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PREFACE

This book is intended for the reader who is interested in learning about
digital signal processing (DSP) with an emphasis on audio signals. It is
an introductory book that covers the fundamentals in DSP, including
important theories and applications related to sampling, filtering, sound
synthesis algorithms and sound effects, time and frequency-domain analysis,
and various topics central to the study of signal processing. The book has
been designed to present DSP in a practical way, concentrating on audio and
musical signals by addressing the concepts, mathematical foundations, and
associated musical and sound examples to provide an appealing and, dare
I say, intuitive way to become familiar and comfortable with the materials
presented. Throughout the chapters, we try to follow the L3 (look, listen,
learn) model as much as possible — a pedagogical approach that my brother
has engrained in me over many years. A bulk of the concepts and diagrams
presented in this book have accompanying MATLAB® code that can be
downloaded from http://music.princeton.edu/~park/dspBook (details can
be found in the appendix). During the course of the book, important
theories and ideas are laid out where questions that pertain to the “why”
are given special attention, especially when new materials are introduced for
the first time. This approach is often rather lacking in standard engineering
books, which at times tend to dwell heavily on very abstract ideas with little
reference to practical situations and applications. At the same time, the
book also tries to fill in some of the holes on the other end of the spectrum —
the mathematical side of the coin which often is explained fleetingly without
much depth in non-engineering-centric books related to signal processing.
In this book, the goal is to focus on the “why” and the “how,” with the
ultimate aim to help the reader learn and understand the art of digital signal
processing. As far as the reader’s mathematical background is concerned,
the majority of the concepts will be manageable having knowledge of
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algebra. The audience for this book therefore encompasses a wide range
of readers, including musicians, composers, engineers, computer scientists,
programmers, and undergraduate/graduate students in various disciplines.

Each chapter is structured to include the presentation of concepts,
mathematical foundations, practical examples, lots of pictures/plots, and
ends with a section introducing compositional and musical examples in
relation to the materials covered. The book starts in the time-domain with
the familiar sine tone along with the introduction of basics in acoustics and
human hearing limitations. This sets up the reader in understanding why
and how the computer is used in representing and manipulating analog
sound by an inferior digital counterpart without compromising quality.
Artifacts of sampling followed by quantization, bit resolution, and the so-
called CD-quality standard pave the way to important concepts in digital
audio/sound including the ADSR, windowing, RMS envelope detection,
wavetable synthesis and sample rate conversion with musical examples such
as Queen’s Another One Bites the Dust and time-domain time-stretching
and compression seen in William Schottstaedt’s Leviathan.

All through the book, especially in the beginning stages, DSP is
introduced to the reader in a somewhat subconscious manner — via
concentration and presentation of fun and interesting sound synthesis
and analysis examples (within the context of DSP and the mathematics
involved). For example, we start off by introducing sine waves, amplitude
modulation, frequency modulation concepts, and the clapping technique to
explain the impulse response which will help us get ready for the theory
and practical use of convolution in audio. By the middle of the book the
reader will hopefully be armed with enough confidence to get into the
nuts and bolts of signal processing essentials — diving into topics such
as difference equations, frequency response, z-transforms, and filters. As
usual, DSP pertinent musical examples will follow the materials being
presented at the end of each chapter and Matlab® implementations of
topics such as comb-filtering and its kinship to physical modeling of plucked
strings is also explored. In the final chapters we will fully venture into the
frequency-domain, focusing on the Fourier transform with emphasis on the
DFT (discrete Fourier transform) and its applications in various areas in
computer music. We will at this point also revisit concepts introduced at the
beginning of the book, such as up-sampling, down-sampling, decimation,
harmonic distortion/dithering, and the Nyquist theorem to reinforce our
knowledge of these very fundamental and important signal processing
concepts by reviewing and viewing the same theories from different angles.



Preface vii

As a matter of fact, the practice of revisiting previously learned materials
is a reoccurring theme throughout the book. This will hopefully further
help us strengthen our understanding of principles presented during the
course of the book. The final chapter discusses a number of classic vocoder
algorithms and finishes off the book with an overview of research topics in
the field of digital audio and computer/electro-acoustic music.
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Chapter 1

ACOUSTICS, HEARING LIMITATIONS, AND SAMPLING

1 Introduction

We will begin our journey into the world of digital signal processing by
first tapping into topics with which we are (hopefully) already familiar.
We will hence briefly introduce the sine tone, followed by discussion of
important fundamental concepts in acoustics, talk about issues in human
hearing and various interesting human hearing limitations and work our
way to the concept of sampling and digitization of analog signals. As we
shall see in subsequent sections, digitization and representing analog signals
such as sound waves in the digital domain, is in large part possible due
to deficiencies in our hearing system — the key word here is limitation
which is critically exploited by digital systems. Our ears, eyes, and other
input sensors do not have infinite resolution. Although this may seem like a
serious shortcoming for our sensory systems, it may in reality be a blessing
in disguise on many levels, including on the level of information overload
from our brain’s perspective and computation load from the computer’s
perspective.
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2 The Sine Tone

The sine tone is introduced in this very first chapter for a couple of
reasons: it is easy to implement, hear, and see on a computer, it is a sound
that is probably familiar and it is a signal that encompasses fundamental
characteristics of sound including amplitude, frequency, and phase.

Let’s briefly refresh our memory regarding the sine wave by looking at
Fig. 2.1. We probably remember a demonstration in our physics labs (or some
educational television show) dealing with oscillation patterns — a pen that
can only move perpendicularly oscillating up and down while at the same time
moving a sheet of paper horizontally (left) as illustrated below. After a while
and at the end of the demonstration, we were rewarded with an oscillatory
pattern on the piece of paper — a sine wave. The oscillatory pattern can also
be represented by a circle as shown on the left side of Fig. 2.1 rotating in a
counterclockwise direction with constant angular velocity — the locations on
the circle being represented in radians. For example, the peak will correspond
to m/2 radians with an amplitude value of 1.0. This oscillatory pattern is
characterized by three fundamental parameters — amplitude, frequency, and
initial phase as expressed in Eq. (2.1) and summarized in Table 2.1.

yt)=A-sin(2-7-f-t+¢) (2.1)

The amplitude is normalized to £1.0 and allows all real numbers in
between. The number of times this oscillatory pattern repeats itself every
second is defined as Hertz (Hz) where one full cycle of the pattern is referred
to as the period. The initial phase parameter ¢ merely dictates where on the

2
— 1
A
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06}
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02} /
| o 1
0.2}
04
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08 !
i - 1“ L L L L L " \\."-»__--:"/ L
- 0 20 40 60 80 100 120 140 160 180 200
372

Fig. 2.1. The unit circle and sine wave.
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Table 2.1. Sine oscillator parameters.

Parameter  Description

A Amplitude (in our example —1.0 to +1.0)
f Frequency in Hertz (Hz)

t Time in seconds

1) Initial phase in radians

0.4

Amplitude

0.2 a

A

Amplitude

0.2 1 period (full cycle) . J

_1 L 1 1 1 1 1 ] L 1
0 20 40 60 80 100 120 140 160 180 200
Time in samples

Fig. 2.2. Sine wave amplitude and a single cycle.

circle the pen starts rotating in a counterclockwise direction. For example,
at ¢ = 7/2 radians or 90 degrees the sine will become a cosine. Figure 2.2
shows a sine wave making a full cycle.

I hope that you have MATLAB® available to run the following code
as we will be using MATLAB® to show DSP examples, make sounds, and
view plots. If you do not have it do not worry as coding is coding and
the way it is coded will make sense especially if you have programming
experience. If you do have MATLAB® you can try running the following
code to hear a sine wave at f = 440Hz (pitch equivalent of the A4 note),
A =1, duration = 1 second, and initial phase = 0.
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y = sin(2*pi*440/44100*[0:44099]);
sound(y, 44100)

Code Example 2.1

Do not be concerned if you do not understand the above code at this
time as it is meant for you to hear the sine tone and play around with — try
changing some of the parameters discussed above. It will, however, become
evident what those numbers mean once we cover sampling and the notion
of discrete time.

3 Human Hearing and Its Limitations

Sound can be generally described via four very basic but important
parameters — duration, pitch, amplitude, and timbre. All of these basic
parameters are crucial in the of hearing sounds, whether be it sounds that
one experiences in nature, music that blares through loudspeakers in concert
halls, or when listening to a soft recording on a CD in your room on a quiet
Monday evening. It so turns out that although it may not seem that obvious
at first, we cannot hear everything that is around us and certain limitations
prohibit us to perceive all of the subtleties that vibrate in the air. In this
section, we will discuss some our hearing limitations.

3.1 Duration

Duration is quite straightforward and can be thought of the lifetime of a
tone or sound object with units in milliseconds, seconds, minutes, hours,
etc. However, even with duration, although upon initial glance it may seem
overly simple on the surface, when coupled with human perception and
psychoacoustics, things become very complex rather rapidly. For example,
let’s say we are listening to a song that is exactly 3 minutes long when
heard at home alone on the stereo system in a quiet environment. Let’s
then assume you take the same CD and listen to the same exact track at
a party from beginning to end with the exact same amplitude level. The
song will probably not be perceived as having the same length, although
in theory both versions are exactly the same and 3 minutes long! We will
not go deeply into the psychoacoustic side of sound and will remain mostly
in the realm of sound that can be measured but suffice it to say that basic
topics such as duration for music and sound objects are not trivial at all.
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3.2 Pitch

Pitch is a perceptual aspect of sound corresponding to periodic or more
often quasi-periodic characteristics of sounds. A higher pitch corresponds
to the perception of an increase in frequency and lower pitch a decrease in
frequency and is generally measured in Hertz (Hz). Pitch and frequency (f)
have a reciprocal relationship with time (¢):

f=1/t (3.1)

Try singing ahhh or try using MATLAB® Code Example 2.1 to play various
pitches by changing the frequency parameter. Of course not all musical
sounds have pitch — for example the tambourine or the kick drum do
not have pitch per se. Although in theory, kick drums can be tuned to
a high enough resonant frequency for it to be perceivable as pitch, this
is for most instances not even the desired effect especially in popular
music — the timpani which is different from the kick drum is, however,
tuned to specific pitches for example. In case of the kick drum scenario,
imagine the poor drummer of a band having to “tune” the whole drum
set (not just the kick) every time a new song is to be played at a concert
due to key changes ...Pitch is commonly referred to as the fundamental
frequency, but there are cases where there is no fundamental frequency and
we still can perceive its pitch which does not really exist. This is referred
to as the missing fundamental phenomenon. A healthy person will have
the capability to hear frequencies from approximately 20 to 20,000 Hz. It
is a common mistake to think that we can perceive pitch in the same
range. This is, however, not the case. The exact upper and lower limits
for pitch perception vary from person to person, but frequencies from 200
Hz to 2,000 Hz (Dodge, Jerse 1985) comprise the region of greatest acuity
and sensitivity to change in frequency (there is a good reason why the
piano starts at 27.50 Hz and goes up to only 4186 Hz). As the frequency
is increased beyond 4,000 Hz the aspect of pitch slowly transforms into
the perception of “high frequency” rather than that of pitch. Notice the
distinction here — as we ascend towards the perceivable upper pitch limit
we will tend to sense the presence of high frequency content rather than
hear a precise pitch value. A similar yet different phenomenon occurs on the
lower limit of frequency/pitch perception. When we start off a periodic pulse
signal at 1 Hz and slowly increase it to around 30 Hz we will go through
three perceptual frequency regions — 1) a region where we can actually
count or almost count the number of pulses per second sometimes eliciting
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a sense of rhythm; 2) when the pulses become faster to the degree that we
cannot count them anymore, at which point we start hearing these pulses
as a sensation of roughness; 3) last region where the roughness slowly turns
into pitch. There are interesting theories in the way we perceive pitch, the
two main ones being the so-called place theory and the other using theories
in phase-locking of nerve fibers. Suffice it to say that for now, humans cannot
hear all pitches nor can we hear all frequencies — there are upper and lower
soft limits.

3.3 Amplitude and sound levels

Amplitude refers to the strength of a signal. The larger the amplitude
the louder it will seem and vice-versa. The unit used to represent the
strength for audio signals is decibels (dB). There are various similar yet
different names when it comes to addressing amplitude in audio and music
in particular, including sound intensity level (SIL), sound pressure level
(SPL), and loudness. It is not uncommon that these terms are sometimes
used interchangeably, potentially causing confusion. The confusion perhaps
arises because loudness like duration/time is seemingly straightforward in
concept and we all seem to know how to crank up the volume dial (often
buttons nowadays) on our stereo to get a louder sound. In reality, however,
“what we hear is not what we hear” so-to-speak. I will briefly discuss the
above terms in the following sections.

3.3.1 Sound intensity level (SIL)

Imagine a spherical sound source with radius 7,4 With an infinite number
of infinitely small loudspeakers making up its surface, radiating equally in
all directions (isotropic) in some medium such as air. Now, if we engulf
this spherical sound source with another bigger sphere — the same sphere
with a larger radius 744 sharing the same origin we can visualize the sound
hitting the inner shell of the outer sphere. The power of the radiated sound
source passing one square meter is measured in watts/m? and is defined as
sound intensity. We also know from experience the further away we are from
a sound source the softer the sound will become. Specifically, it adheres to
the following inverse square relationship:

P
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P is the acoustic power of the sound source and r the radius or distance
from the sound source. This basically means that as the distance (r) from
the sound source increases the intensity of the sound source decreases
exponentially and not linearly. The sound intensity level (SIL) is defined
according to Eq. (3.3).

dBsi, = 10 - log, (11 /1) (3-3)

The term decibel itself is derived from the name Alexander Graham Bell
who was instrumental in developing the telephone. The bel is defined as:

bel =log;o(11/1o) (3.4)

As you can see, the only difference between the bel and decibel in (3.3)
and (3.4) is the scalar multiplier 10. The deci (stands for 10 in Latin) was
added later largely in part to help in the usability and readability of the bel
measurements itself.

In the above equations, I; refers to the intensity level of interest and
Iy a reference level called the threshold of hearing (measured as power) —
the intensity threshold where we will start to hear a 1kHz signal if we were
to increase the intensity from complete silence to this threshold value (Ip).
The reason a 1k Hz signal is used will become evident below when the
Fletcher-Munson curve is introduced — but let’s for the time being assert
that we do not hear all frequencies equally well and hence a representative
frequency needs to be selected. Obviously in other situations Iy can be
some other constant but in the area of audio and sound it is defined as the
threshold of hearing:

Iy = 10712 Watts/m? (3.5)

One very important characteristic about sound intensity level is that it is a
ratio and not an absolute value. To put this into perspective, if one wants to
increase the SIL to twice its value from say 10 dBgyy, to 20 dB gy, we would
need to increase the I /Iy ratio so as to square it — one’s gut reaction
would probably be multiplying the source I by 2 (let’s assume Ij is equal
to 1 for simplicity) but this will yield 10-log;(2-10) = 13.01 dB g1z, which
is not twice of 10 dBgy,. However, if we increase the intensity 10-fold in our
example (square the I; /I ratio), we increase the resulting dB gy, level to 20:

10 - log;(10 - 10) = 10 - log;(10%) = 20 - log;,(10) = 20
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3.3.2 Sound pressure level (SPL)

Another popular dB version often encountered in audio is SPL (sound
pressure level) and its corresponding dB gpy, which is defined as shown below
in Eq. (3.6).

dBSPL =20- IOg(Al /Ao) (36)

In this case, the difference between SIL and SPL is namely the multiplier 20
instead of 10 and change in parameter names — amplitudes 4; and Ag. A
is in Pascals (Pa) used to measure air pressure and the threshold of hearing
Ag = 2x107° N/m? at 1,000 Hz. The above derivation comes from the fact
that I oc A2, in other words I (power, watts) is proportional to the square
of the amplitude.

A (A1>2 A2
20log,, — = 101lo — | =10log,y — 3.7
g10 Ao £10 Ao g10 A% (3.7)

Figure 3.1 depicts a diagram showing some of the typical dB levels. Notice
that our hearing system has limitations which are essential characteristics
that we will exploit for digital systems and DSP.

Some common dB levels you may have encountered or heard audio
engineers use is 0 dBgpr,(A; = Ag) and 6 dBgpr(2 - A1/Ag) which now we
understand what is meant by them.

3.3.3 Just noticeable difference (JND)

Just noticeable difference (JND) is defined as the minimum change in
amplitude required in order for the listener to detect a change in amplitude
(there is also an equivalent for frequency, the just noticeable difference in
detectable frequency). This means that human hearing systems have further
limitations. The JND is usually measured using pure sine tones and actually
changes depending on what frequency is presented to the subject and at
what dB level the tone is presented. The general rule of thumb, however,
is that the JND is about 1 dB. Figure 3.2 shows a 1kHz tone and its JND
characteristics. This is probably why we nowadays often see volume controls
on stereo systems that feature discrete steps for increasing and decreasing
the “volume” rather than having a continuous dial.

3.3.4 Equal loudness curve

We briefly mentioned that humans do not perceive all frequencies equally
well. For example, if we were to listen to a 100 Hz sine tone and a 1kHz
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sine tone, we would not perceive them to have the same loudness even if we
did not change the amplitude or the “volume” dial on your amplifier. Try
using the previous MATLAB® code to play a 100 Hz sine tone vs. a 1kHz
sine tone without changing the amplitude parameter by keeping it at 1.0
for example.

This bias of perceiving the strength of a signal in our hearing system
is illustrated in Fig. 3.3 known as the Fletcher-Munson curve or the equal
loudness curve. The graph may at first inspection look a bit strange, so
let’s use a 40 loudness level as an example to try to grasp the concept
behind the Fletcher-Munson curve. Let’s pretend that we have two control
knobs — one controlling the sine tone’s frequency and one controlling the
sine tone’s dB gpy, level. If we were to start at 20 Hz and sweep the frequency
gradually at a linear pace all the way up to around 10,000 Hz and not alter
the dBspy, level dial, we would actually perceive the tone to become louder
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Fig. 3.3. Fletcher-Munson curve (Fletcher, Munson 1933).

up until around 3,000 Hz and then softer when reaching 10,000 Hz — even
when keeping the “volume” dial constant. In order for us to perceive the
same loudness level of, say, 40 throughout the sweep from 20 to 10 kHz we
would need to actually increase the volume knob (dBgpy, level) to around
80 dBgpy, in the beginning part up to 20Hz, decrease it to 40 dBgspr, at
around 1,000 Hz, and again increase it to around 50 dB gpy, at approximately
10kHz to render a perception of “equal loudness.” This essentially is what
the Fletcher-Munson curve outlines. This loudness level also has a special
name called phons and as you probably already noticed, the shape of the
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curves change considerably with respect to phons where at the threshold
of pain it is almost a straight line — at a loud rock concert all frequencies
will be perceived pretty much equally. Maybe that’s one of the reasons rock
concerts are so loud ...

3.4 Auditory masking

Imagine being in a quiet room watching a tennis match on TV between
Federer and Nadal at some dB level that’s just perfect. For some reason
or another, your roommate suddenly feels the urge to engage in some very
important vacuum cleaning project. All of a sudden, the sound coming
from the TV that was so crisp, clear, and just the right dB level is now
overwhelmed by the mechanical sound produced by the 15-year old vacuum
cleaner. You cannot hear anything — the sound from the tennis match is
masked by the sound from the vacuum cleaner. This scenario where one
sound source overwhelms another is referred to as masking.

There are basically two types of masking principles: simultaneous
masking and non-simultaneous masking. Simultaneous masking refers to
a situation when two sound events, the masker (vacuum cleaner) and the
maskee (tennis game), occur at the same time instant. You can probably
imagine that the threshold for hearing the maskee without the masker will
be lower than when the maskee is present and vice-versa. That is, in a very
quiet room without a masker, you will not need to turn up the volume on
the TV too much, whereas a room with lots of noise the signal to noise
ratio (SNR, see Section 5.1) will have to be improved by increasing the
level of the television program. What is interesting is that this threshold of
hearing of the maskee is not only a function of the maskee’s and masker’s
intensity levels but also frequency levels. Figure 3.4 shows a general plot
depicting the behavior of the masking threshold (adapted from Gelfand
2004) where the masking frequency is kept constant at fp,qsx Hz and the
maskee frequency is altered along the frequency-axis (intensity levels are
kept constant for both maskee and masker). What Fig. 3.4 tells us is that
as the maskee (TV) frequency is shifted away from the masking frequency
Sfmasker, the less of an effect the masker will have in overwhelming the
maskee sound source. When the maskee frequency is equal to fasker, the
most noticeable masking effect takes place — you will need to really crank
up the volume of your TV set if you want to hear it while the vacuum cleaner
is running, especially when they are both at the same frequency range.
However, if the vacuum cleaner’s frequency range (fmasker) is much lower
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than the TV sound, you will not need to increase much the volume button
on your remote control. For example, if the vacuum cleaner is running in
another room separated by a wall (this is referred to as filtering discussed
in Chapter 7) much of the high frequency content will vanish (as well as
the intensity level) and your TV experience, from the sonic point of view,
will not be affected much.

Unlike simultaneous masking, non-simultaneous masking (also known
as temporal masking) refers to masking principles when the masker and
maskee are out of synchrony and do not occur at the same time. Within
temporal masking we also have what is referred to as post-masking and
pre-masking. Post-masking intuitively makes sense if you consider the
following scenario. Let’s say we are crossing a busy street in the heart
of Seoul minding our own business (too much) without noticing that the
pedestrian light has just turned red. This guy sitting in a huge truck gets
all mad and hits on his 120dB car honk that just blows you away (without
damaging your ears luckily!). Even though the honk only lasted one second,
you are not able to hear anything that occurred for another 200 milliseconds
or so. This is called post-masking. Pre-masking is a bit more interesting.
Let’s consider the same situation where you are crossing the street as before.
Everything is the same including the post-masking effects, that is, sounds
that will be masked out after the loud honk. But that’s not the end of the
story. It so happens that some sounds that occur before the masker, if they
happen close enough to the start time of the maskers acoustic event (honk)
will also not be heard. In other words, acoustic events that occur prior to
the masker will also be erased without a trace — this is called pre-masking.
Pre-masking is also a function of intensity and frequency of both the masker
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and maskee. A summary of the three types of masking types are shown in
Fig. 3.5 (after Zwicker 1999).

A group of audio compression algorithms that exploit the limitation
and psychoacoustic tendencies of our hearing system are referred to as
perceptual codecs. In these types of codecs (coder-decoder), a great example
being MP3, masking characteristics play an important role in allowing the
reduction of data for representing a given audio signal, thus improving
download and upload performance for our listening pleasures.

4 Sampling: The Art of Being Discrete

Up until now we have been emphasizing on various limitations in our
hearing system which brings us to the concept of sampling and digital
representation of analog signals. Simply put sampling is defined as a process
of analog to digital conversion through devices called ADCs (analog to
digital converters) whereby a continuous analog signal is encoded into a
discrete and limited version of the original analog signal. Think of motion
picture movies — when we watch a movie in cinemas, we perceive through
our visual sensory organs continuous and smooth change in moving objects,
people, and anything else that is in motion. This is, however, an illusion
as in reality there are a set number of pictures known as frames (24, 25,
and 30 frames per second are common) that are projected on the silver
screen. Like our hearing system our eyes have a finite sampling capacity or
sampling rate and information at a higher rate than this sampling rate is
not perceived. There is thus generally little need to have a movie camera
take 100 snap-shots per second nor is there a need to project each frame
for a duration shorter than 1/24th, 1/25th or /30th of a second as we
will not be able to tell the difference. That is, 50 frames or 100 frames
per second or conversely 1/50th or 1/100th of a second for each frame
becomes redundant and more or less unperceivable. Our perceptual organs
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and brains have limited ability in capturing and registering time critical
events. However, if we want to slow down movies, however, that would be
a totally different story as more frames per second will render a smoother
motion picture experience.

The same concept applies when sampling sound. As we have learned
previously, we only hear up to approximately 20kHz. Furthermore, we
cannot hear every infinite subtlety in dynamic change either. When we
say that we only hear up to 20kHz, we mean that if there is a sine wave
that oscillates above 20,000 cycles per second, we would not be able to
perceive it. Our limitations in hearing are actually a blessing in disguise, at
least when viewed from a shear number crunching or processing perspective,
whether be it a machine or our brains. In other words, the time between
each sample need not be infinitely small (infinity is something problematic
on computers) but in fact only need be small enough to convince our ears
and brain that what we have sampled (digitized version of the sound)
is equivalent to the original analog version (non-digitized version of the
sound). To get an idea what this all means let’s look at Fig. 4.1.

Although the plot looks very smooth and perhaps even continuous,
this is not the case. The actual sampled version in reality looks more like
Fig. 4.2 (here we have zoomed into half of the sine wave only). Upon closer
inspection we see that it is not smooth at all and is rather made up of

1
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Fig. 4.1. Full 1 Hz sine wave.
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discrete points outlining the sine wave. It’s somewhat analogous to pixel
resolution of your computer monitor. When viewed from afar (whatever afar
means) the digital picture you took last year at the top of the mountain
looks smooth and continuous. But viewed with your nose up against the
monitor and zoomed-in, you will inevitably see the artifacts of discreetness
in the form of pixel resolution.

In this example, we actually used 200 discrete samples to represent one
full cycle of the sine wave where the 200 samples correspond to exactly
1 second duration. Since the sine wave makes one full resolution in one
second, it must be a 1Hz signal by definition. We say that the sampling
rate, commonly denoted as f;, for this system is f; = 200 Hz or 200 samples
per second. We can also deduce that each time unit or grid is 1/f, =
1/200th of a second (in this example). This time unit is referred to as the
sampling period and usually is denoted as T. Hence, we have the following
relationship between sampling rate fs (Hz) and T (sec):

fs=1/T (4.1)

T=1/f, (4.2)
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This is further illustrated in Fig. 4.3 (quarter plot of the same sine wave)
where we notice that the spacing between each sample is equal to 7', 1/200th
of a second. Figure 4.4 shows the same half sine tone we have been using but
sampled at a quarter of the previous sampling frequency with f; = 50 Hz.
It clearly shows that the number of samples representing the half sine wave
has reduced by 1/4.

We may also at this point notice that time is now discrete — with
sampling frequency of 200Hz we have T = 1/200 = 0.005 seconds or
5 milliseconds (ms) which means that we cannot for example have any data
at 2.5 milliseconds or any other value that is not an integer multiple of T’
as shown below (if we start at ¢t = 0).

t=n-T (4.3)
Here n is the integer time index. We are now ready to express each time

index or sample of the sine wave (or any digital signal for that matter) in
the following manner:

y(t) =sin(2-pi- f-1) (4.4)
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and replacing ¢t with Eq. (4.3) we have:
yln-T)=sin(2-pi-f-n-T) (4.5)

Again, n is again an integer number denoting the time index. For instance
the Oth sample in our example in Fig. 4.5 is:

yln-T]=y[0-T] = y[0] = 0 (4.6)
The 7th sample of our sine wave (n = 6 since we started counting from 0) is:
yin-T]=yl[6-T]=0.2 (4.7)

Note that for analog signals we use the ( ) (parentheses) and for digital
signals we use the [ | (square) brackets to clearly differentiate continuous
and discrete signals. The representation of each time “location” which is
now discrete can be done for every sample since we know the sampling rate
fs and hence the period T'. The sampling period T is customarily omitted
for notational convenience and y[n - T] becomes y[n]. Going back to the
MATLAB® code that we started off the chapter with we can now see how
the continuous time sine wave (t) becomes the discrete time sine wave (n-T').
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In other words:

y(t) =sin(2-pi- f-t) (4.8)
setting t =n - T we get
Ylomnr(t) = ylnT] = sin(2-pi- f-n-T) (4.9)
remembering that 7' = 1/f, the MATLAB® code becomes
y[n]sin(z.pi.f.n-T)sin(z-pi-f-%> (4.10)
and since n is an integer value corresponding to the sample/time index, by

setting n = [0 : 44099] we get a 1 second sine wave (the [0:44099] notation
produces sequential integer numbers from 0 to 44099):

y[0 : 44099] = sin <2 - pi- fi [0 44099]) (4.11)

By plugging in f = 1 we get a lsecond, 1Hz signal sampled at f; =
44,100 Hz.

4.1 Sampling theorem

In our sine wave MATLAB® example we used a sampling rate of 44,100 Hz
meaning we used 44,100 samples per second to represent the sine wave.
We could, however, have used different sampling rates as well — or could
we have done this? The answer actually is dependent on what sine wave
frequency we want to generate or more specifically what the highest sine
wave frequency we would like to produce. That is, what sampling rate
would be adequate in representing an analog signal (single sine wave in our
example) without audible artifacts or distortion? As we have previously
asserted we only hear up to 20,000 Hz and hence a good assumption at
this point might be fs = 20,000Hz (remember that f = 1/t) equivalent to
1/20000th of a second or conversely, 20,000 samples per second. Although
this is indeed a good guess, it turns out that we need at least twice that
amount. More accurately stated, the sampling frequency must be at least
twice the highest frequency component in an audio signal. This is known
as the sampling theorem where f,/2 is referred to as the Nyquist frequency
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named after Harry Nyquist. The sampling theorem is shown below in (4.12)
and (4.13):

fo

5 (4.12)

fmax <

or

fs > 2" fmax (4.13)

For a 1 Hz sine wave that would mean that we only actually would require
a sampling rate greater than 2Hz or a minimum of 3 samples per second
since it is a signal with only one frequency component. In our MATLAB®
example where we used a 440 Hz sine wave, the minimum sampling rate
required would be a number greater than 440 -2 = 880 Hz — a minimum of
any frequency greater than 880 samples per second must be selected. Now,
since our hearing limitation is around 20,000 Hz we know from the sampling
theorem that we would need a sampling rate greater than 40,000 Hz. It
so happens that the sampling frequency used for the standard compact
disc is 44,100Hz at 16 bits per channel (2 channels exist for CD). Why
44.1kHz? The urban legend goes something like this: the main industrial
heavyweights in developing the compact disc Sony and Philips (other
collaborators included CBS/Sony and Polygram), were in the midst of
determining a standard for the audio CD back in the 1980s. Seemingly
at some point in time during that historic period in the 80s, it came down
to choosing a sampling rate between 36 kHz vs. 44.1 kHz. Many arguments
for and against each sampling rate standard went back and forth, but when
the arguments had ceased, the 44.1 kHz was chosen as the standard because:

Human hearing goes up to 20,000 Hz
Sampling theorem requires fs > 40,000 Hz
Add extra frequency padding to 40 kHz sampling frequency
Beethoven’s 9th Symphony has to fit into one CD

Interestingly enough, one criteria for choosing the current CD specifications
is that Sony and Philips agreed that Beethoven’s 9th Symphony be used
as the benchmark for how long a CD should play. Thus, after conducting
some research they found that the performances of Alle Menschen werden
Briider were between 66 and 74 minutes long. Ironically the first CD title
that CBS/Sony produced was not Beethoven’s 9th but Billy Joel’s 52nd
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Street and the rest, as they say, is history. Nowadays we often see 24 bits as
a standard way to store the amplitude values and sampling rates at 96 kHz
and even up to 192kHz. There is much discussion going on regarding the
necessity for 192kHz sampling rates and many arguments seemingly are
in favor and some against such necessities. We'll leave it at that since this
topic itself would require another whole chapter or two at least to address
the technical and non-technical issues involved.

4.2 Aliasing

At this point you should be asking yourself — what if I use a sampling rate
that is lower than twice the maximum frequency component of the audio
signal. That is, when f5/2 < fmax? The answer to that is that you will
experience a particular digital artifact called aliasing. The resulting digital
artifact is quite interesting and presents itself as a distorted frequency
component not part of the original signal. This artifact caused by under-
sampling may sometimes be intriguing and perhaps useful in the context
of musical composition, but when the objective is to acquire an accurate
representation of the analog audio signal in the digital domain via sampling,
this will be an undesirable artifact. We will see in more detail how aliasing
occurs in Chap. 8 after learning about the frequency-domain and the Fourier
transforms. For now, let’s try to grasp the idea from a more intuitive time-
domain approach.

Let’s consider a 1Hz sine wave sampled at fs = 100Hz (100 samples
per second) as shown in Fig. 4.5. We know that a 1Hz sine wave by
itself sampled at f; = 100Hz meets the sampling theorem criteria, the
Nyquist limit being at 50 Hz — any sine wave that is below 50Hz can be
unambiguously represented in the digital domain. So there should be no
aliasing artifacts in this particular case (f = 1Hz). Looking at the plot we
clearly see that a 1Hz sine wave makes one full cycle in 1 second and the
number of samples representing this one 1 Hz sine wave is 100 samples with
a period T = 1/100sec.

Let’s now increase the frequency of the sine wave to 5 Hz and keep
everything else unaltered — the results are shown in Fig. 4.6. Once again
we note that 7" and the number of samples stay unchanged at 1/100th of a
second and 100 samples, but since it is a 5 Hz sine wave we will get 5 full
cycles in one second rather than just one. Note also that previously we
had the full 100 samples to represent one entire cycle of the 1 Hz sine wave
and now we only have 100/5 = 20 samples to represent one full 5Hz cycle.
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Let’s further increase the frequency to 20 Hz. The results are as expected
as shown in Fig. 4.7. We again observe that one full cycle of the 20 Hz sine
wave is further being deprived of samples to represent one full cycle —
we only have a mere 5 samples for one full cycle for the 20 Hz sine tone.
Although it still kind of looks like a sine wave and certainly sounds like a
sine wave (try it with the MATLAB® code by changing the sampling rate
and frequency) it is quickly loosing its characteristic sine tone appearance.

Now let’s push the envelope a bit further and bring the frequency up to
the edge of the Nyquist frequency limit of 50 Hz (in actuality the sine tone
is not as pretty as seen in Fig. 4.8 but for the sake of argument let’s pretend
that it is). Note that in Fig. 4.8, the sine tone that is just below 50 Hz is
has been reduced to a bleak sequence of plus 1.0 and minus 1.0 samples,
each pair of change in polarity representing a full cycle of this almost 50 Hz
sine tone. I suppose that one could look at one cycle and be really generous
and say — I guess it still possesses the bare minimum features of a sine
wave (again this is not the way it really works but let’s pretend for just a
bit longer and see what the voila is at the end).

We have at this point pretty much stretched our ability to represent a
sine wave with a sampling rate of 100 Hz and note that a sine wave with any
higher frequency would be impossible to represent. At the edge 50 Hz we
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were using two samples to mimic a sine wave but any frequency higher than
that would mean one sample or less (if we follow the trend of decreasing
number of samples with increase in frequency) per one whole sine cycle. It
would not be possible to describe a sine wave with just one sample (and
certainly not with 0 samples!) as a sine wave should at least have the
characteristic of two oppositely peaking amplitudes. However, if we had a
higher sampling rate of say 200 Hz we would be able to represent a 50 Hz
or 60 Hz sine wave quite easily as we would have more samples per second
to play with. This is not the case with a 100 Hz sampling rate where we’ve
now come to a dead end. This is the pivot point where aliasing occurs. To
illustrate the artifacts of aliasing let’s go beyond the Nyquist limit starting
with 50 Hz and see what the resulting plot actually looks like. This is shown
in Fig. 4.9.

What just happened? In Fig. 4.9 we note that the 50 Hz sine is exactly
the same as a 0 Hz sine, the 95 Hz sine (Fig. 4.10) is an inverted version (or
phase shifted by 180°) of the original 5 Hz sine, and the 105 sine (Fig. 4.11)
is exactly the same as the 5Hz sine (no inversion). If we disregard the
inversion aspect of the sine waves in the figures, frequencies that are above
the Nyquist frequency are literally aliased towards a lower frequency sine
wave — this artifact that results from a process called under-sampling
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is referred to as aliasing. The 95Hz has aliased back to the 5Hz sine
(with inversion of 180° or 7) as has the 105Hz sine (without inversion).
An interesting characteristic of our hearing system is that we do not
hear phase differences when listening to a single sine wave and hence the
5Hz and the 95Hz and 105Hz signal actually sound exactly the same to
us even though there are phase shift differences. However, if a signal is
comprised of a number of sine waves with different phases, the perception
of the complex sound due to constructive and deconstructive interference
is different (deconstructive and constructive interference is discussed in
Chap. 4 Sec. 4). Try changing the frequency in MATLAB® to convince
yourself that higher frequencies that go beyond the Nyquist limit exhibit
this aliasing phenomenon to a lower frequency. The above explanation of
aliasing in terms of the decreasing number of samples per period is one
way to intuitively look at aliasing until we develop more powerful tools in
Chaps. 6 and 8. Figure 4.12 illustrates this idea of aliasing.
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Fig. 4.11. Sine wave at f = 105Hz and fs = 100 Hz.
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To recap, the frequencies that are beyond the Nyquist limit will always
alias downwards to a lower frequency. What makes things very interesting
is that musical signals are rarely just made up of a single sine tone, but
are rather made up of an infinite number of sine tones. One can imagine
how that may contribute to the net cumulative aliasing result when using
inappropriate sampling rates.

5 Quantization and Pulse Code Modulation (PCM)

Until now we have pretty much concentrated on the frequency component
of sound and not much attention has been given to the issues pertaining
to what happens to the amplitude values of each sample during the analog
to digital conversion process. Here too, the topic of concern is the levels
of inferiority in representing the original analog counterpart in the digital
domain. The quality, resolution, and accuracy of the amplitude of sampled
analog signals are determined by the bit depth impacting the quantization
error. By quantization error I mean the error (¢) between the discrete
digitized and analog amplitude values as seen in Eq. (5.1) where n is the
sample index.

e =x(t)|t=nr — x[n - T (5.1)

As previously mentioned, audio CD specifications include two channels
of audio sampled at 44.1 kHz for each channel and are quantized at 16
bits equivalent to 65,536 possible discrete amplitude values. For example, if
the minimum and maximum amplitude values are normalized to —1.0 and
+1.0 a 16 bit system would mean that the range between +1.0 would be
divided into discrete 65,536 units. On the other hand, if values fall between,
say 0 and 1, like 0.4, for an integer system with 65,536 integer points
either a rounding (adding 0.5 and truncating the mantissa), “floor”ing
(truncating the mantissa) or “ceil’ing (using next integer value only)
method is commonly used in the quantization process. The method of using
equally spaced amplitude step sizes is referred to as uniform quantization.
Quantization of the amplitude values and using a specific sample rate to
store or record data is referred to as PCM (pulse code modulation). It is
somewhat a confusing term as there are really no pulses in a PCM system
per se, except perhaps when analyzing the encoded binary structure of the
digitized amplitude values. For example 2,175 in binary 16 bit format is
0000 1000 1000 1001 as illustrated in Fig. 5.1.

In Fig. 5.2 we can see the discrete amplitude/time sine wave
representing an inferior version of the original sine wave. Note that the
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greater the bit resolution for a digital system, the smaller the amplitude
grid division for the y-axis much like the sampling rate which decreases
the time grid (T) as fs is increased. This is depicted in Fig. 5.3 where
the sampling interval is kept constant while the bit resolution is decreased
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Fig. 5.1. PCM: integer value 2,175 in 16 bit word binary format.
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causing the quantization error to increase — the left plot has a higher
quantization resolution and right plot a lower one limiting the number of
points that can be represented on the amplitude y-axis.

5.1 SNR and QSNR

A concept known as signal-to-noise ratio (SNR) is a standard way to
determine the strength of a desired signal, such as music or speech, in
relation to background noise or noise floor and is closely related to the
bit resolution and quantization signal-to-noise ratio (QSNR) as we shall
shortly see. The SNR is defined as the power ratio of a signal vs. noise
and is usually measured as the average signal-to-noise ratio according to
Eq. (5.2).

SNR = 20 - logy, (LM-"”“) (5.2)

noise
A system with high SNR is generally desirable as it suggests that the
signal is greater than the noise or conversely the noise is lower than the
signal. Having a healthy SNR level is standard recording practice where
the performer, say an electric guitarist, would have the guitar’s volume dial
at around its top position to mask out the inherent noise floor of the guitar
itself, the amplifier, and microphone, as well as any other hardware device
or recording space in the audio chain that is used to record the guitar sound
in the studio.

When we quantize an analog signal we will inevitably get some sort of
error as it is impossible to have infinite bit resolution in a digital system
as seen in Eq. (5.1). The question then is how much quantization SNR, or
QSNR as it is called, can we expect for a given bit? The QSNR is defined
as follows where N refers to the bit resolution:

QSNR = N - 6.02+ 1.76 dB (5.3)

An approximation to the QSNR can be derived by using the maximum
amplitude of the desired signal (2V~!) and the maximum error between the
analog and digital amplitude values corresponding to 1/2 bit. The 1/2 bit
error would be the error that results if the analog signal is smack between
two successive integer values, say 60 and 61 at 60.5. The reason for 2/V—1
opposed to 2% is also quite simple. Go back to Fig. 5.2 where we used a 16
bit sine wave so that we have the full possible range from 0 to 65,535 integer
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values. If we want it to oscillate about the = 0 axis (signed representation)
we would have integer values between —32768 to +32767 (notice that the
total possible values is 65,536 if you include the 0). Hence, if for example
we are looking at a 16 bit signal the absolute (eg. abs(—1) = 1) maximum
value would be 216 /2 = 216-1 = 32768.

QSNR = 20 - log, Asignal. max =20 log, E
0 Anoise- max 0 1/2

— 20 Togyp(2¥ ) — 20 logyo(1/2)
=20(N — 1) - logy(2) + 6.02

=20 N -log;((2) — 20 - log,((2) + 6.02
=602 N (5.4)

The important result that we get from QSNR is that we can
approximate the dynamic range of a digital system — the QSNR basically
tells us that for every bit added we get an increase of about 6 dB dynamic
range. Hence, for a 16 bit digital system, which is the case for CD quality
audio, we can expect a dynamic range of about 16 - 6 = 96 dB.

6 DC Component

The term DC actually comes from the electrical engineering community
which stands for direct current. The DC, as referred to in DSP, pertains
to an offset value that does not change over time. For example, if we have
an input signal x and a corresponding output y, an offset or the DC would
look something like Eq. (6.1), where C' is a constant real number:

y(t) ==z(t)+C (6.1)
In our sine wave example adding an offset would be:
yt)=A-sin(2-7-f-t)+C (6.2)

This would simply result in shifting up/down the whole sine wave on the y-
axis (vertically) without actually changing the shape of it. Hence, in an ideal
situation, our hearing system would not be able to differentiate between
a signal with a DC component and one without it. However, in digital
systems as well as analog electronic systems, the DC component may cause
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Fig. 6.1. DC offset and shifting of sine wave.

some potentially serious distortion problems. The reason is that for digital
systems, only a finite number of bits are available for storing/representing
data or waveforms (16 bits for CD). For example, if we add a DC constant
to the sine tone in Fig. 5.2 of, say, 10,000, we get the plot as seen in Fig. 6.1.
Note that when storing/representing this waveform as a 16 bit signed
integer, clipping (subject matter in next section) will occur at the top (in
MATLAB® when saving to soundfiles amplitude values are normalized
to —1.0 and +1.0). When clipping does occur due to DC offset issues,
the waveform and the sound of the waveform will indeed be distorted
and altered. Hence, care should be taken in removing the DC offset of a
signal before sampling. We will later see how to address DC offset removal
via filtering methods using a high-pass filter. An intuitive method for
removing the DC component without filtering (although we are technically
implementing a high-pass filter as will be discussed in Chap. 7) is finding
the arithmetic mean (point on y-axis where it oscillates) of the waveform
and removing the mean from the waveform. This is shown in Eq. (6.3).

y(t) = a(t) - @ (6.3)
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In MATLAB® this can be straightforwardly coded by using the built-in
mean function as follows:

y = x - mean(x)

Code example 6.1

The mean is of course just the arithmetic mean — summing all numbers
in vector z and dividing it by the vector size (number of elements in the
vector).

7 Distortion and Square Waves

In the previous section, we briefly introduced the concept of clipping.
Clipping occurs when a signal is too hot or when a DC component
exists causing a signal to be clipped or cut off, in which case appropriate
adjustments need to be made. Some of those adjustments include reducing
the signal itself before some signal processing procedure (or before
sampling) or taking out the DC offset as outlined above. In other situations,
clipping is actually intentional — in music clipping is often used to alter the
timbre of a sound source. Electric guitar players are probably most familiar
with the term and use it to distort the guitar signal via stomp boxes, pedals,
or amplifiers which exemplify the rock guitar sound. Clipping, distortion,
or overdrive as it is also sometimes called in this context is simple enough:

y(t) =a-x(t) (7.1)

The parameter a is the gain factor which scales the input x. The following
pseudo code implements a simple clipping distortion effect:

if (| a*x | > clippingLevel)
y = sign(x)*clippingLevel;

else (7.2)
y = a*x;

end

If the input were a sine wave and we would gradually increase the gain,
we would observe the characteristic (here we assume that values above the
signed 16 bit limit is clipped) as seen in Fig. 7.1 where the scalar a is simply
doubled at every plot starting at 1.0.
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Fig. 7.1. Distortion and clipping — doubling scalar a from 1 to 32.

Nothing seemingly special here, other than the sine wave turning
more and more into what resembles a square wave. Generally speaking,
the purest tone (and probably most boring) is a single sine tone. It has
an unmistakable and distinct sound quality and timbre but is not very
musically intriguing, although it has had its share of usage in early electronic
music, especially in Germany when experimentation with oscillators was
popular with composers such as Karheinz Stockhausen. As the sine wave
becomes more and more like a square wave, it also becomes more and more
interesting and complex. So why is a square wave shape-like property more
interesting? It is difficult to give a good explanation at this point as we have
not talked about the Fourier transform and the decomposition of signals
into sinusoids. However, the general rule of thumb in the complexity and
richness of a sound object (least rich would be a sine wave, most rich would
be white noise) is that the sharper the change in amplitude over time, the
richer the sound becomes. Sine waves are very smooth and do not change
much from sample to sample, whereas more complex waveforms such as
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the square wave change more drastically from sample to sample with noise
signals being extreme examples. In our example shown in Fig. 7.1, the sine
wave slowly becomes a square wave and the salient characteristic is that the
resulting waveform exhibits sharper and sharper edges and hence produces
a richer, more complex sound, and perhaps even a more interesting sound.

Going back to our guitar example, if the waveform in Fig. 7.1 were
not a sine wave but a guitar sound, a similar distortion effect would
result making the original guitar sound richer and again in a way, more
interesting. It so turns out that with the clipped distortion effect odd
numbered harmonics get added to the resulting signal (we will see why
this is the case in Chap. 8). Hence, the clipped distortion method is also
referred to as harmonic distortion as it adds odd harmonics to the original
waveform, and depending on the modulated waveform, makes it richer, or
at least more “oddly harmonic” so-to-speak.

7.1 Dithering

Dithering is a method where we add very small amounts (sub bit
resolution — smaller than one bit) of pseudo-random noise (error €) to the
analog input signal before quantization and sampling as shown in Eq. (7.3).
That may indeed sound unorthodox, as it seems counterintuitive to add
noise to a signal as we want it to be as clean as possible.

l‘(t)dithered - x(t)original +e (73)

Have you ever listened to a CD recording on headphones and tried
increasing the volume in the fadeout part of your favorite piece to see if there
are any hidden messages or the like and all you got is this rather annoying
buzzing, fuzzy, gritty sound? This is actually referred to as granulation
noise. This is an artifact of sampling and quantization and is often times
not so evident because a recording does not often play with the last 1 or 2
bits for a prolonged period of time. The listener thus may find this artifact
not to be a problem at all, as it is not often heard due to the low signal level.
However, to the composer or audio researcher who is analyzing, designing
DSP algorithms, editing, or composing a musical work that deals with low
amplitude signals, such problems are as common as finding portions of a
sound where clipping occurs (hopefully not unintentionally on a commercial
CD though). Dithering alleviates some of the problems associated with
quantization described above. To understand how dithering works let’s
look at the quantization process using rounding. Figure 7.2 (top) shows
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Fig. 7.2. Cosine wave after quantization (rounding) without dithering.

an exponentially decaying analog cosine wave and its quantized version
with 4-bit resolution represented by the horizontal quantization grid lines.

As we can see in the middle plot, the QSNR decreases rapidly (caused
by small signal to error ratio), which means that the ratio between the
strength of the original signal and quantization error becomes smaller and
smaller. This is the source of some potential problems — at around 20 to
110 samples, the quantized waveform becomes patterned or regular and has
some features of square waves (we shall see an extreme case of this shortly)
that was not present in the original analog signal. This is problematic as a
square wave introduces harmonic distortion (adding harmonics that were
not present before). Furthermore, issues in aliasing may also occur due to
the newly added harmonic distortion — as more additional odd harmonics
are added to the signal, there is a possibility of the harmonics being greater
in frequency than the Nyquist limit (more details on this in Chap. 8).
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Suffice it to say for now, a repetitive pattern resembling a square wave
emerges adding unwanted harmonics, especially odd harmonics not part of
the original signal. An obvious fix for the above problems would of course
be increasing the bit resolution which will give us the bit depth to represent
the nuances in the low amplitude areas (low QSNR), thereby adding
approximately another 6 dB to the dynamic range for every bit added.
However, this method is highly uneconomical and does not really address
the problem as we cannot know in advance what signal we are going to be
dealing with, how loud it will be, and when it will change to a completely
different signal. A solution for solving some of these problems is referred to
as dithering. In essence, what dithering accomplishes is that it indirectly
increases the bit resolution for low amplitude signals especially in the 1 bit
range — it actually improves the 1 bit limit to something lower than that.

Dithering is a very simple and clever way to help eliminate some of
these artifacts by adding a small error signal to the original analog signal
before sampling and quantization. In essence it is making the resulting
signal noisier but as the added noise is so small it is for all practical purposes
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Fig. 7.3. Harmonic distortion fix without dithering (top) dithering (bottom).
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Fig. 7.4. Exponentially decaying cosine without (top) and with dithering (bottom).

negligible and inaudible. When this modified signal is quantized, it will not
produce the characteristics of harmonic distortion via a transformation of
the patterned quasi-square waves to an un-patterned one. One of the main
reason this works for humans is that we tend to mask out noise and perceive
it as background (especially when it is low) as our basilar membrane (part of
the cochlear in our ear) has an averaging property bringing out repetitive
patterns, even if that pattern of interest is engulfed by a relatively high
noise floor. Thus, with dithering, we are literally making a decision to swap
out harmonic distortion for low amplitude noise to make the artifacts seem
less noticeable.

Dithering is illustrated in Figs. 7.3 and 7.4. The top plot of Fig. 7.3
illustrates the extreme case where the analog cosine literally becomes a
square wave introducing harmonic distortion to the digitized signal via
harmonics that were not present in the original analog signal. The dithered
version of the cosine on the other hand at the bottom plot of Fig. 7.3, when
quantized, loses this repetitive pattern of the square wave. Finally, Fig. 7.4
shows an exponentially decaying cosine with and without dithering. Clearly
the dithered quantized version does a better job eliminating the square wave
patterns. The quantization scheme applied in the plots is also referred to
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as pulse width modulation (PWM) which refers to the way the pulse width
contracts and expands in accordance with the signal.

8 Musical Examples

There are a number of interesting musical examples that take advantage
of some of the concepts we have discussed in this chapter. One such piece
is Kontakte (1958 ~ 1960) by composer Karlheinz Stockhausen. In this
piece, Stockhausen explores many facets of acoustics (among other things)
including “contacts” between different sound families, morphing between
a select number of sounds, as well as exploring boundaries between pitch,
frequency, and roughness by increasing the frequency of a low frequency
pulse (a pulse you can count) to the point where the pulse goes through
gradual changes of rhythm, roughness/timbre, and pitch. Kontakte is also
one of the first multi-channel musical works employing a quadraphonic
sound projection strategy, where the composer used a loudspeaker mounted
on a rotating turntable to record onto four-channel tape via four separate
microphones. With this configuration, Stockhausen captured the orbital
characteristic of the sound source which could be experienced by the
audience in a quadraphonic sound reinforcement setup. With the advent
of the tape recorder (the precursor to the digital audio workstation),
composer Pierre Schaeffer wrote a number of incredible variations solely
via recorded sounds of a creaking door and a sigh called none other than
Variations for a Door and a Sigh composed in 1963. In this piece, through
magnetic tape manipulations such as time stretching/compressing (playing
the tape machine slower or faster), extracting and focusing on inherent
musicality of the sounds, such as exposing rhythmic, timbral, and melodic
features; Schaeffer guides the listener to a sonic experience that is quite
unlike any other. This piece is a great example of using found sounds in
the style of music concréte. Some 20 years later, John Oswald coined the
term plunderphonics and wrote an essay entitled Plunderphonics, or Audio
Piracy as a Compositional Prerogative (Oswald 1986). He wrote a collection
of pieces such as dab (materials from Michael Jackson’s song bad) utilizing
existing recordings and thus touching on sensitive issues of copyright
and intellectual property, subsequently leading CBS and Michael Jackson
filing complaints to the Canadian Recording Industry Association. What’s
interesting is not just the complex world of copyright (or copyleft!) and the
world of litigation, but the fact that the excerpts from the original track are
chopped up into very short segments, often no more than one or two seconds
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or even shorter passages. The composer then takes those short samples
and sequences them, builds rhythms, patterns, and does much more,
essentially making a “totally” new piece, while at the same time leaving
an unmistakable sonic residue of the original track challenging the listener
to negotiate between context, content, origin, creativity, and novelty.

Another great example in the area of sampling and computer music
can be seen in Jon Appleton’s Newark Airport Rock (1969). The piece
can be regarded as a sampling expedition by the composer who recorded
interviews at the airport asking interviewees to comment on electronic
music. In a way, the composer’s job in this sort of project revolves around
organizing, juxtaposing, repeating, and perhaps most importantly selecting
those sound excerpts that will produce a desired musical composition from
the vast number of samples. The piece also resembles a short documentary
and clearly is narrative in its musical construct. Computer musicians and
computer music researchers often walk the fine line between the world of
science and art. This is especially true when testing out newly designed
synthesis algorithms or using signal processing concepts in ways they were
not “meant” to be used. An example of such a piece is called The Machine
Stops written by the author in 2000. This piece actually exploits and
“misuses” some of the DSP concepts we covered in this chapter - aliasing,
sampling, distortion, and the sine wave. In this piece, the artifacts of aliasing
are used in a musical context as is distortion, sampling and audio rate
(above 20 Hz and beyond) panning and other processes. The starting point
of the composition was just a single wave which really is the focus of the
piece — what can we do with one sine wave and some “malicious misuses”
of a few basic DSP techniques? That’s the wonderful thing about musical
composition — there is really no incorrect way of composing although
whether the result is interesting, good, appealing, boring, or intriguing is
a whole different matter altogether. From an engineering point of view,
however, the results may be regarded as wrong and even devastating, but
the composer has the prerogative and extra rope to break rules and standard
engineering (and musical!) practices without the need to worry (too much)
about the resulting errors, provided it does not hurt anyone!
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Chapter 2

TIME-DOMAIN SIGNAL PROCESSING I

1 Introduction

In this chapter and the next chapter, we will introduce a number of
important concepts and signal processing techniques that can be found in
the time-domain. The term time-domain generally refers to topics (analysis,
synthesis, signal modulation, etc.) that have to do with two-dimensional
data types, amplitude and time being the two dimensions. The sine wave we
have seen in Chap. 1 is a perfect example where the signal is represented in
those two dimensions. The counterpart to time-domain is referred to as the
frequency-domain which will be formally presented in Chap. 8. Frequency-
domain concepts are maybe a bit more difficult to grasp in the beginning
for some folks as the concept differs on a fundamental level. Time-domain
concepts on the other hand probably will come to us more naturally as we
are accustomed to hearing sounds and waveforms in the time-domain. We
will thus spend a substantial amount of time in the time-domain and get
familiar with various DSP concepts before proceeding to frequency-domain
related studies. Topics covered in this chapter will include amplitude
envelope computation, pitch detection and autocorrelation, overlap and add
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concepts, as well as a select number of classic sound synthesis algorithms.
As usual, the chapter will conclude with musical examples pertinent to
discussed materials.

2 Amplitude Envelope and ADSR

The so-called amplitude envelope is an important yet straightforward
concept to grasp as we probably have encountered it on numerous occasions
by looking at audio waveforms. The amplitude envelope of a sound object
refers to the amplitude contour or the general shape of the signal’s
amplitude with respect to time. It can be somewhat regarded as a zoomed-
out view of a waveform without the subtle details. Amplitude envelopes are
especially important sonic features for musical instruments. In particular,
it is common to talk about the ADSR which stands for A(ttack), D(ecay),
S(ustain), and R(elease), dividing the envelope of a musical instrument tone
into 4 basic areas as seen in Fig. 2.1.

Figure 2.2 shows a Steinway piano sampled at 44.1kHz and 16 bits
playing a C4 note. The top figure is the waveform of the piano sample,
the middle plot the root mean square (RMS) amplitude envelope (the topic
of next section), and bottom one the RMS with logarithmic amplitude
plot. Notice that there is a pretty sharp attack, long sustain, and even
longer release in this example. Figure 2.3 shows a snare drum struck with
a stick (fortissimo) at the same bit depth and sampling frequency. In
the snare drum example, notice how quickly the snare drum sound dies
away — at 300 milliseconds the snare drum sound has already reached
about —40 dB whereas the piano at 300 milliseconds is still at approximately
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|
|
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Fig. 2.1. ADSR envelope.
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—18dB approaching —40dB at around 4 seconds. One of the reasons the
amplitude envelope and the ADSR structure are important is because by
altering the ADSR parameters, the perception of the sound object changes
accordingly — the degree of change depends on the type and characteristic
of modulation of the envelope. Sometimes even a relatively small change
in the amplitude envelope can radically alter the original sonic identity
itself, in extreme cases rendering the modulated sound unrecognizable.
Try playing a piano chord or single note in MATLAB® after loading it
without any alteration and then try playing it in reverse so that it starts
playing the last sample first and first sample last (Code Example 2.1).
Granted everything has been reversed and not just the envelope, but the
perception of the sound object is drastically changed by a very simple
process highlighted by the time-reversal of the amplitude envelope.

[x, fs] = wavread (‘nameOfPianoSample.wav’); % read wave file
sound (x, fs)

disp (‘Type any key to continue’)
pause

xReverse = flipud (x); %flip the array up -> down
sound (xReverse, fs)

Code Example 2.1. Reversing time-domain audio

3 Wavetable Synthesis

Looking at the ADSR structure of a musical note, an interesting observation
can be made. Instruments such as the piano, vibraphone, or the electric
bass have certain general behavior in the ADSR regions, especially in the
attack and steady-state regions. The attack portion of the waveform is
generally most complex and chaotic albeit not fully random or “noisy.”
The attack also generally embodies of a wealth of energy which gradually
dissipates by the end of the tone as it loses energy. The steady-state part
of a musical instrument sound on the other hand is usually more stable
and displays characteristics of quasi-periodicity. Figure 3.1 shows a piano
sample at different points in time where we can clearly see the waveform
becoming smoother and more patterned towards the end of piano tone.

A type of time-domain synthesis method called wavetable synthesis
exploits the aforementioned characterstics. This synthesis method stores
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Fig. 3.1. Piano sample at different parts of the overall signal.

only the attack portion of the actual musical instrument waveform and
a short segment of the steady-state. Thus, the waveform that is stored in
ROM (read only memory) includes only an abbreviated version of the entire
signal — the entire attack section and a portion of the steady-state. One
of the reasons for doing this is actually very practical — economics. One
can save ROM space on your synthesizer allowing for more sounds to be
stored and making the synthesizers more powerful and affordable! You will
probably think that merely storing the attack and a short segment of the
steady-state is too short for practical usage in compositions or performance
situations which is indeed true. It is probably fine when playing sharp
staccato notes that are shorter or equal to the saved waveform, but if the
user wants to sustain it for a longer duration than what is stored in ROM,
we will encounter a problem as we do not have enough of the waveform
stored for desired playback. The solution to this problem is what wavetable
synthesis essentially is.

The steady-state is, for the lack of a better word, steady and (quasi)
periodic as seen in Fig. 3.2. This means that it is easy enough to model
as it is clearly patterned. What happens in wavetable synthesis is that a
portion of the steady-state is selected via loop start and loop end markers
as illustrated in Fig. 3.2.

Once the end of the loop point is reached (after the attack and a small
portion of the steady-state), the wavetable pointer will just keep looping
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Fig. 3.2. Loop points in wavetable synthesis.

between the loop start and end point markers. Through this looping, the ear
is tricked into believing that the waveform has not ended but is actually
being sustained. If we furthermore slowly decrease the amplitude while
looping (using an envelope), it is also possible to mimic the gradual release
characteristic of the original waveform even though we are only using a
fraction of the original sound. The total length of this particular piano
sound in its entirety is 108, 102 samples long and if we were to use wavetable
synthesis to synthesize the piano tone we would only use approximately
3500 samples or 3.2% of the original, thus saving quite a bit of memory!
This simple idea of using the attack and a select portion of the steady-state
waveforms combined with looping the quasi-periodic part is in a nutshell
how wavetable synthesis works. However, putting an idea into practice is
often more difficult than meets the eye as there are so many different types
of signals with a plethora of waveform shapes. In wavetable synthesis, the
trick is thus to find a good set of loop points as close to the beginning part
of the steady-state as possible, while at the same time keeping the loop
region as short as we can, to save memory. Other tricks to improve the
quality of wavetable synthesis include using amplitude envelopes to control
the ADSR, characteristics as mentioned before as well as opening/closing
filters to brighten or dampen part of the synthesized waveform.
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4 Windowing, RMS, and Amplitude Envelope

In this section, we will present a method for computing the amplitude
envelopes much like the ones shown in Figs. 2.2 and 2.3. We will start with
an important concept called windowing. When analyzing a signal, one will
most likely not analyze it sample-by-sample, especially when it is a large
signal, nor would one analyze it as a whole single unit from beginning to
end although at times this could indeed be the case. Analyzing a signal on a
sample-by-sample basis equates to too much detail and analyzing a signal in
its entirety and representing it with one, two, or a couple of numbers is not
very informative either. Just think of how we listen to sound — we don’t
follow each sample (44,100 samples per second for CD), nor do we rarely
just take-in and analyze a song from beginning to end in one chunk. We
usually analyze a sound by dividing it into smaller sections. Generally, when
analyzing signals, a group of samples are “windowed” and then analyzed.
For example, let’s say we have a signal that is 10,000 samples long and we
use a window size of 1000 samples. In this scenario, we would window the
first 1000 samples, analyze this first group of samples, then move on to the
next 1000 samples starting at sample number 1001, analyze this portion
of 1000 samples, and continue until we reach the end of the signal. This
method of focusing and extracting a range of sequential samples that make
up a portion of signal is referred to as windowing. Typically a large number
of windows result (depending on the window size and signal size of course)
and these windows are each individually analyzed thus forming an overall
picture of the whole signal.

4.1 Windowing: More details

The most common type of window is the rectangular window characterized
by sharp edges as seen on the left-hand side of Fig. 4.1. The rectangular
window has unity gain within the confines of the rectangle itself and is 0
elsewhere according to (4.1), where N is an integer number pertaining to
the window length or size and n is the sample index (n - 7T is the time
location in seconds).

1, 0<n<N-1
wln] = : (4.1)
0, otherwise
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Fig. 4.1. Rectangular and Hann windows 50 samples long.

Previously I mentioned that windowing extracts a portion of a signal,
which is true, as that is the result we get. However, when we say that we
window a signal, what we actually mean technically is that we multiply the
window with a portion of the signal of the same size as follows:

ZTwin|n] = w[n — L] - z[n] (4.2)

Here, L is an integer time offset (also known as delay) that indirectly
determines the starting sample index of the waveform z[n] — the input
samples outside the range of the window are multiplied by 0.

If this is a bit confusing, plugging in some numbers will probably help
clear things up a bit. Let’s modify Eq. (4.1) a little, add L into the picture,
and when we set NV =50 and L = 0 we get:
0<n<49

1,
- (4.3)
0, otherwise

wln — L],y = wln] = {
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Keeping N the same at 50 and setting L = 1 we have:

1, 0<n—-1<49

. (4.4)
0, otherwise

wn—L]|,_; =wn—1] = {
Equation (4.4) can be rewritten as (4.5) by adding 1 to the left, right, and
middle part of the region of interest (0 <n — 1 < 49) of the window.

[ 1 1, 1<n<50 (4.5)
wln —1] = .
0, otherwise

The general form of the shifting window thus becomes:

wn — L] =

I, L<n<N-1+L
{ == (4.6)

0, otherwise

Notice that L (referred to as a delay of L samples) merely shifts the window
by L samples on the time axis resulting in windowing of only a select portion
(length N) of a signal. For a rectangular window, this simply means that we
are extracting, cutting out or slicing out a portion of the waveform without
any alteration to the amplitude values within the region of the signal that
is being excerpted as depicted in Fig. 4.2.

The following example code shows a simple rectangular window
example on a piano signal that is read from the hard-drive.

[x, fs] = wavread(‘nameOfPianoSample.wav'); % read wave file
xWindowed = x(1:500);
sound(xWindowed, fs);

Code Example 4.1. Simple rectangular windowing example

You will probably have noticed that a “pop” sound can be heard at the
very end and beginning of the rectangular windowed signal. This is not
an error per se, although perhaps undesirable. This result is due to the
sharp edges of the window which brings us to another type of window —
the Hann window, sometimes also referred to as the Hanning window.
As you can see in the middle of Fig. 4.3, the Hann window has smooth
edges, peaks at the center of the window, and tapers off at both flanking
sides. With this sort of window shape we will not experience the popping
characteristics we encountered with the rectangular window. However, this
comes at the expense of changing the original waveform’s characteristics
and shape within the windowed portion. This is shown at the bottom of
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Fig. 4.3 depicting the difference between the original signal and the Hann
windowed signal.

It is difficult at this stage to describe what a particular window shape
does to the waveform it is multiplying, other than addressing the change
that occurs on the amplitude level of the waveform — we do not yet have
the tools to look at signals in the frequency-domain. However, a general
rule of thumb is to remember that any waveform that has sharp edges is
more complex than waveforms that have duller or smoother edges. This
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is intuitive as we know that noisy signals are all over the place, often
changing drastically from sample to sample, whereas sine waves which are
the opposite, change smoothly from sample to sample and do not have
sharp edges. At this point, we could say that the rectangular window will
have different types of artifacts compared to the Hann window which are
dependent on edge characteristics and shape of the windows. We will revisit
the issue of window types in Chap. 8 and discuss some of the important
characteristics of various window types and what sort of artifacts we can
expect which will help us determine what kind of window to use for what
occasion.

4.2 RMS and amplitude envelope

From a very simplistic point of view, the amplitude envelope is a zoomed-
out examination of the contour of positive amplitude values of a waveform.
One popular method for computing the amplitude envelope is the RMS
algorithm. RMS stands for root mean square and is defined in Eq. (4.7).
The name itself pretty much describes the algorithm where L is the window
length and n sample number.

RMS = (4.7)
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RMS can be thought of being somewhere in between the arithmetic mean
and the peak values of a signal. The mean value will not change much even
when there is a high level of activity in a signal which makes the transient
response (response pertinent to degree of change) rather poor. On the other
extreme, following every sample value will result in an envelope that will be
too detailed, with too much transient information which is not the way we
hear sounds. The RMS, however, more closely corresponds to our hearing
system’s sensitivity to the change in intensity of audio signals. Figure 4.4
shows a sine wave with corresponding RMS, peak, and peak-to-peak ranges.

Note that in computing the amplitude envelope using RMS, we will
need to window the signal as seen in Fig. 4.5 and Fig. 4.6. What essentially
happens through windowing is that the resulting data of the RMS envelope
will be shorter in length compared to the original signal as depicted in
Fig. 4.6. That should, however, not come as a surprise, as windows act as
representative peeks into a portion of a signal reflecting the characteristics
of that particular section of time. Smaller window sizes allow for more
transient response, whereas larger windows provide a wider view and hence
slower transient response. Think of it this way — let’s say we have 365 days
a year and a paper-based calendar that hangs on the wall. Those types of



52 Introduction to Digital Stgnal Processing

Amplitude
=

-0.05
-0.1

-0.15

3.5
Samples X 107

RMS,
RMS,
RMS;
RMS;

Fig. 4.5. Windowing of waveform and RMS frame computation.

calendars usually have one page per month and approximately 30 days for
each page. These 30 days can be regarded as the window size and each
month would have a particular characteristic — January is the coldest
opposed to August being the hottest (depending where on the globe one
lives of course). The point here is that one loses transient response, or the
details of the day-to-day changes or week-to-week changes. The transient
response thus is a function of the window size. The longer the window,
the less transient detail we will get. The shorter the window, the more of
the transient particulars we will acquire. The question then is — what is the
appropriate size for a window? This is of course a difficult question and there
is no simple answer. The answer is dependent on what the analysis setup
is and how much detail is required for a certain analysis task. For example,
using a window size of one minute for each calendar page would without
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a doubt be overly excessive; albeit in some situations that may not be the
case at all (we would need a huge calendar page though)!

5 Time-Domain Fundamental Frequency Computation

In this section, we will discuss two basic algorithms for computing pitch.
The objective in finding the pitch usually refers to finding the fundamental
frequency, as pitch is a perceptual aspect of periodic and quasi-periodic
sound objects. The two popular time-domain pitch detection algorithms
that we will discuss are zero-crossing-rate and autocorrelation. These two
algorithms are relatively simple to implement and quite effective at the
same time.
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44.1kHz.

5.1 Zero-crossing rate

Zero-crossing rate is one of the more straightforward methods used for
computing the fundamental frequency. As the name suggests, the algorithm
works by stepping through the waveform and measuring the time (via
samples) between successive zero-crossings (y = 0 axis) as seen in Fig. 5.1
(dotted locations just on/below/above amplitude = 0 line).

The location and computation of the zero-crossings for the sine tone at
the top of Fig. 5.1 is actually quite simple to estimate as you can imagine.
The fundamental frequency is likewise straightforward to compute — the
definition of Hertz is cycles per second and we can compute the fundamental
frequency of the sine tone as shown in Eq. (5.1). That is, there are a total
of 522 zero-crossings per second (44,100 samples) in this example and since
we know that we have two zero-crossings per cycle for an ideal sine wave,
we can compute the pitch by dividing the number of zero-crossing by two
as shown in Eq. (5.1).

522 zers/ sec

f =261 Hz (5.1)

2 zers/cycle
Alternatively, the fundamental frequency can also be expressed in terms of
samples per cycle which can be determined by the locations of the zero-
crossings. One full-resolution occurs at every other zero-crossing and hence
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the frequency can be computed as seen in (5.2) below.

44,100 samples/ sec

F= 170 samples

= 259.41 Hz (5.2)

So far so good, but as is the case with most things that seem “too good
(simple) to be true,” problems often arise and the ZCR method for pitch
computation is no exception. The piano waveform at the bottom of Fig. 5.1
is much more complex than the pure sine tone. Due to the complexity of the
waveform we get different number of zero-crossings for each cycle which in
turn causes the zero-crossing algorithm to become inaccurate. For example,
the first full cycle shows 4 crossings, the 2nd cycle 6 crossings, and 3rd cycle
4 crossings. Although the pitch that we hear is the same, the number of
zero-crossings for one full cycle of the waveform varies. Generally speaking,
the more complex a waveform is, there more problems of such nature will
occur — musical signals are usually complex. There are a number of tricks
we can use at this point to alleviate the situation, including conditioning the
zero-crossings to a limited bandwidth or averaging the zero-crossings over
a period of time. To limit the bandwidth, we could restrict the allowable
upper and lower fundamental frequencies (Hz):

27 < f <4200 (5.3)
Equation (5.3) in terms of samples per cycle is shown in (5.4).
1633 > samples > 10 (5.4)

The above corresponds to frequencies that are just beyond the highest (C8)
and lowest (A0) note on the piano. With this kind of filter, very short zero-
crossing pairs would be ignored. For example, zero-crossings spanning 6
samples (equivalent to 7350 Hz) would not be counted as zero-crossings.
The zero-crossing points are again shown in Fig. 5.2 for the same
sine tone (top) and the piano samples at two different points in time —
beginning of the piano tone (middle figure) and during the steady-
state/release part (bottom figure) of the piano sample. You will note that
the ZCR algorithm works much better in the latter part of the signal — this
is not surprising as the piano tone enters the steady-state portion which
is quasi-periodic almost resembling a sine wave. At the bottom of Fig. 5.2
you will see that the average ZCR is 84 samples and very close to the sine
tone at the same frequency (top figure). It also turns out that the attack
region has the most complex structure (farthest from a pure sine tone and
closer to a noise signal) and the further away one goes from the attack
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Fig. 5.2. ZCRs and ZC for sine tone (top) and piano (middle and bottom).

towards the steady-state and release parts, the more sine wave-like the
waveform generally becomes — the upper harmonics lose energy and only
the lower harmonics remain dying out last. We will discuss this further in
Chap. 8 after getting acquainted with the frequency-domain. But for now,
let’s assume that musical instrument sounds that have a sense of pitch are
made up of a collection of harmonics (fx), where each harmonic is ideally
in integer relationship to the fundamental frequency fo (fi = k- fo where
k is an integer number).

Another method to help with massaging the signal to make it behave
for the purpose of extracting pitch information via the ZCR method is a
topic that we already have touched upon — using a similar approach to the
RMS method but without the “R” and “S.” In other words, instead of using
Eq. (4.7) we would simply apply a modified version of the RMS algorithm
according to Fig. 5.3 which in its core employs the arithmetic mean.

The flowchart in Fig. 5.3 depicts a simple process: smoothing the
signal by filtering out nuances and subtleties via the arithmetic mean, and
degrading the time resolution which equates to essentially “time blurring”
in order to help the ZCR algorithm work more robustly. Note that this
is identical to the RMS algorithm except that now we just compute the
arithmetic mean of the windowed portion of a signal (frame) and add
an interpolator to the end of the algorithm. The interpolator just serves
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to increase the number of samples to the original length of the signal.
Remember that when we window a signal, we will experience loss in the
number of samples when compared to the original signal. For example, if
we have a signal that is 100 samples long and we use a window size of
10 samples, we will be able to fit in 10 windows resulting in 10 frames as
they are often referred to. Thus, the number of total samples has decreased
10-fold due to windowing.

Figure 5.4 shows this algorithm in action using a window size of
50 samples (1.13ms) for computing the arithmetic mean. This type of
technique to smooth out a signal is referred to as filtering which we will
formally introduce in Chap. 5. This particular type of filter is called the
moving average filter as it moves through the waveform and computes the
average (arithmetic mean). We can see that there is great improvement
made if we compare the zero-crossing locations of the top and bottom part
of Fig. 5.4, ultimately improving pitch computation using the ZCR method.
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Fig. 5.4. ZCR locations of original (top) and using averaging, and interpolation for
smoother waveform (bottom).

5.2 Awutocorrelation

Autocorrelation is another very popular method for pitch detection that
works in the time-domain. The algorithm is based on the notion of similarity
measurement of itself defined as the sum of products as shown in Eq. (5.5).

N-1
acfoz|T) = 7] * 2[—7] = Z z[n] - z[n + 7] (5.5)
n=0

In Eq. (5.5), 7 is the lag (discrete delay index), acf,.[7] is the corresponding
autocorrelation value, N is the length of the frame (portion for analysis
using a rectangular window), n the sample index, and when 7 = 0,
acfy[T] becomes the signal’s power (squaring and summing the signal’s
samples within the specified window). Similar to the way RMS is computed,
autocorrelation also steps through windowed portions of a signal where each
windowed frame’s samples are multiplied with each other and then summed
according to Eq. (5.5). This is repeated where one frame is kept constant
while the other (z[n + 7]) is updated by shifting the input (z[n]) via 7.
What does all this mean? We know that ideally, if a signal is periodic,
it will repeat itself after one complete cycle. Hence, in terms of similarity, it
will be most similar when the signal is compared to a time-shifted version
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Fig. 5.5. A sine wave with period P = 8.

of itself in multiples of its period/fundamental frequency. For example, let’s
consider the signal in Fig. 5.5 representing a low sample rate sine wave. We
know that a perfect sine wave will repeat itself after one cycle, which is
every period P = 8 (every 8th sample) in the example shown in Fig. 5.5. In
the autocorrelation algorithm, the shifting is achieved via 7 starting with
7 = 0 and stepping through the sine wave by increasing the lag 7. Let’s
step through a few values of lags 7 to get a better grasp of the idea behind
the autocorrelation algorithm.

2 N
ACF[0] =Y a[n] - zln+0] = zn)* =1(1)+2(2) =5

ACF[1] = aln] - zln+1] =1(2) +2(1) = 4

ACF[2] = aln] - zln+2] =1(1) +2(0) = 1

ACF[3] = z[n] - z[n+ 3] = 1(0) + 2(—1) = —2
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E

ACFA) =) a[n]-zn+4 =1(-1)+2(-2) =5 (5.6)
ACF[5] =Y a[n] - aln+ 5] = 1(—2) + 2(-1) = —4
2
ACF[6] = z[n] - z[n+ 6] = 1(—1) +2(0) = —1
2
ACF[7) = z[n] - zln+ 7] =1(0) + 2(1) = 2

=

n

2
ACF[8] = Z x[n] - z[n+ 8] =1(1) + 2(2) =5 = ACFI0]
n=1

Figure 5.6 further shows a graphical version of the computed
autocorrelation values from the above example with N = 2 and lag (1)
values from 0 to 8. Figure 5.7 shows the results of the autocorrelation
calculation. We immediately notice that ACF[0] = ACFI8] and if you
further compute the autocorrelation values beyond 7 = 8, you will see that
ACF[1] = ACF[9] or in general:

ACF[r] = ACF[r + P] (5.7)

In other words, whenever there is a shifting of P samples, the
autocorrelation result will show a maximum value which gives us vital
information regarding a signal’s periodicity. The frequency and the pitch
value (fundamental frequency) can now be computed using Eq. (5.8) where
fs is the sampling frequency in samples/sec and P the period in samples.

_ ks
P
Figure 5.8 shows the autocorrelation results for the same piano sound we
used with the ZCR method without any modification of the signal (no
filtering). In this example, the fundamental frequency (P = 168 samples)
is quite clearly visible by inspection and can easily be detected with a

fr: (5.8)

peak detection algorithm. For example, one could simply design a rough
peak detector for this situation by computing all peaks via slope polarity
change and filtering out all peaks that are lower than say 40 in their energy.
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Fig. 5.7. Autocorrelation values for N = 2 and lag up to 8.

The autocorrelation-based fundamental frequency computation algorithm
is summarized in Fig. 5.9. The slope itself is computed simply via (5.9).

z[n] — z[n — 1]

1 =
slope 7

(5.9)
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Fig. 5.8. Autocorrelation results for a piano sample.
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Fig. 5.9. Autocorrelation pitch computation.

In general, a larger frame size (N: frame length) results in clearer
autocorrelation peaks as we have more data for analysis. However, the longer
the frame length, the less transient response we will obtain, as we compute
the ACF over a longer segment of time. If the pitch changes rapidly, using a
larger frame size will cause inaccurate computation of the pitch values as we
lose transient information. Hence, there has to be some sort of compromise
between transient response and the accuracy in computing the fundamental
frequency. Also, we can improve the performance of a fundamental frequency
detector if we know beforehand what instrument it is that we want to analyze.
If for example you were to design a guitar tuner using the autocorrelation
method, you would not need to worry about frequencies that belong to
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the bass guitar only for example and hence can make the maximum frame
size considerably shorter (f is inversely proportional to the wavelength \)
improving the overall transient response.

Another method to potentially improve transient response in the
autocorrelation algorithm is through a dynamically changing frame size.
This method simply uses a “very” long frame size as a guide which is
determined by the lowest allowed fundamental frequency. This long frame
is used in guiding the search for sharp peaks as longer frame sizes result in
clearer and more pronounced maxima. The basic idea is exploiting the fact
that if the computed period is short and hence the pitch detected is “high,”

periodmutag
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Fig. 5.10. Adaptive lag for improved transient response (Park 2000).
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then there would be no need to utilize a long frame to get the job done — a
“shorter” frame size will be sufficient. The ensuing benefit is that whenever
possible the algorithm selects a shorter frame length thus resulting in
improved transient response. This algorithm is outlined in Fig. 5.10.

Although the autocorrelation method works robustly in many cases
and is used widely in cell phone and voice coding applications as well as
for musical signals, there are probably a lot of instances where it does not
do a proper job in computing the fundamental frequency. This often occurs
when the local peaks that are not part of the fundamental frequency are not
negligible and small enough unlike the local peaks in Fig. 5.8. The problem
thus arises as those local peaks become quite large and therefore complicate
the peak picking process considerably. We could again apply a moving
average filter as we did with ZCR to alleviate this problem, but the bottom
line is that there is no perfect, bullet-proof algorithm that will detect all
pitches for all instruments with total accuracy. At the end of the day, not
only is it difficult to deal with the technical aspects of the algorithms used,
but it is also very difficult to compute the pitch itself, as pitch is very much
a perceptual aspect of sound — psychoacoustic considerations have to be
taken into account.

5.3 Cross-correlation

Cross-correlation is identical to autocorrelation with the difference being
that two different signals are used instead of one to find the correlation
values according to Eq. (5.10). Here 21 and x4 are two different types of
signals, IV is the frame length, 7 the lag, and n the sample index as usual.

Toyws|T] = Z_: z1[n] - z2[n + 7] (5.10)

n=0

For example, instead of using the same waveform as we did in
autocorrelation, with cross-correlation we could use a piano waveform and a
violin waveform and compute the cross-correlation values between those two
signals. Thus, with cross-correlation, we will be able to measure correlation
factors between different signal types (for whatever purpose). For example,
we could possibly analyze the cross-correlation values between some input
waveform with a database of 100 other waveforms stored on our hard-drive
to determine similarity relationships to roughly categorize the input sample
automatically according to the cross-correlation measure.
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6 Sample Rate Conversion

Sample rate conversion refers to the process of changing the sampling
frequency of a signal either by adding samples or by removing samples.
The process of adding samples is referred to as up-sampling and removing
samples down-sampling. In this section, we will look at how samples are
added and removed and will also discuss some of the issues involved again
from the time-domain perspective. We will revisit this topic in Chap. 8
and learn more about artifacts and distortion to the resulting signal after
introducing the Fourier transform.

6.1 Up-sampling

Up-sampling is a process where the number of samples of a signal is
increased by adding zero-valued samples as defined in (6.1) where L is
the integer up-sampling amount for input signal x with sample index n.

x[n/L], if n/L is integer
yln] = . . : (6.1)
0, if n/L is non-integer
The above equation may seem a little bit confusing but if we plug in a few
numbers it should become clear as to what is going on. For example, if
x[n] = n, where n = 0,1,2,3,4 and let L = 2 we have:

y[0] = 2[0/2] = 2[0] = 0
yl1] = a[1/2] = 0

y[2] = af2/2] = 2[1] = 1

y[3] = a[3/2] = 0 6
yl4] = al4/2] = a[2] = 2

y[5) = af5/2) = 0

yl6] = 2(6/2] = 2[3] = 3

y[7) = al7/2) = 0

From (6.2) we can see that the up-sampled output now is twice (L = 2)
the size of the original signal x, where zeros are interleaved between the
original samples. This is shown in Fig. 6.1.

The leftmost plot shows the original samples and the middle plot the
up-sampled version. Note that the up-sampled output has expanded to
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Fig. 6.1. Original signal (left), up-sampled signal (middle), and up-sampling with linear
interpolation (right).

twice the number of samples of the original with L = 2 and is interleaved
with zeroes. Obviously this is not a smooth waveform and when up-sampling
signals without smoothing, problems occur. We will get into the details
what these issues are in Chap. 8 when we deal with artifacts in the
frequency-domain, but for now let’s intuitively assert that some sort of
smoothing needs to be done in order to make the up-sampled signal look
more like the original signal. This smoothing is rendered via interpolation.
The rightmost plot in Fig. 6.1 is an up-sampled version of z with linear
interpolation (taking the mean of adjacent samples) which makes the
resulting up-sampled and interpolated signal smoother completing the
overall up-sampling procedure.

6.2 Down-sampling

Down-sampling is the opposite of up-sampling and is much like the process
of digitizing an analog signal (continuous time/amplitude signal). It can be
likened to sampling as the ensuing signal after down-sampling is a limited
representation of the original signal. In other words, the number of total
samples is reduced when down-sampled similar to digitizing analog signals.
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Fig. 6.2. 2-fold down-sampling.

The formal definition of M-fold down-sampling is shown in Eq. (6.3) where
M is the integer down-sampling amount for input « and n the sample index.

y[n] = x[n - M| (6.3)

For example, when M = 2 we get the results shown in Fig. 6.2.

As we may have guessed from our introduction of aliasing and sampling
in Chap. 1, since down-sampling is essentially a process of limiting a signal
(similar to sampling an analog signal), aliasing becomes a problem. If the
input x is not band-limited properly before down-sampling, aliasing will
occur. We will discuss what sort of anti-aliasing filters we will need by
observing what happens to a non-band-limited down-sampling process in
Chap. 8.

In general, it is also worthwhile to note that up-sampling and down-
sampling can be useful in musical applications as modulating the sample
rate will lead to interesting musical results. If the sampling rate of the
sound output device is kept constant while the sampling rate of the signal
is modulated, pitch/frequency characteristics as shown in Table 6.1 result.

Although pitch shifts down or up according to L and M (while f; is kept
the same for the audio output device), due to the increases (L) and decreases
(M) of total number of samples, the sound characteristic or its timbre is
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Table 6.1. Up-sampling and down-sampling effects on audio

signals.

Total number of samples  Pitch/frequency
Up-sampling Increases L-fold Shifts down L-fold
Down-sampling  Decreases M-fold Shifts up M-fold

altered as well. It is possible to use down-sampling to mimic pitch-shifting
pitches upwards, but the so-called “munchkin effect” becomes a hindrance
unless of course we want the munchkin effect itself (try the MATLAB®
code below on a human voice sample to hear the munchkin effect when
using down-sampling). Conversely, up-sampling can also be used to expand
signals in time — making a signal twice as long for example. Here also a
similar problem arises as the pitch will change according to the addition of
samples to the original signal.

%Load some audio sample into MATLAB
[x, fs] = wavread('mylnstrumentSound.wav');
sound(x, fs)

% try it with up-sampling, for example
sound(upsample (x, 2), fs)

%or down-sampling, for example
sound (downsample(x, 2), fs)

Code Example 6.1.Up-sampling4 and down-sampling example

We will learn in Chap. 9 how to change pitch without changing the
duration of a signal. In the next section we will show a simple method
where we can time-stretch (lengthen) or time-compress (shorten) a signal
using the overlap-and-add (OLA) algorithm without changing the pitch
characteristics.

7 Overlap and Add (OLA)

When trying to make a signal longer or shorter through up-sampling or
down-sampling, we observed that change in pitch is an inevitable byproduct
which is probably more often than not undesirable. One solution to fixing
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this problem is achieved by a method called overlap and add (OLA). When
using the OLA algorithm, it is possible to time-stretch or time-compress a
signal without changing the pitch of the signal — for time-stretching we
can make a given signal longer without “additional” signal information.
The method is surprisingly simple in its core concept and is outlined in
Fig. 7.1 and further described below.
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Fig. 7.1. Hann window (top) and OLA (bottom).

To learn the mechanics of this method, let’s take the first 1800 samples
of the piano sound we used before as an example. The top of Fig. 7.1
shows the Hann window we used to window a portion of the piano signal.
In previous windowing examples, we observed that windows were applied
in a similar fashion, whereby the next window’s start sample index would
begin just after the end of the previous window’s right edge. In the bottom
of Fig. 7.1, we notice that we have 6 windows not in a sequential non-
overlapping manner as before, but in an overlapping configuration. To be
more precise, in this example we use a 50% window overlap equivalent to
256 samples or 5 ms with a Hann window size of 512 samples equivalent to
110 ms. The start time of each new window is not at window size intervals
as we have previously seen, but instead it is equal to the integer multiple of
the window size minus the overlap percentage referred to as the hop size.
The hop size in our example is 256 samples. With 90% overlap we would
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Fig. 7.2. Windowed portion of piano sample.

have a hop size of 180 samples. Figure 7.2 shows the windowed portions of
the waveform in Fig. 7.1 which are all 512 samples in duration as specified.
Now, if we use the 6 windowed portions of the signal and sequentially put
them back together through addition with different overlap percentage, the
result will be either a longer signal or a shorter signal depending on how
much overlap we choose at the synthesis stage. Note that we could also
have used a rectangular window, but opted for the Hann window as it has
smooth edges which will help blend (cross-fade) adjacent windowed signals
during the overlap and add procedure. The first phase of OLA where we
window the signal is referred to as the analysis part and the second stage
where we actually overlap-and-add the windowed signals is referred to as the
synthesis part. The algorithm encompassing both the analysis and synthesis
parts is referred to as overlap-and-add.

If we were to have an analysis overlap of 50% (256 samples) and a
synthesis overlap of 75% (384 samples) the resulting signal after OLA will
be 25% shorter (total number of samples 1280). If we were to use a synthesis
overlap of 25% instead for example, we would have a time-stretched signal
that would be 25% longer (total number of samples now 2250). What is
interesting is that in either case, we will not experience any pitch alterations
as there is no up-sampling or down-sampling involved in the OLA algorithm.
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OLA works due to aspects of psychoacoustics and concepts related
to gestalt theory that deal with perceptual grouping tendencies. You may
remember from Chap. 1 that we perceive time events differently, depending
on how fast or slow these events occur. When time events such as pulse
trains are set at 1 Hz, we will actually be able to count them and possibly
perceive them as rhythm if different accents are used for each pulse. As
the frequency is increased we lose the ability to count these pulses and the
perception goes from rhythm to sound color or timbre up until around 20 Hz
or so. After 20 Hz the pulse train, which really has not changed in structure
other than an increase in the number of pulses per second, gradually
modulates and is perceived as pitch. As the frequency is further increased
towards the upper pitch limits of our hearing system, the perception of
pitch now changes to the perception of a sense of high frequency. The
OLA algorithm thus exploits psychoacoustic characteristics and ambiguity
of perception in the 20Hz to 30Hz range, equivalent to 30ms to 50 ms,
by applying small window sizes as well as short hop sizes to render the
perception of audio signals becoming shorter or longer with little or (ideally)
no change in pitch and timbre.

7.1 OLA: Problems and solutions

Once again, something as simple as the OLA algorithm rarely works well
off-the-shelf and predictably needs further tweaking for the algorithm to
work robustly. One of the common problems that accompany the out-of-
the box basic OLA arise due to the periodic spacing (constant hop size)
of the windows — anything that is periodic and in the perceptual hearing
range is detectable by the listener (assuming it is evident enough). Looking
back at Fig. 7.1, we note a type of pattern emerging from the combined
windows resulting in a hilliness in the envelope. This problem relates to
the psychoacoustic issue addressed above — perception of time events as
rhythm, roughness, and pitch. In other words, if the hop size along with
the window size is short enough, the artifacts caused by destructive and
constructive interference (see Chap. 4 for details on this type of interference)
may either manifest themselves as added rhythmic modulation, roughness,
or pitch. A solution to this is applying non-periodic hop-sizes by slightly
varying the overlap between windows randomly as we step through the
signal. Although this may alleviate some of the rhythmic or pitch-based
artifacts, this tweak may introduce noisiness making the resulting output
“rougher” sounding.
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Fig. 7.3. PSOLA algorithm.

Another solution in improving the sound quality of the OLA for time
expansion and compression for pitch-based sounds in particular, is using
the so-called pitch synchronous overlap-and-add (PSOLA) approach, also
sometimes referred to as the time-domain harmonic scaling method. The
algorithm itself is actually quite simple whereby the center of each window is
aligned and synchronized with the fundamental frequency of the windowed
portion of the signal as outlined in Fig. 7.3. The center of each window
can be strictly an integer multiple of the fundamental frequency or it can
be randomized slightly so that each window’s center is not in complete
synchrony all the time to dampen effects of overly accentuating aspects of
the fundamental frequency in the final output. With PSOLA, because the
periodic nature of the windows is masked out by the fundamental frequency,
the artifacts caused by OLA are lessened as a consequence. Obviously, in
order to get a properly working PSOLA algorithm one must have a properly
working pitch tracker, and signals that do not elicit a sense of pitch will
not work with the PSOLA algorithm.

8 Musical Examples

Being a bass player I very much appreciate the song Another One Bites the
Dust by the legendary rock band Queen, released in the early 1980s. The
simplicity, yet solid and almost mechanical feel of the rhythmic patterns
along with the essential vocal rhythms, without a doubt play a big part
of this song’s popularity, shooting the mercury thermometer way up the
scale. Interestingly, however, are also some of the techniques Queen used
in producing this track, which includes reverse playback of piano samples
and cymbals sounds, as well as other effects that we take for granted
nowadays as they are easily done on an inexpensive desktop computer or
laptop. Back in the 1980s it was hardly as easy to do, and what’s even
more interesting for a rock band is that the song was seemingly (according
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to some urban legends) built on a “drum and bass loop” — recording a
drum pattern and playing that pattern over and over again, commonly
done nowadays with sample CDs. Whether this is true or not is beside
point, but the song nevertheless brought the machine-like accompaniment
structure to the forefront in popular music. Another noticeable part of this
song is the alleged back-masking and supposedly hidden messages encoded
into the waveforms. I will leave it up to you to reverse the whole song
and look for any messages there may or may not be. Furthermore, whether
you will find something in the waveforms is not that important, but it
is nevertheless interesting to see a rock band embrace electronic sound
modulation techniques and actively utilize sounds played backwards thus
seemingly hinting and encouraging the listener to play the whole song in
reverse.

Another pop band that is quite interesting, exploiting DSP techniques
in the form of looping, is Radiohead. Albeit looping in this context is not
in the microsecond units as is with wavetable synthesis, Radiohead, like
many popular bands in the past (Pink Floyd and Money comes to mind)
and especially today with the advent of the computer technology in music,
are using sampling and looping techniques to exploit existing segments of
previous musical works as a source for musical inspiration. A song called
Idioteque (2000) is such an example. What makes this work even more
intriguing is that Radiohead did not use a portion of a pop song or a
“classical” piece but rather opted to sample a short portion of composer
Paul Lansky’s mild und leise which is a piece generated completely via the
computer using FM synthesis (see Chap. 4 for details on FM synthesis)
and special filters written in Fortran IV by Ken Steiglitz with the harmonic
language based on George Perle’s 12-tone modal system. mild und leise
is certainly not your everyday pop music piece and belongs to the genre
of art music, or more specifically electro-acoustic and computer music.
What surprised me most is how those Radiohead guys found the LP in
the first place, and what sort of inspiration from the original piece lead
them to use it as the fundamental riff for Idioteque. They do eventually
create a totally new piece that has very little resemblance to the original
character of the piece written 27 years earlier, but the looped sample is
unequivocally identifiable. Speaking of electro-acoustic compositions, one
intriguing work that utilizes time-domain based DSP processes is Leviathan
by composer William Schottstaedt. The piece is a time-domain based
compositional /signal processing undertaking using 14 sound sources from
a ubiquitous “effects LP” including sounds from a train, milk machine,
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rooster, ship’s mast, and water pump. The materials for this tape piece
as it is referred to, comes from these basic sound sources cut up into
15,000 splices, which are looped and linked together via a custom software
program. To add subtle variance to the loops, the composer changed the
loop points slightly in the sound objects which resulted in minute differences
in the perception of the same sample. It is quite a musical ride in the art of
sampling and is a great example how simple sampling techniques can lead
to wonderful works of art.
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Chapter 3

TIME-DOMAIN PROCESSES II

1 Introduction

In Chapter 3 we will continue with topics in the time-domain and discuss a
number of classic computer music synthesis techniques. Some of the sound
synthesis algorithms and techniques discussed in this chapter will include
granular synthesis and waveshaping synthesis. We will also introduce a
number of popular and widely used DSP effects including the dynamic
compressor, dynamic expander, distortion, chorus, and flanging effects
commonly encountered in a musician’s home, professional studio, and gig
bag of a guitar player. Some of the topics covered here will be revisited in
later chapters to reinforce our understanding through continued exposure
to various concepts and techniques in signal processing.

2 Granular Synthesis

We started off the book introducing the sine wave and presenting audio
signals in terms of their wavelike properties — a common way in describing
audio signals. However, we are probably also familiar with the particle-like
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behavior of sound. That is, sound adhering to behavior and theories
pertinent to light which also exhibit both particle (photons) and wavelike
characteristics. The basis of granular synthesis can be traced to the particle
theory side of sound. Seemingly, the notion of the sonic grain which
makes up the particles in granular synthesis, was first introduced in the
Dutch scientist Isaac Beeckman’s journals which he kept for 30 years until
his death in 1637. The sonic grain is later found in the work of Nobel
Prize physicist (holography) Dennis Gabor (Gabor 1947), which focuses
on the theory of acoustical quanta. The coining of term grain, however, is
attributed to Tannis Xenakis who has conducted much research in this area
and composed musical works based on grains of sounds.

The basic concept of granular synthesis, like many great ideas it seems,
is quite simple: use elementary sonic particles (grains) of short duration
and juxtapose them horizontally (time) and vertically (amplitude/density)
to produce a sound object or sound cloud. It is somewhat akin to pixels on
the computer monitor where each pixel by itself (comparable to the grain)
has little meaning and is not meant to be perceived individually but as
a group, where en masse they form a clear and vivid visual image. This
idea of an image also exists in sound as a sonic image if you will — if
an appropriately small sonic grain and parameters such as grain density
and amplitude are carefully defined. One noticeable difference between the
pixel model and the grain model is that the grains are often not evenly and
sequentially distributed as pixels are, but are rather randomly sprayed onto
the sound canvas as further described in the next section. Not surprisingly,
however, once again, the main reason granular synthesis works at all is due
to our hearing system’s limitations and psychoacoustic issues associated
with human perception of sounds. Granular synthesis is actually in its core
very similar to the OLA algorithm we discussed in Chap. 2, with the major
difference lying in the verticality aspect of the windowed signals (grains)
in granular synthesis. This verticality represents the density of grains at a
given point in time as we shall see below when we introduce details of the
granular synthesis algorithm.

2.1 Basic granular synthesis parameters

In this section we will introduce the main parameters and concepts utilized
in granular synthesis. Table 2.1 shows these basic parameters typically used
for granular synthesis.
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Table 2.1. Basic granular synthesis parameters.

Parameter Description

Grain size Duration of grains typically in milliseconds
Window type Window shape for excerpting a grain
Grain amplitude  Maximum amplitude of grain

Grain density Number of grains per second

Grain pitch Pitch (if present) characteristics

We will first and foremost start by defining the grain which is obviously
the most important component in granular synthesis. Grains are defined as
small windowed portions of an audio signal typically anywhere between
a few milliseconds to 100 milliseconds in duration. The choice for window
length is directly related to what sort of effect we want, including the degree
of recognition of the original sound source — the window length directly
affects the recognition and identity of a single grain upon audition. The
shorter the grain size, the more blurring of the identity of the origin of the
source when hearing one individual grain. In determining the duration of
a grain, frequency content of the original sound object whence the grain
comes from also plays a role, perhaps a more subtle one as is evident from
Gabor’s experiments — Gabor showed that the duration of the grain, so as
to be able to recognize the grain’s characteristics (such as a grain’s pitch
information), depended on the frequency characteristics of the grain itself
(Gabor 1946). That is, the threshold of discernment of the grain’s original
make-up is a function of the original signal’s frequency composition. The
aspect of frequency composition refers to the theory of representing a sound
object via a sum of sinusoids at specific amplitude, frequency, and phase
values as will be discussed in Chap. 8.

In order to produce a sonic grain we will need to apply a window on a
portion of the target signal (windowing is discussed in Chap. 2, Sec. 3). The
grain is defined as a windowed portion of input samples z[n] using window
w[n — L] where L is the delay (offset or start point where windowing takes
place) as shown in (2.1).

Zgrain|n] = w[n — L] - z[n] (2.1)

Some common window types for grains include the Hann and triangular
windows (see Chap. 8 for details on window types) as shown in Fig. 2.1.
Both window types display smooth boundaries tapering off on either side
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Fig. 2.1. Rectangular, Hann, and triangular windows with respective grains.

which help when mixing and blending the grains during the summing
process.

For example, if the input signal z[n] is defined over n = 0...4999, we
could take an excerpted grain from the beginning of the input with L =0
window length N = 100 which would be equivalent to windowing the input
signal portion z[0], z[1],...x[98], £[99]. When L = 100 and N = 100 we
would window the input signal portion x[100], z[101],...,2[198], x[199]
with the same window w.

The grain amplitude can be controlled by simply multiplying the grain
with a scalar as shown in Eq. (2.2). If we take these individual grains and
arrange them appropriately as a group, and when positioned appropriately
on the time axis, they will produce the desired amplitude envelope. Thus,
controlling the overall amplitude profile can simply be achieved by adjusting
the individual amplitude levels of each grain. This can be compared to the
pixels on the computer screen, whereby one can brighten a certain area on
the monitor by increasing the brightness of a group of pixels in that area.

x;rain[n] = @ Tgrain [n} (2.2)
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The density of grains, usually defined as grains per second, in general
contributes to the richness of the resulting synthesized signal. That is, the
greater the density, the richer and louder the sound. As is the case with the
ability to control the amplitude of each grain, it is also possible to control
the pitch of each grain using up-sampling and down-sampling techniques.
This is further discussed in Sec. 2.4.

2.2 Asynchronous granular synthesis

One of the most popular types of granular synthesis is asynchronous
granular synthesis which we will cover in this book (others include
quasi-synchronous and pitch-synchronous granular synthesis). The main
characteristic of the asynchronous version is that when grains are laid
out on the time axis, they are spread out randomly as seen in Fig. 2.2.
That is, the start time indexes of the grains do not follow a pattern or
periodic design, although the total number of grains per second (density) is
maintained.

The top part of Fig. 2.3 shows a one second granular synthesis example
using a piano sound source for its grains of 500 samples (11.34 milliseconds)
in duration, Hann window, grain density 20,000 grains/sec, an exponentially
decaying amplitude envelope, and sampling rate of 44.1kHz. The grains
are randomly distributed over a one second period and summed to form
the synthesized output. The bottom of Fig. 2.3 shows the first 2000
samples of the synthesized signal displaying traces of the original grain from
Fig. 2.1.

Amplitude

Time

Fig. 2.2. Grains added as layers asynchronously.
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Fig. 2.3. Asynchronous granular synthesis.

2.3 Pitch shifting and time stretching/compression

Pitch modification and time-stretching and compression are straightforward
in granular synthesis since we are dealing with elemental sonic grains. To
change the pitch all we need to do is either down-sample or up-sample
to the desired pitch (with appropriate anti-aliasing filtering as discussed
in Chap. 7). Altering the duration using granular synthesis is just as
uncomplicated — populating a desired duration with sonic grains is all
it takes. For example, if the original sound object is only one second long
and we want to time stretch it to 3 seconds, all we would need to do is fill
3 seconds with the windowed grains using a suitable grain density value.
Of course to make the timbre sound “natural,” further tweaking needs to
be done, including excerpting different types of grains from the signal’s
attack, decay, steady-state, and release regions according to your needs —
each region of the original sound-byte more often than not exhibit dissimilar
timbral qualities.
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Fig. 2.4. Morphing from timbre A to B.

2.4 Sound morphing with granular synthesis

It is also possible to use granular synthesis to morph between different types
of sound objects or to synthesize hybrid sound objects that take grains
from two or more different audio signals. For example, if the objective is
to smoothly morph from timbre A to timbre B, one could start off with
grains from sound source A (100%) only, followed by a transition area which
gradually decreases the contribution of grains from A while increasing the
ratio of grains from B, and continuing until we are only left with grains
from B (100%). This idea is depicted in Fig. 2.4. In this example, the cross-
fading between the two types of sound source is linear but it could also just
as easily be exponential or some other nonlinear curve.

3 Amplitude Distortion and Waveshaping

In Sec. 3, we will introduce a number of modulation techniques found in
the time-domain that deal with manipulating and distorting the amplitude
values (dynamics) of a signal. In a way, these types of processes can be
thought of shaping the input waveform and therefore fall into the general
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Fig. 3.1. Waveshaping synthesis.

category of waveshaping. Waveshaping in general, is a time-domain-based
sound modulation method based on shaping the waveform according to a
transfer function. The core concept is shown in Fig. 3.1 — the input signal’s
amplitude values are shaped or modified by a transfer function which is
usually nonlinear (we will discuss linearity in more detail in Chap. 5).

Qutput
amplitude

Input
amplitude

Fig. 3.2. Linear transfer functions.

If the transfer function were linear, it would look like the examples in
Fig. 3.2 expressed as y = a - x, where a is a scalar representing the slope
of the line. Waveshaping-based techniques are also referred to distortion
synthesis as the input is essentially distorted to produce a desired output
much like the dynamic compressor which will be discussed shortly. What
makes waveshaping synthesis so interesting is that as the input signal’s
amplitude value changes as a function of time, so will the output of the
waveshaper, resulting in a dynamically changing output signal rather than



Time-Domain Processes 11 83

8 no

E & compression

5 cOmpressio

]
gain

bl

b0

L~ P

! >
« threshold — Input

Fig. 3.3. The dynamic compressor.

a static one. Thus, designing and computing the transfer function to get a
target sound and timbre is central in waveshaping synthesis.

3.1 Dynamic compressor

The dynamic compressor is used often in situations for sounds with wide
dynamic range such as the electric bass guitar or a drum kit consisting of
the kick drum, snare, tom-toms, and so on. What the compressor does is
dynamically reduce the amplitude of the input signal and hence effectively
reduces the dynamic range of a signal in a nonlinear fashion. Figure 3.3
depicts a very simple compressor showing the basic mechanics behind the
concept.

The main effect of the compressor is that it reduces the amplitude
of the input signal selectively for a given range — concentrating on the
higher amplitude values of the input as can be clearly seen in Fig. 3.3.
The result is that the difference between the “high” vs. “low” amplitude
values are reduced, decreasing the dynamic range from a broader range
to a narrower one. The core idea lies in reducing the overall dynamic
range by attenuating the “high” valued amplitude samples while keeping
the “low” valued samples untouched. Broad dynamic range refers to the
aspect of an instrument being able to produce very soft sounds as well as
very loud sounds — the wider the gap between the softest and loudest
sound, the wider the dynamic range. The drum kit and the “slap and
pop” technique in electric bass playing are great examples of instruments
falling into the category of wide dynamic range-based instrument sounds.
The amount of compression is mainly determined by two parameters —
the threshold and the waveshaper’s transfer function. As discussed earlier,
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the transfer function is simply the shape of the waveshaper that determines
the input/output relationship as shown in Fig. 3.3. The amplitude threshold
value moves along the input axis (x axis in Fig. 3.3) determining at what
input level compression will be applied to. The closer the threshold value is
to zero, the more compression there will be. The second parameter in our
example is the affine linear function y = mx + b. As we can see in Fig. 3.3,
in the region from 0 to the threshold value, the input (z) is equal to the
output (y), whereas beyond the threshold value, the waveshaper takes the
form of y = maz + b. The linear function becomes linear when b = 0 (no
compression, y = x). The level of compression is controlled by the steepness
of the slope (m): the less steep it is, the more compression and vice-versa.
Our example is obviously a very rough one and commercial compressors
have smooth transition regions (referred as soft knees) at the threshold
points unlike our basic example shown here. However, the general effects
are similar. Below T have listed some MATLAB® code for the main part
of the dynamic compressor as discussed above.

theSign = sign(x); % retain sign of waveform
x = abs(x); % get absolute value of x
for i=1:length(x)
if x(i) > threshold
% compress
y(i) = (slopex*x(i) + intercept)*theSign(i);
else
% do not compress
y(i) = x(i)*theSign(i);
end
end

Code Example. 3.1. Simple dynamic compressor.

In the above code, I first store the sign (polarity) of the input signal and
then compute the absolute value of the input which will be used to tell us
when we need to compress the input signal. The sign is stored in memory for
the synthesis part where the signal |z| is multiplied by its original polarity.

Two more important parameters used to further fine tune and tweak
compressors are the compressor attack time and release time. The attack
time and release time simply refer to how quickly (attack) the compressor
will start to take effect and how quickly (release) the compressor will stop
working — going back to the region below the threshold. Hence, both attack
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and release time parameters are essentially controlling the transition time
from the uncompressed sound to the compressed sound and vice-versa.
These are important issues as without these two parameters, the transition
from uncompressed (unprocessed) to compressed output (processed) can be
(depending on the input signal type) too sudden, causing subtle, yet often
noticeable and undesirable artifacts. Figure 3.4 depicts the idea behind the
attack time, release time, and the delay that occurs when the compressor
starts to kick in during the attack region and diminish during the release
region.

A variation of compression is the limiter. The limiter is also a popular
signal processing example used in audio applications. By hard-limiting a
signal, one can effectively guarantee that the output (through speakers for
example) does not exceed a set amplitude level. It is therefore frequently
used in live-performances and concert settings whenever microphones are
involved where audio feedback can potentially become a major problem.

3.2 D:istortion

In Chap. 1, we already introduced distortion in the form of clipping
rendering in extreme cases a square wave. Since we now understand the
workings of the compressor, we can also interpret distortion as a radical
dynamic compressor — the y = mz + b becomes a straight line with
m = 0. The main difference between distortion and compression is mostly
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in its application. For the distortion effect, the severe clipping characteristic
brought about by a high gain input produces additional harmonics, which
in turn creates an intended richer sound. For the compressor, such clipping
characteristics would generally not be attractive as the objective is reducing
the dynamic range without (ideally) affecting the general timbre of the
output sound. But for distortion, the same artifacts become a desirable
musical element for timbral modulation.

Output

no expansion

-

- Input
<+ threshold — P

Fig. 3.5. The dynamic expander.

3.3 Dynamic expander

The ezpander is the opposite of the compressor. Instead of reducing the
gain of the high amplitude level samples, it attenuates the lower ones in
effect increasing the dynamic range. As is the case with the compressor,
the expander can also be regarded as a special type of a waveshaper. The
characteristics of the expander are show in Fig. 3.5.

You will note that similar to the compressor, the slope of y = mz + b
and threshold values define the amount of expansion. When y = z there is
no expansion due to unity gain. Interestingly, the classic noise gate which
reduces the noisiness of a signal actually exploits the same concept utilized
in the dynamic expander. The difference between the expander and noise
gate is that for the noise gate, the input values below the threshold are
floored to 0 thus only outputing input values that are above the threshold
point. This type of noise gate “reduces” the noise as it will only output a
non-zero value when there is a “strong” or “loud” enough signal. Although
the effect may be perceived as noise reduction, in actuality there is really
nothing exciting happening to the noise itself — when we have a high
enough input signal above the noise gate threshold value (typically set to a
very low value), the noise will still remain but (hopefully) be masked out by
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the stronger signal such as the entrance of a snare drum (high SNR ratio).
The gate is nevertheless very useful when recording in the studio or in
live performance situations where microphones are involved. For example,
if the lead vocalist is not singing into the microphone and running around
on the stage, there is a danger of amplifying other sounds picked up via
the unattended microphone if a gate is not used. However, if we use a
gate, the amplifier will only output the microphone signal when in use —
when the lead singer is screaming into the microphone.

3.4 Tape saturation

In the old days when only magnetic tapes and tape machines were available,
recording studios had no choice other than using those analog-based sound
recording technologies — technologies which often exhibited nonlinear
distortion due to the inherent imperfections of magnetic tape and tape
machine technology. One type of distortion that occurs with analog tape
machines is referred to as tape saturation. Simply put, tape saturation is
a smooth and soft compression-type artifact that goes hand-in-hand with
analog tape machines which has found much popularity with producers and
musicians in the rock/popular music genre. One way of digitally simulating
this “error” produced by tape machines is achieved via a smooth and
delicate dynamic compression on the audio signal. As we have seen in
our previous examples and in Chap. 1, harmonic distortion occurs when
signals are clipped. Hence, when compression is applied to any input signal,
it will produce additional subtle harmonic artifacts that sometimes are
desirable in certain musical situations. Albeit, it is difficult, to say the least,
to get rid of these tape machine-based artifacts when using analog tape
recording technology, digital systems allows us the flexibility to simulate
such irregularities with relative ease and furthermore gives us the option of
not using it at all if we do not feel it contributes to the musical result we
seek. Analog tape machines in general do not give us this option.

3.5 Waveshaping synthesis

The concept of waveshaping synthesis is essentially identical to dynamic
compression with the main difference lying in the choice/design of the
transfer function and the input signal to the waveshaper. The goal in
waveshaping synthesis is choosing a transfer function and input signal
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so that multiple harmonics can be flexibly and accurately controlled and
generated. We will discuss how this is accomplished in this section.

3.5.1 Chebychev polynomials of the 1st kind

One classic approach that is often encountered in designing the transfer
function is the Chebychev polynomials of the 1st kind which should not be
confused with Close Encounters of the 3rd Kind. Polynomials, as we are
aware, take the generic form as shown in Eq. (3.1).

N-1

f(z)=an -z +an—1-2N P+t a+ag (3.1)

With the Chebychev polynomials in particular, it is possible to produce
specific harmonics if the input to the waveshaper is a cosine waveform.
The advantage of using polynomials lies largely in the ability to produce a
specific number of harmonics and in the computational efficiency due to the
use of a single oscillator. The technique of using Chebychev polynomials to
produce specific harmonic structures is also referred to as spectral matching,
as it has been widely used to match and mimic the harmonic structure of
acoustic instruments. The harmonics of any fundamental frequency can be
expressed via polynomial expansion (when input z is a cosine wave) shown
in Eq. (3.2), where T is the harmonic component and integer k represents
the harmonic number, with k¥ = 1 denoting the fundamental, & = 2 the
octave, and Tj4; harmonic k41 and so on.

Tiy1(z) =2 2 Tp(x) — Tp—1(x) (3.2)

In order for the above relationship to work, the input x has to be limited
to a cosine wave. When using the Chebychev polynomial (1st order), it is
possible to add harmonics to the base cosine wave (input to the system) with
a given fundamental frequency without having additional oscillators, thus
making this approach an efficient synthesis method to compose complex
sounds via a single sinusoid (making a bunch of sinusoids with one sinusoid).
To understand how polynomials can be used to produce specific harmonics,
let’s start with some basic trigonometric identities and work our way up to
the Chebychev polynomials of the 1st kind. We first begin with the following
basic trigonometric identities:

cos(a + b) = cos(a) - cos(b) — sin(a) - sin(b) (3.3)
sin(a 4+ b) = sin(a) - cos(b) + cos(a) - sin(b)
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Using the basic identities from above we can now deduce the following
relationships:
cos(2 - 0) = cos(0 + 0)
= cos(#) - cos(f) — sin(0) - sin(6)
2

= cos?(f) — sin?(6) (3.5)
= cos®(0) — {1 —cos*(0)}
=2.cos?*(f) — 1

cos(3 - 0) = cos(f) - cos(2 - 0) — sin(f) - sin(2 - 6)
= cos(f) - {2 cos®(#) — 1} —sin(0) - {2 - sin() - cos(6)}

=2-cos?(f) — cos(9) —2-sin?(f) - Cos(ﬂ)

3.6
=2-cos’(#) — cos(0) — 2+ {1 — cos®(0)} - cos(0) (3.6)
=2-cos’(f) — cos( ) —2-cos(6) + 2 cos® ()
=4-cos®() — 3 - cos()

Following the method we used to compute cos(2 - #) and cos(3 - §) along
with the trigonometric identities, we can also compute subsequent cosines
of the form cos(m - ) where m is an integer. The first five are listed below:

cos(0-6) =1 (3.7

cos(1 - 0) = cos(9) (3.8)

cos(2-6) =2 - cos*(6) — 1 (3.9)
cos(3-60) =4-cos®(#) — 3 - cos(h) (3.10)
cos(4-0) = 8- cos?(0) — 8- cos?(0) + 1 (3.11)

Let’s stop here and make a variable assignment by letting 2 = cos(f) and
define Ty (z) such that we get Eq. (3.12) where & is an integer number.

Ti(z) = cos(k - 9) (3.12)

Rewriting Eq. (3.7) ~ (3.11) using the newly defined Ty (z)s we have:
To(z) =cos(0-0) =1 (

Ty (x) = cos(1-6) = cos(f) =x (3.14
To(z) =cos(2-0)=2-2% — 1 (
Ts(z)=4-2° -3z (
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Ty(z) =8 -2 —8-2° + 1 (3.17)
Ts(z) =16-2° —20-2° +5-2 (3.18)
etc.

At this point we will observe a pattern emerging, enabling us to put the
above polynomial expansion into a generic form as shown in (3.19). This is
what we started out as in Eq. (3.2):

Tk+1($) =2.-x- Tk(x) — kal(l‘) (319)

The above is known as the Chebychev polynomial of the 1st kind. Why
is this useful again? The result is very useful because when setting the input
x = cos(f) as we have done above (with cosine amplitude set to 1), each
Chebychev polynomial, which forms a particular waveshaper, will output
only one specific harmonic. That is, when setting = cos() the Chebychev
polynomial Ty (z) = cos(k - #) will produce a cosine signal at harmonic k
without the need for additional oscillators which can otherwise be a burden
on the computational load of a processor. Thus, if we were to combine a
number of different T} (z) components, which could represent the harmonic
structure of a trumpet for example, we will be able (via waveshaping
synthesis) to produce a synthetic trumpet sound with numerous harmonics
without using an equal number of oscillators. For example, the waveshaper
could look something like Eq. (3.20) resulting in an approximation of a
square wave sound.

Fz) = T (2) + %Tg(x) + %TS(Q;) + ;T7(x) + %Tg(x) + 11—1T11(x) (3.20)

As mentioned before, this particular method of determining what
waveshaper to use is called spectral matching — matching the harmonic
structure of existing acoustic instruments or any other sound for that
matter. One of the main reasons this was popular back in the day is not
only due to the computationally expensive oscillators, but also because it
rendered interesting timbral results when not using cosine waves as input,
thus making it a very powerful sound synthesis tool.

Since we are dealing with digitally sampled signals, note that we also
have to be careful about the upper Chebychev polynomial signals which
need frequency restrictions as we do not have infinite bandwidth. In other
words, we have to make sure that the resulting harmonics (dictated by k),
which are dependent on the fundamental frequency fy of the cosine wave,



Time-Domain Processes 11 91

are below the Nyquist limit:

k-fo< % (3.21)

For complex signals that are made up of many more cosine components
of various frequencies (which we do not know beforehand), we should
band-limit the input signal before subjecting it to a particular Chebychev
polynomial Tj(z). This band-limiting technique is referred to low-pass
filtering covered in Chap. 7. The good news is that when making music there
is no wrong way of doing things as long as it positively serves the musical
composition in the end. If the musical result is satisfactory to the composer
or sound designer, then it really does not matter if we have artifacts like
aliasing.

4 Some Familiar Time-Domain DSP Effects

In this section, we will introduce a couple of DSP processes that we are
probably familiar with or at least have heard of at some point in time.

4.1 FEqual power panning

The term panning is ubiquitously used in audio but actually comes to
us from the film-making folks referring to the rotation of the camera to
get a panoramic view of a scene. In audio, panning originates from the
word pan pot which in turn is a short-hand for panoramic potentiometer,
the potentiometer being a variable resistor like the volume dial on your
stereo or your light dimmer in the living room. Panning in 2-channel audio
applications distributes an audio signal to two output channels and two
speakers. Imagine turning a dial counterclockwise and clockwise to make
a sound come out of the left and right speakers in their extreme positions
and having the sound be generated equally through both speakers at the
12 o’clock position.

This concept can be implemented on a digital system. Let’s say the
maximum output of a signal is a floating point number at 1.0 and we wish
to pan it to two channels via two speakers. A simple solution for panning
the input z[n] to the left and right output channels yse ¢ [n] and yrigni[n] is:

y[nliese = z[n] (4.1)
y[n]rignt = 1.0 — z[n] (4.2)



92 Introduction to Digital Stgnal Processing

Although this will work quite nicely, there is one small issue that we
have overlooked: the aspect of our hearing system and how we perceive the
dynamic level of audio signals. You will recall from Chap. 1 that we hear
sound in the form of power, which means that it is the square of the input
amplitude. In other words, the above panning algorithm would actually not
quite do the trick in equally and smoothly panning the signal from left to
right (if we turn the knob at a constant angular velocity). In order to make
the panning effect be perceived linearly we would need to use the inverse
of the square operator which is the square root. Obviously the square root
is not a linear function but the important point is that we perceive the
operation imposed on the signal to be linear, as the square is neutralized
by the square root rendering a linearly changing pan when turning the pan
pot linearly. The modified perceptually linear panning equations will then
become:

ylnliese = Vxln] (4.3)
and
y[nlright = /1.0 — z[n] (4.4)

You may also have heard about the —3 dB4 number in panning. The —3 dB
refers to the dB level at center position of the pan pot which is equal to
20-1og;((0.707) or the 0.707 amplitude value obtained by the root operator
above (the root of 0.5 is 0.707, where 0.5 is halfway between 0.0 and 1.0
denoting half of the amplitude in each channel). Figure 4.1 shows equal
power panning in amplitude and dB units.

4.2 Delays

The last three digital effects that we will discuss in this chapter are all based
on delaying an input signal by various degrees. By changing the amount
of delay and mixing (adding) the delayed signal with the original signal,
we can get interesting musical effects commonly used in everyday audio
applications. We will formally introduce difference equations, delays, and
fractional delays in Chap. 5 and 7.

4.2.1 Echo, chorus, and flanging

The first of the delay-based effects we will deal with is the so-called
echo (there was actually a band called Echo and the Bunnymen back in
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Fig. 4.1. Equal power panning with root of the amplitude (top) and dB of the root
amplitude (bottom).

1980s which did not have much to do with the effect, however). We have
undoubtedly experienced the echo effect in a large hall, cathedral or perhaps
the Grand Canyon or Seol Ak-San in Korea, where a loud yahoo is bounced
off the canyon walls at the speed of sound and comes back to us thus causing
an echo effect. The echo can simply be represented as shown in Eq. (4.5).

y[n] = x[n] + by - z[n — N]| (4.5)

N is the delay of the bounced signal coming back to us and is typically
in the range of 10 to 50 milliseconds, although there is no hard limit as
longer delays simply mean longer echoes. by is the coefficient or the scalar
multiplier which attenuates the bouncing signal as they are softer due to
loss of energy from all the bouncing around.

Delays that are typically shorter than that of the echo are commonly
referred to as chorus delay. However, there is a difference between an
echo and chorus and that is the dynamically changing delay nature of the
chorus effect. The delay time commonly smoothly varies from around 10 to
25 milliseconds achieving a doubling effect. This doubling effect sounds as
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if two people (or audio signals) are singing together. With more delay lines
added to the system, we would get the effect of having a large number
of people singing at the same time (a chorus) — hence the name chorus
effect. It so happens that when we have more than one person singing or
playing a musical instrument with the same pitch, there will always be some
amount of detuning or slight variation in the fundamental frequency. This
is due to the imperfections in human performance, the musical instrument
itself (violins, voices, French horns, etc.), and the distance between the
instruments/sound sources (as well as where the listener is with respect to
each sound source). Even if the instruments are “perfectly” tuned, there
will always be a certain amount of detuning especially as the number
of instruments grows. The digital chorus algorithm hence mimics this
imperfection (which makes a sound thicker and more dense) by using a
variable delay line:

yln] = z[n] + zn — g[n]] (4.6)

g[n] outputs an integer delay that varies slowly with time bounded by upper
and lower delay time limits. For example, g[n] could be a low frequency
digital sine oscillator also referred to as a low frequency oscillator (LFO).

Back in the good ole days of analog tape recorders, engineers would
sometimes have two audio tracks on two separate tape machines with the
exact same recording or program as they are called in the recording world
(analog tape recorders are still used in some recording studios although their
usage has gone down drastically due to digital technology). What people
would do is slightly change the speed of the reel-to-reels by applying hand
pressure against the flanges (rim) and cause slight deviations in playback
speed — the ensuing effect is referred to as flanging. Not surprisingly,
the flanger is actually identical to Eq. (4.6) and hence is essentially the
same as the chorus algorithm. The issue of human perception of sound
makes the flanger different from the chorus and not its core algorithm,
with the most significant difference being the amount of delay time. For
the flanger, the delay time is typically below 10 milliseconds opposed to 10
to 25 milliseconds for chorus. With all the delay effects we have mentioned
here, constructive and deconstructive interference (see Chap. 4, Sec. 4 for
more details) obviously plays an important role and an interesting concept
known as comb-filtering results which will be introduced in Chap. 7 when
we talk about filters and reverberation.
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5 Musical Examples

One of the first composers to use granular synthesis in musical composition
is Iannis Xenakis. Xenakis used the concept of granular synthesis in making
clouds of sound from crackling amber and burning coal recorded with a
microphone in 1958. The piece called Concrete PH was part of architect Le
Corbusier’s multi-media extravaganza Poéme Electronique, showcasing the
latest research from electric/electronic company Philips at the 1958 World
Fair in Brussels. The piece was, however, only used as an interlude between
sessions (approximately three and a half minutes long) when spectators
would enter and leave the Philips Pavilion where the multi-media show
(featuring the main piece Poéme Electronique by Edgard Varese) was held.
It is quite an extraordinary piece in part due to the sheer technical difficulty
in doing something like this in the late 1950s by using short samples as
grains and working with tape splices in putting together hundreds and
hundreds (probably many more) grains of sound. But what’s more amazing
is that Xenakis was thinking about the idea of the particle property of
sound, concentrating on timbre, density, sound clouds, and sound itself,
whereby incorporating those ideas in creating a new musical work. Twenty
eight years later composer Barry Truax who is also well know for his
compositions using granular synthesis, composed a piece called Riverrun
(1986) — the first word in James Joyce’s Finnigan’s Wake. The metaphor
of the piece is the river, which is characterized by stasis and flux, calmness
and chaos, and everything in between. Technically speaking, Truax used
grain densities typically between 100 and 2000 grains/second. What makes
this piece such a great example of granular synthesis in action is the idea
behind the basic water droplet taking the role of a grain forming the smallest
rivulets, streams, and a massive river of immense energy guiding the listener
on a wild ride from the perspective of a water droplet.

Other effects we have briefly discussed in this chapter including
distortion and compression can be found in most popular music recordings.
In fact, compression is an important part in the whole modern recording
culture and also critical in the mastering process — massaging a recording
before it hits the market. Distortion and compression is also used in a very
artistic and creative way to bring about a certain musical character. One
such artist who is no stranger in using these effects in order to bring about
a specific sound color is Trent Reznor. Albums such as With Teeth is such
an example, where harshness, distortion, and sometimes low-fi sound is
exploited and used not only on instruments but also the voice.
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Chapter 4

SINE WAVES

1 Introduction

We began the book with a brief introduction of the sine wave as a way
to start getting our hands dirty and begin with something that a lot of
us (hopefully) are probably familiar with in one way or another. In this
chapter, we will revisit some of the concepts related to the sine wave along
with the complex number system, which will lead us to the powerful Euler
formula. We will later see the importance of this formula as a tool for dealing
with trigonometric functions and harmonic oscillation, especially in Chap. 8
when we get to know Mr. Fourier. Towards the end of the chapter, we will
learn one of the most simple, yet effective and economically successful sound
synthesis algorithms, frequency modulation synthesis. We again conclude
Chap. 4 with the introduction of some musical examples and composers
who have used some of the concepts we cover here.

97
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2 Sinusoids Revisited

At the beginning of Chap. 1, we started with the sinusoid and briefly
discussed the three components that characterize it — amplitude,
frequency, and initial phase as shown in Eq. (2.1).

yt) = A-sin(2-7- f-t+ ) (2.1)

It is customary to denote the time varying part of Eq. (2.1) as w — the
radian frequency (rad/sec) where f is the frequency in Hertz.

w=2-7-f (2.2)

The phase ¢ in the Eq. (2.1) describes the phase offset with respect to a
reference point, and is more precisely referred to as the initial phase at
reference point t = 0. In the above equation ¢ is a constant. To distinguish
the initial phase from a time-variant version of the phase, the term
instantaneous phase is used and can be expressed as shown in Eq. (2.3)
[note that ¢ itself can be a function of time: ¢(t)].

Ot) =27 - ft+d=w-t+o (2.3)

This may look a little confusing as we have lumped the frequency
component and initial phase component and called it instantaneous phase,
but if you regard it in such as a way that frequency f in combination with
¢ merely determines a particular radian value (the instantaneous phase)
at each time instant t, the above equation and expression should make
sense [the output of ©(t) is obviously in radians as the units of f and
t cancel each other out]. That is, the measurement of following the total
“radian distance” travelled by a sinusoid over a period starting at ¢ = 0 to
t=M-T =M -1/fs is equivalent to the instantaneous phase. Viewing
the instantaneous phase from a different perspective, via a sinusoid with
frequency f which stays constant, the derivative of ©(t) changes according
to Eq. (2.4).

do(t)
—=2-7- 24
2 =2 (24)
The instantaneous phase can be also be viewed as an integration of

the instantaneous frequency f(r) from 7 = 0 to t, as integration and
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differentiation have reciprocal relationships.

o) = /0 2w f(r)dr (2.5)

Like instantaneous phase, instantaneous frequency f(7) is a time-variant
version of the frequency component, distinguishing it from the constant
and unchanging frequency f. The instantaneous frequency is represented
according to Eq. (2.6).

1 de)

) =5—— (2.6)

In a digital system the instantaneous frequency is commonly computed
via the change in phase over a given period of time (samples). We will see
how these important definitions become helpful in understanding frequency
modulation synthesis later in this chapter as well as the phase vocoder in
Chap. 9.

3 Imaginary, Complex Numbers, and Euler’s Formula

Imaginary numbers are as the term suggests, numbers that are not real —
numbers that cannot be represented by real numbers, those numbers
mapped on a one-dimensional system. I say one-dimensional, as real
numbers can only increase or decrease in value on a linear slider-like scale.
For example, if we consider 0 to be the center of the real number system,
we would be able to go right and find larger real valued numbers, or
move to the left, towards the negative side and equivalently find negatively
decreasing real numbers. This sort of system is one-dimensional as it only
requires the z-axis so-to-speak. Although complex numbers may seem
counterproductive and may even be regarded initially as having been
created only to make our lives more miserable, imaginary numbers are,
however, very powerful and useful. As a matter of fact, the complex number
system is essential in enabling us to tackle certain problems in often
remarkably simple ways which would otherwise be extremely difficult.

Consider the general 2nd order polynomial shown in Eq. (3.1) and its
two possible roots seen in Eq. (3.2):

a-z2+b-z+c=0 (3.1)

—bEvVb2—4-a-c
xTr =
2-a

(3.2)
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Now, all this is great until we get a solution for the polynomial where the
square root part b> — 4 -a - ¢ < 0. For example, if we set a =b =c = 1 we
would get (3.3) which is pretty funky.

L TLlEV3

. (3.3)

We basically hit a dead end as we cannot define negative square root terms
using a real number system — this is where the imaginary number system
comes to our rescue. If we define an imaginary number to be expressed as
in Eq. (3.4), we can deal with anomalies such as negative square roots that
would otherwise not be possible to address with the real number system
alone: we denote the square root of negative 1 as “i.”

i=+v-1 (3.4)

Hence, with the aid of the imaginary number system, the solution to the
above polynomial will result as follows:
xzﬂz—liiB=—0.5ii§—0.5ii1.5 (3.5)
2 2 2 2
The general form a + ib is referred to as a complex number system where
a is the real part and b the imaginary part. Imaginary numbers are also
often denoted with the letter “j” instead of the “¢” in the form of a + jb,
especially in engineering books to avoid potential confusion: letter “” in
electrical engineering is usually a parameter reserved for electrical current.
We will use j for the imaginary numbers henceforth in this book.

If we view real numbers to be governed by a one-dimensional system
as shown in Fig. 3.1 (for simplicity integers are used here) we can view
complex numbers as a two-dimensional system as seen in Fig. 3.2. As
complex numbers can be represented in a two-dimensional plane we can use
trigonometric representations to jump from rectangular to polar coordinate
systems as depicted in Fig. 3.3.

The rectangular form is the notation we used above in the form of
¢ = a + jb. The polar form can be expressed using angles and Euclidian

«l 1 1 1 1

[
U 3200 1 2 3 a7

Fig. 3.1. A one-dimensional system: real numbers.
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Fig. 3.2. A two-dimensional system: imaginary numbers.

imaginary (f)
b A b=r-cos(8) ”c(a,b)

éa:r-sin(@)
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a

Fig. 3.3. Rectangular and polar forms.

distances to represent the same point c.

b=r-cos(f) (3.6)
a =r-sin(f) (3.7
r=1+va?+b2 (3.8)

— 19

3.1 FEuler’s formula

Euler’s formula named after Swiss mathematician Leonhard Euler, is by
many mathematicians (and non-mathematicians for that matter!) regarded
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as one of the most elegant and beautiful mathematical theorems. Some of
the reasons for this consensus can be attributed to the fact that it can
be used to describe simple harmonic motion, integer numbers, complex
numbers, real numbers, etc. For us, it will be a very powerful tool that
will help us greatly in dealing with difficult problems that use aspects of
harmonic motion as we shall see later in this chapter and other chapters.

The Euler’s formula is defined as follows:
e’ = cosf + jsin6 (3.10)

We will immediately note that using the Euler formula, we can now put
¢ = a+jb into a more compact form as shown in Eq. (3.11) with amplitude
r=1.

c=r-e (3.11)

Two very useful identities for sines and cosines in terms of the above
exponential expressions are as shown in Egs. (3.12) and (3.13).

[T

cosf = % (3.12)
Jo _ o—3b

sinf = % (3.13)

The above can be verified by plugging in Euler’s formula for each
exponential component e*7% and e~7%. It may, however, still be unclear
why Euler’s formula is so important in signal processing, but if we read on,
we shall soon see in the next section how practical and helpful it actually

can be.

4 Sinusoidal Modulation Techniques I: Amplitude

In Secs. 4 and 5 we will discuss a number of classic sinusoidal modulation
techniques. We will see how simple alteration of amplitude and frequency
components of sinusoids can result in very musically rich material. We start
by focusing on the amplitude component of sinusoids.

4.1 Beating

In Chap. 1 we briefly introduced the notion of constructive and
deconstructive interference where two or more waveforms such as cosine
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waves reinforce, weaken, and in extreme cases totally cancel each other
out. In this section, we will delve a little deeper into this subject which
will segue to the concept of beating. When two sinusoids with two different
frequencies are summed the following relation can be observed:

A-cosfi+ A-cosfa=2-Acos <f1§f2> - cos (fl—;fz) (4.1)

From Eq. (4.1) we can see that summing two cosines is equivalent to
multiplying two cosines with the sum and difference of the frequencies.
As a matter of fact, Eq. (4.1) is the reciprocal of ring modulation discussed
shortly in Sec. 4.2. If we let the difference between the two frequencies
f1 — f2 be small, say between 1 to 10 Hz or so, a perceptual phenomenon
referred to as beating is perceived. Figure 4.1 shows two cosine waves at 400
Hz and 402 Hz with a sampling rate of 8 kHz.

In this example, we will hear the average frequency 401 Hz (f1 + f2)/2
being modulated with a low frequency of 2 Hz (|f1 — f2|). Interestingly
enough, although (4.1) shows that we should actually hear a beating
frequency of (f1 — f2)/2, which is equivalent to 1 Hz, this is not what

f1 =400 Hz
2 1 T T
=
=
:§. 0
<_ - u 1 L I\ 1
0 0.5 1 155 2 2.5 3 35 4
x 10°
f2 =402 Hz
o | T T T
=
=
= 0
E
< -1 I ! 1 1
0 0.5 1 1.5 2 &3 3 35 4
x 10°
fl +1f2
..g 75 T T T T T
=
= 0
E
e ) 1 1 1 I 1 1 1
0 0.5 1 1:5 2 25 3 359 4
Samples w16

Fig. 4.1. Beating: cosine wave at f; = 400 Hz and fo = 402 Hz.
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we really hear. The reason for this again has to do with perception and our
hearing system. At low frequencies such as 1 Hz, we will in reality hear a
beating frequency twice the modulation frequency, that is:

f1;f2 =fi—fa (4.2)

fbeating =2

The reason we perceive it as twice the modulation frequency is because
the low frequency cosine modulator (f; — f2 component) zero-crosses twice
during one full cycle as we can clearly see in Fig. 4.2. With every zero-
crossing, the amplitude of the resulting signal of Eq. (4.1) will be 0 — this
occurs twice during one period and creates a sense of beating.

We could at this point forget about proving Eq. (4.1), as using
trigonometric identities and such might seem a bit tedious. However, if
we use Euler’s formula we will see how straightforwardly we can prove that
the right-hand side is equal to the left-hand size in (4.1). We'll start by
rewriting the right-side of Eq. (4.1) in terms of ¢/? by defining 6; and 65 as

Amplitude

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Samples

Fig. 4.2. One complete cosine resolution.
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follows:
o= 10 (4.3)
62:f1;f2 (4.4)

We then plug in 6; and 6 into (4.1) and use the Euler identify for the
cosine and get:

2. A-cos (fl f2) - cos (#) =2-A-cosby -cosby

9.4 el01 1 =it edf2 4 =302
B 2 2

= ; . {(ej91 + e—j91) . (€j92 + e—jeg)}
= é . {ej(91+02) 4 ej(01702) + 6]’(92701) + e*j(91+92)} (45)

Now rewriting 6; and 6 in terms of f; and fo in (4.5) we get:

é . {ej(91+92) + o3 (01—02) + eI (02—01) + e—j(91+92)}

if1 e~z 4 gif2 4 o— ]fl}

wltuwm.

(le1 +e —if1 )+(6jf2 _|_e—jf2)}

e

al

{ (1 4 emilt) (el 4 e92) }
+

2

=A-cosfi+ A-cosfa (4.6)

Note in the penultimate step we used the cosine identity from Eq. (3.12)
and the result is the expected the sum of the two cosines from
Eq. (4.1).

4.2 Amplitude modulation and ring modulation

Amplitude modulation (AM) and ring modulation synthesis techniques for
audio are two classic sound synthesis examples. As we shall see, AM
and ring modulation synthesis are only slightly different from each other.
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Furthermore, they are also related to beating and are remarkably simple
algorithms that have the potential of producing interesting timbral results
for musical, sound design, and sound effects applications.

4.3 Amplitude modulation (AM)

The term modulation often refers to the altering of the frequency, phase, or
amplitude component of an oscillator. In the case of amplitude modulation,
the focus is on altering the amplitude components of oscillators involved —
the simplest configuration entails two oscillators, namely the carrier and
modulator. The carrier refers to the oscillator that is being altered and
the modulator refers to the oscillator that changes the carrier. The classic
definition of AM synthesis as it is used in computer music (i.e. in the
audible frequency range), is defined as shown in Eq. (4.7) where f. and
A, are the carrier frequency and amplitude components, and f,, and A,,
the modulator frequency and amplitude components respectively.

y = cos(fe) - {Am - cos(fm) + Ac} (4.7)
Yy = COS(fc) : {Am cos(fm) + Ac}
= Ay, - cos(fe) - cos(fm) + Ac - cos(fe) (4.8)

Note that Eq. (4.7) can be expanded to Eq. (4.8) which represents the
amplitude modulated signal in two parts — the modulated part and the
original part. In other words, the original carrier oscillator is mixed to
the resulting modulated part via parameter A.. If we look at Eq. (4.8)
more closely, we will note that it can be rewritten and expanded to (4.9)
due to the sum and difference relationship found when multiplying sinusoids
as we have already seen in beating and proven in (4.6).

COS(fc) ’ {Am COS(fm) + Ac} = Am : COS(fc) : COS(fm) + Ac : COS(fC)

- AT’” cos(fe+ fm) + ATW cos(fo — fm) + Ae - cos(fe) (4.9)

The result is that the right-hand side includes the original carrier
component and two new components with altered frequency and amplitude
characteristics. This is the classic AM synthesis algorithm which has been
used in a variety of audio applications including making “robotic voices” in
science fiction movies early on in the motion picture industry. The discrete
version of Eq. (4.7) is shown in Eq. (4.10) where n is the sample time index
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and fs the sampling frequency.

y[n]=c0s<2.7r-fc%>-{Amcos,(z - fm~fs>+A} (4.10)

Figure 4.3 shows the sum and difference phenomenon in amplitude
modulation and Fig. 4.4 depicts the carrier oscillator in the top plot,

Amplitude

fe Frequency
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Fig. 4.3. Sum and difference and carrier component in output of AM synthesis.
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Fig. 4.4. AM synthesis f. = 400 Hz, f;, = 50 Hz, A. = A, = 1, fs = 44.1 kHz with
carrier (top), modulator (middle), and synthesized output (bottom).
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modulator in the middle plot, and resulting modulated signal in the bottom
plot. When AM modulation frequency is in a low range below 10 Hz or so, it
is usually referred to as tremolo which is a musical term. In this range, as it
is below the limit of pitch perception, it is actually more perceived as change
in amplitude as we have seen in beating, rather than change in timbre.

4.4 Ring modulation

Now that we know how AM works, it becomes a cakewalk in defining ring
modulation:

y = Apm - cos(fm) - cos(fe) (4.11)

The difference between AM synthesis and ring modulation is that in
the latter we exclude the carrier component when multiplying the two
oscillators. Hence, the output consists of only the sum and difference parts
as we can see in Eq. (4.12).

i cos(fe + fm) + cos(fe — fm)

y = Am - cos(fe) - cos(fm) = Am 5 (4.12)

The discrete version is now simply as shown in Eq. (4.13) with n and f;
being the sample index and sampling frequency respectively as usual.

y[n] = A, cos <2'7T'fm'£)~COS <2~7r~fc-£) (4.13)
[s fs
Figure 4.5 shows how the carrier component does not appear in the output
signal when two oscillators are modulated and (as expected) only includes
the sum and difference components.

4.4.1 Ring modulation with complex signals

What becomes interesting in ring modulation as well as amplitude
modulation synthesis is that we can also use non-single oscillator-based
modulators and/or carriers, thus making the output much more complex
and potentially more interesting. For example, the synthesis output may be
the result of signals such as your favorite song modulated with an orchestral
sample. Audio signals such as these are complex in nature and can be
represented by a large number of finely tuned oscillators. We will see in
Chap. 8 why this is the case, when we will become familiar with the Fourier
transform. For the time being, let’s loosely assume that the fundamental
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Fig. 4.5. Ring modulation: absence of carrier in output.

building blocks of sound are sinusoids and that complex sounds (especially
musical sounds that are periodic) can be represented by a very large number
of specific sinusoidal components. That is, if we had a large collection of
sinusoids, say 2,048, with specific amplitude, frequency, and phase values
for each, we would be able to represent a complex audio waveform. The
large collection of cosine waves when summed over a given period of time
will result in constructive and deconstructive interference, which will in
turn shape the ensuing output waveform. This output will very closely
resemble the original complex waveform. Obviously the trick is obtaining
and computing the specific amplitudes, frequencies, and phases for each
sinusoid and this will be discussed in Chap. 8.

For now, assuming we believe complex signals such as music can be
decomposed into sinusoidal components, we can further assume that when
multiplying two complex waves, the resulting effect will be equivalent to
multiplying a large number of cosine waves (carriers and the modulators),
where each multiplication of each cosine/sine wave (each having their own
amplitude, frequency, and phase characteristics) will produce a sum and
difference computation block according to Eq. (4.12). Thus, ring modulation
for generic audio signals can represented via Eq. (4.14).

y[nl = am - apn] - ac - we[n] (4.14)
In this case, we have two generic audio signals, one being the modulator and

the other the carrier with respective gain factors. Due to the commutative
law of multiplication, the order of the multiplication actually becomes
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irrelevant and the notion of the carrier vs. the modulator on a mathematical
level becomes insignificant as well.

5 Sinusoidal Modulation Techniques II: Frequency

In amplitude modulation synthesis, we multiplied two cosines resulting in
the sum and difference of the carrier and modulation frequency components.
Unlike AM synthesis, however, in frequency modulation synthesis or FM
synthesis for short (Chowning 1973), we modulate the frequency component
itself instead of the amplitude components. In a nutshell, FM synthesis can
be elegantly represented according to Eq. (5.1).

y(t) - Acarrier - sin {2 ST fcarrier -t + Amod : Sil’l(2 ST fmod . t)} (51)

As in AM synthesis, FM synthesis includes the carrier’s amplitude and
frequency components (Acarrier and fearrier) as well as the modulator’s
amplitude and frequency components (A,oq and fmod). Amod 18 commonly
referred to as the modulation index, determining the amount of modulation
with A4 = 0 resulting in no modulation, as can be verified in Eq. (5.1) —
the ensuing output would simply be the carrier signal. Notice that Eq. (5.1)
is actually not as complex as it looks, as we can break it up into
two sinusoidal components as shown below where ¢(t) is the modulating
sinusoid.

y(t) - Acarrier - sin {2 s fcarrie’r T+ g(t)} (52)
9(t) = Apod - SIN(2 -+ frrod - t) (5.3)

You may have noticed that the above equation actually does not directly
modulate the carrier frequency, but rather contributes to the instantaneous
phase, and in fact resembles phase modulation. We will, however, see below
why Eq. (5.1) is actually referred to as FM synthesis shortly.

From a musician’s point of view, frequency modulation is commonly
observable in music performance situations, such as during voice
performances. We all have experienced vocal performers employ vibrato
when they sing, especially when holding a high pitched note at the pinnacle
of a melody, often embellished with low frequency oscillation of the held
pitch. This essentially is frequency modulation. Frequency modulation
synthesis, in the traditional sense uses a modulation frequency that is in
the pitch range. This condition does not produce the perception of low
frequency modulation in the form vibrato, but rather a change in timbre.
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This is similar to amplitude modulation — when the modulation frequency
of AM is below the pitch range, the output becomes a time event and we
perceive it as beating or tremolo. On the other hand, when the modulation
frequency is in the pitch range, the result is perceived as change in timbre.

5.1 FM: Sidebands and the Bessel function

What makes FM synthesis unique is above all, the resulting timbre. It
has seen a great deal of commercial success especially in the 1980s with
the legendary digital synthesizer Yamaha DX 7 (still used today). The
timbre in FM synthesis is manipulated via the so-called sidebands. Recall in
amplitude modulation synthesis that we were able to describe the resulting
synthesized signal via the sum and difference frequency components. These
two components are referred to as sidebands — the carrier at the center,
flanked by frequency components fi + fo and f; — f2 corresponding to the
sidebands. In FM synthesis, there are many more of these sidebands making
the synthesized timbre much more complex and interesting. It also turns out
that the sidebands adhere to the following relationship where k is an integer:

fsidebands = fcarm’e'r + fmod -k (54)

This is depicted in Fig. 5.1 where we observe the flanking modulation
frequency components (sidebands) around the carrier frequency fearrier-
Putting FM synthesis in the more traditional form with modulation index
0 we have:

y(t) = Acarrier : COS(Wcarriert + ﬁ . Sin(tdmodt)) (55)

Equation (5.5) can further be expressed in terms of its sideband frequency
amplitude components as shown in Eq. (5.6).

p=+oo

y(t) = D Jp(B) - cos{(we +p-wm)}t (5.6)

p=—00

Jp(B) is referred to as the Bessel function and serves as the weights
(amplitude values) for the carrier and sideband components [cos(w. + p -
wm)]- The sideband w,, = 27 f,, (radians) is dictated by frequency f.,
(Hertz) and integer p controlling the sideband number — the sidebands
spread out from the carrier frequency f.. The Bessel function is shown in
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Fig. 5.1. Carrier (top), carrier and two side bands (middle), and carrier with multiple

sidebands (bottom).

Eq. (5.7). Table 5.1 summarizes the parameters used in the Bessel function.

o (—1)k- (£ pek
CESS Wp—% 57)

k=0
Equation (5.7) is also sometimes expressed as:

< (-0t (5)

Jp(B) = ];) CET S (5.8)
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Table 5.1. FM synthesis parameters.

Parameter  Description

p Order of sidebands

(0 is carrier, 1 is first sideband, etc...)
k Integer from 0 ~ K
Jp(8) Bessel function amplitude

of sidebands and carrier
Jé] Modulation index
Notes:
00=1
09=0,g>0and ¢g#0
ol=1

where
I'(p) = (- 1! (5.9)

To better understand what is happening and how the Bessel function works,
consider an example where p = 0 in Eq. (5.6). The p = 0 case refers to
a synthesized output signal that includes the carrier only as we have no
sidebands at all and get:

Y()l,=0 = Jp(B) - cos[(we + p - wn)]t

o (L1)F. (§)0+2k

=12 k10 + k)

k=0

- cos|(we + 0+ wy)]t

= Z_T - cos(we )t (5.10)

k=0

That is, we only have the carrier cos(w.t) component as there are no
sidebands at p = 0. When p = 1, we have one sideband added at both
sides of f.: w. + wy,. Thus, the subsequent sideband’s amplitude values are
also computed using the same approach as above by increasing the sideband
order p.

YOl = 3 Tp(8) cosl(we + - wnl

= J_1(8) - cos[(we — 1 - wi)]t
+ Jo(B) - cos[(we 4+ 0 - wm)Jt + J1(8) cos[(we + 1 -wp )]t (5.11)



114 Introduction to Digital Signal Processing

If we expand sideband at p = +1 in (5.11) we have the following:

J1(8) - cos[(we + 1 - wpm)]t

o (L1)E g 142k

k=0

- cos[(we + 1 wp)]t (5.12)

Observe that the numerator part of J,(3) will always be 0 for p > 0
and 3 = 0, due to the fact that (3/2)PT2F = 0; it will be a non-zero
value only for £ = 0 (0° = 1). Note also that the total energy is all
encompassed in the carrier component when there is no modulation (8 =0
and p = 0) which translates to no sidebands. However, as the modulation
index is increased the number of sidebands, and as consequence, the sound’s
complexity changes accordingly as shown in Figs. 5.1 and 5.2. The result is
that the total energy from the carrier components gets distributed to the
sidebands. For example, plugging in 8 = 2 at p = 0 into Eq. (5.7) yields
the following results:

= (=DR (3T & (-
kzzo klk! _Z Kk

£5H-0-0-0- ) o

To summarize, when 8 = 0 (no modulation) only the carrier exists,
when [ increases in value, the bandwidth increases whereby the energy
which was initially fully contained in the carrier at 3 = 0, is spread
and distributed to the sidebands as determined by the Bessel function.
Also, the larger the value of p (sideband order) the smaller the
Bessel function becomes. Hence, the characteristics of a FM synthesized
sound are a function of the modulation index § and the modulation
frequency.

The output characteristics as a function of # and p work well in the
context of musical sounds, especially in the area of musical instrument
sounds — acoustic instruments generally display decaying harmonic
amplitude characteristics. Generally, when observing the harmonic
structure of an instrument sound, higher harmonics (those with higher
frequency) tend to have less energy whereas lower frequency harmonics
more energy. As we can see in Fig. 5.2, the FM synthesis algorithm mimics
this behavior via the Bessel function.
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Fig. 5.2. Bessel function for carrier and first 5 sidebands.

5.2 Modulation index

As discussed in the previous sections, the modulation index in FM
synthesis corresponding to the scalar multiplier of the modulator amplitude,
determines the sideband make-up, allowing for control over the timbre of
the synthesized sound. The modulation index [ is, however, often expressed
as the ratio between the modulation amplitude to the modulation frequency
according to Eq. (5.14).

_ Amod
fmod

This ratio between the modulator amplitude and frequency can be derived

3 (5.14)

solving the integral of the instantaneous phase. Let’s start by first
considering the cosine oscillator shown in Eq. (5.15).

y(t) = Ac-cos(2-m- f-t) (5.15)

We know that in the definition of FM synthesis, frequency is modulated.
That is, f becomes a function of time f(t) — the instantaneous frequency
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as discussed in the beginning of Sec. 5. f(¢) in turn is defined by the carrier
frequency f. and modulator component A,,x(t) as shown in Eq. (5.16).

ft) = fe+ Am - 2(t) (5.16)

When the modulator z(¢) is itself also a sinusoid, the modulated
instantaneous frequency f(t) becomes:

f@)=fe+ Ap -cos(2-m- frn - t) (5.17)

The instantaneous phase of the signal y(¢) can be represented by
substituting scalar f in Eq. (5.15) with the instantaneous frequency f(t),
and taking the integral of the instantaneous frequency f(t) as shown below.

y(t) = cos (2-7- (1) 1)

:Cos(2-7r./t{fC+Am~COS(2~7r~fm~T)}dT>
0
t t
— 2. 7. d 2.7 A, - 2.7 fon - d
cos( T /Of T+2-7 /O{COS( T fm - T)} 7')

ZCOS(Q-T('-fC-t—l—I;—m-Sin(?-ﬁ-fm-t)> (5.18)
We can see that when the smoke finally clears, we get the same results as
Eq. (5.1) — this is what we started off this section with. However, as seen
at the end of (5.18) above, we now have the modulation index defined as
the ratio between the modulation amplitude and modulation frequency as
shown in (5.19).

y(t):Ac-cos<2-7r-fc~t+?—m-sin(2-7r-fm-t)) (5.19)

The discrete version can now be easily obtained from (5.19) becoming
Eq. (5.20) where n is the sample number as usual. This equation can now
be used to implement FM synthesis in software.

y[n]:Ac.cos<2.7r.fc.%+;1_:.Sin<2.ﬂ.fm.%)) (5.20)

5.3 General topics in FM control parameters

It goes without saying that the modulation index and modulation frequency
are the most important aspects in FM synthesis. In general, the greater the



Sine Waves 117

modulation index the greater the spread of the sidebands. There are some
basic FM synthesis attributes that we can talk about without going into
too much detail — how to make the FM synthesis algorithm sound like a
trumpet or bell for example.

Looking back at Eq. (5.16) we note that A,, controls the amount
of frequency deviation from center frequency f. with the resulting peak
frequency deviation determined by A,,.

Af =Ap, (5.21)

Interestingly enough, this means that the frequency swing from f. is
not a function of the modulation frequency f,, but rather modulation
amplitude A,,. Equation (5.19) is thus often seen in the format shown
below for analog and digital versions of FM synthesis.

y(t):Ac.cos(Q.W.fc.t+%.Sin(g.ﬂ.fm.t)) (5.22)
y[n]=Ac-cos(szc-%Jr%-sm(z-w-fm-%)) (5.23)

Here, we have simply replaced A,, by the peak frequency deviation Af
in Hertz, making the interpretation and usage of the FM algorithm more
intuitive.

To make interesting sounds or model existing acoustic instruments
(Schottstaedt 1985), the simple FM algorithm has to be tweaked in
many ways. One important aspect is the carrier frequency to modulation
frequency ratio commonly referred to as the c¢:m ratio, where ¢ and m are
carrier/modulation integer numbers (Truax 1985). The ratio of c¢:m is of
course important as they will affect the sideband characteristics. I will,
however, not spend too much time on this here, as a lot has already
been written about this subject. The topic on creating specific timbre is
also widely available on the Internet for those who would like to find out
more. Before leaving our discussion in FM synthesis, there is, however, an
important issue in controlling the timbral quality of FM that I want to touch
upon — dynamically changing FM synthesis control parameters. That is,
when modeling brass sounds for example, it is important to have the control
parameters change over time, expressed in the form of control envelopes.
The notion of dynamic control change is critical, as the quality of sound
changes during the lifetime of an acoustic instrument. Generally speaking,
the beginning part of a sound (attack) consists of a rich spectrum making
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it bright (higher modulation index), which then transitions into a more
steady-state region with higher partials and harmonics gradually dying off
(becomes duller and requires fewer FM sidebands) towards the end of the
waveform. Thus, using an envelope for the FM algorithm parameters is
essential to render close approximations to acoustic instrumental sounds as
well as timbres that sound “alive” and “natural.”

6 Musical Examples

There are countless examples of sine waves and their applications in music,
including when they are used with the concept of beating and tuning. For
those of you who are not guitar players, you may have heard and seen
guitarist tune their strings while playing harmonics on two strings. The
reason for that is actually quite simple, and it focuses on the concept
of beating. If we play the same notes on two different strings we will
hear beating if they are not exactly in tune. If they are in tune, beating
will not be audible. The reason harmonics are used instead of notes that
are held down on a fret is simply because it is difficult to hold down
notes and simultaneously turn the tuning pegs (we only have two hands).
Compositional examples of beating can also be seen in Alvin Lucier’s album
called Still and Moving Lines of Silence in Families of Hyperbolas from the
early 1970s. In the twelve pieces in this album, Lucier has musicians sound
sixteen long tones separated by silences which are played against one or two
fixed oscillator tones. For each note played, the performed tones coming
from the musicians are slightly raised or lowered producing audible beats
of various speeds. Thus, the larger the frequency differences between the
synthetic tones to the performed tones, the faster the beating — when in
total unison, no beating will be perceived. This example of using interesting
concepts borrowed from the scientific community for musical endeavors
is just one of many compositional strategies that can be found in Alvin
Lucier’s works.

The concept of sum and difference frequencies has also been exploited
in musical applications. One notable person who used this concept is Leon
Theremin, the inventor of a unique monophonic instrument called the
theremin. It has found usage by rock bands such as Led Zeppelin and
many others, although the most virtuoso performer probably was Clara
Rockmore. The theremin is an instrument like no other and is controlled by
simply waving your hands in close proximity to two antennae without ever
making any physical contact with the machine. The basic theory in changing
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the audible monophonic pitch relies on two essential components — the sum
and difference concept and capacitance. The theremin has two antennae,
one vertical for pitch control and one horizontal for amplitude control.
Two oscillators are used for the pitch antenna tuned to frequencies beyond
the audible range, with one fixed while the other changeable. It so turns
out that when the hand gets close to the antenna, a slight change in
capacitance occurs, this in turns faintly alters the oscillator’s resonant
frequency. When the hand is far away enough from the antenna, there will
be no change in the frequency of the dynamic oscillator thus the sum and
difference of the frequency will be 0 Hz plus some very high frequency that
is outside our hearing range. However, as the hand approaches the antenna
causing a slight change in the dynamic oscillator’s resonant frequency, the
resulting sum and difference frequency will also be affected. The sum of the
frequencies of the two oscillators will always be beyond our upper hearing
limits as before and thus inaudible, the difference tone, however, will be
detectable as it lies within our hearing range and pitch range.

FM synthesis is largely regarded as one of the most successful synthesis
algorithms for timbre manipulation and has especially seen wide usage and
acceptance not just by specialists in academia and labs, but also by the
general public. The success of the algorithm can be attributed not only
to its possibilities of mimicking existing instrument sounds or synthesizing
totally “new” sounds, but also to the fact that it is an algorithm that can
produce a very rich and complex sound without having to use a multitude
of expensive oscillators. If we took a time-machine back to the 1980s, we
may remember that CPUs were very slow and expensive (and people wore
some serious baggy pants with Thompson Twins leading the way). In other
words, it was very difficult for the personal computer user and the general
public to have access to digital synthesizers — until the advent of FM
synthesis. With FM synthesis, the whole climate changed as one could make
incredibly rich sounds with just two oscillators and a couple of envelopes.
As a consequence, a large portion of the PC soundcards incorporated a FM
synthesis-based sound engine until it more or less got replaced by PCM-
driven soundcards. The mastermind behind FM synthesis is John Chowning
who also composed some memorable pieces including Phoné (1980-1981),
Turenas (1972), and Stria (1977), commissioned by IRCAM (Institut de
Recherche et Coordination Acoustique/Musique) for one of the institute’s
major concert series entitled Perspectives of the 20th Century. Stria is a
classic example showcasing the vast timbral capabilities of FM synthesis
and also offers a demonstration of utilizing a sound synthesis algorithm
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to compose a musical artwork. Stria is rigorously composed (rather than
improvised) and is entirely put together using FM synthesis algorithms.
It also exploits various aspects of the Golden mean ratio (1.608) on a
structural level as well as pitch level. In particular, Chowning used the
Golden mean for the carrier frequency to modulation frequency ratio c:m.
In using the Golden mean with a c:m ratio that is 1 to some power of
the Golden mean, the resulting spectral components in the low-order range
would also adhere to powers of the Golden mean. The sonic results are quite
remarkable not only keeping the piece consistent on an architectural design
level, but also presenting a unified structure of spectral information via the
ensuing music.

You probably have heard ring modulation or amplitude modulation
in musical compositions and other audio contexts even if you were not
aware of it — a good example being sound effects used in science fiction
movies. In particular, they have found much popularity by the sound effects
guys who have applied the synthesis method (especially before digital
audio technology became accessible) to make “robotic” voice sounds. In
musical examples, ring modulation can be heard in the classic work of
Stockhausen’s Mantra released in 1970. In this piece, the composer uses
two ring modulated pianos, electronics, shortwave radio, and other sound
sources. The two pianos corresponding to the carriers are modulated in real-
time via sine wave modulator signals. The modulating sine waves change
according to the score, creating a distinct and “new” piano sound similar
in concept to John Cage’s prepared piano. The difference between Cage’s
and Stockhausen’s usage of altering the timbre of the piano is that there
are physical elements inserted into the guts of the piano in Cage’s piece,
whereas in Stockhausent’s Mantra, the pianos are modulated electrically
without any physical contact. The ring modulation effect in Mantra is often
quite subtle which actually makes the piece that much more interesting,
as the subtlety between electronics and non-electronically manipulated
sounds induces and encourages an intensive listening environment. More
common examples of the usage of amplitude modulation are with electric
guitars — applying sine waves for the modulator typically in a low frequency
range around 1 to 7 Hz or so. The intro soundtrack to the TV series
from 1990 Twin Peaks by David Lynch is a great example of amplitude
modulation (especially the instrumental version). Here the composer Angelo
Badalamenti utilizes a “clean’
by either guitarist Eddie Dixon or Vinnie Bell), modulated by a low

)

electric guitar sound (seemingly performed
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frequency sine wave setting up an eerie mood perfect for the atmosphere of
the show.
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Chapter 5

LINEAR TIME-INVARIANT SYSTEMS

1 Introduction

In this chapter, we will concentrate on LTI (linear time-invariant) systems,
which are very important and have specific properties critical in many
digital signal processing scenarios. It is probably not an exaggeration to
say that much of the DSP techniques that we deal with are based on
the approach of decomposing a complex problem into a number of simpler
sub-problems, where each simpler sub-component is processed individually,
and where the sub-components as a group yield the desired final result.
Systems that adhere to LTI conditions allow us to readily employ this
type of problem solving strategy for complex problems. The most common
approach in describing LTI systems is through difference equations. We
actually have already seen difference equations in action in Chap. 2 in the
form of the moving average filter, as well as in Chap. 3, where we introduced
the basic chorus effect. Before we jump into the details and define what LTI
systems are, we will start this chapter by first revisiting our moving average
algorithm introduced in Chap. 2.

122
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2 Difference Equations: Starting with the Moving Average
Algorithm

The moving average algorithm we used in Chap. 2, Sec. 5.1 is again shown in
Eq. (2.1). You will remember that it was applied in smoothing out a signal
to help locate zero-crossing points in fundamental frequency computation.

yin] = z[n] + z[n — 1] —|—[-J~—|—m[n—L—1] (2.1)
L—1

! z[n — k] (2:2)
0

yln] =

il

k=

n is the sample number and L an integer constant determining how many
past input samples (pertinent to the window size) are to be added together
and scaled. The equation above actually may be perceived to be more
complicated than it actually is (a lot of math equations tend to do that
for some reason or another). Upon closer scrutiny, however, we will realize
that it is indeed something we are very familiar with — it is an equation
that computes the arithmetic mean, presented in the form of a the so-called
difference equation. The difference equation thus simply describes some sort
of input to output relationship. Let’s plug in a few numbers to see how this
actually works by letting L = 2 and using an input sequence z as follows:
n, 0<n<9

ol = { 0, elsewhere (2.3)

The first few output values y[n] are as shown below (we assume that
x[negative n] = 0):

y[-1] = 5 5 0
0]+ a[-1] 040

y[0] 5 =—5 =0
Call4a20] 140

y[1] = 5 =—3 =0.5
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29+ z[8]  9+38

y[9] = 5 =5 = 9.5
_x[10]+z[9] 049

y[10] = . = —— =45
Ca[l1] 42010 0+0

] = THTRO R0

As we can see, the arithmetic mean y[n] is computed for each sample n
by moving along the sequence of input samples. We could have also used a
longer window size L, which would have yielded in a greater span of samples
for the mean computation. The hop size, as introduced in Chap. 2, is also
often set to integer L and not 1 as we have done in the above example.
That is, if the hop size is equal to the window size, the window is shifted
according to the length of the window size rather than a single sample. A
word of caution is called for at this point, however, as a longer L yields
less transient response — less transient response in a sense that more of
the timing details get lost as the window size increases. Transient response
as mentioned in Chap. 2, refers to the time-response or how fast a system
reacts to the input. Below we can see the moving average algorithm with a
controllable hop size M.

:%i [M-n—k (2.5)
k=0

To put this into perspective, let’s say we use the above parameters of L = 2
to compute the moving average for the input samples with a hop size M = 2
samples rather than 1. This will give us the following moving average values
(we again assume that z[negative n] = 0 as we did before):

~z[0-2] +2[0-2—1] ;.x[O]—i—x[—l] 040

y[0] 5 = 5 =—— =0
ozl 2]+ 2(1-2-1]  z[2]42[]] 241

y[1] . e R
x2-2]+x[2-2—-1] z[@4]+2[3] 443

y[2] = 5 = 3 =—3 =35

J3] = z3-2|+x[3-2—1]  z[5]+x[4] 544 45 (2.6)

2 o 2 2
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x4 2]+ x[4-2-1] 1’[8}+:c[7]:8+7:

y[4] = 5 == 5 =15
a2 425-2—1]  a[10]+af9) 0+9
y[5] = 5 = 5 = =45
Cal6-2)+al6-2—1]  a12]+a[11] 040
o] = 2 == 2 g

We can clearly note that for a hop size M = 2, we will have fewer number
of non-zero output values y[-]: 10 moving average values for M =1 and 5
for M = 2. This is expected, as our update rate for the output is higher
and computed at every other sample for M = 1 and slower when computed
at every 2 samples for M = 2. For such small number of samples and small
window size L, this may not be such a big factor, but when we are dealing
with larger number of samples and higher sampling rates, it becomes an
important issue. Therefore, we have to be mindful in choosing the right
window size L and hop size M.

2.1 Causality

In the above moving average example, we may have noticed that for n < 0
nothing happens to the output. That is, the output is equal to 0. Such
systems are referred to as causal systems — only when the “power switch”
is turned on at n = 0, does the system output a value. Stated in another
way, a system is causal if the output depends solely on present and past
input values. Hence, non-causal systems can be regarded as systems that
have some sort of initial state that is non-zero and affects the output before
an input value is given to the system. Figure 2.1 depicts this concept where
the top figure represents the input sequence, middle figure a causal system
that only outputs when there is an input at sample number n = K, and a
non-causal system at the bottom which outputs something even before it
receives any input data.

2.2 Difference equations: General form

The above example of the moving average is called a non-recursive difference
equation as there is no feedback component — it does not have a
[ 192

y” component in the form of y[n — m| where integer m > 1. The general
form of the difference equation is shown in Eq. (2.7) which includes both



126 Introduction to Digital Signal Processing

x[n]
o 2
g N
= ™
/
N ¢ n=K Samples {tin.lrc)
yln]
2
£ causal
(=]
¢ n=K Samples (time)
¥n] )
E o 4 g A h ™,
=] s - . non-causal
(=] - .
¢ n=K Samples (time)

Fig. 2.1. Causal and non-causal example.
the non-recursive and recursive parts.

yin) = aryln — 1] +asyln — 2] + -+ anyln — N+
box[n] + biz[n — 1] + bax[n — 2] + - - -+ bpz[n — L] (2.7)

Equation (2.7) can also be expressed in a more compact form using
summation as shown in Eq. (2.8).

yln] = Z aryln — k] + Z brx[n — k] (2.8)
k=1 k=0

The first part of the right-hand side (y[]) determines the recursive
characteristic and the second part of the right-hand side (z[-]) the non-
recursive characteristic. The general difference equation thus represents the
input/output relationship which can describe complex systems with simple
addition and multiplication based on present and past input samples at
time n.

Equations (2.7) and (2.8) are the general forms of the difference
equation, and as we can now see, our moving average algorithm is just
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a special version of the general difference equation. The moving average
algorithm happens to have no feedback components and the scalar by’s
are all equal to 1/L. We can thus understand the moving average type
difference equation as simply the averaging of a couple of numbers resulting
in smoothing of a signal as observed in Chap. 2, Sec. 5.1. In essence, by
setting the scalars (also referred to as coefficients or weights) and the length
(also referred to the order or size) of the difference equation, we can design
specifically behaving systems known as filters. This is what the moving
average algorithm in effect represents and is hence called the moving average
filter. We will discuss filters in more detail in Chap. 7.

Note that the moving average difference equation is predicated by the
assumption that multiplying the input with coefficients ay, and delaying
them [k in Eqs. (2.7) and (2.8)] will not cause any “problems.” Difference
equations which satisfy LTI (linear-time invariant) properties explained
in the next section make a system like the moving average system work
without “problems” — without having to worry about issues that may
arise due to operations such as delay and scalar multiplication of each of
the input (and output) components.

3 Linear-Time Invariant (LTI) Systems

Imagine we are in a home recording studio where we are recoding a
3-piece band consisting of a bass guitar, electric guitar, and drum kit. We
are limited to using one microphone for the bass and guitar each, and
2 microphones for the drum kit (we don’t have any more microphones
due to our low budget). Surprisingly, the out-of-commission wooden sauna
room which we used as a practice space is very “flat” sounding and each
performer takes turns in playing and recording each part onto a digital audio
workstation (DAW). It so happened that the bass player could not make
it to the session at the last minute due to some errands, and recorded her
track the following day, whereas everyone else was able to put down their
parts. After spending 15 hours in the studio, with way too much coffee
coupled with only a few hours of sleep, the three musicians are now ready
to mix-down (sum) the signals (drums, bass, and guitar) by amplifying and
attenuating (multiply) each track to a final format consisting of two audio
channels (stereo left and right). They are thus, for the first time, able to
monitor the sound of their band without having to play at the same time
and the drummer says — “we’re better than I thought” ... The resulting
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perception of the mix, although the musicians played their instruments
separately and at different times and not together as a band, sounds as if
they are all performing concurrently at the same time and same space. On
top of that, during the mix-down session, a lot of equalization and effects
were used rendering a pretty impressive demo tape. The reason this scenario
is possible — recording each instrument individually at different times
and mixing them without artifacts, is due to linearity and time invariance
properties — the topic of this section.

3.1 Linearity property: Scalability and superposition

Linearity as the term suggests, comes from the word line and basically
represents any function which behaves in such a way — the input and
output creates a line as seen in Fig. 3.1.

Output y

y=bx

\J

Input x

Fig. 3.1. Linearity examples.

If we look at linearity more closely, a linear function is a function
that satisfies two conditions — scalability (homogeneity property) and
superposition (additive property). The scalability property for linearity
is probably the easier concept of the two to grasp and is met when the
following condition is met as shown in Eq. (3.1).

T(a-a[n)) = a-T(xn]) = a-yln] 3-1)
T(z[n]) is the output for input z[n] and « is a scalar multiplier. The

superposition property on the other hand utilizes the additive property as
shown in Eq. (3.2) and (3.3). If the scalability and superposition conditions
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are met for a particular system, we say that it is linear.

x3[n] = z1[n] + 22[n) (3.2)
T(wsln]) = T(21[n] + z2[n]) = T(x1[n]) + T(x2[n])
= y1[n] + y2[n] = ys[n] (3:3)

In a nutshell, the above states that the output of the system will not change
whether one subjects a system with each input individually/separately or if
all inputs are combined (summed) beforehand and inputted to the system
together. This can be likened to the guitar and drums playing together onto
one audio track vs. recording them separately onto individual tracks and
summing them afterwards — the results will be the same. Actually, it is
common practice to record the snare, high-hat, toms, and cymbals all on
separate tracks in order to have flexible control during the mix-down and
production phase of the studio recording process.

3.2 Time-invariance property: Time-shift invariance

A time-invariant system is characterized by the dependence of the output to
a time-shifted input. In such a system, a time-shift in the input component
will have a corresponding time-shift in the output. The time invariance
property is met if the following condition is upheld.

yi[n] = 1[n] = z[n - L] = y[n — L] (3-4)

Thus, a system is said to be time-invariant, if the shifted input z;[n](=
x[n — L]) produces an output y;[n] which is equally delayed by L samples
and characterized y[n — L]. In other words, a delay imposed on the input
should simply correspond to the same delay in the output. This can be
likened to the bass player from the above example where she comes to lay
down the bass tracks a day later unaffecting the final mix (as if they had
played together at the same time) — a time-invariant system does not get
affected by when the signal in question is presented to the system. Systems
that meet both linearity and time-invariance properties are referred to as
LTT systems.

Let’s look at some examples to get a better feel for determining if a
system is LTI with the following classic example: y[n] = x%[n]. We will
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start testing y[n]’s linearity characteristics by inspecting its superposition
and scalability property. For scalability, we find that it is not scalable — we
multiply the input by a before subjecting it to the system and multiply the
system by « itself and compare the results.

T(a-z[n]) = a?- 27

Clearly (3.5) and (3.6) are not the same and as this example has already
failed one of the linearity properties, it is nonlinear. We can verify this
just by plugging in some numbers as well. For example let’s set o = 2 and
x[n] = 6. This means 2-6 = 12 and the final output is 122 = 144 (scaling the
input and subjecting it to system). Scaling the system by « yields 2 (62) =
72. Let us now check the superposition condition as well for fun (although
we already have established that it is not linear). For superposition, we use
x3[n] = 21[n] + x2[n] to find that additivity is not met as T'(z1[n] + z2[n])
is not equal to y1[n] + y2[n] [see (3.3)]. That is, (3.7) is not equal to (3.8)
— there is an extra term: 2 - z1[n] - x2[n]. Since superposition is not met it
cannot be linear.

T(x3[n]) = T(w1[n] + 22[n]) = (21[n] + 2[n])”
= 23[n] + 2 21[n] - z2[n] + 23[n] (3.7)
ys[n] = y1[n] + ya[n] = 23[n] + 23[n] (3.8)

For time-invariance verification, we use (3.4) and compare the delayed
input and delayed output. Clearly (3.9) and (3.10) are identical and hence
the system is time-invariant although nonlinear. It is therefore a non-LTI
system.

y1[n] = 21[n] = 23 [n — L] (3.9)
yln — L] = 2%[n — L] (3.10)

Another example is shown below in (3.11). We can probably tell from
inspection that it is linear and will skip testing linearity.

yln] = aln/M] (3.11)
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To test for time-variance, however, we use the same approach as in our
previous example and get the results shown in (3.12) and (3.13). As we can
see, the two equations are not the same and hence time-variant. Thus, both
of our examples are actually non-LTI systems.

y1[n] = z1[n] = z[n/M — L] (3.12)
yln — L] = al(n — L)/M] (3.13)

Using the same method for testing LTI outlined in our two examples, we will
find that the moving average filter we were introduced to in the beginning
of this chapter, is in fact an LTI system — all it actually embodies is
a collection of delayed input samples and input coefficients equal to the
scalar 1/L.

3.3 Importance of LTI systems in DSP

When a system is linear, it will adhere to properties of superposition and
scalability. This is very important in DSP as a considerable bulk of topics
and problems therein are based on the notion of divide and conquer. For
example, a complex system can, thanks to linearity and time-invariance,
be divided into smaller sub-systems that are less complex. This is very
powerful, as complex problems can often be decomposed and rearranged
in some preferred order and into simpler, smaller, and more manageable
problems and ultimately be recombined to render the final result as depicted
in Fig. 3.2.

input x
ugpitalp] DSP sub-system DSP sub-system DSP sub-system
s 2 | 1

2

output y[n]

Fig. 3.2. Divide and conquer and LTI.

This idea can also be extended to multi-input systems if each of the sub-
systems are LTI as well. Such an example is shown in Fig. 3.3, which is
the recording scenario of the 3-instrument band we began Sec. 3. Thus, any
system with more than one input and output will be LTT if each sub-system
is LTT as well.
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bass guitar output
xi[n
xiln] DSP sub-system _ vi[n]
I ' _, DSP sub-system I
5
electric guitar
xln] DSP sub-system | _ :_ _, DSP sub-system
2 ¥ 4
drums \ya[n]
L, DSP sub-system | |
xy[n sub-syste 6
[»] DSP 5ul; system || D

Fig. 3.3. Multiple inputs and outputs.

4 Impulse Response

Some of us may remember when we were little kids finding something
strange in the garden that looked like a lizard or something scary and were
unsure of its identity and wondering if it was even something “alive.” At
least I remember that whenever I found something unusual, but could not
identify it, and was not too scared, I would poke at it with a stick to see if
it was something alive or just part of a dead tree branch that just happened
to have a peculiar shape. This is kind of what the impulse response is. That
is, poking a system or that thing to see what kind of characteristics it has
by observing the system after the poke — in the case of the lizard-looking
thingy, the poke, would probably equate to the lizard rapidly running away
or in an extreme case biting you!

This poking and observing the output in signal processing is done via
the so-called impulse, unit impulse, or delta function which all refer to the
same thing. Theoretically, the impulse is infinitely short (time-wise) and
infinitely high (amplitude-wise) whose integral (area) is equal to 1. This
is obviously more of a conceptual idea and does not exist in the physical
world. The impulse is defined as shown in Eq. (4.1) and is symbolized by the
Greek letter delta (0). The observation of the impulse response is achieved
by poking the system with the input set to the unit impulse.

x[n] = d[n) (4.1)
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Fig. 4.1. Impulse signal.

The delta function is only defined at one sample point where it is normalized
to 1 and is 0 elsewhere as shown below in Eq. (4.2) and Fig. 4.1.

1, n=0
on]=<" 4.2
] {0, elsewhere (42)

Let’s say we have a digital system that we know nothing about except
that it is a non-recursive system. That is, it does not have any delayed y[]
components which in turn means that the difference equation will take the
form of Eq. (4.3).

yln] = b - xln — 1] (4.3)
=0

If we use an impulse as the input and observe the output or its impulse
response, (4.3) will become as shown in Eq. (4.4) when we set z[n] = d[n].

L

yll = 3 bi - dln 1 (449)

=0
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By using the definition of the delta function, we further observe that the
output will result in the following manner.

L

yl0] = b 6[0—1] =bo - 6[0] + -+ br - 5[0 — L]
=0
=1-b0+0+"' 0=bg (4.5)

Zbl [1—1] =bo-6[—1]+by-8[0] +---+bp [l — L]

=04+1-b14--+0=b (4.6)
Zblél— ] =bo-6[—L]+---+br_y1-6[1] + bz - 5[0]

=0+---+0+1-by =bp (4.7)

In signal processing, the impulse response as computed above is formally

denoted as y[n] = h[n], when the input is an impulse sample as shown
below.

z[n] = 6[n] (4.8)

y[n] = h[n] (4.9)

From (4.6) and (4.7) we can say that hln| follows (4.10).
bn, n=0...L
hin] = (4.10)
0, elsewhere
Thus, the input and output relationship becomes:
x[n] = d[n] — y[n] = h[n] (4.11)
and Eq. (4.3) becomes:

bk-é[n—l]Zihk~5[n—l] (4.12)

=0 =0

M=

hln] =

The importance of obtaining the impulse response as shown above may not
be that apparent now. However, when we become familiar with convolution
in Sec. 5 for example, we will see that if we know the impulse response
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(h[n]) of a system, we can determine the system’s output for any given input
sequence. This is, however, not the only important aspect of the impulse
response. It is also used to gain insight into a system’s characteristics
including stability information as we shall see shortly and in more detail in
Chap. 6, when we study the frequency response.

We can also experience impulse responses in the physical world
including in your immediate surrounding space. Try clapping loudly (once
only) in whatever room you are currently in and listen to the characteristics
of that room (hopefully you are not in the library or in a crowded public
bathroom). What you have done in essence is excited the system (the room)
with an impulse (impulse = clap) and what you are hearing is the impulse
response. You will note that as you clap in different types of spaces (or
different parts of the same room for that matter), like your bathroom with
tiles, a heavily carpeted room or in your car, the impulse response will yield
very different types of responses. Although, the clap is by no means an ideal
unit impulse as defined above, the experiment gives you a good sense as to
why the unit impulse and impulse response are useful and important in DSP.

4.1 Finite impulse response (FIR) and infinite impulse
response (IIR)

Finite and infinite impulse response systems, more commonly referred to
as FIR and IIR systems, basically refer to systems that have finite output
sequences and an infinite output sequences respectively. When an impulse
excites a system and the output reaches a state where it only produces zeros,
it is referred to as an FIR system. From the general difference equation we
know:

N L
y[n] = Z agyln — k] + Z bix[n — k] (4.13)
k=1 k=0
and if we take the y[n — k] components out of the above equation we get:
L
yln] = brxn — k] (4.14)
k=0

Furthermore, using the definition of the impulse response we get the impulse
response of the general FIR system according to Eq. (4.15).

hln] = bid[n — k] (4.15)
k=0
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On the other hand, if a system outputs non-zero values and never reaches
a state where it outputs Os, then that system is referred to as an IIR
system. From the general difference equation we can directly get the impulse
response of the IIR system as shown in (4.16) (replacing the y[-]s with h[]s
and z[-]s to d[-]s).

hin] = Z aghln — k] + Z brd[n — k] (4.16)
k=1 k=0

For all practical purposes, however, stable IIR systems will eventually
reach a “zero state” where very small values are outputted that are
negligible in digital systems. IIR systems, however, can also become
unstable and “blow up” — speakers’ cones will end up rupturing due to
too much feedback for example. In terms of recursive and non-recursive
system characteristics or feedback and feed-forward characteristics as it
is commonly referred to, IIR systems have a feedback part whereas FIR
systems do not.

4.2 Stability and IIR systems

There are additional important issues concerning FIR and IIR systems,
namely issues in stability. If a system is stable, it will generally at some
point in time output zeros only (when the “power switch” is turned off),
if it is not stable, its output may increase in amplitude and eventually
break or “blow up.” A great example of such an unstable system as
mentioned in the previous subsection is the feedback one sometimes hears
at concerts involving loudspeakers and microphones — the input signal
to the microphone becomes the output of the loudspeakers, which in turn
becomes the input to the microphone causing a vicious cycle of feedback
amplification. This results in that infamous painful “howling” sound, which
can in extreme cases damage the speakers and mixer and perhaps even
worse, bring damage to one’s ears.
Consider the following difference equation of an IIR system:

y[n] = z[n] + a-y[n — 1] (4.17)

We compute the impulse response as usual by replacing the output and
input with h[n| and é[n]. That is,

yln] = hin] (4.18)
d[n] (4.19)



Linear Time-Invariant Systems 137

and the difference equation (4.17) becomes the impulse response shown
below:

hin] = d[n] +a - hin — 1] (4.20)

For a causal system (nothing happens until you turn on the power switch),
we have

hin]=0, n<0 (4.21)

h[2] =6[2] +a-h[l]]=0+a-a=a® (4.22)

hlk] = 6[k] +a- hlk — 1] = a*

Because it is an IIR system, we need to check for its stability (feedback may
get out of control) and note that this system is unstable when |a| > 1. That
is, if the absolute value of a is greater than 1, the output will eventually
start increasing in amplitude without limitation. If |a| < 1, the system is
stable and is said to be bounded. The reason the IIR system is unstable
when |a| > 1 is due to the a* in (4.22). That is, as k increases |a*| (|a| > 1)
will grow without bound.

Notice that IIR systems have the potential of becoming unstable due
to feedback components as we have seen above if we are not careful. FIR
systems, however, are always stable as it has no opportunity to cause
feedback — when we turn off the power switch, an FIR system will
eventually come to rest at some point in time. This is summarized in

Table 4.1.

Table 4.1. FIR and IIR comparison.

Feedback component?  Necessarily reaches zero?  Inherently stable?

FIR No Yes Yes
IIR Yes No No
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5 Convolution

In this section, we will examine convolution. Convolution is yet another
very important concept in DSP and useful process for musical applications.
As we mentioned at the beginning of Sec. 4, if we know the impulse response
of a system without knowing its difference equation, we can determine the
output of that system by using the theorem of convolution.

Let’s first define convolution and then try to explain what its
implications are and why it often comes up in DSP, especially when audio
is involved. Since we now know how LTI systems work, we can say that if
a system is LTI, an input unit impulse will yield an impulse response as
shown below.

8[n] L%, hin) (5.1)

We can also state that a shifted delta function will result in a shifted impulse
response as shown in (5.2) (for an LTT system).

Sn —m] 29 hln —m] (5.2)
Following the same line of thought, we can also say that any input sequence

can be described as the sum of weighted and shifted samples, that is:

m=-+oo

x[n] = Z x[m] - 6[n — m] (5.3)

m=—0o0

You will note that z[n] will only exist when n = m in Eq. (5.3), meaning
that the following will also stand true if it is an LTI system.

] yields

x[m] - d[n—m x[m] - hln —m] (5.4)

Finally, we can also add a summation to both sides of (5.4) due to the
superposition property of linearity and arrive at Eq. (5.5).

maie yields e’
Z z[m] - é[n —m] —— Z x[m] - h[n —m] (5.5)

The above relationship is called convolution. If we set the right-hand side
of (5.5) to y[n] we arrive at the formal definition of convolution as shown in
(5.6), where the asterisk denotes the convolution operator. We say input x
is convolved with h where h is the impulse response. Thus, as we asserted



Linear Time-Invariant Systems 139

before, if you know the impulse response of a system without knowing its
difference equation, you will be able to compute the output with just the
impulse response and any input sequence.

m=-+o00

y[n] = z[n] * hin] = Z x[m] - h[n —m) (5.6)

m=—0o0

One important application of convolution is what is commonly referred
to as convolution-based reverb. If you did the little experiment of clapping
in your room, you may have realized that the impulse response of a room
can be recorded and stored as a digital sequence (h[n]). Now, if you go to
a big cathedral and clap you will hear long decaying sound characteristics
which are due to the reflective surfaces and enormity of the space. This
sound can obviously be recorded using a portable recorder as well. Upon
transferring this impulse response (the sound from the point of the clap,
until it reaches 0 amplitude) into your computer, you can next close-mike
your voice (holding your microphone very close to your mouth) and capture
a very “dry” voice recording (little room or space influence). Finally, using
Eq. (5.6) you can convolve the two signals (voice: z[-], impulse response h[]
the cathedral) and the sonic result will be as if you were to hear your voice
inside the cathedral without actually being in the cathedral. As a matter
of fact, one could use any type of sound for the input — convolve your
guitar solo excerpt with the cathedral’s impulse response and get instant
solo-guitar in the cathedral effect you always wanted to have.

Let’s work on a numerical convolution example using the following
input z[n] and impulse response h[n].

ol = {1,2,3) (5.7)
i) = {4,5) (53)
We can set m = 0...2 in Eq. (5.6) and express y[n] as shown in (5.9),

since there are no values before x[0] and after x[2], covering both z and h
components (z has the greater number of samples of the two).

m=2

y[n] = z[n] * h[n] = Z x[m] - h[n — m] (5.9)

m=0

Now, if we compute each output sample we get:

y[0] = z[0]-h[0—0[+z[1]-h[0—1]+z[2]-h[0—2] = 1(4)+04+0=4  (5.10)
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and the subsequent output values simply become:

1

<
DN

<

X (5.11)

4

<

1] =13
2] =22
3] =15
[4]=0

<

This type of tedious number crunching work lends itself well to
implementation as a computer program, be it C/C++, Java or MATLAB®.
Although initially, programming such algorithms may seem a bit complex in
the beginning, the work becomes easier and easier with practice. The reward
of coding an algorithm such as convolution into a computer language is of
course having an automatic convolution calculator!

5.1 Convolution “Need to Knows”

There are several principal properties that are important when it comes
to convolution. We will briefly discuss a few in this section. Convolution is
commutative meaning that it does not mathematically matter which part is
designated as the impulse response and which part the input as the output
will yield the same results.

y[n] = x[n] * hin] = h[n] * z[n] (5.12)

Thus, convolving x with h opposed h with x does not affect the result
of the output. Linearity is by definition commutative and for convolution
to work, the system in question needs to be an LTI system. We will
see in Chap. 8 when we revisit convolution in the frequency-domain,
how convolving pairs can be interchanged — convolution in the time-
domain translates to multiplication in the frequency-domain. Speaking of
the commutative property of convolution, we cannot neglect to mention its
associative property as shown in Eq. (5.13).

y[n] = gln] * (z[n] * hin]) = (g[n] * z[n])  hin] (5.13)

The above equation also shows that we can convolve more than two
signals by using the results in the parenthesis as an intermediate step
and convolving this part with the signal outside the parentheses. The
distributive property for convolution is also met as shown in Eq. (5.14),
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thanks to linearity.
y[n] = gln] * (z[n] + hn]) = g[n] * z[n] + g[n]  hn] (5.14)

Another important issue when using convolution is the length of the
resulting output signal and limiting the summation of Eq. (5.6) — when
convolving two signals, with length M and N, the resulting length of the
convolved signal will be as shown in (5.15).

convolutionength = M + N — 1 (5.15)

Although Eq. (5.6) shows a summation from negative to positive infinity
for m, this is unnecessary in practical applications as the multiplication
part would yield Os for regions where the input and impulse response are
undefined (equal to 0). For the above numerical convolution example, the
convolved signal length is 3+ 2 — 1 = 4 as expected. Hence, we only need
to compute the first 4 samples of y[n] (n =0,1,2,3).

6 System Diagrams and Digital Building Blocks

We have been introduced to difference equations which consist of addition,
multiplication, and delay operators for input and output components.
We have also taken the liberty to informally use visual ways of showing
signal flow as seen in Figs. 3.2 and 3.3. Although difference equations
in the traditional “written-out” format are especially useful and compact
for representing “long” difference equation types, an alternate graphical
method of presenting the same difference equation is sometimes desirable.
This is somewhat analogous to command-line-based software systems
opposed to GUlI-centric software systems, such as the computer music
languages Supercollider vs. Max/MSP for example. The command-line
version is often more compact but not necessarily informative (at least
upon first inspection) opposed to the GUI version which often gives a better
initial overall idea of the system being scrutinized.

As expected, multiplication, addition, and delays can be expressed via
block diagrams and are often helpful in visualizing and understanding an
LTI system. Each block has an input (or inputs) and output node with its
respective unique functionality as shown in Figs. 6.1, 6.2, and 6.3.
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x[n] %T)—b x[n-1]

Fig. 6.1. Single delay block.

x[n] % bx[n]

Fig. 6.2. Multiplier (gain) block.

’ + %xl[ J+x2[n]

xz[n]
Fig. 6.3. Adder block.

To see how this works in a practical situation, let’s take a three-
point moving average difference equation and use the system diagram to
represent it.

z[n] + z[n — 1] + x[n — 2]

Looking at Eq. (6.1), we note that it has two adders, two unit delays,
and one multiplier. Thus, the system diagram will look something like
Fig. 6.4 where by = by = by = 1/3. The system diagram for the general

N + J ]

x[n] #by—'
'y

Fig. 6.4. 3-point moving average system diagram.
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Fig. 6.5. General difference equation system diagram.

difference equation (2.8), which includes the non-recursive and recursive
parts, is shown in Fig. 6.5. The left-hand side represents the feedforward
components and the right-hand side the feedback components with their
respective delays and coefficients.

7 Musical Examples

We briefly mentioned the application of convolution in music where it is
often used to add reverb to a dry sound. There are numerous commercial
software applications and plug-ins which use this method to produce
artificial reverberation, where the quality of the reverb is a function of
how well the impulse responses were recorded. For example, some software
have a single impulse response for the entire concert hall, while others have
different impulses taken from various locations within the space, thus more
realistically reflecting the reverberation characteristics when changing the
reverberation parameters with respect to the stage. However, one can also
readily find recordings of impulse responses on the Internet taken from large
rooms, jazz dubs, recording studios, buildings, and so on. Convolution is
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easy enough to implement in software and once you have interesting and
clean impulse responses, making your audio clips sound as if they are heard
inside a particular space where the impulse response was taken from should
be a breeze. Convolution, however, can also be used in other interesting
ways, and that is not in the traditional sense of adding reverb, but utilizing
non-impulse response-like signals and convolving them together. This can
at times result in interesting and sometimes surprising timbres. One such
composition is by composer Travis Scharr who recorded a bunch of impulse
responses at the Superdome in New Orleans after Hurricane Katrina hit
the city. The piece is called Of Horror and Hope (2007) and loosely depicts
the horrific conditions inside the Superdome offered to some of those who
chose to stay in the city during the period of bombardment by the hurricane.
This old American city survived a devastating flood with the majority of the
city under water topped by indescribable destruction in 2005. In this piece,
Mr. Scharr uses convolution to its fullest extent by mainly convolving the
piano with storm sounds, the sonic roar of cheering crowds, and Superdome
impulse responses. This compositional strategy renders an eerie feeling of a
sonic deluge which later in the piece makes way to a soundscape depicting
the city’s rebirth.

There is also an interesting band called the Convolution Brothers,
which consists of three performers — Miller Puckette, Cort Lippe, and Zack
Settel who have a common connection of working at IRCAM (Institut de
Recherche et Coordination Acoustique/Musique) in Paris. The Convolution
Brothers, as far as I know, do not dwell on convolution-based processes
alone but incorporate alternate controllers, a gamut of computer music
programming systems, and anything and everything else for that matter.
This includes materials that are produced inside and outside the confines of
particular software and hardware, and embracing uninhibitive performance
practices. Oh yes, humor is a big part of their music! A little trivia
before concluding this chapter: Miller Puckette is of course the creator
of Max/MSP and Pd (pure data) which are two of the most popular
and successful computer music systems that exploit the system diagram
approach in controlling and producing/processing/manipulating digitally
generated sounds and MIDI.



Chapter 6

FREQUENCY RESPONSE

1 Introduction

In Chap. 6, we will concentrate on the topic surrounding frequency response.
The frequency response is defined as the characteristics of a system’s
output in terms of its magnitude and phase response when excited by an
input signal. This input signal subjected to the system will have constant
amplitude and phase but varying frequency. You may have heard folks talk
(and maybe even passionately argue) about loudspeakers and microphones
having some sort of frequency response that is this and that — this
is exactly what they are referring to: the response of a system. In our
example, the loudspeaker is the system and the input some sort of test
signal with fixed amplitude and phase but changing frequency. In particular,
audiophiles often talk about how flat such responses are. The flatness
refers to a loudspeaker’s or microphone’s performance — how accurately
and consistently (add little coloring and distortion) it reproduces/records
sounds for a wide frequency range, ultimately determining how truthfully
a device reflects the original input source. Unfortunately a perfect system
does not exist, and some sort of distortion occurs at some frequencies, thus
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Fig. 1.1. Frequency response plot.

the need for frequency response plots or Bode diagrams (log frequency scale
opposed linear frequency scale) to assess a particular system’s performance.

Fig. 1.1 shows a typical frequency response (magnitude) plot, with the
x-axis showing the log-frequency scale and magnitude in dB on the y-axis.
Let’s read on to find out more about these interesting plots and topics
concerning the frequency response.

2 The Frequency Response
To formally define the frequency response, we set the input signal as shown
in Eq. (2.1) with unity gain (magnitude of Euler identity is 1), 0 initial
phase, and the digital frequency 0 as shown in Eq. (2.2).
z[n] = eI (2.1)
=w-T=2-w-f-T (2.2)
Equation (2.2) and the digital frequency concept can be better understood if

you take the following scenario into consideration. Let’s say we are inputting
an analog sinusoid z(¢) into an ideal sampler as shown below in (2.3).

x(t) = A - cos(wt + @) (2.3)
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When sampled, the output of the sampler will be in the form of z[n - T
(or shorthand z[n] as we have learned in Chap. 1) corresponding to the
discrete-time version of the analog input «(t) where n is the sample index,
T the sampling period in seconds/sample or seconds (as samples are unit-
less), w the continuous-time angular frequency in radians/second, and ¢
the initial phase in radians.

z[nT] = A - cos(w - nT + @) (2.4)

Equation (2.4) can be put into a more compact form as show in (2.5),
where 6 is the digital frequency of the discrete-time cosine and w
the continuous-time angular frequency defined as 27f. The digital
frequency 0 has the units radians/sample as 0 = wT = 27 - f - T. That
is, 27 - f - T has the units radians/sample because the units of 27 - f - T
is (radians)(Hz)(second/sample) = (radians)(1/second)(second/sample) =
radians/sample.

x[n] = A-cos(f-n+ ) (2.5)

Next we convolve the input z[n| with an impulse response h[m] as
introduced in the previous chapter and get:

yln] = z_: hlm] - x[n —m] = Z_: hm] . eJf(n—m)

= it i him] - e I0m — x[n] i h[m] - e Jom
= x[n] - H(e’?) (2.6)

The summation part in step 4 of (2.6) is denoted as shown at the end of (2.6)
and is defined as the frequency response. It also goes by different names,
including the eigenvalue and characteristic value. The frequency response
is thus formally defined according to Eq. (2.7).

H(e) = i h[m] - e~90m (2.7)
H(e) = % (2.8)

We can thus compute a system’s frequency response, if we know the
system’s impulse response as we can see from the relationship offered in
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(2.6) and (2.7). Furthermore, observe that H(e’?) is the output vs. input
ratio (2.8). The general difference equation is shown in (2.9) and when the
input is set to x[n] = ¢’ and output y[n] set to Eq. (2.10) [see Eq. (2.8)],
the difference equation can be rewritten as shown in (2.11).

k=N k=L
yln] = Z aryln — k]+ Z brx[n — k] (2.9)
k=1 k=0
y[n] = z[n] - H(??) = 2 - H(e?) (2.10)
k=N k=L
e H(el?) = Z [akejo(”_k) -H(eje)} + Z {bkeje("_k)} (2.11)
k=1 k=0

Rearranging (2.11) we arrive at Eq. (2.12).

k=L —i0k
] C
k=0 DK€

=N <
1—%,27 are 79k

H(e%) = (2.12)

What Eq. (2.12) states is that we can now directly compute the frequency
response of a system if we merely know its difference equation, vary the
input frequency with unity gain, and set the initial phase to 0. The
configuration of Eq. (2.12) basically shows a ratio of the sum of input
coefficients divided by the sum of output coefficients. As mentioned at
the beginning of this chapter, the frequency response is the observation of
the magnitude and phase output when the input frequency is varied while
keeping everything else constant. The frequency response’s magnitude and
phase characteristics can be now computed via Eq. (2.12). When plugging
in particular difference equation coefficients along with their corresponding
delay characteristics, we will be able to represent the magnitude response
of the frequency response (2.12) as shown in Eq. (2.13).

H(e') = M - 7°® (2.13)
The magnitude M (0), or simply M is:
M = |H ()| (2.14)

The phase response ©(0) is:

ima, el?
0(0) = ZH(e%) = tan™! (%) (2.15)
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Figure 1.1 basically shows Eq. (2.14) with the input frequency swept from
20 to 20kHz.

2.1 Characteristics and properties of H(e??)

There are some interesting and important properties when dealing with
the frequency response as summarized in Table 2.1, including properties of
periodicity, frequency range of interest, and symmetry. Let us first start by
looking at the frequency range of interest.

Table 2.1.  H(e’?) characteristics.

Frequency range of interest 0<60 <7

Periodicity 2w
Symmetry Even magnitude
Odd phase

2.1.1 Frequency range and Nyquist revisited

In Chap. 1, we were first introduced to the Nyquist theorem, sampling
frequency, and the notion of aliasing. We stated that aliasing occurred
when the condition f,.. < fs/2 was not met leading to artifacts and
distortion in the form of shifting of frequency components above this limit
to lower frequency values. In terms of radian frequency, fs/2 is equivalent
to m as derived below (2.19), where the digital frequency € has the usual
units of radians/sample, w radians/second, T seconds/sample, and f
samples/second.

9:w~T:2-7r-f~T:2-7r-fi (2.16)
or
I S
O=2m =055 (2.17)

From the Nyquist limit we know that the frequencies in question need
to be bounded by (2.18)

0<f<=2 (2.18)
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and when substituting f in Eq. (2.18) with Eq. (2.17) we get the Nyquist
limit in radians/samples (digital frequency) as shown in (2.19) and finally
(2.20) after simplification.

<= (2.19)
0<f<m (2.20)

Having the sampling limit in radians will help us greatly in dealing with
the frequency response. It will also help show how aliasing occurs via the
elegant Euler formula without the need to refer to specific frequency values
in Hertz as m now refers to f;/2, whatever f; may be for a given system.
To see how aliasing occurs, consider Fig. 2.1 where we have the mirror
symmetry characteristic around the DC (0 frequency). Also, notice that at
47 from DC, there seem to be more symmetrical characteristics observable
as well. We know that 7 refers to the Nyquist limit which means that
(at least according to the plot) |H| at radian frequencies m £ ¢ should be
identical. In other words, any frequency that goes beyond 7 (such as 7w+ ¢)
should alias back to a lower frequency (m — ¢). This is exactly what we
observed in Chap. 1 Sec. 4.2.1 during aliasing.

0.8+
0.6F

0.4r

02r —:r—gﬁ-q—'_j;."' -T+¢ T—¢ 4_:ﬁ T+ <

2T - DC e 2r

Radians

Fig. 2.1. Frequency response from —27m to +2.
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Of course taking my word for this seemingly plausible phenomenon is
not enough, but if we can prove that this phenomenon is actually the case,
then we have revealed through frequency response analysis, why and how
aliasing occurs. In order to accomplish this proof we need to show (2.21)
holds true.

‘H(ej(Wﬂb))‘ — ‘H(ej(ﬂﬂﬁ))‘ (2.21)

We start with the definition of frequency response (2.7) by letting
0=m—¢.

m=0o0o

H()|,_, 6= Z |lo—r—gh[m] - e~ 7%™

m=—oo

Z him] - e~ (m=®)m

m=—0oo

m=0o0
> h[m]-e T 0 (2.22)

m=—0oo

We know from the Euler identity that e/’ = cos 6+ j sin @ which we will use
to expand the exponential component with the 7 in (2.22). Upon expansion,
we note that the sine component disappears as it is 0 for all integer m (at
any integer multiples of 7 the sine function is 0). The cosine component on
the other hand, turns into a “polarity function” where it is positive for all
even m and negative for all odd m as shown below.

I = cos(m - m) — jsin(m - m) = cos(m-m) — 0= (1) (2.23)

€

Hence, Eq. (2.22) can be expanded to:

H(e'?) Noer_ b Z h[m el
Z him )™ - {cos(¢-m) + jsin(¢-m)}  (2.24)

m=—0o0
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Using the same method for 6 = 7 + ¢ we have:

H(ej(”+¢))’9 = i B[m] - e=i(r+e)m
T+

m=—0o0

Z him e dmmg—jém

m=—00

m=0o0

I
=
&)
T
=

:
9]
o
<
:

Z hlm )™ - {cos(¢-m) — jsin(¢-m)}

m=—0oo

(2.25)

Now, apart from the negative sign between the cosine and sine, Eqgs. (2.24)
and (2.25) are identical. If we let the real components and imaginary
components of both equations take the form of a+ jb, we get a relationships
for H(e/(™=9)) and H(e/(™+9)) as shown below:

9 = 3 Hm] - (1) - {eos(@-m) +jsin - m)}

m=—o0

S hm - (1) cos(o - m)

m=—0o0

+7J i hlm] - (=1)™ -sin(¢ - m) = a + jb (2.26)

m=—0oo

a= 3 hfm] - (~1)™ - cos( - m)

m=—0o0
m=oo

b= Y h[m]-(~=1)"sin(¢-m) (2.27)
Using the same approach for H(e/("+%)) we get:

7r+¢> Z h[m )™ - {cos(¢-m)+ jsin(¢-m)}

m=—o0
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— S il (—1)™ - cos(é - m)
—J i hlm] - (=1)™ -sin(¢-m) =a—jb  (2.28)

Finally, since we know that the magnitude of a complex vector is computed
as the square root of sum of the squares as shown in Eq. (2.29)

|H| = \/real? + imaginary? (2.29)

we find that the magnitude response of frequency response for m — ¢ and
T+ ¢ is:

‘H(eﬂ”*f"))‘ = [H( )| = Va2 42 (2.30)

Hence, as far as the magnitude |H(e?%)| is concerned, § = m — ¢ and
0 = 7 + ¢ are exactly the same; and when taking the polarity of the real
and imaginary components into account (rectangular coordinate system),
a reflection about the real axis occurs as shown Fig. 2.2. Looking at it
from the frequency point of view, what our proof says is that anything that

Imaginary
A 72
— - "H___K\\
N
/ \
/ H=a+jb  +b \
/ A\
[z \'.
|H|
T |
0
< ! a 0 I » Real
II'.\ | H| IIIII
\\ fll.l'
\H=a-jb  -b /
\“‘ah_ ,--//
Vin2

Fig. 2.2. Magnitude in rectangular coordinate system (note polarity).
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Imaginary
A72

V32

Fig. 2.3. Frequency (in radians) for 6 =7 + ¢ and 0 =7 — ¢.

goes beyond 7 (negative imaginary side of y-axis) will be reflected back to
positive imaginary side as shown in Fig. 2.3. This is aliasing.

We will “re-revisit” aliasing and the Nyquist limit in Chap. 8 after
introduction of the Fourier transform where will see how it can be viewed
from yet another perspective!

2.1.2 H(e?%) and periodicity property

We have already seen some of the periodic properties for H(e’?) in
Figs. 2.2 and 2.3 and we can probably guess the source of this repetitive
characteristic — due to the cosine and sine properties of the Euler formula
which are periodic for all integer values k corresponding to 2 - 7 - k. Thus,
if we can show that (2.31) holds true, then we have proven periodicity for
the frequency response.

H(e??) = H(e?OFFm) (2.31)



Frequency Response 155

We start with the right-hand side of Eq. (2.31).

m=-+4oc
H( 9+k‘ ﬂ' Z h e*j(0+k-2~7'r)

m=—0o0

m=-+oo
Z him] - e 90e=ik2m (2.32)

m=—0o0

Again, with Euler coming to the rescue we see that for all integer values
k, the rightmost exponential part of Eq. (2.32) becomes unity as shown in
Eq. (2.33).

e k2T —cos(k-2-m) —jsin(k-2-m)=1-0=1 (2.33)

Thus, Eq. (2.32) simply is reduced to Eq. (2.34) and observe that the
attribute of periodicity described in Eq. (2.31) indeed holds true.

m=-+00 m=+oo
H(ej(ﬁ’—&-k‘w)) _ Z h[m] . e_je‘me_jk‘z“”‘m _ Z h[m} . 6—j9~m .1
m=-+oo
= Z him] - e=90m (2.34)

2.1.3 Symmetry

Referring back to Fig. 2.1 (also look at Fig. 2.2 and 2.3), we see that
the magnitude is symmetrical about the real axis resembling a cosine
function — if we look at a cosine function as a time sequence (with zero
initial phase) and increase or decrease the frequency by plus or minus ¢ at
x = 0 (time axis), the magnitude will be the same (even symmetry) about
the x = 0 axis, while the sine will exhibit odd symmetry. In order to show
that this exact mirror image actually takes place all we have to do is show
that:

|[H(e)| = |H (e )] (2.35)



156 Introduction to Digital Signal Processing

By now, we have hopefully become comfortable with the Euler formula
and can quickly prove Eq. (2.35).

m=-+oo

H(e’) = % hlm]-e7 "
m=—4oo
= Z him] - {cos(@-m) — jsin(¢ -m)} =c—jd  (2.36)
B =T A
m=-4oo
Z him] - {cos(@-m) + jsin(d -m)} =c+jd  (2.37)

Once again we see that the magnitudes of both frequency responses are the
same where ¢ and d are real number constants for a given 6 as shown below
n (2.38).

|H(e?)| = |[H(e )| = /2 + a2 (2.38)
On the topic of symmetry in phase response, we can clearly

see by looking at Fig. 2.2 that it exhibits odd symmetry. That is,
tan"1(H) = —tan~!(H).

/H (') = tan™! (?) (2.39)
ZH(e %) = tan™! (7> (2.40)
ZH(eM) = —/H(e779) (2.41)

2.2 More stuff on the frequency response

There are two common ways to view and plot the frequency response of
a system — using linear magnitudes and log magnitudes, log magnitude
being one of the more standard ones. One of the reasons that the log dB
version is the more standard way of representing frequency response plots
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Fig. 2.4. Frequency response plot linear and logarithmic Bode plots.

is a practical one.

|H(e7%)] 5 = 20-log,, (|H(e?)|) (2.42)

As seen in Fig. 2.4, the top plot is a linear plot of the magnitude
response and the bottom two plots dB magnitude plots. It is clear that
the linear plot does not show the details pertinent to the behavior of the
lower magnitude values (notice that the linear version’s y-axis range is
from around 0 to 15 whereas the dB plot spans from —10 to 4+20). The dB
version does a better job in presenting the subtleties and intricacies found
in the less peaky and lower magnitude areas which are also important.
Another reason for the choice of dB is of course due to the way we hear the
dynamics of sound which is logarithmic rather than linear. Furthermore,
as mentioned at the beginning of Sec. 1, Bode diagrams are also often
used when presenting frequency responses by making the frequency axis a
logarithmic scale as well. Once more, the reason for that is practical as well,
as we hear frequencies logarithmically — Bode diagrams better represent
how humans perceive frequencies. Also, very important is to note that
the x-axis is presented in the normalized frequency (7 x radians/sample)
format corresponding to the digital frequency 6 = wT. It is referred to the
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normalized frequency as a 0 is equivalent to 0 radians/sample (DC) and 7
radians/sample to the Nyquist frequency (fs/2).

Let’s finish off this section with an example and put our newly learned
concepts into practice by computing the frequency response for a simple
feedback IIR system as shown in Eq. (2.43).

yln] = z[n] + a-y[n —1] (2.43)

Using the difference equation method for computing the frequency response
Eq. (2.12) and noting that there is one feedback component with weight a
we get:

H(e?) = _ (2.44)

Cl—a-e 0

Next, since all the action is in the denominator part we assign it dummy
variables to make things seem less cluttered. Thus, for a given 0, we get the
relationship shown in Eqgs. (2.45) and (2.46) and compute |H (e7%)].

l—a-e?=1-a-(cosh—jsinh) = A+ jB (2.45)
where
A=1—-a-cosf, B=a-sinf (2.46)
HE] = ‘Aij‘ B ’(AL‘B) | Ej_jg’

A—jB e
A
B

Note that in Eq. (2.47) we employ the (A —jB)/(A — jB) trick to get rid of
the awkward imaginary component in the denominator part. When we put
the frequency response in its alternate polar form, we arrive at the result
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shown below:

H(e'?) = MeI®®) (2.47)
where

VC2+ D2 =M (2.48)
O(0) = tan™! <g> (2.49)

All of the above could be easily coded into a programming language such as
MATLAB® to make our lives easier once we have figured out the formula
as we did above. Figure 2.5 shows the frequency response plot of the above
difference equation with a = 0.5, linear and dB magnitudes, and frequency
in radians/sample.

This type of filter is referred to as a low-pass filter as it passes low
frequency regions and rejects high frequency regions. Filters are on the
menu in our next chapter.

IS C T T T T T T 1
_1or 1
=

5 - -
1 I M_h'_‘_r‘—-—-— L I L
0 0.5 1 1.5 2 2.5 3
Frequency (radians/sample)
20+ -
I 10f 1
0
i)
& of i
-IO i 1 1 1 L 1 1
0 0.5 1 1.5 2 2.5 3

Frequency (radians/sample)

Fig. 2.5. Frequency response of y[n] = z[n] + 0.5 - y[n — 1]. Linear magnitude (top),
dB magnitude (bottom).



160 Introduction to Digital Signal Processing

3 Phase Response and Phase Distortion

In Sec. 2, we defined the phase response ©(0) of a system as the arctangent
of the imaginary part divided by the real part of the transfer function
H(e?%). As shown in Eq. (3.1), the phase response corresponds to the phase
characteristics of a system when it is subjected to an input with unity gain,
0 initial phase, and changing frequency.

(3.1)

6(0) = ZH(c) = tan™" <M)

real(H (e1?))

We also introduced the concept of initial and instantaneous phase in
Chap. 1, Sec. 2 and Chap. 4, Sec. 2 and characterized the initial phase
as the phase offset observed at ¢t = 0 and the instantaneous phase the
time-variant version.

The phase response as seen in (3.1) basically denotes this concept
of offset of a signal that changes with the input frequency. That is, if
we inputted a cosine signal into a system H(-), we would get an output
that will not only be altered in its magnitude response but also its phase
response — phase will behave differently depending on the frequency of the
cosine signal. Another perhaps more intuitive way of looking at phase and
the phase response, is regarding phase from a time delay perspective that
occurs when an input signal passes through a system H(-). An example
of such a system could be your guitar (input signal) plugged into your
computer via an audio interface (let’s pretend it has 0 latency and does
nothing to the signal) and a software application (the system H) adding
a distortion effect. Ideally, you would want the output to only have the
distortion effect & la Jimmy Hendrix, without any delay. That is, if the
delay is large enough due to whatever reason in the software, say, around
one second or so, it would nearly be impossible to play the guitar in real-
time with your band, as cool as it might look like having a computer on
stage. However, if the delay is short enough you will indeed be able to
synchronize easily with the rest of the musicians and yourself included of
course. A more interesting scenario is when the phase is different depending
on what note one plays — more delay for higher notes and less delay for
lower pitched notes for example. This “propagation time” in the form of
delay through the software is very closely linked to the phase response which
we will elaborate on in this section.

Figure 3.1, shows the phase response as well as the magnitude response
for the simple difference equation shown in (3.2) with one delay component
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Fig. 3.1. Magnitude and phase response of y[n] = z[n] + z[n — 1].

and no feedback components — the simplest FIR low-pass filter.
yln] = afn] + fn — 1] (3.2)

Much like the moving average filter, if we divided the sum of input
components by 2 (z[n]/2 + z[n — 1]/2) or multiplied the sum of z[n] and
z[n—1] by 0.5, we would have a simple two-point arithmetic mean difference
equation. As mentioned above, this filter, like the IIR difference equation
of our previous example, is a low-pass filter — all averaging filters are low-
pass filters actually. We will delve into filters in the next chapter where we
introduce the most common filter types and some interesting applications
especially found in music.

To analyze this system, let’s first put the difference equation into the
frequency response format using Eq. (2.12). This results in Eq. (3.3) below.

H(e)=14¢7 =14 cosh — jsinb (3.3)

We will recognize in Eq. (3.3) that it has real and imaginary parts as
depicted in Fig. 3.2 allowing us to use Eq. (3.1) to compute the phase
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Fig. 3.2. Complex plot of H(el?).

response.

_y ((imag(H ("))
O(0) = tan—! (magti(e))
(6) = tan (real(H(eJe))
—siné
=tan ! [ ————— 3.4
an ((1+cos€)> (34)
Exploiting two basic trigonometric identities shown in (3.5) and (3.6) we
can simplify the phase response to (3.7).

0
cos(2-0) =2-cos?f — 1 «—— cos(f) = 2 - cos? (§> -1 (3.5)

sin(2-60) =2-sinf - cos§ «—— sin(f) = 2 - sin <g) - cos <g> (3.6)

o = ()~ (<)

= tan"! 7—sin(9/2) = tan~! (tan(— = —
=t (COS(M)) tan~! (tan(—6/2)) = —6/2 (3.7)

From Eq. (2.2), we know that § = wT and hence (3.7) can be rewritten in
terms of the continuous-time angular frequency w in radians which in turn
is defined as 27 f:

O)=—5=——— (3.8)

Looking again at Fig. 3.1, we see that the phase response is linear, meaning
that the phase delay (in samples or seconds) is constant (phase delay is the
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subject matter in the next section). In other words, the output will simply
be a non-time-distorted waveform version of itself on the output side, where
the output is a delayed version of the input with high frequency components
attenuated. This linear phase characteristic may not be as obvious as it
could/should be if we simply look at the bottom of Fig. 3.1. However, if
you view the x axis unit as radians/sample, you will note that it actually
represents how many radians a particular frequency will have “traveled”
in terms of “radian distance” over one sample period. For example, a
1Hz signal would need a lot of samples (exactly f; number of samples)
to make one complete cycle or stated inversely, a 1 Hz signal will not travel
much in one sample time. The inverse is true for high frequencies — higher
frequencies will make more resolutions per second and hence move along
the phase axis further than a lower frequency component. This explains
the larger phase degrees values for the higher frequencies and lower phase
degree values for the lower frequencies at the bottom of Fig. 3.1. The y-axis
can also be represented in radians rather than degrees. The simple formula
to jump back and forth from degrees to radians is:

180
degrees = the_radian - — (3.9)
m

The important point and characteristic in this example is that this
particular system exhibits a linear phase response. We will come back to
the linearity aspect of phase response shortly but let’s first take a look at
the phase delay in the next section which can make viewing phase a little
bit more intuitive.

3.1 Phase delay

It is sometimes more useful and intuitive to view the phase response in
terms of sample delay or time delay, rather than viewing it as in Fig. 3.1
via phase degrees or radians. Much like one can regard a time-offsetted
cosine wave by /2 as a sine wave (for a 1 Hz sine and cosine wave the /2
radians would be equivalent to quarter of a second), the phase response
may also be presented in terms of samples/time rather than phase angles
or radians — this is known as the phase delay. Thus, for phase delay, the
goal is to make the resulting phase output in units of samples (or time if
multiplied by T'= 1/ fs) and that is exactly what Eq. (3.10) accomplishes.

(3.10)
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Hence, for the simple FIR low-pass difference equation (3.2), the phase
delay becomes a half sample time delay as shown in Eq. (3.11) and Fig. 3.3.

0
TP(Q):_%:_%:% (3.11)

We can say that for the FIR system in our example, whenever an input
signal is subjected to this particular transfer function H(-) or difference
equation, one must expect a constant 1/2 sample delay, regardless of the
input frequency. If we want to represent the phase delay in terms of time
instead of samples, we simply multiply it by the sampling interval T'(= 1/ f;)

Magnitude response
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Fig. 3.3. Plots of magnitude/phase response and phase delay for y[n] = z[n] + z[n —1].
Top plot shows the magnitude response, the middle plot the phase response, and the
bottom the phase delay in samples.
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as shown in Eq. (3.12). For a system with f; = 8kHz or T = 1/8000 =
0.125ms, the phase delay amount would be a constant 7, = 0.000125/2 =
0.0625 ms across the board which is not too bad!

1

tp(0) = 7p(0) - T = 7p(0) - A

One way to analyze how we arrived at the definition of phase delay

is by equating a sine function with initial phase offset ¢ (in radians) and

a sine function with phase delay t, (in seconds) as in Eq. (3.13) (adapted
from Claerbout 1998).

(3.12)

sin(wt — @) = sinw(t —tp) (3.13)

The inside part of the right-hand side parentheses of Eq. (3.13) can be
further simplified to Eq. (3.14) and solving for ¢, we get Eq. (3.15).

wt— ¢ =w(t—t,) =wt —wt, (3.14)
tp=2 (3.15)
w

Comparing Eq. (3.10) to Eq. (3.15) we can clearly see that one is the
continuous-time version (seconds and continuous angular frequency) and
the other the discrete-time (samples and digital angular frequency) version
with an additional negative polarity for the discrete-time phase delay.

¢ o)

tp(w) = —|—; — Tp(@) = — 9 (316)

3.2 Linearity and phase

Systems that have linear phase responses output phase delay characteristics
that are constant over the whole frequency range. The simple FIR example
from above is such a filter, with a constant phase response of half a sample.
We also figured out what the phase delay is and noticed that it helps
us observe the phase characteristics in perhaps a more intuitive way via
sample/time delay, opposed to degrees or radians.

However, maybe unsurprisingly, some transfer functions do not exhibit
linear phase responses. That is, different amount of phase influence is
exerted on the input signal, depending on the frequency of the input.
Nonlinear phase is not a highly desirable feature, especially when the
phase characteristics vary substantially with frequency. One way to better
understand why linearity in phase is important is to consider the following
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extreme example. Let’s say we have an audio CD that has a music track
consisting of electric bass, piccolo flute, and a 64-note electric piano where
the electric bass plays notes below 100 Hz, piano between 100 and 600
Hz, and the piccolo flute above 600 Hz only. When we play this track on
a CD player we would expect the three instruments to play in time as
it was performed and recorded at the studio (assuming that these guys
played it “perfectly” both in terms of timing and pitches — there is
actually a fusion jazz band named Casiopea which has an album called
Perfect Live from the 1980s, and these guys really do sound like MIDI
sequenced machines, although they play all their instruments “live” while
dancing in their 80s Ace Frehley-like costumes: check out Street Performer).
However, our homebuilt CD player happens to be a bit funky and has a
very interesting phase response — frequencies below 100 Hz exhibit a phase
delay of 2 seconds, 100 to 600 Hz no delay, and 600 Hz and above a delay
of 1 second. The sound of the trio ensemble that we would hear via this
particular CD player would be quite bizarre (albeit maybe interesting) —
the three instruments would appear not to be playing together at all, but
rather out of synchrony as shown in Fig. 3.4.

This is what happens with nonlinear phase response-based systems
resulting in often undesirable time-domain signal distortion. In other words,
if we subject an input such as the above to a nonlinear phase system, the
output signal’s shape will be altered as each input frequency component
is subject to different delay amounts. Fig. 3.5 shows the nonlinear phase

Hz Delay range +——» Hz
A ; A
. (e .
Piccolo “ Piccolo
flute flute
600 — i —1— 600
Piano > H » Piano
100 —— —+ 100
20 b L 20
|—f—'—'—'—b Seconds }—'—H—l—»
012 3 4 012 3 4 Seconds
Input QOutput

Fig. 3.4. Trio band of bass, piano, and flute with CD player (H) having different
(nonlinear) phase delay.
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Fig. 3.5. Linear phase (top), nonlinear phase (middle), error (bottom).

characteristics of a signal where the top plot has linear phase, middle plot
nonlinear phase, and the bottom plot the error between the top and middle
plots corresponding to the amount of temporal smearing. As nonlinear
phase distortion alters the signal in a subtle way, nonlinear phase equalizers
are usually used in the mastering process to add as little modification to
the resulting signal as possible. One of the methods for analyzing nonlinear
phase is through the so-called group delay, the topic in Sec. 3.3 and 3.4.

3.3 Phase response and continuous phase

When computing the phase response, we will sometimes come across plots
that seem to abruptly change along the frequency axis, jumping to a distant
phase value as seen in Fig. 3.6. If we look carefully at the phase response,
we will note that if we offset the latter part (at around 0.457 radians) of the
phase response by —7 radians, we will be able to make the phase response
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Fig. 3.6. Top is discontinuous phase, bottom shows phase shift by 7 in our example.

become a smooth function of frequency. This type of offset addition is
sometimes necessary for obtaining the phase response. This special process
for smoothing out phases that “overshoot” the 27 margin to make the
response smooth is referred to as phase unwrapping.

This type of jump is due to the periodicity and modulo characteristics
of sines and cosines. Whenever the phase surpasses the 27 radian point
a resetting of the phase to 0 occurs — modulo of 27 (360 degree). This
is much like the modulo 12 system found in watches, in the twelve-tone
equal-temperament tuning system, and in the months per year.

3.4 Group delay

Group delay (also referred to as differential time delay corresponding to
group velocity in wave-propagation theory) is a concept useful for analyzing
phase responses that are nonlinear. That is, useful for phase responses
that are dependent on the input frequency as discussed in the previous
section leading to temporal smearing and phase distortion. For example,
group delay is an issue in the area of loudspeaker design as it is inevitably



Frequency Response 169

added to the signal being reproduced. On top of the actual measurable
phase delays for different frequencies, as we do not hear all frequencies
equally well, different thresholds for group delay exists as well. Hence, a
high quality sound reproduction system team will design and tweak its
group delay characteristics (among many other things) by considering the
threshold of perceptibility of group delays. An interesting aspect of group
delay distortion and its perceptibility is that not only does it depend on
threshold values that are a function of frequency (group-delay curve), but
also the type of signal and state of training (subject’s familiarity with
certain kinds of sounds) of the listeners (Blauert and Laws 1978).

Let’s now define group delay formally and see how it is represented
mathematically. The group delay is defined in Eq. (3.17) as the derivative of
phase response with respect to the digital frequency with units in samples.

doe()
T4(0) = 7 (3.17)
If the phase response output is linear or in the form of Eq. (3.18) (as in
our FIR y[n] = z[n] + z[n — 1] example), the group delay and phase delay
become the same.

0)=a- b (3.18)

The term group delay can be a little bit misleading as it is not
the average delay of a system, but rather, provides insights about the
nonlinearity characteristics in terms of the slope values computed from
the phase response. The basic group delay concept can be somewhat better
understood by considering a pair of sinusoids as the input to an unknown
system H(-) as shown in Eq. (3.19) and Fig. 3.7 (adapted from Claerbout
1998).

x(t) = cos(wit) + cos(wat) (3.19)

If the output of the system y(t) results in no change with respect to the
frequency or amplitude components of the two input sinusoids, but adds
different amount of phase delay (as observed at the output), the output

X(£)———] H — y(0)

Fig. 3.7. Input and output of system H.
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y(t) will resemble something like Eq. (3.20).
y(t) = cos(wit — ¢1) + cos(wat — ¢2) (3.20)

We know from Chap. 4, Sec. 4 that the trigonometric identify for Eq. (3.19)
results in Eq. (3.21) (sum and difference) where the difference frequency
generally refers to the beating we hear, which in turn corresponds to the
amplitude envelope of a signal. Now, if we use the same trigonometric
identity to get Eq. (3.20) into the “envelope multiplying the signal” format,
Eq. (3.22) will yield.

z(t) =2 cos (%t) - cos (wQ —;wl t) (3.21)

y(t) =2 - cos <w1 2y o1 ¢2> - cos (wzgwlt— ¢2;¢2> (3.22)

2 2

Let’s look at the amplitude envelope part of Eq. (3.22) (beating
component: difference frequency) and rewrite it in terms of time delay as
well as phase offset as shown below. We do this by following the same
method we used in arriving at the phase delay by starting with Eq. (3.23).
The left-hand side of Eq. (3.23) shows the envelope part from Eq. (3.22) in
terms of phase offset in radians and the right-hand side shows the equivalent
time offset ¢,,.

cos (wl ;W2t 9 ; ¢2) — cos (Wl ;WQ (t— tg)) (3.23)

Comparing the variable parts within the parantheses only we have the

following relationships:

wi—wa, ¢1— P2 Wy —wy, Wi—ws
t— = t— t 3.24
(22— 252 - (252 202) e

,‘f’l;ébz :7w15w2tg (3.25)
¢1 — g2 = (w1 —wa2)ty (3.26)
12 _ L, (3.27)

w1 — w2
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Fig. 3.8. Plot of magnitude/phase response and phase/group delay of band-stop filter.
Magnitude response (top), phase response (2%9), phase delay (3*4), group delay (bottom).
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Thus, in Eq. (3.27) we see that the denominator and numerator correspond
to the change in frequency and phase respectively and hence Eq. (3.27) can
be written as Eq. (3.28).

o1 —¢2 A

tgy=——= 3.28
g W1 — Wa Aw ( )
Equation (3.28) in the continuous form can be written as:
do
lg = — 3.29
g dw ( )

The group delay in terms of digital frequency is then as shown in Eq. (3.30)
which is what we defined it as when starting this section — see Eq. (3.17).

_4©
do

Figure 3.8 shows the magnitude/phase responses, phase delay, and
group delay plots for a band-stop filter — a filter that rejects only a
select frequency range (again, we’ll learn about filters formally in the next
chapter). This is the same difference equation used in Fig. 3.5 where the
phase jumps have been unwrapped to make it continuous. We can clearly
see that the phase response is nonlinear as it is not a straight line (second
plot from top) but also because the phase delay and group delay are not
the same. What we can gather from the various plots is that the delay of
the system varies from about 0.5 to 3.5 samples with the largest amount of
change occurring around 0.45 radians as exemplified at the bottom plot of
Fig. 3.8 (group delay plot).

(3.30)

Tg =

4 The (Almost) Magical Z-Transform

Up until now we have learned ways to compute the frequency response
of LTT systems and although they are perhaps not the most complicated
procedures, they do, however, seem not to be the easiest to compute
either. In this section, we will introduce yet another way of computing the
frequency response referred to as the z-tansform. Why another method?
One of the reasons is that it is very helpful as it is an “easy” procedure for
quickly and painlessly (well, almost) computing the frequency response. We
start with the definition of the z-transform as shown in Egs. (4.1) and (4.2)
which basically state that when we perform the z-transform on input x[n]
we get X (z). Now, that’s pretty simple indeed, and in order to go “ahhh,
that’s what this means,” let’s introduce a few more important concepts in
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order to reach that state of “ahhh-ness.”

x[n] P— X(2) (4.1)
+oo
Z(zn)) = X(2) = Z x[n]z™" (4.2)

A very important property of the z-transform is shown in Eq. (4.3)
known as the shifting property. The shifting property refers to a delay in
the input sample z[-], in our case a delay of m samples, and its influence
on the z-transform.

+oo

Zah—m])= > zn-m" (4.3)

n=—oo

By letting k = n —m — n = k + m and plugging it into Eq. (4.3) we get:

—+o0 —+oo
Z z[n —m]z™" = Z k]2~ k™)
n=—o0 n=k+m k=—o0
—+o0
= Z z[k]z"kzm
k=—o00
+oo
=z Z z[k)z =k (4.4)
k=—o0

We note that the summation part at the end of (4.4) is identical to the
form of Z(x[n]) where the difference is only in the variable name: n = k.
Hence, by changing the variable name from k to n, we can rewrite Eq. (4.4)
as shown below.

x[n —m) J— 27X (2) (4.5)
+o00
Z(zln—m])=2"" Z z[nlz™" = 27" X(2) (4.6)

This is a very interesting result as it says that whenever there is shifting
(delay) in the z-transform, the shift can be brought to the outside
(multiplication) of the z-transform summation in the form of “z to the
power of the delay” resulting in Egs. (4.5) and (4.6). So far so good ... But
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what do these things have to do with the frequency response? Read on to
find out more ...

4.1 What does all this mean? Part I

In this section, we will see how to directly perform the z-transform on any
difference equation and quickly describe the system’s frequency response via
the so-called poles and zeros on the z-plane. Let’s perform the z-transform on
the general difference equation (4.7). The mechanics of the z-transform just
entails transforming (mostly capitalizing and changing variables names!)
the input, output, and delay components as shown in Egs. (4.8) and (4.9).

k=N k=L
y[n] = Z ary[n — k]+ Z brx[n — k| (4.7)
k=1 k=0
xn—m] — 27" X(2) (4.8)
yn—m] — 27" - Y (2) (4.9)

The general difference equation when transformed yields Egs. (4.10)
and (4.11).

k=L
Y(z)=Y(2) arz"F + X (2) Z brz~k (4.10)
k=1 k=0

k=N k=L
Y(2) (1 - W’C) =X(2) > bpz " (4.11)
k=1 k=0
When rearranging Eq. (4.11) so that we have it in the form Y (z)/X(z)
(transfer function) Eq. (4.12) results.
Y(2) Mgzt
X(z) 1- Zl,iiv apz~Fk

(4.12)

This looks very familiar and upon comparing it with the definition of
the frequency response of Eq. (2.12), we can see that by setting z = el?
Egs. (4.12) and (2.12) become identical:

H(e?%) = H(2)| (4.13)

z=edf

Although the transformation from the difference equation to H(z) (and
hence the frequency response) is quite straightforward itself, I don’t think
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we are quite yet ready to buy that computing the frequency response itself
has been facilitated in any way. This facilitation is, however, achieved in
the next section, when we utilize poles and zeros.

4.2 What does all this mean? Part II: poles and zeros

We will see in this section how poles and zeros of the z-transform are
obtained and how they can be used to get the frequency response of a
system. The poles and zeros are attained by solving for the roots of the
denominator and numerator parts of H(z) — setting the numerator and
denominator equal to zero (providing they have delay components) and
finding the solutions for the numerator and denominator with respect to z.
Via the solution of the numerator and denominator, which correspond to
the location of the poles and zeros, we can quickly determine the frequency
response characteristics of a system as they directly reflect the resonant
and dampening characteristics of a system as seen in Fig. 4.1.

numerator(z)
H(z) = ————* 4.14
(2) denominator(z) (4.14)
numerator(z) = 0 (4.15)
denominator(z) = 0 (4.16)

Resonant locations refer to specific frequencies locations defined by the
poles reinforcing and amplifying the magnitude values at specific frequency
locations. Dampening characteristics refer to frequency locations generally
defined by zeros which dampen or reduce the magnitude values of a frequency
response. The resonating and dampening characteristics can be intuitively

Magnitude
A
AY
!

!
Magnitude
r
AY

- v -

pole Frequency Zero Frequency

Fig. 4.1. Pole and zero pulling and pushing characteristics.
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understood by using poles and zeros — poles correspond to the roots of the
denominator meaning that the transfer function H(z) will take the form
Y (2)/0.In other words, the divide by zero will render the H(z) to go to infinity.
For the magnitude response plot, this would induce the magnitude response
envelope’s shape to resemble a tent propped up at the pole location so-to-
speak as seen in the left side of Fig. 4.1. The zeros on the other hand take the
form 0/X (z) which will cause H (z) = 0, thus pulling the tent towards 0 or the
“ground” via the tent pegs. Let’s read on to find out more about this pulling
and propping characteristic of magnitude response |H|.

4.3 What does all this mean? Part III: the unit circle
and the z-plane

To get a better grasp how the poles and zeros relate to the formation
of the magnitude response, let’s use the IIR difference equation
y[n] = [n] +0.5-y[n — 1] as an example to compute its frequency response
via the z-transform method. We start by first computing H (z).

1 z 1 z
— - -z = 4.17
1-05-27=t 2z (1-05-271) 2-0.5 (4.17)

H(z)

For the denominator and numerator roots, we equate both parts to zero
yielding the following two equations for the pole and zero respectively.

2—05=0 (4.18)
z=0 (4.19)

Solving for the roots of the poles and zeros we have 0.5 for the pole and 0
for the zero. Next, we will introduce the concept of the unit circle and the
accompanying z-plane to make sense of how poles and zeros influence and
shape the magnitude response’s magnitude envelope. The unit circle as the
name implies, refers to a circle with radius 1 centered at the origin and is
plotted on a 2-dimensional z-plane with imaginary and real axes as shown
in Fig. 4.2. Traditionally, a pole is represented with the symbol “x” and a
zero with an “0” on this z-plane.

Imagine that the unit circle is drawn by sweeping the digital frequency
0 in a counterclockwise direction from 0 to 7 (DC to Nyquist) with unity
gain as seen in Fig. 4.3 via 1 - e/%. We will remember that the definition
of the frequency response is the observation of a system’s magnitude and
phase response when the system is excited by an input signal with constant
amplitude and phase while sweeping its input frequency. The ¢ in essence
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is used in such a capacity — frequency sweep a system (transfer function)
while maintaining unity gain and 0 initial phase, with the goal of observing
the magnitude and phase response vs. frequency. For the above difference
equation example, the pole and zero are plotted in Fig. 4.2. If the roots of
the poles and zeros had been complex in the form of a + jb, the pole and/or
zero locations would have been above or below the b = 0 line.

Our last step is finally figuring out how to plot and sketch the
magnitude response from the information provided by the poles and zeros
on the z-plane. We know that for the frequency response, our range of
interest for frequency is from 0 to f5/2 or 0 to 7 in radians. This corresponds
to the first two quadrants of the unit circle. It was mentioned before that
generally, poles have a resonating quality (amplifying) and zeros have a
dampening (attenuating) quality and this is what is shown in Fig. 4.4 with
respect to the magnitude response of the system. We see in Fig. 4.4 that
the pole has its strongest influence (resonance) on the magnitude |H(z)]| at
0 radians whereas the zero strongest influence (dampening) at m — the pole
is closest to DC and zero closest to the Nyquist in this example. Just before
/2 radians we can see that there is a cancellation of the pole and zero — at
this frequency, the zero and pole have equal “force” but with reverse polarity
so-to-speak (one pulling and the other pushing) thus cancelling each other

cancellation of x and o
'I L / o

0.8+

N

x "strongest"
0.6 Ty
o "strongest"
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Imaginary Part
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=1
g

04} 4
0.6+ :

Real Part

Fig. 4.4. Important characteristics of pole and zero.
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out. The characteristics of |H(z)| and its relationship to poles and zeros

can also be explained when we bring back the relationship between Y (z)

and X (z) from Sec. 4.1.
e
IH()I—lx(Z)| (4.20)

We have from our difference equation example the following transfer
function relationship.

[H(2)| = (4.21)

z e
z—Oﬁw_k—&5
This means that the denominator and numerator represent a Euclidian
distance measure and H(z) a ratio of such distances determined by Y (2)
and X (z). This is shown in Fig. 4.5 where we can see that the magnitude
of |[H(z)| = |Y(2)|/|X (2)] is once again strongest at 0 radians, weakest at
m, and equal to 1 when |Y (z)| = | X (z)]| just before 7/2 which is congruous
to the results we obtained in Fig. 4.4. Note that in this example, the |Y (z)|
component stays constant as it is located at z = 0 (origin of the unit
circle), whereas the |X(z)| component increases in magnitude causing a
decrease of |H(z)|(=|Y (z)|/|X (2)|) as we approach 7. Therefore, knowing

|H(z2)|
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Fig. 4.5. Overall magnitude plot via frequency sweep from 0 to 7.
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the locations of dips, cancellations, and peaks with respect to the poles and
zeroes on the z-plane, it is possible to quickly sketch the frequency response
on paper as shown in Fig. 4.6. Figure 4.7 shows a detailed computer plot
of the same difference equation’s frequency response.
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Fig. 4.6. Frequency response sketch via zero/pole for y[n] = z[n] + 0.5 - y[n — 1].
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4.4 More “complex” systems

Oftentimes, when one solves for roots of the z-transform, complex solutions
are obtained. That is, we get zeros/poles spread throughout the z-plane in
the form of a + jb unlike our previous simpler example. For instance, if an
all zero (FIR) system takes on the form

H(z)=a -2 +b-z+c (4.22)
the general solution for this second order polynomial is as usual:

L —b+ Vb2 — dac

o (4.23)

But when the root part is less than zero as shown in Eq. (4.24) the system
will result in a complex solution which in turn will spread the zeros on the
real and imaginary axes — place zeros and poles on a plane.

b* —4ac <0 (4.24)

On top of that, when the roots are complex, the solution will always result
in conjugate pairs. That is, each root will exist as shown in Eq. (4.25).

z=a=xjb (4.25)

Thus, a reflection occurs on the b = 0 imaginary axis in the z-plane. Roots
obviously may exist for the denominator (pole) as well as the numerator
(zero) which is the way difference equations and filters are generally
structured.

5 Region of Convergence (ROC)

An important concept to consider with z-transforms is the so-called region
of convergence (ROC). The ROC is important as it defines where the
z-transform can exist. The formal definition of the ROC is represented by
the convergence of the summation of the z-transform and is met when (5.1)
is satisfied for an impulse sequence h[n].

n=+oo

> i)z < o (5.1)

n=—oo

To show what conditions satisfy the convergence of Eq. (5.1)
(boundedness), we note that the above equation is in the form of the
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geometric series. We can thus break up the summation into negative and
positive sample index parts according to Eq. (5.2).

n=+oo n=-—1 n=-+oo
Z |h[n] . 27"| = Z |h[n] . 27"| + Z |h[n] . 27"| (5.2)
n=—oo n=-—oo n=0
negative positive

What we can observe from the above is that the system can be divided
into a non-causal and causal part, where the negative summation segment
corresponds to the non-causal part and the positive summation causal
part. Let’s simplify things a bit before coming to a general approach in
determining the ROC by looking at the geometric series. The general form
of the geometric series is as follows:

n=N
SN:ZZn:1+Zl+"'+ZN71+ZN (5.3)

n=0

By multiplying the sum Sy with z, we get the following relationship:
2 Sy =z+ 224 2N 2N N (5.4)

If we subtract the z-multiplied sum z - Sy (5.4) from Sy (5.3) to get rid of
all the common components between z - Sy and Sy, we arrive at Eqgs. (5.5)
and (5.6).

SN—Z-SN:1—2N+1 (55)
Sny(l—z"Y)=1- N1 (5.6)

With further simplification we can express the sum Sy of the geometric
series in a very compact format as shown in Eq. (5.7).

1— zN+1
Sy=———, forz#1 (5.7)
1—-=2
When z =1 in Eq. (5.7), a “divide by zero” issue arises causing Sy to go
to infinity. When N is set to oo, Sy can be further simplified as shown
in (5.8), provided that 0 < |z| < 1 (a fractional number). If |z| is greater
than 1, the z*° component will reach infinity causing S, to reach infinity
as well. However, if |z| is smaller 1, it will approach 0 and make the result
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stable (bounded).

1 —z0tl 1> 1
Soo = = = , T 1 .
T T T or |z] < (5.8)

Let’s go back to the definition of the ROC in Eq. (5.2) and look at the
negative summation part and rewrite it as shown below. This is achieved
by changing the polarity of the power of 2™™ to 2™ which in turn also
changes the characteristics of the index n for the summation.

n=-—1

2.

n=—oo

n=oo

We note that this series is looks very similar to the one we derived above in
Eq. (5.7) with the exception of the additional h[—n] in (5.9) and 0*" power
component in Eq. (5.3). For simplicity, let’s set h[—n] = 1. Now, we can
easily put (5.9) into the (5.4) structure by subtracting the 0*" z-component
from the summation of Eq. (5.9) and designating the summation range from
n =0 to oo as shown below (z° = 1).

hn]-2z7" hl—n] - 2" (5.9)

n=1 n=oo n=oo
S ohm) -z =)0 et =Y [ =1 (5.10)
n=-—oo n=1 n=0

As before, we can also derive the geometric sum from 0 to N only, as shown
below in Eq. (5.11).

n=N N+1
" 1-=2
n=0

The summation will converge if |z| < 1 as shown below.

1-=2 Neoo 1-=2 N 1-2
z z 21 1

— - = f <1 5.12
l—2 11—z 271 1—271 or |2 ( )

This is where the z-transform is defined. In other words, for this particular
system where h[—n] = 1, the ROC is within the unit circle as shown in
Fig. 5.1 (not including |z| = 1).
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Fig. 5.1. ROC for h[-n] =1, |z| < 1.

Let’s now consider an example of a more interesting h[n] for a non-
causal system as shown below and determine its ROC.

a", for n<O0
hn] = (5.13)
0, otherwise

Computing the z-transform for the summation region from — N to —1 (since
this is a non-causal system) we arrive at (5.14). When N = oo, we get
(5.15), provided |a~!z| < 1 as shown in Fig. 5.2 where the inequality can
be rewritten as shown in (5.16).

n=-—1 n=-—1 n=N
Zh[n]-z_” = Za” z_”:Za_" |
n=—N h[n]=an n=—N n=0
n=N
1— —1 \N+1
= (a=t-2)" Pl ) I
1—a1z
n=0

(5.14)
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Fig. 5.2. ROC for non-causal h[n] = a™, |z| < |al.

1— (a=tz)N+L ) o 1-0 )
1—a1z New  l1—a7lz
a"lz 1 .
i v for la™ 2] <1 (5.15)
la™t -z <1 —|z| < al (5.16)

This means that the z-transform for h[n] = o™ will converge to (5.15) which
has a zero at 2 = 0 and pole at z = a as 1/(1 —a™12) = z/(z —a™!) in
(5.15). It so turns out that the poles of a z-transform cannot occur within
the region of convergence as the z-transform does not converge at a pole,
the ROC itself, however, is bounded by poles instead. In Fig. 5.2, the zero
will be located at the origin and the pole at z = a as previously mentioned.

Note also that h[n] can also be expressed in terms of the unit-step
function, that is

hin] = a" - u[—n — 1] (5.17)
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and observe that the exponential term only exists for negative power n
terms. In other words, since u[—n — 1] only exists for negative n integer
values (which is the definition of a non-causal system), a™ can be rewritten
as a~ " (or 1/a™) for n > 1.

5.1 Causal system ROC

For a causal system, a system that is essentially the positive summation
component of Eq. (5.2) we can derive the ROC by using the same approach
we applied for the non-causal system. Let’s analyze the ROC for h[n] as

seen below.
a, for n>0
h[n] = (5.18)
0, otherwise
n=-+oo n=o0oo
Z ’h[n] I h[n]-z7"
n=—oo n=0
= a" -z " = (a-z7 1" (5.19)
n=0 n=0

In (5.19) we can tell from inspection that the summation up to N becomes:

n=N
v L—(a-z7H)NAL
n=0

When N is set to infinity, we get the following result:

n=

> 1_(a_Z—1)oo+1 1
—1\n __ _ —1
g (a-z7)" = T w e w— for |a-z ’<1

n=0

(5.21)

The inequality in (5.21) can be rewritten as (5.22) and is shown in Fig. 5.3.
1 a

la- 27t = ‘—‘ or |a| < |z| (5.22)
z

Thus, for causal systems, the ROC lies outside of the unit circle.
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Fig. 5.3. ROC for causal h[n] = a™, |a|] < |z|.

5.2 Mixed-causality systems

For systems that include both causal and non-causal parts such as
Eq. (5.23), a circular band resembling a two-dimensional doughnut is
formed as depicted in Fig. 5.4. This reflects the ROC’s inequalities as shown
in Egs. (5.24) and (5.25).

hin] = a™ - u[n] + 0" - u[-n — 1] (5.23)

We know that the causal component results in Eq. (5.24) and the non-causal
component in Eq. (5.25) as we have seen in our previous analysis.

|z| > |al (5.24)
|z| < |0] (5.25)

Due to linearity (since we are dealing with LTI systems) we can combine the
two results into one inequality Eq. (5.26) which is what we see in Fig. 5.4
and Eq. (5.26).

la| < |2] < || (5.26)
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Fig. 5.4. ROC for a mixed causality system, |a| < |z| < |b].

Table 5.1. ROC regions.

System Type ROC and System Characteristics
Causal |z| > a (Fig. 5.3)

All poles are inside of unit circle (for stability, see next section)
Non-causal |z| < a (Fig. 5.2)

Mixed-causality  |a| < |z| < |b] (Fig. 5.4)

5.3 ROC summary

From our discussion of the ROC in the previous sections we have learned
that poles cannot lie inside the ROC but rather define where the ROC
boundaries occur. Causal, non-causal, and mixed causality systems as
discussed throughout Sec. 5 directly determine the ROC regions as
summarized in Table 5.1 where a is the radius of the pole.

6 Stability and the Unit Circle

Stability in a nutshell is determined by the behavior of pole locations in the
z-plane as was introduced in Chap. 5 Sec. 4.2. FIR systems or systems that
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do not have poles are by definition stable as they do not include feedback
components — there is no fear of the system blowing up, unless of course
the input blows up ... Stability is formally defined by Eq. (6.1) which
essentially articulates that if the unit-sample response eventually decays to
0 at some point in time (system is bounded), it is considered stable.

n=-+oo

> |hfn]| < (6.1)

n=—oo

Now, from the z-plane and pole perspective, this can be readily
explained as systems with poles that include feedback components. As
mentioned in Chap. 5, FIR systems necessarily have a finite impulse
response and eventually come to rest when the input stops. IIR systems
on the other hand, do not technically come to rest even when the input
stops outputting samples. Due to computational precision issues of digital
systems, however, if an IIR system is stable, they too will output 0
after a certain time (we only have so many bits to represent minute
numbers such as 1072 for example, which for all practical purposes equals
0). Since FIR systems are inherently stable, we do not need to worry
about their instability. For IIRs, however, their stability (a function of the
characteristics of its poles) has to be examined.

A sufficient condition for stability is met if the poles of a system are
inside the unit circle. This characteristic can be seen for the unit-sample
response of the difference equation used in Chap. 5, Sec. 4.2 as shown below.

yln] = z[n] +a-y[n —1] (6.2)

h[k] = §[k] + a- h[k — 1] = a* (6.3)
Y[z] 1

H[z] = NG 1T (6.4)

In order for this system to be stable, it must satisfy the infinite summation
condition of Eq. (6.5) as shown below. This basically means that a stable
system’s impulse response (like a quick on-off signal) decays to 0 at some
point in time as the sum of the impulse response will necessarily be a finite
value.

n=-+oo

> |hn]| < oo (6.5)

n=0
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Again, using the geometric series, we know that the summation will result
in (6.6) for our IIR example.

n=-oo n=N
n 1- |a’|N+1
S nnll = lan| = (e (6.6)
n=0 n=0 N=oo N=o0
la| <1 (6.7)

For (6.6) to converge, |a| must be smaller than 1 due to the |a|Y*+!

component: if |a|] > 1, (6.6) would grow without bound. Viewed from the
z-plane, the pole needs to be within the unit circle and the ROC is obtained
via Eq. (6.8) as derived in Sec. 5.

n=-+oo

Z |hn] - 27" < o0 (6.8)

n=—oo

Thus, for a causal system, stability is ensured if the poles are inside the
unit circle and the ROC includes the unit circle. For a non-causal system
the opposite is true for the poles — all poles must be outside the unit circle
with the ROC again including the unit circle as before. The reason that the
poles are outside the unit circle in the non-causal case is because the power
of the h[n] are raised to the negative power, thus inverting the condition of
the pole characteristics as discussed in Sec. 5.

7 The Inverse Z-Transform
To state it quite simply, the inverse z-transform takes us from the
“z-domain” back to the time-domain. That is, given (7.1), the inverse
z-transform of H(z) will yield h[n] as shown in (7.2).
H(z) =Y (2)/X(2) (7.1)
Z=YH(z)} = h[n] (7.2)
For example, if we wused the same IIR difference equation

y[n] = x[n] + y[n — 1] from one of our previous examples, the z-transform
will yield (7.3).

H(z) = = (7.3)
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If we multiplied H(z) by 2 for some reason and wanted to go back to the
time-domain difference equation we would get

Y(z) 1.2

X(z) 1—az?! (7.4)
Y(2)(1—az™t) =2-X(2) (7.5)

Y(2)=2-X(2)+az ' Y(2) (7.6)

which will finally yield our time-domain difference equation (7.7)
remembering that xz[n] — X(z), y[n] — Y(2), a delay is g[n — L] —
2L G(z) from Sec. 4.

yln] = 2 afn] + a - yln — 1] (7.7)

The inverse z-transform becomes powerful not just because it can be
used to obtain the difference equation, but also due to the fact that it can
be utilized to compute the output y[n| via Y (z) or the impulse sequence
h[n] from H(z). There are a couple of common ways to achieve this feat,
including the long division method, Taylor series expansion method, and
the residue theorem method. These methods will be briefly touched upon in
the next subsection.

7.1 Long division method

Let’s go back to the definition of the z-transform (4.2) for signal z[n] as
shown below. The sequence x[n| of course can be anything, including the
impulse sequence h[n]. If we consider X (z) as expressed in some polynomial
format as shown in Eq. (7.9), we observe a very convenient property that
links X(z) and z[n] — the input x[n] components are the coefficients
(multiplier /weights) of the 2z~ in X (z).

+oo
X(2) = Z x[n]z™"
= tx[-1]- 2 F20] -0 F 1] 274 (7.8)

S
—
N
SN~—
I

coida-z+bte-z 4d 2 4e 234 (7.9)
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By inspection we can clearly see the following relationship by comparing
Egs. (7.8) and (7.9):

z[-1]=a
z[0] =b
z[l]=¢
z[2] =d
z[3]=e

Thus, knowing the polynomial representation of X (z) or any z-transform
for that matter, will give us x[n], or in the case of Y (z) and H(z), y[n]
and h[n] respectively. The above X (z) example is a pretty simple one, a
difference equation that has no feedback components — no denominator
components. It is, however, also common to encounter IIR difference
equations in signal processing making it a bit more complicated to find
the sequence of polynomials with powers of z~™. This is where the long-
division method comes into play. As the name suggests, the long division
method is congruous to the way learned to divide numbers back in primary
school.

For example, let’s consider a transfer function H(z) given as Eq. (7.10)
consisting of two poles and two zeros.

z2+z

") = 305G -03)

2] > 0.5 (7.10)

We start the long division process by first expanding H(z) yielding
Eq. (7.11).

H(z)— 22 4+ 2 . 2242 . 2242
C (2405)(2—0.3)  22-0.324+052—1.5 224+0.22—1.5

(7.11)
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Then, performing long-division will produce the results shown in Eq. (7.12).

1—-082"1+4+0.8272...
%+z—15y2+0%—15

2242415
0—0.
0.82+0 (7.12)
—0.82 —0.841.52"1
0+08—15z"1

08408271 -1.2272

—n

Since the coefficients of z=™ correspond to the h[n] components from the
definition of the z-transform H(z), as before, we can directly obtain the
values h[n] from inspection for this causal system.

h0] = 1
h[1] = —0.8
h[2] = 0.8

7.2 Taylor series expansion method

In Sec. 5, we have already used the Taylor series expansion to derive the
ROCs and noted that the infinite summation in the form of Eq. (7.12)
converges when |z| < 1.
n=N
SN:ZznzlezlJr'“Jer*lJer (7.13)

n=0

o0 N 1
Z;z_l_z (7.14)

We also earlier derived the following more general relationship of the
summation and the Taylor series expansion.

n=0oo 1— . ,—1)oo+1 1
Y ety =t L e <
= l—a-z l1—a-z

(7.15)
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From the inverse z-transform point of view, Eq. (7.15) will yield a time
sequence of the form hn] = a™ (see Sec. 5.1). Thus, if we can put the z-
transform into a structure resembling Eq. (7.15), we can compute the time
sequence which is essentially what this particular method is all about. For
example, given H(z) as shown in Eq. (7.16), the objective is to express
H(z) in the appropriate Taylor series expansion form.

l—a+z—bz2
1—bz"2—qaz"1+abz=3’

H(z) = |z| >a, a>b (7.16)

Let’s try to break it up and do some factorization which leads us to (7.17).
This is another instance where linearity is convenient as it allows breaking
up a seemingly complex problem into more manageable smaller parts — we
recognize that the resulting two terms both have the Taylor series structure.

H(z) = 14zt —(a+b)z?  14+z'—bz?—az?
T T —az Tt abe3 (1—az71)(1 —-0b272)
1 L1
_ b 7.17
1—a2—1+z 1—bz72 (7.17)

We therefore rewrite Eq. (7.17) as Eq. (7.18) and expand it to Eq. (7.19):

i z 1. i (b- 273" (7.18)
n=0 n=0

H(z)=(a-z")+ (a2 +(a- 271+ 27
x {2704+ b2 + b2+ )
=l4az ' +a%224+a%23+ F 2 b3 40270
+03277 +
=1+ (a+ 1)z 4 (@22 + (a® +b1)27?
+(aHz™ + (@® + %)+ (7.19)

Thus, when H(z) can be simply expressed in the form of Eq. (7.15) the
resulting h[n] via inverse z-transform can be obtained as shown in Eq. (7.20)
after grouping all the delay components (2 %) together to acquire the delay
coefficients h[n]. That is, the last line in Eq. (7.19) is organized in terms of
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the delay 2% and their respective coefficients/weights.

1, n=>0
a+1 n=1
a?, n=2
hln] = a’ +b@t)=2" = odd and n > 2 (7.20)
a”, n =even and n > 2
0, elsewhere

7.3 Contour integration/residue theorem method

The last method for computing the inverse z-transform that we will discuss
here uses concepts from complex variable theory. Using complex variable
theory, a relationship between h[n] and H(z) can be obtained as shown in
Eq. (7.21). The integration is over a closed contour encircling the origin
(z = 0) counterclockwise inside the ROC.

z[n] = %%X(z) 2"z (7.21)

Computing the time-sequence directly from Eq. (7.21) is usually not that
straightforward but since most z-transforms in DSP tend to be rational
functions (ratio of two polynomials Y (z)/X(z) for example), an easier
method called the Cauchy’s reside theorem method can be used to arrive
at x[n]. The right-hand side of Eq. (7.21) can be expressed using Cauchy’s
residue theorem as shown below, where py refers to the K number of poles
P1y P2,y - Pky- -+, Pk and “Res” the residue of pole pg.

K
% H(z)- 2" 'dz = 3 Res. o, [H(2) - 277 (7.22)
J k=1

Calculation of the residue is accomplished via Eq. (7.23) where py, is the m™
order pole and (7.24) is used for the 1°* order pole (m = 1) case [Eq. (7.23)
reduces to Eq. (7.24) for m = 1].

Resopy [1(2) - 2"1) = gy - lim rl(z =) H(:) -2
7.23)
Res,—p, [H(2)- 2" = lim (z —pi) - H(z) - 2" * (7.24)

Z— Pk
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Equation (7.22) actually looks more complex than meets the eye as we
will see in our example below where we will compute the hin] for (7.25).

z(z+1)
(z—0.5)(z+0.3)’

H(z) = |z| > 0.5 (7.25)

From (7.25) we find 2 poles (roots of denominators) for this system.

2—05=0—2=0.5 (7.26)
2403=0—2=-0.3 (7.27)

We can also see that the order of the poles are one (m = 1). Thus, h[n] can
be computed using Eq. (7.24) as follows:

hin] = Z Res, ., [H(2) - 2" 1]
k=1

= Res,—o5[H(2) - 2" ] + Res.— _o3[H(2) 2"

= (2-05) _f)i;zll 03" 05
+ (2+0.3) - = zi;(rzl}r 0.3) o 2=—0.3
- %o 5" — %(—0 3)"
=17.5-(0.5)" —0.875- (~0.3)" .

For more complex systems and higher order poles, the solution is more
tedious to get, but the actual mechanics in computing the results are similar.

To end this section, let’s prove Eq. (7.22) to make us feel better. We
start by first plugging in Eq. (4.2) for X(z) into Eq. (7.22) which actually
gets us pretty far.

1
3 X(2)- 2" dz

1 =
3 { Z x[m}zm}%"ldz

m=—0oQ
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—+o0

-3 <x[m] . % j{ {z=m. z”_ldz}>
_ mii:o (x[m] . % f{ z"_m_ldz) (7.29)

To get us to through the final lap, we borrow the following relationship from
complex function theory helping us get rid of the integration in Eq. (7.28)
(Porat 1997).

1 & 1, k=-1
21 fz dz=olk+1] = {O, k # —1, k € integer (7.30)

In our problem, we are working with discrete time indexes and have k =
n—m — 1 [see exponential term at end of Eq. (7.29)] thus when we plug in
n—m — 1 for k in Eq. (7.30) we have:

1 k _ _ i n—m—1 _ _ _ _ _
27rj7{z dz—d[k—i—l]—zwj?{z dz=dén—m—14+1]=6[n—m]
(7.31)

Plugging this back into (7.29) conveniently erases the integration part,
leaving us with z[n] as the result as expected. Remember that the delta
function only exists when n — m = 0 and this occurs when m = n where
the delta function itself becomes 1.

f <x[m] : %j%z"‘m_ldz) = f <x[m] - 8[n —m]) = z[n]
T e (7.32)

As we have seen in this section, there are numerous ways of computing
the inverse z-transform where each method has certain advantages as well
as disadvantages. In the next section, we conclude the technical part of the
chapter with a number of MATLAB® functions that implement some of
the algorithms we covered here.

8 Useful Tools in MATLAB®

There are a few useful functions in MATLAB® which facilitate frequency
response computation including FREQZ (B, A, N) and INVFREQZ (H, W, NB,
NA). FREQZ (B, A, N) computes the magnitude and phase response for a
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given difference equation of order Nand INVFREQZ (H, W, NB, NA) calculates
the difference equation coefficients when fed with the frequency response H,
frequency points W, and numerator and denominator coefficient order NB
and NA. Other useful functions include the ZPLANE (Z, P) function which
displays the z-plane and maps out the zeros and poles defined by Z and P,
conveniently computed via function ROOTS (C). There are also functions
such as GRPDELAY(B, A, N) and IMPZ (B, A, N) used to compute the group
delay and impulse response of a system respectively.

9 Musical Examples

Examples of the z-transform in music are not that common per se —
although the next chapter’s topic which will focus on filtering is related
to it. One interesting topic that we have come across in this chapter is
the issue of stability. As we have learned, in DSP, it is important to have
a stable system. It is likewise an important issue and powerful source for
ideas and creativity for musical composition and performance on various
levels. In the previous chapter, we were briefly introduced to audio feedback,
also known as the Larsen effect, often occuring when the microphone
and speaker configuration in sound reinforcement is not properly set up.
Audio feedback is in many cases undesirable, but that has not kept artists
from exploiting it in a creative manner, adding it to their vast arsenal
of tools for manipulation of musical material. Popular musicians, such as
electric guitar gurus including Jimi Hendrix and Pete Townsend of The
Who have used this unstable aspect of amplified sound in their works
such as Machine Gun where Hendrix displays an array of electric guitar
techniques including feedback. The Who like many rock bands have also
utilized feedback musically in many of their compositions, one the notable
albums being Tommy, their first so-called rock opera released in 1969,
followed by Quadrophenia four years later in 1973. The way guitar feedback
works is quite interesting as there is no microphone in the audio loop to
speak of, but rather, only an electric guitar, its pick-ups, and the guitar
amplifier. One usually sees the guitar player crouching in front of the amp
as if offering the electric guitar to some unknown deity in a seemingly
bizarre sacrificial manner. The reason for this rather interesting posture is
practical — the electric guitar and amp form an input-output closed loop.
With high enough gain on the amp side, this closed loop sets up a feedback
configuration — the guitar strings that vibrate and get amplified by the
amplifier /speakers, subsequently, due to the high gain on the amp side and
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the proximity of the guitar to the amp, induces the strings on the guitar
to physically vibrate in a feedback fashion. It is as if the acoustics of the
amplified sound from the speaker/amp actually pluck the guitar and not
the guitarist.

Speaking of opera, another artist who has used feedback in his
compositions is Robert Ashely. Composer/performer Robert Ashley is
perhaps best known for his work in the area of opera-for-television. In
a piece called Wolfman written in the early 1960s for live voice, tape,
and vocal feedback, the microphone gain is set extremely high, allowing
for the most subtle and “private” sounds to come through while at the
same time setting up a very unstable sound reinforcement environment very
favorable for audio feedback. This piece is quite aggressive in its timbre and
is supposedly meant to be performed by a “sinister lounge singer.” It is not
surprising that some folks call audio feedback howling which maybe is how
the title of Ashely’s piece Wolfman came into existence. According to the
program notes (Alga Marghen 2002), the piece came about because a singer-
friend of Ashley’s had hoped for Morton Feldman to write a piece which
did not come to fruition. Ashley seemingly composed Wolfman “knowing”
that the vocalist would not perform it which indeed turned out to be the
case. This resulted in Ashley performing it himself at Charlotte Moorman’s
festival in 1964 in New York. Interestingly enough, Wolfman’s perceptual
results are in the dimensions of very high decibels which are very different
from Feldman’s compositional style, but at the same time, Ashley brings
about those sounds by extremely subtle and softly spoken vocal sounds
albeit directed into a high gain microphone ...
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Chapter 7

FILTERS

1 Introduction

Filters are very commonly found in everyday life and include examples such
as water filters for water purification, mosquito nets that filter out bugs,
bouncers at bars filtering the incoming guests according to age (and other
criteria), and air filters found in air conditioners that we are sometimes a
bit too lazy to change/clean periodically. As you may have guessed, in DSP,
digital filters are ubiquitous as well and are used in a plethora of engineering,
musical, and audio applications which is our focus in this chapter. Formally,
in signal processing at least, a filter only modifies the amplitude and phase
components of a signal. For example, if we have a sinusoid with amplitude
A, frequency f, and initial phase ¢, in filtering, only A and ¢ are modified.
In the following sections, we will introduce a number of important filter
types as well as interesting examples found in the area of audio and musical
signal processing.

200
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2 Low/High/Band-Pass and Band-Stop Filters

One of the most widely used and important filters is the low-pass filter.
This was briefly mentioned in Chap. 1, when we introduced sampling and
aliasing. It was also touched upon a little bit in Chap. 2, where we discussed
down-sampling and up-sampling. You will remember that during sampling
and analog to digital signal conversion, aliasing may occur depending on
whether the highest frequency component of the analog input signal meets
the Nyquist limit according to Eq. (2.1).

Fonas < 22 (21)
In a situation where the above inequality is not met, aliasing occurs. But
since we do not know what the input to the sampler will be and in order
to guarantee that aliasing does not occur, we need to filter the analog
signal so that the there are no frequency components above fs/2 during the
digitization process. Stated in another way, to avoid aliasing, we must pass
only those frequencies that are below f;/2. The low-pass filter essentially
accomplishes this task — passing low frequency components while stopping
higher frequency components as illustrated in Fig. 2.1. The frequency
region that is passed and (ideally) unaffected by the filter is referred to
the passband frequency area whereas the frequency range that is filtered
or stopped, the stopband. Figure 2.1 also shows the cutoff frequency (fc)

A

Magnitude dB
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passband stopband
Frequency

Fig. 2.1. Ideal low-pass filter.
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Fig. 2.2. Ideal high-pass filter.

which essentially determines the passband and stopband characteristics —
the ideal low-pass filter cuts off frequency components above f.. For an
anti-aliasing filter, f. would be equivalent f. = fs/2.

Figure 2.2 shows the ideal high-pass filter which stops frequency
components below f.. In Fig. 2.3, we see an ideal band-pass filter and the
corresponding center frequency (fo) as well as the upper/lower frequency
bounds defining the passband region. We will further elaborate on this
topic in the next section with the introduction of the Q-factor (this factor
characterizes the sharpness of the band-pass region of the band-pass filter).
Figure 2.4 shows the band-stop filter (also referred to as band-reject filter
or notch filter) which is the opposite of the band-pass filter as it stops
only a certain region of frequencies and passes everything else around
it. Notice that the filters we have depicted in Figs. 2.1 to 2.4 are being
referred to as ideal filters, also sometimes referred to as brick-wall filters.
When implementing actual filters, however, brick-wall filters cannot be
realistically attained and various parameters need to be tweaked to render
a desired result. The cutoff frequency f. denotes the frequency location
corresponding to 0.707 (—3 dB) of the magnitude of the passband region.
The number 0.707 comes from folks in electrical engineering where it is
defined as half the power of the passband region. As power is proportional
to the voltage squared, half the power will result in 1/ V2 of the voltage
which is equal to 0.707.
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Fig. 2.4. Ideal band-stop filter.

2.1 Filter design specifications

In this book, we will only moderately dive into of the details of various
algorithms for computing filter coefficients & la pencil-and-paper and will
rather focus more on fundamental filter concepts and filter specifications
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Table 2.1. Main filter characteristics.

Characteristic Description

Passband Unity gain region (ideally): 0 dB or 1 non-dB magnitude
Stopband Attenuation region

Transition Band Region between passband and stopband

Ripple Amount of ripple tolerance allowed for filter

Filter Order/Length/Size/Tap Number of delay components

which determine the behavior of filters. Programs such as MATLAB®
can be used to design filters that meet desired specifications and will be
discussed here as well. The main characteristics that determine filters are
summarized in Table 2.1 for the low-pass, high-pass, band-pass, and band-
stop filter. You will note that unlike ideal filters, real filters do not behave
like brick walls as mentioned above, but rather are smoother around the
passband/stopband edges and also inevitably introduce artifacts to the
filtered signal. Therefore, filter parameters must be carefully chosen to meet
a desired output as elaborated on in more detail below.

2.2 Passband, stopband, and transition band

The passband and stopband refer to the frequency regions that are to be
(ideally) passed unchanged and frequency regions that are to be (ideally)
stopped respectively. An ideal filter has unity gain and no distortion in
the passband and infinite attenuation in the stopband. This however, not
the case for real-world filters and some amount of distortion occurs in the
passband as well as the stopband, allowing small amounts of the stopband
region to trickle through. As we can see in Fig. 2.5 and subsequent figures
in Sec. 2.4, unlike the ideal filter, a transition band exists between the
stopband and passband — there is a smooth transition from the passband
to the stopband and the other way around. Although the transition band is
not limited to any specific values, it is usually required that the magnitude
in the transition band decreases monotonically (always keeps decreasing
for passband to stopband regions, always keeps increasing for stopband to
passband transition bands). One of the reasons why a sampling rate of 44.1
kHz is used in audio instead of 40 kHz is due to this transition band — a
4.1 kHz headroom is left at the upper end of the spectrum to partly address
the non-brick-like behavior of low-pass filters. In an ideal world, this extra
buffer would not be necessary as our hearing limitation is around 20 kHz,



Filters 205

suggesting a 40 kHz sampling rate which should be sufficiently high to fully
capture audio signals digitally. But then again, we sometimes have folks
who can hear like bats ... Hence, another reason for the need of some extra
legroom and a slightly higher sampling rate than theoretically necessary.

2.3 Cutoff frequency

The cutoff frequency as mentioned in the beginning of section, refers to
the frequency location that determines where the passband and stopband
will begin and end. It is defined as the frequency location corresponding
to a magnitude of 0.707 of the passband region (passband = 1.0). In
practical filter design situations, the cutoff frequency is further divided into
the passband and stopband frequency components due to the transition
band. These frequency boundaries are also referred to as edge frequencies
characterizing the transition band.

2.4 Filter order, filter sharpness, and ripple

When implementing digital filters, the issue of a filter’s sharpness (closeness
to a brick-wall filter) and the amount of ripple in the passband is an
important one. The shorter and smaller the transition band, the closer it is
to a brick-wall filter. Also, the less amount of ripple (further explained
in the next paragraph) a filter has, the closer the passband is to a
straight line (closer to an ideal filter), passing the signal’s desired frequency
components with minimum distortion. The general rule of thumb is that
the sharper a filter, the more delay components are needed (higher order
filter). For an FIR filter, this equates to a larger number of zeros in the
z-plane resulting in greater delay. Using an IIR filter, one can apply fewer
number of delays (smaller order filter) due to the feedback and resonant
pole components (introduced in Chap. 6) for similar filter characteristics
to the FIRs. Thus, when designing filters, one of the important factors
to take into account is the compromise between filter order and filter
steepness/accuracy. For example, if one designs a filter for monitoring
earthquakes that automatically triggers an alarm, it would be advisable
to use an IIR filter rather than a FIR filter. IIR filters inherently have a
smaller filter length and hence a shorter delay as a consequence. In other
words, IIR filters have better transient response and react more quickly to
a given input signal such as seismic energy in our example — this equates
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to an earlier reaction of the alarm system to the earthquake, allowing more
time for the community to evacuate (however small the time advantage
may be). So, why do we not always use IIR filters? The answer is primarily
stability. Stability needs to be carefully addressed with all types of IIR
filters — unlike FIR filters, feedback filters are not intrinsically stable
as discussed in Chap. 6. IIR filters do not automatically come with this
feature. Another important trade-off that plagues the world of filter design
is between ripple (further discussed below) and the length of the transition
band — decreasing one will only serve to increase the other, kind of like yin

and yang.
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Fig. 2.5. LPF FIR frequency response.

As we can see in Fig. 2.5 and Fig. 2.6 (FIR low-pass filter), there
are a number of additional filter specifications that we did not see in the
brick-wall filter. These include the amount of wiggle known as ripple in the
passband region, defined in terms of the peak-to-peak magnitude Apqqs as
shown in Fig. 2.5. The ripple specification is also sometimes represented
as tolerance amount, referring to the amount of tolerance from unity gain
(0dB) in the passband as shown in Eq. (2.2) where §* and §~ are the
positive and negative tolerance factors of the magnitude response in the
passband respectively.

1-6" <|H(E)| <1+6" (2.2)
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Fig. 2.8. LPF FIR zero plot of 42 zeros.

We may recall that zeros generally tend to pull the magnitude response
envelope of a system towards zeros while poles tend to do the opposite —
push it away from the pole location on the z-plane. This pushing and pulling
effect influences the ripple characteristics of a filter.

'AOU
attenuation = 20 - log, ( 1 t) (2.3)

Other filter specifications include the attenuation amount (usually in dB)
of the stopband A, with respect to the passband as defined in Eq. (2.3)
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with input and output amplitude A;, and A,,; and stopband/passband
edge frequency fsiop and fpass-

Figures 2.7 and 2.8 show the FIR low-pass filter’s phase response and
the z-plane plot with 42 zeros. The next three figures, Figs. 2.9, 2.10, and
2.11 show a FIR high-pass filter with the same number of zeros concentrated
in the lower frequency regions which pull down the magnitude response for
the lower frequencies.
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Fig. 2.9. HPF FIR magnitude response.
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Fig. 2.11. HPF zero plot of 42 zeros.

For the band-pass filter case, we have a pair of bandpass regions,
passband frequency edges, stopband frequency edges, and a single passband
region defined by Ap.ss. In essence, the sharpness of the bandpass region
is defined by the passband and stopband frequency edges and passband
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tolerance parameters. The magnitude response, phase response, and the
z-plane with 44 zeros are shown in Figs. 2.12, 2.13, and 2.14.

Another way to quantify the passband sharpness in a bandpass filter
is via the so-called quality factor, Q-factor or simply @. The Q-factor is
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Fig. 2.12. BPF FIR magnitude response.
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Fig. 2.13. BPF FIR phase response.
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Fig. 2.14. BPF FIR zero plot with 44 zeros.
defined as follows:
_Jo
Af=fa—h (2.5)

Equation (2.4) basically says that a high @ filter produces a narrow
bandwidth or conversely a narrow bandwidth Af produces a high Q.
The narrowing /broadening is centered on the center frequency fo with A f
determining the bandwidth. A f is defined as the —3 dB frequency boundary
of the passband region as depicted in Fig. 2.15.
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Fig. 2.15. Q-factor and bandwidth.

The parameters for the band-stop filter are shown in Fig. 2.16. It depicts
a FIR-based band-pass filter with 40 zeros. The phase response and the
z-plane show the layout of the 40 zeros as seen in Figs. 2.17 and 2.18

respectively.
Magnitude Response (dB)
0 i T T T i T T T i T
I f
-10F Apass}' Apm's? T
= =201 1
Z
L =30+ Astop 1
2
g,) -40+ 1
Z ol Faks |
-50 ff.‘op.f /-fﬂl—
-60 M ﬂm.uf \ ﬁmss_‘ﬂ‘ B
o 01 02 03 04 05 06 07 08 09

Normalized Frequency (xm rad/sample)

Fig. 2.16. BSF FIR magnitude response.
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Fig. 2.18. BSF FIR phase response with 40 zeros.
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There are a number of standard methods in designing filters —
computing parameters in accordance to the desired filter specification which
include among others, Butterworth, Chebychev, and elliptic/Cauer filter
design algorithms (these will be briefly discussed in the next section).
Butterworth filters are often popular in music editing type situations as
they are very flat in the passband and stopband regions. The Chebychev 1
filter design method on the other hand can give the user flexible control over
the ripple behavior in the passband and stopband regions. This is shown in
Figs. 2.19 and 2.20 where an IIR low-pass filter is plotted. Figure 2.20 shows
the zoomed-in passband portion of Fig. 2.19 and the corresponding z-plane
with 10 zeros and poles in Fig. 2.21. An example using the elliptical filter
design method is also shown in Fig. 2.22. The elliptical filter design method
allows for equiripple (same ripple characteristics) in both passband and
stopband regions and generally meets filter requirements with the lowest
filter order.
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Fig. 2.19. Chebychev type I LPF (IIR).
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Chebychev type I LPF (IIR) zero and pole plot.
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Fig. 2.22. Elliptical filter LPF, equiripple.

Figures2.23 and 2.24 show the implementation of a filter via FIR and IIR filter
design techniques using the equiripple method with the same specifications
where fpass = 0.5(= fs - 0.5), fstop = 0.51, Apgss = 1dB, and Ao, = 60dB.
Figures 2.25 and 2.26 show the respective zero and pole structure for both
filters. We can clearly see that the IIR filter has smaller numbers of zeros and
poles with similar stopband attenuation to the FIR filter.

Magnitude Response (dB)

T T T T T T T T

Magnitude (dB)

e

Normalized Frequency (xm rad/sample)

Fig. 2.23. FIR LPF filter.
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Fig. 2.26. IIR LPF zeros and poles.

We vividly recognize that although both filters adhere to the same
specifications, the IIR filter is much shorter in length at 6 poles and 6 zeros
whereas the FIR filter requires 42 zeros.

2.5 MATLAB® filter design tools

As mentioned at the onset of this chapter, we will not discuss the ins
and outs of designing FIR/IIR filters per se, as there are well-developed
and sophisticated computer programs and many standard DSP books
readily available, detailing the various algorithms and procedures. We will,
however, introduce a number of MATLAB® functions that can be used for
this purpose, after briefly discussing some of the common approaches for
filter design.
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For designing FIR filters, that is, filters without feedback components,
the two main methods are the impulse response truncation (IRT) method
and windowing method. The IRT method (Porat 1997) is one of the simplest
ones and is based on truncating an infinite impulse response (ideal filters
have infinite impulse response characteristics). Although it is simple in
structure, it has some adverse effects and undesirable frequency-domain
characteristics, rendering it somewhat inadequate when used by itself. On
the other hand, the windowing method is more practical and can be used
to alleviate some of the artifacts of the IRT method and (as the name
implies) is based on choosing an appropriate window type for a desired filter
design (we will discuss windows in more detail in Chap. 8 and introduce
their various characteristics viewed in the frequency-domain). The general
rule of thumb with filters is that the higher the order, the steeper the
filter — but with a higher order filter, the longer the delay. However, even
when using the windowing method for FIR filter design, the filter order
that results may not necessarily be the minimum possible and hence not
guaranteed to be optimal. Thus, additional design methods such as the
least-squares design and equiripple design methods are commonly used to
arrive at optimal filter orders. Equiripple design can be used to control the
maximum error for the frequency bands of interest while constraining the
filter’s order. Interestingly enough, for IIR filter design, the most common
design approach is actually designing an analog IIR filter first and then
transforming it to an equivalent digital filter. Some of the most popular
classes of filters in the analog world include Butterworth, Chebychev, and
elliptic filters.

Table 2.2 summarizes some of the functions available in the MATLAB®
Signal Processing Toobox. For each of the functions, if it is an IIR filter
design function, it will return the filter coefficients corresponding to the
numerator and denominator of H(-), whereas if it is a FIR type, only the
numerator coefficients will be returned as shown below and introduced in
Chap. 6.

k=L, ok
J
k=0 bke

H(e'?) = -
( 1— ZZ;;V ape=I0k

(2.6)

One thing to watch out for in MATLAB® is that the coefficients
ay are represented as positive weights. That is, Eq. (2.6) actually looks
like (2.7) in MATLAB® and hence caution is advised in using the right
polarity for the denominator coeflicients. Also, note that ag will always be
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equal to 1 — compare (2.7) and (2.6).

bo +bre % + -+ bre I
ap+aje=3% + .- +aye N

H(e?) = (2.7)
Looking at the coefficients from a difference equation point of view, be
aware that in MATLAB®, the difference equation will by default assume

that the feedback coefficients are negative rather than positive as shown
in (2.8).

ag-yn) =bo-xn]+by-xn—1+---+br-z[n— L]
—ay-yn—1—---—aN -yn— N] (2.8)

You will also note that in Table 2.2 there are parameters/arguments
listed for each function. In general, for FIR filters, only the feed-forward
coefficients exist, whereas for the IIR feedback filters, feed-forward and
feedback coefficients need to be defined. Each function will return two
vectors B and A corresponding to the numerator and denominator
coefficients for (2.7) respectively. wn defines the cutoff frequency and is
represented in normalized frequency (7 x radians/sample) — the digital
frequency. Thus, a Wn at 0.5 is equivalent to /2 which in turn represents
2kHz for a f; = 8kHz system. You will also have observed that there
are functions that output the optimal order for a given IIR filter —
BUTTORD(+), CHEBYORDI(-), CHEBYORDZ2(-). These will return the optimal
order number N when the user specifies the passband and stopband
frequencies (Wp and Ws) and the corresponding passband and stopband
ripple specifications (Rp and Rs). Finally, in FIR2 (-) we see some
interesting parameters that are not seen anywhere else, namely F' and A.
These two vectors directly determine the filter shape where F represents
the frequency points and A the corresponding magnitude response. Thus,
the MATLAB® command PLOT (F, A) will literally plot the shape of
the filter itself. As usual, the frequency is represented as the digital
frequency normalized between 0.0 and 1.0 where 1.0 corresponds to half the
sampling rate.

Another very useful MATLAB® function is the FILTER(B, A, X)
function. The FILTER(B, A, X) function basically renders the output by
filtering the input X with filter coefficients B and A. An example is shown
in the next section using some of the functions presented here.
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Table 2.2. MATLAB® functions for filter design.

Function name

Type

Description

FIR1 (N, Wn)

FIR12 (N, F, A)

BUTTER (N, Wn)

BUTTORD (Wp, Ws, Rp,
Rs)

CHEBY1 (N, R, Wn)

CHEBIORD (Wp, Ws,
Rp, Rs)

CHEBY2 (N, R, Wn)

CHEB2ORD (Wp, Ws,
Rp, Rs)

ELLIP (N, Rp, Rs, Wn)

ELLIPORD (Wp, Ws,
Rp, Rs)

FIR

FIR

IIR

IIR

IIR

IIR

IIR

IIR

IIR

IIR

Designs Nth order filter. You can also use a 3rd
parameter (‘high’, ‘'stop’, ‘'bandpass’) to
designate the filter type.

Designs an arbitrarily shaped filter using
windowing.

Designs Nth order Butterworth filter. You can also
use a 3"d parameter (‘high’, ‘'low’,

'stop”) to designate the filter type. If wn is
two-element vector Wn = [W1 W2] it can be also
used as a BPF.

Returns the lowest Butterworth filter order N that
loses no more than Rp dB in the passband and at
least Rs dB attenuation in the stopband.

Designs Nth order Chebychev Type I filter with R
dB peak-to-peak ripple where you can also use a
4th parameter (‘high’, ‘stop’, ‘'stop’) to
designate the filter type. Two-element vector for
wn can also be used.

Returns the lowest Chebychev Type I filter order N
that loses no more than Rp dB in the passband
and at least Rs dB attenuation in the stopband.

Designs Nth order Chebychev Type II filter with R
dB peak-to-peak ripple where you can also use a
4th parameter (‘high’, ‘stop’, ‘'stop’) to
designate the filter type. Two-element vector for
Wn can also be used.

Returns the lowest Chebychev Type II filter order
N that loses no more than Rp dB in the passband
and at least Rs dB attenuation in the stopband.

Designs Nth order Elliptical filter with Rp dB
peak-to-peak passband ripple and a minimum of
Rs dB stop attenuation where you can also use a
4th parameter (‘high’, ‘stop’, ‘'stop’) to
designate the filter type. Two-element vector for
Wn can also be used.

Returns the lowest Elliptical filter order N that
loses no more than Rp dB in the passband and at
least Rs dB attenuation in the stopband.

3 Filter Examples

In this section, we will present a number of interesting filter topics including
subtractive synthesis, fractional delays, comb-filters, physical modeling
and the plucked string, and all-pass filters. These topics are indeed very
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intriguing and form the backbone of many applications in computer music
of the past and present.

3.1 Subtractive synthesis and filters

Subtractive synthesis debuted in the 1960s in the shape of the musical
synthesizer keyboard with the widely popular Moog synthesizer. Simply
put, it is based on filtering a rich sound source whereby making the resulting
filtered sound less rich. This may seem a bit strange as we are striving to
make a sound less rich, but it so happens that sounds considered generally
to be musical have a tendency to be structured and hence less rich and
generally less complex than typical “noisy” signals. On a scale of richness,
we can loosely consider white noise the most complex and rich, while a
perfect oscillator least rich. In subtractive synthesis, source signals often
in the form of noise are commonly used as starting points for non-pitched
timbres such as percussive sounds like drums, whereas square, sawtooth,
and triangular waves are more commonly used to carve out pitched timbres.
In a way, subtractive synthesis could be likened the process of sculpturing —
beginning a project with a block of shapeless granite, chipping and carving
away on the amorphous object until a more defined characteristic object
emerges. A typical subtractive synthesis setup is depicted in Fig. 3.1.

Amplitude Envelope

Filters

LFO

Input
signal

Fig. 3.1. Typical subtractive synthesis system.
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It shows an amplitude envelope generator which we discussed in Chap. 2,
and low frequency oscillator (LFO) which further imposes low frequency
modulations such as amplitude modulation and pitch modulation to the
resulting signal.

Below is some MATLAB® code implementing a very basic subtractive
synthesis algorithm using the RAND(-) function to generate the source signal
(noise) and using Butterworth filter design tools to implement a band-pass
filter. I have also included an exponentially decaying amplitude envelope
to make the filtered noise behave even more like a musical sound. In this
example, I opted to use a low-pass and high-pass filter combination to
implement a band-pass filter.

fs = 44100;
x = rand (fs,1); % make random noise
X = X - mean(x); % take out DC

% make band-pass filter using LPF and BPF
[b1, al] = butter (10, 0.5);
[b2, a2] = butter (10, 0.4, ‘high’);

% filter using above coefficients
vyl = filter (bl,al,x);
yv2 = filter (b2,a2,v1l);

<

> envelope the filtered signal
env = 1./exp ((0:(length(y2)-1))/fs).”10;

Q

% play the signal
sound (env’.* y2, fs)

Code Example 3.1. Basic subtractive synthesis example using filters.

In the above example, the RAND(-) function generates 44,100 samples or
a 1 second signal (fs = 44.1kHz). On the 3rd line, the DC part of the
signal is taken off so that x oscillates at the “y = 0” axis. The BUTTER(-)
filter design function produces a 10th order (10 delay components) low-pass
and high-pass filter with cutoff frequencies at 0.57 and 0.47 respectively. It
thus implements a serial band-pass filter when combined. The coefficients
are then used to filter the signal by first low-passing it followed by high-
passing the result of the 1st filter. Finally, the filtered signal is enveloped
to give it a more characteristic amplitude envelope consequently rendering
a more realistic musical quality.
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3.2 Bi-quadratic filter (a.k.a. Bi-quad filter) and the
Wah-Wah filter

A simple but great filter example in musical application is the wah-wah
filter. This filter is commonly used by electric guitarists and sometimes by
electric bassists as well as by keyboard players. You may have heard this in
guitar licks by Jimmy Hendrix or a plethora of funky rhythm guitar grooves.
One of the most popular guitar pedals (little metallic boxes you step on to
control effects for your instrument) is the Jim Dunlop Cry Baby and as you
may have guessed, it is a wah-wah pedal designed for the guitar player. The
reason it is called the wah-wah pedal (or stomp box in general, as musicians
refer to it) is that when an audio signal such as the electric guitar is passed
through it, the filter makes it go “wah — wah — wah ...” (wah-wah ...cry
baby ...). Usually the “wah-wah-ness” or “wwwaaahhh-wwwaaaahhh-ness”
is controlled manually with a potentiometer (also known as the foot-pedal)
but auto-wah-wah pedals also exist which automatically renders the wah-
wah effect without having to manually produce it with your foot. The
concept behind this popular effect is actually remarkably straightforward,
although the timbral and musical results very interesting and perhaps even
complex sounding. The theory behind the wah-wah is implemented by
merely varying the center frequency of a band-pass filter — and that’s it.
Pretty simple huh? One way to implement a dynamically changing band-
pass filter (changing the center frequency) is using the popular bi-quad filter.
The bi-quadratic filter is basically a two-pole and two-zero IIR filter that
can be flexibly used to implement high-pass, low-pass, band-pass, and band-
stop filters. In this section, we will see how it can be used to implement a
band-pass filter to construct the wah-wah effect.

The origin of the name itself — bi-quadratic or its shorthand equivalent
bi-quad filter, can be traced to the transfer function. That is, the
typical difference equation for a bi-quad filter resembles Eq. (3.1) and its
corresponding transfer function (3.2).

yin] =z[n]+ar-x[n—1]+az-zn—2] —by -yln — 1] — be - y[n — 2]
(3.1)

_ 14+a1-27 +ag-272
o 1+b1~2’_1+b2'2_2

H(z) (3.2)
Equation (3.2) can of course be rewritten in the more common form by
multiplying 22 to the numerator and denominator resulting in Eq. (3.3).

z2+a1~z+a2

H(z)=2 11 =72 .
(Z) Z2+b1'zl+b2 (3 3)
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We can see in Eq. (3.3) that both the numerator and denominator are in
the form of quadratic polynomials (quadratic equations refer to polynomial
equations of the second degree) — two quadratic polynomials or bi-quads
and hence its name. Now, let’s try to put the above transfer function into a
more compact form by finding the roots of the numerator and denominator.
We know that the roots of the numerator and denominator take on the usual
form shown below in (3.4) and (3.5) respectively.

70,1:|: 0374'&2

— 3.4
z 5 (3.4)
b4 1by by /02— 4 by
n 2.1 - 2
—b; b\ 2
=—4 =) —b 3.5
> y(2) - (35)

Let us concentrate on the 2nd order polynomial roots of the denominator,
namely the poles which determine the resonant characteristics of the bi-
quad filter. The general solution of the above equations can be represented
in terms of real plus imaginary components as seen in Eq. (3.6). For real
valued roots, there would obviously be no imaginary components.

2=A+jB (3.6)

If the roots require an imaginary axis (inside of the square root is negative),
they will be represented as conjugate pairs as discussed in Chap. 6 and seen
in Sec. 2.4 earlier in this chapter. Equation (3.6) can also be represented in
polar form using the Euler identity as follows:

z=R-etb (3.7)

R is the Euclidian distance defined by the real and imaginary components
A and B as seen below with the phase shown in Eq. (3.9).

R=+/A?+ B2 (3.8)
B
6 =tan"' — .
an”" - (3.9)

Remembering from Chap. 6 that the poles need to stay within the unit
circle for stability, we make sure of the following:

R<1 (3.10)
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The same approach can be taken for the numerator corresponding
to the zeros on the z-plane. Thus, we can now represent the transfer
function in Eq. (3.3) using the Euler identifies as shown in (3.11) where
the subscript zr refers to the zeros and p to poles. We also find that the
imaginary components conveniently cancel each other out in penultimate
step of Eq. (3.11).

(z — Rar - ejg”) (2 — Rar - eije”)

H(z) = (z—Rp-e9%) - (z — Ry, - e79%)

2 —j0 160 2 j0 —jé
22— Ry -e % . 2 R, . et . o 4 R2, . 0o . 10
ZQ_Rp.e*JQP 'Z—Rp'ejep'Z+R:,2,-€J9p'€739”

22— R.p-e 9% .z — R, -e% . 2+ R .1
22— Rp-e 9% .2 —R,-e% .24+ R2-1

22 — Rup - (cosO.r —jsinb.r) -z — Ra.r - (cos Oz + jsinb,,) - 2 + R2,

22 — Ry - (cosbp — jsinbp) -z — Rp - (cosbp + jsinby,) - z + R2

_ ZQ_Q'RzT'COSGZT.Z+RgT
22 —2-Rp,-cosbp-z+ R

(3.11)

The results of (3.11) can then be rewritten into the form shown in (3.12)

by dividing the numerator and denominator by 22 or multiplying by z~2.
Hz) = 22 —2 R, -cosly - 2+ R2, ' ﬁ
22 —2- Ry, cost), -z + RZ z72

_ 1—2-R,-cosf,. - 271+ R2 - 272 (3.12)

1—2-Rp-cost9p-z—1+R12,-z—2

We can now eyeball the difference equation from the above transfer
function where the feed-forward components (numerator) and the feedback
components (denominator) result in the following two-tap IIR system:

y[’I’L} = x[n] —2- R, - costy, x[n - 1} + R?, . $[’n — 2]
+2- Ry -cosby, - yln—1] — R - y[n — 2] (3.13)

We note that this bi-quad difference equation is actually a function of
both the radii R,,/R, and frequency 6, /6,. Also, upon closer scrutiny, we
observe that the second tap’s coefficients (n — 2) are independent of 6 for
both the feedback and feed-forward components. This has some important
implications as we can tweak the frequency response and the system’s
resonant structure by changing R, while keeping 6, unaltered. The digital
frequencies 6, and 6., are the pole and zero frequencies respectively and
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from Chap. 6, we remember that they have the relationship shown in (3.14)
for sampling period T' (1/fs). Thus, we can define the frequency f as the
center frequency (resonant frequency) commonly denoted as f, as shown in
Eq. (3.15) (we used 0, instead of 6, so that there is no confusion between
zeros and poles).

f=w-T=2-7-f-T (3.14)
— 920
fo=5-"7 (3.15)

In general, moving R, towards 1 increases the gain at a particular resonant
frequency f, (the absolute value of |R,| has to be smaller than 1.0 in order
for this filter to be stable). We also note that R, simultaneously acts as
a dampening coefficient, and when R, = 0, the bi-quad filter becomes an
FIR filter due to the absence of feedback components.

Since zeros can be regarded to generally have anti-resonance
characteristics (when inside the unit circle), having a pulling effect of the
frequency response contour (see Chap. 6 for details) at the zero locations,
one common method of making the bi-quad a band-pass filter is by placing
the two zeros at DC (z = 0) and Nyquist (z = —1) on the z-plane (real
axis). This is shown in Fig. 3.2.

0.8F =
0.6 g
0.4r =
0.2F 1

Imaginary Part
=
-4
1

0.2f -
0.4f -
0.6} -

Real Part

Fig. 3.2. Bi-quad’s zero locations acting as a band-pass filter.
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Thus, in implementing the band-pass filter via the strategic placing of the
zeros, all we need to do is solve the 2nd order polynomial of the numerator
of the transfer function by setting z = 0 and z = —1 [zero locations in
Eq. (3.3)]. The solution for the numerator part of the transfer function is
given by

G(z)=2>+a1-z+as (3.16)
and the roots for the zeros are solved via Eq. (3.4) and setting z = 1 and
z = —1 as shown again below for convenience.

—a1 +ar —4-
P— ‘2” = (3.17)

Consequently, we get two equations which is sufficient for solving for two
unknowns a; and as.

_ fan —4-

2l = ar 31 © 1 (3.18)
—a — Jar — 4.

PR 2 S (3.19)

z=—1 2

Rewriting Eqgs. (3.18) and (3.19) and solving for a; and ag yields the
following feed-forward coefficients.

—a1+vay —4-az =2 (3.20)
—a1—Vai —4-ag = —2 (3.21)

Adding (3.20) and (3.21) yields (3.22) thus giving us a; as shown below.
—2-a1=0—a=0 (3.22)

Solving for as, by rearranging either Eq. (3.20) or (3.21) and plugging in
a1 (=0) we get az = —1.

—a1+Var —4-a, =2
var —4-a2 =2+ aq

a174'a2:(2+a1)2

— (9 2
aZ:m(%czl) (3.23)
L0 (2407

as ~1 (3.24)

a1=0 — 4
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In terms of the transfer function, the feed-forward component is as
shown in Eq. (3.25) and the resulting complete transfer function as shown
in Eq. (3.26) when the numerator and denominator are divided by 22 as
before. The difference equation from inspection can be quickly determined

from (3.26) and is revealed in Eq. (3.27).

Gz)=(z-1(z+1) (3.25)
1—272
H(z) = 1—5 Ry-cosf, 21+ k2 - 22 (3.26)
y[n] = z[n] —x[n—2]+2- R, -cosb,-yn—1] + RIQ) ~y[n — 2] (3.27)

By placing the zeros at the 0 and fs/2 frequency locations (DC and
Nyquist), we can now use it as a dynamic band-pass filter as it allows
us to vary the resonant frequency f, in Egs. (3.14) and (3.15) — and voila
we have our wah-wah bi-quad filter ready for some action. However, before
we go off to code the bi-quad filter into our favorite computer language,
there is one more interesting issue that needs to be addressed, namely the
Q-factor issue. We will not go into a tangent and delve on the details of the
Q-factor and its relationship to bandwidth which is best explained through
Laplace transform analysis; but suffice it to say for now, R, is used to
control the sharpness of the BPF. That is, higher R, values result in higher
pole gain and narrower bandwidth (sharper tent) and vice-versa. The next
four plots (Figs. 3.3 and 3.4) show a number of different f, and R, values
with zeros at the DC and Nyquist locations obtained via the MATLAB®
code shown below.

Rp = 0.98; % coeff. for individual

% control over Q
f0 = 3000; % center frequency in Hertz
fs = 8000; % sampling frequency in Hertz
wT = 2*pi*f0*1/fs; % analog frequency in radians

o

The difference equation coefficients
= [10 -2];
= [1 -2*Rp*cos (wT) Rp~2];

[Clen

% frequency and phase response
freqz (b, a)

Code Example 3.2. Bi-quad band-pass filter.
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Bi-quad band-pass filter with R, = 0.90, f, = 1 kHz (top) and 3 kHz (bottom).
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Fig. 3.4. Bi-quad band-pass filter with R, = 0.98, f, = 1 kHz (top) and 3 kHz (bottom).
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Another interesting effect somewhat similar to the wah-wah filter is
the so-called phaser effect which is implemented not via a variable band-
pass filter as we have seen with the wah-wah example, but via a dynamically
changing band-stop (notch) filter. Notch filters actually have characteristics
of strong phase shifts around the notch frequency areas and when the
unprocessed signal is combined with the processed signal, various degrees
of phase cancellations result. We could design a dynamic notch filter by
placing zeros and poles so as to render a band-stop filter configuration as
we did for the wah-wah effect and the band-pass filter. We will not present
it here, as we have shown you the methods and tools to accomplish this
task — sounds like a good project for a bank holiday.

3.3 The Comb-filter

A very interesting and musically effective filter is the so-called comb-filter.
It is named the comb-filter due to shape of the magnitude response as seen
in Fig. 3.5 — it resembles a hair comb. There are two ways of implementing
the comb-filter — via FIR and IIR designs as is usually the case for any
filter. The comb-filter’s feed-forward difference equation and its frequency

10 T T T T
ZJEEIRN / /
3 0\ \ |
= \ o \ / [ \ /
= -5p \ | \ { \ [
g / \ \[ \/ \
= -10f \ \ 1
o I A R R B
0 0.2 0.4 0.6 0.8 1
Normalized Frequency (xm rad/sample)
100 T T T :

_50h _

Phase (degrees)
L
= o

0 0.2 0.4 0.6 0.8 1
Normalized Frequency (xm rad/sample)

Fig. 3.5. FIR comb-filter with L = 10 and b1 = 0.8 with magnitude response (top) and
phase response (bottom) (MATLAB® code FREQZ(]1 ZEROS(1, 8) 0. 8)).).



234 Introduction to Digital Signal Processing

response are shown in Eq. (3.28) and Fig. 3.5 where L is the amount of
delay.

y[n| = z[n] + by - z[n — L] (3.28)

The difference equation for the IIR version of the comb-filter is shown
in Eq. (3.29) and Fig. 3.6. As expected, the sharpness of the peaks are
more pronounced due to the resonant characteristics of the poles in the IIR
version.

yln] = zln] + a1 - yln — L] (3.29)

In Fig. 3.7, we can see a range of different coefficient values for the FIR and
ITR comb-filters with the delay length L set to 11 samples. We can clearly
observe that the sharpness of the valleys (zeros) and peaks (poles) are a
direct function of the filter coefficients — the closer the coefficients are to
the unit circle, the more pronounced the peaks become and vice-versa for
both FIR and IIR versions of the comb-filter. Let’s now take a closer look at
the comb-filter and try to interpret it with the tools we have learned so far.

Z
g St - \ 1
2 \
‘2 0’\/ \/ \_/ \/
g
2 S -
-10 ; : ' '
0 0.2 0.4 0.6 0.8 1
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gﬂ \
S o0p 1
2
2 50 _
(=
-100 : : : :
0 0.2 0.4 0.6 0.8 1

Normalized Frequency (xm rad/sample)

Fig. 3.6. IIR comb-filter with L = 10 and b1 = 0.8 with magnitude response (top) and
phase response (bottom).
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Fig. 3.7. Frequency response of comb-filter with coefficients from 0.1 to 0.9 in 0.3
increments. Top is FIR and bottom is IIR version.

3.3.1 Comb-filter interpretation

Just by looking at the FIR and IIR difference equations, we can somewhat
see how we get a frequency response as seen in Figs. 3.6 and 3.7. That is, in
Egs. (3.28) and (3.29), every Lth delayed sample is accentuated by adding
its “Lth presence” to the output y[n]. Unlike the FIR, version, however, the
ITR version keeps an attenuated echo of the input samples in its feedback
buffer delay line which gets accentuated every Lth sample as the output
again becomes the input. Hence, in the IIR version of the comb-filter,
every Lth sample is emphasized, reemphasized, re-reemphasized, re-re-
reemphasized, . .. etc. due to the feedback loop. This results in a perceivable
pitched output signal if the output is in the pitch range — the delay is
short/long enough so that we can hear a pitch.

To get a more thorough understanding of the comb-filter and its
tendency to accentuate certain samples dictated by the delay L, let’s
conduct an impulse response analysis. By passing the filter with a unit
impulse, we can see a pattern emerging — a pulse at regular intervals
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characterized by integer multiples of the delay length L as shown in (3.30).

h[0] = 8[0] + 0 = 1
h1]=0+0=0

h[L]:0+a1-1=a1
h[L+1]=0+0=0 (3.30)

h[2-L]=04ay-h[2- L) =a?

hlk- L] =0+ ay - hlk- L] = af

For the filter to be stable, the IIR coefficient has to adhere to the following
condition:

lag| <1 (3.31)

This condition for the IIR coefficient should be evident from the results in
(3.30) as the coefficient’s power increases at integer multiples of L. In other
words, if |a1| is not a number that is smaller than 1, the comb-filter will
eventually (and quickly) blow up — reach a state where the output will
increase without bound. On the other hand, if |a;| is some number smaller
than 1, the filter output will at some point in time reach a very small
number. This small number, after a while will approach 0, thus making
the filter stable (see Chap. 6 for further details on stability issues with IIR
systems). Hence, via the impulse response interpretation, we see how every
Lth sample gets some serious attention in the case of the ITR comb-filter.
Let’s next analyze the comb-filter via the frequency response and
z-transform approach and interpret the filter in terms of its zeros and poles.
First, since it is an IIR filter with no feed-forward component, we should
expect an all-pole z-plane as shown in (3.32) with |a1| < 1 for stability.

1

H&) =17

(3.32)
We can solve the denominator for its roots and obtain the pole locations as
follows

l—a;-z7t=0

2L —ap- 2k 2L =0

(3.33)
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arriving at (3.34),
L =a. (3.34)

For simplicity, let’s set a3 = 1 (this should, however, NOT be the case for
this IIR filter for stability’s sake, but it’ll make the math look easier!), in
which case Eq. (3.34) becomes even simpler as shown in Eq. (3.35).

=1 (3.35)

We know from algebra that Eq. (3.35) will have L number of roots (anything
to the Nth power will have N roots). As usual, to compute the frequency
response, we need to set z = /¢ in Eq. (3.35) resulting in (3.36).

zL|Z:ej9 = () =% =1 (3.36)
Now, when we apply the Euler identity to Eq. (3.36), we recognize that the
imaginary component is 0 at all times — there is no imaginary component
on the right hand side of Eq. (3.37). Stated in another way, the result must
be a real number and must be equal to 1. Hence, we need to find the specific

0 values that will satisfy Eq. (3.37) and recognize that the solution is met
when 0 adheres to Eq. (3.38).

cos(f- L)+ jsin(f-L)=1 (3.37)
0=Fk-2r/L, wherek=1,2,...L (3.38)

In other words, whenever § = k-27 /L, the imaginary component (sine part)
disappears, leaving only the real part — the real component (cosine part)
equals 1 as shown below.

el (E) e )

=cos(2-m-k)=1 (3.39)
What Eq. (3.38) tells us when viewed from the z-plane is that 6 represents
L number of points on the unit circle (when a; = 1), equally subdivided
into 27 /L angular increments as shown in Fig. 3.8.

Going back to Eq. (3.34) we can see that for |a;| < 1, the poles in
the z-plane will be inside the unit circle which guarantees stability for the
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Fig. 3.8. The z-plane showing pole configuration for IIR comb-filter L = 6 and a1 = 1.

ITR comb-filter as depicted in Fig. 3.9. A similar analysis can also be done
for the FIR version of the comb-filter which I’ll let you set aside for a nice
Sunday afternoon’s DSP session. However, note that the zero locations for
the FIR are between the pole locations of the IIR comb-filter, although
equidistantly spaced as before as shown in Fig. 3.10 (see also Fig. 3.7).
This should make sense as the peaks of the FIR filter must occur at the
same frequency locations as the IIR version which means that the zeros of
the FIR filter (which have pulling tendencies unlike the poles which have
pushing characteristics) must be placed between each peak location (poles
are placed at each peak location and zeros between peaks).

3.3.2 Comb-filter examples

Comb-filters are very musically effective and have been used widely by the
musical community as well as music technology researchers, especially as
signals with no pitch characteristics can be filtered into pitched musical
materials. A simple example of filtering a signal using the ITR comb-filter
is shown in the short MATLAB® Code Example 3.3.
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% read the audio file
[x, fs] = auread (’'loveme22.au’);

% set parameters

f = 440; % set frequency for comb-filter
L = round(fs/f); % set delay length
coef = 0.99; % set dampening coefficient

construct the IIR filter coefficients into an array
and filter

= [1 zeros (1,L-1) coefl;

= filter (1, b, x);

oP o

Ao

o

play the resulting sound
sound (y, fs);

Code Example 3.3. Comb-filtering of audio signal with fundamental frequency 440 Hz.

In the above code, the MATLAB® function AUREAD(:) (or WAVREAD)
simply reads a soundfile and stores it in the input variable x. This is followed
by initializing a few of the comb-filter parameters and setting frequency £ to
tune the comb-filter and determine the corresponding integer delay line L.
We use the ROUND(+) function as L needs to be an integer. In this example,
we use an IIR coefficient of 0.99 making the filter quite sharp and set the
overall ITR coefficients b accordingly. Note that we pad the IIR weights with
zeroes using the MATLAB® function ZEROS(-) to build the appropriate
delay line array. Finally, we filter the signal and play the output using
the SOUND(-) function. Depending on what sort of sound file you used for
the input, you will hear different reinforcement characteristics of pitchiness
subjected onto the input signal. Play around with the frequency £, comb-
filter coefficient coef, and other sound files to get a feel for the comb-filter.

Let’s use a specific kind of input signal for the above comb-filter —
namely a white noise signal. Even though white noise does not have any
pitch characteristics, passing it through the comb-filter will produce a pitched
sound. The MATLAB® code with white noise as input is shown in Code
Example 3.4. Note that this code is essentially the same as example Code
Example 3.3, the difference being the input signal x which is now a white noise
signal. Here, we used the RAND (-) MATLAB® function to generate a 1 second
noise burst. The line x = x — mean(x), as usual, simply makes the noise signal
have a 0 mean value so that the input x vibrates on the y = 0 axis (DC offset
removal). We further add an amplitude envelope to the output signal to give it
more of a musical character as shown in Code Example 3.5.
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% set fs and generate white noise signal of length 1 sec

fs = 22050;
x = rand(fs,1);
X =X — mean(x); % get rid of DC offeset

% set comb-filter coefficients

f = 220; % fundamental
L = round(fs/f); % delay length
coef = 0.99; % IIR coefficient

oP

build delay vector and filter
b = [1 zeros(l,L—1) coef];
y = filter(1l, b, x);

% play sound

sound(y, fs);

Code Example 3.4. Comb-filtering of noise.

Q

% set fs rate and generate white noise of length 1 sec
fs = 22050;
x = rand(fs,1);

x = x — mean(x); % get rid of DC offeset

% set comb-filter coefficients

f = 220; % fundamental
L = round(fs/f); % delay length
coef = 0.99; % IIR coefficient

o

build delay vector and filter
b = [1 zeros(1l,L-1) coef];
y = filter(1l, b, x);

% create amplitude envelope for output
decay = 8;
expEnv = exp ((0:(length(y)—1))/length(y));

expEnv = (1./expEnv)." decay;
% envelope output signal
v =y .* expEnv’;

sound(y, fs); % play sound

Code Example 3.5. Comb-filtering of white noise with amplitude envelope.
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The resulting sound is quite remarkable — not only does the comb-
filter make a noisy signal into a pitched one, the mere addition of a simple
amplitude envelope makes it even musically interesting and maybe, dare 1
say, naturally sounding. Play around with the amplitude envelope’s decay
characteristics (or try a different envelope shape altogether) as well as the
fundamental frequency parameter — what musical instrument does it kind
of sound like? I think if we had to make a guess, we could say that it sounds
like a really bad and bright metal-stringed guitar — is this a coincidence?
Read on to find out in the next section.

3.4 String vibration and standing waves

We may remember from our physics class at some point in our lives that
one memorable lab session where we fixed a rope to a door-knob, held the
other end of the rope, stretched the string to make it tight, and gave it
a healthy jolt, causing a pulse to propagate along the rope. If we really
poke around hard in our long term memory section of the brain, we may
also recollect seeing a wave traveling towards the door knob, bouncing back
once reaching it and returning back to your hand but in an inverted form
as seen in Fig. 3.11.

If the string was tapped really hard, the back and forth propagation
would go on maybe a tad bit longer, with the upside down wave bouncing
at the hand and making its way back towards the door-knob but with a
less pronounced hump and finally dying out completely after two or three
trips back and forth. This is what happens to a stringed instrument when
plucked as shown in Fig. 3.12.

Fig. 3.11. Our favorite physics experiment at Ms. Newtown’s class.
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bridge
2 /\ « nut
» \/ X

Fig. 3.12. Vibrating string on a guitar with bridge and nut.

An important mathematical formula for a vibrating string can be expressed
as a combination (superposition principle) of two traveling waves in
opposite directions according to Eq. (3.40).

ylz,t) =yt +z/c) +y,(t —x/c) (3.40)

K
c= \/; (3.41)

In Eq. (3.40), x is the displacement of the string and ¢ the speed of the
traveling wave. The traveling wave’s speed ¢ can be further characterized
by the string’s tension and linear mass density p as shown in Eq. (3.41).

If we go back to the physics experiment and excite the rope at a regular
interval, the scenario would result in forward and backwards propagating
waves, traveling at the same time and causing interference. The ensuing
results produce what are referred to as standing waves — when we have two
traveling waves propagating in opposite directions on the same string, the
traveling waves do not actually “travel” anymore but stand still vibrating
vertically instead.

It so turns out that in a real world situation, a string tied at both ends
of length L/2 causes natural resonances to occur at k - 27/L radians/sec
where k is an integer number. This can be viewed as standing waves in
a vibrating string situation, causing multiple vibrational modes to occur
as well as corresponding nodes as shown in Fig. 3.13. The first mode is
equivalent to the fundamental frequency, the second mode, with a center
node that vibrates twice as fast, equivalent to the octave and so on. An
interesting trait about nodes is that if one were to precisely touch a node
of any mode during its vibration, the touching of the node would not affect
the vibration of that particular mode in any way whatsoever (of course this
is physically impossible to achieve without loss of energy due to friction
of some amount between the finger and string). On the other hand, if one
would touch the anti-node (the maximum of each mode) we would dampen
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Fig. 3.13. Modes of vibration and corresponding nodes.
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Fig. 3.14. First and second half of a round trip.
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Fig. 3.15. Full cycle after first mode makes a full round trip.

that particular mode and hence corresponding harmonics that have maxima
at the same anti-node location, causing those harmonic to cease to vibrate.

Note also that the length of the string is directly related to the
wavelength A as shown in Fig. 3.14. That is, the lowest frequency (first
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mode) which corresponds to the fundamental frequency needs to travel
back and forth once and make a round trip in order to complete a full
cycle (Fig. 3.15). The modes and nodes are very important in stringed
instruments and can be thought of harmonics which in general heavily
influence the sound characteristics or timbre of musical instruments and
audio signals.

In the above physics experiment, there was a considerable amount of
friction between the rope and fingers/hands causing the vibration of the
string to decay rather quickly. However, a firm base for the string at either
end (called the nut and bridge for stringed instruments) will cause the decay
and dampening of the left and right traveling waves to be prolonged, thus
sustaining the vibration of the string. For an ideal string vibration system
where there is no energy lost at all, the left and right traveling waves would
reflect off the boundaries in perpetuity. Obviously this is not the case in
the real world as energy dissipates mainly in the form of acoustic energy
as well as thermal and friction-based energy lost at the bridge/nut part
of an instrument. All of this stuff that we are talking about here can be
approximated and represented with digital difference equations and digital
filters — you may have observed that the resonant characteristics of strings
are similar to the behavior of comb-filters (k - 2w/L). This brings us to the
next topic where we move from the real world of the physical to the virtual
world of modeling known as physical modeling.

3.5 Physical modeling synthesis and the plucked string model

In the previous section, we talked about the fundamental behavior of
strings and the superposition principle of left and right traveling waves that
express standing waves in stringed instruments. In this section, we will show
how we can model those physical real-world characteristics using modeling
techniques known as physical modeling. Physical modeling synthesis refers
to a research field where the main aim is to model acoustic instruments
through mathematical approximations and algorithms. Physical modeling,
however, is not limited to modeling of acoustic instruments and many
examples including mimicking analog synthesizers and circuitry such as
compressors, amplifiers, and general vacuum-tube-based technologies are
also being implemented via digital means. Physical modeling synthesis
models are also often referred to as waveguide models and have had
much success in mimicking acoustic instruments due to the numerous
contributions by researchers especially from Stanford University. Waveguide
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models are typically constructed via digital filters and delay lines making
it ideal for implementation using digital signal processing techniques.

To come up with a difference equation and filter for the plucked string
model, we will need to try to go from the real-world string to the digital-
world string model. We will start by digitally representing the left and right
traveling waves of Fig. 3.12 and Eq. (3.40) as shown in Fig. 3.16.

- L/2 sample delay —

> L/2 sample delay -

Fig. 3.16. Simplified digital waveguide of the left and right traveling wave.

What we have done here is replace the left and right traveling wave paths
with two digital delay lines of length L/2 and substituted termination points
with inverting multipliers at the bridge and nut part of the plucked string
system. More specifically, since the delay lines are digital, the system will
actually look more like Fig. 3.17. We have also added the loss of energy
factor for each half of the string itself (delay line L/2) which is characterized
by the variable g and furthermore have included the loss of energy at the
bridge and nut denoted by coefficients —a and —b. The energy loss g can be
regarded as internal friction within the string and drag with the surrounding
air during the production of sound (Smith 1992).

L/2 sample delay

—<4+— D —<— D —<— — D=4 D -
g g g g ! ' g

L/2 sample delay

Fig. 3.17. Digital waveguide with loss at each delay unit.
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As we can see from Fig. 3.17, when the propagating “digital wave”
reaches the end of each digital delay line, its sign gets inverted and
dampened by the negative multiplier —a and —b. If a, b, and g were equal
to 1, there would be a full reflection at the termination points and no
loss of energy within the string itself, causing the traveling wave to loop
forever. If |a| < 1 or |[b| < 1 or |g| < 1, the result will be a gradual loss
of energy causing the wave propagation to stop after a number of runs. As
we know from experience, a guitar string never sustains vibration “forever”
and decays after a short period. The dampening factors a, b, and g reflects
this attribute in the string model.

Now, let’s further simplify the above configuration as depicted in
Fig. 3.18 by exploiting the LTI’s commutative property — we combine
the overall internal energy loss factor of the string and lump it into a single
variable g”:

gll2 . gll2 — gL (3.42)

The termination dampening factors can likewise be grouped into a single
dampening variable as shown below.

(=b)-(—a) =a-b=c (3.43)

Since we’re at it, we may as well consolidate losses g and c into a single loss
component ¢ as shown in Eq. (3.44)

g=g" ¢ (3.44)

and finally combine the two delay lines of length L/2 into a single long
delay line L. The beauty of LTI systems comes into full force here ...

N

L sample delay

-1
<]
q

Fig. 3.18. Consolidated dampened plucked string.

Next, if we rearrange and modify the above and add an input x, output
y, and a feedback delay component, we arrive at the configuration shown



248 Introduction to Digital Signal Processing

x[n] —== —»y[n]

Fig. 3.19. Ideal string feedback filter.

in Fig. 3.19. This filter will be familiar to you as we have studied this in
Sec. 3.3 — the feedback comb-filter with |g| < 1 for stability!

In Sec. 3.3.2, we already listened to the feedback comb-filter and it
did not really sound like a realistic plucked string sound. One of the main
reasons this is the case is that for the above ideal string comb-filter model,
all modes of vibrations are dampened equally. That is, all of the harmonics
die away at the same rate with ¢ determining their fate of decay. This,
however, is not how it works for real strings. As a matter of fact, for
real strings, the higher modes generally die away faster than the lower
ones, with the fundamental mode usually dying away last. One very clever
trick to reflect this in the plucked string model is shown in the Karplus-
Strong plucked string model (Karplus and Strong 1983). Kevin Karplus and
Alex Strong came up with this beautifully simple, yet very effective idea of
basically inserting a feedback low-pass filter to Fig. 3.19. Because the low-
pass filter is part of the feedback loop, it repeatedly low-passes the output
signal, thus dampening the high frequency components more and more as
time passes. This small tweak effectively models the different decay rates
of the modes of a vibrating string — higher frequencies as a result decay
faster and lower ones are less affected. The result of this wonderfully simple
filter is shown in Fig. 3.20.

The low-pass filter used in the Karplus-Strong model is the simplest
two-point average filter given by the difference Eq. (3.45). This difference
equation simply adds the current sample and the last sample and divides

X[P?] —h@-} - y[n]

el [

Fig. 3.20. Basic Karplus-Strong plucked string algorithm.
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x[n] —»® »y[n]
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Fig. 3.21. System diagram of Karplus-Strong model with low-pass filter.

the sum by two — computing the average.

z[n] + z[n — 1]

. (3.45)

yln] =
Finally, when we write out the difference equation of Fig. 3.20 using the
two-point averaging filter, we arrive at the result shown in Eq. (3.46) and
the basic Karplus-Strong plucked string model system diagram (Fig. 3.21).

yln— L] +yfn—L—1]
2

y[n] = z[n] + (3.46)
To take the plucked string model for a spin, we fill and initialize the delay
line with white noise simulating a pluck (this is sort of like having thousands
of picks and simultaneously picking the string at all points at the same time)
as shown in Code Example 3.6 (compare it to the previous straightforward
feedback comb-filter and notice the difference in timbre).

The magnitude and phase responses of the plucked string model are
shown in Fig. 3.22. We can see (and hear) that with the introduction of
the low-pass filter, each of the harmonics now have different dampening
characteristics. We can further observe how the poles gravitate away from
the unit circle and towards the origin as we approach the Nyquist limit
as seen on the z-plane in Fig. 3.23. This is as expected and desirable
as it translates into having more dampening for the higher frequency
components and less for the lower ones. There are of courses still many
problems and tweaks that we have not elaborated on here and will
leave it for future study for the curious ones as the algorithms are well

documented in numerous papers and articles (refer to end of this chapter for
leads).
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fs = 22050;
len = 2; % 2 seconds
f = 220; % fundamental frequency

L = round(fs/f); % equivalent delay length

x = rand(l, L); % make noise: L number of samples

x = [x zeros(l, (len*fs-length(x)))]; % pad 0 to make 2 seconds
a = [1 zeros(1l,L-1) -0.5 -0.5]; % feedback coefficients
vy = filter(1l, a, x); % filter the pluck

sound (y, fs);

Code Example 3.6. Basic Karplus-Strong plucked string.
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Fig. 3.22. Karplus-Strong filter frequency response for L = 20.

Before we move on to other topics pertinent to filters, let’s briefly
analyze the frequency response by performing the z-transform on the
difference equation (3.46). This will result in (3.47).

1
T 1-052"L —0.5z—(L+D

H(z) (3.47)
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Fig. 3.23. Karplus-Strong z-plane for L = 20.

H(z) can be rewritten as seen in Eq. (3.48) by bringing out the common
2z~ delay component.

1 1

T 1_052-L —05.,-(L+D) _ J
0.5z 0.5z 1_ZL.(1+2 )

H(z)

(3.48)

We recognize that this reflects how we actually started out analyzing the
plucked string model in Fig. 3.20 — a delay line followed by a low-pass
filter architecture. That is, the z~% corresponding to a lossless delay line
(frequency response 1) and (1+271)/2 corresponding to an averaging filter
representing energy dissipation as shown in Eq. (3.49) and Fig. 3.24.

1
1- Hdelay(z) : HLPF(Z)
This is one of the great conveniences that LTI systems afford us in signal

processing. It allows us to add additional LTI DSP blocks and modules
to an existing LTI system to modify, tweak, remove, and alter a system’s

H(z) =

(3.49)

behavior. It is thus not a stretch of the imagination to see how we got the
frequency response shown in Fig. 3.22 as it is a feedback comb-filter colored
by a two-point low-pass filter in the feedback loop. As a matter of fact, we
can modify and extend the original Karplus-Strong algorithm by inserting
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Fig. 3.24. Averaging filter frequency response.
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Fig. 3.25. Additional filters for a growing guitar model.
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additional specialized DSP blocks to simulate the decay-time alteration,
moving pick, more accurate tuning (the basic model we talked about here
uses non-fractional delay, see Sec. 3.6.3 for details on fractional delays), and
pluck position as shown in Fig. 3.25.

It is also possible to model different types of plucked string instrument
such as acoustic guitars, electric guitars, basses, as well as the Indian sitar.
The sitar is quite an interesting instrument that has a uniquely shaped
bridge causing friction to occur between the string and bridge itself. This
is usually undesirable for regular guitars as the result manifests in the form
of a buzzing sound, much like buzzing that occurs when strings hit the
frets. For the sitar, however, the buzzing is a critical element providing
the instrument its character. One simple approach in mimicking the sitar’s
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buzzing timbre is utilizing a waveshaping-type approach (Park, Li 2008)
to model the bridge. This helps in distorting the normal mode of string
vibration as discussed earlier, resulting in a dynamically changing buzzing
sound. Improving and tweaking an instrument model obviously does not
have to stop here, as we can also model the sitar body, add a sympathetic
string vibration block, and maybe even include digital effects such as
distortion for the electric sitar, and go on to do some amplifier modeling ...

3.5.1 Direct implementation of difference equations

Up to this point, we used the FTLTER MATLAB® function to implement
the filters and difference equations. However, these will obviously only
work in the MATLAB® environment with the appropriate toolbox — if
you want to port it to a more generic language such as C/C++ you will
need to directly code the difference equations. For example, if we were
to program the plucked string model directly without any proprietary
functions/methods Code Example 3.6 will look like Code Example 3.7. As
you will note, the only real difference between Code Examples 3.6 and 3.7
is the manual implementation of the multiplication/addition and the buffer
updates which is hidden from the user in the FTLTER function. The results
for both code examples will, as expected, be identical.

yBuffer = [zeros (1, N+1)1;

for i = 1: iterations
$ filter signal
v(i) = x(1i) + 0.5*(yBuffer (N) + yBuffer (N41));

update delay line

start from back and go towards beginning

for j = (length (yBuffer)—1):—1:1
yvBuffer (j+1) = yBuffer (3j);
end
yBuffer(l) = y(i); % store current sample to delay
buffer

end

Code Example 3.7. Basic Karplus-Strong plucked string direct filter implementation.
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Looking closer at Code Example 3.7, you will see that we initialized
the delay line (yBuffer) of length N + 1 to zero before filtering. That
is, making the system a causal system where nothing happens until the
“power switch” gets turned on. We can easily set our initial conditions
in our standard implementation of the plucked string code as needed. An
important thing to remember about buffer updating is that we need to
always shift the oldest buffer element first (delete from the buffer) and then
replace it with the next oldest one. The most current sample becomes the
last addition to the buffer after all the shifts have been completed as shown
in Code Example 3.7 [yBuffer (1) = y(1i)]. Finally, it is also possible
to set/retrieve the initial/final conditions of a filter using the MATLAB®
FILTER function by using a fourth input argument (Z£) and an additional
output (Zi) argument: [Y, Zf] = FILTER(B,A,X,Zi). With these
optional parameters, the initial buffer settings/values (zi) and the final
buffer settings/values (Zf) can be set and retrieved for the feedforward
and feedback components respectively.

3.6 Phase as a filtering application

There are countless audio effects that are used at the recording stage,
music production stage, sound design, and compositional stages in musical
creation as well as in live performance situations. One of the most popular
and widely used effect is the chorus effect. It can be quite easily implemented
using DSP filters and has found much popularity in a vast number of musical
situations to make a sound more “full” and “lush.” It is also at times used
for voice doubling — vocalists who do not have a full and thick voice,
lack “presence,” or have shaky pitch often borrow technology to double
the recorded voice either synthetically via DSP techniques, or manually by
singing the same vocal line twice on top each other (while persevering the
original recorded vocal line). The latter obviously takes much more time as
singing the same vocal line in exactitude is not an easy task to say the least
(it is in reality impossible and actually undesirable as we will soon find out).
We will begin the topic of phase exploitation in musical applications starting
with the chorus effect which we briefly introduced in Chap. 3, Sec. 4.2.1.

3.6.1 The chorus effect

The origin of the name chorus effect most likely comes from the sonic
result that is produced by a group of singers as opposed to a solo
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singer. The number of voices directly brings about the quality of richness
and lushness via the ensemble of voices — the chorus. This is also
evident in the traditional Western symphony orchestra culture where an
army of approximately 100 instrumentalists produce a formidable auditory
experience, an experience a single instrument and even a smaller group of
instruments cannot achieve. The string section in an orchestra is such an
example, typically consisting of about 20 violins, 10 violas, 10 cellos, and
6 double basses. It is difficult to describe the perceptual magnificence of
the cumulative sound when the strings all play together at the same time,
even if just playing the same note in unison. The artificial modeling of the
chorus effect is actually quite straightforward in concept and takes into
consideration errors that occur when instrumentalists (including the voice)
play (or sing) together. Let’s say we have two violinists who are reading
from the same score and are playing the exact same notes in terms of pitches
and note durations. No matter how hard they try to play together perfectly,
there will always be some small amount of error and total synchrony is
for all practical purposes unattainable. As a matter of fact, the aspect
of synchrony becomes worse with the addition of more and more violins.
These errors are essentially small delays between the instruments (timing)
and a small amount of detuning (frequency) due to the microscopic tuning
differences between instruments. Again, no matter how hard one tries to
exactly tune an acoustic instrument, when two or more acoustic instruments
play together, there will be a very small amount of detuning. The amount
of detuning will depend on the instrument type, note played, dynamics,
duration of a note, duration of the piece being played, as well as distance
between the sound sources and the listener. These errors, however, are
not necessarily negative features for musical purposes as it results in a
rich and sometimes even “warm” timbre if the artifacts are not extreme.
Of course with electronic instruments, especially digital instruments the
tuning aspect is less of a problem and at times electronic instruments are
detuned purposely to give it a more natural feel (add error) — the chorus
effect feel if you will. I remember doing this with the Yamaha V50, an
FM-based synthesizer back in the early 1990s — programming two of the
same electric piano timbres onto two MIDI channels and detuning each
slightly by a couple of cents which resulted in a pretty smooth and warm
electric piano sound. The digital version of the synthetic chorus effect and
its basic architecture is shown in Fig. 3.26 and discussed in detail in the next
section.
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Fig. 3.26. Basic chorus filter architecture.

3.6.2 Multi-tap filters and filter banks

Now, how do we implement a digital chorus filter? As described above,
the two main features are the delay amount and detune amount. The delay
lines used in digital chorus are actually of a time-varying type, implemented
as a bank of multi-tap delay configuration as seen in Figs. 3.26, 3.27, and
3.28. The input voice or signal is routed into a number of channels and
delayed, reflecting the number of voices where each channel’s delay amount
changes dynamically with time. This variable delay produces the detuning
characteristic of chorus, mimicking the delay between real instruments and
the ensuing detuning effect. Notice that in essence, Fig. 3.26 is a feed-
forward comb-filter discussed in Sec. 3.3 with a difference equation and
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Fig. 3.27. Multi-bank filter configuration.
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delay line Mas shown below.
y[n] = z[n] + b - x[n — M] (3.50)

For the chorus filter, M is a function of time, typically controlled via
an LFO (low frequency oscillator). The LFO gently sweeps between its
minimum and maximum amplitude limits, controlling the delay amount.
The LFO sweeper would typically look like (3.51) with maximum amplitude
Apro, sample index n, LFO frequency frro, and sampling frequency fs.

n

Min] = Appo -sin(2- 7 frro - f—) (3.51)
x(n] — = D - D - - D L D
v bo v b <7 by W by 57 b
' 3 ' v
-+ - =+ =+ y[n]

Fig. 3.28. Multi-tap delay line.

The general multi-tap delay architecture is shown in Fig. 3.28 and Eq. (3.52)
which can be viewed as a linear combination of weighted input and weighted
delayed (D = 1/ f5) input samples (FIR filter) with a total maximum delay
of (N - 1)/fs~

y[n] =bo - x[n]+by-xn—1]4+---+by_g-x[n — N —2]
+bn_1-z[n—N —1] (3.52)

It would be rare to have a configuration like Fig. 3.28, where each delay
component is added to the output. It is more common to see delay lines
lumped together prior adding the contribution of the lumped delayed results
to the output. In any case, a dynamically changing discrete delay line can
be implemented by tapping into the various delay locations in Fig. 3.28.
For example, if we want a delay increase from K — 100 to K samples, all we
would need to do is tap into the K — 100th sample, then tap into K —99, ...
and finally K. The accessing of this delay line, also commonly referred to
as a buffer, can be accomplished via a LFO-based indexing scheme as used
in the chorus effect.

For example, if the LFO in the chorus effect is a sine oscillator, we
could set the frequency to a low value such as 0.5 Hz and set the amplitude
component of the sine wave to smoothly vary between the start tap location
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and end tap location — in our example that would be equivalent to K —100
to K. Below is the code for a simple single-bank chorus effect processor.

[x, fs] = auread (’loveme22.au’); % read audio file

buffer = zeros(1,1000); % allocateandinit. buffer (delay line)
y = zeros (1, length(x)); % allocate and init. output

f =0.1; % LFO frequency
startIdx = 500; % start delay in samples
sineTable = abs (sin(2*pi*f*[0:length(x)—1]/fs)); % make LFO

Q

% tap index from startIdx to end of buffer
bufferIndex = round(sineTable* (length (buffer)—
startIdx))+startIdx;

% run chorus filter
for i = 1:length(x)
v(i) = x(i) 4+ buffer (bufferIndex(i));

% update the buffer: shift right (last is oldest)
buffer(2:end) = buffer (l:end—1); % shift
buffer(l) = x(1i); % update

end

Q

% play the sound
sound(y, £fs)

Code Example 3.8. Simple, single-bank chorus effect.

Code Example 3.8 could easily be modified so that we have a multi-bank
chorus configuration: add more buffers with their respective LFO and delay
characteristics; insert the buffers into the main loop so that the program
would look something like in Code Example 3.9. In both examples, we used
some of the special short-cuts offered in MATLAB® to update the buffers
by exploiting the : and end operators without explicitly using nested for
loops as we did in Code Example 3.7. In the end, it does not matter
what method one uses, as different systems and computer-based languages
have their own quirks, idiosyncrasies, and special functions/operators to
deal with specific problems as well as enabling efficient computation of
particular algorithms. The goal is ultimately getting the correct answer
with the desired efficiency.
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for i=1:1length(x)
v(i) = x(i) + bufferl (bufferIndexl(i)) +:---
buffer2 (bufferIndex2 (1)) +---
buffer3 (bufferIndex3 (i)) ;

Q

% update the buffer: shift right (last is oldest)
bufferl(2:end) = bufferl(l:end-1);
buffer2(2:end) = buffer2(l:end-1);
buffer3(2:end) = buffer3(l:end-1);

% update

bufferl (1)

buffer2 (1)

buffer3 (1)
end

o
XX

I
X
=

Code Example 3.9. Simple, single-bank chorus effect.

3.6.3 Fractional delay

Due to the dynamically changing nature of the chorus delays, typically
smoothly changing from 10 ms to about 50 ms, we need to implement
fractional delay lines. If we were to use non-fractional delays, we would
only be able to implement step-wise delays dictated by the sampling rate
fs and integer K as seen in Eq. (3.53). This means that each delay increment
or decrement would be confined to integer units of T' = 1/ f, seconds. Two
common methods for achieving fractional delays are linear interpolation
and all-pass filtering, the latter discussed in Sec. 3.6.5.

1
delaYnon—fractional =K- f_ (353)

S

Linear interpolation of delay is quite straightforward to implement and
is shown in Eq. (3.54) where 7 is the fractional delay amount, ypp[n — 7] is
the delayed output sample value, frac(t) is the fractional part (mantissa),
and int(7) is the integer part of the fractional delay .

yrpln — 7] = ey -yl — (7] + Gimagry 1 -yl — int(r) — 1] (3.54)
ing(r) = 1 — frac(r) (3.55)
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ing(r)—1 = frac(7) (3.56)
aint(T) + aint(T)—l =1 (357)

Note that the resulting fractional delay in essence is just a linear weighting
of two adjacent delayed samples. For example, if the fractional delay we
want is 6.5, the weights ajng(r) and ajne(r)—1 Will be both equal to 0.5, while
the integer delays equal to 6 and 7 respectively:

yrpln — 7]lr=6.5 = 0.5 -y[n — 6] + 0.5 y[n — 7]

However, if the delay is 6.8 instead of 6.5 samples, the fractional delay
will be:

yrpln — 7]lr=6.8 = 0.2 - y[n — 6] + 0.8 - y[n — 7]

Again, the beauty about LTI systems is that we can just add the above
fractional delay difference equation block to the integer multi-tap delay
block and render a dynamically adjustable fractional delay filter version as
shown in Fig. 3.29. With this configuration, the multi-tap block takes care
of the dynamically changing integer delays and the fractional delay block,
the fractional delay part. Eq. (3.54) now simply becomes the difference
equation (3.58), provided that the integer part of the delay is taken care of
in the multi-tap filter. Thus, the combination of integer delay in series with

integer part

. |
y[n] -—+)

fractional part

Fig. 3.29. Multi-tap filter with fractional delay.
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fractional delay will give us a dynamic fractional delay line.

yrp[n — 7] = ao - yln] + a1 - yln — 1] (3.58)
ag =1 — frac(r) (3.59)
ay = frac(r) (3.60)

3.6.4 The flanger effect

As introduced in Chap. 3, Sec. 4.2.1, the flanging effect is very similar to
the chorus effect as it also uses a variable delay line. The main difference
is that the flanger only uses one additional voice and the delay range is
at a lower 1 ~ 10 ms range, opposed to 20 ~ 30 ms which is generally
used for the chorus effect. Like the chorus effect (but even more so here
for the flanger), we do not hear the time delay in terms of an echo as
the delay is too short; rather we hear it is as an effect, thereby changing
the resulting timbre. The word flanging originates from the analog reel-
to-reel days where two tape recorders having the same program (recorded
signal) are played back simultaneously in synchrony. In this scenario, each
tape machine would forcefully and alternately be subtly slowed down via
the application of hand pressure against the flanges (rim of the tape reels
with the hands thus causing a small amount of asynchrony followed by re-
synchronization upon release of the rim). The system diagram is shown in
Fig. 3.30. As we can see, it is indeed identical to the chorus effect in its
basic architecture.

As mentioned above, the flanger, however, has characteristics that are
different from the chorus effect mainly due to the range of delay amount
and the number of voices used. In particular, the comb-filtering effect is a
prominent characteristic of the flanger effect that sticks out, accomplished
by the feed-forward comb-filter illustrated in Eq. (3.61) — an input signal
x[n] (tape machine 1) in combination with a delayed version z[n — M|

LFO
] by

x[n] e = y[n]
: _ v

bo

Fig. 3.30. Flanger filter architecture.
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(tape machine 2).
y[n] = bg - x[n] + by - z[n — M] (3.61)

As we have seen in Sec. 3.3, feed-forward comb-filters use zeros to shape
the frequency response resembling a comb. This is exactly what happens
when the original signal and its slightly delayed image are summed (along
with the dynamically changing delay line). The summing of the two input
signals and the resulting output can be regarded as a consequence of
constructive and deconstructive interference as the delay of the image is
varied with respect to the original input signal, causing the notches (where
the zeros are located) to appear in the frequency response. Similar to the
implementation of the chorus system, we can likewise implement fractional
delay to introduce smooth sweeping of the delay as discussed in Sec. 3.6.3.

3.6.5 The all-pass filter

The all-pass filter as the name implies, passes all frequencies without
alteration to their magnitude values. That is, it has a flat frequency response
as shown in Fig. 3.31.

A

o

Magnitude dB

\

Frequency

Fig. 3.31. All-pass filter frequency response.

But such a filter does not seem to make much sense, nor does it seem
very exciting at all as there is no change in the magnitude response and
seemingly no change to the signal itself. This is somewhat true but not
entirely accurate — there is modification to the signal albeit not to its
magnitude response. The reader may have noticed that there was not that
much talk about the phase aspect when dealing with filters in this chapter.
One of the reasons is that phase is not the most noticeable and evident
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x[n] . +/ -{ 7! | '-1\".*.\,3' = yln]

-a
Fig. 3.32. 1st order all pass filter system diagram.

feature in filtering and signal processing — perception of phase change is
often quite subtle especially when compared to magnitude change. However,
I hope that with the introduction of all-pass filter in this section, we will get
a better feel for this thing called phase and further appreciate its significance
and importance in signal processing.

The difference equation for a 1st order all-pass filter is shown in (3.62),
the z-transform in (3.63), and system diagram in Fig. 3.32.

yln|=a-zn]+zn—-1]—a-yn—1] (3.62)
a4z
H) = 1 (3.63)

Figure 3.33 further depicts the zero and pole configuration which clearly
shows the pole and the zero cancelling each other out (pulling and pushing
at the same frequency points) and hence producing a flat frequency
response.

To wverify that the numerator and denominator of the transfer
function are indeed the same when computing the magnitude response
|H (e79)| (equates to unity gain response), we multiply the numerator and
denominator of Eq. (3.63) by e/%/2 — multiplying the numerator and
denominator with e/%/2 does not change anything as it is analogous to
multiplying it by one. However, by doing so, the results will reveal what we
are looking for.

H(ej‘g) _ a_|_67j70' _ 63:9/2 . a—l—e*j;e.
l+a-e 7 92 14+a-e99

- 602 1 o—i0/2

T 02 o072
a - {cos(0/2) + jsin(6/2)} + {cos(8/2) — jsin(6/2)}
~ {cos(0/2) + jsin(/2)} + a - {cos(A/2) — jsin(6/2)}

_ (I1+a)-cos(0/2) + j(a—1)-sin(0/2)
(14 a)-cos(0/2) — j(a—1) -sin(0/2)
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r . eti0/2
T e 02
— Z:_ZZ =1.eM° (3.64)
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Fig. 3.33. Zero and pole configuration for 1st order all pass filter with a = 0.9.

This trick causes the numerator and denominator to become conjugate
pairs thus making our life easier in computing the frequency response
|H (e79)|. To simply things a bit, midway into (3.64), we let r equal the
FEuclidian distance, defined by the real and imaginary components as shown
in Eq. (3.65) (as usual, the Euclidian distance is merely the root of the
squared sum of the real and imaginary parts).

r= {1+ 0) cos(O/2)) + {(a—1) -sin(0/2)  (3.65)

We can see that when the numerator and denominator are conjugate pairs,
the magnitude response will result in unity gain yielding |H (e7?)| = 1. Now,
jumping into the issue of phase which is the true topic of the all-pass filter,
we compute the phase in terms of « in Eq. (3.66) by taking the arctangent



Filters 265

of the imaginary and real components. Figures 3.34 and 3.35 show the phase
response plots for increasing a values at 0.1 incremental steps.

((a -1)- sin(9/2)) e <_ (a—1)- sin(9/2))
(a+1)-cos(0/2) (a+1)-cos(0/2)
( )

#(0) = tan™*
—1

— tan <(Z - 1) ~tan(0/2)) +tan~! (Ez - B ~tan(0/2)>

=2 tan"! <EZ+ B ~tan(6’/2)) (3.66)

-100+
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Fig. 3.34. All-pass filter phase response in degrees.

We can clearly see what effect the filter coefficient @ has on the phase
response in Figs. 3.34 and 3.35 — larger o values decrease the fractional
delay of the resulting signal. We also note that the phase behaves almost
linearly in the low to mid frequency ranges (DC to around 7/2), becoming
more and more nonlinear as we float towards the Nyquist frequency. Thus,
an all-pass filter is often used to implement fractional delays by selecting
an appropriate filter coefficient a value which is especially useful for signals
that do not contain high frequency content.
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Sample delay

0 0.2 0.4 0.6 0.8 1
Normalized Frequency (m x rad/sample)

Fig. 3.35. All-pass filter phase response in fractional sample delay.

3.6.6 Very basic all-pass filter reverb

Reverb is a very interesting and very important part of sound propagation
and sound perception. Whenever or wherever we hear sound there is a
certain amount of reflection that occurs when sound waves bounce from
various types of surfaces and objects. You probably have experienced sound
in very reverberant spaces such as cathedrals, subway stations, banks, and
your bathroom where the walls are constructed via ceramic tiles that reflect
sound very well (I actually spent about 1 week installing marble tiles in our
bathroom which was quite an experience — not something that I would
do again — but boy, the acoustics sure changed). As seen in Fig. 3.36,
reverb is perceived by the listener via the cumulative effect of the sound
source’s reflection from walls, ceilings, floors, and any other surfaces and
obstacles in the sound wave’s path. Some reflections take longer to reach the
listener as they are reflected at a distant wall or are reflected numerous times
before actually reaching the ear, while others reach the listener quickly. Not
surprisingly, however, the sound waves that propagate longer distances or
get reflected off many surfaces, generally lose more energy when reaching
the listener compared to those that reach the ear more swiftly. This is an
important part of artificial reverberation.

Sounds that reach the ears early are referred to as early reflections and
sources that reach the listener directly as the direct sound. Early reflections
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Fig. 3.36. Early reflections.

are approximately below 100 ms in duration, reaching the ear after the
first few reflections and are especially helpful in providing the listener
auditory cues regarding the size of a space and room. Early reflections
are also commonly divided into 1st order and 2nd order reflections.
These correspond to the sound wave’s number of bounces from surfaces
before reaching the listener. Reflections that are reflected several times
fuse together and create what is commonly referred to as reverberation.
Figure 3.37 depicts a typical plot of reverberation characteristics of an
impulse signal where the x-axis shows the delay amount and the y-axis
the amplitude of the reflected impulses. Figure 3.37 basically tells us
that reflected images of a sound source are generally lower in amplitude,
displaying a decaying amplitude envelope with increase in time delay. This
makes good sense as the impulse signal would need to travel a longer
distance if a wall were to be further away or if it would bounce around
numerous times before reaching the ears, thus losing energy during its
journey to the listener. We also note that as the delay increases (usually
around 100 ms or so), a myriad of closely spaced reflected images of the
impulse fuse together into a lump which in essence contributes to the
formation of reverberation effect.
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Fig. 3.37. Reverberation characteristics of an impulse signal.
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Fig. 3.38. Impulse response of all-pass filter with varying «.
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Let’s go back to the all-pass filter (3.62) and observe its impulse
response shown in Fig. 3.38. We note two main things: the impulse response
output decays smoothly and the decay characteristics are controlled via the
filter coefficient o (the absolute value of impulse response is plotted to see
the decaying characteristics more clearly).

Now, instead of using the original all-pass filter of Eq. (3.62), let’s
increase the delay length so that the feedback and feed-forward components
have a larger delay N value as shown in Eq. (3.67).

yln] = - z[n] + z[n — N| — a - y[n — N] (3.67)

When we plot the impulse response of Eq. (3.67), something interesting
happens: the impulse gets delayed by N samples while retaining the
decaying quality of the original all-pass filter as shown in Figs. 3.39, 3.40,
and 3.41.

Thus, the all-pass filter of a higher order than 1 can be used to
somewhat mimic the reflection characteristics of a sound bouncing off
surfaces and is exploited as a popular approach in devising artificial
reverberation-based algorithms that are not convolution-based designs.
Notice how nicely the impulse decays as the time index increases as if it
were reflecting off distant/close walls.

08 T T T T T T T T T
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Amplitude
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Fig. 3.39. All-pass filter N =1 (original all-pass filter), o = 0.8.
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Fig. 3.40. All-pass filter N =4, a = 0.8.
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Below is a quick MATLAB® implementation of a very basic and simple
all-pass filter reverb algorithm.

a =0.9; % the all pass coefficient
fs = 20000; % sampling frequency
ratio=1/25; % 1/25th of a second for reflection of sound

% reflection length in samples: filter order
reflectionLength = round(fs*ratio);

% impulse response

x =rand(1l, £s/20); % make short impulse signal 1/20th sec
get rid of DC

pad with zeros to make actual impulse

X = x-mean (x) ;

%
)
°

x=[x zeros (1, fs*2)];

% filter signal via all-pass filter to make reverb
y = filter ([a zeros (1, reflectionLength) 17,
[1 zeros (1, reflectionLength) al, x);

soundsc (y, fs)

Code Example 3.10. Basic all-pass filter reverb.

In this MATLAB® example, we have used 1/25th of a second for the
reflection parameter in the implementation of the artificial reverb using
the all-pass filter. The script should be straightforward to understand
as we already have acquainted ourselves with all of the functions and
methodologies used in Code Example 3.10 in previous code examples. This
basic implementation of all-pass reverb may not sound as realistic as one
would like it to — this is the case with most, if not all rudimentary DSP
algorithms — they require further tweaking.

Manfred Schréder (Schroeder and Logan 1961, Schroeder 1962)
is largely credited for the research in artificial reverb and started
experimenting with the all-pass filters and concatenating multiple all-pass
filters structures in series to get better results (his name should actually
be used with the umlaut 6, but you will find more hits on the Internet
with “oe”). As shown in Fig. 3.42, he also used a combination of parallel
comb-filters followed by all-pass filters in series which does a much better
job than the basic one we presented here with just a single all-pass filter.

The topic of artificial reverb has developed remarkably since Schroder’s
early research (it has come a long way since playing back recorded sound
into an echo chamber and recording the reverb imposed on the original
dry sound through a microphone), including using a low-pass filter in the
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Fig. 3.42. Schroéder model for digital reverberation.

feedback loop, much like the plucked string algorithm, to bias the decay
of higher frequency components. Other innovations, tweaks, and additions
of advanced algorithms include the modeling of specific room sizes, room
geometry, sound source, and listener location.

4 Musical Examples

There are many interesting musical examples using filters and it is no
exaggeration that all of the music recorded and produced today goes
through some sort of filter. It may be a song by Madonna such as Music
(2000) where the vocal part is swept with a band-pass filter or Jimmy
Hendrix’s guitar modulated through the JH-1 Dunlop Cry Baby wah-
wah pedal. However, one very interesting piece that uses the comb-filter
extensively is Paul Lansky’s Night Traffic (1990). In this piece, the core
sounds originate from Route 1 in the Princeton, New Jersey area where
the composer recorded sounds generated from automobiles that sped on
a two-lane per direction highway. Paul Lansky uses the comb-filter as a
means to and end — creating a musical work rather than a demonstration
of the possibilities of comb-filters per se. It is evident that the composer
plays with the notion of identity and origin of the sound sources (and the
blurring thereof) but goes beyond the exploration of inherent noisiness
of the whizzing cars and trucks or the mere sequencing, organizing, and
overlaying of those found sounds. Lansky intricately drives the comb-filters
via the quickly-becoming-boring traffic noise to infuse musicality and drama
into the sound sources, thereby opening up a new auditory world and
presenting a theatrical and musical experience of the otherwise abstract
nature of the vehicles passing by. In a sense, the traffic patterns and motifs
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are used as gestures that are ambiguous enough not to give away its absolute
identity while rendering musical strokes that seemingly access certain parts
of one’s long/short term memory banks, though, perhaps in an unfamiliar
fashion. A life lesson to be learned from the process of making this piece
is that for field recording outings, it is of utmost importance to have your
headphones on your head the correct way. It seems that when Paul Lansky
first started recording the cars speeding by on Route 1, he was wearing the
headphones backwards — left ear being enclosed by the right headphone
and right ear by the left headphone. As the composer was using a stereo
microphone he almost walked into the wrong direction and towards the path
of the speeding vehicles as he was distracted by the sounds that engulfed
his headphones. . .

Another exciting composer relevant to our topic in this chapter is
Alvin Lucier. The composer is maybe best-known for his regular utilization
of somewhat atypical approaches to musical composition, where at times
the process itself almost resembles a physics experiment more than a
compositional exercise. One of his landmark pieces is called I am Sitting in
a Room (1969). The piece is self-explanatory in the truest sense of the word
as the composer narrates the process of the work in the recording which in
itself comprises part of the composition. The text is as follows:

“I am sitting in a room different from the one you are in now. I am
recording the sound of my speaking voice and I am going to play it back
into the room again and again until the resonant frequencies of the room
reinforce themselves so that any semblance of my speech with perhaps the
exception of rhythm, is destroyed. What you will hear, then, are the natural
resonant frequencies of the room articulated by speech. I regard this activity
not so much as a demonstration of a physical fact, but more as a way to
smooth out any irregularities my speech might have.”

What is fascinating is that with the above mentioned iterative process,
the recorded voice, reflecting the resonant structure of the room, becomes
unintelligible towards the end, only retaining the basic gesture of the
original speech pattern and becoming more and more harmonic — in a
sense more and more musical. Thus, although the piece begins with the
familiar voice, by the closing stages of the piece, the voice modulates
to something completely different — the resonant structure of the room
repeatedly filters the voice into submission. This technique of exploiting
the resonant structure for musical purposes is somewhat similar to the talk
box. In the case of the talk box, the source signal (often an electric guitar)
is fed to a resonant box, the box being the vocal cavity that modulates
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the signal according to the resonant structure of one’s vocal cavity. Talk
boxes can sometimes be seen at concerts where the source signal such as
an electrical guitar is literally piped through a small hose directed towards
the mouth which in turn is attached close to a vocal microphone. With
this configuration, the source signal (guitar) is projected into the vocalist’s
mouth, thus modulating the source signal by altering the vocal cavity’s
shape. The resulting modulated sound is picked up by the microphone
and amplified through the loudspeakers, making the guitar seemingly talk.
Numerous musicians have used this effect including Pink Floyd ( Pigs 1977),
Bon Jovi (Livin’ on a Prayer 1986), and Nick Didkovsky (Tube Mouth
Bow String 2007) who used four Banshee Talkboxes to compose a piece
for string quartet. Speaking of banshee, a monstrous piece that has little
to do with DSP is Henry Cowell’s The Banshee (1925) for solo piano — in
this work, the modulation of the traditional piano sound does not happen
electronically but literally via hands-on techniques with the performer
modulating the familiar piano timbre via sweeping, scraping, strumming,
and plucking the strings directly. As they say, “there’s more than one way
to skin a cat.”
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Chapter 8

FREQUENCY-DOMAIN AND THE FOURIER TRANSFORM

1 Introduction

Up to this point we have mainly concentrated on topics based in the time-
domain while at the same time having gotten glimpses of frequency-domain
related concepts in bits and pieces in previous chapters. In this chapter,
we will fully engage into theories and issues concerning the frequency-
domain. The backbone behind concepts of the frequency-domain revolves
around a very important topic in signal processing called the Fourier
transform. It is an understatement to say that it is one of the most powerful
concepts in DSP (as well as other fields of study such as mathematics,
physics, electrical engineering, computer science, ...) and important for
various signal processing applications including sound synthesis, sound re-
synthesis, sound manipulation, filtering, and spectral analysis. Although
we have talked about numerous issues concerning frequency components
comprising a sound object and how sound (or any signal for that matter)
can be described via specific sinusoidal components, we have had no tools to
determine the specificity of those components. However, with the Fourier
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transform, we will finally be able to describe and compute each of those
sinusoids’ magnitude, frequency, and phase values.

2 Additive Synthesis

Before we get into the crux of the Fourier transform let us first introduce
additive synthesis. This initial introduction will help us better understand
the underlying concept behind the Fourier transform itself. Additive
synthesis can be regarded as the opposite of subtractive synthesis intro-
duced in Chap. 7, Sec. 2.1. In subtractive synthesis, we started out with
a rich and complex signal such as a square wave or white noise signal and
sculpted away specific frequency regions, basically making the resultant
signal less rich. In additive synthesis however, the fundamental approach is
not carving out frequency regions, but rather engaging in a task that is quite
the opposite — constructing a signal by summing specific sinusoids. That
is, rendering a sound object via simple sinusoids (which we could loosely
refer to as building blocks of sound) accomplished through the adding of
particular sinusoids with specific frequency, amplitude, and phase values.
The classic example for demonstrating additive synthesis is the
synthesis of the square wave, as approximated according to Eq. (2.1)
where f is frequency in Hz, k£ an integer number determining each sine
wave’s frequency component, and n the sample index (k = 0 refers to the
fundamental frequency).
C sinf27 - £ (2k+1) - n) )1
ylnl =Y ST (2.1)

k=0

Upon closer inspection, you will recognize that the frequencies used in
(2.1) are odd frequencies only. Thus, the resulting output y[n] becomes a
complex signal limited to a collection of odd harmonics and its fundamental
frequency. In addition, you may have also noted that the amplitude values
decrease with the increasing harmonic index k, characterized by the same
2 -k + 1 divisor that we used to define the structure for the harmonics.
Figures 2.1-2.3 show plots of the square wave additive synthesis
algorithm in action using 1, 3, 10, 50, 100, and 200 harmonics (K) plus
a fundamental frequency at fy = 1 Hz. The upper plots of each figure
(two sub plots each) display the individual sine waves with increasing
harmonic frequencies (fundamental and subsequent harmonics) that make
up the complex signal. The lower plots of each figure show those summed
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Additive synthesis of square wave with 10 (left) and 50 (right) harmonics.

rendering as a single waveform (x-axis is as usual samples and

y-axis amplitude).

We can clearly see that the more sinusoids (K becoming larger) we
employ, the closer the resulting waveform will look and sound like a square
wave. This intuitively makes sense as the long waveforms, corresponding to
lower frequency-based sinusoids, only contribute to the general shape of the
final signal — they oscillate slowly compared to higher frequency sinusoids.
That is, higher frequency sinusoids oscillate faster (with smaller amplitude

values in

our example) within a given timeframe and take the role of fine

tuning the synthesized output by making sharper edges which characterize

square waves.
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Fig. 2.3. Additive synthesis of square wave with 100 (left) and 200 (right) harmonics.

The triangular wave is very much like the square wave in its sinusoidal
make-up and also consists of odd harmonics. However, the harmonics roll
off exponentially as shown in Eq. (2.2).

Jinl = %ésm{w.esﬂ)} . {sin{27r (;kflf)j 1)-n}} (2.2)

Yet another complex wave called the sawtooth wave can be approxi- mated
with Eq. (2.3) where in this case, the full harmonic series is included (odd
and even). Like in our square wave example, in general, more sine waves

contribute to a better approximation of the sawtooth wave.

y[n]%ésm{wék}.{sin{zﬂ-kf-k-n}} 23

Interestingly enough, additive synthesis did not (and does not) always
exist in the form of electronic synthesizers that we are accustomed to,
whether outfitted as huge machines with 10,000 cables hanging about or
more slick and compact digital additive synthesizers with a few elegantly
looking buttons and a data-wheel. The popular Hammond organ is such
an additive synthesizer which utilized “tonewheels” (91 discs) that spun to
mechanically produce specific “sine waves” controlled via nine drawbars,

each in turn controlling nine levels of amplitude values. So what does
all of this have to do with the Fourier transform? Read on to find out
more . ..
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3 The Fourier Transform

The Fourier transform is named in honor of Jean Baptiste Joseph Fourier
who is largely credited for the development of its theory. In a nutshell, the
Fourier transform decomposes a signal into an infinite number of weighted
sinusoids with specific frequency and phase values and was developed while
trying to solve the mathematical solution to heat transfer in the early 1800.
In the case of additive synthesis and approximation of the square wave,
these weights and frequencies correspond to the decreasing amplitude values
and odd harmonics.

The continuous-time and continuous-frequency Fourier transform is
shown in (3.1). X% (w) is the resulting Fourier transform, w angular
frequency (radians per second), and z(t) the continuous-time input signal.

XF(w) = /+Ooz(t) ceTIvt, weR (3.1)

— 0o

The above definition of the Fourier transform will exist, provided that the
integral is bounded. Thus, a sufficient condition for the existence of the
Fourier transform is as follows:

+oo
/ |z(t)|dt < oo (3.2)

— 00

The condition in (3.2) basically limits the input signal so that the integral
of the input doesn’t blow up much like an unstable IIR filter. In order to
recover the time-domain signal and return from the frequency-domain back
to the time-domain, we have the inverse Fourier transform as shown in (3.3).

1 [T

x(t) XF(w)-e¥ldw, teR (3.3)

=5 -
The above is essentially the continuous form of the digital square wave
additive synthesizer we encountered in Sec. 2 — adding the sinusoids with
specific frequency and phase values to produce a desired time-domain
signal (the square wave). If we did the opposite, that is, perform a
forward Fourier transform on a square wave signal, we would obtain the
fundamental frequency and its harmonic structure in terms of its weights,
frequency, and phase values — the characteristic square wave architecture

with odd harmonics and idiosyncratic decaying amplitude values described
in Eq. (2.1).
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4 The Discrete-Time Fourier Transform (DTFT) and the
Discrete Fourier Transform (DFT)

The continuous-time and continuous-frequency Fourier transform in (3.1)
uses integration instead of summation which is of course impractical for
computer based applications. Hence, we need to develop a discrete-time
and discrete-frequency version for it. When we sample the input signal and
convert the integral to a summation (4.1) and w to 8 - n in (4.2), we have
what is called the discrete-time Fourier transform (DTFT). The DTFT is
thus computed according to (4.3). The final step towards a fully discrete
version of the Fourier transform is sampling the frequency axis which will
result in the discrete Fourier transform (DFT). We will discuss how this
final step is taken shortly. For now, let’s concentrate on the DTFT. The
DTFT exists provided that the summation is bounded and is sufficiently
met by condition (4.4) similar to the continuous-time Fourier transform.

/M - n:zm (4.1)

- n=-—00

el — edfn (4.2)
n=+4oo
xXH0)y= > aln]-e " (4.3)
+o00o
> lzfn]| < o0 (4.4)

The inverse Fourier transform of the DTFT is given by Eq. (4.5).
I

:% .

z[n] X7(0)-etdo, neZz (4.5)
Note that the angular frequency in the DTFT is not yet discrete, meaning
that it can take any real value (the discrete frequency is relevant to the
DF'T discussed shortly). Thus, in the DTFT, we use the digital frequency 6
in radians/samples as we have done in previous chapters. The term digital
frequency may be a bit misleading at first (6 = w - T) as when we think
digital, we have the tendency to automatically think discrete. However,
what the digital frequency actually refers to is a frequency value at a specific
discrete-time n -7 which is used to differentiate it from the continuous-time

frequency and the discrete frequency as we will see when we introduce
the DFT.
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The DTFT operates on sampled and windowed input signals of window
size N. We know what happens when sampling the time axis for a
continuous signal such as z(t) and should be comfortable with that concept,
but sampling the frequency axis, however, may be a little more confusing.
In order to get a better grasp of how the frequency axis is sampled, it is
important to grapple with the idea of the Fourier transform itself and how
it maps a windowed time-domain signal to a frequency-domain spectrum.
So, before embarking on describing the details and the math behind the
DFT and frequency axis sampling, let’s first get acquainted with the Fourier
transform’s workings, what it represents, and observe what happens when a
windowed time-domain frame gets converted to a frequency-domain frame.
Figure 4.1 shows the procedure of the discrete Fourier transform with z[n)
as the input signal and X?[k] the resulting discrete Fourier transformed
spectrum with discrete frequency index k.

Let’s say our sampled time-domain signal x[n] looks something like
Fig. 4.2, consisting of 1,536 samples and sampled at 44.1kHz representing

] . Fourier drp
[n] Windowing ——» Transform X'k

Fig. 4.1. Fourier transform procedure.
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Fig. 4.2. Square waveform using 3 harmonics and 1,536 samples in duration.
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a 1kHz square wave synthesized via additive synthesis with 3 odd
harmonics. If we follow the Fourier transform procedure for the DFT, we
will first need to window the time-domain signal as shown in Fig. 4.3. In
this example, we use a rectangular window of length N = 512 samples and
divide the input signal z[-] into three equal frames of 512 samples. This
is depicted in the middle of Fig. 4.3 where the first windowed signal is

shown.

512 samples each total 512 x 3
samples

'§ Time in
=. . samples
g (n) 512 samples

(first window)
035

Amplitude

Fourier =y
transform_
A

]

Magnitude
g

2 £ 2 =
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[ 50100 150 200 250 300 350 400 430 500
512 "frequency samples”

Fig. 4.3. Time-domain to frequency-domain transformation.
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At the bottom part of Fig. 4.3, the Fourier transform takes place and the
time-domain frame of 512 samples gets transformed to a frequency-domain
representation. Notice one very important aspect of this transformation is
a mapping of 512 time-domain samples to 512 frequency-domain samples.
In other words, the x-axis which used to be time (sample index n) now gets
converted to frequency with frequency index k& — the x-axis transforms
from a time-domain axis to a frequency-domain axis. These windowed time
sequences of 512 samples are each represented by 512 frequency samples
making up a frame after the Fourier transform. Each frame which consists
of 512 frequency samples is referred to as a spectrum. The discrete points
on the x-axis (frequency axis) are commonly referred to as frequency bins
or just bins.

If it is still a little unclear what the Fourier transform actually
represents, for the sake of argument, let’s consider the RGB color model
which uses a combination of various degrees of red, green, and blue to
produce a wide range of colors. On the computer, each RGB color typically
is represented by an integer number ranging from 0 to 255 (8 bits).
Thus, when these so-called primary colors are combined and weighted
appropriately, a plethora of additional shades of colors can be produced.
Now, let’s consider a motion-picture film that uses the 24 picture-frames per
second standard rendering the illusion of continuous motion when projected
on the screen, much like a sequence of samples (44,1000 samples/sec for
example) give us the illusion of continuous sound. Going back to the RGB
idea, let us pretend we want to analyze the color map of a portion of a film —
6 frames at a time. That is, apply an analysis window size of 6 picture frames
equivalent to 1/4 of a second (if we use the 24 frames/sec standard) and
have the result be represented in terms of the integer levels of red, green, and
blue for those 6 frames as a whole. In this analysis setting, we would get an
idea of the RGB content for every quarter of a second for the whole film. In
essence, we go from a time-domain system of moving images to a “primary
color-domain” system, with the color-domain system representing only the
RBG levels for each group of frames being analyzed (we could of course have
used more frames or less frames for the analysis part). Thus, the “x axis”
can be viewed to change from a time-domain moving picture representation
to a color-domain RGB representation scheme as shown in Fig. 4.4.

The Fourier transform can loosely be compared to the above example
where instead of using six picture frames, we used 512 time-samples for
each frame and in place of the 3 primary colors with various weights in
the RGB case, we used 512 frequency components with their respective



Frequency-Domain and the Fourier Transform 285

magnitude and phase values. Each of these frequency components represent
sinusoids with unique frequency values and their respective magnitude
values characterizing the time-domain windowed signal of 512 samples.
Thus, the 512 sample windowed signal becomes a frequency-domain
representation of 512 sinusoids with their corresponding 512 frequency,
magnitude, and phase values. In summary, these 512 frequency-domain
sinusoids provide an overview of the 512 time-domain samples in terms
of a collection (sum) of sinusoids.

Now, returning to the 3 odd harmonics-based square wave additive
synthesis example and its Fourier transform shown in Fig. 4.5, we actually
see 8 sinusoids (strong peaks) rather than 4 — twice as many as a matter
of fact. This seems a bit strange as we would expect one fundamental

6 frames
255

"RGB transform" 145

Amplitude

N

@ @ :@ :@ m - w

-
-

Time (frames) Primary colors

Fig. 4.4. RGB levels of the first six frames of a color cartoon.
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Fig. 4.5. Fourier transform of square wave.
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frequency component and three odd harmonics. Upon closer scrutiny, we
will also notice that the first 4 peaks of the spectrum seem to resemble
the latter 4 peaks in a mirror reflection-like manner. We will see why this
happens shortly, but it should not be too much of a leap to imagine that
the Euler identity (made up of sines and cosines) has something to do with
this (similar to when we did our frequency response analysis). If we accept
that there is some sort of repetition in the spectrum, it should be evident
that only half of the full-range of 512 bins is of interest to us. Thus, as
expected, if we look at the first 256 frequency slots, we can clearly see the
fundamental and the first three odd harmonics with decreasing magnitude
values in Fig. 4.6.

Let’s now look at the mathematical details behind the DFT by starting
with the discrete-time Fourier transform (DTFT) with discrete time index
n and angular digital frequency @ in radians per sample.

n=+oo
X7 = Z z[n] - e=90" (4.6)
n=-—oo
where
e = cos(f - n) — jsin(6 - n) (4.7)
180+ gl
160 \ fundamental |
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120 " 1
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=
£ 100} / I |
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Fig. 4.6. Frequency bins of interest displaying fundamental and 3 harmonics.
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We now sample the frequency axis (as did for the time axis) which extends
from 0 to 27 equivalent 0 to fs Hz by dividing this range into N equally
spaced frequency slots according to Eq. (4.8).

unit frequency = 2 (4.8)
N

Note that at this point, just like in time-domain sampling, we are
performing sampling albeit in the frequency-domain. That is, in time-
domain sampling we had T' (in seconds) representing the sampling interval
between samples and here we have 27/N representing the frequency
sampling interval (units in frequency). Thus, the sampled digital frequency
6 can be represented as 0[k], with integer k determining the discrete
frequency index (the frequency index is also often referred to as frequency
bin or just bin). This is shown below in Eq. (4.9) for a DFT window length

of N (in our previous example N = 512).

2
ﬂHz%?,nggN—l (4.9)

Replacing 6 in Eq. (4.6) with (4.9), we finally arrive at the DFT algorithm
shown in Eq. (4.10) where X [k] is the DFT for discrete frequency bin/index
k, input sample x[n] with discrete time index n, and window length in time
samples N.

n=N-1
XUk = > x[n]-e*jT’C, 0<k<N-1 (4.10)

n=0

Also, notice that when we plug in the range for k& into Eq. (4.9), 0[k] has
the range shown in (4.11).

27k(N — 1)

< <
0<olk] < =

(4.11)
This means that the range of the sampled frequency 6[k] is from 0 up to 27
minus one frequency sampling unit of 27/N. We do not include the Nth
frequency component itself as that would be equal to the zero frequency
component (DC) which is already in the spectrum. Observe also that the
number of time samples of the windowed input signal always equals the
total number of bins (frequency samples).

The inverse DFT is given in Eq. (4.12) and it is common to use the
notation Wy when dealing with the DFT or the IDFT for convenience as
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shown below:

N—-1
1 2nkn
2n) = 5 Y7 X[k) - PR (4.12)
k=0
Wy = e2™/N (4.13)

Using this shorthand, the DFT can also be written as (4.14).

n=N-1 Comkn n —1

XU = Y afn] e =3 ) Wit (414)

n=0 n=0

4.1 Magnitude, Phase, and Other Basic Properties of the DFT

As you may have already deduced by looking at the DFT, the output X¢[k]
will be a complex number due to the Euler identify — the DFT plots shown
here are the magnitude plots. Since the DFT output is a complex number-
based vector following the general form of Eq. (4.15), the magnitude which
is commonly used to analyze the DFT, is computed according to (4.16) for
bin k, and the phase as the arctangent as shown in (4.17).

XUk] = ag + by (4.15)

| XK]| = y/a2 + b2 (4.16)

/XUE] = aurctaunZ—]C (4.17)
k

Figure 4.7 shows the first few harmonics of the additive synthesis square
wave with a DFT size of 32 samples. As mentioned in the previous section,
due to the (almost) mirror image characteristics of the DFT at N/2, our
area of interest for each frame needs only be from k£ = 0 to k = 15 in this
example — from DC (bin 0) to Nyquist (bin N/2 — 1). After the 16th bin
(k = 15) we can almost observe an exact mirror image, the inexactitude
being the absence of the DC component at the far right end of the frequency
axis as seen in Fig. 4.7.

Figure 4.7 also shows three different units of the frequency axis all
referring to the same thing further summarized in Table 4.1. For a f; = 44.1
kHz system, bin 15, in terms of angular frequency 6[15] and Hertz will be
2.94 radians and 20,671.875 Hz respectively. One “click” further to the right
will result in 7 radians or 22,050 Hz.
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Fig. 4.7. Symmetry characteristics of DFT for N = 32 and fs = 44.1 kHz.

Table 4.1. Frequency axis units.

Units Description

Frequency bin k k=0...N-1
where N is an integer number DFT length

Sampled angular frequency 0[k] 0[k] = 2nk/N
Frequency in Hertz fo2 = fs - (k/N)
where fs is the sampling frequency

4.2 Time Resolution vs. Frequency Resolution in DFTs

In the previous section’s Fig. 4.7, we mentioned that we used the first few
harmonics and purposely did not give the exact number of harmonics that
were used for synthesis. Upon first glance, we could maybe say that we
see four harmonics and a fundamental frequency component, as we can
with relative certainty make out 5 peaks. However, this is not correct. If we
applied a smaller frequency sampling interval, that is, a larger DF'T window
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Fig. 4.8. Square wave where 10 harmonics are clearly visible with DFT size 128.

size of say 128 samples, we arrive at a very different spectral frame for the
same signal as seen in Fig. 4.8.

By increasing the DFT size we have as a consequence increased the
frequency resolution, or stated inversely, decreased the frequency axis
sampling interval as defined in Eq. (4.9). Jumping from N = 32 to N = 128
results in dividing the frequency axis into equally spaced 128 bins rather
than just 32 (44100/128 = 344.53 Hz opposed to 44100/32 = 1378.125
Hz). We could actually go even higher to say 1,024 samples for example
and obtain a frequency axis sampling interval of 44100/1024 = 43.07 Hz.
Then why, you may ask, do we not always use a “large(er)” window size?
If we carefully observe what is happening during the process of changing
the window size, we will recognize that as we increase the length of the
window (increase the frequency resolution) we require more time-domain
samples. That is, if we choose a window size of 1,024 samples we do get a
narrow 43.07 Hz frequency resolution in the frequency-domain. However,
as a consequence of using 1,024 samples (equivalent to approximately
1024/44100 = 23.21 ms of samples) we are requiring a larger time excerpt
than if we had used 32 time samples (32/44100 = 0.73 ms). In other words,
from the time-domain perspective, we would only get one spectral frame for
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Fig. 4.9. Time and frequency domain problems with the DFT.

every 23.21 ms for the 1,024 window size, thus reducing the time resolution
albeit increasing frequency resolution as seen in Fig. 4.9.

This is in fact an artifact of the DFT — increasing the frequency
resolution necessarily decreases the time resolution and vice-versa. Hence, a
compromise always exists between frequency resolution vs. time resolution
characterized by an inverse proportionality relationship between the two
and care has to be taken when deciding on the choice of the DFT size. So,
what is a good DFT size? The answer is a bit difficult to arrive at without
more background information as it depends on many factors such as what
we want to get out of the DFT, what sort of signal we are analyzing, how
much detail we need, and so forth. In short, there is no simple universal
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answer. However, there is an algorithm that can help us somewhat alleviate
this issue regarding frequency vs. time resolution. This is the topic in the
next section.

5 Short-Time Fourier Transform (STFT)

The inherent problems with frequency and time resolution in the DFT are
sometimes problematic in practical applications where both high time and
frequency resolution characteristics are not just desirable but necessary.
So, how do we increase frequency resolution as well as time resolution
at the same? One way to help in obtaining a good approximation of fine
time resolution as well as frequency resolution is via the short-time Fourier
transform. The algorithm is remarkably simple yet very effective and works
mechanically similar to the overlap-and-add method discussed in Chap. 2,
Sec. 7. When computing successive DFT frames for an input signal, the
window increments adhere to the size of the window itself as discussed in
the previous section. That is, the hop size for each window is equal to the
window size and there is no overlap between any windows. This does not
have to be case. Using the OLA method where the windows are overlapped,
we utilize a hop size that is smaller than the window size, which in turn
renders a greater number of frames for a given timeframe when compared
to a non-overlapping window setting. In other words, we have more spectral
frames for a given period of time increasing time resolution without affecting
frequency resolution as the window size stays the same. The more overlap
there is, the greater number of DFT frames we will obtain — improve time
resolution without degradation of frequency resolution. The time resolution
in seconds for a given hop size is computed via Eq. (5.1) where hop is the
hop size in samples and f, the sampling frequency.

hop

S

time resolution = (5.1)
In practice, the hop size is often defined as the percentage of overlap between
windows. For example, a 50% overlap for a DFT size of 128 would result
in a hop size of 64 samples. This idea of overlapping and windowing using
the STFT is depicted in Fig. 5.1 with an overlap of 40% equivalent to
12.73 milliseconds. We can also further increase the overlap percentage, thus
decreasing the hop size, which will as a consequence increase the number
of computed spectral DFT frames for the same portion of a signal being
analyzed. The interesting result the STFT method provides is that we are
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Fig. 5.1. STFT algorithm using overlap and hop size smaller than the window size.

able to acquire the best of both worlds — good time resolution and good
frequency resolution. The hop size determines the time resolution while
the window size determines the frequency resolution. Thus, when using the
STFET for analysis, both time and frequency resolution can be substantially
improved compared to using the non-overlapping windowing method alone.
It is then no surprise that for most spectral analysis situations, STFT is
used instead of non-overlapping DFTs.

6 Zero Padding

When using the DFT with a particular window size, it is possible to fit a
smaller time-domain portion of a signal into a window that is greater in
size. For example, let’s say we have a time-domain signal of 54 samples
but want to use a DFT window size of 64 samples giving us a frequency
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Fig. 6.1. Zero-padding in time-domain signal. Non-zero padded (top) and zero-padded
(bottom).

resolution of 689.06 Hz (44100/64). But as we can see, we do not have
enough samples to use a window size of 64 samples. What do we do? We
use a process called zero-padding. What zero-padding does is simply fill
the remaining holes with zero-valued samples at the tail of the sequence as
shown in Fig. 6.1. In this example, we zero-pad the 54 sample signal with
10 zeroes.

The zero-padding method allows us to use higher DFT sizes offering
higher frequency resolution ...kind of. The resulting spectrum turns out
to be an interpolated version of the original spectral frame X?[-]. This
does not mean that we are getting “more” information per se, as we are
merely padding the signal with zeros, although in effect, we have a higher
frequency resolution-based spectrum of 64 divisions rather than 54 divisions
of the frequency axis. Zero-padding is very useful when using the FFT (fast
Fourier transform) as we shall see in Sec. 10 (we will also see why we have
been using window sizes of the form 2%V).

The top of Fig. 6.2 shows the DFT of the sine wave from Fig. 6.1 with
DFT window size and signal size of 54 samples and the bottom figure shows
the zero-padded version using a DFT size of 64 samples with the addition
of 5 frequency samples to the tail of the spectrum (note that we are only
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Fig. 6.2. Zero-padding effect in frequency-domain spectrum. Original X¢ (top) and
zero-padded X¢ (bottom).

showing half of the spectrum’s magnitude values). We can clearly see that
the spectra look more or less the same for the exception of the zero-padded
version having more frequency bins — a stretched and interpolated version
of the original 54 bin spectrum. Now, you may think if zero-padding in
the time-domain provides interpolation in the frequency-domain then zero-
padding in the frequency-domain should result in interpolation in the time-
domain. As it turns out this is indeed the case. We won’t delve deeper into
this topic here, but suffice it say that undesirable artifacts often show up in
the interpolated time sequence after the inverse DFT and is therefore not
commonly used as an interpolator.

7 Aliasing Revisited

In Chap. 1, Sec. 4.2 we introduced the concept of aliasing and showed how
we could “sort of” interpret this concept in the time-domain — explain what
was happening and compute the aliased sinusoids’ frequencies. We also were
able to see why aliasing occurred through frequency response analysis in
Chap. 6, Sec. 2.1.1 and verified the mirror imaging-like characteristics of the
magnitude at the Nyquist limit. Now we also have Jean Baptiste on our side
to help us shed even more light on this important concept. In this section,
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we will tackle the concept of aliasing viewed from the frequency-domain’s
perspective.

In our examples up to now, we pretty much confined our attention and
interest to the frequency region 0 to m which is equivalent to 0 to fs/2.
What happens when we go beyond 7, 27, 37, ...7 This should not be too
difficult to answer — as mentioned before, one of the core characteristics of
the Fourier transforms is the Euler identify. That is, the Fourier transform
(FT) is periodic with 27 so that (7.1) holds true where m is any integer
and w, the radian frequency.

FT(wg) = FT(wy + 27 - m) (7.1)

Thus, if we kept on increasing or decreasing the frequency and inspected
the spectrum, we would obtain something like Fig. 7.1.
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Fig. 7.1. Periodicity and mirror images in spectrum.

We recognize from Fig. 7.1 that the “original” spectrum is found between
—m to 4+ (or 0 to 27) and within this region, we are only really interested
in half of its content as the other half is a mirror-like image of itself.
Furthermore, if we consider the original spectrum to be from —7 to +m,
we get an infinite number of replicas of the original, extending to either
direction of the frequency axis.

Remember in Chap. 1, Sec. 4.2 when we swept a sine wave and
witnessed frequencies that went beyond the Nyquist limit reflected back
to a lower frequency value? This can now be verified using the Fourier
transform as well. Let’s apply the same parameters we used in Chap. 1,
Sec. 4.2, namely fs = 100 Hz, and frequencies increasing from 1, 5, 20, 50,
95, and 105 Hz. The Fourier transforms for each is shown in Figs. 7.2-7.4
with a window size of 128 samples.



o~
fem]

Magnitude

40

20

Magnitude

40

20

Magnitude

Magnitude

Frequency-Domain and the Fourier Transform

[\
<

0.5 1 1.5 2
Normalized frequency (discrete radian freq.)

0 0.5 1 1.5 2
Normalized frequency (discrete radian freq.)

Fig. 7.2. Sine wave at 1 (top) and 5 Hz (bottom).

0 0.5 1 1.5 2
Normalized frequency (discrete radian freq.)

0.5 1 1.5 2

Fig. 7.3.

Normalized frequency (discrete radian freq.)

Sine wave at 20 (top) and 50 Hz (bottom).

297



298 Introduction to Digital Signal Processing

o 401 R
<
2
5
s 201 1
=
0 ‘ , s
0 0.5 1 1.5 2
Normalized frequency (discrete radian freq.)
o 401 1
<
2
5
s 201 1
=
0 ‘ , s
0 0.5 1 1.5 2

Normalized frequency (discrete radian freq.)

Fig. 7.4. Sine wave at 95 Hz (top) and 105 Hz (bottom).

As we expected, we can unequivocally witness this “bouncing-off” of
the mirror phenomenon at the Nyquist limit as we did in Chap. 1. We again
confirm that the 5 Hz, 95 Hz, and 105 Hz sine waves are indistinguishable
from one another as we observed previously and that the 50 Hz sinusoid is
equivalent to the 0 Hz signal. In these figures we are obviously dealing with
the magnitude values and hence there is no polarity change in the amplitude
values as encountered in Chap. 1. However, like before the mirror’s boun-
dary is at 7 (fs/2) and the image is found in the region between 7w and
2m or fs/2 and fs. If we kept on increasing/decreasing the frequency, this
yo-yo like behavior will go on in perpetuity as shown in Fig. 7.1.

8 Another Look: Down-Sampling and Up-Sampling Revisited

In this section, we will revisit what happens during down-sampling and
up-sampling in the frequency-domain and get a better handle on why we
need low-pass filters to fix artifacts which would otherwise cause problems.

8.1 Down-Sampling

As introduced in Chap. 2, Sec. 6.2, down-sampling simply refers to reducing
the number of samples per second in the time-domain. To refresh our
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Fig. 8.1. Aliasing caused by down-sampling.

memory — if we have a sampling rate of 8 kHz for signal z[n] of 2 seconds
in length which is equivalent to 16,000 samples and we reduce the total
number to 8,000 samples by plucking every other sample, we would have
essentially down-sampled the signal by a factor of two.

Let’s consider a signal’s spectrum, such as the one from the previous
section (Fig. 7.1) and down-sample it by M and see what happens (M is
an integer number). In Fig. 8.1 we observe that down-sampling causes the
original spectrum to broaden in width on the frequency axis by a factor of
M. As a matter of fact, it exceeds the Nyquist limit at +7 and causes the
images of the original spectrum to spill over and fold over to our area of
interest which is from 0 to 7 (this actually happens for all the other images
as we can clearly see in Fig. 8.1). Thus, the frequency components which
were supposed to go beyond the Nyquist limit (7 or f,/2) are now aliased
back to a lower frequency value! For a complex signal with a few hundred or
thousands of sinusoidal components such as the one in our example, down-
sampling without proper low-pass filtering can cause undesirable distortion.
An intuitive way to understand why we get a broadening of the spectrum
is to simply consider the cycle of a sine wave. That is, for lower frequencies
the value for cycles per second is small — a 1 Hz sine wave will have one
cycle per second and for a sampling rate of 8 kHz that would entail 8,000
samples describing one cycle. For a 2 Hz signal, equivalent to two cycles
per second, this will result in 4,000 samples per cycle. In essence, down-
sampling reduces the number of samples per cycle and as a consequence
increases the frequency /pitch. Thus, due to this reasoning, we automatically
get an increase in frequency during down-sampling. This is expected as we
observed and asserted in Chap. 2 — decrease in the number of samples
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increases the pitch (for a pitched signal). If a sine wave is down-sampled by
two the result would be an increase in frequency by an octave.

The aliased versions of the original can be expressed as follows (Porat
1997):

X (@) = L 3 x7 (A2 8.1)
(1M) - M — M :

where M is the down-sampling factor, m an integer referring to the copies of
the original, and € the radian angular frequency per sample. Equation (8.1)
may seem somewhat complicated at first but if one looks at it for a minute
or so, the right hand side may be less convoluted than meets the eye — the
right-hand side merely adds via super-positioning, M-shifted and frequency
scaled (divisor M) versions of the original Fourier transform X/(#). This
reflects the resulting net down-sampled aliased spectrum caused by the
copies of the original spectrum (between — to +): spectral overspill into
neighboring frequency regions marked by integer multiples of the Nyquist
limit. The overall 1/M scalar outside the summation is there to conserve
the overall energy as we would expect the total energy to remain the same.
The net aliased spectrum of Fig. 8.1 would look something like Fig. 8.2 for
M = 2. Table 8.1 shows where the original spectrum’s magnitude values at
frequency points £+ are scaled to during down-sampling for m = 0 to 1.
In order to avoid aliasing during down-sampling we need to low-pass
filter the signal before down-sampling or digitization. If we do it after the
sampling process, we will already have inadvertently caused aliasing to
occur (if sinusoidal components higher than the Nyquist frequency exist).
Since down-sampling by a factor of M increases the bandwidth by M,
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Fig. 8.2. Resulting net aliased spectrum for M = 2.
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Table 8.1. Down-sampled locations of original 6 = +m.

Frequency (6)  Fourier transform Xf(6) Magnitude

Original +7 X1(6) 0
m=0 427 x4(9) 0
m=1 47,0 Xf("*%> 0
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Fig. 8.3. LPF followed by down-sampling.

we would need to use a low-pass filter at m/M or lower. The reason we
would consider using a lower cut-off frequency at all is due to the fact that
real filters cannot be brick-wall filters as discussed in Chap. 7. Because each
filter has some sort of transition band, we will need to take into account
a small amount of safety when designing any filter. To avoid aliasing, we
would hence need to follow the procedure in Fig. 8.3. This is sometimes
referred to as decimation opposed to down-sampling, the latter referring to
deleting samples without low-pass filtering beforehand whereas decimation
referring to low-pass filtering followed by down-sampling.

In a way, the reason we get aliasing when down-sampling a signal should
intuitively make sense if regarded from a digitization of analog signals
point of view. Think of the process of sampling an analog, continuous-
time signal. We know that in such a situation, aliasing will occur when
a frequency component higher than the Nyquist exists in the analogue
signal. In other words, in the continuous-time sampling case, what we are
essentially performing is “down-sampling” an analog signal — the analog
signal has infinite time/frequency-resolution whereas the digital version
a finite one (larger to smaller bandwidth). Thus, down-sampling after
sampling is just another form of re-sampling an already sampled signal
(discrete-time signal). If during down-sampling the highest frequency of the
signal is smaller than /M we would not need to do any low-pass filtering
and as there would be no aliasing concerns.
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8.2 Up-Sampling

When we up-sample a signal, we increase the number of net samples and add
(interleave) zeros to the original signal. For example, if we up-sample by a
factor of two, we add a zero at every other sample. During up-sampling (or
expansion as it is sometimes called when viewed from the time-domain),
the spectrum changes from our original spectrum in Fig. 7.1 to the new
spectrum shown in Fig. 8.4.

As we might have already expected, during up-sampling, the spectrum
shrinks to a smaller bandwidth opposed to a broadening one as was the
case with down-sampling. The up-sampling process also produces unwanted
replicas of the shrunken spectrum as observed in Fig. 8.4. As with decimation,
this undesired artifact caused by the addition of zeros can be eliminated using
a low-pass filter after up-sampling with cutoff frequency 7/L. Thus, for the
above example, we follow the procedure depicted in Fig. 8.5.

It should not be that much of a mystery to understand how the
low-pass filter eliminates the problem caused by inserting zeros into a
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Fig. 8.4. Up-sampling by factor L = 2.
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Fig. 8.5. Up-sampling and low-pass filtering at /L.
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signal — low-pass filters make signals smoother. Thus, a zero-interleaved
signal, resembling a “potholed” sequence of numbers, will be smoothed out
in the time-domain which has the effect of eliminating the replicas in the
frequency-domain. Figure 8.6 shows the up-sampling process where the top
plot depicts a sine wave sampled at fs = 40 Hz with frequency = 1 Hz,
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Fig. 8.6. Original signal with fs = 40 Hz, f = 1 Hz sine wave (top), zero interleaved
and up-sampled at L = 2 (middle), low-pass filtering of up-sampled signal (bottom).
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the middle plot the up-sampled version with 0O interleaving, L = 2, and
the bottom plot the low-pass filtered result completing the up-sampling
process. In this example, we used a 2nd order Butterworth low-pass filter.
A particular quality of up-sampling that we can vividly hear in audio signals
is the decrease in bandwidth as we can predict from the Fourier transform
results — the spectrum contracts towards the DC making the signal sound
duller and less bright due to the reduction of high frequency components.

9 Windowing Revisited: A View from the
Frequency-Domain Side

When excerpting a portion of a signal for analysis, synthesis, or for what-
ever purpose, we accomplish this excerpting through windowing. We
have already used windows in RMS computation, the OLA algorithm,
Fourier transform, STFT, and many other situations and are undoubtedly
comfortable with the concept. As we have seen in Chap. 2, Sec. 4, different
window types have different time-domain characteristics verifiable just
by plotting the windows in the time-domain. As we may remember,
the rectangular window is the “simplest” one having the sharpest edges,
whereas the Hann window for example, has smooth flanking boundaries
helping with fading-in and fading-out the excerpted signal in the time-
domain.

The shape of a particular window has specific effects in the frequency-
domain and each type of window causes accompanying characteristic
ripples. Thus, the objective in choosing the right window is closely related
to minimizing those ripples and other window parameters as they add
distortion to the DFT outputs — in order to use DFTs we need to
use a window of some sort. More specifically, the main parameters that
determine the behavior of windows are the main lobes, side lobes, and
roll-off characteristics. To help us better understand these three important
parameters pertinent to a window’s choice, let’s start with the 32-sample
rectangular window.

The three typical characteristics that are the result of choice of a
particular window type are seen for the rectangular window in Fig. 9.1.
The main lobe basically determines how much resolution is given to
a signal in terms of separating closely distanced peaks (peaks close in
frequency such as two sinusoidal components). Hence, windows with main-
lobes of small widths contribute to better frequency resolution and help
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Fig. 9.1. Rectangular window in frequency-domain.

in differentiating and segregating frequency components that are close
to each other in frequency. All other lobes are referred to as side lobes.
Side lobe characteristics are also a function of the window type, coloring
and distorting the input signal, mainly via the strength of the side lobe
magnitude values. The side lobes contribute to a certain amount of energy
leakage into adjacent bins with respect to the main lobe. This may cause
less salient peaks in adjacent areas to be buried, if side lobes are too high
in energy. The roll-off presents the decreasing magnitude characteristics of
the side lobes. Thus, it is usually desirable to have a narrow main lobe and
low magnitude side lobe configuration for any given window.

To get a better idea what all this means, let’s use two sine tones with
amplitude of 1.0 and a rectangular window of 32 samples and zero-pad it
to 1,024 samples. As shown in Fig. 9.2, the window will be multiplied with
each sinusoid and will pass only those samples that fall in the area bounded
by sample number 1 and 32. We have used a smaller “actual” window size
(where amplitude is unity) to help visualize the effect of the main lobes and
side lobe characteristics on the two sinusoids.

The next two figures (9.3, 9.4) show the two rectangular windowed sine
waves at 500 Hz and 1 kHz. We can clearly locate and identify the main
lobes and side lobes in each plot — the distinctive wide main lobe stands
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Fig. 9.2. Rectangular window size 32 samples zero padded to 1,024 samples.

50 . . . T

Ommpmf\qf\f\f\mr\mpqr\'

-100 ]

-150 _

Magnitude

=200 )

-2501 a

=300 )

-350 : : : :
0 0.2 0.4 0.6 0.8 1

Normalized frequency (x x radians/sample)

Fig. 9.3. DFT of sine tone at 500 Hz using rectangular window.



Frequency-Domain and the Fourier Transform 307

Gqﬂmmﬂqﬂqmﬂf\mqmm‘

Magnitude

-2501 o

-300 : ' - :
0 0.2 0.4 0.6 0.8 1

Normalized frequency (x 7 radians/sample)

Fig. 9.4. DFT of sine tone at 1,000 Hz using rectangular window.

out and wraps around the peak representing the sine tone’s frequency. The
side lobes taper off on the flanking side of the peak in both figures as
expected. Now, what happens when we have the two sine tones at 500 Hz
and 1 kHz mixed together? The result of the complex tone is shown in
Fig. 9.5. Although we can differentiate the two peaks corresponding to the
500 and 1 kHz sine tones, we also see that additional distortion takes place
due to the net cumulative leakage in the side lobes contributed by the two
windowed sine waves.

Now, let’s use a smaller amplitude value for the 500 Hz sine wave
and see what happens. In Fig. 9.6, we employed only 10% of the original
amplitude value of the 500 Hz tone and left the 1 kHz tone unchanged.
As we can see, the DFT plot becomes more ambiguous than before and it
actually becomes more difficult to see what is happening — the peak of
the 500 Hz sine wave is not as peaky anymore and almost disappears into
jungle of side lobes. Musical signals and audio signals in general are far
more complex than what we are seeing here and have many more salient
peaks and harmonics that constitute a complex audio signal. This makes the
identification of peaks that much more difficult in part due to the distortion
effects of windowing. Thus, in general as stated above, it is highly desirable
to keep the side lobe magnitudes as low as possible, not only to alleviate
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Fig. 9.7. 500 Hz moved up to 920 Hz and 1kHz tone unchanged.

energy leakage and spectral smearing, but also to make the main lobe itself
more pronounced as a consequence.

As a final example to help illustrate the importance of the main lobe
and side lobes, let us move the two sine tones closer together in frequency
by shifting the 500 Hz signal to 920 Hz while keeping the amplitude levels
the same at 1.0 as before. As we can observe in Fig. 9.7, although we
would expect to see two peaks corresponding to each sinusoid, we only see
one big and bulky one — sort of looks like the mountain from Encounters
of the Third Kind. In any case, the 920 Hz component (and the 1 kHz
component) seems to have been lost in the process in part due to the
main lobe characteristics. The important point here is that we have to
be careful or at least know what the main lobe and side lobe characteristics
will be when looking at the spectrum and analyze the data accordingly.
This will allow us to make informative assessments and guesses of what we
are analyzing.

A simple approach for increased frequency resolution is of course to use
a larger window size (DFT size) as discussed in Sec. 4. This, however, does
not necessarily solve the side lobe problem for all cases. Hence, depending
on the signal you wish to analyze or manipulate, a wide array of windows
exist which have distinct characteristics and perhaps just the right features
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for your application. Some representative window types and their main
characteristics are discussed in the following sub-sections.

9.1 Rectangular Window

Rectangular windows are the most common types of windows where the
window itself is a collection of ones only — unity gain applied to the entire
window as seen in Fig. 9.8. The main lobe width is 47 /N (N is the number
of samples), first side-lobe attenuation is —13.3 dB, and has a roll-off of
20 dB/decade characteristic. There is also a substantial amount of leakage
factor which contributes to frequency smearing due to the rather high dB
side-lobe levels. At the same time, it is relatively well suited for transient-
based signals — signals that change quickly.
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Fig. 9.8. Rectangular window.

9.2 Hann Window

The Hann window also sometimes referred to as the Hanning window,
achieves a side-lobe reduction by superposition. It turns out that the
implementation of the window is achieved via three Dirichlet kernels which
are shifted and added together resulting in partial cancellation of the side-
lobes (see Sec. 9.6 on definition of the Dirichlet kernel). The resulting
characteristics of the Hann window which is sometimes called the cosine
window, has a first side-lobe level at —32 dB, main lobe width of 87/N,
and a 60 dB/decade roll-off rate. We can also observe a considerably sharp
roll-off rate and a wider main-lobe width with better frequency leaking
factor than the rectangular window due to the high roll-off.
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Fig. 9.10. Hamming window.

9.3 Hamming Window

The Hamming window is similar to the Hann window with some
modifications in weighting the Dirichlet kernels. The time and frequency-
domain plots of the windows are shown in Fig. 9.10. The main-lobe is
8w /N with —43 dB side-lobes and roll-off of 20 dB/decade. One significant
feature of the Hamming window is the non-zero values at both the head
and tail of the window and therefore is also sometimes referred to as
the half-raised cosine window. Due to the sharper edges, it somewhat
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behaves more like a rectangular window than does the Hann window. It
therefore has a narrower main lobe and slightly better transient features.
Another interesting observation about the Hamming window is that the first
side-lobe is actually smaller than the 2nd side-lobe. Hamming windows are
widely used in audio-based spectral analysis and synthesis applications.

9.4 Blackman Window

The Blackmann window has a —58 dB side-lobe, a slightly large main-lobe
width of 127/N, and roll-off of a steep 60 dB/decade rate. N is again
the window length in terms of samples as shown in Fig. 9.11. Although
the main-lobe is on the wider side of the main-lobe comparison chart,
contrasted to other windows, the side lobes fall on the lower end of the
window spectrum.
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Fig. 9.11. Blackman window.

9.5 Chebychev and Kaiser Windows

Some windows such as the Chebychev and Kaiser windows have more direct
parametric control over the shape of the windows. For example, a side-lobe
attenuation parameter R is used in the Chebychev window controlling the
side-lobe attenuation with respect to the main-lobe magnitude as shown in
Fig. 9.12 and 9.13 for different window lengths.
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Fig. 9.12. Chebychev window, N = 20.
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Fig. 9.13. Chebychev window, N = 40.

For the Kaiser window, a coefficient commonly denoted as 3 determines
the side-lobe attenuation characteristics as seen in Fig. 9.14 and 9.15 for
window lengths NV = 20 and N = 40.

As we have seen in this section, various window types exhibit specific
characteristics, thus making the choice of the window an important one —
there is a suitable window type for a given application and signal type.

9.6 Not Just More Windowing Stuff

Hopefully by this time, we have a pretty good grasp on the topic of
windowing and its various characteristics, especially concerning issues
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Fig. 9.15. Kaiser window N = 40.

pertinent to various types of distortions we should expect in the spectrum
when using a particular window. Before we leave this topic, let us take a
more detailed and final look at the rectangular window and its relationship
to the sinc function which gives a window its character in the frequency-
domain. Consider the rectangular window w(n] as follows:

w[n]:{l, 0<n<N-1 9.1)

0, otherwise

The discrete time Fourier transform (DTFT) for x[n] will thus be as seen
in Eq. (9.2) where 6 is the digital angular frequency in radians per sample
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as usual.
N-1
X7(0) =" wln] - z[n] - e79 (9.2)
n=0
Let’s for now assume that z[n] = 1 for all values of n and since the window

is unity between 0 and N — 1, we can rewrite (9.2) and simplify it using the
geometric series:

N—-1
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1— 67j0N
1—e1?
Now, if reconfigure the above result so that we can express the numerator

and denominator in terms of sines we have:
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sin(@ - N/2) e IO(N=1)/2
sin(6/2)

The function
sin(f - N/2)

D6, N) = sin(6/2)

(9.5)
is referred to as the Dirichlet kernel. The magnitude plot is show in Fig. 9.16
for window size N = 20 and Fig. 9.17 where N = 40 for § = 0 to 27.

As our range of frequency interest is from 0 to 7, we are not concerned
with data that goes beyond 7 or f,/2. However, for now we note that (9.5)
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Fig. 9.18. Sinc(z) function.

looks very similar to a sinc function or more specifically, like a normalized
sinc function defined as Eq. (9.6) and shown in Fig. 9.18.

sin(m - x)

sinc(x) = (9.6)

T
We can see in Fig. 9.17 that the sinc(z) function closely resembles the
Dirichlet kernel up until the center of the frequency axis. However, upon
closer inspection we realize that the difference between the two increases
as we move towards w. Furthermore, after 7, the Dirchlet seems to form a
mirror image of itself whereas the sinc(x) function decays further as shown
in Fig. 9.19.

One very important characteristic regarding the Dirichlet kernel
pertinent to the topic of DSP is the location of the zeros-crossings in
the frequency-domain. That is, the first zero occurs in the frequency axis
pertinent to a single full cycle of a sinusoid within the rectangular window
in the time-domain. The longer the window is, the lower (frequency bin)
the first zero will turn out to be. In our above example, we have a 40
sample rectangular window. For N = 40, we would get the first zero
at the frequency location corresponding to a sinusoid that makes one
complete cycle for that window size. Thus, the larger the window size N,
the lower the frequency of the first zero will become (remember that time
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Fig. 9.19. Comparison between normalized sinc function and Dirichlet kernel.

and frequency have reciprocal relationship f = 1/t). This explains why we
get a narrower main lobe when using a larger window size. The subsequent
zero locations occur at harmonics of the first zero: 2nd zero occurring at the
frequency pertinent to two full cycles in the rectangular window, 3rd zero
occurring at the frequency equivalent to 3 full cycles within the rectangular
window . . . etc.

We also saw at the start of this section that the main-lobes form
around a sinusoid’s frequency and side-lobes flank each sinusoid. This sort
of behavior can now be explained by considering the following example
where the input is a complex sinusoid z[n] as defined below.

z[n] = A-edn (9.7)

If we compute the DTFT X/(#) with window w[n] (defined over n =
0...N —1) we get the following:
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N-1
—A. Z wln] - e—J(0—0z)n
n=0
=A-X/(0-6,) (9.8)

The result in (9.8) is quite interesting as it says that the complex sinusoid
x[n] windowed by w[n] results in a shifted version of the window’s DTFT
(X/) by the sinusoid’s frequency 6,.. Now, this explains why the main lobe
is centered at a sinusoid’s frequency when windowed as it gets shifted by
0z, the input frequency as we have seen at the beginning of this section.

10 The Fast Fourier Transform (FFT)

Musicians nowadays use the Fourier transform in customized algorithms
to alter, modify, analyze, and synthesize sound in real-time during
performance settings or in the composition studio/lab/home. Needless to
say, the ubiquity of the DFT has been made possible by the increasing
speed of processors (and the fall in prices of personal computers) which
has seen remarkable progress to say the least. Back in the day, a room
full of hardware could only do a fraction of what your home computer
can do today and with even more power with multi-core processors, it is
difficult to imagine what we will have in 10-20 years from now. In any
case, an intriguing reason that makes it possible for us to use the DFT
in a digital system with little to no wait-time is due to a breakthrough
algorithm by Cooley and Tukey in 1965 (Cooley and Tukey 1965). This
invention is called the fast Fourier transform commonly referred to as the
FFT. I will not spend many cycles on this topic as it is well documented
on the Internet and other introductory DSP books and will only discuss
the basic ideas and concepts behind the algorithm. In a nutshell, what
Cooley and Tukey discovered was that when the DF'T of length N is a non-
prime number (composite), a divide-and-conquer method would allow for
faster computation of the DFT. The overall DE'T operation could essentially
be decomposed into a number of shorter sub-DFTs where the collection
of shorter DFTs together would require less computation, compared to
directly using Eq. (4.10). What’s more is that when the DFT size is
constrained to the power of two, the order of operations would drastically
be reduced from N? to N -log, N computations, the former being the
computation needed for directly computing the DFT. This method of
breaking the Fourier transform into two smaller sub-transforms of N/2 at
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each step is known as radiz-2 (also potentially a cool band name) and is
probably one of the most widely used methods for the implementation of
the FFT. You will remember in previous DFT examples, we used window
sizes of power of two and this is the reason why . ...

In computing the FFT, a lot of clever rearranging takes place so as to
reuse computed results of one sub-transform and apply the same results
to another sub-section — sort of like recycling. One interesting feature
is the so-called butterfly configuration — this is not a special Tae Kwon
Do technique but actually an algorithm. The reason for this name should
be evident when looking at Fig. 10.1 which shows a 3-stage, 8-point FFT
computation diagram with a bunch of butterfly-like looking configurations
at each stage. We also notice a lot of recycling in various sections of the
diagram where nothing is wasted in the process ... “tight” as a good friend
of mine would say.

In Fig. 10.1, we used the W notation which makes things a lot neater.
You will remember from (4.13) that Wy is the exponential term in the

X101

Y

> X[

Y

X2

»>e > — X [7]

Fig. 10.1. A 3-stage, 8-point DFT computation and the butterfly.
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DFT summation as shown below.
Wy = es2m/N (10.1)

This exponential term will adhere to the same rules of multiplication and
raising it to the power of M will result in (10.2) as expected.

WIIV\/[ _ (ej27r/N)M _ ejQTrM/N (102)

11 Convolution (also) Revisited

In Chap. 5, Sec. 5, we introduced convolution and its usefulness is audio
applications as defined below where z[n| is the input signal and h[n — m)|
the shifted impulse response.

m=-+oo
y[n] = x[n] * hin] = Z x[m] - h[n —m) (11.1)
m=—0o0
There are some interesting characteristics regarding convolution including
its commutative property as the input can be regarded as the impulse
and vice-versa yielding the same results. However, another very interesting
characteristic is that convolution in the time-domain is equivalent to
multiplication in the frequency-domain. This is shown in Eq. (11.2). The
commutative property for convolution, if (11.2) holds true, can be easily
verified by the right hand-side of (11.2) as multiplication itself is of course
commutative.

y[n] = x[n] x hin] & DFT{y[n]} = DFT{z[n]} - DFT{h[n]} (11.2)
yln] = IDFT{DFT, - DFT}} (11.3)

Hence, the convolved output y[n| can be computed via performing the DFT
for each individual signal x[n] and h[n], followed by multiplication of the
spectra, and finally computing the inverse Fourier transform of the product.
One of the main reasons convolution is more convenient to implement via
the DFT (actually FFT) on the computer is none other than the advantage
gained in processing speed for the two FFTs and one IFFT vs. Eq. (11.1).
Generally speaking, it is more efficient using the FFT-based convolution
than using the time-domain convolution version. The proof of (11.2) is not
that hard to produce (and will set this one also aside for a lazy Sunday
afternoon at the local coffee shop) but if we think about it for a little
bit, Eq. (11.2) intuitively makes good sense. Convolving two signals such
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as the impulse response of a hall and the dry recording of a voice will
result in the voice being heard “within” the hall or the hall “within” the
voice. Looking at this phenomenon from the frequency-domain, convolution
will result in each signal’s spectrum getting “colored” by the other signal’s
spectrum via multiplication — multiplication in a Boolean algebraic sense
is AND, accentuating commonalities whereas addition is OR which is all
encompassing.

11.1 Circular Convolution and Time-Aliasing

The convolution method we have discussed above is actually called circular
convolution and comes with artifacts. The artifact of circular convolution
is that the resulting signal after convolution is time-aliased. To try to
understand what time-aliasing is and why this happens, consider the
following example. Let’s say we have two signals, the input z[n] having a
length of M = 512 samples and the impulse h[n] at L = 500 samples. If we
use the time-domain convolution algorithm to compute y[n], we know that
we will get 5124500 — 1 samples (refer back to Chap. 5, Sec. 5 if this seems
bizarre). That is, M + L — 1 is the resulting convolved signal length that
will be produced. Now, if we use the frequency-domain version to compute
the DFTs, we would probably by default use the largest window size of the
two and zero-pad the shorter signal with zeros. In other words, use a DFT
size of M = 512 (we would in practice, however, use the FFT algorithm but
the results will be the same) and zero-pad the impulse signal’s tail with 12
zeros making both signals equal in length. After this, we would follow it up
with multiplication in the frequency-domain and finally proceed to do the
IDFT of the of spectral multiplication of X?[-] and H[-]. So far so good
...or is there a problem? There is indeed a problem. You will have realized
that after IDFT, we only have 512 time samples and not 1,011 (M + L —1)
that is required. This is referred to as time-aliasing.

Figure 11.1 shows an example of a correct version of DFT-based
convolution for input of length M = 146 samples (top of Fig. 11.1), impulse
response of length L = 73 samples (middle figure), and the convolved output
at the bottom of Fig. 11.1. As expected, when the two signals are convolved,
the output yields a sequence of 146+ 73 — 1 = 218 samples (bottom figure).
If we were to use a DFT size of 146 samples for both the input and impulse,
perform the DFT for each, multiply the resulting spectra, and then take
the IDFT of the product, we would only get 146 time samples, although
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Fig. 11.1. Input signal (top), impulse (middle), and convolution output (bottom).

the correct size should be M + L —1 = 218. In this case, time-aliasing
occurs as the DFT size is too small and the 72 samples (218 — 146 = 72)
corresponding to the tail bit of the correctly convolved signal will spill
over to the beginning of the signal. This is depicted in Fig. 11.2, which
shows three sub-plots of the same convolved signal at the top, middle, and
bottom plots. We know that the time-aliased version has only a resulting
signal length of 146 samples whereas the correctly convolved signal 218
samples. The spill over occurs as the 72 samples at the tail end will add to
the beginning of the convolved signal thus distorting the output. The net
time-aliased convolved signal is shown in Fig. 11.3.

Time-aliasing can be easily fixed by properly zero-padding each signal
to the correct DF'T length before multiplication: zero-pad to M + L — 1.
When using the FFT, we would obviously want a window size of power
of two for efficiency. So, when choosing the size of the FFT, we simply
select the next closest power-of-two window size, pad it with zeros before
multiplication, and delete the excess samples in the time-domain after IFFT
to meet the M + L — 1 requirement as summarized in Fig. 11.4.

The inverse of convolution is referred to as deconvolution. Stated in
another way, let’s say you know the impulse response and the output of a
system and want to know what the input was. Is there a way to get this
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Fig. 11.2. Time aliasing due to circular convolution.

input? The answer is yes — through deconvolution. Deconvolution is far too
complex to deal with in the time-domain but fortunately in the frequency-
domain, it becomes merely a matter of division of the DFT frames in
question. That is, as convolution is a multiplication process of the spectral
frames of the input signal and impulse response in the frequency-domain
(11.4), any one of the three components (output, input, impulse response)
can be computed if any of the other two are known.

DFT, = DFT, - DFT), (11.4)

For example, if we know the impulse response and the output of a system,
we can quickly deconvolve the two by dividing the DFT of h[-] and y[-] and
compute z[-] according to (11.5).

DFT,
DFT,

DFT, = (11.5)
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12 One More Look at Dithering

Remember a long time ago in Chap. 1, Sec. 7.1 when we talked about
dithering and how quantization and rounding can lead to harmonic
distortion? This can now be verified using the Fourier transform and
knowing that a square wave can be described in terms of odd harmonics as
discussed in additive synthesis in the beginning of this chapter. Let’s take
another look at Fig. 12.1 from Chap. 1.
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Fig. 12.1. No dithering (top), dithering with white noise (bottom).

The top of Fig. 12.1 shows what happens during quantization and
sampling for a sine wave at 4 bits and the bottom plot the white noise-
based dithering result before and after quantization. Quantized signals
generally look square and rigid while analog signals smooth. Figure 12.2
shows the Fourier transform of the above two signals and as we can see, it
shows as expected, harmonic distortion in the upper plot — harmonics
that were not there prior quantization and rounding are manifested in
the digitized output. The lower plot depicting the dithered version shows
only one sinusoidal component (only one strong peak) at the appropriate
frequency without any additional harmonics at the expense of low energy
noise padding the floor. The noise floor is minimal and for most practical
purposes cannot be perceived as they have too little energy, especially when
the SNR is at a healthy level resulting in the “signal” masking out the
background noise. This sort of phenomenon is also quite intuitive — just
by looking at the plots we will probably immediately notice the peaks more
than the grassy-looking noise floor. The strong peaks seem to overshadow
the “background” so-to-speak.
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Fig. 12.2. Fourier transform of non-dithered and dithered sine wave.

13 Spectrogram

Although it is quite interesting to look at a single DFT frame and analyze a
signal’s frequency structure, not that much information can be gained and
extracted, especially if it is a real signal — like every-day audio signals used
in music and compositional situations. Those signals change with time —
static signals would probably make a musical piece quite uninteresting
unless of course it is about the minute subtleties or a prolonging drone. But
even in such a piece that has seemingly no change, there would still be some
amount of variance although maybe not perceived as foreground material.
We have seen in Sec. 5 that the short-time Fourier transform can be helpful
in this regard — allow analysis of transient-based sounds while keeping the
frequency resolution robust for each spectral frame. The spectrogram in
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Fig. 13.1. Spectrogram plot.

essence is a multi-vector-based STFT mapped onto a 3-dimensional plot
of time vs. frequency with the 3rd dimension corresponding to magnitude
usually color coded (or mapped onto a grey scale system). It is common
practice to have the x axis refer to time and the y axis frequency as shown
in Fig. 13.1.

When first looking at a spectrogram, it may be difficult to immediately
see what is happening (nevertheless they almost always look cool!). One
very helpful part of visually analyzing signals via the spectrogram (and
hence Fourier transform) is that whatever is horizontal (periodic or quasi
periodic) in the time-domain will become vertical in the frequency-domain.
If the periodicity is sustained (goes on for a while) we will generally see a
horizontal line forming in the spectrogram. If it is not periodic (horizontal)
in the time-domain, it will show up as a flat spectrum in the DFT frame
and a block of noise in the spectrogram — i.e. pattern-less and vertical.
Thus, in our spectrogram plot, armed with these very basic attributes
regarding signals, we can observe that at just before 2 seconds, between
3 and 4 seconds, at around 5 seconds, and by the end of the spectrogram,
non-patterned (non-periodic) attributes or noise-like sounds are present.
While in the other parts, pitched signals with harmonics are observable
with occasional low frequency modulation as well as amplitude modulation.
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The signal in this example is in fact a male voice singing “love me tender,
love me sweet.” In general, the noisy areas pertain to the attack parts of
the signal, where around the 2 second mark the “t” in “tender” is sung
and in the 5 second area the “s” in “sweet” is vocalized. We will discuss
vocoders in the next chapter and also present the LPC filter which uses the
idiosyncrasies of consonants and vowels to codify and extract the so-called
LPC coefficients.

14 Fourier Transform Properties and Summary

In this section, we have included some of the main properties of the Fourier
transform as shown in Table 14.1. Some of them may seem more obvious
than others but they should all, nevertheless, be helpful when dealing with
the Fourier transform. Table 14.2 gives an overview of the various types of
Fourier transforms.

Table 14.1. Summary of important Fourier transform properties.

Property Summary
Linearity gln]=az -] +b-yn] < Z(0) =a- XF(O) +b-Y(6)
where a, b are constants (14.1)
Periodicity XIO)y=xf0+2 n-k)
where 6 is real, k is an integer (14.2)
Time shift y[n] = z[n — m] < Y (0) = e~ 19 X1 (6)
where m is an integer (14.3)
Frequency shift y[n] = e95" . z[n] — YI(0) = X1 (6 — k)
where £ is real (14.4)
Multiplication y[n] = z[n] - hn] < Y (0) = XS (0) « HS () (14.5)

y[n] = z[n] x h[n] — YT (0) = XF(0)- HT (6) (14.6)

xf(—0) = X7 (0) (14.7)

Re{X7(—0)} = Re{X7 (0)} (14.8)

e Im{X7/(~0)} = ~Im{X7/(6)} (14.9)
‘Xf(fe)‘ - ‘Xf(e)‘ (14.10)

2XF(-0) = 2 - X7(6) (14.11)




330 Introduction to Digital Signal Processing
Table 14.2. Summary of different Fourier transforms.
Time Continuous Discrete
Frequency
Continuous Continuous-Time Fourier Discrete-Time Fourier
Transform Transform
F +oo it n=-+oo )
X" (w) :/ z(t)e 7@ dt x7(0) = Z z[n] - e~ 90"
e n=-—oo
1 [t & -
t) = — X Jotd I ;
o0 =5 /_Oo @erdw ) = —/ x7(9) - 7 dg
27 J_n
Discrete Continuous-Time Fourier Series Discrete Fourier Transform
z(t) =x(t+T n=N-1 27kn
( ) ( + ) Xd[k] — Z IE[?’L} e ITN ,
1 T 27kt n=0
XSk = ?/ x(t) - e I T dt
. f 0<k<N-1
=400
o) = > XS[HIH p Nl -
W2 aln) = > XU
—— 00 N
k=0
f = 4000;
fs = 22050;
fftLength = 1024; % window length
X = sin(2*pixf*[0:1/fs:1]); % make the sine wave
ft = fft(x, fftlength); % do FFT, use rect. window
ftMag = abs(ft); % compute magnitude

% plot the results both in linear
subplot(2, 1, 1), plot(ftMag)
title(‘Linear Magnitude’)
ylabel(‘magnitude’), xlabel(‘bins’)

and dB magnitudes

subplot(2, 1, 2), plot(20*logl0(ftMag))
title(‘dB Magnitude’)
ylabel(‘dB’), xlabel(‘bins’)

Code Example 14.1.

FFT.
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15 MATLAB® and Fourier Transform

As you may have already anticipated, MATLAB® (when used with the
Digital Signal Processing Toolboz) includes FFT and spectrogram (STFT)
functions as well as a number of very useful frequency-domain tools. The
functions available in MATLAB® are quite straightforward to use —
at least in a sense that the STFT and FFT are readily available and
straightforward to use. An example of using the FFT is shown in Code
Example 14.1 where the resulting plots are the three subplots of the FFT
of a sine wave at 4 kHz — linear magnitude, log magnitude, and dB
magnitude.

16 Musical Examples

It is no exaggeration to say that the Fourier transforms is probably used
everywhere in the musical world today, especially in the area of plug-ins
for manipulation and modulation of sounds in digital audio workstations.
Most composers who work with computers have at some point used, or are
actively using (whether aware of it or not) Fourier transform-based tools
to compose, edit, mix, master, and manipulate music. Obviously, there
is nothing special regarding its usage; on the contrary it is probably so
common and ubiquitous that no-one really talks about it per se. There are,
however, a number of interesting compositions that have borrowed ideas
pertinent to the Fourier transform during a time when composers did not
have computers automatically churn out the specific spectral structure of
sound objects. In the 1950s, a wealth of research was being conducted by
composers especially in Germany and one such composer was Karlheinz
Stockhausen who was very much concerned (in the early years) with
Elektronische Musik opposed to musique concréte. Elektronische Musik
referred to production of sounds via oscillators whereas music concrete
techniques involved compositional ideas centered on sound production via
found sound objects — sounds recorded with a microphone and a tape
recorder. In his piece called Klangstudie I (sound studies) composed in
1952, Stockhausen applied additive synthesis methods whereby layering
the output of oscillators in a very tedious and laborious fashion — playing
two oscillators at a time and recording them onto a tape machine, then
playing another pair of tones using the same oscillators while playing
back the pre-recorded sinusoids via the same tape machine, and finally
recording the resulting summed sinusoids onto a second tape recorder.
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These studies seemingly were based on physicist Herman von Helmoltz’s
studies in timbre. Helmholtz used the so-called Helmholtz resonators to
literally perform manual Fourier analysis using highly tuned flasks. These
Helmholtz resonators had two openings, one to let the sound in from the
outside world, and another one that would be held against the ear for
monitoring. Each flask would be tuned to a specific frequency and only
produce a tone if that particular frequency component existed in the input
signall A more recent composer named Paul Koonce has also used the
Fourier transform widely in a number of his musical works. One such piece
is Hot House (1996). In this piece, the composer deals heavily with the
issue of timbral enharmonic change. That is, addressing issues concerning
timbral commonalities and changing (or morphing) from one sound object
to another by using common timbral features and threading them in a
continuous sonic projection. For example, in one part of the piece, the
foreground curtain of sound is initially that of car horns which slowly change
shape into a chugging train. The train in turn seemingly comes to a stop and
is perceived as if punctuating the ending of a musical section as it reaches a
train station while expelling its pent-up steam. The steam briefly affords a
foggy atmosphere where the commotion of people chattering and shouting
accentuates the instability of the sonic environment and all of a sudden one
is transported to a completely different sound space where the connecting
dots from one space to another are the hissing steam of the train and the
sound of a tea kettle in someone’s home ... and the journey continues ...
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Chapter 9

SPECTRAL ANALYSIS, VOCODERS, AND
OTHER GOODIES

1 Introduction

In our final chapter of the book, we will introduce some interesting
approaches and methods in spectral analysis and synthesis for audio signals
as well as musical applications. We will also discuss an intriguing topic
related to the voice, namely topics concerning vocoders. We will start off
the chapter with a number of spectral analysis techniques including peak
detection, fundamental frequency detection, and then move on to wrap our
heads around vocoders that have found much popularity in the area of
music composition, production, and speech synthesis research alike.

1.1 Musical signals and important nomenclatures

With almost certainty, independent of our cultural heritage, we have
probably been exposed to traditional musical sounds, sounds that we may

333
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not consider to be musical, and sounds that lie in between musical and
non-musical. It is difficult or perhaps even impossible to categorize sounds
into two camps — musical sounds vs. non-musical sounds. The difficulty
probably lies heavily on the issue of context which often seems to play a
critical role in the perception of sound and music. For some folks, noisy
signals may not be considered musical at all (such an airplane propeller
spinning or an army of frogs in a large pond late at night) while others
may regard cacophony as totally musical and utilize noisy materials for a
composition. Some great musical examples include Back in the USSR by
the Beatles and Money by Pink Floyd. In both pieces, sounds that are
normally not considered “musical” are used very effectively to augment
the experience of the two songs. In a way, it is probably fair to say that
the spectrum of sound is really infinite, which may be loosely regarded as
spanning from a single pure sine tone, to complex tones, to white noise.
However, the characteristics of a small section of this infinite spectrum
of sonic amalgam, closely adhere to particular patterns and behavior and
are likely (at least at current time) the most commonly accepted types of
musical sounds. These sounds which we have seen in abundance even in this
book are often pitched sounds — sounds that are quasi-harmonic eliciting
a sense of pitch.

Sound objects that are pitch-based have a special trait — spectral peaks
in the frequency-domain that follow a certain pattern which go by many
names including peaks, harmonics, partials, and overtones. Although these
terms are similar in many ways, they do refer to very specific characteristics
and thus, at times, can result in their misuse. The term peak is probably the
most general expression used in describing spectral saliencies referring to
any projecting point characterized by positive slope followed by a negative
slope in the spectrum. Peaks also generally stand out from the background
noise which is probably a collection of small peaks and part of the noise
floor itself, in which case, they should perhaps not be referred to as peaks
(although technically correct). The location of peaks on the frequency axis
also does not necessarily have to abide to any sort of logical pattern. Those
types of peaks that do not adhere to frequency-based patterns are also
referred to as partials — strong and salient frequency components that
constitute a complex tone which necessarily need not be in some sort of
integer relationship to each other. Peaks and partials that are characterized
in integer (quasi or otherwise) relationship to one another in frequency
are referred to as harmonics. This pattern usually constitutes an integer
relationship to the fundamental frequency — the frequency that we would
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normally perceive as the pitch as shown in Eq. (1.1) for integer vales n.

fn:n'fo (11)

The first harmonic is usually referred to as the fundamental and is often
given a special case notation as fp, the 2nd harmonic (n = 2) as the first
occurring octave, the 3rd harmonic 3 times the fundamental frequency and
so on. The term overtone is often used in musical contexts and refers to the
harmonics that lie above the fundamental frequency. This naming scheme
may be a potential source for confusion as the 1st overtone corresponds to
the 2nd harmonic, and the 2nd overtone to the 3rd harmonic. The degree
of confusion may even be potentially worsened when dealing with complex
tones that only have odd harmonics (or even harmonics) in which case the
2nd harmonic which will be the 3rd harmonic, will be equivalent to the 1st
overtone of the harmonic series whereas the 5th harmonic the 2nd overtone.
So, a word of caution is advised in making sure the right nomenclature is
used in the right situation.

A pitch-based sound object’s characteristic timbre or sound color, as
some like to refer to it, is profoundly influenced by the harmonic structure —
location of the harmonics and the magnitude of the harmonics. This
ranges from the typical clarinet sound exemplified by strong presence of
odd harmonics, to stringed instruments demonstrating subtle harmonic
expansion (tendency of the location of harmonics gradually increasing with
respect to the ideal locations when moving towards the Nyquist) caused
by the stiffness of strings. In most cases, real harmonics found in acoustic
instruments and other musical situations rarely line up perfectly according
to Eq. (1.1) but are found near those ideal harmonic locations. This
error between the ideal harmonic location and actual harmonic location
is perhaps one of the most interesting aspects of a sound’s timbre, making
it seem “alive” and “natural.” I will leave the topic of timbre at this point
as it requires a few chapters in itself, if not a whole book, to delve deeper
into it, and will get back on track by presenting some basic spectral analysis
techniques in the next section.

2 Spectral Analysis

Spectral analysis refers to the scrutiny and examination of a signal in
the frequency-domain most commonly via the Fourier transform. When
analysis is conducted on the computer, it is usually accomplished via the
DFT and the STFT as discussed in our penultimate chapter. To state it
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bluntly, when performing spectral analysis, we are striving to find patterns,
any peculiarities, and salient features that will give us clues as to what
idiosyncrasies (if any) exist. In this section, we will cover a few of the
topics and approaches surrounding spectral analysis.

2.1 Long-term average spectrum (LTAS)

The long-term average spectrum shown in Eq. (2.1) is a method for viewing
the average spectra of a sound object (or any signal). The underlying
algorithm takes advantage of the fact that the background noise is averaged
towards the floor while reoccurring peaks are accentuated and made clearer.
This result is due to the averaging nature of the algorithm which has an
effect of canceling out background noise and accentuating peaks if they
occur in some sort of repeating pattern, especially patterns that do not
deviate much from the average.
M—1
LTAS =1/ X& (2.1)

m=0

M is the number of STFT frames, m the frame index, X¢, the mth spectral
frame containing magnitude and phase components. However, when using
LTAS (due to averaging which is basically a low-pass filter), some amount
of the transient information is lost. So, depending on the application and
what your needs are, LTAS may often be helpful especially as a pre-
analysis process to try to get an overview before zooming-in to conduct a
more detailed analysis. Alternatively, for some applications, an elaborately
thorough scrutiny may not be required, in which case the LTAS may
be a perfect solution. Figure 2.1 shows an electric bass guitar signal at
fs = 44.1kHz and Fig. 2.2 shows a plot of the DFT of the middle part
of the electric bass and the corresponding LTAS with window size 1,024
samples and overlap of 40%. The top plot in Fig. 2.2 shows the 139th frame
of the electric bass and the bottom plot the LTAS of the signal itself. In this
case, we can get a better picture of the overall spectral structure reflecting
the harmonics and fundamental frequency of this sound example.

2.2 Log vs. linear

When analyzing the spectrum of a windowed signal, there are usually a few
ways to view and analyze the results. One of the options that we have is log
base 10vs. linear magnitude representation. The main difference between
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log and linear representations for displaying a spectrum’s magnitude is that
the log version generally brings out more of the details and the linear version
less details as discussed in Chap. 6. It may be a bit misleading to say
that we get more details in the log magnitude plot as there is really no
additional information gained. However, due to the characteristics of the
log function as seen in Fig. 2.3, which generally makes larger values smaller
and smaller values larger, subtleties that would normally not be noticeable
may be brought out. Figures 2.4 and 2.5 show plots of the linear and log
magnitude plots of the same electric bass guitar from our previous example.

The linear magnitude plot, however, is not useless either and as a matter
of fact it is far from it and is as important as the log version. It is especially
helpful in showing the saliency of strong peaks and resonant structures as
we can vividly see in both Figs. 2.4 and 2.5. The choice between log and
linear should be a function of what we want look for. No one version is
better than the other, they are just different.

The log function is also often applied to the x axis frequency. As
perception of frequency is more logarithmic than linear, the log-frequency
representation may at times be additionally relevant to the way humans
perceive sound when dealing with pitched audio signals for example.
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One simple way to understand the nonlinearity of pitch is to consider the
octave. The octave is defined as twice the fundamental frequency (or more
generally twice the frequency of the reference frequency). For example, if
we have a fundamental frequency fo = 100 Hz, the 1st octave would be at
200Hz. The next octave would be at 400 Hz (100-4 or 200 -2 the octave
of the 2nd harmonic) and the octave following the 400 Hz would be 800 Hz
and so on. The increase in octave is generally perceived by our hearing
system as being just that — an increase of twice the frequency. However,
the increase in the actual amount of frequency does not seem linear at all.
For the above example, let’s limit to the allowable frequency resolution to
integer values. The first “frequency distance” between fy and fo is 100 Hz,
for fo and fy it would be 200Hz, f4 and fs 400Hz, and so on. Although
we perceive the frequency change or the distance to be pretty much the
same for each octave shift, the actual frequency distance expands as we
go up the frequency scale. With the log function this expansion is made
more linear in perception although not mathematically speaking. If this still
sounds a bit funky, think of the piano keyboard. Keys on the piano all have
the same physical spacing — all white keys are of a certain width and all
black keys are of another width. However, although the frequency distance
increases with every increase in octave, the physical keyboard spacing stays
the same — linear. We as performers also feel that this layout “feels”
right, meaning that the piano keyboard does not feel awkwardly scaled.
It would indeed be interesting to have the piano key spacing change as is
the case for stringed instruments — the higher you go up the frequency,
the shorter the fret distance becomes. This is of course due to the increase
in frequency — as one moves up the frequency scale on the guitar neck
it expands in frequency resulting in compression of the wavelength and
thus shortening of the distance between frets (wavelength and frequency
are inversely proportional).

2.3 Spectral peaks, valleys, and spectral envelope

Looking at the spectrum in Fig. 2.6, we note some interesting features. Two
notable ones are the spectral peaks and valleys. Spectral peaks are especially
important as they give information regarding the salient resonant structure
of a sound object. Valleys can be loosely viewed as dampening or anti-
resonant locations as well as zeros from a filter nomenclature perspective —
just imagine having a pole at each of the peaks and zeros in between peaks.
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Fig. 2.6. Spectral peaks and valleys.

The most pronounced peaks and valleys of a spectrum contribute
to the global quality of a sound object. However, there is also a lot of
subtlety in the spectrum which are not unimportant but at the same time
perhaps comparatively not as significant as prominent peaks and valleys.
In a way, when we look at a spectrum, what we see at first glance is
the outline/contour and shape of the spectrum defined by its magnitude
values. This is referred to as the spectral envelope. It probably seems quite
straightforward for us (humans) to look at such a spectrum and analyze the
saliency of peaks (and valleys), but to do it automatically on the computer
can be a more difficult task. This seems to be the case for many problems —
what humans do with relative ease is more difficult to do with computers
whereas what’s simple to accomplish on the computer (such as summing the
first 2 million odd integer numbers starting at 0, squaring it, and dividing
the results by 5.100276) is hard for a person to do.

The definition of a peak as mentioned in the beginning of this chapter is
actually quite straightforward and is described as any point that involves a
particular change in slope — positive to negative. Valleys are the opposite,
with the slope changing from negative to positive. This sort of analysis is,
however, sometimes not entirely informative as the resulting data set is very
large as shown in Fig. 2.7.
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In Fig. 2.7, we merely computed the change in polarity by walking along
the spectrum and defining peaks as positive to negatively changing locations
and valleys as negative to positively changing points. Alternatively, we
could have analyzed for valleys using a peak analyzer by inverting the
spectrum and looking for positive to negatively changing slope points.
Various approaches in obtaining more useful data in the spectrum exist,
including setting a threshold to filter out, say, peaks that are below 50%
of the maximum peak; setting a threshold so that the difference between
a peak and the immediate adjacent valley be greater than a certain static
value or adaptive value; or simply picking the first 10 largest peaks and
10 smallest valleys as the most representative ones. Obviously all of these
approaches come with their own problems and there is indeed no perfect
algorithm due to the vast array of signals out there.

There are many ways of computing the spectral envelope including
low-pass filtering the spectral frame or using the RMS windowing method
we exploited for time-domain envelope computation. The RMS spectral
envelope is depicted in Fig. 2.8. Note that when using the RMS envelope
approach, down-sampling takes place due to the use of windows — the
number of data points representing the spectrum will be decimated. Thus,
some sort of interpolation often needs to follow the RMS algorithm to
equalize the envelope size with respect to the spectrum’s original size.
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Other ways of extracting salient peaks is to try to filter out passing
peaks — peaks that are not part of the ensemble of the salient peaks. This,
however, is more difficult as the issue of ascertaining which are “passing”
peaks and which are not is easier said than done. Figure 2.9 shows the
result of such an algorithm. It does a pretty decent job at picking salient
peaks but is by no means perfect — whatever perfect may refer to. More
information and documentation regarding the algorithm can be found on
the Internet, downloadable at http://music.princeton.edu/~park.

2.4 Extraction of fundamental frequency and harmonics

Sound objects that elicit a sense of pitch usually have a spectral structure
that includes the fundamental frequency and its various harmonics with
the fundamental frequency being the pitch that we normally perceive.
Figure 2.10 shows such an example with a fundamental frequency of 100 Hz.

It is, however, not always the case that the fundamental is the strongest
peak and at times it does not even exist (this is referred to as the missing
fundamental phenomenon). In the case of the missing fundamental, we will
still perceive the fundamental frequency as the pitch although it is not
physically present in the spectrum. Furthermore, musical pitch of an audio
signal is a perceptual feature of sound whereas frequency is an absolute
term, which can be measured with an oscilloscope for example. Musical
sounds in the real world are quite complex consisting of many harmonics
and it should then perhaps not be that much of a surprise that with
the presence of a healthy number of harmonics, the sensation of pitch is
improved (Truax 1978). There is still much active discussion regarding
exactly how we perceive pitch and although it is quite an interesting and
very important topic, we will redirect our attention to exploring DSP
algorithms for automatic fundamental frequency estimation.

There are many ways of computing the fundamental frequency and
there is no one ultimate method to estimate it as an algorithm that does
a great job on one type of signal can perform poorly for other types of

[ I t

100 200 300 a00 . Frequency

Magnitude

Fig. 2.10. Harmonic structure of a pitched spectrum.
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signals. We have already seen several time-domain-based pitch estimation
algorithms in Chap. 2, Sec. 5. Some additional algorithms for estimating
the fundamental frequency include cepstral analysis, harmonic product
spectrum, and the inverse comb-filter method. The last one technically does
not belong to the frequency-domain algorithm category but nevertheless
exploits the frequency response of the inverse comb-filter to estimate the
fundamental frequency. We will briefly introduce these three algorithms
starting with the inverse comb-filter method.

2.4.1 Inverse comb-filtering

Inverse comb-filtering as mentioned above is actually not a frequency-
domain process per se but its application in fundamental frequency
estimation can be understood conveniently in the frequency-domain. The
filter’s FIR difference equation is given below.

y[n] = z[n] — by - z[n — N| (2.2)

We may remember from Chap. 7, Sec. 3.3 that the FIR forward comb-filter
is given by Eq. (2.3).

yln] = x[n] + by - z[n — L] (2.3)

Both filters are very similar in shape as we can see in Figs. 2.11 and 2.12
but their behavior have important differences. The forward comb-filter has
notches at around 0.1, 0.3, ... as seen in Fig. 2.11. The inverse comb-filter,
however, has notches around 0.2, 0.4,... — between the notches of the
forward comb-filter. The way inverse comb-filters are used for fundamental
frequency analysis is by capitalizing on the fact that pitched signals have a
tendency of demonstrating some sort of harmonic structure. That is, when
viewed via the Fourier transform, the power spectrum will show strong
harmonics along with the fundamental frequency. Thus, if we employ an
inverse-comb-filter and tune it so that the notches align with the harmonics
and the filtered signal, after inverse-comb-filtering will lose energy as
the harmonics are attenuated. The more aligned the notches are to the
harmonic locations, the lower the energy will be for the inverse comb-filtered
signal.

Figure 2.13 shows an example of this technique where we utilized an ITR
inverse comb-filter according to Eq. (2.4) for a flute sound played at C#4.

yln] = z[n] — a1 - y[n — N] (2.4)
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Before sweeping the inverse comb-filter to find the delay N that
minimizes the output energy of the filtered signal, the input signal was
subjected to a pre-emphasis filter. A pre-emphasis filter is simply a very
basic high-pass filter which can sometimes be helpful in flattening out
the spectrum of an audio signal. Musical instrument signals usually have
stronger harmonics in the lower frequency areas and a decaying magnitude
contour with the increase in harmonic number much like Fig. 2.10. Thus,
with the pre-emphasis filter shown in Eq. (2.5), the flute signal is somewhat
flattened out, generally helping the analysis when applying the inverse
comb-filter as it notches each harmonic more uniformly.

y[n] = x[n] — by - z[n — 1] (2.5)

You will also remember that we already covered the sister of this simple
high-pass filter, namely the 1st order FIR low-pass filter in Chap. 6,
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Sec. 3. Thus, the 1st order FIR high-pass filter is actually equivalent to the
lowest order FIR inverse-comb-filter. The FIR low-pass filter has a similar
relationship to the forward comb-filter of Eq. (2.3). Using this methodology
for pitch estimation in our example resulted in a fundamental frequency of
551.25 Hz for f; = 44.1kHz (N = 80 samples, fo = fs/N = 551.25Hz). The
correct frequency should be around 554.365 Hz, assuming that the flute has
been tuned and played correctly.

Note also that at every multiples of 80 samples or so there is a pretty
large dip that occurs in the mean power plot (bottom of Fig. 2.13). This is
expected as the flute is (quasi) harmonic and the filtering of the signal with
the inverse comb-filter will result in dips at multiples of the fundamental
frequency. Furthermore, starting at around the 40 sample point, we observe
large peaks at multiples of around 80 samples for the mean power vs. delay
plot as well. This is again what we should expect as the inverse comb-
filter not only attenuates harmonics but also amplifies harmonics when the
notch frequencies are between harmonics. Hence, if we had used the forward
comb-filter instead, we could have achieved the same results by searching
for the mean power of the filtered signal that rendered the maximum mean
energy opposed to the minimum mean energy as depicted in Fig. 2.14.
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Fig. 2.14. Inverse comb-filter notching out the harmonics (top), inverse-comb filter
amplifying harmonics (middle), original harmonics (bottom).
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2.4.2 Cepstrum analysis

The cepstrum method for pitch analysis is also based on the DFT or rather
the inverse-DFT of the log of the DFT to be more accurate. The name itself
is a wordplay on spectrum coined by Bogert, Healy, and Tukey by reversing
the first 4 letters yielding cepstrum. A bunch of other familiar terms were
used by Bogert such as liftering, rahmonics, and quefrency. Bogert explains
that in general “... we find ourselves operating on the frequency side in ways
customary on the time side and vice versa” (Bogert et al. 1964) and hence
the shuffling of letters. Cepstrum was initially applied for the detection of
echoes and has found wide usage in acoustics, speech, and other areas in
signal processing. The algorithm itself is quite straightforward and is shown
in Eq. (2.6).

3[n] = DFT"{log DFT (x[n])} (2.6)

§[n] is the real cepstrum component of the inverse DFT having the units of
quefrency — corresponding to the unit of time, which can then be analyzed
for peaks rendering the fundamental frequency.
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Fig. 2.16. Fundamental frequency computation flowchart via the cepstrum.

An example is shown in Fig. 2.15 where we have used a short excerpt
of a singing voice. The top figure shows the time sequence, middle figure
the power spectrum in dB, and the bottom figure the cepstrum. The
fundamental frequency is commonly computed by finding the maximum
peak for a given region in the cepstrum — that is, limiting the search
to a minimum and maximum frequency range for pitch. For example, for
the singing voice’s cepstrum, the minimum frequency was set to 60 Hz
and maximum frequency to 5kHz resulting in a fundamental frequency
of 179.27Hz. The overall process is shown in Fig. 2.16.

2.4.3 Harmonic product spectrum

The harmonic product spectrum method (Schroeder 1968) is also a Fourier
transform-based pitch detection algorithm. This algorithm also takes
advantage of the tendency of pitched musical signals to demonstrate strong
harmonic structures. The algorithm works by down-sampling spectra and
multiplying the resulting spectra according to Fig. 2.17.

The down-sampling process in the frequency-domain essentially pulls
the harmonics towards the DC essentially lining up the fundamental and
the subsequent harmonics (if present) — down-sampling by 2 lines up
harmonic 2 (octave) with the fundamental, down-sampling by 3 lines up
harmonic 3 with the fundamental, ... etc. When the spectra are multiplied
together, a strong peak will develop at the fundamental frequency location.
In an ideal system, where, say, all the harmonics are at ideal harmonic
locations (integer multiples of the fundamental) with an amplitude of 1 and
all other areas 0, the situation would be like performing a Boolean AND
on the spectrum, resulting in one single peak at the fundamental frequency
location only (all other areas will be equal to zero) — the fundamental
frequency is the only point where it is not at least once multiplied by zero
as shown in Fig. 2.18. In a real-world spectrum example, the harmonics
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and fundamental do not have the same magnitude values. Furthermore,
and more importantly, areas where there are no harmonics are not equal
to zero. However, the general concept still applies to musical signals as the
harmonic locations have quasi-integer ratios and the non-harmonic regions
are often significantly smaller than that of harmonics. Thus, in general,
finding the largest peak reflecting the product of the shifted spectra would
mean finding the fundamental frequency.

3 Vocoders (Voice Coders)

Speech and the voice have always been and will probably always be very
important for musical composition, performance, and music research. Thus,
it is maybe not such an astonishing fact that research in electronically
generating speech and the singing voice has received much attention.
The wvocoder, which stands for voice coder-decoder or voice codec (coder-
decoder), as it is used in the speech engineering community, was brought
to the limelight by Homer Dudley in the late 1920s when he worked
at Bells Labs in New Jersey, USA (Dudley 1929). A vocoder ordinarily
consists of a voice encoder part and a voice decoder part. The encoder
part analyzes the speech signal and the decoder utilizes the analyzed
information to re-synthesize speech. The research surrounding the voice
began as a way to synthesize voice for communication purposes, with
the earliest demonstrations seen at the 1939 World’s Fair in New York
and San Francisco through a system called the wvoder (voice operation
demonstrator, not to be confused with Vader, Darth). The voder was
operated via a keyboard interface exciting a bunch of band-pass filters
via noise and pulse-like signals to render an artificial human voice sound
(Flangan 1972). These band-pass filters essentially mimicked the so-called
formant structures of the voice — resonant frequency structures largely
reflecting the behavior of the vocal tract and the timbral signature of
individual voices. In this section, we will introduce a number of important
vocoders and examine the basic mechanics behind each of the algorithms.

3.1 Channel-vocoder

The channel vocoder gets its name from the group of band-pass filters it
uses in implementing a speech analyzer/synthesizer — the input signal,
such as the voice is divided into N frequency channels via N band-pass
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filters as seen in Fig. 3.1 much like an equalizer in our home and car
stereo system. The idea behind the exploitation of the band-pass filters
is that at the encoder part, the voice is divided into N frequency channels
or bands which are in turn individually transmitted to the decoder and
synthesized by summing the N band-passed channels from the speech
signal. The individual channels by themselves do not amount to much and
are unintelligible (depending on the number of bands). However, when the
output signals of each of those channels are combined, they form a clear
speech signal akin to the original. As mentioned in the introduction of this
section, the concept was developed by Homer Dudely (Dudley 1929) who
initially used 10 banks of band-pass filters (250 Hz to 3kHz) to build his
channel vocoders. The channel vocoder was also used during World War II
by Roosevelt and Churchill (Doyle 2000) in planning the D-Day invasion.
They utilized the system as a way to communicate secretively by applying
concepts borrowed from cryptography. This 007-like speech system’s name,
based on the channel vocoder was SIGSALY and the prototype was coined
green hornet due to the buzzing sound the system made when synthesizing
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speech (you will see why the early vocoder used to make lots of buzzing
sounds below).

3.1.1 Filter banks, envelope followers, and the encoder

Returning to our encoder part of the channel vocoder (Fig. 3.1), we can
see N banks of filters each accompanied by envelope followers. After a
speech signal is divided into N bands, each band is subjected to an
amplitude envelope follower implemented via full-wave rectification and
low-pass filtering. Full-wave rectification refers to making negative values
positive, which can be digitally implemented by just taking the absolute
value of each input sample. Equation (3.1) shows an example of a one-pole
low-pass filter.

yln) = (1~ a) -afn] +a-yln - 1] (3.1)

As can be observed in the difference equation, the coefficient «
(0.0 < a < 1.0) acts as a weight distributor, where more weight given to the
input component decreases the emphasis given to the feedback component
and vice-versa.

Figure 3.2 shows the frequency response of the envelope follower of
Eq. (3.1) for various coefficients values a. The envelope follower is sometimes

a=0.1

la=05

Magnitude (dB)

] 0.2 0.4 0.6 0.8 1
Normalized Frequency (xw rad/sample)

Phase (degrees)

Normalized Frequency (xm rad/sample)

Fig. 3.2. Envelope follower and low-pass filter frequency response for a = 0.1 to 0.9.
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enhanced by using different coefficient values for rising and falling parts of
a signal. That is, for rising portions of a signal, we want the envelope to
respond quickly with less low-pass filtering. For falling parts, we want to
produce a softer landing, making the filter output decay slower than the
attack portion with more low-pass filtering.

Thus, for each channel, we now have the energy levels as a function
of time represented by the envelope follower — this is sent to the receiver.
The overall energy level of the signal can be computed via RMS as we did
when computing the amplitude envelope in Chap. 2, Sec. 3.2.

(3.2)

As usual, when computing the RMS, we will need to window a portion
of a signal [L in Eq. (3.2)] and set an appropriate hop size much like
the STFT (Chap. 8, Sec. 5) and the RMS amplitude envelope (Chap. 2,
Sec. 4). Figure 3.3 shows the frequency response of 24 filter banks computed
using the MATLAB® butterworth-design band-pass filters, where the
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Fig. 3.3. Bark scale filter banks of 24 bands.
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center frequencies of the bands are in accordance with perceptual frequency
divisions of the Bark scale (see appendix for more details). We could
just as well have also used linear division for the filter banks. However,
as our hearing system is nonlinear (both in frequency and amplitude),
nonlinear scales such as the Bark scale are more appropriate when band-
pass filter banks are used in audio applications (Zwicker and Hastl 1999).
The locations of the center frequencies adhere to what are called critical
bands, where the Bark scale is one of such scales conforming to perceptual
tendencies of frequency perceived by humans. Critical bands basically
denote the bandwidth (via lower and upper frequency bounds) for a given
center frequency that activates the same area on the basilar membrane
(sheet of fibers in the inner ear inside the cochlea) in response to an
incoming sine wave at that center frequency. For example, when a sine
wave is generated at 45 Hz, according to the Bark scale, the perception
of other sine tones between 49Hz and 51 Hz will not be distinguishable
from the 45Hz signal given that intensity levels are the same. This
bandwidth changes with the center frequency and widens as we go up the
frequency axis.

In Fig. 3.4 we can see the envelope follower in action. The top plot shows
the input voice’s waveform and the subsequent plots the envelope follower
output for a number of critical bands from a total of 24 bands. Looking at
the plots we spot that each filtered band has different amounts of energy
at different points in time. Only when all bands are recombined in the
decoder part do we get the fully de-fragmented version of the synthesized
voice signal.

3.1.2 Voiced and unvoiced analysis and the decoder

Before we proceed to the decoder part of the channel vocoder, we note that
we still have not figured out what the pitched/noise analysis part does in
the encoder. When we speak and talk to one another, it may perhaps be
surprising to find out that the produced speech is a mixture of pitched
and un-pitched signals. Consonants or unvoiced speech segments resemble
noise-like signals, whereas vowels in speech show strong periodic behavior
and hence appear as pitched or voiced. Try to sing in any pitch range that
you are comfortable at using the letter “s” or “f.” Now try it with the
letter “a” or “e.” You will have discovered that with the first two letters,
it is literally impossible to hold a pitch, whereas for the latter two, singing

[Pk

a pitched “a” or “e” is definitely doable. This may be quite remarkable
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for those of us who were not aware of this interesting phenomenon as this
idiosyncratic feature of the voice basically makes speech a potentially very
musical signal by default.

Reeling back to the channel vocoder, we now know what the pitch/noise
analysis block in the encoder relates to. So far so good, but why do
we need to know whether a speech signal is voiced or unvoiced? The
reason for this is because the channel vocoder adheres to a particular
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synthesis model called the source-filter model. The source in our case is the
voiced/unvoiced signal and the band-pass filters correspond to the filter
part of the source-filter model architecture. Thus, in such a system, the
source excites the filter banks at the decoder side (and sometimes even in
the encoder part — this is called analysis-by-synthesis) during the speech
synthesis stage. Depending on the source type (voiced or unvoiced), a switch
will determine whether to generate a pulse train or noise signal. In a way,
the decoder has the easy end of the problem and exploits this source-filter
paradigm of the human speech system — it uses the voiced /unvoiced flag
along with the amplitude envelopes to drive each filter with fundamental
frequency information received from the transmitter/encoder. When the
analyzed signal is unvoiced, noise is inputted into each filter bank and
when it is voiced, a pulse train is generated for the band-pass filters. The
output of each filter is then summed rendering our synthetic speech signal.
This idea is summarized in Fig. 3.5.

Also, note that in both in Figs. 3.1 and 3.5 there is no actual audio
signal transmitted to the decoder. The signals sent to the decoder only
consist of the envelopes characterizing the energy level in each band,
control signals that tell the decoder whether it is voiced/unvoiced, and
the overall energy for a given portion of a window. The reason why the

I pitched/
(f?ntr? unpitched pulse
signals r generator
power noise
generator BPFs with gain
channel N “Envelope | BPE N
' Follower |
channel N-1 Envelope
) Follower : | BPFN-1 l
Envelope | AR
A [ -2 + |
" Follower BPFN
| Envelope |
' Follower | BPF 1-3
channel 1~ "gryelope | BPF 1
' " Follower |

Fig. 3.5. Channel vocoder: decoder side.
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vocoder goes through so much effort on the encoder side is to transmit a
bandwidth limited representation of the original signal for synthesis. The
goal is to reduce the amount of information that needs to be transmitted.
Vocoders are used primarily in voice communication scenarios and cell-
phone technology areas relying heavily on techniques to compress the voice
data and only send data that is absolutely necessary to minimize the data
amount being sent.

3.1.3 Voiced and unvoiced decision-making

Stepping back for a moment, we realize that we have not yet discussed how
to actually analyze a signal for its voiced and unvoiced quality. We will
therefore present some of the common voiced /unvoiced analysis algorithms
in this section starting with the simplest one — zero-crossing.

3.1.3.1 Zero-crossing analysis

Our acquaintance with zero-crossing analysis takes us back to the early days
of Chap. 2, Sec. 5.1, where we used it for fundamental frequency detection.
The same algorithm can also be used to determine whether a signal is
voiced or unvoiced. The concept of zero-crossing itself is clear-cut as we
have learned in Chap. 2 and when combined with our knowledge of audio
signals, the zero-crossing algorithm also becomes very useful in meeting
our needs in this particular problem. As we know, noisy signals (unvoiced)
are all over the place, especially when viewed as a waveform — there is
ideally no regularity or patterns to discern. Periodic signals (voiced), on
the other hand, are characterized by repetitive patterns and hence exhibit
cyclic tendencies as seen in Fig. 3.6. Consequently, the zero-crossing rate for
unvoiced signals tends to be “pretty high” whereas for voiced signals “pretty
low.” Now, saying something is low and high really is like saying something
is warm and cold, which does not mean much unless we label it with some
hard numbers. But even when we do have hard numbers blinking on our
screen, it is impossible to determine with absolute certainty if a signal is
voiced or unvoiced. However, there tends to be a range of zero-crossings
that suggest unvoiced vs. voiced characteristics as shown in Fig. 3.7.

In Fig. 3.7, a window size of 10 ms was used in plotting a histogram of
the average zero-crossing rate (ZCR) for both voiced and unvoiced speech
signals (Rabiner and Schafer 1978). Although we can vividly make out
some amount of overlap, the Gaussian average of the zero-crossing rate for
unvoiced signals is around 49 per 10ms interval vs. 14 for voiced signals
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Fig. 3.7. Distribution of ZCR for voiced vs. unvoiced signals (after Rabiner and Schafer
1978).

for the same 10ms interval. Figure 3.8 shows the waveform and the zero-
crossings using a window of 10 ms singing “Love me tender, love me sweet.”
In this example, we can discern without much difficulty where the noisy
parts are: in the “t” part of “tender” (at around 40,000 samples), at the
short pause (approx. 72,000 samples), at the “s” of “sweet” (approx. 104,000
samples), and at the end of the signal.

Figure 3.9 shows the actual number of zero-crossings throughout
the duration of the waveform. Figure 3.10 shows part of the waveform
from around 40,000 samples where the “t” in “tender” is sung. We can
vividly discern that the two regions show the stereotypical unvoiced vs.
voiced waveform characteristics — the first part is noise-like displaying no
particular pattern and the second part, where there are low zero-crossings,
is patterned and quasi-periodic.
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ZCR and Voiced/Unvoiced Analysis
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3.1.3.2 Pre-emphasized energy ratio

In the pre-emphasized energy ratio (Knodoz 2004) method for voiced and
unvoiced speech analysis, the focus is on the variance of the difference of the
amplitude values between adjacent samples. The variance of the difference
has a tendency to be lower for voiced portions compared to unvoiced regions
of a signal — this is in line with Fig. 3.6, which shows the gradual and
smooth change between samples for voiced signals and the random quality
typical of unvoiced signals. The algorithm is shown in Eq. (3.3). The reason
it is called the pre-emphasized energy ration is due to the pre-emphasis
high-pass filter in the numerator part [see Eq. (2.5)].

0= |z[n] — z[n — 1]
Sy [zl

Figure 3.11 shows the algorithm’s performance using the same singing voice
sample and window length of 10 ms.

Pr=

(3.3)

3.1.3.3 Low-band to full-band energy ratio

In speech, voiced signals tend to have energy concentrated in the lower
frequency ranges, whereas unvoiced signals throughout the frequency range.
This is not the case just for speech signals but also for musical signals,
especially acoustic instrumental sounds as we have already seen throughout
this chapter and previous chapters — the magnitude of harmonics tend to
decay with the increase in frequency towards the Nyquist limit. The low-
band to full-band energy ratio algorithm computes the ratio of energy by
setting the numerator to the low-pass filtered signal and the denominator
to the original unaltered signal according to Eq. (3.4). When the input
signal x is voiced, x and xpr will be more or less the same, meaning that
the ratio in Eq. (3.4) will be close to 1. This is due to the fact that low-
pass filtering will do very little to the numerator part of Eq. (3.4) since it
does not contain much high frequency energy. However, if it is unvoiced,
the input x will exhibit a flatter spectrum (noise is ideally flat) and thus
zrprwill yield a lower energy level. In summary, LF will render a low value
for unvoiced regions of a speech signal and high value for voiced signals.

anv x%PF [n]
LF = =n= & - 3.4
Yozt a2[n] 34

Figure 3.12 shows the performance of the low-band to full-band energy ratio
algorithm again using the same voice signal from our previous examples
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Low-band to Full-Band Energy Ratio and Voiced/Unvoiced Analysis
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Fig. 3.12. Analysis using the low-band full-band energy ratio method.

with a window size of 10 ms as before. Note that in this case, the unvoiced
parts have low energy and the voiced parts high energy.

3.1.3.4 Spectral flatness measure

The spectral flatness measure (SFM) can also be used to determine voiced
and unvoiced parts of a signal and is computed via the ratio of the geometric
mean (Gm) vs. the arithmetic mean (Am) of the DFTs of a signal as shown
in Eq. (3.5). Signals that are sinusoidal result in lower measurements of SFM
(approaching 0) whereas signals exhibiting more noise-like characteristics
(adhere to flatter and de-correlated spectra) cause the SFM to approach 1.

SFM 5 = 22 — ( ZZéV_le(k))%

= — (3.5)
Amo LS X (k)

k=N-1
H X4E) = X40)- X4(1)-...- XYN -2)- XYN —1) (3.6)
k=0

Note that in the geometric mean we use multiplication and 1/Nth power
opposed to summation and division used in the arithmetic mean. Due to the
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multiplication process in the geometric mean, one should watch out for any
zeros in the data set as any zero, no matter how large the other numbers
are, will cause the product to produce 0 and hence result in a zero geometric
mean. Also, note that the arithmetic mean is always greater or equal to the
geometric mean due to Eq. (3.7), where the an coefficients are real positive
numbers. For unvoiced signals, the geometric mean and arithmetic mean
will yield similar results causing SFM to approach 1, whereas for voiced
signals the geometric mean will become smaller resulting in reduced SFM
values.

(a1 +as+---+any —1+an)
N

When using logarithmic identities (multiplication is equivalent to
summation and power is equivalent to multiplication in the log world),
the Gm can be expressed as Eq. (3.8). Equation (3.8) is thus sometimes
referred to as the log-average as that is what is being computed before the
exponential operator brings it to the original scale.

> (al'a2'...-aN_1~aN)1/N (3.7)

k=N—1 1N | B=No1
l 11 Xd(k)] = exp (N ln(Xd[k]> (3.8)
k=0

k=0
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Fig. 3.13. SFM analysis for voicing determination using window size of 10 ms.
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Fig. 3.14. SFM analysis for voicing determination using window size of 40 ms.

Figure 3.13 shows the results of the SFM algorithm using a 10 ms second
window as before without overlapping STFT frames. We can see that the
SFM seems to a bit more subtle, offering details with a shorter window
size, which in turn translates to loss of frequency resolution. However, when
we increase the window size (increase frequency resolution) while keeping
the hop size unchanged, the SFM plot becomes more vivid as shown in
Fig. 3.14. The parameters used in Fig. 3.14 include a window size of 11.61 ms
(512 samples) and STFT with 10 ms overlap (220 samples) at fs = 44.1kHz.

3.2 Linear predictive coding (LPC)

The next type of vocoder we will present in this chapter is the [linear
predictive coding (LPC) vocoder pioneered by Bishnu S. Atal at Bells
Labs while working with Max Mathews (inventor of the first computer
music language) in the mid/late 1960s. Early on, LPC was called adaptive
predictive coding but soon linear predictive coding took over which has
stuck ever since. Like the channel vocoder, LPC originates from the
speech research literature and has found much popularity in the computer
music community especially by composers Charles Dodge and Paul Lansky
who have extensively applied it in their early computer music works.
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The theory itself can simply be thought as a signal analysis/synthesis
algorithm predicting the current sample z[n], via P number of past samples
when appropriately weighted in a FIR filter configuration according to
Eq. (3.9) — a linear combination of past input samples.

2
=3
I

ar-zn—1]4+az-zn—2]+---+a, - z[n — P

(3.9)

I
S
8
B
!
=

#[n] denotes the estimated sample, z[n — k] the delayed past samples, and
ay, the weights of past samples. The objective is to try to find the P number
of coefficients ay, which will make the predicted current sample Z[n] and
the actual sample z[n] as close as possible. Thus, in trying to minimize the
error e[n] between Z[n] and z[n], the optimum weights are computed which
are referred to as the LPC coefficients as shown below.

k=p
e[n] = x[n] — &[n] = z[n] = > ax - x[n — k] (3.10)
k=1

This somewhat makes intuitively sense as it is in a way learning from the
past (history) to predict the future so-to-speak (although we do seem to
have knack for not learning from past mistakes!). The LPC method is also
sometimes referred to as the short-term prediction filter as it is used to
predict short-term trends (20 —30ms) and is inadequate in predicting long-
term trends (known as long-term prediction such as pitch).

As we can garner from Eq. (3.9), the filter itself is FIR-based and the z-
transform of the error e[n] results (commonly known as the residual signal)
in Egs. (3.11) and (3.12) with the transfer function denoted as A(z).

k=p
=X(2) = X(2)- > ar-z7*
k=1
k=P
= X(z)- (1 - a- z_k> (3.11)
k=1
k=P
A(z)=1- o -2k (3.12)
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We can thus represent the input part X(z) as a function of the transfer
function A(z) and E(z) as in Eq. (3.13).

(3.13)

The LPC analysis part is most powerful when coupled with the LPC
synthesis counterpart whereby we can think of this configuration as an
analysis-by-synthesis structure. We know that the analysis part is an all-
zero filter since it is an FIR filter, however, if we take the FIR coefficients
and put it on its head, the FIR filter becomes an IIR filter — an all-pole
filter as shown in Eq. (3.14).

1 1
A(z)  1- Zzif ay - z7k

(3.14)

This all-pole filter is essentially a resonant filter describing the vocal
tract. So what (3.13) actually says is that if we know the error E(z)
and the filter A(z) we can compute X (z) and hence reproduce the input
signal z[n] by subjecting the error signal to the transfer function 1/A(z).
Stated differently, when filter 1/A(z) is excited by the residual signal
e[n] (constituting a source-filter model as in the channel vocoder) we get
x[n] back.

The vocal tract itself can be compared to a conglomerate of small
sections of tubes contributing to the way our voice sounds and the LPC
model is very effective in describing these tubes and the resulting formant
structure of human speech sounds. Formants are resonant frequency
locations typically ranging from 3 to 5 for human voice sounds which are
distinct in location along the frequency spectrum (sort of like poles in
a tent giving the tent its particular shape — the tent’s formant make-
up). Due to the tube-model paradigm inherent in LPC systems, some
musical instruments exhibit stronger formant characteristics than others.
For example, woodwind instruments such as the oboe and clarinet generally
show one or two pronounced formant regions as they are more or less
generally shaped like tubes.

The source-filter model of the LPC system is shown in Figs. 3.15
and 3.16. The decoder is configured in terms of the excitation signal
generator (voice/unvoiced) plus the filter model and the encoder takes
on the role for analyzing and transmitting all the relevant information to
the decoder for synthesis. As we can see, the global structure is not that
different from the channel vocoder. The excitation signal provided to the



Spectral Analysis, Vocoders, and other Goodies 369

fi
o voiced/
l unvoiced
LPC coefficients gain
pulse generator | i
1AG) . sy:Tt l‘c.S.lzcd
speech
A
noise generator |
Fig. 3.15. Synthesis part of LPC.
! x[n] x{n] voiced/
signal S 2 . ] » unvoiced
. - . - voiced/unvoiced
x[n] —= LPC analysis > cstimation via | + ) and f; analysis
N VC5 N B ) ekl S
a.p
> dip
) LPC coetficients
gain | gain

L A
computation

Fig. 3.16. Analysis part of LPC system.

all-pole filter is either a pulse generator or noise generator for voiced and
unvoiced signals respectively. As mentioned in the previous section, the
reason for this toggle between pulse and noise is due to the fact that when
it is voiced (vowel sounds for example), pitch is present, and when unvoiced
(consonants for example), the excitation (error e[n]) basically becomes a flat
and random noise signal.

Thus, if the analysis part can determine the fundamental frequency
information by analyzing the residual signal e[n] using autorcorrelation
for example, we can excite the all-pole filter in the synthesis part with a
pulse train at the computed fundamental frequency. If it is not pitched,
we use a noise signal to drive the filter. The voiced/unvoiced decision
is made by employing algorithms discussed in Sec. 3.1.3. The gain g is
computed using methods such as RMS energy for a windowed portion of the
signal being analyzed. The gain is selected so that the output (synthesized)
and input (original) energy is the same for a given period of time. This
pulse/noise and filter coefficient setup is used for low bit rate voice codes
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(coder-decoder) often found in cell phone systems such as GSM. Although
the overall structure of vocoders is not that different, one of the most
intriguing distinctions is that in the LPC encoder, the input signal itself
is synthesized and used in the encoding process. Thus, the encoder part
actually does both analysis and synthesis and is hence referred to as an
AbS (analysis-by-synthesis) system. Figure 3.16 is, however, not entirely
accurate for common LPC vocoders, as in real-life applications, only part
of the residual signal is sent over to the decoder for re-synthesis. Vocoders
that do not send the residual signal over the network at all and hence save
a considerable chunk of bandwidth are referred to as codebook vocoders —
codebook excited linear predication (CELP) being one example. Because
sending the residual signal (even if it is only a portion of the original) is
expensive from a data compression point of view, CELP codecs analyze
the residual signal on the encoder side and send an index to a codebook,
rather than the actual residual signal. The codebook is locally available
to both the encoder and decoder and contains a bunch of residual signals
which are used to excite the all-pole filter during the re-synthesis stage at
the decoder upon receipt of the best fitting residue index. Thus, by sending
an index number opposed to the actual residual signal pays high dividends
in data compression. Another block we have omitted in Fig. 3.16 is the
pre-emphasis filter before analysis in the encoder part and the de-emphasis
filter after re-synthesis in the decoder part. We already encountered the
pre-emphasis filter in Sec. 2.4.1 introduced as the simplest FIR high-pass
filter (2.5). The reason it is used before LPC analysis lies in the fact that the
computation of LPC coefficients is more robust when the spectrum under
consideration is more evenly balanced on the frequency axis (speech and
musical signals tend to have concentration of energy in the lower frequency
regions). The pre-emphasis filter helps in distributing the energy evenly
across the spectrum through high-pass filtering. Thus, to bring the signal
back to its originally “biased” spectral tilt, a de-emphasis filter is applied
just before the synthesized signal is sent out to the world. The de-emphasis
filter is the simplest low-pass filter as shown in Eq. (3.15).

y[n] = x[n] — by - z[n — N| (3.15)

Figure 3.17 shows the LPC analysis and synthesis results for an electric
bass guitar signal. We can see that the estimated signal and the original
signal are almost identical both in the time-domain and frequency-domain.
This is further confirmed by the residual (error) signal shown at the top of
Fig. 3.17. At the bottom of Fig. 3.17, the all-pole filter’s frequency response
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Fig. 3.17. Example of LPC in action for electric bass guitar signal.

is plotted along with the original signal’s DFT and the estimated signal’s
DFT which are again so close that they are nearly indistinguishable in this
example. Now, if we were to use the LPC as a vocoder in terms of the
encoder/decoder configuration, voiced/unvoiced block, and fundamental
frequency detection to determine the excitation signal for the all-pole filter
in the decoder, the musical prospects are indeed very exciting. We are well
armed at this point to tackle such a mini-project and will leave it for another
session on a Sunday evening at the lab (a.k.a. known as the bedroom with a
laptop and headphones so that we do not disturb the unsuspecting person
next door with weird sounds we produce).

3.3 LPC coefficient computation

We will not go too deeply into the topic of LPC coefficient computation
algorithms as they can be found readily in speech-based signal processing
texts and cookbooks in numeric techniques. However, we will briefly touch
upon the two most popular methods for computing the LPC coefficients
[a1 -+ - ap in Eq. (3.5)] — the autocorrelation and covariance methods.
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The autocorrelation method gets its name as the algorithm for
computing the LPC coefficients is based on none other than the
autocorrelation vector of a speech frame. The autocorrelation vector is
passed through the Levinson-Durbin algorithm which computes the LPC
coefficients by recursively and efficiently computing inverse matrices of the
autocorrelation vector. The algorithm requires windows that are tapered at
the boundaries — having flanking ends starting and ending at 0 such as the
hamming window. Hence, some information is lost during this process and
frequency-domain distortion takes place but the algorithm has nevertheless
found much success in obtaining the LPC coefficients and is particularly
desirable as it guarantees filter stability. Remember that the synthesis filter
is an all-pole filter and in order for it be stable the roots or the poles need
to be within the unit circle — such a filter is referred to as a minimum-
phase filter and has all its roots within the unit circle. The algorithm is
summarized below in Eqgs. (3.16) and (3.17) where ] is the autocorrelation
vector and ay, the LPC coefficients.

n=N-1
r[r] = Z zn]-zn+7], T>0 (3.16)

n=0
k=P
Zak.ruk—muz—’[‘[mL m:1727...7P—17P (3.17)
k=1

Unlike the autocorrelation method, the covariance method computes
the LPC coefficients without applying an “explicit” window on the speech
signal. The algorithm incorporates a pitch synchronous analysis approach
where the analysis is conducted by starting at the beginnings of the
signal’s pitch cycle for voiced speech. The LPC update rate is higher for
the covariance method compared to the autocorrelation method and the
algorithm better adapts to changes in the vocal tract transfer function
and is therefore generally more accurate. However, the covariance method
does usually require more horsepower. The algorithm is summarized below
in Eq. (3.18) and (3.19) where ¢k, is the covariance matrix. The Choleski
(Rabiner and Schafer 1978) decomposition approach is often used in solving
for the coeflicients.

Chm = Z x[n — k] - x[n —m)] (3.18)

k=P
> an-ckm=—com m=12,...,P—1P (3.19)
k=1
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For musical applications, due to the source-filter model configuration,
we can change the fundamental frequency information to a desired
frequency and/or change the excitation signal with something other than
the original signal’s residual signal (it can be anything!). Thus, viewed from
a musician’s perspective, the LPC system is a very powerful and flexible tool
for audio applications not only limited to voice signals but other generic
audio signals as well. The source-filter model is essentially the same in
concept used in the talk box introduced in Chap. 7, Sec. 4. In the talk
box, a source such as the electric guitar is fed via the mouth into the
oral cavity, whereby the resonant structure of the oral cavity produces the
talking guitar effect. We can certainly implement a basic talk box digitally
by having a number of presets of LPC coefficients that reflect certain vocal
sounds ... potential musical fun indeed.

3.4 The phase vocoder

In a nutshell, the phase wvocoder is one of the most powerful, if not
the ultimate vocoder among its many peers and is the younger, more
sophisticated, and flexible version of older sibling channel vocoder. The
work has been pioneered by Flanagan and Golden (Flanagan and Golden
1966) while working at Bell Labs (as you can tell, there were some
amazing folks at Bell Labs throughout the years) and although the initial
research was targeted towards application in speech, it has found explosive
popularity in the computer/electronic music world.

The phase vocoder is very similar to the channel vocoder as it is also
built on the filter-bank idea but on a much larger scale. It does not, however,
conform to the model of using an excitation signal at the decoder per se
(voiced /unvoiced excitation) but rather uses the instantaneous amplitude
information along with narrowly tuned decoder filter-banks to construct
an additive synthesis setup — summing sinusoids with specific amplitude,
frequency, and phase parameters. For the channel vocoder, we observed that
the filter-banks tracked the amplitude as a function of time (instantaneous
amplitude) and there was not much attention given to the frequency itself —
the focus on the frequency/phase is what sets the two vocoders apart.
The phase vocoder includes the notion of instantaneous frequency which
is computed via instantaneous phase values of two consecutive time-frames.
Let’slook at Figs. 3.18, 3.19, and 3.20 to get a better idea why instantaneous
frequency is important in producing “high-quality” synthesized versions of
the original input.
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Fig. 3.18. Single channel: center frequency at 100Hz strip of a channel vocoder
(analysis).

Aln]100mz

excitation

signal BPFon, X[ #1001

Fig. 3.19. Single channel: center frequency at 100Hz strip of a channel vocoder
(synthesis).

As previously mentioned, the channel vocoder’s filter-banks have fixed
center frequencies (bands-pass filter’s frequencies) and the input is divided
into a number of hard-wired sub-bands for which only the energy level
(instantaneous amplitude A[n]) is computed at each band. Like the encoder,
the decoder also has a fixed filter-bank configuration with center frequencies
identical to the encoder. For the phase vocoder this is not the case.

A[n] _A[n]

3

—
=
=

100 Hz
110 Hz

Fig. 3.20. Actual frequency location of 2nd harmonic and channel for center frequency
fe = 100Hz in analysis part (left). Center frequency fc_new shifted via instantaneous
frequency in re-synthesis (right).

Let’s consider a scenario where the input is a complex harmonic signal
with fundamental frequency 55 Hz and 3 harmonics total. For this particular
example, the octave (equivalent to the second harmonic) would be at
110 Hz. Let’s also assume that for whatever reason, the filter-banks have
been tuned so that the second harmonic (110 Hz) falls into the filter-bank
corresponding to the channel with center frequency 100Hz as shown in
Fig. 3.20(left). As we can see, the second harmonic at 110 Hz, which is the
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input to this particular sub-band, is not exactly at the filter bank’s hard-
wired center frequency of 100 Hz. This is a problem. The problem arises in
the synthesis part (decoder) as the decoder has no way of knowing (or does
not care in the case of channel vocoder) what the original frequency of the
sinusoid was. Hence, during synthesis, that particular sub-band with center
frequency 100 Hz will resonate at none other than 100 Hz and not 110 Hz,
although with the appropriate energy level controlled via A[n]igo m: the
instantaneous amplitude we computed with the envelope follower.

So, what does the phase vocoder do better than the channel vocoder? It
helps compute a more accurate frequency for synthesis, through estimation
of the instantaneous frequency for a particular channel in the encoder
module. During the synthesis stage, the decoder re-synthesizes the output
signal with the analyzed instantaneous frequency for the center frequency
using additive synthesis techniques. Thus, unlike the channel vocoder,
the phase vocoder synthesizes the output by directly combining sinusoids
with appropriate instantaneous amplitude and instantaneous frequency
values and is not based on a source-filter model. How do we compute the
instantaneous frequency? Read on ...

3.4.1 Estimation of instantaneous frequency

We already have been briefly introduced to the instantaneous frequency in
Chap. 4, Sec. 2. The instantaneous frequency is shown in Eq. (3.20) where
O(t) is the phase (wt + ¢, not to be confused with the initial phase ¢)
depicted in (3.22) for a sine wave (3.21). The initial phase ¢ in Eq. (3.22)
can also be a function of time in which case it becomes ¢(t). When ¢ is a
constant (initial phase) then ¢(¢) will of course be a constant as well.

f(t) = ﬁ% (3.20)
y(t) = sin O(¢) (3.21)
Ot) =27 f-t+d=w-t+¢ (3.22)

In a digital world, the instantaneous frequency is commonly computed via
two consecutive STFT frames (when using the Fourier transform) by first
calculating the phase value at bin k (3.24), followed by computing the
difference of respective unwrapped phase angles, and finally dividing the
difference by the duration (R in samples) between two consecutive STFT
frames (X9[]) as shown in Eq. (3.26). The 27 divisor acts as a normalizer
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and gets rid of the radian unit so that the result f is in Hertz. The result
is the instantaneous frequency f,,4+1 at the next time instance m + 1.

XUkl =a+ jb (3.23)
/Xk] = p[k] = tan™! (2) (3.24)

| XK]| = Va2 + b (3.25)

fm+1 — % . w . fs (3.26)
It is sometimes helpful to better understand instantaneous frequency if we
think about it in terms of the phase change on a circle and how frequency
itself is defined within that circle. If we look at a sinusoid as shown in
Fig. 3.21 for example, we would see the “movement” of a “point” along the
unit circle in a counterclockwise direction at every tick of the digital “word
clock” (1/fs). The sine function’s waveform motion can be represented on
the unit circle in terms of the points on the x and y axes or the angle that
results between the x and y coordinates. We know that the definition of
frequency is resolutions per second and thus instantaneous frequency can
be regarded as the change in phase divided by the time interval between
two consecutive phase values: T' = 1/ f; seconds in this particular example
and the phase is computed for each sample period via Eq. (3.24). This idea
is shown in Fig. 3.21.
So, if we again take the 100 Hz center frequency band-pass filter as
an example and structure the band-passed output to be in the form of
a—+7b, we can compute the instantaneous phase and instantaneous frequency

2 72
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/ I r
I
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Fig. 3.21. Instantaneous frequency and phase change rate.



Spectral Analysis, Vocoders, and other Goodies 377

(if we consider the y-axis to be the imaginary axis as in Fig. 3.21). Thus,
for two consecutive points in discrete time, say, between sample n = m
and n = m + 1, we can compute the instantaneous frequency as shown
in Eq. (3.26), where R = T. However, in order to compute a correct
instantaneous frequency value, we have to address phase unwrapping issues
as radian phase has a modulo 27 characteristic (there will be discontinuities
when computing the phase difference whenever the phase exceeds a full
cycle). This is discussed in the next section and in more detail in Sec. 3.4.4.

3.4.2 Phase unwrapping

Before we can compute the instantaneous frequency we need to do one
more thing, namely, phase unwrapping followed by instantaneous frequency
estimation. We already had the fortune of getting acquainted with phase
unwrapping in Chap. 6, Sec. 3.3 and remember that it is basically a process
whereby we add 27 radians whenever a phase increment passes the 27
point (modulo 27 system). Thus, the reason we need to perform phase
unwrapping is due to the fact that when we take the difference between two
consecutive phases o — (1, there is the potential of getting the incorrect
instantaneous phase difference due to the modulo 27 characteristic (we need
the change in phase to compute the instantaneous frequency). To clarify
this, let’s say we are computing the instantaneous phase of a particular
channel with f. = 100 Hz and the computed phase ¢, results in a sequence
as shown in Eq. (3.27) where n is the sample index for period T = 1 sec
(for convenience we use degrees rather than radians in this example).

01 =0, @2=95, ©3=190, ©4=285, ¢5=10, s=105  (3.27)

If we compute the instantaneous frequency for the above six phase values,
we arrive at the following:

Y2 — Y1 95 -0

T 1 5

— 190 — 95

<P3T<P2: : — 95

- 285 — 1

WT@:”: 851 %0 _ 95 (3.28)
— 10 — 285

<P5T<P4: : — _975
<p6—ap5_105—10295

T 1
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We see that the instantaneous frequency seems to be quite constant at
95 Hz until we reach frame 4 and 5: it is —275Hz and not 95Hz. There
seems to be something wrong here as one would normally not expect such
a drastic change in frequency or no change in frequency at all if it is an
ideal constant sinusoid. This is a typical case of wrapped phase due to
modulo 360° (or 2w) — the phase gets initialized much like our watch
gets reinitialized whenever the 12 hour mark is passed. Thus, with phase
unwrapping after frame 5 — adding 360° (or 27) we will be able to compute
the correct instantaneous frequency:

@5 — @4 (10+360) — 285
T 1 o

Y6 — ¥s5 (105 + 360) — (10 + 360)

95

(3.29)

Figure 3.22 shows phase unwrapping for a sinusoid where the straight line is
the unwrapped phase and the saw-tooth like figure depicts the phase before
unwrapping.
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Fig. 3.22. Phase unwrapping.
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3.4.3 Phase vocoder: Filter-bank interpretation

The explanation of the phase vocoder up until now pretty much falls
under the category of the “filter-bank interpretation” (Dolson 1986) as
we have basically viewed the system as a bank of band-pass filters on
the encoder and decoder side. In this section, we will formally tackle the
task of interpreting the phase vocoder from this perspective and walk you
through the process and steps for obtaining the instantaneous frequency.
As mentioned earlier, in the analysis part (encoder), the instantaneous
amplitude and the instantaneous frequency are estimated, whereas in the
synthesis part (decoder), those two parameters are used for re-synthesis via
additive synthesis techniques — literally summing of sinusoids with their
respective frequencies components. This idea is shown in Figs. 3.23 and 3.24
where A[m| and f[m] are the instantaneous magnitude and instantaneous
frequencies for a particular filter-bank and time-frame m.

Let’s now take a more detailed look at how to compute the
instantaneous phase with the objective of estimating the instantaneous
frequency from the filter-bank interpretation’s perspective. We do this by
first simplifying things a bit: concentrate on the encoder’s instantaneous

filter banks
B channel N
BPF N ) Ap[m]
‘ Julm]
channel N-1
/4 BPF N-1 ‘ % An,[m]
/W R magnitude Jeilm]
l Sﬁ . computation
—— : .
. nstantaneous
frequency
compuation
— : i channel 2
‘ Salm]
i channel 1
BPF 1 = A[m]
L ‘ Jilm]

Fig. 3.23. Filter-bank structure of phase vocoder: encoder.
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Fig. 3.24. Filter-bank structure of phase vocoder: decoder.

frequency computation block and the signal flow for a single channel of the
phase vocoder (each channel will be identical except the center frequency)
as shown in Fig. 3.25. This diagram may initially seem quite complex and
to be fair, it may actually be not that simple at first glance, but if we
break up the overall process and follow the procedure step by step for each
sub-block at a time it will become clear that the whole process is actually
less formidable than meets the eye. We will keep our eye on the ball by
remembering that our objective is to estimate the instantaneous frequency,
which in turn is accomplished by computing the instantaneous phase of two
successive time-frames.

Consider an example where the “filter-bank” channel k& with center
frequency fj is tuned to 100 Hz and one sinusoidal component (such as a
harmonic) is near the center frequency of this particular channel (we have
put the “filter-bank” in quotations as there is no actual filter-bank per se in
the phase vocoder and band-pass filtering is accomplished differently as will
be explained shortly). As shown in Fig. 3.26 (beginning section of Fig. 3.25),
the input z(t), viewed from in the frequency-domain, will be just a vertical
line (ideally speaking) as it is a single sinusoid. Next, we notice that the
input is divided into two parallel paths and each path is multiplied by a
sine and cosine — in our example wy = 27 f = 27 - 100. The result is then
low-pass filtered at wy as shown in Fig. 3.27. Now, these two processes
serve one purpose — enable us to compute the phase. How does this
get accomplished? It gets accomplished by a process called heterodyning.
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Fig. 3.25. Overview of phase vocoder encoder: filter bank interpretation.
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sin(and)

cos(axt)

Fig. 3.26. Heterodyning.

Why do we need to compute to phase? The answer is of course: to estimate
the instantaneous frequency.

You will remember that in the DFT, if the output of a bin is as shown
in Eq. (3.30), we can compute the phase as well as the magnitude using
(3.31) and (3.32). But if we are not using the Fourier transform, how do we
compute the phase? The answer is heterodyning.

c=a+jb (3.30)
Je=p=tan! (g) (3.31)
le] = vV a? + b2 (3.32)

Heterodyning serves to facilitate the computation of the phase by
formatting the input xz(t) so that the output of the sine and cosine
multiplication results in a rectangular coordinate system (much like the real
plus imaginary system in the Fourier transform) as shown in Fig. 3.26. How
does heterodyning enable us to jump to a rectangular coordinate system? In
order to answer this, we will need to go back a few chapters and recall from
amplitude modulation and beating (Chap. 4, Sec. 4.1), that the following
relationship holds true:

_cos(A — B) +cos(A + B)
B 2

We recollect that this basic relationship is the sum and difference (A + B
and A — B) which forms the basis for heterodyning. In heterodyning, the

cos(A) - cos(B)

(3.33)
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multiplication of the input is by sin(wt) and cos(wt) where each results in
a sum and difference pair. The sum part is removed via the low-pass filter,
allowing the difference part (A — B) only to remain. We also know that the
cosine and sine will always be 90° out of phase, with the cosine being ahead
by 90° at all times. Thus, the output of heterodyning — multiplication
and low-pass filtering, will result in two sinusoidal components (sine and
cosine) shifted in frequency (A— B) towards the DC, where each component
will be 90° out of phase with respect to each other. The shifting in our
example is by fi = 100 Hz. Due to the 90° phase difference between the two
sinusoids (output of heterodyning cosine and sine with input), a rectangular
coordinate system results after low-pass filtering as illustrated in Fig. 3.27.

The output components resulting from this transformation of the input
signal (the vertical and horizontal components) are referred to as the in-
phase and quadrature components. Since we have the input in a rectangular
coordinate configuration, it is now easy to compute the phase using (3.31)
and the magnitude according to (3.32) as shown in Fig. 3.28.

Fig. 3.27. Low-pass filtering of the heterodyned output.
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Fig. 3.28. Phase and amplitude envelope computation.
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Fig. 3.29. Phase unwrapping.

Thus, as mentioned earlier, the phase vocoder does not use “filter-banks”
per se (traditional band-pass filter) but utilizes the heterodyning process
which behaves somewhat like a band-pass filter. In any case, as far as the
instantaneous amplitude and phase computation is concerned, we're done.
The next step is to compute the instantaneous frequency or more specifically
the “heterodyned” instantaneous frequency, since the input carrier signal
has been shifted by fr towards DC during the heterodyning process. This
is achieved via the two consecutive instantaneous phase values as further
described below. We know that in order to compute the instantaneous
frequency, we need to perform phase unwrapping first (see Sec. 3.4.2 as to why
we need phase unwrapping) and this is precisely what the next step is as shown
in Fig. 3.29. The result after phase unwrapping is ¢(t) unwrap-

This process of phase unwrapping is performed for two consecutive
frames where the duration between the two frames is A7. Thus, the
instantaneous frequency is estimated simply by computing the phase
difference between those two frames (Ayp) and dividing it by Ar. One last
thing we need to do before we ship the results off to the decoder, is to
bring back the instantaneous frequency to the proper frequency range. Due
to heterodyning, the input was shifted down toward the DC by fi, Hertz
and thus the last process requires us to add back fr to the heterodyned
instantaneous frequency. For example, if the input sinusoid was 102.34 Hz,
heterodyning would have shifted it down to 2.34 Hz, requiring us to add
back fr to Af to obtain the actual instantaneous frequency. This is shown
in Fig. 3.30.

i
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@:mu‘.ﬂ‘a;}(t ) Af .

Fig. 3.30. Adding back center frequency fr to computed instantaneous frequency.
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This basically concludes the concept and process behind of the encoder
side of the phase vocoder viewed from the filter-bank interpretation’s
perspective as summarized in Fig. 3.25. I hope that Fig. 3.25 at this point
does not look as daunting as before. On the decoder side, life is easier (it
usually is) as we only need to plug in the frequency and magnitude values
and re-synthesize the output by summing all of the sinusoids with their
respective parameters transmitted from the encoder.

3.4.4 Phase vocoder: Fourier transform interpretation

The guts of the phase vocoder as seen from Mr. Fourier’s point of view is
based on the STFT with overlapping windowed portions of the input signal.
In essence, the Fourier transform interpretation of the phase vocoder is
actually very similar to the filter-bank interpretation (as it should be). The
STFT version also includes a collection of “band-pass-filters” conforming
to a “filter-bank” structure in the form of evenly spaced discrete frequency
bins — each bin k (fs/N Hz where N is the DFT length) can be loosely
regarded to correspond to one channel. The number of channels is controlled
via the length of the DFT window size. For example, if N is 1,024 samples
long with sampling frequency fs = 8kHz, the frequency resolution will
be 7.8125Hz. For bin 1 to bin 3, this would be equivalent to “center
frequencies” corresponding to 7.8125Hz, 15.625 Hz, and 23.4375Hz so-to-
speak.

n=N-1
Xk = Z z[n] eIV (3.34)

n=0

In the filter-bank model of the phase vocoder, we used heterodyning to
render the in-phase and quadrature components which were used as an
intermediate step towards obtaining the phase information. In the Fourier
transform version, the phase is computed directly from the frequency bins
themselves and the instantaneous phase and instantaneous frequency from
two successive STFT frames. As we can see in Eq. (3.34), the DFT also
does a heterodyning-like multiplication — computing the product of the
input z[n] and the Euler identity which is of course made up of a cosine
and sine component.

The phase vocoder is very flexible for applications such as time-
stretching and pitch-shifting (without the munchkin effect that we
encountered with down-sampling or the “inverse-munchkin” effect when
up-sampling). As mentioned before, due to the use of the Fourier transform
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Fig. 3.31. Basic structure of phase vocoding.

for phase vocoding, the output of the analysis part will entail a frequency-
domain view of the filter-banks — each bank represented by its individual
frequency, magnitude, and phase components. The synthesis part takes
these three components (probably modulated in some way) and re-
synthesizes the final output, ultimately rendering a time-domain signal via
inverse-STFT: summing of overlapping STFT frames. This basic idea is
depicted in Fig. 3.31 where the STFT part takes on the analysis task,
spectral processing the job of modulation/transformation/modification of
the spectra, and the ISTFT is given the responsibility to safely bring us
back home to the time-domain.

We have already talked about phase unwrapping and instantaneous
frequency before and unsurprisingly these two concepts are also critical
for the Fourier-based phase vocoder where for each frequency bin k,
phase unwrapping needs to be performed. Computing the instantaneous
frequency entails devising a phase unwrapping algorithm in order to get
the unwrapped instantaneous phase change between two consecutive STFT
frames, the ultimate goal being the preservation of the instantaneous
frequency. When using the STFT for the phase vocoder, each bin k&
corresponds to one channel with each discrete frequency slot spinning in
a counterclockwise direction at a particular angular velocity, much like a
rotating wheel. The lower frequency bins spin slower (DC does not spin
at all) and the higher bins spin faster — for bin k the “radian distance”
travelled (the phase when uncoiled) in one sample corresponds to Eq. (3.35)
where N refers to the divisor of the frequency axis (window size/DFT size),
k to the bin number, and ¢ the phase for bin k.

_ 2k
N

This means that for higher frequency bins, the number of cycles (full
rotations) the “wheel” goes through is greater compared to lower ones for

o[k] (3.35)
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the same period of time. Think of a race between a rabbit, raccoon, and
turtle racing around a circular racetrack and measuring how much distance
is covered by each one in, say, 5 minutes ...huh? ...oh! The instantaneous
unwrapped phase for the next frame is computed by figuring out what
the projected phase value should be (number of 27 turns) with respect
to the current frame and fine tuning it by adding the actual phase that
is obtained at the next frame. This is depicted in Fig. 3.32 where we use
degrees (°) instead of radians to facilitate the grasping of the concept for
phase unwrapping in the STFT-based phase vocoder.

For example, let’s say that the current frame s and next frame s + 1
have an analysis STFT hop size of R, samples. If the bin £ in question
has an angular frequency of 45° per sample, in R, samples, it will travel
R, times 45° which will be the theoretical instantaneous phase value at the
next frame s+ 1. That is, if it were a perfect sinusoid fitting into the analysis
window without getting cut off midstream (full sinusoidal waveforms), the
result will be as shown in Eq. (3.36) (projected instantaneous unwrapped
phase in Fig. 3.32).

360 - k

90?5—0—1)}%& [k] = TRa + ¥sR, [k] (336)

However, if the sinusoid is quasi-stable and changes as shown in Fig. 3.32
(wiggly line opposed to dotted line), the instantaneous phase cannot be
computed with merely (3.36) as we do not have enough information

Degrees
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Fig. 3.32. Phase unwrapping between two consecutive STFT frames (after Zoélner 2002).
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regarding the behavior of the phase between frame s + 1 and s. Hence,
for the general case in computing the instantaneous phase, we would need
to find out how many cycles (m integer multiples of 360 or 27) a particular
bin k has gone through (in our example 45°) and add the measured phase
(obtained via the DFT) at frame s+ 1 to the result according to Eq. (3.37).
Thus, the problem now becomes finding this integer m.

<P1(Ls+1)Ra [k] = 360 - m + P(s+1)Rq (%] (3.37)

Finding m can be simply achieved by using Eq. (3.38). We compute the
integer number of 360° resolutions found in Eq. (3.36) via Eq. (3.38).

Pl r, K]
=int [ 222~ 3.38
m = in ( 360 ( )

If we take the 45° as an example for the angular update rate per sample
for a given frequency bin k = 32, window size N = 256, ¢, = 47°, and hop
size R, = 200 samples, we will get the following results for the projected
unwrapped instantaneous phase and modulo 360 multiplier m:

360 - k
<P€S+1)Ra (k] = TRa + ps[k]
360 - 32
= 296 200 4 47
=45-200 + 47
= 9047° (3.39)

m — int M — int &47
360 360

= int(25.13056)
=25 (3.40)

From Eq. (3.40), we can compute the final unwrapped instantaneous phase
by using Eq. (3.37) and the measured phase ¢(s41)ra Vvia the complex
number representation for bin k = 32 which happened to be 120° in our
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example. This results in 9, 120° as shown in (3.41). The results of computing
the phases are shown in Fig. 3.32 and again in Fig. 3.33 from the circular
rotational perspective — the inner most circle denotes the measured phase
locations (m = 0) and the outer circles the subsequent 360° added phases
with the outermost circle corresponding to m = 25 as computed from

Eq. (3.37).
Pls+1) R, [K][k=32 = 360 - m + (51 1) R, [K]

=360 - 25 + 120
= 9120 (3.41)
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Fig. 3.33. Phase unwrapping via and computation of instantaneous phase.
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We have used degrees instead of radians to make things a bit clearer but the
equations for phase unwrapping can of course be written in radians as well.
If radians are used, Egs. (3.36), (3.37), and (3.38) become (3.42), (3.43),
(3.44), and the final unwrapped phase will be equal to 9120-7/180 = 50.67-7
radians.

2m - k
90?34—1)1{& (k] = TRa + s [k] (3.42)
st R, K] = 2m - m + ©(s11)R, [K] (3.43)
D
s k
m = int <7( ol ]> (3.44)
2T

From Eq. (3.44) we can compute the unwrapped phase difference between
two consecutive frames s and s 4+ 1 using Eq. (3.45) and finally, since we
now have the delta phase, we can compute the instantaneous frequency
with Eq. (3.26) resulting in Eq. (3.46) where we multiply the results by the
sampling frequency to obtain the instantaneous frequency in Hertz.

A@(si1)r, k] = Y(s11)R, [K] — sr. K] (3.45)
1 Apsir, (%]
fst1lk] = w R, Is (3.46)

3.4.5 Phase vocoder basics: Time and pitch-shifting

In Chap. 2, we briefly saw how we could perform time-stretching and
compression in the time-domain using different hop sizes for the analysis
and synthesis part via the OLA method and windowing (without caring
about instantaneous phase/frequency). That is, an analysis hop size in
samples R,, smaller than the synthesis hop size Ry, would render a longer
signal than the original, resulting in time-expansion and vice-versa. We
also were able to implement a pitch-shifting algorithm in the same chapter,
albeit a pretty bad one, as pitch-shifting meant changing the duration
of a signal inadvertently producing the munchkin effect as a byproduct.
However, as we are now equipped with the phase vocoder, we can produce
much better results in both time-shifting and pitch-shifting situations with
“little” added artifacts (if we are mindful). In this section, we will discuss
some basic approaches and issues involved in pitch-shifting and time-
shifting audio signals.
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3.4.5.1 Time-shifting

There are two main approaches for both time-shifting and pitch-shifting via
phase vocoding and they both usually entail using the same STFT-based
analysis block but different synthesis block. When using the STFT in the
analysis block, we can opt for the filter-bank model (sum of sinusoids) or
the ISTFT model for the synthesis side. We first start with the filter-bank
synthesis version (while using the STFT for the analysis part).

Time-shifting: Filter-bank model. We have already covered the analysis
part and also discussed computing the instantaneous frequency in the
previous section. For the synthesis part, using the filter-bank model, the
result for time-shifting is implemented by appropriately sustaining or
shortening the sinusoidal components via interpolation and decimation
respectively. That is, for time-stretching we will need to interpolate the
amplitude values of each sinusoid (frequency bins k) between the current
frame and the next new frame’s location, whereas for time-compression,
decimation takes place. A time-stretching example is shown in Fig. 3.34
with synthesis hop size R; = 3 - R, where the general time-shift ratio is
expressed as Eq. (3.47).

R
time_shift ratio = B (3.47)

a

The important difference between time-domain time-stretching
(introduced in Chap. 2) and the frequency-domain is that in frequency-
domain time-stretching, we have the privilege of controlling the sinusoidal
components and their respective phase characteristics that make up a given
sample on the discrete-time axis while at the same time maintaining the
instantaneous frequency characteristics. The up-sampling/down-sampling
approach in Chap. 2 did not allow us to do that. Since we know the
instantaneous phase difference Agg1[k] between frames s and s + 1 at
their original locations before time-stretching, we can determine the phase
increment (Y(s41)r, [k]) per sample n that is required to drive the additional
sinusoids that are needed to fill the space between the current frame and
the new location of the next frame ¢{ )5 [k] using Eq. (3.48).

A()0(5-‘,-1)Ra [k]
R,

The new interpolated phase values (denoted by superscript i) between the

Vis+1)R, k] = (3.48)

original frame and the time-stretched frame (n begins at s- R, + 1 and ends
at 3-s- R, samples) is computed with Eq. (3.49). The synthesized output



392 Introduction to Digital Signal Processing

A
) Aﬂ_\-ﬂjlla[k]

= .
£
f.\ (Q.'R::[k] v ﬂ_.-—l}.?ﬂ[k]
g * '
QL
Z
E Rﬂ

SRH (.3'+})er PR (H)

A
3Aﬂ..-+| }Hﬂ'[k]
. .
£ .
Pural k] P
E | R )] ;Q["_] 'R“[ﬂ
QL
=
g« "
£ R=3R,
» Discrete time (1)
SR, (138

Fig. 3.34. Time-stretching: 3 fold Rs = 3 - Rq. Top figure plot shows the analysis
configuration and the bottom plot the time-stretched configuration.

sample y[n] is then finally reconstructed (synthesized) via the sum of N/2
sinusoids (V is the window/FFT size and k the bin index) at each sample n
with their corresponding amplitude values and instantaneous phase values
as shown in Eq. (3.50).

o i11k] = onlk] + Y(s4+1)Ra K] (3.49)
N/2

yln] = An[k] - cos(l, [k]) (3.50)
k=0

Let’s look at Fig. 3.35 to help us better understand how the amplitude and
phase values are updated and why the instantaneous frequency plays such
a critical role in contributing to a sinusoid’s behavior and ultimately the
quality of sound.
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Fig. 3.35. Time-stretching Rs = 3 - R, and interpolation of magnitude and phase.

Figure 3.35 shows the same bottom plot of Fig. 3.34 with the
added magnitude interpolation dimension along with details on the phase
increment /interpolation between the current frame and new next frame
at (s+1)-3- R, sample time. As we can see, the magnitude component
of the sinusoid located at bin k, is linearly interpolated from Agp,[k] to
A’(S +1)3Ra [k], providing the appropriate magnitude values for the sinusoids
at each point in time (n) between s - R, and (s + 1) - 3 - R,. For
interpolation of the phase between the current and next frame, we know
that the phase increment should follow 941 1)r, in Eq. (3.48) which allows
the instantaneous frequency to be maintained — the radian increment
(“radian distance” travelled per sample) will be sustained during this region
according to (3.48). Thus, since we have the appropriately interpolated
magnitude values A, [k] and the interpolated instantaneous phase ¢, at
each sample, we can use Eq. (3.50) to compute the synthesized output at
each sample n via the sum of N/2 sinusoids (DC to Nyquist limit). Each
point in time n will be represented by N/2 sinusoids.

For time-compression, we need only to employ a decimation scheme
since the number of samples between the current frame s and next frame
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Fig. 3.36. Time-compression Rs = 0.7 - R, and decimation of magnitude and phase.

s+1 will eventually have to decrease. However, all of the equations employed
for time-stretching also apply here as shown in Fig. 3.36 where we used an
example of 30% decrease in the length of the signal.

Time-shifting: ISTFT model. A similar approach is taken for time-shifting
via ISTFT (overlapping DFTs) and the phase vocoder. In the Fourier
transform method, the ratio of Ry/R, (synthesis hope size vs. analysis
hop size) is used to determine the stretching or contraction factor while
preserving the instantaneous frequency characteristics computed in the
analysis part. However, unlike the filter-bank model, the main difference
lies in the frame-by-frame synthesis rather than sample-by-sample synthesis
as each IDFT in the context of ISTFTs spans a region of time dictated
by the synthesis hop size Rs and the DFT size as depicted in Fig. 3.37.
Contrasting the filter-bank model, where at each time n, a new output
sample is produced via the sum of sinusoids, in the ISTF'T model the DFT
frame (with its N/2 sinusoids) is sustained for the duration of the DFT
window length and added in the usual OLA method on the synthesis side
producing the time-shifted output.
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Fig. 3.37. ISTFT model for synthesis in time-shifting.

As mentioned before, the main issue is in preserving the instantaneous

phase by scaling the new delta phase A(p'(s +1)Rs (unwrapped) in the
synthesis part using Eq. (3.51).

R
A90,(5-1—1)1%3 [k] = R_ ! AQp(s—i-l)Rs [k] (351)

a
The instantaneous frequency is preserved as the new delta phase increases,
so will the hop size according to the ratio Rs/R,. The delta phase, however,
also needs to be added to the previous unwrapped phase ¢’ to maintain
the phase increment as shown in Eq. (3.52).

90/(s+1)Rs [k] = SO/SRS [k] + Aspl(s—i-l)Rs [k] (352)

We can thus finally use the results of Eq. (3.52) to compute the modified
DFT frame’s bin k& component X%[k]’ with the updated phase values via

Eq. (3.53) and construct the time-domain signal through OLA of successive
ISTFT frames.

XK op1yr, = (X [Fls41yrsl) - 7#rome (3.53)
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Fig. 3.38. ISTFT model for synthesis in time-stretching.

For the time-compression and the ISTFT, the procedure is the same as
before, but instead of an increase of the delta phase, a decrease of delta
phase results.

3.4.5.2 Pitch-shifting

Pitch shifting, which refers to the multiplication of every frequency
component (rather than adding an offset value) by a certain transposition
factor, can be quite straightforwardly achieved exploiting a time-shifting
methodology followed by re-sampling as depicted in Fig. 3.39 (Dolson 1986;
Zolner 2002). For example, if we were to octave shift a signal upwards
in frequency, we would simply proceed by time-expanding (via the phase
vocoder) the signal by a factor of two and resample the same signal at a ratio
of % In short, we do time-expansion by a factor of two followed decimation
by two. The reason this works is because when we time-expand the signal,
no pitch shifting takes place, yet, we have twice as many samples. And when
we down-sample by two, pitch is increased by an octave but we return to
the original signal length as time-shifting by two followed by down-sampling
by the same ratio takes us back to the original signal size.

There are many enhancements and tweaks that can be done to improve
the phase vocoder, including refinements such as ensuring that the sum
of the squares of the overlapping windows is equal to one to get perfect
reconstruction if no modification takes place at R, = Rs. We will not cover
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Fig. 3.39. Pitch-shifting via time-stretching and re-sampling.

the more eclectic intricacies and details regarding the phase vocoder here,
but hope that the basic concepts outlined in this book will help the reader
get started on a longer journey towards “phase-voco-lightenment.”

4 Research Topics in Computer Music

As one can imagine there is a myriad of on-going research in computer music
today, especially with the ever more powerful personal computers hitting
the streets with multi-core processors facilitating simulation of models,
testing of concepts, implementing old algorithms for real-time systems, and
all sorts of explorations in sound generation and analysis. We will conclude
the book with the introduction of a few recent interesting and exciting
topics in computer music research.

4.1 Salient feature extraction

One area in computer music research that has lately attracted much
attention is music information retrieval (MIR). This area of research
extends over an interdisciplinary body of researchers focusing on topics
concerning the retrieval of information from music and audio. Examples
of such research include automatic genre classification, query (song) by
humming, beat detection, and automatic musical instrument classification
to name a few. We will introduce some of the MIR topics in the next section
and discuss salient feature extraction in this section as it is a very important
sub-research field in MIR and musical pattern recognition in general.
Salient feature extraction concerns with the study and development of
algorithms to extract “important” information, characteristics, and features
from a signal — in our case, audio signals. For example, if I were to flash my
pen quickly in front of you for about a second and asked you to identify this
object, you would probably be able to immediately tell me that it was some
sort of pen. This is actually quite amazing, considering that you only saw
the object for a very short time but were nevertheless able to identify the
object — albeit maybe not being capable of telling me if it was a mechanical
pencil, a fountain pen, or ball pen. The same holds true in situations for
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recognizing familiar musical instrument sounds such as the trumpet, or
strumming of a guitar — even if we were to hear it very fleetingly, there is
probably a good chance that we would be able to name the instrument and
maybe even the tune. One of the reasons this is possible, is due to the salient
features objects exhibit. For the pen example, we know from experience that
a pen is of a certain size, has a cylindrical and lank shape and depending
on the characteristics of the size itself (fatter or slimmer), we would also be
able to guess whether it is a fine pointed pen or a thicker marker-type pen.
Hence, by extracting salient features from objects, it is possible to identify
or at least make an informed guess as to what we are seeing or hearing. In
a sense, this approach may be viewed as a dimensionality reduction scheme
or the reduction of the vast information to what is considered salient. One
way of looking at salient feature extraction is by answering the question —
“what are the fundamental qualities and features that help and enable us
to identify a certain object?” and “what feature sets or feature vectors are
sufficient in representing a certain object?” In this section, we will introduce
some salient feature extraction techniques relevant to sound objects.

4.1.1 Spectral envelope

The spectral envelope embodies a wealth of information and can be seen
as a zoomed-out view of the power spectrum (DFT magnitude values).
What heavily determines the shape of the envelope is often the location of
dominant peaks in the spectrum. One surprising finding by Grey was that
through line-segment approximation of the harmonic amplitude envelopes
(Grey 1977), he was able to get very good re-synthesis results of the original
tones with a 100:1 data reduction — only by using partial information
of each harmonic’s amplitude trajectory (essentially decimation of the
harmonic amplitude envelope) he was able to re-synthesize the original
signal’s timbre to a degree of it being recognizable as the original upon
listening. On the distribution of the harmonics, it has been suggested that
no harmonics higher than the 5th to 7th, regardless of the fundamental
frequency, are resolved individually. Studies have also shown that the upper
harmonics rather than being perceived independently are heard as a group
(Howard, Angus 2001). Further support for this phenomena is made by
Hartman who, according to Puterbaugh (Puterbaugh 1999), suggested that
for a signal with fundamental frequency below 400 Hz, only the first 10
harmonics play an individual role: harmonics greater than 10 affect the
timbre en masse. Numerous methods exist in determining the spectral
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envelope. One method is by salient peak detection of the power spectrum,
another is taking the RMS of a STFT frame, yet another one is simply
low-pass filtering of a DFT frame, or using LPC to describe it in terms of
resonant pole structures as we have seen in Sec. 3.2.

4.1.2 Spectral centroid

The spectral centroid corresponds to a timbral feature that describes the
brightness of a sound. This important feature has been elicited in the past
(Helmholtz 1954; Lichte 1941) and experimentally observed in MDS-based
(multidimensional scaling) investigations (Krumhansl 1989; McAdams et al.
1995; Lakatos 2000). The spectral centroid can be thought of as the center
of gravity for the frequency components in a spectrum. It exists in many
variations including its mean, standard deviation, square amplitudes, log
amplitudes, use of bark frequency scale (Sekey, Hanson 1984), and the
harmonic centroid (see appendix for details about bark frequency scale).
During the lifetime of a sound, the centroid does not stay static but rather
changes and furthermore, as one might expect, varies characteristically with
intensity. For example, a trumpet blown in middle C with pianissimo and
forte dynamics result in different spectral centroid characteristics. This
feature is actually exploited indirectly in wavetable synthesis and other
sound synthesis algorithms where filters are often used to make the same
sample sound brighter or more dampened at various points in the waveform,
mimicking the dynamicity of real instrument sounds. The spectral centroid
is currently one of the MPEG-7 (Motion Picture Experts Group) timbre
descriptors and is defined as shown in Eq. (4.1).
N—-1 d
SCh. = —’“:lef;j i (4.1)
N X[k]

X4[k] is the magnitude corresponding to frequency bin k, N is the length
of the DFT, and SC'is the spectral centroid in Hertz. Generally, it has been
observed that sounds with “dark” qualities tend to have more low frequency
content and those with brighter sound dominance in high frequency (Backus
1976) which can be inferred by the value of the centroid.

It has also been suggested (Kendall, Carterette 1996) that the centroid
be normalized in pitch, hence making the spectral centroid a unit-less and
relative measure, since it is normalized by the fundamental frequency fy.
Some researchers have therefore utilized both the normalized and absolute
versions of the centroid (Eronen, Klapuri 2000) in their research such as
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automatic instrument recognition (Park 2004).

oy kX (K]

SCrelative - T N1 -
fo 3o X[K]

(4.2)

However, with the addition of f,, it is only useful in the context of pitched
sounds as purely percussive or inharmonic sounds usually are absent of a
fundamental frequency. Furthermore, for obvious reasons, a precise pitch-
extraction algorithm has to be devised for accurate centroid measurement
which is not a trivial problem to solve.

4.1.3 Shimmer and Jitter

Shimmer and jitter refer to short-time, subtle irregular variations in
amplitude and frequency of harmonics respectively. Shimmer is charac-
terized by random amplitude modulation which is especially present for
higher harmonics of instrument sounds. Jitter is a strong characteristic
in instruments such as the string instrument family. For bowed strings,
the unstable interaction between the bow and string — constant action of
micro-level pulling and releasing, results in frequency jitter. Computing
shimmer and jitter entails following the magnitude and frequency of
harmonics over time which can be achieved by designing a robust harmonic
tracker. This is, however, not trivial. An alternative approach for computing
jitter and shimmer is using a 24 sub-band bark scale. In this case, each band
generally corresponds to one harmonic, but if more than one harmonic is
found in one of the 24 bands, the average of the harmonics and center
frequency of that particular band is taken. Shimmer and jitter, which have
characteristics of noise, are believed to have Gaussian normal distribution.

4.1.4 Spectral fluzx

The spectral flux defines the amount of frame-to-frame fluctuation in time.
It is computed via the energy difference between consecutive STFT frames.

SF = |X{[] - X{ 4[| (4.3)

X[-] denotes the magnitude components and superscript f and f—1 current
and previous frames respectively. SF also sometimes referred to as the delta
magnitude spectrum, has been used to discriminate speech and musical
signals. It exploits the fact that speech signals generally change faster than
musical signals, noting that in human speech there is a constant game of
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ping-pong being played between consonants and vowel sounds as we have
seen in Sec. 3. In musical signals however, drastic changes tend to vary on
a lesser degree.

4.1.5 Log spectral spread

The log spectral spread obtained as a salient dimension from
multidimensional scaling experiments (Tucker 2001) is defined as the energy
found between bounded pairs of upper and lower frequency boundaries. The
lower and upper frequency bounds are found by applying a threshold value
with respect to the maximum magnitude of the spectrum (e.g. —10dB off
the maximum) followed by locating the upper and lower frequency bounds,
and finally taking the log of the result. The spread is somewhat similar to
the spectral distribution found by Grey (Grey 1977) and is also compared
to the richness of a sound. However, no attempts have been made to
quantify this factor. Spectral spread, along with envelopes, may be helpful
in observing timbral qualities of instruments such as the trombone, French
horn, and tuba which generally lack in high frequency content, whereas
the trumpet, primarily due to its brightness, is rich in upper harmonics
(Howard, Angus 2001). The basic algorithm is shown in Fig. 4.1 with the
final output representing the spectral spread between upper (u) and lower
(w) frequency boundaries. The spectral spread has also been specified as
one of the MPEG-7 audio descriptors.

—x[n} FFT —X.]> off_ril(;:l)g(d[.] —x7 ../1» find boundaries
\
Xd[w,u]
|
oy

«X [w-u]’

log ()

Fig. 4.1. Log spectral spread flow chart.

4.1.6 Roll-off

The roll-off point in Hertz is defined as the frequency boundary where 85%
of the total power spectrum energy resides. It is commonly referred to as
the skew of the spectral shape and is sometimes used in differentiating
percussive and highly transient sounds (which exhibit higher frequency
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components) from more constant sounds such as vowels.

SR=R (4.4)
R N-1
> X4k =085 X“[k] (4.5)
k=0 k=0

X4[k] are the magnitude components, k frequency index and R the
frequency roll-off point with 85% of the energy.

4.1.7 Attack time (rise time)

The traditional attack time or rise time of a sound is simply defined as
shown in Eq. (4.6) and is also used without the log operator. It computes
the time between a start-point (determined via a threshold value) and the
time location of the maximum amplitude of a sound (see also ADSR in
Chap. 2). The log rise time has been found to be an important dimension
in MDS and other timbral studies where it is often found as one of the three
dimensions of a given MDS timbre space (Saldanha, Corso 1964; Scholes
1970; Krimphoff 1993; McAdams 1995; Lakatos 2000).

LRT = log(tmax — tthresh) (46)
A slight variation for Eq. (6.27) also exists in the form of Eq. (4.7).

LRT = 1Og(tthreshMax - tthreshMin) (47)

Here, the only difference is setting a threshold value for the maximum
magnitude of a signal with a maximum threshold coefficient, sometimes set
to 2% of the maximum magnitude (Misdariis, Smith, Pressnitzer, Susini,
McAdams 1998). However, this approach, although sometimes better for
some envelopes, is a static approach to a dynamic problem and may cause
errors and inconsistencies when computing the attack time.

4.1.8 Amplitude modulation (Tremolo)

We have already seen amplitude modulation synthesis and recall that it
basically consists of the product of two sinusoids. Amplitude modulation is
omnipresent in musical tones, especially in performance situations and is
often accompanied by frequency modulation, both being strongly coupled to
each other (Backus 1976). The amplitude modulation frequency typically
ranges from 4-8 Hz and is usually found in the steady-state portion of a
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Fig. 4.2. Block diagram of AM extraction (Park 2000).

sound. It can be computed with fundamental frequency estimation methods
by analyzing the sustain portion of the sound. For modulation frequencies
between 9 ~ 40Hz, a roughness and graininess perception is noted, which
also contributes to the resulting timbral quality.

4.1.9 Temporal centroid

The temporal centroid has been found important as signal descriptors for
highly transient and percussive sounds and basically denotes the center of
gravity of the time-domain signal. It has been used along with log-attack
time and spectral centroid in MDS experiments by Lakatos (Lakatos 2000).
It is defined as the energy weighted mean of the time signal given in Eq. (4.8)
and is also a part of the MPEG-7 audio descriptors.

7C = Znzinalr]

> ]

x[n] is the input signal, n time index and L the length of the signal. The
algorithm is virtually the same as spectral centroid as both compute the
center of gravity — spectral centroid in the frequency-domain and temporal

(4.8)

centroid in the time-domain.

4.2 MIR (Music information retrieval)

Music information retrieval (MIR) has been a steadily growing research
field accelerated by the digital revolution, changing forever the way we
hear, store, interface, retrieve, access, and manage music whether it is
audio recordings, music sheets, music articles or reviews. In a way, although
digital technology has brought the music to each individual via the simple
pressing of a button, it has also made the sharing, managing, and retrieving
of music a nightmare due to the shear overflow of information and data.
In 1999 10,000 new albums were released with registration of 100,000
new works during that year alone (Uitdenbogerd 1999). With basic home
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digital audio workstations becoming more and more ubiquitous (whether
one is aware that one has it or not) and with MP3 players (MPEG-1
Audio Layer 3), MP3-enabled cell-phones, and smart phones becoming a
common and even necessary accessory, it is not difficult to imagine what the
numbers for newly released music is at present time! Navigating through
this deluge of information is not a trivial matter and thus the interest in
MIR has been growing since the late 1990s. Research in MIR is on-going and
includes examples such as query-by-humming, automatic beat detection,
automatic musical instrument recognition, automatic genre classification,
automatic artist identification, automatic music analysis, and optical music
recognition to name a few. In most, if not all of these research areas, salient
feature extraction plays a critical role and many of the aforementioned
algorithms are used in the research topics discussed in this section.

4.2.1 Query-by-humming (QbH)

Query-by-humming pertains to the automatic identification of a melody
inputted into a machine (such as a computer) via humming and comparing
the input query to an existing database with the artificial system providing
the user with a ranked list of possible matches closest to the inquiry.
A typical approach in designing such a system is via a bottom-up model
structured around transduction of the audio signal (hummed melody by
singer), extraction pitch information, and temporal information (onset,
time events, segmentation). The next step is to pass these features to the
melody analysis module whereby a melodic similarity measurement and
classification algorithm against a database takes place. Typically, in the
early stages of MIR, MIDI (Musical Instrument Digital Interface) files have
been used to compute the melodic similarity (Kurth 2002; Pardo 2004;
Ghias 1995). MIDI files are advantageous as they embed the exact melody
(if correctly inputted of course), accurate pitches, rhythmic and temporal
information as well as velocity information (comparable to dynamics) in
digital format. In such a system, the query input is monophonic (single
voice) as is the database itself. The importance of rhythm in QbH is
a critical one and is a central parameter in determining the melody as
published in a research paper where only rhythmic information was used
(Jang et al. 2001) to determine the target melody. However, the best
results seemingly are achieved by combining both temporal and frequency
analysis. Once pitch extraction and segmentation is complete, the feature
vectors are subject to pattern recognition modules such as hidden Markov
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models (Jang 2005), Gaussian mixture models (Marolt 2004), and adaptive
boosting (Parker 2005). The main issues in QbH are, however, not only
designing an accurate pitch extraction algorithm and rhythmic analyzer
but also designing a system that is flexible enough in allowing errors by the
singer (Kurth 2002). This addresses missing note and wrong note problems
as well as tempo variations and rhythmic inexactitudes resulting from the
humming of the melodies in the form of error tolerances.

4.2.2 Automatic beat detection and rhythm analysis

Another interesting area in MIR is the research in beat detection
and rhythm analysis. Beat, rhythm, and tempo are all very important
parameters in music and are often used to segment, group, and structure
music, especially in the form of musical patterns from the perspective
of time events, rather than pitch events. Interestingly, notated music,
including tempo as well as rhythmic values of notes, are seemingly clear
on paper but are in fact interpreted (sometimes very) differently by the
individual performer or particular ensemble. Even though they may be
reading from the exact same score, at times the interpretation and hence
the music generated may be very different on a number of levels, especially
in the area of temporal events — its tempo, rhythm, and beat. Additionally,
even if one ensemble plays a piece in a set tempo to an audience of
just two people, the perception of rhythm and tempo and metrical levels
may actually be subtly different for the listener — the difference often
depends on the knowledge of the piece beforehand (McKinney 2004).
This is one of the main reasons it is a difficult task to design an
artificial system that will robustly detect beat, rhythm and tempo, as
human factors cause ambiguities to the resulting musical experience.
There are numerous techniques currently being used to approach this
problem. Some of the techniques include utilizing a single oscillator based
on phase and period locking for piano pieces (Pardo 2004); utilizing
frequency-domain analysis and spectral energy flux in combination with
onset detection, periodicity detection, and temporal estimation of beat
locations (Alonso 2004); applying Gaussian models in conjunction with
correlation techniques, further combined with concepts from the area of
psychology and gestalt theory (Frieler 2004); and distance-based algorithms
such as k-means (Takeda 2004), Euclidian interval vector distance (Coyle
1998), Hamming distance (Toussaint 2004) and interval-difference distance
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measure of Coyle and Shmulevich (Coyle 1998), and the so-called swap
distance (Orpen 1992).

4.2.3 Automatic timbre recognition

Musical timbre has always been a subject surrounded by ambiguity and
mystery. As a matter of fact, it is still a term that experts in fields such
as psychology, music, and computer science have a somewhat difficult time
defining clearly. Numerous descriptions of timbre, especially in the past,
have dealt with semantic descriptions such as cold, warm, cool, dull, short,
long, smooth, rough ...etc., which, however, do not really reveal concrete
and tangible information about its structure, dimension, or mechanism. One
might be tempted to ask “we identify, recognize, and differentiate musical
timbre quite easily, so why is it so hard to understand and design a machine
to do it?” This is a valid point but in many cases, the things that humans
do with little effort, such as smelling, touching, seeing, and recognizing
objects, are the most difficult aspects to understand, and especially difficult
to model on a computer system. As a matter of fact, it seems that in many
cases, machines and humans have an inverse relationship when it comes
to accomplishing perceptual tasks. Tasks that machines do effortlessly are
done with greater difficulty by humans and vice-versa. Through continued
research, we have witnessed much advancement bringing us a little closer
towards understanding the complexities of timbre. So, what makes timbre
so difficult to understand? The reasons of course are far too complex to put
into one sentence, but the main problems underlying the complexity may
be attributed to the following:

Timbre is a perceptual and subjective attribute of sound, rather than a
purely physical one, making it a somewhat non-tangible entity.

Timbre is multidimensional in nature, where the qualities and importance
of features, and the number of dimensions are not fully understood (we
have already seen a number of timbral dimensions in Sec. 4.1).

There are no current existing subjective scales to make judgments about
timbre.

There are no standard sets of sound examples against which the
researcher can test their developed models.

The artificial recognition models for instruments and timbre in machines
may be generally divided into two categories, the top-down model and the
bottom-up model. The majority of the recognition research pertaining to
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Fig. 4.3. Bottom-up model in timbre-classification.

timbre has used bottom-up models also known as data-driven models as
shown in Fig. 4.3. Computer systems that implement machine recognition
often apply some sort of machine learning technique categorized into
supervised and unsupervised learning. There are various models and initial
studies in automatic musical instrument timbre recognition including
using k-nearest neighbors (Fujinaga 2000), Bayesian classifiers (Martin
and Kim 1998), binary trees (Jensen and Arnspang 1999), artificial
neural networks using radial and elliptical basis functions (Park 2004),
independent subspace analysis (Vincent 2004), Gaussian mixture models
(Essid 2004), as well as support vector machines (Marques 1999). As is true
for most MIR systems, timbre recognition highly depends on the garbage-in-
garbage-out (GIGO) paradigm and performance depends on robust feature
extraction.

4.3 FMS (feature modulation synthesis)

The motivation for feature modulation synthesis research can be traced
to the lack of synthesis/re-synthesis tools for composers who wish to
directly deal with perceptually relevant dimensions of sound and be able
to control and manipulate such dimensions in the form of modification
of salient features (Park 2004; Park et al. 2007, 2008). Classic synthesis
algorithms commonly generate sound from scratch or by using sonic
templates such as sine tones or noise via control parameters that are often
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abstract and seemingly have little relationship to perceptually relevant
nomenclatures. FMS tries to alleviate some of this disconnect between using
abstract control parameters and the sound being produced by enabling
control over timbre via salient timbral feature modulation. The architecture
follows a synthesis-by-analysis model with salient feature extraction, feature
modulation, and synthesis modules as shown in Fig. 4.4. x is the input
sound object, 2’ synthesized result, v and v’ the extracted and modulated
feature vectors respectively. The fundamental approach to sound synthesis
in FMS is to analyze a sound object for salient features, modulate a
select number of these feature vectors, and synthesize a new altered
sound object while keeping all other timbral features untouched. Although
modulating one specific timbral dimension ideally should not affect any
other features, in practice, artifacts occur. The first block in Fig. 4.4
(salient feature extraction) utilizes various time and frequency-domain-
based analysis algorithms (Park et al. 2007, 2008). The second feature
modulation block changes the desired features and corresponds to an
important module in FMS as it contains algorithms that alter the analyzed
feature profiles v to desired new feature profiles v’. The final block takes
the modulated feature vector v’ and synthesizes the modulated sound
object via time and frequency-domain processes. Some examples of FMS
include modulation of the analyzed spectral centroid, modulation of the
RMS amplitude envelope, spectral spread alteration, harmonic expansion
and compression, LPC-based noise (residual) modulation, as well as 3-D
spectral envelope alteration.

To better understand how the system works, let’s consider an example
where we have a sound object like the electric bass guitar and want to
change the brightness factor. It is usually the case that guitar strings sound
brightest at the attack portion of the waveform and lose energy as time
passes resulting in dampening — high frequency energy decays at a faster
rate as we have seen in our physical modeling example in Chap. 7. By
analyzing the signal for its spectral centroid, we can measure the amount
of brightness of the waveform as a function time. Thus, by modifying
each spectral frame via multiplication of the spectrum by an appropriate
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envelope, we can alter the spectral centroid and change the brightness
factor of the synthesized signal. The approach for modulating the spectral
centroid follows the mechanics of a see-saw. That is, more energy towards
the lower frequencies will result in the see-saw being tilted towards the DC
and more energy in the high frequency area will result in tilting towards the
Nyquist. The see-saw is thus initially balanced at Nyquist/2 frequency and
tilts either towards the DC or Nyquist depending on the desired centroid
location during modulation as shown in Fig. 4.5. The shape of the see-saw
thus forms the multiplying envelope used to shift the spectral centroid either
towards DC or Nyquist. Another example of FMS is found when performing
noise analysis of a sound object by computing the residual signal using LPC
(see Sec. 3.2). The residual signal is ideally noise-based and hence can be
used to represent the noisiness factor of a waveform. Since we have the noise
portion of a sound object, we can modulate the noise level by exploiting
this source-filter model and control aspects of noise content of a particular
signal.

5 Musical Examples

We can probably imagine why vocoders have had such popularity in musical
applications — not only due to the wide possibilities affording the musician
to flexibly manipulate sound but perhaps more so because the voice itself is
a sound that most of us are in one way or another very familiar with.
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Numerous composers and artists have used the vocoder spanning from
Kraftwerk with Die Roboter (1978), Laurie Anderson and O Superman
(1981), Herbie Hancock in Rock It (1983), Cher’s Believe (1999), Daft
Punk’s One More Time (2000), and Snoop Dog’s Sensual Seduction (2007).
Some of the pioneers in computer music who have utilized vocoders
extensively include Charles Dodge and Paul Lansky. Charles Dodge’s work
with LPC started at Bell Labs in the 1960s and cumulated to the release
of Speech Songs in 1972. Working at the lab when the speech researchers
had left for the night, Dodge would experiment with state-of-the-art speech
technology (at that time) and utilize it for his compositional ideas — it was
not meant to be used in that context. A Man Sitting in the Cafeteria is an
example of a collection of 4 pieces from Speech Songs. One can clearly hear
the manipulation of voiced and unvoiced parts of the speech that is inputted
to the computer; in essence making the normally non-musical perceived
speech into a musical one — albeit not in the traditional sense of music for
voice. It is undeniably synthetic and perhaps even pleasantly humorous at
times as the composer modulates various aspects of the text/voice including
the tempo, rhythm, pitch, and noise parts in an unexpected manner. The
text goes something like this:

A man sitting in the cafeteria
had one enormous ear
and one tiny one
Which was fake?

Paul Lansky also conducted a wealth of research in the area of LPC and
explored its application in musical compositions, the most notable ones
being the Idle Chatter collection of pieces. The first one of these pieces is
called Idle Chatter (1985) and takes the listener on a journey of the world
of sound poetry and speech. The composer uses speech and obscures the
informational part of its multidimensional structure — the listener knows
that the source is speech but is left to grapple with what is actually being
said. On one level, when viewed from a phonetic rather than a semantic
angle of using the voice in a musical context, the piece can be regarded as an
experience of sonic sequences of highly rhythmic voice patterns, engulfed
in a rich harmonic language. On another level, the voice materials, both
used as percussive and melodic devices, walk the grey area between speech
as timbre and speech as dialect. Other pieces that are on the opposite
end of the pole are pieces like my own called Omoni (2000) and Aboji
(2001) which deal with the narrative aspect of speech. In those types of
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works, excerpts of interviews, often abstract, incomplete, and modulated
in various ways, make up the sound material as well as the informational
material which comprise the complex gestalt of words, poetry, and musical
composition. In a way, at least from my own perspective, the composer
carefully negotiates his role as composer vs. reporter and creates something
that walks the fine line between composition and documentation. The
last piece I'll introduce before closing this chapter and this book is Andy
Moorer’s Lions are Growing (1978). This piece is based on poems from
Richard Brautigan’s Rommel Drives on into Egypt. The work is available
on CD entitled The Digital Domain: A Demonstration (1983). Unlike the
Paul Lansky and Charles Dodge pieces which used LPC, Moorer utilized the
phase vocoder to manipulate and transform textures, formant structures,
pitch, and aspects of time. You will probably hear the resemblance to
Charles Dodge’s Speech Songs as the material in Moorer’s piece is also solely
made from the synthesized voice injected with an updated speech synthesis
algorithm six years later — any resemblance is not purely coincidental (at
least as far as the fundamental role of the vocoder is concerned). The idea
itself, generally speaking, is somewhat similar to Dodge’s piece, but the
sound quality is remarkably on a higher level and of course synthesized via
a very different method. One of the most humorous and enjoyable moments
(there are many from smooth glissandi to slick time-shifting), is at the end
of piece — as Elvis would say, “thank you, thank you (very much).” Thank
you, thank you very much indeed!
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APPENDIX

1 To Scale or Not to Scale: That is the Question

When we hear frequencies and tones, the perception of those frequency
components is usually not linear as we have already learned in Chapter 1.
Thus, a number of different types of scales exist that address the issue of
nonlinearity of frequency and its perception. We will present a number of
representative scales here.

1.1 Equal temperament scale

The most common type of frequency scale is probably the 12-tone equal
temperament scale. It is the tuning system adopted by the majority of
musicians today, especially in the Western world which has the advantage
of permitting modulation (key change) without affecting the relative
relationship between tones. In short, the distance between each note
(interval) is structured so that each pair of adjacent notes forms an equal
frequency ratio according to Eq. (1.1).

fo=fr- n/12 (1.1)

In essence, what Eq. (1.1) tells us is that the octave is divided into 12
“equal” parts where the integer n determines the frequency (notes) between
a note and its octave equivalent. If you look at n and start with n = 0
and increment to 12, you will find that the reference note f, is multiplied
by 1,24/12 . 211/12 9 where the last multiplication refers to the octave
above f,. The ratio between two semitones (adjacent integer values of n) is

415
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equal to one cent, where 100 cents make up one semitone interval as shown
in Eq. (1.2).

cent = 21/12 (1.2)

A common reference frequency is 440 Hz which denotes the A4 note or the
49th key when counted in a pitch ascending manner on a standard piano.
Thus, finding/computing equal temperament notes is quite straightforward.
For example, the middle C4 (261 Hz) is computed as shown in (1.3) as the
C4 note is 9 “notes” below A4:

fac = fr -2n/12
= 440 - 27> (1.3)
= 261.6 Hz

1.2 Just intonation

Just intonation is a scale/tuning system that relies on ideal harmonic
relationships where the frequencies of the notes are a ratio of integer
numbers (rational numbers). Unlike the equal temperament scale, with just
intonation, it is necessary to retune the instrument for the scale that you
wish to use — an A Major tuning setup will not be applicable for a B
Magjor setup which makes changing keys problematic for instruments that
have fixed notes such as a piano or fretted stringed instrument. Thus, in a
sense, just intonation is actually more accurate than the equal temperament
system as it adheres to the harmonic frequency structure though the equal
temperament system is now used widely around the world in musical and
non-musical communities alike (you will rarely hear any other tuning system
in popular music other than the equal temperament system).

1.3 Bark scale

The bark frequency scale is a mnonlinear frequency scale which maps
frequencies in Hertz to 24 bands of a special psychoacoustic unit called
the bark. The bark scale adheres close to the human nonlinear hearing
system with one bark corresponding to the width of one critical band. 24
critical bands with center frequencies and their corresponding band edges
are shown in Table 1.1. A number of formulas exist in computing the bark
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Table 1.1. Bark frequency scale, center frequency and band edges.

Bark Unit Bark Center Frequencies Band edges
1 50 0, 100
2 150 100, 200
3 250 200, 300
4 350 300, 400
5 450 400, 510
6 570 510, 630
7 700 630, 770
8 840 770, 920
9 1000 920, 1080

10 1170 1080, 1270

11 1370 1270, 1480

12 1600 1480, 1720

13 1850 1720, 2000

14 2150 2000, 2320

15 2500 2320, 2700

16 2900 2700, 3150

17 3400 3150, 3700

18 4000 3700, 4400

19 4800 4400, 5300

20 5800 5300, 6400

21 7000 6400, 7700

22 8500 7700, 9500

23 10500 9500, 12000

24 13500 12000, 15500

scale and one of them is shown in Eq. (1.4) (Zwicker and Terhardt 1980).

. [(0.76f ()
B=13tan ' [ —= | +3.5tan"! | —=—— 1.4
o ( 1000) Footan (7500) (14)

1.4 Mel scale

Like the bark scale, the mel frequency scale also follows a perceptual
model for frequency mapping where the results reflect a scale that follows
perceptually equidistant frequencies. Mel describes a nonlinear mapping of
pitch perception as a function of frequency in Hertz according to Eq. (1.5)
where m is the mel frequency and f frequency in Hertz (Stevens and
Volkman 1937, 1940)

f

= 1127.010481 14— 1.5
m 70080ge(+700> (1.5)
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Fig. 1.1. Mel frequency to Hertz for f = 20 to 10 kHz.

As we can see from Eq. (1.5), f is equal to m when f = 1kHz — the
reference point between mel frequency and frequency in Hertz occurs at
1kHz where 1kHz is equal to 1000mels (the reference dB is 40dB above
the threshold of hearing). The name mel comes from the musical word
melody and addresses the frequency part of melody and its pitch related
perceptual distance measurement.

We can of course also go from the mel scale back to the frequency
(Hz) scale by performing an exponential power operation on both sides of
Eq. (1.5) resulting in (1.6).

f =700 eT=rom0m — 1 (1.6)

2 MATLAB® Programs Used in This Book

In this section, I have included information regarding the MATLAB®
programs used to make the majority of the plots, algorithms, and
examples throughout the book. I hope that the source code will be
helpful in further digging into the concepts presented in this book
through implementation and hacking. The programs are downloadable from
http://music.princeton.edu/~park/dsp-book.
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Fig. 4.1

Table 2.1. MATLAB®) programs used in this book.
Chapter  Section  Description Program name (.m file)
1 2 Sine wave Fig. 2.2 sineWave.m
2 Make sine wave sound sineWaveSound.m
Code Example 2.1

4 Sampling Figs. 4.1-4.4 sineWave.m

4 Sampling and aliasing samplingN Aliasing.m
Figs. 4.5 ~ 4.11 makeSine.m

5 Quantization of quantizationPlot.m
amplitude Fig. 5.2

6 DC signal Fig. 6.1 dcPlot.m

6 DC offset removal dcOffsetRemoval.m
Code Example 6.1

7 Distortion and clipping distortionPlot.m
Fig. 7.1

7 Quantization and ditherPlot.m
dithering Fig. 7.2

7 Harmonic distortion ditherHarmonicDistortionl.m
Fig. 7.3

7 Harmonic distortion ditherHarmonicDistortion2.m
Fig. 7.4

2 2 Waveform and envelope rmsPlots.m rms.m

Figs. 2.2, 2.3

2 Reverse playback reverse Wave.m
Code Example 2.1

3 Wavform views Fig. 3.1 waveformSubplots.m

3 Looping Fig. 3.2 waveformLoop.m

4 Windows Figs. 4.1, 4.3 windowingPlots.m

5 Zero crossings Fig. 5.1 zcrPlot.m

5 Zero crossings zcrDemo.m

Figs. 5.2, 5.4

6 Up-sampling Fig. 6.1 upSampling.m

6 Down-sampling Fig. 6.2 downSampling.m

6 Down/up sampling upDownSamplingEx.m

Code Example 6.1
7 OLA Figs. 7.1, 7.2 olaPlots.m
3 2 Grain and windowing granularWindows.m
Figs. 2.1, 2.3 granularSynthesis.m
3 Dynamic compressor compressor.m
Code Example 3.1
5 Equal loudness panning panning.m

(Continued)
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Table 2.1. (Continued)
Chapter  Section  Description Program name (.m file)
4 4 Beating Fig. 4.1 beating.m
4 Amplitude modulation amplitudeModulation.m
Fig. 4.4
5 Bessel function Fig. 5.2 bessel.m
5 4 Impulse Fig. 4.1 impulsePlot.m
6 2 Frequency response types  freqLinearLogBode.m
Fig. 2.4
2 Frequency response LPF freqlirLpf.m
Fig. 2.5
3 Magnitude/phase freqFirLpf.m
response Fig. 3.1
3 Magnitude/phase phaseResponse.m
response Fig. 3.3
3 Phase distortion Fig. 3.5 linearVsNonLinearPhase.m
3 Group delay Fig. 3.6 groupDelay.m
7 2 Filter characteristics filterDesign.m
Figs. 2.5 ~ 2.14,
2.16 ~ 2.27
3 Subtractive synthesis subtractiveSynthesis.m
Code Example 3.1
3 Biquad BPF biquadBpf.m
Code Example 3.2
Figs. 3.3, 3.4
3 Comb-filter coefficients combFilterCoeff.m
Fig. 3.7
3 Comb-filer z-plane combFilterZplane.m
Figs. 3.8 ~ 3.10
3 Comb-filtering 1 combFilterExamplel.m
Code Example 3.3
3 Comb-filtering 2 combFilterExample2.m
Code Example 3.4
3 Comb-filtering 3 combFilterExample3.m
Code Example 3.5
3 Plucked string model pluckedStringKS0.m
Code Example 3.6
Figs. 3.22, 3.23
3 Direct implementation pluckedStringKS1.m
Code Example 3.7
3 Code Example 3.8 chorus.m
3 All-pass filter z-plane allpassFreq.m
Fig. 3.33
3 All-pass impulse Fig. 3.38  allpassImpulse.m

(Continued)
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Table 2.1. (Continued)
Chapter  Section  Description Program name (.m file)
4 All-pass impulse allpassImpulses.m
examples
Figs. 3.39 ~ 3.41
4 Basic all-pass reverb allpassReverb.m
Code Example 3.10
8 2 Additive synthesis square Wave.m
Figs. 2.1 ~ 2.3, 4.2
4 Fourier basics Figs. 4.2, fourierBasics.m
4.4,4.6 ~ 4.8,
6 Zero padding zeroPadding.m
Figs. 6.1, 6.2
7 Aliasing Figs. 7.2 ~ 7.4 samplingNAliasing2.m
8 Upsampling Fig. 8.6 upsamplingFreqDomain.m
9 Windowing rectangular windowingDftRectSinusoids.m
Figs. 9.1 ~ 9.7
9 Window types windowTypesDft.m
Figs. 9.8 ~ 9.15
9 Sinc functions sincPlots.m
Figs. 9.16 ~ 9.19
11 Circular convolution convolutionPlots.m
plots Figs. 11.1 ~ 11.3
12 Dithering Figs. 12.1, 12.2 ditherHarmonicDistortion2.m
13 Spectrogram plot specgramPlot.m
Fig. 13.1
15 MATLAB®) and FFT fitExample.m
Code Example 14.1
9 2 LTAS Fig. 2.2 Itas.m
2 FFT log vs. linear fitLogVsLinear.m
Figs. 2.4, 2.5
2 Peak valley analysis peakValley AnalysisMain.m
Fig. 2.7 peakValley Analysis.m
2 Peak valley RMS Fig. 2.8 peakValleyRmsMain.m
peakValley Analysis.m
2 Salient peak picking findPeaks hillClimbing.m
Fig. 2.9
2 Inverse comb filtering inverseCombFilterPlots.m
Figs. 2.11, 2.12
2 Inverse comb filter pitch inverseCombFilterPitch.m
Fig. 2.13
2 Cepstral pitch analysis cepstrum.m
Fig. 2.15
3 Envelope follower Fig. 3.2  envFollower.m

(Continued)
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Table 2.1. (Continued)

Chapter Section  Description Program name (.m file)

3 Bark scale bands Fig. 3.3  channelVocoder.m

3 Enveloper follower results  channelVocoder.m
Fig. 3.4

3 ZCR voiced /unvoiced zcrAnalysis.m
Figs. 3.8 ~ 3.10 zcrComputation.m

3 Pre-emphasis preEmphasisVuv.m
voiced /unvoiced
Fig. 3.11

3 Low-band full energy lowFullEnergyRatioVuv.m
voiced /unvoiced
Fig. 3.12

3 SEFM analysis sfmVuv.m sfm.m
voiced /unvoiced

3 LPC Fig. 3.17 IpcAnalysis.m

3 Phase unwrapping phaseUnwrapping.m
Fig. 3.22

Appendix 1 Fig. 1.1 mel frequency vs. melVsHzPlot.m
Hz plot
Book Cover bookCover.m
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