measurement of the parallax, because the vertical height is proportional to 
the lateral parallax times the cosecant of the small angle between the views. Improving the 
measurement of parallax between features to subpixel accuracy is therefore of considerable 
interest. Such improvement is possible in some cases, particularly when information from 
many pixels can be combined. As shown in Chapter 10, the centroids of features or the loca-
tion of lines can be specified to the accuracy of a fraction of a pixel.

  
(a)              (b)              (c)

 

Figure 14.11 Interpolation of a range image:
  (a)  isolated, randomly located points with measured eleva-

tion (color coded);
  (b) contour lines drawn through the tessellation;
  (c) smooth interpolation between contour lines;
  (d) the constructed surface geometry.

        (d)

Figure 14.12 Example of decorat-
ing a surface with metal par-
ticles (Golgi stain). The network 
determined stereoscopically is 
superimposed on the transmis-
sion electron micrograph.
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3D data sets

The most common way to store 3D data sets is as a series of 2D images. Each single image, 
previously described as an array of pixels, is now understood to have or to represent depth. 
This depth is present either because the plane is truly an average over some depth of the 
sample (as in looking through a thin section) or based on the spacing between that plane and 
the next (as for instance a series of polished planes observed by reflected light). Because of 
the depth associated with the planes, the individual elements are referred to as voxels (volume 
elements) rather than pixels (picture elements), even if they do not fully represent the infor-
mation in the spaces between the planes.

For viewing, processing, and measurement, the voxels are ideally regular and uniformly 
spaced. This goal is best accomplished with a cubic array of voxels, which is easiest to address 
in computer memory, is compatible with processing and measurement operations, and corre-
sponds to the way that some image acquisition devices function. With a cubic voxel array, the 
neighboring voxels are at different distances from the central voxel, depending on whether 
they share a face, edge, or corner. Deciding whether voxels touch and are part of the same 
feature requires a decision to include 6-, 18-, or 26-neighbor connectedness, which is even 
more complicated than the 4- or 8-connectedness of square pixels in a two-dimensional image 
discussed in Chapter 7.

More symmetrical arrangements are theoretically possible in 3D. There are two configura-
tions of points in space, technically called face-centered cubic (FCC) or hexagonal close 
packed (HCP) lattices, that surround each point (or voxel) with 12 equidistant neighbors. 
The advantage of these voxel-stacking arrangements is that processing of images can treat 
each of the neighbors identically and that measurements are less biased as a function of 
direction. A more symmetrical neighborhood with neighbors at uniform distances also 
simplifies processing, including the application of filters and morphological operations. 
But, in order to fill space, the shapes of the voxels in these cases are awkward polyhedra, 
and storing and addressing the voxel array is difficult, as is acquiring images or display-
ing them. Usually the acquired image must be re-sampled by interpolation to obtain voxel 
values in one of these patterns, and a reverse interpolation is needed for display. For most 
purposes, these disadvantages outweigh the theoretical advantages. Cubic arrays are the 
most common three-dimensional arrangement of voxels, just as square arrays of pixels are 
used for most two-dimensional images instead of a theoretically more attractive hexagonal 
pattern.

If the voxels are not cubic because the spacing between planes is different from the resolu-
tion within each plane, it may be possible to adjust things so that they are. The discussion 
that follows assumes that the depth spacing is greater than the spacing within the plane, 
but an analogous situation can be described for the reverse case. The adjustment might be 
done by interpolating additional planes of voxels between those which have been measured. 
Unfortunately, doing this does not help much with image processing operations, since the 
assumption is that all of the neighbors are equal in importance, and with interpolation they 
become redundant.

The alternative approach is to reduce the resolution within the plane by sampling every nth 
pixel, or alternatively by averaging pixels together in blocks, so that a new image is formed 
with cubic voxels. This resolution reduction also reduces the amount of storage required, 
since many fewer voxels remain. Although it seems unnatural to give up resolution, this may 
be done in cases where cubic voxels are required for analysis.
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A variety of different formats are available for storing 3D data sets, either as a stack of indi-
vidual slices or as an array of voxel values with x,y,z indices. Such arrays become very large, 
very fast. A 1024 × 1024 pixel 2D monochrome 8-bit image occupies 1 megabyte of storage, 
using 1 byte per pixel (256 gray values). This is easily handled in the memory of a desktop 
computer. Even with modern digital cameras, a typical color image occupies only a few tens of 
megabytes. But a 1024 × 1024 × 1024 3D image with 2 byte values per voxel occupies 2 giga-
bytes of memory, about the upper limit for practical processing on a desktop machine (since 
many processing operations require two arrays, and many programs keep a copy for possible 
“undo” selection). Larger files present difficulties just in storing or transmitting from place to 
place, let alone processing. Many of the data sets shown in this chapter are smaller arrays cut 
from or sampled from larger ones. The operations shown can be used for larger data sets, 
given time, computer power (speed and memory), or both.

It is instructive to compare this situation to that of computer-aided drafting (CAD). For man-
made objects with comparatively simple geometric surfaces, only a tiny number of point coor-
dinates and dimensions are required to define the entire 3D structure. This kind of boundary 
representation is very compact, but it often takes some time (or specialized display hardware) 
to render a drawing with realistic surfaces from such a data set. For a voxel image, the storage 
requirements are great but information is immediately available for each location, and most 
of the various display images shown in this chapter can be produced very quickly by modest 
computers, provided the data are in memory.

For example, given a series of surfaces defined by boundary representation or a few coordi-
nates, the generation of a display may proceed by first constructing all of the points for one 
plane, calculating the local angles of the plane with respect to the viewer and light source, 
using those to determine a brightness value, and plotting that value on the screen. At the 
same time, another image memory is used to store the actual depth (z value) of the surface at 
each point. After one plane is complete, the next one is similarly drawn except that the depth 
value is compared point by point to the values in the z buffer to determine whether the plane 
is in front of or behind the previous values. Each point is only drawn if it lies in front. This 
procedure permits multiple intersecting planes to be drawn on the screen correctly. (For more 
information on graphic presentation of three-dimensional CAD data, see Foley & Van Dam, 
1984, or Hearn & Baker, 1986.)

Additional logic is needed to clip the edges of the planes to the stored boundaries, to change 
the reflectivity rules used to calculate brightness depending on the surface characteristics, 
and so forth. Standard texts on computer graphics present algorithms for accomplishing these 
tasks and devote considerable space to the relative efficiency of various methods because the 
time involved can be significant. By comparison, looking up the value in a large array, or even 
running through a column in the array to add densities or find the maximum value, is very fast. 
This is particularly true if the array can be held in memory rather than requiring disk access.

The difficulties of aligning sequential slices to produce a 3D data set are described above. In 
many cases, there may be several 3D data sets obtained by different imaging techniques (e.g., 
MRI, CT, PET images of the head) which must be aligned to each other. They also commonly 
have different resolutions and voxel sizes, so that interpolation is needed to adjust them to 
match one another. The situation is similar to the 2D problems encountered in Geographical 
Information Systems (GIS) in which surface maps, images in different wavelengths from differ-
ent satellites, aerial photographs, and other information must be aligned and combined.

The general problem is usually described as one of registering the multiple data sets. The two 
principal techniques, which are complementary, use cross-correlation methods on the entire 
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pixel or voxel array, as shown in Chapter 6, or isolate specific features in the multiple images 
and use them as fiducial marks to perform warping (Brown, 1992; Besl, 1992; van den Elsen 
et al., 1993, 1994, 1995; Reddy & Chatterji, 1996; Frederik et al., 1997; West et al., 1997; Hajnal 
et al., 2001; Modersitzki, 2004; Goshtasby, 2005).

Slicing the data set

Since most 3D image data sets are stored as a series of 2D images, it is easy to access any of 
the individual image planes or slices. Playing the series of slices back in order to create an 
animation or “movie” is often effective at letting the viewer perform the 3D integration, and 
as it recapitulates the way the images may have been acquired (but with a much compressed 
time base), most viewers can understand images presented in this way. A simple user inter-
face need only allow the viewer to vary the speed of the animation, change direction, or 
stop at a chosen slice, for example. This is by far the most common way that 3D data sets 
are examined interactively.

One problem with presenting the original images as slices of the data is that the orientation 
of some features in the three-dimensional structure may not show up very well in the slices. 
It is useful to be able to change the orientation of the slices to look at any plane through the 
data, either in still or animated playback. This change in orientation is easy to do as long as 
the orientation of the slices is parallel to the x, y, or z axes in the data set. If the depth direc-
tion is understood as the z axis, then the x and y axes are the horizontal and vertical edges of 
the individual images. If the data are stored as discrete voxels, then accessing the data to form 
an image on planes parallel to these directions is just a matter of calculating the addresses of 
voxels using offsets to the start of each row and column in the array. This addressing can be 
done at real-time speeds if the data are held in memory, but is somewhat slower if the data 
are stored on a rotating disk drive because the voxels that are adjacent along scan lines in the 
original slice images are stored contiguously on disk and can be read as a group in a single 
pass. However, when a different orientation is required, the voxels must be located at widely 
separated places in the file, and it takes time to access the disk.

Displaying an image in planes parallel to the x, y, and z axes is introduced in Chapter 13. 
Figure 14.13 shows another example of orthogonal slices. The images are magnetic resonance 
images (MRI) of a human head. The views are generally named transaxial (perpendicular to 
the subject’s spine), sagittal (parallel to the spine and to the major axis of symmetry), and 
coronal (parallel to the spine and perpendicular to the “straight ahead” line of sight). Several 
individual sections are shown representing these orientations.

This resectioning with MRI data or other kinds of medical images suffers in quality because 
the spacing of the planes is usually greater than the resolution in the plane, and the result is 
a visible loss of resolution in one direction in the resectioned slices due to interpolation in 
the z direction. The alternative to interpolation is to extend the voxels in space; in most cases, 
this is more distracting to the eye, as shown in Figure 14.14. Interpolation between planes of 
pixels can be done linearly, or using higher order fits to more than two planes, or more than 
just the two pixels immediately above and below. But while interpolation produces a visually 
acceptable image, it can obscure real structure or create apparent structure. Figure 14.15 
shows an example of interpolation which creates an impression of structure that is not actu-
ally present (and hides the real structure).

In several of the figures in this chapter, much greater loss of resolution in the z direction is 
evident when plane images are reconstructed by sampling and interpolation of the original 
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(a) (b) (c)

(d) (e) (f)

Figure 14.13 A few slices from a complete set of magnetic resonance imaging (MRI) head scan data. 
Images (a) through (c) show transaxial sections (3 from a set of 46), images (d) and (e) are coronal 
sections (2 from a set of 42), and (f) is a sagittal section (1 from a set of 30).

(a) (b)

Figure 14.14 Comparison of two vertical slices through the 3D MRI data set from Figure 14.13: (a) 
slices extended vertically; (b) linear interpolation between slices.
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data. In the case of Figure 14.13, the MRI images were obtained with uniform resolution 
in each of the three directions. Many current diagnostic procedures acquire multiple sets of 
scans in different orientations to provide high quality viewing of sections in any of these pri-
mary directions.

Combining several views at once using orthogonal planes adds to the feeling of three dimen-
sionality of the data. Figure 14.16 shows several examples of this using the same MRI head 
data based on plane images obtained in the transaxial direction. The poorer resolution in the 
z direction is evident, but still the overall impression of 3D structure is good. These views can 
also be animated, by moving one (or several) of the planes through the data set while keeping 
the other orthogonal planes fixed to act as a visual reference.

Unfortunately, there is no good way to demonstrate this time-based animation in a print 
medium. Some children’s cartoon books use a “flip” mode with animation printed on a series 
of pages that the viewer can literally flip or riffle through at a fast enough rate to cause flicker-
fusion in the eye and create the visual impression of continuous motion. That form of anima-
tion takes a lot of pages and is really only good for very simple images such as cartoons. It is 
unlikely to appeal to the publishers of books and technical journals. All that can be done here 
is to show a few of the still images from such a sequence and appeal to the reader’s imagina-
tion to supply a necessarily weak impression of the effect of a live animation. There are many 
on-line web sites that show such animations as Quicktime® movies.

 

Figure 14.15 Interpolation in a 3D 
array. In this example, only two 
images of the top and bottom of 
a woven fabric are used. The 
points between the two surfaces 
are linearly interpolated and 
bear no relationship to the actual 
3D structure of the textile.

  
(a)                    (b)

Figure 14.16 Views of the MRI head data from Figure 14.13 along section planes normal to the axes of 
the voxel array. The voxels are taken from the transaxial slices, and so the resolution is poorer in the 
direction normal to the planes than within the planes.



7273D Visualization
© 2011 by Taylor & Francis Group, LLC

In Chapter 2, Figure 2.35 shows a series of images that can be used to show “moving pic-
tures” of this kind (the Muybridge “running horse” sequence). The current trend toward on-
line distribution of technical papers will perhaps offer a medium using time as a third axis 
to substitute for a spatial axis and show 3D structure through motion. The possibilities are 
mentioned below in connection with rotation and other time-based display methods.

Motion, or a sequence of images, is used to show multidimensional data in many cases. Rapidly 
accessing a series of planes provides one method of showing data sets that occupy three spatial 
dimensions. Another effective animation shows a view of an entire three-dimensional data set 
while varying the opacity of the voxels. Even for a data set that occupies two spatial dimensions, 
transitions between many kinds of information may be used effectively. For example, GIS data 
sets that utilize a two-dimensional map as an organizing basis for multidimensional information 
such as road networks, geological formations, satellite imagery, etc., include diverse types of 
data and can only display a small fraction at any one time.

As Chapter 13 mentions, time itself is also a valid third dimension, and the acquisition of a 
series of images in rapid succession to study changes in structure or composition with time 
can employ many of the same analytical and visualization tools as images covering three 
space dimensions. This is routinely used on TV as satellite images of weather patterns are 
shown that compress hours or days into a few seconds to show cloud motion (Figure 14.17). 
The same approach is useful in other fields. Figure 14.18 shows a series of images recorded 
at video rate (30 frames per second) from a confocal light microscope. Such data sets can 
be assembled into a cube in which the z direction is time, and changes can be studied by 
sectioning this volume in planes along the z direction, or viewed volumetrically, or as a time 
sequence.

Arbitrary section planes

Restricting the section planes to those perpendicular to the x, y, or z axes is limiting, done for 
convenience in accessing the voxel data in memory (or on disk) and creating the display. If 
some arbitrary planar orientation is selected, the voxels must be found that lie closest to the 
plane. As for the case of image warping, stretching, and rotating shown in Chapter 4, these 
voxels do not generally lie exactly in the plane, nor do they have a regular grid-like spac-
ing that lends itself to forming an image. Figure 14.19 shows an example of a plane section 
through an array of cubic voxels, in which portions of various sizes and shapes are revealed. 
These variations complicate displaying the voxel contents on the plane.

 

Figure 14.17 A series of satel-
lite images taken at 3-hour 
intervals showing the 
motion of cloud patterns 
over the United States.
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The available solutions are either to use the 
voxels that are closest to the section plane, plot 
them where they land, and spread them out to 
fill any gaps that develop, or to establish a grid 
of points in the section plane and then interpo-
late values from the nearest voxels, which may 
be up to 8 in number. As for the case of rotation 
and stretching, these two solutions have differ-
ent shortcomings. Using the nearest voxel pre-
serves brightness values (or whatever the voxel 
value represents) but may distort boundaries and 
produce stair-stepping or aliasing. Interpolation 
makes the boundaries appear straight and 
smooth, but also smooths the brightness values 
by averaging so that steps are blurred. It is also 
slower, because more voxels must be located in 
the array and the interpolation performed.

Producing an animation by continuously mov-
ing a section plane at an arbitrary orientation 
requires both computation and access to the 
data (which may not all be in active memory), 
even for just calculation of addresses and linear interpolation of values. If it is impractical to 
carry out these calculations in real time, it is possible to store images of each plane position 
for playback. This procedure is fine for demonstrating something that the user has already 
found, but is not a convenient tool for exploring the 3D data set to discover the unexpected.

The ultimate use of planar resectioning is to change the location and orientation of the section 
plane dynamically in real time, allowing instant response to the scene. Chapter 2 pointed out 
that humans study things by turning them over, either in the hand or in the mind. This kind 
of turning over is a natural way to study objects, but requires an adequate computer memory 
to hold all of the voxel data, a speedy processor and display, and a user interface that provides 

Figure 14.18 A series of 
images of adult rat atrial 
myocytes loaded with 
the calcium indicator 
fluo-3. The images were 
recorded at video rate (30 
frames per second) from a 
confocal light microscope 
(images courtesy of Dr. 
William T. Mason and Dr. 
John Hoyland, Department 
of Neurobiology, 
Babraham Institute, 
Cambridge, UK).

 

Figure 14.19 Intersection of a plane with an 
array of cubic voxels. The view is perpendic-
ular to the plane, showing the different areas 
and shapes of the intersection regions.
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the required number of degrees of freedom. Figure 14.20 shows a display in which arbitrary 
sections can be accessed in real time.

Positioning an arbitrary plane can be done in two different ways, which produce the same 
results but feel quite different to the user. One is to move the plane with respect to a fixed 
3D voxel array. This can be done, for example, by dragging the corners of the plane along the 
x, y, and z axes, or by positioning a center point and then tilting the plane around two axes 
through that point. A different method is to keep the section plane fixed perpendicular to the 
direction of view while allowing the data set to be rotated in space. Combined with the abil-
ity to shift the section plane toward or away from the viewer (or equivalently to shift the data 
set), this method allows exactly the same information to be obtained.

The principal difference between these approaches is that in the latter case the image is 
seen without perspective or foreshortening, so that size comparisons or measurements can 
be made. Obtaining such data may be important in some applications. On the other hand, 
keeping the data set fixed and moving the section plane may help the user to maintain 
orientation within the structure. There are many different modes of human interaction 
with 3D data sets, and there is no general consensus on which are most useful. The con-
trol mechanisms for such interactions are also primitive. Using a mouse to scroll multiple 
sliders for angles or positions is clumsy, but few three-dimensional tools are available. 
Using an instrumented glove to “turn over” a data set while viewing it on a large screen 
or personal head-mounted display is an entertaining possibility found in some virtual 
reality displays, but these are not within reach for most potential users (at least until they 
replace the current generation of game consoles). Interactive virtual reality is considered 
further below.

Figure 14.21 shows the voxels revealed by an arbitrary section plane through the 3D data 
set from the MRI image series. The appearance of the voxels as a series of steps is distract-
ing, so it is more common to show the value of the nearest voxels to the plane, or to interpo-
late among the voxels to obtain brightness values for each point on the plane, as shown in 
Figure 14.22.

It is also useful to make some of the pixels in section planes transparent, allowing the view-
ing of other planes behind the first, and making the 3D structure of the data more apparent. 
Figure 14.23 shows an example of this for the spherical particle data introduced in Chapter 
13. The series of parallel slices are shown as separate planes with spacing increased by a 

 

Figure 14.20 Presentation of sec-
tion images, 3D reconstruction, 
and arbitrary plane slice on a 
desktop computer (courtesy of 
Able Software, Lexington, MA).
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Figure 14.21 Sampling voxels along 
inclined planes in a 3D array. 
Showing each entire voxel is 
visually distracting and does not 
produce a smooth image.

Figure 14.22 Smooth interpolation of 
image pixels on arbitrary planes 
positioned in a voxel array.

 

 

Figure 14.23 “Exploded” view of voxel 
layers in the tomographic reconstruc-
tion of spherical particles (Figure 
13.62, Chapter 13). The low density 
region surrounding the particles is 
shown as transparent.
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factor of two in the z direction. The voxels whose density falls below a threshold that roughly 
corresponds to that of the particles have been made transparent. This allows seeing voxels 
which are part of particles behind the frontmost.

Figure 14.24 shows a similar treatment for the MRI data set of the human head. The thresh-
old for choosing which voxels to make transparent is more arbitrary than for the spheres, 
since there are void and low density regions inside as well as outside the head. However, the 
overall impression of 3D structure is enhanced by this treatment.

The use of color

Assignment of pseudo-colors to gray scale 2D images is shown in preceding chapters. It some-
times permits distinguishing subtle variations which are imperceptible in brightness in the 
original. But, as noted before, it more often breaks up the overall continuity and gestalt of the 
image so that the image is more difficult to interpret. Of course, the same display tricks can 
be used with three-dimensional sets of images, with the same consequences.

A subtle use of color or shading is to apply slightly different shading to different planar orien-
tations, as shown in Figures 14.15 and 14.22, to increase the impression of three dimension-
ality. Light tints of color can be used for this as well. It is also useful to employ color scales to 
distinguish different structures, as demonstrated for 2D images. It requires separate process-
ing or measurement operations to distinguish the different structures, or post-processing to 
apply colors to various regions of a reconstruction, as shown in Figure 14.25. When applied 
to 3D data sets, the colored scales assist in seeing the continuity from one image to another, 
while providing ranges of brightness values for each object (Parker et al., 2005).

One of the most common ways that multiple colors can be used to advantage in 3D image data 
is to code multiband data such as the elemental concentrations measured from the secondary 
ion mass spectrometer. This use of pseudo-color is analogous to similar coding in 2D images, 
very frequently used for X-ray maps from the SEM and for remotely sensed satellite images, in 
which the colors may either be “true” or used to represent colors beyond the range of human 
vision, particularly infrared. Other tools for working with multiband images in 2D, such as 
calculating ratios, can also be applied in 3D.

 

Figure 14.24 View of several orthogo-
nal slices of the MRI head data with 
transparency for the low density 
regions in the planes.
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Figure 14.26 shows example images for SIMS depth imaging of elements implanted in a 
silicon wafer. Comparing the spatial location of the different elements is made easier by 
superimposing the separate images and using colors to distinguish the elements. This is 
done by assigning red, green, and blue to each of three elements, with the result shown in 
Figure 14.27.

The use of distinct colors to label different structures can be very useful for visualizations. In 
Figure 14.28, the merging of reconstructions of CT and MRI data has been done using tints 
of different colors to show bone structures and blood vessels. Merging multiple data sets adds 
important complementary information to presentations (Spetsieris, 1995; Ruiz-Alzola et al., 
2005). The use of surface rendering (described below) for each data set, and their registration 
in 3D, make this a very realistic and powerful visualization.

Volumetric display

Sectioning the data set, even if some regions are made transparent, obscures much of the 
voxel array. Only the selected planes are seen and much of the information in the data set 

 

Figure 14.25 Volume rendered image 
of vasculature in the lung, with 
color tinting (image courtesy of 
TeraRecon, Inc., San Mateo, CA).

  
(a)              (b)              (c)

Figure 14.26 Views of plane sections for the elements aluminum (a), boron (b), and oxygen (c) in a 
silicon wafer, imaged by secondary ion mass spectrometry. Figure 14.27 shows a color image of all 
three elements on another orthogonal set of planes.
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is not used. It has been pointed out before that the topological properties of 3D structures 
are not revealed on section planes. The volumetric display method shows all of the 3D voxel 
information. For simple structures, displaying everything can be an advantage, while for very 
complex ones the overlapping features and boundaries become confusing.

A volumetric display is produced by ray tracing. In the simplest model used, a uniform, extended 
light source is placed behind the voxel array. For each parallel straight line ray from the light 
source to a point on the display screen, the density value of each voxel that lies along the path 
is used to calculate a reduction in the light intensity following the usual absorption rule:

	 I
I

e
0

= ∑− ρ
 (14.3)

Performing this calculation for rays reaching each point on the display generates an image. 
The total contrast range may be adjusted to the range of the display by introducing an arbitrary 

Figure 14.27 Color coding of elemental inten-
sity from SIMS images in Figure 14.26. The 
multiband 3D data set is sectioned on the 
x, y, and z planes, and the 256 level (8 bit) 
brightness scale for the elements aluminum, 
boron, and oxygen is assigned to red, green, 
and blue, respectively.

 

 

Figure 14.28 Volume rendered image with 
multimode fusion and color tinting.
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scaling constant. This scaling can be important because the calculated intensities may be 
small for large voxel arrays.

Notice that this model assumes that the voxel values actually correspond to density, or 
to some other property that may be adequately modeled by the absorption of light. The 
image shown in Figure 13.61 in Chapter 13 corresponds to this model, since it shows 
the projected view through a specimen using X-rays, although the geometry is cone beam 
rather than parallel projection. X-ray tomographic reconstruction, discussed in the pre-
ceding chapter, proceeds from such views to a calculation of the voxel array. Having the 
array of voxel values then permits generating many kinds of displays to examine the data. 
It seems counterproductive to calculate the projection view again, and in such a view as 
shown in those figures, the ability to distinguish the individual features and see their rela-
tionship is poor.

One of the advantages of this mode is that the direction of view can be easily changed. It is 
necessary to calculate the addresses of voxels which lie along each ray. When the view direc-
tion is not parallel to one of the axes, this addressing can be done efficiently using sine/cosine 
values or a generalization of the Bresenham line drawing algorithm (Bresenham, 1965). Also 
in this case, an improved display quality is obtained by calculating the length of the line 
segment along each ray through each pixel. The absorption rule then must include those dis-
tances t in the summation:

	 I
I

e t

0

= ∑− ρ
 (14.4)

This method is far short of a complete ray tracing, although it is sometimes described as 
one. In a true ray-traced image, refraction and reflection are included along with absorption. 
Figure 14.29 shows an example in which the inclusion of shadows greatly increases the 3D 
impression. More complex shading, in which features cast shadows on themselves and each 
other, requires calculations which are generally too time consuming for routine use in this appli-
cation. With the simple absorption-only method, it is possible to achieve display speeds capable 
of rotating the array (changing the view direction) interactively with desktop computers.

These types of volumetric displays are often isometric rather than perspective corrected. In 
other words, the dimension of a voxel or feature 
does not change with distance. This is equivalent 
to looking at the scene through a long focal length 
lens and, given the inherent strangeness of data in 
most 3D image sets, does not generally cause sig-
nificant additional discomfort to viewers. True per-
spective correction requires that x, y dimensions 
on the screen be adjusted for depth. Particularly 
for rotated views, perspective adds to the computa-
tion, but is incorporated in many modern general-
purpose graphics packages such as OpenGL.

Figure 14.30 shows a volumetric view through a 
joint in the leg of a head louse. The original series 
of images was obtained with a transmission con-
focal light microscope, with nearly cubic voxels. 
The individual muscle fibers are visible but over-
lapped. Shifting the stack to approximate rotation, 

Figure 14.29 Reconstruction of chromo-
somes in a dividing cell from CSLM 3D 
data. The chromosomes are opaque and 
the matrix around them transparent, 
and shadows have been cast on the rear 
plane to enhance the 3D appearance.
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as described below, gives the viewer the ability 
to distinguish the various muscle groups. Again, 
a time sequence (hard to show in print media) 
can be used as a third dimension to display 3D 
data as the planes are shifted, and since no cal-
culations are needed it is easy to create such ani-
mations in a small computer.

A much more limited approach to volumetric 
presentation is to show one portion of the image 
as a surface rendered model, as illustrated below, 
but to show the surrounding tissue as a trans-
parent volume. Usually no detail is preserved in 
this volume, and it is included only to provide a 
point of reference for the structure of interest, as 
shown in Figure 14.31.

Very rapid generation of projection images is 
possible if the addressing can be simplified and the variation in distance through different 
voxels can be ignored. Figure 14.32 shows an approximation in which each plane of voxels is 
shifted laterally by a small amount. This may be an integer number of voxel dimensions, mak-
ing the address calculation particularly simple, but in any case requires no more than inter-
polation. The planes remain normal to the view direction, so that all distances through pixels 
are the same. This kind of shifting gives the impression of rotation for small angles. Beyond 
about 30 degrees, the distortion of the 3D structure due to stretching may become visually 
objectionable. However, this method provides a fast way to produce relative displacement of 
features as a function of depth, to aid in understanding the structure.

Figure 14.30 Volumetric projection image 
through a stack of 60 CSLM images of a 
joint in the leg of a head louse.

(a)

Figure 14.31 Viewing a surface reconstruction:
  (a) one section through a knee joint;
  (b)  bone surface determined from multiple sections, 

with the surrounding tissue displayed as a trans-
parent volume and no internal detail.  

(b)
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Stereo viewing

For many of the images in this chapter, two 
adjacent images in a rotation or pseudo-rotation 
sequence can be viewed as a stereo pair. For 
some readers, looking at them may require an 
inexpensive viewer which allows one to focus on 
the separate images while keeping the eyes look-
ing straight ahead (which the brain expects to 
correspond to objects at a great distance). Other 
readers may have mastered the trick of fusing 
such printed stereo views without assistance. 
Some, unfortunately, will not be able to see them 
at all. A significant portion of the population 
seems not to use stereo vision, due for instance 
to uncorrected amblyopia (“lazy eye”) in childhood.

Figures 14.33 and 14.34 show examples of stereo pair presentation of 3D images using both 
the volumetric display method shown above and the surface-rendered method illustrated 
below, for the same specimen (derived from confocal light microscope images of a sea urchin 
embryo). Figure 14.35 shows another stereo pair presentation of skeletonized data obtained 
from neurons imaged in the confocal light microscope.

Stereo images can also be displayed using color channels for the left- and right-eye views. 
For instance, Figure 14.36 shows a stereo pair of blood vessels in the skin of a hamster, 
imaged live using a confocal light microscope in fluorescence mode. The 3D reconstruction 
method uses shifting of the focal section planes combined with the emission rules intro-
duced below. Merging these images using red and green to display two views of the same 
3D data set is shown in Figure 14.37. The images are overlapped, and a viewer equipped 
with glasses having appropriate red and cyan filters can easily see the depth information in 
the combined images.

Figure 14.32 Schematic diagram of shifting 
image planes laterally to create an illusion 
of rotation or to produce stereo pair images 
for viewing.

Figure 14.33 Stereo pair presentation of Feulgen-stained DNA in a sea urchin embryo. The cells form 
a hollow sphere, evident in the stereo images, with some cells in the act of cell division. This image 
shows a volumetric image that is “ray cast” or “ray traced,” using an emission model, with different 
offsets for the individual optical sections to produce a stereo effect. See also Figure 14.34 for a sur-
face image of the same data (images courtesy of R. G. Summers; see Summers et al., 1991).



7373D Visualization
© 2011 by Taylor & Francis Group, LLC

Figure 14.34 Stereo view of the data set from Figure 14.33, but surface rendered and color coded. The 
surface image shows contours within each section which render the surfaces of the chromosomal 
masses but obscure any internal detail or structures to the rear. Contour lines for the embryo are 
also shown.

Figure 14.35 Stereo images of skeletonized lines (manually entered from serial section data) from two 
neurons in the hippocampus of a 10-day-old rat, showing branching and 3D relationships (Turner 
et al., 1991).

Figure 14.36 Stereo view of multiple focal plane images from a confocal light microscope showing light 
emitted from fluorescent dye injected into the vasculature of a hamster and viewed live in the skin. This 
image is also shown in Figure 14.37 (images courtesy of Chris Russ, Univ. of Texas, Austin TX).
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These stereo views are constructed from multiple sections by projecting or ray tracing through 
a stack of images, as shown above. The individual sections were obtained by confocal micros-
copy, which, because of its very shallow depth of field, can be used to obtain a continuous set 
of voxel planes. Other techniques that produce continuous arrays of thin sections can also be 
used. Photographing a quarry wall as layers of rock are removed by blasting and machinery 
accomplishes the same thing at a larger scale.

Removing artifacts such as blur from images by processing in frequency space is shown in 
Chapter 6. For three dimensions the procedure is identical except that the point spread func-
tion and the Fourier transform are three dimensional (Yoo et al., 2006; Hamed, 2006; Tadrous, 
2009). Figure 14.38 shows an example of using Wiener inverse filtering to accomplish this 
deblurring in the creation of a stereo pair. The images are reconstructed from 90 optical sec-
tions spaced through a 50 µm thick section, which is much closer than the depth of field of 
the optics. The use of the inverse filter removes most artifacts from the images and produces a 
clear stereo pair image (Lin et al., 1994). Another approach to the same kind of sharpening is 
to apply an iterative procedure that uses neighboring images to estimate the artifacts in each 
plane. This Van Cittert filter requires using neighbor planes on each side out to about twice 
the dimension of the point spread function, which in this case is the depth of optical focus 
(Jain, 1989). Because it uses only a few planes at a time, this method may be faster than full 
3D deconvolution in cases where computer memory cannot hold the full data set, even though 
it is iterative.

For projection of stereo pair images, it is possible to use two projectors equipped with polar-
izing filters that orient the light polarization at right angles (usually 45 degrees to the right 
and left of vertical) and superimpose the two images. Viewers wearing polarized glasses can 
then see the stereo effect, and color can still be used. This display method requires special 
specular projection screens that reflect the light without losing the polarization and works 
best for viewers in line with the center of the screen. While this method is sometimes used for 
displaying 3D data, it is not practical for interactive exploration of a data set if photographic 
slides must be made first. Polarization can also be used with displays on a single computer 
monitor, as discussed below.

 

Figure 14.37 Stereo pair of the same image 
pair shown in Figure 14.36, using red 
and cyan for the different eye views. This 
allows viewing the image with normal eye 
vergence, using glasses (red lens on the left 
eye, green or blue on the right).
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The difference in viewing angle for the two images can be adjusted somewhat arbitrarily to 
control the visual impression of depth. The angle can be made to correspond to the typical 
vergence angle of human vision for normal viewing. Using a typical interocular distance of 
7.5 cm and a viewing distance of one-half meter, the actual vergence angle is 8.6 degrees. The 
judgment of depth thus depends on the brain’s interpretation of the viewing distance, which is 
based on the focus distance to the image in combination with the vergence angle of the eyes 
in their sockets. If the angle is varied, the impression of depth can be adjusted to expand or 
compress the z dimension.

Special display hardware

Specialized display hardware for 3D image analysis may be useful in some cases. Holography 
offers the promise of realistic three-dimensional display that can be viewed from different 
directions (Blackie et al., 1987). Attempts to generate such displays by calculating the holo-
grams have been experimentally successful, although they are still too slow for interactive 
use (and far from the “stand alone” three-dimensional presentation of Princess Leia gener-
ated by R2-D2 in Star Wars!). At present, the best holograms are displayed using coherent 
light from a laser and high resolution film. In order to produce live displays from a computer, 
multiple screens such as the LCDs used for flat-screen displays can be used in place of the 
film. However, resolution and control of the light modulation (relative intensity) are not really 
adequate.

Another custom approach is called a varifocal mirror (Fuchs et al., 1982). Each plane of voxels 
in the 3D array is drawn one at a time on the display CRT. The screen is not viewed directly 
by the user, but is reflected from a mirror. The mirror is mounted on a speaker voice coil 
so that it can be moved. As each different plane of voxels is drawn, the mirror is displaced 

(a)

(b)

Figure 14.38 Sharpening of 3D images 
by Wiener filtering. The stereo pair 
images are produced by ray tracing 
two projections at angles of about 
±2.4 degrees through 90 serial opti-
cal sections in a 50 µm thick section. 
The sample is Spirogyra.

  (a) Original images;

  (b)  Wiener inverse filtered (Lin et al., 
1994).
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slightly. This movement changes the distance from the viewer’s eye to the screen and gives the 
impression of depth. In order to achieve high drawing speeds (so that the entire set of planes 
can be redrawn at least 30 times per second), this technique is usually restricted to simple 
outline drawings rather than the entire voxel data set. The successive outlines are perceived 
as surfaces in three dimensions.

Another, more recent development for real-time viewing of 3D computer graphics displays uses 
stereo images. The computer calculates two display images for slightly different orientations 
of the data set or viewing positions. These are displayed alternately using high-speed display 
hardware which typically shows 120 images per second. Special hardware is then used to 
allow each eye to see only the correct images, at a rate of 60 times per second, fast enough to 
eliminate flicker (the minimum rate for flicker fusion above which we see continuous images 
rather than discrete ones is usually at least 20 frames per second; commercial moving pictures 
typically use 24 frames, and television uses 25 in European and 30 in US systems).

The visual switching may be done by installing a liquid crystal device on the display monitor 
that can rapidly switch the polarization direction of the transmitted light, so that viewers can 
watch through glasses containing polarizing film. A second approach is to wear special glasses 
containing active liquid crystal devices which can rapidly turn clear or opaque. Synchronizing 
pulses from the computer cause the glasses to switch as the images are displayed, so that each 
eye sees the proper view.

All of these devices have been used primarily for graphics design, in which substantial 
computer resources are used to model three-dimensional objects, generate rendered sur-
face views, and allow the user to freely rotate and zoom. With the number of disciplines 
interested in using 3D computer graphics, there is no doubt that new hardware (and the 
required corresponding software) will continue to evolve for this purpose. The economic 
breakthrough that may impact scientific uses will probably come when game console manu-
facturers deliver 3D displays.

These various display tools can be adapted to the display of 3D image data and used at scales 
ranging from nanometers (electron and ion microscopy) to kilometers (seismic exploration). 
The utility of such displays for teaching anatomy to medical students is particularly intrigu-
ing. It is possible to consider using other senses than visual to deal with multiband data 
(e.g., sound which changes pitch and volume to reveal density and composition as a cursor is 
moved over the display of a voxel array), but, as emphasized in Chapter 2, humans are over-
whelmingly visual creatures who expect to get information through images.

There is no consensus on the best input and control devices for complex computer graphics 
displays. Rotating or shifting the viewpoint in response to horizontal or vertical motion of the 
now ubiquitous mouse gives a rather crude control. Multi-touch surfaces that can be swiped, 
pinched, etc., are just beginning to address the needs of 3D images. For positioning points, 
lines, and planes in 3D, some more flexible device or procedure is required. Locating a spe-
cific voxel location in the array can be done in several different ways. One is to use an x,y 
input device (mouse, trackball, etc.) for two axes and periodically shift to a different control, 
which may be a scroll bar on the screen, to adjust the distance along the third axis. Another is 
to move two cursors, one on an x-y projection and one on an x-z projection, for example. Such 
approaches usually feel rather clumsy because of the need to move back and forth between 
two areas of the screen and two modalities of interaction. Color-coding of the cursor to show 
the depth position can help. Three-axis joysticks and sonic digitizers that allow the user to 
point in space (multiple sensors triangulate the position) exist and are being used for game 
consoles, but have not as yet made much impact on scientific imaging.
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Immersive virtual reality (VR) was first suggested by Ivan 
Sutherland (1965). Practical working systems have now 
been used for several decades and have been written 
about extensively (Rheingold, 1991). One approach to VR 
is that of the head mounted display (HMD) coupled with 
head tracking (Figure 14.39). The user is presented with 
a stereo binocular view of the virtual world. By tracking 
the orientation of the viewer’s head, the content and per-
spective of the virtual images are drawn consistent with 
what one would experience in the physical world. More 
elaborate “cave” based VR covers some or all of the walls 
of a room with rear-projection stereo displays. The user 
wears glasses to permit viewing the stereo images, and 
there is a head tracking mechanism to control what is 
projected (i.e., the view) depending on where the viewer 
moves and looks.

In addition, for either system, there is usually some 
mechanism for interacting with what is seen, such as a 
dataglove (Zimmerman et al., 1987) or some other high degree of freedom input to support 
manipulation of the displayed virtual world. The dataglove has been used, for example, to 
move molecules around each other to study enzyme action. Supplemented by force feedback, 
this method gives the researcher rich information about the ways that molecules can best 
fit together. VR, while very demanding of resources, is a powerful technology that is being 
applied in a range of contexts ranging from entertainment to automotive design. Few of these 
systems can accommodate more than a single viewer at a time; there is still a long way to go 
before the Star Trek Holodeck arrives.

At the other extreme, it is important to remember the history of 3D visualization (Cookson, 
1994), which began with physical models constructed of wood, plastic, or plaster. Building such 
a model from a series of section planes is difficult and time consuming, and does not reveal 
all of the internal detail. Computer modeling has progressed from simple outlines to hidden 
line removal, surface construction, shading and rendering, and full volumetric or ray-traced 
methods.

Ray tracing

The examples of volumetric display shown above perform a simplified ray tracing to sum the 
density values of voxels and calculate a brightness based on light being absorbed as it propa-
gates from back to front through the 3D data set. While this model does correspond to some 
imaging situations, such as the transmission light or electron microscope and tomography, 
there are many other situations in which different rules are appropriate.

In the process of traversing a voxel array, following a particular line of sight that ends in one 
pixel of a ray-traced image, the variables which are available include:

 1. The brightness and perhaps color of the original light source placed behind the array, 
and whether it is an extended source (producing parallel rays of light) or a point 
source (producing a cone beam of light). This illumination source controls the contri-
bution that transmission makes to the final image.

Figure 14.39 An example of immer-
sive virtual reality, involving 
a head mounted stereo display 
and datagloves that provide 3D 
manipulation of objects.
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 2. The location of the first and/or last voxels with a density above some arbitrary thresh-
old taken to represent transparency. These voxels define surfaces that can be rendered 
using reflected light. Additional rules for surface reflectivity, the location, brightness, 
and color of the incident light sources, and so forth, must be added.

 3. The location of maximum or minimum values or large gradients, which may define 
the location of any internal surfaces for rendering.

 4. The rule for combining voxel values along a path. This may be multiplication of frac-
tional values, which models simple absorption according to Beer’s law for photons 
provided that the voxel values are linear absorption values. In some cases density is 
proportional to attenuation, so this rule can produce interpretable images. There are 
other convolution rules available as well, including linear summation and retention 
of maximum or minimum values. While these may also correspond to some physical 
situations, their greatest value is that they produce images which can delineate inter-
nal structure.

 5. The relationship between the voxel values and the intensity (and perhaps color) of light 
originating in each voxel, which represents fluorescence or other emission processes.

The combining rules mentioned briefly in part 4 of the above list correspond to the various 
image processing tools described in Chapters 4 and 5 for combining pixels from two or more 
images. They include arithmetic (multiplication, addition), rank ordering (minimum or maxi-
mum value), and Boolean logic. It is also possible to include lateral scattering so that point 
sources of light spread or blur as they pass through the voxel array, or even to combine several 
modes. This degree of realism is rarely justified since the measured voxel values are not usu-
ally related to light transmission or scattering.

A software package for 3D visualization may make any or all of these parameters accessible 
to the user, along with others controlling the angle of view or rotation of the data set. For 
example, control of the surface reflectivity and roughness, and the location of the incident 
light source(s), affect the appearance of rendered surfaces. In performing a convolution of 
transmitted light along ray paths from a light source behind the voxel array, the relationship 
between the voxel values and the absorption of the light is another parameter that offers 
control. By varying the relationship between voxel value and opacity (linear attenuation coef-
ficient), or selectively introducing color, it is possible to make some structures appear or to 
remove them, allowing others to be seen.

Mastering all of these various controls and adjustments takes time. And using them to explore 
a data set to discover new, unsuspected results takes even more time.

Figure 14.40 shows an example presentation. The voxel values come from MRI measurement 
and approximately correspond to the amount of water present. Using different relationships 
for opacity and color vs. voxel value allows reconstructing the hog heart to emphasize the 
muscle or the blood vessels. In this example, each voxel is assumed both to absorb the light 
from the source placed behind the voxel array and to contribute its own light along the ray in 
proportion to its value and with color taken from an arbitrary table. The result allows struc-
tures with different measured values to appear in different colors.

Of course, with only a single value for each voxel, it is not possible to model absorption and 
emission separately. By performing dual-energy tomography in which the average atomic 
number and average density are both determined, or multi-energy tomography in which the 
concentration of various elements in each voxel is measured, or by using the T1, T2 relaxation 
time signals from MRI, such techniques become possible. They represent straightforward 
implementation of several of the multiband and color imaging methods shown in preceding 
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chapters, but are not yet common. It is usually necessary to adopt some arbitrary relationship 
between the single measured set of voxel values and the displayed rendering that corresponds 
to the major voxel property measured by the original imaging process.

For example, in fluorescence light microscopy, or X-ray images from the SEM, or ion micros-
copy, the voxel value is a measure of emitted brightness that is approximately proportional to 
elemental or chemical concentration. These 3D data sets can also be shown volumetrically by 
a simplified ray tracing. Instead of absorbing light from an external light source, the rule is to 
sum the voxel values as brightnesses along each path.

Figure 14.36, above, shows an application using the fluorescence confocal light microscope. 
A dye is injected into the blood vessel of a hamster and is excited by the incident light from 
the microscope. The emitted light is collected to form a series of 2D images at different focal 
depths, and these are then arranged in a stack to produce a 3D data set. In this case the spac-
ing between the planes is much greater than the resolution within each image plane. Sliding 
the image stack laterally, as described above, produces an approximation of rotation and an 
impression of depth. The brightness values for each voxel are summed along vertical columns 
to produce each image.

This emission model is very easy to calculate but does not take into account any possible 
absorption of the emitted light intensity by other voxels along the ray path. Generally, simple 
3D data sets have only one piece of data per voxel and there is no separate information for 
density and emission brightness, so no such correction is possible. Sometimes a simple reduc-
tion in intensity in proportion to the total number of voxels traversed (known as a “distance 
fade”) may be used to approximate this absorption effect. Usually, it is assumed that the 
emission intensity is sufficiently high and the structure sufficiently transparent that no such 
correction is needed, or that it does not change the interpretation of the structure, which is in 
any case qualitative rather than quantitative.

When multiband data are available, as for instance in the SIMS data set used in Figures 14.26 
and 14.27, emission rules can be used with the assignment of different colors (up to three) to 
different signals. Principal components analysis, described in Chapter 5, may be useful for 
combining more channels of data. Figure 14.41 shows volumetric views of these data using 
emission rules, presented as a stereo pair. The monochrome figure shows a single element 
(boron) while in the color image, multiple elements are combined. The use of color in the 
images requires the use of side-by-side images for viewing, and the density of information in 
the images that results from overlaying the 8-bit (256 gray level) values from each element at 
every point makes it difficult to fuse these images for satisfactory stereo viewing.

(a)

 

(b)

 

Figure 14.40 Volumetric 
rendering of MRI data. 
Specimen is a hog heart 
(data courtesy of B. Knosp, 
R. Frank, M. Marcus, R. 
Weiss, Univ. of Iowa Image 
Analysis Facility and Dept. 
of Internal Medicine). 
Changing the arbitrary rela-
tionship between voxel value 
and display opacity for the 
voxels allows selectively 
showing the heart muscle or 
blood vessels.
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Using the same data set, it is possible to use the 
location of the frontmost voxel along each line of 
sight whose value is above an arbitrary threshold to 
define the location of an internal boundary. If this 
resulting surface is then rendered as a solid surface 
with incident reflected light, another representation 
of the data is obtained, as shown in Figure 14.42.

There are several different ways that an internal sur-
face can be displayed. Figure 14.43 shows several 
views of the spiral cochlear structure from the ear 
of a bat (Keating, 1993). Slices through the 3D voxel 
array do not show that the structure is connected. 
Thresholding to show all of the voxels within the 
structure reveals the topology of the spiral. A series 
of section images can be shown as either wire frame 
outlines or with the surface rendered. Rotating the 
data set allows viewing the structure from different 
directions.

Figure 14.41 Stereo pair volumetric displays of elemental concentrations in a silicon wafer, imaged 
by a secondary ion mass spectrometer: (a) boron concentration; (b) aluminum (red), boron (green), 
and oxygen (blue).

Figure 14.42 Surface rendered display of 
the same data as in Figure 14.41a. The 
internal surface of the boron-rich region 
is determined by thresholding and then 
rendered using an arbitrarily placed 
light source.
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Color coding of structures, volumetric rendering, and selective transparency can be com-
bined with the display of internal surfaces (with shading as discussed below). Figure 14.44 
shows an example, the brain of a fruit fly, using data recorded with a confocal laser scanning 
microscope. The 3D reconstruction shows surfaces rendered as partially transparent in a 
transparent medium, to reveal the surfaces of other structures behind them. While effective at 
communicating specific information to the viewer, these displays require prior decisions and 
selection and are not so useful for exploring unknown data sets, as noted previously.

  
(a)              (b)              (c)

Figure 14.43 Cochlear structure from the ear of a bat (Keating, 1993): (a) arbitrary planar slices 
through the voxel array; (b) array of parallel slices through the array with selective transparency; (c) 
surface revealed by thresholding the voxels; (d) outlines delineating the structure in all voxel planes; 
(e) surface reconstructed from the outlines in (d); (f) the same structure as shown in (e), rotated to 
a different point of view.

 

Figure 14.44 Reconstruction of a fruit 
fly brain with transparent surfaces. 
(Data courtesy of K. Rein, Dept. of 
Genetics, University of Wuerzburg, 
visualization by M. Zoeckler using 
the Amira software).
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Reflection

Reflection from surfaces is an important presentation 
technique because humans are accustomed to seeing 
and interpreting surfaces. Seismic reflection mapping, 
acoustic microscopy, ultrasound imaging, confocal 
microscopy, and so forth, acquire a 3D image set 
whose voxel values record the reflection of the signal 
from internal locations. Figure 14.45 shows the use of 
ultrasound to show the surface of a fetus in utero. In 
most of these technologies, a voxel array is generated 
and used to locate boundaries where strong reflections 
occur, within a matrix that may be otherwise opaque. 
In the confocal microscope, the matrix is transpar-
ent (either air or liquid) and the strongest reflection 
at each x, y point is where the specimen surface is in 
focus. This means that recording a set of images as a 
3D data array makes it possible to locate the surface 
in three dimensions. Most systems use the process-
ing methods shown in Chapter 5 to find the brightest 
value or maximum gradient at each pixel and thus construct the surface range image.

One way to generate such a display is to go down columns of the data array (just as in volu-
metric ray tracing), looking for the maximum voxel value, or the first value to exceed some 
threshold, or a location of maximum change or gradient in value. Keeping only that value or 
location produces an image of the entire surface in focus, as shown in Chapter 5. By rotat-
ing or shifting the data array to alter the viewing direction, the surface points along any 
viewing direction can be located to display the surface as an animation sequence or a stereo 
pair. Fitting a curve to the brightness values along a column of voxels can locate the surface 
with sub-voxel accuracy. Figure 14.46 shows an alumina fracture surface (from Chapter 1, 

Figure 14.45 The face of a 26-week-old 
fetus, imaged by ultrasound.

Figure 14.46 Depth measure-
ment using the confocal 
scanning light microscope:

  (a)  extended focus image 
of an alumina frac-
ture surface obtained 
by keeping the brightest 
value from many focal 
planes at each pixel 
location;

  (b)  range image obtained 
by assigning a gray 
scale value to each pixel 
according to the focal 
plane image in which 
the brightest (in focus) 
reflectance is measured, 
with the elevation pro-
file along the traverse 
line shown.
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Figures 1.52 and 1.53) both as an extended-focus image and as a range image (in which pixel 
brightness is proportional to elevation).

Several presentation modes for range images are available to assist in visualizing the three-
dimensional shape of the surface. One, shown in the figure, is to plot the brightness profile 
along any line across the image, which gives the elevation profile. Figure 14.47 shows several 
additional displays of range images of surfaces (Chapter 15 goes into more detail). The speci-
men is a microelectronics chip imaged by reflection CSLM, so both an extended-focus image 
and a range image can be obtained from the series of focal plane sections. From the range 
image data, plotting contour maps, grid or mesh plots, or rendered displays is a straightfor-
ward exercise in computer graphics.

  

(d)              (e)              (f)

(g)

 

Figure 14.47 Presentation modes for surface information from 
the CSLM (specimen is a microelectronics chip):

  (a)  the in-focus image of the surface reflectance obtained by 
keeping the brightest value at each pixel address from all of 
the multiple focal plane images;

  (b)  the elevation or range image produced by gray scale encod-
ing the depth at which the brightest pixel is found for each 
pixel address;

  (c)  contour map of the surface elevation with color coding for 
the height values;

  (d)  perspective-corrected rendering of the surface with grid 
lines and pseudo-color;

  (e)  the same image as (d) with realistic shading;
  (f)  the rendering from (e) from two points of view, combined as 

a stereo pair;
  (g)  the rendered geometry as in (d) with the surface image from 

(a) superimposed.
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One of the classic ways to show surface elevation is a contour map (Figure 14.48), in which 
isoelevation lines are drawn, usually at uniform increments of altitude. These lines on this 
topographic map are continuous and closed, and the same methods are useful at any scale. 
Since the contour map reduces the pixel data from the original range image to boundary 
representation, the method for forming the boundaries is the same as shown in Chapter 7 for 
segmentation. The lines may be labeled or color coded to assist in distinguishing elevations.

Presenting the data as a color-coded shaded isometric view is closely related to a contour 
map. Figure 14.49 shows the elevation data for the alumina fracture surface of Figure 14.46. 
In this image, a 3D representation 
(without perspective) is used to 
draw a vertical line for each pixel 
in the range image to a height pro-
portional to the value. The image is 
also shaded so that each point has 
its gray scale value. Replacing the 
gray scale values with a pseudo-
color table allows communication 
of the elevations in essentially the 
same way as contour lines, and 
many topographic maps use similar 
methods to show elevations.

Constructing a contour map can be 
done simply by locating those pixels 
that have neighbors that are above 
and below the threshold level. 
But, as shown in Figure  14.50, 
this produces a coarse approxima-
tion. Interpolating between pixel 
addresses produces a smoother 
map, as shown in the figure.

 

Figure 14.48 Fragment of a con-
ventional topographic map 
(Phantom Ranch in the Grand 
Canyon) showing isoelevation 
contour lines.

Figure 14.49 Isometric view of elevation data for the alumina 
fracture surface shown in Figure 14.46. A rapidly varying 
color palette is used to reveal small changes.
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Figure 14.51 shows an example that looks somewhat similar to the preceding case, but repre-
sents data at a very different scale. This is a three-dimensional view of Ishtar Terra on Venus. The 
data come from the spacecraft Magellan’s mapping radar. This synthetic-aperture radar bounces 
12.5-cm-wavelength radar waves off the surface, using the echo time delay for range and the 
Doppler shift to collect signals from points ahead 
of and behind the direct line of sight.

Rendering of a surface defined by a range image 
produces a realistic image of surface appear-
ance, as compared to grid or isometric contour 
map displays that are more abstract and more 
difficult for visual interpretation, as shown in 
Figure 14.52. However, the quantitative inter-
pretation of the surface data is more readily 
accessible in the range image. It is difficult to 
select realistic surface colors and textures to be 
applied. It is possible to apply brightness values 
to an isometric display of range data that come 
from another image of the same area, such as 
the original reflectivity or texture information 
(as used in Figure  14.47g). When multiband 
images are recorded, this combination is par-
ticularly effective.

  

(a)              (b)              (c)

Figure 14.50 Surface of a metal fracture:
  (a)  range image (gray scale proportional to elevation);
  (b) shaded grid;
  (c)  color-coded contour map produced by selecting pixels with 

neighbors above and below each of five thresholds;
  (d)  contour map produced by linear interpolation.

   

                                      (d)

Figure 14.51 Reconstructed surface image of 
Ishtar Terra on Venus, looking northeast 
across Lakshmi Panum toward Maxwell 
Montes with an exaggerated vertical scale 
(Saunders, 1991).
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The surfaces discussed in the preceding section are exter-
nal physical surfaces of the specimen. Internal surfaces may 
be defined as boundaries between distinct regions, or in 
more subtle ways. For instance, Figure  14.53 shows the 
data from the SIMS example used above, in which the depth 
of the voxel having the maximum concentration of silicon 
at any location is shown. This surface isolation provides 
a visualization of the shape of the implanted region. The 
image is shown as a shaded isometric display.

Surfaces

Surfaces to be examined may be either physical surfaces 
revealed by reflection of light, electrons, or sound waves, or 
surfaces internal to the sample and detected after the entire 
3D data set has been acquired. The use of computer graphics 
to display them is similar to other the displays in computer-
assisted design (CAD). However, the typical CAD object 
requires only a few numbers to specify it, such as the coor-
dinates of vertices. Generating the interpolated surfaces and 
calculating the local orientation and hence the brightness of 
the image at many points require additional computing. In contrast, the image data discussed 
here typically form a complete 3D data set, or at least a complete 2D range image derived from 
the 3D set. Consequently, there is elevation data at every pixel location in the display image, 
which allows for rapid image rendering.

  
(a)               (c)

 

(b)               (d)

Figure 14.52 Display modes for 
surface information:

  (a) range image;

  (b) grid mesh;

  (c) isometric view;

  (d) rendered terrain.

Figure 14.53 Isometric display of 
elevation data within a volume: 
the height of the surface having 
the maximum concentration of 
Si in the SIMS voxel array shown 
in Figure 14.26.
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Some instruments produce range images directly. Large-scale examples include radar or laser 
mapping, elevation measurement from stereo pair calculations, and sonar depth ranging. At a 
finer scale, a standard tool for measuring precision machined surfaces is interferometry, which 
produces images such as those shown in Figure 14.54. The brightness is a direct measure of 
elevation, and the image can be comprehended more easily with appropriate rendering. The 
lens artifact (the faint ring structure at the left side of the image) is not actual elevation data 
and looks strange when presented as such.

Displays of surface images (more formally of range images, since real surfaces may be com-
plex and multivalued, but range images are well behaved and single valued) can use any of the 
techniques described above. These include wire mesh or line profile displays, contour maps, 
and shaded isometric displays, all shown in more detail in Chapter 15. These all involve a 
certain level of abstraction.

A simple set of line profiles gives an impression of surface elevation and requires no computa-
tion, although the need to space the lines apart loses some detail. Consequently, it is some-
times used as a direct display mode on instruments such as the SEM or STM. Unfortunately, 
the signal that is displayed in this way may not be the true elevation, and in the SEM the 
so-called pseudo-topographic display can be misleading. Adding grid or mesh lines in both 
directions increases the effective spacing and decreases the lateral resolution of the display.

Generating an image of a surface that approximates the appearance of a real, physical surface 
is known generically as rendering and requires some computation. The physical rules that 
govern the way real surfaces look are summarized in Figure 14.55. The important variables 

    
(a)              (b)              (c)

    

        (d)              (e)

Figure 14.54 Presentation modes for the surface elevation data from an optical interferometer (speci-
men is a machined surface of nickel): (a) original image, in which the gray scale brightness encodes 
height; (b) a contour map with color coding to indicate the height of lines; (c) isometric view with 
superimposed gray scale values from image (a); (d) the surface data rendered as it would appear 
with a diffuse material; (e) the surface data rendered as it would appear with a specular material.
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are the intensity and location of the light 
source and the location of the viewer. 
Both are usually given in terms of the 
angles between the normal vector to the 
surface and the vectors to the source 
and viewer. If the absolute reflectivity 
of the surface (or albedo) varies with 
wavelength, the surface appears colored 
because some colors are reflected more 
than others.

Finally, the local roughness of the sur-
face controls the degree of variation in 
the angle of reflection. A very narrow 
angle for this spread corresponds to a 
smooth surface that reflects specularly. 
A broader angle corresponds to a more 
diffuse reflection. One of the very com-
mon tricks in graphic arts, routinely seen 

in television advertising, is the addition of bright specular reflections to objects to make them 
appear metallic and perhaps more interesting. Figure 2.47 in Chapter 2 shows a similar 
specular enhancement applied to scientific imaging.

For a typical surface defined by a few points, as in CAD drawings, the surface is broken into 
facets, often triangular, and the orientation of each facet is calculated with respect to the 
viewer and light source. The reflected light intensity is then calculated and the result plot-
ted on the display screen or other output device to build the image. This is a fast process 
with only a small number of facets, but such images do not look natural. The large flat facets 
and the abrupt angles between them do not correspond to the continuous surfaces that are 
encountered in most real objects.

Shading the brightness values between facets (Gouraud shading) can eliminate these abrupt 
edges and improve the appearance of the image, but requires interpolation. Better smoothing 
can be achieved (particularly when there are specular reflections present) by interpolating the 
angles between the centers of the facets rather than the mean brightness values. The interpo-
lated angles are used to generate local brightness values, which vary nonlinearly with angle 
and hence position. This Phong shading requires more computation.

For continuous pixel images, each set of three pixels can be considered to define a triangu-
lar facet, as shown schematically in Figure 14.56. The difference in value (elevation) of the 

neighboring pixels gives the angles of the local 
surface normal, from which the image bright-
ness for a given light source location and surface 
characteristics completes the solution. Since this 
is done at the pixel or voxel level in the display, 
no interpolation of shading is needed.

When the surface rendering is accomplished in 
this way using section planes that are relatively 
widely spaced, it may produce artifacts in the 
reconstruction that appear to be grooves parallel 
to the section direction (Figure 14.57). The use 

Figure 14.55 Lambertian light scattering from surfaces 
with different specularity. The vectors are N (surface 
normal), L (light source), R (specular reflection), and 
V (viewing direction). The k factors are the diffuse 
and specular reflection coefficients. The I values are 
the intensities of the ambient and principal light 
sources, and h is a constant describing the breadth 
of the specular reflection, which depends primarily 
on the fine-scale surface roughness.

Figure 14.56 Diagram showing the construc-
tion of a triangular tessellation on a surface 
formed by discrete height values for an array 
of pixels.
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of relatively large voxels can produce ren-
dered results that have an artificial blocky 
appearance (Figure 14.58). Applying image 
processing operations beforehand to range 
image data is often used to improve the 
resulting surface image (Figure  14.59). Smoothing with kernels that calculate a weighted 
average can produce Gouraud shading. Applying a median filter removes noise that appears 
as local spikes or holes in the surface. The names of filters, such as the rolling ball operator 
introduced in Chapter 4, come from their use on range images. That particular operator tests 
the difference between the minimum value in two neighborhood regions of different sizes 
and eliminates points that are too low. The analogy is that depressions which a ball of defined 
radius cannot touch as it rolls across the surface are filled in.

Surface rendering of structures isolated within a voxel array can be enhanced by adding 
stereo views (Figure 14.60) and shadows (Figure 14.61). Rendered surface images have the 
appearance of real, physical objects and so communicate easily to the viewer. However, they 
hide much of the information present in the original 3D image data set from which they have 

 

Figure 14.57 Rendered surface of 
a fractured pelvis created from 
sequential tomographic section 
images. Note the appearance of 
grooves and other surface arti-
facts due to the section plane 
spacing.

Figure 14.58 Rendered surface of a spine 
in which the coarse voxel size produces a 
blocky appearance.

Figure 14.59 Rendered image of bones in the feet 
with smooth surface appearance produced by 
interpolated surfaces.

Figure 14.60 CT reconstruction of 
arteries in a human heart, surface 
rendered and shown as a stereo 
pair (courtesy of GE Healthcare).
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been extracted. More complex dis-
plays, which require real ray tracing, 
can make surfaces that are partially 
reflecting and partially transmitting so 
that the surface can be combined with 
volumetric information in the display. 
This presentation has somewhat the 
appearance of embedding the solid 
surface in a partially transparent 
medium, like fruit in Jello. Such dis-
plays can be dramatic in appearance 
and useful for communicating com-
plex three-dimensional information, 
but have too many variable parame-
ters for interactive exploration of com-
plex data sets.

Because surface images are what 
human vision encounters in everyday 
life, they are easily interpreted. This 
makes the use of surface rendering 
very useful for presenting volumetric 
data. Surfaces are defined as a location 
where some voxel property changes 
significantly, very much the same cri-
terion used in Chapter 5 for outlining 

edges in 2D images. Many systems that acquire 3D data can generate rendered surface images 
in real time. Ultrasound scans, like the one in Figure 14.45, are very well accepted and used 
in routine practice in spite of the noise inherent in the technique.

Multiply connected surfaces

Rendering techniques are most needed for complex, multiply connected surfaces, since the 
topology of such structures cannot be studied in 2D images. Rendering these more complex 
surfaces is also possible. Figure 14.62 shows a series of 2D planes in a 3D data set from an 
ion microscope. The sample, a two-phase metal alloy, shows many regions in each image. It is 
only in the full 3D data set that the connection between all of the regions is evident. In fact, 
each of the two phase regions in this specimen is a single, continuous network intimately 
intertwined with the other. This cannot be seen by sectioning through the opaque matrix 
(Figure 14.63).

Volumetric displays of this data set can show some of the intricacy, especially when the live 
animation can be viewed as the rotation is carried out. Figure 14.64 shows a few orientations 
of the data set using ray tracing to produce a volumetric display; viewed rapidly in sequence, 
these produce the visual effect of rotation. However, the complexity of this structure and 
the precedence in which features lie in front and in back of others limit the usefulness of 
this approach. Isolating the boundary between the two phases allows a rendered surface 
to be constructed, as shown in Figure 14.65. This faceted display can be drawn quickly 
enough to support interactive viewing as an analysis tool. A complete smoothed rendering 
(Figure 14.66) takes somewhat longer.

Figure 14.61 Anaglyph stereo view of rendered dendrites, 
with shadows.
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When cubic voxel images are obtained from 3D tomography, rendering of internal surfaces 
produces a high quality result, as shown in Figure 14.67. In this case, the pore structure in 
the sandstone has been rendered as a solid, while the matrix has been made transparent. Such 
reversals of contrast can be extremely useful for visualizing complex structures.

The rendering of a surface follows the determination of the various surface facets. The sim-
plest kind of facet is a triangle. In the example shown in Figure 14.65, a series of narrow 
rectangles or trapezoids is used to connect together points along each section outline. Since 
the plane spacing is not the same as the in-plane resolution, interpolation between the planes 
is required, which makes the curvature and roughness of surfaces different in the depth or z 
direction. For features in which the sections are similar in shape and size, this faceting is fairly 

Figure 14.62 Sequential images 
from an ion microscope, 
showing two phase structure 
in an Fe-45% Cr alloy aged 
192 hours at 540°C (courtesy 
of M. K. Miller, Oak Ridge 
National Laboratories, Oak 
Ridge, TN).

 

Figure 14.63 Section views of the 3D voxel array formed from the data in Figure 14.62: (a) stored 
brightness values along several arbitrary orthogonal planes; (b) stored values on a series of paral-
lel planes with dark voxels made transparent.
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straightforward. When the shapes change considerably from section to section, the resulting 
facets offer a less realistic view of the surface shape.

The greatest difficulty is dealing with splits and merges in the structure. These arise when the 
number of outlines in one section is different from that in the next, and so the surface must 
somehow divide. Figure 14.68 shows two ways to do this. In one, the junction lies in one of the 
planes. It may either be located manually or by various algorithms, such as dividing the feature 
normal to its moment axis at a point which gives area ratios equal to those of the two features 
in the next section. The rendered result is fairly easy to draw, since no surface facets intersect.

The second method constructs surface facets from sets of points along the feature bound-
aries from the single feature in one section to both of the features in the next section 
plane. This technique moves the junction into the space between planes and produces 
a fairly realistic picture, but requires more calculation. The intersecting planes must be 
drawn with a z buffer, a computer graphics technique that records the depth (in the 
viewing direction) of each image point and only draws points on one surface where they 
lie in front of the other.

Figure 14.64 Volumetric displays from the 
data in Figure 14.62 using ray trac-
ing and absorption rules. Viewing in 
rapid succession these rotational views 
produces a movie that reveals the 3D 
structure.

 

 

Figure 14.65 Rendering of the boundary sur-
face between the two phases in the speci-
men from Figure 14.62, by interpolating 
planar facets between the planes.
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The major drawback to surface rendering from 
serial section outlines is that the surfaces hide 
what is behind them, and even with rotation it 
may not be possible to see all parts of a complex 
structure. Combining surface rendering with 
transparency (so that selective features are shown 
as opaque and others as partially or fully trans-
parent, letting other structures behind become 
visible) offers a partial solution. Figure 14.69a 
shows an example in which one kind of fea-
ture (the white spheres) is opaque, the matrix 
is entirely transparent, and the remainder of the 
structure is volumetrically rendered with trans-
parency. The example in Figure 14.69b shows 
internal surfaces in a microelectronics device, 
rendered with the matrix entirely transparent to 
show the geometry of the embedded structure. 
The combination of colors to identify particular 
structures, selective transparency, and surface 
rendering produce very effective visualization, 
especially when combined with the ability to 
rotate the data set.

Multiple colors are useful to distinguish the many features that may be present in a complex 
structure. Figure 14.70 shows the approximately 200 roughly spherical particles from the 
data in Figure 14.23 individually color labeled. This use of pseudo-color can be particularly 
important to identify the continuity of multiply connected surfaces.

Serial section reconstruction for 3D displays is certainly not restricted to microscopy and 
medical applications. The study of woven textiles and fibers used in composite materials 
uses the same methods (Gowayed et al., 1991). Figure 14.71 uses color coding to identify 
the muscles and bones in a common everyday example of serial sectioning. The images were 

  
(a)                     (b)

Figure 14.66 Two high-resolution rendered views of the boundary surface between the two phases in 
the specimen from Figure 14.62.

Figure 14.67 Rendered surface image from 
Micro-CT data set (images courtesy of 
Skyscan, Aartselaar, Belgium). The poros-
ity in the sandstone has been rendered as 
a solid object and the solid matrix made 
transparent in order to show the connectiv-
ity and complexity of the pore structure.
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acquired by visiting a local supermarket and photographing each roast cut from a side of beef. 
After aligning the images and thresholding them to delineate the various structures, the stack 
of slices can be rendered to reveal the three-dimensional structure of the muscles and bones. 
However, the volume, surface area, and length of these structures can be determined much 
more efficiently by using the stereological procedures shown in Chapter 9 to draw grids and 
count points on the individual slices.

  

Figure 14.68 Two ways to render 
a surface from serial section 
outlines where splits or merges 
occur:

  (a)  dividing one plane into arbi-
trary regions which corre-
spond to each branch;

  (b)  continuous surfaces from 
each branch to the entire next 
outline, forming an intersec-
tion between the planes.

      (a)              (b)

(a)

Figure 14.69 Combining surface rendering with 
full or partial transparency to show internal 
structures, as described in the text (images from 
Kubel et al., 2005, courtesy of Dr. Christian 
Kubel, Fraunhofer Institute):

  (a)  gold marker particles (bright) and a high-
density region in hydrogen storage medium, 
imaged by TEM tomography;

  (b)  green shaded copper interconnect lines 
containing red voids, with blue etch-stop 
layers, imaged by high angle annular dark 
field STEM tomography.

(b)
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Image processing in 3D

The emphasis so far has been on the display 
of 3D image data, with little mention of pro-
cessing. Most of the same processing tools 
described in the preceding chapters for 2D 
images can be applied to 3D images for the 
same purposes (Nikolaidis & Pitas, 2001; 
Landini et al., 2006; Ohser & Schladitz 2009). 
Arithmetic operations such as ratios in multi-
band data are used, for instance, in exactly the 
same way. Each voxel value is combined with 
the value of the voxel at the same location in 
the second image. This kind of operation does 
not depend on the images having cubic vox-
els, but does require that they be aligned or 
registered to each other. Procedures for merg-

ing an array of 2D images to form a larger image can be extended directly to 3D voxel arrays 
(Emmenlauer et al., 2009). Histogram manipulation is carried out in 3D just as in 2D.

Many processing operations that use neighborhoods, e.g., for kernel multiplication, template 
matching, rank operations, and so forth, require cubic voxel arrays. In a few instances, a con-
volution kernel may be adapted to non-cubic voxels by adjusting the weight values so that the 
different distance to the neighbors in the z direction is taken into account. This adjustment 
only works when the difference in z distance is small as compared to the x, y directions, for 
instance a factor of 2 or 3 as may be achieved in the confocal light microscope. It does not 
work well if the image planes are separated by ten (or more) times the magnitude of the in-
plane resolution. And any departure from cubic voxel shape causes serious problems for rank-
ing or template-matching operations.

In such cases, it is most practical to perform the processing on the individual planes and 
then form a new 3D image set from the results. Figure 14.72 shows a series of views of the 
MRI head images used above. The skull has been eliminated, individual image planes have 
been processed with a Frei and Chen edge operator, and the resulting values used to create 

Figure 14.70 Rendered surface image of spheri-
cal particles from a reconstruction created by 
interpolating surface tiles between the slices 
shown in Figure 14.23 and assigning arbi-
trary colors to distinguish the objects.

  
(a)              (b)              (c)

Figure 14.71 Serial sections through a side of beef: (a) one section with features numbered; (b) stack of 
slices shown as outlines; (c) rendered result, showing selected muscles with solid surfaces and several 
bones with dashed outlines.
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a volumetric display. These edges show the internal structure as well as the surface wrinkles 
in the brain.

A display trick is used in the figure. It is not clear just what volumetric display mode is appro-
priate for such processed images. Instead of the conventional absorption mode, in which 
transmitted light is passed through the data array, these images use the emission mode, in 
which each voxel emits light in proportion to its value. That value is the “edgeness” of the 
voxel as defined by the Frei and Chen operator. In other words, the presentation shows edges 
glowing in space. In a live animation, or for those readers who can use pairs of the images to 
view the 3D data set stereoscopically, this image creates a strong impression of the 3D struc-
ture of the brain.

This illustration indicates the flexibility with which display rules for 3D images can be bent. 
Non-traditional display modes, particularly for processed images, are often effective for show-
ing structural relationships. There are no universal guidelines, except for the need to sim-
plify the image by eliminating extraneous detail to reveal the structure that is important. An 
experimental approach is encouraged.

Two-dimensional processing of image planes in a 3D data set should be used with some care. 
It is only justified if the planes have no preferred orientation and are random with respect 
to the structure, or conversely if the planes have a very definite but known orientation that 
matches that of the structure. The latter situation applies to some situations involving coat-
ings. When possible, 3D processing is preferred, although it imposes a significant comput-
ing load. The size of neighborhoods increases as the cube of dimension. A kernel of modest 
size, say 9 × 9, may be fast enough for practical use in 2D, requiring 81 multiplications and 
additions for every pixel. In 3D, the same 9 × 9 × 9 kernel requires 729 multiplications and 
additions per voxel, and of course the number of total voxels in the 3D array is much greater 
than the number of pixels in the 2D image, so that processing takes much more time.

Figure 14.72 Several views of the brain from the MRI data set. Each pair of images can be viewed in 
stereo, or the entire sequence used as an animation. Structures are visible from the cleft and folds in 
the top of the brain to the spinal column at the bottom.
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For complex neighborhood operations such as gradient or edge finding in which more than 
one kernel is used, the problem is increased further because the number of kernels must 
increase to deal with the higher dimensionality of the data. For instance, the 3D version of 
the Sobel gradient operator uses the square root of the sum of squares of derivatives in three 
directions. Since it takes two angles to define a direction in three dimensions, an image of 
gradient orientation requires two values, and it is not clear how it can be used or displayed.

The Frei and Chen operator (Frei & Chen, 1977), a very useful edge detector in 2D images 
introduced in Chapter 5, can be extended to three dimensions by adding to the size and num-
ber of the basis functions. For instance, the first basis function (which measures the gradient 
in one direction and corresponds to the presence of a boundary) in a 2D image is:
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In three dimensions the corresponding 3 × 3 × 3 kernel is a surface detector:
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Similar extensions are made for the other kernels from 2D to 3D. In three dimensions, it is 
also possible to construct a set of basis functions to search for lines as well as surfaces.

Three-dimensional processing can be used in many ways to enhance the visibility of structures. In 
Figure 14.41a, the boron concentration is shown volumetrically using emission rules. However, 
the overlap between front and rear portions of the structure makes it difficult to see all of the 
details. The surface rendering in Figure 14.42 also suffers in this regard. Figure 14.73 shows the 
same structures after 3D processing. Each voxel in the new image has a value that is proportional 
to the variance of voxels in a 3 × 3 × 3 neighborhood in the original image set. These values are 
displayed volumetrically as a transmission image. In other words, the absorption of light coming 
through the 3D array is a measure of the presence of edges; uniform regions appear transparent. 

 

Figure 14.73 Volumetric dis-
play of Boron concentra-
tion from SIMS data set in 
Figure 14.26. The series of 
images shows pseudo-rota-
tion, using the local 3D 
variance in pixel values 
to locate edges. The mag-
nitude of the variance is 
treated as a density value 
to absorb light along rays 
passing through the voxel 
array.
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The visibility of internal surfaces in this “cellophane” display is much better than in the original, 
and the surfaces do not obscure information behind them, as they may with rendering.

The computational requirements for neighborhood operations are worse for ranking operations 
than for convolutions. The time required to rank a list of values in order increases not in propor-
tion to the number of entries, as in the kernel multiplication case, but as N • log (N), assuming 
a maximally efficient sorting algorithm. Consequently, ranking operations in large 3D neighbor-
hoods take a relatively long time. Furthermore, a hybrid median filter in 3D uses many more 
sub-neighborhoods covering different orientations than the 2D versions shown in Chapter 4.

For template-matching operations such as those used in implementing erosion, dilation, skel-
etonization, and so forth, the situation is even worse. The very efficient methods possible in 
2D by using a lookup or fate table based on the pattern of neighbors no longer work. In 2D, 
there are 8 neighbors so a table with 28 = 256 entries can cover all possibilities. In 3D there 
are 26 adjacent neighbors and 226 = 67 million patterns. Consequently, either fewer neigh-
boring voxels can be considered in determining the result (e.g., just the six face-touching 
neighbors), or a different algorithm must be used, for instance one that takes advantage of all 
of the symmetries in neighbor patterns.

The basic morphological operations (erosion, dilation, and their combinations) have direct gen-
eralizations in three dimensions (Gratin & Meyer, 1992). When cubic voxels are used, consid-
eration must be given to the difference between face-, edge-, and corner-touching neighbors. 
Just as in two dimensions it is necessary to distinguish between 4-connectedness (touching 
pixels share an edge) and 8-connectedness (touching pixels share a corner), so in three dimen-
sions there are 6-, 18-, and 26-connectedness possibilities for voxels (sharing a face, edge, or 
corner, respectively). For practical reasons, many methods use 6-connectedness as the simplest 
definition.

The pixel touching criterion chosen has an impact on thresholding and feature enumeration, 
because different criteria for connectedness can join or separate regions. The fact that many 
voxel-based 3D images have poorer resolution than 2D pixels also limits the ability to define 
features. Thresholding a 3D array is sometimes approached by thresholding 2D slices and 
requiring that thresholds are related from one slice to the next (Anderson et al., 2005; Chan 
et al., 2007). In some three-dimensional data arrays, thresholding based on voxel value is a 
simple and effective method. But in complex structures, methods based on region growing 
are often used, in which the user identifies a seed pixel and then all connected voxels (usually 
based on 6-connectedness) having values within some tolerance band are selected. Another 
approach to segmentation of features uses a three-dimensional extension (“balloons”) of the 
active contours (“snakes”) used in two dimensions (Kaes et al., 1987; Cohen, 1991).

The three-dimensional analog of a Euclidean distance map can be constructed by a direct 
extension of the two-dimensional method and has the same advantages both for improv-
ing isotropy and for distance measurement from surfaces or boundaries (Borgefors, 1996). 
However, watershed segmentation in three dimensions has only rarely proved useful.

Skeletonization of a 3D voxel array is performed using the same logic as in 2D, by remov-
ing a voxel from a thresholded binary structure if it touches a background or OFF voxel, 
unless the touching ON voxels did not all touch each other (Borgefors et al., 1999; Halford 
& Preston, 1984; Lobregt et al., 1980). If touching is considered to include the corner-to-
corner diagonal neighbors as well as edge-to-edge touching and face-to-face touching, 
then a minimum skeleton can be constructed. However, if a table for the 26 possible 
touching neighbors cannot be used, then it is necessary to count the touching voxels for 
each neighbor.
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Skeletonization in 3D is entirely different from performing a series of skeletonizations in the 
2D image planes and combining or connecting them. In 3D, the skeleton becomes a series 
of linear links and branches that depict the topology of the structure. If the operation is per-
formed in 2D image planes, the skeletons in each plane can be connected to form a series 
of sheetlike surfaces that twist through the three-dimensional object and have a different 
topological relationship to the structure. A skeleton of linear links and branches in 3D can 
be formed by connecting the ultimate eroded points (UEPs) in each section, and a different 
skeleton can be constructed by joining the branch points in the 2D sections. Neither is identi-
cal to the skeleton constructed directly from conditional erosion of the voxel array, or the 3D 
equivalent of the medial axis transform, obtained from the 3D Euclidean distance map.

Measurements on 3D images

As shown in previous chapters, one of the reasons to collect and process images is to obtain 
quantitative data from them. This is true for 3D imaging as well as 2D, although most of the 
use of 3D images to date has been for visualization rather than measurement. Some additional 
observations about the kinds of measurements that can be performed, their practicality, and 
the accuracy of the results may be useful.

Measurements are broadly classified into two categories: feature specific and global or scene 
based. The best known global measurement is the volume fraction of a selected phase or 
region. Assuming that the phase can be selected by thresholding (perhaps with processing as 
required), then the volume fraction can be estimated by counting the voxels in the phase and 
dividing by the total number of voxels in the array or in some other separately defined refer-
ence volume. The result is independent of whether the voxels are cubic. The same result can 
be obtained by counting pixels on image planes and does not depend on the arrangement of 
the planes into a 3D array.

A second global parameter is the surface area per unit volume of a selected boundary. There 
are stereological rules for determining this value from measurements on 2D images, as pre-
sented in Chapter 9. One method counts the number of crossings that random lines (for a 
random structure, a regular grid can be used) make with the boundary. Another method 
measures the length of the boundary in the 2D image. Each of these values can be used to 
calculate the 3D surface area.

It might seem that directly measuring the area in the 3D data set would be a superior method 
that does not require so many assumptions. In practice, it is not clear that this is so. First, the 
resolution of the boundary, particularly if it is irregular and rough, depends critically on the 
size of pixels or voxels. The practical limitation on the number of voxels that can be dealt with 
in 3D arrays may force the individual voxels to be larger than desired. A 1000 × 1000 pixel 
image in 2D requires 1 megabyte of storage, while the same storage space can hold only a 100 
× 100 × 100 3D voxel array.

The use of smaller pixels to better define the boundary is not the only advantage of performing 
measurements in 2D. The summation of boundary area in a 3D array must add up the areas 
of triangles defined by each set of three voxels along the boundary. The summation process 
must be assured of finding all of the parts of the boundary, but there is no unique path that 
can be followed along a convoluted or multiply connected surface that guarantees finding all 
of the parts. For other global properties, such as the length of linear features or the curvature 
of boundaries, similar considerations apply. The power of unbiased 2D stereological tools for 
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measuring global metric parameters is such that the efficiency and precision of measurement 
make them preferred in most, but not all, cases (Leroux et al., 2009).

Feature-specific measurements include measures of size, shape, position, and density. Examples 
of size measures are volume, surface area, length (maximum dimension), and so forth. In three 
dimensions, these parameters can be determined by counting, or from calculations that are 
analogous to those used for size measurements in 2D. The same difficulties for following a 
boundary in 3D mentioned above still apply. But in 2D images the measurements of features 
must be converted to 3D sizes using relationships from geometric probability. These calcula-
tions are based on shape assumptions and are mathematically ill conditioned. This means that 
a small error in measurements or assumptions is magnified in the calculated size distribution.

Simple shapes such as spheres produce reasonable results. Figure 14.74 shows the result for 
the tomographic image of spherical particles shown in Figure 14.70. The measurement on 2D 
plane slices gives circle areas that must be unfolded to get a distribution of spheres, as shown 
in Chapter 9. The result shows some small uncertainties in the distribution, including nega-
tive counts for some sizes which are physically impossible (and are clipped to zero in practice). 
But the total number and mean size are in fairly good agreement with the results from direct 
3D measurement and require much less effort.

When feature shapes are more complicated or variable, the simple 2D methods do not work. 
For irregular shapes, the mean and standard deviation of the volume distribution can be 
determined as Chapter 9 describes. But if information on the distribution of shapes and sizes 
is needed, then measurement in 3D, in spite of the problem of limited resolution, is the only 
available technique.

The position of features in 3D is not difficult to determine. Counting pixels and summing 
moments in three directions provides the location of the centroid and the orientation of 
the moment axes. Likewise, feature density can be calculated by straightforward summa-
tion. These properties can be determined accurately even if the voxels are not cubic and are 
affected only slightly by the limitation in voxel resolution.

Shape is a difficult concept even in two dimensions. The most common shape parameters are 
formally dimensionless ratios of size, such as (volume)1/3/(surface area)1/2 or length/breadth. 
Length is easy to define as the longest dimension, but just as for the 2D case, the proper mea-
surement procedure and even the definition for breadth are not so obvious. The selection of 
a parameter which has meaning in any particular situation is very ad hoc, either based on the 
researcher’s intuition or on trial and error and statistical analysis. In 3D the values may be less 

Figure 14.74 Comparison of 2D and 3D measurement of size of spherical particles in the structure 
shown in Figure 14.70: (a) directly measured size distribution of spheres from 3D voxel array; (b) 
size distribution of circles in all 2D plane sections; c) estimated size distribution of spheres by unfold-
ing the circle data in (a) (note negative values).
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precise because of the poorer voxel resolution, but the accuracy may be better because the 
size parameters used are less biased. It may be important to the user’s intuition to consider 
three-dimensional shape factors, which are no less unfamiliar than two-dimensional ones.

The other approaches to shape in 2D are harmonic analysis (which unrolls the feature bound-
ary and performs a Fourier analysis on the resulting plot) and fractal dimension determination; 
both are introduced in Chapter 11. These parameters can be determined efficiently in two 
dimensions, but only with greater difficulty in three dimensions. Since the 2D results are 
related stereologically to 3D structure (assuming, of course, that the sections are isotropic, 
uniform, random samples of the structure), it is often preferable to perform these measure-
ments on the individual 2D image planes.

Closely related to shape is the idea of topology. This is a non-metric description of the basic 
geometrical properties of the object or structure. Topological properties include the numbers 
of loops, nodes, and branches (Aigeltinger et al., 1972). The connectivity per unit volume of 
a network structure is a topological property that is directly related to such physical prop-
erties as permeability. It is not possible to determine topological properties of 3D struc-
tures from single 2D images (although minimal 3D probes such as the Disector can provide 
unbiased estimates of some topological values, principally the number and the connectivity). 
Topological properties can be measured directly on the 3D data set, perhaps after skeletoniza-
tion to simplify the structure (Russ & Russ, 1989). An example, a 3D reconstruction showing 
the topology of an overhand knot, is shown in Chapter 9, Figure 9.25.

There is little doubt that 3D imaging will continue to increase in capability and popularity. 
It offers direct visualization and measurement of complex structures and 3D relationships, 
which cannot be as satisfactorily studied using 2D imaging. Most of the kinds of imaging 
modalities that produce 3D images, especially tomographic reconstruction and optical sec-
tioning, are well understood, although the hardware will benefit from further development (as 
will the computers and software). In many cases, the 3D methods also simplify the specimen 
preparation requirements.

Current display methods are barely adequate to the task of communicating the richness of 3D 
image data sets to the user. New display algorithms and interface control devices will surely 
emerge, driven not only by the field of image processing but also by other related fields such 
as visualization of supercomputer data and (especially) interactive computer games. The abil-
ity of humans to interpret (usually correctly) realistic surface renderings of complex struc-
tures makes these displays very important for many applications. The continued increase in 
computer power and memory is certain. The quality of surface renderings, in particular, will 
continue to improve as developments flow from corporate and university research facilities to 
routine use in hospitals and industry. Watching and using these developments offer an excit-
ing prospect for the future.
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15
Imaging Surfaces

In many disciplines surfaces are more important than bulk structures. Mechanical interac-
tion between parts involves friction and wear between surfaces, many chemical interac-
tions take place on surfaces (including catalysis), and most modern electronic devices 

consist of thin layers of materials laid down in intricate patterns on the surface of substrates. 
The appearance of objects is dominated by their surface characteristics, textures, and coat-
ings. In all these cases and many more, scientists and engineers need to characterize sur-
faces and the ways in which fabrication and use modify them. Imaging plays important roles 
in obtaining the information as well as presenting it for human visualization and analysis. 
As Chapter 2 points out, human vision is well experienced at interpreting images of sur-
faces, and the presentation of various types of data rendered as a surface is a common data 
visualization tool.

Producing surfaces

Surfaces are produced in a wide variety of processes, some tightly controlled and some quite 
chaotic. One of the oldest techniques by which mankind has produced intentional surfaces is 
by removal of material, for instance creating a statue or a stone tool by removing chips from a 
larger block of stone. Modern fabrication of parts typically involves machining, grinding, and 
polishing to remove material and to create a surface with specific macroscopic dimensions 
and also microscopic roughness.

Machining is a process in which a cutting tool removes chips from the material as the tool is 
moved relative to the workpiece. The shape of the tool’s cutting tip or edge, its speed, and 
the depth of cut control the dynamics of chip formation, which can be either ductile (long 
continuous chips) or brittle (short broken ones). The surface typically displays long grooves 
in one direction whose shape is determined in large part by the shape of the tool. Grinding 
is a process in which many small cutting points, typically facets of hard particles cemented 
together into a wheel, simultaneously remove material from a surface. A third mode of surface 
modification, polishing, results when many loose hard particles slide and roll between two 
surfaces, removing material as the surfaces move relative to one another. Impact erosion (such 
as sandblasting) uses particles to produce small craters on the surface. Each of these processes 
involves both plastic deformation and fracture, and has many variables such as applied forces, 
the presence of liquids, etc., which dramatically modify the appearance and performance of 
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the resulting surface (as well as the tools or particles doing the work). There are a wide variety 
of other methods, such as electrical spark discharge, plastic deformation of surfaces by roll-
ing, forging, or extrusion, chemical etching, and so on, which modern technology employs to 
produce surfaces of parts by the removal or rearrangement of material. Figure 15.1 shows a 
few different example surfaces.

  
(a)                       (b)

   
(c)                       (d)

Figure 15.1 Range images of metal surfaces (each shows 1 square millimeter with gray scale propor-
tional to elevation): (a) machined (flycut) surface of aluminum; (b) ground surface of stainless steel; 
(c) vapor-polished surface of aluminum; (d) shot-blasted surface of brass. Images obtained with 
a scanning probe instrument with 5 µm radius diamond stylus (courtesy of Rank Taylor Hobson 
Ltd.).
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There are also methods which build up surfaces by deposition. Again, this may be physical or 
chemical. Liquids such as paints and glazes solidify to leave solid coatings, sometimes accom-
panied by polymerization or formation of crystalline structures. Liquids may solidify in a mold 
which controls some of the surface morphology, while in some cases forces such as viscosity 
and surface tension are more important than the actual mold surface. Freezing of liquids or 
gases onto a substrate may produce either very smooth or extremely rough surfaces, depend-
ing on how the particles and molecules can move on the surface (Figure 15.2). Electroplating 
typically produces smooth surfaces by deposition of atoms from chemical solution, while bal-
listic deposition and aggregation of particles may generate ones with porous fractal surfaces. 
Some deposited layers are then subjected to selective removal, either by chemical or physical 
processes. This is the process by which complex multilayer electronic chips and microme-
chanical devices are fabricated.

Another concern about surfaces is their cleanliness. The presence of molecules or particulates, 
either lying loosely on the surface or attached by electrostatic or chemical forces, can disrupt 
the deposition of the carefully controlled layers used in microelectronics, so elaborate clean 
rooms and handling methods are required. Surface defects such as pits and scratches are also 
of concern. Chemical modification of surfaces is called contamination, oxidation, or corrosion, 
depending on the circumstances. This is strongly influenced by the environment. Sometimes 
such processes may be carried out intentionally to protect the original surface from other 
environmental effects (for instance, aluminum is anodized to produce a thin oxide layer that 
provides a chemically inert, mechanically hard surface resistant to further contamination in 
use). Electrical and optical properties of surfaces can be modified greatly by extremely thin 
contamination layers.

In all these cases, there is a great need to characterize the surfaces so that the topography of 
the surface and perhaps other properties, such as chemical composition or electrical param-
eters, can be determined. Some of the surface characterization data are obtained directly by 
imaging methods. Even when the data are obtained in other ways, visualizing the surfaces is 

 

Figure 15.2 Photograph of a glaze covering a ceramic 
pot. The glaze flows down the surface in a molten 
state and solidifies to an amorphous glass under 
the forces of surface tension. Subsequently, the 
atoms rearrange themselves to form crystals which 
nucleate and grow in the glaze, producing visually 
interesting patterns and also altering the surface 
relief.
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an imaging technique, relying on the human interpretation of the images to detect important 
information about the surfaces. Measurement often follows visualization, to reduce the image 
data to a few selected numbers that can be used for process control, and to correlate the struc-
ture of the surfaces with their fabrication history on the one hand and with their performance 
and behavior on the other.

Imaging surfaces by physical contact

Most of the measurement methods used to characterize surfaces are based on either some 
kind of microscope that provides magnified images of the surface, or physical contact using a 
small mechanical probe, or scattering of radiation or particles from the surface. The methods 
may provide measurement of either composition or geometry, including the thickness of thin 
layers. Many different kinds of microscopes (and some tools that may not be conventionally 
thought of or named as microscopes) are used to study surfaces (Castle & Zhdan, 1997, 1998; 
Van Helleputte et al., 1995; Russell & Batchelor, 2001). Many of these require no surface prepa-
ration, or at most minimal cleaning; a few, such as the SEM, may require applying conduc-
tive coatings to electrical insulators. The common methods use visible light, electrons, ions, 
physical contact, electron tunneling, sound waves, and other signals to produce images that 
sometimes can be directly related to the surface geometry and in other cases are primarily 
influenced by the surface slope, composition, coating thickness, or microstructure. The most 
immediately useful and interpretable imaging methods are those whose output consists of 
“range” values in which the elevation of the surface is directly represented in the values, often 
shown as either profile traces or gray scale images. Although most of the examples shown 
here are ones in which the gray scale represents elevation, it should be understood that a 
similar display of chemical information or elemental concentration can be dealt with using the 
identical measurement and visualization tools.

One method that covers some of the newest devices, such as the Atomic Force Microscope 
(AFM), and old and well-established methods used in industrial manufacturing, such as pro-
filometers, is the use of a mechanical stylus that is dragged across the surface. Motion of the 
stylus is amplified to record the elevation of the surface point by point. If a full raster scan is 
used, this produces an array of elevation data that can be displayed as an image, as shown by 
the examples in Figure 15.1. If the mass of the moving parts of the stylus assembly is kept 
as low as possible, forces of milligrams or less can keep the stylus in contact with the surface 
(at least for surfaces that have slopes up to about 45 degrees) at fairly high scanning rates. 
The images in Figure 15.1 were obtained in about 50 seconds each, as an array of 500 × 500 
points covering a 1 mm square area.

Stylus instruments used in industry typically use diamond-tipped styli with a tip radius of 
a few micrometers, which defines the lateral resolution that the instruments can provide. 
Vertical motion may be sensed using inductive, capacitance, or interference gauges, which are 
capable of sub-nanometer sensitivity. With suitable calibration, which is typically provided by 
scanning over known artifacts traceable to national standards bureaus such as NIST (USA) or 
NPL (UK), these methods are routinely used to quantitatively measure surface elevations in 
many industrial settings, to measure surface finish, the thickness of layers, etc. These instru-
ments have primarily been used with metal and ceramic parts, but are also capable of measur-
ing a wide variety of softer and more fragile materials, as shown in Figure 15.3.

The AFM also uses a stylus but a much smaller one (Quate, 1994; Binnig et al., 1986; Gould 
et al., 1990; Wickramasinghe, 1991). The scanning tunneling microscope (STM) stimulated 
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a range of new microscopies which use essentially the same scanning method and similar 
feedback principles to obtain images with nanometer lateral as well as height resolution. The 
atomic force microscope was introduced in 1986 as a new instrument for examining the sur-
face of insulating crystals. There was a clear implication from the first that it would be capa-
ble of resolving single atoms, although unambiguous evidence for atomic resolution did not 
appear until 1993. The AFM has evolved into a flexible instrument that provides new insights 
in the fields of surface science, electrochemistry, biology, and physics, and new adaptations 
of the technology continue.

By etching silicon or silicon nitride to a sharp point, by depositing carbon in such a way that it 
grows into a long thin spike, or by utilizing carbon nanotubes (“Buckytubes”), a stylus can be 
fabricated with a tip radius of a few nanometers (Figure 15.4). This allows much greater lat-
eral resolution than profilometer styli. But such tips are extremely fragile and easily deformed, 
so a variety of techniques have been devised to utilize them to probe a surface. Classically, 
the tip is used as a reference point and the surface is translated in the z (elevation) direction 
to contact it. The tip is attached to a cantilever arm whose deflection is monitored by deflec-
tion of a light beam on the rear face or sometimes by interference measurement, and vertical 
sensitivity better than 1 nanometer is easily obtained. Either the sample or the stylus can be 
translated in an x, y raster pattern to cover the entire surface to create a complete image. The 
translation is typically accomplished with piezoelectric devices, which limits the total range 
of motion.

The traditional and still most common mode of operation places the tip in sliding contact with 
the surface. In order to reduce the lateral and shear forces on the stylus and the surface, the 
stylus may be rapidly raised and lowered (“tapping mode”), or the lateral forces may be mea-
sured by the twisting of the stylus to determine the elastic modulus of the surface material, 
or the friction between the stylus and surface. Additional modes can be used in which physi-
cal contact is not required. For example, the stylus can track the surface without touching it 
(with somewhat lower resolution) by using attractive Van der Waals forces. In addition, some 

 
(a)                       (b)

Figure 15.3 Range images of soft or fragile surfaces obtained with the same scanned stylus instrument 
used for Figure 15.1: (a) paper; (b) microelectronic chip (courtesy of Rank Taylor Hobson Ltd.).
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systems use strategies such as heating the tip and measuring the heat loss when it is close to 
the surface, vibrating it and measuring a change in characteristic frequency when it is close 
to the surface, or using the tip as a guide for light photons that interact with the surface and 
detect its presence without contact. The electric or magnetic force gradient and distribution 
above the sample surface can be measured using amplitude, phase, or frequency shifts, while 
scanning capacitance microscopy measures carrier (dopant) concentration profiles on semi-
conductor surfaces. Attaching molecules to the tip (“functionalizing” it) makes it possible to 
measure atomic bonding forces as the tip is moved across the surface.

The original operational mode, whose development won a Nobel prize (Gerd Binnig and 
Heinrich Rohrer, 1986), was scanning tunneling microscopy (STM), which measures the sur-
face electronic states in semiconducting materials. The variety of operational modes of the 
scanned probe microscope seems nearly unlimited as manufacturers and users experiment 
with them, but many of these techniques are applicable only to a particular set of materials 
and surface types, and the physical meaning of the images obtained is not always clear. The 
same technology has been used to modify surfaces, either by pushing individual atoms around 
or by writing patterns into masks used for lithographic manufacture of microelectronic and 
micromechanical devices.

One of the problems faced by AFMs is the difficulty in making quantitative dimensional mea-
surements. The original designs used open-loop piezoelectric ceramic devices for scanning, 
which suffer from hysteresis and non-linearity. Software correction, no matter how elegant, 
can only go so far in correcting the resulting image distortions and measurement errors due 
to its inability to adapt to the topography of each individual sample. This particularly affects 
the use of the AFM in the metrology-intensive semiconductor industry. More recent designs 
employ a separate measurement device in each axis to provide a closed-loop measurement of 
the piezo scanner’s movement. Using either interference or capacitance gauges, these permit 
accurate measurements to be made on small structures such as microelectronic and microme-
chanical devices, magnetic storage devices, and structures such as the compact disk stamper 
shown in Figure 15.5.

 

Figure 15.4 Scanning elec-
tron microscope image of 
an ultrafine tip used for 
high resolution atomic force 
microscopy (image courtesy 
of Topometrix Corp.).
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The AFM is limited in the area that it can scan and the speed with which it can do so, in the 
relief of the specimen which can be present without interfering with the cantilever arm, and 
the steepness of slopes (or undercuts) that can be accessed by the tip. Special designs which 
attempt to alleviate one or more of these limitations are required for specific applications, as 
is true for all surface measurement approaches. But it is useful to have an overview of the gen-
eral range of capabilities of the different techniques. Figure 15.6 shows of graph (a Stedman 
diagram, named after Margaret Stedman of the British National Physical Laboratories) that 
plots the range of lateral and vertical distances accommodated by various surface measure-
ment techniques. The minimum vertical dimensions detected by the AFM and traditional stylus 
instruments are about the same, but the AFM has much better lateral resolution and the stylus 

instruments have a much larger range. 
Some of the other techniques plotted 
on the diagram are considered later in 
this chapter, but none of them offers a 
perfect combination of range and reso-
lution in both vertical and lateral direc-
tions along with quantitative accuracy 
and an ability to deal with most kinds 
of surfaces.

Noncontacting measurements

All stylus instruments, indeed all tech-
niques that examine one point at a 
time, are limited in speed by the need 
to move a probe with finite mass across 
the specimen in a raster pattern, one 
line at a time. Most stylus methods also 
touch the surface, which raises concerns 
about specimen damage. AFMs have 
been used to create surface topography 

  
(a)                       (b)

Figure 15.5 AFM images of a defect (outlined region) on a CD stamper (image courtesy of Topometrix 
Corp.).

Figure 15.6 Comparison of the typical range and resolu-
tion of several surface imaging technologies (Stedman 
diagram).
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as well as to image it, and industrial stylus instruments are often accused of leaving surface 
markings where they have been used on soft metal or polymer surfaces. For some surfaces the 
best solution is to make a replica that can be scanned. Plastic replicas can preserve fine detail, 
as shown in Figure 15.7, and alleviate concern about damage to the original specimen.

Using light as a probe should overcome concerns about speed or damage. Unfortunately, it 
also raises other issues. One problem is that the light does not interact with the same surface 
that the tip feels, so that the measured elevation does not agree with that from the stylus meth-
ods (which are accepted according to various international standards for surface measure-
ment). In many materials the light waves penetrate to a small distance beneath the surface as 
they are reflected, and this surface impedance depends upon the dielectric properties of the 
material (which may be modified near the surface by contamination or oxidation layers). Very 
fine scale structure can also produce speckle and interference effects that alter the returned 
light in ways that mimic quite different surface structures and give incorrect results. Also, 
the presence of contaminant or oxidation films or local surface tilt angles of more than a few 
degrees can reduce the amount of light scattered back to the detector so that some points on 
the surface are not measured at all.

There are a variety of ways that light can be used to probe surfaces. One choice is to use a 
beam of light focused to a point that is then scanned over the sample in the same way that a 
stylus would be, while other instruments image light from the entire area of interest at once. 
Point probes may use confocal optics to detect the distance to the specimen (also called focus 
detection), which also requires vertical scanning of either the sample or the optics. This can 
be done for each point, which is slow because of the need to move a finite mass, or the scan 
can be performed over the entire area for each z setting as in most confocal light microscopes. 
In this method, the light intensity at each location is stored for each z setting and then the 
peak intensity value (which may be interpolated between z positions) is used to determine the 
surface elevation at that location. It is also possible to construct an optical point probe that 
uses a lens with large chromatic aberrations and to detect the wavelength of light that is most 
strongly reflected. Because the lens brings each wavelength to focus at a different working 
distance, this provides a measure of the surface elevation. Other optical techniques, such as 
triangulation and structured light, are sensitive to the local surface slope and have relatively 
poor lateral resolution.

Figure 15.7 Scanned stylus image of a plastic replica of human skin: (a) gray scale representation of 
the elevation data; (b) photorealistic visualization of the surface.
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The method which provides the greatest resolution over the greatest range is interference, and 
this can be done with either a point probe or for the entire surface, and with either mono-
chromatic (usually laser) light or with white light. The classic Michelson-Morley interferometer 
uses mirrors to send monochromatic light along two pathways and then recombines them to 
produce interference patterns that show fringes corresponding to differences in dimensions 
that can be much smaller than the wavelength of the light. When one leg of the interferometer 
reflects light from the sample surface, these fringes can be used to directly measure surface 
elevations. The lateral resolution is only as good as the light microscope used to collect the 
reflected light, or about 1 µm, but the depth resolution can be 1 nm or better. However, for 
samples that do not reflect light well or that have steep cliffs or deep pits, there may not be 
enough light reflected, or the spacing of the fringes may be too close together, to provide 
results.

When monochromatic light is used, it is possible to interpolate the elevation of a point to 
about 1 nm, about 1/1000 the wavelength of light. However, the fringes must be far enough 
apart (i.e., the surface slope must be gradual) that it is possible to keep track of the changes in 
elevation because the interference pattern repeats with every multiple of the light wavelength. 
Many modern systems use more than one wavelength of light or white light instead. This 
produces constructive interference only at one focal depth, where the path lengths are equal 
and all of the wavelengths are in phase. When a surface is being imaged, this means that only 
points along one iso-elevation contour are bright. Varying the distance between the specimen 
and the optics allows scanning in Z to determine the elevation of points over the entire image. 
This takes longer than a simple monochromatic interference pattern and is limited in precision 
of elevation values to the performance of the scanning hardware but can handle surfaces with 
much more relief and steeper slopes.

Indirect interference techniques, such as projection of grids to produce moiré patterns, also 
produce two-dimensional arrays of elevation data. As an example, consider light streaming 
through a series of slits (like Venetian blinds) onto the floor of a room. If the floor is flat, the 
strips of light are straight when viewed from above. If there are irregularities, they show up as 
deviations in the lines of light and shadow. Scaled down to the dimensions of a few microm-
eters, which is the resolution of the light optics used to view the stripes, this same structured 
light method is easily used to measure surface geometry. Image processing can be used to 
detect the edges of the shadows, interpolating along each scan line to accuracies much better 
than the pixel spacing. Depending on the geometry, this can produce vertical measurement 
accuracy similar to the lateral resolution of the optics, typically about 1 µm (Sciammarella et 
al., 2005), but of course for only a few locations across the sample surface unless the line pat-
tern is scanned.

Toolmakers’ microscopes and quality control examination of planed surfaces of lumber (among 
other applications) use the same basic method. One unusual modification (Ghita et al., 2005) 
of a structured light measurement measures the defocus (spreading) of the projected pattern 
to determine depth. In modern implementations of the technique (Masi, 2005), mirrors or 
prisms are used to deflect a beam of laser light in patterns across the work piece to produce 
the images. This has the advantage of being able to measure in various orientations and direc-
tions. Because it is fast and noncontacting, structured light is often used in medical applica-
tions, ranging from orthopedic work on curvature of the spine to measuring the curvature of 
the lens of the eye before and after corrective surgery.

Closely related to the idea of structured light is shadowing of surfaces with evaporated or 
deposited metal or carbon coatings, followed by measurement of the shadows cast by features 
and irregularities on the surface. If the image of the grid pattern in the incident light passes 
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through another similar grid, it produces a moiré pattern, whose dark lines can be used to 
reveal the shape of the object. This technique is particularly useful for revealing local strains 
and deviations of surfaces from ideal geometric forms.

Shape-from-shading (also called photometric stereo) uses multiple images taken from the 
same location with different (known) light sources to determine the local slope of each point 
on a surface, from which the surface relief can be calculated. This is done at scales ranging 
from micrometers (in the scanning electron microscope) to kilometers (aerial photography) 
but is most often applied to macroscopic objects. Figure 15.8 shows an example in which 
this technique is modified to use a reference sphere in the scene. The lighting of the sphere 
provides the information needed to calculate the lighting orientation in each image. A strobe 
light is positioned at many different angles to the surface and a series of 30–40 images cap-
tured. Software calculates the slope information at each location in the scene, from which the 
polynomial texture map (PTM) of the surface can be created (Mudge & Malzbender, 2006). 
This technique is particularly well suited to the recording of unique objects such as art and 
archaeological treasures, forensic evidence, and other similar objects and surfaces (Padfield 
et al., 2005).

An example of the use of this method appeared in a Scientific American (Freeth, 2009) article 
on the Antikythera mechanism, an ancient astronomical computer built by the Greeks around 
80 BC. Found by sponge divers in 1900, some details of its functions elude scholars to this 
day, but images of the multiple fragments found are being used to create a modern replica. 
Once created, the PTM can be displayed to show the original surface of the object, or specular 
enhancement can be applied in which the orientation of lighting can be interactively adjusted 
to reveal surface details. Figure 15.9 shows a fragment of the Antikythera mechanism with 
specular surface relighting. Figure 15.10 shows a 15th century illuminated manuscript, with 
the reference ball. Displaying the PTM with specular enhancement, shown in the bottom half 
of the image, enhances the surface texture of the paper and the pigments. (Figure 2.47 in 
Chapter 2 shows another example of this technique.)

At a larger scale, a scanning laser rangefinder is used to map an entire room for purposes such 
as crime scene documentation or recording artifact positions in an archaeological site. The 
scanner rotates on a tripod, recording the distances to many points. At the same time, a digital 
camera captures photographs, and these data are combined with the distance values to con-
struct a model of the entire scene. Figure 15.11 shows two of the digital images along with 
the cloud of points recorded from wall, floor, and interior objects in a room, and the resulting 
3D reconstruction of the scene, from which measurements can be made. The entire model 
can be interactively viewed from any location (including interior points) and combined with 
models of connected spaces (e.g., other rooms in the house) to permit continuous roaming.

 

Figure 15.8 Imaging the surface of an Egyptian 
bas relief using a reference ball (two are shown 
in the example) to record the lighting which 
is used for shape-from-shading calculation 
of the surface (courtesy of Cultural Heritage 
Imaging, www.c-h-i.org, San Francisco CA, 
and the Worcester Art Museum).
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Microscopy of surfaces

Most forms of microscopy produce images in 
which intensity is related to the reflection of 
light (or some other signal) from the surface. 
This is only indirectly related to the surface 
geometry, and depends as well on other fac-
tors such as local composition. In spite of the 
difficulties in interpretation, this is still the 
most widespread procedure for surface exami-
nation because of its speed and convenience.

The standard light microscope at moderately 
high magnification has a relatively shallow 
depth of field. This creates many problems 
for examining surfaces. If the surface is not 
extremely flat and perpendicular to the opti-
cal axis (for example, a metallographically 
polished specimen), it cannot all be focused 
at the same time. Only low magnification light 
microscopes can be used to examine rough 
surfaces (e.g., for fractography) and do not 
give much information about surface geom-
etry. The pattern of light scattered by rough surfaces under diffuse lighting can be used to 
determine the roughness. A surface with fractal geometry scatters diffuse light to produce a 
fractal pattern, and there is a relationship between the fractal dimension of the surface and 
that of the image (Russ, 1994; Pentland, 1984). This relationship also holds for scanning elec-
tron microscope images of such surfaces. But measuring the overall roughness dimension 

(a)

(b)  

Figure 15.9 A fragment of the Antikythera 
mechanism:

  (a) photograph;

  (b)  rendered surface with specular enhance-
ment. (Images from the Antikythera 
Mechanism Research Project. Supported 
by the Leverhulme Trust, this is a col-
laboration between the University 
of Cardiff in Wales, the National & 
Kapodistrian University of Athens, the 
Aristotle University of Thessaloniki, and 
the National Archaeological Museum in 
Athens, under the aegis of the Ministry 
of Culture, Greece.)

Figure 15.10 Fifteenth century illuminated man-
uscript photographed with a reference sphere, 
from which light orientation is derived and a 
polynomial texture map of the surface is calcu-
lated. The bottom portion of the image shows 
the result of surface relighting with specu-
lar enhancement, revealing the texture of the 
paper and the thickness of the various pigments 
used (courtesy of Cultural Heritage Imaging, 
www.c-h-i.org, San Francisco CA, the Bancroft 
Library, UC Berkeley, and Tom Malzbender, 
Hewlett Packard Labs).
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of the surface is not the same thing as determining the actual coordinates of points on the 
surface.

On the other hand, the depth of field of the conventional light microscope is too great to 
measure the important dimensions in the vertical direction on rough surfaces. The confocal 
light microscope has a much shallower depth of field (and more importantly rejects stray light 
from locations away from the plane and point of focus), which allows it to produce true range 
images from irregular surfaces. In the confocal microscope, the image is built up one point at 
a time (usually in a raster pattern). Each image corresponds only to points at a particular focal 
depth, but repeating this operation at many focal depths produces both an extended focus 
image in which the entire surface is imaged and a range image in which the elevation at each 

  

(a)                    (c)

(b)

(d)

Figure 15.11 Reconstructing a scene using the DeltaSphere scanning laser rangefinder: (a) two of the 
digital photographs acquired by a camera as the unit rotates; (b) complete data set produced by com-
bining the visible light appearance of the scene with the range data from the rangefinder; (c) three-
dimensional model of the scene showing the points measured by the laser; (d) views of the rotatable 
three-dimensional model, with example measurements. (Images courtesy of Doug Schiff, 3rdTech 
Inc., Durham NC.) 
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point is recorded. The resolution in both vertical and lateral directions is much worse than the 
scanned probe microscopes or interferometers, but still useful for many surface measurement 
applications including metrology of some microelectronic devices. For dielectric materials, 
capturing multiple images with different orientations of polarized light can be used to com-
pute the surface geometry (Miché et al., 2005).

Because of its very large depth of field, coupled with excellent resolution (typically <10 nm, 
much better than the light microscope), the SEM is often a tool of choice for the examination 
of rough surfaces. Furthermore, the appearance of the secondary electron image that is most 
often recorded from this instrument looks reasonably “familiar” to most observers, who there-
fore believe they can interpret the image to obtain geometric information. Unfortunately, this 
is not at all simple. Figure 15.12 shows an SEM image of a surface, sintered tungsten carbide 
particles. This is a relatively simple surface composed of uniform composition particles with 
relatively flat facets. But there is no unique or simple relationship between elevation or slope 
and the local pixel brightness. For relatively smooth surfaces without sharp edges, shape-
from-shading methods can convert changes in intensity to changes in slope and thus extract 
the geometry. The influence of fine-scale roughness, edges, surface contamination, or com-
positional variation, etc., prevents this from being a general purpose approach. Backscattered 
electron imaging is less sensitive to many of these effects and is used for some metrology 
applications (Paluszynski & Slowko, 2009), but only gives “real” geometric dimensions when 
comparison to standards is available or extensive modeling of the interactions between elec-
tron and sample is performed.

The great frustration in using the SEM to examine surfaces is that, while the images look natu-
ral to human viewers, apparently representing surface geometry in a familiar way, determin-
ing actual dimension values from them is nearly impossible except in very constrained cases. 
Metrology of integrated circuits is used to determine lateral dimensions, but even in these 
cases the definition of just what the relationship is between the physical contour of an edge 
and the voltage profile of the signal is far from certain (and highly dependent upon the voltage 

 

Figure 15.12 SEM image of the surface 
of sintered tungsten carbide.
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used, the material being imaged, the detector type and location, etc.). Metrology is used for 
quality control in which consistency rather than absolute accuracy is important, and there is 
no attempt to extract measurements in the Z direction from such images (even the visibility of 
points near the bottoms of grooves or contact holes is limited).

Stereoscopic imaging in which two (or more) different views of the surface are combined to 
measure elevation is the same in principle as the generation of topographic contour maps 
from aerial photographs (Wong, 1980; Wang, 1990; Matthews, 2008). Depending on the scale 
of the subject, the images may be obtained with the SEM, with a digital camera, or any other 
imaging device. However, finding the corresponding points in the two images is not easy to 
automate (Wrobel, 1991; Heipke, 1992; Barnard & Thompson, 1980; Zhou & Dorrer, 1994; 
Abbasi-Dezfouli & Freeman, 1994; Park et al., 2005; Raspanti et al., 2005; Tang et al., 2005; 
Adhyapak et al., 2007), and even with careful control of imaging conditions and measure-
ment of angles, the vertical resolution is typically much worse than the lateral resolution of 
the individual images. This is because the tilt angle δ between the two views must usually be 
small (7–10 degrees is typical) to prevent points being hidden in one of the two views, and 
the angle enters the calculation as 1/sin(δ). The precision of lateral dimensions is magnified 
by any uncertainty in angle and limits the precision of the final result.

Measurement of the elevation difference between individual points is straightforward in prin-
ciple when the same points are located in the two images (either by human selection or by 
software). The parallax or offset of the points gives the elevation by straightforward trigo-
nometry, as shown in Chapter 1. However, generating an elevation map for an entire surface 
requires matching a great many points and requires automation to be practical. The two meth-
ods used for this are area based or feature based. Area-based matching uses cross-correlation 
(performed either in the spatial domain or the frequency domain) to find the location of an 
area in the second image that most closely matches each area in the first. If the regions used 
for matching cover 5–10 pixels in width, the matching can result in subpixel location values, 
but this limits the spacing of points that can be matched. Changes in the visibility or contrast 
of the area between the two images, the presence of specular reflections, or repetitive struc-
tures that produce multiple matches produce problems for this approach.

Feature matching detects locations in each image which have some characteristic, such as a 
maximum local value of variance or entropy, or a high local brightness gradient. These loca-
tions are then matched against the similar list of places in the other image. This is gener-
ally more successful, but may match only a few thousand locations in the two images out of 
perhaps a million pixels, so that the intervening locations can only be interpolated. For both 
methods, constraints such as preserving the order of points from left to right and knowing the 
direction of tilt so that searching for matches need only occur in a small fraction of the total 
image area are important aids to practical implementation.

Figure 14.9 in Chapter 14 shows a typical result in which two stereo images have been 
matched by cross-correlation, testing each point in the left-eye view with possible points in 
the right-eye view to find the best match. The horizontal displacement (disparity or parallax) 
where the match is found measures the elevation of the point. Mismatched or unmatched 
points are typically present and are filled in using a median filter. The calculated elevation 
values can then be used for measurement or visualization. Highly specialized software for 
the purpose of fusing stereo pair images, usually from the SEM, has been developed (www.
Alicona.com; Ponz et al., 2006) to produce both visualizations and measurements of sur-
faces (Figure 15.13). Because of its great depth of field, the scanning electron microscope 
is very often used to obtain stereo pair images of surfaces. The SEM is also used to generate 
X-ray maps of surface composition, discussed separately below. The Alicona programs include 
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corrections for lens focal length (short working distances produce additional distortions in 
the images) and can accommodate more than two images for greater precision. The surface 
visualizations can be freely rotated on the display and a variety of profile and area measure-
ments can be carried out.

Instead of using electrons, light, or other radiation to form an image of the surface, useful infor-
mation is available from the scattering or diffraction patterns that are produced. X-ray patterns 
contain data about the structure of either crystalline or amorphous layers. Electron scattering 
patterns contain information on the crystallographic arrangement and also on local strains in 
the material (which show up as a measurable shift or broadening of lines in the pattern). Visible 
light scattering patterns contain information on the distribution of surface orientations (Zhu & 
Zhang, 2005). These are in effect the Fourier transforms of the elevation profiles of the surface 
and their measurement is therefore a direct method to study the surface elevation in a way that 
separates the information on the form or figure (the intended large scale geometry of the part), 
the waviness (medium scale departures from the figure), and the texture or roughness (the fine 
scale details on the surface). In many cases, the scattering of reflected light may also be directly 
related to the intended use of the surface, for instance a high-precision mirror. Images of dif-
fraction patterns can be processed and measured using many of the same techniques as more 
conventional images, but their interpretation is not covered here.

 

(a)                      (c)

 

Figure 15.13 Visualization and measurement 
of a surface computed from stereo pair SEM 
images (courtesy of Stefan Scherer, Alicona 
Imaging GmbH, Graz, Austria, www.Alicona.
com):

  (a)  anaglyph presentation of stereo pair images 
of a metal fracture surface;

  (b)  rendered surface representation of the frac-
ture surface computed from the stereo pair 
images by the Alicona software;

  (c)  measured elevation profile across the frac-
ture surface.

           (b)
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Surface composition imaging

The variety of techniques for probing surface composition is astoundingly broad. Images 
showing the results of some of these instruments have been shown throughout this text. Some 
of the more common ones are the SEM using an X-ray detector, the ion microscope or micro-
probe using secondary ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) 
spectroscopy. There are many other tools used as well, particularly for measuring the thick-
ness and composition of coatings. These include the backscattering of particles, which sam-
ples the composition and density of the sample at depths up to several micrometers beneath 
the surface. Also of rather specialized interest is acoustic microscopy, which is sensitive to 
debonding between the coating layer and substrate. Gigahertz acoustic waves have a wave-
length similar to visible light and can be used to image surface and near-surface structures 
that are difficult to detect with other signals. Surface waves are strongly reflected by cracks 
(even closed ones that cannot be seen otherwise) and bulk waves are similarly reflected by the 
surfaces of pores (although these subsurface waves only propagate at lower frequencies, with 
correspondingly poorer resolution). The speed of sound in the material can also be measured 
to determine the modulus of elasticity and other physical properties.

Ellipsometry takes advantage of the fact that for many types of thin layer dielectric coatings, 
the plane of polarized light is rotated as it passes through the coating. Measurement of that 
rotation can provide highly precise coating thickness measurements, and when different wave-
lengths of light are used (or a spectrometer is used to scan an entire range of wavelengths) 
can also reveal details about the internal structure of the coating. However, this method is 
primarily used to measure relatively large spots and not to produce images of the surface. 
Similarly, another spot-analysis analytical technique uses a laser beam directed at a selected 
point on the surface with a light microscope to vaporize material from a pit (typically several 
µm across and deep) blasted from the surface so that the atomic and molecular fragments can 
be weighed in a mass spectrometer.

There are several different types of ion microscopes. Many can produce elemental compo-
sition maps of the surface or a series of such images at various depths in the material. An 
incident beam of ions knocks the uppermost layer of atoms loose from the specimen, either 
one point at a time (the ion microprobe) or over the entire surface at once. These atoms are 
ionized and are then accelerated into a mass spectrometer, which separates them according 
to their mass/charge ratio, identifying specific elements and isotopes, as well as molecular 
fragments. A detector or detector array then produces an image. This typically represents the 
spatial distribution of one selected element at a time across the imaged area, with a lateral 
resolution of about 1 µm (depending on the diameter of the incident beam in the case of the 
ion microprobe and the resolution of the ion optics in the case of the ion microscope) but 
with a depth resolution of one atomic layer. Switching the spectrometer selection from one 
element to another as layers are removed produces complete data sets of the structure of the 
material.

Compositional mapping of surfaces is particularly important for examination of deposited 
coatings and the identification of contamination. The most common approach to this mapping 
uses a raster-scanned electron beam to generate characteristic X-rays from the atoms present, 
which are then detected. The unique energy or wavelength of the X-rays identifies the ele-
ments, and calculations based on the physics of X-ray generation can be used to determine 
their amounts. The lateral and depth resolution are limited to the order of 1 µm by the range 
of the electrons. Several different types of X-ray spectrometers are used; the diffractive or 
wavelength-dispersive type measures X-rays from one element at a time but with good trace 
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element sensitivity, while the more common energy-dispersive type can measure all of the 
elements present at the same time, but with poorer detectability. These typically produce “dot 
map” images for several elements at once, as shown in Figure 1.31 of Chapter 1, which only 
approximately delineate the regions containing the elements and must be processed and com-
bined. Other signals, such as Auger electrons, come from a smaller region near the point of 
entry of the focused electron beam and have better spatial and depth resolution, but because 
the signal to noise level is poor are not so good at detecting minor and trace elements.

Molecular identification of coatings and contamination can be made using infrared spectros-
copy, in which various vibratory modes of the molecules are excited to produce characteristic 
spectral peaks. This method is most suitable to the analysis of organic materials and coatings, 
such as plastics. The spatial resolution of this approach is limited to several micrometers by 
the light optics used.

Compositional maps of surfaces are often displayed, processed, and analyzed treating the 
signal strength (which is approximately proportional to concentration) as a range image and 
interpreting it visually as a surface whose elevation represents concentrations, as indicated 
in Figure 15.14. These images often contain many channels of information, representing dif-
ferent elements, and their display using colors is shown in Chapter 1. Principal components 
analysis, covered in Chapter 5, can also be used to delineate the various phases present.

Processing of range images

Elevation data from surfaces produced by the various methods described above are typically 
recorded as 8- or 16-bit gray scale images, or more rarely as an array of real numbers. Each 
pixel has a value that represents the physical elevation or composition of the corresponding 
surface location. Since most of the techniques used look vertically down upon the surface, 
the data are single valued and represent only the uppermost point for surfaces in which 
undercuts and bridges can occur. The SEM is an exception to this, as shown in Figure 15.15, 
which shows a complex polymer surface with undercuts and bridges which a range image 
cannot reveal. Integer data stored for each pixel in a range image can be converted to an 

  
(a)                       (b)

Figure 15.14 Representing a compositional image as a surface: (a) X-ray “dot map” of Aluminum, from 
the set shown in Figure 1.32, Chapter 1; (b) isometric view of the surface in which height represents 
intensity and approximately the elemental concentration.
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elevation value in appropriate units (nm, µm, 
etc.) using scale data that are usually stored 
in the file header. There is unfortunately no 
standard format for this data, and not only 
does each manufacturer have its own (which 
are not always generally readable or publicly 
documented) but some have more than one 
corresponding to different instruments.

Reading in these different file formats and 
storing the data in some standardized for-
mat such as TIFF files may require custom 
programming. Some image processing and 
display programs do have the ability to read 
arrays of data (i.e., images) in a wide vari-
ety of data formats provided that the user 
can specify (or deduce) the necessary format 
information. This typically includes at least 
the length of the header and perhaps where 
specific scaling or other information is stored 
within it, the dimensions of the array and 

whether the data are stored in rows or columns, and the data format (byte, integer, long inte-
ger, real, etc., and whether the byte order is low word first or high word first).

Once the data are available, the kinds of processing that are required for surface images depend 
strongly on the type of instrument used. Some examples serve to illustrate the possibilities:

Interference microscopes often have drop-out pixels where the local slope of the surface is 
too great to return enough light to the optics to permit measurement. These points can be 
detected by filling the array beforehand with an illegal or impossible value that is replaced by 
real measurement data. Any pixel that retains the illegal value is a drop-out point and must be 
filled in, and the most common way to do this is with a median or smoothing filter. A median 
is adequate for single points, but in many cases regions several pixels across or arranged as 
a line corresponding to some step or ridge on the surface may be missing. Linear or spline 
interpolation between pixels around the drop out produces smoothed results which may or 
may not correspond to the actual surface.

Reducing or removing noise in range images uses the same methods as other images: either 
a median filter or some type of averaging filter such as the Gaussian. But for surface images 
they are best not applied in the round neighborhoods shown in Chapter 4. Instead, the neigh-
borhood is restricted to pixels that lie on the same portion of the surface, excluding points 
at a different elevation or on a surface with a different slope. This is described as conditional 
smoothing in Chapter 4 and is an example of an adaptive neighborhood filter, similar to the 
procedures used to smooth geographic data (also a range map) called kriging. In the example 
shown in Figure 15.16, the neighborhood restriction provides superior noise reduction while 
preserving fine lines and corners.

Stylus instruments, whether macroscopic ones with diamond tips several micrometers in 
diameter or atomic force microscopes using Buckytubes to probe much smaller lateral dimen-
sions, may also require anisotropic filtering. The scan rate along each line (the X-direction) is 
typically determined by the dynamics of the stylus itself — the mass of the moving tip and the 
applied force — which determines the maximum speed at which the tip can move across the 

Figure 15.15 Scanning electron microscope image 
of the complex surface of a polymer, with under-
cuts, caves, and bridges.
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surface while remaining in contact with it. Too high a force can result in damage to the surface 
or the tip, but too low a restoring force may allow the tip to skip over holes or fly from rising 
slopes. Depending on whether the stylus moves some sensing element (an interferometer, 
capacitance or inductance gauge for example, or perhaps just a beam of light) or the surface is 
moved to null the position of the stylus (the classical AFM mode of operation) and the signal 
to the piezoelectric drivers is recorded, the output signal for the surface elevation is usually 
an electrical voltage. This must be amplified and then digitized, and in the process suitable 
filtering can be applied with a time constant appropriate for the scanning speed. This reduces 
the noise along each scan line and eliminates the need for subsequent digital processing to 
reduce noise. Filtering may be used, as discussed below, to separate the low frequency signals 
related to surface form and waviness from the high frequency roughness value, but that is part 
of the process of measurement rather than image enhancement.

The situation is quite different in the Y-direction (from one line to the next). A significant 
amount of time passes between sequential lines in the raster scan, allowing for changes in 
the mechanical and electronic components. Most systems scan in one direction only (to mini-
mize hysteresis problems) and have a retrace scan during which the stylus is raised and not in 
contact with the sample. Repositioning the stylus to the exact same value is difficult when the 
resolution of these methods in the vertical direction is smaller than a nanometer. The result 
is that subsequent scan lines tend to be offset from each other either vertically or laterally. 
Since the eye is sensitive to abrupt changes in brightness that extend over large distances, 
this produces images in which a visible horizontal stripe pattern may be seen. A primitive 
attempt to alleviate this problem adjusts each line so that the average value is the same as 
that of the preceding line. This is rarely a good idea: it means, for example, that if there is a 
rising peak or depression somewhere in the image area, the background around the feature 
may be shifted, producing false data and even an incorrect visual impression of the surface, 
as shown in Figure 15.17.

There is a better solution than the mean or average value for this line-to-line adjustment, 
although it requires more computation. The ideal solution is to align the mode values of 
sequential lines of data. Under the assumption that the surface consists primarily of a back-
ground level with some roughness superimposed on it, plus major features of interest that rise 
or fall with respect to that plane, the mode is by definition the most probable surface elevation 
value. For a relatively small collection of data points (most area scans have only a few hundred 

  
(a)              (b)              (c)

Figure 15.16 Noise reduction using a restricted neighborhood: (a) original image showing noise; (b) 
conventional median filter (7 pixel diameter) applied; (c) mean filter in a 9 pixel diameter with a 
threshold to exclude values more than 40 gray levels different from the local surface.
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data points along each line), the mode is not robustly determined. But for any distribution 
the median is closer to the mode than is the mean. Just as the median value is preferred over 
the mean for filtering noise from an array of pixels, so the median offers a workable solution 
for adjusting the scan lines in a raster scan stylus image. Figure 15.17 shows this correction 
method applied to typical surface images.

Another artifact in AFM images that is best avoided by instrument maintenance but which 
is correctable to some extent in software, is the deconvolution of tip shape from the images. 
As shown in Chapter 6, if the point spread function of an image can be measured, dividing 
the Fourier transform of the image by the transform of the point spread function can remove 
much of the smearing or loss of resolution, so that the inverse transform yields an improved 
image. Real AFM tips are far from perfect, exhibiting various departures from a ideal sym-
metrical point. Scanning the tip over a known artifact such as a circular disk (Jarausch et 
al., 1996; Keller & Franke, 1991, 1993; Markiewicz & Goh, 1994, 1995; Villarrubia, 1994, 
1996, 1997) allows calculation of the tip shape and permits this deconvolution. In practice 
the tips have a short life and no two are identical, so that frequent recalibration is required. 
However, tip deconvolution is only important at the highest magnification and finest resolu-
tion levels.

(a) (b)

(d) (e)

(c)

Figure 15.17 Noise reduction in AFM scans: (a) line offsets in the raw image an of an etch pit in sili-
con; (b) artifact resulting from correction by adjusting the mean value of each line; (c) improved 
result using the median value; (d) raw image of a chemically deposited surface; (e) after correction 
of line offsets.
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Processing of composition maps

Most surface composition maps that are obtained by ion mass spectroscopy, X-ray energy 
spectroscopy, or other methods, suffer from low signal levels and random noise. Chapter 4 
shows that this can in principle be compensated by collecting more data, but this solution is 
generally not feasible on economic grounds and is sometimes impossible because the analysis 
alters or consumes the surface. Hence noise reduction methods such as weighted smoothing 
or median filtering are often applicable.

When multiple images are obtained of the same area showing the spatial distribution of differ-
ent elements or other chemical data, it is very important to find ways to display them in com-
binations that communicate the information to the observer and to find ways to delineate and 
distinguish the various phases that are present. Combining multiple images as color planes 
offers one approach to this, as shown Chapter 1, Figure 1.32. However, because of the way 
that the display hardware (and human vision) works this allows only three planes (R, G, and 
B) to be assigned and there may be many more individual images available than that. The situ-
ation is analogous to the situation for remote sensing images; the Landsat Thematic Mapper 
records 7 wavelength bands in visible and infrared, and other satellites capture even more. 
There is no straightforward way to “see” all of this information at one time, and the choice of 
which planes to show and which colors to use is subjective and can reveal (or conceal) differ-
ent aspects of the information.

If the individual elemental maps can be thresholded to correspond to the intensity levels from 
individual phases, then Boolean combinations of the planes using AND and NOT permits 
forming binary images of each structure or phase, which can then be measured. This process 
corresponds to setting up threshold ranges in an N-dimensional intensity space correspond-
ing to the number of elements present, in which the ranges are rectangular prisms in shape. 
This is often adequate to distinguish the phases present in real materials, but a more free-
form shape that corresponds to the natural variations in intensity for each phase would be 
preferred.

There are statistical techniques that plot the intensity of each pixel in each of the image planes 
as a vector or point in n-space (9 dimensions for the example from Chapter 1) and then 
search for principal axes and/or clusters in that space. Principal components analysis is shown 
in Chapter 5. Once clusters are identified and the boundaries around them defined, the vari-
ous phases present can be identified (MacQueen, 1968; Anderberg, 1973; Hartigan, 1975). This 
is a direct extension of the classification methods in Chapter 12. The pixels whose values lie 
within each cluster are then classified as belonging to the corresponding phase, and a new 
image can be generated with unique colors for each class so that the phases are delineated 
(Bright et al., 1988; Mott, 1995; DeMandolx & Davoust, 1997).

When there is a priori information about the composition of the various phases expected to be 
present, this method works well. However, cluster detection without such information suffers 
from several problems. First, the statistical techniques are better able (in a statistical sense) to 
segment the space by defining more clusters, so unless the number of phase clusters is known 
the results are suspect. Second, clusters for minor phases representing only a few percent by 
volume of the structure are represented by only a small fraction of the points. Although these 
phases may be very important (e.g., for the properties of materials and the economics of min-
eral ores), they are poorly defined in the n-space plot and very hard to detect. They are likely 
to be overlooked amid the background of points from pixels that straddle boundaries between 
major phases. Cluster detection methods, for example, are more likely to segment single phase 
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regions based on minor gradients in composition or statistical variations in intensity, rather 
than to identify the presence of important minor phase regions.

Data presentation and visualization

Some types of surface measurement instruments produce data arrays with very large range to 
resolution ratios. In other words the number of bits that encode the elevation or other surface 
characterization data is large. Most image processing and display programs cope adequately 
with 256 gray levels, but even this exceeds the ability of human vision to distinguish them on 
a computer screen. Resolution of 1 nm over a range of 1 mm, which is quite possible with a 
high-precision stylus or interferometric instrument, produces a million levels (20 bits). This far 
exceeds the capabilities of displays or of perception. Consequently the display routines must 
either select one part of the entire range to display or compress the data to show the entire 
range. Processing can help, for instance by dealing with local slopes or derivatives rather than 
absolute values, but this also requires some user experience to interpret.

The very large dynamic range of the data from surface measuring tools can only be displayed 
on the computer screen at the cost of making small but measurably different values appear 
with indistinguishably small differences in brightness. The neighborhood histogram equaliza-
tion introduced in Chapter 5 is one particularly effective way of assisting in the visualization 
of such small changes, often associated with dirt or defects. Figure 15.18 shows an example 
introduced in that chapter, a range image of the raised surface of a letter on a coin. Scratches 
on both the lower coin face and the raised letter can barely be detected in the original, but 
become visually evident after applying the local equalization procedure, which makes small 
local differences larger while suppressing large scale ones. Other processing techniques, dis-
cussed in preceding chapters, can also of course be employed on range images, but should be 
done while always recognizing that the actual numeric elevation values are altered and can no 
longer be used for measurement purposes.

Range images, in which the gray scale value at each pixel represents the elevation (or some 
other surface parameter) at that point, contain all of the raw information in the data array. 
Even if the range can be accommodated by the display (for instance by dividing down the res-
olution with which the data are acquired, or using a local equalization technique or high pass 
filter), the resulting image is an unfamiliar one to human observers and requires experience to 
interpret. Using false colors to increase the ability to visually discriminate small changes may 
make the resulting images even more unfamiliar, as shown in Figures 15.18e and f.

Contour maps draw isoelevation lines, which are exactly the same as topographic maps of the 
earth’s surface. These are familiar to many people and can be interpreted because they make 
it easy to follow the contour lines that identify the shape of protrusions and valleys and to 
identify points at the same elevation. Of course, they also eliminate a great deal of information 
(the elevation data for all of the other pixels on the surface), but this is part of the simplifica-
tion that makes interpretation easier. Figure 15.19 shows the elevation of a coin displayed as 
a gray scale range image, one that has been color coded, and one reduced to a small number 
of contour lines (which have also been color coded to make it easier to distinguish their eleva-
tion values).

Contour maps are less successful at communicating visual information when the lateral scale 
of detail is finer, or when the surface if very anisotropic, as shown in Figure 15.20. In these 
cases the individual lines are close together and hard to distinguish, and the lines do not 
tie together different areas of the surface very well. Whenever contour lines become close 
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together because of the presence of fine detail or steep slopes, it is helpful to reduce the num-
ber of contour lines or color code them to clarify the map.

The visual impression of surface relief can be improved by processing. A directional derivative 
creates an “embossed” appearance with light and dark contrast along edges and gradients. As 
introduced in Chapter 5, a convolution kernel of weights of the form
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produces the effect of lighting the surface from the upper left corner and produces the effect 
of shadows which the eye interprets as relief. The direction should usually be from the top; if 
bright edges appear on the bottoms of edges the human vision system (which is accustomed 
to lighting from above) inverts the interpretation of the data and perceives hills as pits and 
vice versa.

The derivative image shows fine detail but hides the overall elevation changes in the data. 
This can be alleviated by combining the gray scale range image with the derivative. This may 
be done by adding the two (change the central value in the kernel from 0 to 1), but results that 

  
(a)              (b)              (c)

Figure 15.18 Enhanced visibility for surface markings: (a) original range image of letter on the surface 
of a coin; (b) adaptive histogram equalization applied to (a); (c) photorealistic surface rendering of 
(a); (d) rendering of height information from (a) with surface brightness values from (b); (e) false 
color lookup table applied to (c); (f) same color table applied to (d).
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correspond more closely to the way vision perceives texture on surfaces can be obtained by 
multiplying the two images together. This is shown in Figure 15.21. Another version of this 
display can be constructed by using color. In Figure 15.21d a hue, saturation, intensity (HSI) 
model is used with the elevation assigned to the hue for each pixel and the derivative assigned 
to the intensity (saturation is set to 50%). The shadows create an impression of relief while the 
color informs the eye about overall elevation values.

These results compare favorably to the results of a true rendering of the surface using each 
triangle of neighboring pixels as a facet and calculating the reflection of light from a light 
source in a fixed position, as shown in Figure 15.22. In this type of calculation the surface 
can be given various reflectivity characteristics, either more diffuse or more specular. In the 
examples shown, a full ray tracing and Phong shading are used. The latter method varies 
the shade across each facet according to the angle variation between neighboring facets and 

  
(a)                       (b)

   

(c)                       (d)

Figure 15.19 Range image of a coin (from a scanning stylus profilometer, data courtesy of Paul Scott, 
Rank Taylor Hobson Ltd.), displayed as: (a) a gray scale range image; (b) a color-coded range image; 
(c) color-coded contour map with ten isoelevation lines; (d) rendered isometric image with color-
coded contour lines superimposed.



791Imaging Surfaces
© 2011 by Taylor & Francis Group, LLC

produces a very smooth and realistic rendered surface as used in computer-assisted drafting 
(CAD) workstations. The rendered image can also be color coded, by using the gray scale 
rendering of reflectivity in the intensity channel and the elevation in the hue channel, as illus-
trated in Figure 15.23.

Altering the displayed lighting and shading of surfaces is a powerful visualization tool for 
surface examination, taking advantage of the abilities to interpret surface images that humans 
have evolved in response to real-world experiences. The examples illustrate rendering of a 
measured range image, but the technique is just as applicable to range data calculated from 
stereoscopy, or other means. Specular enhancement of surface appearance is illustrated in 
Figure 15.9 for surface data computed by shape-from-shading.

Rendering and visualization

Most of the previous examples shown look onto the surface from directly above. This normal 
view shows all of the data, but is not the most familiar to a human observer. The use of com-
puter graphics to render the surface from an oblique point of view (which many programs 
allow to be selected or even interactively rotated) produces a display that makes it easier to 
visualize the surface morphology and perhaps to detect the features of interest. The oldest and 
simplest approach to this is to plot elevation profiles along some of the horizontal rows of pix-
els, displacing each line vertically and laterally to create the effect of a surface, and skipping 
some rows so that the lines are adequately spaced apart. Figure 15.24 shows two examples of 
this. In the first, the coin image from Figure 15.19, the lines are well spaced and the surface 

   
(a)              (b)              (c)

   

Figure 15.20 Range images and contour maps (with five 
isoelevation lines) for an injection molded polymer 
surface (a, b) and a ground metal surface (c, d).

        (d)
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slopes gradual enough that there are only a few places where lines are hidden (and removed). 
The result is a fairly easy surface to interpret. In the second example, the polymer image from 
Figure 15.20, the presentation is harder to interpret because so many lines touch each other 
and the overall morphology is obscured. Also in these displays the width of each line profile 
is the same, so that there is no perspective applied to the view. In this type of isometric pre-
sentation the human familiarity with the rules of perspective may cause the constant width 
of the data to be misinterpreted as giving the array a wider apparent dimension at the back 
than at the front.

With the continued advance in computer graphics capabilities, in the form of more process-
ing power and displays with more gray levels and colors, much more realistic presentations 
can be generated. Adding perspective also makes the data appear more realistic, and adding 
cross lines that connect together points on successive line profiles breaks the surface up into 

     
(a)                    (b)

     
(c)                    (d)

Figure 15.21 Enhancement of the image of the coin from Figure 15.19: (a) directional derivative; (b) 
the derivative added to the original gray values; (c) the derivative multiplied by the original eleva-
tion values; (d) color image with the elevation in the hue channel and the derivative in the intensity 
channel.
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an array of square or rectangular tiles that improve the interpretability of the surface mor-
phology by showing slopes in the second direction. Increasing the line density provides more 
information, but still must omit many lines and rows of pixels in order to avoid crowding the 
lines too closely together. Coloring in the tiles according to the elevation of the points pro-
vides additional cues to depth. The results (shown in Figure 15.25) represented the state of 
the art only a few years ago, but are now easily performed on the typical desktop machine. 
Computer graphics packages such as OpenGL simplify the tasks of rendering realistic surface 
images for visualization.

The most visually realistic presentation uses actual surface rendering to control the brightness 
of each facet on the surface. Rather than square tiles that must be bent to fit the four corner 
points (which in general do not lie in a plane), triangular tiles are simpler to deal with. Three 

(a) (b)

(c) (d)

Figure 15.22 Rendered surfaces of the coin (from Figure 15.19) and the polymer (from Figure 15.20), 
treating the surface as though it is a diffuse scatterer (plaster of Paris) or a specular one (shiny 
metal): (a) coin, diffuse; (b) coin, specular; (c) polymer, diffuse; (d) polymer, specular. The grid pat-
tern visible in the coin image is an artifact of the scanner used to obtain the data and becomes more 
visually evident in this display mode.
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corner points define the triangle and the orientation of the facet with respect to the line of 
sight, and a light source location permits calculation of the intensity to be assigned to the 
facet. This can be done with complete photorealism given the time and computing power, but 
there are in general a very large number of facets to render and faster methods are sought. 
Shading each facet according to the product of its absolute height and its derivative produces 
a very quick and visually realistic rendering.

Figure 15.26 illustrates this method. In Figure 15.26a, the edges of the individual triangu-
lar facets are drawn in to show the process. But with this method it is practical to create a 
facet for every pixel and its immediate neighbors, so the full resolution of the data set can 
be displayed. The result is shown in Figure 15.26b. In computer graphics (as used in CAD 
programs for example) it is common to apply shading to facets so that they blend in with their 
neighbors (Gourard or Phong shading) and to not reveal lines where they meet. But while that 
method is important for the small number of large facets encountered in CAD renderings, it is 

(a) (b)

(c) (d)

Figure 15.23 Color-coded rendered surfaces using a hue/intensity combination: (a) coin (from Figure 
15.19); (b) skin (from Figure 15.7); (c) paper (from Figure 15.3); (d) shot-blasted metal (from 
Figure 15.1d).
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usually unnecessary for the tiny facets that correspond to each pixel, because the facets may 
cover only 1 or 2 pixels on the display.

It is useful to compare this method against the slightly simpler display procedure of using 
the elevation to shade the facets, or using false colors to indicate elevation. These methods 
produce much less realistic results for visualization and require a more educated eye on the 
part of the user. Human vision is an important tool for examining surface images, since the 
presence of defects or other features of interest is usually far more readily discerned by an 
experienced observer than is possible with computer pattern recognition programs.

Color can be introduced to these displays using the same procedure as shown in Figure 15.25, 
applying the elevation as a color in the hue channel and the slope or Phong-rendered values 
in the intensity channel, while drawing each facet in its appropriate place on the screen to 
generate a perspective-corrected visual representation of the surface geometry. This is more 
readily visually interpreted than just applying false color, as shown in Figure 15.27.

This type of presentation communicates a much more effective representation of the surface 
geometry to most users, even ones with some experience, than does the simple gray scale 
range image. Figure 15.28 shows this mode of presentation for the same surface images 

  
(a)                    (b)

Figure 15.24 Isometric line profile displays of the coin image from Figure 15.19 and the polymer image 
from Figure 15.20.

  
(a)              (b)              (c)

Figure 15.25 Grid or mesh displays of the coin (Figure 15.19), polymer (Figure 15.20), and deposited 
surface (Figure 15.17).
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presented in Figures 15.1 and 15.3. Even though the range images contain all of the data, 
and the perspective-corrected visualizations obscure some of it, comparison suggests that the 
latter are more realistic in appearance and hence more useful for visual recognition of charac-
teristics or defects, although not of course for surface measurements.

Modern computer graphics is also capable of rapidly redrawing surface views from different 
viewpoints. This can be used in several ways. Generating two realistic renderings of a surface 
from slightly different points of view allows using human stereo vision to interpret the depth 
of a surface. Creating a series of such images from different viewpoints can be used to display 
a “movie” showing a fly-over across the surface, and with modern computer power this can be 
done in real time as an operator manipulates a joystick to interactively control the flight path. 
Combining this with the stereo display (Figure 15.29) creates a virtual reality world in which 
the surface can be viewed in detail. The figure illustrates this with an anaglyph image requir-
ing red/green or red/blue glasses, but of course other display modes can also be used.

Analysis of surface data

Human visual examination of well-presented renderings of surface geometry and composi-
tional information is a powerful tool for detecting and recognizing defects and other specific 
characteristics of the surface. But for many purposes there is a need for numerical measures of 
the surface, which can be used for control purposes and to correlate the surface geometry or 
compositional variations with the creation and processing history of the surface, and with its 
performance behavior. For these purposes analytical methods relying on computer processing 
of the data are needed, and it is not always clear just what should be measured to provide 
effective parameters for any given requirement.

   
(a)                      (b)

   

Figure 15.26 Deposited surface ren-
dered with triangular facets whose 
brightness is the product of the eleva-
tion and slope:

  (a)  large facets that are 6 pixels 
wide;

  (b)  facets connecting each pixel and 
its immediate neighbors;

  (c) adding color to the facets.

           (c)
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(a)                      (b)

  

(c)                      (d)

Figure 15.27 Presentation of elevation data from the coin image: (a) each facet shaded according to 
the product of elevation and slope; (b) each facet assigned a color representing elevation; (c) using 
the hue to represent elevation and the intensity to represent slope; (d) using hue for elevation and the 
Phong-rendered surface values for intensity.

  
(a)              (b)              (c)

  
(d)              (e)              (f)

Figure 15.28 The surface data from the four surfaces in Figure 15.1 and the two surfaces in Figure 
15.3 rendered to show perspective-corrected visualizations with facets shaded according to the prod-
uct of slope and elevation. The graphics have been expanded in the vertical (z) direction to increase 
the perception of roughness and relief in the data: (a) machined aluminum; (b) ground steel; (c) 
vapor-polished aluminum; (d) shot-blasted brass; (e) paper; (f) microelectronic device.
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The traditional measures of surfaces include the thickness of coatings and the geometric 
features of the surface geometry. Most of these values are highly dependent on other factors 
such as the material composition (and spatial variations of composition), the particular mea-
surement procedure used, and the size of the measured area. Most thickness measuring pro-
cedures and some elevation measuring instruments naturally average over a lateral distance 
of at least several micrometers and often much more. Stylus instruments rest on the highest 
point in an area determined by the size of the stylus tip. This is much larger than the vertical 
resolution most techniques achieve and may hide important details of the surface or coating. 
Sampling strategies must be employed to determine spatial uniformity.

Dimensional measurement of surfaces is one application where coordinate measuring 
machines, stylus instruments, and optical interference techniques are all used. In many 
cases very exact dimensions are specified in the design of the part, and so the measurement 
does not require an area scan or an image, but only the proper alignment of the measuring 
tool with the component. However, as dimensions become small, as in the case of micro-
electronic devices, it may be necessary to acquire an image to locate the point where mea-
surement is to be performed. Figure 15.30 shows an example, an elevation profile taken 
from one scan line of an AFM, from which measurements can be taken on the width and 
height of the steps present. AFM data sets are generally presented as visualizations that rep-
resent surface relief, but quantitative measurements are gradually becoming more common 
(Shuman, 2005).

Because the AFM is a relatively slow device that has difficulty handling large parts or scan-
ning large areas, and because there is always concern about surface damage when a physical 
contact is made, many of the metrology measurements on these devices are presently made by 
SEM. (The light microscope was used with earlier generations of devices, but the dimensions 
are now too small for the wavelength of light to resolve.) Figure 15.31 shows an SEM image 
of two lines of photoresist on a silicon wafer. Unfortunately, the SEM signal is not directly 
related to the surface elevation, depending more on the local slope, roughness, and composi-
tion. Consequently the signal profile along a scan line (averaged over multiple scan lines to 
improve the signal to noise ratio) is difficult to interpret to determine the line width. The pitch 
or spacing of the lines can be determined with fair accuracy under the assumption that the 
lines have the same shape and thus generate the same signal profile. Consequently selecting 
any reproducible characteristic of the signal — the peak, or the maximum slope, etc., can be 
used to measure the distance between the lines. But to measure the line width accurately 
there must be some absolute determination of where the edge lies (and even what that means 
given the slightly irregular shape of a typical photoresist).

Computer modeling of the process of generating the SEM image signal can be carried out 
for various specimen geometries (and as a function of composition, electron beam volt-
age, and detector characteristics and placement). This is a time-consuming process but still 
easier than fabricating physical standards for comparison. Most manufacturers that use 
SEM images for metrology select some arbitrary feature of the signal that can be easily and 

  

Figure 15.29 The surface rendering of Figure 15.28f 
performed from two slightly different viewpoints, 
which are combined to form a stereo pair (view 
with red/green or red/blue glasses).
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reproducibly measured, such as the point of maximum slope or halfway between the dark-
est and lightest signal levels, and use that to monitor changes in dimension without trying 
to determine the actual dimension. This is the classic difference between accuracy and 
precision, and works adequately for production control but not for the development of new 
geometries and devices.

  
(a)                      (b)

Figure 15.30 AFM image of a lithographic test pattern (a) used to select the location (shown in red) 
for a single line scan (b) used for dimensional measurement. When used for this purpose the AFM 
requires quantitative position sensing such as an interferometer, rather than relying on measuring 
the voltages sent to the piezoelectric positioners.
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Figure 15.31 Portion of an SEM 
image of two parallel lines of pho-
toresist on a silicon wafer, and 
the signal profile across them. The 
relationship between the physi-
cal profile and the signal depends 
upon the slope and roughness of 
the sides of the lines, the composi-
tion of the material, the electron 
accelerating voltage used, the elec-
tron detector used, and its place-
ment relative to the specimen.
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Profile measurements

Unlike the SEM, most instruments considered here do produce actual physical elevation pro-
files. Surface measurements have historically been assessed from these elevation profiles 
rather than using full two-dimensional images (because the instrumentation is simpler and 
less expensive, the time required is much less, and familiarity with the methods is estab-
lished). By applying filters to the data (either digitally or in the amplifier electronics), different 
ranges of frequencies in the profiles can be separated which are usually called the figure or 
form, waviness, and texture or roughness (Figure 15.32).

Form is the overall gross geometric shape, which is generally specified in engineering draw-
ings, controlled by set dimensions, and described by conventional Euclidean geometry. The 
medium frequencies are called waviness and the high frequencies the texture or roughness. 
In machining processes, waviness is assumed to result from vibrations or deflections in the 
machine, while roughness results from more local interactions between the tool and the 
microstructure it encounters in the material. These divisions are somewhat arbitrary and may 
differ according to the size of the part. It must also be remembered that the shape of the stylus 
itself is effectively a filter that removes the highest frequencies. The cutoff frequencies used 
to define the filters are typically set to wavelengths from about 0.25 mm up to several mm to 
separate waviness from roughness. International standards specify these as part of the mea-
surement procedure for many mechanical engineering applications.

Filtering to separate roughness from waviness and form data was originally done using analog 
RC filters in the electronics. In modern systems digital processing is used, with a least-squares 
line or arc fitted to remove the form and a spatial Gaussian filter to separate the waviness 
and roughness. This generalizes directly to area scans which can also be filtered with an 
equivalent Gaussian filter, or the Fourier transform of the image can be filtered to select the 
desired range of frequencies. The form data are most often separated by least-squares fitting 
of a plane, or some other Euclidean shape such as a cylinder or sphere that corresponds to 
the known intended form, or a generalized polynomial. Figure 15.33 shows a simple example 
of form removal, in which roughness on a ball bearing (spherical) surface is made more evi-
dent visually and also becomes easier to measure after the general curvature is subtracted. 
Deviations are then measured from the nominal form of the ball.

The roughness of surfaces is typically determined from the roughness profile after the low(er) 
frequency components have been removed. A wide variety of measurement parameters are 
used, some of them codified in various ISO or other international standards, and some of 
them corresponding to specific industries or equipment manufacturers (Rosen & Crafoord, 
1997). A complete review of instrumentation and methods is in Whitehouse (1994), and up-to-
date reviews of analysis procedures are covered in Thomas (1999) and Mainsah et al. (2001).

The most widely used procedures perform statistical analysis on the elevation data without 
regard to its spatial arrangement. Examples include the maximum peak-to-valley range of 
elevations along the profile, the average absolute value of the deviation from the mean (Ra), or 
the statistical standard deviation of the elevation data (Rq). Another measure of the magnitude 
of the roughness is the difference in elevation between the five highest peaks and five lowest 

Figure 15.32 Deviations from intended shape are commonly 
divided into roughness (fine scale), waviness (intermediate 
scale), and form (large scale).  

Roughness
Waviness

Form (nominal shape)
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valleys (Rz), which requires defining a peak or a valley. This problem becomes more difficult 
when applied to area scans or images, as described below.

Information on the spatial distribution of the elevation data includes parameters such as the 
number of peaks along a profile and the correlation length. The latter may be defined as the 
average distance between successive peaks, or between points at some specific elevation such 
as the mean elevation line left by removing the form and waviness. A more general definition 
of the correlation length comes from a plots, as shown in Figure 15.34; this is just the mag-
nitude of the autocorrelation function which can be determined from the Fourier transform 
of the profile. The autocorrelation function (ACF), described in Chapter 6, is also of interest 
because for surfaces produced by a large number of independent events (shot blasting, grind-
ing, ballistic deposition, etc.) it has the same shape as the ACF of the “average event” that 
produced the surface.

Functional parameters are also used which are presumed to correspond to particular usage 
of the surfaces. The Abbott-Firestone curve is the cumulative histogram of the elevation data 

  
(a)                      (b)

  

(c)                      (d)

Figure 15.33 Form removal from a ball bearing surface: (a) gray scale range image; (b) range image 
after subtraction of the spherical shape; (c) surface rendering of (a); (d) surface rendering of (b). 
Expansion of the data is facilitated after form removal.
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(Figure  15.35); it gives the area of contact 
which would be obtained by removal of a por-
tion of the surface, either by in-service wear 
or by an additional fabrication step such as 
plateau honing of automotive cylinder liners.

Another approach called “Motif” (ISO 12085), 
originally introduced in the French automobile 
industry and now used throughout Europe 
(Dietzsch et al., 1997), simplifies the profile to 
just the peaks which would contact another 
surface based on the height of the peaks rela-
tive to the intervening valleys and the width of 
the valleys. Figure 15.36 shows the principle. 
Peaks are characterized by their depth (the 
height above the valley) and their separation 
distance. Peak and valley patterns are then 
combined according to their separation dis-
tance and depth to eliminate the small peaks 
on the sides of larger ones, until a minimum 
representation is reached which contains just 
the most important peaks.

All of these methods simplify the original data to extract a few key values, but have serious 
limitations. They are highly dependent on the length of the profile scanned and the lateral res-
olution of the data points. They involve some very arbitrary definitions of what constitutes a 
peak or valley, ignore the fact that the profile path does not cross the highest or lowest points 
of most surface peaks and valleys, and do not correlate very well with the real subjects of 
interest, which are the processes by which surfaces are produced and their behavior in what-
ever service they are used. They are primarily suitable for specific quality control applications 
in which the real meaning of the parameters is hidden but consistency of measurement results 
can be used to keep a working process in control. Furthermore, the line profile interpretations 
are very difficult to generalize to surface images produced by area scans of elevation.

Figure 15.34 The correlation plot shows the 
probability that points have the same eleva-
tion value as a function of their lateral sep-
aration. The correlation length is defined 
as the point at which this plot drops to 1/e 
or 36.79%.
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Figure 15.35 The histogram (black) of the shot-
blasted surface range image (Figure 15.1d) 
with the same data shown as a cumulative his-
togram (red). The latter plot represents the frac-
tion of points on the surface whose elevation is 
less than the value on the horizontal axes and 
is called the Abbott-Firestone curve.

Figure 15.36 The basics of Motif combination: each peak and valley motif is measured by the depth 
(height of the smaller peak above the valley) and width. Motifs which have peaks smaller than the 
neighbor on either side, a width less than an arbitrary cutoff, and a depth less than 60% of the largest 
depth in the profile are combined with their neighbors to reduce the number of motifs present.
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All profile methods suffer from the fact that most real surfaces are not isotropic but have 
some directionality that results from the way the surface is generated, the characteristics of 
the material itself, or the use it has been subjected to. This so-called “lay” of the surface can 
be simple (e.g., the ground surface in Figure 15.1b is highly directional) or very complex 
and subtle. Measuring a profile perpendicular to the principal lay direction is the recom-
mended approach, but for complicated surfaces this misses much of the actual character of 
the surface.

Because the history of profile measurements generated (or accumulated) a rash of param-
eters, an effort is being made to rationalize the measurement of area scans. Supported by 
the ISO committee and spearheaded by researchers at the University of Birmingham (Stout 
et al., 1993), a set of statistical, spatial and functional parameters have been proposed which 
will evolve as a basis of future international standards. These still contain some of the same 
limitations as the profile measures, such as the need to define what constitutes a peak and a 
strong dependence upon the size of the scan area and the lateral resolution of the points. And 
they do not include some of the potentially important methods such as topographic analysis, 
envelope or motif analysis, and fractal geometry. But because they represent a starting point 
for surface description, some consideration of them is appropriate.

The Birmingham measurement suite

There are four classes of measurement parameters: ones that deal with the elevation values 
without regard to their location (called amplitude parameters), ones that deal with lateral 
distances on the surface (called spatial parameters), ones that combine these together (called 
hybrid parameters), and ones that are believed to have some direct correlation with surface 
history and properties (called functional parameters). Within each group only a very few 
parameters, ones which have the most direct relationship to the more widely accepted profile 
measurement parameters, are selected. The symbols proposed for these parameters use the 
same nomenclature as those for profiles except that S (surface) is substituted for the R used 
in profile standards.

The amplitude parameters are simple extensions to area scans of the statistical measures that 
are used with profile plots. For instance, Sa is the analog to Ra, the arithmetic mean devia-
tion. For an area scan it is the arithmetic mean of the absolute values of the elevation values 
from the mean plane. Sa is preserved only because Ra is widely used, and that is so in turn 
because it was comparatively easy in the pre-computer days to design instruments to measure 
it. The root-mean-square deviation of the elevation points is a more robust measure, given 
by the standard deviation of the distribution of the elevation values, Sq. The variance (the 
square of the standard deviation) is the second moment of the distribution. The third and 
fourth moments are the skew and kurtosis, respectively, and these are also used as amplitude 
measurement parameters, called Ssk and Sku, respectively. For simple distributions which are 
not bimodal, these three parameters offer a reasonably compact statistical description of the 
surface heights.

The histogram of the surface elevation data (examples are shown in Figure 15.37) shows the 
overall range of surface elevation. The skew in the distribution distinguishes such cases as the 
narrow and deep grooves that may be important for distributing lubricant on plateau-honed 
cylinder liners in automobile engines (Figure 15.37c). In this case most of the surface has 
a very narrow range of elevations but the grooves, which cover only a small fraction of the 
area, reach down to much lower depths. A skew in the opposite direction corresponds to a 
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surface with just a few high peaks or ridges rising up from a relatively smooth surface. But the 
histogram by itself contains no information on the spatial arrangement of the pits and valleys 
or the peaks and ridges. The same histogram would result from a surface with all of the high 
points collected together in one continuous ridge or distributed as thousands of tiny separate 
peaks. The properties of these two extreme surfaces would be very different.

Just as for profiles, these statistical measures of amplitude are sensitive to the size of the 
sampled area. For most surfaces the standard deviation increases with the number of points 
measured; in fact, for a fractal rough surface the slope of a curve plotting the variance as a 
function of the size of the measured area, on log-log axes, is one of the ways used to measure 
the fractal dimension.

For profiles, the parameter Rz is the difference in elevation between the average of the five 
highest peaks and five lowest valleys. For an area scan of a surface this is generalized to Sz, 
the difference between the average of the ten highest peaks and ten lowest valleys. However, 
this is not purely an amplitude parameter because it depends critically on the definitions of a 
peak and a valley. They cannot be simply the highest and lowest points on the surface (or pix-
els in the surface image), since these may be (and often are) adjacent to each other and would 
all represent a single peak and valley. For a profile, the presence of a low point separating 
two high points might be taken to indicate separate peaks. This is a flawed definition because 
infinitesimal irregularities should not be considered significant, and so some criterion for the 
depth and perhaps width of the valley between the peaks is required. But on an area scan of a 
surface even more is needed because the peak (or valley) covers an area and two or more local 
peaks may connect along intricate paths (a ridge) to be considered part of the same peak (and 
vice versa for valleys). In tracing this connectivity, it matters whether pixels are considered to 
touch all eight of their immediate neighbors or only the four that share edges with them.

  
(a)              (b)              (c)

Figure 15.37 Histograms of elevation values for a few metal surfaces: (a) shot-blasted brass, which 
has a symmetrical distribution; (b) ground stainless steel, which has a slight negative skew due to 
the presence of a few deep but separated parallel grooves; (c) a plateau-honed cylinder liner with a 
greater negative skew resulting from the deep intersecting grooves that distribute lubricant.
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There is much more information in the identification of peaks and valleys than just the Sz 
parameter. Different surfaces give rise to very different shapes for peaks and valleys, and their 
sizes and shapes, orientation, and spacing may all contain important characterization informa-
tion. In Figure 15.38 several examples are shown in which peaks are defined as 8-connected 
(pixels touch 8 neighbors), and are required to be distinct down to 80% of the height of the 
peak. Valleys are defined in the same way. In this example the 20 highest peaks and lowest 
valleys are found. The method is similar to the “flood fill” algorithm used in image processing, 
starting with the highest local maximum (and proceeding down) and including all touching 
pixels that extend down to the 80% limit, while checking to see if the peak merges into an 
existing labeled peak. For the shot-blasted surface the valleys are relatively smooth in out-
line while the peaks are very irregular. For the ground surface the peaks (ridges) tend to be 
broader than the valleys (crevices), and for the honed surface the peaks are very large while 
the valleys are much smaller. All of these differences are consistent with understanding how 
such surfaces are produced, and they may give important insights into other surfaces and their 
functional performance (Sacerdotti et al., 2002).

Another parameter involving the peaks present on the surface is the number of them per unit 
area, called Sds. This also depends upon the definition of a peak. It is likely that additional 

  
(a)                      (b)

  

Figure 15.38 The 20 highest peaks (red) 
and lowest valleys (green) on the sur-
faces shown in Figure 15.37:

  (a) shot-blasted;

  (b) ground;

  (c) plateau honed.

           (c)
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information about the peaks (and valleys) is important in a variety of applications. For instance, 
the uniformity of spacing of the peaks may play a role in cases where the surfaces are involved 
in electrical or thermal contact, friction and wear, or to judge visual and aesthetic appearance. 
As shown in Chapter 10, the mean nearest neighbor distance can be used to determine the 
tendency toward uniform spacing or clustering by comparing the value to the mean distance 
that a Poisson random distribution of the same number of points per unit area would have. 
Figure  15.39 shows the surface of an injection molded polymer in which the peaks are 
slightly self-avoiding, resulting from a complex interaction between the surface finish of the 
die, the temperature and pressure used in the injection process, and the molecular weight and 
viscosity of the polymer. The ratio of the measured nearest neighbor distance to that predicted 
for a random distribution is 1.18. This uniformity, coupled with a spacing between peaks that 
is close to the spatial resolution limit of human vision, produces an aesthetically pleasing 
appearance for the product.

Note in the figure that the valleys have a very different shape and distribution than do the 
peaks. In some other applications the same information about the density and uniformity of 
pits rather than peaks is of interest. An example is the surfaces of plates used to retain ink 
for printing applications.

Surfaces with anisotropy or lay can be characterized by spatial parameters derived from the 
autocorrelation function. The autocorrelation function (ACF) is obtained by squaring the mag-
nitude of the complex variables in the Fourier transform while setting the phase to zero, which 
removes all spatial location information. The inverse transform produces the two-dimensional 
spatial image of the ACF. The parameters defined from this function are the texture aspect 
ratio Str, the texture direction Std, and the autocorrelation length Sal.

Understanding these may be helped by examining the ACF images in Figure  15.40. The 
autocorrelation length is defined in the Birmingham report as the shortest distance in which 
the magnitude of the ACF drops to 20%. For the examples shown, this is the minimum radius 
of the contour line drawn at the 20% intensity level. The texture aspect ratio is the ratio of 
the minimum radius to the maximum radius, and the texture direction is the orientation of 
the maximum radius. For the examples in Figure 15.40, the ACF of the polymer surface 
(Figure 15.20a) is isotropic (indicating that the surface is also isotropic), so the aspect ratio is 
unity and there is no pronounced direction. The ground surface (Figure 15.1b), on the other 
hand, has a strong preferred orientation which is evident in the ACF and can be measured 
there. For the flycut surface (Figure 15.1a) the texture is more complicated, as is evident in 

Figure 15.39 The highest 20 peaks and lowest 20 
valleys in a 1 square millimeter area of the 
molded polymer surface from Figure 15.20a. 
The peaks are color coded from purple to red 
according to height and the valleys from green 
to cyan. Notice that one valley surrounds a 
small peak and that the peaks are much more 
regular in shape than the valleys.
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the original image, which shows two predominant machining directions. The Str, Std and Sal 
values as defined can be measured from the ACF but it is not clear that they contain all of the 
information about the surface lay that may be needed for characterization.

The hybrid properties involve both the elevation and lateral data (as do several of the preced-
ing parameters). S∆q is the root-mean-square slope of the surface, which can be calculated 
from the same triangular tiling procedure used to generate the visualizations shown previ-
ously. Formally it is defined as the square root of the mean value of the sum of squares of the 
derivatives of the image in the vertical and horizontal directions, which can be determined as 
the local difference of elevation values between adjacent pixels. The mean summit curvature 
Ssc is similarly related to the second derivatives of elevation, but calculated only for those pix-
els located at peaks. This depends, of course, on first arriving at a meaningful and accepted 
definition of the peaks to be measured. The third hybrid property is the ratio of the actual 
surface area to the projected area Sdr. This can be obtained by summing up the areas of the 
triangles making up the visualization.

None of these hybrid properties is difficult to compute, but they all depend critically on the 
sampling interval or spacing of the pixels. Changing lateral resolution alters the parameter 
values dramatically so that they are less functions of the surface than of the measurement 
technique and can be used only for comparisons in the most limited way. This is also the case 
for many of the profile-based measurements, but one of the goals in moving to area-based 
measurements is to overcome some of the limitations of the older methods. In fact, many 
engineering surfaces have been shown to have a fractal geometry whose actual surface area is 
undefined (it increases as the lateral resolution of the measurements improves).

It is a more subtle point, but measurements like these also depend upon whether the eleva-
tion data at each pixel are point samples of the surface or averages over the pixel area. The 
mathematics apply for the case of sampling, where the elevation at each pixel is measured at 
a precise mathematical point and whatever happens between that pixel and the next is not 
taken into account. In fact, many measurement methods, such as stylus instruments and opti-
cal interferometers, perform some averaging of measurement over the entire area of the pixel, 
and may either report the maximum value in that area or a weighted average of the elevation 
values. The calculations appropriate to these cases affect not just the hybrid parameters but 
all of the parameters described here.

  
(a)              (b)              (c)

Figure 15.40 Autocorrelation function calculated for: (a) the polymer surface from Figure 15.20a; (b) 
the ground surface from Figure 15.1b; (c) the flycut surface from Figure 15.1a. The superimposed 
contour lines indicate the shape of the function and the distance at which it drops to 20%.



808 The Image Processing Handbook, Sixth Edition
© 2011 by Taylor & Francis Group, LLC

Functional parameters are intended to relate surface geometric data to specific aspects of 
surface performance, and these are generally related to mechanical engineering applications 
since the greatest use of surface metrology has thus far been in that field. One typical example 
is the surface bearing area ratio Stp, which is the fraction of the image area that would be in 
contact with a flat plane parallel to the base if a given height of all peaks is removed by wear 
(Figure 15.41). This value can be read directly from the histogram of the elevation data in 
the image.

Similarly, the amount of volume removed in the process (the material volume ratio Smr) can 
be calculated by integrating the histogram or using the cumulative histogram. The void vol-
ume ratio Svr is the volume of empty space within the surface of the specimen, which may 
be available for retaining or distributing a lubricant. It is measured by the Abbott-Firestone 
curve. Figure 15.42 shows the same data from Figure 15.41 but as a surface visualization that 
reveals the nature of the contact surface and the void volume after some of the peaks have 
been removed by wear (but assuming that there is no deformation of the remaining surface 
nor filling in of pits with debris).

More information is needed about the contact areas than these parameters provide. The size 
of the individual contacts is important for heating and deformation, and the void volume 

Figure 15.41 Thresholding the range image 
(in this example the shotblasted surface 
from Figure 15.1d) at any particular 
elevation (in this example 31% below the 
maximum value) shows the surface area 
that would be in contact with a plane 
after a corresponding amount of wear (in 
the absence of any elastic or plastic defor-
mation, or accumulation of debris).

  

  
(a)                      (b)

Figure 15.42 Visualization of the data from Figure 15.41: (a) the original shot-blasted surface; (b) 
the same surface truncated 31% below the top of the highest peak, showing the contact areas and the 
void volume.
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may either be completely connected, or consist of isolated pockets, or be a mixture of the 
two, with very different consequences for lubrication. There are other functional parameters 
proposed to deal with these and other aspects of surface performance, but they become very 
specific to each application and require considerable effort to properly define or utilize. Many 
of them are handicapped to a significant degree because the surface elevation data in a range 
image are single valued. The elevation recorded at each pixel is for the topmost surface at that 
location, as detected by a stylus or optical reflection, etc. Undercuts, caves, or pores within 
the surface that do not show up in the range image may become important if wear removes 
some of the surface overburden.

Image processing and analysis using the tools already developed in preceding chapters can 
be used to obtain many of the parameters of interest for surface characterization by operating 
on range images. For example, min and max ranking operators (gray scale erosion and dila-
tion) can be used to modify the image to form the envelope of the surface which a contact of 
known size would feel, creating a two-dimensional form of the motif logic mentioned above 
for profiles. Cross-correlation with the image of a defect (crack, pit, dust particle, etc.) can 
be used to detect and locate them. Measurement of features obtained by thresholding can 
provide data on the contact areas and their distribution after wear has modified a surface. 
Skeletonization of the pore volume can be used to determine its connectivity as a pathway to 
distribute lubricants. Using these tools is straightforward once the significant parameters have 
been determined so that their relationships to surface behavior and history can be assessed.

Topographic analysis and fractal dimensions

The limitations and inadequacies of the traditional methods of analysis discussed above pre-
vent them from fully describing real surfaces. They are primarily used for process control 
applications in mechanical engineering, where comparison of measurements with prior his-
tory provides an indication of change, so long as the measurement technique and instrumen-
tation remain unchanged. As newer instruments and analysis methods become available, their 
full meaning and interpretation must be explored.

Human vision uses global topographic information to organize information on surfaces (Scott, 
1995). The arrangement of hills and dales, ridges, courses, and saddle points, contains consid-
erable information for describing a surface. A landscape or surface can be divided into regions 
consisting of hills (points from which all uphill paths lead to one particular peak) and dales 
(points from which all downhill paths lead to a pit). Boundaries between hills are termed 
courses and boundaries between dales are called ridge lines (Figure 15.43).

A Pfalz graph (Pfalz, 1976) or change tree (Figure 15.44) connecting the peaks and dales 
through the respective saddle points where ridge and course lines meet summarizes the 
topological structure. The change tree summarizes the height difference and lateral distance 
between features, which makes decisions straightforward about eliminating features that have 
either small vertical or lateral extent. This is a direct extension to surfaces of the motif combi-
nation used for profiles. Scott (1997) has proposed methods for dealing with the finite extent 
of real images and the corrections necessary for dealing with the intersection of ridges and 
courses with the edges of the image area. It is not yet clear just how this information can be 
best used for surface characterization and measurement, but parameters such as the volume of 
connected valleys, the spatial distribution of valleys and peaks across the surface, and orienta-
tion of watercourses and ridges are likely to be important.
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At a different extreme of local roughness, many surfaces (but certainly not all) are character-
ized by a self-similarity or a self-affinity that can be represented by a fractal dimension. There 
are several ways to measure this (which do not exactly agree numerically). There must also be 
a parameter that describes the magnitude of the roughness and perhaps others to characterize 
the directionality of the surface. The appeal of the fractal dimension is that it is not dependent 
on the measurement scale and that it summarizes much of the “roughness” of surfaces in a 
way that seems to correspond to both the way nature works and the way humans perceive 
roughness. Given a series of surfaces, the “rougher” the surface as it appears to human inter-
pretation (for a variety of basic reasons), the higher the fractal dimension. At the same time it 
must be noted that the recognition of fractal geometry (even the name) is comparatively new, 
and there is a “bandwagon” tendency that possibly causes it to be applied where it should not 
be, or with more enthusiasm than critical thinking.

In Chapter 11, the fractal dimension of a planar feature is shown as a function of the arrange-
ment of points along the boundary. The dimension lies between a value of 1 (the topological 
dimension of a line) and 2, (the topological dimension of the plane containing the feature). 
A perfectly smooth boundary whose observed length does not increase as it is examined at 
higher and higher resolution has a dimension of 1.0. “Rougher” shapes have increasing dimen-
sion values.

 

Figure 15.43 A contour map representing a 
surface, with the peaks (red), valleys (green), 
and saddle points (purple) marked.

  

Figure 15.44 Surface topology for 
Figure 15.43:

  (a)  the Pfalz graph showing 
which peaks (P), saddle 
points (S) and dales (V) are 
adjacent;

  (b)  the change tree drawn to 
show the height difference 
and lateral distance between 
them.

      (a)               (b)
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Analogous relationships exist for surfaces. The frac-
tal dimension of a surface is a real number greater 
than 2 (the topological dimension of a surface) and 
less than 3 (the topological dimension of the space 
in which the surface exists). A perfectly smooth 
surface (dimension 2.0) corresponds to Euclidean 
geometry, and a plot of the measured area as a 
function of measurement resolution would show 
no change. But for real surfaces an increase in the 
magnification or resolution with which examina-
tion is carried out reveals more nooks and crannies 
and the surface area increases. For a surprising 
variety of natural and man made surfaces, a plot 
of the area as a function of resolution is linear on a 
log-log graph, and the slope of this curve gives the 
dimension D, as shown in Figure 15.45.

This description comes directly from the earlier recognition that boundary lines around 
islands, the lengths of rivers, and so on, have a length that depends upon the measurement 
scale. A so-called Richardson plot of the length of the west coast of Britain (Mandelbrot, 
1967) as a function of the length of the measurement tool shows this log-log relationship and 
was one of the triggering ideas that led Mandelbrot to study the mathematics of self-similar 
structures (ones that appear equally irregular at all scales) and to coin the name fractal for 
the behavior. Many subsequent publications have shown that an extremely broad variety of 
surfaces also exhibit this kind of geometry, have investigated a number of ways to measure 
the dimension, and have begun to study the relationships between the fractal dimension and 
the history and performance characteristics of surfaces.

Measuring the surface area over a range of resolutions is a difficult thing to do; one way is by 
adsorbing a monolayer of molecules of different sizes and then measuring the amount. This is 
not appropriate for many surfaces because they are not ideally self-similar. For most surfaces, 
the lateral directions and the normal direction are distinct in dimension and physical proper-
ties, which means that the scaling or self-similarity that exists in one direction may not be the 
same as the others. At a sufficiently large scale most surfaces (even the earth’s surface with 
its mountain ranges) approach an ideal Euclidean form. For anisotropic surfaces even lateral 
directions are different. This means that the surfaces are mathematically self-affine rather 
than self-similar. The fact that elevation measurements are single valued and cannot reveal 
undercuts means that the measured data are self-affine even for a truly self-similar surface 
(for instance one produced by diffusion-limited aggregation of particles on a substrate). For 
self-affine surfaces and data sets there are still a variety of correct and useful measurement 
techniques. A few of the more practical ones are summarized here (and a more complete pre-
sentation is available in Russ, 1994).

In most cases, the Fourier power spectrum provides a robust measure of the fractal dimension 
even for surfaces that are not ideally fractal nor perfectly isotropic (Russ, 2001). Instead of 
the usual display mode for the power spectrum, a plot of log (magnitude) vs. log (frequency) 
reveals a fractal surface as a straight line plot whose slope gives the dimension. The principal 
drawbacks to using the power spectrum plot to measure the dimension are that it tends to 
overestimate the numerical value of the dimension for relatively smooth surfaces (dimensions 
between 2.0 and about 2.3) and that the precision of the measured value is less than some of 
the other methods for images of a given size. Figure 15.46 shows an example of the power 
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Figure 15.45 Schematic diagram of fractal 
dimension measurement for a surface: as 
the measurement resolution becomes finer 
the total measured area increases.
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spectrum plot for an isotropic fractal surface whose slope 
gives the fractal dimension.

Generating the two-dimensional Fourier transform of 
the surface range image reveals any fractal anisotropy. 
This can be either weak anisotropy in which the dimension is the same in all directions but 
the magnitude is not, or strong anisotropy in which the dimension also varies with direc-
tion. Plotting the slope and intercept of the plot of log (magnitude) vs. log (frequency) as a 
function of orientation provides a quantitative tool to represent the anisotropy, as shown in 
Figure 15.47. The separation of the low frequency data that describes the form or figure and 
the high frequencies that often reveal instrument limitations from the intermediate frequen-
cies can be used to isolate the surface fractal dimension.

By itself, the fractal dimension is only a partial description of surface roughness even for 
ideally fractal surfaces. Stretching the surface vertically to increase the magnitude of the 

Figure 15.46 The Fourier transform 
power spectrum (top left) of the shot-
blasted metal image (Figure 15.1d), 
with its subsequent analysis. The plot 
of log magnitude vs. log frequency 
(bottom left) averaged over all direc-
tions shows a linear relationship 
which confirms the fractal behavior 
and whose slope gives the dimen-
sion (2.25). A rose plot of the slope as 
a function of orientation (top right, 
red line) shows that the surface is 
isotropic with the same dimension in 
all directions. The green line on the 
same plot shows the intercept of the 
plot as a function of direction, which 
is a measure of the amplitude of the 
roughness and also shows isotropy for 
this surface. Finally, the plot (bottom 
right) of the distribution of phases of 
the terms in the Fourier transform 
shows them to be uniformly random, 
as required for a fractal.

 

Figure 15.47 The same data presenta-
tion as in Figure 15.46, but for the 
anisotropic ground surface shown 
in Figure 15.1b. Both the slope and 
intercept of the power spectrum plot 
are different in the vertical and 
horizontal directions, indicating 
that the surface is an anisotropic 
fractal.
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roughness does not change the slope of the power spectrum or the fractal dimension. An 
additional measure, with units of length, is needed to characterize the magnitude. The inter-
cept of the plot of the power spectrum can be used for this purpose. So can the topothesy, 
defined as the horizontal distance over which the mean angular change in slope is 1 radian 
(this is often an extremely small value and is obtained by extrapolating the measured data).

There are a variety of other measurement approaches that can be used correctly for self-affine 
fractal surfaces. Two widely used techniques that deal with the range image of the surface 
directly are the covering blanket and the variogram. Both work for isotropic surfaces but do 
not reveal anisotropy and do not produce a meaningful average if it is present. The variogram 
is a plot of the variance in elevation values as a function of the size of the measured region 
(Dubuc et al., 1989; Russ 1994; Hasegawa et al., 1996). Values from areas placed systematically 
or randomly over the surface are averaged and a single mean value obtained. This process is 
repeated at many different sizes and a plot (Figure 15.48) made that gives the dimension.

The covering blanket or Minkowski method measures the difference (summed over the entire 
image) between an upper and lower envelope fitted to the surface as a function of the size of 
the neighborhood used. The minimum and maximum brightness rank operators introduced 
in Chapter 4 are applied with a series of different diameter neighborhoods and the total dif-
ference between the min and max values added up for each diameter. This is analogous to the 
Minkowski dimension for a profile described in Chapter 11, obtained by using the Euclidean 
distance map to measure the area as a function of distance from the boundary line. The 
covering blanket method produces a plot, as shown in Figure 15.49, that gives a dimension. 
Notice that these three methods give only approximate agreement as to the numerical value 
of the dimension. Part of this is the result of limited measurement precision, but part of the 
difference arises from the fact that all of these techniques measure something that is slightly 
different. These values are limits to the actual dimension and in general do not agree, so when 
comparisons are being made between surfaces it is important to always use one technique for 
all of the measurements.

It is often attractive to perform measurements in a lower dimension, since a smaller number 
of data points are involved. Historically, much of the work with fractal measurement has been 
done with boundary lines, whose dimension lies between 1.0 (the Euclidean or topological 
dimension of a line) and 1.999… (a line whose irregularity is so great that it wanders across an 
entire plane). This can be done with fractal surfaces, by intersecting the surface with a plane 

Figure 15.48 Plot of mean variance in elevation 
values vs. neighborhood size to determine the 
fractal dimension of the shot-blasted surface 
(same image as used for Figure 15.46).

Figure 15.49 Plot of the Minkowski cover volume 
as a function of neighborhood size to determine 
the fractal dimension (same image as used for 
Figure 15.46).
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and then measuring the dimension of the line that is the intersection. It is vitally important, 
however, that this plane be parallel to the nominal surface orientation rather than a verti-
cal cut. The vertical cut produces the same profile as that obtained with a profilometer, but 
because the surface is self-affine and not self-similar the proper measurement of this profile 
is complicated and the common techniques such as the Richardson plot mentioned above do 
not apply. Also, of course, the profile is oriented in a particular direction and cannot be used 
with anisotropic surfaces.

The horizontal cut is called a slit-island method, and it corresponds exactly to the case 
Richardson was dealing with. The horizontal plane corresponds to sea level and the outlines 
are the coastlines of the islands produced by the hills that rise above the sea. A plot of the 
length of these coastlines as a function of measurement scale produces a dimension that is 
exactly 1 less than the surface dimension (the difference between the topological dimensions 
of a surface and a line). It is not possible to measure the length of a coastline using a digital 
image in a computer using the same procedure that Richardson did, by setting a pair of divid-
ers to a particular scale length and “striding” around the coastline so that the boundary length 
equals the divider setting times the number of strides, because the points would fall between 
pixel addresses. But there are a variety of other methods that are readily implemented in a 
computer.

The analog to the Minkowski blanket for the surface is the Minkowski sausage produced by 
thickening the boundary line by various amounts and plotting the area covered vs. the width 
of the stripe or sausage. The method shown in Chapter 11 accomplishes this procedure very 
efficiently. Another method is box counting (Figure 15.50) in which a grid is placed on the 
image and the number of squares through which the boundary line passes is counted as a 
function of the size of the grids. While these methods are fast, they are only applicable to iso-
tropic surfaces. Most real surfaces, and certainly the most interesting ones, are not isotropic.

It is beyond the scope of this text to document the relationships that have been found between 
fractal dimensions and various aspects of the history and properties of surfaces. In brief, most 
processes of surface formation that involve brittle fracture or deposit large amounts of energy 
in small regions tend to produce fractal surfaces, and the numerical value of the dimension is 
often a signature of the process involved (Russ, 1997). Also, many surface contact applications 
(electrical, thermal, etc.) depend upon the relationship between contact area and pressure, 
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Figure 15.50 Contour lines produced by thresholding the image from Figure 15.1d at the midpoint of 
its elevation range and the plot from a box-counting measurement.
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and fractal geometry is pertinent to this case. Under some circumstances friction and wear 
may also be related to the surface dimension. Geophysical erosion and deposition processes, 
cloud formation, and other large scale phenomena are frequently characterized by fractal 
geometry. Fractal description of surfaces is a new and somewhat “trendy” approach to surface 
characterization. While it offers powerful methods that apply to some surfaces, it is not appro-
priate for others, such as ductile deformation.

Surfaces play many important roles. They are responsible for the appearance of objects and 
many aspects of mechanical and environmental behavior, including adhesion, friction, and 
chemical activity. They are the principal mediators of the interactions between one object and 
another, as well as between people and the world around us. Imaging and measurement of 
surfaces employ a broad range of instruments and technologies, and the data sets they create 
require analysis to extract the important characterization parameters. Achieving a meaningful 
synthesis of the various possibilities seems to be a reasonable goal for the future.
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Whether obtained by microscopes, space probes, or the human eye, the
same basic tools can be applied to acquire, process, and analyze the data
contained in images. First published in 1992, The Image Processing
Handbook, Sixth Edition is ideal for self study, raising the bar once again
as the gold-standard reference on this subject.

Using extensive new color illustrations and diagrams, this book offers a
logically organized exploration of the important relationship between
two-dimensional images and the three-dimensional structures they reveal.
The author focuses on helping readers visualize and compare processing
and measurement operations and how they are typically combined in
areas ranging from microscopy and astronomy to real-world scientific,
industrial, and forensic applications.

Presenting methods in the order in which they would be applied in a
typical workflow—from acquisition to interpretation—this book compares
a wide range of algorithms used to:

• Improve the appearance, printing, and transmission of an image
• Prepare images for measurement of the features and structures they

reveal
• Isolate objects and structures, and measure their size, shape, color,

and position
• Correct defects and deal with limitations in images
• Enhance visual content and interpretation of details
• Interpret measurements of structures, using stereological methods
• Apply statistical methods for classification and identification

This handbook avoids dense mathematics, using instead new practical
examples that better convey essential principles of image processing. This
approach is more useful to develop readers’ understanding of how and
why to apply processing techniques and, ultimately, clarify the mathematical
foundations behind them. Going far beyond mere image improvement,
this book presents a wide range of powerful example images that illustrate
techniques involved in color processing and enhancement.
Applying his 50-year experience as a scientist, educator, and industrial
consultant, John Russ offers his unparalleled insights and guidance,
continuing to make this a must-have reference.
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