
Victor Lazzarini · Steven Yi
John ffitch · Joachim Heintz
Øyvind Brandtsegg · Iain McCurdy

Csound
A Sound and Music Computing System

Csound

Victor Lazzarini • Steven Yi
John ffitch • Joachim Heintz
Øyvind Brandtsegg • Iain McCurdy

Csound
A Sound and Music Computing System

123

Victor Lazzarini
Department of Music
National University of Ireland
Maynooth, Kildare
Ireland

Steven Yi
Department of Music
National University of Ireland
Maynooth, Kildare
Ireland

John ffitch
Department of Computer Science
University of Bath
Bath
UK

Joachim Heintz
Institut für Neue Musik
Hochschule für Musik, Theater und
Medien Hannover

Hannover
Germany

Øyvind Brandtsegg
Department of Music
Norwegian University of Science
and Technology

Trondheim
Norway

Iain McCurdy
Berlin
Germany

ISBN 978-3-319-45368-2 ISBN 978-3-319-45370-5 (eBook)
DOI 10.1007/978-3-319-45370-5

Library of Congress Control Number: 2016953291

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
The registered company is Springer International Publishing AG

This book is dedicated to Richard Boulanger,
aka Dr. B, who has been a tireless champion
of Csound as a system for sound and music
computing. A widely influential educator and
composer, he has been instrumental in
shaping the development of the software and
its community.

Foreword

Csound – A Sound and Music Computing System: this book should be a great asset
for all of those who wish to take advantage of the power of computers in the field of
sound and music.

I was myself extremely fortunate to be among the first to take advantage of two
ancestors of the Csound software, namely MUSIC IV and MUSIC V, the early pro-
grams designed by Max Mathews in the 1960s. Thanks to these programs, I could
effectively participate in early explorations of sound synthesis for music. This has
shaped all my activity in electroacoustic music and mixed music. Csound retains the
advantages of MUSIC IV and MUSIC V and adds new possibilities taking advan-
tage of the progress in computer technology and in sonic and musical research.

Today, Csound is in my opinion the most powerful and general program for sound
synthesis and processing. Moreover, it is likely to endure, since it is maintained
and developed by a team of competent and dedicated persons. The authors of this
book are part of this team: they are talented software experts but also composers or
sound designers. The book reviews the programs which culminated in the present
Csound, and it explains in full detail the recent features. It can thus serve as both an
introduction to Csound and a handbook for all its classic and novel resources.

In this foreword, I would like to present some historical recollections of the early
days of computer sound synthesis: they may shed light on the developments that
resulted in the Csound software and on the raison d’être of its specific features.

The first digital recording and the first computer sound synthesis were accom-
plished in 1957 at Bell Laboratories by Max Mathews and his colleagues. Mathews
decided to harness the computer to calculate directly the successive samples of a
sound wave, instead of sampling recordings of sounds produced by acoustic vi-
brations: he wrote the first program for computer music synthesis, called MUSIC
I, and his colleague Newman Guttman realised In The Silver Scale, a 17-second
monophonic computer music piece ... which sounded simplistic and unappealing.

This was a disappointing start: Mathews knew that he had to write more power-
ful programs. Thus came MUSIC II, with four-voice polyphony. MUSIC II intro-
duced an ingenious new design for a software oscillator that could generate periodic
waves by looking up a wavetable with different increments, thus yielding different

vii

viii Foreword

frequencies. This process saved a lot of computing time, and it was applicable to a
huge variety of waveshapes. With this version of the program, Guttman realised a
1-minute piece called Pitch Study. Even though the music was still rudimentary, it
had some intriguing features. Edgard Varèse was intrigued by the advent of digital
synthesis: he hoped it would afford the composer more musical control than the ana-
log devices of electronic music. On April 26, 1959, Varèse decided to present Pitch
Study to the public in a carte blanche he gave at the Village Gate in New York City,
as a sort of manifesto encouraging the continuation of the development of computer
sound synthesis at Bell Laboratories.

Clearly, programming permits us to synthesise sounds in many different ways:
but Mathews realised that he would have to spend his life writing different pro-
grams to implement musical ideas and fulfill the desires of various composers. So
he undertook to design a really flexible program, as general as possible – a music
compiler, that is, a program that could generate a multiplicity of different music
programs.

To attain flexibility, Mathews resorted to the concept of modularity. By selecting
from among a collection of modules and connecting them in various ways, one can
implement a large number of possibilities, as in construction sets such as Meccano
or Lego.

The modular approach is at work in human languages, in which a small number
of basic elements – the phonemes – are articulated into words and phrases, allow-
ing an immense variety of utterances from a limited elementary repertoire. In fact,
the idea of a system articulated from a small number of distinct, discontinuous ele-
ments – discrete in the mathematical sense – had been clearly expressed in the early
nineteenth-century by Wilhelm von Humboldt, linguist and brother of the celebrated
explorer Alexander von Humboldt. Similarly, chemistry showed that all substances
can in principle be synthesised from fewer than one hundred chemical elements,
each of them formed of a single type of atoms. Biology also gives rise to an incred-
ible diversity of animals and plants: the common living building blocks of life have
only been identified in the last fifty years.

In 1959, Mathews wrote MUSIC III, a compiler implementing a modular ap-
proach for the computation of sound waveforms. Users of MUSIC III could per-
form different kinds of sound synthesis: they had to make their own choice among a
repertoire of available modules, called unit generators, each of which corresponded
to an elementary function of sound production or transformation (oscillator, random
number generator, adder, multiplier, filter ...). A user then assembled the chosen
modules at will to define instruments, as if he or she were patching a modular syn-
thesiser. However, contrary to common belief, Mathews’ modular conception did
not copy that of synthesisers: on the contrary, it inspired the analog devices built
by Moog, Buchla, or Ketoff using voltage control, which only appeared after 1964,
while MUSIC III was written in 1959. In fact, Mathews’ modular concept has influ-
enced most of the synthesis programs – the next versions MUSIC IV and MUSIC V,
but also MUSIC 10, MUSIC 360, MUSIC 11, Cmusic, Csound – and also most ana-
log or digital synthesisers – such as Arp, DX7, 4A, 4B, 4C, 4X, SYTER, compilers
for physical modeling such as CORDIS-ANIMA, Genesis, Mimesis, Modalys, and

Foreword ix

real-time programs such as MaxMSP and Pure Data, much used today and more
widely flow-based and object-oriented programming used in languages for elec-
tronic circuit simulation or computing software such as MATLAB.

The music compilers introduced by Mathews are software toolboxes. The mod-
ules that the user selects and connects are virtual: they correspond to portions of
program code. Connections are stipulated by a declarative text that must follow con-
ventions specific to the program. It is more meaningful to represent the connections
in terms of a diagram, hence the name of block diagram compilers. In MUSIC III
and in many later programs, instruments must be activated by note statements which
specify the parameters left variable, such as starting time, duration, amplitude and
pitch. The analogy to traditional instruments is suggestive. It may appear to follow a
neo-classical approach: but synthesised notes may last 1 millisecond or 10 minutes,
and each one may sound like a chord of several tones or fuse with other notes into a
single tone.

In the 1970s, Barry Vercoe wrote MUSIC 11, an efficient synthesis program for
the PDP11. Then Csound came around 1986. The advent of the Csound software
written by Barry Vercoe was a major step. C, developed at Bell Laboratories, is a
high-level language, hence easily readable, but it can also control specific features
of a computer processor. In particular, the UNIX operating system – the ancestor of
Linux – was written in C. Compositional subroutines can be written in C. Csound is
an heir of MUSIC IV rather than MUSIC V: the unit generators transmit their output
sample by sample, which makes it easier to combine them.

With MUSIC IV, MUSIC V, and Csound, synthesis can envision building prac-
tically any kind of sonic structure, providing if needed additional modules to im-
plement processes not foreseen earlier. These music programs draw on a wide pro-
gramming potential, and they put at the disposal of the user a variety of tools for
virtual sound creation. Compositional control can thus be expanded to the level of
the sonic microstructure: beyond composing with ready-made sounds, the musician
can compose the sounds themselves.

The issues migrate from hardware to software, from technology to knowledge
and know-how. The difficulty is no longer the construction of the tools, but their
effective use, which must take into account not only the imperatives of the musical
purpose, but also the characteristics of perception. So there is a need to develop
the understanding of hearing. One cannot synthesise a sound by just stipulating
the desired effect: synthesis requires the description of all its physical parameters,
so one should beware of the auditory effect of a physical structure. The musical
purpose is the prerogative of the user, but he or she must in any case take perception
into account.

Since the beginning of synthesis, the exploration of musical sound with synthe-
sis programs such as MUSIC IV, MUSIC V, and Csound has contributed substantial
scientific advances in hearing processes, leading to a better understanding of the
perception of musical sound. The physical structure of a synthetic sound is known
by construction – the data specifying the synthesis parameters provide a complete
structural representation of that sound. Listening to a synthetic sound allows eval-
uation of the relation between the physical structure and the auditory effect. The

x Foreword

experience of computer sound synthesis showed that this so-called psychoacoustic
relation between cause and effect, between objective structure and auditory sensa-
tion, is much more complex that was initially believed.

Exploring synthesis of musical tones showed that prescribed relations between
certain physical parameters do not always translate into similar – isomorphic – re-
lations between the corresponding perceptual attributes. For instance, the perceived
pitch of periodic tones is correlated to the physical frequency: however Roger Shep-
ard could synthesise twelve tones ascending a chromatic scale that seem to go up
endlessly when they are repeated. I myself generated glissandi going down the scale
but ending higher in pitch than where they started. I also synthesised tones that seem
to go down in pitch when one doubles their frequencies. These paradoxes might be
called illusory effects, errors of the sense of hearing: but what matters in music is the
auditory effect. John Chowning has taken advantage of the idiosyncrasies of spatial
hearing to create striking illusory motions of sound sources, a great contribution
to kinetic music. He has proposed the expression sensory esthetics for a new field
of musical inquiry relating to the quest for perceived musicality, including natural-
ness, exemplified by his simulations of the singing voice. Chowning has analysed
by synthesis the capacity of the ear to sort two instrument tones in unison: while the
ear fuses coherent vibrations, programming slightly different modulations for such
tones makes their vibrations incoherent. This insight can be used to control synthe-
sis so as to make specific sounds emerge from a sonic magma, which Chowning
demonstrated in his work Phoné.

As Marc Battier wrote in 1992, the use of the software toolboxes such as MUSIC
IV, MUSIC V, and Csound has favoured the development of an economy of ex-
changes regarding sonic know-how. In 1967, Chowning visited Bell Labs to discuss
his early experiments on the use of frequency modulation (FM) for sound synthesis,
and he communicated his synthesis data. I was impressed by the ease of replicating
FM tones, and I took advantage of Chowning’s recipes in my 1969 work Muta-
tions. That same year 1969, Chowning organised one of the first computer music
courses in Stanford, and he invited Mathews to teach the use of MUSIC V. Mathews
asked me whether I could pass him some of my synthesis research that he could
present. I hastily assembled some examples which I thought could be of interest,
and I gave Max a document which I called An introductory catalogue of computer
synthesized sounds [108]. For each sound example, the catalogue provides the MU-
SIC V score specifying the parameters of the desired sound (in effect an operational
recipe), the audio recording of the sound (initially on an enclosed vinyl disc), and
an explanation of the purpose and details. This document was widely diffused by
Bell Labs, and it was reprinted without changes in Wergo’s The Historical CD of
Digital Sound Synthesis (1995). In 1973, Chowning published his milestone paper
on FM synthesis, including the synthesis recipe for a number of interesting FM
tones. In 2000, Richard Boulanger edited The Csound Book, comprising tutorials
and examples. Together with Victor Lazzarini, in 2011, Boulanger edited The Audio
Programming Book, with the aim to expand the community of audio developers and
stretch the possibilities of the existing programs. Clearly, block diagram compilers
such as MUSIC V, Cmusic, and Csound considerably helped this cooperative effort

Foreword xi

of exploring and increasing the possibilities of computer sound synthesis and pro-
cessing. The dissemination of know-how provides cues that help users to build their
own virtual tools for sound creation with these software toolboxes.

The robustness and precision of structured synthesis programs such as Csound
favour musical work survival and reconstitution. In the 1980s, Antonio de Sousa
Dias converted several examples from my MUSIC V Catalogue into Csound. From
the computer score and with some help from the composer, two milestone works by
John Chowning have recently been reconstituted, which made it possible to refresh
the sound quality by replicating their synthesis with modern conversion hardware:
Stria, independently by Kevin Dahan and Olivier Baudouin, and Turenas by Laurent
Pottier, who transcribed it for four players playing digital percussion live.

In the late 1970s, for one of the first composer courses at IRCAM, Denis Lorrain
wrote an analysis of my work Inharmonique for soprano and computer-synthesised
sounds, realized in 1977. Lorrain’s IRCAM report (26/80) included the MUSIC
V recipes of the important passages, in particular bell-like sounds that were later
turned into fluid textures by simply changing the shape of an amplitude enve-
lope. More than 10 years later, with the help of Antonio de Sousa Dias and Daniel
Arfib, I could generate such sounds in real-time with the real-time-oriented program
MaxMSP discussed below.

MUSIC IV, MUSIC V, Cmusic, and Csound were not initially designed for real-
time operation. For many years, real-time synthesis and processing of sounds were
too demanding for digital computers. Laptops are now fast enough to make real-
time synthesis practical. Real-time performance seems vital to music, but the act of
composition requires us to be freed from real-time. One may say that MUSIC IV,
MUSIC V, Cmusic, and Csound are composition-oriented rather than performance-
oriented.

This might seem a limitation: but real-time operation also has limitations and
problems. In the early 1980s, the preoccupation with real-time became dominant
for a while. IRCAM claimed that their digital process 4X, then in progress, would
make non-real time obsolete, but the 4X soon became technically obsolete, so that
most works realised with this processor can only be heard today as recordings.
Real-time demands make it hard to ensure the sustainability of the music. Boulez’s
work Répons, emblematic of IRCAM, was kept alive after the 4X was no longer
operational, but only thanks to man-years of work by dedicated specialists. Noth-
ing is left of Balz Trumpy’s Wellenspiele real-time version (1978 Donaueschingen),
whereas Harvey’s Mortuos Plango (1980), mostly realised with MUSIC V, remains
as a prominent work of that period.

The obsolescence of the technology should not make musical works ephemeral.
In the 1980s, the Yamaha DX7 synthesiser was very promising – it was based on
timbal know-how developed by Chowning and his collaborators, it was well docu-
mented, and it could be programmed to some extent. In 1986 at CCRMA, Stanford,
Chowning and David Bristow organised a course to teach composers to program
their own sounds on the DX7, but Yamaha soon stopped production to replace the
DX7 with completely different models. In contradistinction, Csound remains – it

xii Foreword

can now emulate the DX7 as well as other synthesisers or Fender Rhodes electric
pianos.

A more recent piece of modular software, MaxMSP, designed by Miller Puckette,
is a powerful resource for musical performance: indeed it was a milestone for real-
time operation. However it is not easy to generate a prescribed score with it. Also,
even though it does not require special hardware, real-time oriented software tends
to be more fragile and unstable. Csound is precise and efficient, and it can deal with
performance in several ways without enslaving the user with the constraints of real-
time. It has developed compatibility with the popular and useful MIDI protocol. The
Csound library can complement other programs: for instance, Csound can be used
as a powerful MaxMSP object. The control and interaction possibilities have been
much expanded, and the book explains them in due detail.

It should be made clear that Csound is not limited to synthesis. In the late 1960s,
Mathews incorporated in the design of MUSIC V modules that could introduce
sampled sounds regardless of their origin: arbitrary sounds could then be digitally
processed by block diagram compilers. In GRM, the Paris birthplace of musique
concrète, Benedict Mailliard and Yann Geslin wrote in the early 1980s the so-called
Studio 123 software to perform sound processing operations, many of which inter-
nally used unit generators from MUSIC V. This software was used to produce works
such as François Bayle’s Erosphere and my own piece Sud, in which I intimately
combined synthetic and acoustic sound material in an effort to marry electronic
music and musique concrète; it was a model for the GRM Tools plug-ins. Csound
has incorporated and extended sound processing capabilities in the framework of a
well-organised and documented logic.

Block diagram compilers therefore supported new ways of thinking for writ-
ing music, and they provided means for composing sounds beyond the traditional
graphic notation of notes and durations, in ways that can unfurl with the help of
specific programs. Certainly, the artistic responsibility for a musical work rests with
the composer’s own commitment to present his or her sonic result as a piece of mu-
sic, but the extension of the musical territory has been a collective endeavour of a
dedicated community. Csound has grown with this extension, it is now available on
several platforms, and it can be augmented by the individual composers and tailored
to their needs and their desires.

In my view, Csound is the most powerful software for modular sound synthesis
and processing: Csound – A Sound and Music Computing System is a timely pub-
lication. The book is rightly dedicated to Richard Boulanger, whose indefatigable
activity has made Csound the most accomplished development of block diagram
compilers. It is also indebted to Max Mathews’ generosity and genius of design,
and to Barry Vercoe’s exigencies for high-level musical software. Last but not least,
it owes much to all the contributions of the authors, who are talented as sound de-
signers, developers and musicians.

Marseille, December 2015 Jean-Claude Risset

Preface

This book is the culmination of many years of work and development. At the Csound
Conference in Hannover, 2011, there was a general agreement among the commu-
nity that a new book on the many new features of the language was a necessity. For
one reason or another, the opportunity of putting together an edited collection of
chapters covering different aspects of the software never materialised. As Csound
5 gave way to Csound 6, and the system started expanding into various platforms,
mobile, web, and embedded, the need for a publication centred on the system itself
became even more evident. This book aims to fill this space, building on the already
rich literature in Computer Music, and adding to previous efforts, which covered
earlier versions of Csound in good detail.

A major aspect of this book is that it was written by a combination of system de-
velopers/maintainers, Lazzarini, Yi and ffitch, and power users/developers, Brandt-
segg, Heintz and McCurdy, who together have a deep knowledge of the internal and
external aspects of Csound. All the major elements of the system are covered in
breadth and detail. This book is intended for both novice and advanced users of the
system, as well as developers, composers, researchers, sound designers, and digi-
tal artists, who have an interest in computer music software and its applications. In
particular, it can be used wholly or in sections, by students and lecturers in music
technology programmes.

To ensure its longevity and continued relevance, the book does not cover plat-
form and host-specific issues. In particular, it does not dedicate space to showing
how to download and install the software, or how to use a particular feature of a
currently existing graphical frontend. As Csound is a programming library that can
be embedded in a variety of ways, there are numerous programs employing it, some
of which might not be as long-lasting as others. Wherever relevant and appropri-
ate, we will be considering the terminal (command-line interface) frontend, which
is the only host that is guaranteed to always be present in a Csound installation. In
any case, the operation topics left out of this book are duly covered in many online
resources (more details below), which are in fact the most appropriate vehicles for
them.

xiii

xiv Preface

The book is organised in five parts: Introduction; Language; Interaction; Instru-
ment Development; and Composition Case Studies. The two chapters in the In-
troduction are designed to give some context to the reader. The first one localises
Csound in the history of Computer Music, discussing in some detail a number of its
predecessors, and introducing some principles that will be used throughout the book.
This is followed by a chapter covering key elements of computer music software,
as applied to Csound. As it navigates through these, it moves from general consid-
erations to more specific ones that are central to the operation of the system. It con-
cludes with an overview of the Csound application programming interface (API),
which is an important aspect of the system for software development. However, the
focus of this work is firmly centred on the system itself, rather than embedding or
application programming. The next parts of the book delve deeper into the details
of using the software as a sound and music computing system.

The second part is dedicated to the Csound language. It aims to be a concise
guide to programming, covering basic and advanced elements, in an up-to-date way.
It begins with a chapter that covers the ground level of the language, at the end
of which the reader should have a good grasp of how to code simple instruments,
and use the system to make music. It moves on to discuss advanced data types,
which have been introduced in the later versions of the system, and provide new
functionality to the language. Core issues of programming, such as branching and
loops, as well as scheduling and recursion are covered in the third chapter. This is
followed by an overview of instrument graphs and connections. The fifth chapter
explores the concept of user-defined opcodes, and how these can be used to extend
the language.

The topic of control and interaction is covered in the third part of the book.
The first chapter looks at the standard numeric score, and discusses the various
types of functionality that it offers to users. The reader is then guided through the
MIDI implementation in Csound, which is both simple to use, and very flexible and
powerful. The facilities for network control, via the Open Sound Control protocol
and other means, is the topic of the third chapter in this part. A chapter covering
scripting with a separate general-purpose programming language complements this
part. In this, we explore the possibilities of using Python externally, via the Csound
API, to control and interact with the system.

The fourth part of this book explores specific topics in instrument development.
We look at various types of classic synthesis techniques in its first chapter, from
subtractive to distortion and additive methods. The following one examines key
time-domain processing elements, studying fixed and variable delay lines and their
applications, different types of filtering, and sound localisation. The third chapter
introduces sound transformation techniques in the frequency domain, which are a
particularly powerful feature of Csound. The more recent areas of granular synthesis
and physical models are featured in the two remaining chapters of this part.

The final section of the book is dedicated to composition applications. An in-
teresting aspect of almost all of the developers and contributors to Csound is that
they are composers. Although the system has applications that go beyond the usual
electronic music composition uses, there is always significant interest from old and

Preface xv

new users in its potential as a music composition tool. The six chapters in this sec-
tion explore the authors’ individual approaches to using the software in this context.
These case studies allow us to have a glimpse of the wide variety of uses that the
system can have.

All the code used as examples in this book is freely available for downloading,
pulling, and forking from the Csound GitHub site (http://csound.github.io), where
readers will also find the latest versions of the software sources, links to the release
packages for various platforms, the Csound Reference Manual, and many other re-
sources. In particular, we would like to mention the Csound FLOSS Manual, which
is a community effort led by two of the authors of this book, covering a number
of practical and platform/frontend-specific aspects of Csound operation that are be-
yond the scope of this book. The Csound Journal, a periodic online publication
co-edited by another one of the book authors, is also an excellent resource, with
articles tackling different elements of the system.

It is also important to mention here that the essential companion to this book,
and to the use of Csound, is the Reference Manual. It is maintained to contain a
complete documentation of all aspects of the system, in a concise, but also precise,
manner. It is important for all users to get acquainted with its layout, and how to find
the required information in it. The manual represents a triumph of the collaborative
effort of the Csound community, and it contains a wealth of knowledge about the
system that is quite remarkable.

The development and maintenance of Csound has been led by a small team of
people, including three of the book authors, plus Michael Gogins, who made numer-
ous contributions and has kept the Windows platform versions up to date in a very
diligent way, and Andrés Cabrera, who also authored a widely used cross-platform
IDE for Csound (CsoundQt). As Free software, Csound is fully open for users to
play with it, fork it, copy it and of course, add to it. Over its thirty-odd years of ex-
istence, it has benefitted from contributions by developers spread all over the world,
too many to be listed here (but duly acknowledged in the source code and manual).

At some point, users will realise that Csound can crash. It should not, but it
does. The developers are always looking out for flaws, bugs and unprotected areas
of the system. We have minimised the occurrence of segmentation faults, but as a
programming system that is very flexible and produces ‘real’, compiled, working
programs, it is vulnerable to these. No matter how closely we look at the system,
there will always be the chance of some small opportunity for perverse code to be
used, which will bring the system down. The development team has introduced a
number of safeguards and a very thorough testing program to keep the software
well maintained, bug free, and defended from misuse.

An important part of this is the issue tracking system, which is at present handled
by the GitHub project. This is a very useful tool for us to keep an eye on problems
that have arisen, and the user community is our first line of defence, using and
pushing the software to its limits. Reporting bugs, and also asking for features to be
implemented, is a good way to help strengthen Csound for all users. The developers
work to a reasonably tight schedule, trying to address the issues as they are reported.
Once these are fixed, the new code is made available in the develop branch of the

xvi Preface

source code revision system (git). They become part of the following software
release, which happens quite regularly (three or four times yearly).

We hope that the present book is a helpful introduction to the system for new
users, and a valuable companion to the ones already acquainted with it.

Maynooth, Rochester, Bath, Victor Lazzarini
Hannover, Trondheim, and Berlin Steven Yi
December 2015 John ffitch

Joachim Heintz
Øyvind Brandtsegg

Iain McCurdy

Acknowledgements

We would like to thank all contributors to the Csound software and its documenta-
tion, from developers to users, and educators. Firstly, we should acknowledge the
work of Barry Vercoe and his team at the Machine Listening Group, MIT Media
Lab, who brought out and shared the early versions of the software. The availability
of its source code for FTP download was fundamental to its fantastic growth and
development in the three decades that followed.

We are also deeply indebted to Michael Gogins, for many a year a leading figure
in the community, one of the main system maintainers, a user and a composer, whose
contributions to the system are wide ranging. In fact, he has been single-handedly
carrying out the task of keeping the Windows platform version up to date, a some-
times arduous task as the operating system programming support diverges from the
more commonly shared tools of the *NIX world. Likewise, we would like to thank
Andrés Cabrera for his work on several aspects of the system, and for developing a
very good cross-platform IDE, which has allowed many command-line-shy people
to approach Csound programming more confidently. We should also acknowledge
the many contributions of Istvan Varga and Anthony Kozar to the early development
of version 5, and of Maurizio Umberto Puxeddu, Gabriel Maldonado and Matt In-
galls to version 4. Third-party frontend developers Rory Walsh and Stefano Bonetti
also deserve recognition for their great work.

A special note of gratitude should also go to a number of power users world-wide,
who have kept pushing the boundaries of the system. Particularly, we would like to
thank Tarmo Johannes, Menno Knevel, Ben Hackbarth, Anders Gennell, Jan-Jacob
Hofmann, Tito Latini, Jim Aikin, Aurelius Prochazka, Dave Seidel, Dave Phillips,
Michael Rhoades, Russell Pinkston, Art Hunkins, Jim Hearon, Olivier Baudoin,
Richard Van Bemmelen, François Pinot, Jacques Deplat, Stéphane Rollandin, Ed
Costello, Brian Carty, Alex Hofmann, Gleb Rogozinsky, Peiman Khosravi, Richard
Dobson, Toshihiro Kita, Anton Kholomiov, and Luis Jure. They, and many others
through the years, have been instrumental in helping us shape the new versions of
the system, and improving its functionality.

We would also like to thank Oscar Pablo de Liscia for reading and commenting
on the ATS sections of the text, which has helped us to clarify and explain its mech-

xvii

xviii Acknowledgements

anisms to the reader. We would like to express our gratitude to Jean-Claude Risset
for his inspirational work, and for providing a wonderful preface to this book.

Finally, we should acknowledge the essential part that Richard Boulanger has
played as a computer musician and educator. Arguably, this book and the system
that it describes would not have been here if it were not for his influential work
at the Berklee College of Music, and also world wide, taking his knowledge and
experience to a wide audience of composers, sound designers and developers. The
authors, and indeed, the Csound community, are very grateful and honoured to have
had your help in establishing this system as one of the premier Free computer music
software projects in the world.

Contents

Part I Introduction

1 Music Programming Systems . 3
1.1 Introduction . 3
1.2 Early Music Programming Languages . 4

1.2.1 MUSIC IV . 5
1.2.2 MUSIC V . 7
1.2.3 MUSIC 360 . 9
1.2.4 MUSIC 11 . 11

1.3 Csound . 12
1.3.1 Csound 5 . 14
1.3.2 Csound 6 . 14
1.3.3 Compatibility and Preservation . 15

1.4 Conclusions . 16

2 Key System Concepts . 17
2.1 Introduction . 17
2.2 General Principles of Operation . 18

2.2.1 CSD Text Files . 18
2.2.2 Using the Numeric Score . 19
2.2.3 Csound Options . 20

2.3 Frontends . 20
2.3.1 The csound Command . 21
2.3.2 Console messages . 22

2.4 Audio Computation, the Sampling Theorem, and Quantisation 23
2.4.1 Aliasing . 24
2.4.2 Quantisation Precision . 25
2.4.3 Audio Channels . 26

2.5 Control Rate, ksmps and Vectors . 27
2.6 Instruments, Instances, and Events . 29

2.6.1 The Life Cycle of an Instrument . 31

xix

xx Contents

2.6.2 Global Code . 33
2.7 Function Tables . 33

2.7.1 GEN Routines . 33
2.7.2 Normalisation . 34
2.7.3 Precision . 34
2.7.4 Guard Point . 35
2.7.5 Table types . 35

2.8 Audio Input and Output . 35
2.8.1 Audio Buffers . 36
2.8.2 The Audio IO Layers . 36
2.8.3 Real-Time Audio . 38
2.8.4 Offline Audio . 41

2.9 Csound Utilities . 41
2.10 Environment Variables . 43

2.10.1 Configuration File . 43
2.11 The Csound API . 44

2.11.1 A Simple Example . 44
2.11.2 Levels of Functionality . 46

2.12 Conclusions . 49

Part II The Language

3 Fundamentals . 53
3.1 Introduction . 53
3.2 Instruments . 54

3.2.1 Statements . 54
3.2.2 Expressions . 55
3.2.3 Comments . 56
3.2.4 Initialisation Pass . 56
3.2.5 Performance Time . 56
3.2.6 Parameters . 58
3.2.7 Global Space Code . 58

3.3 Data Types and Variables . 59
3.3.1 Init-Time Variables . 59
3.3.2 Control-Rate Variables . 61
3.3.3 Audio-Rate Variables . 62
3.3.4 Global Variables . 64

3.4 Opcodes . 65
3.4.1 Structure . 65
3.4.2 Syntax . 66
3.4.3 Functions . 67
3.4.4 Initialisation and Performance . 67

3.5 Fundamental Opcodes . 69
3.5.1 Input and Output . 69
3.5.2 Oscillators . 69

Contents xxi

3.5.3 Table Generators . 73
3.5.4 Table Access . 75
3.5.5 Reading Soundfiles . 77
3.5.6 Pitch and Amplitude Converters . 78
3.5.7 Envelope Generators . 80
3.5.8 Randomness . 82

3.6 The Orchestra Preprocessor . 86
3.7 Conclusions . 89

4 Advanced Data Types . 91
4.1 Introduction . 91
4.2 Strings . 91

4.2.1 Usage . 92
4.3 Spectral-Domain Signals . 94

4.3.1 f-sig Variables . 94
4.3.2 w-sig Variables . 96

4.4 Arrays . 97
4.4.1 Initialisation . 97
4.4.2 Setting Values . 98
4.4.3 Reading Values . 99
4.4.4 Performance Time . 99
4.4.5 String and f-sig Arrays . 100
4.4.6 Arithmetic Expressions . 100
4.4.7 Arrays and Function tables . 101
4.4.8 Audio Arrays . 102

4.5 Conclusions . 103

5 Control of Flow and Scheduling . 105
5.1 Introduction . 105
5.2 Program Flow Control . 105

5.2.1 Conditions . 106
5.2.2 Branching . 106
5.2.3 Loops . 111

5.3 Scheduling . 114
5.3.1 Performance-Time Event Generation . 115
5.3.2 Recursion . 116
5.3.3 MIDI Notes . 117
5.3.4 Duration Control . 117
5.3.5 Ties . 118

5.4 Reinitialisation . 120
5.5 Compilation . 122
5.6 Conclusions . 123

xxii Contents

6 Signal Graphs and Busses . 125
6.1 Introduction . 125
6.2 Signal Graphs . 126
6.3 Execution Order . 127

6.3.1 Instances . 128
6.3.2 Instruments . 128

6.4 Busses . 129
6.4.1 Global Variables . 129
6.4.2 Tables . 131
6.4.3 Software Bus . 134

6.5 Conclusions . 136

7 User-Defined Opcodes . 139
7.1 Introduction . 139
7.2 Syntax . 140

7.2.1 Arguments . 140
7.3 Instrument State and Parameters . 143
7.4 Local Control Rate . 144
7.5 Recursion . 147
7.6 Subinstruments . 150
7.7 Conclusions . 151

Part III Interaction

8 The Numeric Score . 155
8.1 Introduction . 155
8.2 Basic Statements . 156
8.3 Sections . 158
8.4 Preprocessing . 159

8.4.1 Carry . 159
8.4.2 Tempo . 160
8.4.3 Sort . 160
8.4.4 Next-p and Previous-p . 161
8.4.5 Ramping . 161
8.4.6 Expressions . 161
8.4.7 Macros . 162
8.4.8 Include . 163

8.5 Repeated Execution and Loops . 163
8.6 Performance Control . 165

8.6.1 Extract . 166
8.6.2 Orchestra Control of Score Playback . 166
8.6.3 Real-Time Events . 167

8.7 External Score Generators . 167
8.8 Alternatives to the Numeric Score . 169
8.9 Conclusions . 170

Contents xxiii

9 MIDI Input and Output . 171
9.1 Introduction . 171
9.2 MIDI Messages . 171

9.2.1 Channel Message Types . 172
9.3 The Csound MIDI System . 173

9.3.1 Input . 173
9.3.2 Output . 176
9.3.3 MIDI Backends . 177

9.4 Conclusions . 178

10 Open Sound Control and Networking . 181
10.1 Introduction . 181
10.2 Open Sound Control . 181

10.2.1 The OSC Protocol . 182
10.2.2 Csound Implementation . 182
10.2.3 Inter-application Examples . 185

10.3 Network Opcodes . 191
10.4 Csound UDP Server . 192
10.5 Conclusions . 193

11 Scripting Csound . 195
11.1 Introduction . 195
11.2 Csound API . 195
11.3 Managing an Instance of Csound . 196

11.3.1 Initialisation . 196
11.3.2 First Compilation . 197
11.3.3 Performing . 198
11.3.4 Score Playback Control and Clean-up 199

11.4 Sending Events . 200
11.5 The Software Bus . 200

11.5.1 Control Data . 200
11.5.2 Audio Channels . 201

11.6 Manipulating Tables . 202
11.7 Compiling Orchestra Code . 203
11.8 A Complete Example . 203
11.9 Conclusions . 205

Part IV Instrument Development

12 Classic Synthesis . 209
12.1 Introduction . 209

12.1.1 Waveforms and Spectra . 210
12.2 Source-Modifier Methods . 212

12.2.1 Sources . 212
12.2.2 Modifiers . 219
12.2.3 Design Example 1: Analogue Modelling 223

xxiv Contents

12.2.4 Design Example 2: Channel Vocoder . 225
12.3 Distortion Synthesis Methods . 228

12.3.1 Summation Formulae . 228
12.3.2 Waveshaping . 232
12.3.3 Frequency and Phase Modulation . 234
12.3.4 Phase-Aligned Formant Synthesis . 239
12.3.5 Modified FM Synthesis . 240

12.4 Additive Synthesis . 243
12.4.1 A Tonewheel Organ Instrument . 245
12.4.2 Synthesis by Analysis . 249

12.5 Conclusions . 253

13 Time-Domain Processing . 255
13.1 Introduction . 255
13.2 Delay Lines . 255

13.2.1 Feedback . 258
13.2.2 All-Pass Filters . 260
13.2.3 Reverb . 262
13.2.4 Convolution . 268

13.3 Variable Delays . 270
13.3.1 Flanger . 271
13.3.2 Chorus . 273
13.3.3 Vibrato . 274
13.3.4 Doppler . 276
13.3.5 Pitch Shifter . 278

13.4 Filters . 280
13.4.1 Design Example: a Second-Order All-Pass Filter 280
13.4.2 Equalisation . 284
13.4.3 FIR Filters . 285
13.4.4 Head-Related Transfer Functions . 289

13.5 Multichannel Spatial Audio . 290
13.5.1 Ambisonics . 290
13.5.2 Vector Base Amplitude Panning . 293

13.6 Conclusions . 293

14 Spectral Processing . 295
14.1 Introduction . 295
14.2 Tools for Spectral Analysis and Synthesis . 296

14.2.1 Fourier Transform . 296
14.2.2 Fourier Series . 297
14.2.3 Discrete Fourier Transform . 298

14.3 Fast Convolution . 302
14.4 The Phase Vocoder . 306

14.4.1 Frequency Effects . 311
14.4.2 Formant Extraction . 312

Contents xxv

14.4.3 Spectral Filters . 314
14.4.4 Cross-synthesis and Morphing . 315
14.4.5 Timescaling . 316
14.4.6 Spectral Delays . 319
14.4.7 Miscellaneous Effects . 321

14.5 Sinusoidal Modelling . 321
14.5.1 Additive Synthesis . 323
14.5.2 Residual Extraction . 324
14.5.3 Transformation . 326

14.6 Analysis Transformation and Synthesis . 326
14.6.1 The ATS Analysis . 326
14.6.2 The ATS Analysis File Format . 328
14.6.3 Resynthesis of the Sinusoidal Part . 329
14.6.4 Resynthesis of the Residual Part . 332
14.6.5 Transformations . 334

14.7 Conclusions . 336

15 Granular Synthesis . 337
15.1 Introduction . 337

15.1.1 Low Grain Rates, Long Grains . 338
15.1.2 High Grain Rates, Periodic Grain Clock 340
15.1.3 Grain Clouds, Irregular Grain Clock . 342

15.2 Granular Synthesis Versus Granular Effects Processing 343
15.2.1 Grain Delay . 344
15.2.2 Granular Reverb . 348

15.3 Manipulation of Individual Grains . 353
15.3.1 Channel Masks, Outputs and Spatialisation 357
15.3.2 Waveform Mixing . 360

15.4 Clock Synchronisation . 363
15.5 Amplitude Modulation and Granular Synthesis 368
15.6 Pitch Synchronous Granular Synthesis . 372
15.7 Morphing Between Classic Granular Synthesis Types 374

15.7.1 Glissons . 374
15.7.2 Grainlets . 375
15.7.3 Trainlets . 375
15.7.4 Pulsars . 376
15.7.5 Formant Synthesis . 376
15.7.6 Morphing Between Types of Granular Synthesis 378

15.8 Conclusions . 384

16 Physical Models . 385
16.1 Introduction . 385
16.2 Waveguides . 385

16.2.1 Simple Plucked String . 386
16.2.2 Wind Instruments . 390

xxvi Contents

16.2.3 More Waveguide Ideas . 394
16.3 Modal Models . 395
16.4 Differential Equations and Finite Differences 397
16.5 Physically Inspired Models . 399
16.6 Other Approaches . 399

16.6.1 Spring-Mass System . 399
16.6.2 Scanned Synthesis . 402
16.6.3 ... and More . 405

16.7 Conclusions . 405

Part V Composition Case Studies

17 Iain McCurdy: Csound Haiku . 409
17.1 Introduction . 409
17.2 Groundwork . 410
17.3 The Pieces . 411

17.3.1 Haiku I . 412
17.3.2 Haiku II . 415
17.3.3 Haiku III . 420
17.3.4 Haiku IV . 423
17.3.5 Haiku V . 426
17.3.6 Haiku VI . 428
17.3.7 Haiku VII . 431
17.3.8 Haiku VIII . 435
17.3.9 Haiku IX . 440

17.4 Conclusions . 442

18 Øyvind Brandtsegg: Feedback Piece . 443
18.1 Introduction . 443
18.2 Feedback-Processing Techniques . 444
18.3 Coloring Effects . 447
18.4 Hosting and Interfacing . 450
18.5 Automation and Composed Form . 450
18.6 Spatial and Performative Considerations . 451

19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken

Word . 455
19.1 Introduction . 455
19.2 Idea and Set-up . 456
19.3 Knuth . 456

19.3.1 Rhythm Analysis . 457
19.3.2 Possibilities . 458

19.4 Alma . 460
19.4.1 Game of Times . 460
19.4.2 Speech as Different-Sized Pieces of Sounding Matter 460
19.4.3 Bringing Back the Past: Four Modes . 463

Contents xxvii

19.4.4 Improvisation or Composition . 464
19.5 Conclusions . 468

20 John ffitch: Se’nnight . 469
20.1 Introduction . 469
20.2 Hénon Map and Torus Map . 470
20.3 Genesis of Se’nnight . 471
20.4 Instruments . 472
20.5 Score Generation . 472

20.5.1 Score1 . 472
20.5.2 Score2 and Score3 . 473

20.6 Start and End . 474
20.7 Multichannel Delivery . 474
20.8 Conclusions . 475

21 Steven Yi: Transit . 477
21.1 Introduction . 477
21.2 About Blue . 478
21.3 Mixer, Effects and the Signal Graph . 478
21.4 Instruments . 480
21.5 Improvisation and Sketching . 483
21.6 Score . 485
21.7 Conclusions . 486

22 Victor Lazzarini: Noctilucent Clouds . 487
22.1 Introduction . 487
22.2 The Basic Ingredients . 488

22.2.1 Dynamic Spectral Delays . 488
22.2.2 Variable Delay Processing . 491
22.2.3 Feedback . 492

22.3 Source Sounds . 493
22.4 Large-Scale Structure . 495
22.5 Post-production . 496

22.5.1 Source Code Packaging . 498
22.6 Conclusions . 498

References . 501

Index . 507

Acronyms

0dbfs zero decibel full scale
ADC Analogue-to-Digital Converter
ADSR Attack-Decay-Sustain-Release
AIFF Audio Interchange File Format
ALSA Advanced Linux Sound Architecture
AM Amplitude Modulation
API Application Programming Interface
ATS Analysis Transformation and Synthesis
bpm beats per minute
CLI Command-Line Interface
CODEC Coder-Encoder
cps cycles per second
DAC Digital-to-Analogue Converter
DAW Digital Audio Workstation
dB Decibel
DFT Discrete Fourier Transform
EMG Electromyogram
FDN Feedback Delay Network
FIR Finite Impulse Response
FIFO First In First Out
FLAC Free Lossless Audio CODEC
FLTK Fast Light Toolkit
FM Frequency Modulation
FOF Fonction D’Onde Formantique, formant wave function
FS Fourier Series
FT Fourier Transform
FFT Fast Fourier Transform
GIL Global Interpreter Lock
GPU Graphic Programming Unit
GUI Graphical User Interface
HRIR Head-Related Impulse Response

xxix

xxx Acronyms

HRTF Head-Related Transfer Function
Hz Hertz
IDE Integrated Development Environment
IDFT Inverse Discrete Fourier Transform
IFD Instantaneous Frequency Distribution
IID Inter-aural Intensity Difference
IIR Infinite Impulse Response
IO Input-Output
IP Internet Protocol
IR Impulse Response
ITD Inter-aural Time Delay
JNI Java Native Interface
LADSPA Linux Audio Simple Plugin Architecture
LFO Low Frequency Oscillator
LTI Linear Time-Invariant
MIDI Musical Instrument Digital Interface
MIT Massachusetts Institute of Technology
MTU Maximum Transmission Unit
OSC Open Sound Control
PAF Phase-Aligned Formant
PM Phase Modulation
PRN Pseudo-random number
PV Phase Vocoder
STFT Short-Time Fourier Transform
TCP Transport Control Protocol
UDO User-Defined Opcode
UDP User Datagram Protocol
UG Unit Generator
UI User Interface
VBAP Vector Base Amplitude Panning
VST Virtual Studio Technology

Part I

Introduction

Chapter 1

Music Programming Systems

Abstract This chapter introduces music programming systems, beginning with a
historical perspective of their development leading to the appearance of Csound.
Its direct predecessors, MUSIC I-IV, MUSIC 360 and MUSIC 11, as well as the
classic MUSIC V system, are discussed in detail. Following this, we explore the
history of Csound and its evolution leading to the current version. Concepts such
as unit generators, instruments, compilers, function tables and numeric scores are
introduced as part of this survey of music programming systems.

1.1 Introduction

A music programming system is a complete software package for making music
with computers [68]. It not only provides the means for defining the sequencing
of events that make up a musical performance with great precision, but it also en-
ables us to define the audio signal processing operations involved in generating the
sound, to a very fine degree of detail and accuracy. Software such as Csound offers
an environment for making music from the ground up, from the very basic elements
that make up sound waves and their spectra, to the higher levels of music compo-
sition concerns such as sound objects, notes, textures, harmony, gestures, phrases,
sections, etc.

In this chapter, we will provide a historical perspective that will trace the devel-
opment of key software systems that have provided the foundations for computer
music. Csound is based on a long history of technological advances. The current
system is an evolution of earlier versions that have been developed over almost 30
years of work. Prior to that, we can trace its origins to MUSIC 11, MUSIC 360
and MUSIC IV, which were seminal pieces of software that shaped the way we
make music with computers. Many of the design principles and concepts that we
will be studying in this book have been originated or were influenced by these early
systems. We will complete this survey with an overview of the most up-to-date de-
velopments in Csound.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_1

3

4 1 Music Programming Systems

1.2 Early Music Programming Languages

The first direct digital synthesis program was MUSIC I, created by Max Mathews in
1957, followed quickly by MUSIC II and MUSIC III, which paved the way to mod-
ern music programming systems. Mathews’ first program was innovative in that,
for the first time, a computer was used to calculate directly the samples of a dig-
ital waveform. In his second program, we see the introduction of a key piece of
technology, the table-lookup oscillator in MUSIC II, which is one of the most im-
portant components of a computer music program. In MUSIC III, however, we find
the introduction of three essential elements that are still central to systems such as
Csound: the concepts of unit generator (UG) and instrument, and the compiler for
music programs [81, 82, 119]. Mathews explains the motivation behind its develop-
ment:

I wanted the complexity of the program to vary with the complexity of the musician’s de-
sires. If the musician wanted to do something simple, he or she shouldn’t have to do very
much in order to achieve it. If the musician wanted something very elaborate there was the
option of working harder to do the elaborate thing. The only answer I could see was not to
make the instruments myself – not to impose my taste and ideas about instruments on the
musicians – but rather to make a set of fairly universal building blocks and give the musician
both the task and the freedom to put these together into his or her instruments. [110]

The original principle of the UG has been applied almost universally in music
systems. A UG is a basic building block for an instrument, which can be connected
to other UGs to create a signal path, also sometimes called a synthesis graph. Even-
tually such a graph is terminated at an output (itself a UG), which is where the gen-
erated sound exits the instrument. Conceptually, UGs are black boxes, in that they
have a defined behaviour given their parameters and/or inputs, possibly producing
certain outputs, but their internals are not exposed to the user. They can represent
a process as simple as a mixer (which adds two signals), or as complex as a Fast
Fourier Transform (which calculates the spectrum of a waveform). We often speak
of UGs as implementing an algorithm: a series of steps to realise some operation,
and such an algorithm can be trivial (such as sum), or complicated. UGs were such
a good idea that they were used beyond Computer Music, in hardware instruments
such as the classic analogue modular systems (Moog, ARP, etc.).

The second concept introduced by MUSIC III, instruments, is also very impor-
tant, in that it provides a structure in which to place UGs. It serves as a way of
defining a given model for generating sounds, which is not a black box anymore,
but completely configurable by the user. So, here, we can connect UGs in all sorts
of ways that suit our intentions. Once that is done, this can ‘played’, ‘performed’, by
setting it to make sound. In early systems there would have been strict controls on
how many copies of such instruments, called instances, could be used at the same
time. However, in Csound, we can have as many instances as we would like working
together (bound only by computing resource requirements).

Finally, the compiler, which Mathews called the acoustic compiler, was also a
breakthrough, because it allowed the user to make her synthesis programs from
these instrument definitions and their UGs into a very efficient binary form. In fact,

1.2 Early Music Programming Languages 5

it enabled an unlimited number of sound synthesis structures to be created in the
computer, depending only on the creativity of the designer, making the computer
not only a musical instrument, but a musical instrument generator. The principle of
the compiler lives on today in Csound, and in a very flexible way, allowing users to
create new instruments on the fly, while the system is running, making sound.

1.2.1 MUSIC IV

The first general model of a music programming system was introduced in MUSIC
IV, written for the IBM 7094 computer in collaboration with Joan Miller, although
the basic ideas had already been present in MUSIC III [100]. MUSIC IV was a
complex software package, as demonstrated by its programmer’s manual [83], but it
was also more attractive to musicians. This can be noted in the introductory tutorial
written by James Tenney [122]. The software comprised a number of separate pro-
grams that were run in three distinct phases or passes, producing at the very end the
samples of a digital audio stream stored in a computer tape or disk file. In order to
listen to the resulting sounds, users would have to employ a separate program (often
in a different computer) to play back these files.

Operation of MUSIC IV was very laborious: the first pass took control data in the
form of a numeric computer score and associated function-table generation instruc-
tions, in an unordered form and stored in temporary tape files. This information,
which included the program code itself, was provided in the form of punched cards.
The data in this pass were used as parameters to be fed to instruments in subsequent
stages. The two elements input at this stage, the score and function-table informa-
tion, are central to how MUSIC IV operated, and are still employed in music systems
today, and in particular, in Csound.

The numeric score is a list of parameters for each instance of instruments, to al-
low them to generate different types of sounds. For instance, an instrument might ask
for its pitch to be defined externally as a parameter in the numeric score. That will al-
low users to run several copies of the same instrument playing different pitches, each
one defined in the numeric score. The start times and durations, plus the requested
parameters are given in the score creating an event for a particular instrument. Each
one of these is a line in the score, and the list does not need to be entered in a par-
ticular time order, as sorting, as well as tempo alterations, can be done later. It is a
simple yet effective way to control instruments.

Function tables are an efficient way to handle many types of mathematical op-
erations that are involved in the computing of sound. They are pre-calculated lists
of numbers that can be looked up directly, eliminating the need to compute them
repeatedly. For instance, if you need to create a sliding pitch, you can generate the
numbers that make up all the intermediary pitches in the glissando, place them in
a function table, and then just read them. This saves the program from having to
calculate them every time it needs to play this sound. Another example is a sound
waveform table, also known as a wavetable. If you need a fixed-shape wave in your

6 1 Music Programming Systems

instrument, you can create it and place it in a table, then your instrument can just
read it to produce the signal required.

In MUSIC IV, the first pass was effectively a card-reading stage, with little extra
functionality, although external subroutines could be applied to modify the score
data before this was saved. Memory for 800 events was made available by the sys-
tem. The first pass data was then input to the second pass, where the score was sorted
in time order and any defined tempo transformations applied, producing another set
of temporary files. In the third pass, a synthesis program was loaded, taking the
score from the previous stage, and generating the audio samples to be stored in the
output file.

The pass 3 program was created by the MUSIC IV acoustic compiler from the
synthesis program, called an orchestra, made up of instruments and UGs. Some ba-
sic conventions governed the MUSIC IV orchestra language, such as the modes of
connections allowed, determined by each unit generator and how they were organ-
ised syntactically. As a programming language, it featured a basic type system. Data
typing is a way of defining specific rules for different types of computation objects
(e.g. numbers, text etc.) that a computer language manipulates. In MUSIC IV, there
are only a few defined data types in the system: U (unit generator outputs), C (con-
version function outputs, from the score), P (note parameters, also from the score),
F (function tables) and K (system constants). Unlike in modern systems, only a cer-
tain number of parallel instances of each instrument were allowed to be run at the
same time, and each score event was required to be scheduled for a specific free
instrument instance.

The MUSIC IV compiler understood fifteen unit generators. There were three
types of oscillators, which were used to generate basic waveform signals and de-
pended on pre-defined function tables. Two envelope generators were provided to
control UG parameters (such as frequency or amplitude). A table-lookup UG was
also offered for direct access to tables. Two bandlimited noise units, of sample-
hold and interpolating types, complemented the set of generators in the system.
Three addition operators, for two, three and four inputs, were provided, as well as
a multiplier. Processors included a resonance unit based on ring modulation and a
second-order band-pass filter. Finally, an output unit complemented the system:

1. OUT: output unit
2. OSCIL: standard table-lookup oscillator
3. COSCIL: table-lookup oscillator with no phase reset
4. VOSCIL: table-lookup oscillator with variable table number
5. ADD2: add two inputs
6. ADD3: add three inputs
7. ADD4: add four inputs
8. RANDI: interpolating bandlimited noise generator
9. RANDH: sample-and-hold bandlimited noise generator

10. MULT: multiply two inputs
11. VFMULT: table-lookup unit
12. RESON: ring-modulation-based resonant wave generator

1.2 Early Music Programming Languages 7

13. FILTER: second-order all-pole band-pass filter
14. LINEN: linear envelope generator (trapezoidal)
15. EXPEN: single-scan table-lookup envelope.

An example from the MUSIC IV manual is shown in listing 1.1, where we can
see the details of the orchestra language. Unit generator output signals are refer-
enced by U names (relating in this case to the order in which they appear), whereas
score parameters and constants are denoted by P and C. This orchestra contains one
simple instrument, WAIL, whose sound is generated by an oscillator (U5) to which
an amplitude envelope (U1) and frequency modulation (U4) are applied. The latter
is a combination of periodic (U2) and random (U3) vibrato signals, mixed together
with the fundamental frequency. The code is finished with the FINE keyword, after
the maximum number of parallel instances for the WAIL instrument is given.

Listing 1.1 MUSIC IV instrument example [83]

WAIL INSTR
OSCIL P4,C3,F1
OSCIL P6,P7,F1
RANDI P8,P9
ADD3 P5,U2,U3
OSCIL U1,U4,F3
OUT U5
END

WAIL COUNT 10
FINE

MUSIC IV was the first fully fledged computer music programming environ-
ment. The system allowed a good deal of programmability, which is specially true
in terms of synthesis program design. Following its beginnings at Bell Labs, the
software was ported to the IBM computer installation at Princeton University as
MUSIC IVB [105] and then as MUSIC 4BF [53, 111], written in FORTRAN, one
of the first scientific high-level programming languages. An important feature of
this version was that it also used the FORTRAN language for the programming of
instrument definitions.

1.2.2 MUSIC V

Mathews’ work at Bell Labs culminated in MUSIC V [84], written in collaboration
with Joan Miller, Richard Moore and Jean-Claude Risset [52]. This was the final it-
eration of his MUSIC series, mostly written in the FORTRAN language. This made
it much more portable to other computer installations (including modern operating
systems). It featured the typical three-pass process of MUSIC IV, but with a bet-
ter integration of these operation stages. The orchestra compilation step was now

8 1 Music Programming Systems

combined with pass 3, without the need to generate a separate synthesis program.
FORTRAN conversion subroutines were also integral to the program code. Also
the whole MUSIC V code was written in a single score, which contained both the
note lists and the instruments. Unlike MUSIC IV, there was no maximum instance
count for each instrument. Unit generators could be written either in FORTRAN,
or as separate machine-language subroutines, which could be optimised for specific
computers.

MUSIC V provides simple orchestra data types: P (score parameters), V (scalar
values), B (audio signal buffers) and F (function tables). Audio is generated in a
series of sample blocks (or vectors), which by default hold 512 samples. Vector-
based processing became standard in most modern computer music systems (albeit
with some notable options). MUSIC V has been ported to modern systems using the
Gfortran compiler [16]. This software represents a significant milestone in Com-
puter Music, as it was widely used by composers and researchers. In particular, we
should mention that it provided the means through which Risset developed his Cat-
alogue of Computer Synthesized Sounds [108], a fundamental work in digital sound
synthesis. This work stems from his ground-breaking contributions to computer mu-
sic composition, where we see a perfect marriage of artistic and technical craft.

In listing 1.2, we can observe a simple MUSIC V score, implementing the well-
known Risset-Shepard tones [108]. The instrument employs three interpolating os-
cillators (IOSs), generating an amplitude envelope (from a bell function), a fre-
quency envelope (a decaying exponential) and a sine wave controlled by these two
signals (in B3 and B4 respectively). Ten parallel oscillators are started, each with a
10% phase offset relative to the preceding one (tables are 512 samples long). Each
NOT in the score defines an oscillator instance, with the first three parameters (P2,
P3, P4) defined as start time (0), instrument (1), and duration (14). Oscillator fre-
quencies are defined by sampling increments (in P6 and P7). The top frequency of
the decaying exponential is P6× fs/512, where fs is the sampling rate. The ampli-
tude and frequency envelopes have a cycle that lasts for 512/(fs× P7).

Pass I of MUSIC V scans the score (which includes both the instrument defini-
tions and the note list proper) and produces a completely numeric representation of
it. The second pass sorts the note list in time order and applies the CONVT routine,
which can be used to convert frequencies to sampling increments etc. Finally, pass
III schedules the events, calls the unit generators and writes the output.

Listing 1.2 MUSIC V, Risset-Shepard tones, from Risset’s catalogue [108]

COMMENT -- RISSET CATALOGUE EXAMPLE 513 --
INS 0 1;
IOS P5 P7 B3 F2 P8 ;
IOS P6 P7 B4 F3 P9 ;
IOS B3 B4 B5 F1 P25 ;
OUT B5 B1 ;
END ;

1.2 Early Music Programming Languages 9

GEN 0 2 1 512 1 1 ;
GEN 0 7 2 0 ;
GEN 0 7 3 -10;

NOT 0 1 14 100 50 .0001 0 0 ;
NOT 0 1 14 100 50 .0001 51. 51.1 ;
NOT 0 1 14 100 50 .0001 102.2 102.2 ;
NOT 0 1 14 100 50 .0001 153.3 153.3 ;
NOT 0 1 14 100 50 .0001 204.4 204.4 ;
NOT 0 1 14 100 50 .0001 255.5 255.5 ;
NOT 0 1 14 100 50 .0001 306.6 306.6 ;
NOT 0 1 14 100 50 .0001 357.7 357.7 ;
NOT 0 1 14 100 50 .0001 408.8 408.8 ;
NOT 0 1 14 100 50 .0001 459.9 459.9 ;
TER 16 ;

1.2.3 MUSIC 360

Another important successor to MUSIC IV was MUSIC 360 [124], written at
Princeton University by Barry Vercoe for the large IBM 360 computer [79]. It was
directly derived from MUSIC IVB and MUSIC IVBF, and thus related to those sys-
tems as a MUSIC IV variant. This program was taken to other IBM 360 and 370
installations, and as it was tied in to those large computer installations, it did not suit
smaller institutions, and was not widely available. The development of MUSIC 360
is particularly relevant to Csound, as it is one of its ancestors.

The structure of MUSIC 360 is very similar to its predecessors, utilising the op-
erational principle of three passes discussed above. Here, however, all passes are
combined into a single ‘load module’ (the program) after the orchestra is compiled.
In many ways, MUSIC 360 represented a significant advance with regards to MU-
SIC IV. It allowed any number of parallel instances of instruments to be performed
at the same time. An important innovation seen in this system is the clear definition
of the initialisation and performance-time stages, with separate processing stages set
for each. This is a feature that was successfully embraced by subsequent systems,
including Csound. The principle here is that when an instance of an instrument is
going to be run, there are a number of operations that do not to be repeated. These
then are only run in the initialisation phase. For the actual sound to be computed,
the instrument will enter a performance phase, where only the necessary steps to
produce the signal are processed.

For instance, let’s say we want to notate the pitch of the sound using a system
where 60 is middle C and a change of 1 represents a semitone step (61 is C sharp
etc.). To do this we would need to perform a mathematical operation to convert this
notation into cycles per second (Hz), which is what oscillators expect as a frequency
parameter. This operation does not need to be repeated, it only needs to happen once

10 1 Music Programming Systems

per sound event. So it gets placed in the initialisation stage and its result is then used
at the performance time. Many modern systems employ similar principles in their
design. It is an obvious optimisation that can save a lot of redundant computation.

Another advanced aspect of the language was that arithmetic expressions of up to
12 terms could be employed in the code, with the basic set of operations augmented
by a number of conversion functions. This made the need for different types of
addition operators, and separate multipliers, redundant. Data types included ‘alpha’-
types, which could hold references to unit generator results (both at I-time and P-
time), K-types, used to hold values from a KDATA statement (which was used to
hold program constants), P-types for note list p-fields, and U-types, which could
be used to reference unit generator results (as an alternative to ‘alpha’ variables).
There was scoping control, as symbols could be global or local, which included a
facility for accessing variables that were local to a given instrument. The language
also supported conditional control of flow, another advanced feature when compared
to equivalent systems. Some means of extendability were provided by opcodes that
were able to call external FORTRAN subroutines at I- or P-time. In addition, to
facilitate programming a macro substitution mechanism was provided. MUSIC 360
was quite a formidable system, well ahead of its competitors, including MUSIC V.

An example of a simple orchestra program featuring an instrument based on an
oscillator and trapezoidal envelope combination is shown in listing 1.3. In this exam-
ple, we can observe the use of U-types, which refer to the output of unit generators
previously defined in the code. In this case U1 is a reference to the unit one line
above the current. The PSAVE statement is used to indicate which p-fields from
score cards will be required in this instrument. The ISIPCH converter is used to
convert “octave.pitch class” notation into a suitable sampling increment, operating
at initialisation time only. This pitch notation is very useful because it represents
frequencies by an octave number (say 8 is middle-C octave), and a pitch class from
0 to 11 equivalent to note names from C to B in semitones. The term sampling in-
crement is a low-level way of defining the frequency of an oscillator, and we will
explore its definition later in this book.

OSCIL and LINEN are the truncating oscillator and trapezoidal envelope, re-
spectively, used to generate the audio, the oscillator depending on function table 1,
which is defined as a score statement. The syntax is very close to classic Csound
code (as we will see later in this book), and unit generators are commonly known
here as opcodes.

Listing 1.3 MUSIC 360 instrument example [124]

PRINT NOGEN
ORCH
DECLARE SR=10000

SIMPL INSTR 1
PSAVE (3,5)
ISIPCH P5
OSCIL P4,U1,1

1.2 Early Music Programming Languages 11

LINEN U1,.03,P3,.06
OUT U1
ENDIN
ENDORCH
END

1.2.4 MUSIC 11

MUSIC 11 [125], a version of the MUSIC 360 system for the smaller DEC PDP-11
minicomputer [126], was introduced by Barry Vercoe at the MIT Experimental Mu-
sic Studio. As the PDP 11’s popularity grew in the 1970s, and with the introduction
of the UNIX operating system, the program was used at various institutions both in
the USA and elsewhere for over two decades. Not only were many of the innovative
features of MUSIC 360 carried over to the new system, but also important concepts
were pioneered here.

One of the main design aspects first introduced in MUSIC 11 was the concept
of control (k-) and audio (a-) computation rates. This is a further refinement of the
initialisation- and performance-time optimisation principle. This made the system
the most computationally efficient software for audio synthesis of its time. It es-
tablished the main operation principles of the orchestra which divides instrument
action times into initialisation and two performance-time rates, which was realised
in the three basic data types: i, k (control) and a (audio). Global, local and temporary
variables were available (marked as g, l or t).

The control/audio rate mechanism is based on the principle that some signals do
not need to be computed as often as others. For instance, envelopes vary much more
slowly than actual audio signals, and thus do not require to be updated as often.
Sound is computed at a very fast rate (sr, the sampling rate), which often involves
periods of a fraction of a millisecond. Control signals in many situations do not
require that precision, and can be calculated maybe up to one hundred times more
slowly.

Listing 1.4 shows a version of the MUSIC 360 example, now in MUSIC 11
form. Although there are many similarities, some fundamental differences have been
introduced in the language. The header declaration now includes the definition of
a control rate (kr) and the audio block size (the ratio sr

kr , ksmps), as well as the
number of output channels to be used (nchnls). The presence of the ksmps parameter
indicates explicitly that computation of audio signals is now performed in chunks
of this size. We will explore this concept in detail in the next chapter, and also
throughout this book.

The type system has been simplified; we observe the presence of the k- and a-
type variables, which have now been defined to hold signals (and not just references
to unit generator outputs) of control and audio forms, respectively. Also, taking
advantage of the introduction of the control rate concept, the oscillator and envelope
have had their positions exchanged in the synthesis graph: the envelope is now a

12 1 Music Programming Systems

control signal generator, rather than an amplitude processor, so the instrument can
be run more efficiently.

Listing 1.4 MUSIC 11 instrument example

sr = 10000
kr = 100
ksmps = 100
nchnls = 1

instr 1
k1 linen p4,.03, p3,.06
a1 oscil k1, cpspch(p5), 1

out a1
endin

With the introduction of the concept of control rate two issues arise. Firstly, con-
trol signals are liable to produce audio artefacts such as amplitude envelope zipper
noise, which are caused by the staircase nature of these signals, introducing dis-
continuities in the audio output waveform (and a form of aliasing that results in
wideband noise). Secondly, score events are quantised at the control rate, which can
affect the timing precision in some situations. To mitigate these effects, a balance
between efficiency and precision needs to be reached, where the ratio between au-
dio and control rates is small enough to prevent poor results, but high enough to be
efficient.

1.3 Csound

Csound1 is possibly the longest-running heir to these early MUSIC N systems. It
was developed in the 1980s, alongside similar systems, such as Cmusic [90] and
M4C [7], and Cmix [101]. All of these were developed using the C language, which
at the time became the standard for systems implementation. Csound developed be-
yond its original design into a much larger and multi-functional music programming
environment, with the advent of version 5 in 2006, and version 6 in 2013. The full
Csound ascendancy is shown in Fig. 1.1 with its approximate dates.

Csound came to light at the MIT Electronic Music Studio in 1986 (MIT-EMS
Csound), as a C-language port of MUSIC 11. It inherited many aspects of its parent,
but now integrating the orchestra compiler and loader into a single program. The
original mit-ems Csound was based on three separate commands, scsort, csound
and perf. The first command would sort the score; the second would compile and

1 Despite the different ways in which its name is written down in various places, there is only
one correct form: capital ‘C’ followed by lowercase ‘sound’. A fully lowercase variant csound is
possible, but only when referring to its command-line frontend (see Chapter 2).

1.3 Csound 13

MUSIC IV

1963
�MUSIC 360

1968
�MUSIC 11

1978
�Csound (MIT-EMS)

1986

�
Csound 3-4 (Bath) 1993

�
Csound 5 2006

�
Csound 6 2013

Fig. 1.1 The Csound family tree, from MUSIC IV through to the first release of the MIT-EMS
Csound in 1986, and the further versions culminating in its current release

load the orchestra, and run the sorted score on it. The third command was just a
convenient tool that called scsort and csound in a sequence.

Csound was originally a very faithful port of MUSIC 11, so much so that even
today many programs for that language can still be run on modern versions of the
system (the code in listing 1.4 runs perfectly in Csound). Some small differences
existed in terms of a collection of new opcodes, and the removal of some others.
Also, the separation between temporary and local variables was removed in Csound,
and a means of extending the language with new C-code opcodes was provided.
However, beyond these small differences, the central concepts were shared between
the systems.

In the 1990s, the centre of development of Csound moved from MIT to the Uni-
versity of Bath. Real-time operation had been introduced to the system [129] in the
MIT-EMS version. From this, the system developed into an offline composition and
real-time synthesis language with widespread applications explored in [15]. The
program was also ported to PC-DOS, also with real-time audio via soundblaster
soundcards. Separately, at Mills College, a version of the system for the Macintosh
platform was developed [54].2 By the end of the 1990s, the system had been ported
to almost all modern general-purpose computing platforms.

In a separate development, Csound was also ported to run on custom DSP hard-
ware, in a closed-source version designated extended Csound [127]. This version
eventually became part of a commercial project of Analog Devices Inc., to supply
simple synthesizers for embedded applications [128]. Meanwhile, a large interna-
tional developer community was involved in expanding the open-source system,
which eventually came under the Lesser GNU Public License (and thus Free soft-
ware). Many new unit generators were developed for it, culminating in the Csound

2 An earlier port of Csound for the Mac had also been made available from MIT using the original
UNIX sources modified for the THINK C compiler.

14 1 Music Programming Systems

4.23 version in 2002. The consensus among the community was that the system
required a major re-engineering to be able to move forward. A code freeze was
established so that the new Csound 5 system could be developed.

1.3.1 Csound 5

Csound 5 was developed with the main goal of providing a clean, re-engineered sys-
tem that would expose much of its internal operation, moving away from the orig-
inal monolithic program design that characterised its earlier versions [39]. It was
launched in 2006, twenty years after the first MIT-EMS release in 1986. From a lan-
guage perspective, there were a few significant changes from the original Csound,
which brought more flexibility to programming. A plug-in mechanism made it sim-
pler to extend the system with new unit generators, utilities and function table gen-
erators. Programmable graphical user interfaces (GUIs) were incorporated into the
language. User-defined unit generators were introduced, providing further facilities
for structuring the code.

A significant innovation in version 5 is the presence of an Application Program-
ming Interface (API), which allows a lower-level control of system operation. The
API made it possible to create Csound-based applications with a variety of program-
ming languages, leading to the development of various third-party host programs.
It was now much easier to port it to mobile operating systems [135]), to use it as
a plug-in for Digital Audio Workstations (DAWs), and to create custom solutions
using Csound as the audio engine.

1.3.2 Csound 6

The next major version of the system, Csound 6, was first released in 2013. The code
was again considerably reorganised, and a new language parser was introduced.
This is the part of the system that translates the code text into an internal format that
can be used by the compiler to create new instruments. The new parser allowed a
much simpler means of extending and modifying the language, so a number of new
facilities for the programmer were also introduced.

The compiler was significantly modified allowing it to operate in an on-the-fly
mode, adding new instruments on demand to a running system. Such changes were
also reflected in a newly designed API, which gave developers increased flexibility
and new possibilities. Alongside these improvements, ports of the system to new
platforms continued, with the addition of support for web-based applications and
embedded systems.

As we have seen in this introduction to music programming systems, Csound fits
very well the description of a software package for general-purpose music making.
However, a more complete picture of what it is today goes beyond this simple def-

1.3 Csound 15

inition. In fact, it depends on how a user approaches this software. At the highest
level, we can think of it as a synthesiser, or as a sound processor. Computer musi-
cians might look at it as a software package that allows us to use the computer to
manipulate sound programmatically.

Software developers, on the other hand, will use Csound as an audio engine, a
system component that will provide all the services that are needed to add sound
to an application. They will use it by embedding it in their software, which can be
done with full control over its operation. So, depending on the perspective, Csound
can be a music program, a programming language or a software library.

Figure 1.2 demonstrates these ideas. At the top, we have the level of the music
application, where Csound is presented in pre-programmed, pre-packaged forms,
with fixed instruments that expose some of their parameters for the user to manipu-
late. This is the case of the various Csound-based apps that exist for mobile, web and
desktop platforms. The next level is the traditional place where music programming
systems reside, where musicians, composers and researchers employ the system by
developing new instruments and means of controlling them. Finally, at the lowest
level, we have Csound as a programming library, the audio engine that developers
(and musicians, researchers, etc. working on application programming) use in their
projects.

Music Application general users�

�
Music Programming Language musicians, researchers�

�
Audio Engine developers�

Fig. 1.2 The three system levels in Csound: at the top, we have music applications (Csound-based
apps for mobile, web and desktop platforms); the middle level is represented by the music pro-
gramming system; and the lowest level is that of Csound as a programming library

1.3.3 Compatibility and Preservation

During its thirty-odd years of development, Csound has been gifted a significant
number of contributions from a world-wide computer music community. An explicit
rule has been followed by developers that new versions of Csound should always

be backwards-compatible. So this means that any changes to the language or the

16 1 Music Programming Systems

system can provide new features and facilities, but will not prevent code designed
for the MIT-EMS Csound from running in the latest version. There is a significant
responsibility on the development team to ensure that the preservation of music
made with the software is guaranteed. This approach has enabled even some music
made with MUSIC 360 and many MUSIC 11 pieces to be rendered in Csound 6.

The backwards-compatibility principle has a downside. While many of the con-
tributions to the system have had a long-lasting impact, a few were less successful.
For instance, some of these were introduced to solve a short-term issue, without a
thorough assessment of their implications, introducing less desirable features. Some
of these cannot be easily eliminated as part of the evolution of the software, as it is
not possible to know whether they have not been used in any work that we want
to preserve. Hopefully, this issue is not significant, as through education and doc-
umentation we can direct the user to the most up-to-date approaches, and mark as
deprecated the less successful legacy elements in the system. Also, since the devel-
opment of Csound 5, there has been an intense effort to think about the implications
of new features and components. This has led to a more cohesive development,
which has mostly eliminated problems with unwanted components.

1.4 Conclusions

In this chapter, we have introduced the concept of music programming systems, and
examined the history of their development leading to the appearance of Csound.
We have seen how the early music languages evolved from the first direct synthesis
programs by Max Mathews into MUSIC III and MUSIC IV, which were the model
for later systems. Csound itself was the culmination of the developments of MUSIC
360 and MUSIC 11, which were created for specific computers. Other classic sys-
tems of note were MUSIC V, written in FORTRAN, which influenced the design of
Cmusic, and MUSIC 4C. With the development of computer technology, we also
saw the appearance of systems that were directed explicitly at real-time operation,
which all of the earlier software could not achieve.

Alongside this survey, we have also introduced some of the key principles that are
involved in this technology: computer instruments, numeric scores, function tables,
compilers, data types, initialisation and performance times, computation rates etc.
These will be followed up and explored in further detail in the following chapters of
this book.

Complementing this discussion, the chapter also detailed the main characteristics
of the current Csound system, providing an overview of the ways it can be employed
in computer applications. We have shown that there are many ways to ‘attack’ the
complexity that it presents to the user, from high to low levels of programming. In
this book, we will try to provide a glimpse of all of these levels of operation, while
concentrating on the middle-ground approach of music programming through an
emphasis on computer music composition.

Chapter 2

Key System Concepts

Abstract This chapter provides an overview of the key principles that underline
the operation of Csound: frontends; the sampling theorem; control and audio rates;
processing blocks; function table generation; real-time and offline audio; the API.
These ideas will be presented as a foundation for the detailed exploration of Csound
programming in the subsequent chapters.

2.1 Introduction

In this chapter, we will start to introduce the reader to a number of important princi-
ples in computer music. Many of these have been hinted at in the survey of systems,
languages and software packages in Chapter 1. Here, we will try to move one step
deeper into these ideas. We will also focus on the issues that are central to the oper-
ation of Csound, and begin using code examples of the current language to illustrate
these, even if not all of the concepts embodied in such examples were fully ex-
plained. The discussion will proceed in a mosaic-like fashion, and hopefully the
full comprehension of these ideas will emerge as the following chapters tackle them
more completely.

A number of key concepts are behind the workings of Csound. These extend from
fields such as digital signal processing (e.g. the sampling theorem), to computation
structures (sample blocks, buffers etc), and system design (frontends, API). In our
discussion of these, they are not going to be organised by the areas they stem from,
but by how they figure in the workings of Csound. We assume that the reader has
a reasonable understanding of basic acoustics principles (sound waveforms, propa-
gation, frequency, amplitude etc.), but more complex ideas will be introduced from
the ground up.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_2

17

18 2 Key System Concepts

2.2 General Principles of Operation

Csound can be started in a number of different ways. We can provide the code for
its instruments, also known as the orchestra, and a numeric score containing the
various sound events that will be performed by them. Alternatively, we can sup-
ply the instruments, and make Csound wait for instructions on how to play them.
These can come from a variety of sources: score lines typed at the terminal; Mu-
sical Instrument Digital Interface (MIDI) commands from another program or an
external device; Open Sound Control (OSC) commands from a computer network
source; etc. We can also submit an orchestra that includes code to instantiate and
perform its instruments. Or we can just start Csound with nothing, and send in code
whenever we need to make sound.

The numeric score is the traditional way of running Csound instruments, but it
is not always the most appropriate. MIDI commands, which include the means of
starting (NOTE ON) and stopping (NOTE OFF) instruments might be more suitable
in some performance situations. Or if we are using other computers to issue controls,
OSC is probably a better solution, as it allows for a simpler way of connecting via
a network. Both MIDI and OSC, as well as the numeric score, will be explored in
detail later on in this book. Of course, if the user is keen to use code to control the
process interactively, she can send instruments and other orchestra code directly to
Csound for compilation and performance.

2.2.1 CSD Text Files

Let’s examine a simple session using the basic approach of starting Csound by send-
ing it some code. In that case, we often package these two in a single text file using
the CSD format. This is made up of a series of tags (much like an XML or HTML
file) that identify sections containing the various textual components. The minimum
requirement for a CSD file is that it contains a section with one instrument, which
can be empty (see listing 2.1).

Listing 2.1 Minimal legal CSD code

<CsoundSynthesizer>
<CsInstruments>
instr 1
endin
</CsInstruments>
</CsoundSynthesizer>

The relevant tag for instrument (orchestra) code is <CsInstruments>, which
is closed by </CsInstruments>. Everything is enclosed within the <Csound
Synthesizer> section, and anything outside it is ignored. In order to get sound,
we need to give some substance to the instrument, and play it (listing 2.2).

2.2 General Principles of Operation 19

Listing 2.2 Minimal sound-producing CSD code

<CsoundSynthesizer>
<CsInstruments>
instr 1
out rand(1000)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

In this case, what is happening is this: Csound reads the CSD file, finds the in-
struments, compiles it, and starts its operation. In the code, there is an instrument
defined (with a noise-producing unit generator or opcode), and outside it, an in-
struction (schedule) to run it for a certain amount of time (1 second). Once that
is finished, Csound continues to wait for new code, instructions to play the instru-
ment again, etc. If nothing is provided, no sound will be output, but the system will
not close.1

2.2.2 Using the Numeric Score

Optionally, we could have started Csound with a numeric score in addition to its
instruments. This is defined by the <CsScore> tag. The example in listing 2.3 is
equivalent to the previous one, except for one difference: with the presence of the
score, Csound terminates once there are no further events to perform.

Listing 2.3 Minimal sound-producing CSD code with numeric score

<CsoundSynthesizer>
<CsInstruments>
instr 1
out rand(1000)
endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

You can see from this example that the numeric score has a different syntax to the
orchestra code. It is very simple, just a list of space-separated parameter fields (p-
fields). Ways to use a score and keep Csound open for other external event sources
will be discussed later in this book. Both score events and new instruments can be

1 The amplitude 1,000 refers to the default setting of 32,768 for 0 dB full scale. It will produce a
white noise of 1000

32768 = 0.0305 or -30 dB. In modern Csound coding practice, the 0 dB value is set
to 1 by the statement 0dbfs = 1, as shown in listing 2.6. More details are given in Section 2.4.2.

20 2 Key System Concepts

supplied to Csound after it has started. How this is done will depend on the way
Csound is being used, and how it is being hosted.

2.2.3 Csound Options

Csound’s operation is controlled by a series of options. There is a very extensive set
of these, and many of them are seldom used. However, it is important to understand
how they control the system. There are different ways to set the values for these
options, and that also depends on how Csound is hosted. A portable way of making
sure the settings are correct for the user’s needs is to add them to the CSD file. This
can be done under the CsOptions tag as shown in listing 2.4.

Listing 2.4 CSD with options controlling

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
instr 1
out rand(1000)
endin
</CsInstruments>
<CsScore>
i 1 0 1
</CsScore>
</CsoundSynthesizer>

The example shows the setting of an option to run Csound with its output directed
to the Digital-to-Analogue Converter (DAC), a generic name for the computer sound
card. This is what we need to do if we want to run it in real-time. With no options, by
default Csound works in an offline rendering mode, writing the output to a soundfile
(named “test” by default).

Options start with a dash (-), for simple single-letter options, or with two dashes
(--) for longer names. A list of all options can be found in the Csound Reference
Manual, but in this book we will introduce the most relevant ones, as we come
across them.

2.3 Frontends

Users interact with Csound through a program called the frontend, which hosts the
system. There are many different types of frontends, some designed for different
specific tasks, others with a more general-purpose application. The Csound 6 soft-

2.3 Frontends 21

ware package provides a few different frontends itself, and there are also a number
of third-party ones which are well maintained, and kept up to date with the system.

This is the current list of frontends maintained as part of the Csound project:

• csound: a general-purpose command-line interface (CLI) frontend.
• csound6∼: a Pure Data [103] object that allows Csound to be run inside that

system.
• csound∼: an object for the MaxMSP [136] system.
• CsLadspa: a plug-in generator for LADSPA hosts.
• CsoundVST: a plug-in for VST hosts.
• winsound: a legacy GUI frontend originally for Windows.

Some of these are not distributed in binary form by the project, but are available
as source code in the Csound repository. In terms of third-party frontends, there are
many options, of which four are of note:

• CsoundQt: a general-purpose Integrated Development Environment (IDE) for
Csound, which allows the building of user interfaces (UIs) and has facilities for
scripting using the Python language.

• Cabbage: another IDE designed mostly for the development of plug-ins and
stand-alone programs. using Csound, with full support for building UIs.

• Blue: a composition system for computer music that uses Csound as its sound
engine.

• WinXsound: a GUI program with text-editing facilities, built on top of the CLI
csound frontend.

2.3.1 The csound Command

The csound command , although the most basic of the frontends listed above, pro-
vides access to the full functionality of the system. It allows users to run Csound
code, and to interact with it in a number of ways. It does not have a graphical in-
terface of its own, although the Csound system includes GUI-building opcodes that
can be used for that purpose. An advantage that this frontend has over all the others
is that it is present wherever Csound is installed. It is useful to learn how to use it,
even if it is not the typical way we interact with the system.

While it is beyond the scope of this book to discuss the operation of different
frontends (for which help can be found elsewhere), we would like to provide some
basic instructions on the command-line usage. For this, you will need to open up a
terminal (also known as a shell, or a command line) where commands can be typed.
The basic form of the csound command is:

csound [options] [CSD file]

22 2 Key System Concepts

The options are the same as discussed before (Sec.2.2). Typically we should sup-
ply a CSD file to Csound to get it started, unless we use a specific option to tell
Csound to start empty. If that is not the case, a usage message will be printed to
the terminal with a list of basic options. We can get a full list of options by using
--help:

csound --help

Once started, Csound will behave as discussed in Sec.2.2. It can be stopped at
any point by pressing the ctrl and the ‘c’ keys together (the ctrl-c ‘kill program’
sequence).

2.3.2 Console messages

Csound provides a means of informing the user about its operation through console
messages. These will be displayed in different ways, depending on the frontend. In
the case of graphic frontends, generally there will be a separate window that will
hold the message text. In the case of the csound command, the console is directed
by default to the standard error (stderr), which is in most cases the terminal window.
Once the system is started, the console will print basic details about the system, such
as version, build date, CSD filename, etc., culminating in the start of performance,
when SECTION 1: is displayed:

time resolution is 1000.000 ns
virtual_keyboard real time MIDI plug-in for Csound
0dBFS level = 32768.0
Csound version 6.07 beta (double samples) Dec 12 2015
libsndfile-1.0.25
UnifiedCSD: test.csd
...
SECTION 1:

Following this, as instruments start playing, we will get some information about
them and their output. It is possible to write code to print custom messages to the
console. We can suppress most of the console displays by adjusting the messag-
ing level with the option -m N, where N controls how much is printed (0 means
reducing messages to the minimum).

2.4 Audio Computation, the Sampling Theorem, and Quantisation 23

2.4 Audio Computation, the Sampling Theorem, and

Quantisation

Earlier in this chapter, we introduced the idea of signals, in particular audio signals,
without actually explaining what these are. We expect that the reader would identify
this with the sound that the program is generating, but it is important to define it
more precisely. Computers, through programs like Csound, process sound as a digi-
tal signal. This means that this signal has two important characteristics: it is sampled
in time, and quantised in value.

Let’s examine each one of these features separately. The sound that we hear can
be thought of as a signal, and it has a particular characteristic: it is continuous, as
far as time is concerned. This means, for instance, that it can be measured from one
infinitesimal instant to another, it ‘exists’ continuously in time. Digital computers
cannot deal with this type of signal, because that would required an infinite amount
of memory. Instead, this signal is encoded in a form that can be handled, by taking
samples, or measurements, regularly in time, making a discrete (i.e. discontinuous)
representation of a sound recording.

0 5 10 15 20 25 30 35 40 45
time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p
li
tu

d
e

Fig. 2.1 A sampled waveform and its underlying continuous-time form. The vertical lines repre-
sent the times at which a measurement is made, and the dots represent the actual samples of the
waveform

In Fig. 2.1, a sample sine wave and its underlying continuous-time form is shown.
The vertical lines represent the times at which a measurement is made, and the

24 2 Key System Concepts

dots represent the actual samples of the waveform. Note that, as far as the discrete
representation is concerned, the signal is not defined in the times between each
sample. However, it can be reconstructed perfectly, as denoted by the continuous
plot.

Equally, the sound waveform in the air can vary by infinitesimal differences as
time progresses, and computers cannot, for the same reasons, deal with that. So
when a measurement is made to produce a sampled representation, it needs to place
that value in a finite grid of values. We call this quantisation. Two sampled numbers
that are very close together might be represented by a single quantised output, and
that will depend on how fine the grid used is. We can think of sampling and quanti-
sation as slicing the sound waveform in two dimensions, in time, and in amplitude.

2.4.1 Aliasing

There are some key implications that arise as a result of these two characteristics
of digital audio. First and foremost, we need to understand that a discrete represen-
tation is not the same thing as the continuous signal it encodes. However, we can
define the conditions in which the two can be considered equivalent.

With regards to sampling in time, the first thing to recognise is that we are in-
troducing a new quantity (or parameter) into the process, which determines how
often we will be taking measurements. This is called the sampling rate (sr) or sam-
pling frequency, and is measured in samples per second, or in Hertz (Hz, which
is another way of saying ‘something per second’). Sound itself is also composed
of time-varying quantities, which can also be measured in Hz. The sampling pro-
cess introduces a complex interaction between the frequency of the components of
a sound wave and the sr. This relationship is captured by the sampling theorem, also
know as the Nyquist(-Shannon) theorem, which tells us that

In order to encode a signal containing a component with (absolute) frequency X, it is re-
quired to use a sampling rate that is at least equivalent to 2X. [95, 116]

This places some limits in terms of the sampling rate used and the types of sig-
nals we want to use. The main implication of this is that if any component in a
digital audio signal exceeds the sampling rate, it will be folded over, aliased, into
the range of possible frequencies, which extends from 0 Hz to ± sr

2 . These aliased
components can appear as a form of noise in the digital signal (if they are numer-
ous), or unwanted/unrelated inharmonic components of an audio waveform. Within
the stated limits, we can, for all practical purposes, accept that the digitally encoded
signals are the same as their original form (in terms of their frequency content). In
Csound, the default sampling rate is set at 44,100 Hz, but this can be modified by
setting the sr constant at the top of the orchestra code (listing 2.5), or by using the
relevant option.

Listing 2.5 Setting the sr to 48,000 Hz

<CsoundSynthesizer>

2.4 Audio Computation, the Sampling Theorem, and Quantisation 25

<CsInstruments>
sr = 48000
instr 1
out oscili(1000,440)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

How do we avoid aliasing? There are two main cases where this can be present:
when we convert an original (‘analogue’) signal into its digital form (through an
Analogue-to-Digital Converter, the ADC, a general name for the computer input
sound card), and when we generate the sound directly in digital form. In the first
case, we assume that ADC hardware will deal with the unwanted high-frequency
components by eliminating them through a low-pass filter (something that can cut
signals above a certain frequency), and so there is no need for any further action. In
the second case, we need to make sure that the process we use to generate sounds
does not create components with frequencies beyond sr

2 (which is also known as the
Nyquist frequency). For instance, the code in listing 2.5 observes this principle: the
sr is 48,000 Hz, and the instrument generates a sine wave at 440 Hz, well below the
limit (we will study the details of instruments such as this one later in the book).
If we observe this, our digital signal will be converted correctly by a Digital-to-
Analogue Converter (DAC, represented by the computer sound card) (within its
operation limits) to an analogue form. It is important to pay attention to this issue,
especially in more complex synthesis algorithms, as aliasing can cause significant
signal degradation.

2.4.2 Quantisation Precision

From the perspective of quantisation, we will also be modifying the original signal
in the encoding process. Here, what is at stake is how precisely we will reproduce
the waveform shape. If we have a coarse quantisation grid, with very few steps, the
waveform will be badly represented, and we will introduce a good amount of modi-
fication into the signal. These are called quantisation errors, and they are responsible
for adding noise to the signal. The finer the grid, the less noise we will introduce.
However, this is also dependent on the amount of memory we have available, as
finer grids will require more space per sample.

The size of each measurement in bytes determines the level of quantisation. If
we have more bits available, we will have better precision, and less noise. The cur-
rent standard for audio quantisation varies between 16 and 64 bits, with 24-bit en-
coding being very common. Internally, most Csound implementations use 64-bit
floating-point (i.e. decimal-point) numbers to represent each sample (double preci-
sion), although in some platforms, 32 bits are used (single precision). Externally,

26 2 Key System Concepts

the encoding will depend on the sound card (in case the of real-time audio) or the
soundfile format used.

Generally speaking quantisation size is linked to the maximum allowed absolute
amplitude in a signal, but that is only relevant if the generated audio is using an
integer number format. As Csound uses floating-point numbers, that is not very sig-
nificant. When outputting the sound, to the sound card or to a soundfile, the correct
conversions will be applied, resolving the issue.

However, for historical reasons, Csound has set its default maximum amplitude
(also known as ‘0dB full scale’) to the 16-bit limit, 32768. This can be redefined
by setting the 0dbfs constant in the Csound code (or the relevant option). In list-
ing 2.6, we see the maximum amplitude set to 1, and the instrument generating a
signal whose amplitude is half scale.

Listing 2.6 Setting the 0dbfs to 1

<CsoundSynthesizer>
<CsInstruments>
0dbfs=1
instr 1
out rand(0.5)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

In summary, when performing audio computation, we will be dealing with a
stream of numbers that encodes an audio waveform. Each one of these numbers is
also called a sample, and it represents one discrete measurement of an continuous
(analogue) signal. Within certain well-defined limits, we can assume safely that the
encoded signal is equal to its intended (‘real-world’) form, so that when it is played
back, it is indistinguishable from it.

2.4.3 Audio Channels

A digital audio stream can accommodate any number of channels. In the case of
multiple channels, the samples for these are generally arranged in interleaved form.
At each sample (measurement) point, the signal will contain one value for each
channel, making up a frame. For example, a two-channel stream will have twice
the number of samples as a mono signal, but the same number of sample frames.
Channels in a frame are organised in ascending order. Csound has no upper limit
on the number of channels it can use, but this will be limited by the hardware in
case of real-time audio. By default, Csound works in mono, but this can be changed
by setting a system parameter, nchnls, which sets both the input and output num-
ber of channels. If a different setting is needed for input, nchnls i can be used.
Listing 2.7 shows how to use the nchnls parameter for stereo output.

2.5 Control Rate, ksmps and Vectors 27

Listing 2.7 Setting the nchnls to 2

<CsoundSynthesizer>
<CsInstruments>
nchnls=2
instr 1
out rand(1000), oscili(1000,440)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

2.5 Control Rate, ksmps and Vectors

As discussed before in Sec. 1.2, the idea of having distinct audio and control signals
is an enduring one. It is fundamental to the operation of Csound, and it has some
important implications that can inform our decisions as we design our instruments.
The first one of these is very straightforward: control rate signals are digital signals
just like the ones carrying audio. They have the same quantisation level, but a lower
sampling rate. This means that we should not use them for signals whose frequencies
are bound to exceed the stated limit. In other words, they are suited to slow-varying
quantities.

In Fig. 2.2, we demonstrate this by showing a 100 Hz envelope-shaped sine wave.
The one-second envelope (top panel) has three stages, the shortest of which lasts for
100 ms. The waveform, on the other hand has cycles that last 10 ms each. The output
signal is shown in the bottom panel. This illustrates the fact that the rates of change
of audio and control signals have different timescales, and it is possible to compute
the latter at a lower frequency

Internally, the control rate (kr) is also what drives the computation performed
by all unit generators. It defines a fundamental cycle in Csound, called the k-cycle,
whose duration is equivalent to one control period. The audio cycle determined by
the sampling rate becomes a subdivision of this. In other words, at every control
period, a control signal will contain one sample, and an audio signal will contain
one or more samples, the number of which will be equivalent to the ratio kr

sr . This
ratio has to be integral (because we cannot have half a sample), and is called ksmps,
the number of audio samples in a control period.

Another way of looking at control and audio signals is this: in the course of
a computation cycle, the former is made up of a single sample, while the latter
contains a block of samples. A common name given to this block is a vector, while
the single value is often called a scalar. It is very important to bear this fact in mind
when we start looking at how Csound is programmed. The default control rate in
Csound is 4,410 Hz, but this can also be determined by the code (listing 2.8), or by
a command-line option.

28 2 Key System Concepts

0

1
a
m

p
li
tu

d
e

0

a
m

p
li
tu

d
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (secs)

0

a
m

p
li
tu

d
e

Fig. 2.2 A comparison of control and audio signal timescales. On the top plot, we have a control
signal, the envelope; in the middle, an audio waveform; and at the bottom, the envelope-shaped
signal. The gridlines show the difference in timescales between an audio waveform cycle and an
envelope stage

Listing 2.8 Setting the kr to 441Hz

<CsoundSynthesizer>
<CsInstruments>
kr = 441
instr 1
out oscili(1000,440)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

The kr cannot be arbitrary: only values that ensure an integral number of ksmps
are allowed. So often we want to set the ksmps directly instead, which is shown in
listing 2.9, where ksmps = 64 makes kr = 689.0625 (at sr = 44,100). The control
rate can have a fractional part, as implied by this example.

2.6 Instruments, Instances, and Events 29

Listing 2.9 Setting ksmps to 64

<CsoundSynthesizer>
<CsInstruments>
ksmps = 64
instr 1
out oscili(1000,440)
endin
schedule(1,0,1)
</CsInstruments>
</CsoundSynthesizer>

One important aspect is that when two control and audio signals are mixed in
some operation, the former will be constant for a whole computation (ksmps) block,
while the latter varies sample by sample. Depending on the sr

kr ratio, this can lead to
artefacts known as zipper noise. This is a type of aliasing in the audio signal caused
by the stepping of the control signals, which are staircase-like. Zipper noise will
occur, for instance, in control-rate envelopes, when ksmps is large.

In Fig. 2.3, we see an illustration of this. Two envelopes are shown with two dif-
ferent control rates, applied to a waveform sampled at 44,100 Hz. The topmost plot
shows an envelope whose control rate is 441 Hz (ksmps=100), above its resulting
waveform. Below these, we see a control signal at 44.1 Hz (ksmps=1000) and its
application in the lower panel. This demonstrates the result of using a control rate
that is not high enough, which is shown to introduce a visible stepping of the am-
plitude. This will cause an audible zipper noise in the output signal. It is important
to make sure the control rate is high enough to deal with the envelope transitions
properly, i.e. a short attack might require some careful consideration. Of course,
envelope generators can also be run at the sampling rate if necessary.

The final implication is that, as the fundamental computation cycle is determined
by the kr, event starting times and durations will be rounded up to an even number
of these k-periods. If the control rate is too slow, the timing accuracy of these events
can be affected. In the examples shown in listings 2.8 and 2.9, events will be rounded
up to a 2.27 and 1.45 ms time grid.

2.6 Instruments, Instances, and Events

We have already outlined that one of the main structuring pieces in Csound is the
instrument. This is a model, or recipe, for how a sound is to be processed. It con-
tains a graph of interconnected opcodes (unit generators), which themselves embody
their own model of sound generation. In order for anything to happen, we need an
instance of an instrument. This is when the computation structures and operations
defined in an instrument get loaded into the audio engine so that they can produce
something. Instances are created in response to events, which can originate from

30 2 Key System Concepts

0

1

a
m

p
li
tu

d
e

0

a
m

p
li
tu

d
e

0

1

a
m

p
li
tu

d
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (secs)

0

a
m

p
li
tu

d
e

Fig. 2.3 A comparison of two different sr
kr ratios and the resulting zipper artefacts. The illustration

shows two envelopes with the resulting application of these to an audio waveform. The top example
uses a sr

kr ratio (ksmps) of 100, whereas the other control signal has its ksmps set to 1000. The
zipping effect is clearly seen on the lower plot, which results into an audible broadband noise

various sources: the numeric score, MIDI commands, real-time inputs and orchestra
opcodes.

2.6 Instruments, Instances, and Events 31

2.6.1 The Life Cycle of an Instrument

An instrument passes through a number of stages in its complete life cycle: it is
compiled from a text representation into a binary form, and then loaded by the en-
gine to perform audio processing. Finally, it is de-instantiated when it stops making
sound.

Compilation

Instruments start life as plain text, that contains Csound orchestra code. The next
stage is the compilation. Any number of compilations can be made as Csound runs,
although the first one is slightly special in that it allows for system constants to be set
(e.g. sr, kr etc.), if necessary. Compilation is broken down into two steps: parsing
and compilation proper. The first takes the code text, identifies every single element
of it, and builds a tree containing the instrument graph and its components. Next,
the compilation translates this tree into a series of data structures that represent the
instrument in a binary form that can be instantiated by the engine. All compiled
instruments are placed in an ordered list, sorted by instrument number.

Performance

When an event for a given instrument number is received, the audio engine searches
for it in the list of compiled instruments, and if it finds the requested one, instanti-
ates it. This stage allocates memory if no free space for the instance exists, issuing
the console message

new alloc for instr ...,

with the name of the instrument allocated. This only happens if no free instrument
‘slots’ exist. If a previously run instrument has finished, it leaves its allocated space
for future instances. The engine then runs the initialisation routines for all opcodes
in the instrument. This is called the init-pass. Once this is done, the instance is added
to a list of running instruments, making it perform audio computation.

Csound performance is bound to the fundamental k-cycle described in Sec-
tion 2.5. The engine runs an internal loop (the performance loop) that will go into
each instrument instance and call the perform routine of each opcode contained in it.
The sequence in which this occurs is: ascending instrument number; for each instru-
ment, instantiation time order (oldest first); and opcode order inside an instrument
(line order). For this reason, opcode position inside an instrument and instrument
number can both be significant when designing Csound code. The audio engine
loop repeats every k-cycle, but instruments can also subdivide this by setting a local
ksmps, which will trigger an inner loop operating over a shorter period for a given

32 2 Key System Concepts

instance. The life cycle of an instrument, from text to performance, is depicted in
Fig. 2.4.

code text

�

event

�compilation
instr 1
instr 2
...

instr N

instantiation�

�

�

�

�

audio engine

performance
loop � output

Fig. 2.4 The life cycle of an instrument: on the left, it begins as code in text form; then it is
compiled and added to the list of instruments in the audio engine; once an event is received for that
instrument, it gets instantiated and produces an output, running in the performance loop

De-instantiation

An instrument instance will either run until the event duration elapses, or if this du-
ration is undefined, until a turnoff command is sent to it. In any case, the instrument
can also contain code that determines a release or extra time period, in which case
it will carry on for a little longer. Undefined duration instances can originate from
MIDI NOTEON commands, in which case a corresponding NOTEOFF will trigger
its turnoff, or via an event duration set to -1. In this case the instance can be turned
off from an event whose instrument number is negative and corresponds to a cur-
rently running instance. On turnoff, an instance is deallocated, and for any opcodes
that have them, deallocation routines are run. The memory for a given instrument is
not recovered immediately, so it can be used for a future instance. Instruments exist
in the engine until they are replaced by a new compilation of code using the same
number or explicitly removed.2

2 See opcode remove.

2.7 Function Tables 33

2.6.2 Global Code

Code that exists outside instruments is global. Only init-time operations are allowed
here, and the code is executed only once, immediately after compilation. It can be
used very effectively for one-off computation needs that are relevant to all instru-
ment instances, and to schedule events. Data computed here can be accessed by in-
strument instances via global variables. In addition, system constants (sr, kr, ksmps,
nchnls, 0dbfs) can be set here, but are only used in the first compilation (and ignored
thereafter). This is because such attributes cannot be changed during performance.

2.7 Function Tables

Another key concept in Csound is the principle of function tables. These have ex-
isted in one form or another since the early days of computer music. They were
introduced to provide support for a fundamental unit generator, the table-lookup
oscillator (which will be discussed in detail in a subsequent chapter), but their use
became more general as other applications were found. In a nutshell, a function table
is a block of computer memory that will contain the results of a pre-calculated math-
ematical expression. There are no impositions on what this should be: it may be as
simple as a straight-line function, or as involved as a polynomial. Tables generally
hold the results of a one-dimensional operation, although in some cases multiple
dimensions can also be stored.

The actual contents of a table are very much like a data array: a series of contigu-
ous values stored in memory (arrays as data structures will be discussed in the next
chapter). Each one of these values is a floating-point number, usually using double
precision (64-bit), but that is dependent on the platform and version of Csound. Ta-
bles can be accessed via a variety of means, of which the simplest is direct lookup:
an index indicating the position to be read is used to read a given value from the ta-
ble. Fig. 2.5 illustrates this: a function table with 18 points, whose position 9 is being
looked up, yielding 0.55 as a result. Note that indexing is zero-based, i.e. the first
position is index 0, and the last is the table size - 1. Csound provides unit generators
for direct lookup, which can be used for a variety of applications. Similarly, there
are several other opcodes that use function tables as an efficient way of handling
pre-defined calculations, and will employ a lookup operation internally.

2.7.1 GEN Routines

The data stored in tables is computed at the time they are created. This is done
by invoking a GEN routine, which implements the mathematical operations needed
for that. The contents of a table will depend on the routine used. For instance, the
GEN function might be asked to construct one cycle of a waveform and place it in

34 2 Key System Concepts

0
.
0
0

0
.
0
5

0
.
1
0

0
.
1
5

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

0
.
5
5

0
.
6
0

0
.
6
5

0
.
7
0

0
.
7
5

0
.
8
0

0
.
8
5

0
.
9
0

0
.
9
5

0
.
0
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 GP

�

index = 9
value = 0.55

Fig. 2.5 An example of a function table with 18 points, whose position 9 is being looked up,
yielding 0.55 as a result

the table. Or we might want to define an envelope shape with a certain number of
segments. We could store a sequence of pitch values to use in a loop, or to be read
in random order.

2.7.2 Normalisation

Once the data is computed, we can choose to store it in raw form, i.e. the exact
results, or we can normalise these prior to keeping them. Normalisation scales the
function to a given range (e.g. 0 to 1, -1 to 1), which is useful for certain applications.
In the Csound Reference Manual, this is called re-scaling. For instance, when storing
an audio signal, such as a waveform, it is often useful to keep it normalised so that
when we read it, we can apply any amplitude to it. If, however, we want to store
some frequency values in Hz to use in an instrument, then it will be best to turn off
re-scaling. The default for Csound, as we will see, is to normalise.

2.7.3 Precision

A table is defined by one very important parameter: its size. This can be set to
anything, but as we will see later, some opcodes are designed to work with tables
of specific sizes, and thus we need to be careful about this. For instance, some unit
generators require tables to be set with a power-of-two size. From the perspective
of signal quality, longer tables are more desirable. They will hold better precisely
calculated results. On the other hand, more memory is consumed, which in most
modern systems is not a significant issue.

2.8 Audio Input and Output 35

2.7.4 Guard Point

Regardless of its size, every table created in Csound will include an extra point
(or position) at the end, called a guard point, which is also illustrated in Fig. 2.5.
This is to facilitate the implementation of an operation called interpolation, which
provides the means for finding an in-between value when the position sought is not
a whole number. This extra point can be a copy of the first position on the table (as
in Fig. 2.5), or it can extend the contour calculated for the table (called an extended
guard point). If the table is to be read iteratively (wrapping around at the ends), then
we should create it with an ordinary guard point (the default). In applications using
a one-shot lookup, extended guard points are needed.

2.7.5 Table types

There are various uses for function tables, and several types of data can be held in
them. A few examples of these are:

• Wavetables: tables holding one or more cycles of a waveform. Typical applica-
tions are as sources for oscillators. For instance, a table might contain one cycle
of a wave constructed using a Fourier Series, with a certain number of harmon-
ics. Another example is to load into a table the samples of a soundfile, which are
then available to instruments for playback.

• Envelopes: these are segments of curves, which can be of any shape (e.g. linear,
exponential), and which can be looked up to provide control signals.

• Polynomials: polynomial functions are evaluated over a given interval (e.g. -1 to
1), and can be used in non-linear mapping operations.

• Sequences: tables can be used to store a sequence of discrete values for pa-
rameter control. For instance you might to store a pattern of pitches, durations,
intensities, etc, to be used in a composition.

• Audio storage: we can also write to tables directly from instruments, and use
them to store portions of audio that we want to play back later, or to modify.
This can be used, as an example, for audio ‘scratching’ instruments, or to create
bespoke audio delays.

Beyond these examples, there are many other applications. Csound has over 40
different GEN routines, each one with many different uses. These will be discussed
in more detail in the relevant sections of this book.

2.8 Audio Input and Output

Audio input and output (IO) is the key element in a music programming system.
In Csound, it is responsible for delivering audio to instruments and collecting their

36 2 Key System Concepts

output, connecting to whichever sources and destinations are being used. These can
be, for instance, a computer sound card or an audio file, depending on the options
used when Csound is started. These will control whether the software is run in a
real-time mode, or will work offline with soundfiles. It is also possible to combine
real-time output with soundfile input, and vice versa.

In addition to the main IO, discussed in this section, there are other forms of IO
that are implemented by specific opcodes. These can be used, for example, to write
to a given network address or to open soundfiles for reading or writing.

2.8.1 Audio Buffers

Audio IO employs a software device called a buffer. This is a block of memory
that is used to store computation results before they can be sent to their destination.
The reason these are used is that it is more efficient to read and write chunks of data
rather than single numbers. The norm is to iterate over a block of samples to produce
an output, and place that result in a buffer, then write data (also in blocks) from that
buffer to its destination. Similarly, for input, we accumulate a certain number of
samples in a buffer, then read blocks out of it when needed. This mechanism is used
regardless of the actual source or destination, but it has slightly different details
depending on these.

2.8.2 The Audio IO Layers

Csound’s main IO consists of a couple of layers that work together to provide access
to the inner sound computation components (the audio engine). The outer level is the
one used to access the actual IO device, whatever form it might take. It is composed
of buffers that are used to accumulate the audio data produced by the software before
reading or writing can be performed. The size of these buffers can be defined by
options that are passed to Csound. Depending on the type of IO device, one or
two buffers are used, a software buffer and a hardware buffer. We will discuss the
particular details of these two buffers when exploring real-time and offline audio IO
operations below. The relevant options to set the size of these buffers are

-b N
-B N

or in long option form

--iobufsamps=N
--hardwarebufsamps=N

In the case of the software buffer (-b or --iobufsamps), N refers to the num-
ber of sample frames (see Section 2.4.3), whereas for the hardware buffer (-B or
--hardwarebufsamps), the size N is defined in samples.

2.8 Audio Input and Output 37

The innermost layer is where Csound’s fundamental k-cycle loop (see Sec. 2.5)
operates, consuming and producing its audio samples. Here we have one buffer for
each direction, input or output, called spin and spout, respectively. These buffers are
ksmps sample frames long. For input, they hold the most current audio input block,
and can be accessed by the Csound input unit generators. The output buffer adds the
output blocks from all active instruments. The input buffer is updated each k-cycle
period, by reading ksmps sample frames from the input software buffer. Once all
instruments are processed, the spout buffer is written to the output software buffer.
If used, a hardware buffer provides the final connection to the IO device used. Figure
2.6 shows the inner and outer layers of the Csound main IO system.

software buffer

�
spin

�
���

�
�	

instruments

� � �
spout

�
software buffer

Fig. 2.6 Csound software and inner engine buffers: the audio samples are stored in the input buffer;
passed on to the spin buffer at every k-cycle and accessed by instruments, which write to spout;
this is then copied into the output buffer

The outer buffers can read/write to soundfiles, or to the audio device (ADC/-
DAC). As already explained in Sect. 2.2, the relevant option for output is -o. More
precisely

-i fnam sound input filename
-o fnam sound output filename

or in long format

--input=FNAME Sound input filename
--output=FNAME Sound output filename

Here, filename is taken in the UNIX sense of a logical device, which can be
either a proper disk file, or in the case of real-time audio, adc for input or dac
for output. Depending on the platform, it should be possible to pipe the output to

38 2 Key System Concepts

a different program as well. For file input, the data will be streamed into the input
buffer until the end of file (EOF) is reached. Beyond this, no more data will be read,
as there is no mechanism to loop back to the beginning of the file (to do this, there
are specialised opcodes, which we will study later in this book). The -i option can
be useful for offline batch processing of soundfiles.

2.8.3 Real-Time Audio

Real-time audio in Csound is implemented externally to the main system via a series
of backend plug-ins (Fig. 2.7). These are interfaces to the various systems provided
by the platforms that support real-time IO. Across the major desktop platforms,
Csound provides a standard plug-in based on the cross-platform third-party library
portaudio. In addition to this, there is also a plug-in that interfaces with the Jack IO
kit, which exists in the Linus and OSX platforms. There are also OS-specific plug-
ins: AuHAL and AlSA, under OSX and Linux respectively. Finally, some platforms
implement exclusive audio IO solutions, which are the only option provided by the
system. This the case for iOS, Android and Web-based implementations.

Csound engine �� RTIO plug-in �output
� input

Fig. 2.7 The Csound real-time audio system based on plug-ins that provide backends across vari-
ous platforms

The main consideration for real-time audio is latency. This is the time it takes
for a sound to appear at the physical audio output. It can refer to the full round-trip
(bidirectional) period from the sound going into the software and coming out of the
speakers, or it can relate to the time from a control input (say a key pressed) until
the corresponding effect happens at the output (single direction). Musicians are very
sensitive to latencies, and to improve performance, we attempt to minimise it. The
time lag will depend primarily on the buffer size, but it will also depend on the
hardware and software platform. Smaller buffers will imply shorter latencies.

We can estimate the latency a buffer adds to the signal by dividing the number of
frames in it by the sr. For instance, a buffer of 128 sample frames will have an in-
herent latency of 2.9 milliseconds. Only the outer buffers add latency, the spin/spout
do not contribute to it (but their size will limit how small the IO buffers can be, as
these cannot be less than 1 ksmps). Very low-latency buffers might cause samples
to be dropped out, causing clicks in the output audio (known as ‘drop-outs’). This is
because the system cannot cope with producing the audio in time to fill the output
buffer. In general, this is what limits how smaller a buffer can be, and it will depend

2.8 Audio Input and Output 39

on the platform used. Experimentation is often required to achieve low-latency au-
dio.

In addition, drop-outs will also occur when the processing requested exceeds the
computing capacity of the platform. In that case, increasing the amount of buffering
will not eliminate the issues. Measures will need to be taken to reducing the com-
putation load. These might include reducing the sr, increasing ksmps, simplifying
the instrument code, reducing the number of allowed parallel instrument instances
(limiting polyphony in MIDI-based performances) or a combination of these.

If present, the portaudio backend is used by default. On Linux, the alsa plug-in is
loaded if portaudio is not found, otherwise a dummy IO module is employed. This
does not output any audio, but runs the synthesis system under a timer, mimicking
the behaviour of a sound card. For all of Csound’s IO modules, the -odac and -
iadc options will open the default playback and record devices. In the following
sections, we will discuss the details of each one of the main backends provided by
Csound.

Portaudio

The portaudio plug-in comes in two different forms, blocking and non-blocking
(callback-based). The former employs a simple method to place the audio out of
Csound: a subroutine is called, which writes the audio to the soundcard, blocking
execution until the operation is finished. It works in a similar fashion with input
audio. Both operations operate on the software buffer, which is read/written as a
block to/from the system. A performance price is paid for all this simplicity: in
general it is not possible to employ small buffers for low latency (drop outs resulting)
with blocking operation.

The non-blocking mode of the portaudio plug-in performs much better with re-
gards to latency. It works in asynchronous mode: the audio is written to the sound-
card inside a callback routine. This is invoked by the system whenever new data
needs to be sent to the output or copied from the input. In parallel to this, Csound
does its processing, consuming/filling a buffer that will be filled/consumed by the
callback. This buffer has the same size as Csound’s software buffer, from which it
gets its data, and to which it sends its samples.

Latency in both modes is dependent on the size of the software buffer (-b op-
tion), which is set in sample frames. The hardware buffer size (-B) is only used
to suggest a latency (in samples) to the portaudio library. The relevant options for
loading this module in Csound are

-+rtaudio=pa_cb
-+rtaudio=pa_bl

for callback and blocking modes, respectively. Specific audio devices in this back-
end can be accessed as dac0, dac1 etc. (for output), and adc0, adc1 etc. (for
input).

40 2 Key System Concepts

Jack

The Jack IO kit is an audio system that allows program inputs and outputs to be
interconnected. It can also provide a low-latency route to the soundcard. Jack works
as a server with any number of clients. Through the use of a dedicated plug-in,
Csound can be used as a client to the system. This uses a callback system with
circular buffering, whose size is set to -B samples. The software buffer writes -b
samples to this. The circular buffer needs to be at least twice the size of this buffer,
e.g. -b 128 -B 256. The software buffer also cannot be smaller than the Jack server
buffer.

This module can be loaded with

-+rtaudio=jack

Different audio destinations and sources can be selected with dac:<destina-
tion> or adc:<source>, which will depend on the names of the desired Jack
system devices.

ALSA

ALSA is the low-level audio system on the Linux platform. It can provide good
performance with regards to latency, but it is not as flexible as Jack. It is generally
single-client, which means that only one application can access a given device at a
time. Csound will read/write -b samples from/to the soundcard at a time, and it will
set the ALSA hardware buffer size to -B samples. The rule of thumb is to set the
latter to twice the value of the former (as above, with Jack).

The alsa module is selected with the option:

-+rtaudio=alsa

The destinations and sources are selected by name with the same convention as
in the jack module: dac:<destination> or adc:<source>, which will refer
to the specific ALSA device names.

AuHAL

The AuHAL module provides a direct connection to OSX’s CoreAudio system. It
is also based on a callback system, using a circular buffer containing -B sample
frames, with a software buffer size set to -b sample frames. As with Jack, the op-
timal configuration is to set the former to twice the value of the latter. The AuHAL
backend allows very small buffer sizes, which can be used for very low latencies.

The module is loaded with

-+rtaudio=auhal

As with portaudio, specific audio devices can be accessed as dac0, dac1, etc
(for output), and adc0, adc1 etc. (for input).

2.9 Csound Utilities 41

2.8.4 Offline Audio

Audio can be computed offline by Csound. In this case, we do not have the con-
straints imposed by real-time operation, such as latency and computing capacity. In
addition, the software will use all the processing available to generate its output as
quickly as possible. This can be very useful for post-processing of recorded audio,
or for composing fixed-media pieces. As noted in Chapter 1, originally all music
programming systems operated purely offline, and Csound was originally designed
for this type of use. As it evolved into the modern system, it kept this working model
intact as its default option.

While buffering is still employed in this mode, it is less critical. The -b and
-B options still refer to software and hardware (disk) buffer sizes, but its default
values (1,024 and 4,096, respectively) are valid across all platforms and rarely need
to be modified. The soundfile interface used by Csound is based on the third-party
libsndfile library, which is the standard across open-source systems. Thus, Csound
will be able to deal with all file formats supported by that library, which extend
from the major uncompressed types (RIFF-Wave, AIFF etc.) to the ones employing
compressed data (ogg, FLAC etc.).

As mentioned above, in offline mode, Csound’s main software buffers will read
or write to disk files. The input will draw audio from a file until it reaches the
end-of-file, and will be silent thereafter. This reading begins at the same time as
Csound starts processing audio and is independent from any instrument instance,
because it feeds the main buffer, not a particular instance. So if an instrument uses
the main inputs, it will start processing the input file at the time it is instantiated,
and not necessarily at the beginning of the file (unless the instance is running from
time zero). Similarly, the output is directed to a file and this is only closed when
Csound finishes performance (or we run out of disk space). The relevant options
for offline audio are listed in Table 2.1. These include the various possibilities for
output soundfile format, and their different encoding precision settings.

2.9 Csound Utilities

The Csound software distribution also includes various utility routines that imple-
ment spectral analysis, noise reduction, soundfile amplitude scaling and mixing, and
other operations. These can be accessed via the -U option:

-U <utility name> <arguments>

where the arguments will depend on the particular utility being used. Frontend hosts
have full access to these via the API, with some of them providing graphical inter-
faces to these routines.

42 2 Key System Concepts

Option Description

-i FILE, --input=FILE input soundfile name
-o FILE, --output=FILE output soundfile name
-8, --format=uchar precision is set to 8-bit (unsigned)
-c, --format=schar precision is set to 8-bit (signed)
-a, --format=alaw a-law compressed audio format
-u, --format=ulaw u-law compressed audio format
-s, --format=short precision is set to 16-bit (integer)
-3, --format=24bit precision is set to 24-bit, with formats that

support it
-l, --format=long precision is set to 32-bit (integer), with

formats that support it
-f, --format=float precision is set to single-precision (32-bit)

floating point, with formats that support it
--format=double precision is set to double-precision (64-

bit) floating point, with formats that sup-
port it

-n, --nosound no sound, bypasses writing of sound to
disk

-R, --rewrite continually rewrite the header while writ-
ing the soundfile (WAV/AIFF formats)

-K, --nopeaks do not generate any PEAK chunks, in for-
mats that support this

-Z, --dither--triangular,
--dither--uniform

switch on dithering of audio conversion
UDO from internal floating point to 32-,
16- and 8-bit formats. In the case of -Z the
next digit should be a 1 (for triangular) or
a 2 (for uniform)

-h, --noheader no header in soundfile, just audio samples
-W, --wave, --format=wave use a RIFF-WAV format soundfile
-A, --aiff, --format=aiff use an AIFF format soundfile
-J, --ircam, --format=ircam use an IRCAM format soundfile
--ogg use the ogg compressed file format
--vbr-quality=X set variable bit-rate quality for ogg files
--format=type use one of the libsndfile-supported for-

mats. Possibilities are: aiff, au,
avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf,
raw, sd2, sds, svx, voc,
w64, wav, wavex, xi

Table 2.1 Offline audio options. These include the various possibilities for output soundfile for-
mat, and their different sample precision settings

2.10 Environment Variables 43

2.10 Environment Variables

Csound takes notice of a number of environment variables. These are used to con-
figure a system, and can be set by the user to define certain default file locations,
etc. Environment variables are system-dependent, and the methods to set them will
depend on the operating system. In UNIX-like systems, these can be set in shell
configuration files such as .profile, .bashrc (on the bash shell) or .cshrc
(C shell) using commands such as export or setenv. Generally these will only
affect any programs run from the shell. Some OSs allow the user to set these en-
vironment vars for the whole system. GUI frontends, such as CsoundQt, will also
allow these to be set inside the program as part of their configuration options.

The environment variables used by Csound are:

• OPCODE6DIR64 and OPCODE6DIR: these indicate the place where Csound
will look for plug-ins, in double-precision or single-precision versions of Csound.
In fully installed systems, they do not need to be set, as Csound will look for
plug-ins in their default installed places (system-dependent).

• SFDIR: soundfile directory, where Csound will look for soundfiles by default.
If not set, Csound will look for soundfiles in the current directory (which can be
the directory where the CSD file is located). Note that soundfiles (and other files)
can also be passed to Csound with their full path, in which case SFDIR is not
used.

• SSDIR: sound sample directory, where Csound will look for sound samples by
default. As above, if not set, Csound will look for sound samples in the current
directory (which can be the directory where the CSD file is located).

• SADIR: sound analysis directory, similar to the above, but for sound analysis
files.

• INCDIR: include directory, where Csound will look for text files included in the
code (with the #include preprocessor directive).

2.10.1 Configuration File

A file named .csoundrc can be used by Csound to hold default options for your
system. It should reside in the user home directory (the topmost user directory), and
contain any options that the user wants to keep as default, in a single line, such as:

-o dac -i adc -b 128 -B 512

These options will be used whenever Csound is run without them. If the same
options are already passed to a frontend, either in the CSD or as command-line
parameters, the configuration file will be ignored (the order of precedence is: pa-
rameters to program; CSD options; configuration file options).

44 2 Key System Concepts

2.11 The Csound API

The API underpins the operation of all Csound-based applications. While the main
details of its operation are beyond the scope of this book, we will introduce it here
in order to give the reader an insight into the lower levels of operation inside the
software. An API is the public face of a programming library, which is a compo-
nent of an application that provides support for specific tasks. Developers would
like to use software libraries for almost all of their work, as they save the need to
reinvent every step of each fundamental operation they want to use. So these com-
ponents are pre-packaged bundles of functionality that can be reused whenever they
are required.

Csound was originally a monolithic program, whose only interfaces were those
provided by its language, and a few extra controls (MIDI and events typed at the
terminal or piped from another program). It evolved into a software library with
the exposure of some of its internal operations in an early form of the API. From
this stage, it was then more formally developed as a library, and the functionality
exposed by the API was enhanced. One key aspect of these changes is that the
internals were modified to make the library reentrant. This allowed the Csound
engine to be treated like an object, which could be instantiated multiple times. So a
program using the library, such as MaxMSP or PD, or a DAW, can load up several
copies of a Csound-based plug-in without them interfering with each other.

The Csound API is written in the C language, but is also available in C++ through
a very thin layer. From these two basic forms, various language wrappers have been
created for Java (via its Java Native Interface, JNI), Python, Lua, Closure (via JNI),
and others. So programmers can access the functionality via their preferred lan-
guage. In particular, scripting languages interface very well with Csound through
the API, allowing composers to make use of extended possibilities for algorithmic
approaches. This will be explored in later sections of this book.

2.11.1 A Simple Example

The API can be used to demonstrate the operation stages of Csound, exposing some
of the internals to the reader. The presentation should be clear enough even for non-
programmers. We show here a simple example in C++ that will guide us through the
steps from start to completion. This code implements a command-line program that
is very similar to the csound frontend discussed in Section 2.3. It takes input from
the terminal, runs the audio engine, and closes when the performance is finished.
The program code is shown in listing 2.10.

Listing 2.10 Simple Csound API example in C++

1 #include <csound.hpp>
2
3 int main(int argc, char** argv){

2.11 The Csound API 45

4 Csound csound; // csound object
5 int error; // error code
6
7 // compile CSD and start the engine
8 error = csound.Compile(argc, argv);
9

10 // performance loop
11 while(!error)
12 error = csound.PerformKsmps();
13
14 return 0;
15 }

This example uses the bare minimum functionality, but demonstrates some im-
portant points. First, in a C++ program, Csound is a class, which can be instantiated
many times. In line 4, we see one such object, csound, which represents the au-
dio engine. This can be customised through different options etc, but in this simple
program, we move straight to the next step (line 8). This takes in the command-line
arguments and passes them to the engine. The parameters argv and argc contain
these arguments, and how many of them there are, respectively. This allows Csound
to compile a CSD code (or not, depending on the options), and once this is done,
start. Note that these are other forms of the Compile() method, as well as other
methods to send orchestras for compilation, and other ways of starting the engine.
This is the most straightforward of them.

If there were no errors, the program enters the performance loop, which has been
discussed in some detail in Section 2.6. This does all the necessary processing to
produce one ksmps of audio, and places that into the output buffer. The method re-
turns an error code, which is used to check whether the loop needs to continue to the
next iteration. The end of performance can be triggered in a number of ways, for in-
stance, if the end of the numeric score is reached; via a ‘close csound’ event; or with
a keyboard interrupt signalling KILL (ctrl-c). In this case, PerformKsmps()
returns a non-zero code, and the program closes. The C++ language takes care of all
the tidying up that is required at the end, when the csound object is destroyed.

To complete this overview, we show how the C++ code can be translated into a
scripting language, in this case, Python (listing 2.11). We can very easily recognise
that it is the same program, but with a few small changes. These are mainly there
to accommodate the fact that C/C++ pointers generally do not exist outside these
languages. So we need an auxiliary object to hold the command-line argument list
and pass it to Compile() in a form that can be understood. These small variations
are inevitable when a C/C++ API is wrapped for other languages. Otherwise, the
code corresponds almost on a line-by-line basis.

Listing 2.11 Simple Csound API example in Python

1 import csnd6
2 import sys
3

46 2 Key System Concepts

4 csound = csnd6.Csound()
5 args = csnd6.CsoundArgVList()
6 for arg in sys.argv: args.Append(arg)
7
8 error = csound.Compile(args.argc(), args.argv())
9

10 while (not error):
11 error = csound.PerformKsmps()

2.11.2 Levels of Functionality

The example above shows a very high level use of the API. Depending on the appli-
cation, much lower-level access can be used. The whole system is fully configurable.
The API allows new opcodes and GEN routines to be added, new backend plug-ins
to be provided for audio, MIDI and utilities. We can access each sample that is
computed in the spout and output buffers. It is also possible to fill the input and spin
buffers with data via the API. Each aspect of Csound’s functionality is exposed. The
following sections provide an introduction to each one of the areas covered by the
interface.

Instantiation

The fundamental operations of the API are to do with setting up and creating in-
stances of Csound that can be used by the host. It includes functions for the initiali-
sation of the library, creation and destruction of objects, and ancillary operations to
retrieve the system version.

Attributes

It is possible to obtain information on all of the system attributes, such as sr, kr,
ksmps, nchnls and 0dbfs. There are functions to set options programmatically, so
the system can be fully configured. In addition, it is possible to get the current time
during performance (so that, for instance, a progress bar can be updated).

Compilation and performance

The API has several options for compiling code. The simplest takes in command-
line parameters and compiles a CSD ready for performance as seen in listings 2.10
and 2.11. Other functions will take in orchestra code directly, as well as a full CSD

2.11 The Csound API 47

file. At lower levels it is possible to pass to Csound a parsed tree structure, to parse
code into a tree, and to evaluate a text.

Performance can be controlled at the k-cycle level (as in the examples in listings
2.10 and 2.11), at the buffer level or at the performance loop level. This means
that we can process as little as one ksmps of audio, a whole buffer, or the whole
performance from beginning to end, in one function call. There are also functions
to start and stop the engine, to reset it and to do a clean up.

General IO

There are specific functions to set the main Csound inputs and outputs (file or device
names), file format, MIDI IO devices and filenames.

Real-time audio and MIDI

The API provides support for setting up a real-time audio IO backend, for hosts
that need an alternative to the plug-ins provided by the system. It is also possible
to access directly the spin, spout, input and output audio buffers. Similarly, there is
support for interfacing with Csound’s MIDI handling system, so applications can
provide their own alternatives to the MIDI device plug-ins.

Score handling

Functions for reading, sorting, and extracting numeric scores are provided. There
are transport controls for offsetting and rewinding playback, as well as for checking
current position.

Messages and text

It is possible to redirect any messages (warnings, performance information etc.) to
other destinations. By default these go to the terminal, but the host might want to
print them to a window, or to suppress them. The API also allows users to send their
own text into Csound’s messaging system.

Control and events

Csound has a complete software bus system that allows hosts to interface with en-
gine objects. It is possible to send and receive control and audio data to/from specif-
ically named channels. This is the main means of interaction between Csound and
applications that embed it. In addition, it is possible to send events directly to instan-

48 2 Key System Concepts

tiate instruments in the engine. The API allows programs to kill specific instances of
instruments. It can register function callbacks to be invoked on specific key presses,
as well as a callback to listen for and dispatch events to Csound.

Tables

Full control of tables is provided. It is possible to set and get table data, and to copy
in/out the full contents from/to arrays. The size of a function table is also accessible.

Opcodes

The API allows hosts to access a list of existing opcodes, so they can, for instance,
check for the existence of a given unit generator, or printout a list of these. New
opcodes can also be registered with the system, allowing it to be easily extended.

Threading and concurrency

Csound provides auxiliary functionality to support concurrent processing: thread
creation, spinlocks, mutexes, barriers, circular buffers, etc. These can be used by
hosts to run processing and control in parallel.

Debugger

An experimental debugger mode has been developed as part of the Csound library.
The API gives access to its operation, so that breakpoints can be set and performance
can be stepped and paused for variable inspection.

Miscellaneous

A number of miscellaneous functions exist in the API, mostly to provide auxiliary
operations in a platform-independent way. Examples of these are library loading,
timers, command running and environmental variable access. Csound also allows
global variables to be created in an engine object, so that data can be passed to/from
functions that have access to it. Finally, a suite of utilities that come with the system
can also be manipulated via the API.

2.12 Conclusions 49

2.12 Conclusions

In this chapter, we introduced a number of key concepts that are relevant to Csound.
They were organised in a mosaic form, and presented at a high level, in order to give
a general overview of the system. We began by looking at how the system operates,
and discussed CSD files, numeric scores and options. The principle of Csound as a
library, hosted by a variety of frontends, was detailed. The csound command was
shown to be a basic but fully functional frontend.

Following this system-wide introduction, we looked at fundamental aspects of
digital audio, and how they figured in Csound. Sampling rate and quantisation were
discussed, and the conditions for high-quality sound were laid out. We also dis-
cussed the concept of control rate, k-cycles and ksmps blocks, which are essential
for the operation of the software.

The text also described in some detail concepts relating to instruments, instances
and events. We outlined the life-cycle of an instrument from its text code form to
compilation, instantiation, performance and destruction. The basic principle of func-
tion tables was explored, with a description of the typical GEN routines that Csound
uses to create these.

Completing the overview of fundamental system operation, we looked at audio
input and output. The two main modes of operation, real-time and offline, were in-
troduced. The principle of audio IO plug-ins that work as the backend of the system
was outlined. This was followed by the description of the common audio modules
included in Csound. Offline audio and soundfile options were detailed.

The chapter closed with an overview of the Csound API. Although the details of
its operation are beyond the scope of this book, we have explored the key aspects
that affect the use of the system. A programming example in C++ and Python was
presented to show how the high-level operation of Csound can be controlled. To
conclude, the different levels of functionality of the API were discussed briefly. This
chapter concludes the introductory part of this book. In the next sections, we will
explore Csound more deeply, beginning with a study of its programming language.

Part II

The Language

Chapter 3

Fundamentals

Abstract This chapter will introduce the reader to the fundamental aspects of
Csound programming. We will be examining the syntax and operation of instru-
ments, including how statements are executed and parameters passed. The principle
of variables and their associated data types will be introduced with a discussion
of update rates. The building block of instruments, opcodes, are explored, with a
discussion of traditional and function-like syntax. Selected key opcodes that imple-
ment fundamental operations are detailed to provide an introduction to synthesis
and processing. The Csound orchestra preprocessor is introduced, complementing
this exploration of the language fundamentals.

3.1 Introduction

The Csound language is domain specific. In distinction to a general-purpose lan-
guage, it attempts to target a focused set of operations to make sound and music,
even though it has capabilities that could be harnessed for any type of computation,
and it is a Turing-complete language [29]. Because of this, it has some unique fea-
tures, and its own way of operating. This chapter and the subsequent ones in Part II
will introduce all aspects of programming in the Csound language, from first prin-
ciples. We do not assume any prior programming experience, and we will guide the
reader with dedicated examples for each aspect of the language. In this chapter, we
will start by looking at the fundamental elements of the system, and on completion,
we will have covered sufficient material to enable the creation of simple synthesis
and processing programs.

The code examples discussed here can be typed using any plain text (ASCII)
editor, in the <CsInstruments> section of a CSD file (see Section 2.2). Csound
code is case sensitive, i.e. hello is not the same as Hello. It is important that only
ASCII text, with no extra formatting data, is used, so users should avoid using word
processors that might introduce these. Alternatively, users can employ their Csound

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

53
3

54 3 Fundamentals

IDE/frontend of choice. The examples presented in this chapter are not dependent
on any particular implementation of the system.

3.2 Instruments

The basic programming unit in Csound is the instrument. In Part I, we have already
explored the history of the concept, and looked at some operational aspects. Now
we can look closely at its syntax. Instruments are defined by the keywords instr
and endin. The general form is shown in listing 3.1.

Listing 3.1 Instrument syntax

instr <id>[,<id2>, ...]

endin

An instrument has an identification name, <id> in listing 3.1, which can be
either numeric or textual. Optionally, as indicated in square braces in the example,
it can have alternative names. Csound allows an unspecified number of instrument
definitions, but each instrument in a single compilation has to have unique names. In
subsequent compilations, if an existing name is used, it replaces the old definition.
The keyword endin closes an instrument definition. They cannot be nested, i.e.
one instrument cannot be defined inside another. Both instr and endin need to
be placed on their own separate lines. In order to perform computation, an event
needs to be scheduled for it. The opcode schedule can be used for this purpose,
and its syntax is

schedule(id,istart,idur, ...)

where id is the instrument name, istart the start time and idur the duration of
the event. Times are defined in seconds by default. Extra parameters to instruments
may be used.

3.2.1 Statements

Csound code is made of a series of sequentially executed statements. These will
involve either a mathematical expression, or an opcode, or both. Statements are ter-
minated by a newline, but can extend over multiple lines in some cases, where mul-
tiple opcode parameters are used. In this case, lines can be broken after a comma, a
parenthesis or an operator. Execution follows line order, from the topmost statement
to endin. Any number of blank lines are allowed, and statements can start at any
column. For code readability,we recommend to indent by one or more columns any
code inside instruments (and keep the statements aligned to this). Listing 3.2 shows
an example of three legal statements in a instrument, which is then scheduled to run.

3.2 Instruments 55

Listing 3.2 Statements in an instrument

instr 1
print 1
print 1+1
print 3/2
endin
schedule(1,0,1)

This instrument will print some numbers to the console, in the order the state-
ments are executed:

SECTION 1:
new alloc for instr 1:
instr 1: 1 = 1.000
instr 1: #i0 = 2.000
instr 1: #i1 = 1.500

The print opcode prints the name of the argument (which can be a variable,
see Sec. 3.3) and its value. The first print statement has 1 as argument, and the
subsequent ones are expressions, which get calculated and put into synthetic (and
hidden) variables that are passed as arguments (#i0, #i1). It is possible to see that
the statements are executed in line order.

3.2.2 Expressions

Csound accepts expressions of arbitrary size combining constants, variables (see
Sec. 3.3) and a number of arithmetic operators. In addition to the ordinary addition,
subtraction, multiplication and division (+, -, * and /), there is also exponentia-
tion (ˆ) and modulus (or remainder, %). Normal precedence applies, from highest to
lowest exponentiation: multiplication, division and modulus; addition and subtrac-
tion. Operators at the same level will bind left to right. Operations can be grouped
with parentheses, as usual, to control precedence. The following operators are also
available for short hand expressions:

a += b => a = a + b
a -= b => a = a - b
a *= b => a = a * b
a /= b => a = a / b

56 3 Fundamentals

3.2.3 Comments

Csound allows two forms of comments, single and multiple line. The former, which
is the traditional way of commenting code, is demarcated by a semicolon (;) and
runs until the end of the line. A multiple-line comment is indicated by the /* and
*/ characters, and includes all text inside these. These comments cannot be nested.
Listing 3.3 shows an example of these two types of comment. Csound can also use
C++ style single-line comments introduced by //.

Listing 3.3 Comments in an instrument

instr 1
/*

the line below shows a
statement and a single-line comment.

*/
print 1 ; this is a print statement
; print 2 ; this never gets executed
endin
schedule(1,0,1)

When this code is run, as expected, only the first statement is executed:

SECTION 1:
new alloc for instr 1:
instr 1: 1 = 1.000

3.2.4 Initialisation Pass

The statements in an instrument are actually divided into two groups, which get
executed at different times. The first of these is composed of the initialisation state-
ments. They are run first, but only once, or they can be repeated explicitly via a
reinitialisation call. These statements are made up of expressions, init-time opcodes,
or both. In the example shown in listings 3.2 and 3.3, the code consists solely of
init-time statements, which, as shown by their console messages, are only executed
once.

3.2.5 Performance Time

The second group of statements are executed during performance time. The main
difference is that these are going to be iterated, i.e. repeated, for the duration of
the event. We call a repetitive sequence of statements a loop. In Csound, there is

3.2 Instruments 57

a fundamental operating loop that is implicit to performance-time statements in an
instrument, called the k-cycle. It repeats at 1

kr seconds of output audio (kr is the
control rate, see Chapter 2), which is called a k-period. Performance-time statements
are executed after init-pass, regardless of where they are in an instrument. Listing 3.4
shows an example.

Listing 3.4 Performance-time and init-pass statements

instr 1
printk 0, 3
print 1
print 2
printk 0, 4
endin
schedule(1,0,1)

If we run this code, we will see the messages on the console show the two init-
time statements first, even though they come after the first printk line. This op-
code runs at performance time, printing its second argument value at regular times
given by the first. If this is 0, it prints every k-period. It reports the times at which it
was executed:

SECTION 1:
new alloc for instr 1:
instr 1: 1 = 1.000
instr 1: 2 = 2.000
i 1 time 0.00023: 3.00000
i 1 time 0.00023: 4.00000
i 1 time 0.00045: 3.00000
i 1 time 0.00045: 4.00000
...

For clarity of reading, sometimes it might be useful to group all the init-pass
statements at the top of an instrument, and follow that with the performance-time
ones. This will give a better idea of the order of execution (see listing 3.4)

Listing 3.5 Performance-time and init-pass statements, ordered by execution time

instr 1
print 1
print 2
printk 0, 3
printk 0, 4
endin

Note that many opcodes might produce output at performance time only, but they
are actually run at initialisation time as well. This is the case with unit generators
that need to reset some internal data, and run single-pass computation, whose results
are used at performance time. This is the case of the majority of opcodes, with
only a small set being purely perf-time. If, for some reason, the init-time pass is

58 3 Fundamentals

bypassed, then the unit generators might not be initialised properly and will issue a
performance error.

3.2.6 Parameters

An instrument can be passed an arbitrary number of parameters or arguments. Min-
imally, it uses three of these, which are pre-defined as instrument number (name),
start time and duration of performance. These are parameters 1, 2 and 3 respectively.
Any additional parameters can be used by instruments, so that different values can
be set for each instance. They can be retrieved using the p(x) opcode, where x is
the parameter number. An example of this is shown in listing 3.6.

Listing 3.6 Instrument parameters

instr 1
print p(4)
print p(5)
endin
schedule(1,0,1,22,33)
schedule(1,0,1,44,55)

This example runs two instances of instrument 1 at the same time, passing dif-
ferent parameters 4 and 5. The console messages show how the parameters are set
per instance:

SECTION 1:
new alloc for instr 1:
instr 1: #i0 = 22.000
instr 1: #i1 = 33.000
new alloc for instr 1:
instr 1: #i0 = 44.000
instr 1: #i1 = 55.000

3.2.7 Global Space Code

Code that exists outside instruments is deemed to be in global space. It gets executed
only once straight after every compilation. For this reason, performance-time code
is not allowed at this level, but any i-pass code is. In the examples above, we have
shown how the schedule opcode is used outside an instrument to start events.
This is a typical use of global space code, and it is perfectly legal, because the
operation of schedule is strictly i-time. It is also possible to place the system
constants (sr, kr, ksmps, 0dbfs, nchnls, and nchnls i) in global space, if
we need to override the defaults, but these are only effective in the first compilation

3.3 Data Types and Variables 59

(and ignored thereafter). Global space has been called instr 0 in the past, but that
term does not define its current uses appropriately.

3.3 Data Types and Variables

Data types are used to distinguish between the different objects that are manipulated
by a program. In many general-purpose languages, types are used to select different
numeric representations and sizes, e.g. characters, short and long integers, single-
and double-precision floating-point numbers. In Csound all numbers are floating
point (either single- or double-precision, depending on the platform). The funda-
mental distinction for simple numeric types is a different one, based on update rates.
As we have learned above, code is executed in two separate stages, at initialisation
and performance times. This demands at least two data types, so that the program
can distinguish what gets run at each of these stages. Furthermore, we have also
seen in Chapter 2 that Csound operates with two basic signal rates, for control and
audio. The three fundamental data types for Csound are designed to match these
principles: one init-pass and two perf-time types.

We give objects of these types the name variables, or sometimes, when referring
to perf-time data, signals. In computing terms, they are memory locations that we
can create to store information we computed or provided to the program. They are
given unique names (within an instrument). Names can be arbitrary, but with one
constraint: the starting letter of a variable name will determine its type. In this case,
we will have i for init time, k for control rate, and a for audio rate (all starting
letters are lower case). Some examples of variable names:

i1, ivar, indx, icnt
k3, kvar, kontrol, kSig
a2, aout, aSig, audio

Before variables are used as input to an expression or opcode, they need to be
declared by initialising them or assigning them a value. We will examine these ideas
by exploring the three fundamental types in detail.

3.3.1 Init-Time Variables

Csound uses the i-var type to store the results of init time computation. This is done
using the assignment operator (=), which indicates that the left-hand side of the op-
erator will receive the contents of the right-hand side. The computation can take the
form of opcodes or expressions that work solely at that stage. In the case of expres-
sions, only the ones containing constants and/or i-time variables will be executed at
that stage. The code in listing 3.7 shows an example of i-time expressions, which are
stored in the variable ires and printed. Note that variables can be reused liberally.

60 3 Fundamentals

Listing 3.7 Using i-time variables with expressions

instr 1
ires = p(4) + p(5)
print ires
ires = p(4)*p(5)
print ires
endin
schedule(1,0,1,2,3)

In the case of opcodes, some will operate at i-time only, and so can store their
output in an i-variable (the Reference Manual can be consulted for this). For exam-
ple, the opcode date, which returns the time in seconds since the Epoch (Jan, 1
1970) is an example of this.

Listing 3.8 Using i-time variables with opcodes

instr 1
iNow date
print iNow
endin
schedule(1,0,0)

This example will print the following to the console:

SECTION 1:
new alloc for instr 1:
instr 1: iNow = 1441142199.000

Note that the event duration (p3) can be set to 0 for i-time-only code, as it will
always execute, even if performance time is null.

A special type of i-time variable, which is distinct to i-vars, is the p-type. These
are used to access instrument parameter values directly: p1 is the instrument name,
p2 its start time, p3 the duration and so on. Further pN variables can be used to
access other parameters used. This is an alternative to using the p() opcode, but
it also allows assignment at i-time. So an instrument can modify its parameters on
the fly. In the case of p1 and p2, this is meaningless, but with p3, for instance, it is
possible to modify the event’s duration. For instance, the line

p3 = 10

makes the instrument run for 10 seconds, independently of how long it was sched-
uled for originally. The p-type variables can be used liberally in an instrument:

Listing 3.9 Using p-variables

instr 1
print p4 + p5
endin
schedule(1,0,1,2,3)

3.3 Data Types and Variables 61

3.3.2 Control-Rate Variables

Control-rate variables are only updated at performance time. They are not touched
at init-time, unless they are explicitly initialised. This can be done with the init
operator, which operates only at i-time, but it is not always necessary:

kval init 0

At performance time, they are repeatedly updated, at every k-cycle. Only expres-
sions containing control variables will be calculated at this rate. For instance,

kval = 10
kres = kval*2

will execute at every k-cycle, whereas the code

ival = 10
kres = ival*2

will be executed mostly at i-time. The first line is an assignment that will be run at
the i-pass. The second is an expression involving an i-var and a constant, which is
also calculated at i-time, and the result stored in a synthetic i-var. The assignment
happens at every k-cycle. Synthetic variables are created by the compiler to store
the results of calculations, and are hidden from the user.

The i-time value of a k-var can be obtained using the i() operator:

ivar = i(kvar)

This only makes sense if the variable has a value at that stage. There are two
situations when this can happen with instrument variables:

1. the k-var has been initialised:

kvar init 10
ivar = i(kvar)

2. the current instance is reusing a slot of an older instance. In that case, the values
of all variables at the end of this previous event are kept in memory. As the new
instance takes this memory space up, it also inherits its contents.

There is no restriction in assigning i-var to k-var, as the former is available (as
a constant value) throughout performance. However, if an expression is calculated
only at i-time, it might trigger an opcode to work only at i-time. Sometimes we need
it to be run at the control rate even if we are supplying an unchanging value. This
is the case, for instance, for random number generators. In this case, we can use the
k() converter to force k-time behaviour.

Listing 3.10 Producing random numbers at i-time

instr 1
imax = 10
printk 0.1, rnd(imax)

62 3 Fundamentals

endin
schedule(1,0,1)

For instance, the code on listing 3.10, using the rnd() function to produce ran-
dom numbers, produces the following console output:

i 1 time 0.00023: 9.73500
i 1 time 0.25011: 9.73500
i 1 time 0.50000: 9.73500
i 1 time 0.75011: 9.73500
i 1 time 1.00000: 9.73500

This is a fixed random number calculated at i-time.

Listing 3.11 Producing random numbers at k-rate

instr 1
imax = 10
printk 0.1, rnd(k(imax))
endin
schedule(1,0,1)

If we want it to produce a series of different values at control rate, we need the
code in listing 3.11, which will print:

i 1 time 0.00023: 9.73500
i 1 time 0.25011: 9.10928
i 1 time 0.50000: 3.58307
i 1 time 0.75011: 8.77020
i 1 time 1.00000: 7.51334

Finally, it is important to reiterate that k-time variables are signals, of the control
type, sampled at kr samples per second. They can also be called scalars, as they
contain only a single value in each k-period.

3.3.3 Audio-Rate Variables

Audio-rate variables are also only updated at performance time, except for initiali-
sation (using init, as shown above). The main difference to k-vars is that these are
vectors, i.e. they contain a block of values at each k-period. This block is ksmps
samples long. These variables hold audio signals sampled at sr samples per second.

Expressions involving a-rate variables will be iterated over the whole vector ev-
ery k-period. For instance, the code

a2 = a1*2

will loop over the contents of a1, multiply them by 2, and place the results in a2,
ksmps operations every k-period. Similarly, expressions involving k- and a-vars
will be calculated on a sample-by-sample basis. In order to go smoothly from a

3.3 Data Types and Variables 63

scalar to a vector, k-rate to a-rate, we can interpolate using the interp opcode,
or the a() converter. These interpolate the k-rate values creating a smooth line
between them, placing the result in a vector. This upsamples the signal from kr to
sr samples per second. It is legal to assign a k-rate variable or expression directly
to an a-rate, in which case the whole vector will be set to a single scalar value. The
upsamp opcode does this in a slightly more efficient way.

With audio-rate variables we can finally design an instrument to make sound.
This example will create a very noisy waveform, but it will demonstrate some of
the concepts discussed above. The idea is to create a ramp that goes from −A to A,
repeating at a certain rate to give a continuous tone. To do this, we make the audio
signal increment every k-cycle by incr, defined as:

incr =
1
kr

× f0, (3.1)

recalling that 1
kr is one k-period. If f0 = 1, starting from 0 we will reach 1 after

kr cycles, or 1 second. The ramp carries on growing after that, but if we apply a
modulo operation (%1), it gets reset to 0 when it reaches 1. This makes the ramp
repeat at 1 cycle per second (Hz). Now we can set f0 to any frequency we want, to
change the pitch of the sound.

The ramp goes from 0 to 1, but we want to make it go from −A to A, so we need
to modify it. First, we make it go from -1 to 1, which is twice the original range,
starting at -1. Then we can scale this by our target A value. The full expression is:

out = (2× ramp−1)×A (3.2)

The resulting instrument is shown in listing 3.12. We use the out opcode to place
the audio in the instrument output. Two parameters, 4 and 5 are used for amplitude
(A) and frequency, respectively. Note the use of the a() converter to smooth out the
ramp. Without it, the fixed value from the i-time expression (1/kr)*p5 would be
used. The converter creates a vector containing a ramp from 0 to its argument, which
is scaled by p5 and added to the aramp vector, creating a smoothed, rather than
a stepped output (see Fig. 3.1). The other statements translate the other elements
discussed above. The pitch is set to A 440 Hz, and the amplitude is half-scale (the
constant 0dbfs defines the full scale value).

Listing 3.12 A simple sound synthesis instrument

instr 1
aramp init 0
out((2*aramp-1)*p4)
aramp += a(1/kr)*p5
aramp = aramp%1
endin
schedule(1,0,10,0dbfs/2,440)

This example shows how we can apply the principles of audio and control rate,
and some simple mathematical expressions to create sounds from scratch. It is noisy

64 3 Fundamentals

because the ramp waveform is not bandlimited and causes aliasing. There are more
sophisticated means of creating similar sounds, which we will examine later in this
book.

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Fig. 3.1 Two plots comparing ramp waves generated with the control to audio-rate converter a()
(top), and without it (bottom). The typical control-rate stepping is very clear in the second example

Finally, audio variables and expressions cannot be assigned directly to control
variables. This is because we are going from many values (the vector), to a single
one (a scalar). For this, we can apply the k() converter, which downsamples the
signal from sr to kr samples per second.1

3.3.4 Global Variables

All variables looked at so far were local to an instrument. That means that their
scope is limited to the instrument where they appear, and they cannot be seen out-
side it. Csound allows for global variables, which, once declared, exist outside in-
struments and can be seen by the whole program. These can be first declared in an
instrument or in global space, remembering that only init-pass statements can be
used outside instruments. In this case, the declaration uses the init opcode. To
define a variable as global, we add a g to its name:

1 Other converters also exist, please see the Reference Manual for these.

3.4 Opcodes 65

gi1, givar, gindx, gicnt
gk3, gkvar, gkontrol, gkSig
ga2, gaout, gaSig, gaudio

Only one copy of a global variable with a given name will exist in the engine, and
care should be taken to ensure it is handled properly. For instance, if an instrument
that writes to a global audio signal stops playing, the last samples written to it will be
preserved in memory until this is explicitly cleared. This can lead to garbage being
played repeatedly if another instrument is using this variable in its audio output.

Global variables are useful as a means of connecting signals from one instrument
to another, as patch-cords or busses. We will examine this functionality later on in
Chapter 6.

3.4 Opcodes

The fundamental building block of an instrument is the opcode. They implement
the unit generators that are used for the various functional aspects of the system. It
is possible to write code that is largely based on mathematical expressions, using
very few opcodes (as shown in listing 3.12), but that can become complex very
quickly. In any case, some opcodes always have to be present, because they handle
input/output (IO) and events, and although we have not introduced the idea formally,
we have used print, printk and out for data output, and schedule for events.

3.4.1 Structure

An opcode has a structure that is composed of two elements:

1. state: internal data that the opcode maintains throughout its life cycle
2. subroutines: the code that is run at initialisation and/or performance time. Gen-

erally, an opcode will have distinct subroutines for these execution stages.

We can think of opcodes as black box-type (i.e. opaque, you can only see input
and output arguments) instruments: recipes for performing some processing, which
will only execute when instantiated. When an opcode is placed in an instrument,
which is then scheduled, the engine will

1. Allocate memory for its state, if necessary.
2. Run the init-time subroutine, if it exists. This will generally modify the opcode

state (e.g. initialising it).
3. Run the perf-time subroutine, if it exists, in the performance loop, repeating it at

every k-period. Again, the opcode state will be updated as required every time
this subroutine is run.

66 3 Fundamentals

Each opcode that is placed in an instrument will have its own separate state, and
will use the subroutines that have been assigned to it.

3.4.2 Syntax

There is a straightforward syntax for opcodes, which is made up of output variable(s)
on the left-hand side of the opcode name, and input arguments (parameters) on the
right-hand side. Multiple output variables and arguments are separated by commas

[var, ...] opname [arg, ...]

The number and types of arguments and outputs will depend on the opcode. Some
opcodes might have optional inputs, and allow for a variable number of outputs. The
Reference Manual provides this information for all opcodes in the system. In any
case, expressions that can be evaluated to a given argument type are accepted as
inputs to opcodes.

An alternative syntax allows some opcodes to be used inline inside expressions:

[var =] opname[:r]([arg, ...])

In this case, we see that the opcode arguments, if any, are supplied inside paren-
theses, and its output needs to be assigned to an output variable (if needed). The
whole opcode expression can now be used as one of the arguments to another op-
code, or as part of an expression. If it is used on its own and it produces an output,
we need to use the assignment operator (=) to store it in a variable. If used as an
input to an opcode, we might need to explicitly determine the output rate (r) with
:i, :k or :a after the opcode name (see Sec. 3.4.4). It is also important to note that
this syntactical form is only allowed for opcodes that have either one or no outputs.
Table 3.1 shows some examples of equivalence between the original and alternative
syntax forms.

Table 3.1 Comparison between original and alternative syntaxes for opcodes

original alternative

print 1 print(1)
printk 0,kvar printk(0,kvar)
schedule 1,0,1 schedule(1,0,1)
out asig out(asig)
a1 oscili 0dbfs, 440 a1 = oscili(0dbfs, 440)

Both forms can be intermixed in a program, provided that their basic syntax rules
are observed correctly. In this book, we will use these liberally, so that the reader
can get used to the different ways of writing Csound code.

3.4 Opcodes 67

3.4.3 Functions

Csound also includes a set of functions. Functions do not have state like op-
codes. A function is strictly designed to produce an output in response to given in-
puts, and nothing else. Opcodes, on the other hand, will store internal data to manage
their operation from one execution time to another. Function syntax is similar to the
second opcode syntax shown above:

var = function(arg[, ...])

The main difference is that functions will have at least one argument and produce
one output. They can look very similar to opcodes in the alternative (‘function-like’)
usage, but the fact that they operate slightly differently will be important in some
situations.

A typical example is given by trigonometric functions, such as sin() and
cos(). We can use these in an instrument to generate sinusoidal waves, which
are a fundamental type of waveform. This is easily done by adapting the audio ex-
ample in listing 3.12, where we created a ramp waveform. We can use this ramp as
an input to the sin() function, and make it generate a sine wave. For this, we only
need to keep the ramp ranging from 0 to 1, and scale it to a full cycle in radians
(2π).

Listing 3.13 A sine wave synthesis instrument

instr 1
i2pi = 6.28318530
aramp init 0
out(sin(aramp*i2pi)*p4)
aramp += a(1/kr)*p5
aramp = aramp%1
endin
schedule(1,0,10,0dbfs/2,440)

As the input to sin() rises from 0 to 2π , a sine waveform is produced at the
output. This will be a clean sinusoidal signal, even though we are using very basic
means to generate it. A plot of the output of instr 1 in listing 3.13 is shown in Fig.3.2.

3.4.4 Initialisation and Performance

Opcodes can be active at the init-pass and/or performance time. As noted before,
some will be exclusively working at i-time. Usually an opcode that is used at perf-
time will also include an initialisation stage that is used to set or reset its internal
state to make it ready for operation. Some of them have options to skip this initiali-
sation, if the state from a previously running instance is to be preserved as the new
one takes over its space. There are some cases, however, where there is no activity
at the init-pass. In general, we should not expect that a k-var output of an opcode

68 3 Fundamentals

−1.0

−0.5

0.0

0.5

1.0

Fig. 3.2 A sinusoidal wave, the output of the instr 1 in listing 3.13

has any meaningful value at i-time, even if an opcode has performed some sort of
initialisation procedure.

There are many opcodes that are polymorphic [40], meaning that they can have
different forms depending on their output or input types. For instance, an opcode
such as oscili will have four different implementations:

1. k oscili k,k: k-rate operation
2. a oscili k,k: a-rate operation, both parameters k-rate
3. a oscili k,a: first parameter k-rate, second a-rate
4. a oscili a,k: first parameter a-rate, second k-rate
5. a oscili a,a: both parameters a-rate.

These forms will be selected depending on the input and output parameters. In
normal opcode syntax, this is done transparently. If we are using the alternative
function-like syntax, then we might need to be explicit about the output we want to
produce by adding a rate hint (:r, where r is the letter indicating the required form).
Many functions will also be polymorphic, and specifying the correct input type is
key to make them produce output of a given rate, as demonstrated for rnd() in
listings 3.10 and 3.11.

3.5 Fundamental Opcodes 69

3.5 Fundamental Opcodes

The core of the Csound language is its opcode collection, which is significantly
large. A small number of these are used ubiquitously in instruments, as they perform
fundamental signal processing functions that are widely used. We will discuss here
the syntax and operation of these key opcodes, with various examples of how they
can be employed.

3.5.1 Input and Output

A number of opcodes are designed to get audio into and out of an instrument. De-
pending on the number of channels, or how we want to place the audio, we can use
different ones. However, it is possible to just use a few general purpose opcodes,
which are

asig in ; single-channel input
ain1[, ...] inch kchan1[,...] ; any in channels
out asig[,...] ; any number of out channels
outch kchan1, asig1 [,...,...] ; specify out channel

For input, if we are using channel 1 only, we can just use in. If we need more
input channels, and/or switch between these at k-time (using the kchan parame-
ter), we can use inch. For audio output, out will accept any number of signals up
to the value of nchnls. All the examples in this chapter used the default number
of channels (one), but if we want to increase thia, we can set the system constant
nchnls, and add more arguments to out. A specific output channel can be as-
signed with outch, for easy software routing. Refer to Section 2.8 for more details
on the audio IO subsystem.

3.5.2 Oscillators

Oscillators have been described as the workhorse of sound synthesis, and this is
particularly the case in computer music systems. It is possible to create a huge vari-
ety of instruments that are solely based on these opcodes. The oscillator is a simple
unit generator designed to produce periodic waveforms. Given that many useful sig-
nals used in sound and music applications are of this type, it is possible to see how
widespread the use of these opcodes can be. The oscillator works by reading a func-
tion that is stored in a table (see Section 2.7) repeatedly at a given frequency. This
allows it to produce any signal based on fixed periodic shapes.

There are four operational stages in an oscillator [67]:

1. table lookup: read a sample of a function table at a position given by an index n.

70 3 Fundamentals

2. scaling: multiply this sample by a suitable amplitude and produce an output.
3. increment: increment the position of index n for a given frequency f0 depending

on the sampling rate (sr) and table size (l). This means adding incr to n for each
sample:

incr =
l
sr

× f0 (3.3)

This step is called phase or sampling increment (phase is another name for index
position).

4. wrap-around: when n exceeds the table size it needs to be wrapped back into its
correct range [0, l). This a modulus operation, which needs to be general enough
to work with positive and negative index values.

It is possible to see that we have effectively implemented an oscillator in our first
two audio examples (listings 3.12 and 3.13), without a table lookup but using all
the other steps, 2, 3 and 4. In these instruments, the increment is calculated at the
k-rate, so we use kr as the sampling rate, and its maximum value is 1 (l = 1 and
sr = kr makes eq. 3.3 the same as eq. 3.1). In the first example, the process is so
crude that we are replacing step 1 by just outputting the index value, which is one of
the reasons it sounds very noisy. In the second case, we do a direct sin() function
evaluation. This involves asking the program to compute the waveform values on
the spot. Table lookup replaces this by reading a pre-calculate sine function that is
stored on a table.

There are three types of original oscillator opcodes in Csound. They differ in the
way the table-lookup step is performed. Since table positions are integral, we need
to decide what to do when an index is not a whole number, and falls between two
table positions. Each oscillator type treats this in a different way:

1. oscil: this opcode truncates its index position to an integer, e.g index 2.3 be-
comes 2.

2. oscili: performs a linear interpolation between adjacent positions to find the
output value. Index 2.3 then makes the table lookup step take 70% (0.7) of the
value of position 2 and 30% (0.3) of the next position, 3.

3. oscil3: performs a cubic interpolation where the four positions around the
index value are used. The expression is a fourth-order polynomial involving the
values of these four positions. So, for index 2.3, we will read positions 1,2,3 and
4 and combine them, with 2 and 3 contributing more to the final lookup value
than 1 and 4.

There are two consequences to using these different types: (a) the lookup pre-
cision and quality of the output audio increase with interpolation [89]; (b) more
computation cycles are used when interpolating. It is a consensus among users that
in modern platforms the demands of low-order interpolation are not significant, and
that we should avoid using truncating oscillators like oscil, because of their re-
duced audio quality.2

2 In addition to these oscillators, Csound offers poscil and poscil3, discussed later in the
book.

3.5 Fundamental Opcodes 71

The full syntax description of an oscillator is (using oscili as an example):

xsig oscili xamp, xfreq [,ifn, iph]

or, using the alternative form:

[xsig =] oscili[:r](xamp, xfreq [,ifn, iph])

Oscillators are polymorphic. They can work at audio or control rates (indicated
by the xsig in the description), and can take amplitude (xamp) and frequency
(xfreq) as i-time, k-rate or a-rate values (however the output cannot be a rate
lower than its input). Amplitudes, used in step 2 above, will range between 0 and
0dbfs. Frequencies are given in Hz (cycles per second). There are two optional
arguments: ifn, which is an optional table number, and iph the oscillator starting
phase, set between 0 and 1. The default values for these are -1 for ifn, which is
the number of a table containing a sine wave created internally by Csound, and 0
for phase (iph). With an oscillator, we can create a sine wave instrument that is
equivalent to the previous example in listing 3.13, but more compact (and efficient).

Listing 3.14 A sine wave synthesis instrument, using oscili

instr 1
out(oscili(p4, p5))

endin
schedule(1,0,10,0dbfs/2,440)

Connecting oscillators: mixing, modulating

Opcodes can be connected together in a variety of ways. We can add the output of a
set of oscillators to mix them together.

Listing 3.15 Mixing three oscillators

instr 1
out((oscili(p4, p5) +
oscili(p4/3,p5*3) +
oscili(p4/5,p5*5))/3)

endin
schedule(1,0,10,0dbfs/2,440)

The oscillators are set to have different amplitudes and frequencies, which will
blend together at the output. This example shows that we can mix any number of
audio signals by summing them together. As we do this, it is also important to pay at-
tention to the signal levels so that they do not exceed 0dbfs. If that happens, Csound
will report samples out of range at the console, and the output will be distorted
(clipped at the maximum amplitude). In listing 3.15, we multiply the mix by 1/3, so
that it is scaled down to avoid distortion.

We can also make one oscillator periodically modify one of the parameters of
another. This is called amplitude or frequency modulation, depending on which pa-

72 3 Fundamentals

rameter the signal is applied to. Listing 3.16 shows two instruments, whose ampli-
tude (1) and frequency (2) are modulated. The resulting effects are called tremolo
and vibrato, respectively.

Listing 3.16 Two modulation instruments

instr 1
out(oscili(p4/2 + oscili:k(p4/2, p6), p5))

endin
schedule(1,0,5,0dbfs/2,440,3.5)

instr 2
out(oscili(p4, p5 + oscili:k(p5/100,p6)))

endin
schedule(2,5,5,0dbfs/2,440,3.5)

Note that we are explicit about the rate used for the modulation opcodes. Here
we are using the control rate since we have low-frequency oscillators (LFOs), whose
output can be classed as control signals. LFOs are widely used to modulate param-
eters of sound generators3. When modulating parameters with audio-range frequen-
cies (> 20 Hz), we are required to use a-rate signals. This is the case of frequency
modulation synthesis, studied in Chapter 12.

Phasors

Steps 3 and 4 in the oscillator operation, the phase increment and modulus, are
so fundamental that they have been combined in a specific unit generator, called
phasor:

xsig phasor xfreq [,iph]

The output of this opcode is a ramp from 0 to 1, repeated at xfreqHz (similar to
the code in listing 3.12). Phasors are important because they provide a normalised
phase value that can be used for a variety of applications, including constructing
an oscillator from its constituent pieces. For example, yet another version of a sine
wave oscillator (cf. listing 3.14) can be created with the following code:

instr 1
i2pi = 6.28318530
out(p4*sin(i2pi*phasor(p5)))

endin

3 However, you should be careful with zipper noise as discussed in a previous chapter. If ksmps is
large (e.g. above 64 samples), then it is advisable to use audio signals as modulators. For a clean
result that is independent of the control rate, always use audio-rate modulators and envelopes.

3.5 Fundamental Opcodes 73

3.5.3 Table Generators

Oscillators can read arbitrary functions stored in tables. By default, they read table
-1, which contains a sine wave. However, Csound is capable of generating a variety
of different function types, which can be placed in tables for oscillators to use. This
can be done with the opcode ftgen:

ifn ftgen inum, itime, isize, igen, ipar1 [, ipar2, ...]

This generator executes at init-time to compute a function and store it in the
requested table number. It can take several arguments:

inum: table number
itime: generation time
isize: table size
igen: function generator routine (GEN) code
ipar1,...: GEN parameters.

It returns the number of the table created (stored in ifn). If the inum argument
is 0, Csound will find a free table number and use it, otherwise the table is placed in
the requested number, replacing an existing one if there is one. The generation time
can be 0, in which case the table is created immediately, or it can be sometime in
the future (itime > 0). Most use cases will have this parameter set to 0.

The table size determines how many positions (points, numbers) the table will
hold. The larger the table, the more finely defined (and precise) it will be. Tables
can be constructed with arbitrary sizes, but some opcodes will only work with table
lengths that are set to power-of-two or power-of-two plus one. The oscil, oscili
and oscil3 opcodes are examples of these.

The size will also determine how the table guard point (see Section 2.7) is set. For
all sizes except power-of-two plus one, this is a copy of the first point of the table
(table[N] = table[0], where N is the size of the table), otherwise the guard point
is extended, a continuation of the function contour. This distinction is important
for opcodes that use interpolation and read the table in a once-off fashion, i.e. not
wrapping around. In these cases, interpolation of a position beyond the length of
the table requires that the guard point is a continuation of the function, not its first
position. In listing 3.17, we see such an example. The table is read in a once-off way
by an oscillator (note the frequency set to 1

p3 , i.e. the period is equal to the duration
of the sound), and is used to scale the frequency of the second oscillator. The table
size is 16,385, indicating an extended guard point, which will be a continuation of
the table contour.

Listing 3.17 Two modulation instruments

ifn ftgen 1,0,16385,-5,1,16384,2
instr 1
k1 oscili 1,1/p3,1
a1 oscili p4,p5*k1
out a1

74 3 Fundamentals

endin
schedule(1,0,10,0dbfs/2,440)

The type of function is determined by the GEN used. The igen parameter is a
code that controls two aspects of the table generation: (a) the function generator; (b)
whether the table is re-scaled (normalised) or not. The absolute value of igen (i.e.
disregarding its sign) selects the GEN routine number. Csound has over thirty types
of this, which are described in the Reference Manual. The sign of igen controls re-
scaling: positive turns it on, negative suppresses it. Normalisation scales the created
values to the 0 to 1 range for non-negative functions, and -1 to 1 for bipolar ones.
The table in listing 3.17 uses GEN 5, which creates exponential curves, and it is not
re-scaled (negative GEN number).

The following arguments (ipar,...) are parameters to the function generator,
and so they will be dependent on the GEN routine used. For instance, GEN 7 creates
straight lines between points, and its arguments are (start value, length in points,
end value) for each segment required. Here is an example of a trapezoid shape using
three segments:

isize = 16384
ifn ftgen 1, 0, isize, 7,

0, isize*0.1, 1,isize*0.8, 1, isize*0.1, 0

0 1638 3277 4915 6554 8192 9830 11469 13107 14746
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.3 Plot of a function table created with GEN 7 in listing 3.18

This function table goes from 0 to 1 in 10% (0.1) of its length, stays at 1 for a
further 80%, and goes back down to 0 in the final 10% portion. Since tables can be
used freely by various instrument instances, we should create them in global space.
Listing 3.18 shows an example of an instrument that uses this function table. We
will use an oscillator to read it and use its output to control the amplitude of a sine
wave.

Listing 3.18 An instrument using a function table to control amplitude

isize = 16384
ifn ftgen 1, 0, isize, 7,

0, isize*0.1, 1,isize*0.8, 1, isize*0.1, 0
instr 1
kenv oscili p4, 1/p3, 1

3.5 Fundamental Opcodes 75

asig oscili kenv, p5
out asig
endin
schedule(1,0,10,0dbfs/2,440)

This example shows how oscillators can be versatile units. By setting the fre-
quency of the first oscillator to 1

p3 , we make it read the table only once over the
event duration. This creates an amplitude envelope, shaping the sound. It will elim-
inate any clicks at the start and end of the sound. The various different GEN types
offered by Csound will be introduced in later sections and chapters, as they become
relevant to the various techniques explored in this book.

3.5.4 Table Access

Another fundamental type of unit generator, which also uses function tables, is the
table reader. These are very basic opcodes that will produce an output given an index
and a table number. Like oscillators, they come in three types, depending on how
they look up a position: table (non-interpolating), tablei (linear interpolation)
and table3 (cubic interpolation). Table readers are more general-purpose than
oscillators, and they can produce outputs at i-time, k-rate and a-rate, depending
on what they are needed for. Their full syntax summary is (using table as an
example).

xvar table xndx, ifn[, imode, ioff, iwrap]

The first two arguments are required: the index position (xndx) and function
table number (ifn) to be read. The optional arguments define how xndx will be
treated:

imode sets the indexing mode: 0 for raw table positions (0 to size-1), 1 for
normalised (0-1).
ioff adds an offset to xndx, making it start from a different value.
iwrap switches wrap-around (modulus) on. If 0, limiting is used, where index
values are pegged to the ends of the table if they exceed them.

All optional values are set to 0 by default.
Table readers have multiple uses. To illustrate one simple use, we will use it to

create an arpeggiator for our sine wave instrument. The idea is straightforward: we
will create a table containing various pitch values, and we will read these using a
table reader to control the frequency of an oscillator.

The pitch table can be created with GEN 2, which simply copies its arguments to
the respective table positions. To make it simple, we will place four interval ratios
desired for the arpeggio: 1 (unison), 1.25 (major third), 1.5 (perfect fifth) and 2 (oc-
tave). The table will be set not to be re-scaled, so the above values can be preserved.
This function table is illustrated by Fig 3.4.

76 3 Fundamentals

ifn ftgen 2,0,4,-2,1,1.25,1.5,2

0 1 2 3

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 3.4 Function table created with GEN2 in listing 3.19

We can read this function table using a phasor to loop over the index at a given
rate (set by p6), and use a table opcode. Since this truncates the index, it will
only read the integral positions along the table, stepping from one pitch to another.
If we had used an interpolating table reader, the result would be a continuous slide
from one table value to another. Also because phasor produces an output between
0 to 1, we set imode to 1, to tell table to accept indexes in that range:

kpitch table phasor(p6), 2, 1

Now we can insert this code into the previous instrument (listing 3.18), and con-
nect kpitch to the oscillator frequency.

Listing 3.19 An arpeggiator instrument

isize = 16384
ifn ftgen 1, 0, isize, 7,

0, isize*0.1, 1,isize*0.8, 1, isize*0.1, 0
ifn ftgen 2,0,4,-2,1,1.25,1.5,2

instr 1
kenv oscili p4, 1/p3, 1
kpitch table phasor:k(p6), 2, 1
asig oscili kenv, p5*kpitch
out asig

endin
schedule(1,0,10,0dbfs/2,440,1)

If we replace the means we are using to read the table, we can change the arpeg-
giation pattern. For instance, if we use an oscillator, we can speed up/slow down the
reading, according to a sine shape:

kpitch table oscil:k(1,p6/2), 2, 1, 0, 1

Note that because the oscillator produces a bipolar signal, we need to set table
to wrap-around (iwrap=1), otherwise we will be stuck at 0 for half the waveform
period.

3.5 Fundamental Opcodes 77

Table writing

In addition to being read, any existing table can be written to. This can be done at
perf-time (k-rate or a-rate) by the tablew opcode:

tablew xvar, xndx, ifn [, ixmode] [, ixoff] [, iwgmode]

xvar holds the value(s) to be written into the table. It can be an i-time variable,
k-rate or a-rate signal.
xndx is the index position(s) to write to, its type needs to match the first argu-
ment.
imode sets the indexing mode: 0 for raw table positions (0 to size -1), 1 for
normalised (0-1).
ioff adds an offset to xndx.
iwgmode controls the writing. If 0, it limits the writing to between 0 and table
size (inclusive); 1 uses wrap-around (modulus); 2 is guard-point mode where
writing is limited to 0 and table size -1, and the guard point is written at the same
time as position 0, with the same value.

Note that tablew only runs at perf-time, so it cannot be used to write a value at
i-time to a table. For this, we need to use tableiw, which only runs at initialisation.

3.5.5 Reading Soundfiles

Another set of basic signal generators is the soundfile readers. These are opcodes
that are given the name of an audio file in the formats accepted by Csound (see Sec-
tion 2.8.4), and source their audio signal from it. The simplest of these is soundin,
but a more complete one is provided by diskin (and diskin2, which uses the
same code internally):

ar1[,ar2,ar3, ... arN] diskin Sname[,kpitch, iskipt,
iwrap,ifmt,iskipinit]

where Sname is the path/name of the requested soundfile in double quotes. This
opcode can read files from multiple channels (using multiple outputs), and will re-
sample if the file sr differs from the one used by Csound (which soundin cannot
do). It can also change the playback pitch (if kpitch != 1) like a varispeed tape
player, negative values allow for reverse readout. The iwrap parameter can be used
to wrap-around the ends of the file (if set to 1). The number of channels and duration
of any valid soundfile can also be obtained with

ich filenchnls Sname
ilen filen Sname

An example of these opcodes is shown below in listing 3.20.

78 3 Fundamentals

Listing 3.20 A soundfile playback instrument

nchnls=2
instr 1
p3 = filelen(p4)
ich = filenchnls(p4)
if ich == 1 then
asig1 diskin p4
asig2 = asig1
else
asig1, asig2 diskin p4
endif
out asig1,asig2
endin
schedule(1,0,1,"fox.wav")

Note that we have to select the number of outputs depending on the file type
using a control-of-flow construct (see Chapter 5). The duration (p3) is also taken
from the file.

3.5.6 Pitch and Amplitude Converters

Csound provides functions to convert different types of pitch representation to fre-
quency in cycles per second (Hz), and vice-versa. There are three main ways in
which pitch can be notated:

1. pch: octave point pitch class
2. oct: octave point decimal
3. midinn: MIDI note note number.

The first two forms consist of a whole number, representing octave height, fol-
lowed by a specially interpreted fractional part. Middle-C octave is represented as 8;
each whole-number step above or below represents an upward or downward change
in octave, respectively. For pch, the fraction is read as two decimal digits represent-
ing the 12 equal-tempered pitch classes from .00 for C to .11 for B.

With oct, however, this is interpreted as a true decimal fractional part of an oc-
tave, and each equal-tempered step is equivalent to 1

12 , from .00 for C to 11
12 for B.

The relationship between the two representations is then equivalent to the factor 100
12 .

The concert pitch A 440 Hz can be represented as 8.09 in pch notation and 8.75
in oct notation. Microtonal divisions of the pch semitone can be encoded by using
more than two decimal places. We can also increment the semitones encoded in
the fractional part from .00 to .99 (e.g. 7.12 => 8.00; 8.24 => 10.00). The third
notation derives from the MIDI note number convention, which encodes pitches
between 0 and 127, with middle C set to 60.

These are the functions that can be used to convert between these three notations:

3.5 Fundamental Opcodes 79

octpch(pch): pch to oct.
cpspch(pch): pch to cps (Hz).
pchoct(oct): oct to pch.
cpsoct(oct): oct to cps (Hz).
octcps(cps): cps (Hz) to oct.
cpsmidinn(nn): midinn to cps (Hz).
pchmidinn(nn): midinn to pch.
octmidinn(nn): midinn to oct.

The following code example demonstrate the equivalence of the three pitch rep-
resentations:

instr 1
print cpspch(8.06)
print cpsoct(8.5)
print cpsmidinn(66)

endin
schedule(1,0,1)

When we run this code, the console prints out the same values in Hz:

new alloc for instr 1:
instr 1: #i0 = 369.994
instr 1: #i1 = 369.994
instr 1: #i2 = 369.994

It is worth noting that while the majority of the pitch converters are based on
a twelve-note equal temperament scale, Csound is not so restricted. The opcode
cps2pch convert from any octave-based equal temperament scale to Hertz, while
cpsxpch and cpstun provide for non-octave scales as well as table-provided
scales. Details can be found in the reference manual.

For amplitudes, the following converters are provided for transforming to/from
decibel (dB) scale values:

ampdb(x): dB scale to amplitude.

ampdb(x) = 10
x

20 (3.4)

dbamp(x): amplitude to dB

dbamp(x) = 20log10 x (3.5)

ampdbfs(x): dB scale to amplitude, scaled by 0dbfs

ampdbfs(x) = ampdb(x)×0dbfs (3.6)

These converters allow the convenience of setting amplitudes in the dB scale,
and frequencies in one of the three pitch scales, as shown in the example below:

80 3 Fundamentals

instr 1
out(oscili(ampdbfs(p4),cpspch(p5)))
endin
schedule(1,0,1,-6,8.09)

3.5.7 Envelope Generators

The final set of fundamental Csound opcodes are the envelope generators. As we
have seen earlier, function tables can be used to hold shapes for parameter control.
However, these suffer from a drawback: they will expand and contract, depending on
event duration. If we create an envelope function that rises for 10% of its length, this
will generally get translated in performance to 10% of the sound duration, unless
some more complicated coding is involved. This rise time will not be invariant,
which might cause problems for certain applications.

Envelope generators can create shapes whose segments are fixed to a given dura-
tion (or relative, if we wish, the flexibility is there). These can be applied at control
or audio rate to opcode parameters. Csound has a suite of these unit generators, and
we will examine a few of these in detail. The reader is then encouraged to look at
the Reference Manual to explore the others, whose operation principles are very
similar.

The basic opcode in this group is the trapezoid generator linen, which has three
segments: rise, sustain and decay. Its syntax is summarised here:

xsig linen xamp,irise,idur,idec

The four parameters are self-describing: irise is the rise time, idur is the total
duration and idec the decay time, all of these in seconds. The argument xamp can
be used as a fixed maximum amplitude value, or as an audio or control signal input.
In the first case, linen works as a signal generator, whose output can be sent to
control any time-varying parameter of another opcode. If, however, we use a signal
as input, then the opcode becomes a processor, shaping the amplitude of its input.

This envelope makes a signal or a value rise from 0 to maximum in irise
seconds, after which it will maintain the output steady until dur − idec seconds.
Then it will start to decay to 0 again. Listing 3.21 shows an example of its usage, as
a signal generator, controlling the amplitude of an oscillator. Its arguments are taken
from instrument parameters, so they can be modified on a per-instance basis.

Listing 3.21 Linen envelope generator example

instr 1
kenv linen ampdbfs(p4),p6,p3,p7
asig oscili kenv, cpspch(p5)
out asig

endin
schedule(1,0,10,-6,8.09,0.01,0.1)

3.5 Fundamental Opcodes 81

Alternatively, we could employ it as a signal processor (listing 3.22). One impor-
tant difference is that in this arrangement linen works at the audio rate, whereas
in listing 3.21, it produces a k-rate signal. Depending on how large ksmps is, there
might be an audible difference, with this version being smoother sounding.

Listing 3.22 Linen envelope processor example

instr 1
aosc oscili ampdbfs(p4),cpspch(p5)
asig linen aosc,p6,p3,p7
out asig

endin
schedule(1,0,10,-6,8.09,0.01,0.1)

Another form of envelope generators are the line segment opcodes. There are
two types of these: linear and exponential. The first creates curves based on constant
differences of values, whereas the other uses constant ratios. They are available as a
simple single-segment opcodes, or with multiple stages:

xsig line ipos1,idur,ipos2
xsig expon ipos1,idur,ipos2
xsig linseg ipos1,idur,ipos2,idur2,ipos3[,...]
xsig expseg ipos1,idur,ipos2,idur2,ipos3[,...]

The exponential opcodes cannot have 0 as one of its ipos values, as this would
imply a division by 0, which is not allowed. These unit generators are very useful
for creating natural-sounding envelope decays, because exponential curves tend to
match well the way acoustic instruments work. They are also very good for creating
even glissandos between pitches. A comparison of linear and exponential decay-
ing envelopes is shown in Fig. 3.5. Listing 3.23 shows two exponential envelopes
controlling amplitude and frequency.

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.5 Linear (dots) and exponential (solid) decaying curves.

82 3 Fundamentals

Listing 3.23 Exponential envelope example

instr 1
kenv expon 1, p3, 0.001
kpit expon 2,p3,1
asig oscili kenv*ampdbfs(p4),kpit*cpspch(p5)
out asig

endin
schedule(1,0,1,-6,8.09)

In addition to these two types of curves, the transeg opcode can produce linear
and exponential (concave or convex) curves, defined by an extra parameter for each
segment.

3.5.8 Randomness

Another class of opcodes provided random values from a variety of distributions.
They have many uses but a major one is in providing control signals, especially for
humanising a piece. For example, in an envelope definition it might be desirable
for the durations of the segments to vary a little to reduce the mechanical effect of
the notes. This can be achieved by adding a suitable random value to the average
value desired. All the opcodes described here are available at initialisation, control
or audio rate, but the commonest uses are for control.

The simplest of these opcodes is random, which uses a pseudo-random number
generator to deliver a value in a range supplied with a uniform distribution; that is
all values within the range are equally likely to occur. A simple example of its use
might be as shown in listing 3.24, which will give a pitch between 432 Hz and 452
Hz every time an instance of instrument 1 is started.

Listing 3.24 Random pitch example

instr 1
aout oscili 0.8, 440+random(-8, 12)
outs aout

endin

More realistic would be to be to think about a performer who tries to hit the cor-
rect pitch but misses, and then attempts to correct it when heard. The pitch attempts
are not too inaccurate from the target, and it is unlikely that the performer will stray
far away. A simple model would be that the error is taken from a normal distribu-
tion (also called a Gaussian distribution or bell curve), centred on the target pitch.
A normal distribution looks like Fig. 3.6.

The scenario can be coded as in listing 3.25. A similar method can thicken a
simple oscillation by adding normally distributed additional oscillations as shown
in instrument 2. The gauss opcode takes an argument that governs the spread of
the curve, all effective values being within ± that value from zero.

3.5 Fundamental Opcodes 83

Fig. 3.6 Normal distribution.

Listing 3.25 Normal distribution of error pitch

instr 1
kerr gauss 10
aout oscili 0.8, 440+kerr
outs aout

endin
instr 2

kerr1 gauss 10
kerr2 gauss 10
a0 oscili 0.6, 440
a1 oscili 0.6, 440+kerr1
a2 oscili 0.6, 440+kerr2
outs a0+a1+a2

endin

Different distribution curves can be used for different effects. In addition to the
uniform distribution of random and the normal distribution of gauss Csound pro-
vides many others [80]:

• Linear: The distribution is a straight line from 2 at zero to zero at 1. The
linrand opcode delivers this scaled so values come from zero to krange,
and small values are more likely. It could for example be used for adding a tail
to a note so durations were non-regular as in instrument 1 in listing 3.26.

• Triangular: Centred on zero the distribution goes to zero at ±krange. A simple
example is shown as instrument 2 in listing 3.26.

84 3 Fundamentals

• Exponential: The straight lines of the uniform, linear and triangular distribution
are often unnatural, and a curved distribution is better. The simplest of these is the
exponential distribution λe−λx which describes the time between events which
occur independently at a fixed average rate. Random values from this distribution
(Fig. 3.7) are provided by the exprand opcode, with an argument for λ . The
larger the value of λ the more likely that the provided value will be small. The
average value is 1

λ and while theoretically the value could be infinite in practice
it is not. The value is always positive. A version of this distribution symmetric
about zero is also available as bexprand.

• Poisson: A related distribution gives the probability that a fixed number of events
occur within a fixed period. The opcode poisson returns an integer value of
how many events occurred in the time-window, with an argument that encodes
the probability of the event. Mathematically the probability of getting the integer
value j is e−λ (λ j

j!).
• Cauchy: Similarly shaped to the normal distribution, the cauchy distribution

make values away from zero more likely; that is the distribution curve is flatter.
• Weibull: A more variable distribution is found in the weibull opcode, which

takes two parameters. The first, σ , controls the spread of the distribution while
the second, τ , controls the shape. The graphs are shown in Fig. 3.8, for three
values of τ . When the second parameter is one this is identical to the exponential
distribution; smaller values favour small values and larger delivers more large
values.

• Beta: Another distribution with a controllable shape is the beta distribution
(betarand). It has two parameters, one governing the behaviour at zero and
the other at one, xa−1(1− x)b−1/B where B is just a scale to ensure the distribu-
tion gives a probability in the full range (area under the curve is one). This gives
bell-curve-like shapes when a and b are both greater than 1 (but with a finite
range), when both are 1 this is a uniform distribution, and with a and b both less
than 1 it favours 0 or 1 over intermediate values.

Listing 3.26 Example of use of linrand

instr 1
itail linrand 0.1
p3 += itail
a1 oscili 0.8, 440
out a1

endin
instr 2

itail trirand 0.1
p3 += itail
a1 oscili 0.8, 440
out a1

endin

All these opcodes use a predictable algorithmic process to generate pseudo-
random values which is sufficient for most purposes, and has the feature of being

3.5 Fundamental Opcodes 85

Fig. 3.7 Exponential distribution, with λ = 0.5 (solid), 1.0 (dash) and 1.5 (dots)

Fig. 3.8 Weibull distribution, with τ = 0.5 (solid), 1.0 (dash) and 2.0 (dots)

86 3 Fundamentals

repeatable. If a better chance of being random is required the uniformly distributed
opcode urandom can be used; it uses other activity on the host computer to inject
more randomness.

When considering any process that derives from random values there is the ques-
tion of reproducibility. That is, if one synthesises it again does one want or expect
the results to be identical or different. Both are reasonable expectations, which is
why Csound provides a seed opcode. This allows control over the sequence of
pseudo-random numbers, by selecting a starting value, or seeding from the com-
puter clock which is at least difficult to predict. It is also possible to find the current
state of the PRN generator with the getseed opcode.

3.6 The Orchestra Preprocessor

Csound, like other programming languages, includes support for preprocessing of
its orchestra code. This allows the user to make a number of modifications to text,
which are made before compilation. There are seven preprocessor statements in
Csound, all starting with #:

#include
#define
#undef
#ifdef
#ifndef
#else
#end

Include

The include statement copies the contents of an external text file into the code, at
the exact line where it is found. For instance, the following code

#include "instr1.inc"
schedule(1,1,2,-12,8.00)

where the file instr1.inc contains listing 3.23, will play two sounds with instr 1 (the
first one corresponding to the schedule line in the included file). The file name
should be in double quotes. If the included file is in the same directory as the code,
or the same working directory as a running Csound program, then its name will be
sufficient. If not, the user will need to pass the full path to it (in the usual way used
by the OS platform in which Csound is running).

3.6 The Orchestra Preprocessor 87

Define

The Csound preprocessor has a simple macro system that allows text to be replaced
throughout a program. We can use it in two ways, with or without arguments. The
first form, which is the simplest, is

#define NAME #replacement text#

where $NAME will be substituted by the replacement text, wherever it is found. This
can be used, for instance to set constants that will be used throughout the code.

Listing 3.27 Macro example

#define DURATION #p3#
instr 1

kenv expon 1, $DURATION, 0.001
kpit expon 2, $DURATION, 1
asig oscili kenv*ampdbfs(p4),kpit*cpspch(p5)
out asig

endin
schedule(1,0,1,-6,8.09)

Macros replace the text where it is found, so we can concatenate it with other
text characters by terminating its call with a full stop, for instance

#define OCTAVE #8.#
schedule(1,0,1,-6,$OCTAVE.09)

Macros can be used for any text replacement. For instance, we could use it to
define what type of envelopes we will use:

#define ENV #expon#
instr 1

kenv $ENV 1, p3, 0.001
kpit $ENV 2, p3, 1
asig oscili kenv*ampdbfs(p4),kpit*cpspch(p5)
out asig

endin

Using full capitals for macro names is only a convention, but it is a useful one to
avoid name clashes. The second form of #define allows for arguments:

#define NAME(a’ b’) #replacement text#

where the parameters a, b etc. can be referred to in the macro as $a, $b etc. For
instance, listing 3.28 shows how a macro can take arguments to replace a whole
opcode line.

Listing 3.28 Macro example, with arguments

#define OSC(a’b) #oscili $a, $b#
instr 1

88 3 Fundamentals

kenv expon 1, p3, 0.001
kpit expon 2, p3, 1
asig OSC(kenv*ampdbfs(p4) ’ kpit*cpspch(p5))
out asig

endin
schedule(1,0,1,-6,8.09)

Csound also includes a number of internally defined numeric macros that are
useful for signal processing applications, e.g. the value of π , e etc. (see Table 3.2).

Table 3.2 Numeric macros in Csound
macro value expression
$M E 2.7182818284590452354 e
$M LOG2E 1.4426950408889634074 log2(e)
$M LOG10E 0.43429448190325182765 log10(e)
$M LN2 0.69314718055994530942 loge(2)
$M LN10 2.30258509299404568402 loge(10)
$M PI 3.14159265358979323846 π
$M PI 2 1.57079632679489661923 π/2

$M PI 4 0.78539816339744830962 π/4

$M 1 PI 0.31830988618379067154 1/π

$M 2 PI 0.63661977236758134308 2/π

$M 2 SQRTPI 1.12837916709551257390 2/
√

π

$M SQRT2 1.41421356237309504880
√

2
$M SQRT1 2 0.70710678118654752440 1/

√
π

Finally, a user defined macro can be undefined:

#undefine NAME

Conditionals

To complement the preprocessor functionality, Csound allows for conditionals.
These control the reading of code by the compiler. They use a token definition via
#define, a check for it, and an alternative branch:

#define NAME
#ifdef NAME
#else
#end

A negative check is also available through #ifndef. We can use these condi-
tionals to switch off code that we do not need at certain times. By using #define
PRINTAMP in listing 3.29, we can make it print the amplitudes rather than the fre-
quencies.

3.7 Conclusions 89

Listing 3.29 Preprocessor condititionals

#define PRINTAMP #1#
instr 1

iamp = ampdbfs(p4)
ifreq = cpspch(p5)

#ifdef PRINTAMP
print iamp

#else
print ifreq

#end
out(oscili(iamp,ifreq)
endin
schedule(1,0,1,-6,8.09)

3.7 Conclusions

This chapter explored the essential aspects of Csound programming, from instru-
ment definitions to basic opcodes. We started the text without any means of mak-
ing sound with the software, but at the end we were to create some simple music-
generating instruments. As the scope of this discussion is not wide enough to include
synthesis techniques (that is reserved for later), the types of sounds we were able to
produce were very simple. However, the instrument designs showed the principles
that underlie programming with Csound in a very precise way, and these will be
scaled up as we start to cover the various sound processing applications of the sys-
tem.

With a little experimentation and imagination, the elements presented by this
chapter can be turned into very nice music-making tools. Readers are encouraged to
explore the Csound Reference Manual for more opcodes to experiment with and add
to their instruments. All of the principles shown here are transferable to other unit
generators in the software. As we progress to more advanced concepts, it is worth
coming back to some of the sections in this chapter, which explore the foundations
on which the whole system is constructed.

Chapter 4

Advanced Data Types

Abstract This chapter will explore the more advanced data types in Csound. We will
begin by discussing Strings and manipulating texts. Next, we will explore Csound’s
spectral data types for signal analysis and transformations. Finally, we will discuss
arrays, a data type that acts as a container for other data types.

4.1 Introduction

In Section 3.1, we discussed Csound’s basic data types: i-, k- and a-types. These
allow us to express numeric processing of signals that cover a large area of sound
computing and are the foundation signals used in Csound.

In this chapter, we will cover more advanced data types. These include strings,
spectral-domain signals and arrays. These allow us to extend what we can represent
and work with in Csound, as well as to express new kinds of ideas.

4.2 Strings

Strings are ordered sets of characters and are often thought of as “text”. They may
be constant strings–text surrounded by quotes–or may be values held in S-type vari-
ables. They are useful for specifying paths to files, names of channels, and printing
out messages to the user. They can also be used to create ad hoc data formats.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_4

91

92 4 Advanced Data Types

4.2.1 Usage

String constants are defined using a starting quote, then the text to use for the string,
followed by a closing quote. The quotes are used to mark where the string starts and
ends, and are not part of the string’s value.

prints "Hello World"

In the above example, “Hello World” defines a string constant. It is used with the
prints opcode to print out “Hello World” to the console. Besides the value, strings
also have a length property. This may be retrieved using the strlen opcode, and
may be useful for certain computations.

print strlen("Hello World")

Executing the code in the above example will print out 11.000, which is the num-
ber of characters in the text “Hello World”. String constants are the most common
use of strings in Csound.

print strlen("\t\"Hello World\"\n")

Certain characters require escaping, which means they are processed in a special
way. Escaped characters start with a backslash and are followed by the character to
escape. The valid escape characters are given in Table 4.1.

Table 4.1 Escape sequences

Escape Sequence Description

\a alert bell
\b backspace
\n newline
\r carriage return
\t tab
\\ a single backslash
\" double quote
\{ open brace
\} close brace
\nnn ASCII character code in octal number for-

mat

In addition to single-line strings delimited by quotes, one can use double braces
to define multi-line strings. In the following example, a multi-line string is used to
print four lines of text. The text is delimited by opening double braces ({{) and clos-
ing double braces (}}). All text found within those delimiters is treated as a string
text values and is not processed by Csound. For example, on line 2, the semicolon
and the text following it are read in as part of the text and are not processed as a
comment.

4.2 Strings 93

prints {{Hello
World ; This is not a comment
Hello
World}}

Defining string constants may be enough for many use cases. However, if one
wants to define a string value and refer to it from multiple locations, one can store
the string into an S-type variable.

Svalue = "Hello World"
prints Svalue

In the above example, we have defined a string variable called Svalue and
assigned it the value “Hello World”. We then pass that variable as an argument
to the prints opcode and we get the same “Hello World” message printed to the
console as we did when using a string constant. The difference here from the original
example is that we are now storing the string value into a variable which we can now
refer to in our code by name.

Listing 4.1 String processing

Sformat = "Hello \%s\n"
Smessage sprintf Sformat, "World"
Smessage2 sprintf Sformat, "Csounder"
prints Smessage
prints Smessage2

Here we are using the Sformat as a template string for use with the sprintf
opcode. The Sformat is used twice with two different values, “World” and
“Csounder”. The return values from the calls to sprintf are stored in two vari-
ables, Smessage and Smessage2. When the prints opcode is used with the
two variables, two messages are printed, “Hello World” and “Hello Csounder”.

Csound includes a whole suite of opcodes for string data processing. These can
be used for concatenation, substitution, conversion from numeric data, etc.:

• strlen - obtains the length of a string
• strcat - concatenates two strings
• strcpy - string copy
• strcmp - string comparison.
• sprintf - formatting/conversion of strings
• puts, prints, printf - printing to console
• strindex, strrindex - searching for substrings
• strsub - copying substrings
• strtod - string to floating point conversion
• strtol - string to integer conversion
• strlower - lower case conversion
• strupper - upper case conversion

The following example demonstrates string processing at i-time.

94 4 Advanced Data Types

Listing 4.2 String processing example

instr 1
S1 = p4
S2 sprintf {{
This is p4: \"%s\".
It is a string with %d characters.\n
}}, S1, strlen(S1)
prints S2
endin
schedule(1,0,0, "Hello World !!!")

Note that it is also possible to process strings at performance time, since most
opcodes listed above have k-rate versions for this purpose.

4.3 Spectral-Domain Signals

Spectral-domain signals represent a streaming analysis of an audio signal. They use
their own rates of update, independent of the control frequency, but this is largely
transparent to the end user. Users will use specific families of opcodes to analyse au-
dio signals, process spectral-domain signals and generate new audio signals. There
are two main types of these variables: f-sig and w-sig. The first one is used for stan-
dard spectral audio manipulation, while the second is mostly employed for specialist
data analysis operations.

4.3.1 f-sig Variables

Standard frequency-domain, or f-sig, variables are used to hold time-ordered frames
of spectral data. They are generated by certain spectral analysis opcodes and can
be consumed by a variety of processing units. The data carried by an f-sig can be
transformed back to the time domain via various methods of synthesis. Outside of
audio-processing contexts, a frequency-domain signal may be used as is without
resynthesis, such as for visualising the contents of an audio signal. Signals carried
by f-sig are completely self-describing, which means that additional information on
the format is carried alongside the raw data from opcode to opcode.

Frequency-domain manipulation offers additional methods to work with audio
compared with time-domain processing alone. It allows time and frequencies to be
worked with separately, and can be used to do things like stretching a sound over
time without affecting pitch, or modifying the pitch without affecting the duration
of the sound. The options for processing f-sigs will depend on the source. There
are four sub types of f-sigs. The characteristics of the data, and their accompanying
descriptive information, will depend on these:

4.3 Spectral-Domain Signals 95

1. PVS AMP FREQ: this sub type carries frames (vectors) of amplitude and fre-
quency pairs. Each one of these refers to a given frequency band (bin), in as-
cending order from 0 Hz to the Nyquist frequency (inclusive). At the analysis,
the spectrum is broken into a certain number of these bins, which are equally-
spaced in frequency. Alongside this data, the f-sig carries the analysis frame size,
the spacing between analysis points (hopsize), the window size and type used.
This subtype is employed for Phase Vocoder signals, and is the most commonly
used f-sig.

2. PVS AMP PHASE: this carries frames of amplitude and phase pairs. Similar to
the above, but carrying phase information instead of frequency.

3. PVS COMPLEX: this carries frames of real-imaginary (complex) pairs. Also
similar to the previous subtype, but carrying rectangular rather than polar data.

4. PVS TRACKS: this sub type carries partial track data, rather than a fixed set of
analysis bands. This data contains amplitude, frequency and phase information,
as well as an ID, which can be used to identify a given track. The ordering is
by creation (‘birth’) time, and frequency (in the case of tracks that started at the
same time). Tracks are terminated if no continuation is found, so frame sizes can
vary with time.

As mentioned before, f-sigs run at their own update rate, which is independent
of the instrument control frequency. In order to implement this, spectral signals
carry a frame index that indicates the analysis time, so that opcodes are notified
if a new frame is ready for processing. Data is produced every analysis time point,
which is spaced by hopsize samples. If this spacing is smaller than ksmps, more than
one analysis will be have to performed in a single k-cycle. In some cases, this will
trigger the use of a sliding algorithm. In other situations, when no such processing
is available, an error message will be issued. The special sliding algorithm is in
general very processor-intensive and might not be suitable for real-time operations.
As a rule of thumb, we should try to keep the hopsize larger than ksmps.

Usage

Frequency-domain signals of the amplitude/frequency subtype can be generated
from an analysis of an input signal (eg. with pvsanal), a table (pvstanal) or by
reading a sequence of pre-analysed frames from a file (pvsfread):

fsig pvsanal asig,ifsize,ihopsize,iwsize,iwin
fsig pvstanal ktimescal, kamp, kpitch, ktab,

[kdetect, kwrap, ioffset,ifftsize, ihop, idbthresh]
fsig pvsfread ktime, Sname

Analysis will normally require the frame, hop, and window sizes, as the window
type, to be given as i-time parameters. For file reading, we will require a k-rate time
position from which the current frame is to be read from, and a file name. Empty
f-sigs can also be created/initialised with pvsinit:

96 4 Advanced Data Types

fsig pvsinit ifsize[,ihopsize,iwsize,iwin,iformat]

where the iformat code is 0 for amplitude-frequency, 1 for amplitude-phase, 2 for
complex and 3 for tracks.

Amplitude-frequency frequency-domain signals can be resynthesised using phase
vocoder synthesis (pvsynth) or using additive methods (pvsadsyn):

asig pvsynth fsig
ares pvsadsyn fsrc, inoscs, kfscal

Since an f-sig is self-describing, phase vocoder analysis does not require any
parameters in addition to its input. With additive synthesis, we can determine the
number of bands being resynthesised and use a frequency scaling (transposition)
control. Many processing opcodes can be used between the analysis and synthesis
stages. Listing 4.3 shows a simple example of a frequency shifter, which moves each
analysis component above 300 Hz by 400 Hz.

Listing 4.3 Amplitude-frequency f-sig processing example

instr 1
asig in
fs1 pvsanal asig,2048,256,2048,1
fs2 pvshift fs1,p4,p5
ahr pvsynth fs2
out ahr
endin
schedule(1,0,1,300,400)

Track data f-sigs are generated by the partials opcode from amplitude-
frequency and amplitude-phase signals, and can be further processed and resyn-
thesised using a variety of methods. Details of spectral (frequency-domain) signal
processing will be further discussed in Chapter 14.

4.3.2 w-sig Variables

In addition to f-sigs, Csound includes a non-standard frequency-domain type, the
w-sig, which carries constant-Q, exponentially-spaced frequency-domain data. This
signal is obtained with the spectrum opcode, and can be used in a number of
analysis operations, for pitch and onset detection, display and spectral histogram.
These signals are not currently used for any audio processing, and there are no
resynthesis methods available for them at the moment.

4.4 Arrays 97

4.4 Arrays

Arrays are a homogeneous set of signals where each member of the set is accessed
by its index number. Arrays can be of any type, such as “an array of k-vars” or “an
array of a-vars”. They may also be multi-dimensional, holding rows and columns,
in the case of two dimensions. The number of indices needed to select an element
in an array determines its dimension.

Arrays can be used to pass around a group of signals. For example, an a-array
may be used to pass around sets of audio signals. The audio signal array can then
be thought of as a multichannel signal. They can also be used to hold vectors or
matrices of numbers, at i-time or k-time, for various applications. In addition, it is
possible to create arrays of strings and f-sigs.

Array types have their own syntax for initialisation, setting and read access,
which is slightly different from that of ordinary variables.

4.4.1 Initialisation

An array is created and initialised using the init opcode:

asigs[] init 4

This creates a one-dimensional array of a-type signals. The variable is declared
on its first use as an array using square brackets (i.e. []). The type of the array is
specified using the same convention as other variables, by looking at the first letter
of the variable name:

asigs[][] init 4, 4

This creates a two-dimensional array of a-type signals. It has sizes of four (rows)
and four (columns), and there are 16 elements within the array (4×4 = 16).

Note that the name of the variable is asigs and not asigs[]. The brackets are
used to declare the type, but are not part of the name. After declaring the variable,
subsequent uses of the variable will refer to only the name.

Creating an array and initialising it to a set of values can be verbose, especially
when there are a large number of values to set in the array. An alternative for i-
time and k-rate arrays is to use the fillarray opcode. In the following example,
fillarray is used to create a one-dimensional, five-element array with values 0,
1, 2, 3 and 4. The resulting value is assigned to the ivals variable. As this is the
first time ivals is used, the brackets are necessary to declare the variable’s type.
Subsequent uses only require the variable’s name:

ivals[] fillarray 0, 1, 2, 3, 4
print lenarray(ivals)

The fillarray opcode can be used to initialise arrays after their creation as
well:

98 4 Advanced Data Types

kArr[] init 5
kArr fillarray 0, 1, 2, 3, 4

In this case, we will also be able to use it to initialise two-dimensional arrays.
This is done in row-column order. For instance, a 2×2 matrix such as(

1 2
3 4

)
can be created with the following code:

iArr[][] init 2,2
iArr fillarray 1,2,3,4

4.4.2 Setting Values

To set values within an array, use the name of the array, followed by square brackets,
and an index. You will need to use one index per dimension, and must use the same
number of square brackets as there are dimensions for the array.

ivals[] init 4
ivals2[][] init 4, 4

ivals[0] = 1
ivals[1] = 2

ivals2[0][0] = 1
ivals2[0][1] = 2

In the above example, ivals is initialised as a one-dimensional array with size
four. ivals2 is initialised as a two-dimensional array with sizes four and four. By
default, values within a newly initialised array are set to their default empty value.
For example, i- and k-types default to 0, a-types default to a vector of 0’s, strings
default to empty strings ("") and so on.

Following initialisation, the first element of ivals is set to 1, and the second
element is set to 2. The element number is determined by the index value given
within the square brackets. Indexes are zero-based, meaning the first element is at
index 0, and the last index is at size -1 (in this case, 3). For ivals2, the values of
the first and second elements in the first group of elements are also set to 1 and 2.

Indexes for arrays may be constant numbers, but may also be expressions. In the
following example, the variable indx is used to set the values 1 and 2 for the first
two elements of the array:

ivals[] init 4
indx = 0
ivals[indx] = 1
ivals[indx+1] = 2

4.4 Arrays 99

The use of expressions for indexes is useful for programmatically setting values
within an array, using programming constructs such as branching and loops. These
will be introduced and discussed in Chapter 5.

4.4.3 Reading Values

Reading values from an array uses the same syntax as setting values in an array. As
when writing of values, indexes for the array may be expressions. The following
example prints out the value for each member of the ivals array:

ivals[] fillarray 1,2
print ivals[0]
print ivals[1]

4.4.4 Performance Time

As usual, i-time arrays are only executed at i-time, and thus their index will not
change at performance time (e.g. a k-rate variable or expression for an i-time array
will not force a reading/writing operation to take place). If we require arrays to be
read/set, and indexes to change during performance, we need to use a k-rate array.
It is important to note that even if the array contents do not change, but the indexing
does, then an i-time array is not suitable. This is because indexing and unpacking
(extracting the array value) are i-time operations.

Listing 4.4 k-rate array access example

instr 1
kvals[] init 3
kndx init 0
kvals[0] = 1
kvals[1] = 2
kvals[2] = 3
printk2 kvals[kndx]
kndx = (kndx + 1) % lenarray(kvals)
endin
schedule(1,0,.1)

100 4 Advanced Data Types

4.4.5 String and f-sig Arrays

As indicated above, arrays of strings can be created and manipulated. These allow
indexing at initialisation and performance time, allowing which member is accessed
to change from one k-cycle to another.

Listing 4.5 String array example

instr 1
Svals[] init 2
kval init 0
Svals[0] = "hello"
Svals[1] = "world"
kval = kval % 2
puts Svals[kval],kval+1
kval +=1
endin
schedule(1,0,2/kr)

Similarly, f-sig arrays are also possible, and as they are a performance-time vari-
able type, indexing at k-rate is allowed.

4.4.6 Arithmetic Expressions

Numeric arrays with scalar elements (i-time and k-rate) can also be combined di-
rectly into expressions using other arrays, scalar variables or constants. These can
include addition (+), subtraction (-), multiplication (*), division (/) and exponentia-
tion (ˆ). The following example demonstrates this facility.

Listing 4.6 Arrays in arithmetic expressions

instr 1
iArr[] fillarray 1,2,3
iRes[] = (iArr * iArr) / 2
print iRes[0]
print iRes[1]
print iRes[2]
endin
schedule(1,0,0)

Running this program, we will obtain the following printout at the console:

SECTION 1:
new alloc for instr 1:
instr 1: #i2 = 0.500
instr 1: #i3 = 2.000
instr 1: #i4 = 4.500

4.4 Arrays 101

Note that this is not extended to all types. Arrays of audio vectors (a-type) and
f-sigs cannot be combined in this way, instead each member must be accessed sep-
arately via indexing:

nchnls = 2
instr 1
aout[] init 2
aout[0] diskin "fox.wav"
aout[1] diskin "beats.wav"
aout[0] = aout[0]*0.5
aout[1] = aout[1]*0.5

out aout
endin

Also note that the shorthand expressions +=, *= etc. are not defined for use
with arrays. In this case, we need to write them in full, as in the example above
(aout[0] = aout[0]*0.5).

4.4.7 Arrays and Function tables

Function tables can be considered as one-dimensional numeric arrays, that have
global scope. It is possible to copy data from i-time and k-rate array variables into
tables and vice versa. In the following example, we copy the contents of a function
table into an array.

Listing 4.7 Copying the contents of a function table into an array

gifn ftgen 1,0,4,-2,1,2,3,4
instr 1
iArr[] init ftlen(gifn)
copyf2array iArr,gifn
print iArr[0]
print iArr[1]
print iArr[2]
print iArr[3]
endin
schedule(1,0,0)

Likewise, an array can be copied into a function table.

Listing 4.8 Copying the contents of an array into a function table

giArr[] fillarray 1,2,3,4
instr 1
ifn ftgen 0,0,lenarray(giArr),2,0
copya2ftab giArr,ifn
print table(0,ifn)

102 4 Advanced Data Types

print table(1,ifn)
print table(2,ifn)
print table(3,ifn)
endin
schedule(1,0,0)

The interchangeability between the array and function table representations is
explored by some opcodes. For instance, the standard oscillators (oscil, oscili,
oscil3) can read from an i-time array instead of a table.

Listing 4.9 Using an array in place of a function table

instr 1
iArr[] fillarray p6,p7,p8,p9
amod oscil 1,2,iArr
aout oscili p4,p5*amod

out aout
endin
schedule(1,0,2,0dbfs/2,440,1,2,1.5,1.25)
schedule(1,2,2,0dbfs/2,440,1,1.5,2,1.25)
schedule(1,4,2,0dbfs/2,440,1,1.5,1.25,2)
schedule(1,6,2,0dbfs/2,440,1,1.25,1.5,2)

In this case, a simple arpeggiator is easily created by using a local array as the
source for an oscillator, with varying patterns. Note that these opcodes have the
restriction that array lengths are required to be a power-of-two value.

4.4.8 Audio Arrays

A useful application of audio arrays is to handle stereo and multichannel signals.
In particular, diskin or diskin2 can write to arrays, which can then be passed
directly to the output, as the opcode out can handle multiple channels held in an
array:

nchnls=2
instr 1
aout[] diskin2 "stereo.wav"
out aout
endin

Arrays can also be used to hold various signals that will be mixed together, or fur-
ther processed. In the next example, an a-sig array is initialised with one dimension
of three members. Three vco2 oscillators are then used to write signals into each of
the array member slots. Next their values are summed into the aout variable. The
resulting signal is then sent to the out opcode.

4.5 Conclusions 103

Listing 4.10 Audio arrays handling multiple sources

instr 1
asigs[] init 3
asigs[0] = vco2(p4, p5)
asigs[1] = vco2(p4, p6)
asigs[2] = vco2(p4, p7)
aout = asigs[0] + asigs[1] + asigs[2]

out aout
endin
schedule(1,0,1,0dbfs/6,440,660,880)

In real-world Csound usage, we would likely use a loop to iterate over the array
(which can be of varying length in that case) and the array signal source would also
be separate from the processing code. For example, a source may be the diskin
opcode, reading in multichannel audio files, and the array-processing code may be
contained in a user-defined opcode (see Chapter 7).

4.5 Conclusions

This chapter explored advanced data types in Csound. Strings represent textual
data, useful for creating diagnostic messages and file paths. Spectral-domain sig-
nals provide frequency-domain representations of audio signals, and present many
new kinds of processing methods to the user. Finally, arrays provide ways of work-
ing with sets of ordered, homogenous data, simplifying the handling and processing
of data meant to be processed together.

The data types discussed here open up a great number of options that were not
available in the early versions of Csound. In particular, as will be explained in chap-
ter 5, arrays enable a high level of programmability that goes hand in hand with
control-flow constructs, allowing code to be made more concise and elegant. They
can also be used as containers for vector and matrix operations (such as windowing
and Fourier transforms) that will be very useful in a variety of sound and music
computing applications.

Chapter 5

Control of Flow and Scheduling

Abstract In this chapter, we will examine the language support for program flow
control in various guises. First, the text discusses conditional branching at initialisa-
tion and performance times, and the various syntactical constructs that are used for
that. This will be followed by a look at loops, and their applications. The chapter
continues with an examination of instrument scheduling at i-time and k-rate. Re-
cursive instruments are explored. MIDI scheduling is introduced, and the supports
for event duration control are outlined, together with an overview of the tied-note
mechanism. The text is completed with a discussion of instrument reinitialisation.

5.1 Introduction

Instrument control consists of a specific set of opcodes and syntactical constructs
that is essential to Csound programming. These allow us to control how and when
unit generators are run, and to plan the performance of instruments to a very fine
level of detail. This chapter will outline the main elements of program control of-
fered by the language, such as branching, loops, instantiation, duration manipula-
tion, ties and reinitialisation.

5.2 Program Flow Control

Csound has a complete set of flow control constructs, which can do various types
of branching and iteration (looping). These work both at initialisation and perfor-
mance times, and it is very important to keep the distinction between these two
stages of execution very clear when controlling the flow of a program. As we will
see, depending on the choice of opcodes, the jumps will occur only at i-time or at
perf-time, or both. As before, the advice is to avoid intermixing of lines containing
distinct initialisation and performance code so that the instrument can be read more

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_5

105

106 5 Control of Flow and Scheduling

easily. This is a simple means of avoiding making the mistake of assuming that the
code will or will not execute at a given time.

5.2.1 Conditions

The flow of control in an instrument (or in global space) can be controlled by check-
ing the result of conditions. These involve the checking of a variable against another,
or against a constant, using a comparison operator, which yields a true or false re-
sult. They are also called Boolean expressions:

a < b: true if a is smaller than b
a <= b: true if a is smaller than or equal to b
a > b: true if a is bigger than b
a <= b: true if a is bigger than or equal to b
a == b: true if a is equal to b
a != b: true if a is not equal to b

In this case, a and b are either both scalar variables (i or k), or a variable and
a constant. Furthermore, these operations can be combined into larger expressions
with logical operators that work specifically with Boolean results:

a && b: true only if a AND b are true, false otherwise
a || b: true if a OR b is true, false if both are false

where a and b are Boolean expressions using comparison or logical operators. The
execution of these at i- or k-time will depend on the type of branching employed.1

5.2.2 Branching

Csound allows branches to be created that depend on the value of Boolean expres-
sions. These can be evaluated at initialisation or performance time, or both. Many
of the branching constructs in Csound will use labels, which are names, placed any-
where in the code, that work as markers. The syntax for labels is:

label: ...

Labels are tokens composed of characters, numerals or both, and followed by a
colon (:). They can be inserted at the beginning of any code line, or at a blank line.

1 Also note that the conditional expression will not be evaluated at i-time at all if a k-variable is
employed in it. In this case, any branching will be perf-time only. See Section 5.2.2 for details.

5.2 Program Flow Control 107

Initialisation-time only

The basic branching statement for init-time-only execution is

if <condition> then igoto label

It can also be written in an opcode form:

cigoto condition, label

These statements provide an i-time jump to a label if the condition evaluates to
true. It allows the program to bypass a block of code, for instance

seed 0
ival = linrand(1)
if irnd > 0.5 igoto second
schedule(1,0,1)
second:
schedule(2,0,1)

In this case, depending on the value of the ival variable, the code will schedule
instruments 1 and 2 (false), or instrument 2 only (true). Another typical case is to
select between two exclusive branches, for true and false conditions, respectively.
In this case, we need to employ a second label, and an igoto statement,

igoto label

which always jumps to label (no condition check). So, if we were to select instru-
ment 1 or 2, we could use the following code:

seed 0
ival = linrand(1)
if irnd > 0.5 igoto second
schedule(1,0,1)
igoto end
second:
schedule(2,0,1)
end:

By inserting the end label after the second schedule line, we can jump to it if the
condition is false. In this case, the code will instantiate instrument 1 or 2, but never
both. Initialisation-time branching can be used in global space as in the example
here, or inside instruments.

Note that placing perf-time statements inside these branching blocks might cause
opcodes not to be initialised, which might cause an error, as the statements are ig-
nored at performance time, and all branches are executed. For this reason, i-time-
only branching has to avoid involving any perf-time code. One exception exists,
which is when the tied-note mechanism is invoked, and we can deliberately bypass
initialisation.

108 5 Control of Flow and Scheduling

Initialisation and performance time

A second class of branching statements work at both i- and perf-time. In this case,
we can mix code that is executed at both stages inside the code blocks, without
further concerns. In this case, we can use

if <condition> then goto label

or

cggoto condition, label

with the limitation that the Boolean expression needs to be i-time only (no k-vars
allowed). The jump with no conditions is also

goto label

The usage of these constructs is exactly the same as in the i-time-only case,
but now it can involve perf-time code. An alternative to this, which sometimes can
produce code that is more readable, is given by the form

if <condition> then
...
[elseif <condition> then
...]
[else
...]
endif

which also requires the condition to be init-time only. This form of branching syntax
is closer to other languages, and it can be nested as required. In listing 5.1, we see
the selection of a different sound source depending on a random condition. The
branching works at i-time, where we see the printing to the console of the selected
source name, and at perf-time, where one of the unit generators produces the sound.

Listing 5.1 Branching with if - then - else

seed 0
instr 1
if linrand:i(1) < 0.5 then
prints "oscillator \n"
avar = oscili(p4,cpspch(p5))
else
prints "string model \n"
avar = pluck(p4,cpspch(p5),cpspch(p5),0,1)
endif
out avar

endin
schedule(1,0,1,0dbfs/2,8.00)

5.2 Program Flow Control 109

Performance-time only

The third class of branching statements is composed of the ones that are only effec-
tive at performance time, being completely ignored at the init-pass. The basic form
is

if <condition> then kgoto label

or

ckgoto condition, label

and

kgoto label

The alternative if - then - endif syntax is exactly as before, with the dif-
ference that the perf-time-only form uses k-rate conditions. In programming terms,
this makes a significant difference. We can now select code branches by checking
for values that can change during performance. This allows many new applications.
For instance, in the next example, we monitor the level of an audio signal and mix
the audio from another source if it falls below a certain threshold.

Listing 5.2 Branching with k-rate conditions

instr 1
avar init 0
avar2 = pluck(p4,cpspch(p5),cpspch(p5),0,1)
krms rms avar2
if krms < p4/10 then
a1 expseg 0.001,1,1,p3-1,0.001
avar = oscili(a1*p4,cpspch(p5))

endif
out avar+avar2
endin
schedule(1,0,5,0dbfs/2,8.00)

Note that we initialise avar to 0 since it always gets added to the signal, whether
a source is filling it or not. The only way to guarantee that the variable does not con-
tain garbage left over by a previous instance is to zero it. Various other uses of k-rate
conditions can be devised, as this construct can be very useful in the design of in-
struments. When using performance-time branching it is important to pay attention
to the position of any i-time statements in the code, as these will always be executed,
regardless of where they are placed.

Time-based branching

Csound provides another type of performance-time branching that is not based on a
conditional check, but on time elapsed. This is performed by the following opcode:

110 5 Control of Flow and Scheduling

timout istart, idur, label

where istart determines the start time of the jump, idur, the duration of the
branching and label is the destination of the jump. This relies on an internal clock
that measures instrument time. When this reaches the start time, execution will jump
to the label position, until the duration of the timeout is reached (the instrument
might stop before that, depending, of course, on p3). The example below is a mod-
ification of the instrument in listing 5.2, making the addition of the second source
time based. Note that the duration of the jump is for the remainder of the event.

Listing 5.3 Branching based on elapsed time

instr 1
avar init 0
avar2 = pluck(p4,cpspch(p5),cpspch(p5),0,1)
timout 1,p3-1,sec
kgoto end
sec:
a1 expseg 0.001,1,1,p3-2,0.001
avar = oscili(a1*p4,cpspch(p5))

end:
out avar+avar2

endin
schedule(1,0,5,0dbfs/2,8.00)

Since many aspects of Csound programming are based on the passing of time,
this type of branching can be very useful for a variety of applications. Note, how-
ever, that Csound offers many ways of time-based branching. So the code above
could also be written using timeinsts(), to get the elapsed time of an instru-
ment instance.

Listing 5.4 Another option for time-based branching

instr 1
avar init 0
avar2 = pluck(p4,cpspch(p5),cpspch(p5),0,1)
if timeinsts() > 1 then
a1 expseg 0.001,1,1,p3-3,0.001
avar = oscili(a1*p4,cpspch(p5+.04))

endif
out avar+avar2
endin
schedule(1,0,5,0dbfs/2,8.00)

Also scheduling an instrument at a certain start time from inside another instru-
ment is an option for time-based branching. This will be explained in Section 5.3.1.

5.2 Program Flow Control 111

Conditional assignment

Finally, Csound also provides a simple syntax for making assignments conditional:

xvar = <condition> ? true-expression : false-expression

This works at i- and perf-time:

avar = ivar > 0.5 ?
pluck(p4,ifr,ifr,0,1) : oscili(p4,ifr)

or at perf-time only:

kvar = rms(avar) > 0dbfs/10 ? 1 : 0

This statement can also be nested freely with multiple depth levels:

instr 1
kswitch line 2,p3,-1
avar = kswitch <= 0 ?

oscili(p4,p5) : (kswitch <= 1 ?
vco2(p4,p5) : pluck(p4,p5,p5,0,1))

out avar
endin

5.2.3 Loops

Csound allows the creation of iterative structures, called loops. As with branching,
these can be i-, perf-time or both. The simplest types of loops can be created with
goto etc. statements that make a jump to an earlier code line. Of course, in order
to avoid eternal repetition, we also need a condition to be placed somewhere. For
instance, an i-time loop to create 10 events with instrument 1 can be created with:

icnt init 0
loop:
if icnt == 10 igoto end
schedule(1,icnt,2,0dbfs/2,8.00 + icnt/100)
icnt += 1
igoto loop
end:

Similarly, loops on both init-pass and perf-time, or the latter alone, can be created
with goto, kgoto and their associated conditional statements.

The loop xx facility follows the same paradigm but simplifies the code, as it
sets the increment and the break condition in a compact way:

icnt init 0
loop:

112 5 Control of Flow and Scheduling

schedule(1,icnt,2,0dbfs/2,8.00 + icnt/100)
loop_lt icnt, 1, 10, loop

Until and while

Csound also offers the more common forms of until and while loops. These
have the following syntax:

until <condition> do
...
od

and

while <condition> do
...
od

The difference between them is that until will loop when the condition is not
true, whereas while keeps repeating if the condition is true. For instance, the same
example given to create ten events on instrument 1 has the following form with
while:

icnt init 0
while icnt < 10 do
schedule(1,icnt,2,0dbfs/2,8.00 + icnt/100)
icnt += 1
od

If we want to use until, then the condition test is icnt >= 10. These loops
will work at initialisation and performance time if the condition is i-time, and at
performance time only if the condition is k-rate.

Control-rate loops

The possibility of control-rate loops also opens up a number of interesting avenues,
but a lot of care needs to be taken with these. Very often they can lead to code that
misrepresent the underlying processes. For this reason, it is worth examining this
mechanism in some detail.

Firstly, it is important to understand that a running opcode is an object with a
state. In Csound programming, the syntax simplifies the process for the user, hiding
the complexities of dealing with these objects. This bundles opcode creation, which
involves allocating memory for its state (if needed), with the execution of its init-
and perf-time subroutines in one single code entity. The following line,

a1 oscili p4, p5

5.2 Program Flow Control 113

means three things:

1. Instantiate one (and one only) oscili object
2. Initialise it by running its i-time subroutine
3. Perform audio computation by calling its perf-time subroutine repeatedly, pro-

ducing vectors of ksmps samples and placing them in the output variable a1.

While this helps to keep code tidy and objective, it can lead to a crucial misread-
ing of the program. For instance, these lines in pseudocode

while kcnt < N do
asig[kcnt] opcode kinput[kcnt]
kcnt += 1
od

will instantiate one single copy of opcode and will run it repeatedly for N times
each k-cycle. This is not the same as having N separate instances of the opcode,
which are initialised and performed in succession, placing their output in an audio-
rate array, which is often the intended and expected result.

There are occasions when we want to achieve the effect of running an opcode
repeatedly, and loops can be used for that. To create sets of parallel opcodes, such as
oscillator or filter banks, loops are not appropriate. For these applications, we should
look to employ recursion, which will be explored later in this and other chapters.

Note that functions do not have state, by definition, and thus can be used without
any concerns in a k-rate loop. They are invoked according to the rate of their input,
and so can run exclusively at perf-time. With these, it is possible, with a bit more
code, to realise designs such as a bank of sinusoidal oscillators. In the example
shown in listing 5.5, we break down an oscillator into its components and recreate
it from scratch so that we can generate a sound by adding sine waves of different
amplitudes and frequencies. See also Section 3.5.2 for details on oscillators.

Listing 5.5 Control-rate loops for a bank of oscillators

instr 1
apha init 0
kph[] fillarray 0,0,0
kamp[] fillarray 1,0.1,0.5
kfr[] fillarray p5,p5*2.7,p5*3.1
kcnt = 0
asig = 0
while kcnt < lenarray(kph) &&

kcnt < lenarray(kamp) &&
kcnt < lenarray(kfr) do

ksmp = 0
kpha = kph[kcnt]
kf = kfr[kcnt]
while ksmp < ksmps do
kpha += (2*$M_PI*kf/sr)%(2*$M_PI)

114 5 Control of Flow and Scheduling

vaset(kpha,ksmp,apha)
ksmp += 1
od
asig += kamp[kcnt]*sin(apha)
kph[kcnt] = kpha
kcnt += 1

od
k1 expseg p4,p3,0.001*p4
out asig*k1
endin
schedule(1,0,1,0dbfs/2,300)

In this example, there is one loop nested inside another. The outer loop iterates
over the number of oscillators needed, which is determined by the sizes of the phase,
amplitude and frequency arrays. Each oscillator is made up of a phase update, a sine
function lookup and amplitude scaling. The inner loop takes care of updating the
phase. Since we are generating an audio signal, we need to create a phase vector
apha sample by sample, which will contain the phases corresponding to the fre-
quency of the oscillator. We use the opcode vaset to set the values of each sample
in apha, so the loop iterates over ksmps. Once this is done, we can generate the sig-
nal by calling the sin() function and scaling its output. Note that we have avoided
using all but one opcode in this loop. The one we employed is safe because it is ac-
tually stateless (it only copies a scalar k-var value into a position in an a-var vector),
and so it works like a function. The example uses an envelope to create a decay to
make it a percussive sound.

5.3 Scheduling

As we have already seen in earlier chapters, for instruments to execute and produce
sound, they need to be instantiated in the engine. Csound has two main mechanisms
for scheduling instances: real-time events and the numeric score. In this chapter, we
will concentrate on the former, and the latter will be discussed in Chapter 8.

With regards to the output audio stream, events are scheduled at k-period bound-
aries. Their start time and duration are rounded to the nearest control block time.
This means that there is a maximum quantisation error of 0.5

kr . At the default value
for kr (=4410, ksmps=10), this is equivalent to 0.11 ms, which is negligible. Even
at the more common setting of ksmps = 64, the error is less than one millisecond.
However, if this is not good enough, it is possible to run Csound at ksmps=1, or
use the special --sample-accurate option (with ksmps > 1), for sample-level
time event quantisation.

It is possible to issue new real-time events during performance in an instrument.
When these are scheduled, their start time is relative to the next k-cycle, for the
same reason as above, since Csound will sense new events in the intervals between
computation. So, time 0 refers to this, even in sample-accurate mode, as the process-

5.3 Scheduling 115

ing of a k-cycle is not interrupted when a new event is scheduled midway through
it. This is also the behaviour if events are placed from an external source (e.g. a
frontend through an API call).

5.3.1 Performance-Time Event Generation

So far, we have been using i-time scheduling in global space. But it is equally pos-
sible to place these schedule calls in an instrument and use them to instantiate other
instruments. This can be done also at performance time, as indicated above, using
the following opcode:

event Sop, kins, kst, kdur, [, kp4, ...]

Sop - a string containing a single character identifying the event type. Valid
characters are i for instrument events, f for function table creation and e for
program termination.
kins - instrument identifier, can be a number, i- or k-var, or a string if the in-
strument uses a name instead of a number for ID. This is parameter 1 (p1).
kst - start time (p2).
kdur - duration (p3).
kp4, ... - optional parameters (p4, ...)

This line will execute at every k-period, so it might need to be guarded by a
conditional statement, otherwise new events will be fired very rapidly. In listing
5.6, we can see an example of an instrument that plays a sequence of events on
another instrument during its performance time.

Listing 5.6 Performance-time event scheduling

instr 1
ktime = timeinsts()
k1 init 1
if ktime%1 == 0 then
event "i",2,0,2,p4,p5+ktime/100
endif
endin

instr 2
k1 expon 1,p3,0.001
a1 oscili p4*k1,cpspch(p5)
out a1
endin
schedule(1,0,10,0dbfs/2,8.00)

116 5 Control of Flow and Scheduling

In addition to event, we also have its init-time-only version event i, which
follows the same syntax, but does not run during performance. Finally, another op-
tion for perf-time scheduling is given by schedkwhen, which responds to a trigger,
and can also control the number of simultaneously running events.

5.3.2 Recursion

Since we can schedule one instrument from another, it follows that we can also
make an instrument schedule itself. This is a form of recursion [2], and it can be
used for various applications. One of these is to create multiple parallel copies of
instruments that implement banks of operators. For instance, we can implement the
bank of sinusoidal oscillators in listing 5.5 with recursive scheduling of instruments,
using a loop.

Listing 5.7 Bank of oscillators using recursion

instr 1
if p6 = 0 then
iamp[]fillarray p4*0.1,p4*0.5
ifr[] fillarray p5*2.7,p5*3.1
icnt = 0
while icnt < lenarray(iamp) &&

icnt < lenarray(ifr) do
schedule(1,0,p3,iamp[icnt],ifr[icnt],1)
icnt += 1

od
endif
k1 expon 1,p3,0.001
a1 oscili p4,p5

out a1*k1
endin
schedule(1,0,2,0dbfs/4,300,0)

We can also use recursion to create streams or clouds of events with very little
effort, by giving a start time offset to each new recursive instance. In this case, there
is no actual need for conditional checks, as long as we set the value of p2 no smaller
than one control period (otherwise we would enter an infinite recursion at i-time).
Here’s a minimal instrument that will create a stream of sounds with random pitches
and amplitudes (within a certain range).

Listing 5.8 Bank of oscillators using recursion

seed 0
instr 1
k1 expon 1,p3,0.001
a1 oscili p4,p5

5.3 Scheduling 117

out a1*k1
schedule(1,.1,.5,

linrand(0dbfs/10),
750+linrand(500))

endin
schedule(1,0,1,0dbfs/4,300)

Each new event comes 0.1 seconds after the previous and lasts for 0.5 seconds.
The sequence is never-ending; to stop we need to either stop Csound or compile a
new instrument 1 without the recursion. It is possible to create all manner of sophis-
ticated recursive patterns with this approach.

5.3.3 MIDI Notes

Instruments can also be instantiated through MIDI NOTE ON channel messages.
In this case, the event duration will be indeterminate, and the instance is killed by
a corresponding NOTE OFF message. These messages carry two parameters, note
number and velocity. The first one is generally used to control an instrument pitch,
while the other is often mapped to amplitude. The NOTE ON - NOTE OFF pair is
matched by a share note number. More details on the operation of Csound’s MIDI
subsystem will be discussed in Chapter 9.

5.3.4 Duration Control

Instruments can be scheduled to run indefinitely, in events of indeterminate duration
that are similar to MIDI notes. We can do this by setting their duration (p3) to a
negative value. In this case, to kill this instance, we need to send an event with a
negative matching p1.

Listing 5.9 Indeterminate-duration event example

instr 1
a1 oscili p4,cpspch(p5)
out a1
endin
schedule(1,0,-1,0dbfs/2,8.00)
schedule(-1,5,1,0dbfs/2,8.00)

It is possible to use fractional instrument numbers to mark specific instances, and
kill them separately by matching their p1 with a negative value. The syntax for this
is num.instance:

schedule(2.1,0,-1,0dbfs/2,8.00)
schedule(-2.1,5,1,0dbfs/2,8.00)

118 5 Control of Flow and Scheduling

schedule(2.2,1,-1,0dbfs/2,8.07)
schedule(-2.2,4,1,0dbfs/2,8.07)

The important thing to remember is that in these situations, p3 is invalid as a
duration, and we cannot use it in an instrument (e.g. as the duration of an envelope).
For this purpose, Csound provides a series of envelope generators with an associ-
ated release segment. These will hold their last-generated value until deactivation
is sensed, and will enter the release phase at that time. In this case the instrument
duration is extended by this extra time. Most opcode generators will have a release-
time version, which is marked by an ‘r’ added to the opcode name: linsegr is the
r-version of linseg, expsegr of expseg, linenr of linen etc. Note that
these can also be used in definite-duration events, and will extend the p3 duration
by the release period defined for the envelope.

For instance, the envelope

k1 expsegr 1,1,0.001,0.1,0.001

goes from 1 to 0.001 in 1 s, and holds that value until release time. This extends the
instrument duration for 0.1 s, in which the envelope goes to its final value 0.001.
The two final parameters determine release time and end value. If the instance is
deactivated before 1 s, it jumps straight into its release segment. It can be used in
the instrument in 5.6, to shape the sound amplitude.

Listing 5.10 Using a release-time envelope with an indefinite-duration event

instr 1
k1 expsegr 1,1,0.001,0.1,0.001
a1 oscili p4*k1,cpspch(p5)
out a1
endin
schedule(1,0,-1,0dbfs/2,8.00)
schedule(-1,1,1,0dbfs/2,8.00)

Similarly, the other release time will add a final segment to the envelope, which
extends the duration of the event. If multiple opcodes of this type are used, with
different release times, the extra time will be equivalent to the longest of these. The
Reference Manual can be consulted for the details of r-type envelope generators.

5.3.5 Ties

Together with negative (held) durations, Csound has a mechanism for tied notes. The
principle here is that one instance can take the space of, and replace, an existing one
that has been held indefinitely. This happens when an event with matching (positive)
p1 follows an indefinite duration one. If this new note has a positive p3, then it will
be the end of the tie, otherwise the tie can carry on to the next one.

In order to make the new event ‘tie’ to the previous one, it is important to avoid
abrupt changes in the sound waveform. For instance, we need to stop the envelope

5.3 Scheduling 119

cutting the sound, and also make the oscillator(s) continue from their previous state,
without resetting their phase. Other opcodes and sound synthesis methods will also
have initialisation steps that might need to be bypassed.

For this purpose, Csound provides some opcodes to detect the existence of a tied
note, and to make conditional jumps in the presence of one:

ival tival

will set ival to one on a tied event, and zero otherwise, whereas

tigoto label

executes a conditional jump at i-time (like igoto) only on a tie. This is used to
jump the initialisation of some opcodes, such as envelopes, which allow it. There
are, however, other opcodes that cannot be run without initialisation, so this mecha-
nism cannot be used with them. They will report an error to alert the user that they
need to be initialised.

The following example in listing 5.11 demonstrates the tied-note mechanism
with a very simple instrument consisting of an envelope, a sawtooth oscillator
(vco2) and a filter (moogladder). The tied note is detected in itie, and this
value is used to skip parts of the oscillator and filter initialisation. These opcodes
have optional parameters that can be set to the tival value to control when this is
to be done (check the Reference Manual for further information on this).

We also use the conditional jump to skip the envelope initialisation. This means
that the duration parameters are not changed. Additionally, its internal time count is
not reset and continues forward. Since we set the original envelope duration to the
absolute value of the p3 in the first event, this should be used as the total duration
of all of the tied events. We set the p3 of whatever is the final note to the remaining
duration after these. If no time remains, we close the tie with an event of 0 duration.

Listing 5.11 Tied event example

instr 1
itie tival
tigoto dur
env:
ist = p2
idur = abs(p3)
k1 linen 1,0.2,idur,2
dur:
if itie == 0 igoto osc
iend = idur + ist - p2
p3 = iend > 0 ? iend : 0

osc:
a1 vco2 p4*k1,cpspch(p5),0,itie
a2 moogladder a1,1000+k1*3000,.7,itie
out a1

endin
schedule(1,0,-6,0dbfs/2,8.00)

120 5 Control of Flow and Scheduling

schedule(1,2,-1,0dbfs/2,8.07)
schedule(1,3,-1,0dbfs/2,8.06)
schedule(1,4,1,0dbfs/2,8.05)

Note that treating ties often involves designing a number of conditional branches
in the code (as in the example above). In order to make multiple concurrent tied
streams the fractional form for p1 can be used to identify specific instances of a
given instrument.

5.4 Reinitialisation

The initialisation pass of an instrument can be repeated more than once, through
reinitialisation. This interrupts performance while the init-pass is executed again.
This can be done for selected portions of an instrument code, or for all of it:

reinit label

will start a reinitialisation pass from label to the end of the instrument or the
rireturn opcode, whichever is found first. The next example illustrates reinitial-
isation. During performance, timout jumps to the end for 1

4 of the total duration.
After this, a reinitialisation stage starts from the top, and the timout counter is
reset. This makes it start jumping to the end again for the same length, followed by
another reinit-pass. This is repeated yet another time:

instr 1
icnt init 1
top:
timout 0, p3/4,end
reinit top
print icnt
icnt += 1
rireturn
end:
endin
schedule(1,0,1)

The printout to the console shows how the i-time variables get updated during
reinitialisation:

SECTION 1:
new alloc for instr 1:
instr 1: icnt = 0.000
instr 1: icnt = 1.000
instr 1: icnt = 2.000
instr 1: icnt = 3.000

5.4 Reinitialisation 121

Another example shows how reinit can be used to reinitialise k-time vari-
ables:

instr 1
puts "start", 1
top:
puts "reinit", 1
kcnt init 0
if kcnt > 10 then
reinit top
endif
printk2 kcnt
kcnt += 1
endin
schedule(1,0,0.005)

This will print out the following:

start
reinit
i1 0.00000
i1 1.00000
i1 2.00000
i1 3.00000
i1 4.00000
i1 5.00000
i1 6.00000
i1 7.00000
i1 8.00000
i1 9.00000
i1 10.00000
reinit
i1 0.00000
i1 1.00000
i1 2.00000
i1 3.00000
i1 4.00000
i1 5.00000
i1 6.00000
i1 7.00000
i1 8.00000
i1 9.00000
i1 10.00000

Csound also offers a special goto jump, active only at reinit time:

rigoto label

122 5 Control of Flow and Scheduling

Any perf-time opcodes inside a reinit block will be reinitialised, as shown in the
example above, with timout.

5.5 Compilation

In addition to being able to instantiate, initialise, perform and reinitialise, the
Csound language is also capable of compiling new code on the fly. This can be
done via a pair of init-time opcodes:

ires compilestr Sorch
ires compileorc Sfilename

The first opcode takes in a string containing the code to compiled, and the second
the name of a plain text file containing the Csound program, returning a status code
(0 means successful compilation). These opcodes allow new instruments to be added
to an existing performance. Once they are compiled, they can be scheduled like any
other existing instrument. If an instrument has the same number as an existing one,
it will replace the previous version. New events will use the new definition, but any
running instance will not be touched.

In listing 5.12, we show a simple example of how an instrument can be compiled
by another. Instrument 1 contains code to run at i-time only, which will compile a
string provided as an argument, and then schedule the new instrument, if successful.

Listing 5.12 Compiling code provided as a string argument

instr 1
S1 = p4
if compilestr(S1) == 0 then
schedule(2,0,1,p5,p6)
endif
endin
schedule(1,0,0,
{{
instr 2
k1 expon 1,p3,0.001
a1 oscili p4*k1,p5
out a1
endin
}}, 0dbfs/2, 440)

Although in this case we have a more complicated way of doing something that
is quite straightforward, the code above demonstrates a powerful feature of Csound.
This allows new instruments, provided either as strings or in a text file, to be dy-
namically added to a running engine.

5.6 Conclusions 123

5.6 Conclusions

This chapter explored the many ways in which we can control instruments in a
Csound program. We have explored the standard flow control structures, such as
branching and looping, and saw how they are implemented within the language, in
their initialisation and performance-time forms. In particular, we saw what to expect
when opcodes are used inside loops, and that we need to be especially careful not to
misread the code.

The various details of how instruments are scheduled were discussed. We ex-
plored how instruments can instantiate other instruments at both init and perfor-
mance time. The useful device of recursion, when an instrument schedules itself,
was explored with two basic examples. The text also studied how event durations
can be manipulated, and how the tied-note mechanism can be used to join up
sequences of events. The possibility of reinitialisation was introduced as another
means of controlling the execution of Csound instruments.

Chapter 6

Signal Graphs and Busses

Abstract This chapter discusses how instruments are constructed as signal graphs,
looking at how unit generators (opcodes, functions, operators) are linked together
through the use of variables. We also detail the order of execution of code inside
instruments, and how instances of the same or different instruments are sequenced
inside a k-cycle. We introduce the notion of patch-cords and busses, as metaphors
for the various types of connections that we can make in Csound program code.
To conclude the chapter, the most important mechanisms for passing data between
separate instances of instruments are examined in detail.

6.1 Introduction

Although Csound instruments are independent code objects, it is possible to con-
nect them together in different ways. This is often required, if for instance we want
to use audio effects that apply to all sound-generating instruments, rather than to
each instance separately. This is a typical feature of music systems such as syn-
thesis workstations and sequencing and multi-tracking programs. In these types of
applications, ideally we have a single instrument instance implementing the desired
effect, to which we send audio from various sources in different instruments. Con-
necting instances in this way creates dependencies between parts of the code, and it
is important to understand how the signal flows from origin to destination, and how
the execution of the various elements is ordered.

In this chapter, we will first review how unit generators are connected together
to make up the instrument signal graph, looking at how variables are used to link
them up and how the execution of code is sequenced. We will also look at how
instances of the same and of different instruments are ordered in a k-cycle. This will
be followed by a detailed discussion of various methods that can be used to set up
connections between instruments.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

125
6

126 6 Signal Graphs and Busses

6.2 Signal Graphs

A Csound instrument can be described as a graph of unit generators connected to-
gether using variables, which can be thought of, conceptually, as patch-cords. This
metaphor is useful to understand their operation, although it should be stressed that
there are other, equally valid, interpretations of the role and behaviour of Csound
program code.

In any case, whenever we connect one unit generator (opcode, function, arith-
metic operator) into another, such a patch-cord will be involved, either explicitly or
implicitly. We can picture an instrument as a graph whose nodes are its unit genera-
tors, and the connecting lines, its variables. For instance, we can make an oscillator
modulate the amplitude of another with the following code excerpt:

asig oscili oscili(kndx,kfm)+p4,kfc

This creates the signal graph shown in Fig. 6.1. The compiler will create two
synthetic k-rate variables, and use them to connect the first oscillator to the addition
operator, and the output of this to the second oscillator amplitude. These variables,
marked with a # and hidden from the user, are crucial to define the graph unambigu-
ously. In other words, the single line of code is unwrapped internally in these three
steps:

#k1 oscili kndx,kfm
#k2 = p4 + #k1
asig oscili #k2,kfc

kfmkndx
��

��
�

#k1

˜

+��p4
�

�kfc
#k2
��

�̃�
�asig

Fig. 6.1 The representation of a signal graph in Csound, which involves two synthetic variables
created by the compiler to connect the unit generators defined in it

The compiler creates the structure of the signal graph from the user code. The
actual executable form of this is only formed when an instance of the instrument is

6.3 Execution Order 127

allocated. At that point the memory for the variables, as well as for each opcode,
is reserved, and the connections to the unit generators are established. Any init-
pass routine that exists in the instrument is then run. When the instance performs,
the order in which the different elements are placed in the code will determine the
execution sequence. In the example above, this is easy to determine:

1. The values of the variables kndx and kfm are read by the modulator oscillator,
which then executes its perf-time routine, storing the result in the #k1 memory
location.

2. The value found in p4 is added to that in #k1 and stored in #k2.
3. The audio-rate oscillator takes the values in #k2 and kfc as its amplitude and

frequency and produces a vector of ksmps samples that is stored in asig.

Note that the order is determined line by line. So, if the instrument were written
as

k1 init 0
asig oscili k1+p4,kfc
k1 oscili kndx, kfm

then the execution order would be different, with the audio oscillator (the carrier)
producing its output before the modulator runs in the same k-cycle. Note that in
order for the compiler to accept this, we need to explicitly initialise the variable k1.
This also means that the modulator will be delayed in relation to the carrier. This
is not a natural way to set up an instrument, but in some situations we might want
to re-order the signal graph to realise a specific effect. For instance, if we want to
create a feedback path, we need to order things in a precise way:

asig init 0
asig oscili asig+p4,kfc

In this case, we are feeding the output of the oscillator into its own amplitude
input, a set up that is called feedback amplitude modulation (FBAM) [59]. There
will always be a one-ksmps block delay in the feedback path. In Csound, it is easy
to be very clear about how the signal path and execution sequence are constructed,
with the language generally helping us to use the most natural order of operations
without any extra effort.

6.3 Execution Order

All active instances of instruments will perform once in each k-cycle. While the
execution order of unit generators in an instrument is determined by their place
in the code, the performance of instruments and their instances is organised in a
different way, although this is also clear and well defined. The sequence of execution
is particularly important when we start connecting one instrument to another via the
various types of busses.

128 6 Signal Graphs and Busses

6.3.1 Instances

When two or more instances of the same instrument are running at the same time,
their order of performance is defined by the following rules:

1. if the value of their p1 is the same, then they are ordered by their instantiation
time; if that is the same, then they are performed according to the event order.

2. if the value of their p1 differs (in the case of fractional values for p1, which can
be used to identify specific instances), then the order is determined by ascending
p1.

For instance, the following events with p4 set to 1, 2, 3 (to label their instances)

schedule(1,0,1,1)
schedule(1,0,2,2)
schedule(1,1,1,3)

will be performed in order 1, 2 (0-1 seconds), and then 2, 3 (1-2 seconds). However,
the following events with different p1 values

schedule(1.03,0,1,1)
schedule(1.02,0,2,2)
schedule(1.01,1,1,3)

will execute in the order (p4 labels) 2, 1 and 3, 2. So a fractional p1 value can also
be used to control the sequence in which instances are performed.

Note that these rules apply only to performance-time execution, which is nor-
mally where they matter more. The init-time sequence, in the case of events of the
same instrument starting at the same time, is always determined by their instantia-
tion order, and disregards any difference in the values of their p1.

6.3.2 Instruments

The execution sequence of instruments at performance time is determined by their
number, in ascending order. So in a k-cycle, lower-number instrument instances are
performed first. For this reason, if we have an instrument that is supposed to receive
input from others, then we should try to give it a high number. If an instance of
one instrument receives audio or control signals from a higher-order source, then
there will always be a one-k-period delay in relation to it. While this might not be
significant at times, it can be crucial in some applications, and so it is important to
make sure the order of performance is exactly as we want it.

Again, these rules are only relevant to performance time. The order of init-pass
execution is determined by the time/sequence in which events are scheduled, re-
gardless of instrument order. In summary, within one k-cycle, opcodes, functions
and operators are executed in the order they appear in an instrument (and according

6.4 Busses 129

to specific precedence rules in the case of arithmetic); instances of the same instru-
ment are ordered by schedule time and sequence, or by ascending p1; instances of
different instruments are executed in ascending order.

Named instruments

Named instruments are transformed internally into numbers, in the order in which
they appear in the orchestra. To achieve a desired sequence of execution, we must
take notice of this and organise them by their line numbers. We should also avoid
mixing named and numbered instruments.

6.4 Busses

An extension of the patch-cord metaphor, the bus is an element used to take signals
from one or more sources and deliver them to one or more destinations. The end
points of a bus are different instrument instances, and so they work as global patch-
cords between different parts of the code. The role of a bus is very important if we
want to implement things such as global effects and various types of modulation
connections. Busses can be implemented in a variety of ways. In this section, we
will examine the different possibilities and their applications.

6.4.1 Global Variables

Global variables are the original means of connecting instruments. Any internal type
can be made global by adding a g in front of its name, including arrays:

gasig, gavar[]
gksig, gkvar[]
gival, givar[]
gfsig, gfsp[]
gStr, gSname[]

As with local variables, before global variables are used as input, they need to
be explicitly declared or used as an output. In many cases, this means we need to
initialise them in global space, before they can be used as busses:

gasig init 0

The usual practice is to add the source signal to the bus, possibly with a scaling
factor (p6 in this case):

instr 1
asrc oscili p4, p5

130 6 Signal Graphs and Busses

out asrc
gasig += asrc*p6

endin

where the += operator adds the right-hand side to the contents of the left-hand side.
The reason for doing this is to avoid an existing source signal being overwritten by
another. By summing into the bus, instead of assigning to it, we can guarantee that
multiple sources can use it. At a higher-order instrument, we can read the bus, and
use the signal:

instr 100
arev reverb gasig, 3
out arev
endin

The bus signal can feed other instruments as required. Once all destinations have
read the bus, we need to clear it. This is very important, because as the signals are
summed into it, the bus will accumulate and grow each k-cycle, if left uncleared.
We can do this inside the last instrument using it, or in one with the specific purpose
of clearing busses:

instr 1000
gasig = 0
endin

In addition to audio variables, it is also possible to send other types of signals
in global variable busses, including controls, spectral signals and strings. Arrays
of global variables can also be very useful if we want to create flexible means of
assigning busses. Listing 6.1 shows how we can use an array to route signals to
different effects, depending on an instrument parameter (p6).

Listing 6.1 Using an array to route signals to two different effects

gabuss[] init 2

instr 1
aenv expseg 0.001,0.01,1,p3,0.001
asig oscili aenv*p4,p5
out asig
gabuss[p6] = asig*0.5 + gabuss[p6]
schedule(1,0.1,0.3,

rnd(0.1)*0dbfs,
500+gauss(100),
int(rnd(1.99)))

endin
schedule(1,0,0.5,

0dbfs*0.1,
500,0)

6.4 Busses 131

instr 100
arev reverb gabuss[0],3
out arev
gabuss[0] = 0
endin
schedule(100,0,-1)

instr 101
adel comb gabuss[1],4,0.6
out adel
gabuss[1] = 0
endin
schedule(101,0,-1)

The sound-generating instrument 1 calls itself recursively, randomly selecting
one of the two effect busses. Note that we have to explicitly add the signal to the
bus, with the line

gabuss[p6] = asig*0.5 + gabuss[p6]

as the += operator is not defined for array variables.

6.4.2 Tables

Function tables are another type of global objects that can be used to route signals
from instrument to instrument. Because they can store longer chunks of data, we can
also use them to hold signals for a certain amount of time before they are consumed,
and this can allow the reading and writing to the bus to become decoupled, asyn-
chronous. In listing 6.2, we have an application of this principle. A function table is
allocated to have a 5-second length, rounded to a complete number of ksmps blocks.
Instrument 1 writes to it, and instrument 2 reads from it, backwards. The result is
a reverse-playback effect. The code uses one source and one destination, but it is
possible to adapt for multiple end points.

Listing 6.2 Using a function table to pass audio signals asynchronously from one instrument to
another

idur = 5
isamps = round(idur*sr/ksmps)*ksmps
gifn ftgen 0,0,-isamps,2,0

instr 1
kpos init 0
asig inch 1
tablew asig,a(kpos),gifn
kpos += ksmps

132 6 Signal Graphs and Busses

kpos = kpos == ftlen(gifn) ? 0 : kpos
endin
schedule(1,0,-1)

instr 2
kpos init ftlen(gifn)
asig table a(kpos),gifn
kpos -= ksmps
kpos = kpos == 0 ? ftlen(gifn) : kpos
out asig
endin
schedule(2,0,-1)

Tables can also be used to route conveniently control signals, as these consist of
single variables and so each table slot can hold a control value. Using tablew and
table opcodes, we can write and read these signals. A more complex approach is
provided by the modmatrix opcode, which uses function tables to create complex
routings of modulation signals. It uses three tables containing the input parameters,
the modulation signals and the scaling values to be applied. It writes the resulting
control signals into another table:

R = I +M×S (6.1)

where I is a vector of size n containing the input parameters, M is a vector of size
m containing the modulation values, and S is a scaling matrix of size m× n with
the scaling gains for each modulation signal. The resulting vector R contains the
combined modulation sources and inputs for each parameter n. For example, let’s
say we have two modulation sources, three parameters and a modulation matrix to
combine these:

(
0.4 0.6 0.7

)
+
(
0.75 0.25

)×(
0.1 0.5 0.2
0.5 0.1 0.3

)
=
(
0.6 1.0 0.925

)
(6.2)

The vectors and matrix are defined as function tables. In the case of eq. 6.2, we
would have:

ipar ftgen 1,0,3,-2, 0.4, 0.6, 0.7
imod ftgen 2,0,2,-2, 0.75, 0.25
iscal ftgen 3,0,6,-2,0.1,0.5,0.2,0.5,0.1,0.3
ires ftgen 4,0,3,2, 0,0,0

where ipar, imod, and iscal are the tables for input parameters, modulation
sources and scaling matrix, respectively. Note that the matrix is written in row,
column format. The results are held in a table of size three, which is represented
by ires. Tables can be initialised using any GEN routine (here we used GEN 2,
which just copies its parameter values to each table position). The modmatrix
opcode itself is defined as:

6.4 Busses 133

modmatrix ires, imod, ipar, iscal, inm, inn, kupdt

The first four parameters are the table numbers for results, modulation, parame-
ters and scaling matrix. The arguments inm and inn are the number of sources and
parameters, respectively. The kupdt parameter is set to non-zero to indicate that
the scaling matrix has changed. This should be zero otherwise, to make the opcode
run efficiently. It is expected that the modulation signals and input parameters will
be written into the table as necessary (using tablew), and that the results will be
read using table at every k-cycle. Only one instance of the opcode is needed to
set a modulation matrix, and the sources and destinations can be spread out through
the instruments in the code. A simple example using the tables above is shown in
listing 6.3

Listing 6.3 Modulation matrix example using two sources and three destinations

gipar ftgen 1, 0, 3, -2, 0.4, 0.6, 0.7
gimod ftgen 2, 0, 2, -2, 0, 0
giscal ftgen 3, 0, 6, -2,0.1,0.5,0.2,0.5,0.1,0.3
gires ftgen 4, 0,3,2,0,0,0

instr 1
k1 oscili p4,p5
tablew k1,p6,gimod
endin
schedule(1,0,-1,1,0.93,0)
schedule(1,0,-1,1,2.05,1)

instr 2
kenv linen p4,0.01,p3,0.1
k1 table p6,gires
a1 oscili k1*kenv,p5
out a1
schedule(2,0.5,1.5,

rnd(0.1)*0dbfs,
500+gauss(400),
int(rnd(2.99)))

endin
schedule(2,0,1.5,0dbfs*0.1,500,0)

instr 10
kupdt init 1
modmatrix gires,gimod,gipar,giscal,2,3,kupdt
kudpt = 0
endin
schedule(10,0,-1)

In this example, we have two modulation sources (low-frequency oscillators,
LFOs, at 0.93 and 2.05 Hz), and distribute a combination of these modulations to

134 6 Signal Graphs and Busses

three independent destinations, modulating their amplitude. The sound generating
instrument 2 is recursively called, randomly picking a different destination (from
gires) number out of three choices (p6). In this example, we do not update the
scaling matrix, and also keep the parameter offset values fixed (in gipar). Note
that the modulation table values will change every k-cycle (0.75 and 0.25 were only
used as sample values for eq. 6.2), as the LFOs oscillate, so we just initialise the
gimod table with zeros.

6.4.3 Software Bus

Csound also includes a very powerful software bus, which can be used by frontends
and hosts to connect with external controls and audio signals, via API calls. It is
also available to be used internally by instruments to communicate with each other.
In these applications, it can replace or add to the other methods discussed above. It
can be used freely with i-, k-, a- and S-variables.

The software bus works with a system of named channels, which can be opened
for reading, writing and bidirectionally. When used internally, they always work in
bidirectional mode (as we will be both sending and receiving data inside a Csound
orchestra). These channels can optionally be declared and initialised using the fol-
lowing opcodes for audio, strings and control data, respectively:

chn_a Sname, imode
chn_S Sname, imode
chn_k Sname, imode

Channels are given an Sname, which will identify them, and set read-only
(imode = 1), write-only (2), or both (3). To set the value of a channel, we use

chnset xvar, Sname

where the type of xvar will depend on the kind of channel being set (string, audio,
or control). For audio channels, we also have

chnmix avar, Sname

for summing into a channel, rather than overwriting it. Once we have consumed the
audio, we need to clear it (as we have seen with global variables):

chnclear Sname

Once a channel exists, data can be read from it using

xvar chnget Sname

The software bus can be used instead of global variables. Listing 6.4 shows an
example where a source instrument copies its output to a channel called reverb,
which is then read by an instrument implementing a global reverberation effect.

6.4 Busses 135

Listing 6.4 Using the software bus to send signals to a reverb effect

instr Sound
aenv linen p4, 0.01,p3,0.1
asrc oscili aenv, p5
out asrc
chnmix asrc*p6, "reverb"
endin
schedule("Sound",0,0.5, 0dbfs/4, 400, 0.1)
schedule("Sound",1,0.5, 0dbfs/4, 500, 0.2)
schedule("Sound",2,0.5, 0dbfs/4, 300, 0.4)

instr Reverb
asig chnget "reverb"
arev reverb asig, 3

out arev
chnclear "reverb"

endin
schedule("Reverb",0,-1)

It is also possible to access the software bus from global variables, by linking
them together through the chnexport opcode:

gxvar chnexport Sname, imode

This mechanism allows a channel to be accessible directly through a global vari-
able.

As channels can be created dynamically, with unique names which are generated
on the fly, they offer an easy way to communicate between instrument instances
whose number is not yet defined at the beginning of the performance. Listing 6.5
demonstrates this by dynamically generating channel names.

Listing 6.5 Generating channel names dynamically

seed 0
giCount init 0
instr Create_Sender
kCreate metro randomh:k(1,5,1,3)
schedkwhen kCreate,0,0,"Sender",0,p3
endin
schedule("Create_Sender",0,2.5)

instr Sender
giCount += 1
S_chn sprintf "channel_%d", giCount
schedule "Receiver",0,p3,giCount
chnset randomh:k(1,100,1,3),S_chn
endin

136 6 Signal Graphs and Busses

instr Receiver
kGet chnget sprintf("channel_%d",p4)
if changed(kGet)==1 then
printks "time = %.3f, channel_%d = %d\n",0,times:k(),

p4,kGet

endif
endin

The printout will show something like this:

time = 0.006, channel_1 = 50
time = 0.215, channel_2 = 23
time = 0.424, channel_3 = 95
time = 0.630, channel_4 = 95
time = 0.839, channel_5 = 44
time = 1.007, channel_1 = 77
time = 1.112, channel_6 = 25
time = 1.216, channel_2 = 63
time = 1.425, channel_3 = 30
time = 1.631, channel_4 = 83
time = 1.646, channel_7 = 41
time = 1.840, channel_5 = 61
time = 2.009, channel_1 = 62
time = 2.113, channel_6 = 65
time = 2.125, channel_8 = 94
time = 2.218, channel_2 = 59
time = 2.426, channel_3 = 84
time = 2.485, channel_9 = 85
time = 2.633, channel_4 = 26
time = 2.647, channel_7 = 30
time = 2.842, channel_5 = 64
time = 3.114, channel_6 = 24
time = 3.126, channel_8 = 25
time = 3.486, channel_9 = 57
time = 3.648, channel_7 = 91
time = 4.127, channel_8 = 61
time = 4.487, channel_9 = 9

The schedkwhen opcode is used to generate events at performance time, de-
pending on a non-zero trigger (its first argument), which can be taken conveniently
from a metro instance that produces such values periodically.

6.5 Conclusions

In this chapter, we reviewed the principles underlying the construction of signal
graphs for instruments. We saw that inside each instrument, execution is sequential,

6.5 Conclusions 137

line by line, and that, in some cases, operations are unwrapped by the compiler into
separate steps. Variables are used as patch-cords to link unit generators together,
explicitly, in the case of the ones declared in the code, and implicitly, when the
compiler creates hidden, synthetic variables. We have also noted how the language
coerces the user into employing the most natural connections, but there is full con-
trol of the execution sequence, and we can easily program less usual signal paths,
such as feedback links.

The order of execution of instruments was also detailed. In summary, same-
instrument instances will be performed by event and start time order, unless they
use fractional p1 values, in which case this will be used as the means to determine
the execution sequence inside a k-cycle. Different instruments are ordered by as-
cending p1, so higher-numbered ones will always come last in the sequence. We
have also noted that this only applies to performance time, and the init-pass is al-
ways executed in event order.

The chapter concluded with a look at different ways we can connect instruments
together, concentrating on global variables, function tables and the software bus.
We saw how global variables can be used as busses, which can be fed from several
sources and have multiple destinations. These are very flexible means of connect-
ing instruments, but care needs to be taken to clear the variables after use. Function
tables are also global code objects that can be used to connect instruments, in partic-
ular if we want to do it in a decoupled way. They can also hold control signals, and
the modmatrix opcode provides an added facility to distribute modulation sources
around instruments. Finally, we introduced the software bus, which can be used to
connect Csound with external controls provided by hosts or frontends, and also to
link up instruments internally, implementing busses to send signals from different
sources to various destinations.

Chapter 7

User-Defined Opcodes

Abstract In this chapter, we will examine the different ways in which Csound code
can be composed into bigger units. This is enabled by the user-defined opcode
(UDO) mechanism. After looking at its syntax in detail, we will explore the various
aspects of the UDO operation. We will examine the idea of local control rate and
how it can be useful in signal processing applications. A very powerful program-
ming device, recursion, will be introduced to the UDO context, with a discussion
of its general use cases. To complete this chapter, we will look at the concept of
subinstruments, which provide another means of composing Csound code.

7.1 Introduction

Although the Csound language has a large collection of opcodes, there are always
situations where a new algorithm is required. In this case, there is a need for mech-
anisms to add new unit generators to the system. The Csound language can be ex-
panded in two ways:

1. Plug-ins: through the addition of opcodes, written in C or C++, and compiled
into dynamic libraries.

2. User-defined opcodes (UDOs): new opcodes written in the Csound language
proper, which can be used in instruments in a similar way to existing unit gener-
ators.

The first method is used in situations where there is a real efficiency requirement,
or in the very few occasions where some programming device not supported by the
Csound language is involved. It is generally straightforward to create new plug-in
opcodes, but this topic is beyond the scope of this book (an introduction to it is
found in the Reference Manual). In this chapter we would like, instead, to explore
the various ways in which opcodes can be created using Csound code. This is often
called the composability element of a language, by which smaller components can
be put together and used as a single unit elsewhere.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

139
7

140 7 User-Defined Opcodes

7.2 Syntax

As with instruments, UDOs are defined by a code block, which is set between two
keywords opcode and endop. The general form is shown in listing 7.1.

Listing 7.1 Defining a new UDO

opcode <name>,<outargs>,<inargs>

endop

A UDO has an identification name, <name> in listing 7.1, which is textual. Ad-
ditionally, it requires lists of output and input arguments, which follow the name
after the comma. Csound allows an unspecified number of UDO definitions, and
unique names are only required if the UDO has the same arguments as another ex-
isting opcode. This allows polymorphic opcodes to be defined. The keyword endop
closes a UDO definition. Both opcode and endop need to be placed on their own
separate lines. UDOs cannot be nested and need to be defined in global space. In or-
der to perform computation, the opcode needs to be instantiated in code somewhere
(instruments or global space). UDOs can call any other existing UDOs, provided of
course that they have already been defined earlier in the code.

7.2.1 Arguments

The argument list for opcodes allows for all internal data types. It is composed of
letters indicating the type, with added brackets ([]) to indicate the case of arrays.
There are some extra input types to indicate optional parameters, and whether init-
pass is performed on the argument:

a: audio-rate input.
a[]: audio-rate array.
k: control-rate, only used at perf-time.
k[]: control-rate array.
J: optional control-rate, defaults to -1.
O: optional control-rate, defaults to 0.
P: optional control-rate, defaults to 1.
V: optional control-rate, defaults to 0.5.
K: control-rate, used at both init-time and performance.
i: i-time.
i[]: i-time array.
j: optional i-time, defaults to -1.
o: optional i-time, defaults to 0.
p: optional i-time, defaults to 1.
S: string.
S[]: string array.

7.2 Syntax 141

f: frequency-domain.
f[]: frequency-domain array.
0: no inputs.

For example, an input argument list with three inputs of audio, control and init-
time types would be represented by the characters aki. Variables are copied into
UDO arguments, which are accessed through the xin opcode:

var[,var2,...] xin

Arguments will accept only inputs of their own type, except for k-rate parame-
ters, which take k- and i-vars and constants, and i-time, which take i-vars and con-
stants. For output types, the list is similar, but shorter:

a: audio-rate output.
a[]: audio-rate array.
k: control-rate.
k[]: control-rate array.
i: i-time.
i[]: i-time array.
S: string.
S[]: string array.
f: frequency-domain.
f[]: frequency-domain array.
0: no outputs.

Outputs are similarly copied from opcode variables, through the xout opcode:

xout var[,var2,...]

In other aspects, UDOs are very similar to instruments. It is very simple to adapt
existing instruments for this. However, there are a number of specific aspects to
UDO operation that are important to note. While the actual code might look the
same, there are important distinctions between these two program structures. In list-
ing 7.2, we see an example of a basic UDO that combines an envelope and an oscil-
lator.

Listing 7.2 Envelope + oscillator combined into a UDO

opcode EnvOsc,a,aaiiij
amp,afr,iri,

idur,idec,ifn xin
a1 oscili amp,afr,ifn
a2 linen a1,iri,idur,idec

xout a2
endop

This UDO can be used multiple times in an instrument, wherever the oscillator
and envelope arrangement is required. For instance, if we want to implement an FM

142 7 User-Defined Opcodes

synthesis instrument (see Chapter 12), with double modulation, and envelopes con-
trolling timbre and amplitude, we simply need to connect the UDOs appropriately
(listing 7.3).

Listing 7.3 Double modulator FM synthesis using the EnvOsc UDO

instr 1
amod1 EnvOsc a(p6*p5),a(p5),0.1,p3,0.1
amod2 EnvOsc a(p7*p5),a(p5*3),0.2,p3,0.4
asig EnvOsc a(p4),amod1+amod2+p5,0.01,p3,0.1

out asig
endin
schedule(1,0,1,0dbfs/2,440,2.5,1.5)

Note that, as discussed before, a-rate inputs in UDOs can only accept audio sig-
nals. For this reason, in listing 7.3 we needed to employ conversion for i-time pa-
rameters using a(). Alternatively, we could have implemented other versions of the
same opcode that allowed for ak, ka, and kk for the first two parameters, and this
polymorphic set would cover all basic input types.

The next example in listing 7.4 demonstrates how array parameters are used in
UDOs. In this case, the first argument is an audio-rate array, so the local variable also
has to be defined as an array. Conveniently, the UDO is able to deal with different
input array sizes.

Listing 7.4 Array parameters

gisinetab = ftgen(0, 0, 4097, 10, 1)
opcode SinModulate, a, a[]i
asigs[], ifreq xin
icount = lenarray(asigs)
iphaseAdj = 1 / icount
aphs = phasor(ifreq)
aout = 0
kndx = 0
until (kndx >= icount) do
aphsAdj = ((kndx / icount) * aphs) % 1.0
amod = tablei:a(aphsAdj, gisinetab, 1)
aout += asigs[kndx] * ((amod + 1) / 3)
kndx += 1
od
xout aout
endop

instr 1
ipch = cps2pch(p4,12)
iamp = ampdbfs(p5)
asigs[] init 3
aenv linsegr 0,0.01,.5,0.01,.45,2.25,0

7.3 Instrument State and Parameters 143

asigs[0] vco2 iamp, ipch
asigs[1] vco2 iamp, ipch * 2
asigs[2] vco2 iamp, ipch * 3
out moogladder(SinModulate(asigs,

0.75)*aenv,
2000,.3)

endin

icnt = 0
while icnt < 6 do
schedule(1,icnt,10-icnt,8+2*icnt/100,-12)
icnt += 2
od

7.3 Instrument State and Parameters

Parameters are passed to and received from UDOs by value; this means that they
cannot change an instrument variable indirectly. In other words, a UDO receives a
copy of the value of its input arguments, which resides in its local variables. It passes
a value or values out to its caller, which copies each one into the variable receiving
it. UDOs can access global variables following the normal rules, which allow any
part of the code to modify these.

However, some elements of instrument state are shared between the calling in-
strument and its UDO(s):

• parameters (p-variables): these are accessible by the UDO and can modify the
caller instrument’s duration.

• extra time: this is accessible here, affecting opcodes that are dependent on it.
• MIDI parameters: if an instrument is instantiated by a MIDI NOTE message,

these are available to UDOs.

This shared state can be modified by the UDO, affecting the instrument that uses
the opcode. For instance if any envelope used here uses a longer extra time duration
than the one set by the calling instrument, then this will be the new duration used
by the instrument instance. Likewise the total duration of an event can be modified
by assigning a new duration to p3 inside the UDO. For instance, we can create an
opcode that reads a soundfile from beginning to end, by checking its duration and
making the event last as long as it needs to. This is shown in listing 7.5, where
regardless of the original event duration, it will play the soundfile to the end.

Listing 7.5 A UDO that controls the calling event’s duration

opcode FilePlay,a,S
Sname xin
p3 = filelen(Sname)

144 7 User-Defined Opcodes

a1 diskin Sname,1
xout a1
endop

instr 1
out FilePlay("fox.wav")
endin
schedule(1,0,1)

7.4 Local Control Rate

It is possible to set a local control rate for the UDO which is higher than the system
control rate. This is done by defining a local ksmps value that is an even subdivi-
sion of the calling-instrument block size. All UDOs have an extra optional i-time
argument in addition to the ones that are explicitly defined, which is used to set
a ksmps value for any opcode instance. The following example demonstrates this
(listing 7.6); we call the same counting opcode with three different ksmps values
(system is set at ksmps=10, the default).

Listing 7.6 Local control rates in UDO performance

opcode Count,k,i
ival xin
kval init ival
print ksmps
kval += 1
printk2 kval
xout kval

endop

instr 1
kval Count 0,p4
printf "Count output = %d\n",kval,kval
endin
schedule(1,0,1/kr,1)
schedule(1,1/kr,1/kr,2)
schedule(1,2/kr,1/kr,5)

The console printout shows the difference in performance between these three
opcode calls (each event is only one k-cycle in duration):

SECTION 1:
new alloc for instr 1:
instr 1: ksmps = 1.000
i1 1.00000

7.4 Local Control Rate 145

i1 2.00000
i1 3.00000
i1 4.00000
i1 5.00000
i1 6.00000
i1 7.00000
i1 8.00000
i1 9.00000
i1 10.00000
Count output = 10

rtevent: T 0.000 TT 0.000 M: 0.0
instr 1: ksmps = 2.000
i1 1.00000
i1 2.00000
i1 3.00000
i1 4.00000
i1 5.00000
Count output = 5

rtevent: T 0.000 TT 0.000 M: 0.0
instr 1: ksmps = 5.000
i1 1.00000
i1 2.00000
Count output = 2

In addition to this, it is possible to fix the control rate of an opcode explicitly by
using the setksmps opcode. This can be used in UDOs and in instruments, with
the same limitation that the local ksmps has to divide the calling-instrument (or
system, in the case of instruments) block size. It is important to place it as the first
statement in an instrument or UDO, in case any opcodes depend on a correct ksmps
value for their initialisation. The following example shows this, with ksmps=1 and
2 for the UDO and instrument, respectively.

Listing 7.7 Local control rates in UDO and instrument performance

opcode Count,k,i
setksmps 1
ival xin
kval init ival
print ksmps
kval += 1
printk2 kval
xout kval
endop

instr 1
setksmps 2
kval Count 0

146 7 User-Defined Opcodes

printf "Count output = %d\n",kval,kval
endin
schedule(1,0,1/kr)

In this case, in one system k-period the instrument has five local k-cycles. The
opcode divides these into two k-cycles for each one of the caller’s. This example
prints the following messages to the console:

SECTION 1:
new alloc for instr 1:
instr 1: ksmps = 1.000
i1 1.00000
i1 2.00000
Count output = 2
i1 3.00000
i1 4.00000
Count output = 4
i1 5.00000
i1 6.00000
Count output = 6
i1 7.00000
i1 8.00000
Count output = 8
i1 9.00000
i1 10.00000
Count output = 10
B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.0

The possibility of a different a-signal vector size (and different control rates) is
an important aspect of UDOs. This enables users to write code that requires the
control rate to be the same as the audio rate, for specific applications. This is the
case when ksmps = 1. This enables Csound code to process audio sample by sample
and to implement one-sample feedback delays, which are used, for instance, in filter
algorithms.

For instance, we can implement a special type of process called leaky integration,
where the current sample is the sum of the current sample and the output delayed
by one sample and scaled by a factor close to 1. This requires the sample-by-sample
processing mentioned above.

Listing 7.8 Sample-by-sample processing in a leaky integrator UDO

opcode Leaky,a,ak
setksmps 1
asum init 0
asig,kfac xin
asum = asig + asum*kfac
xout asum
endop

7.5 Recursion 147

instr 1
a1 rand p4
out Leaky(a1,0.99)
endin
schedule(1,0,1,0dbfs/20)

This is a very simple example of how a new process can be added to Csound by
programming it from scratch. UDOs behave very like internal or plug-in opcodes.
Once defined in the orchestra code, or included from a separate file via a #include
statement, they can be used liberally.

7.5 Recursion

A powerful programming device provided by UDOs is recursion [2], which we have
already explored in Chapter 5 in the context of instruments. It allows an opcode
to instantiate itself an arbitrary number of times, so that a certain process can be
dynamically spawned. This is very useful for a variety of applications that are based
on the repetition of a certain operation. Recursion is done in a UDO by a call to itself,
which is controlled by conditional execution. A minimal example, which prints out
the instance number, is show below.

Listing 7.9 Minimal recursion example

opcode Recurse,0,io
iN,icnt xin
if icnt >= iN-1 igoto cont

Recurse iN,icnt+1
cont:

printf_i "Instance no: %d\n",1,icnt+1
endop

instr 1
Recurse 5
endin
schedule(1,0,0)

Note that as the o argument type is set by default to 0, so icnt starts from 0 and
goes up to 4. This will create five recursive copies of Recurse. Note that they
execute in the reverse order, with the topmost instance running first:

SECTION 1:
new alloc for instr 1:
Instance no: 5
Instance no: 4
Instance no: 3

148 7 User-Defined Opcodes

Instance no: 2
Instance no: 1
B 0.000 .. 1.000 T 1.000 TT 1.000 M: 0.0

This example is completely empty, as it does not do anything but print the in-
stances. A classic example of recursion is the calculation of a factorial, which can
be defined as N! = N ∗ (N − 1)! (and 0! = 1,1! = 1). It can be implemented in a
UDO as follows:

Listing 7.10 Factorial calculation by recursion

opcode Factorial,i,ip
iN,icnt xin
ival = iN
if icnt >= iN-1 igoto cont

ival Factorial iN,icnt+1
cont:
xout ival*icnt

endop

instr 1
print Factorial(5)
endin
schedule(1,0,0)

this prints

SECTION 1:
new alloc for instr 1:
instr 1: #i0 = 120.000

Recursion is a useful device for many different applications. One of the most
important of these, as far as Csound is concerned, is the spawning of unit generators
for audio processing. There are two general cases of this, which we will explore
here. The first of these is for sources/generators, where the audio signal is created in
the UDO. The second is when a signal is processed by the opcode. In the first case,
we need to add the generated signal to the output, which will be a mix of the sound
from all recursive instances.

For instance, let’s consider the common case where we want to produce a sum of
oscillator outputs. In order to have individual control of amplitudes and frequencies,
we can use arrays for these parameters, and look up values according to instance
number. The UDO structure follows the simple example of listing 7.9 very closely.
All we need is to add the audio signals, control parameters and oscillators:

Listing 7.11 Spawning oscillators with recursion

opcode SumOsc,a,i[]i[]ijo
iam[],ifr[],iN,ifn,icnt xin
if icnt >= iN-1 goto syn
asig SumOsc iam,ifr,iN,ifn,icnt+1

7.5 Recursion 149

syn:
xout asig + oscili(iam[icnt],ifr[icnt],ifn)

endop

gifn ftgen 1,0,16384,10,1,1/2,1/3,
1/4,1/5,1/7,1/8,1/9

instr 1
ifr[] fillarray 1,1.001,0.999,1.002,0.998
iam[] fillarray 1,0.5,0.5,0.25,0.25
a1 SumOsc iam,ifr*p5,lenarray(iam),gifn
out a1*p4/lenarray(iam) * transeg:k(1,p3,-3,0)
endin
schedule(1,0,10,0dbfs/2,440)

The principle here is that the audio is passed from the lowermost to the topmost
instance, to which we add all intermediary signals, until it appears at the output of
the UDO in the instrument. In the case of audio processing instruments, the signal
has to originate outside the instrument, and be passed to the various instances in turn.
For instance, when implementing higher-order filters from a second-order section
(see Chapters 12 and 13), we need to connect these in series, the output of the first
into the input of the second, and so on. A small modification to the layout of the
previous example allows us to do that.

Listing 7.12 Higher-order filters with recursive UDO

opcode ButtBP,a,akkio
asig,kf,kbw,iN,icnt xin
if icnt >= iN-1 goto cont

asig ButtBP asig,kf,kbw,iN,icnt+1
cont:

xout butterbp(asig,kf,kbw)
endop

instr 1
a1 rand p4
a2 ButtBP a1,1500,100,4
out a2
endin
schedule(1,0,1,0dbfs/2)

We can characterise these two general cases as parallel and cascade schemes.
In listing 7.11, we have a series of oscillators side by side, whose output is mixed
together. In the case of listing 7.12, we have a serial connection of opcodes, with
the signal flowing from one to the next. To make a parallel connection of processors
receiving the same signal, we need to pass the input from one instance to another,
and then mix the filter signal with the output, as shown in listing 7.13.

150 7 User-Defined Opcodes

Listing 7.13 Parallel filter bank with recursive UDO

opcode BPBnk,a,ai[]kio
asig,ifc[],kQ,iN,icnt xin
if icnt >= iN-1 goto cont

afil BPBnk asig,ifc,kQ,iN,icnt+1
cont:

xout afil +
butterbp(asig,ifc[icnt],ifc[icnt]/kQ)

endop

instr 1
a1 rand p4
ifc[] fillarray 700, 1500, 5100, 8000
a2 BPBnk a1,ifc,10,lenarray(ifc)
out a2
endin
schedule(1,0,10,0dbfs/2)

7.6 Subinstruments

Another way of composing Csound code is via the subinstr mechanism. This allows
instruments to call other instruments directly as if they were opcodes. The syntax is

a1[,...] subinstr id[, p4, p5, ...]

where id is the instrument number or name (as a string). This shares many of the
attributes of a UDO, but is much more limited. We are limited to i-time arguments,
which are passed to the instrument as parameters (p-vars). An advantage is that
there is no need to change our code to accommodate the use of an instrument in this
manner. In listing 7.14, we see an example of instrument 1 calling instrument 2, and
using its audio output.

Listing 7.14 A subinstrument example

instr 1
iamp = p4
ifreq = p5
a1 subinstr 2,iamp,ifreq,0.1,p3,0.9,-1

out a1
endin
schedule(1,0,1,0dbfs/2,440)

instr 2
a1 oscili p4,p5,p9
a2 linen a1,p6,p7,p8

7.7 Conclusions 151

out a2
endin

In addition to subinstr, which runs at init- and perf-time (depending on the
called instrument code), we can also call an instrument to run only at the initialisa-
tion pass. The syntax is:

subinstrinit id[, p4, p5, ...]

In this case, no performance takes place and no audio output is present. The
subinstrument is better understood as another way of scheduling instruments, rather
than as a regular opcode call. In this way, it can be a useful means of reusing code
in certain applications.

7.7 Conclusions

This chapter explored a number of ways in which Csound can be extended, and
code can be composed into larger blocks. The UDO mechanism allows users to
implement new processing algorithms from scratch or to package existing opcodes
that can be used in instrument-like ordinary unit generators. With these possibilities,
it is simpler to organise our code into components that can be combined later in
different ways. UDOs can be saved in separate files and included in code that uses
them. They can also be very handy for showing the implementation of synthesis and
transformation processes, and we will be using them widely for this purpose in later
chapters of this book.

Part III

Interaction

Chapter 8

The Numeric Score

Abstract This chapter discusses the standard numeric score, which can be used to
control events in Csound. Following a general introduction to its syntax and inte-
gration with the system, the text explores the basic statement types that compose it,
and how they are organised. The score processor and its functionality are explored,
followed by a look at loops and playback control. The chapter concludes with a
discussion of score generation by external programs and scripting languages.

8.1 Introduction

The standard numeric score was the original means of controlling Csound, and for
many composers, it is still seen as the fundamental environment for creating music
with the software. Its concept and form goes a long way back to MUSIC III and IV,
which influenced its direct predecessors in the MUSIC 360 and MUSIC 11 systems.
It was created to respond to a need to specify instances of compiled instruments
to run at certain times, as well as create function tables as needed. Scores were
also designed to go through a certain amount of processing so that tempo and event
sorting could be applied. A traditional separation of signal processing and event
scheduling was behind the idea of score and orchestra. The lines between these two
were blurred as Csound developed, and now the score is one of many ways we can
use to control instruments.

The score can be seen as a data format rather than a proper programming lan-
guage, even though it has many scripting capabilities. An important aspect to un-
derstand is that its syntax is very different from the Csound language proper (the
‘orchestra’). There are reasons for this: firstly, the score serves a different purpose;
secondly, it developed separately, and independently from the orchestra. Thus, we
need to be very careful not to mix the two. In particular, the score is much simpler,
and has very straightforward syntax rules. These can be summarised as:

1. The score is a list of statements.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_8

155

156 8 The Numeric Score

2. Statements are separated by line breaks.
3. All statements start with a single character identifying its purpose, sometimes

called an opcode (not to be confused with Csound language opcodes, or unit
generators).

4. Statement parameters are separated by blank spaces, and are also called p-fields.
The space between the opcode and the first p-field is optional.

5. Parameters are mostly numeric, but strings in double quotes can be used wherever
appropriate.

A couple of important things to remember always are that commas are not used
to separate parameters (as in the orchestra), but spaces; and that statements do not
necessarily execute in the order they are placed, also unlike the orchestra language,
where they do. The score is read at the first compilation of Csound and stored in
memory, and its playback can be controlled by the Csound language. Further single
events, or full scores can be sent to Csound, but these will be taken as real-time
events, which are treated slightly differently as some score features such as tempo
warping are not available to them.

Score comments are allowed in the same format used in the Csound language.
Single-line comments, running until the end of the line, are started by a semicolon
(;). Multiple-line comments are enclosed by /* and */, and cannot be nested.
Scores are generally provided to Csound in a CSD file, inside the <CsScore>
section (see Chapter 2).

Ultimately, the score is concerned with event scheduling. These events are mostly
to do with instantiating instruments, but can also target function table generation.
Before the appearance of function table generator opcodes and real-time events,
all of these could only be executed through the score. While modern usage can
bypass and ignore it completely, the score is still an important system resource.
Many classic examples of Csound code rely heavily on the score. This chapter will
provide a full description of its features.

8.2 Basic Statements

As outlined above, the score is a list of statements, on separate lines, each one with
the following format:

op [p1 p2 ...]

where op is one of a, b, e, f, i, m, n, q, r, s, t, v, x, y, {, and }. The statement
parameters (p-fields) are p1, p2 etc. separated by spaces. Depending on op, these
might be optional.

The main score statement is indicated by the i opcode, and it schedules an event
on a given instrument:

i p1 p2 p3 [p4 ...]

8.2 Basic Statements 157

p1 is the instrument number, or name (a string in double quotes). If using a non-
integral number, the fractional part identifies a given instance, which can be used
for tied notes. A negative p1 turns a corresponding indeterminate-length instance
off.
p2 is starting time.
p3 is duration time: if negative, an indeterminate-length is set, which starts a
held note.
p4 ... are extra parameters to instruments.

The i-statement format follows the form already shown for scheduling instances.
Time is set in arbitrary units called beats, which are later translated in tempo pro-
cessing (defaulting to 1 second). Events can be placed in the score in any order
(within a section, see Section 8.3), as they are sorted before performance. As usual,
any number of concurrent i-statements are allowed for a given instrument (disre-
garding any computation time requirements). Parameters are usually numeric, but
strings can also be used in double quotes, if an instrument expects them.

A second statement affecting events is defined by q. This can be used to mute i-
statements, but only affects events before they get started. The form of the statement
is:

q p1 p2 p3

p1 is the instrument number, or name (in double quotes).
p2 is the action time; the statement will affect instruments with start time equal
to or later than it.
p3 is 0 to mute an instrument and 1 to un-mute it.

This can be used to listen to selected parts of the score by muting others.
Finally, we can create function tables from the score with an f-statement. This

has the following general form:

f p1 p2 p3 p4 p5 [p6 ...]

p1 is the table number; a negative number destroys (deallocates) the table.
p2 is the creation or destruction time.
p3 is the table size.
p4 is the GEN routine code; negative values cause re-scaling to be skipped.
p5 ... are the relevant GEN parameters.

The form of the f-statement is very similar to the ftgen opcode, and all the
aspects of table creation, such as GEN codes, re-scaling and sizes are the same here.
A special form of the f-statement has a different, very specific, purpose. It is used
to create a creation time with no associated table, which will extend the duration of
the score by a given amount of time:

f 0 p2

In this case, Csound will run for p2 beats. This is useful to keep Csound running
for as long as necessary, in the presence of a score. If no score is provided, Csound
will stay open until it is stopped by a frontend (or killed).

158 8 The Numeric Score

8.3 Sections

The score is organised in sections. By default there is one single section, but further
ones can be set by using an s-statement, which sets the end of a section:

s [p1]

A single optional opcode can be used to define an end time, which is used to
extend the section (creating a pause) before the start of the next. For this, the p1
value needs to be beyond the end of the last event in the ordered list, otherwise it
has no effect. Extending a section can be useful to avoid cutting off the release of
events that employ extra time.

The score is read section by section, and events are sorted with respect to the
section in which they are placed. Time is relative to the start of the section, and gets
reset at the end of each one. Sections also have an important control role in Csound,
as memory for instrument instances is also freed/recovered at the end of a section.
This was more significant in older platforms with limited resources, but it is still
part of the system.

The final section of a score can optionally be terminated by an e-statement:

e [p1]

This also includes an optional extended time, which works in the same way as
in the s-statement. Note that any statements after this one will be ignored. Once the
last section of a score finishes, Csound will exit unless an f 0 statement has been
used. An example of a score with two sections is given in listing 8.1, where four
statements are performed in each section. If p4 and p5 are interpreted as amplitude
and frequency, respectively, we have an upward arpeggio in the first section, and a
downward one in the second. Note that the order of statements does not necessarily
indicate the order of the performed events.

Listing 8.1 Score example

f 1 0 16384 10 1 0.5 0.33 0.25 0.2
; first section
i1 0 5 1000 440
i1 1 1 1000 550
i1 2 1 1000 660
i1 3 1 1000 880
s
; second section
i1 3 1 1000 440
i1 2 1 1000 550
i1 1 1 1000 660
i1 1 5 1000 880
e

The x-statement can be used to skip the subsequent statements in a section:

8.4 Preprocessing 159

x

It takes no arguments. Reading of the score moves to the next section.

8.4 Preprocessing

Scores are processed before being sent to the Csound engine for performance. The
three basic operations applied to a score’s events are carry, tempo, and sort, executed
in this order. Following these, two other processing steps are optionally performed,
to interpret next-p/previous-p and ramping symbols.

8.4.1 Carry

Carry works on groups of consecutive i-statements. It is used to reduce the need to
type repeated values. Its basic rules are:

1. Carry works only within a consecutive group of i-statements whose integral p1
values are the same (fractional parts indicating specific instances are ignored).

2. Any empty p-field takes the value of the previous line. An empty p-field can be
marked with a dot (.), or left blank if there are no further ones in the same line.

3. For p2 only: the symbol + is interpreted as the sum of the previous line’s p2 and
p3. This symbol can be carried itself.

4. For p2 only: the symbols ˆ+ or ˆ- followed by a value x set p2 to a new value
by adding or subtracting x to/from p2 on the previous line.

5. The symbol ! will block the implicit carry of blank p-fields in a statement and
subsequent ones.

In listing 8.2 we see these features being employed and their interpretation in the
comments.

Listing 8.2 Carry examples and their interpretation

i 1 0 5 10000 440
i . + 2 . 330 ;i1 5 2 1000 440
i . + 1 ;i1 7 1 1000 330
i 2 0 1 55.4 22.1
i . ˆ+1 . 67.1 ;i2 1 1 67.1 22.1
i . ˆ+2 . ! ;i2 3 1 [no p4 or p5 are carried]

160 8 The Numeric Score

8.4.2 Tempo

A powerful feature of the score is tempo processing. Each section can have an in-
dependent tempo setting, which can also be time-varying. Tempo is controlled by a
t-statement:

t p1 p2 [p3 p4 ...]

p1 should be 0 to indicate beat 0
p2 beat 0 tempo
p3, p5, ... odd p-fields indicate optional times in beats
p4, p6, ... even p-fields are the tempi for each beat in the preceding p-field.

Tempo processing can create accelerandos, ritardandos and abrupt tempo changes.
Each pair of p-fields, indicating beats and tempi, will determine how the p2 and p3
fields in each i-statement are interpreted. Tempo values are defined in beats per
minute. For instance, a ritardando is created with the following tempo pattern:

t 0 60 20 30

Tempo at the start is set at 60 bpm and by beat 20 it is 30 bpm. The tempo remains
at the last-defined value until the end of the section. Equally, an accelerando can be
determined by a t-statement such as:

t 0 120 20 180

Any number of time-tempo pairs can be used. A single pair determines a fixed
tempo for the section; if no tempo statements are provided, beats are interpreted as
seconds (60 bpm). Only one such statement is valid per section. The -t N option
can be used to override the score tempi of all sections, which will be set to N bpm.

The v-statement can be used as a local time warp of one or more i-statements:

v p1

where p1 is a time warp factor that will affect only the subsequent lines, multiplying
their start times (p2) and durations (p3). It can be cancelled or modified by another
v-statement. This has no effect on carried p2 and p3 values.

8.4.3 Sort

Following carry and tempo processing, the section i-statements are sorted into as-
cending time order according to their p2 value. If two statements have the same p2
value, they are sorted in ascending order according to p1. Likewise, if both p2 and p1
coincide, sorting is performed in p3 order. Sorting affects both i- and f-statements,
and if these two have the same creation time, the f-statement will take precedence.

8.4 Preprocessing 161

8.4.4 Next-p and Previous-p

The score also supports the shorthand symbols npN and ppN, where N is an inte-
ger indicating a p-field. These are used to copy values from other p-fields: the first
indicates the source of the p-field to the next i-statement, and the second refers to
the previous i-statement. Since these are interpreted after carry, tempo and sort, they
can be carried and will affect the final sorted list. Listing 8.3 shows some examples
with their interpretation in the comments. Note if there is no previous or next line,
the result is 0.

Listing 8.3 Next-p and previous-p examples

i 1 0 5 10000 440 pp5 np4 ; i 1 0 5 10000 0 30000
i 1 1 2 30000 330 pp4 ; i 1 1 2 30000 330 10000 20000
i 1 2 1 20000 55 . pp5 ; i 1 2 1 20000 55 30000 330

These symbols are recursive and can reference other existing np and pp sym-
bols. Next-p and previous-p cannot be used in p1, p2 and p3, but can refer to these.
References do not cross section boundaries.

8.4.5 Ramping

A final preprocessing offered by a score for i-statements can make values ramp up
or down from an origin to a given target. This is p-field-oriented manipulation. The
symbol < is used for a linear ramp between two values, and (or) can be used to
create an exponential curve. A tilde symbol (∼) can be used to generate random
values in a uniform distribution between two values. Ramping is not allowed in p1,
p2 or p3.

Listing 8.4 Ramping example

i 1 0 1 100 ; 100
i 1 0 1 < ; 200
i 1 0 1 < ; 300
i 1 0 1 < ; 400
i 1 0 1 500 ; 500

8.4.6 Expressions

Ordinarily, p-fields accept only constant values. However, using square brackets ([
and]), we can invoke a special preprocessing mode that can evaluate arithmetic
expressions and place the result in the corresponding p-field. The common opera-
tors used in the Csound languages can be used here (+, -, *, / , ˆ, and %). The

162 8 The Numeric Score

usual rules of precedence apply, and parentheses can be used to group expressions.
Bitwise logical operators (& for AND,| for OR and # for exclusive-OR) can also
be used. The ∼ symbol can be used to mean a random number between 0 and 1. A
y-statement can be used to seed the random number generator with a starting value:

y [p1]

The value of p1 is used as the seed, but it can be omitted, in which case the
system clock is used. The following examples use expressions in p-field 4:

i 1 0 1 [2*(4+5)] ; 18
i 1 0 1 [10 * ˜] ; random (0 - 10)
i 1 0 1 [5 ˆ 2] ; 25

Expressions also support a special @N operator that evaluates to the next power-
of-two greater or equal to N. The @@N operator similarly yields the next power of
two plus one.

8.4.7 Macros

The preprocessor is responsible for macro substitution in the score; it allows text
to be replaced all over the score. As in the Csound language, we can use it in two
ways, with or without arguments. The simplest form is

#define NAME #replacement text#

where $NAME will be substituted by the replacement text, wherever it is found. This
can be used, for instance, to set constants that will be used throughout the code.

Listing 8.5 Score macro example

#define FREQ1 #440#
#define FREQ2 #660#
i1 0 1 1000 $FREQ1 ; i1 0 1 1000 440
i1 0 1 1500 $FREQ2 ; i1 0 1 1000 660
i1 0 1 1200 $FREQ1
i1 0 1 1000 $FREQ2

When a space does not terminate the macro call, we can use a full stop for this
purpose.

#define OCTAVE #8.#
i1 0 1 1000 $OCTAVE.09 ; 8.09
i1 2 1 1000 $OCTAVE.00 ; 8.00

Another form of #define specifies arguments:

#define NAME(a’b) #replacement text#

8.5 Repeated Execution and Loops 163

where the parameters a and b are referred to in the macro as $a and $b. More
arguments can be used. In listing 8.6 we use arguments to replace a whole score
line.

Listing 8.6 Macro example, with arguments

#define FLUTE(a’b’c’d) #i1 $a $b $c $d#
#define OBOE(a’b’c’d) #i2 $a $b $c $d#

FLUTE(0 ’ 0.5 ’ 10000 ’ 9.00)
OBOE(0 ’ 0.7 ’ 8000 ’ 8.07)

Score macros can also be undefined with:

#undef NAME

8.4.8 Include

The preprocessor also accepts an include statement, which copies the contents of an
external text file into the score. For instance, the text

#include "score.inc"

where the file score.inc contains a series of statements, will include these to the
score in the point where that line is found. The file name can be in double quotes or
any other suitable delimiter character. If the included file is in the same directory as
the code, or the same working directory as a running Csound, then its name will be
sufficient. If not, the user will need to pass the full path to it (in the usual way used
by the OS platform in which Csound is running). A file can be included multiple
times in a score.

8.5 Repeated Execution and Loops

The execution of sections can be repeated by the use of the r-statement

r p1 p2

where p1 is the number of times the current section is to be repeated, and p2 is the
name of a macro that will be substituted by the repetition number, starting from 1.
For example:

r 3 REPEAT
i1 0 1 1000 $REPEAT
i1 1 1 1500 $REPEAT
s

164 8 The Numeric Score

will be expanded into:

i1 0 1 1000 1
i1 1 1 1500 1
s
i1 0 1 1000 2
i1 1 1 1500 2
s
i1 0 1 1000 3
i1 1 1 1500 3
s

Another way to repeat a section is to place a named marker on it, which can then
be referred to later. This is done with the m-statement

m p1

where p1 is a unique identifier naming the marker, which can contain numerals
and/or letters. This can then be referenced by an n-statement to repeat the section
once:

n p1

The n-statement uses p1 as the name of the marker whose section is to be played
again.

Listing 8.7 Section repeats in score

m arpeg
i1 0 1 10000 8.00
i1 1 1 10000 8.04
i1 2 1 10000 8.07
i1 3 1 10000 9.00
s
m chord
i1 0 4 10000 7.11
i1 0 4 10000 8.02
i1 0 4 10000 8.07
i1 0 4 10000 9.02
s
n arpeg
n chord
n arpeg
n chord
n chord
n arpeg

The example in listing 8.7 will alternate the first two sections twice, then repeat
the second and finish with the first.

Finally, the score supports a non-sectional loop structure to repeat any statements
defined inside it. It uses the following syntax:

8.6 Performance Control 165

{ p1 p2
...
}

where p1 is the number of repeats required, and p2 is the name of a macro that will
be replaced by the iteration number, this time starting from 0. This is followed by
the score statements of the loop body, which is closed by a } placed on its own line.
Multiple loops are possible, and they can be nested to a depth of 39 levels.

The following differences between these loops and section repeats are important
to note:

• Start times and durations (p2, p3) are left untouched. In particular, if p3 does not
reference the loop repeat macro, events will be stacked in time.

• Loops can be intermixed with other concurrent score statements or loops.

The following example creates a sequence of 12 events whose p5 goes from 8.00
to 8.12 in 0.01 steps. The event start times are set from 0 to 11.

Listing 8.8 Score loop example

{ 12 N
i1 $N 1 10000 [8. + $N/100]
}

8.6 Performance Control

Two statements can be used to control playback of a score section. The first one is
the a-statement:

a p1 p2 p3

This advances the score playback by p3 beats, beginning at time p2 (p1 is ig-
nored). It can be used to skip over a portion of a section. These statements are also
subject to sorting and tempo modifications similarly to i-statements.

The final performance control statement is:

b p1

This specifies a clock reset. It affects how subsequent event start times are inter-
preted. If p1 is positive, it will add this time to the following i-statements p2 times,
making them appear later; if negative, it will make the events happen earlier. To set
the clock back to normal, we need to set p1 to 0. If the clock effect on the next
i-statement makes p2 negative, then that event will be skipped.

166 8 The Numeric Score

8.6.1 Extract

Csound also allows a portion of the score to be selected for performance using its
extract feature. This is controlled by a text file containing three simple commands
that will determine the playback:

1. i <num> – selects the required instruments (default: all)
2. f <section>:<beat> – sets the start (from; default: beginning of score)
3. t <section>:<beat> – sets the end (to; default: end of score)

If a command is not given, its default value is used. An example extract file looks
like this:

i 2 f 1:0 t 1:5

This will select instrument 2 from section 1 beat 0 to section 1 beat 5. The extract
feature is enabled by the option

-x fname

where fname is the name of the extract file.

8.6.2 Orchestra Control of Score Playback

In the Csound language, three unit generators can issue score i-statements, which
will be sent to the engine as real-time events. These are the opcodes scoreline,
scoreline i and readscore. The first two accept strings with i- and f-
statements (multiple lines are allowed) at performance and initialisation time, re-
spectively. The third also works only at i-time, but allows carry, next-p, previous-p,
ramping, expressions and loops to be preprocessed (although tempo warping and
section-based processing are not allowed).

In addition to these, the loaded score can be controlled with two init-time op-
codes:

rewindscore

which takes no parameters and rewinds the score to the beginning, and

setscorepos ipos

This can be used as a general transport control of the score, moving forwards
or backwards from the current position. The parameter ipos sets the requested
score position in seconds. These two opcodes can be very useful, but care must
be taken not to create problematic skips, when using them in instruments that can
themselves be called by a score. It is possible, for instance, to create a never-ending
loop playback by calling rewindscore in an instrument as the last event of a
score.

8.7 External Score Generators 167

8.6.3 Real-Time Events

Score events can be sent to Csound in real-time from external sources. The most
common use of this is via the API, where hosts or frontends will provide various
means of interacting with Csound to instantiate instruments. In addition to this,
Csound has a built-in facility to take events from a file or a device by using the -L
dname option, where dname is the name of a source. We can, for instance, take
events from the standard input (which is normally the terminal), by setting dname
to stdin:

<CsoundSynthesizer>
<CsOptions>
-L stdin -o dac
</CsOptions>
<CsInstruments>
instr 1
out oscili(p4*expon(1,p3,0.001),p5)
endin
</CsInstruments>
</CsoundSynthesizer>

Similarly, It is also possible to take input from a text file, by setting dname to the
file name. Finally, in Unix-like systems, it is possible to pipe the output of another
program that generates events. For instance the option

-L " | python score.py"

will run a Python program (score.py) and take its output as real-time events for
Csound. It is also possible to run a language interpreter, such as the Python com-
mand, in an interactive mode, outputting events to Csound. In this case we would
take the input from stdin, and pipe the output of the interpreter into Csound. For
instance, the terminal command

python -u | csound -L stdin -o dac ...

will open up the Python interpreter, which can be used to generate real-time events
interactively.

8.7 External Score Generators

A full numeric score is very easily generated by external programs or scripts. Its
straightforward format allows composers and developers to create customised ways
to manipulate scores. Csound supports this very strongly. A powerful feature is the
possibility to invoke external score generators from inside a CSD file. These can be
given parameters or a complete code, which they can use to write a score text file
that is then read directly by Csound.

168 8 The Numeric Score

This is provided as an optional attribute in the <CsScore> tag of a CSD file:

<CsScore bin="prog" >
...
</CsScore>

where prog is an external program that will be used to generate or preprocess the
score. The contents of the <CsScore> section in this case will not be interpreted
as a numeric score, but as input to prog. They will be written to a file, which is then
passed as the first argument to prog. The external generator will write to a text file
whose name is passed to it as the second argument. This is then loaded by Csound
as the score. So this program needs to be able to take two arguments as input and
output files, respectively. Any such generator capable of producing valid score files
can be used.

As an example, let’s consider using the Python language to generate a minimal
score. This will create 12 events, with increasing p2, p4 and p5 (similar to the loop
example in listing 8.8).

Listing 8.9 External score generator using Python

<CsScore bin="python">
import sys
f = open(sys.argv[1], "w")
stm = "i 1 %f 1 %f %f \n"
for i in range(0,12):

f.write(stm % (i,1000+i*1000,8+i/100.))
</CsScore>

In listing 8.9 we see the relevant CSD section. The command python is selected
as the external binary. A simple script opens up the output file (argv[1], since
argv[0] is the input, the actual program file), and writes the twelve statements
using a loop. If we ran this example on the terminal, using the Python command,
the output file would contain the following text:

i 1 0.000000 1 1000.000000 8.000000
i 1 1.000000 1 2000.000000 8.010000
i 1 2.000000 1 3000.000000 8.020000
i 1 3.000000 1 4000.000000 8.030000
i 1 4.000000 1 5000.000000 8.040000
i 1 5.000000 1 6000.000000 8.050000
i 1 6.000000 1 7000.000000 8.060000
i 1 7.000000 1 8000.000000 8.070000
i 1 8.000000 1 9000.000000 8.080000
i 1 9.000000 1 10000.000000 8.090000
i 1 10.000000 1 11000.000000 8.100000
i 1 11.000000 1 12000.000000 8.110000

When Csound runs this script as an external generator, it uses temporary files
that get deleted after they are used. This mechanism can be used with a variety

8.8 Alternatives to the Numeric Score 169

of scripting languages, just by observing the simple calling convention set by the
system.

8.8 Alternatives to the Numeric Score

As we have pointed out at the outset, the score is but one of the many optional ways
we can control Csound. The score-processing features discussed in this chapter can
be replaced, alternatively, by code written in the Csound orchestra language. We can
demonstrate this with a simple example, in which two score-processing elements,
tempo statement (ritardando) and ramping, are integrated directly in the program.

The score calls an instrument from beat 0 to beat 10. The tempo decreases from
metronome 240 to 60, whilst the pitch decreases in equal steps from octave 9 (C5)
to octave 8 (C4).

Listing 8.10 Tempo and ramping score

t 0 240 10 60
i 2 0 1 9
i . + . <
i . + . <
i . + . <
i . + . <
i . + . <
i . + . <
i . + . <
i . + . <
i . + . <
i . + . 8

The scoreless version in listing 8.11 uses a UDO that calculates an interpolation
value. This is used for both pitch ramping and tempo (time multiplier) modification.
The events themselves are generated by a loop.

Listing 8.11 Csound language realisation of score in listing 8.10

opcode LinVals,i,iiii
iFirst,iLast,iNumSteps,iThisStep xin
xout iFirst-(iFirst-iLast)/iNumSteps*iThisStep
endop

instr 1
iCnt,iStart init 0
until iCnt > 10 do
iOct = LinVals(9,8,10,iCnt)
schedule 2,iStart,1,iOct
iCnt += 1

170 8 The Numeric Score

iStart += LinVals(1/4,1,10,iCnt+0.5)
od
endin
schedule(1,0,0)

instr 2
out mode(mpulse(1,p3),cpsoct(p4),random:i(50,100))
endin

8.9 Conclusions

The Csound numeric score was the original method for controlling the software,
prior to the introduction of real-time and interactive modes. It has been used widely
in the composition of computer music works, and, for many users, it provides an
invaluable resource. Although the score is not a complete programming language in
a strict sense, it has a number of programmable features.

As we have seen, the score is best regarded as a data format, that is simple and
compact, and can be very expressive. It allows the use of external software and
languages to construct compositions for algorithmic music, and this feature is well
integrated into the Csound system, via the CSD <CsScore> tag bin attribute.
Scores can also be included from external files, and their use can be integrated with
real-time controls and events.

Chapter 9

MIDI Input and Output

Abstract In this chapter, we will explore the implementation of the MIDI protocol in
Csound. Following an introductory discussion of the protocol and its relevant parts,
we will explore how it is integrated into the software. We will show how MIDI
input is designed to fit straight into the instrument-instance model of operation. The
dedicated opcodes for input and output will be introduced. The chapter will also
examine the different backend options that are currently supported by the system.

9.1 Introduction

The Musical Instrument Digital Interface (MIDI) protocol is a very widespread
means of communication for musical devices. It establishes a very straightforward
set of rules for sending various types of control data from a source to a destination.
It supports a point-to-point unidirectional connection, which can be made between
hardware equipment, software or a combination of both.

Although MIDI is significantly limited when compared to other modern forms of
communication (for instance, IP messages), or data formats (e.g. the Csound score),
it is ubiquitous, having been adopted by all major music-making platforms. Due
to its limitations, it is also simple, and therefore cheap to implement in hardware.
While its death has been predicted many times, it has nevertheless lived on as a
useful means of connecting musical devices. It is however important to understand
the shortcomings of MIDI, and its narrow interpretation of music performance, so
that these do not become an impediment to flexible music making.

9.2 MIDI Messages

The MIDI protocol incorporates three types of messages [87]: channel messages,
system common messages and system real-time messages. The first type is used to

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_9

171

172 9 MIDI Input and Output

send control information to music devices, e.g. when to play a sound, to change
a control value etc. The second type includes system exclusive messages, which
is used for custom message types, defining various types of data transfer (e.g. for
synthesiser editors, bulk dumps etc.), MIDI time code frames, song selection and
positioning. System real-time messages are used mainly for synchronisation through
timing clocks.

The MIDI implementation in Csound mostly addresses the receiving and send-
ing of channel messages. Such messages are formatted in a specific way, with two
components:

1. status: this comprises a code that defines the message type and a channel number.
There are seven message types and sixteen independent channels.

2. data: this is the data that is interpreted according to the message type. It can be
made up of one or two values, in the range of 0-127.

At the low level, MIDI messages are transmitted as a sequence of eight-bit bi-
nary numbers, or bytes. The status part occupies a single byte, the first four bits
containing the message type and the second the channel (thus the limited number
of channels and message types allowed). The data can comprise one or two bytes,
depending on the message types (each byte carrying a single value). Status bytes
always start with a 1, and data bytes with 0, thus limiting the useful bits in each byte
to seven (hence the fundamental MIDI value range of 0-127).

9.2.1 Channel Message Types

The seven message types are:

1. NOTE ON: whose numeric code is 144, and which contains two data values.
The first is a note number, and the second a note velocity (e.g. telling how hard a
particular key is pressed).

2. NOTE OFF: with code 128, and also containing two values, a note number and
velocity. This message can also be emulated with a NOTE ON containing zero
velocity.

3. aftertouch: using code 208 and containing a single value, the amount of after-
touch. This is typically generated by a keyboard whose keys are pressed down
while being played.

4. polyphonic aftertouch: whose code is 166, and provides a note-by-note after-
touch control with two data values (note number and amount).

5. program change: code 192, carries one single value, the program number. This
is often used to change stored parameter sets in music devices.

6. control change: using code 176, carries two values, a control number and a
value. It is used for interactive parameter adjustments.

7. pitch bend: code 224, also carrying two values, a coarse and a fine pitch bend
amount, which can be combined to control parameters (such as frequency).

9.3 The Csound MIDI System 173

Note that while these messages were originally intended for particular purposes,
they can be mapped to any function. There is nothing stopping, for instance, pitch
bend being mapped to filter frequency, or any other parameter in a given instrument.
Even NOTE messages, which are normally associated with starting and stopping
sounds, can be reassigned to other ends.

9.3 The Csound MIDI System

Csound has a very straightforward MIDI input implementation. By default, NOTE
ON messages are sensed and trigger instrument instances. These instances are al-
located as usual, but have a particular characteristic: as discussed in Section 5.3.3,
they will have indeterminate duration (i.e. a negative p3 value). NOTE OFF mes-
sages with a matching note number will stop them playing. So, for this standard
type of MIDI operation, we need to make sure our instruments do not depend on p3.
Many of the Opcodes that do depend on p3 have versions designed to be indepen-
dent of a set duration (the ‘r’ ones introduced in Section 5.3.4).

Also by default, channels are tied in to their respective instrument numbers: chan-
nel 1 to instr 1 through channel 16 to instr 16. If one of these is not defined, instru-
ment 1 or the lowest-order instrument will be used. It is possible to modify this
using the massign opcode:

massign ichnl, instr

where ichnl is the channel to be assign to instr instr. It is also possible to link
program numbers with instruments using pgmassign:

pgmassign ipgm, instr[, ichn]

where ipgm is the program to be assigned to instr instr.
Note that Csound has unlimited polyphony by default, so it will respond to any

number of simultaneous NOTE ON messages. However, given that computers have
various finite levels of resources, the practical number of notes played together will
not be unlimited. While Csound does not have any built-in voice-stealing or real-
location mechanism, such things can be constructed in user code. The maxalloc
and active opcodes can be used to limit the allocation for a given instrument and
find the number of currently active instances, respectively. In additiion, cpuprc
or cpumeter can be used to check for CPU use (although these two opcodes are
currently only available on Linux).

9.3.1 Input

MIDI input opcodes can be separated into two categories:

174 9 MIDI Input and Output

1. For instruments triggered directly: these are opcodes that expect the instrument
to have been instantiated by a NOTE ON message. They assume certain data to
be there: note number, velocity and channel.

2. For generic use: these opcodes will normally have access to all MIDI messages
coming into Csound.

In the first category, we have

veloc: note velocity.
notnum: note number.
aftouch: aftertouch amount.
polyaft: aftertouch amount for a given note.
pchbend: pitch-bend amount.
ampmidi: takes the note velocity and translates it into amplitude.
cpsmidi and cpsmidib: translates note number into Hz, in the second case
incorporating pitch-bend data.
midictrl, midic7, midic14, and midic21: access any control change
data in the instrument input MIDI channel. The ‘14’ and ‘21’ opcodes can use
multiple messages together to make up higher-resolution data.

All of these opcodes are only applicable to MIDI-triggered instruments. For more
generic use we have

chanctrl, ctrl7, ctrl14 and ctrl21: control change data for a given
channel.
midiin: raw MIDI data input.

In order to access the MIDI device, it is necessary to include the -M dev option,
where dev is a device identifier that will be dependent on the MIDI backend used,
and the devices available in the system.

MIDI files can also be used, in addition to real-time/device input (including si-
multaneously). All we need to do is to supply the filename with the -F option.

MIDI input examples

The following example shows a simple MIDI subtractive synthesiser, with support
for pitch bend and modulation wheel (controller 1). It takes in the velocity and
maps it to amplitude, with note number converted to Hz and used as the oscillator
frequency. The filter cut-off is controlled by the modulation wheel input and note
frequency.

Listing 9.1 Simple MIDI subtractive synthesiser

instr 1
kcps cpsmidib 2
iamp ampmidi 0dbfs
kcf midictrl 1,2,5

9.3 The Csound MIDI System 175

out linenr(moogladder(
vco2(iamp,kcps,10),
kcf*(kcps +
linenr(kcps,0.1,0.1,0.01)),
0.7), 0.01,0.1,0.01)

endin

The next example shows the use of a generic MIDI input to report the messages
received, a type of MIDI monitor. Note that we use massign with parameters set
to zero, which disables triggering of instruments (NOTE ON messages do not create
instances of any instrument). This is because we want to run only a single copy of
instrument 1 that will monitor incoming MIDI data. This approach can be used in
case we want to parse MIDI messages before dispatching them to other parts of the
code.

Listing 9.2 MIDI monitor to print out input messages

massign 0,0
instr 1
k1,k2,k3,k4 midiin
if k1 == 144 then
S1 strcpyk "NOTE ON"
elseif k1 == 128 then
S1 strcpyk "NOTE OFF"
elseif k1 == 166 then
S1 strcpyk "POLY AFTERTOUCH"
elseif k1 == 208 then
S1 strcpyk "AFTERTOUCH"
elseif k1 == 192 then
S1 strcpyk "PROGRAM CHANGE"
elseif k1 == 176 then
S1 strcpyk "CONTROL CHANGE"
elseif k1 == 224 then
S1 strcpyk "PITCH BEND"
else
S1 strcpyk "UNDEFINED"
endif
printf "%s chn:%d data1:%d data2:%d\n",

k1,S1,k2,k3,k4
endin
schedule(1,0,-1)

Mapping to instrument parameters

It is also possible to map NOTE ON/OFF data to given instrument parameter fields
(p4, p5 etc.). This allows us to make instruments ready for MIDI without needing to

176 9 MIDI Input and Output

modify them too much, or use some of the MIDI opcodes above. In order to do this,
we can use the following options:

--midi-key=N: route MIDI note on message key number to p-field N as MIDI
value.
--midi-key-cps=N: route MIDI note on message key number to p-field N
as cycles per second (Hz).
--midi-key-oct=N: route MIDI note on message key number to p-field N
as linear octave.
--midi-key-pch=N: route MIDI note on message key number to p-field N
as octave pitch-class.
--midi-velocity=N: route MIDI note on message velocity number to p-
field N as MIDI value.
--midi-velocity-amp=N: route MIDI note on message velocity number to
p-field N as amplitude change data for a given channel.

For instance, the options

--midi-key-cps=5 --midi-velocity-amp=4

will map key numbers to Hz in p5 and velocities to p4 (amplitudes in the range
of 0-0dbfs). In this case, the following minimal instrument will respond directly to
MIDI:

instr 1
out(linenr(oscili(p4,p5),0.01,0.1,0.01))
endin

The only thing we need to worry about is that the instruments we are hoping to
use with MIDI do not depend on the event duration (p3). If we use envelopes with
built-in release times as in the previous example, then we will not have any problems
reusing code for MIDI real-time performance.

9.3.2 Output

MIDI output is enabled with the -Q dev option, where, as before, dev is the desti-
nation device. It is also possible to write MIDI files using --midioutfile=....
Similarly to input, Csound provides a selection of opcodes that can be used for this
purpose:

midion, midion2, noteon, noteoff, notendur, and noteondur2 –
NOTE channel messages.
outiat and outkat – aftertouch.
outipat and outkpat – polyphonic aftertouch.
outic and outkc – control change.
outic14 and outkc14 – control change in two-message packages for extra
precision.

9.3 The Csound MIDI System 177

outipat and outkpat – program change.
outipb and outkpb – pitch bend.
midiout – generic MIDI message output.

Some of the NOTE opcodes will put out matching ON - OFF messages, so there
is no particular problem with hanging notes. However, when using something more
raw (such as noteon and midiout), care needs to be taken so that all notes are
killed off correctly.

MIDI output example

The following example demonstrates MIDI output. We use the midion opcode,
which can be run at k-rate. This opcode sends NOTE ON messages when one
of its data parameters (note number, velocity) changes. Before a new message is
sent, a NOTE OFF cancelling the previous note is also sent. The metro opcode is
used to trigger new messages every second (60 bpm), and the note parameters are
drawn from a pseudo-random sequence. For each note, we print its data values to
the screen.

Listing 9.3 Simple MIDI output example

instr 1
k1 metro 1
if k1 > 0 then
kn = 60+rnd:k(12)
kv = 60+birnd:k(40)
printf "NOTE %d %d\n", kn, kn, kv
midion 1,kn,kv
endif
endin

9.3.3 MIDI Backends

Depending on the operating system, various MIDI backends can be used. These can
be selected with the option -+rtmidi=.... The default backend for all platforms
is portmidi. Some frontends can also implement their own MIDI IO, in which case
there is no particular need to choose a different backend.

PortMidi

PortMidi is a cross-platform MIDI library that works with whatever implementation
is offered by the host OS. It can be selected by setting -+rtmidi=pmidi, but it is

178 9 MIDI Input and Output

also the default backend. Devices are listed numerically, so in order to select inputs
or outputs, we should provide the device number (e.g. -M 0, -Q 0). Devices can
be listed by running Csound with the sole option --midi-devices. The option
-M a enables all available input devices together.

CoreMIDI

CoreMIDI is the underlying OSX MIDI implementation, which can be accessed us-
ing -+rtmidi=coremidi. Devices are also listed numerically, as with PortMidi.

ALSA raw MIDI

ALSA raw MIDI is the basic Linux MIDI implementation, accessed using -
+rtmidi
=alsa. Devices are listed and set by name, e.g. hw:1,0.

ALSA sequencer

The Alsa sequencer is a higher-level MIDI implementation, accessed using -
+rtmidi
=alsaseq. Devices are also listed and set by name.

Jack

The Jack connection kit MIDI implementation works in a similar way to its audio
counterpart. We can set it up with -+rtmidi=jack, and it will connect by default
to the system MIDI sources and/or destinations. It is also possible to define the
connections by passing port names to -M and -Q. The Jack patchbay can be used to
set other links. Jack is particularly useful for inter-application MIDI IO.

9.4 Conclusions

In this chapter we have examined another means of controlling Csound, through
the use of the MIDI protocol. This can be employed for real-time device control,
as well as in offline scenarios with file input. The use of MIDI can be intermingled
with other forms of control, score, and orchestra code. It provides a flexible way to
integrate Csound with other software and external hardware.

It was pointed out that MIDI has its limitations in that it supports a certain ap-
proach to music making that lacks some flexibility. In addition, the protocol has

9.4 Conclusions 179

limited precision, as most of the data is in the seven-bit range. Alternatives to it
have been shown elsewhere in this book, and in particular, we will see in the next
chapter a more modern communications protocol that might eventually supersede
MIDI. However, at the time of writing, this is still the most widespread method of
connecting musical devices together for control purposes.

Chapter 10

Open Sound Control and Networking

Abstract In this chapter, we examine the networking capabilities of Csound. Through
the use of Open Sound Control, the network opcodes, and/or the server, users can
interact with external software, as well as with distributed processes in separate ma-
chines. The chapter explores these ideas, introducing key concepts and providing
some examples of applications.

10.1 Introduction

Csound has extensive support for interaction and control via the network. This al-
lows processes running on separate machines (or even on the same one) to com-
municate with each other. It also provides extra means of allowing the system to
interact with other software that can use the common networking protocols. There
are three areas of functionality within Csound that use networking for their oper-
ation: the Open Sound Control (OSC) opcodes; the all-purpose network opcodes;
and the Csound server.

10.2 Open Sound Control

Open Sound Control was developed in the mid-1990s at CNMAT [133, 134], and
is now widely used. Its goal was to create a more flexible, dynamic alternative to
MIDI. It uses modern network communications, usually based on the user datagram
transport layer protocol (UDP), and allows not only communication between syn-
thesisers but also between applications and remote computers.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

181
10

182 10 Open Sound Control and Networking

10.2.1 The OSC Protocol

The basic unit of OSC data is a message. This is sent to an address which follows the
UNIX path convention, starting with a slash and creating branches at every follow-
ing slash. The names inside this structure are free, but the convention is that the name
should fit the content, for instance /voice/3/freq or /ITL/table/point0.
So, in contrast to MIDI, the address space is not pre-defined and can be changed
dynamically.

An OSC message must specify the type(s) of its argument(s). The basic types
supported by Csound are:

• integer 32-bit (type specifier: "i")
• long integer 64-bit ("h")
• float ("f")
• double ("d")
• character ("c")
• string ("s").

Once data types are declared, messages can be sent and received. In OSC termi-
nology, anything that sends a message is a client, and anything that receives it is a
server. Csound can be both, in various ways, as it can

• send a message and receive it in another part of the same program;
• receive a message which is sent by any other application on this computer (local-

host) or anywhere in the network;
• send a message to another application anywhere in the network.

10.2.2 Csound Implementation

The basic OSC opcodes in Csound are OSCsend and OSCreceive. As their
names suggest, the former sends a message from Csound to anywhere, and the latter
receives a message from anywhere in Csound:

OSCsend kwhen, ihost, iport, idestination,
itype [, kdata1, kdata2, ...]

where kwhen sends a message whenever it changes, ihost contains an IP address,
iport specifies a port number, and idestination is a string with the address
space. The itype string contains one or more of the above-mentioned type speci-
fiers which will then occur as kdata1, kdata2 and so on.

ihandle OSCinit iport
kans OSClisten ihandle, idest, itype

[, xdata1, xdata2, ...]

10.2 Open Sound Control 183

The opcode outputs 1 (to kans) whenever a new OSC message is received, oth-
erwise zero. The ihandle argument contains the port number which has been
opened by OSCinit; idest and itype have the same meaning as in OSCsend.
The arguments xdata1, xdata2 etc. must correspond to the data types which
have been specified in the itype string. These will receive the contents of the in-
coming message, and must have been declared in the code beforehand, usually with
an init statement to avoid an undefined-variable error.

The following code sends one integer, one float, one string, and one more float
once a second via port 8756 to the localhost ("127.0.0.1"), and receives them
by another Csound instance.

Listing 10.1 Client (sender) program

instr send_OSC
kSend = int(times:k())+1
kInt = int(random:k(1,10))
String = "Hello anywhere"
kFloat1 = random:k(0,1)
kFloat2 = random:k(-1,0)
OSCsend kSend, "127.0.0.1", 8756,

"/test/1", "ifsf",
kInt, kFloat1, String, kFloat2

printf {{
OSC message %d sent at time %f!
int = %d, float1 = %f,
String = '%s', float2 = %f\n
}},
kSend, kSend, date:k(),
kInt,
kFloat1, String,
kFloat2
endin
schedule("send_OSC",0,1000)

Listing 10.2 Server (receiver) program

giRecPort OSCinit 8756
instr receive_OSC
kI, kF1, kF2, kCount init 0
Str = ""
kGotOne OSClisten giRecPort, "/test/1", "ifsf",

kI, kF1, Str, kF2
if kGotOne == 1 then

kCount += 1
printf {{

OSC message %d received at time %f!
int = %d, float1 = %f,

184 10 Open Sound Control and Networking

String = '%s', float2 = %f\n
}},kCount, kCount, date:k(),

kI, kF1, Str, kF2
endif
endin
schedule("receive_OSC", 0, 1000)

Running the two programs on two separate processes (different terminals/shells)
shows this printout for the sender:

OSC message 1 sent at time 1449094584.194864!
int = 8, float1 = 0.291342,
String = 'Hello anywhere', float2 = -0.074289

OSC message 2 sent at time 1449094585.167630!
int = 5, float1 = 0.680684,
String = 'Hello anywhere', float2 = -0.749450

OSC message 3 sent at time 1449094586.166411!
int = 1, float1 = 0.871381,
String = 'Hello anywhere', float2 = -0.070356

OSC message 4 sent at time 1449094587.168919!
int = 3, float1 = 0.615197,
String = 'Hello anywhere', float2 = -0.863861

And this one for the receiver:

OSC message 1 received at time 1449094584.195330!
int = 8, float1 = 0.291342,
String = 'Hello anywhere', float2 = -0.074289

OSC message 2 received at time 1449094585.172991!
int = 5, float1 = 0.680684,
String = 'Hello anywhere', float2 = -0.749450

OSC message 3 received at time 1449094586.171918!
int = 1, float1 = 0.871381,
String = 'Hello anywhere', float2 = -0.070356

OSC message 4 received at time 1449094587.169059!
int = 3, float1 = 0.615197,
String = 'Hello anywhere', float2 = -0.863861

So in this case the messages are received with a time delay of about 5 millisec-
onds.

10.2 Open Sound Control 185

10.2.3 Inter-application Examples

Processing using Csound as an audio engine

Processing is a Java-based programming language for visual arts1. Its visual engine
can interact easily with Csound’s audio engine via OSC. A simple example uses the
“Distance1D” code from the built-in Processing examples. Four lines (one thick,
one thin, on two levels) move depending on the mouse position (Fig. 10.1).

Fig. 10.1 Processing user interface

To send the four x-positions as OSC messages, we use the code shown in list-
ing 10.3 in the Processing sketchbook.

Listing 10.3 Processing program for OSC messaging

import oscP5.*;
import netP5.*;

OscP5 oscP5;
NetAddress myRemoteLocation;
float xpos1;
float xpos2;
float xpos3;
float xpos4;
...

1 http://processing.org

186 10 Open Sound Control and Networking

void setup()
{

...
oscP5 = new OscP5(this,12001);
myRemoteLocation = new NetAddress("127.0.0.1",12002);
...

}

void draw()
{

...
OscMessage xposMessage =

new OscMessage("/Proc/xpos");

xposMessage.add(xpos1);
xposMessage.add(xpos2);
xposMessage.add(xpos3);
xposMessage.add(xpos4);

oscP5.send(xposMessage, myRemoteLocation);
}

The Processing sketch sends the four locations as x-positions in one OSC mes-
sage with the address /Proc/xpos on port 12,002. The message consists of four
floating point numbers which represent xpos1, xpos2, xpos3, and xpos4. The
Csound code receives these messages and scales the pixel range (0, ..., 640) to the
octave C-C (MIDI 72-84) for the upper two lines, and to the octave F#-F# (MIDI
66-78) for the lower two lines. As the lines move at different speeds, the distance
changes all the time. We use this to increase the volume of the two lines on the same
level when they become closer to each other, and vice versa. The movement of the
mouse leads to different chords and different changes between chords (listing 10.4).

Listing 10.4 OSC-controlled Csound synthesis code

opcode Scale, k, kkkkk
kVal, kInMin, kInMax, kOutMin, kOutMax xin
kValOut = (((kOutMax - kOutMin) / (kInMax - kInMin)) *

(kVal - kInMin)) + kOutMin
xout kValOut
endop

giPort OSCinit 12002

instr 1

;initialize variables and receive OSC
kx1, kx2, kx3, kx4 init 0

10.2 Open Sound Control 187

kPing OSClisten giPort, "/Proc/xpos", "ffff", kx1,
kx2, kx3, kx4

;scale x-values to MIDI note numbers
km1 Scale kx1, 0, 640, 72, 84
km2 Scale kx2, 0, 640, 72, 84
km3 Scale kx3, 0, 640, 66, 78
km4 Scale kx4, 0, 640, 66, 78

;change volume according to distance 1-2 and 3-4
kdb12 = -abs(km1-km2)*2 - 16
kdb12 port kdb12, .1
kdb34 = -abs(km3-km4)*2 - 16
kdb34 port kdb34, .1

;produce sound and output
ax1 poscil ampdb(kdb12), cpsmidinn(km1)
ax2 poscil ampdb(kdb12), cpsmidinn(km2)
ax3 poscil ampdb(kdb34), cpsmidinn(km3)
ax4 poscil ampdb(kdb34), cpsmidinn(km4)

ax = ax1 + ax2 + ax3 + ax4

kFadeIn linseg 0, 1, 1

out ax*kFadeIn, ax*kFadeIn

endin
schedule(1,0,1000)

Csound using INScore as an intelligent display

Open Sound Control can not only be used for real-time sonification of visual data
by Csound, as demonstrated in the previous section. It can also be used the other
way round: Csound produces sounding events which are then visualised. INScore2,
developed at GRAME3, is one of the many applications which are capable of doing
this.

The approach here is slightly different from the one using Processing: INScore
does not need any code. Once it is launched, it listens to OSC messages (by default
on port 7,000). These messages can create, modify and remove any graphical repre-
sentation. For instance, the message /ITL/csound new will create a new panel

2 http://inscore.sourceforge.net
3 http://grame.fr

188 10 Open Sound Control and Networking

called csound4. The message /ITL/csound/point0 set ellipse 0.1
0.2 will create an ellipse with address point0 and size (0.1,0.2) (x,y) in this
panel. In Csound code, both messages look like this:

OSCsend 1, "", 7000, "/ITL/csound", "s", "new"
OSCsend 1, "", 7000, "/ITL/csound/point0",

"ssff", "set", "ellipse", 0.1, 0.2

Fig. 10.2 Graphics generated by listing 10.5 displayed in INScore

The example code in listing 10.5 uses this flexibility in various ways. Ten in-
stances of OneTone are created (Fig. 10.2). Each instance carries a unique ID, as
it is called with a p4 from zero to nine. This ID via p4 is used to link one instance
to one of the ten points in the INScore panel. Each instance will create a successor
with the same p4. The ten points are modified by the sounds in many ways:

• “High” and “low” pitches are placed high and low in the panel.

4 /ITL is the address space for the INScore application.

10.2 Open Sound Control 189

• Left/right position is determined by the panning.
• The form of the ellipse depends on shorter/duller (more horizontal) or longer/-

more resonant (more vertical) sounds.
• The colour is a mixture of red (depending on pitch) and some blue (depending

on filter quality).
• The size of an ellipse depends on the volume. Each point disappears slowly when

the sound gets softer.

Except for the continuous decrement of the size, it is sufficient to send all mes-
sages only once, by using kwhen=1. For the transformation of the size, a rate of 15
Hz is applied for sending OSC messages, instead of sending on every k-cycle.

Listing 10.5 OSC-generating Csound code

ksmps = 32
nchnls = 2
0dbfs = 1
seed 0

;inscore default port for receiving OSC
giOscPort = 7000

opcode Scale, i, iiiii
iVal, iInMin, iInMax, iOutMin, iOutMax xin
iValOut = (((iOutMax - iOutMin) / (iInMax - iInMin))

* (iVal - iInMin)) + iOutMin
xout iValOut
endop

instr Init
OSCsend 1, "", giOscPort, "/ITL/csound", "s", "new"
OSCsend 1, "", giOscPort, "/ITL/csound/*", "s", "del"
gkSend metro 15
indx = 0
while indx < 10 do
schedule "OneTone", 0, 1, indx
indx += 1
od
schedule "Reverb", 0, p3
endin

instr OneTone
;generate tone and send to reverb
iOct random 7,10
iDb random -20,0
iQ random 100,1000
p3 = iQ/100

190 10 Open Sound Control and Networking

aStrike butlp mpulse(ampdb(iDb), p3), cpsoct(iOct)
aTone linen mode(aStrike, cpsoct(iOct), iQ), 0, p3, p3/2
iPan random 0,1
aL,aR pan2 aTone, iPan
chnmix aL, "left"
chnmix aR, "right"
;send OSC messages to Inscore
S_address sprintf "/ITL/csound/point%d", p4
iSizeX Scale iDb, -20, 0, .1, .3
iY_rel Scale iQ, 100, 1000, .1, 2
OSCsend 1, "", giOscPort, S_address, "ssff", "set",

"ellipse", iSizeX, iSizeX*iY_relˆ2
OSCsend 1, "", giOscPort, S_address, "si", "red",

Scale(iOct,7,10,0,256)
OSCsend 1, "", giOscPort, S_address, "si", "blue",

Scale(iQ,100,1000,100,0)
OSCsend 1, "", giOscPort, S_address, "sf", "y",

Scale(iOct,7,10,.7,-.7)
OSCsend 1, "", giOscPort, S_address, "sf", "x",

Scale(iPan,0,1,-1,1)
OSCsend gkSend, "", giOscPort, S_address, "sf",

"scale", line:k(1,p3,0)
;call a new instance of this ID
schedule "OneTone", p3, 1, p4
endin

instr Reverb
aL chnget "left"
aR chnget "right"
aLrv, aRrv reverbsc aL, aR, .7, sr/3
out aL*.8+aLrv*.2, aR*.8+aRrv*.2
chnclear "left"
chnclear "right"
endin

schedule("Init",0,9999)

Note that OSCsend will default to the localhost if passed an empty string as its
destination network address. When using OSC for inter-application connections in
the same machine, this is the normal procedure.

10.3 Network Opcodes 191

10.3 Network Opcodes

In addition to the specific OSC opcodes, which are designed to read this particular
protocol, Csound has more general network opcodes that can be used to send and
receive data via UDP or TCP (Transport Control Protocol) messages. These opcodes
can be used to work with a-variables, mostly, but can also be used to send and receive
control data.

The UDP opcodes are

asig sockrecv iport,ilen
ksig sockrecv iport,ilen
socksend asig,Sadrr,iport,ilen
socksend ksig,Sadrr,iport,ilen

where the network address is given by Saddr, the port used by iport. It is also
necessary to set the length of the individual packets in UDP transmission: ilen,
which needs to be small enough to fit a single maximum transmission unit (MTU,
1,456 bytes). While UDP signals can theoretically carry audio signals, in practice it
is difficult to have a reliable connection. However, it can carry control or modulation
data well. In the following examples, we have a sender producing a glissando signal
that is applied to an oscillator frequency at the receiver.

The send instrument produces an exponential control signal, and sends it to the
localhost, port 7,708:

instr 1
socksend expon(1,10,2),

"127.0.0.1",7708,200
endin
schedule(1,0,-1)

The receiver, running in a separate process, takes the UDP data and uses it as a
frequency scaler.

instr 1
k1 sockrecv 7708,200
out oscili(0dbfs/2, k1*440)
endin
schedule(1,0,-1)

In addition to these, Csound has a pair of TCP opcodes. These work differently,
requiring the two ends of the connection to handshake, so the receiver will have to
look for a specific sender address, instead of receiving data from any sender:

stsend asig,Saddr,iport
asig strecv Saddr,iport

Messages are send in a stream, and the connection is more reliable. It works
better for sending audio, as in the example below:

192 10 Open Sound Control and Networking

instr 1
stsend oscili(0dbfs/2,440), "127.0.0.1",8000
endin
schedule(1,0,-1)

instr 1
out strecv("127.0.0.1",8000)
endin
schedule(1,0,-1)

10.4 Csound UDP Server

In addition to its OSC and network opcodes, Csound can also be set up as a server
that will listen to UDP connections containing code text. As soon as it is received,
a text string is compiled by Csound. In this way, Csound can work as lightweight
audio server. If Csound is passed the --port=N option, it will listen to messages
on port N, until it is closed (by sending it a kill signal, ctrl-c).

Messages can be sent to Csound from any UDP source, locally or on the network.
For instance, we can start Csound with these options:

$ csound --port=40000 -odac

And we would see the following messages (among others):

0dBFS level = 32768.0
UDP server started on port 40000
orch now loaded
audio buffered in 1024 sample-frame blocks
PortAudio V19-devel (built Sep 4 2014 22:30:30)

0: dac0 (Built-in Output)
1: dac1 (Soundflower (2ch))
2: dac2 (Soundflower (64ch))
3: dac3 (Aggregate Device)

PortAudio: selected output device ’Built-in Output’
writing 1024 sample blks of 64-bit floats to dac
SECTION 1:

Csound is running, with no instruments. We can use the command nc (netcat) to
send a UDP message to it, using the heredoc facility, from another shell:

$ nc -uw 1 127.0.0.1 40000 <<end
> instr 1
> a1 oscili p4,p5
> out a1
> endin

10.5 Conclusions 193

> schedule(1,0,2,0dbfs/2,440)
> end

and all the text from the top to the keyword end, but excluding it, will be sent
to Csound via UDP. The nc command takes in the network address (127.0.0.1,
the localhost) and a port (40,000) to send the message to. This demonstrates the
simplicity of the system, which can be used in a variety of set-ups.

As shown with OSC, third-party networking programs can be used to interface
with the system. In particular, text editors (such as emacs or vim) can be config-
ured to send selections of text to Csound, allowing them to implement interactive
frontend facilities. Note that just by adding the --port=N option, we can start the
network server, which works even alongside other input methods, scores, MIDI etc.
The server itself can be closed by sending the string "##close##" to it.

10.5 Conclusions

Open Sound Control gives Csound a fast and flexible communication with any other
application which is able to use OSC. It offers a wide range of use cases in soni-
fication and visualisation. It makes it possible to control Csound remotely via any
OSC-capable software, as explored in the examples based on Processing and In-
score.

In complement to the OSC implementation, we have the generic network op-
codes. These allow the user to send raw data over UDP and TCP connections, for
both control and audio applications.

Finally, we introduced the built-in UDP server that is provided as part of the audio
engine. Once enabled, it is possible to use it to send strings containing Csound code
to be compiled and run. This provides a third way in which users can interact with
the system over network communications infrastructure.

Chapter 11

Scripting Csound

Abstract In this chapter, we will discuss controlling Csound from applications writ-
ten in general-purpose scripting languages. This allows users to develop music pro-
grams that employ Csound as an audio engine, for specific uses.

11.1 Introduction

Throughout this book we’ve discussed what can be done within the Csound system
itself. In this chapter, we will discuss embedding Csound into applications, includ-
ing how to externally control Csound, as well as communicate between the host
application and Csound. The examples provided will be shown using the Python
programming language. However, Csound is available for use in C, C++, Java (in-
cluding JVM languages, such as Scala and Clojure), C#, Common Lisp and others.

11.2 Csound API

As discussed in Part I, Csound provides an Application Programming Interface
(API) for creating, running, controlling, and communicating with a Csound engine
instance. Host applications, written in a general-purpose programming language,
use the API to embed Csound within the program. Such applications can range from
a fully fledged frontend to small, dedicated programs designed for specific uses (e.g.
an installation, a composition, prototyping, research).

The core Csound API is written in C. In addition, a C++ wrapper is available, and
bindings for other programming languages (Python, Java, Lua) are generated using
SWIG1. Each version of the API differs slightly to accommodate differences in each
programming language, but they all share the same basic design and functionality.

1 http://www.swig.org

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_11

195

196 11 Scripting Csound

In this chapter, we will provide an overview of the use of Csound in a scripting-
language environment, Python. Such scripts can be constructed to provide various
means of interaction with the software system.

11.3 Managing an Instance of Csound

At the heart of a script that uses Csound through the API lies an instance of the
whole system. We can think of it as an object that encapsulates all the elements
that are involved in the operation of the software, e.g. compilation, performance,
interaction etc. A number of basic actions are required in this process: initialising,
compiling, running the engine, managing threads, stopping and cleaning up. In this
section, we will look at each one of these.

11.3.1 Initialisation

There are two initialisation steps necessary for running Csound in Python. The first
one of these is to load the Python module, so that the functionality is made available
to the interpreter. There are two components in the csnd6 module:

1. the Python wrapper code (csnd6.py)
2. the binary library module (csnd6.so).

In any regular installation of Csound, these would be placed in the default loca-
tions for Python. The first one contains all the Python-side API code that is needed
for the running of the system, and the second contains the binary counterparts to it
that talk directly to the Csound C library.

When using Csound from Python, it is possible either to write the code into a text
file and then run it using the interpreter, or else to type all commands interactively at
the interpreter prompt. Csound can also be run from specialised Python shells such
as IPython and its Notebook interface.

In order to load Csound, the import command is used, e.g.

from csnd6 import Csound

This will load specifically the Csound class of the API, whereas

import csnd6

will load all the classes, including some other utility ones that allow the user to
access some parts of the original C API that are not idiomatically adapted to the
Python language. In this text, we will use this full-package import style. If you are
using Python interactively you can use the following commands to get a listing of
everything available in the API:

11.3 Managing an Instance of Csound 197

>> import csnd6
>> help(csnd6)

The next step is to create in memory a Csound object. After using the full-
package form of the import command shown above, we can instantiate it with
the following line:

cs = csnd6.Csound()

Once this is done, we should see the following lines printed to the console (but
the reported version and build date will probably be different):

time resolution is 1000.000 ns
virtual_keyboard real time MIDI plugin for Csound
0dBFS level = 32768.0
Csound version 6.07 beta (double samples) Dec 12 2015
libsndfile-1.0.25

We can then configure options for Csound using the SetOption method. This
allows us to set flags for Csound. It employs the same flags as one would use
when executing Csound from the command line directly, or in the CsOptions
tags within a CSD project file. For example

cs.SetOption('-odac')

will set the output to the digital-to-analogue converter (i.e., real-time audio output).
Note that SetOption allows for setting only one option at a time. Options can
also be set at first compilation, as shown in the next section.

11.3.2 First Compilation

In order to run Csound, the next required stage is to compile the Csound code, which
we can do by passing a string containing the name of a CSD file to the Compile()
method of the Csound class:

err = cs.Compile('test.csd')

Up to four separate options can be passed to Csound as string arguments to
Compile(), in addition to the CSD file name:

err = cs.Compile('test.csd', '-odac', '-iadc','-dm0')

In this example, the input and output are set to real-time, and both displays and
messages are suppressed. Alternatively, we can use the utility class CsoundArgV-
List() to compose a variable list of arguments and pass it to Compile(), using
its argc() and argv() methods which hold the number and array of arguments,
respectively:

198 11 Scripting Csound

args = csnd6.CsoundArgVList()
args.Insert(0, 'test.csd')
args.Insert(0, '-odac')
args.Insert(0, '-idac')
args.Insert(0, '-dm0')
err = cs.Compile(args.argc(), args.argv())

In this case, any number of options can be passed to the compilation by inserting
these as strings in the argument list.

Once the CSD is compiled with no errors (err == 0), it is possible to start
making sound. Note that by compiling a first CSD in this way, the engine is started
and placed in a ready-to-go state. Additional code can be further compiled by
Csound at any point with CompileOrc(). Note that Compile() can only be
called on a clean instance (either a newly created one, or one that has been reset, as
will be discussed later).

11.3.3 Performing

At this stage, we can start performance. A high-level method can be used to run the
Csound engine:

cs.Perform()

Note that this will block until the performance ends (e.g. at the end of an existing
score) but if Csound is set to run in real-time with no score, this stage might never
be reached in our lifetime. In that case, we would need to find a different way of
performing Csound.

The API also allows us to perform one k-cycle at a time by calling the Perform
Ksmps() method of the Csound class. Since this performs only a single ksmps
period, we need to call it continuously, i.e. in a loop:

while err == 0:
err = cs.PerformKsmps()

At the end of performance, err becomes non-zero. However, this will still block
our interaction with the code, unless we place some other event-checking function
inside the loop.

Performance thread

Another alternative is to run Csound in a separate thread. This is cumbersome in
pure Python as the global interpreter lock (GIL) will interfere with performance.
The best way to do it is to use a Csound performance thread object, which uses a
separate native thread for performance. We can access it from the csnd6 package
to create a thread object by passing our Csound engine (cs) to it:

11.3 Managing an Instance of Csound 199

t = csnd6.CsoundPerfomanceThread(cs)

At this point, we can manipulate the performance simply by calling Play(),
Pause(), and Stop() on the thread object, e.g.

t.Play()

Note that each one of these methods does not block, so they work very well in
interactive mode. When using these in a script, we will have to make sure some sort
of event loop or a sleep function is used, otherwise the interpreter will fall through
these calls and close before we are able to hear any sound. Also in order to clear
up the separate thread properly, on exiting we should always call Join() after
Stop().

Real-time performance and file rendering

As with other modes of interaction with Csound, it is possible to run Csound as a
real-time performance or to render its output to a file. There is nothing specific to
Python or to scripting in general with regards to these modes of operation. They
can be selected as described in Part I, by employing the -o option. As discussed
before, by default, Csound renders to file (called test.wav or test.aif depending on
the platform), and to enable real-time output, the -o dac option is required.

11.3.4 Score Playback Control and Clean-up

If we are using the numeric score, performance will stop at the end of this score. In
order to reuse the Csound instance, we need to either rewind it or set its position to
some other starting point. There are two methods that can be used for this:

cs.SetScoreOffsetSeconds(time)
cs.RewindScore()

Note that these can be used at any point during performance to control the score
playback. We can also get the current score position with:

cs.GetScoreTime()

Alternatively, we can clean up the engine so that it becomes ready for another
initial compilation. This can be accomplished by a reset:

cs.Reset()

This can also be done, optionally, by recreating the object. In this case, Python’s
garbage collection will dispose of the old Csound instance later, and no resetting is
needed.

200 11 Scripting Csound

11.4 Sending Events

One of the main applications for Python scripts that run Csound is to enable a high
level of interactivity. The API allows external triggering of events (i.e. instantiation
of instruments), in a flexible way. While the engine is performing, we can call meth-
ods in the Csound class that will schedule instruments for us. This is thread-safe,
which means that it can be called from a different thread to the one where the engine
is running, and calls can be made at any time.

There are two main methods for this, InputMessage() and ReadScore.
The first one of these dispatches real-time events with no further processing,
whereas the second one can take advantage of most of the score-processing ca-
pabilities (except for tempo warping) as expected for a score file (or section of a
CSD file). The syntax of both methods is the same; they are passed strings defining
events in the standard score format:

cs.InputMessage('i 1 0 0.5 8.02')

Events with start time (p2) set to 0 are played immediately, whereas a non-zero
p2 would schedule instances to start sometime in the future, relative to the current
time in the engine. Multiple events in multi-line strings are allowed, and the Python
string conventions (single, double and triple quoting) apply.

11.5 The Software Bus

Csound provides a complete software bus to pass data between the host and the en-
gine. It allows users to construct various means of interaction between their software
and running instruments. The bus uses the channel system as discussed in Chapter 6,
and it provides means of sending numeric control and audio data through its named
channels. In the specific case of Python, given the nature of the language, we will
tend to avoid passing audio data in strict real-time situations, as the system is not
designed for efficient number crunching. However, in other situations, it is perfectly
feasible to access an audio stream via the bus.

Data sent or received to Csound is processed once per k-cycle, so if two or more
requests to a bus channel are sent inside one single k-period, the final one of these
will supersede all others. All calls to the software bus are thread-safe, and can be
made asynchronously to the engine.

11.5.1 Control Data

The most common use of the software bus is to pass numeric control data to and
from Csound. The format is a scalar floating-point value, which can be manipulated
via two methods:

11.5 The Software Bus 201

var = cs.GetChannel('name')
cs.SetChannel('name', var)

The first parameter is a string identifying the name of the channel. The counter-
parts for these functions in Csound code are

kvar chnget "name"
chnset kvar, "name"

These opcodes will work with either i- or k-rate variables for control data. Thus,
when passing data from Python to Csound, we use SetChannel() and chnget,
and when going in the other direction, chnset and GetChannel(). These func-
tions are also thread-safe, and will set/get the current value of a given channel.

11.5.2 Audio Channels

As we have learned before, audio data in Csound is held in vectors, which will
have ksmps length. So, if we want to access audio data, we will need to use a
special Python object to handle it. The csnd6 package offers a utility class to han-
dle this, CsoundMYFLTArray, which can then be used in conjunction with the
GetAudioChannel() and SetChannel() methods of the Csound class. For
instance, in order to get the data from a channel named "audio", we can use this
code:

aud = csnd6.CsoundMYFLTArray(cs.GetKsmps())
cs.GetAudioChannel('audio', aud.GetPtr(0))

Each one of the elements in the vector can be accessed using GetValue():

for i in range(0,cs.GetKsmps()):
print aud.GetValue(i)

To pass data in the other direction, using the same object, we can do

cs.SetChannel('audio', aud.GetPtr(0))

The GetPtr()method is needed to allow the channel to access the vector mem-
ory created in the Python object. Its parameter indicates which starting position in
the vector we will pass to the channel (0, the beginning, is the usual value).

11.5.2.1 Input and Output Buffers

A similar method used for audio channels can be used to access the input and/or
output buffers of Csound, which hold the data used by the in and out (and related)
opcodes.

As discussed earlier in Section 2.8.2, Csound has internal buffers that hold a
vector of ksmps audio frames. These are called spin and spout. We can access
them from the API using a CsoundMYFLTArray object:

202 11 Scripting Csound

spout = csnd6.CsoundMYFLTArray()
spout.SetPtr(cs.GetSpout())
spin = csnd6.CsoundMYFLTArray()
spin.SetPtr(cs.GetSpin())

As discussed above, the SetValue() and GetValue() methods of the
CsoundMYFLTArray class can then be used to manipulate the audio data. The
size of these vectors will be equivalent to ksmps*nchnls (if nchnls i has been
defined, then the size of spin is ksmps*nchnls i).

Likewise, we can access the actual input and output software buffers, which are
larger, and whose size in frames is set by the -b N option:

inbuffer = csnd6.CsoundMYFLTArray()
inbuffer.SetPtr(cs.GetInputBuffer())
outbuffer = csnd6.CsoundMYFLTArray()
outbuffer.SetPtr(cs.GetOutputBuffer())

Note that all of these buffers are only available after the first compilation, when
the engine has started.

11.6 Manipulating Tables

Function tables are also accessible through the API. It is possible to read and/or
write data to existing tables. The following methods can be used:

• TableLength(tab): returns the length of a function table, tab is the table
number.

• TableGet(tab, index): reads a single value from a function table, tab is
the table number and index is the position requested.

• TableSet(tab, index, value): writes a single value of a function ta-
ble, tab is the table number and index is the position to be set with value.

• TableCopyIn(tab, src): copies all values from a vector into a table. The
src parameter is given by a GetPtr() from a CsoundMYFLTArray created
with the same size as the requested function table. It holds the values to be copied
into the table.

• TableCopyOut(tab, dest): copies all values from a table into a vector.
The dest parameter is given by a GetPtr() from a CsoundMYFLTArray
created with the same size as the requested function table. It will hold a copy of
the values of the function table after the function call.

The CsoundMYFLTArray object used in the data copy should have a least the
same size as the requested table. Trying to copy data to/from a destination or source
with insufficient memory could lead to a crash.

11.8 A Complete Example 203

11.7 Compiling Orchestra Code

It is possible to compile orchestra code straight from a Python string using the
CompileOrc() method of the Csound class. This can be done at any time, and
it can even replace the Compile() method that reads a CSD from file. However,
in this case, we will need to start the engine explicitly with a call to Start().
Consider the following example (listing 11.1).

Listing 11.1 Compiling directly from a string containing Csound code

cs = csnd6.Csound()
cs.SetOption('-odac')
if cs.CompileOrc('''
instr 1
a1 oscili p4, p5
out a1
endin
schedule(1,0,2,0dbfs,440)
''') == 0:

cs.Start()
t = csnd6.CsoundPerformanceThread(cs)
t.Play()
while(t.isRunning() == 1):

pass

Here, we create a Csound engine and set it to real-time audio output. Then we
send it the initial code to be compiled. Following this, if the compilation is success-
ful, we start the engine, set up a performance thread and play it. The infinite loop at
the end makes sure the script does not fall through; it can be ignored if the code is
typed at the Python shell, and it should be replaced by an event listener loop in an
interactive application.

Any number of calls to CompileOrc() can be issued before or after the engine
has started. New instruments can be added, and old ones replaced using this method.
This method is thread-safe and may be called at any time.

11.8 A Complete Example

To complement this chapter, we will show how Csound can be combined with a
graphical user interface package to create a simple program that will play a sound
in response to a button click. There are several Python GUI packages that can be
used for this purpose. We will provide an example using the Tkinter module, which
is present in most platforms under which Python can be run.

The application code, in listing 11.2, can be outlined as follows:

1. A class defining the GUI interface is created.

204 11 Scripting Csound

2. A Csound object is placed inside this application class and code is compiled.
3. The engine is run in a separate thread provided by

CsoundPerformanceThread.
4. Callbacks are defined to react to each button press and for quitting Csound.
5. The Application class is instantiated and its main loop is run.

The application consists of a main window (Fig. 11.1) with a single button
(‘play’), which will trigger an event lasting for 2 seconds.

Listing 11.2 Python GUI application example

#!/usr/bin/python
import Tkinter as tk
import csnd6

class Application(tk.Frame):
def __init__(self, master=None):

setup Csound
self.cs = csnd6.Csound()
self.cs.SetOption('-odac')
if self.cs.CompileOrc('''

instr 1
a1 oscili p4, p5
k1 expseg 1,p3,0.001
out a1*k1*0dbfs

endin
''') == 0:

self.cs.Start()
self.t = csnd6.CsoundPerformanceThread(self.cs)
self.t.Play()
setup GUI
tk.Frame.__init__(self, master)
tk.Frame.config(self, height=200, width=200)
self.grid(ipadx=50, ipady=25)
self.Button = tk.Button(self, text='play',
command=self.playSound)
self.Button.pack(padx=50, pady=50, fill='both')
self.master.protocol("WM_DELETE_WINDOW",
self.quit)
self.master.title('Beep')

called on quit
def quit(self):
self.master.destroy()
self.t.Stop()
self.t.Join()

11.9 Conclusions 205

called on button press
def playSound(self):
self.cs.InputMessage('i 1 0 2 0.5 440')

app = Application()
app.mainloop()

Fig. 11.1 Main window of Python application (as defined in listing 11.2)

11.9 Conclusions

This chapter set about introducing a scripting dimension to the interactive side of
Csound. We have looked at how the engine can be instantiated and its performance
controlled in a very precise and flexible way through the Python language. A sim-
ple, yet complete, example was given at the end, providing pointers to the types of
applications this functionality can have. In addition to the ideas discussed here, we
should mention that Csound can be fully integrated into the workflow of a program-
ming environment such as Python, providing a highly efficient and configurable
audio engine. Applications in music performance, composition, sonification and in
signal-processing research are enabled by the system.

Part IV

Instrument Development

Chapter 12

Classic Synthesis

Abstract In this chapter, we will explore a variety of classic synthesis designs,
which have been developed throughout the history of computer music. These are
organised into three families: source-modifier methods (also known as subtractive),
distortion techniques, and additive synthesis. The text begins by introducing some
fundamental concepts that underpin all classic approaches, relating to the duality of
waveform and spectrum representations. Following this, source-modifier methods
are explored from their basic components, and two design cases are offered as ex-
amples. Distortion synthesis is presented from the perspective of the various related
techniques that make up this family, with ready-to-use UDOs for each one of them.
Finally, we introduce the principle of additive synthesis, with examples that will link
up to the exploration of spectral techniques in later chapters.

12.1 Introduction

Synthesis techniques have been developed over a long period since the appearance
of the first electronic instruments, and then through the history of computer music.
Of these, a number of classic instrument designs have emerged, which tackled the
problem of making new sounds from different angles. In this chapter, we will ex-
plore these in detail, providing code examples in the Csound language that can be
readily used or modified, in the form of user-defined opcodes (UDOs). The three
families of classic sound synthesis will be explored here: source-modifier methods,
distortion and additive synthesis. Our approach will be mostly descriptive, although
we will provide the relevant mathematical formulae for completeness, wherever this
is relevant.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

209
12

210 12 Classic Synthesis

12.1.1 Waveforms and Spectra

The principle that joins up all classic synthesis techniques is the idea that in order to
realise a given waveform, we need to specify, or at least approximate, its spectrum.
This is another way to represent sound. While audio waves give us a picture of how
a given parameter (e.g. air pressure at a point) varies over time, a spectral plot shows
the components of the signal at a point in time. These components, also known as
partials, are very simple waveforms, which can be described by a sinusoidal function
(such as sin() and cos()) with three parameters: amplitude, frequency and phase.
They can be thought of as the building blocks of a given sound, sometimes called,
informally, pure frequencies. Theoretically, any waveform can be broken down into
such components, although in some cases this might involve an infinite number of
them.

Mathematically stated, we can represent a target signal s(t) as [63]

s(t) =
N

∑
k=1

Ak cos(ωk +θk) (12.1)

where Ak is the amplitude of partial k, ωk = 2π fkt, with fk its frequency in Hz,
and θk, its phase. This representation allows us to look for the best way to gener-
ate a given sound. Depending on how large the number of components N is, and
how complicated the configuration of the amplitudes, frequencies and phases is, we
will prefer certain methods to others. For instance, with small numbers of compo-
nents, it is simpler to create the sound by generating the components separately and
mixing them up (this is the principle of additive synthesis). As N gets larger, there
are more efficient ways, through distortion techniques or source-modifier methods.
In the case of noisy sounds, which might have a (statistically) infinite number of
components, distributed across large frequency bands, adding components together
is not feasible. The idea that complex functions can be decomposed into sinusoidal
partials was originally explored by Joseph Fourier [43], and methods employing this
principle often bear his name (e.g. Fourier series, Fourier transform).

Once we can describe the components of a signal in terms of its parameters, we
might then choose one of the classic methods to synthesise it. For some sounds,
it is possible to have a clear picture of what the spectrum looks like. For instance,
Fig. 12.1 shows a waveform and its corresponding amplitude spectrum. Each com-
ponent in the waveform is shown as a vertical line, whose height indicates its (rel-
ative) amplitude (or weight). The horizontal axis determines the frequency of the
component, from 0 Hz upwards (phase is not plotted). The spectral plot refers to
a given moment in time, but as the wave is fixed, it is a valid description for this
particular shape. For each line in the spectral plot, we have a sinusoidal wave in
the signal, and if we start with this recipe, we could reproduce the sound by adding
these simples sounds together.

When partial frequencies are connected by a simple integer relationship (e.g. 1,
2, 3, 4,...), they form a harmonic spectrum. In the example of Figure 12.1, this is
the case, as we can see that the partials are spaced evenly apart. They are multiples

12.1 Introduction 211

0 50 100 150 200 250

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 10000 20000

freq (Hz)

0

−30

−60

a
m

p
 (

d
B

)

Fig. 12.1 Waveform (top) and amplitude spectrum (bottom) of an audio signal (sr = 40 kHz)

of a fundamental frequency, which determines the perceived pitch of the sound.
In this case we can call these partials by the name of harmonics. Fig. 12.2 shows
these components as sinusoidal waves that add up to make a complex waveform.
Harmonic spectra can have gaps in it (missing harmonics), as long as the existing
partials are closely aligned to a series of integers of a fundamental frequency. This
is also called the harmonic series. If the partials are not closely related to this series,
then the spectrum is inharmonic, and the sense of pitch less defined (as there is
no fundamental frequency to speak of). In this case we have inharmonic partials.
However, it is important to note that small deviations from the harmonic series can
still evoke the feeling of a fundamental (and pitch). In fact, some instruments often
have partials that deviate slightly from the harmonic series, but produce recognisable
pitched notes.

More generally, spectra of different sounds are significantly more complex than
the example in Fig. 12.1. In particular, interesting sounds tend to vary in time, and
generating time-varying spectra is particularly important for this. In this case, the
amplitude Ak and frequency fk parameters of each partial can change over time,
and the chosen synthesis method will need to try and emulate this. In the following
sections, we will explore the three classic methods that can be used for creating
different types of spectra.

212 12 Classic Synthesis

−1.0

−0.5

0.0

0.5

1.0

Fig. 12.2 One cycle of a complex periodic waveform (solid) and its sinusoidal components (har-
monics, in dots)

12.2 Source-Modifier Methods

Source-modifier is the most common of all the classic synthesis methods, which is
ubiquitously present in hardware synthesisers, their software emulations, and music
programming systems. It is commonly called subtractive synthesis, which does not
accurately describe it, since there is no actual subtraction involved in it. That term is
used with reference to the fact that this method is complementary to additive synthe-
sis, which involves actual summation of single-source signals. Here, we start with
component-rich sounds, and modify them. However, this process is not necessarily
a subtraction, although in some cases it involves removal of parts of the original
spectrum.

12.2.1 Sources

In order to allow for further modification, a source needs to be complex, i.e. it needs
to have a good number of partials in its spectrum. This means that in this case, a
sinusoidal oscillator, which contains a single component, is not a very good choice.
Waveforms of various other shapes can be used, and also recordings of real instru-
ments, voices and other component-rich sounds. Non-pitched sources can also be

12.2 Source-Modifier Methods 213

used, and a variety of noise generators are available in Csound for this. In this sec-
tion, we will examine these possibilities in detail.

Oscillators

The basic wavetable oscillators in Csound provide the most immediate types of
sound sources for further modification. There are two types of simple oscillators:
the oscil and poscil families. The former employs an indexing algorithm writ-
ten using fixed-point (or integer) mathematics, whereas the latter uses floating-point
(decimal-point) arithmetic. In earlier computing platforms, an integral index was
significantly faster to calculate, making oscil and derived opcodes much more
efficient. The limitations were twofold: function tables were required to be power-
of-two size, and with large table sizes indexing errors would occur, which resulted
in loss of tuning accuracy at lower frequencies. In modern platforms, very little dif-
ference exists in performance between fixed- and floating-point operation. Also, in
64-bit systems, the indexing error in the former method has been minimised sig-
nificantly. So the difference between these two oscillator families is very small. In
practical terms, it mainly involves the fact that poscil and derived opcodes do not
require tables to have a power-of-two size, whereas the others do.

Both families of oscillators have a full complement of table-lookup methods,
from truncation (oscil), to linear (oscili, poscil) and cubic interpolation
(oscil3, poscil3) [67]. They can work with tables containing one or more
waveform cycles (but the most common application is to have a single period of
a wave stored in the table). Csound provides the GEN9, GEN10, and GEN19 rou-
tines to create tables based on the additive method. GEN10 implements a simple
Fourier Series using sine waves,

f table[n] =
N

∑
k=1

Pk sin(2πkn/L) (12.2)

where L is the table length, N the number of harmonics (the number of GEN param-
eters), Pk is parameter k and n the table index. GEN9 and GEN19 have more generic
parameters that include phase and relative frequencies, as well as amplitudes. For
instance, with GEN10, a wave containing ten harmonics can be created with the
following code:

gifun ftgen 0, 0, 16384, 10, 1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8, 1/9

The required parameters are the different amplitudes (weights) of each harmonic
partial, starting from the first. In this case, the harmonics have decreasing ampli-
tudes, 1 through to 1

10 (Fig. 12.3 shows a plot of the function table). The main dis-
advantage of using such simple oscillators is that the bandwidth of the source cannot
be controlled directly, and is dependent on the fundamental frequency. For instance,
the above waveform at 100 Hz will contain components up to 900 Hz, whereas an-

214 12 Classic Synthesis

0 4096 8192 12288

−1.0

−0.5

0.0

0.5

1.0

Fig. 12.3 Function table created with GEN10, containing ten harmonics with amplitudes 1
n , where

n is the harmonic number

other one at 1000 Hz will extend until 9000 Hz. So we will have be careful with our
range of fundamentals, so that they do not go beyond a certain limit that would push
the 10th harmonic (9× f0) over the Nyquist frequency. The other difficulty is that
low-frequency sounds will lack brightness, as they are severely bandlimited.

A solutions to this can be to supply a variety of tables, which would be selected
depending on the oscillator fundamental. This is a good way of implementing a
general table-lookup system, but can be complex to realise in code. An alternative
is to use a ready-made solution provided by bandlimited oscillators. In Csound,
there are four basic opcodes for this: buzz, gbuzz, vco, and vco2. The first two
implement different forms of bandlimited waveforms (see Section 12.3.1 for an idea
of how these algorithms work), with buzz providing all harmonics with the same
amplitude, and gbuzz allowing for some control of partial weights.

The other two offer two different flavours of virtual analogue modelling, pro-
ducing various types of classic waveforms. The typical shapes produced by these
oscillators are

• sawtooth: contains all harmonics up to the Nyquist frequency with weights de-
termined by 1

n (where n is the harmonic number).
• square: odd harmonics only, with weights defined by 1

n .
• pulse: all harmonics with the same weight.
• triangle: odd harmonics only, with weights defined by 1

n2 .

Plots of the waveforms and spectra of two classic waves generated by vco2 are
shown in Figs. 12.4 and 12.5, where we see that their spectra are completed all the
way up to the Nyquist frequency. In addition to the waveshapes listed above, it is
also possible to produce intermediary forms between pulse and square by modify-
ing the width of a pulse wave (its duty cycle). This can be changed from a narrow
impulse to a square wave (50% duty cycle).

12.2 Source-Modifier Methods 215

0 50 100 150 200 250

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 10000 20000

freq (Hz)

0

−30

−60

a
m

p
 (

d
B

)

Fig. 12.4 A plot of the waveform (top) and spectrum (bottom) of a sawtooth wave generated by
vco2, with sr = 44,100 Hz

0 50 100 150 200 250

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 10000 20000

freq (Hz)

0

−30

−60

a
m

p
 (

d
B

)

Fig. 12.5 A plot of the waveform (top) and spectrum (bottom) of a square wave generated by
vco2, with sr = 44,100 Hz

216 12 Classic Synthesis

Sampling

Yet another set of sources for modification can be provided by sampling. This can be
achieved by recording sounds to a soundfile and then loading these into a table for
playback. These tables can be read by any of the simple oscillators (with some limi-
tations if power-of-two sizes are required), or a specialised sample-playback opcode
can be used. The GEN 1 routine is used to load soundfiles into tables. Any of the file
formats supported by Csound are allowed here (see Section 2.8.4). For sounds that
are not mono, it is possible to read each channel of the soundfile separately, or to
load the whole file with all the channels into a single table. In this case, samples are
interleaved (see Section 2.4.3 for a detailed explanation), and ordinary oscillators
cannot be used to read these. Here is a code example showing GEN1 in use to load
a mono file (“fox.wav”) into a function table:

gifun ftgen 0, 0, 0, 1,"fox.wav", 0, 0, 0

0 30392 60784 91177
−1.0

−0.5

0.0

0.5

1.0

Fig. 12.6 Function table created with GEN1, containing the samples of a soundfile

Note that the table size is set to 0, which means that the soundfile size will deter-
mine how long the table will be. A plot of this function table can be seen in Fig. 12.6.
When using a simple oscillator to read this, we will need to adjust the frequency to
depend on the table size and the sampling rate. If we want to read the table at the
original speed, we set the sampling (or phase) increment (si) (see Section 3.5.2) to
1. The relationship between oscillator frequency f , si, table size l and sampling rate
sr is:

f = si× sr
l

(12.3)

We can use si in eq. 12.3 to control the playback speed, which can be negative
for backwards play. Listing 12.1 shows the code for a simple mono sample playback
instrument using the poscil oscillator. It has parameters for amplitude, playback
speed (faster, kspd > 1; slower, 0 < kspd < 1; backwards, kspd < 0) and function
table.

12.2 Source-Modifier Methods 217

Listing 12.1 Mono sampler UDO

/**************************************
asig MonoSampler kamp, kspd, ifn
kamp - amplitude
kspd - playback speed
ifn - source function table

**/
opcode MonoSampler,a,kki
kamp,kspd,ifun xin
xout poscil(kamp,kspd*sr/ftlen(ifun),ifun)
endop

This simple method will not allow control over the loop points (the oscillator
will loop over the whole table). More complex instruments can be created with
table-reading opcodes. Alternatively, we can employ a specialised opcode for this.
There are two options for this: looping points can be taken from the soundfile
header (RIFF-Wave and AIFF formats allow for this), or we can set them directly in
Csound. Some soundfile-editing programs allow the user to mark looping points and
then save these in the file. GEN1 will load this information as part of the function
table, and Csound provides the loscil opcode family to read these tables, which
can also be multichannel. The opcode will loop the sound as specified in the saved
data. It is also possible to save the base frequency of the recorded sample in the
soundfile header, which is also read by GEN1. The frequency control in loscil
will be able to use this information to transpose the file correctly according to this
information.

If it is not convenient to edit and save loop points with external software, we can
use the flooper opcode family to define looping points. The advantage here is
that these opcodes can crossfade the loop points. This means that the end of the loop
overlaps with the beginning, generally creating a smooth join. The loop points and
cross-fade time can be changed during performances with flooper2, which also
allows different types of looping (normal, backwards, and back-and-forth). These
opcodes feature a playback speed control (which is equivalent to the si parameter
discussed above), and can play tables forwards or backwards (negative si).

Noise generators

In order to generate non-pitched sounds, we can avail of a set of noise generators.
There are three classic opcodes that implement this functionality: rand, randh,
and randi. These use a basic pseudo-random number generator to output white and
bandlimited noise. White noise, generated by rand, has a theoretical flat frequency
response, containing an infinite number of components with the same weight from
0 Hz to the Nyquist frequency. The bandlimited generators randh and randi,
will periodically draw a new random number, according to a frequency control,
holding it or interpolating it linearly to the next value, respectively. Both of them

218 12 Classic Synthesis

have less energy in the higher part of the spectrum. The result is slightly different,
however: the interpolating version will suppress high frequencies more audibly than
the sample-and-hold one (Fig. 12.7).

xres rand xamp [, iseed] [, isel] [, ioffset]
xres randh xamp, xcps [, iseed] [, isize] [, ioffset]
xres randi xamp, xcps [, iseed] [, isize] [, ioffset]

The actual numbers output by these generators are always the same sequence,
starting from the same point. If we want a different set of values, then we need to
seed the generators. This can be done by passing a different number to the iseed
parameter, or by making the opcode use the current system time for this. These op-
codes can use either the default 16-bit noise generator (isel = 0) or a more pre-
cise 31-bit algorithm (isel = 1). An offset can optionally be given (ioffset),
which will be added to the random value output.

a
m

p
a
m

p

0 10000 20000

freq (Hz)

a
m

p

Fig. 12.7 The output spectra of the three classic noise generators: rand (top), randh (middle),
and randi (bottom)

In addition to white noise, it is possible to generate approximations to pink noise.
This is a type of signal whose spectral envelope follows a 1

f pattern, inversely
proportional to frequency. Two opcodes provide this functionality: pinkish and
pinker. The first one operates in a similar way to the classic noise generators in
that it uses a pseudo-random sequence that can be seeded, and it provides an op-
tion of three methods of operation. The other opcode is an implementation of Stefan
Wenzel’s algorithm, and it does not have any parameters (a normalised signal, -1 to

12.2 Source-Modifier Methods 219

1, is generated). pinker is very close to having a 1
f , and does not suffer from a

periodicity which can happen with pinkish.
If a higher level of confidence that the sequence is random is required it is pos-

sible to use the urandom opcode, which uses other timed activities on the host
computer, such as key strokes, network packets and interrupts, to increase the ran-
domness.

12.2.2 Modifiers

The typical modifier for an arbitrary source is called a filter. These are processing
units designed to amplify or suppress parts of the spectrum. Digital filters work
by delaying signals by small amounts, and combining these with different scaling
amounts. This process can involve the re-injection of the filter output back into
its input (with a certain delay), in which case we have a feedback filter. If there
is no such signal path, then we call it a feedforward filter. The amount of delay
used can vary, from a single to several samples, and this is one of the aspects that
will determine the filter characteristics. The other is the scaling values associated
with each delayed signal. Typically, a feedback filter will have delays of one or two
samples, and feedforward filters will need longer delays.

The operation of a filter can be quite complex to describe, but at its heart, it is
controlled by a simple principle: signals will sum up constructively or destructively
when in or out of phase. Two sound waves of the same frequency are in phase if
their starting point is aligned, otherwise they are out of phase. In the simple case of a
sinusoid, if the signals are completely out of phase, they will destructively interfere
with each other. This is the case when one of them is delayed by 1

2 cycle: they
will have opposite signs. If the waves have the same amplitude, they will cancel
each other out. Conversely, if they are in phase, they will add up to twice their
amplitude. In between these two extremes, out-of-phase signals will interfere with
each other by varying amounts. By using delays and scaling, filters can introduce
areas of amplification and suppression at different frequencies in the spectrum.

This is simple to observe in feedforward filters. Consider the simple case where
we combine one signal with itself delayed by one sample (Fig. 12.8). In this case,
certain parts of the spectrum will add up constructively, while others will be sup-
pressed. To assess this, we can use sinusoidal waves of different frequencies. Take a
cosine wave of frequency 0 and amplitude 1: its digital representation consists of the
sequence of samples {1,1,1,1,1, ...}. If we pass it through our filter, the resulting
sequence will be {1,2,2,2,2,2, ...}; the signal is amplified. At the other side of the
spectrum, a cosine wave at the Nyquist frequency is an alternation of positive and
negative samples, {1,−1,1,−1,1,−1, ...}. In this case, the output will be always 0,
as the signal is completely out of phase with its delayed path. In between these two
extremes, there is an increasing amount of attenuation, from 0 Hz upwards. This
principle can be extended to feedback filters, but in that case it is not possible to
provide a simple analysis such as the one in Fig. 12.8.

220 12 Classic Synthesis

1, 1, 1, 1,... � 1-sample delay
�� � �+ 1, 2, 2, 2,...

1,-1, 1,-1,... � 1-sample delay
�� � �+ 1, 0, 0, 0,...

Fig. 12.8 Two digital cosine waves, at 0 Hz (top) and Nyquist (bottom), being fed to a first-order
feedforward filter. The filter lets all of the 0 Hz signal through, but blocks the one at the Nyquist
frequency

Frequency response, filter types and parameters

Filters can be described by their frequency response, which indicates how the input
signal is modified at various frequencies in the spectrum [63]. In addition to the
amplitude changes imposed, a filter also affects the phase of its input, delaying it
by various amounts. The frequency response of a filter is made up of its amplitude
and phase responses. We can classify filters in general terms by the shape of their
response. In terms of amplitude, we have

• low-pass: low-frequency components are passed with little alteration, and high-
frequency components are attenuated.

• high-pass: low-frequency components are suppressed, high-frequency compo-
nents are passed.

• band-pass: low- and high-frequency components outside a certain band are cut.
• band-reject: components inside a certain band are attenuated.
• all-pass: all components are passed with the same amplitude.

A plot of low-, high- and band-pass filter amplitude responses is shown in
Fig. 12.9. The phase response of a filter can be of two types:

• linear: the same delay is imposed at all frequencies (phases are linearly shifted).
• non-linear: frequencies are delayed by different amounts.

Linear phase responses are a feature of some feedforward filters, whereas feed-
back types are non-linear with respect to phase. Generally, in musical applications,
we will be interested in the amplitude response of filters, and less so in their phase
response. An exception is the case of all-pass filters, where the amplitude response
does not change with frequency. In this case, we will be interested in the delays
imposed at different frequencies. Also, for specific applications, we might need to
ensure that the phase response is linear, in which case we have to be careful when
designing a filter for them.

Filters can also be classified by their order. In the case of digital filters, this is
measured by the delays used. So, for instance, if we only use a one-sample delay (as

12.2 Source-Modifier Methods 221

a
m

p
a
m

p

0 10000 20000

freq (Hz)

a
m

p

Fig. 12.9 Amplitude response plots of low- (top), high- (middle) and band-pass (bottom) filters.
The dash lines indicate the cut-off/centre frequencies.

in the example above), the filter is first-order; a second-order filter has delays of up
to two samples, and so on. This is also called the filter length, especially in the case
of feedforward filters. For feedback filters, in general the effect of increasing the
filter order is to make it have a steeper roll-off in its amplitude response curve. The
roll-off describes the transition between the pass band (the region in the spectrum
where all frequency components are not modified) and the stop band (where the
spectrum is attenuated).

Feedback filters are the most common types used in musical applications, as they
have controls that can be varied over time, and are very intuitive to use. They come
in different forms, which tend to have specific characteristics, determining the shape
of their frequency response, which is also controlled by the filter parameters. The
most common of these are

• tone control: first-order low-pass or high-pass with a gentle amplitude response
curve. The sole filter parameter is cutoff frequency. This determines the point
in the spectrum between the pass band and the stop band. Examples of these in
Csound are tone and atone.

• resonators: second-order band-pass, which can have sharp resonances depend-
ing on parameters. These filters have centre frequency and bandwidth controls,
which define the characteristics of the amplitude response. In Csound, the op-
codes reson, resonr and resonz implement this design.

222 12 Classic Synthesis

• low-pass resonant: second- or fourth-order filters with a resonant peak. They
feature cut-off frequency and resonance controls. In Csound, we have moogladder,
moogvcf, and lpf18, among others, as examples of this type.

• Butterworth: classic design with a maximally flat pass band, in low-, high-,
band-pass and band-reject forms. Their controls are cut-off or centre frequency,
and bandwidth (in the case of band-pass and band-reject types). The butter*
family of filter opcodes in Csound implements this type as second-order sections.

• equalisers: equaliser filters are generally band-pass/band-reject designs with a
characteristic all-pass behaviour outside their region of boost/attenuation. They
often have a gain control, in addition to centre frequency and bandwidth, which
controls whether the filter cuts or amplifies a particular portion of the spectrum.
In Csound, this type of filter is implemented in eqfil.

Some filters will have a Q control in place of bandwidth or resonance. This pa-
rameter can be defined as

Q =
f
B

(12.4)

where f is the filter frequency (centre or cutoff, depending on the type), and B is
the bandwidth of the pass- or reject-band, or resonance region. The Q parameter is
inversely proportional to the width of the filter band or resonance region. By keeping
the Q constant, the bandwidth will vary with frequency, which can have significant
importance in musical applications.

Impulse response

A filter can also be classified by its impulse response (IR), which is its output when
fed with a single sample impulse (a full amplitude sample followed by zeros). Feed-
forward types are called Finite Impulse Response (FIR), because the IR will even-
tually be zero after the impulse has circulated through all the delays. On the other
hand, feedback makes the filter feature an infinite impulse response, and so these
are called IIR filters. This is because the impulse will keep being re-injected into
the process, and, theoretically, the output will never be zero. The behaviour of the
IR of feedback filters is very important: if it never decays, the filter is considered
unstable as its output will continue growing until it exceeds the numerical range of
the system. A decaying IR will eventually approach zero.

More generally, IRs can be used to describe a linear time-invariant (LTI) system,
and are used to implement feedforward filters that represent it. For instance, if we
record the IR of a room, we can use it to impart its characteristics into an arbitrary
sound via an FIR filter. In this case, the filter length is equivalent to the IR size, and
each sample of the IR is used as a scaling factor for each filter delay. This process is
called convolution, and it can be very useful for reverberation and other applications
where a fixed-parameter (“time-invariant”) filter is required.

12.2 Source-Modifier Methods 223

Multiple filters

Multiple filters can be connected in two ways: serially (cascade) or in parallel. In the
first form, the output of one filter is sent to the input of the next, making the combi-
nation a higher-order filter. For instance, we can make a fourth-order filter, with its
associated steeper roll-off, from a series connection of two identical second-order
sections. Other applications of serial filters include equaliser filterbanks, where each
filter is set to cover a specific area of the spectrum. Parallel filter connections are
made by feeding the same input to various filters, and mixing their output. These
can also be used to construct filterbanks that implement a more complex amplitude
response with various peaks in the spectrum, with band-pass filter types.

12.2.3 Design Example 1: Analogue Modelling

Analogue electronic musical instruments have attracted a lot of interest in recent
years. In particular, the possibility of recreating their sound in the digital domain has
been a topic of research in musical signal processing. These instruments have been,
for the most part, constructed with source-modifier designs, following the pattern
of connecting oscillators and noise generators to filters, whose parameters can be
controlled by envelopes. The classic Minimoog synthesiser is based on this: two or
three oscillators, noise and external sources are sent into a mixer, whose output is
shaped by a low-pass resonant filter. Two envelope generators are used, one for the
filter frequency, and another for the amplitude.

Such instruments can be easily modelled with Csound. Virtual analogue oscil-
lators exist in the form of the vco and vco2 opcodes. Models of classic filters
such as the Moog ladder and state variable (moogvcf, moogladder, svfilter
and statevar) are also available. In addition to these, other components can be
modelled from scratch or using unit generators provided by the system.

For instance, we would like to design an envelope following the classic attack-
decay-sustain-release (ADSR) design, which closely models how it might be imple-
mented in an analogue synthesiser. In these instruments, the envelope is triggered
by a voltage gate signal: when this is high, the envelope runs; and when this is low,
it releases. We can use the reference values 1 and 0 for high and low, and use logic
to move from one stage to another (from attack to decay, and to sustain). The ac-
tual envelope can be constructed by using a portamento opcode portk, which goes
smoothly from one value to another over a given time. This is in fact a first-order
low-pass filter (like tone), which acts on control signals. In order to allow an in-
strument to trigger the release stage on note-off, we use the opcode xtratim to
extend the duration for the release time. With these ideas, we can construct a UDO,
shown in listing 12.2.

Listing 12.2 Analogue modelling ADSR envelope UDO

/**

224 12 Classic Synthesis

ksig ADSR kmax,iatt,idec,ksus,irel,ktrig
kmax - max amplitude after attack
iatt - attack time
idec - decay time
ksus - sustain amplitude
irel - release time
ktrig - trigger signal

***/
opcode ADSR,k,kiikik
kmax,iatt,idec,ksus,irel,ktrig xin
xtratim irel
ktime init 0
kv init 0
iper = 1/kr
if (ktrig == 1) then

ktime = ktime + iper
if ktime < iatt then

kt = iatt
kv = kmax

else
kt = idec
kv = ksus

endif
else

kt = irel/8
kv = 0
ktime = 0

endif
kenv portk kv, kt
xout kenv
endop

A basic analogue modelling instrument following the Minimoog structure can
now be realised with this envelope generator, the vco2 opcode and the moogladder
filter. Listing 12.3 shows the code for this instrument, which plays a chromatic scale.

Listing 12.3 Analogue modelling instrument example

instr 1
ktrig = (release() == 1 ? 0 : 1)
iatt1 = 0.01
idec1 = 0.1
isus1 = 0.8
irel1 = 0.1
kenv1 ADSR p4,iatt1,idec1,isus1,irel1,ktrig
iatt2 = 0.1
idec2 = 0.2

12.2 Source-Modifier Methods 225

isus2 = 0.4
irel2 = 0.05
kenv2 ADSR 1,iatt2,idec2,isus2,irel2,ktrig
a1 vco2 0dbfs/3, p5
a2 vco2 0dbfs/3, p5*1.005
a3 vco2 0dbfs/3, p5*.995
a4 moogladder a1+a2+a3, p5*6*(1+kenv2), 0.7

out a4*kenv1
endin

i1 = 0
while i1 < 12 do
schedule(1,i1,1,i1/12,cpspch(8+i1/100))
i1 += 1
od

12.2.4 Design Example 2: Channel Vocoder

The channel vocoder is a very interesting music instrument design, which was orig-
inally developed by the telecommunications industry as means of encoding speech
[36]. It was the first breakthrough in the reproduction of speech using electronic
means. The vocoder operates by first carrying out an analysis of signal amplitude in
separate bands of the spectrum. The information obtained by this analysis is used
to resynthesise the signal by applying it to matched synthesis channels that oper-
ate in the same bands. The excitation source for the synthesis component is gener-
ally based on broad-bandwidth oscillators, but this can be substituted by arbitrary
spectrum-rich sounds. This arrangement performs reasonably well for vocal sig-
nals of pitched nature (the so-called voiced signals), mostly represented by vowels
and semivowels [48]. It is possible to use an added noise generator for non-pitched
sounds, represented by some of the consonants, to improve the overall quality of the
reproduced sound. However, as a speech spectrum analyser, the channel vocoder
was superseded for engineering applications. It did find, however, a distinct place
in music applications. The vocoder still features as an instrument in various types
of electronic music. It has an ability to blend vocal and instrumental sounds (when
these replace the excitation oscillators) into something of an other-worldly quality.

There are various ways to realise the vocoder in Csound. The simplest is to decide
on an analysis/synthesis channel (or band) design and then apply as many of these as
we need across the spectrum. There are three elements to a vocoder band: a filter for
the analysis signal, another one for the excitation signal, and a means of controlling
the amplitude of the band. This is done by the balance opcode, which controls
the level of one signal by comparing it to another, matching the two. It is a type
of envelope follower that can apply the energy detected to the signal being output
at each one of the vocoder bands. The filter needs to be reasonably selective, so

226 12 Classic Synthesis

that it can be focused on a given frequency. For this job, fourth-order Butterworth
filters are a good choice. The code for a vocoder band is shown in listing 12.4. It
employs two butterbp filters in cascade for each of the excitation and analysis
signal paths, and the balancing unit is used to match the output level to the energy
detected at that band (Fig. 12.10).

excitation

�
filter

�

analysis

�
filter

�balance

�

Fig. 12.10 A single band (channel) of a vocoder

Listing 12.4 Vocoder band UDO

/************************
asig VocBand as,an,kfreq,kbw
as - excitation signal
an - analysis signal
kfreq - band frequency
kbw - bandwidth

*************************/
opcode VocBand,a,aakk
as,an,kf,kbw xin
xout(balance(butterbp(

butterbp(as,kf,kbw),kf,kbw),
butterbp(
butterbp(an,kf,kbw),kf,kbw)))

endop

With this in hand, we have the choice of employing these opcodes directly in
an instrument, which would fix the number of bands used, or we could possibly
go one step further to make this variable. In this case, we can use recursion as
a programming strategy to build up a bank of vocoder bands, whose number and
spacing can be modified by the user. These start at a minimum frequency and extend
up to a maximum, and are spaced at even musical intervals. For this, the expression
to calculate the band spacing is

fn = fmin

(
fmax

fmin

)N−1
n−1

(12.5)

12.2 Source-Modifier Methods 227

where n is the band number, fmin, fmax, and fn are the max, min and band frequen-
cies, and N is the number of bands. We use a fixed Q parameter to make sure each
band is perceptually the same size as well. The full code is shown in listing 12.5.

Listing 12.5 Channel vocoder UDO

/**
asig Vocoder as,an,kmin,kmax,kq,ibnd
as - excitation signal
an - analysis signal
kmin - lowest band frequency
kmax - highest band frequency
kq - vocoder band Q
ibnd - number of bands

***/
opcode Vocoder, a, aakkkpp
as,an,kmin,kmax,kq,ibnd,icnt xin
if kmax < kmin then

ktmp = kmin
kmin = kmax
kmax = ktmp

endif
if kmin == 0 then

kmin = 1
endif
if (icnt >= ibnd) goto bank

abnd Vocoder as,an,kmin,kmax,kq,ibnd,icnt+1
bank:

kfreq = kmin*(kmax/kmin)ˆ((icnt-1)/(ibnd-1))
kbw = kfreq/kq
ao VocBand as,an,kfreq,kbw
amix = ao + abnd
xout amix

endop

The vocoder UDO can be used in a variety of settings. For instance, we can use
it to resynthesis speech, as originally designed. In this case, we should use an ap-
propriate excitation source, such as a classic sawtooth wave (from vco or vco2),
and we can also track the pitch of the voice and its envelope to control the oscil-
lator fundamental frequency and amplitude, respectively. In listing 12.6, we show
a simple instrument example that does this, using plltrack to estimate the pitch
and a combination of rms and port to control the overall envelope of the sound.
This instrument can be modified to use other types of excitation sources, to create a
cross-synthesis blend with the analysis sound.

Listing 12.6 Vocoder instrument example

instr 1

228 12 Classic Synthesis

S1 = "fox.wav"
imin = 100
imax = 10000
asig diskin2 S1,1, 0,1
ap,aloc plltrack asig, 0.1
krms port rms(asig), 0.01
anoi vco krms,ap,1,0
aout Vocoder anoi,asig,imin,imax,25,32
outs aout,aout
endin

12.3 Distortion Synthesis Methods

Distortion techniques are based on the non-linear modification of a basic sinusoid
waveform. They try to address the key question of how to generate complex time-
evolving spectra, composed of discrete components (eq. 12.1). An elegant solution
to this problem is to find a way of combining a few simple sources (i.e. sine wave
oscillators) to generate many partials. This is the approach taken by distortion syn-
thesis. In this section, we will survey these techniques with their associated Csound
examples.

12.3.1 Summation Formulae

Closed-form summation formulae provide several possibilities for generating com-
plex spectra. They take advantage of well-known expressions that can represent
arithmetic series, such as the harmonic series, in a compact way. In fact, it is fair to
say that all distortion techniques implement specific closed-form summation formu-
lae. We will be concentrating here on those that stem directly from simple closed-
form solutions to the harmonic series.

Bandlimited pulse

The general case of eq. 12.1 can be simplified considerably, if we constrain to certain
conditions. An example of this is a spectrum made up of harmonic components
added up with the same weight [131]:

s(t) =
1
N

N

∑
k=1

cos(kω0) (12.6)

where ω0 = 2π f t. This produces what we call a bandlimited pulse.

12.3 Distortion Synthesis Methods 229

We can synthesise this spectrum by taking into account one of the best known
closed-forms of an arithmetic series:

N

∑
k=−N

rk = r−N 1− r2N+1

1− r
(12.7)

Using this we get [32]:

1
N

N

∑
k=1

cos(kω0) =
1

2N
×
[

sin((2N +1)ω0
2)

sin(ω0
2)

−1
]

(12.8)

with ω0 = 2π f0t, and f0 the fundamental frequency in Hz. The parameter N de-
termines the number of harmonics. In this, and in the subsequent formulae in this
section, the relevant synthesis expression is on the right-hand side; the left-hand
expansion shows the resulting spectrum.

The only issue here is the possible zero in the denominator, in which case, we
can substitute 1 for the whole expression (as a simple measure; a full solution to
the problem requires more complicated logic). A sample Csound example from first
principles is shown below. We will use a phasor to provide an index so we can look
up a sine wave table. Then we just apply the expression above.

Listing 12.7 bandlimited pulse UDO

/*********************************
asig Blp kamp,kfreq
kamp - amplitude
kfreq - fundamental frequency

**********************************/
opcode Blp,a,kki

setksmps 1
kamp,kf xin
kn = int(sr/(2*kf))
kph phasor kf/2
kden tablei kph,-1,1
if kden != 0 then

knum tablei kph*(2*kn+1),-1,1,0,1
asig = (kamp/(2*kn))*(knum/kden - 1)

else
asig = kamp

endif
xout asig

endop

Because of the extra check, we need to run the code with a ksmps block of 1, so
we can check every sample (to avoid a possible division by zero). This code can be
modified to provide time-varying spectra (by changing the value of kn). With this,
we can emulate the effect of a low-pass filter with variable cut-off frequency. The

230 12 Classic Synthesis

algorithm used in Blp is implemented internally in Csound by the buzz opcode,
which is, as such, more efficient than the UDO version.

Generalised Summation Formulae

Another set of closed-form summation formulae allows for a more flexible control
of synthesis [91]. In particular, these give us a way to control spectral roll-off and to
generate inharmonic partials. The synthesis expression for bandlimited signals is

N

∑
k=1

ak sin(ω + kθ) =

sin(ω)−asin(ω −θ)−aN+1(sin(ω +(N +1)θ)−asin(ω +Nθ))
1−2∗acos(θ)+a2

(12.9)

where ω = 2π f1t and θ = 2π f2t , with f1 and f2 as two independent frequency
values in Hz. N is the number of components, as before, and a is an independent
parameter controlling the amplitudes of the partials.

Here, by modifying a and N, we can alter the spectral roll-off and bandwidth,
respectively. Time-varying these parameters allows the emulation of a low-pass filter
behaviour. By choosing various ω to θ (f1 : f2) ratios, we can generate various types
of harmonic and inharmonic spectra. The only extra requirement is a normalising
expression, since this method will produce a signal whose gain varies with the values
of a and N: √

1−a2

1−a2N+2 (12.10)

Using the synthesis equation 12.9 and its corresponding scaling expression, the
following Csound opcode can be created, which produces components up to the
Nyquist frequency by setting N accordingly (listing 12.8).

Listing 12.8 Generalised summation-formulae UDO

/*********************************
asig Blsum kamp,kfr1,kfr2,ka
kamp - amplitude
kfr1 - frequency 1 (omega)
kfr2 - frequency 2 (theta)
ka - distortion amount

*********************************/
opcode Blsum,a,kkkki
kamp,kw,kt,ka xin
kn = int(((sr/2) - kw)/kt)
aphw phasor kw

12.3 Distortion Synthesis Methods 231

apht phasor kt
a1 tablei aphw,-1,1
a2 tablei aphw - apht,-1,1,0,1
a3 tablei aphw + (kn+1)*apht,-1,1,0,1
a4 tablei aphw + kn*apht,-1,1,0,1
acos tablei apht,-1,1,0.25,1
kpw pow ka,kn+1
ksq = ka*ka
aden = (1 - 2*ka*acos + ksq)
asig = (a1 - ka*a2 - kpw*(a3 - ka*a4))/aden
knorm = sqrt((1-ksq)/(1 - kpw*kpw))
xout asig*kamp*knorm
endop

If we are careful with the spectral roll-off, a much simpler non-bandlimited ex-
pression is available:

∞

∑
k=1

ak sin(ω + kθ) =
sin(ω)−asin(ω −θ)
1−2∗acos(θ)+a2 (12.11)

In this case, we will not have a direct bandwidth control. However, if we want to
know what, for instance, our -60 dB bandwidth would be, we just need to know the
maximum value of k for ak > 0.001. The normalising expression is also simpler:√

1−a2 (12.12)

The modified Csound code to match this expression is shown in listing 12.9.

Listing 12.9 Non-bandlimited generalised summation-formulae UDO

/*********************************
asig NBlsum kamp,kfr1,kfr2,ka
kamp - amplitude
kfr1 - frequency 1 (omega)
kfr2 - frequency 2 (theta)
ka - distortion amount

*********************************/
opcode NBlsum,a,kkkk
kamp,kw,kt,ka xin
aphw phasor kw
apht phasor kt
a1 tablei aphw,-1,1
a2 tablei aphw - apht,itb,1,0,1
acos tablei apht,-1,1,0.25,1
ksq = ka*ka
asig = (a1 - ka*a2)/(1 - 2*ka*acos + ksq)
knorm = sqrt(1-ksq)
xout asig*kamp*knorm

232 12 Classic Synthesis

endop

12.3.2 Waveshaping

The technique of waveshaping is based on the non-linear distortion of the ampli-
tude of a signal [77, 5]. This is achieved by mapping an input, generally a simple
sinusoidal one, using a function that will shape it into a desired output waveform.
The amount of distortion can be controlled by a distortion index, which controls the
amplitude of the input signal.

Traditionally, the most common method of finding such a function (the so-called
transfer function) has been through polynomial spectral matching. The main advan-
tage of this approach is that polynomial functions will precisely produce a bandlim-
ited matching spectrum for a given sinusoid at a certain amplitude.

However, the disadvantage is that polynomials also have a tendency to produce
unnatural-sounding changes in partial amplitudes, if we require time-varying spec-
tra. More recently, research has shown that for certain waveshapes, we can take
advantage of other common functions, from the trigonometric, hyperbolic etc. reper-
toire. Some of these can provide smooth spectral changes. We will look at the use
of hyperbolic tangent transfer functions to generate nearly bandlimited square and
sawtooth waves. A useful application of these ideas is in the modelling of analogue
synthesiser oscillators.

Hyperbolic tangent waveshaping

A simple way of generating a (non-bandlimited) square wave is through the use of
the signum() function, mapping a varying bipolar input. This piecewise function
outputs 1 for all non-zero positive input values, 0 for a null input and -1 for all
negative arguments. In other words, it clips the signal, but in doing so, it generates
lots of components above the Nyquist frequency, which are duly aliased. The main
cause of this is the discontinuity at 0, where the output moves from fully negative to
fully positive. If we can smooth this transition, we are in business.

The hyperbolic tangent is one such function that can be used instead of signum()
[71], as it has a smooth transition at that point but it also preserves some of its clip-
ping properties (see Fig. 12.11). If we drive this function with a sinusoidal input, we
will be able to produce a nearly bandlimited signal. How bandlimited will depend
on how hard we drive it, as higher input amplitudes will produce more and more
harmonics, and take less advantage of its smoothing properties. As with all types
of waveshaping, the amplitude of the input signal will determine signal bandwidth,
in a proportional way. If we want to keep a steady output amplitude, but vary the
spectrum, we will need to apply an amplitude-dependent scaling. This is generally
done by using a scaling function that takes the input amplitude as its argument and

12.3 Distortion Synthesis Methods 233

produces a gain that can be applied to the output signal. We can then refer to the
amplitude of the input sinusoid as the distortion index.

The code for general-purpose waveshaping is based on standard function map-
ping. It takes an input sinusoid, maps it using table lookup and then applies the
required gain, also obtained through table lookup.

Listing 12.10 Waveshaping UDO

/**
asig Waveshape kamp,kfreq,kndx,ifn1,ifn2
kamp - amplitude
kfreq - frequency
kndx - distortion index
ifn1 - transfer function
ifn2 - scaling function

***/
opcode Waveshape,a,kkkiii
kamp,kf,kndx,itf,igf xin
asin oscili 0.5*kndx,kf
awsh tablei asin,itf,1,0.5
kscl tablei kndx,igf,1
xout awsh*kamp*kscl
endop

For hyperbolic waveshaping, we will need to provide two function tables, for the
transfer (tanh) and the scaling functions, shown in listing 12.11. The first Csound
GEN draws tanh(x), over ± p

50 , and the second automatically generates a scaling
function based on the previous table. This is necessary to keep the overall amplitude
level, as the input gain changes with the distortion index.

To keep aliasing at bay, the index of distortion (kndx) can be estimated roughly
as kndx = 10000/(kf*log10(kf)).

Listing 12.11 Hyperbolic tangent waveshaping function tables

f2 0 16385 "tanh" -157 157
f3 0 8193 4 2 1

If we would like to generate a sawtooth wave instead, we could take our square
signal and apply the following expression:

saw(t) = square(ω)(cos(ω)+1) (12.13)

By heterodyning it with a cosine wave, we can easily obtain the missing even
components that make up the sawtooth signal. There will be a slight disparity in
the amplitude of the second harmonic (about 2.5 dB), but the higher harmonics
will be nearly as expected. This is an efficient way of producing a sawtooth wave
(listing 12.12) [71].

Listing 12.12 Sawtooth wave oscillator based on waveshaping

/**

234 12 Classic Synthesis

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

Fig. 12.11 Hyperbolic tangent waveshaping. The plot on the top shows the input to the waveshaper,
whose transfer function is shown on the bottom left, and the resulting output on the right

asig Sawtooth kamp,kfreq,kndx,ifn1,ifn2
kamp - amplitude
kfreq - frequency
kndx - distortion index
ifn1 - transfer function
ifn2 - scaling function

***/
opcode Sawtooth,a,kkkii
kamp,kf,kndx,itf,igf xin
amod oscili 1,kf,-1,0.25
asq Waveshape kamp*0.5,kf,kndx,-1,itf,igf

xout asq*(amod + 1)
endop

12.3.3 Frequency and Phase Modulation

Frequency and Phase Modulation (FM/PM), pioneered by John Chowning in the
early 1970s [26], are classic distortion techniques that have been used extensively

12.3 Distortion Synthesis Methods 235

in music. They are a special case of summation formulae that have a very straight-
forward implementation with two oscillators.

We will concentrate here on implementing PM, as it is the more flexible of the
two, and allows a number of combinations and variations of the basic principle.
FM/PM works by using one or more oscillators, the modulator(s), to modulate the
frequency or the phase of one or more carriers. Sinusoidal oscillators are generally
used for this.

The expression for the basic form of this technique, with one carrier, and one
modulator, is given by.

∞

∑
n=−∞

Jn(k)cos(ωc +nωm) = cos(ωc + k sin(ωm)) (12.14)

where Jn(k) are called Bessel functions of the first kind, which will determine the
amplitude of each component in the spectrum; ωc = 2π fct and ωm = 2π fmt are the
carrier and modulator frequencies, respectively.

The value of these functions will vary with the k argument, which is called the
index of modulation. For low k, high-order Jn(k) are zero or close to zero. As the
index rises, these Bessel functions tend to increase, and then fluctuate between pos-
itive and negative values (see Fig. 12.12). This ‘wobble’ is the cause of the complex
spectral evolution observed in PM.

The spectrum of PM will be made up of the sums and differences of the carrier
and modulator frequencies (plus the carrier itself), scaled by the Bessel functions.
Each one of these fc ± fm frequencies is called a sideband, lying as it does on each
side of the carrier. Any cosine component on the negative side of the spectrum is
‘reflected’ back on the positive side. The fc : fm ratio will determine whether the
spectrum is harmonic or inharmonic. The rule of thumb is that if it involves small
whole numbers, we will have harmonic partials, otherwise the spectral components
will not fuse to make an audible periodic waveform. The exact amplitude of each
component in the spectrum can be worked out from equation 12.14 above and the
values of Jn(k) for a given k. The spectrum is non-bandlimited, but most of the
energy will be concentrated in the first k+1 sidebands.

An implementation of the PM algorithm is seen in listing 12.13. For time-varying
spectra, as with any of the other distortion techniques, we have to change the mod-
ulation amount by manipulating the index.

Listing 12.13 PM synthesis UDO

/**
asig PM kamp,kfc,kfm,kndx
kamp - amplitude
kfc - carrier frequency
kfm - modulation frequency
kndx - distortion index

***/
opcode PM,a,kkkk
kamp,kfc,kfm,kndx xin

236 12 Classic Synthesis

index k

0
1

2
3

4
5

6
7

8
9

ord
er

n

0

1

2

3

4

5

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12.12 Bessel functions of orders 0 to 5. Note how they oscillate between positive and negative
values as the index of modulation increases

acar phasor kfc
amod oscili kndx/(2*$M_PI),kfm
apm tablei acar+amod,-1,1,0.25,1

xout apm*kamp
endop

Another way we could package PM synthesis is by using the Yamaha DX series
principle of operators. These are a combination of an oscillator, whose phase can be
modulated, with an ADSR envelope. In this case, we design a UDO that models the
operator, and then we can connect these together in another opcode or instrument.

Listing 12.14 PM operator UDO

/**
asig PMOp kamp,kfr,apm,iatt,idec,isus,irel[,ifn]
kamp - amplitude
kfr - frequency
apm - phase modulation input
iatt - attack
idec - decay

12.3 Distortion Synthesis Methods 237

isus - sustain
irel - release
ifn - optional wave function table (defaults to sine)

***/
opcode PMOp,a,kkaiiiij
kmp,kfr,apm,

iatt,idec,
isus,irel,ifn xin

aph phasor kfr
a1 tablei aph+apm/(2*$M_PI),ifn,1,0,1
a2 madsr iatt,idec,isus,irel

xout a2*a1*kmp
endop

This operator form of PM is extremely versatile, as we can arrange these opcodes
in any modulation combination, including complex [114, 24] and feedback [123]
modulation (ksmps=1 is needed for this). Each operator has its own envelope, so we
can make time-varying spectra very easily. Modulator envelopes will control tim-
bre, while carrier envelopes control amplitude. An equivalent process to the simple
PM in the PM UDO of listing 12.13 can easily be implemented with two operators.
This has the added bonus that we have envelopes included, as we demonstrate in
listing 12.15.

Listing 12.15 PM operator UDO example

instr 1
amod PmOp p6,p5,a(0),0.1,0.1,0.5,0.1
acar PmOp p4,p5,amod,0.01,0.1,0.9,0.1

out acar
endin
schedule(1,0,1,0dbfs/2,440,7)

Asymmetrical PM Synthesis

An interesting variation on FM/PM synthesis is Asymmetrical PM [98]. In this for-
mulation, the original PM model is ring-modulated by an exponential signal. This
has the effect of introducing a new parameter controlling spectral symmetry that al-
lows the peaks to be dislocated above or below the carrier frequency. The expression
for this technique (excluding a normalisation factor) is

∞

∑
n=−∞

rnJn(k)sin(ωc +nωm) =

exp(0.5k(r− 1
r
)cos(ωm))× sin(ωc +0.5k(r+

1
r
)sin(ωm))

(12.15)

238 12 Classic Synthesis

where, as before, Jn(k) are called Bessel functions of the first kind; ωc = 2π fct and
ωm = 2π fmt are the carrier and modulator frequencies, respectively.

The new parameter r is the symmetry control, r < 1 pulling the spectral peak
below the carrier frequency ωc and r > 1 pushing it above. It is a very nice feature
which can be added at the expense of a few multiplies and a couple of extra table
lookups (for the cosine and the exponential). Note that what we have here is actually
the ring modulation of a waveshaper output (using an exponential transfer function)
and the PM signal. This is a nice way of tying up two distortion techniques together.

Implementing this is not too complicated. The exponential expression needs nor-
malisation, which can be achieved by dividing it by exp(0.5k[r− 1

r]). When coding
this, we will draw up an exponential table from 0 to an arbitrary negative value
(say -50) and then look it up with a sign reversal (exp(−x)). This allows us to use
the limiting table-lookup mechanism in case we have an overflow. Since the values
of exp() tend to have little variation for large negative values, limiting will not be
problematic.

Listing 12.16 Asymmetric FM UDO

/***
asig Asfm kamp,kfc,kfm,kndx,kR,ifn,imax
kamp - amplitude
kfc - carrier frequency
kfm - modulation frequency
kndx - distortion index
ifn - exp func between 0 and -imax
imax - max absolute value of exp function

**/
opcode Asfm,a,kkkkkii
kamp,kfc,kfm,knx,kR,ifn,imax
kndx = knx*(kR+1/kR)*0.5
kndx2 = knx*(kR-1/kR)*0.5
afm oscili kndx/(2*$M_PI),kfm
aph phasor kfc
afc tablei aph+afm,ifn,1,0,1
amod oscili kndx2, kfm, -1, 0.25
aexp tablei -(amod-abs(kndx2))/imx, ifn, 1

xout kamp*afc*aexp
endop

with the exponential function table (ifn) drawn from 0 to -imx (-50):

f5 0 131072 "exp" 0 -50 1

12.3 Distortion Synthesis Methods 239

12.3.4 Phase-Aligned Formant Synthesis

One of the most recent new methods of distortion synthesis is the Phased-Aligned
Formant (PAF) algorithm [102]. Here, we start with a desired spectral description
and then work it out as a ring modulation of a sinusoid carrier and a complex spec-
trum (with low-pass characteristics). The interest is in creating formant regions, so
we will use the sinusoid to tune a spectral bump around a target centre frequency.

The shape of the spectrum will be determined by its modulator signal, which in
turn is generated by waveshaping using an exponentially shaped transfer function.
So we have PAF, in its simplest formulation, as

∞

∑
n=−∞

g|n| cos(ωc +nωm) =
1+g
1−g

× f
(

2
√

g
1−g

sin
(ωm

2

))
cos(ωc) (12.16)

f (x) =
1

1+ x2 (12.17)

g = exp(
fc

B
) (12.18)

The waveshaper transfer function is f (x). The signal has bandwidth B, funda-
mental frequency ωm = 2π fmt and formant centre frequency ωc = 2π fct. To this
basic formulation, where we expect fc to be an integer multiple of fm, a means of
setting an arbitrary centre frequency is added (basically by using a pair of modula-
tors). In addition, the complete PAF algorithm provides a frequency shift parameter,
which, if non-zero, allows for inharmonic spectra.

The complete Csound code of a more or less literal implementation of PAF is
shown in listing 12.17.

Listing 12.17 PAF UDO

opcode Func,a,a
asig xin

xout 1/(1+asigˆ2)
endop

/**************************************
asig PAF kamp,kfun,kcf,kfshift,kbw
kamp - amplitude
kfun - fundamental freq
kcf - centre freq
kfshift - shift freq
kbw - bandwidth

***************************************/
opcode PAF,a,kkkkki

kamp,kfo,kfc,kfsh,kbw xin

240 12 Classic Synthesis

kn = int(kfc/kfo)
ka = (kfc - kfsh - kn*kfo)/kfo
kg = exp(-kfo/kbw)
afsh phasor kfsh
aphs phasor kfo/2
a1 tablei 2*aphs*kn+afsh,-1,1,0.25,1
a2 tablei 2*aphs*(kn+1)+afsh,-1,1,0.25,1
asin tablei aphs, 1, 1, 0, 1
amod Func 2*sqrt(kg)*asin/(1-kg)
kscl = (1+kg)/(1-kg)
acar = ka*a2+(1-ka)*a1
asig = kscl*amod*acar

xout asig*kamp
endop

The waveshaping here is performed by directly applying the function, since there
are no GENs in Csound which can directly generate such a table. This is of course
not as efficient as lookup, so there are two alternatives: write a code fragment to fill
a table with the transfer function, to be run before synthesis; or, considering that the
resulting distorted signal is very close to a Gaussian shape, use GEN 20 to create
one such wavetable. A useful exercise would be to reimplement the PAF generator
above with table-lookup waveshaping.

12.3.5 Modified FM Synthesis

Modified FM synthesis (ModFM) is based on a slight change in the FM/PM algo-
rithm, with some important consequences [72]. One form of the PM equation, when
cast in complex exponential terms, can look like this:

ℜ{eiωc+iz cos(ωm)} (12.19)

where ℜ{x} is the real part of x.
If we apply a change of variable z =−ik to the above formula, we will obtain the

following expression:

ℜ{eiωc+k cos(ωm)}= ek cos(ωm) cos(ωc) (12.20)

which, is the basis for the Modified FM synthesis formula; ωc = 2π fct and ωm =
2π fmt are the carrier and modulator frequencies, respectively.

One of the most important things about this algorithm is revealed by its expan-
sion:

12.3 Distortion Synthesis Methods 241

ek cos(ωm) cos(ωc) =

1
ek

(
I0(k)cos(ωc)+

∞

∑
n=1

In(k) [cos(ωc +nωm)− cos(ωc −nωm)]

)
(12.21)

where In(k) are modified Bessel functions of the first kind, and constitute the basic
(and substantial) difference between FM and ModFM. Their advantage is that (1)
they are unipolar and (2) In(k) > In+1(k),which means that spectral evolutions are
much more natural here.

index k

0
1

2
3

4
5

6
7

8
9

ord
er

n

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12.13 Modified Bessel functions of orders 0 to 5. Unlike the original Bessel functions, these
do not oscillate and are unipolar

In particular, the scaled modified Bessels do not exhibit the much-maligned
‘wobble’ seen in the behaviour of Bessel functions. That very unnatural-sounding
characteristic of FM disappears in ModFM. A plot of modified Bessel functions of
orders 0 to 5 is shown in Fig. 12.13.

There are several applications of ModFM (as there are of FM) as well as small
variations in its design. We will present here first a basic straight implementation of
the algorithm. The Csound code uses table lookup to realise the exponential wave-

242 12 Classic Synthesis

shaper in the ModFM formula. Apart from that, all we require is two cosine oscilla-
tors, yielding a very compact algorithm (listing 12.18).

Listing 12.18 ModFM UDO

/***
asig ModFM kamp,kfc,kfm,kndx,ifn,imax
kamp - amplitude
kfc - carrier frequency
kfm - modulation frequency
kndx - distortion index
ifn - exp func between 0 and -imax
imax - max absolute value of exp function

**/
opcode ModFM,a,kkkkiii
kamp,kfc,kfm,kndx,iexp,imx xin
acar oscili kamp,kfc,-1,0.25
acos oscili 1,kfm,-1,0.25
amod table -kndx*(acos-1)/imx,iexp,1

xout acar*amod
endop

With ModFM, it is possible to realise typical low-pass filter effects, by varying
the index of modulation k. Also, by using the carrier fc and modulation frequency
fm as the centre of a formant and the fundamental, respectively, it is possible to
reproduce the effect of a band-pass filter [70, 73]. In fact, a variant of the ModFM
implementation above with phase-synchronous signals can serve as a very efficient
alternative to PAF and other formant synthesis techniques (such as FOF [112]). This
is show in listing 12.19.

Listing 12.19 ModFM formant synthesis UDO

/***
asig ModForm kamp,kfo,kfc,kbw,ifn,imax
kamp - amplitude
kfo - fundamental frequency
kfc - formant centre frequency
kbw - bandwidth
ifn - exp func between 0 and -imax
imax - max absolute value of exp function

**/
opcode ModForm,a,kkkkii
kamp,kfo,kfc,kbw,ifn,itm xin
ioff = 0.25
itab = -1
icor = 4.*exp(-1)
ktrig changed kbw
if ktrig == 1 then

12.4 Additive Synthesis 243

k2 = exp(-kfo/(.29*kbw*icor))
kg2 = 2*sqrt(k2)/(1.-k2)
kndx = kg2*kg2/2.

endif
kf = kfc/kfo
kfin = int(kf)
ka = kf - kfin
aph phasor kfo
acos tablei aph, 1, 1, 0.25, 1
aexp table kndx*(1-acos)/itm,ifn,1
acos1 tablei aph*kfin, itab, 1, ioff, 1
acos2 tablei aph*(kfin+1), itab, 1, ioff, 1
asig = (ka*acos2 + (1-ka)*acos1)*aexp
xout asig*kamp
endop

This code synchronises the phase of the carrier and modulation signals, and for
this reason, we use a single phase source (aph) for all oscillators (which become
just table lookups). There are two sources (carriers) (acos1 and acos2), whose output
is mixed together, interpolated, to set the formant centre frequency more accurately
(as is done with PAF).

12.4 Additive Synthesis

Additive methods attempt to implement eq. 12.1 more or less faithfully [90]. In this
sense, they are a very powerful, however raw, way of generating new sounds. They
can also be quite simple in concept, but often demanding from a computational point
of view. The basic form of additive synthesis does not require special unit genera-
tors, only table oscillators and readers. In listing 12.20, we show an opcode that
represents a single partial. This can be used as a building block for an instrument,
by supplying it with an amplitude, frequency and two function tables containing
the envelopes for these parameters. A time counter is used to scan through these
envelope tables.

Listing 12.20 Additive synthesis partial UDO

/*************************************
asig Partial kamp,kfreq,ktime,ifa,iff
kamp - amplitude
kfreq - frequency
ktime - envelope time point (0 - 1)
ifa - amplitude function table
iff - frequency function table

**************************************/
opcode Partial,a,kkkii

244 12 Classic Synthesis

ka,kf,kt,ifa,iff xin
xout(oscili(ka*tablei:k(kt,ifa,1),

kf*tablei:k(kt,iff,1)))
endop

A complete example showing the use of this opcode is shown in listing 12.21.
Here we try to create an inharmonic spectrum, with some frequency bending as
the sound progresses. A plot of a segment of the output signal produced by this
instrument is shown on Fig. 12.14, where it is possible to see that the waveform
does not have an obvious periodic pattern. We use two exponential function tables:
for amplitude, a simple decaying envelope from 1 to 1

1000 (-60 dB); for frequency,
a downward bend from 1 to 0.9. In the instrument, partials traverse these envelopes
at different rates, which are linked to the overall sound duration. Each partial has its
own maximum amplitude and frequency, and we can scale all frequencies for each
instance with parameter 4. The mix of partials is smoothed by an overall envelope to
avoid any clicks at the start or end of a sound. To demonstrate it, the example plays
two instrument instances, with different durations and frequency scaling.

Listing 12.21 Additive synthesis example

i1 ftgen 1,0,16385,5,1,16384,0.001
i2 ftgen 2,0,16385,-5,1,16384,0.9

instr 1
ap[] init 8
ipf[] fillarray 440,480,590,610,700,850,912,990
ipa[] fillarray 0.8,0.9,0.3,0.7,0.6,0.5,0.1,0.2
kt = timeinsts()/p3
ap[0] Partial ipa[0],ipf[0]*p4,kt,1,2
ap[1] Partial ipa[1],ipf[1]*p4,1.1*kt,1,2
ap[2] Partial ipa[2],ipf[2]*p4,1.2*kt,1,2
ap[3] Partial ipa[3],ipf[3]*p4,1.3*kt,1,2
ap[4] Partial ipa[4],ipf[4]*p4,1.4*kt,1,2
ap[5] Partial ipa[5],ipf[5]*p4,1.5*kt,1,2
ap[6] Partial ipa[6],ipf[6]*p4,1.6*kt,1,2
ap[7] Partial ipa[7],ipf[7]*p4,1.7*kt,1,2
kcnt = 0
amix = 0
while kcnt < 8 do

amix += ap[kcnt]
kcnt += 1

od
out linen(amix*0dbfs/10,0.01,p3,0.01)

endin
schedule(1,0,20,1.5)
schedule(1,1,19,1)

12.4 Additive Synthesis 245

−0.4

−0.2

0.0

0.2

0.4

Fig. 12.14 A plot of a short segment of the output from listing 12.21

Implementing simple instruments with a limited number of partials is straightfor-
ward1. The difficulty starts when the number of components increases and also the
amplitude and frequency trajectories have to be individually specified. In these sit-
uations, we will need to approach the problem by manipulating partial parameters
programmatically, and/or using analytical methods to derive them. In the follow-
ing sections we will look at two applications of additive synthesis: one that takes a
programmatic route, and another that implements synthesis from analysis data.

12.4.1 A Tonewheel Organ Instrument

In a general way, pipe organs have used the principle of additive synthesis for cen-
turies. The idea of combining different registrations, in effect mixing the sound of
simple (although not exactly sinusoidal) sources to make a given sound, follows
exactly the same principles studied here. So an interesting application of these is
to reproduce a classic electronic organ design: the tonewheel instrument. This was
pioneered by the Hammond company [62], and it synthesises sound by the addition
of simple sources that are very close to sinusoids.

Each component is produced by a rotating wheel, which induces a current in an
electric pickup, generating a tone (therefore, it is a tonewheel). A note is produced
by summing up to nine of these, whose levels are controlled by a mixer (physically,
this is a set of sliders called drawbars). An organ can have up to 96 of these wheels
(arranged in semitones, covering eight octaves). Once the instrument is started, a
motor puts the tonewheels into motion. When a key is pressed, nine contacts are
made, placing the sound of the corresponding sources in the instrument’s nine main
audio busses, which are sent to the mixer.

1 Note that in this example we had to call each Partial opcode explicitly, outside a loop, as
explained in Section 5.2.3. For a variable, dynamic, number of partials, recursion can be used to
spawn parallel opcodes as shown in the vocoder example.

246 12 Classic Synthesis

We can try to follow this design quite faithfully. The first step is to implement
the tonewheel mechanism, which can be modelled by a bank of oscillators. Since
the sound of these sources is going to be shared by all the notes in the instrument, it
makes sense to place them in a single global location, so we can use an array for that.
As already noted in earlier sections, recursion is a useful device to implement banks
of unit generators. In listing 12.22 we see the implementation of the tonewheels as a
UDO. This is an unusual opcode in that only a single instance of it is required in an
orchestra. It places its audio in the global array. The range of tonewheel frequencies
is from 32.7 to 7,901.91Hz.

Listing 12.22 Tonewheel mechanism model UDO

giwheels init 96
gawheels[] init giwheels
/*******************************
ToneWheel iwheels
iwheels - number of tonewheels

***********************************/
opcode ToneWheel,0,io
ibnd,icnt xin
if icnt < ibnd-1 then
ToneWheel ibnd, icnt+1
endif
gawheels[icnt] oscili 1,cpspch(5+icnt/100)
endop

The following step is to implement the note contacts, which are made when a key
is pressed. Similarly, the selected tonewheels get added to a bus, which is shared by
the whole of the instrument, so we make it a global array of nine audio signals. The
important part here is to select the correct tonewheels, which are placed at specific
intervals above the fundamental, in semitones: 0, 19, 12, 24, 31, 36, 40, 43 and 48.
To simplify, we place these in an array for easy indexing. A UDO which models the
organ note is show in listing 12.23. The note to be played is relative to the tonewheel
scale (0-95).

Listing 12.23 Tonewheel note UDO

gkpart[] fillarray 0,19,12,24,31,36,40,43,48
gabus[] init 9
/***
Note inum
inum - note to be played (relative to tonewheel scale)

***/
opcode Note,0,i
inote xin
kcnt init 0
knote init 0
kcnt = 0

12.4 Additive Synthesis 247

while kcnt < 9 do
knote = inote+gkpart[kcnt]
if knote < giwheels && knote >= 0 then
gabus[kcnt] = gabus[kcnt] + gawheels[knote]
endif
kcnt += 1

od
endop

These two opcodes are responsible for modelling the complete tonewheel and
note mechanism. To complement the organ, we need to implement the mixer that
takes the drawbar controls and mixes up the nine busses accordingly. This can be ac-
complished by another UDO, which will also apply some compression to the signal,
depending on the configuration of the drawbars and keys used. We assume that in-
strument 1 will be used to trigger the notes, and we check with the active opcode
how many instances of it are currently playing. This UDO is shown in listing 12.24.

Listing 12.24 Tonewheel mixer UDO

/**********************
asig Mixer kbars[]
kbars[] - drawbar levels(9)

**********************/
opcode Mixer,a,k[]
kbar[] xin
asig = 0
kcnt = 0
kscl = 0
while kcnt < 9 do
asig += gabus[kcnt]*kbar[kcnt]
gabus[kcnt] = 0
kscl += kbar[kcnt]
kcnt += 1

od
xout asig*0dbfs/(21+kscl*active:k(1))

endop

Complementing the model, we will add the typical vibrato/chorus effect, which
can be used to modify the organ sound. This is not strictly a part of the additive syn-
thesis mechanism, but a global processor that acts on the mixer output. The Ham-
mond chorus/vibrato is constructed using a very short (1.1 ms) modulated delay line.
The modulation wave is triangular, set at a fixed rate (6.87 Hz), and there are three
depth settings (45%, 66% and 100%). We implement this in digital form, trying to
model these features faithfully. Vibrato and chorus modes are offered; the difference
between the two is whether the original signal is mixed to the effect. The basis for
this effect will be discussed in more detail in Chapter 13. The effect UDO is shown
in listing 12.25.

248 12 Classic Synthesis

Listing 12.25 Delay-line vibrato/chorus UDO

ifn ftgen 2,0,16384,20,3,1
/***************************
asig VChorus ain,kdepth,ichorus
asig - input signal
kdepth - depth settings (0-3)
ichorus - 1 for chorus, 0 for vibrato.

***************************/
opcode VChorus,a,akp

asig,ks,ichorus xin
kdep[] fillarray 0,0.45,0.66,1
kset = (ks < 0 ? 0 : (ks > 3 ? 3 : ks))
adel oscili 1.1*kdep[ks],6.87,2
amix vdelay asig,adel,2
xout amix + asig*ichorus
endop

The functionality in these UDOs can be implemented in instruments in a variety
of ways. The typical use will be to have one single-instance instrument running the
tonewheel, mixer and vibrato/chorus elements, and a minimal instrument (instr
1) calling the note mechanism. We could make it a MIDI-controlled instrument,
since this can be very useful in live performance. An example of this is shown in
listing 12.26. Here, we set the note range from 24 to 120, and use controllers 11
to 19 for the drawbar levels, 20 for effect depth, and 21 to select vibrato or chorus.
These can easily be adjusted for specific set-ups.

Listing 12.26 MIDI-controlled tonewheel organ example

instr 1
Note(notnum()-24)

endin

instr 100
ToneWheel giwheels
kbar[] init 9
kbar[0] ctrl7 1,11,0,1
kbar[1] ctrl7 1,12,0,1
kbar[2] ctrl7 1,13,0,1
kbar[3] ctrl7 1,14,0,1
kbar[4] ctrl7 1,15,0,1
kbar[5] ctrl7 1,16,0,1
kbar[6] ctrl7 1,17,0,1
kbar[7] ctrl7 1,18,0,1
kbar[8] ctrl7 1,19,0,1
kvib ctrl7 1,20,0,3
ksel ctrl7 1,21,0,1
asig Mixer kbar

12.4 Additive Synthesis 249

out clip(VChorus(asig,kvib,ksel),0,0dbfs)
endin
schedule 100,0,-1

12.4.2 Synthesis by Analysis

In many applications of additive synthesis, the number of partials is too large for us
to manage manually as part of our program code. In these cases, we will need some
external help to automatically detect the frequencies and amplitudes of the target
spectrum, and then pass these to a bank of multiple oscillators. This detection, also
known as spectral analysis, is the centrepiece of a series of techniques that operate
in the frequency domain (i.e. where we manipulate sinusoidal components, rather
than the waveform itself). Additive synthesis is in part a spectral method, and this
aspect will be explored in Chapter 14.

The object of the analysis, as we have already noted, is the frequencies and am-
plitudes of partials. We can make ‘one-shot’ analyses, where we target a specific
point in time of the target sound, or we can take frames at regular intervals to reveal
the evolution of its spectrum. In the first case, we will have a ‘frozen’ moment in
time, which can be useful for certain applications. More generally, we will be inter-
ested in the time-varying nature of sounds, so a series of analyses spaced in time are
best suited for this. Managing the huge amounts of data produced by such processes
is often a problem. We can take two approaches:

1. offline analysis: in this case we record the waveform of the target sound to a
file, and apply the analysis to it, storing the results in another file. The synthesis
process will then read the data from the file (Fig. 12.15).

2. streaming: here we buffer an input audio stream, analyse it and generate a se-
quence of analysis frames containing its amplitudes and frequencies. This data
can optionally be saved to a file for later use. This is more demanding compu-
tationally, as both the analysis and synthesis are happening at the same time.
Also, due to the nature of Fourier-based methods, a small amount of inherent la-
tency will exist between input and output because of the buffering involved (Fig.
12.16).

Csound supports both approaches. Traditionally the first kind of analysis-synthesis
was the only form available, but with the development of new techniques and more
powerful computing platforms, streaming methods were made possible. For this
reason, we will concentrate our discussion on examining this approach.

The first issue to be resolved when dealing with spectral streams is where to
place the analysis data for easy access by oscillators. As in the tonewheel case, we
can use arrays to hold frequencies and amplitudes. Alternatively, we can employ
function tables for this purpose. Since both are more or less equivalent, we will use
the latter method, for the sake of variety. Before we look into how to obtain the

250 12 Classic Synthesis

offline performance

soundfile

�
analysis

�

analysis file

�
additive synthesis

analysis file
�

sound

Fig. 12.15 Offline analysis-synthesis

input

�
streaming analysis

�
additive synthesis

�
sound

Fig. 12.16 Streaming analysis-synthesis

analysis data, we can design the synthesis process. As with any additive synthesis
method, the sources are sinusoidal oscillators. We can build a bank of these, again
using recursion. Each partial will take its parameter data from a specific position in
two tables, which store amplitude and frequency values, respectively. The code for
an oscillator bank UDO is shown in listing 12.27. The opcode has a pitch control,
which can be used to transpose the output sound.

Listing 12.27 An oscillator bank UDO

/*****************************
asig OscBnk kpitch,ifa,ifn,isize
kpitch - pitch transposition factor
ifa - amplitude function table
iff - frequency function table
isize - oscillator bank size

*******************************/
opcode OscBnk,a,kiiio
kp,ifa,iff,is,icnt xin
if icnt < is-1 then

asig OscBnk kp,ifa,iff,is,icnt+1

12.4 Additive Synthesis 251

endif
xout asig +

oscili(port(table(k(icnt),ifa),0.01),
kp*table(k(icnt),iff))

endop

The oscillator bank design is general enough to work in different scenarios. All
it assumes is that a certain number of oscillators are required, and that amplitude
and frequency values for each oscillator will be found sequentially in two tables,
from 0 to the size of the bank -1. We can use different methods to supply this data to
it. A simple way that involves no analysis is to draw a given shape for the spectral
envelope (the shape formed by the amplitude of the partials across the frequency
bands), and decide what specific partial frequencies we want. This of course will
be difficult to manage for time-varying spectra, and so we can get the data from an
analysis process instead.

A common way of finding amplitudes and frequencies for a given input is through
the phase vocoder. This is a variation on the original channel vocoder discussed in
Section 12.2, which follows the same overall principle of breaking the spectrum into
a number of bands. Here, however, the analysis is more precise in that it provides
both the energy at that band (amplitude) and the frequency for a sinusoidal wave
to reproduce it. While we will leave the detailed discussion of the phase vocoder
until Chapter 14, we will outline here its relevant parameters for additive synthesis
applications.

The analysis breaks the total spectrum into equal-bandwidth portions (as opposed
to equal-Q bands seen in the channel vocoder implementation). The width of each
‘channel’ is therefore dependent on the number of these, which is determined by the
size of the analysis frame. The phase vocoder takes a number of waveform samples
(the frame), and outputs amplitudes and frequencies representing these. The number
of bands is equivalent to half the analysis size (plus one extra, which we can ignore
for the moment). For example, if we analyse 1024 waveform samples, we get 512
bands.

For efficiency reasons, using power-of-two size is recommended (a fast algo-
rithm, optimised for these lengths is then used). The width of the channels is sim-
ply calculated by dividing the total frequency span (0 Hz to Nyquist frequency) by
the number of bands. For instance, at 44,100 Hz sampling rate, with a frame of
N = 1,024 samples we have 512 channels of 22050

512 = 43.0664 Hz. The analysis is
performed at regular periods, which can vary from 1 to N

4 samples. This is called
the analysis hopsize; more frequent analyses require more computation, but can im-
prove quality.

In Csound, the opcode used for streaming phase vocoder analysis is pvsanal.
The process it employs will be discussed in detail in Chapter 14, but we will dis-
cuss its key principles here. It takes an input signal, the analysis size, the hopsize,
the analysis window (generally the same as the analysis size) and a window shape
(an envelope shape used to smooth the analysis process). It produces a frequency-
domain output using the f-sig data type containing the analysis frame consisting of
amplitudes and frequencies for each band. These can be placed into tables using

252 12 Classic Synthesis

the pvsftw opcode, which returns a flag indicating whether new analysis data was
written to the tables. This is useful because the analysis will not necessarily happen
at every k-cycle. With these opcodes, we can construct an analysis UDO to work
with our oscillator bank. This is shown in listing 12.28.

Listing 12.28 A streaming frequency analysis UDO

/****************************
kflag StreamAnal asig,ifa,iff,isize
asig - input signal
ifa - amplitude function table
iff - frequency function table
isize - number of amp/freq pairs

*****************************/
opcode StreamAnal,k,aiii
asig,ifa,iff,is xin
fsig pvsanal asig,is*2,is/4,is*2,1
xout pvsftw(fsig,ifa,iff)
endop

An example instrument applying these principles is shown in listing 12.29. Here,
we obtain a target spectrum from a soundfile, and use two oscillator banks to resyn-
thesise it with different pitch transpositions.

Listing 12.29 A streaming frequency analysis UDO

gioscs init 512
gifn1 ftgen 1,0,gioscs,7,0,gioscs,0
gifn2 ftgen 2,0,gioscs,7,0,gioscs,0
instr 1
a1 diskin2 "fox.wav",1,0,1
kfl StreamAnal a1,1,2,gioscs
a1 OscBnk p4,1,2,gioscs
a2 OscBnk p5,1,2,gioscs
out (a1+a2)/2
endin
schedule(1,0,10,1,.75)

Various other types of transformations can be applied to the spectral data be-
fore resynthesis. For instance, we could shape the spectral envelope in different
ways, making filtering effects. The frequency data can be modified to create inhar-
monic spectra. Two different sounds can have their amplitude and frequency data
exchanged or interpolated to create crossed and morphed timbres. In all of these
cases, we are venturing into the terrain of spectral processing, which will be fol-
lowed up in Chapter 14.

12.5 Conclusions 253

12.5 Conclusions

In this chapter, we explored the three classic types of sound synthesis: source-
modifier (also known as subtractive), distortion and additive methods. We started by
discussing some fundamentals of the spectral representation of audio, introducing
the concept of sinusoidal components, harmonics and inharmonic partials. These
form an important part of the theory of acoustics that underpins all classic sound
synthesis approaches.

Source-modifier synthesis was discussed from the perspective of its elements:
the different possibilities of sound generators, and the various types of filters that
can be applied to them. The section was completed by two design studies: a virtual
analogue model of a synthesiser, and the channel vocoder. In the distortion synthesis
section, we explored in detail a variety of synthesis algorithms, their mathematical
expressions and corresponding Csound code.

Completing the chapter, an overview of additive synthesis was provided, fol-
lowed by a complete tonewheel organ model, and an introduction to analysis-
synthesis techniques. This provides a point of contact with a number of advanced
signal processing methods based on frequency-domain manipulation, which can
provide a rich source of interesting instrument designs. We will be complementing
this with Chapter 14 dedicated to spectral processing.

Chapter 13

Time-Domain Processing

Abstract This chapter will discuss processing of audio signals through the use of
time-domain techniques. These act on the samples of a waveform to deliver a variety
of effects, from echoes and reverberation to pitch shifting, timbral modification and
sound localisation. The chapter is divided into four sections dealing with the basic
methods of fixed and variable delays, filtering and spatial audio. Code examples are
provided implementing many of the techniques from first principles, to provide the
reader with an insight into the details of their operation.

13.1 Introduction

The manipulation of audio signals can be done in two fundamental ways: by pro-
cessing the samples of a sound waveform, or by acting on its spectral representation
[137]. Time-domain techniques are so named because they implement the former,
working on audio as a function of time. The latter methods, which will be explored
in Chapter 14, on the other hand process sound in its frequency-domain form.

The techniques explored in this chapter can be divided into three big groups,
which are closely related. The first one of these is based on the use of medium to
long, fixed signal delays, with which we can implement various types of echo and re-
verberation, as well as timbral, effects. Then we have the short- and medium-length
variable delay processing that allows a series of pitch and colour transformations.
Finally, we have filters, which are designed to do various types of spectral modifi-
cations that can be used both in timbre modification and in spatial audio effects.

13.2 Delay Lines

Digital delay lines are simple processors that hold the samples of an audio signal
for a specified amount of time [67, 34], releasing them afterwards. Their basic func-

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

255
13

256 13 Time-Domain Processing

tion is to introduce a time delay in the signal, which is used in a variety of audio
processing applications. They can be expressed by a simple equation:

y(t) = x(t −d) (13.1)

where t is the time, x(t) is the input signal, y(t) is the delay line output, and d the
amount of time the signal is delayed.

Conceptually, delay lines are first-in first-out (FIFO) queues, whose length de-
termines the amount of delay imposed on the signal (see Fig. 13.1). Since at each
sample period, one sample is placed into the processor and another comes out, the
time it takes for a sample to traverse the delay will be

d = L× 1
sr

(13.2)

where L is the length of the delay in samples, and sr, the sampling rate.

�� total delay: L samples

in � � out

Fig. 13.1 Conceptual representation of a delay line as a FIFO queue, where a sample takes L
sampling periods to exit it

The conceptual idea of a sample moving from one position in the FIFO queue
to another at each sampling period is useful for us to understand the principles of a
delay line. However, it is rarely the case that any delay of more than a few samples
is actually implemented in this way. This is because it involves moving L samples
around at every sampling period, which can be very inefficient.

Instead, a circular buffer algorithm is used. The idea is to keep the samples in
place, and just move the reading position along the delay line, which involves a
fraction of the computational cost. Once we read a sample, we can write to the
buffer, and move the reading position one slot ahead, and repeat the whole operation.
When we reach the end of the buffer, we wrap around to the beginning again. This
means that a sample will be held for exactly the time it takes for the reading position
to return to where the sample was written, L sampling periods later (Fig. 13.2)

To illustrate this fundamental algorithm, we can implement it as a UDO (although
it already exists as internal opcodes in the system). We will use an a-rate array as

13.2 Delay Lines 257

a circular buffer and work on a sample-by-sample basis (ksmps=1, kr=sr). This is
required because we need to access the delay line one sample at a time. The code
for this is shown in listing 13.1. The delay length is set according to equation 13.2,
making it sure it is rounded to the nearest integral value (array sizes need to be
whole numbers), checking that the minimum size is 1. The algorithm follows: read
at kpos, write to the same spot, update kpos circularly.

Listing 13.1 Circular buffer delay

opcode Delay,a,ai
setksmps 1
asig,idel xin
kpos init 0
isize = idel > 1/sr ? round(idel*sr) : 1
adelay[] init isize
xout adelay[kpos]
adelay[kpos] = asig
kpos = kpos == isize-1 ? 0 : kpos+1
endop

�

�

�

�
�

� � � � � � �

�

�

in ou
t

�
�

Fig. 13.2 Circular buffer delay line: samples are kept in their stored position, and the read/write
position moves along the delay line circularly (in the direction shown by the line arrows). The
current read point is L samples behind the last write

This UDO is a version of the delay opcode in Csound, which also implements
a circular buffer using a similar algorithm:

asig delay ain, idel

Csound also allows a delay line to be set with a pair of separate opcodes for
reading and writing to it:

asig delayr idel
delayw ain

258 13 Time-Domain Processing

which also implements a circular buffer as in listing 13.1. The minimum delay for
delayr and delayw is one control period (ksmps samples), whereas delay does
not have this limitation. The basic effect that can be implemented using these op-
codes as they are is a single echo. This is done by adding the delayed and original
signal together. Further echoes will require other delays to be used, or the use of
feedback, which will be discussed in the next section.

13.2.1 Feedback

A fundamental concept in signal processing is feedback,which we have already en-
countered in Chapter 12. As we recall, this involves mixing the output of the process
back into its input. Within the present scenario, this allows us to create repeated de-
lays, that will be spaced regularly by the length of the delay line. The feedback
signal needs to be scaled by a gain to prevent the system from becoming unstable;
without this the output would keep growing as the audio is inserted back into the
delay (Fig. 13.3).The expression for this process is

y(t) = x(t)+gy(t −d)

w(t) = y(t −d)
(13.3)

where x(t) is the input signal, g is the feedback gain, and y(t−d) (w(t)) is the output
after delay time d. As we can see in Fig. 13.3, there is no direct signal in the output
of the feedback delay.

in ��+
feedback gain

��×�

� � delay � out

Fig. 13.3 Delay line with feedback. Depending on the value of feedback gain, various repeated
delays will be produced

The feedback gain will need to be less than 1 to ensure stability. Depending on
its value, many repeated delays will be heard. Each time the sound is recirculated
through the delay, it will be scaled by a certain amount, so after time T , a short sound
going through a delay of length D, and fed back with gain g, will be attenuated by

A = g
T
D (13.4)

13.2 Delay Lines 259

For instance, with a delay of 1 s, and a gain of 0.5, the repeats will die off to about
1

1000 th of the original amplitude after 10 seconds. This is an important threshold,
equivalent to -60dB, which is often used to measure the reverberation time of a
system. We can also determine the feedback gain based on a desired reverberation
time Tr and D:

g =

(
1

1000

) D
Tr

(13.5)

The feedback delay processor is used in many applications. It is a fairly common
effect, which can be easily created by mixing the input signal with the feedback
path:

ay = asig + adelay[kpos]*kg

The complete UDO will have an extra parameter that can be used to set the
feedback gain. We also add a safety check to make sure the gain does not make the
system unstable (by muting the feedback completely).

Listing 13.2 Feedback delay

opcode FDelay,a,aki
setksmps 1
asig,kg,idel xin
kpos init 0
isize = idel > 1/sr ? round(idel*sr) : 1
adelay[] init isize
kg = abs(kg) < 1 ? kg : 0
ay = asig + adelay[kpos]*kg
xout adelay[kpos]
adelay[kpos] = ay
kpos = kpos == isize-1 ? 0 : kpos+1
endop

This processor is also called a comb filter. Csound implements this process in the
comb opcode:

asig comb ain,krvt,idel

where the feedback gain is controlled indirectly via a reverberation time parameter
krvt, using eq. 13.5. We can also create this feedback delay using delayr and
delayw, with a very simple code:

asig delayw
delayr ain + asig*kg

However in this case, the minimum delay is limited to one control cycle (and so is
the feedback loop), whereas the comb filter has no such limit. The name comb filter
comes from the shape of this unit’s amplitude response (Fig. 13.4) whose shape dis-
plays a series of regular peaks. These are spaced by the filter fundamental frequency,

260 13 Time-Domain Processing

which is equivalent to the inverse of its delay time, 1/D. The impulse response is a
series of decaying impulses, whose amplitude falls exponentially according to eq.
13.4. The height of the peaks is determined by the gain.

0.001 0.005 0.010 0.015 0.020

time (sec)

a
m

p

1000 2000 3000 4000

freq (Hz)

a
m

p

Fig. 13.4 Comb filter impulse (top) and amplitude response (bottom) for D = 0.001s and g = 0.9.
The amplitude response peaks are spaced by 1,000 Hz

A comb filter can be used for echo effects, or as a way of colouring the spectrum
of an input sound. For the latter application, shorter delay times are required, so
that the filter peaks are more closely spaced, and its fundamental frequency is in the
audio range (>20 Hz). In general, comb filters will impart some colour to the input
sound, unless the delay time is significantly large for the amplitude response peaks
to be bunched together (which is the case in echo applications).

13.2.2 All-Pass Filters

It is possible to create a delay line processor that has a flat amplitude response. This
is done by combining a feedforward and a feedback path for the signal, using the
same absolute gain value, but with opposite signs. A diagram for this arrangement
is shown in Fig. 13.5. This is called an all-pass filter, as it passes all frequencies
with no attenuation. The expression for this process is

y(t) = x(t)+gy(t −d)

w(t) = y(t −d)−gy(t)
(13.6)

13.2 Delay Lines 261

where x(n) is the input, y(t − d) is the delay line output with delay d, and w(t) is
the all-pass output. The impulse and amplitude responses for this filter are shown in
Fig. 13.6.

in ��+
gain

��×�

� � delay � out

�×�

�+
�

�
-gain

�

Fig. 13.5 All-pass filter, using a combination of feedback and feedforward delays, with gains of
opposite signs, but the same absolute value

From this, we can see how the impulse response decay differs from the comb
filter. There is an abrupt drop from the direct sound (whose polarity is reversed at the
filter output) to the first delay; the following repetitions are much lower in amplitude
than in the comb filter case. So, for an all-pass filter such as the one discussed here,
after time T , an impulse going through a delay D and with a feedback gain g will be
attenuated by

A = (1−g2)g
T
D−1 (13.7)

In order to implement the all-pass filter, we can make some modifications to our
comb code, so that it matches the diagram in Fig. 13.5. We take the mix of the
feedback signal and input and put this into the feedforward path. The output is a
mix of this signal and the delay line output.

Listing 13.3 All-pass filter implementation

opcode allpass,a,aki
setksmps 1
asig,kg,idel xin
isize = idel > 1/sr ? int(idel*sr) : 1
adelay[] init isize
kpos init 0
ay = asig + adelay[kpos]*kg
xout adelay[kpos] - kg*ay
adelay[kpos] = ay
kpos = kpos == isize-1 ? 0 : kpos+1
endop

In Csound, an all-pass filter is provided by the alpass opcode, which has the
same parameters as the comb filter, reverb and delay time (krvt and idel):

asig alpass ain,krvt,idel

262 13 Time-Domain Processing

Like the comb filter, it is possible to implement this with delayr and delayw:

adel delayr idel
amx = ain + adel*kg
asig = adel - kg*amx
delayw amx

0.001 0.005 0.010 0.015 0.020

time (sec)

a
m

p

5000 10000 15000

freq (Hz)

a
m

p

Fig. 13.6 All-pass filter impulse (top) and amplitude response (bottom) for D = 0.001 s and g =
0.9. The amplitude response is flat throughout the spectrum

A characteristic of the all-pass filter is that, although it does not colour the sound
in its steady state, it might ‘ring’ in response to a transient in the input (e.g. a sud-
den change in amplitude). This is due to the decay characteristics of its impulse
response. The ringing will be less prominent with lower values of its gain g, when
the filter tends to decay more quickly.

13.2.3 Reverb

A fundamental application of delay lines is the implementation of reverb effects
[30, 34, 67]. These try to add an ambience to the sound by simulating reflections
in a given space. There are various ways of implementing reverb. One of them is
to use comb and all-pass filters, which are also known as component reverberators
to create different types of reverb effects. The classic arrangement, also known as
Schroeder reverb [115], is a number of comb filters in parallel, whose output feeds
into a series of all-pass filters. In Csound, this is used in the opcodes reverb (four

13.2 Delay Lines 263

comb + two all-pass), nreverb (six comb + five all-pass, also customisable) and
freeverb (eight comb + three all-pass for each channel in stereo).

To illustrate this design, we will develop a simple UDO that uses four comb and
two all-pass filters in the usual arrangement. The main reason for having the comb
filters in parallel is that their role is to create the overall diffuse reverb. For this we
should try not to make their delay times coincide, so that the four can create different
decaying impulse trains to make the reverb more even frequency-wise. As we have
seen, comb filters will colour the sound quite a bit, and if we make their spectral
peaks non-coincident, this can be minimised. We can achieve this by selecting delay
times that are prime numbers. They should lie within a range between 10 and 50 ms
for best effect, although we could spread them a bit more to create more artificial-
sounding results.

Another issue with standard comb filters is that they sound very bright, unlike
most natural reflections, which have less energy at high frequencies. This is because
while the comb filter reverb time is the same for the whole spectrum, the most
common scenario is that reverb time becomes considerably shorter as frequencies
increase. To model this, we can insert a gentle low-pass filter in the feedback signal,
which will remove the high end more quickly than the lower [93]. In order to do
this, we have to implement our own comb filter with this modification:

opcode CombF,a,akki
asig,kg,kf,idel xin
kg = 0.001ˆ(idel/kg)
adel delayr idel
delayw asig + tone(adel*kg,kf)
xout adel
endop

The all-pass filters, in series, have a different function: they are there to thicken
each impulse from the comb filters, so that the reverberation model has enough
reflections. For this, they need to have a short delay time, below 10 ms and a small
reverb time, of the order of about ten times their delay. We will let the user decide
the range of comb filter delays (min, max) and then select the correct times from a
prime number list. This is done with an i-time opcode that returns an array with four
values. We also report these to the console:

opcode DelayTimes,i[],ii
imin, imax xin
ipr[] fillarray 11,13,17,19,23,

29,31,37,41,43,47,53,59,
61,67,71,73,79

idel[] init 4
imin1 = imin > imax ? imax : imin
imax1 = imax < imin ? imin : imax
imin = imin1 < 0.011 ? 11 : imin1*1000
imax = imax1 > 0.079 ? 79 : imax1*1000
idel[0] = ipr[0]

264 13 Time-Domain Processing

icnt = lenarray(ipr)-1
idel[3] = ipr[icnt]
while (idel[3] > imax) do
idel[3] = ipr[icnt]
imxcnt = icnt
icnt -= 1
od
icnt = 0
while (idel[0] <= imin) do
idel[0] = ipr[icnt]
imncnt = icnt
icnt += 1
od
isp = (imxcnt - imncnt)/3
idel[1] = ipr[round(imncnt + isp)]
idel[2] = ipr[round(imncnt + 2*isp)]
printf_i "Comb delays: %d %d %d %d (ms)\n",

1, idel[0],idel[1],idel[2],idel[3]
xout idel/1000
endop

The reverb UDO sets the four combs in parallel and the two all-pass in series. It
uses the above opcodes to implement the comb filter and delay time calculations, as
shown in listing 13.4.

Listing 13.4 The implementation of a standard reverb effect, using a combination of four comb
and two all-pass filters

/***
asig Reverb ain,krvt,kf,imin,imax
ain - input audio
krvt - reverb time
kf - low-pass frequency cutoff
imin - min comb delay time
imax - max comb delay time

***/
opcode Reverb,a,akkii
asig,krvt,kf,imin,imax xin
idel[] DelayTimes imin,imax
ac1 CombF asig,krvt,kf,idel[0]
ac2 CombF asig,krvt,kf,idel[1]
ac3 CombF asig,krvt,kf,idel[2]
ac4 CombF asig,krvt,kf,idel[3]
ap1 alpass ac1+ac2+ac3+ac4,0.07,0.007
ap2 alpass ap1,0.05,0.005
xout ap2
endop

13.2 Delay Lines 265

Feedback delay networks

Another approach to create reverb effects is to use a feedback delay network, or
FDN [120, 118]. In this, we have a set of delay lines that are cross fed according
to a given feedback matrix. This determines which signals will feed each delay line
input. For instance, consider the matrix M in eq. 13.8, and a column vector D of
four delay outputs, eq. 13.9:

M =

⎛
⎜⎜⎝

0 1 1 0
−1 0 0 −1
−1 0 0 1
0 1 −1 0

⎞
⎟⎟⎠ (13.8)

D =

⎛
⎜⎜⎝

y0(t −d0)
y1(t −d1)
y2(t −d2)
y3(t −d3)

⎞
⎟⎟⎠ (13.9)

where dn is the delay time for line n.
A four-delay FDN can then be expressed as a matrix multiplication (eq. 13.10).

It combines the delay outputs, a scalar feedback gain g and the input signal x(t):

Y = x(t)+g{M×D} (13.10)

The vector Y holds the inputs of the four delay lines:

Y =

⎛
⎜⎜⎝

y0(t)
y1(t)
y2(t)
y3(t)

⎞
⎟⎟⎠ (13.11)

As with the comb filter, the FDN output is taken from the delay line outputs. If
we want a stereo output, we can route each of the four outputs to different channels
in any combination:

FDN = × (13.12)

where O is a mix matrix for two channels. For instance, we can have

O =

(
0.75 0.5 0.5 0.25
0.25 0.5 0.5 0.75

)
(13.13)

for a basic stereo spread.
A UDO demonstrating these ideas is shown in listing 13.5, and is illustrated in

Fig. 13.7. As with the previous reverb implementation, we need to make sure reverb
times are not equal across the spectrum, so we add a filter in the feedback path of
each delay line. A delay time factor is used to make the FDN longer or shorter,
keeping all the individual delay times relative to this. The overall gain is also scaled
by 1√

2
, to keep the feedback under control.

O D

266 13 Time-Domain Processing

d0

d1

d2

d3

LP

LP

LP

LP

�

�

�

�

M

�×�×�×�×

�
g

�
g

�g

�g

�

�

�

�

in

�

�+�

�+�

�+�

�+

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

O
� out L

� out R

Fig. 13.7 A feedback delay network consisting of four delay lines, and including lowpass filters in
the feedback path

Listing 13.5 A feedback delay network UDO

/**
al,ar FDN asig,kg,kf,idel
al,ar - left and right outs
asig - input
kg - gain
kf - low-pass cutoff freq
idel - delay size factor

**/
opcode FDN,aa,akki
aflt[] init 4
amix[] init 4
adel[] init 4
il[] fillarray .75,.5,.5,.25
ir[] fillarray .25,.5,.5,.75
idel[] fillarray 0.023,0.031,0.041,0.047
imatrix[][] init 4,4
imatrix[0][0] = 0
imatrix[0][1] = 1
imatrix[0][2] = 1
imatrix[0][3] = 0
imatrix[1][0] = -1
imatrix[1][1] = 0
imatrix[1][2] = 0

13.2 Delay Lines 267

imatrix[1][3] = -1
imatrix[2][0] = -1
imatrix[2][1] = 0
imatrix[2][2] = 0
imatrix[2][3] = 1
imatrix[3][0] = 0
imatrix[3][1] = 1
imatrix[3][2] = -1
imatrix[3][3] = 0

asig,kg,kf,id xin
idel = idel*id
kg *= $M_SQRT1_2
ki = 0
while ki < 4 do
kj = 0
amix[ki] = asig
while kj < 4 do
amix[ki] = amix[ki]+aflt[kj]*imatrix[ki][kj]*kg
kj += 1
od
ki += 1

od
adel[0] delay amix[0],idel[0]
aflt[0] tone adel[0],kf
adel[1] delay amix[1],idel[1]
aflt[1] tone adel[1],kf
adel[2] delay amix[2],idel[2]
aflt[2] tone adel[2],kf
adel[3] delay amix[3],idel[3]
aflt[3] tone adel[3],kf
al = 0
ar = 0
kj = 0
while kj < 4 do
al += aflt[kj]*il[kj]
ar += aflt[kj]*ir[kj]
kj += 1

od
xout al, ar
endop

FDNs can be combined with other elements to make more sophisticated reverbs.
They can provide very good quality effects. In Csound, these structures are used in
the reverbsc and hrtfreverb opcodes.

268 13 Time-Domain Processing

13.2.4 Convolution

Another way of simulating reflections in a space can be realised through multitap
delays [67]. In this scenario, we have a single delay line with taps, or outputs at dif-
ferent positions along its length, providing smaller delay times. This can be realised
in Csound using a tap opcode such as deltap in between delayr and delayw
pairs:

asig delayr idel
atap deltap kdeltap
delayw ain

Any number of taps can be placed in a delay line such as this one. Each tap can
be scaled by a certain gain and added to the overall mix, to model the contribution
of that particular reflection. The extreme case is when we get an output at every
sample, and scale it by a given amount. This operation is called convolution [97], as
illustrated by Fig. 13.8. The scaling values for each tap are crucial here: they will
define the character of the space we want to reproduce.

in �

�

�

�

�
�

	 	 	 	 	 	

×
×

×
×

×
×

�

�

�

�

�
�

IR[0]

IR[1]

IR[2]

IR[3]

IR[4]
IR[N-1]· · ·

�

�

�

�

�
�

∑ � out

Fig. 13.8 Direct convolution: taps placed at each sample, scaled by each value of the impulse
response. The output is the sum of all the scaled taps

In order to model a given system, we can use these values: they are its response
to a single impulse, i.e. its impulse response (IR). This is a record of the intensity of
all the reflections produced by the system. We have already seen this with respect to
all-pass and comb filters, and we can use the same approach to look at real spaces.
An IR can be obtained from a recording of an impulse played in a room, and with
this, we can implement a convolution-based reverb.

Mathematically stated, this type of convolution can be written as

13.2 Delay Lines 269

x(t)∗h(t) =
N−1

∑
n=0

h(n)x(t −n) (13.14)

where N is the length of the delay line, h(n) are the gain scalers, or the IR used, and
x(t) is the input to the delay line.

Convolution is an expensive operation, because it uses N multiplications and ad-
ditions for each output sample, where N is the IR length in samples. For this reason,
direct calculation of convolution using delay lines is only used for short IRs. A faster
implementation using spectral processing will be discussed in the next chapter. As
an illustration of the process, we present a convolution UDO in listing 13.6. This
code is for demonstration purposes only, as a faster internal opcode exists (dconv),
which is more practical to use.

Listing 13.6 UDO demonstrating the convolution operation

opcode Convolution,a,ai
setksmps 1
ain,irt xin
ilen = ftlen(irt)
acnv = 0
kk = ksmps
a1 delayr (ilen-1)/sr
while kk < ilen do

acnv += deltapn(kk)*table(kk,1)
kk += 1

od
delayw ain
xout acnv + ain*table(0,1)
endop

The UDO takes an input signal and the number of a table containing the IR.
We need to run this opcode at ksmps = 1, because the minimum delay allowed in
delayr and delayw is equivalent to one k-period (1

kr secs, or ksmps samples).
If we do not mind missing the first ksmps samples of the IR, then we could run it
at lower control rates. As we can see, the process is very straightforward; we just
accumulate the output of each tap (with deltapn, which takes a delay time in
samples), and multiply by the IR read from the function table.

It is possible to design a hybrid reverb, whose first hundred or so milliseconds are
implemented through convolution, and the rest is based on a standard algorithm or
FDN. This will use the IR for the early reflections, and the generic reverb for the dif-
fuse part. Often it is the character of the early reflections that is the most significant
aspect of a given space, whereas the reverb tail is less distinct. This approach has
the advantage, on one hand, of being computationally more efficient than using con-
volution for the whole duration of the reverberation, and on the other, of providing
a more natural feel to the effect (see listing 13.7).

270 13 Time-Domain Processing

Listing 13.7 Hybrid reverb combining convolution for early reflections and a standard algorithm
for diffuse reverberation

/**
asig HybridVerb ain,krvt,kf,kearl,kdiff,irt
ain - input signal
krvt - reverb time
kf - lowpass cutoff factor (0-1)
kearl - level of early reflections
kdiff - level of diffuse reverb
irt - table containing an IR

**/
opcode HybridVerb,a,akkkki
asig,krvt,kf,
kearl,kdiff,irf xin
kscal = 1/(kearl+kdif)
ilen = ftlen(irf)
iert = ilen/sr
arev nreverb asig,krvt,khf
acnv dconv asig,ilen,irf
afad expseg 0.001,iert,1,1,1

xout (acnv*kearl +
arev*afad*kdif)*kscal

endop

IRs for a variety of rooms, halls etc. are available for download from a number of
internet sites. These can be loaded into a function table using GEN 1. The UDO will
use the function table size to determine when the transition between convolution and
standard reverb happens. For most applications, the function table should ideally
have a length equivalent to about 100 ms.

13.3 Variable Delays

A complete class of processes can be implemented by varying the delay time over
time [31, 67]. Not only do we have a lengthening or shortening of the time between
the direct sound and the delay line output, but some important side effects occur.
The various algorithms explored in this section take advantage of these to modify
input signals in different ways.

With variable delay times we have to be careful about how the delay line is read.
The concerns here are similar to the ones in oscillator table lookup. When the delay
is fixed, it is possible to round a non-integral delay time to the nearest number of
samples without major consequences. However, when we vary the delay time over
time, this is going to be problematic, esp. if the range of delay times is only a few
samples. This is because instead of a smooth change of delay time, we get a stepped
one. The quality of the output can be significantly degraded.

13.3 Variable Delays 271

In order to avoid this problem, for variable-delay effects, we will always employ
interpolation when reading a delay line. The simplest, and least costly, method is
the linear case, which is a weighted average of the two samples around the desired
fractional delay time position. Next, there is cubic interpolation, which uses four
points. Higher-order methods are also possible for better precision, but these are
more costly. In Csound, we should also try to use audio-rate modulation sources to
vary the delay in most cases, to ensure a smooth result.

The following tap opcodes can be used with delayr and delayw for interpo-
lated reading of the delay line:

• deltapi: linear interpolation.
• deltap3: cubic interpolation.
• deltapx: user-defined higher-order interpolation (up to 1,024 points).

They are generally interchangeable, so any instrument design using one of them
can be modified to suit the user’s needs in terms of quality/computation load.

13.3.1 Flanger

Flanger is a classic audio effect [6], whose digital implementation employs a mod-
ulated feedback delay line [67]. The basic principle of operation is that of a comb
filter whose frequency is swept across the spectrum. From Fig. 13.4, we see that
the spacing of the peaks in the amplitude response is given by the inverse of the
delay time. A one-sample delay will work as a low-pass filter, as the peak spacing
is equivalent to sr Hz, which is beyond the frequency range (0 - sr

2). A two-sample
delay will have peaks at 0 and the Nyquist frequency. As the delays increase, the
peaks get closer together, and the result is a sweeping of the filter frequencies over
the spectrum.

As the spacing becomes small, the effect is diminished. For this reason, the ef-
fect is more pronounced with delays of a few milliseconds. The feedback gain de-
termines how sharp the peaks are, making the effect more present. As its value gets
closer to 1, the narrow resonances will create a pitched effect, which might dominate
the output sound. In this case, instead of a filter sweep, the result might be closer to
a glissando, as the peaks become more like the harmonics of a pulse wave.

An implementation of a flanger UDO is shown in listing 13.8. It uses a sine wave
oscillator as a low-frequency oscillator (LFO), modulating the delay time between
a minimum and a maximum value. The minimum is set at 2

sr (1
kr , with ksmps = 2)

to allow two samples as a minimum for the cubic interpolation to work properly,
and the maximum at 10 ms, which is equivalent to a 100 Hz spacing. The ksmps
is set at 2 to allow the delay to go down to the minimum value (remembering that
delayr/delayw have a minimum delay time of one k-period). As the LFO pro-
duces a bipolar waveform (which ranges from -kwdth to +kwdth, we need to
offset and scale it, so that it is both fully positive and peaks at kwdth. Delay times

272 13 Time-Domain Processing

fm

�

width
2
�

��˜(width
2 +min

)
+�� �

���

delay

��

+�in� �

� ×

g

�
�

� out

Fig. 13.9 A flanger design using a sine wave LFO. Note that as the LFO produces a bipolar wave-
form from −width

2 to width
2 , we need to offset it to be fully positive, with the minimum at min

can never be negative. The UDO checks for the input values, making sure they are
in the correct range.

Listing 13.8 A flanger UDO using a sinewave delay time modulation

/***
asig Flanger ain,kf,kmin,kmax,kg
ain - input signal
kf - LFO modulation frequency.
kmin - min delay
kmax - max delay
kg - feedback gain

***/
opcode Flanger,a,akkkk
setksmps 2
asig,kf,kmin,kmax,kg xin
idel = 0.01
im = 1/kr
km = kmin < kmax ? kmin : kmax
kmx = kmax > kmin ? kmax : kmin
kmx = (kmx < idel ? kmx : idel)
km = (km > im ? km : im)
kwdth = kmx - km
amod oscili kwdth,kf
amod = (amod + kwdth)/2
admp delayr idel
afln deltap3 amod+km
delayw asig + afln*kg
xout afln
endop

13.3 Variable Delays 273

13.3.2 Chorus

The chorus effect works by trying to create an asynchrony between two signals, the
original and a delayed copy. To implement this, we set up a delay line whose delay
time is modulated by either a period source like the LFO or a noise generator, and
combine the delayed and original signals together (Fig. 13.10). The delay times are
higher than in the flanger example, over 10 ms, but should use a modulation width
of a few milliseconds. A secondary effect is a slight period change in pitch caused
by the change in delay time (this will be explored fully in the vibrato effect). The
chorus effect does not normally include a feedback path.

fm

�

width
2

�
randi

(width
2 +min

)
+�� �

���

delay

��
in� � +�

�

� out

Fig. 13.10 A chorus UDO using a noise generator as a modulation source. As in the flanger case,
we need to make sure the modulator output is in the correct delay range

Listing 13.9 A chorus UDO using a noise generator to modulate the delay time

/***
asig Chorus ain,kf,kmin,kmax
ain - input signal
kf - noise generator frequency
kmin - min delay
kmax - max delay

***/
opcode Chorus,a,akkk
asig,kf,kmin,kmax xin
idel = 0.1
im = 2/sr
km = kmin < kmax ? kmin : kmax
kmx = kmax > kmin ? kmax : kmin
kmx = (kmx < idel ? kmx : idel)
km = (km > im ? km : im)

274 13 Time-Domain Processing

kwdth = kmx - km
amod randi kwdth,kf,2,1
amod = (amod + kwdth)/2
admp delayr idel
adel deltap3 amod+km
delayw asig
xout adel + asig
endop

The chorus implementation in listing 13.9 employs a bandlimited noise genera-
tor to create the delay time modulation. This is a good choice for vocal applications,
whereas in other uses, such as the thickening of instrumental sounds, we can use
a sine wave LFO instead. In this code, the two are interchangeable. Minimum and
maximum delays should be set at around 10 to 30 ms, with around 2 to 8 millisec-
onds difference between them. The larger this difference, the more pronounced the
pitch modulation effect will be.

13.3.3 Vibrato

The vibrato effect (Fig. 13.11) uses an important side-effect of varying the delay
time: frequency modulation (FM). FM happens because in order to create different
delay times, we need to read from the delay memory at a different pace than we
write to it. The difference in speed will cause the pitch to go up or down, depend-
ing on whether we are shortening the delay or lengthening it. We can think of this
as recording a segment of audio and reading it back at a different rate, a kind of
dynamic wavetable.

The writing speed to the delay line is always constant: it proceeds at intervals
of 1

sr s. In order to shorten the delay, the reading will have to be faster than this,
and so the pitch of the playback will rise. Conversely, to lengthen the delay, we will
need to read at a slower rate, lowering the pitch. If the rate of change of delay time
is constant, i.e. the delay gets shorter or longer at a constant pace, the speed of the
reading will be constant (higher or lower than the writing), and the pitch will be
fixed higher or lower than the original. This is the case when we modulate the delay
line with a triangle or a ramp (sawtooth) waveform.

However, if the rate of change of delay line varies over time, the pitch will vary
constantly. If we modulate using a sine wave, then the read-out speed will be vari-
able, resulting in a continuous pitch oscillation. The key here is whether the first-
order difference between the samples of a modulating waveform is constant or vary-
ing. A choice of a triangle waveform will make the pitch jump between two values,
above and below the original, as the difference is positive as the waveform rises, and
negative as it drops. With a non-linear curve such as the sine, the pitch will glide
between its maximum and minimum values.

Another important consequence of this is that if we keep the amount of modula-
tion constant, but modify its rate, the pitch change will be different. This is because,

13.3 Variable Delays 275

although we are covering the same range of delay times, the reading will proceed at
a different pace as the rate changes. So the width of vibrato will be dependent on
both the amount and rate of delay modulation.

fm

�

width
2
�

��˜(width
2 +min

)
+�� �

���

delay

��
in � � out

Fig. 13.11 A vibrato UDO using a sine wave LFO. The output consists only of the variable delay
signal

It is interesting to consider how the vibrato width relates to the modulation rate
and amount. This will depend on the LFO waveform. The resulting frequency mod-
ulation is going to be the derivative of the delay time modulation. Let’s consider two
common cases:

1. triangle: the derivative of a triangular wave is a square wave. So for a triangular
modulator with depth Δd seconds, and frequency fm Hz, ΔdTri(fmt), we have

Δd
∂
∂ t

Tri(fmt) = Δd fmSq(fmt) (13.15)

where Sq(f t) is a square wave with frequency f . Thus, the frequency will jump
between two values, f0(1 ± Δd fm), where f0 is the original input sound fre-
quency. For instance, if we have an LFO running with fm = 2 Hz, by modulating
the delay between 0.1 and 0.35 s (Δd = 0.25), the pitch will alternate between
two values, 0.5 f0 and 1.5 f0.

2. cosine: the derivative of a cosine is a sine. So, if we consider the modulation
by 0.5cos(2π fmt) (remembering that we have scaled it to fit the correct delay
range), we have

Δd
∂
∂ t

0.5cos(2π fmt) =−Δdπ fm sin(2π fmt) (13.16)

In this case the frequency will vary in the range f0(1±Δdπ fm).

With these principles in mind, it is possible to consider the frequency modulation
effects of a delay line. Note that it is also possible to set fm to the audio range, for

276 13 Time-Domain Processing

a variety of interesting effects on arbitrary input sounds. This technique is called
Adaptive FM [76].

Listing 13.10 A vibrato UDO with an optional choice of function table for LFO modulation

/***
asig Vibrato ain,kf,kmin,kmax[,ifn]
ain - input signal
kf - LFO modulation frequency.
kmin - min delay
kmax - max delay
ifn - LFO function table, defaults to sine

***/
opcode Vibrato,a,akkkj
asig,kf,kmin,kmax,ifn xin
idel = 0.1
im = 2/sr
km = kmin < kmax ? kmin : kmax
kmx = kmax > kmin ? kmax : kmin
kmx = (kmx < idel ? kmx : idel)
km = (km > im ? km : im)
kwdth = kmx - km
amod oscili kwdth,kf,ifn
amod = (amod + kwdth)/2
admp delayr idel
adel deltap3 amod+km
delayw asig
xout adel
endop

The vibrato UDO in listing 13.10 implements an optional use of various func-
tion tables for its LFO. Vibrato and chorus are very similar in implementation. In
Chapter 12, we have implemented these effects as part of the tonewheel organ im-
plementation, and there the differences were only that the chorus effect mixed the
original signal, while the vibrato did not. It is important to note that there is some
variation in the interpretation of what these effects are supposed to be across dif-
ferent effects implementations. Nevertheless, the ideas discussed here are generally
accepted as the basic principles for these processes.

13.3.4 Doppler

The Doppler shift is the perceived change in frequency of a waveform due to a mov-
ing source. As it moves towards or away from the listener, the wavefront reaching
her is either squeezed or stretched, resulting in a pitch modification. The perceived

13.3 Variable Delays 277

frequency fp will be related to the original frequency fo by the following relation-
ship:

fp = fo × c
c− v

(13.17)

where c is the speed of sound in the air (∼= 344 ms-1) and v is the velocity of the
sound source. If the source is moving towards the listener, the velocity is positive,
and the frequency will rise. In the other direction, the frequency will drop.

The effect of a variable delay line is similar to the Doppler effect. When the
delay time is decreased, the effect is similar to making the source move closer to the
listener, since the time delay between emission and reception is reduced.

A digital waveform can be modelled as travelling c
sr meters every sample. In this

case, a delay of D samples will represent a position at a distance of

p = D× c
sr

m (13.18)

Thus, if we vary D, the effect can be used to model a sound source moving with
velocity V ,

V =
D
t
× c

sr
ms−1 (13.19)

As with the vibrato effect discussed above, Doppler shift is proportional to the
rate of change of the delay over time. So a faster moving object will imply a faster
change in the delay time. For varying speeds, then the delay time has to change at
different rates. If the effect of a sound passing the listener is desired, then a posi-
tive shift followed by a negative shift is necessary. This can be easily achieved by
decreasing and then increasing the delay times. The rate of change will model the
speed of the source. A change in amplitude can also reinforce the effect.

For example, if we want the source to move from a position at maximum distance
pmax to a minimum distance position pmin, we can do this:

1. Set pmax and pmin in metres.
2. Set the equivalent delay line ‘distances’ (in seconds), using the expression d = p

c .
3. Put the sound through the delay line and vary the delay from the maximum delay

to the minimum delay for an approaching source, and vice versa for the opposite
direction.

4. Couple the change in delay with change in intensity (e.g. with an envelope).
5. For a variable-speed source, use a non-linear function to change the delay time;

for fixed speed, use a linear envelope.

The code in listing 13.11 implements a Doppler shift UDO using the ideas dis-
cussed above. It takes a distance in meters, and models the movement of the source
according to this parameter, via a delay line change in position and amplitude atten-
uation.

278 13 Time-Domain Processing

Listing 13.11 A Doppler shift UDO, which models the movement of a source according to its
distance in meters

/***
asig Doppler ain,kpos,imax
ain - input signal
kpos - absolute source distance in meters
imax - maximum source distance

***/
opcode Doppler,a,aki
asig,kp,imax xin
ic = 344
admp delayr imax/ic
adop deltap3 a(kp)/ic
kscal = kp > 1 ? 1/kp : 1
delayw asig*kscal
xout adop
endop

13.3.5 Pitch Shifter

The triangle-wave vibrato effect discussed in Section 13.3.3, which creates alter-
nating steady pitch jumps, and indeed the constant-speed doppler effect, suggest
that we might be able to implement a pitch shift effect using similar principles. The
problem to solve here is how to create a continuously increasing or decreasing de-
lay beyond the range of the delay times available to us. If we could somehow jump
smoothly from a maximum delay to a minimum delay (and vice versa), then we
could just circularly move around the delay line, as if it were a function table.

The problem with this jump is that there is an abrupt discontinuity in the wave-
form as we move from one end of the delay to the other. We can use an envelope to
hide this transition, but, alone, that would create an amplitude modulation effect. To
avoid this, we can use two delay line taps, spaced by 1

2 delay length, so that when
one tap is at the zero point of the envelope, the other is at its maximum. Some mod-
ulation artefacts might still arise from the phase differences of the two taps, but we
can try to minimise these later.

So, for the pitch shifter effect to work, we need to modulate the delay line with a
sawtooth wave, rather than a triangle (we want the pitch to change in just one direc-
tion). The straight line of the sawtooth wave will have a constant derivative (except
at the transition), which will give us a constant pitch change. As we saw earlier, the
amount of pitch change is dependent on the modulation width and frequency. If we
want to effect a pitch shift p in a signal with frequency f0, we can find the sawtooth
wave modulation frequency fm using what we learned from eq. 13.15. According to
that, the upwards pitch change p f0 is equivalent to

13.3 Variable Delays 279

p f0 = f0(1+Δd fm) (13.20)

We can then determine the fm required for a given pitch shift factor p and delay
modulation width Δd as

fm =
p−1
Δd

(13.21)

The pitch shifter effect then is just a matter of using two phase-offset sawtooth
waves with frequency set to fm, which modulate two taps of a delay line. In syn-
chrony with this modulation, we need to use an envelope that will cut out the wrap-
around jumps. This can be done with two triangle waves that are run in phase with
each modulator.

A Csound UDO implementing these ideas is shown in listing 13.12. As modu-
lators, it employs two phasor opcodes, offset by 0.5 period. Since these produce
an up-ramp (inverted) sawtooth, we ran them with negative frequency to produce
a down-ramp signal, which will scale the input signal frequency upwards (as the
delay time gets shorter). If the pitch shift requested is below 1, then the sawtooth
frequency will be positive and the shift will be downwards.

Listing 13.12 A pitch shifter UDO using two sawtooth modulators controlling two taps that will
be offset by 1

2 delay length

/***
asig PitchShifter ain,kp,kdel,ifn[,imax]
ain - input signal
kp - pitch shift factor (interval ratio)
kdel - delay mod width
ifn - window (envelope) to cut discontinuities
imax - optional max delay (defaults to 1 sec)

***/
opcode PitchShifter,a,akkip
asig,kp,kdel,ifn,imax xin
kfm = (kp-1)/kdel
amd1 phasor -kfm
amd2 phasor -kfm,0.5
admp delayr imax
atp1 deltap3 amd1*kdel
atp2 deltap3 amd2*kdel
delayw asig
xout atp1*tablei:a(amd1,ifn,1) +

atp2*tablei:a(amd2,ifn,1)
endop

The table for the pitch shifter window can be built with a triangle window (using
GEN 20):

ifn ftgen 1,0,16384,20,3

280 13 Time-Domain Processing

Finally, this pitch-shifting algorithm is prone to amplitude modulation artefacts
due to the combination of the two taps, which in certain situations can be very
noticeably out of phase. To minimise this, it is possible to pitch track the signal and
use this to control the delay modulation width. If we set this to twice the fundamental
period of the input sound, then geerally the taps will be phase aligned. Of course,
if the input sound does not have a pitch that can be tracked, this will not work.
However, in this case, phase misalignment will not play a significant part in the
process. The following instrument example shows how this can be set up to create a
vocal/instrument harmoniser, which tracks fundamentals in the range of 100 to 600
Hz to control the delay width. The pitch is pegged at this range and we use a port
opcode to smooth the fluctuations, avoiding any undue modulation.

instr 1
ain inch 1
kf, ka pitchamdf ain,100,600
kf = kf < 100 ? 100 : (kf > 600 ? 600 : kf)
kdel = 2/kf
kdel port kdel, 0.01, 0.1
asig PitchShifter ain,1.5,kdel,1
outs asig+ain,asig+ain
endin
schedule(1,0,-1)

13.4 Filters

We have already introduced the main characteristics and applications of filters in
source-modifier synthesis (Chapter 12). In this section, we will explore some in-
ternal aspects of filter implementation, and the use of these processors in sound
transformation.

Filters also depend on delay lines for their operation. In fact, we can describe all
of the operations in Sections 13.2 and 13.3 in terms of some sort of filtering. The
comb and all-pass delay processors, for instance, are infinite impulse response (IIR)
filters, whereas the convolution reverb is a finite impulse response (FIR) filter. These
are all high-order filters, employing long delays. In this section, we will start by
looking at filters using one or two sample delays, with feedback, and then consider
feedforward filters based on longer impulse responses.

13.4.1 Design Example: a Second-Order All-Pass Filter

As an example of how we can implement a filter in Csound, we will look at a second-
order all-pass [90]. This design is used in the construction of a phase shifter, which

13.4 Filters 281

will be our final destination. This effect works by combining a signal with another
whose phase has been modified non-linearly across the spectrum. The result is a
cancellation of certain frequencies that are out of phase.

An all-pass filter, as seen before, has the characteristic of having a flat amplitude
response, i.e. passing all frequencies with no modification. Some of these filters also
have the effect of changing the phase of a signal non-linearly across the spectrum.
This is the case of the second-order IIR all-pass, which we will implement here. In
its output, some frequencies can have up to half a cycle (180o, or π radians) phase
shift in relation to the input sound.

As we have seen before, a second-order filter uses up to two samples of delay.
Also, as in the case of the high-order all-pass, we will combine a feedback signal
path with a feedforward one. The expression is very similar in form:

w(t) = x(t)+a1w(t −1)−a2w(t −2)
y(t) = w(t)−b1w(t −1)+b2w(t −2)

(13.22)

where a1 and a2 are the gains associated with the feedback path of the one- and two-
sample delays, and b1 and b2 are feedforward gains. Another term used for these is
filter coefficients. Equation 13.22 is called a filter equation.

To make the filter all-pass, we have to balance these gain values to make the
feedforward section cancel out the feedback one. For instance, we set b2 as the
reciprocal (inverse) of a2. The a1 and b1 coefficients will be used to tune the filter to
a certain frequency. We can set all of these according to two common parameters:
bandwidth and centre frequency. The former will determine how wide the phase
shift region is, and the latter determines its centre. For bandwidth B and frequency
fc, the four coefficients of the all-pass filter will be

R = exp
(−πB

sr

)

a1 = 2Rcos
(

2π fc

sr

)
a2 = R2

b1 =
R
2

cos
(

2π fc

sr

)

b2 =
1
a2

(13.23)

A plot of the phase response of this filter is shown in Fig. 13.12, using bandwidth
B = 500 Hz and centre frequency fc = 5,000 Hz. It is possible to see that at the
centre frequency the phase is shifted by π radians, or half a cycle.

We can implement this filter as a UDO using the expressions in eqs.13.22
and 13.23. The opcode will take the centre frequency and bandwidth as control-rate

282 13 Time-Domain Processing

1000 2000 3000 4000 5000 6000 7000 8000 9000

freq (Hz)

−π

0

π

p
h
a
s
e

Fig. 13.12 second-order all-pass filter phase response, with bandwidth B = 500 Hz and centre
frequency fc = 5,000 Hz

arguments. The processing has to be done on a sample-by-sample basis because of
the minimum one-sample delay requirement.

Listing 13.13 2nd-order all-pass filter UDO with variable centre frequency and bandwidth

/***
asig AP ain,kfr,kbw
ain - input signal
kfr - centre frequency
kbw - bandwitdth

***/
opcode AP,a,akk
setksmps 1
asig,kfr,kbw xin
ad[] init 2
kR = exp(-$M_PI*kbw/sr)
kw = 2*cos(kfr*2*$M_PI/sr)
kR2 = kR*kR
aw = asig + kR*kw*ad[0] - kR2*ad[1]
ay = aw - (kw/kR)*ad[0] + (1/kR2)*ad[1]
ad[1] = ad[0]
ad[0] = aw
xout ay
endop

With this all-pass filter we can build a phase shifter. The idea is to combine
the output of the filter with the original signal so that phase differences will create
a dip in the spectrum, then modulate the centre frequency to produce a sweeping
effect. One second-order all-pass can create a single band-rejecting region. For fur-
ther ones, we can use more all-pass filters in series, tuning each one to a different
frequency. In the design here, we will use three filters, so creating a sixth-order all-
pass, with three dips in the spectrum. We will space the filters so that the second

13.4 Filters 283

and third filters are centred at twice and four times the first frequency. When we
combine these and the original signal, the overall effect is not all-pass anymore. In
Fig. 13.13, we see a plot of the resulting phase and amplitude responses of the phase
shifter, with frequencies centred at 1,000, 2,000 and 4,000 Hz, and bandwidths of
100, 200 and 400 Hz, respectively.

1000 2000 3000 4000 5000 6000 7000 8000 9000

freq (Hz)

−π

0

π

p
h
a
s
e

1000 2000 3000 4000 5000 6000 7000 8000 9000

freq (Hz)

0

−12

−24

a
m

p

Fig. 13.13 sixth-order phase shifter phase (top) and amplitude (bottom) response, with frequencies
centred at 1,000, 2,000 and 4,000 Hz, and bandwidths of 100, 200 and 400 Hz, respectively

A UDO implementing these ideas is shown in listing 13.14. It uses an LFO to
modulate the filter centre frequencies, whose range is set between a minimum and
a maximum (pegged at 0 and sr/2, respectively). By changing these, it is possible
to control modulation depth. The phaser also features a Q control that makes the
bandwidths relative to the centre frequencies.

Listing 13.14 Sixth-order phase shifter with LFO modulation, and user-defined frequency ranges
and Q

/***
asig Phaser ain,kfr,kmin,kmax,kQ
ain - input signal
kfr - LFO frequency
kmin - minimum centre frequency
kmax - maximum centre frequency
kQ - filter Q (cf/bw)

***/
opcode Phaser,a,akkkk
as,kfr,kmin,kmax,kQ xin
km = kmin < kmax ? kmin : kmax

284 13 Time-Domain Processing

kmx = kmax > kmin ? kmax : kmin
km = km > 0 ? km : 0
kmx = kmx < sr/2 ? kmx : sr/2
kwdth = kmax/4 - km
kmd oscili kwdth,kfr
kmd = km + (kmd + kwdth)/2
as1 AP as,kmd,kmd/kQ
as2 AP as1,kmd*2,kmd*2/kQ
as3 AP as2,kmd*4,kmd*4/kQ
xout as3+as
endop

A number of variations are possible, by setting a different centre frequency spac-
ing, using more all-pass filters in the cascade connection, and decoupling the band-
widths and frequencies. As with the other variable delay line algorithms discussed
earlier, considerable variation exists between different implementations offered by
effects processors.

13.4.2 Equalisation

Equalisation is another typical application of filters for sound processing. Equaliser
filters tend to be slightly different from the standard types we have seen. They are of-
ten designed to boost or cut one particular band without modifying others, whereas
an ordinary band-pass filter generally has an effect across all of the spectrum. In
Csound, a good equaliser is found in the eqfil opcodes, which is based on a well-
known design by Regalia and Mitra [106]. This filter has a characteristic response
that can be shaped to have a peak or a notch at its centre:

asig eqfil ain, kcf, kbw, kgain

Its arguments are self-explanatory: kcf is the centre frequency, kbw, the band-
width. The gain parameter kgain makes the filter boost or cut a given band of
frequencies. Its amplitude response will be flat for kgain = 1. If kgain ¿ 1, a
peak will appear at the centre frequency, with bandwitdh set by kbw. Outside this
band, the response will be flat. A notch can be created with a gain smaller than one.

Listing 13.15 shows a graphic equaliser UDO based on a number of eqfil
filters arranged in series. It uses recursion to determine the number of bands dynam-
ically. The number of these is taken from the size of a function table containing the
gain values for each band. Bands are exponentially spaced in the spectrum, between
a minimum and a maximum frequency. This will separate the filters by an equal
musical interval. A Q value is also provided as an argument.

Listing 13.15 A graphic equaliser with a user-defined number of bands. The number of gain values
in a function table determines the number of filters

/***

13.4 Filters 285

asig Equaliser ain,kmin,kmax,kQ,ifn
ain - input signal
kmin - minimum filter frequency
kmax - maximum filter frequency
kQ - filter Q (cf/bw)
ifn - function table containing the filter gains

***/
opcode Equaliser,a,akkkio
asig,kmin,kmax,

kQ,ifn,icnt xin
iend = ftlen(ifn)
if icnt < iend-1 then
asig Equaliser asig,kmin,kmax,

kQ,ifn,icnt+1
endif
print icnt
kf = kmin*(kmax/kmin)ˆ(icnt/(iend-1))
xout eqfil(asig,kf,

kf/kQ,table:k(icnt,ifn))
endop

13.4.3 FIR Filters

So far we have not discussed FIR filters in detail, as these are not as widely employed
in music synthesis and processing as IIR ones. However, there are some interesting
applications for these filters. For instance, we can use them to block out some parts
of the spectrum very effectively. In this section, we will look at how we can build
FIR filters from a given amplitude response curve. Generally speaking, these filters
need to be much longer (i.e. higher order) than feedback types to have a decisive
effect on the input sound. Another difficulty is that feedforward filters are not easily
transformed into time-varying forms, because of the way they are designed.

FIR filters can be described by the following equation:

y(t) = a0x(t)+a1x(t −1)+ ...+aN−1x(t − (N −1))

=
N−1

∑
n=0

anx(t −n)
(13.24)

where, as before, y(t) is the filter output, x(t) is the input and x(t − n) is the input
delayed by n samples. Each delay coefficient an can be considered a sample of an
impulse response that describes the filter (compare, for instance, eq. 13.24 with eq.
13.14):

286 13 Time-Domain Processing

h(n) = {a0,a1, ...,aN−1} (13.25)

So, effectively, an FIR is a delay line tapped at each sample, with the coefficients
associated with each delay point equivalent to its IR. Thus we can implement a feed-
forward filter as the convolution of an input signal with a certain specially created
IR.

Designing FIR filters can be a complex art, especially if we are looking to min-
imise the IR length, while approaching a certain amplitude and phase response [88].
However, it is possible to create filters with more generic forms by following some
simple steps. The fundamental principle behind FIR design is that we can obtain
its coefficients (or its IR) from a given amplitude response via an inverse discrete
Fourier transform (IDFT). Thus, we can draw a certain desired spectral curve, and
from this we make a frequency response, which can be transformed into an IR for
a convolution operation. The theory behind this is explored in more detail in sec-
tion 14.2.

The filter design process can be outlined as follows:

1. We create a function table with N points holding a desired amplitude curve. Po-
sition 0 will be equivalent to 0 Hz and position N to sr

2 , the Nyquist frequency.
The size should be large enough to allow for the transition between passband and
stopband1 to be as steep as we like. The width of this transition region can be as
small as sr

2N . For N = 1,024 and sr = 44,100, this is about 21.5 Hz. However,
with such small transitions, some ripples will occur at the edges of the transi-
tion, which might cause some ringing artefacts. Nevertheless, steep transitions
can still be constructed spanning a few table positions, if N is large enough. A
table implementing this can be created with GEN7, for instance. For a brickwall
(i.e. with a steep transition) low-pass curve, we would have

ifn ftgen 1,0,1024,7,1,102,1,10,0,912,0

In this case, the passband will be 10% of the spectrum, about 2,205 Hz, and the
transition will be 10 table points, or 1%.

2. We use this curve as a set of magnitudes for a 0-phase spectrum, and take its
inverse DFT. In Csound, this amounts to copying the table into an array, making
its elements complex-valued (with r2c) and taking the transform (rifft):

copyf2array iSpec,ifn
iIR[] rifft r2c(iSpec)

3. The result is an IR for our filter, but it is still not quite ready to be used. To avoid
rounding errors, we need to swap the first and second halves of it, which will not
affect the amplitude response, but will make the filter work properly.

while icnt < iflen2 do
itmp = iIR[icnt]

1 The passband is the region of the spectrum whose amplitude is not affected by the filter. The
stopband is the region whose amplitude gets reduced by the filter.

13.4 Filters 287

iIR[icnt] = iIR[icnt + iflen2]
iIR[icnt + iflen2] = itmp
icnt +=1

od

This process is illustrated by Fig. 13.14. From top to bottom, we have the original
amplitude curve, the resulting IR, and the amplitude response of the resulting filter.

0 128 256 384

index

0.0

0.5

1.0

a
m

p

0 256 512 768

samples

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 5000 10000 15000 20000

freq (Hz)

0

−12

−24

−36

−48

−60

a
m

p

Fig. 13.14 Finite impulse response design. From top to bottom: the original amplitude curve, the
resulting IR, and the amplitude response of the resulting filter

Listing 13.16 shows the complete code. It takes a signal and a function table with
a given amplitude response, calculates the IR at i-time using a dedicated UDO and
then uses it with a direct convolution opcode to produce the output sound.

Listing 13.16 A pair of FIR filter design and performance opcodes, taking an amplitude response
from an input function table

/***
irn IR ifn
irn - impulse response output function table number
ifn - amplitude response function table number

***/

288 13 Time-Domain Processing

opcode IR,i,i
ifn xin
iflen2 = ftlen(ifn)
iflen = 2*iflen2
iSpec[] init iflen2
icnt init 0
copyf2array iSpec,ifn
iIR[] rifft r2c(iSpec)
irn ftgen 0,0,iflen,7,0,iflen,0
while icnt < iflen2 do

itmp = iIR[icnt]
iIR[icnt] = iIR[icnt + iflen2]
iIR[icnt + iflen2] = itmp
icnt +=1

od
copya2ftab iIR,irn
xout irn
endop

/***
asig FIR ain,ifn
ain - input audio
ifn - amplitude response function table number

***/
opcode FIR,a,ai
asig,ifn xin
irn IR ifn
xout dconv(asig,ftlen(irn),irn)
endop

Filters such as this one can work very well to block a part of the spectrum. Figure
13.15 shows the result of putting a full-spectrum pulse waveform through the filter
designed as shown in Fig. 13.14. As can be seen from the plot, the filter is very
selective, cutting high frequencies in an effective way.

FIR filters of this kind are fixed, i.e. they cannot be made time-varying as we have
done with the more musical IIR designs. It is possible however to have more than
one filter running at the same time and cross-fade the output from one to the other.
Another aspect to note is that direct convolution can be computationally expensive.
This can be replaced with fast convolution, which will be discussed in the next
chapter.

13.4 Filters 289

a
m

p

0 5000 10000 15000

freq (Hz)

a
m

p

Fig. 13.15 The spectra of a pulse waveform (top) and output of a brickwall FIR filter designed as
shown in Fig. 13.14

13.4.4 Head-Related Transfer Functions

Another application of FIR filters is in the simulation of spatial positions through
the use of head-related transfer functions (HRTFs) [10]. These are filter frequency
responses that model the way our head and outer ears modify sounds before these are
transmitted through the middle and inner ear to the brain. With them, it is possible
to precisely place sounds on a sphere around the listener, playing the sound directly
via headphones, depending on the accuracy of the transfer functions used.

An HRTF encodes the effect of the head and pinna on the incoming sound. As
it comes from different directions, the spectrum of a sound is shaped in a particular
way, in time (delays) and amplitude. A pair of these, one for each ear, will match
every source direction on a sphere. The combination of filtering, inter-aural time de-
lays (ITDs) and inter-aural intensity differences (IIDs) that is encoded in the HRTFs
will give the listener’s brain the necessary cues to place a sound at a given location
[13].

HRTFs are obtained from head-related impulse responses (HRIRs) that are gen-
erally measured at spaced points on this sphere, via recordings using dummy heads
or real subjects with special in-ear microphones. Once the HRIRs are obtained, we
can use a convolution method to implement the filter. In some cases, IIR designs
modelled on HRTFs are used, but it is more common to apply them directly in
FIR filters. As audio is delivered directly to the two ears and localisation happens
through these functions, this process is called binaural audio.

It is very common to use generic measurements of HRIRs for binaural appli-
cations, but the quality of the localisation effect will vary from person to person,

290 13 Time-Domain Processing

according to how close the functions are to the listener’s own. It is well known
that HRTFs can be extremely individual, and ideally these should be designed or
measured for each person for an accurate effect. However, it is not easy to obtain in-
dividualised HRIRs, so most systems providing binaural audio rely on some general
set measured for an average person.

This is the case with Csound, where we find a whole suite of opcodes dedicated to
different types of HRTF processing [25]. These rely on a very common set measured
at MIT, which has also been used in other systems. Here, however there are some
clever algorithms that allow for smooth movement of sound sources in space, which
are not found elsewhere, as well as high-quality binaural reverb effects.

The HRTF opcodes in Csound are

hrtfmove and hrtfmove2: unit generators designed to move sound sources
smoothly in 3D binaural space, based on two different algorithms.
hrtfstat: static 3D binaural source placement.
hrtfearly: high-fidelity early reflections for binaural reverb processing.
hrtfreverb: binaural diffuse-field reverb based on an FDN design, which can
be used in conjuction with hrtfearly, or on its own as a standalone effect.

These opcodes rely on two spectral data files, for left and right channels, which
have been constructed from the MIT HRTF database specially for these opcodes.
They are available in three different sampling rates: 44.1, 48 and 96 kHz and are
labelled accordingly in the Csound software distribution. The correct pair of files is
required to match the required sr, otherwise the opcodes will not operate correctly.

13.5 Multichannel Spatial Audio

Complementing the discussion of spatial placement of sounds, we will briefly ex-
plore two essential methods of multichannel audio composition and reproduction.
The first one of these is based on the principle of encoding the sound field in a single
description of a sound source’s directional properties. The encoded signals then re-
quire a separate decoding stage to be performed to obtain the multichannel signals.
The other method provides a generalised panning technique for multiple channels,
where the output is made up of the actual feeds for loudspeaker reproduction. Both
techniques are fully supported by Csound and allow both horizontal and vertical
placement of audio sources (2D or 3D sound).

13.5.1 Ambisonics

A classic method of audio spatialisation is provided by ambisonics. It encapsulates
many models of auditory localisation, except for pinna and specific high-frequency
ITD effects, in one single package [51]. The principle of ambisonics, first developed

13.5 Multichannel Spatial Audio 291

by Michael Gerzon for periphony (full-sphere reproduction, 3D) [46], is to encode
the sound direction on a sphere surrounding the listener, and then provide methods
of decoding for various loudspeaker arrangements.

The encoded signals are carried in a multiple channel signal set called b-format.
This set can be constructed in increasing orders of directivity [46] by the use of
more channels. Order-0 systems contain only omni directional information; order-1
encodes the signal in three axes, with two horizontal and one vertical component;
order-2 splits these into more directions; and so-on. The number of b-format chan-
nels required for a system of order n is (n+1)2. These form a hierarchy, so that we
can move from one order to the next up by adding 2n+1 channels to the set.

Encoding of signals is performed by applying the correct gains for each direction.
In the case of first-order ambisonics, for sounds on a sphere with constant distance
from the subject, we generally have

W =

√
2

2
X = cos(θ)sin(φ)
Y = sin(θ)sin(φ)
Z = cos(φ)

(13.26)

where X and Y are the horizontal, and Z is the vertical component. W is the omni di-
rectional signal. The parameters θ and φ are the angles in the horizontal and vertical
planes (azimuth and elevation), respectively. Higher orders will have more channels,
with different gain configurations, than these four. In any order, channels involving
the height component might be eliminated if 2D-only (pantophonic) reproduction is
used.

Decoding is generally more complex, as a number of physical factors, including
the spatial configuration of the loudspeakers, will play a part. In particular, non-
regularly spaced speakers, e.g. 5.1 surround sound set-ups, have to be treated with
care. Other important considerations are the need for near-field compensation, to
avoid certain low-frequency effects in reproduction, and dual-band decoding, to ac-
count for the fact that ITD and IID perception dominate different areas of the spec-
trum [51]. In other words, a straight decoding using an inversion of the encoding
process might not work well in practice.

Csound includes support for encoding into first-, second- and third-order am-
bisonics b-format, via the bformenc1 opcode. This takes a mono signal, an az-
imuth, and an elevation, and produces an output signal for the order requested. These
b-format signals can be mixed together before decoding. Some manipulations, such
as rotations, can also be performed, using the correct expressions in UDOs. The
process of using ambisonics is often one of producing an encoded mix of several
sources, which allows each one of these a separate spatial placement, as a b-format
signal, which can then be decoded for specific loudspeaker layouts.

The ambisonic decoder bformdec1 can be used to decode signals for a variety
of configurations. It takes care of finding the correct gains for each one of these, and

292 13 Time-Domain Processing

includes the important features mentioned above, dual-band decoding and near-field
compensation. It is also important to note that specialised decoders can be written
as UDOs, if any particular requirements that are not met by bformdec1 are identi-
fied. Finally, a combination of decoding and the HRTF opcodes from Section 13.4.4
can be used to provide headphone listening of ambisonic audio. In listing 13.17, we
see an example of this for horizontal-plane decoding of order-2 b-format signals.

Listing 13.17 An example of ambisonic to binaural decoding

/***
al,ar Bf2bi aw,ax,ay,az,ar,as,at,au,av
aw,ax ... = 2nd-order bformat input signal
===================================
adapted from example by Brian Carty

***/
opcode Bf2bi, aa, aaaaaaaaa
aw,ax,ay,az,ar,as,at,au,av xin
if sr == 44100 then
Shl = "hrtf-44100-left.dat"
Shr = "hrtf-44100-right.dat"
elseif sr == 48000 then
Shl = "hrtf-48000-left.dat"
Shr = "hrtf-48000-right.dat"
elseif sr == 96000 then
Shl = "hrtf-96000-left.dat"
Shr = "hrtf-96000-right.dat"
else
al, ar bformdec1 1,aw,ax,ay,az,ar,as,at,au,av
goto end
endif
a1,a2,a3,a4,a5,a6,a7,a8 bformdec1 4,

aw, ax, ay, az,
ar, as, at, au, av

al1,ar1 hrtfstat a2,22.5,0,Shl,Shr
al2,ar2 hrtfstat a1,67.5,0,Shl,Shr
al3,ar3 hrtfstat a8,112.5,0,Shl,Shr
al4,ar4 hrtfstat a7,157.5,0,Shl,Shr
al5,ar5 hrtfstat a6,202.5,0,Shl,Shr
al6,ar6 hrtfstat a5,247.5,0,Shl,Shr
al7,ar7 hrtfstat a4,292.5,0,Shl,Shr
al8,ar8 hrtfstat a3,337.5,0,Shl,Shr
al = (al1+al2+al3+al4+al5+al6+al7+al8)/8
ar = (ar1+ar2+ar3+ar4+ar5+ar6+ar7+ar8)/8
end:

xout al,ar
endop

13.6 Conclusions 293

The separation between decoding and encoding can be very useful. For instance,
composers can create the spatial design for their pieces independently of the par-
ticular details of any performance location. Different decoded versions can then be
supplied for the specific conditions of each venue.

13.5.2 Vector Base Amplitude Panning

The simple amplitude panning of sources in stereo space (two channels), as imple-
mented for instance by the pan2 opcode, is extended for multiple channel setups
by the vector base amplitude panning (VBAP) method [104]. In amplitude panning,
the gains of each channel are determined so that the intensity difference (IID) causes
the sound to be localised somewhere between the loudspeakers (the active region).
VBAP uses a vector formulation to determine these gains based on the directions
of the speakers and the intended source position. One important aspect is that, for
a given source, localised at a given point, only two (horizontal plane only) or three
(horizontal and vertical planes) loudspeaker channels will be employed at one time.
In the former case (2D), the pair around the point, and in the latter case (3D), the
triplet defining the active triangle within which the source is to be located will be
used.

In Csound, VBAP is implemented by the vbap and vbaplsinit opcodes. The
latter is used to define a loudspeaker layout containing the dimensions used (two or
three), the number of speakers, and their directional location in angles with respect
to the listener (or the centre of the circle/sphere):

vbaplsinit idim, inum, idir1, idir2[, idir3, ...]

The vbap opcode can then be used to pan a mono source sound:

ar1, ar2, [ar3,...] vbap asig,kazim[,kelev,
kspread,ilayout]

where kazim and kelev are the horizontal and vertical angles. An optional pa-
rameter kspread can be used to spread the source, causing more loudspeakers to
be active (the default 0 uses only the pair or triplet relative to the active region).
Note that loudspeaker positions can be set arbitrarily, and do not necessarily need to
conform to regular geometries.

13.6 Conclusions

In this chapter, we have explored the classic techniques of time-domain processing
in detail. We saw how the fundamental structure of the digital delay line is imple-
mented, and the various applications of fixed delays, from echoes to component
reverberators, such as comb and all-pass filters. The design of a standard reverb was

294 13 Time-Domain Processing

outlined, and the principles of feedback delay networks and convolution reverb were
examined.

The various applications of variable delays were also detailed. The common LFO
modulation-based effects such as flanger, chorus, and vibrato were presented to-
gether with their reference implementation as UDOs. The principle of the Doppler
effect and its modelling as a variable delay process was also explored. The discus-
sion of this class of effects was completed with a look at a standard delay-based
pitch-shifting algorithm.

The next section of the chapter was dedicated to the study of some aspects of
filtering. We looked at an IIR design example, the second-order all-pass filter, and
its application in the phaser effect. This was complemented with an introduction to
equalisation, where a variable-band graphic equaliser UDO was discussed. The text
concluded with the topic of FIR filters and the principles behind their design, with
the application of some tools, such as the Fourier transform, that will be explored
further in the next chapter. We also saw how these types of filters can be used to
give spatial audio through binaural processing. An overview of basic techniques for
multichannel audio completed the chapter.

Time-domain techniques make up an important set of processes for the com-
puter musician’s arsenal. They provide a great variety of means to transform sounds,
which can be applied very effectively to music composition, sound design and pro-
duction. Together with the classic synthesis methods, they are one of the fundamen-
tal elements of computer music.

Chapter 14

Spectral Processing

Abstract In this chapter, we will explore the fundamentals of the theory of frequency-
domain processing of audio. The text begins by exploring the most relevant tools
for analysis and synthesis: the Fourier transform, the Fourier series and the discrete
Fourier transform. Following this, we look at some applications in filter design and
implementation. In particular, we show how the fast partitioned convolution algo-
rithm can take advantage of the theory outlined in the earlier sections. The chapter
goes on to discuss the phase vocoder, with analysis and synthesis code examples,
and its various transformation techniques. Finally, it is completed by an overview of
sinusoidal modelling and ATS, and their implementation in Csound.

14.1 Introduction

Spectral processing of sound is based on the principle of manipulating frequency-
domain representations of signals. Here, we are looking at data that is organised
primarily as a function of frequency, rather than time, as in the case of the methods in
previous chapters. Although the primary concern here is the modification of spectral
information, we will also consider the time dimension as we process sounds with
parameters that change over time. In many places, because of this combination of
the two domains, these techniques are also called time-frequency methods.

In order to work in the frequency domain, it is necessary to employ an analysis
stage that transforms the waveform into its spectrum [8, 90, 34]. Complementary,
to play back a processed sound it is necessary to employ the reverse operation,
synthesis, which converts spectra into waveforms. This chapter will first discuss
the basic techniques for performing the analysis and synthesis stages, and the key
characteristics of the frequency-domain data that they work with. Following this,
we will introduce the application of these and the various methods of modifying
and processing spectral data.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

295
14

296 14 Spectral Processing

14.2 Tools for Spectral Analysis and Synthesis

The spectrum of audio signals can be obtained through a number of methods. The
most commonly used of these are derived from Fourier’s theory [43, 17], which
tells us that a function, such as a sound waveform, can be decomposed into sepa-
rate sinusoidal functions (waves) of different amplitudes, frequencies and phases.
Related to this fundamental principle there are a number of mathematical tools for
analysis and synthesis called transforms that are variations with specific application
characteristics.

The foundation for all of these is the original continuous-time, continuous-
frequency Fourier transform. Closely related to this, we have the continuous-time,
discrete-frequency Fourier series, which can be used to synthesise a periodic wave-
form from its spectrum. Another related variation is given by the discrete-time,
continuous-frequency z-transform, commonly used in the spectral description of fil-
ters. Finally, we have the discrete-time, discrete-frequency Fourier transform (DFT),
which is widely used in spectral processing, and the basis for other algorithms, such
as the phase vocoder and sinusoidal modelling. In this section, we will outline the
principles and characteristics of the relevant spectral analysis and synthesis tools.

14.2.1 Fourier Transform

The Fourier transform (FT) is the underlying mathematical method for all the pro-
cesses discussed in this chapter [121]. It is defined as continuous in time t, and it
covers all frequencies f , also continuously, from −∞ to ∞ [90]:

X(f) =
∫ ∞

−∞
x(t) [cos(2π f t)− j sin(2π f t)]dt (14.1)

It gives us a spectrum X(f) from a waveform x(t). It does this by multiplying
the input signal by a complex-valued sinusoid at frequency f , and then summing
together all the values of the function resulting from this product (this is indicated by
the integral symbol (

∫
), which means in this case a sum over a continuous interval,

from −∞ to ∞).
The result is a pair of spectral coefficients, telling us the amplitudes of a cosine

and a sine wave at that frequency. If there is none to be found, these will be zero. If
a component is detected, then we might have a sinusoid in cosine or sine phase, or
in between these two (this is why a complex multiplication is used, so that the exact
phase can be determined). This operation can be repeated by sliding the sinusoid to
another frequency, to obtain its coefficients.

In other words, we use a sinusoid as a detector. Once it is tuned to the same
frequency as an existing spectral component, it gives a result. If it is not tuned to it,
then the result is zero. This is the fundamental operating principle of the FT. While it
is mostly a theoretical tool, there are some practical applications, for instance when
we restrict the time variable to cover a single cycle of a periodic waveform.

14.2 Tools for Spectral Analysis and Synthesis 297

Another important consideration here is that audio signals are real-valued (a
waveform is single dimensional), and this determines the shape of the spectra we
get from the FT. This fact means each component in a waveform is detected both at
its negative and positive frequency values, with the amplitude of the sine coefficient
with opposite signs on each side (the cosine coefficient is the same). This allows us
to be able to construct the negative side (f < 0) from the positive one, thus in most
cases we only need to work with non-negative frequencies.

Finally, the form of spectral data in amplitudes of cosines and sines is sometimes
unwieldy to manipulate. We can convert these into the actual sinusoid amplitudes
and phases with the simple relations

A =
√

c2 + s2 and Ph = arctan
(s

c

)
(14.2)

where A and Ph are the amplitude and phase, respectively, of the detected sinusoid,
and c and s are its cosine and sine amplitudes. The collection of all detected ampli-
tudes is often called the magnitude spectrum. The phases are similarly named. Note
that the expressions in eq. 14.2 mean that an audio waveform will have a magnitude
spectrum that is symmetric at 0, and a phase spectrum that is anti-symmetric. Again,
this allows us to effectively ignore its negative-frequency side.

14.2.2 Fourier Series

The FT has an equivalent inverse transform, also time- and frequency-continuous,
that makes a waveform from a given spectrum [121]. This has a form that is very
similar to eq. 14.1, but with X(f) as input and x(t) as output. If, however, we con-
strain our spectrum to be discrete, then we have a variation that is a sum of (an
infinite number of) sinusoids at frequencies k = {−∞, ...,−2,−1,0,1,2, ...,∞}:

x(t) =
1

2π

∞

∑
k=−∞

X(k) [cos(2πkt)+ j sin(2πkt)] (14.3)

This is called the Fourier series (FS), where the continuous frequency f is re-
stricted to a series of integers k. Here, the sinusoids are complex-valued, but the
result is restricted to be real-valued (it is an audio waveform), and thus it can be
simplified to a real-valued expression using only the non-negative coefficients:

x(t) =
1
π

[
a0

2
+

∞

∑
k=1

ak cos(2πkt)−bk sin(2πkt)

]

=
1
π

[
a0

2
+

∞

∑
k=1

Ak cos(2πkt +Phk)

] (14.4)

298 14 Spectral Processing

where ak and bk are the sine and cosine amplitudes of each frequency component f ,
and in the second form, Ak and Phk are the magnitudes and phases. A key charac-
teristic of the FS is that its output is periodic, repeating every time t increases by 1.
So eq. 14.4 describes a single cycle of a waveform with a possibly infinite number
of harmonics. Its parameters can be determined by analysis, from an existing wave-
form, using the FT limited to the interval of a single cycle. A simplified version
of the Fourier transform is used, for instance, in GEN 10 (eq. 12.2), whereas more
complete versions are implemented in GEN 9 and GEN 19.

14.2.3 Discrete Fourier Transform

Both the FT and the FS are defined in continuous time, so for digital audio ap-
plications, which are discrete in time, they will remain somewhat theoretical. The
continuous-frequency, discrete-time, variation, called the z-transform, is used in the
study of digital filters, to determine their frequency response [97]. Although related,
its applications are beyond the scope of this chapter.

The next step is to consider a transform that is discrete in time and frequency.
This is called the discrete Fourier transform [65, 55, 56] and can be expressed by
the following expression:

X(k) =
1
N

N−1

∑
t=0

x(t) [cos(2πkt/N)− j sin(2πkt/N)] k = 0,1, ...,N −1 (14.5)

Comparing it with eq. 14.1, we can see that here both time and frequency are
limited to N discrete steps. Sampling in time makes our frequency content limited
to sr

2 . Given that the frequency spectrum is both negative and positive, the DFT will
produce N values covering the full range of frequencies, − sr

2 to sr
2 .

The first N
2 samples will correspond to frequencies from 0 to the Nyquist. The

N
2 point refers both to sr

2 and to − sr
2 . The second half of the DFT result will then

consist of the negative frequencies continuing up to 0 Hz (but excluding this point).
In Fig. 14.1, we see a waveform and its corresponding magnitude spectrum, with the
full positive and negative spectrum. As indicated in Section 14.2.1, we can ignore
the negative side, and there will be N

2 + 1 pairs of spectral coefficients. They will
correspond to equally spaced frequencies between 0 and sr

2 (inclusive).
We can think of each one of these frequency points as a band, channel, or bin.

Here, instead of a sliding sinusoid, we have a stepping one, as a component de-
tector. Another way to see this is that we are analysing one period of a waveform
whose harmonics are multiples of sr

N Hz, the fundamental analysis frequency. If the
input signal is perfectly periodic within N

sr secs, then the analysis will capture these
harmonics perfectly (Fig. 14.1).

If we try to analyse a signal that does not have such characteristics, the analysis
will be smeared, i.e. the component detection will be spread out through the various

14.2 Tools for Spectral Analysis and Synthesis 299

0 64 128 192

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 50 100 150 200 250

frequency (samples)

0.00

0.05

0.10

0.15

0.20

0.25

a
m

p

Fig. 14.1 A waveform with three harmonics (top) and its magnitude spectrum (bottom). The wave
period is an integer multiple of the DFT size (N=256), giving a perfect analysis. Note that the full
spectrum shows that the components appear in the positive and negative sides of the spectrum. The
first half of the plot refers to positive frequencies (0 to sr

2), and the second, to negative ones (from
− sr

2 to 0 Hz)

frequency points (or bins), as shown in Fig. 14.2. This is because the DFT will
always represent the segment analysed as if it were periodic. That is, the input will
always be modelled as made of components whose frequencies are integer multiples
of the fundamental analysis frequency.

This means that if we apply the inverse DFT, we will always recover the signal
correctly:

x(t) =
N−1

∑
k=0

X(k) [cos(2πkt/N)+ j sin(2πkt/N)] t = 0,1, ...,N −1 (14.6)

Comparing eq. 14.6 with the FS in eq. 14.4, we can see that they are very similar.
The IDFT can be likened to a bandlimited, complex-valued, version of the FS.

Windows

The smearing problem is an issue that affects the clarity of the analysis data. By
looking at the cases where it occurs, we see that it is related to discontinuities cre-
ated at the edges of the waveform segment sent to the DFT. This is because to do the
analysis we are effectively just extracting the samples from a signal [49]. The pro-
cess is called windowing [66], which is the application of an envelope to the signal.

300 14 Spectral Processing

0 64 128 192

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 50 100 150 200 250

frequency (samples)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

a
m

p

Fig. 14.2 A three-component waveform (top) and its magnitude spectrum (bottom). The wave
period is not an integer multiple of the DFT size (N=256), resulting in a smeared analysis. The
spectral peaks are located at the component frequencies, but there is a considerable spread over all
frequency points

In this case, the window shape used is equivalent to a rectangular shape (i.e. zero
everywhere, except for the waveform segment, where it is one).

0 64 128 192

time (samples)

0.0

0.5

1.0

a
m

p

Fig. 14.3 A Hanning window, which is an inverted cosine, raised and scaled to fit in the range of
0 to 1

There are many different types of window shapes that allow us to minimise the
smear problem. These will tend to smooth the edges of the analysed segment, so
that they are very close to zero. A common type of window used in DFT analysis is
the Hanning window. This shape is created by an inverted cosine wave, that is offset
and scaled to range between 0 and 1, as seen in Fig. 14.3. Its application to an input

14.2 Tools for Spectral Analysis and Synthesis 301

waveform is shown in Fig. 14.4, reducing the amount of smearing by concentrating
the magnitude spectrum around the frequency of its three components.

0 64 128 192

time (samples)

−1.0

−0.5

0.0

0.5

1.0

a
m

p

0 50 100 150 200 250

frequency (samples)

0.00

0.05

0.10

0.15

0.20

0.25

a
m

p

Fig. 14.4 A waveform windowed with a Hanning shape, and its resulting spectrum with a reduced
amount of smearing

The fast Fourier transform

The DFT as defined by eqs. 14.5 and 14.6 can be quite heavy to compute with
large window (segment) sizes. However, there are fast algorithms to calculate it,
which exploit some properties of these expressions. These are called the fast Fourier
transform (FFT), and they produce outputs that are equivalent to the original DFT
equations. The classic FFT algorithm works with specific window lengths that are
set to power-of-two sizes.

In addition, with audio signals, it is common to use transforms that are optimised
for real-valued inputs. In Csound, these are represented by the following opcodes
for forward (wave to spectrum) and inverse real-signal DFTs:

xSpec[] rfft xWave[]
xWave[] rifft xSpec[]

These both work with i-time and k-rate arrays. The xSpec[] will consist of N
pairs of numbers containing the cosine and sine amplitudes for one for each non-
negative point, except for 0 Hz and sr

2 , which are amplitude-only (0 phase), and are
packed together in array positions 0 and 1.

The full (negative and positive) spectrum DFTs are implemented by

302 14 Spectral Processing

xSpec[] fft xWave[]
xWave[] fftinv xSpec[]

With these, both the inputs and outputs are expected to be complex.

Applications

An application of the DFT has already been shown in Section 13.4.3, where the
inverse transform was employed to generate the FIR filter coefficients for an am-
plitude response designed in the spectral domain. In listing 13.16, we employed the
rifft opcode to do a real-valued inverse discrete Fourier transform, and were able
to get the IR that defined the desired filter amplitude response.

This use of the transform is enabled by the fundamental idea that a filter fre-
quency response is the spectrum of its impulse response (Fig. 14.5). So it is also
possible to a look at the amplitude curve of a filter by taking the DFT of its impulse
response and converting it into a magnitude spectrum. We can do likewise with the
phases, and see how it affects the different frequencies across the spectrum. This
makes the DFT a very useful tool in the design and analysis of filters.

impulse
response

� DFT �

� IDFT �

frequency
response

Fig. 14.5 The relationship between impulse response and frequency response of a digital filter

The DFT can also be used to determine the harmonic amplitudes and phases of
any periodic waveforms. This allows us to be able to reproduce these by applying
the Fourier series, or indeed the IDFT, to generate wavetables for oscillators. More
generally, if we use a sequence of DFTs, we will be able to determine time-varying
spectral parameters. For instance, a sequence of magnitude spectra taken at regular
intervals yields a time-frequency representation called a spectrogram. In Fig. 14.6,
we see a 2D plot of a sequence of magnitudes over time, where the darker lines
indicate the spectral peaks. Another way to show a spectrogram is through a 3D
graph called a waterfall plot (Fig. 14.7), where the three dimensions of frequency,
time and amplitude are placed in separate axes.

14.3 Fast Convolution

Another direct application of the DFT that is related to filters is fast convolution
[65, 90]. As we have seen in Chapter 13, direct calculation of convolution using

14.3 Fast Convolution 303

0.0 0.2 0.4 0.6 0.8 1.0

time (secs)

2.5

5

fr
e
q
u
e
n
c
y
 (

k
H

z
)

Fig. 14.6 The spectrogram of a C4 viola sound. The dark lines indicate the harmonic partials
detected by the analysis

frequency

0

2500

5000

7500

10000

time

0.0116

0.0580

0.1045

0.1509

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 14.7 A 3D plot of the spectrogram of a C4 viola sound, showing the sequence of magnitude
spectra taken at regular interval.

tapped delay lines, multiplications and additions can be computationally expensive
for large IR sizes. The DFT offers a fast method, taking advantage of the following
principles:

1. The DFT of an IR corresponds to the FIR filter spectrum.
2. Time-domain convolution corresponds to frequency-domain multiplication.
3. The spectrum of an input signal can also be obtained with the DFT.

So, the operation can be implemented by analysing a signal and an IR using the
DFT, multiplying them together, and transforming back the result using the IDFT

304 14 Spectral Processing

(Fig. 14.8). Since the transforms can be implemented with fast algorithms, for large
IR sizes it is more efficient to use this method. The major difficulty to overcome is
that in order to do this, we need to have the complete input signal before we could
take its DFT. This is not practical for streaming and real-time applications, where
the signal is available only on a sample-by-sample basis. It means we need to wait
for the complete input signal to finish before we are able to hear the convolution,
which also means an unacceptable latency between input and output.

input
�

DFT
�

IR
�

DFT

�×
�
�

IDFT

�

Fig. 14.8 Fast convolution: multiplication in the frequency domain is equivalent to convolution in
the time domain

A solution is to slice the input signal to match the size of the IR, and take a
sequence of DFTs, then overlap-add the result. This works well for arbitrary input
sizes, so the operation can be performed in a streaming fashion. However, depending
on the size of the IR, audible latency will remain. We can minimise this by further
slicing both the input signal and the IR into a smaller size, applying a slightly dif-
ferent algorithm to reconstruct the output, called partitioned convolution.

In this case, we will need to balance the need for lower latency with the com-
putational load, as smaller partitions are slower to calculate. Effectively this works
as an in-between solution in that the larger the partitions, the closer we are to a full
DFT-based fast convolution, and the smaller, the closer to a direct method (which
would be equivalent to a partition size of one sample).

In Csound, the ftconv is a drop-in fast partitioned convolution replacement for
dconv, in that, similarly, it reads an IR from a function table. We can set the parti-
tion size, which will determine the amount of initial delay. This opcode can deal in
real time with much larger IRs than dconv, and it can be used to implement, for in-
stance, convolution reverbs. Another alternative which takes an IR from a soundfile
is pconvolve.

In fact, we can do much better by combining these two opcodes, ftconv and
dconv. It is possible to completely avoid the DFT latency by using direct convolu-
tion to cover the first partition, then do the rest with the fast method [45]. To make
this work, we have to split the IR into two segments: one containing the first P sam-
ples, where P is the partition size, and another segment with the remaining samples.
Once this is done, we use dconv with the first part, and ftconv with the second,
and mix the two signals.

14.3 Fast Convolution 305

This can be further enhanced by having multiple partition sizes, starting with a
small partition, whose first block is calculated with direct convolution, and growing
towards the tail of the IR, using the DFT method. An example with three partitions
is shown in Fig. 14.9, where the N-sample IR is segmented into sections with 128,
896 and N − 1,024 samples each. The first section is always calculated with di-
rect convolution (partition size = 1), followed in this case by a segment with seven
partitions of 128 samples, and the rest using 1024-sample blocks.

IR segments

partition sizes
1

128��

128

896 ��

1024

N −1024 �� ...

...

Fig. 14.9 Multiple-partition fast convolution, three partitions with sizes 1, 128, and 1,024. The
N-sample IR is segmented into three sections, with 128, 896 and N −1,024 samples each. In this
case, the first partition size is 128 and the partition growth ratio is 8

The following example in listing 14.1 implements this scheme. It takes the first
partition size ipart, a partition growth ratio irat and the total number of partition
sizes inp. Each new partition size will be irat times the previous size. The audio
signal is then processed first with direct and then with fast convolution to produce a
zero-latency output, very efficiently. The size, number and ratio of partitions can be
adjusted to obtain the best performance.

Listing 14.1 Convolution UDO using a combination of direct and fast methods, with multiple
partition sizes

/**
asig ZConv ain,ipart,irat,inp,ifn
ain - input signal
ipart - first partition size in samples
irat - partition ratio
inp - total number of partition sizes
ifn - function table number containing the IR

**/
opcode ZConv,a,aiiiio
asig,iprt,irat,inp,ifn,icnt xin
if icnt < inp-1 then
acn ZConv asig,iprt,irat,inp,ifn,icnt+1
endif
if icnt == 0 then

a1 dconv asig,iprt,ifn
elseif icnt < inp-1 then

ipt = iprt*iratˆ(icnt-1)

306 14 Spectral Processing

isiz = ipt*(irat-1)
a1 ftconv asig,ifn,ipt,ipt,isiz

else
ipt = iprt*iratˆ(icnt-1)
a1 ftconv asig,ifn,ipt,ipt

endif
xout a1 + acn
endop

14.4 The Phase Vocoder

The DFT is a single-shot analysis. If we step it over time, and take a sequence of
regular transform frames, we can start to capture aspects of time-varying spectra that
cannot be manipulated with just one window. This analysis is also called the short-
time Fourier transform (STFT). Furthermore, we will be able to compare analysis
data from successive frames to determine the time-varying frequency of each signal
component. This is the basis for a practical implementation of the phase vocoder
(PV) algorithm [42, 35].

The DFT can provide us with the magnitudes and phases of each analysis point
(bin), via the expressions in eq. 14.2. However, this does not tell us directly what the
actual frequencies of each component are, except in the trivial case where these are
exact multiples of the fundamental analysis frequency. So we need to do more work.
The key to this is to know that frequency is the time derivative of the phase. This
can be translated to differences between phases from two successive DFT analysis
frames.

The PV analysis algorithm transforms an audio signal into amplitude and fre-
quency signals, and these can be converted back into the time domain through PV
synthesis (Fig. 14.10). The analysis output consists of N

2 +1 bins (bands, where N is
the DFT size), each with an amplitude-frequency pair at each time point of the anal-
ysis. These can be spaced by one or, more commonly, several samples. The spacing
between each pair of time positions is called the analysis hopsize. PV bins will have
a constant bandwidth, equivalent to sr

N Hz. They will be centred at 0, sr
N ,2 sr

N , ..., sr
2

Hz.

audio
signal

� analysis �

� synthesis �

amplitudes
+

frequencies

Fig. 14.10 Phase vocoder analysis and synthesis, which transform audio signals into their con-
stituent amplitudes and frequencies and vice versa

14.4 The Phase Vocoder 307

The PV analysis algorithm can be outlined as follows [64]:

1. Apply a window of size N to an input signal:

kWin[] window kIn,krow*ihop

2. Take the DFT of this window, generating data for 2N + 1 points (non-negative
frequencies):

kSpec[] rfft kWin

3. Convert this data from cosine and sine amplitudes into magnitudes and phases:

kMags[] mags kSpec
kPha[] phs kSpec

4. Take the phase difference between the current and the previous analysis frame,
bin by bin:

kDelta[] = kPha - kOlph
kOlph = kPha

5. Convert these differences to Hz:

kDelta unwrap kDelta
while kk < isize/2 do

kPha[kk] = (kDelta[kk] + kk*iscal)*ifac
kk += 1

od

6. Hop the window position by N
o samples (hopsize), where o is the number of

overlapped frames, and continue from the top.

The analysis output at each time point is a frame of amplitudes and frequen-
cies for each analysis point. The 0 Hz and Nyquist frequency amplitudes are often
packed together in the first two positions of the array (as in rfft). This data format
is very easy to manipulate, as we will see in later sections. New data frames will be
produced every hopsize

sr s, which is the analysis period. In general, the hopsize should
be no larger than 1

4 of the DFT size, but it can be smaller to guarantee a better quality
of audio (1

8 is a good choice).
The full listing of a PV analysis UDO is shown in listing 14.2. This code requires

the hopsize to be an integral multiple of ksmps, to allow the shiftin opcode to
correctly copy the input samples into an array.

Listing 14.2 Phase vocoder analysis opcode

/**
kMags[],kFreqs[],kflg PVA asig,isize,ihop
kMags[] - output magnitudes
kFreqs[] - output frequencies
kflg - new frame flag (1=new frame available)
asig - input signal

308 14 Spectral Processing

isize - DFT size
ihop - hopsize

**/
opcode PVA,k[]k[]k,aii
asig,isize,ihop xin
iolaps init isize/ihop
kcnt init 0
krow init 1
kIn[] init isize
kOlph[] init isize/2 + 1
ifac = (sr/(ihop*2*$M_PI))
iscal = (2*$M_PI*ihop/isize)
kfl = 0
kIn shiftin asig
if kcnt == ihop then

kWin[] window kIn,krow*ihop
kSpec[] rfft kWin
kMags[] mags kSpec
kPha[] phs kSpec
kDelta[] = kPha - kOlph
kOlph = kPha
kk = 0
kDelta unwrap kDelta
while kk < isize/2 do
kPha[kk] = (kDelta[kk] + kk*iscal)*ifac
kk += 1
od
krow = (krow+1)%iolaps
kcnt = 0
kfl = 1

endif
xout kMags,kPha,kfl
kcnt += ksmps
endop

Analysis data can be resynthesised by applying the reverse process:

1. Convert frequencies in Hz back into phase differences:

while kk < isize/2 do
kFr[kk] = (kFr[kk] - kk*iscal)*ifac
kk += 1

od

2. Integrate (add together) the phase differences to get the current phases:

kPhs = kFr + kPhs

14.4 The Phase Vocoder 309

3. Convert this data from magnitudes and phases into cosine and sine amplitudes:

kSpec[] pol2rect kMags,kPhs

4. Take the IDFT:

kRow[] rifft kSpec

5. Window, and overlap-add the data into the output stream:

kWin[] window kRow, krow*ihop
kOut setrow kWin, krow
kOla = 0
kk = 0
until kk == iolaps do
kRow getrow kOut, kk
kOla = kOla + kRow
kk += 1
od

6. Hop the window position by N
o samples, where o is the number of overlapped

frames.

The full listing of a PV analysis UDO is shown in listing 14.3. This is designed to
work with the data generated by the PVA opcode. This code also requires the hopsize
to be an integral multiple of ksmps to allow the shiftout opcode to perform the
overlap-add operation correctly.

Listing 14.3 Phase vocoder synthesis opcode

/**
asig PVS kMags[],kFreqs[],kflg,isize,ihop
kMags[] - input magnitudes
kFreqs[] - input frequencies
kflg - new frame flag (1=process new frame)
isize - DFT size
ihop - hopsize

**/
opcode PVS,a,k[]k[]kii
kMags[],kFr[],kfl,isize,ihop xin
iolaps init isize/ihop
ifac = ihop*2*$M_PI/sr;
iscal = sr/isize
krow init 0
kOla[] init isize
kOut[][] init iolaps,isize
kPhs[] init isize/2+1
if kfl == 1 then
kk = 0
while kk < isize/2 do

310 14 Spectral Processing

kFr[kk] = (kFr[kk] - kk*iscal)*ifac
kk += 1

od
kPhs = kFr + kPhs
kSpec[] pol2rect kMags,kPhs
kRow[] rifft kSpec
kWin[] window kRow, -krow*ihop
kOut setrow kWin, krow
kOla = 0
kk = 0
until kk == iolaps do
kRow getrow kOut, kk
kOla = kOla + kRow
kk += 1
od
krow = (krow+1)%iolaps

endif
xout shiftout(kOla)/iolaps
endop

These two opcodes implement streaming PV analysis and synthesis, to which
modifications can be made on the fly. They demonstrate the process from first prin-
ciples, for didactical purposes mostly. For practical applications, users should em-
ploy the internal opcodes pvsanal and pvsynth, which are equivalent, but are
more efficient and convenient:

fsig pvsanal asig,isize,ihop,iwinsize,iwintype
asig pvsynth fsig

The input parameters to the analysis are input signal, DFT size, hop size, win-
dow size and window type. Window size can be larger than DFT size, but in most
applications it is the same. There are a variety of available window shapes, the most
commonly used being the Hanning, which is type 1. The analysis data is carried in
a spectral type (f-sig), which conveniently wraps the spectral data, its description
(DFT size etc.) and a framecount to allow other opcodes to operate correctly at the
PV analysis rate. Streaming spectral signals can then be synthesised with pvsynth.
There are no limitations as to the size of the hop with these opcodes. However, if the
hopsize is less than ksmps, analysis and resynthesis is done sample by sample using
the sliding DFT algorithm (which can be very expensive in computational terms).
The PV algorithm is also used in other Csound opcodes, such as temposcal and
mincer, which can be used for timescaling and pitch-shifting effects. The Csound
utility pvanal also implements PV analysis, producing PVOCEX-format spectral
files, which can be used with the streaming opcodes. A great variety of transforma-
tion techniques can be applied to PV data [75, 92].

14.4 The Phase Vocoder 311

Sliding phase vocoder

In the case of hopsizes that are smaller than the number of samples in a time-domain
processing block (ksmps), or if it is, is very small (≤ 10 samples), pvsanal will
switch to a special algorithm called the sliding phase vocoder [19]. This uses an it-
erative version of the DFT [18, 41], proposed originally by J. A. Moorer [94], which
uses the fact that if we use a hopsize-1 transform, there will be a lot of redundancy
between two consecutive analysis frames. The downside to this is that calculations
have to be made on a sample-by-sample basis, so the process can be quite heavy
on ordinary processors (although it is highly parallel, and has been implemented in
graphics processing units (GPUs) to take advantage of this.1

On the other hand, the sliding algorithm produces a smoother result, and as it
runs at the audio rate, it allows some processes to modulate the spectral data with an
audio signal. In listing 14.4, we have an example of this, where the input to the slid-
ing phase vocoder has its frequency modulated by an oscillator (using pvshift,
see Section 14.4.1 below), whose is locked in a 1:2.33 ratio with the pitch detected
in the input signal. Note that this code is unlikely to perform in real time (using
current CPU technology), but can be rendered to file output.

Listing 14.4 Sliding phase vocoder frequency modulation

instr 1
Sname = p5
p3 = filelen(Sname)
asig diskin Sname
kcps,kamp ptrack asig, 1024
kcps port kcps,0.01
amod oscili p4*kcps,kcps*2.33
fs1 pvsanal asig,1024,1,1024,1
fs2 pvshift fs1,amod,0
ahr pvsynth fs2
out ahr
endin
schedule(1,0,0,5,"cornetto.wav")

14.4.1 Frequency Effects

The phase vocoder allows frequencies to be manipulated in a variety of ways. For
instance, we can scale it by a certain amount, which will result in pitch shifting. In
this case, all frequencies in a PV analysis frame get multiplied by a scalar value.
This is implemented by the pvscale opcode, which works with f-sigs:

1 Csound opcodes are available for this, but they require specialist hardware in the form of specific
GPU cards [69].

312 14 Spectral Processing

fsig pvsanal fsigin,kscale

where kscale is the scaling value (pitch shift interval ratio), > 1 for upwards, and
< 1 for downwards transposition. This process is based on multiplying the frequency
data and then moving it to the correct bin, if necessary, as the scaling operation might
place the new frequencies beyond their original bin bandwidth. For wider scaling
with large transposition ratios, reducing the hopsize will improve the quality of the
effect. The pvscale process is alias-free: upwards transpositions do not introduce
frequencies beyond the Nyquist.

An alternative to pvscale is given by both the mincer and temposcal op-
codes. These opcodes read audio data from a function table and can pitch scale it,
producing an audio signal at the output. They employ a variant of the PV algorithm
that includes phase locking, which can reduce some of the artefacts that may appear
as a result of the process. Both opcodes transpose pitch using a different method to
pvscale, by resampling in the time domain prior to the PV analysis and synthesis.
Because of this, some care needs to be taken to avoid aliasing in upwards shift by
employing a filter (such as an FIR designed as per Section 13.4.3), if necessary.
These opcodes will be discussed in more detail in Section 14.4.5.

Another interesting PV effect is frequency shifting, which instead of scaling the
data, offsets it by a given amount. This causes the spectrum to either stretch or
compress, depending on the sign of the shift parameter. For instance, if we shift the
frequencies by 150 Hz, and the input signal has a harmonic spectrum with a 440 Hz
fundamental, the output partial frequencies will be 590, 1030, 1470,..., which make
up an inharmonic spectrum. Frequency shifting is implemented by

fsig pvshift fsigin, kshift, klowest

where kshift is the frequency offset, and klowest is the lowest frequency af-
fected by the process.

14.4.2 Formant Extraction

Pitch shifting of vocal sounds can suffer from a spectral distortion effect because all
the amplitudes also get shifted along with the frequencies. This is true of all forms
of the effect, regardless of how they are implemented. In order to fix this, we need
to correct the amplitudes so that they are not distorted. This is done by extracting
the formants of the input sound. Formants are regions of resonance in the spectrum.
In the case of the voice, each different vowel sound will have characteristic for-
mants, which are more or less fixed and do not change with fundamental frequency.
When pitch shifting, these are also transposed, causing a noticeable distortion in the
spectrum (the ‘Donald Duck’ effect). We call the overall contour of the amplitude
spectrum the spectral envelope. Formants are ‘bumps’ or ‘mountains’ in the spec-
tral envelope, each one with a specific centre frequency and bandwidth. The channel
vocoder discussed in Section 12.2 depends on the presence of clear formant regions
for its effect clarity.

14.4 The Phase Vocoder 313

Both pvscale and pvshift have optional working modes where formants are
extracted and reapplied to the transposed sound, correcting the distortion caused by
the frequency changes. These are particularly important if we want to create realistic
harmonisation or pitch correction effects:

fsig pvsanal fsigin,kscale,ikeepform
fsig pvshift fsigin, kshift, klowest,ikeepform

There are three options for ikeepform: 0 for no effect, 1 selects plain cepstrum
processing and 2 uses the true envelope method. Mode 1 is the least computation-
ally expensive and generally performs well. Listing 14.5 shows a harmoniser using
pvscale and formant correction. Note how we need to use a delay line to time
align the direct and PV signals, as the PV imposes a small latency of N+h samples,
where N is the DFT size and h the hopsize.

Listing 14.5 Harmoniser example, with formant correction

instr 1
isiz = 2048
Sf = "cornetto.wav"
p3 = filelen(Sf)
asig diskin2 Sf,1
fs1 pvsanal asig,isiz,isiz/8,isiz,1
fs2 pvscale fs1,p4,1
ahr pvsynth fs2
adi delay asig,isiz*1.125/sr

out ahr*p6+adi*p5
endin
schedule(1,0,1,1.25,0.75,0.75)
schedule(1,0,1,.75,0,0.75)

The cepstrum is another important tool in frequency-domain processing. It is
defined as the DFT of the log magnitude spectrum. It detects the undulations in
the amplitudes of a DFT frame, where the wider ones will correspond to low-index
cepstral coefficients and the narrower ones to high-index ones. If we think of the
magnitude spectrum as a waveform, then we can visualise how this is the case: long
fluctuations appear in the low part of the spectrum, short ones are to do with high
frequencies.

Formants are detected by removing the narrow undulations in the amplitude spec-
trum, and keeping the wider ones that define resonance regions. With the cepstrum
we can do this by liftering (removing) the high-order coefficients, then taking the
inverse cepstrum to recover the spectral envelope with the formant regions. A plot
demonstrating this result is shown in Fig. 14.11, where we can see a formant curve
that has been obtained from an underlying spectrum using the cepstrum method.
Once we have this, we can apply it to shape the amplitudes of the transposed signal.

The spectral envelope can also be manipulated independently of the frequencies,
in case we want to deliberately distort it to change the character of an input sound.
The pvswarp opcode is designed to do this:

314 14 Spectral Processing

0 1000 2000 3000 4000 5000

frequency (Hz)

−60

−50

−40

−30

−20

−10

0

a
m

p

Fig. 14.11 The spectral envelope (thick line), obtained using the cepstrum method, and its under-
lying amplitude spectrum

fsig pvswarp fsigin, kscal, kshift

where kscal scales the spectral envelope, stretching (> 1) or compressing it (< 1),
and kshift shifts it linearly by a certain offset (positive or negative).

14.4.3 Spectral Filters

It is possible to manipulate the amplitudes in the PV stream fairly freely. This allows
us to construct time-varying filters, which will shape the spectrum in some way.
There are a number of opcodes in Csound that allow f-sigs to be filtered. The first
of these is a pair of band-pass and band-reject filters:

fsig pvsbandp fsigin, xlowcut, xlowfull,
xhighfull, xhighcut[,ktype]

fsig pvsbandr fsigin, xlowcut, xlowfull,
xhighfull, xhighcut[,ktype]

These filters pass or reject a certain trapezoid-shaped band in the spectrum, de-
fined by xlowcut, xlowfull, xhighfull and xhighcut. The first two pa-
rameters determine the lower transition, and the other two, the higher transition
bands, in Hz. These parameters are normally k-rate, but can work at audio rate if
hopsize 1 is used. The optional ktype parameter can be used to determine the
shape of the transition curve (defaults to linear). More generally, we can draw any
shape on a function table and use it as the amplitude curve of a filter that is applied
with

fsig pvsmaska fsrc, ifn, kdepth

Here, the function table ifn should have at least N
2 +1 points (one for each bin),

with an arbitrary shape that will be used to filter fsrc. The amount of filtering ca
be controlled dynamically with kdepth.

14.4 The Phase Vocoder 315

We can also use an arbitrary PV stream to filter another. This is very similar to
the previous case, but now we are using an fsig as the (time-varying) amplitude
curve for the filter. This is a generalisation of the idea of filtering, and the result is
an emphasis on the common spectral elements between the two PV streams used
(input and filter):

fsig pvsfilter fsigin, fsigfil, kdepth[, igain]

where fsigfil is the ‘filter’ used. For instance, a sine wave would work as a very
narrow band-pass filter. Other, arbitrary, time-varying signals will have a variety of
effects, making this process a rich field for continuous experimentation.

Another type of filtering that is possible to do with the phase vocoder is sten-
cilling. This is done by comparing one signal to a mask, bin-per-bin, and changing
its amplitude if it falls below that of the mask:

fsig pvstencil fsigin, kgain, klevel, ifn

The mask is provided by the function table ifn, with at least N
2 points. If the

amplitude of a bin falls below the mask multiplied by klevel, then it is scaled
by kgain. For noise reduction applications, a noise print function table can be
created with GEN43. This reads PV data from a file and creates a single frame of
amplitudes containing their average over the duration of the sound. However, the
mask function table can be created with any arbitrary means for different types of
amplitude transformation. The kgain parameter can also be set to > 1 for reverse-
masking effects.

14.4.4 Cross-synthesis and Morphing

The discussion of filtering in the previous section touched on an important point for
PV processing: the possibility of combining the characteristics of two spectra. This
is generally called cross-synthesis, and there are a number of ways in which it can
be achieved (including some of the filtering operations above). The first one of these
is a straight combination of amplitudes from one PV stream with the frequencies of
another:

fsig pvscross fsrc, fdest, kamp1, kamp2

In this case, depending on the values for kamp1 and kamp2, the output signal
will have the frequencies of fsrc and a mix of the amplitudes of fsrc and fdest.
If kamp2 = 0, no cross-synthesis will take place, and if kamp1 = 0, then only the
fdest amplitudes will be used (provided that kamp2 is not zero).

A similar operation is provided by pvsvoc, but instead of the raw bin ampli-
tudes, we apply the spectral envelope of one stream to the frequencies of another.
The difference between the two can be appreciated in Fig. 14.11.

fsig pvsvoc famp, fexc, kdepth, kgain

316 14 Spectral Processing

Here, with kdepth = 1, the spectral envelope of famp will be combined with
the frequencies of fexc. With lower kdepth values, less of the fexc signal is
used. This opcode can produce results that are similar to the channel vocoder, but
with a different character.

Finally, the pvsmorph opcode implements spectral interpolation of amplitudes
and frequencies. Two signals are combined depending on the value of the interpola-
tion parameters:

fsig pvsmorph fsig1, fsig2, kampint, kfrqint

The kampint and kfrqint arguments control linear amplitude and frequency
interpolation, where 0 corresponds to fsig1 and 1 to fsig2. In between these
two values, it is possible to morph the two spectra. The seamlessness of the inter-
polation will depend on the similarity of the two inputs. If they have spectra whose
components are not in overlapping regions, the effect of changing the interpolation
parameters over time might sound more like a cross-fade. If, however, they have
good correspondences in terms of their partials, the effect can be quite striking. A
simple UDO demonstrating this application is shown in listing 14.6, where the spec-
tra of two signals can be interpolated independently in amplitude and frequency.

Listing 14.6 Morphing UDO

/**
asig Morph ain1,ain2,kaint,kfint
ain1 - input signal 1
ain2 - input signal 2
kaint - amplitude interpolation (0 < kaint < 1)
kaint - frequency interpolation (0 < kfint < 1)

**/
opcode Morph,a,aakk
as1,as2,ka,kf xin
isiz = 2048
ihop = isiz/8
fs1 pvsanal as1,isiz,ihop,isiz,1
fs2 pvsanal as2,isiz,ihop,isiz,1
fsm pvsmorph fs1,fs2,ka,kf
xout pvsynth(fsm)
endop

14.4.5 Timescaling

Timescaling is the effect of changing the duration of an audio signal without af-
fecting its frequencies. As we know from the previous chapters, by reading a sound
from a function table or a delay line at a speed that is different than the one we
originally used to write the data we can change its pitch. With the phase vocoder,

14.4 The Phase Vocoder 317

we have already seen that the pitch of the signal can be manipulated independently.
It turns out that its duration can also be changed.

Pure timescaling is an inherently non-real-time operation. Although we can play
back sounds and modify their durations on the fly, we need to have these stored
somewhere previously (as we cannot predict the future or have infinite memory for
past events). It is possible to record audio into a memory buffer, and then play it
back at a different rate, but eventually we will either run out of input signal (if we
compress the durations) or run out of memory (if we stretch them).

The PV process can stretch or compress audio data by playing it back at a dif-
ferent rate than it was written. Since what it uses is a series of amplitude-frequency
frames, when the data is synthesised, it will not have its frequencies altered (unless
we do so explicitly). Time and frequency are bundled together in a waveform. If we
change one, we also modify the other. In the spectral domain, however, we can break
the ties that link them together. A PV frame is a full description of a segment of a
waveform. The playback rate of PV frames does not change this fact, and so, in gen-
eral, a sound can have its duration modified without affecting its frequencies (within
certain bounds, as some audible artefacts might appear in extreme stretching).

Timescaling is done by reading through a sequence of audio frames at different
rates. This can mean repeating, or interpolating between, frames for stretching, and
skipping frames for compression. The two function-table-reading opcodes mincer
and temposcal both implement this process internally, doing a full analysis-
synthesis cycle to produce a timescaled (and independently pitch-transposed) out-
put. They implement a technique called phase locking that can reduce the artefacts
found in extreme time stretching:

asig mincer atimpt, kamp, kpitch, ktab,
klock[,ifftsize,idecim]

This opcode takes an audio-rate time position in secs (atimpnt) and plays the
audio from function table ktab at that point. To make the sound play back at the
original rate, we need to increment the time position linearly without scaling it. It
is possible to go backwards and to scratch back and forth, or to freeze the sound at
given points. There is total time flexibility with this opcode, and the pitch can be
transposed independently. The parameter klock switches phase locking on or off,
and we can control the DFT and hop size by changing the default parameters (2048
and 256, respectively):

asig temposcal ktimescal, kamp, kpitch, ktab,
klock [,ifftsize, idecim, ithresh]

The temposcal opcode is a variation, which plays back the audio according
to a timescaling parameter, 1 for no change, below 1 for stretching and above 1
for compression (like a speed control). In addition, it attempts to find attack tran-
sients in the audio so that these are not stretched (the time stretching is momentarily
suppressed). This allows a better result in scaling the tempo of recordings, so that
hits and note onsets are not smeared (Fig. 14.12). This is done by comparing the
power of the audio in subsequent frames, looking for abrupt changes that might

318 14 Spectral Processing

indicate attacks. The optional ithresh parameter can be used to change the de-
tection threshold (1 dB).

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Fig. 14.12 A xylophone strike (top) and two time-stretched versions (10 x original duration). The
middle one shows a clear smearing of the note onset, whereas the bottom one preserves the onset
(produced by temposcal)

It is also possible to timescale streaming PV signals. We can do this by either
reading from a table or a file, or by writing and reading from a memory buffer. In
the first case, the opcode pvstanal is a variant on temposcal that produces
fsigs as output. It has similar parameters and behaviour, with the exception that it
does not perform phase locking, as this is not available for PV streams.

Phase vocoder data files can be generated with the utility pvsanal. This can
be accessed via a dedicated menu option in some frontends (e.g. CsoundQt), and is
available through the -U pvsanal command option:

csound -U pvsanal <input> <output.pvx> <options>

where <input> is the name of an input file in any of the formats accepted by
Csound, and <output.pvx> is a file containing the PV data, which uses the special
PVOCEX format. This is the PV file format used throughout Csound. A number
of optional parameters (<options>) can be used to control the analysis. Details on

14.4 The Phase Vocoder 319

these can be found in the Reference Manual. Such PV analysis files can be read
using the opcodes

fsig pvsfread ktimpt, Sname [, ichan]
fsig pvsdiskin Sname,ktscal,kgain[,ioffset, ichan]

The difference between them is that the first one loads the whole file into memory
and reads from there. The second one reads directly from the disk. Their parame-
ters are also slightly different, with pvsfread using a time position to read from
the file (ktimpt), and pvsdiskin using a timescaling factor (ktscal). In both
opcodes, Sname is a string containing the name of the PVOCEX analysis file. They
will output a PV stream that can be used with other opcodes, and synthesised with
pvsynth. These opcodes use interpolation for timescaling, so the resulting out-
put is somewhat different from mincer and temposcal. In addition, there is
no phase locking of PV streams, so artefacts might result in very long stretching.
However, these can also be explored creatively in the design of new sounds.

Finally, there are a pair of opcodes that set up a memory buffer write/read scheme
for PV streams. These are

ihandle, ktime pvsbuffer fsig, ilen
fsig pvsbufread ktime, khandle

The first opcode sets up a circular buffer ilen seconds long and writes fsig to
it. Its outputs are a reference to the circular buffer (ihandle) and the current write
time position into the buffer. The reading opcode reads from the buffer referred to
by khandle, at ktime, producing fsig. Note that its time position is completely
independent from the write time, and that it can be decremented (for backwards
playback). Any number of readers can refer to one single circular buffer (single
writer, many readers). The writing ktime can be used as an indicator of the current
time for the readers.

It is important to point out that as the buffer memory is finite, time compressing
will eventually make the reader go beyond the range of the buffer, and also overtake
the writing position. Time stretching can cause the writing to overtake the reading
position. In both cases, the results will depend on the input sound. In any case,
reading wraps around the ends of the buffer, in both directions. These opcodes can
be used for a range of different real-time PV stream time manipulations.

14.4.6 Spectral Delays

The pvsbuffer opcode can also be thought of as a spectral delay line, with any
number of taps implemented by pvsbufread. In addition, the reading can be done
in specific frequency bands, so different delay times can be set for different areas
of the spectrum. This is enabled by two optional arguments, ilo and ihi, which
define the frequency band to be read:

fsig pvsbufread ktime, khandle[, ilo, ihi]

320 14 Spectral Processing

This characteristic is further enhanced by pvsbufread2, which allows the user
to set a per-bin delay time for amplitudes and frequencies, independently. Thus with
a single opcode, multiple delay times can be achieved for different spectral bands,
down to a bin bandwidth resolution:

fsig pvsbufread2 ktime, khandle, ift1, ift2

The function tables ift1 and ift2 contain the delay times in seconds for each
one of the bins, for amplitude and frequency, respectively. They should be at least
N
2 +1 positions long. These opcodes can be used to create many effects where delays
are attached to different areas of the spectrum, de-synchronising the PV stream.
Listing 14.7 shows the effect applied to the viola sound of Fig. 14.6. Its spectrogram
is shown in Fig. 14.13. Note how the function table is used to delay frequencies in
ascending order from bin 0 to 128 (5,512.5 Hz).

Listing 14.7 Spectral delay example

ifn ftgen 1,0,514,7,0,128,1,256,1,128,1
instr 1
Sf = "violac3.wav"
p3 = filelen(Sf)
a1 diskin2 Sf,1
fs1 pvsanal a1,1024,128,1024,1
ih,kt pvsbuffer fs1, 2
fs2 pvsbufread2 kt,ih,1,1
a2 pvsynth fs2

out a2
endin
schedule(1,0,1)

0.0 0.2 0.4 0.6 0.8 1.0

time (secs)

2.5

5

fr
e
q
u
e
n
c
y
 (

k
H

z
)

Fig. 14.13 The C4 viola sound (Fig. 14.6) played through a spectral delay with delay times that
increase with frequency. It is possible to see how it makes the harmonics arpeggiate as their onset
is spread out in time

14.5 Sinusoidal Modelling 321

14.4.7 Miscellaneous Effects

A number of non-standard frequency data manipulation effects can be applied to PV
streams:

• Spectral arpeggios: the pvsarp opcode transforms the amplitudes of an input
PV stream by boosting one bin and attenuating all the others around it. It can be
used with an LFO to create partial arpeggiation effects.

• Blurring: a PV stream can be blurred by averaging out its amplitude and fre-
quency over time using pvsblur.

• Demixing: pvsdemix takes a stereo signal and attempts to extract mixed
sources by searching positions using a reverse pan pot.

• Freezing: it is possible to freeze an input signal at a given point using pvsfreeze.
• Mixing: the pvsmix opcode can be used to do an ultra-seamless mix by com-

bining the loudest bins from two different inputs.
• Smoothing: the frequency and amplitude parts of a PV stream can be smoothed

with a first-order low-pass filter through the use of pvsmooth.
• Signal generation: pvsosc produces a variety of audio waveforms directly in

the spectral domain.

In addition to these, PV streams can be written and read to/from tables via
the pvsftw and pvsftr opcodes, and to/from arrays with pvs2array and
pvsfromarray. The pitch of a signal can be tracked with pvspitch, as well
as its centroid, with pvscent. We can read individual bins with pvsbin, and dis-
play the data using pvsdisp (this will also depend on frontend implementation).
The streaming phase vocoder subsystem in Csound is a rich source of opportunities
for the exploration of spectral manipulation of audio.

14.5 Sinusoidal Modelling

Another approach to spectral processing is to model a sound as a sum of time-
varying sinusoidal tracks [74, 9].This, in contrast to the DFT-frame approach of the
phase vocoder, will identify peaks in the spectrum, over a certain time, and link
them to make continuous lines. Each one of these will be modelling a sinusoid, with
a variable amplitude, frequency and phase [85]. So, for instance, while in PV anal-
ysis a single-component glissando would be detected at various bins in successive
frames, here it will create a single track.

The spectral data, in this case, is a collection of tracks. These can be provided
as part of a streaming process in the same way as in the phase vocoder. However,
the number of tracks will be variable, as some can die off, and new ones can appear
as the sound changes over time. The most common way of reconstructing the time-
domain audio signal from these is to use additive synthesis. One of the advantages
of the sinusoidal method is that it is possible to keep the phase information intact

322 14 Spectral Processing

while resynthesising, which is not the case with the phase vocoder, where phases
are discarded.

The central component of sinusoidal modelling is partial tracking. This is done
by first searching for peaks in the spectrum, determining their position and then
matching them with previously detected ones in an earlier time point. The process
is done successively in time, spaced by a hopsize. So a track will emerge from a
peak, and if a continuation is found at the following time point, it will be kept. This
is done until no connection is found, and the track is killed. Tracks are linked by
frequency and amplitude proximity. If too much of a change is found in either, two
peaks will not be connected as a track. The analysis can require a number of points
to exist before a track is allowed to exist, as well as small gaps in its continuation.
A plot of a series of frequency tracks of a piano sound is shown in Fig. 14.14.

0 1 2 3 4 5 6 7

time (secs)

2.5

5

7.5

10

fr
e
q
u
e
n
c
y
 (

k
H

z
)

Fig. 14.14 Partial frequencies of a piano note recording as tracked by a sinusoidal model. Ampli-
tudes are shown in grey scale (set according to the maximum amplitude of each track)

Csound provides a suite of streaming sinusoidal modelling opcodes, for analysis
transformation, and synthesis. The process of creating the sinusoidal tracks can be
outlined as follows:

1. An initial analysis step produces frames of amplitudes, frequencies, and phases
from an input signal. This is done in Csound by applying the Instantaneous Fre-
quency Distribution (IFD) [1, 44] to provide a frame of frequencies. This is also
based on the DFT, but uses a different method to the phase vocoder. The pro-
cess also yields amplitudes and phases for the same analysis frame. The opcodes
pvsifd or tabifd are used for this:

ffr,fph pvsifd asig, isize, ihop, iwin
ffr,fph tabifd ktimpt,kamp,kpitch,isize,ihop,iwin,ifn

14.5 Sinusoidal Modelling 323

Each one produces a pair of f-sig outputs, one containing amplitudes and frequen-
cies (PVS AMP FREQ format), and another containing amplitudes and phases
(PVS AMP PHASE). The main difference between them is that pvsifd takes
an audio input signal, whereas tabifd reads from a function table.

2. With these, we can run the tracking of sinusoidal partials that makes up the
model:

ftrks partials ffr,fphs,kthresh,imin,igap

The opcode takes two f-sigs containing amplitude, frequency and phase, as
produced by pvsifd, and outputs an f-sig containing sinusoidal track data
(PVS TRACKS format). This is a different format to a normal PV stream and
will only work with track-manipulating opcodes. The input parameters are as
follows: kthresh, an amplitude threshold used to control the partial tracking,
where partials below this will not be considered. It is defined as a fraction of the
loudest partial. The imin determines the minimum number of detected peaks
at successive time points that will make up a track. For instance, imin = 1 will
make every peak make a track, higher values will imply waiting to see whether
a track emerges from a sequence of peaks. The igap parameter allows for a
number of gaps to exist in tracks before it is defined as dead.

Streaming sinusoidal modelling consists of connecting these two opcodes to ob-
tain the track data. This can be further transformed, and then resynthesised using
additive synthesis.

14.5.1 Additive Synthesis

The additive resynthesis of sinusoidal tracks can be performed in various ways.
Csound implements three opcodes for this, which have slightly different character-
istics:

1. sinsyn: this synthesises tracks very faithfully, employing the phases in a cubic
interpolation algorithm to provide very accurate reconstruction. However, it is
not possible to scale frequencies with it. It is also slower than the other opcodes.

2. resyn: this opcode uses phases from track starting points, and cubic interpola-
tion, allowing frequency scaling.

3. tradsyn: an amplitude-frequency-only, linear-interpolation, additive synthe-
siser. It does not use phases, and it is more efficient than its counterparts, although
not as accurate.

The first opcode should be used whenever a precise resynthesis of the partial
tracks is required. The other two can be used with transformed data, but tradsyn
is the more flexible of these, as it does not require correct phases to be preserved
anywhere in the stream.

In addition to these opcodes, it is also possible to convert the partial track stream
into a PV signal using the binit opcode:

324 14 Spectral Processing

fsig binit fin, isize

This converts the tracks into an equal-bandwidth bin-frame signal
(PVS AMP FREQ) with DFT size isize, which can be reconstructed with overlap-
add synthesis (pvsynth). It can also be further processed using streaming PV op-
codes. The conversion works by looking for suitable tracks to fill each frequency
bin. If more than one track fits a certain bin, the one with highest amplitude will be
used, and the other(s) discarded. PV synthesis can be more efficient than the additive
methods, depending on the number of partials required.

14.5.2 Residual Extraction

Modelling in terms of sinusoids tends to limit the spectrum to stable components.
More transient and noisy parts are somewhat suppressed. This allows us to separate
the sinusoidal tracks from these other components, which are called the analysis
residual. The separation is done by employing sinsyn to reproduce the track data
accurately, and then performing a time-domain subtraction from the original signal
of its resynthesis. The result is what was not captured by the sinusoidal modelling.
This is implemented in listing 14.8.

Listing 14.8 Residual extraction using sinusoidal modelling of an input signal

/**
ares,asin Residual ain,kthresh,isize,ifcos
ares - residual output
asin - sinusoidal output
kthr - analysis threshold
isize - DFT size
ihop - hopsize
ifcos - function table containing a cosine wave

**/
opcode Residual, aa, akiii
ain,kthr,isiz,ihsiz,ifcos xin
idel = isiz-ihsiz*(isiz/(2*ihsiz)-1)
ffr,fphs pvsifd ain, isiz, ihsiz, 1
ftrk partials ffr, fphs,kthr, 1, 1, 500
aout sinsyn ftrk, 2, 500, ifcos
asd delayr idel/sr
asig deltapn idel

delayw ain
aenv linsegr 0,idel/sr,0,1/sr,1,1,1
xout aout*aenv-asig,aout
endop

This code provides both the residual and the sinusoidal signals as output. The
sinusoidal modelling process places a small latency equivalent to N − h(N

2h − 1),

14.5 Sinusoidal Modelling 325

where N is the DFT size, and h, the hopsize. So in order to align the signals (and
more importantly, their phases) correctly, we need to delay the input signal by this
amount. The sinsyn opcode also adds a small onset to the signal, starting before
the actual tracked sinusoids start playing, and so we apply an envelope to avoid any
bleed into the residual output. It is also important to supply the opcode with a cosine
wavetable, instead of a sine, otherwise the phases will be shifted by a quarter of a
cycle. Such a table can be created with GEN 9:

ifn ftgen 1,0,16384,9,1,1,90

The kthresh parameter can be used to adjust the tracking (a value of the order of
0.003 is a good start). The computational load will depend on both the input signal
and the threshold value. An input with many components will increase the resource
requirements, and reducing the kthresh parameter will also produce more par-
tials. In Fig. 14.15, we can see the waveform plot of a piano note sinusoidal model
and its residual. This latter captures very well the moment the hammer strikes the
string at the note onset.

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Fig. 14.15 The normalised plots of the sinusoidal model (top) and residual (bottom) of a piano
sound. Note how the energy of the residual part is mostly concentrated at the note onset

326 14 Spectral Processing

14.5.3 Transformation

Various transformation opcodes are present in Csound to manipulate sinusoidal
tracks. They will take and produce f-sig variables in the PVS TRACKS format,
and will work in a similar fashion to the streaming PV opcodes.

trcross: this opcode takes two track signals and performs cross-synthesis of
amplitudes and frequencies. Note that this works in a different way to PV cross-
synthesis, as a search for matching tracks is used (since there are no bins to use
for matching):
trfilter: this implements track filtering using an amplitude response taken
from a function table.
trhighest: the highest-frequency track is extracted from a streaming track
input signal.
trlowest: similarly, the lowest-frequency track is extracted.
trmix: this opcode mixes two partial track streams.
trscale: frequency scaling (transposition) of tracks.
trshift: frequency shifting (offsetting) of partials.
trsplit: this splits tracks into two streams depending on a k-rate frequency
threshold.

Transformations using partial track data can be very different from other spectral
processes. For certain processes, such as filtering and selecting sub-sets of partials,
this data format is very flexible. Also, due to the way the data is stored, synthesis
with limited numbers of tracks will provide a non-linear filtering effect, resulting in
suppression of the shortest-living tracks.

14.6 Analysis Transformation and Synthesis

Each sound can be located on a continuous scale between harmonic and noisy. The
discrete Fourier transform is based upon the paradigm of harmonicity, so conse-
quently it has weaknesses in analysing and resynthesising noisy sounds or noisy
parts of natural sounds. In the previous section, sinusoidal modelling has been ex-
plained as one method to overcome this restriction. Analysis Transformation and
Synthesis (ATS) is another well-established method for the same goal [99]. It sep-
arates the sinusoidal (deterministic) part of a sound from its noisy (stochastic or
residual) part and offers different methods of resynthesis and transformation.

14.6.1 The ATS Analysis

Like in the other techniques which are described in this chapter, the analysis part
of ATS starts with performing a short-time Fourier transform (STFT). As real-time

14.6 Analysis Transformation and Synthesis 327

analysis is beyond the scope of ATS, there is no particular need for the efficiency of
the power-of-two FFT algorithm. This means that frames can be of any size, which
can be useful for some cases.2 Following the STFT, spectral peaks are detected for
each frame. Very similarly to the partial-tracking technique, these peaks are now
compared to each other, to extract spectral trajectories. The main difference can
be seen in the application of some psychoacoustic aspects, mainly the Signal-to-
Mask Ratio (SMR). Spectral peaks are compared from frame to frame. For creating
a track, they need to fall into a given maximum frequency deviation, and also ac-
complish other requirements, like not to be masked. The minimal number of frames
required to form a track can be set as an analysis parameter (default = 3), as can the
number of frames which will be used to “look back” for a possible peak candidate.
Tracks will disappear if they cannot find appropriate peaks any more, and will be
created if new peaks arise.

These tracks are now resynthesised by additive synthesis, taking into also phase
information. This is important because the main goal of this step is to subtract this
deterministic part in the time domain from the signal as a whole (a process similar to
the one in listing 14.8 above). The residual, as the difference of the original samples
and its sinusoidal part, represents the noisy part of the signal. It is now analysed
using the Bark scale, which divides (again because of psychoacoustic reasons) the
range of human hearing into 25 critical bands.3 Noise analysis is performed, to get
the time-varying energy in each of the 25 bands of a Bark scale. This is done by
STFT again, using the same frame size as in the analysis of the deterministic part.
The full analysis process is outlined in Fig. 14.16. So, for the ATS resynthesis
model, sinusoidal and noise components can be blended into a single representation
as sinusoids plus noise-modulated sinusoids [99]:

Psynth = PampPsin +PnoiPsin (14.7)

where Psynth is a synthesised partial, Psin its sinusoidal component, Pamp its amplitude
and Pnoi its noise component.

In MUSIC N, Pnoi is defined as randi because it can be represented by a linear-
interpolation random generator. As it generates random numbers at a lower rate, it
can produce band-limited noise. The opcode randi produces a similar output, so
this formula is nearly literally Csound code:

Pnoi = randi(PE ,Pbw) (14.8)

where PE is the time-varying energy of the partial, and Pbw represents the spectral
bandwidth, used as the rate of the randi generator.

2 For instance, if we know the frequency of a harmonic sound, we can choose a window size which
is an integer multiple of the samples needed for the base frequency.
3 See the example in listing 14.12 for the Bark frequencies.

328 14 Spectral Processing

input

�
STFT

�
peaks

�

�

tracking�

�
SMR

�
tracks

processing
psychoacoustic

�tracks

synthesis����
noise�

analysis�
� bands

distribution

�
noise

Fig. 14.16 ATS analysis [99], taking in an input audio signal and producing noise in 25 perceptual
bands, sinusoid tracks containing amplitude, frequency and phase, and the signal-to-mask ratio
(SMR)

14.6.2 The ATS Analysis File Format

Both parts of the analysis are stored in the analysis file. The sinusoidal trajectories
are stored in the usual way, specifying the amplitude, frequency and phase of each
partial. In the corresponding frame, the residual energy is analysed in 25 critical
bands which represent the way noisy sounds are recognised in pitch relations. So
one frame stores this information for N partials:

amp 1 freq 1 phase 1
amp 2 freq 2 phase 2
...
amp N freq N phase N
residual energy for critical band 1
residual energy for critical band 2
...
residual energy for critical band 25

The number of partials very much depends on the input sound. A sine wave
will produce only one partial, a piano tone some dozen, and complex sounds some
hundreds, depending on the analysis parameters.

In Csound, ATS analysis is performed with the utility ATSA. The various anal-
ysis parameters differ from the usual STFT settings in many ways and should be
tweaked by the analysis to really “meet” an individual sound. They have been de-

14.6 Analysis Transformation and Synthesis 329

scribed implicitly above and are in detail described in the manual. Not setting these
sixteen parameters but using the defaults instead, the command line for analysing
the “fox.wav” looks like this:

$ csound -U atsa fox.wav fox.ats

The content of the “fox.ats” analysis file can be queried by the ATSinfo opcode,
which returns:

Sample rate = 44100 Hz
Frame Size = 2205 samples
Window Size = 8821 samples
Number of Partials = 209
Number of Frames = 58
Maximum Amplitude = 0.151677
Maximum Frequency = 15884.540555 Hz
Duration = 2.756667 seconds
ATS file Type = 4 (footnote)

The default value of 20 Hz for the minimum frequency leads to the huge frame
size of 2,205 samples, which in the case of “fox.ats” results in smeared transitions.
Setting the minimum frequency to 100 Hz and the maximum frequency to 10,000
Hz has this effect:

$ csound -U atsa -l 100 -H 10000 fox.wav fox.ats

Frame Size = 441 samples
Window Size = 1765 samples
Number of Partials = 142
Number of Frames = 278
Maximum Amplitude = 0.407017
Maximum Frequency = 9974.502118 Hz

The time resolution is better now and will offer better results for the resynthesis.
We will use this file (“fox.ats”) in the following examples as basic input to show
some transformations.

14.6.3 Resynthesis of the Sinusoidal Part

There are basically two options to resynthesise the deterministic part of the sound:
ATSread and ATSadd. The opcode ATSread returns the amplitude and fre-
quency of one single partial. This is quite similar to using the pvread opcode
(or for streaming use, the pvsbin opcode), which returns a single FFT bin. The
difference between the two can be seen clearly here: the frequency of the bin moves
rapidly, whilst a partial in ATS stays at a certain pitch, just fading in or out.4

4 The maximum frequency deviation is 1
10 of the previous frequency as default.

330 14 Spectral Processing

kfreq, kamp ATSread ktimepnt, iatsfile, ipartial

The following example uses the frequency and amplitude output of ATSread to
create an arpeggio-like structure. The frequencies of the tones are those from partials
5, 7, 9, ..., 89. The start of one note depends on the maximum of a single partial track.
This maximum amplitude is queried first by the check max instrument and written
to the appropriate index of the gkPartMaxAmps array. A note is then triggered
by p trigger when this maximum minus idBdiff (here 2 dB) is crossed. In
case this threshold is passed again from below later, a new tone is triggered. The
result will very much depend on the threshold: for idBdiff = 1 we will only
get one note per partial, for idBdiff = 6 already several. Both check max and
p trigger are called by partial arp in as many instances as there are partials
to be created. The percussive bit, played by the pling instrument, is nothing more
than one sample which is fed into a mode filter. The amplitude of the sample is the
amplitude returned by ATSread at this point. The frequency is used as the resonant
frequency of the filter, and the quality of the filter is inversely proportional to the
amplitude, thus giving the soft tones more resonance than the stronger ones.

Listing 14.9 ATS partials triggering an arpeggio-like structure

gS_ats = "fox.ats"
giDur ATSinfo gS_ats, 7 ;duration
giLowPart = 5 ;lowest partial used
giHighPart = 90 ;highest partial used
giOffset = 2 ;increment
gkPartMaxAmps[] init giHighPart+1

instr partial_arp
p3 = giDur*5 ;time stretch
iCnt = giLowPart
while iCnt <= giHighPart do
;check maximum in each partial and write in array
schedule "check_max", 0, 1, iCnt
;call instr to play a note if threshold is crossed
schedule "p_trigger", 0, p3, iCnt
iCnt += giOffset
od
;create time pointer for all instances of p_trigger
gkTime line 0, p3, giDur
endin

instr check_max
kMaxAmp, kTim init 0
while kTim < giDur do

kFq,kAmp ATSread kTim, gS_ats, p4
kMaxAmp = kAmp > kMaxAmp ? kAmp : kMaxAmp
kTim += ksmps/sr

14.6 Analysis Transformation and Synthesis 331

od
gkPartMaxAmps[p4] = dbamp(kMaxAmp)
turnoff
endin

instr p_trigger
idBdiff = 2
kMax = gkPartMaxAmps[p4] ;get max of this partial (dB)
kPrevAmp init 0
kState init 0 ;0=below, 1=above thresh
kFq,kAmp ATSread gkTime, gS_ats, p4
if kAmp > kPrevAmp &&

dbamp(kAmp) > kMax-idBdiff &&
kState == 0 then

event "i", "pling", 0, p3*2, kFq, kAmp
kState = 1

elseif kAmp < kPrevAmp &&
dbamp(kAmp) < kMax-idBdiff &&
kState == 1 then

kState = 0
endif
kPrevAmp = kAmp
endin

instr pling
aImp mpulse p5*3, p3
aFilt mode aImp, p4, 1/p5*50
out aFilt
endin
schedule("partial_arp",0,1)

Rather than creating a number of sound generators on our own, we can use the
opcode ATSadd to perform additive resynthesis by driving a number of interpolat-
ing oscillators. We can choose how many partials to use, starting at which offset and
with which increment, and a gate function can be applied to modify the amplitudes
of the partials.

ar ATSadd ktimepnt, kfmod, iatsfile, ifn, ipartials
[,ipartialoffset, ipartialincr, igatefn]

Like ATSread and similar opcodes, ktimepnt requires a time pointer (in
seconds) and iatsfile the ATS analysis file. The kfmod parameter offers a
transposition factor (1 = no transposition), and ipartials is the total num-
ber of partials which will be resynthesised by a bank of interpolating oscillators.
Setting ipartialoffset to 10 will resynthesise starting at partials 11, and
ipartialincr = 2 will skip partial 12, 14, The optional gate function
igatefn scales the amplitudes in the way that the x-axis of the table represents

332 14 Spectral Processing

analysed amplitude values (normalised 0 to 1), and the y-axis sets a multiplier which
is applied. So this table will leave the analysis results untouched:

giGateFun ftgen 0, 0, 1024, 7, 1, 1024, 1

The next table will only leave partials with full amplitude unchanged. It will
reduce lower amplitudes progressively, and eliminate partials with amplitudes below
0.5 (-6 dB relative to the maximum amplitude):

giGateFun ftgen 0, 0, 1024, 7, 0, 512, 0, 512, 1

The next table will boost amplitudes from 0 to 0.125 by multiplying by 8, and
then attenuate partials more and more from 0.125 to 1:

giGateFun ftgen 0, 0, 1024, -5, 8, 128, 8, 896, 0.001

So, similarly to the pvstencil opcode, a mask can be laid on a sound by the
shape of this table. But unlike pvstencil, this will only affect the sinusoidal part.

14.6.4 Resynthesis of the Residual Part

The basic opcodes to resynthesise the residual part of the sound are ATSreadnz
and ATSaddnz. Similarly to the ATSread/ATSadd pair, ATSreadnz returns
the information about one single element of the analysis, whilst ATSaddnz offers
access to either the whole noisy part, or a selection of it. The main difference to
ATSread is that we now deal with the 25 noise bands, instead of partials.

The ATSreadnz opcode returns the energy of a Bark band at a certain time:

kenergy ATSreadnz ktimepnt, iatsfile, iband

The kenergy output represents the intensity; so following the relation I = A2

following A =
√

I we will use the square root of the kenergy output to obtain
proper amplitude values. This code resynthesises the noise band using randi.

Listing 14.10 ATS resynthesis of one noise band

gS_ats = "fox.ats"
giDur ATSinfo gS_ats, 7 ;duration

instr noise_band
iBand = 5 ;400..510 Hz
p3 = giDur
ktime line 0, giDur, giDur
kEnergy ATSreadnz ktime, gS_ats, iBand
aNoise randi sqrt(kEnergy), 55
aSine poscil .25, 455
out aNoise*aSine
endin
schedule("noise_band",0,1)

14.6 Analysis Transformation and Synthesis 333

And this resynthesises all noise bands together:

Listing 14.11 ATS resynthesis of all noise bands in standard manner

gS_ats = "fox.ats"
giDur ATSinfo gS_ats, 7
giBark[] fillarray 0,100,200,300,400,510,630,770,920,

1080,1270,1480,1720,2000,2320,2700,
3150,3700,4400,5300,6400,
7700,9500,12000,15500,20000

instr noise_bands
p3 = giDur
gktime line 0, giDur, giDur
iBand = 1
until iBand > 25 do
iBw = giBark[iBand] - giBark[iBand-1]
iCfq = (giBark[iBand] + giBark[iBand-1]) / 2
schedule "noise_band", 0, giDur, iBand, iBw, iCfq
iBand += 1
od
endin

instr noise_band
kEnergy ATSreadnz gktime, gS_ats, p4
aNoise randi sqrt(kEnergy), p5
out aNoise * poscil:a(.2, p6)
endin
schedule("noise_bands",0,1)

The ATS analysis data can be used for other noise generators, and further trans-
formations can be applied. In the following example, we change the way the time
pointer moves in the noise bands master instrument. Instead of a linear pro-
gression processed by the line opcode, we use transeg to get a concave shape.
This leads to a natural ritardando, in musical terms. The noise band gauss in-
strument, one instance of which is called per noise band, uses a gaussian random
distribution to generate noise. This is then filtered by a mode filter, which simulates
a mass-spring-damper system. To smooth the transitions in proportion to the tempo
of the time pointer, the portk opcode is applied to the kEnergy variable, thus
creating a reverb-like effect at the end of the sound.

Listing 14.12 ATS resynthesis noise bands with modifications

gS_ats = "fox.ats"
giDur ATSinfo gS_ats, 7 ;duration
giBark[] fillarray 0,100,200,300,400,510,630,770,920,

1080,1270,1480,1720,2000,2320,2700,
3150,3700,4400,5300,6400,7700,9500,

334 14 Spectral Processing

12000,15500,20000

instr noise_bands
p3 = giDur*5
gkTime transeg 0, p3, -3, giDur
iBand = 1
until iBand > 23 do ;limit because of mode max freq
iBw = giBark[iBand] - giBark[iBand-1]
iCfq = (giBark[iBand] + giBark[iBand-1]) / 2
schedule "noise_band_gauss", 0, p3, iBand, iBw, iCfq
iBand += 1

od
endin

instr noise_band_gauss
xtratim 2
kEnergy ATSreadnz gkTime, gS_ats, p4
aNoise gauss sqrt(portk(kEnergy,gkTime/20))
aFilt mode aNoise, p6, p6/p5
out aFilt/12
endin
schedule("noise_bands",0,1)

So, like ATSread, ATSreadnz has its own qualities as it gives us actual access
to the analysis data, leaving the application to our musical ideas.

ATSaddnz is designed to resynthesise the noise amount of a sound, or a selec-
tion of it. The usage is very similar to the ATSadd opcode. The total number of
noise bands can be given (ibands), as well as an offset (ibandoffset) and an
increment (ibandincr):

ar ATSaddnz ktimepnt, iatsfile, ibands[, ibandoffset,
ibandincr]

The resynthesis works internally with the randi facility as described above, so
the main influence on the resulting sound is the number and position of noise bands
we select.

14.6.5 Transformations

We have already seen several transformations based on an ATS analysis file. The
time pointer can be used to perform time compression/expansion or any irregular
movement. We can select partials and noise bands by setting their number, offset
and increment, and we can transpose the frequencies of the deterministic part by
a multiplier. The ATSsinnoi opcode combines all these possibilities in a very
compact way, as it adds the noise amount of a specific Bark region to the partials

14.6 Analysis Transformation and Synthesis 335

which fall in this range. Consequently, we do not specify any noise band, but only
the partials; but the sinus/noise mix can be controlled via the time-varying variables
ksinlev and knzlev:

ar ATSsinnoi ktimepnt, ksinlev, knzlev, kfmod,
iatsfile, ipartials[, ipartialoffset, ipartialincr]

Cross-synthesis is a favourite form of spectral processing. ATS offers cross-
synthesis only for the deterministic part of two sounds. The first sound has to be
given by an ATSbufread unit. So the syntax is:

ATSbufread ktimepnt1, kfmod1, iatsfile1,
ipartials1 [, ipartialoffset1, ipartialincr1]

ar ATScross ktimepnt2, kfmod2, iatsfile2, ifn,
klev2, klev1,
ipartials2 [, ipartialoffset2, ipartialincr2]

ATSbufread has the same qualities as ATSadd, except that it reads an .ats
analysis file in a buffer which is then available to be used as first sound by
ATScross. In the example below, its time pointer ktimepnt1 reads the
iatsfile1 “fox.ats” from 1.67 seconds to the end: “over the lazy dog” are
the words here. Extreme time stretching is applied (about 100:1) and the pitch
(kfmod1) moves slowly between factor 0.9 and 1.1, with linear interpolation and a
new value every five seconds. This part of the sound is now crossed with a slightly
time-shifted variant of itself, as the ATScross opcode adds a random deviation
between 0.01 and 0.2 seconds to the same time pointer. This deviation is also slowly
moving by linear interpolation. Both sounds use a quarter of the overall partials;
the first with a partial offset of 1 and an increment of 3, the second sound with-
out offset and an increment of 2. The level of the first (kLev1) and the second
(kLev2) sound are also continuously moving, between 0.2 and 0.8 as maxima. The
result is an always changing structure of strange accords, sometimes forming quasi-
harmonic phases, sometimes nearly breaking into pieces.

Listing 14.13 ATS cross-synthesis with a time-shifted version of the same sound

gS_file = "fox.ats"
giPartials ATSinfo gS_file, 3
giFilDur ATSinfo gS_file, 7
giSine ftgen 0, 0, 65536, 10, 1

instr lazy_dog
kLev1 randomi .2, .8, .2
kLev2 = 1 - kLev1
kTimPnt linseg 1.67, p3, giFilDur-0.2
ATSbufread kTimPnt, randi:k(.1,.2,0,1),

gS_file, giPartials/4, 1, 3
aCross ATScross kTimPnt+randomi:k(0.01,0.2,0.1), 1,

gS_file, giSine, kLev2,
kLev1, giPartials/4, 0, 2

336 14 Spectral Processing

outs aCross*2
endin

schedule("lazy_dog",0,100)

14.7 Conclusions

In this chapter, we have explored the main elements of spectral processing supported
by Csound. Starting with an overview of the principles of Fourier analysis, and a tour
of the most relevant tools for frequency-domain analysis and synthesis, we were able
to explore the fundamental bases on which the area is grounded. This was followed
by a look at how filters can take advantage of Fourier transform theory, for their
design and fast implementation. The technique of partitioned convolution was also
introduced, with an example showing the zero-latency use of multiple partitions.

The text dedicated significant space to the phase vocoder and its streaming imple-
mentation in Csound. We have detailed how the algorithm is constructed by imple-
menting the analysis and synthesis stages from first principles. The various different
types of transformations that can be applied to PV data were presented, with exam-
ples of Csound opcodes that implement these.

A discussion of the principles of sinusoidal modelling completed the chapter.
We introduced the frequency analysis and partial-tracking operations involved, as
well as the variants of additive synthesis available to reconstruct a time-domain
signal. Residual extraction was demonstrated with an example, and a suite of track
manipulation opcodes was presented. In addition to this, ATS, a specialised type of
spectral modelling using sinusoidal tracking, was introduced and explored in some
detail. Spectral processing is a very rich area for sonic exploration. It provides a
significant ground for experimentation in the design of novel sounds and processes.
We hope that this chapter provides an entry point for readers to sample the elements
of frequency-domain sound transformation.

Chapter 15

Granular Synthesis

Abstract In this chapter, we will look at granular synthesis and granular effects
processing. The basic types of granular synthesis are discussed, and the influence
of parameter variations on the resulting sound is shown with examples. For gran-
ular effects processing on a live input stream, we write the input sound to a buffer
used as a source waveform for synthesising grains, enabling granular delays and
granular reverb designs. We proceed to look at manipulations of single grains by
means of grain masking, and look at aspects of gradual synchronisation between
grain-scheduling clocks. The relationship between regular amplitude modulation
and granular synthesis is studied, and we use pitch synchronous granular synthesis
to manipulate formants of a recorded sound. Several classic types of granular syn-
thesis are known from the literature, originally requiring separate granular synthesis
engines for each type. We show how to implement all granular synthesis types with
a single generator (the partikkel opcode), and a parametric automation to do
morphing between them.

15.1 Introduction

Granular synthesis (or particle synthesis as it is also called) is a very flexible form of
audio synthesis and processing, allowing for a wide range of sounds. The technique
works by generating small snippets (grains) of sound, typically less than 300∼400
milliseconds each. The grains may have an envelope to fade each snippet in and out
smoothly, and the assembly of a large number of such grains makes up the resulting
sound. An interesting aspect of the technique is that it lends itself well to gradual
change between a vast range of potential sounds. The selection and modification of
the sound fragments can yield highly distinctive types of sounds, and the large num-
ber of synthesis parameters allows very flexible control over the sonic output. The
underlying process of assembling small chunks of sound stays basically the same,
but the shape, size, periodicity and audio content of grains may be changed dynam-
ically. Even if the potential sounds can be transformed and gradually morphed from

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_15

337

338 15 Granular Synthesis

one type to another, it can be useful to describe some of the clearly defined types
of sound we can attain. These types represent specific combinations of parameter
settings, and as such represent some clearly defined locations in the multidimen-
sional sonic transformation space. Curtis Roads made a thorough classification of
different granular techniques in his seminal book Microsound [109]. Roads’ book
inspired the design of the Csound opcode partikkel, as a unified generator for
all forms of time-based granular sound [22]. We will come back to Roads’ classi-
fication later, but will start with a more general division of the timbral potential of
granular techniques. The one aspect of the techniques that has perhaps the largest
impact on the resulting sound is the density and regularity of the grains. Because of
this, we will do a coarse classification of the types of sounds based on this criteria.
This coarse division is based on the perceptual threshold between rhythm and tone:
below approximately 20 Hz, we tend to hear separate events and rhythm; when the
repetition rate is higher the events blend together and create a continuous tone. The
boundary is not sharp, and there are ways of controlling the sound production so
as to avoid static pitches even with higher grain rates. Still it serves us as a general
indication of the point where the sound changes function.

15.1.1 Low Grain Rates, Long Grains

When we have relatively few grains per second (< 50) and each grain is relatively
long (> 50 milliseconds), then we can clearly hear the timbre and pitch of the sound
in each grain. In this case the output sound is largely determined by the waveform in-
side each grain. This amounts to quickly cross-fading between segments of recorded
sound, and even though the resulting texture may be new (according to the selec-
tion and combination of sounds), the original sounds used as source material for
the grains are clearly audible. Csound has a large selection of granular synthesis
opcodes. The partikkel opcode has by far the highest flexibility, as it was de-
signed to enable all forms of time-based granular synthesis. There are also simpler
opcodes available that might be easier to use in specific use cases. The following
two examples accomplish near identical results, showing granular synthesis first
with syncgrain, then with partikkel.

Listing 15.1 Example using syncgrain

giSoundfile ftgen 0,0,0,1,"fox.wav",0,0,0
giSigmoWin ftgen 0,0,8193,19,1,0.5,270,0.5

instr 1
kprate linseg 1,2.3,1,0,-0.5,2,-0.5,0,1,1,1
kGrainRate = 25.0
kGrainDur = 2.0
kgdur = kGrainDur/kGrainRate
kPitch = 1

15.1 Introduction 339

a1 syncgrain ampdbfs(-8),kGrainRate,kPitch,kgdur,
kprate/kGrainDur,giSoundfile,giSigmoWin,100

out a1
endin

schedule(1,0,5.75)

Listing 15.2 Example using partikkel

giSoundfile ftgen 0,0,0,1,"fox.wav",0,0,0
giSine ftgen 0,0,65536,10,1
giCosine ftgen 0,0,8193,9,1,1,90
giSigmoRise ftgen 0,0,8193,19,0.5,1,270,1
giSigmoFall ftgen 0,0,8193,19,0.5,1,90,1

instr 1
asamplepos1 linseg 0,2.3,0.84,2,0.478,1.47,1.0
kGrainRate = 25.0
async = 0.0 ; (disable external sync)
kGrainDur = 2.0
kgdur = (kGrainDur*1000)/kGrainRate
kwavfreq = 1
kwavekey1 = 1/(tableng(giSoundfile)/sr)
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate,0,-1,async,0,-1,

giSigmoRise,giSigmoFall,0,0.5,kgdur,
ampdbfs(-13),-1,kwavfreq,0.5,-1,-1,awavfm,
-1,-1,giCosine,1,1,1,-1,0,\
giSoundfile,giSoundfile,giSoundfile,giSoundfile,-1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1,kwavekey1,kwavekey1,kwavekey1,100

out a1
endin

schedule(1,0,5.75)

As can be seen from the two above examples, syncgrain requires less code
and may be preferable for simple cases. The partikkel opcode provides more
flexibility and thus also requires a bit more code. One notable difference between
the two opcodes for this simple case is that the time pointer into the source waveform
is handled differently. Syncgrain uses a rate of time pointer movement specified
in relation to grain duration. Partikkel uses a time pointer value as a fraction
of the source waveform duration. Syncgrain’s method can be more convenient if
the time pointer is to move at a determined rate through the sound. Partikkel’s
time pointer is more convenient if one needs random access to the time point. For the

340 15 Granular Synthesis

remaining examples in this chapter, partikkel will be used due to its flexibility
to do all different kinds of granular synthesis.

The next example shows a transition from a time pointer moving at a constant
rate, then freezing in one spot, then with increasingly random deviation from that
spot. The global tables from listing 15.2 are used.

Listing 15.3 Example with random access time pointer

instr 1
asamplepos1 linseg 0,1.2,0.46,1,0.46
adeviation rnd31 linseg(0,1.3,0,2,0.001,2,

0.03,1,0.2,1,0.2),1
asamplepos1 = asamplepos1 + adeviation
kGrainRate = 30.0
async = 0.0 ; (disable external sync)
kGrainDur = 3.0
kgdur = (kGrainDur*1000)/kGrainRate
kwavfreq = 1
kwavekey1 = 1/(tableng(giSoundfile)/sr)
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate,0,-1,async,0,-1,

giSigmoRise,giSigmoFall,0,0.5,kgdur,
ampdbfs(-13),-1,kwavfreq,0.5,-1,-1,awavfm,
-1,-1,giCosine,1,1,1,-1,0,
giSoundfile,giSoundfile,giSoundfile,giSoundfile,-1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1,kwavekey1,kwavekey1,kwavekey1,100

out a1
endin

15.1.2 High Grain Rates, Periodic Grain Clock

When the grain rate is high (> 30∼50 Hz) and strictly periodic, we will in most
cases hear a pitch with fundamental frequency equal to the grain rate. Any sound
that is periodic (the exact same thing happening over and over again at regular in-
tervals) will constitute a clearly defined pitch, and the pitch is defined by the rate
of repetition. If the contents of our individual grains are identical, the output wave-
form will have a repeating pattern over time (as illustrated in Fig 15.1), and so also
constitute a clearly perceptible pitch. It is noteworthy that very precise exact repeti-
tion is a special case that sounds very different from cases where repetitions are not
exact. The constitution of pitch is quite fragile, and deviations from the periodicity
will create an unclear or noisy pitch (which of course might be exactly what we
want sometimes). In the case of high grain rate with short grains, the audio content
of each grain is not perceivable in and as itself. Then the waveform content of the

15.1 Introduction 341

grain will affect the timbre (harmonic structure), but not the perceived pitch since
pitch will be determined by the rate of repetition (i.e. the grain rate). More details
on this are given in Section 15.5. The following example shows the use of a high
grain rate to constitute pitch.

Listing 15.4 Example with high grain rate, pitch constituted by grain rate

instr 1
kamp adsr 0.0001, 0.3, 0.5, 0.5
kamp = kamp*ampdbfs(-6)
asamplepos1 = 0
kGrainRate = cpsmidinn(p4)
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = p5
kwavfreq line 200, p3, 500
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, 0,
giSine, giSine, giSine, giSine, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

schedule(1,0,1,48,0.5)
schedule(1,1,1,51,0.5)
schedule(1,2,1,53,0.5)
schedule(1,3,1,55,0.5)
schedule(1,4,3,58,0.5)

schedule(1,8,1,48,0.1)
schedule(1,9,1,51,0.1)
schedule(1,10,1,53,0.1)
schedule(1,11,1,55,0.1)
schedule(1,12,3,58,0.1)

342 15 Granular Synthesis

Fig. 15.1 Close-up of a grain waveform, repeating grains constitute a stable pitch

15.1.3 Grain Clouds, Irregular Grain Clock

When the grain generation is very irregular, usually also combined with fluctuations
in the other parameters (e.g. pitch, phase, duration) the resulting sound will have tur-
bulent characteristics and is often described as a cloud of sound. This is a huge class
of granular sound with a large scope for variation. Still, the irregular modulation
creates a perceptually grouped collection of sounds.

Listing 15.5 Example of a sparse grain cloud

instr 1
kamp adsr 2, 1, 0.5, 2
kamp = kamp*ampdbfs(-10)
asamplepos1 = 0
kGrainRate = randh(30,30)+32
async = 0.0 ; (disable external sync)
kGrainDur = randh(0.5,30)+0.7
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.2
kwavfreq = randh(300,30)+400
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, 0,
giSine, giSine, giSine, giSine, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

schedule(1,0,6)

Listing 15.6 If we change these lines of code, we get a somewhat denser grain cloud

kGrainRate = randh(80,80)+100

15.2 Granular Synthesis Versus Granular Effects Processing 343

kgdur = 30 ; use static grain size (in millisecs)...
;...so we comment out the relative
; grain dur calculation
; kgdur = (kGrainDur*1000)/kGrainRate;
kwavfreq = randh(100,80)+300

15.2 Granular Synthesis Versus Granular Effects Processing

By granular synthesis, we usually mean a granular technique applied to synthesised
or pre-recorded source sounds. If we use a live audio stream as the source of our
grains, we use the term granular effects processing. Technically, the creation of au-
dio grains is the same in both cases, only the source material for grains differs.
Applying granular techniques to a live audio stream allows us the rich transforma-
tional potential of granular synthesis while retaining the immediacy and interactivity
of a live audio effect. To record live audio into a table for use as a source waveform,
we use the tablewa opcode, as outlined in listing 15.7. This is a circular buffer,
and to control the delay time incurred by the difference between record (write) and
playback (read) positions in the table, we write the record pointer to a global k-rate
variable (gkstartFollow). We will reference this value when calculating the read po-
sition for creating grains. Also note that the global variable 0dbfs must be set to 1,
otherwise the system will blow up when using feedback in the granular processing.

Listing 15.7 Record live audio to table, for use as a source waveform for granular processing

0dbfs = 1

; audio buffer table for granular effects processing
giLiveFeedLen = 524288 ; 11.8 seconds buffer at 44.1
giLiveFeedLenSec = giLiveFeedLen/sr
giLiveFeed ftgen 0, 0, giLiveFeedLen+1, 2, 0

instr 1
a1 inch 1
aFeed chnget "partikkelFeedback"
kFeed = 0.4
a1 = a1 + (aFeed*kFeed)
iLength = ftlen(giLiveFeed)
gkstartFollow tablewa giLiveFeed, a1, 0
; reset kstart when table is full
gkstartFollow = (gkstartFollow > (giLiveFeedLen-1) ?

0 : gkstartFollow)
; update table guard point (for interpolation)
tablegpw giLiveFeed
endin

344 15 Granular Synthesis

15.2.1 Grain Delay

For all the granular-processing effects, the live stream is recorded into a circular
buffer (listing 15.7), from which the individual grains are read. The difference be-
tween the record and playback positions within this buffer will affect the time it
takes between sound being recorded and played back, and as such allows us to con-
trol the delay time. With partikkel the read position is set with the samplepos
parameter. This is a value in range 0.0 to 1.0, referring to the relative position within
the source audio waveform. A samplepos value of 0.5 thus means that grains will
be read starting from the middle of the source sound. Delay time in seconds can be
calculated as samplepos × buffer length in seconds. We must make sure not to
read before the record pointer (which could easily happen if we use random devia-
tions from zero delay time with the circular buffer). Otherwise we will create clicks
and also play back audio that is several seconds (buffer length) delayed in relation
to what we expected. Crossing the record pointer boundary will also happen if we
use zero delay time and upwards transposition in the grains. In this situation, we
start reading at the same table address as where we write audio, but we read faster
than we write, and the read pointer will overtake the write pointer. To avoid this, we
need to add a minimum delay time as a factor of pitch × duration for the grains we
want to create. When manipulating and modulating the time pointer into this circular
buffer, we may want to smooth it out and upsample to a-rate at the final stage before
processing. This requires special care, as we do not want to filter the ramping signal
when it resets from 1.0 to 0.0. For this purpose we can use a UDO (listing 15.8), do-
ing linear interpolation during upsampling of all sections of the signal except when
it abruptly changes from high to low. If we did regular interpolation, the time pointer
would sweep fast through the whole buffer on phase reset, and any grains scheduled
to start during this sweep would contain unexpected source audio (see Fig 15.2)

Listing 15.8 UDO for interpolated upsampling of the time pointer in the circular buffer

gikr = kr
opcode UpsampPhasor, a,k
kval xin
setksmps 1
kold init 0
if (abs(kold-kval)<0.5) && (abs(kold-kval)>0) then
reinit interpolator
elseif abs(kold-kval)>0.5 then; when phasor restarts
kold = kold-1
reinit interpolator
endif
interpolator:
aval linseg i(kold), 1/gikr, i(kval), 1/gikr, i(kval)
rireturn
kold = kval
xout aval

15.2 Granular Synthesis Versus Granular Effects Processing 345

endop

k-rate samplepos

a-rate interpolation

upsampling with UDO

unwanted interpolation

Fig. 15.2 Upsampling a k-rate time pointer (samplepos), we need to disable interpolation on
phase reset to avoid reading the table quickly backwards when the phase wraps around

For granular effects processing, the grain rate is usually low, as we are interested
in hearing the timbral content of the live audio stream. One interesting aspect of
granular delays is that a change in the delay time does not induce pitch modulation,
as is common with traditional delay techniques. This allows us separate control over
delay time and pitch, and also to scatter grains with differing time and pitch relations
into a continuous stream of echo droplets. Writing the output of the grain delay
process back into the circular buffer (mixed with the live input) allows for grain
delay feedback, where the same transformational process is applied repeatedly and
iteratively on the same source material. This can create cascading effects.

Listing 15.9 Simple grain delay with feedback and modulated delay time

instr 2

; grain clock
kGrainRate = 35.0
async = 0.0

; grain shape
kGrainDur = 3.0
kduration = (kGrainDur*1000)/kGrainRate

; grain pitch (transpose, or "playback speed")
kwavfreq = 1
kfildur1 = tableng(giLiveFeed) / sr
kwavekey1 = 1/kfildur1
awavfm = 0

; automation of the grain delay time
ksamplepos1 linseg 0, 1, 0, 2, 0.1, 2,

346 15 Granular Synthesis

0.1, 2, 0.2, 2, 0, 1, 0
kpos1Deviation randh 0.003, kGrainRate
ksamplepos1 = ksamplepos1 + kpos1Deviation

; Avoid crossing the record boundary
ksamplepos1 limit ksamplepos1,

(kduration*kwavfreq)/(giLiveFeedLenSec*1000),1
; make samplepos follow the record pointer
ksamplepos1 =

(gkstartFollow/giLiveFeedLen) - ksamplepos1
asamplepos1 UpsampPhasor ksamplepos1
asamplepos1 wrap asamplepos1, 0, 1

a1 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, 0.5, kduration, 0.5, -1,
kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1,
-1, 0, giLiveFeed, giLiveFeed,
giLiveFeed, giLiveFeed, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

; audio feedback in granular processing
aFeed dcblock a1
chnset aFeed, "partikkelFeedback"

out a1*ampdbfs(-6)

endin

Listing 15.10 Grain delay with four-voice pitching and scattered time modulations

instr 2

; grain clock
kGrainRate = 35.0
async = 0.0

; grain shape
kGrainDur = 2.0
kduration = (kGrainDur*1000)/kGrainRate

; different pitch for each source waveform
kwavfreq = 1
kfildur1 = tableng(giLiveFeed) / sr
kwavekey1 = 1/kfildur1

15.2 Granular Synthesis Versus Granular Effects Processing 347

kwavekey2 = semitone(-5)/kfildur1
kwavekey3 = semitone(4)/kfildur1
kwavekey4 = semitone(9)/kfildur1
awavfm = 0

; grain delay time, more random deviation
ksamplepos1 = 0
kpos1Deviation randh 0.03, kGrainRate
ksamplepos1 = ksamplepos1 + kpos1Deviation
; use different delay time for each source waveform
; (actually same audio, but read at different pitch)
ksamplepos2 = ksamplepos1+0.05
ksamplepos3 = ksamplepos1+0.1
ksamplepos4 = ksamplepos1+0.2

; Avoid crossing the record boundary
#define RecordBound(N)#
ksamplepos$N. limit ksamplepos$N.,

(kduration*kwavfreq)/(giLiveFeedLenSec*1000),1
; make samplepos follow the record pointer
ksamplepos$N. =

(gkstartFollow/giLiveFeedLen) - ksamplepos$N.
asamplepos$N. UpsampPhasor ksamplepos$N.
asamplepos$N. wrap asamplepos$N., 0, 1
#
$RecordBound(1)
$RecordBound(2)
$RecordBound(3)
$RecordBound(4)

; activate all 4 source waveforms
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 1,1,1,1,0

a1 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, 0.5, kduration, 0.5, -1,
kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1,
-1, 0, giLiveFeed, giLiveFeed, giLiveFeed, giLiveFeed,
iwaveamptab, asamplepos1, asamplepos2,
asamplepos3, asamplepos4,
kwavekey1, kwavekey2, kwavekey3, kwavekey4, 100

; audio feedback in granular processing
aFeed dcblock a1
chnset aFeed, "partikkelFeedback"

348 15 Granular Synthesis

out a1*ampdbfs(-3)

endin

15.2.2 Granular Reverb

We can use granular techniques to create artificial reverberant effects [37]. These
are not necessarily directed towards modelling real acoustic spaces, but provide a
very flexible tool for exploring novel and imaginary reverberant environments. As
traditional artificial reverb techniques are based on delay techniques, so are granular
reverbs based on granular delays. In addition to complex delay patters, we can also
exploit the independence of time and pitch in granular synthesis to create forms of
time stretching of the live stream. Time stretching is something that would be highly
unlikely to occur in an acoustic space, but since reverberation can also be heard as a
certain prolongation of the sound, we can associate this type of transformation with
a kind of reverb. When time stretching a live signal we quickly run into a practical
problem. Time stretching involves gradually increasing the delay time between input
and output, and if the sound is to be perceived as a “immediately slowed down”,
there is a limit to the actual delay we want to have before we can hear the slowed
down version of the sound. To alleviate this increasing delay time, we use several
overlapping time stretch processes, fading a process out when the delay has become
too large for our purposes and simultaneously fading a new process in (resetting the
delay to zero for the new process). See Fig. 15.3 and listing 15.11.

Fig. 15.3 Time pointers and source wave amps for time stretching real-time input. Each of the four
stretched segments constitutes a granular process on a source waveform for partikkel

Listing 15.11 Granular reverb skeleton: four-voice overlapping time stretch

instr 2

15.2 Granular Synthesis Versus Granular Effects Processing 349

; grain clock
kGrainRate = 110.0
async = 0.0

; grain shape
kGrainDur = 7.0
kduration = (kGrainDur*1000)/kGrainRate

; same pitch for all source waveforms
kwavfreq = 1
kfildur1 = tableng(giLiveFeed) / sr
kwavekey1 = 1/kfildur1
awavfm = 0

; grain delay time,
; gradually increasing delay time
; to create slowdown effect.
kplaybackspeed = 0.25 ; slow down
koverlaprate = 0.8 ; overlap rate
koverlap = 1 ; amount of overlap between layers

; four overlapping windows of slowdown effect,
; fading in and out,
; reset delay time to zero on window boundaries
#define Overlaptime(N’P)#
koverlaptrig$N. metro koverlaprate, $P.
if koverlaptrig$N. > 0 then
reinit timepointer$N.
endif
timepointer$N.:
ksamplepos$N. line 0, i(kfildur1),

1-i(kplaybackspeed)
itimenv$N. divz i(koverlap), i(koverlaprate), .01
kampwav$N. oscil1i itimenv$N.*0.1, 1,

itimenv$N., giSigmoWin
rireturn
#
$Overlaptime(1’0.0)
$Overlaptime(2’0.25)
$Overlaptime(3’0.50)
$Overlaptime(4’0.75)

ktimedev = 4/(giLiveFeedLenSec*1000)
#define TimeDeviation(N)#
kdevpos$N. rnd31 ktimedev, 1

350 15 Granular Synthesis

ksamplepos$N. = ksamplepos$N.+kdevpos$N.
#
$TimeDeviation(1)
$TimeDeviation(2)
$TimeDeviation(3)
$TimeDeviation(4)

; Avoid crossing the record boundary
#define RecordBound(N)#
ksamplepos$N. limit ksamplepos$N.,

(kduration*kwavfreq)/(giLiveFeedLenSec*1000),1
; make samplepos follow the record pointer
ksamplepos$N. =

(gkstartFollow/giLiveFeedLen) - ksamplepos$N.
asamplepos$N. UpsampPhasor ksamplepos$N.
asamplepos$N. wrap asamplepos$N., 0, 1
#
$RecordBound(1)
$RecordBound(2)
$RecordBound(3)
$RecordBound(4)

; channel masking table, send grains alternating to
; left and right output, for stereo reverb
ichannelmasks ftgentmp 0, 0, 16, -2, 0, 1, 0, 1

; activate all 4 source waveforms
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 1,1,1,1,0

; write amp envelope for overlapping
; slowdown windows to wave mix mask table
tablew kampwav1, 2, iwaveamptab
tablew kampwav2, 3, iwaveamptab
tablew kampwav3, 4, iwaveamptab
tablew kampwav4, 5, iwaveamptab

a1, a2 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, 0.5, kduration, 1, -1,
kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, ichannelmasks,
0, giLiveFeed, giLiveFeed, giLiveFeed, giLiveFeed,
iwaveamptab, asamplepos1, asamplepos2,
asamplepos3, asamplepos4,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

15.2 Granular Synthesis Versus Granular Effects Processing 351

; audio feedback in granular processing
aFeed dcblock a1
; empirical adjustment of feedback
; scaling for stability
aFeed = aFeed*0.86
chnset aFeed, "partikkelFeedback"

outs a1*ampdbfs(-6), a2*ampdbfs(-6)

endin

Adding feedback, i.e. routing the output from the granular slowdown process
back into the live recording buffer, we get a longer and more diffuse reverb tail.
In the following example, we used a somewhat less extreme slowdown factor, and
also increased the random deviation to the time pointer. As is common in artificial
reverb algorithms, we’ve also added a low-pass filter in the feedback path, so high
frequencies will decay faster than lower spectral components.

Listing 15.12 Granular reverb with feedback and filtering: listing only the differences from list-
ing 15.11

kFeed = 0.3
...
kplaybackspeed = 0.35 ; slow down
...
ktimedev = 12/(giLiveFeedLenSec*1000)
...
aFeed butterlp aFeed, 10000

We can also add a small amount of pitch modulation to the reverb. This is a
common technique borrowed from algorithmic reverb design, to allow for a more
rounded timbre in the reverb tail.

Listing 15.13 Granular reverb with pitch modulation: listing only the differences from list-
ing 15.12. Of the partikkel parameters, only the four wavekeys have been changed

kFeed = 0.5
...
kpitchmod = 0.005
#define PitchDeviation(N)#
kpitchdev$N. randh kpitchmod, 1, 0.1
kwavekey$N. = 1/kfildur1*(1+kpitchdev$N.)

#
$PitchDeviation(1)
$PitchDeviation(2)
$PitchDeviation(3)
$PitchDeviation(4)
...
a1, a2 partikkel kGrainRate, 0, -1, async, 0, -1,

352 15 Granular Synthesis

giSigmoRise, giSigmoFall, 0, 0.5, kduration, 1, -1,
kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, ichannelmasks,
0, giLiveFeed, giLiveFeed, giLiveFeed, giLiveFeed,
iwaveamptab, asamplepos1, asamplepos2,
asamplepos3, asamplepos4,
kwavekey1, kwavekey2, kwavekey3, kwavekey4, 100

Exploiting the independence of time and pitch transformations in granular syn-
thesis, we can also create reverb effects with shimmering harmonic tails or we can
create tails that have a continually gliding pitch. The design will normally need at
least one granular process for each pitch-shifted component. In our example we are
still using a single (four-voice) grain generator, creating a simple and raw version of
the effect at a very low computational cost. We do pitch shifting on a grain-by-grain
basis (with pitch masking, every third grain is transposed, see Section 15.3) instead
of using a separate granular voice for each pitch. As a workaround to get a rea-
sonably dense reverb with this simple design, we use very long grains. To get finer
control over the different spectral components and also denser reverb, we could use
several granular generators, feeding into each other.

Listing 15.14 Granular reverb, some grains are pitch shifted up an octave, creating a shimmering
reverb tail: listing only the differences from listing 15.13. Of the partikkel parameters, only
the iwavfreqstarttab and iwavfreqendtab values have been changed

kFeed = 0.7
...
kGrainDur = 12.0
...
kplaybackspeed = 0.25 ; slow down
...
; pitch masking tables
iwavfreqstarttab ftgentmp 0, 0, 16, -2, 0, 2, 1,1,2
iwavfreqendtab ftgentmp 0, 0, 16, -2, 0, 2, 1,1,2
...
a1, a2 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, 0.5, kduration, 1, -1,
kwavfreq, 0.5, iwavfreqstarttab, iwavfreqendtab,
awavfm, -1, -1, giCosine, 1, 1, 1, ichannelmasks,
0, giLiveFeed, giLiveFeed, giLiveFeed, giLiveFeed,
iwaveamptab, asamplepos1, asamplepos2,
asamplepos3, asamplepos4,
kwavekey1, kwavekey2, kwavekey3, kwavekey4, 100

...
aFeed butterlp aFeed, 8000
aFeed = aFeed*0.6

The observant reader may have noticed that we have a specification of feedback
level in two different places in the code. Also, that these two operations essentially

15.3 Manipulation of Individual Grains 353

do the same thing (effecting the level of audio feedback in the granular process). The
rationale for this is to provide an intuitive control over the feedback level, affecting
the reverberation time, much like in FDN reverbs (see Section 13.2.3). We assume
that one would expect such a reverb algorithm to have (an approximation of) infinite
reverb time when feedback is set to 1.0. This intuitive feedback level control is the
first one (kFeed = 0.7). The second adjustment (aFeed = aFeed*0.6) can
be viewed as a system parameter that needs to be recalculated when the reverb
design changes. The specifics of the granular processing can significantly change
the gain of the signal. No automatic method for adjustment has been provided here,
but we can state that the gain structure is mainly dependent on the amount of grain
overlap, as well as pitch and time deviations for single grains. The grain overlap is
easily explained due to more layers of sound generally creating a higher amplitude.
The pitch and time deviations affect the feedback potential negatively, e.g. changing
the pitch of the signal in the feedback loop effectively lowers the potential for sharp
resonances. For the reverb designs presented here, the feedback scaling was adjusted
empirically by setting kFeed = 1.0 and then adjusting aFeed = X until an
approximation of infinite reverb time was achieved. Due to the presence of random
elements (for time and pitch modulation) the effective feedback gain will fluctuate,
especially so in the design we have used here with only one granular generator.
Using more generators will make a more complex delay network, and the resulting
effect of random fluctuations of parameters will be more even.

15.3 Manipulation of Individual Grains

In a regular granular synthesis situation, we may generate tens or hundreds of grains
per second. For precise control over the synthesis result, we may want to modify
each of these grains separately. To facilitate this, we can use a technique called
grain masking. In Microsound [109] the term is used to describe selective muting
of individual grains, implying an amplitude control that may also be gradual. By
extending the notion of grain masking to also include pitch trajectories, frequency
modulation, output channel and source waveform mixing, we can also extend the
range of control possibilities over the individual grains. At high grain rates, any kind
of masking will affect the perceived pitch. This is because masking even a single
grain affects the periodicity of the signal (see listing 15.15). Masking single grains
intermittently will add noise to the timbre; masking every second grain will let the
perceived pitch drop by one octave, as the repetition period doubles (listing 15.17).
Further subharmonics may be generated by dropping every third, fourth or fifth
grain and so on. These pitch effects will occur regardless of which grain parameter
is masked, but the timbral effect will differ somewhat with the masking of different
parameters (listing 15.19). At lower grain rates, the masking techniques can be used
to create elaborate rhythmic, spatial and harmonic patterns. If we use different mask
lengths, we can achieve polyrhythmic relationships between the masking patterns
of different parameters. This is quite effective to add vividness and complexity to a

354 15 Granular Synthesis

timbral evolution. In Csound’s partikkel opcode, grain masking is specified by
a masking table (figs. 15.4 and 15.5). The masking table is read incrementally when
generating grains, so values next to each other in the table will apply to neighbouring
grains successively. As most grain-masking patterns are periodic, the masking table
index can be looped at user-specified indices. For non-periodic patterns, we can
simply use arbitrarily large masking tables or rewrite the table values continuously.

0 3 1.0 0.6 0.2 0.1

0 1 2 3 4 5

0 1 2 3mask index

value

table index

s
t
a
r
t
 in

d
e
x

e
n
d
 in

d
e
x

Fig. 15.4 Amplitude masking table, the two first indices control loop start and end, the remaining
indices are amplitude values for each successive grain. Table values can be modified in real time
to create dynamically changing patterns

Fig. 15.5 Amplitude masking using the mask table shown in Fig. 15.4

Listing 15.15 Synchronous granular synthesis with high grain rate and increasing amount of ran-
dom masking during each note

instr 1
kamp adsr 0.0001, 0.3, 0.5, 0.5
kamp = kamp*ampdbfs(-6)
asamplepos1 = 0
kGrainRate = cpsmidinn(p4)
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5

15.3 Manipulation of Individual Grains 355

kwavfreq = kGrainRate*4
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
krandommask line 0, p3, p5
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, krandommask,
giSine, giSine, giSine, giSine, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

Listing 15.16 Score for the instrument in listing 15.15

i1 0 2 48 0.3
i1 2 . 51 .
i1 4 . 53 .
i1 6 4 60 .
s
i1 0 2 48 1.0
i1 2 . 51 .
i1 4 . 53 .
i1 6 4 60 .

Listing 15.17 Synchronous granular synthesis with high grain rate, gradually decreasing the am-
plitude of every second grain during each note, creating an octaviation effect

instr 1
kamp adsr 0.0001, 0.3, 0.5, 0.5
kamp = kamp*ampdbfs(-6)
asamplepos1 = 0
kGrainRate = cpsmidinn(p4)
async = 0.0 ; (disable external sync)
kGrainDur = 0.5
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = kGrainRate*2
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
krandommask = 0
igainmasks ftgen 0, 0, 4, -2, 0, 1, 1, 1
koctaviation linseg 1, 0.5, 1, p3-0.5 , 0
tablew koctaviation, 2, igainmasks

a1 partikkel kGrainRate, 0, -1, async, 0, -1,

356 15 Granular Synthesis

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, igainmasks, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, krandommask,
giSine, giSine, giSine, giSine, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

Listing 15.18 Score for the instrument in listing 15.17

i1 0 2 48
i1 2 . 51
i1 4 . 53
i1 6 4 60

Listing 15.19 As above (listing 15.17), but this time using pitch masks to create the octaviation
effect. The pitch of every second grain is gradually changed, ending at an octave above. Still, the
perceived pitch drops by one octave, since the rate of repetition is doubled when every second grain
is different. Use the score in listing 15.18

instr 1
kamp adsr 0.0001, 0.3, 0.5, 0.5
kamp = kamp*ampdbfs(-6)
asamplepos1 = 0
kGrainRate = cpsmidinn(p4)
async = 0.0 ; (disable external sync)
kGrainDur = 0.5
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = kGrainRate*2
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
krandommask = 0

; pitch masking tables
iwavfreqstarttab ftgentmp 0, 0, 16, -2, 0, 1, 1,1
iwavfreqendtab ftgentmp 0, 0, 16, -2, 0, 1, 1,1

koctaviation linseg 1, 0.5, 1, p3-0.5 , 2
tablew koctaviation, 2, iwavfreqstarttab
tablew koctaviation, 2, iwavfreqendtab

a1 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5,
iwavfreqstarttab, iwavfreqendtab, awavfm,

15.3 Manipulation of Individual Grains 357

-1, -1, giCosine, 1, 1, 1, -1, krandommask,
giSine, giSine, giSine, giSine, -1,
asamplepos1, asamplepos1, asamplepos1, asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

15.3.1 Channel Masks, Outputs and Spatialisation

Using masking techniques with parameters such as amplitude, pitch and modulation
is unambiguous: we can always describe exactly what effect they will have on the
resulting sound. With channel masking, the situation is somewhat different. Channel
masking describes which output channel (of the grain generator) this grain should
be sent to. The partikkel opcode in Csound can use up to eight audio outputs,
and the masking values can also be fractional, distributing the sound between two
outputs. Now, what we do with the sound at each output is arbitrary. We may dis-
tribute the audio signals to different locations in the listening space, or we might
process each output differently. As an example, we might send every fifth grain to a
reverb while we pan every other grain right and left, and create a bank of filters and
send grains to each of the filters selectively (listing 15.20). We could also simply
route the eight outputs to eight different speakers to create a granular spatial im-
age in the room. If we need more than eight separate outputs, several instances of
partikkel can be linked and synchronised by means of the partikkelsync
opcode. See Section 15.4 for more details.

Listing 15.20 Example of channel masking, every second grain routed to stereo left and right,
every fifth grain to reverb, and routing of random grains to a high-pass and a low-pass filter

nchnls = 2

giSine ftgen 0, 0, 65536, 10, 1
giCosine ftgen 0, 0, 8193, 9, 1, 1, 90
; (additive) saw wave
giSaw ftgen 0, 0, 65536, 10, 1, 1/2, 1/3, 1/4, 1/5,

1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13,
1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20

giSigmoRise ftgen 0, 0, 8193, 19, 0.5, 1, 270, 1
giSigmoFall ftgen 0, 0, 8193, 19, 0.5, 1, 90, 1

instr 1
kamp = ampdbfs(-12)
asamplepos1 = 0
kGrainRate transeg p4, 0.5, 1, p4, 4, -1, p5, 1, 1, p5
async = 0.0 ; (disable external sync)

358 15 Granular Synthesis

kGrainDur = 0.5
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = 880
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
krandommask = 0

; channel masking table,
; output routing for individual grains
; (zero based, a value of 0.0 routes to output 1)
; output 0 and 1 are used for stereo channels L and R,
; output 2 and 3 for reverb left and right
; output 4 and 5 is sent to two different filters
ichannelmasks ftgentmp 0, 0, 16, -2, 0, 9,

0, 1, 0, 1, 2, 1, 0, 1, 0, 3

; randomly route some grains (mask index 4 or 5)
; to the first filter
kfilt1control randh 1, kGrainRate, 0.1
kfilt1trig = (abs(kfilt1control) > 0.2 ? 4 : 0)
kfilt1trig =

(abs(kfilt1control) > 0.6 ? 5 : kfilt1trig)
if kfilt1trig > 0 then
tablew 4, kfilt1trig, ichannelmasks ; send to output 4
else
tablew 0, 4, ichannelmasks ; reset to original values
tablew 1, 5, ichannelmasks
endif

; randomly route some grains (mask index 9 or 10)
; to the second filter
kfilt2control randh 1, kGrainRate, 0.2
kfilt2trig = (abs(kfilt2control) > 0.2 ? 9 : 0)
kfilt2trig =

(abs(kfilt2control) > 0.6 ? 10 : kfilt2trig)
if kfilt2trig > 0 then
tablew 5, kfilt2trig, ichannelmasks ; send to output 5
else
tablew 1, 9, ichannelmasks ; reset to original values
tablew 0, 10, ichannelmasks
endif

a1,a2,a3,a4,a5,a6 partikkel kGrainRate, 0, -1, async,
0, -1, giSigmoRise, giSigmoFall, 0, ka_d_ratio,

15.3 Manipulation of Individual Grains 359

kgdur, kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, ichannelmasks,
krandommask, giSaw, giSaw, giSaw, giSaw, -1,
asamplepos1, asamplepos1, asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

outs a1,a2
chnset a3, "reverbLeft"
chnset a4, "reverbRight"
chnset a5, "filter1"
chnset a6, "filter2"
endin

instr 11
a1 chnget "reverbLeft"
a2 chnget "reverbRight"
ar1,ar2 freeverb a1,a2, 0.8, 0.3
idry = 0.2
ar1 = ar1+(a1*idry)
ar2 = ar2+(a2*idry)
outs ar1,ar2
a0 = 0
chnset a0, "reverbLeft"
chnset a0, "reverbRight"
endin

instr 12
a1 chnget "filter1"
a2 chnget "filter2"
afilt1 butterlp a1, 800
afilt2 butterhp a2, 2000
asum = afilt1+afilt2
outs asum, asum
a0 = 0
chnset a0, "filter1"

Listing 15.21 Score for the instrument in listing 15.20

i1 0 20 330 6

360 15 Granular Synthesis

15.3.2 Waveform Mixing

We can also use grain masking to selectively alter the mix of several source sounds
for each grain. With partikkel, we can use five source sounds: four sampled
waveforms and a synthesised trainlet (see section 15.7.3 for more on trainlets). Each
mask in the waveform mix masking table will then have five values, representing the
amplitude of each source sound. In addition to the usual types of masking effects, the
waveform mixing technique is useful for windowed-overlap-type techniques such
as we saw in granular reverb time stretching. In that context we combine waveform
mixing with separate time pointers for each source waveform, so we can fade in
and out the different layers of time delay (in the source waveform audio buffer) as
needed.

Listing 15.22 Example of source waveform mixing, rewriting the amplitude values for each source
wave in a single wave mask

giSoundfile ftgen 0, 0, 0, 1,"fox.wav",0,0,0
giSine ftgen 0, 0, 65536, 10, 1
giCosine ftgen 0, 0, 8193, 9, 1, 1, 90
; (additive) saw wave
giSaw ftgen 0, 0, 65536, 10, 1, 1/2, 1/3, 1/4, 1/5,

1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13,
1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20

giNoiseUni ftgen 0, 0, 65536, 21, 1, 1
giNoise ftgen 0, 0, 65536, 24, giNoiseUni, -1, 1
giSigmoRise ftgen 0, 0, 8193, 19, 0.5, 1, 270, 1
giSigmoFall ftgen 0, 0, 8193, 19, 0.5, 1, 90, 1

instr 1
kamp = ampdbfs(-3)
kwaveform1 = giSine
kwaveform2 = giSaw
kwaveform3 = giNoise
kwaveform4 = giSoundfile
asamplepos1 = 0.0 ; phase of single cycle waveform
asamplepos2 = 0.0
asamplepos3 = 0.0
asamplepos4 = 0.27; start read position in sound file

kGrainRate = 8
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = 1 ; set master transposition to 1
; source 1 and 2 are single cycle source waveforms,

15.3 Manipulation of Individual Grains 361

; so the pitch is determined by cycles per second
kwavekey1 = 440 ; (a single cycle sine)
kwavekey2 = 440 ; (a single cycle saw)
; source 3 and 4 are tables with audio sample data,
; so the playback frequency should be relative to
; table length and sample rate
kwavekey3 = 1/(tableng(kwaveform3)/sr); (noise at sr)
kwavekey4 = 1/(tableng(kwaveform4)/sr); (soundfile)
awavfm = 0 ; (FM disabled)
krandommask = 0

; wave mixing by writing to the wave mask table
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 1,0,0,0,0
kamp1 linseg 1, 1, 1, 1, 0, 5, 0, 1, 1, 1, 1
kamp2 linseg 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0
kamp3 linseg 0, 3, 0, 1, 1, 1, 1, 1, 0, 1, 0
kamp4 linseg 0, 5, 0, 1, 1, 1, 1, 1, 0, 1, 0
tablew kamp1, 2, iwaveamptab
tablew kamp2, 3, iwaveamptab
; we do additional scaling of source 3 and 4,
; to make them appear more equal in loudness
tablew kamp3*0.7, 4, iwaveamptab
tablew kamp4*1.5, 5, iwaveamptab

a1 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, ka_d_ratio,
kgdur, kamp, -1, kwavfreq, 0.5, -1, -1,
awavfm, -1, -1, giCosine, 1, 1, 1, -1,
krandommask, kwaveform1, kwaveform2,
kwaveform3, kwaveform4, iwaveamptab,
asamplepos1, asamplepos2, asamplepos3,
asamplepos4, kwavekey1, kwavekey2,
kwavekey3, kwavekey4, 100

out a1
endin

schedule(1,0,10)

Listing 15.23 Example of source waveform masking, changing to a new source waveform for each
new grain

giSoundfile ftgen 0, 0, 0, 1,"fox.wav",0,0,0
giSine ftgen 0, 0, 65536, 10, 1
giCosine ftgen 0, 0, 8193, 9, 1, 1, 90
; (additive) saw wave

362 15 Granular Synthesis

giSaw ftgen 0, 0, 65536, 10, 1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13,
1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20

giNoiseUni ftgen 0, 0, 65536, 21, 1, 1
giNoise ftgen 0, 0, 65536, 24, giNoiseUni, -1, 1
giSigmoRise ftgen 0, 0, 8193, 19, 0.5, 1, 270, 1
giSigmoFall ftgen 0, 0, 8193, 19, 0.5, 1, 90, 1

instr 1
kamp = ampdbfs(-3)
kwaveform1 = giSine
kwaveform2 = giSaw
kwaveform3 = giNoise
kwaveform4 = giSoundfile
asamplepos1 = 0.0 ; phase of single cycle waveform
asamplepos2 = 0.0
asamplepos3 = 0.0
asamplepos4 = 0.27; start read position in sound file

kGrainRate transeg 400, 0.5, 1, 400, 4,
-1, 11, 1, 1, 11

async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = 1
kwavekey1 = 440
kwavekey2 = 440
kwavekey3 = 1/(tableng(kwaveform3)/sr)
kwavekey4 = 1/(tableng(kwaveform4)/sr)
awavfm = 0 ; (FM disabled)
krandommask = 0

; wave masking, balance of source waveforms
; specified per grain
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 3, 1,0,0,0,0,

0,1,0,0,0,
0,0,1,0,0,
0,0,0,1,0

a1 partikkel kGrainRate, 0, -1, async, 0, -1,
giSigmoRise, giSigmoFall, 0, ka_d_ratio,
kgdur, kamp, -1, kwavfreq, 0.5, -1, -1,
awavfm, -1, -1, giCosine, 1, 1, 1, -1,
krandommask, kwaveform1, kwaveform2,

15.4 Clock Synchronisation 363

kwaveform3, kwaveform4, iwaveamptab,
asamplepos1, asamplepos2, asamplepos3,
asamplepos4, kwavekey1, kwavekey2,
kwavekey3, kwavekey4, 100

out a1
endin

15.4 Clock Synchronisation

Most granular synthesisers use an internal clock to trigger generation of new
grains. To control the exact placement of grains in time, we might sometimes
need to manipulate this clock. Grain displacement can be done simply with the
kdistribution parameter of partikkel, offsetting individual grains in time
within a period of 1/grainrate.

Listing 15.24 Using the kdistribution parameter of partikkel, individual grains are dis-
placed in time within a time window of 1/grainrate. The stochastic distribution can be set with
the idisttab table. The following is an excerpt of code that can be used for example with the
example in listing 15.4. See also Figure 15.6 for an illustration

...
kdistribution line 0, p3-1, 1
idisttab ftgen 0, 0, 32768, 7, 0, 32768, 1
...
a1 partikkel kGrainRate, kdistribution, idisttab, ...

For more elaborate grain clock patterns and synchronisations we can manipulate
the internal clock directly. The partikkel opcode uses a sync input and sync
output to facilitate such clock manipulation, and these can also be used to synchro-
nise several partikkel generators if need be. The internal clock is generated by
a ramping value, as is common in many digital metronomes and oscillators. The
internal ramping value is updated periodically, and the exact increment determines
the steepness of the ramp. The ramping value normally starts at zero, and when it
exceeds 1.0 a clock pulse is triggered, and the ramp value is reset to zero. The sync
input to partikkel lets us directly manipulate the ramping value, and offsetting
this value directly affects the time until the next clock pulse. Figure 15.7 provides an
illustration of this mechanism. Sync output from partikkel is done via the helper
opcode partikkelsync. This opcode is linked to a particular partikkel in-
stance by means of an opcode ID. The partikkelsync instance then has in-
ternal access to the grain scheduler clock of a partikkel with the same ID. It
outputs the clock pulse and the internal ramping value, and these can be used to
directly drive other partikkel instances, or to synchronise external clocks using
the same ramping technique. The ramping value is the phase of the clock, and this

364 15 Granular Synthesis

1/grainrate period

grain distribution offset

Fig. 15.6 Grain distribution, showing periodic grain periods on top, random displacements at bot-
tom

can be used to determine whether we should nudge the clock up or down towards
the nearest beat.

Listing 15.25 Soft synchronisation between two partikkel instances, using
partikkelsync to get the clock phase and clock tick, then nudging the second clock
up or down towards the nearest clock tick from partikkel instance 1

instr 1
iamp = ampdbfs(-12)
kamp linen iamp, 0.01, p3, 1
asamplepos1 = 0
kGrainRate1 = 7
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur1 = (kGrainDur*1000)/kGrainRate1
ka_d_ratio = 0.1
kwavfreq1 = 880
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
id1 = 1
a1 partikkel kGrainRate1, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur1,

15.4 Clock Synchronisation 365

1, -1, kwavfreq1, 0.5, -1, -1, awavfm, -1, -1,
giCosine, 1, 1, 1, -1, 0, giSine, giSine, giSine,
giSine, -1, asamplepos1, asamplepos1, asamplepos1,
asamplepos1, kwavekey1, kwavekey1, kwavekey1,
kwavekey1, 100, id1

async1, aphase1 partikkelsync, id1

kphaSyncGravity line 0, p3, 0.7
aphase2 init 0
asyncPolarity limit (int(aphase2*2)*2)-1, -1, 1
asyncStrength =

abs(abs(aphase2-0.5)-0.5)*asyncPolarity
; Use the phase of partikkelsync instance 2 to find
; sync polarity for partikkel instance 2.
; If the phase of instance 2 is less than 0.5,
; we want to nudge it down when synchronizing,
; and if the phase is > 0.5 we
; want to nudge it upwards.
async2in = async1*kphaSyncGravity*asyncStrength

kGrainRate2 = 5
kgdur2 = (kGrainDur*1000)/kGrainRate2
kwavfreq2 = 440
id2 = 2
a2 partikkel kGrainRate2, 0, -1, async2in, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur2,
1, -1, kwavfreq2, 0.5, -1, -1, awavfm, -1, -1,
giCosine, 1, 1, 1, -1, 0, giSine, giSine, giSine,
giSine, -1, asamplepos1, asamplepos1 asamplepos1,
asamplepos1, kwavekey1, kwavekey1, kwavekey1,
kwavekey1, 100, id2

async2, aphase2 partikkelsync, id2

; partikkel instance 1 outputs to the left
; instance 2 outputs to the right

Listing 15.26 Gradual synchronisation. As in listing 15.25, but here we also adjust the grain rate
of partikkel instance 2 to gradually approach the rate of clock pulses from instance 1. This
leads to a quite musical rhythmic gravitation, attracting instance 2 to the pulse of instance 1.

instr 1
iamp = ampdbfs(-12)
kamp linen iamp, 0.01, p3, 1
asamplepos1 = 0

366 15 Granular Synthesis

clock1

clock2

sync strength

sync pulses
(scaled by synch strength)

Fig. 15.7 Soft synchronisation between two clocks, showing the ramp value of each clock and
sync pulses from clock 1 nudging the phase of clock 2. Sync pulses are scaled by sync strength, in
this case increasing strength, forcing clock 2 to synchronise with clock 1

kGrainRate1 = 7
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur1 = (kGrainDur*1000)/kGrainRate1
ka_d_ratio = 0.1
kwavfreq1 = 880
kwavekey1 = 1
awavfm = 0 ; (FM disabled)
id1 = 1
a1 partikkel kGrainRate1, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur1,
1, -1, kwavfreq1, 0.5, -1, -1, awavfm, -1, -1,
giCosine, 1, 1, 1, -1, 0, giSine, giSine, giSine,
giSine, -1, asamplepos1, asamplepos1, asamplepos1,
asamplepos1, kwavekey1, kwavekey1, kwavekey1,
kwavekey1, 100, id1

async1, aphase1 partikkelsync, id1

kphaSyncGravity linseg 0, 2, 0, p3-5, 1, 1, 1
aphase2 init 0
ksync2 init 0
asyncPolarity limit (int(aphase2*2)*2)-1, -1, 1
asyncStrength =

abs(abs(aphase2-0.5)-0.5)*asyncPolarity
; Use the phase of partikkelsync instance 2 to find
; sync polarity for partikkel instance 2.
; If the phase of instance 2 is less than 0.5,
; we want to nudge it down when synchronizing,
; and if the phase is > 0.5
; we want to nudge it upwards.
async2in = async1*kphaSyncGravity*asyncStrength

15.4 Clock Synchronisation 367

; adjust grain rate of second partikkel instance
; to approach that of the first instance
krateSyncGravity = 0.0005
ksyncPulseCount init 0
ksync1 downsamp async1, ksmps
ksync1 = ksync1*ksmps
; count the number of master clock pulses
; within this (slave)clock period
ksyncPulseCount = ksyncPulseCount + ksync1
ksyncRateDev init 0
ksyncStrength downsamp asyncStrength
; sum of deviations within this (slave)clock period
ksyncRateDev = ksyncRateDev + (ksyncStrength*ksync1)

; adjust rate only on slave clock tick
if ksync2 > 0 then
; if no master clock ticks, my tempo is too high
if ksyncPulseCount == 0 then
krateAdjust = -krateSyncGravity
; if more than one master clock tick,
; my tempo is too low
elseif ksyncPulseCount > 1 then
krateAdjust = krateSyncGravity
; if exactly one master clock tick,
; it depends on the phase value at the time
; when the master clock tick was received
elseif ksyncPulseCount == 1 then
krateAdjust = ksyncRateDev*krateSyncGravity*0.02
endif

; Reset counters on (slave)clock tick
ksyncPulseCount = 0
ksyncRateDev = 0
endif

kGrainRate2 init 2
kGrainRate2 = kGrainRate2 +

(krateAdjust*kGrainRate2*0.1)
kgdur2 = (kGrainDur*1000)/kGrainRate2
kwavfreq2 = 440
id2 = 2
a2 partikkel kGrainRate2, 0, -1, async2in, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur2,
1, -1, kwavfreq2, 0.5, -1, -1, awavfm, -1, -1,
giCosine, 1, 1, 1, -1, 0, giSine, giSine, giSine,

368 15 Granular Synthesis

giSine, -1, asamplepos1, asamplepos1, asamplepos1,
asamplepos1, kwavekey1, kwavekey1, kwavekey1,
kwavekey1, 100, id2

async2, aphase2 partikkelsync, id2
ksync2 downsamp async2, ksmps
ksync2 = ksync2*ksmps

15.5 Amplitude Modulation and Granular Synthesis

Amplitude modulation is inherent in all granular processing, because we fade in-
dividual snippets of sound in and out, i.e. modulating the amplitude of the grains.
Under certain specific conditions, we can create the same spectrum with granular
synthesis as we can with amplitude modulation (AM) (figs. 15.8 and 15.9). This
goes to show an aspect of the flexibility of granular synthesis, and can also help us
understand some of the artefacts that can occur in granular processing. Let’s look
at a very specific case: if the grain envelope is sinusoidal and the grain duration is
exactly 1/grainrate (so that the next grain starts exactly at the moment where the
previous grain stops), and the waveform inside grains has a frequency which has
an integer ratio to the grain rate (so that one or more whole cycles of the wave-
form fit exactly inside a grain), the result is identical to amplitude modulation with
a sine wave where the modulation frequency equals the grain rate and the carrier
frequency equals the source waveform frequency. For illustrative purposes, we call
denote grain rate by gr and waveform frequency by wf. We observe a partial at gr,
with sidebands at gr+wf and gf-wf.

Now, if we dynamically change the frequency of the source waveform, the clean
sidebands of traditional AM will start to spread, creating a cascade of sidebands
(Fig. 15.10)

At the point where the waveform frequency attains an integer multiple of the
grain rate, the cascading sidebands will again diminish, approaching a new steady
state where granular synthesis equals traditional AM (see listing 15.27 and Fig.
15.11). The non-integer ratio of gr:wf amounts to a periodic phase reset of the AM
carrier. This may seem like a subtle effect since the phase reset happens when the
carrier has zero amplitude. The difference is significant, as can be heard in the output
of listing If we want to avoid these artefacts, we can create an equivalent effect by
cross-fading between two source waveforms, each being of a frequency in integer
relationship to the grain rate (listing 15.28 and Fig. 15.12).

Listing 15.27 Granular synthesis equals traditional AM when the ratio of grain rate to source
waveform frequency is of an integer ratio (grain rate 200 Hz, waveform frequency 400 Hz). Here
we gradually go from an integer to a non-integer ratio (sweeping the waveform frequency from
400 Hz to 600 Hz, then from 600 Hz to 800 Hz), note the spreading of the sidebands. The example
ends at an integer ratio again (source waveform frequency 800 Hz)

instr 1

15.5 Amplitude Modulation and Granular Synthesis 369

0 500 1000 1500 2000 2500 3000
freq (Hz)

−50

−40

−30

−20

−10

0

a
m

p
 (

d
B

)

Fig. 15.8 FFT of AM with modulator frequency 200 Hz and carrier frequency 400 Hz

0 500 1000 1500 2000 2500 3000
freq (Hz)

−50

−40

−30

−20

−10

0

a
m

p
 (

d
B

)

Fig. 15.9 Granular synthesis with grain rate 200 Hz and source waveform frequency 400 Hz. We
use a sine wave as the source waveform and a sinusoid grain shape

kamp linen 1, 0.1, p3, 0.1
kamp = kamp*ampdbfs(-3)
asamplepos1 = 0

370 15 Granular Synthesis

0 500 1000 1500 2000 2500 3000
freq (Hz)

−50

−40

−30

−20

−10

0

a
m

p
 (

d
B

)

Fig. 15.10 Granular synthesis with grain rate 200 Hz and source waveform frequency 500 Hz. We
use a sine wave as the source waveform and a sigmoid grain shape. Note the extra sidebands added
due to the non-integer relationship between grain rate and source waveform frequency

kGrainRate = p4
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
ipitch1 = p4*2
ipitch2 = p4*3
ipitch3 = p4*4
kwavfreq linseg ipitch1, 1, ipitch1, 2,

ipitch2, 1, ipitch2, 2, ipitch3, 1, ipitch3
kwavekey1 = 1
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 1,0,0,0,0
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, 0,
giSine, giSine, giSine, giSine, iwaveamptab,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

15.5 Amplitude Modulation and Granular Synthesis 371

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

Fig. 15.11 Spectrogram of the waveform produced by listing 15.27, note the extra sidebands dur-
ing source waveform frequency sweep.

Listing 15.28 Similar to the previous example, but avoiding the spreading sidebands by cross-
fading between source waveforms of integer frequency ratios (crossfading a source waveform of
frequency 400 Hz with a waveform of frequency 600 Hz, then cross-fading with another waveform
with frequency 800 Hz)

instr 1
kamp linen 1, 0.1, p3, 0.1
kamp = kamp*ampdbfs(-3)
asamplepos1 = 0
; invert phase to retain constant
; power during crossfade
asamplepos2 = 0.5
asamplepos3 = 0
kGrainRate = p4
async = 0.0 ; (disable external sync)
kGrainDur = 1.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
awavfm = 0 ; (FM disabled)
kwavfreq = 1
kwavekey1 = p4*2
kwavekey2 = p4*3
kwavekey3 = p4*4
; crossface by using wave mix masks
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 0,0,0,0,0
kamp1 linseg 1, 1, 1, 2, 0, 4, 0
kamp2 linseg 0, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0

372 15 Granular Synthesis

kamp3 linseg 0, 4, 0, 2, 1, 1, 1
tablew kamp1, 2, iwaveamptab
tablew kamp2, 3, iwaveamptab
tablew kamp3, 4, iwaveamptab
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, 0,
giSine, giSine, giSine, giSine, iwaveamptab,
asamplepos1,asamplepos2,asamplepos3,asamplepos1,
kwavekey1, kwavekey2, kwavekey3, kwavekey1, 100

out a1

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

Fig. 15.12 Spectrogram of the waveform produced by listing 15.28, cleaner transition with no
extra sidebands

15.6 Pitch Synchronous Granular Synthesis

In this section we will look at the technique pitch synchronous granular synthesis
(PSGS) and use this for formant shifting of a sampled sound. As we have seen in
Section 15.1.2, we can use a high grain rate with a periodic grain clock to con-
stitute pitch. We have also seen that the pitch of the waveform inside grains can
be used to create formant regions. Here we will use pitch tracking to estimate the
fundamental frequency of the source waveform, and link the grain clock to this fun-
damental frequency. This means that the pitch constituted by the granular process

15.6 Pitch Synchronous Granular Synthesis 373

will be the same as for the source sound, while we are free to manipulate the grain
pitch for the purpose of shifting the formants of the synthesised sound. Shifting
the formants of a sampled sound is perceptually similar to changing the size of the
acoustic object generating the sound, and in this manner we can create the illusion
of a “gender change” (or change of head and throat size) for recorded vocal sounds.
The amplitude modulation effects considered in Section 15.5 can be minimised by
using a slightly longer grain size. In our example, we use a grain size of 2/grainrate,
although this can be tuned further.

Listing 15.29 Pitch synchronous granular synthesis used as a formant shift effect

giSoundfile ftgen 0, 0, 0, 1,"Vocphrase.wav",0,0,0

instr 1
kamp adsr 0.0001, 0.3, 0.5, 0.5
kamp = kamp*ampdbfs(-6)
isoundDur = filelen("Vocphrase.wav")
asamplepos1 phasor 1/isoundDur
aref loscil 1, 1, giSoundfile, 1
kcps, krms pitchamdf aref, 100, 800
kGrainRate limit kcps, 100, 800
async = 0.0 ; (disable external sync)
kGrainDur = 2.0
kgdur = (kGrainDur*1000)/kGrainRate
ka_d_ratio = 0.5
kwavfreq = semitone(p4)
kwavekey1 = 1/isoundDur
awavfm = 0 ; (FM disabled)
a1 partikkel kGrainRate, 0, -1, async, 0, -1,

giSigmoRise, giSigmoFall, 0, ka_d_ratio, kgdur,
kamp, -1, kwavfreq, 0.5, -1, -1, awavfm,
-1, -1, giCosine, 1, 1, 1, -1, 0, giSoundfile,
giSoundfile, giSoundfile, giSoundfile, -1,
asamplepos1,asamplepos1,asamplepos1,asamplepos1,
kwavekey1, kwavekey1, kwavekey1, kwavekey1, 100

out a1
endin

schedule(1,0,7,0)
schedule(1,7,7,4)
schedule(1,14,7,8)
schedule(1,21,7,-4)
schedule(1,28,7,-8)

374 15 Granular Synthesis

15.7 Morphing Between Classic Granular Synthesis Types

Many of the classic types of granular synthesis described by Roads [109] originally
required a specialised audio synthesis engine for each variant of the technique. Each
granular type has some specific requirements not shared with other varieties of the
technique. For example, a glisson generator needs the ability to create a specific
pitch trajectory during the span of each grain; a pulsar generator needs grain mask-
ing and parameter linking; a trainlet generator needs an internal synthesiser to pro-
vide the desired parametrically controlled harmonic spectrum of the source wave-
form; and so on. The partikkel opcode in Csound was designed specifically to
overcome the impracticalities posed by the need to use a different audio generator
for each granular type. All of the specific needs associated with each granular type
were implemented in a combined super-generator capable of all time-based gran-
ular synthesis types. Due to a highly optimised implementation, this is not overly
processor intensive, and a high number of partikkel generators can run simul-
taneously in real-time. The following is a brief recounting of some classic granular
synthesis types not already covered in the text, followed by a continuous parametric
morph through all types.

15.7.1 Glissons

Glisson synthesis is a straightforward extension of basic granular synthesis in which
the source waveform for each grain has an independent frequency trajectory. The
grain or glisson creates a short glissando (see Fig. 15.13).

Fig. 15.13 A glisson with a downward glissando during the grain

With partikkel, we can do this by means of pitch masking, with inde-
pendent masks for the start and end frequencies (the iwavfreqstarttab and
iwavfreqendtab parameters of the opcode). Since grain masking gives control
over individual grains, each grain can have a separate pitch trajectory. Due to this
flexibility we can also use statistical control over the grain characteristics.

15.7 Morphing Between Classic Granular Synthesis Types 375

15.7.2 Grainlets

Grainlet synthesis is inspired by ideas from wavelet synthesis. We understand a
wavelet to be a short segment of a signal, always encapsulating a constant num-
ber of cycles. Hence the duration of a wavelet is always inversely proportional to
the frequency of the waveform inside it. Duration and frequency are thus linked
(through an inverse relationship). Grainlet synthesis as described by [109] allows a
generalisation of the linkage between different synthesis parameters. Some exotic
combinations mentioned by Roads are duration/space, frequency/space and ampli-
tude/space. The space parameter refers to the placement of a grain in the stereo field
or the spatial position in a 3D multichannel set-up.

15.7.3 Trainlets

Trainlets differ from other granular synthesis techniques in that they require a very
specific source waveform for the grains. The waveform consists of a bandlimited
impulse train as shown in Figure 15.14.

Fig. 15.14 Bandlimited trainlet pulse

A trainlet is specified by:

• Base frequency.
• Number of harmonics.
• Harmonic balance (chroma): the energy distribution between high- and low-

frequency harmonics.

The partikkel opcode has an internal impulse train synthesiser to enable cre-
ation of these specific source waveforms. This is controlled by the ktraincps,
knumpartials and kchroma parameters. To enable seamless morphing be-
tween trainlets and other types of granular synthesis, the impulse train generator
has been implemented as a separate source waveform, and the mixing of source
waveforms is done by means of grain masks (the iwaveamptab parameter to
partikkel). See Section 15.3.2 for more details about waveform mixing.

376 15 Granular Synthesis

15.7.4 Pulsars

Pulsar audio synthesis relates to the phenomenon of fast-rotating neutron stars (in
astronomy, a pulsar is short for a pulsating radio star), which emit a beam of elec-
tromagnetic radiation. The speed of rotation of these stars can be as high as sev-
eral hundred revolutions per second. A stationary observer will then observe the
radiation as a pulse, appearing only when the beam of emission points toward the
observer. In the context of audio synthesis, Roads [109] uses the term pulsar to de-
scribe a sound particle consisting of an arbitrary waveform (the pulsaret) followed
by a silent interval. The total duration of the pulsar is called the pulsar period, while
the duration of the pulsaret is called the duty cycle (see Fig. 15.15. The pulsaret
itself can be seen as a special kind of grainlet, where pitch and duration are linked.
A pulsaret can be contained by an arbitrary envelope, and the envelope shape af-
fects the spectrum of the pulsaret due to the amplitude modulation effects inherent
in applying the envelope to the signal. Repetitions of the pulsar signal form a pulsar
train. We can use parameter linkage to create the pulsarets and amplitude masking
of grains to create a patterned stream of pulsarets, making a pulsar train).

d s

p

amp mask = 1.0 amp mask = 0.5 amp mask = 0.7 amp mask = 0.3

Fig. 15.15 A pulsar train consisting of pulsarets with duty cycle d, silent interval s and pulsar
period p. Amplitude masks are used on the pulsarets

15.7.5 Formant Synthesis

As we have seen in Sections 15.1.2 and 15.5, we can use granular techniques to
create a spectrum with controllable formants. This can be utilised to simulate vo-
cals or speech, and also other formant-based sounds. Several variants of particle-
based formant synthesis (FOF, Vosim, Window Function Synthesis) have been pro-
posed [109]. As a generalisation of these techniques we can say that the base pitch
is constituted by the grain rate (which is normally periodic), the formant position
is determined by the pitch of the source waveform inside each grain (commonly
a sine wave), and the grain envelope controls the formant’s spectral shape. The
Csound manual for fof2 contains an example of this kind of formant synthesis.
We can also find a full listing of formant values for different vowels and voice types

15.7 Morphing Between Classic Granular Synthesis Types 377

at http://csound.github.io/docs/manual/MiscFormants.html. With partikkel we
can approximate the same effect by using the four source waveforms, all set to sine
waves, with a separate frequency trajectory for each source waveform (Fig. 15.16).
The formant frequencies will be determined by the source waveform frequencies.
We can use waveform-mixing techniques as described in Section 15.3.2 to adjust
the relative amplitudes of the formants. We will not have separate control over the
bandwidth of each formant, since the same grain shape will be applied to all source
waveforms. On the positive side, we only use one grain generator instance so the
synthesiser will be somewhat less computationally expensive, and we are able to
gradually morph between formant synthesis and other types of granular synthesis.

Listing 15.30 Formant placement by transposition of source waveforms, here moving from a bass
‘a’ to a bass ‘e’

kwavekey1 linseg 600, 1, 600, 2, 400, 1, 400
kwavekey2 linseg 1040, 1, 1040, 2, 1620, 1, 1620
kwavekey3 linseg 2250, 1, 2250, 2, 2400, 1, 2400
kwavekey4 linseg 2450, 1, 2450, 2, 2800, 1, 2800

Listing 15.31 Relative level of formants controlled by wave-mix masking table. We use ftmorf
to gradually change between the different masking tables

iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0,
1, 0, 0, 0, 0

iwaveamptab1 ftgentmp 0, 0, 32, -2, 0, 0,
1, ampdbfs(-7), ampdbfs(-9), ampdbfs(-9), 0

iwaveamptab2 ftgentmp 0, 0, 32, -2, 0, 0,
1, ampdbfs(-12), ampdbfs(-9), ampdbfs(-12), 0

iwavetabs ftgentmp 0, 0, 2, -2,
iwaveamptab1, iwaveamptab2

kwavemorf linseg 0, 1, 0, 2, 1, 1, 1
ftmorf kwavemorf, iwavetabs, iwaveamptab

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1000

2000

3000

4000

5000

Fig. 15.16 Sonogram of the formants created by listings 15.30 and 15.31

378 15 Granular Synthesis

15.7.6 Morphing Between Types of Granular Synthesis

To show how to move seamlessly between separate granular types, we will give
an example that morphs continuously through: sampled waveform - single cycle
waveform - glissons - trainlets - pulsars - formant synthesis - asynchronous granular
- waveform mixing. The morph is done in one single continuous tone where only
the parameters controlling the synthesis change over time. The best way to study
this example is to start listening to the produced sound, as the code to implement it
is necessarily somewhat complex. The main automated parameters are:

• source waveform
• source waveform pitch
• phase (time pointer into the source waveform)
• amplitude
• grain rate
• clock sync
• grain shape
• pitch sweep
• trainlet parameters
• grain masking (amplitude, channel, wave mix).

Listening to the sound produced by listing 15.32, we can hear the different gran-
ular types at these times (in seconds into the soundfile):

• 0 s: sampled waveform
• 5 s: single cycle waveform
• 7 s: glissons
• 14 s: trainlets
• 25 s: pulsars
• 35 s: formant synthesis
• 42 s: asynchronous granular
• 49 s: waveform mixing.

Listing 15.32 Morphing through different variations of granular synthesis

nchnls = 2
0dbfs = 1

; load audio files
giVocal ftgen 0, 0, 0, 1, "Vocphrase.wav", 0, 0, 0
giChoir ftgen 0, 0, 0, 1, "Choir.wav", 0, 0, 0
giCello ftgen 0, 0, 0, 1, "Cello.wav", 0, 0, 0
giVibLine ftgen 0, 0, 0, 1, "VibDist.wav", 0, 0, 0

; classic waveforms
giSine ftgen 0,0,65537,10,1
giCosine ftgen 0,0,8193,9,1,1,90

15.7 Morphing Between Classic Granular Synthesis Types 379

giTri ftgen 0,0,8193,7,0,2048,1,4096,-1,2048,0

; grain envelope tables
giSigmoRise ftgen 0,0,8193,19,0.5,1,270,1
giSigmoFall ftgen 0,0,8193,19,0.5,1,90,1
giExpFall ftgen 0,0,8193,5,1,8193,0.00001
giTriangleWin ftgen 0,0,8193,7,0,4096,1,4096,0

; asynchronous clock UDO
opcode probabilityClock, a, k
kdens xin
setksmps 1
krand rnd31 1, 1
krand = (krand*0.5)+0.5
ktrig = (krand < kdens/kr ? 1 : 0)
atrig upsamp ktrig
xout atrig
endop

instr 1

; * use instrument running time
; as the morphing "index"
kmorftime timeinsts

; * source waveform selection automation
; single-cycle waveforms must
; be transposed differently
; than sampled waveforms,
; hence the kwaveXSingle variable
kwaveform1 = (kmorftime < 30 ? giVocal : giSine)
kwave1Single = (kmorftime < 30 ? 0 : 1)
kwaveform2 = (kmorftime < 51 ? giSine : giChoir)
kwave2Single = (kmorftime < 51 ? 1 : 0)
kwaveform3 = (kmorftime < 51 ? giSine : giCello)
kwave3Single = (kmorftime < 51 ? 1 : 0)
kwaveform4 = (kmorftime < 51 ? giSine : giVibLine)
kwave4Single = (kmorftime < 51 ? 1 : 0)
kwaveform1 = (kmorftime > 49 ? giVocal : kwaveform1)
kwave1Single = (kmorftime > 49 ? 0 : kwave1Single)

; * get source waveform length
; (used when calculating transposition
; and time pointer)
kfildur1 = tableng(kwaveform1) / sr

380 15 Granular Synthesis

kfildur2 = tableng(kwaveform2) / sr
kfildur3 = tableng(kwaveform3) / sr
kfildur4 = tableng(kwaveform4) / sr

; * original pitch for each waveform,
; use if they should be transposed individually
kwavekey1 linseg 1, 30, 1, 4, 600, 3, 600, 2,

400, 11, 400, 0, 1
kwavekey2 linseg 440, 30, 440, 4, 1040, 3, 1040, 2,

1620, 12, 1620, 1, semitone(-5)
kwavekey3 linseg 440, 30, 440, 4, 2250, 3, 2250, 2,

2400, 12, 2400, 1, semitone(10)
kwavekey4 linseg 440, 30, 440, 4, 2450, 3, 2450, 2,

2800, 12, 2800, 1, semitone(-3)

; set original key dependant on waveform length
; (only for sampled waveforms,
; not for single cycle waves)
kwavekey1 = (kwave1Single > 0 ?

kwavekey1 : kwavekey1/kfildur1)
kwavekey2 = (kwave2Single > 0 ?

kwavekey2 : kwavekey2/kfildur2)
kwavekey3 = (kwave3Single > 0 ?

kwavekey3 : kwavekey3/kfildur3)
kwavekey4 = (kwave4Single > 0 ?

kwavekey4 : kwavekey4/kfildur4)

; * time pointer (phase) for each source waveform.
isamplepos1 = 0
isamplepos2 = 0
isamplepos3 = 0
isamplepos4 = 0

; phasor from 0 to 1,
; scaled to the length of the source waveform
kTimeRate = 1
asamplepos1 phasor kTimeRate / kfildur1
asamplepos2 phasor kTimeRate / kfildur2
asamplepos3 phasor kTimeRate / kfildur3
asamplepos4 phasor kTimeRate / kfildur4

; mix initial phase and moving phase value
; (moving phase only for sampled waveforms,
; single cycle waveforms use static samplepos)
asamplepos1 = asamplepos1*(1-kwave1Single) +

15.7 Morphing Between Classic Granular Synthesis Types 381

isamplepos1
asamplepos2 = asamplepos2*(1-kwave2Single) +

isamplepos2
asamplepos3 = asamplepos3*(1-kwave3Single) +

isamplepos3
asamplepos4 = asamplepos4*(1-kwave4Single) +

isamplepos4

; * amplitude
kdb linseg -3, 8, -3, 4, -10, 2.5, 0, 0.5, -2, 10,

-2, 3, -6, 2, -6, 1.3, -2, 1.5, -5, 4, -2
kenv expseg 1, p3-0.5, 1, 0.4, 0.001
kamp = ampdbfs(kdb) * kenv

; * grain rate
kGrainRate linseg 12, 7, 12, 3, 8, 2, 60, 5,

110, 22, 110, 2, 14

; * sync
kdevAmount linseg 0, 42, 0, 4, 1, 2, 1, 2, 0
async probabilityClock kGrainRate
async = async*kdevAmount

; * distribution
kdistribution = 0.0
idisttab ftgentmp 0, 0, 16, 16, 1, 16, -10, 0

; * grain shape
kGrainDur linseg 2.5, 2, 2.5, 5, 1.0, 5, 5.0, 4,

1.0, 1, 0.8, 5, 0.2, 10, 0.8, 7, 0.8, 3,
0.1, 5, 0.1, 1, 0.2, 2, 0.3, 3, 2.5

kduration = (kGrainDur*1000)/kGrainRate
ksustain_amount linseg 0, 16, 0, 2, 0.9,

12 ,0.9, 5, 0.2
ka_d_ratio linseg 0.5, 30, 0.5, 5, 0.25, 4, 0.25, 3,

0.1, 7, 0.1, 1, 0.5
kenv2amt linseg 0, 30, 0, 5, 0.5

; * grain pitch
kwavfreq = 1
awavfm = 0 ;(FM disabled)

; * pitch sweep
ksweepshape = 0.75
iwavfreqstarttab ftgentmp 0, 0, 16, -2, 0, 0, 1

382 15 Granular Synthesis

iwavfreqendtab ftgentmp 0, 0, 16, -2, 0, 0, 1
kStartFreq randh 1, kGrainRate
kSweepAmount linseg 0, 7, 0, 3, 1, 1, 1, 4, 0
kStartFreq = 1+(kStartFreq*kSweepAmount)
tablew kStartFreq, 2, iwavfreqstarttab

; * trainlet parameters
; amount of parameter linkage between
; grain dur and train cps
kTrainCpsLinkA linseg 0, 17, 0, 2, 1
kTrainCpsLink = (kGrainDur*kTrainCpsLinkA)+

(1-kTrainCpsLinkA)
kTrainCps = kGrainRate/kTrainCpsLink
knumpartials = 16
kchroma linseg 1, 14, 1, 3, 1.5, 2, 1.1

; * masking
; gain masking table, amplitude for
; individual grains
igainmasks ftgentmp 0, 0, 16, -2, 0, 1, 1, 1
kgainmod linseg 1, 19, 1, 1, 1, 3, 0.5, 1,

0.5, 6, 0.5, 7, 1
; write modified gain mask,
; every 2nd grain will get a modified amplitude
tablew kgainmod, 3, igainmasks

; channel masking table,
; output routing for individual grains
; (zero based, a value of 0.0
; routes to output 1)
ichannelmasks ftgentmp 0, 0, 16, -2, 0, 3,

0.5, 0.5, 0.5, 0.5

; create automation to modify channel masks
; the 1st grain moving left,
; the 3rd grain moving right,
; other grains stay at centre.
kchanmodL linseg 0.5, 25, 0.5, 3, 0.0, 5, 0.0, 4, 0.5
kchanmodR linseg 0.5, 25, 0.5, 3, 1.0, 5, 1.0, 4, 0.5
tablew kchanmodL, 2, ichannelmasks
tablew kchanmodR, 4, ichannelmasks

; amount of random masking (muting)
; of individual grains
krandommask linseg 0, 22, 0, 7, 0, 3, 0.5, 3, 0.0

15.7 Morphing Between Classic Granular Synthesis Types 383

; wave mix masking.
; Set gain per source waveform per grain,
; in groups of 5 amp values, reflecting
; source1, source2, source3, source4,
; and the 5th slot is for trainlet amplitude.
iwaveamptab ftgentmp 0, 0, 32, -2, 0, 0, 1,0,0,0,0

; vocal sample
iwaveamptab1 ftgentmp 0, 0, 32, -2, 0, 0, 1,0,0,0,0
; sine
iwaveamptab2 ftgentmp 0, 0, 32, -2, 0, 0, 0,1,0,0,0
; trainlet
iwaveamptab3 ftgentmp 0, 0, 32, -2, 0, 0, 0,0,0,0,1
; formant ’a’
iwaveamptab4 ftgentmp 0, 0, 32, -2, 0, 0,

1, ampdbfs(-7), ampdbfs(-9), ampdbfs(-9), 0
; formant ’e’
iwaveamptab5 ftgentmp 0, 0, 32, -2, 0, 0,

1, ampdbfs(-12), ampdbfs(-9), ampdbfs(-12), 0
iwavetabs ftgentmp 0, 0, 8, -2,

iwaveamptab1, iwaveamptab2, iwaveamptab3,
iwaveamptab4, iwaveamptab5, iwaveamptab1,
iwaveamptab2, iwaveamptab1

kwavemorf linseg 0, 4, 0, 3, 1, 4, 1, 5, 2, 14, 2, 5,
3, 2, 3, 2, 4, 8, 4, 1, 5, 1, 6, 1, 6, 1, 7

ftmorf kwavemorf, iwavetabs, iwaveamptab

; generate waveform crossfade automation
; (only enabled after 52 seconds, when we
; want to use the 2D X/Y axis
; method to mix sources)
kWaveX linseg 0, 52,0, 1,0, 1,1, 1,1
kWaveY linseg 0, 52,0, 1,1, 1,1, 1,0

if kmorftime < 52 kgoto skipXYwavemix
; calculate gain for 4 sources from XY position
kwgain1 limit ((1-kWaveX)*(1-kWaveY)), 0, 1
kwgain2 limit (kWaveX*(1-kWaveY)), 0, 1
kwgain3 limit ((1-kWaveX)*kWaveY), 0, 1
kwgain4 limit (kWaveX*kWaveY), 0, 1
tablew kwgain1, 2, iwaveamptab
tablew kwgain2, 3, iwaveamptab
tablew kwgain3, 5, iwaveamptab
tablew kwgain4, 4, iwaveamptab

384 15 Granular Synthesis

skipXYwavemix:

a1,a2,a3,a4,a5,a6,a7,a8 partikkel kGrainRate,
kdistribution, idisttab, async, kenv2amt,
giExpFall, giSigmoRise, giSigmoFall,
ksustain_amount, ka_d_ratio,
kduration, kamp, igainmasks, kwavfreq, ksweepshape,
iwavfreqstarttab, iwavfreqendtab, awavfm, -1, -1,
giCosine, kTrainCps, knumpartials, kchroma,
ichannelmasks, krandommask, kwaveform1, kwaveform2,
kwaveform3, kwaveform4, iwaveamptab,
asamplepos1, asamplepos2, asamplepos3, asamplepos4,
kwavekey1, kwavekey2, kwavekey3, kwavekey4, 100

outs a1, a2
endin

schedule(1,0,56.5)

15.8 Conclusions

This chapter has explored granular synthesis, and the combinations of synthesis pa-
rameters that most strongly contribute to the different types of granular synthesis.
Most significant among these are the grain rate and pitch along with grain enve-
lope and source waveform. We can also note that the perceptual effect of changing
the value of one parameter sometimes strongly depends on the current value of
another parameter. One example is the case with grain pitch, which gives a pitch
change when the grain rate is low, and a formant shift when the grain rate is high.
We have also looked at the application of granular techniques for processing a live
audio stream, creating granular delays and reverb effects. Furthermore we looked
at manipulation of single grains to create intermittencies, filtering, subharmonics,
spatial effects and waveform mixing. Techniques for clock synchronisation have
also been shown, enabling soft (gradual) or hard synchronisation between different
partikkel instances and/or other clock sources. The relationship between AM
and granular synthesis was considered, and utilised in the pitch synchronous granu-
lar synthesis technique. Finally, a method of parametric morphing between different
types of granular synthesis was shown. Hopefully, the potential of granular synthesis
as an abundant source of sonic transformations has been sketched out, encouraging
the reader to further experimentation.

Chapter 16

Physical Models

Abstract This chapter will introduce the area of physical modelling synthesis,
which has attracted much interest recently. It will discuss the basic ways which can
be used to model and simulate the sound-producing parts of different instruments.
It begins with an introduction to waveguides, showing how these can be constructed
with delay lines. It then discusses modal synthesis, which is another approach that
is based on simulating resonances that exist in sound-producing objects. Finally, it
presents an overview of finite difference methods, which can produce very realistic
results, but with considerable computational costs.

16.1 Introduction

Humans have been making and playing musical instruments for thousands of years,
and have developed ways of controlling the sounds they make. One of the problems
in computer-realised instruments is the lack of knowledge of how they behave, and
in particular how the control parameters interact. This leads to the idea of mimicking
the physical instrument, so we may understand the controls, but of course takes
the model beyond possible reality, for example by having unreasonable ranges or
impossible sizes or materials.

Thus we have collections of sounds derived from or inspired by physical arte-
facts. Within this category there are a wide variety of levels of accuracy and speed.
Here we explore separately models based on waveguides, detailed mathematical
modelling and models inspired by physics but approximated for speed.

16.2 Waveguides

It is well known that sound travelling in a perfect medium is governed by the wave
equation; in one spatial dimension that is ∂ 2u

∂ t2 = c2 ∂ 2u
∂x2 . This equation actually has a

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

385
16

386 16 Physical Models

simple solution. It is easy to see that f (x−ct) is a solution, for an arbitrary function
f . Similarly g(x+ ct) is a solution. Putting these together we see that f (x− ct)+
g(x+ ct) is a very general solution.

In order to interpret this let us concentrate on the f function. As time increases
the shape will stay the same, but moved forward in space, with the constant c being
the speed of movement. Considering the case of a perfect string, this corresponds to
a wave travelling in the positive direction. It is easy to see that the g component is
also a wave travelling in the negative direction. It is this solution and interpretation
that give rise to the waveguide concept.

16.2.1 Simple Plucked String

If we consider a finite string held at both ends, such as is found in physical string
instruments, we can apply the waveguide idea directly. It is simplest to consider
a plucked string, so the initial shape of the string is a triangle divided equally be-
tween the functions f and g. On releasing the pluck the triangle will move in both
directions. To continue the model we need to know what happens at the held ends.
Experimentation shows that the displacement is inverted and reflected, so the wave
travels back. But realistically some of the energy is lost, and converted into the
sound we wish to hear. A simple model for this loss in a low-pass filter, such as
an averaging one yn = (xn + xn−1)/2, which can be placed at one end of the string
(see also Section 12.2.2 for an analysis of this particular filter). To listen we take
a point on the string and copy the displacement value to the output. If we use two
simple delay lines to model the left- and right-moving waves we obtain a diagram
like Fig. 16.1.

�

��

�

�
��

�

loss

�

−1�× × −1�

�������
�����������

�������
�����������

�

�

��

+ � output

Fig. 16.1 Diagram of a simple pluck model

But what pitch does this produce? That can be calculated by considering the
history of an initial impulse in one of the delay lines. If the delay in each line is
N samples it will take 2N samples, plus any delay incurred in the loss filter. In the

16.2 Waveguides 387

case of a simple averaging filter the group delay is half a sample, so we can play
pitches at sr/(2N+0.5) Hz. For low frequencies the errors are small, a 50 Hz target
and CD quality sampling rate we can choose 49.97 Hz or 50.09 Hz with the delay
lines 441 or 440 long. But for higher frequencies the error is very great; at 2,000 Hz
we need to chose between 1,960 and 2,151 Hz. This can be solved by introducing
another all-pass filter into the signal path which can have an adjustable delay to
tune it accurately. Generally speaking the parameters of the model are the delay line
lengths, the initial pluck shape, the loss and tuning filters, and the location of the
reading to the delay lines for the output.

It is possible to encode all this within Csound, using opcodes delayr and
delayw, and filter opcodes.

Listing 16.1 Simple waveguide string model

<CsoundSynthesizer>
<CsInstruments>
/**********************
asig String kamp,ifun,ils,ipos,ipk
kamp - amplitude
ifun - fundamental freq
ils - loss factor
ipos - pluck position
ipk - pickup position

********************/
opcode String,a,kiii
setksmps 1
kamp,ifun,ipos,ipk xin
ain1 init 0
ain2 init 0
idel = 1/(2*ifun)
kcnt line 0, p3, p3
if kcnt < idel then
ainit1 linseg 0,idel*ipos, 1, idel*(1-ipos),0
ainit2 linseg 0,idel*(1-ipos),-1, idel*ipos,0

else
ainit1=0
ainit2=0

endif
awg1 delayr idel
apick1 deltap idel*(1-ipk)

delayw ain1+ainit1
awg2 delayr idel
apick2 deltap idel*ipk

delayw ain2+ainit2
ain1 = (-awg2 + delay1(-awg2))*0.5
ain2 = -awg1

388 16 Physical Models

xout (apick1+apick2)*kamp
endop

instr 1
asig String p4,p5,0.3,0.05
out asig
endin

</CsInstruments>
<CsScore>
i1 0 1 10000 220
i1 + 1 10000 440
i1 + 1 10000 330
i1 + 1 10000 275
i1 + 1 10000 220
</CsScore>
</CsoundSynthesizer>

However there are a number of packaged opcodes that provide variants on the theme.
The pluck opcode implements a much simplified model, the Karplus and Strong
model, with one delay and random (white noise) initial state [57]. Fuller implemen-
tations can be found in the opcodes wgpluck and wgpluck2, which use slightly
different filters and tuning schemes.

It should be noted what these models do not provide: in particular instrument
body, sympathetic string vibration and vibration angle of the string. Body effects
can be simulated by adding one of the reverberation methods to the output sound. A
limited amount of sympathetic sound is provided by repluck, which includes an
audio excitement signal, and streson, which models a string as a resonator with
no initial pluck.

A mandolin has pairs of strings which will be at slightly different pitches; the
waveguide model can be extended to this case as well, as in opcode mandol.

Closely related to plucked strings are bowed strings, which use the same model
except the bow inserts a sequence of small plucks to insert energy into the string.
Csound offers the opcode wgbow for this. There are additional controls such as
where on the string the bowing happens, or equivalently where in the delay line to
insert the plucks, and how hard to press and move the bow, which is the same as
controlling the mini-plucks.

Tuning

As discussed above, the waveguide model can only be tuned to specific frequencies
at sr/(2N+0.50) Hz, where N is the length in samples of each delay line. In order to
allow a fractional delay to be set for fine-tuning of the model, we can add an all-pass
filter to the feedback loop. As discussed in Chapter 13, these processors only affect
the timing (phase) of signals, and leave their amplitude unchanged. With a simple

16.2 Waveguides 389

first-order all-pass filter, we can add an extra delay of less than one sample, so that
the waveguide fundamental has the correct pitch.

The form of this all-pass filter is

y(t) = c(x(t)− y(t −1))+ x(t −1) (16.1)

where x(t) is the input, y(t −1) and x(t −1) are the input and output delayed by one
sample, respectively. The coefficient c is determined from the amount of fractional
delay d (0 < d < 1) required:

c =
1−d
1+d

(16.2)

The total delay in samples will then be Nwdelay + 0.5+ d, where Nwdelay is the
total waveguide delay length. To fine-tune the model, we need to

1. Obtain the waveguide delay length Nwdelay:

Nwdelay = � sr
f0
−0.5� (16.3)

where �.� is the floor function.
2. Calculate d:

d =
sr
f0
− (Nwdelay +0.5) (16.4)

3. Insert the all-pass filter into the model, using the coefficient c as above.

Finally, when we come to implement this, it is easier to aggregate the two delay
lines used in the waveguide into one single block, removing the explicit reflection
at one end. Because the reflections cancel each other, we should also remove the
other one in the feedback loop. We can still initialise and read from the delay line
as before, but now taking account of this end-to-end joining of the two travelling
directions. By doing this, we can manipulate its size more easily. Also, with a single
delay line, we do not require sample-by-sample processing (ksmps=1), although we
will need to make sure that the minimum delay required is not less than the orchestra
ksmps.

A fine-tuned version of the String UDO is shown below. It uses the Ap UDO,
which implements the all-pass tuning filter.

Listing 16.2 String model with an all-pass tuning filter

/**********************
asig Ap ain,ic
ain - input signal
ic - all-pass coefficient

********************/
opcode Ap,a,ai
setksmps 1
asig,ic xin

390 16 Physical Models

aap init 0
aap = ic*(asig - aap) + delay1(asig)
xout aap
endop

/**********************
asig String kamp,ifun,ils,ipos,ipk
kamp - amplitude
ifun - fundamental freq
ils - loss factor
ipos - pluck position
ipk - pickup position

********************/
opcode String,a,kiii
kamp,ifun,ipos,ipk xin
aap init 0
idel = 1/ifun
ides = sr*idel
idtt = int(ides-0.5)
ifrc = ides - (idtt + 0.5)
ic = (1-ifrc)/(1+ifrc)
kcnt line 0, p3, p3
if kcnt < idel then
ainit linseg 0,ipos*idel/2,-1,

(1-ipos)*idel,1,
ipos*idel/2,0

else
ainit=0
endif
awg delayr idtt/sr
apick1 deltap idel*(1-ipk)
apick2 deltap idel*ipk
afdb = Ap((awg + delay1(awg))*0.5, ic)

delayw afdb+ainit
xout (apick1+apick2)*kamp

endop

16.2.2 Wind Instruments

Blowing into a cylindrical tube is in many ways similar to the string model above.
In this case, there is a pressure wave and an associated displacement of air, but the
governing equation and general solution is the same. The main difference is at the
ends of the tube. At a closed end the displacement wave just reverses its direction

16.2 Waveguides 391

with the same negation of the string. The open end is actually very similar to the
string case as the atmosphere outside the tube is massive and the wave is reflected
back up the tube without the negation, although with energy loss.

The other component is the insertion of pressure into the tube from some reed,
fipple or mouthpiece. Modelling this differentiates the main class of instrument. A
basic design is shown in Fig. 16.2, where a reed input for a clarinet is depicted, with
a waveguide consisting of one open and one closed end. In this case, because of the
mixed boundaries, the fundamental frequency will be one octave lower compared to
an equivalent string waveguide.

�

��

×
�

� −1

� �

�
loss

�

air
pressure
� reed

output

Fig. 16.2 Diagram of a simple wind instrument

Examples of cylindrical tubular instruments include flutes, clarinets and trum-
pets. To complete these instruments we need to consider the action of blowing.

The simplest model is a single reed as used in a clarinet. A reed opens by bending
away from the rest position under pressure from the breath, mitigated by the pressure
in the tube. The exact way in which this happens is non-linear and depends on the
reed stiffness. A sufficiently accurate table lookup for this was developed by Perry
Cook [27], and this is used in the csound wgclar opcode. There are a range of
parameters, controlling things such as reed stiffness, amount of noise and the time
is takes to start and stop blowing.

We can modify the string example to create a clarinet waveguide instrument by
adding a reed mode as shown in Fig. 16.2, as well as a better low-pass filter to
simulate the loss at the bell end. The output of this instrument has an inherent DC
offset, which we can block using a dcblock2 filter.

Listing 16.3 Clarinet waveguide model

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
isiz = 16384
ifn ftgen 1,0,isiz,-7,0.8,0.55*isiz,-1,0.45*isiz,-1

392 16 Physical Models

/*********************************
idel LPdel ifo,ifc
idel - lowpass delay (samples)
ifo - fund freq
ifc - cutoff freq

**********************************/
opcode LPdel,i,ii
ifo,ifc xin
ipi = $M_PI
itheta = 2*ipi*ifc/sr
iomega = 2*ipi*ifo/sr
ib = sqrt((2 - cos(itheta))ˆ2 -1) - 2 + cos(itheta)
iden = (1 + 2*ib*cos(iomega) + ib*ib)
ire = (1. + ib + cos(iomega)*(ib+ib*ib))/iden
img = sin(iomega)*(ib + ib*ib)/iden
xout -taninv2(img,ire)/iomega
endop

/*********************************
asig Reed ain,kpr,kem,ifn
ain - input (feedback) signal
kpr - pressure amount
kem - embouch pos (0-1)
ifn - reed transfer fn

**********************************/
opcode Reed,a,akki
ain,kpr,kem,ifn xin
apr linsegr 0,.005,1,p3,1,.01,0
asig = ain-apr*kpr-kem
awsh tablei .25*asig,ifn,1,.5
asig *= awsh
xout asig
endop

/**********************
asig Ap ain,ic
ain - input signal
ic - all-pass coefficient

********************/
opcode Ap,a,ai
setksmps 1
asig,ic xin
aap init 0
aap = ic*(asig - aap) + delay1(asig)

16.2 Waveguides 393

xout aap
endop

/******************************
asig Pipe kamp,ifun,ipr,iem,ifc
kamp - amplitude
ifun - fundamental
ipr - air pressure
iem - embouch pos
ifc - lowpass filter factor

*******************************/
opcode Pipe,a,kiiii
kamp,ifun,ipr,ioff,ifc xin
awg2 init 0
aap init 0
ifun *= 2
ifc = ifun*ifc
ilpd = LPdel(ifun,ifc)
ides = sr/ifun
idtt = int(ides - ilpd)
ifrc = ides - (idtt + ilpd)
ic = (1-ifrc)/(1+ifrc)
awg1 delayr idtt/sr
afdb = Ap(tone(awg1,ifc), ic)

delayw Reed(-afdb,ipr,ioff,1)
xout dcblock2(awg1*kamp)
endop

instr 1
asig Pipe p4,p5,p6,p7,p8

out asig
endin

</CsInstruments>
<CsScore>
i1 0 1 10000 440 0.7 0.7 6
i1 + 1 10000 880 0.9 0.7 5
i1 + 1 10000 660 0.7 0.7 4.5
i1 + 1 10000 550 0.8 0.6 3
i1 + 1 10000 440 0.7 0.6 3.5
</CsScore>
</CsoundSynthesizer>

Note that the use of an IIR filter such as tone for the loss makes the fine-tuning
of the waveguide somewhat more complex. However, the all-pass filter approach
can still be used to fix this. All we need to do is to calculate the exact amount of

394 16 Physical Models

delay that is added by the filter, which is dependent on the cut-off frequency fc.
With this, the phase response of the filter will tell us what the delay is at a given
fundamental. The i-time UDO LPdel calculates this for the specific case of the
tone filter, which is defined as

y(t) = (1+b)x(t)−by(t −1) (16.5)

b =
√
(2− cos(θ))2 −1−2+ cos(θ) (16.6)

where θ = 2π fc/sr. With this in hand, we can proceed to determine the waveg-
uide length, and the necessary fractional delay. In LPDel, we calculate the phase
response for this filter at the fundamental frequency and return it as a time delay in
samples. This is then subtracted from the desired length for this fundamental. The
integral part of this is the delay line size; the fractional part determines the all-pass
coefficient.

The flute model is similar to the clarinet except excitation is based on a non-
linear jet that fluctuates over the lip hole and the pipe is open at both ends. Again the
Csound opcode wgflute implements this with a detailed architecture due to Cook.
An opcode modelled on the brass family wgbrass uses an excitation controlled by
the mass, spring constant and damping of the lip, but is otherwise similar.

What has not been considered so far is how different pitches are played. There
are two approaches; the simpler is to take inspiration from the slide trombone and
simply change the length of the tube (delay line). As long as the lowest pitch of
an instrument is known, this is easy to implement. It is indeed the method used in
the Csound opcodes. The alternative is tone-holes, as usually found on woodwind
instruments. These can be modelled by splitting the delay line and inserting a filter
system to act for the energy loss. This is explored in detail in research papers [113,
78].

16.2.3 More Waveguide Ideas

The concept of the waveguide is an attractive one and has been used outside strings
and tubes. Attempts have been made to treat drum skins as a mesh of delays with
scattering at the nodes where they meet. There are a number of problems with this,
lsuch the connectivity of the mesh (Fig. 16.3 and what happens at the edge of a
circular membrane. There are a number of research papers about this but so far the
performance has not been anywhere near real-time, and other approaches, typically
noise and filters, have proved more reliable. However this remains a possible future
method [61, 4, 3].

16.3 Modal Models 395

Fig. 16.3 Two possible drum meshes

16.3 Modal Models

In Section 12.4 the idea of constructing a sound from its sinusoidal partials was
discussed. A related idea for a physical object is to determine its basic modes of
vibration and how they decay and to create a physical model based on adding these
modes together, matching the initial excitation. The resulting system can be very im-
pressive (see [107] for example), but it does require a significant amount of analysis
and preprocessing for an arbitrarily shaped object.

This method is particularly useful for generating the sound from a regularly
shaped object such as a wooden or metallic block, where the modes can be pre-
calculated or estimated. Using a rich excitement we can get a usable sound. This
example shows the general idea. The sound decay needs to be long to get the effect.

Listing 16.4 Marimba model using modal resonances

<CsoundSynthesizer>
<CsInstruments>
gicos ftgen 0, 0,8192,11,1

/**********************
asig MyMarimba idur,iamp,ifrq,ibias
idur - time to decay
iamp - amplitude
ifrq - fundamental freq

********************/
opcode MyMarimba,a,iii

idur,ifrq,iamp xin
; envelope
k1 expseg .0001,.03,iamp,idur-.03,.001
; anticlick

396 16 Physical Models

k25 linseg 1,.03,1,idur-.03,3
; power to partials
k10 linseg 2.25,.03,3,idur-.03,2
a1 gbuzz k1*k25,ifrq,k10,0,35,gicos
a2 reson a1,500,50,1 ;filt
a3 reson a2,1500,100,1 ;filt
a4 reson a3,2500,150,1 ;filt
a5 reson a4,3500,150,1 ;filt
a6 balance a5,a1

xout a6
endop

instr 1
ifq = cpspch(p4)
asig MyMarimba 20,ifq,p5

out asig
endin
</CsInstruments>
<CsScore>
i1 0 10 8.00 30000
i1 4 . 8.02 30000
i1 8 . 8.04 30000
i1 12 . 8.05 30000
i1 16 . 8.07 30000
i1 20 . 8.09 30000
i1 24 . 8.11 30000
i1 28 . 9.00 30000
i1 32 . 8.00 10000
i1 32 . 8.04 10000
i1 32 . 8.07 10000
</CsScore>
</CsoundSynthesizer>

In Csound this technique is used in three opcodes, marimba, vibes and
gogobel, all build from four modal resonances but with more controls that the
simple marimba shown above.

It is possible to use the modal model directly, supported by the opcode mode.
This is a resonant filter that can be applied to an impulse or similarly harmonically
rich input to model a variety of percussive sounds. For example we may model the
interaction between a physical object and a beater with the following UDO.

Listing 16.5 Mode filter example

opcode hit,a,iiiii
ihard, ifrq1, iq1, ifrq2, iq2 xin
ashock mpulse 3,0 ;; initial impulse
; modes of beater-object interaction

16.4 Differential Equations and Finite Differences 397

aexc1 mode ashock,ifrq1,iq1
aexc2 mode ashock,ifrq2,iq2
aexc = ihard*(aexc1+aexc2)/2
;"Contact" condition : when aexc reaches 0,
; the excitator looses contact with the
; resonator, and stops influencing it
aexc limit aexc,0,3*ihard
xout aexc

endop

This can be applied to the following object.

Listing 16.6 Modal resonances example

opcode ring,a,aiiii
aecx, ifrq1, iq1, ifrq2, iq2 xin
ares1 mode aexc,ifrq1,iq1
ares2 mode aexc,ifrq2,iq2
ares = (ares1+ares2)/2
xout aexc+ares

endop

All that remains is to use suitable frequencies and Q for the interactions. There
are tables of possible values in an appendix to the Csound manual, but a simple
example might be

instr 1
astrike hit ampdb(68),80, 8, 180, 3
aout ring astrike, 440, 60, 630, 53
out aout

endin

More realistic outputs can be obtained with more uses of the mode resonator in
parallel, and a more applicable instrument might make use of parameters to select
the parameters for the resonators.

16.4 Differential Equations and Finite Differences

In the earlier discussion of a physical model of a string it was stated that it was
for a perfect string; that is for a string with no stiffness or other properties such as
shear. If we think about the strings of a piano, the stiffness is an important part of the
instrument and so the two wave solution of a waveguide is not valid. The differential
equation governing a more realistic string is

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 −κ2 ∂ 4u
∂x4 (16.7)

398 16 Physical Models

where κ is a measure of stiffness. To obtain a solution to this one creates a dis-
crete grid in time and space, time step size being one sample, and approximates the
derivative by difference equations, where u(xn, t) is the displacement at point xn at
time t:

∂u
∂x

→ un+1 −un

δx
∂ 2u
∂x2 → un+1 −2un +un−1

δx2

(16.8)

and similarly for the other terms. For example the equation

∂u
∂ t

=
∂u
∂x

(16.9)

could become

u(xn, t +1) = u(xn, t)+
1

δx
u(xn+1, t)+(1− 1

δx
)u(xn, t) (16.10)

Returning to our stiff strings this mechanism generates an array of linear equa-
tions in u(n, t) which, subject to some stability conditions on the ratio of the time
and space steps, represents the evolution in time of the motion of the string. This
process, a finite difference scheme, is significantly slower to use than the waveguide
model, but is capable of very accurate sound. Additional terms can be added to the
equation to represent energy losses and similar properties.

Forms such as this are hard and slow to code in the Csound language. Producing
usable models is an active research area [11], and GPU parallelism is being used to
alleviate the performance issues.

There are three opcodes in Csound that follow this approach while delivering
acceptable performance, modelling a metal bar, a prepared piano string and a rever-
berating plate.

A thin metal bar can be considered as a special case of a stiff string, and a finite
difference scheme set up to calculate the displacement of the bar at a number of
steps along it. The ends of the bar can be clamped, pivoting or free, and there are
parameters for stiffness, quality of the strike and so on. The resulting opcode is
called barmodel.

A mathematically similar but sonically different model is found in the opcode
prepiano which incorporates three stiff strings held at both ends that interact,
and with optional preparations of rattles and rubbers to give a Cageian prepared
piano. The details can be found in [12].

The third opcode is for a two-dimensional stiff rectangular plate excited by an
audio signal and allowed to resonate. This requires a two-dimensional space grid
to advance time which adds complexity to the difference scheme but is otherwise
similar to the strings and bars. The opcode is called platerev and allows a defined
stiffness and aspect ratio of the plate as well as multiple excitations and listening
points. The added complexity makes this much slower than real-time.

16.6 Other Approaches 399

16.5 Physically Inspired Models

Not quite real physical modelling, there is a class of instrument models introduced
by Cook [28] that are inspired by the physics but do not solve the equations, but
rather use stochastic methods to produce similar sounds. Most of these models are
percussion sounds.

Consider a maraca. Inside the head there are a number of seeds. As the maraca
is moved the seeds fly in a parabola until they hit the inner surface, exciting the
body with an impulse. A true physical model would need to follow every seed in its
motion. But one could just think that the probability of a seed hitting the gourd at a
certain time depends on the number of seeds in the instrument and how vigorously it
is shaken. A random number generator suitably driven supplies this, and the model
just needs to treat the gourd as a resonant filter. That is the thinking behind this class.

In Csound there are a number of shaken and percussive opcodes that use this
method; cabasa, crunch, sekere, sandpaper, stix, guiro,
tambourine, bamboo, dripwater, and sleighbells. The differences are
in the body resonances and the excitations. The inspiration from physics is not
limited to percussion. It is possible to model a siren, or a referee’s whistle, in a
similar way. In the whistle the pea moves round the body in response to the blowing
pressure, and the exit jet is sometimes partially blocked by the pea as it passes. The
model uses the pressure to control the frequency of blocking, with some stochastic
dither to give an acceptable sound.

16.6 Other Approaches

There is an alternative way of making physical models where all interactions are
seen as combinations of springs, masses and dampers. In many ways this is simi-
lar to the differential equation approach and may end in computations on a mesh.
Examples of these ideas can be found in the literature such as [33] or the CORDIS-
ANIMA project [60].

16.6.1 Spring-Mass System

While there are no Csound opcodes using the CORDIS-ANIMA abstraction, spring-
mass instruments can be designed using similar principles. A simple example is
given by a spring-mass system. If we can set up a number of equations that describe
the movement of the system, in terms of position (in one dimension) and velocity,
then we can sample it to obtain our audio signal (Fig. 16.4).

A force acting on a mass in such a system, whose displacement is x, can be
defined by

400 16 Physical Models

Fig. 16.4 Spring-mass system, whose position is sampled to generate an output signal

F =−k× x (16.11)

where k is the spring constant for a mass on a spring. From this, and Newton’s sec-
ond law (F = ma), we can calculate the acceleration a in terms of the displacement
position x and mass m:

a =
−k× x

m
(16.12)

Finally, to make the system move we need to propagate the changes in velocity
and position. These are continuous, so we need a discretisation method to do this.
The simplest of these is Euler’s method:

yn+1 = yn + y′(t)×h (16.13)

with tn+1 = tn +h.
In other words, the next value of a function after a certain step is the combination

of the current one plus a correction that is based on its derivative and the step. For
the velocity v, this translates to

vn+1 = vn +a×h (16.14)

as the acceleration is the derivative of the velocity. For the position x, we have

xn+1 = xn + v×h (16.15)

That works for an ideal system, with no dampening. If we want to dampen it,
then we introduce a constant d, 0 < d < 1, to the velocity integration:

vn+1 = vn ×d +a×h (16.16)

16.6 Other Approaches 401

and we have everything we need to make a UDO to model this system and sample
the position of the mass as it oscillates:

Listing 16.7 A spring-mass UDO

/**************************
asig Masspring ad,ik,idp,ih
ad - external displacement
ik - spring constant
idp - dampening constant
ims - mass

**************************/
opcode Masspring,a,aiiii
setksmps 1
ad,ik,idp,ims xin
av init 0
ax init 0
ih = 1/sr
ac = -(ik*ax+ad)/ims
av = idp*av+ac*ih
ax = ax+av*ih
xout ax
endop

Note that h is set to the sampling period (1/sr), which is the step size of the audio
signal. To run the opcode, we need to set up the spring constant, the mass of the
object and the dampening. The first two determine the pitch of the sound, whereas
the final parameter sets how long the sound will decay.

Since this is a simple harmonic system, we can use the well-known relationship
between period T0, mass m and spring constant k:

T0 = 2π
√

m
k

(16.17)

which can be reworked to give a certain model mass for an arbitrary f0 and spring
constant k:

m = k×
(

1
2π f0

)2

(16.18)

The value of k will influence the amplitude of the audio signal, as it can be inter-
preted as the amount of stiffness in the spring. Increasing it has the effect of reducing
the output level for a given f0. The actual amplitude will also vary with the mass,
increasing for smaller masses for the same k. The following example shows an in-
strument that is designed to use the model. It makes an initial displacement (lasting
for one k-cycle) and then lets the system carry on vibrating.

Listing 16.8 An instrument using the spring-mass UDO

instr 1

402 16 Physical Models

asig = p4
ifr = p5
idp = p6
ik = 1.9
im = ik*(1/(2*$M_PI*ifr))ˆ2
ams Masspring asig,ik,idp,im
out dcblock(ams)
asig = 0
endin
schedule(1,0,5,0dbfs/2,440,0.9999)

The input into the system is very simple, like a single strike. Other possibilities
can be experimented with, including using audio files, to which the system will
respond like a resonator.

16.6.2 Scanned Synthesis

Scanned synthesis [130] is another method that can be cast as a physical modelling
technique. From this perspective, it can be shown to be related to the idea of a
network of masses, springs and dampers. The principle behind it is a separation
between a dynamic physical (spatial) system and the reading (scanning) of it to
produce the audio signal. These two distinct components make up the method.

The configuration of the physical system can be done in different ways. In the
Csound implementation, this is done by defining a set of masses, which can be con-
nected with each other via a number of springs. This creates a spring-mass network,
whose components have the basic characteristics of mass, stiffness, dampening and
initial velocity. This is set into motion, making it a dynamic system.

The fundamental layout of the network is set up by the connections between the
masses. This is defined in the scanning matrix M, which is an N ×N matrix, where
N is the number of masses in the system, containing zeros and ones. If Mi, j is set
to one, we will have a connection between the mass elements indexed by i and j. A
zero means that there is no connection.

For instance, with N = 8, the following matrix has all the elements connected in
a line, making it an open unidirectional string:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.19)

16.6 Other Approaches 403

As can be seen, mass 0 is connected to mass 1, which is connected to mass
2 etc. Mi,i+1 = 1 for 1 ≤ i < N − 1. Linked at right angles to each mass there are
centring springs to which some dampening can be applied. By adding the backwards
connections from the end of the string, Mi+1,i = 1, we can make it bidirectional
(Fig. 16.5). By adding two further connections (N −1 to 0, and 0 to N −1), we can
make a circular network. Many other connections are possible.

Fig. 16.5 Bidirectional string network with eight masses (represented by balls) connected by
springs. There are also vertical springs to which dampening is applied.

Csound will take matrices such as these as function tables, where a two-dimensional
matrix is converted to a vector in row-major order (as sequences of rows, ViN+ j =
Mi, j):

V = (M0,0,M0,1, ...,M0,N−1,M1,0, ...,MN−1,N−1)

The following code excerpt shows how connection matrix could be created for a
bidirectional string, using the table-writing opcode tabw i:

ii init 0
while ii < iN-1 do

tabw_i 1,ii*iN+ii+1,ift
tabw_i 1,(ii+1)*iN+ii,ift
ii += 1

od

where ift is the function table holding the matrix in vector form, and iN is the
number of masses in the network. The opcode that sets up the model and puts it into
motion is scanu:

scanu ifinit, iupd, ifvel, ifmass,
ifcon, ifcentr, ifdamp,
kmass, kstif, kcentr, kdamp,
ileft, iright, kx, ky,
ain, idisp, id

ifinit: function table number with the initial position of the masses. If nega-
tive, it indicates the table is used as a hammer shape.
iupd: update period, determining how often the model calculates state changes.
ifvel: initial velocity function table.
ifmass: function table containing the mass of each object.
ifcon: connection matrix (N ×N size table).

404 16 Physical Models

ifcentr: function table with the centring force for each mass. This acts or-
thogonally to the connections in the network.
ifdamp: function table with the dampening factor for each mass
kmass: mass scaling.
kstif: spring stiffness scaling.
kdamp: dampening factor scaling.
ileft, iright: position of left/right hammers (init < 0).
kx: position of a hammer along the string (0 ≤ kx ≤ 1), (init < 0).
ky: hammer power (init < 0).
ain: audio input that can be used to excite the model.
idisp: if 1, display the evolution of the masses.
id: identifier to be used by a scanning opcode. If negative, it is taken to be a
function table to which the waveshape created by the model will be written to, so
any table-reading opcode can access it.

All tables, except for the matrix one, should have the same size as the number of
masses in the network. To make sound out of the model, we define a scanning path
through the network, and read it at a given rate. For each such model, we can have
more than one scanning operation occurring simultaneously:

ar scans kamp, kfreq, iftr, id[,iorder]

where kfr is the scanning frequency, iftr is the function table determining the
trajectory taken, and id is the model identifier. The output amplitude is scaled by
kamp. The last, optional, parameter controls the interpolation order, which ranges
from 0, the default, to fourth-order. Note also that other opcodes can access the
waveform produced by the model if that is written to a function table.

The trajectory function table is a sequence of mass positions, 0 to N − 1, in an
N-sized table, which will be used as the scanning order by the opcode. The fol-
lowing example demonstrates a scanu - scans pair, using a bi-directional string
network with 1024 masses. The scan path is linear up and down the string. The
scanning frequency and the model update rate are also controlled as parameters to
the instrument

Listing 16.9 Scanned synthesis example

giN = 1024
ginitf = ftgen(0,0,giN,7,0,giN/2,1,giN/2,0)
gimass = ftgen(0,0,giN,-7,1,giN,1)
gimatr = ftgen(0,0,giNˆ2,7,0,giNˆ2,0)
gicntr = ftgen(0,0,giN,-7,0,giN,2)
gidmpn = ftgen(0,0,giN,-7,0.7,giN,0.9)
givelc = ftgen(0,0,giN,-7,1,giN,0)
gitrjc = ftgen(0,0,giN,-7,0,giN/2,giN-1,giN/2,0)

instr 1
ii init 0
while ii < giN-1 do

16.7 Conclusions 405

tabw_i 1,ii*giN+ii+1,gimatr
tabw_i 1,(ii+1)*giN+ii,gimatr
ii += 1

od
asig init 0
scanu ginitf,1/p6,

givelc,gimass,
gimatr,gicntr,gidmpn,
1,.1,.1,-.01,0,0,
0,0,asig,1,1

a1 scans p4,p5,gitrjc,1,3
out a1

endin
schedule(1,0,10,0dbfs/20,220,100)

Scanned synthesis is a complex, yet very rich method for generating novel
sounds. Although not as completely intuitive as the simpler types of physical mod-
elling, it is very open to exploration and interactive manipulation.

16.6.3 ... and More

Csound has a rich collection of opcodes including ones not described above, but that
owe their existence to the thinking of this chapter. For example there are opcodes
for a simplified scanned synthesis and for a faster implementation lacking just one
little-used option. One might also explore wave terrain synthesis [14], which pre-
dates scanned synthesis with a fixed environment. There is much to explore here;
with physical models there is the possibility to drive them in non-physical ways.

16.7 Conclusions

This chapter has introduced the basic ideas behind creating sounds based on the
physics of real instruments. The simplest style is based on the general solution of the
simple wave equation, and that generates controllable instruments in the string and
wind groups. Modal modelling can produce realistic sounds for struck objects. For
a greater investment in computer time it is possible to use finite difference schemes
to model more complex components of an instrument, such as stiffness and non-
simple interaction with other objects. We also briefly considered a class of stochastic
instruments inspired by physics, and the chapter was completed by a look at other
approaches such as spring-mass models and scanned synthesis.

Part V

Composition Case Studies

Chapter 17

Iain McCurdy: Csound Haiku

Abstract This chapter examines the set of pieces Csound Haiku and describes the
most interesting features of each one. The Csound code is intentionally written with
a clarity, simplicity and concision that hopefully allows even those with no knowl-
edge of the Csound language to garner some insight into the workings of the pieces.
This is intended to confront the conscious esotericism of some live-coding perfor-
mances. The pieces are intended to be run in real time thereby necessitating the
use of efficient synthesis techniques. Extensive use of real-time event generation is
used, in fact the traditional Csound score is not used in any of the pieces. It was my
preference in these pieces to devise efficient synthesis cells that would allow great
polyphony rather than to create an incredibly complex and CPU-demanding, albeit
possibly sonically powerful, synthesis engine that would only permit one or two si-
multaneous real-time instances. The pieces’ brevity in terms of code should make
their workings easily understandable. These illustrations will highlight the beauty
to be found in simplicity and should also provide technical mechanisms that can be
easily transplanted into other projects.

17.1 Introduction

Csound Haiku is a set of nine real-time generative pieces that were composed in
2011 and which are intended to be exhibited as a sound installation in the form of
a book of nine pages. Each page represents one of the pieces and turning to that
piece will start that piece and stop any currently playing piece. The pages them-
selves contain simple graphical elements reflecting compositional processes in the
piece overlaid with the code for the piece typed using a mechanical typewriter onto
semi-transparent paper. The use of a typewriter is intended to lend the code greater
permanence than if it were stored digitally and to inhibit the speed of reproduction
that is possible with digitally held code through copy and paste. Each of the pieces
can be played for as long or as short a time as desired. The experience should be like
tuning in and out of a radio station playing that piece indefinitely. The first moment

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_

409
17

410 17 Iain McCurdy: Csound Haiku

we hear is not the beginning of the piece and the last moment we hear is not the
ending – they are more like edit points. None of the nine pieces make use of the
Csound score but instead they generate note events from within the orchestra. The
Csound score has traditionally been a mainstay of Csound work so this approach
is more reflective of modern approaches to how Csound can be used and allows
Csound to compete in the area of event generation and the use of patterns with soft-
ware more traditionally associated with this style of working such as SuperCollider
[86] and Pure Data [103]. To be able to print the complete code for each piece on a
single side of paper necessitated that that code be concise and this was in fact one of
the main compositional aims of the project. Running each piece comfortably in real
time also demanded that restrictions were employed in the ambitions of the Csound
techniques used. This spilled over into a focussing of the musical forces employed:
great orchestrations of disparate sound groups were ruled out.

17.2 Groundwork

The first task was to identify simple and economic, yet expressive synthesising
‘cells’ that would characterise each piece. Techniques that proved to be too expen-
sive in their CPU demands or that would limit polyphony were quickly rejected. In
addition a reasonable degree of CPU headroom was sought in order to accommodate
the uncertainty inherent in a generative piece. When the set of pieces was combined
as an installation a brief overlapping of pieces was allowed as pages were turned.
This period of time when two pieces were briefly playing would inevitably produce
a spike in CPU demand. Across the nine pieces synthesis techniques that suggest
natural sounds have been employed, machine-like and overly synthetic-sounding
synthesis was avoided. Similarly, when sound events are triggered, their timings,
durations and densities have been controlled in such a way as to suggest natural ges-
tures and perhaps activation by a human hand. In particular the opcodes rspline
and jspline were found to be particularly useful in generating natural gestures
with just a few input arguments. The various random number generators used in
the pieces are seeded by the system clock, which means that each time a piece is
run the results will be slightly different. This is an important justification for the
pieces to be played live by Csound and not just to exist as fixed renderings. Csound
Haiku was written using Csound 5. A number of syntactical innovations in Csound
6 would allow further compression of the code for each piece but the code has not
since been updated. In fact the clarity of traditional longhand Csound code is pre-
ferred as this helps fulfil the pieces’ dictatic aim. A large number of synthesiser
cells proved to be of interest but ultimately this number was whittled down to nine.
The next stage involved creating ‘workbenches’ for each of the synthesiser cells.
A simple GUI was created using Csound’s FLTK opcodes (see Fig. 17.1) so the
range of timbres possible for each cell could be explored. The FLTK opcodes are
not recommended for real-time use on account of threading issues that can result in
interruptions in real-time audio, besides there are now more reliable options built in

17.3 The Pieces 411

to a number of Csound’s frontends. Nonetheless they are still useful for sketching
ideas and remaining independent of a frontend.

Fig. 17.1 An example of one of the FLTK ‘workbenches’ that were used to explore ideas for
synthesiser cells

For each synthesis idea that proved capable of a range of interesting sounds,
a set of critical values was created establishing the useful ranges for parameters
and combinations of parameters that would produce specific sounds. These sets of
values provided the starting points for the construction of the final pieces, sometimes
defining initialisation values for opcodes and at other times defining range values for
random functions.

17.3 The Pieces

In this section, we will consider each piece separately, looking at its key elements,
and how they were constructed.

412 17 Iain McCurdy: Csound Haiku

17.3.1 Haiku I

The two principle elements in this piece are the rich tone quality of the basic syn-
thesis cell and the design of the glissandi that recur through the piece. The synthesis
cell used comes more or less ready-made within Csound. The gbuzz opcode pro-
duces a rich tone derived from a stack of harmonically related cosine waves. The
overall spectral envelope can be warped dynamically using the opcode’s kmul pa-
rameter which musically provides control over timbre or brightness. The user can
also define the number of harmonic partials to be employed in the stack and the
partial number from which to begin the harmonic stack. These options are merely
defined then left static in this piece; 75 partials are used and they begin from partial
number 1: the fundamental. These two settings characterise the result as brass-like:
either a trombone or trumpet depending on the fundamental frequency used. Essen-
tial to how this sound generator is deployed is the humanisation: applied the random
wobble to various parameters and the slow changes in expression created through
the use of gradual undulations in amplitude and timbre.

The piece uses six instances of the gbuzz opcode which sustain indefinitely.
Each voice holds a pitch for a period of time and after that time begins a slow glis-
sando to a new pitch at which time the sequence of held note/glissando repeats. The
glissandi for the six voices will not fully synchronise; the six notes begin, not at the
same time, but one after another with a pause of 1 second separating each entrance
from the next. Each time a glissando is triggered its duration can be anything from
22.5 to 27 seconds. This will offset possible synchrony and parallel motion between
the six coincident glissandi. Glissando beginnings will maintain the 1 second gap
established at the beginning but their conclusions are unlikely to follow this pat-
tern. Each time a new glissando is triggered a new pitch is chosen randomly in the
form of a MIDI note number with a uniform probability within the range 12 to 54.
The glissando will start from the current note and move to the new note following
the shape of an inflected spline: a stretched ‘z’ shape if rising and a stretched ‘s’
shape if falling. Glissandi can therefore cover a large or small or even a zero inter-
val. This further contributes to undermining any synchrony between the six voices
and provides varying beating effects as the six glissandi weave across one another.
When the piece begins firstly the reverb instrument is triggered to be permanently
active using the alwayson opcode. An instrument called start long notes plays
for zero performance-time seconds, so therefore only acts at its initialisation time
to trigger six iterations of the instrument “trombone” that synthesises sound. This
arrangement is shown in Fig. 17.2.

The glissandi are created using the transeg opcode. This opcode generates a
breakpoint envelope with the curvature of each segment being user-definable. Each
glissando is constructed as a two-segment envelope. The curvature of the first seg-
ment will always be 2 and the curvature of the second segment -2. This ensures
that, regardless of start and end pitches, each glissando will begin slowly, pick-
ing up speed to a maximum halfway through its duration before slowing again and
smoothly drawing to a halt at its destination pitch. This can be observed graphically
in Fig. 17.3.

17.3 The Pieces 413

Fig. 17.2 The instrument schematic of Haiku I. The six connections between “START LONG
NOTES” and “TROMBONE” represent six real-time score events being sent

Fig. 17.3 A snapshot of the pitches of the six voices across one minute of the piece. Note that
sometimes voices coalesce onto a unison pitch. Independent modulations of the fine tuning of each
voice will prevent these being in absolute unison

The timbre of each note experiences random modulation by means of rspline
random spline generators using the following line:

kmul rspline 0.3,0.82,0.04,0.2

The first two input arguments define the amplitude limits of the random func-
tion and the third and fourth terms define the limits of the rate of modulation. The
function produced will actually exceed the amplitude limits slightly but in this in-
stance this will not be a catastrophic problem. When kmul is around its minimum
value the timbre produced will resemble that of a brass instrument played softly,
at its maximum the timbre will more closely resemble the brilliance and raspiness
of a brass instrument played fortissimo. Once pitch glissando is added the listener
will probably relate the tone produced to that of a trombone. The rspline func-
tion generator for each voice will follow its own independent path. This means that
individual voices will rise out of the texture whenever their timbre brightens and
submerge back into it when their timbre darkens. This is an important feature in
providing each voice with its own personality, the sense that each voice is an in-

414 17 Iain McCurdy: Csound Haiku

dividual player rather than a note of a chord played on a single instrument. The
independence of the glissandi from voice to voice also reinforces this individuality.
Amplitude, fine pitch control (detuning) and panning position are also modulated
using random spline functions:

kamp rspline 0.02,3,0.05,0.1
kdtn jspline 0.05,0.4,0.8
kpan rspline 0,1,0.1,1

The combined result of these random modulations enriched by also being passed
through the screverb reverb opcode provides timbral interest on a number of
levels. Faster random modulations, those of 0.2 Hz or higher, provide a wobble
that could be described as “humanising”. Slower modulations of 0.1 Hz or less are
perceived as an intentional musical expression such as crescendo.

Listing 17.1 Csound Haiku I

ksmps = 32
nchnls = 2
0dbfs = 1

seed 0
gicos ftgen 0,0,131072,11,1
gasendL,gasendR init 0
event_i "i", "start_long_notes", 0, 0
alwayson "reverb"

instr start_long_notes
event_i "i","trombone",0,60*60*24*7
event_i "i","trombone",1,60*60*24*7
event_i "i","trombone",2,60*60*24*7
event_i "i","trombone",3,60*60*24*7
event_i "i","trombone",4,60*60*24*7
event_i "i","trombone",5,60*60*24*7

endin

instr trombone
inote random 54,66
knote init int(inote)
ktrig metro 0.015
if ktrig==1 then
reinit retrig
endif
retrig:
inote1 init i(knote)
inote2 random 54, 66
inote2 = int(inote2)
inotemid = inote1+((inote2-inote1)/2)

17.3 The Pieces 415

idur random 22.5,27.5
icurve = 2
timout 0,idur,skip
knote transeg inote1,idur/2,icurve,inotemid,

idur/2,-icurve,inote2
skip:
rireturn
kenv linseg 0,25,0.05,p3-50,0.05,25,0
kdtn jspline 0.05,0.4,0.8
kmul rspline 0.3,0.82,0.04,0.2
kamp rspline 0.02,3,0.05,0.1
a1 gbuzz kenv*kamp,\

cpsmidinn(knote)*semitone(kdtn),75,1,kmulˆ1.75,gicos
kpan rspline 0,1,0.1,1
a1, a2 pan2 a1,kpan
outs a1,a2
gasendL = gasendL+a1
gasendR = gasendR+a2
endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.85,10000
outs aL,aR
clear gasendL, gasendR
endin

17.3.2 Haiku II

This piece explores polyrhythms and fragmentation and diminution of a rhythmic
theme. The source rhythmic theme is defined in a function table as

giseq ftgen 0,0,-12,-2,1,1/3,1/3,1/3,1,1/3,1/3,1/3,
1/2,1/2,1/2,1/2

This rhythmic theme translates into conventional musical notation as shown in
Fig. 17.4.

Fig. 17.4 The rhythmic motif stored in the GEN 2 function table giseq. Note that the GEN
routine number needs to be prefixed by a minus sign in order to inhibit normalisation of the values
it stores

416 17 Iain McCurdy: Csound Haiku

Fragments of the motif are looped and overlaid at different speeds in simple ratio
with one another. The index from which the loop will begin will be either 0, 1, 2,
3, 4 or 5 as defined by istart. An index of zero will point to the first crotchet
of the motif as a start point. A value of 6 from the random statement will be very
unlikely. The fractional part of all istart values will be dumped in the seqtime
line to leave an integer. The index value at which to loop back to the beginning of
the loop is defined in a similar fashion by iloop. iloop will be either 6, 7, 8,
9, 10, 11 or 12. An iloop value of 12 will indicate that looping back will occur
on the final quaver of the motif. Finally the tempo of the motivic fragment can be
scaled via the itime unit variable using an integer value of either 2, 3 or 4. This
modification is largely responsible for the rhythmic complexity that is generated;
without this feature the rhythmic relationships between layers are rather simple.

Listing 17.2 Mechanism for reading loop fragments from the rhythmic theme.

itime_unit random 2,5
istart random 0,6
iloop random 6,13
ktrig_in init 0
ktrig_out seqtime int(itime_unit)/3,int(istart),

int(iloop),0,giseq

The synthesis cell for this piece uses additive synthesis complexes of harmon-
ically related sinusoids created through GEN 9 function tables. What is different
is that the lower partials are omitted and the harmonics that are used are non-
sequential. These waveforms are then played back as frequencies that assume the
lowermost partial is the fundamental. This will require scaling down of frequen-
cies given to an oscillator, for example the first partial of one of the function tables,
giwave6, is partial number 11; if we desire a note of 200 Hz, then the oscillator
should be given a frequency of 200/11.

Listing 17.3 GEN 9 table used to create a pseudo-inharmonic spectrum

giwave6 ftgen 0,0,131072,9, 11,1,0, 19,1/10,0,
28,1/14,0, 37,1/18,0, 46,1/22,0,
55,1/26,0, 64,1/30,0, 73,1/34,0

If wavetables are played back at low frequencies this raises the possibility of
quantisation artefacts, particularly in the upper partials. This can be obviated by
using large table sizes and interpolating oscillator opcodes such as poscil or
poscil3. The resulting timbre from this technique is perceived as being more
inharmonic than harmonic, perhaps resembling a resonating wooden or metal bar.
These sorts of timbres can easily be creating using techniques of additive synthesis
using individual oscillators, but the method employed here will prove to be much
more efficient as each iteration of the timbre will employ just one oscillator. Seven
wavetables are created in this way which describe seven different timbral variations.
Each time a rhythmic loop begins, one of these seven wavetables will be chosen at
random for that loop. The durations of the notes played are varied from note to note.
This creates a sense of some note being damped with the hand and others being

17.3 The Pieces 417

allowed to resonate. This is a technique common when playing something like a
cowbell. The duration values are derived from a probability histogram created using
GEN 17. The following table produces the histogram shown in Fig. 17.5.

gidurs ftgen 0,0,-100,-17,0,0.4,50,0.8,90,1.5

Fig. 17.5 The length of a horizontal line corresponding to a particular value defines the probability
of that value. A duration of 0.4 s will be most common, a duration of 1.5 s least common

The instrument named “start sequences” triggers a new rhythmic loop every 4
seconds. Each rhythmic loop then sustains for 48 seconds, itself generating note
events used to trigger the instrument “play note”. The complete schematic is shown
in Fig. 17.6.

Fig. 17.6 The connections leading out of “START SEQUENCES” and “PLAY SEQUENCE” are
real-time event triggers. Only “PLAY NOTE” generates audio.

Listing 17.4 Csound Haiku II

ksmps = 64
nchnls = 2
0dbfs = 1

418 17 Iain McCurdy: Csound Haiku

giampscl ftgen 0,0,-20000,-16,1,20,0,1,19980,-5,1
giwave1 ftgen 0,0,131073,9, 6,1,0, 9,1/10,0, 13,1/14,0,
17,1/18,0, 21,1/22,0, 25,1/26,0, 29,1/30,0, 33,1/34,0
giwave2 ftgen 0,0,131073,9, 7,1,0, 10,1/10,0, 14,1/14,0,

18,1/18,0, 22,1/22,0, 26,1/26,0, 30,1/30,0, 34,1/34,0
giwave3 ftgen 0,0,131073,9, 8,1,0, 11,1/10,0, 15,1/14,0,

19,1/18,0, 23,1/22,0, 27,1/26,0, 31,1/30,0, 35,1/34,0
giwave4 ftgen 0,0,131073,9, 9,1,0, 12,1/10,0, 16,1/14,0,

20,1/18,0, 24,1/22,0, 28,1/26,0, 32,1/30,0, 36,1/34,0
giwave5 ftgen 0,0,131073,9, 10,1,0, 13,1/10,0, 17,1/14,0,

21,1/18,0, 25,1/22,0, 29,1/26,0, 33,1/30,0, 37,1/34,0
giwave6 ftgen 0,0,131073,9, 11,1,0, 19,1/10,0, 28,1/14,0,

37,1/18,0, 46,1/22,0, 55,1/26,0, 64,1/30,0, 73,1/34,0
giwave7 ftgen 0,0,131073,9, 12,1/4,0, 25,1,0, 39,1/14,0,
63,1/18,0, 87,1/22,0, 111,1/26,0, 135,1/30,0, 159,1/34,0
giseq ftgen 0,0,-12,-2, 1,1/3,1/3,1/3,1,1/3,1/3,1/3,1/2,

1/2,1/2,1/2
gidurs ftgen 0,0,-100,-17, 0,0.4, 50,0.8, 90,1.5
gasendL init 0
gasendR init 0
gamixL init 0
gamixR init 0

girescales ftgen 0,0,-7,-2,6,7,8,9,10,11,12
alwayson "start_sequences"
alwayson "sound_output"
alwayson "reverb"
seed 0

opcode tonea,a,aii
setksmps 1
ain,icps,iDecay xin
kcfenv transeg icps*4,iDecay,-8,1,1,0,1
aout tone ain, kcfenv
xout aout
endop

instr start_sequences
ktrig metro 1/4
schedkwhennamed ktrig,0,0,"play_sequence",0,48
endin

instr play_sequence
itime_unit random 2, 5
istart random 0, 6

17.3 The Pieces 419

iloop random 6, 13
ktrig_in init 0
ktrig_out seqtime int(itime_unit)/3, int(istart),

int(iloop), 0, giseq
inote random 48, 100
ienvscl = ((1-(inote-48)/(100-48))*0.8)+0.2
ienvscl limit ienvscl,0.3,1
icps = cpsmidinn(int(inote))
ipan random 0, 1
isend random 0.3, 0.5
kamp rspline 0.007, 0.6, 0.05, 0.2
kflam random 0, 0.02
ifn random 0, 7
schedkwhennamed ktrig_out,0,0,"play_note",kflam,0.01,

icps,ipan,isend,kamp,int(ifn),ienvscl
endin

instr play_note
idurndx random 0, 100
p3 table idurndx, gidurs
ijit random 0.1, 1
acps expseg 8000, 0.003, p4, 1, p4
aenv expsega 0.001,0.003,ijitˆ2,(p3-0.2-0.002)*p9,

0.002,0.2,0.001,1,0.001
adip transeg 1, p3, 4, 0.99
iampscl table p4, giampscl
irescale table p8, girescales
idtn random 0.995,1.005
a1 oscili p7*aenv*iampscl,

(acps*adip*idtn)/(6+irescale),
giwave1+p8

adlt rspline 1, 10, 0.1, 0.2
aramp linseg 0, 0.02, 1
acho vdelay a1*aramp, adlt, 40
icf random 0, 2
kcfenv transeg p4+(p4*icfˆ3), p9, -8, 1, 1, 0, 1
a1 tonex a1, kcfenv
a1, a2 pan2 a1,p5
outs a1,a2
gamixL = gamixL + a1
gamixR = gamixR + a2
gasendL = gasendL + (a1*(p6ˆ2))
gasendR = gasendR + (a2*(p6ˆ2))

endin

420 17 Iain McCurdy: Csound Haiku

instr sound_output
a1,a2 reverbsc gamixL, gamixR, 0.01, 500
a1 = a1*100
a2 = a2*100
a1 atone a1, 250
a2 atone a2, 250
outs a1, a2
clear gamixL, gamixR
endin

instr reverb
aL, aR reverbsc gasendL, gasendR, 0.75, 4000
outs aL, aR
clear gasendL, gasendR
endin

17.3.3 Haiku III

This piece uses for its synthesis cell the wguide2 opcode which implements a
double waveguide algorithm with first-order low-pass filters applied to each delay
line (Fig. 17.7). The simple algorithm employed by the wguide1 opcode tends to
produce plucked-string-like sound if excited by a short impulse. The Csound manual
describes the sound produced by wguide2 as being akin to that of a struck metal
plate, but perhaps it is closer to the sound of a plucked piano or guitar string with the
string partially damped somewhere along its length by, for example, a finger. This
arrangement of waveguides produces resonances on a timbrally rich input signal that
express inharmonic spectra when the frequencies of the two individual waveguides
from which it is formed are not in simple ratio with one another. Care must be taken
that the sum of the two feedback factors does not exceed 0.5; the reason this figure
is not 1 is because the output of each waveguide is fed back into the input of both
waveguides.

At the beginning of each note, a short impulse sound is passed into the wguide2
network. This sound is simply a short percussive harmonic impulse. Its duration is
so short that we barely perceive its pitch, instead we hear a soft click or a thump
– this is our model of a ‘pluck’ or a ‘strike’. The pitch of the impulse changes
from note to note and this imitates the hardness of the strike, with higher pitches
imitating a harder strike. Note events are triggered using a metronome but the rate
of this metronome is constantly changing as governed by a function generated by
the rspline opcode. A trick is employed to bias the function in favour of lower
values: a random function between zero and 1 is first created, then it is squared
(resulting in the bias towards lower values) and finally this new function is re-scaled
according to the desired range of values. This sequence is shown in the code snippet
below:

17.3 The Pieces 421

Fig. 17.7 The wguide2 opcode implements a double waveguide with the output of each delay
line being passed through a low-pass filters before begin fed back into the input. Crucially the
feedback from each waveguide is fed back into both waveguides, not just itself.

krate rspline 0,1,0.1,2
krate scale krateˆ2,10,0.3

Natural undulations of pulsed playing will result provided that the four input
arguments for rspline are carefully chosen (Fig. 17.8).

Simultaneously with this, rspline random functions generate frequencies for
the two waveguides contained within wguide2, These frequencies are only applied
as initialisation-time values at the beginning of note events. This method is chosen
as the sound of continuous glissando throughout each note was not desired. The
shapes of the rsplines are still heard in how the spectra of note events evolve
note to note. Panning and amplitude are also modulated by rspline functions and
by combining all these independent rsplines we create movements in sound that
are strongly gestural.

Listing 17.5 Csound Haiku III

ksmps = 32
nchnls = 2
0dbfs = 1

giImpulseWave ftgen 0,0,4097,10,1,1/2,1/4,1/8
gamixL,gamixR,gasendL,gasendR init 0
seed 0
gitims ftgen 0,0,128,-7,1,100,0.1

422 17 Iain McCurdy: Csound Haiku

Fig. 17.8 The continuous curve shows the frequency value that is passed to the metro opcode,
the vertical lines indicate where note triggers occur.

alwayson "start_sequences"
alwayson "spatialise"
alwayson "reverb"

instr start_sequences
krate rspline 0, 1, 0.1, 2
krate scale krateˆ2,10,0.3
ktrig metro krate
koct rspline 4.3, 9.5, 0.1, 1
kcps = cpsoct(koct)
kpan rspline 0.1, 4, 0.1, 1
kamp rspline 0.1, 1, 0.25, 2
kwgoct1 rspline 6, 9, 0.05, 1
kwgoct2 rspline 6, 9, 0.05, 1
schedkwhennamed ktrig,0,0,"wguide2_note",0,4,kcps,

kwgoct1,kwgoct2,kamp,kpan
endin

instr wguide2_note
aenv expon 1,10/p4,0.001
aimpulse poscil aenv-0.001,p4,giImpulseWave
ioct1 random 5, 11

17.3 The Pieces 423

ioct2 random 5, 11
aplk1 transeg 1+rnd(0.2), 0.1, -15, 1
aplk2 transeg 1+rnd(0.2), 0.1, -15, 1
idmptim random 0.1, 3
kcutoff expseg 20000,p3-idmptim,20000,idmptim,200,1,200
awg2 wguide2 aimpulse,cpsoct(p5)*aplk1,

cpsoct(p6)*aplk2,kcutoff,kcutoff,0.27,0.23
awg2 dcblock2 awg2
arel linseg 1, p3-idmptim, 1, idmptim, 0
awg2 = awg2*arel
awg2 = awg2/(rnd(4)+3)
aL,aR pan2 awg2,p8
gasendL = gasendL+(aL*0.05)
gasendR = gasendR+(aR*0.05)
gamixL = gamixL+aL
gamixR = gamixR+aR
endin

instr spatialise
adlytim1 rspline 0.1, 5, 0.1, 0.4
adlytim2 rspline 0.1, 5, 0.1, 0.4
aL vdelay gamixL, adlytim1, 50
aR vdelay gamixR, adlytim2, 50
outs aL, aR
gasendL = gasendL+(aL*0.05)
gasendR = gasendR+(aR*0.05)
clear gamixL, gamixR
endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.95,10000
outs aL, aR
clear gasendL,gasendR
endin

17.3.4 Haiku IV

This piece focusses on forming periodic gestural clusters within which the sound
spectra morphs in smooth undulations. Its synthesis cell is based on Csound’s
hsboscil opcode. This opcode generates a tone comprising of a stack of partials,
each spaced an octave apart from its nearest neighbour. The scope of the spectrum
above and below the fundamental is defined in octaves (up to a limit of eight) and
this complex of partials is then shaped by a spectral window function typically pro-

424 17 Iain McCurdy: Csound Haiku

viding emphasis on the central partial (fundamental). The spectral window can be
shifted up or down, thereby introducing additional higher partials when shifted up
and additional lower partials when shifted down. In this piece the spectral window is
shifted up and down quite dramatically and quickly once again using an rspline
function and it is this technique that lends the piece a shifting yet smooth and glassy
character. A sonogram of an individual note is shown in Fig. 17.9. Using a loga-
rithmic scale, octaves appear equally spaced and it is clearly observable how the
spectral envelope descends from its initial position, ascends slightly then descends
again before ascending for a second time.

Fig. 17.9 Spectrogram of an hsboscil gesture

On its own this sound is rather plain, so it is ring-modulated. Ring modulation
adds sidebands – additional partials – which undermine the pure organ-like quality
of hsboscil’s output. The ring-modulated version and the unmodulated source
are mixed using a dynamic cross-fade. Microtonal pitch and panning are modulated
using LFOs following sine shapes to evoke a sense of spinning or vibrato, but the
amplitudes and rates of these LFOs are continuously varied using rspline func-
tions so that the nature of this rotational movement constantly changes, suggesting
acceleration or deceleration and expansion or contraction of the rotational displace-
ment. Notes are triggered in groups of four on average every 12 seconds to create
the desired density of texture. The actual time gap between clusters varies about this
mean and note onsets within each cluster can temporally smear by as much as 2
seconds. These steps ensure a controlled amount of variation in how the piece pro-
gresses and sustains interest while not varying excessively from the desired textural
density and pace.

Listing 17.6 Csound Haiku IV

17.3 The Pieces 425

ksmps = 32
nchnls = 2
0dbfs = 1

gisine ftgen 0, 0, 4096, 10, 1
gioctfn ftgen 0, 0, 4096, -19, 1,0.5,270,0.5
gasendL,gasendR init 0
ginotes ftgen 0,0,-100,-17,0,8.00,10,8.03,

15,8.04,25,8.05,50,8.07,60,8.08,73,8.09,82,8.11
seed 0
alwayson "trigger_notes"
alwayson "reverb"

instr trigger_notes
krate rspline 0.05, 0.12, 0.05, 0.1
ktrig metro krate
gktrans trandom ktrig,-1, 1
gktrans = semitone(gktrans)
idur = 15
schedkwhen ktrig, 0, 0, "hboscil_note", rnd(2), idur
schedkwhen ktrig, 0, 0, "hboscil_note", rnd(2), idur
schedkwhen ktrig, 0, 0, "hboscil_note", rnd(2), idur
schedkwhen ktrig, 0, 0, "hboscil_note", rnd(2), idur
endin

instr hboscil_note
ipch table int(rnd(100)),ginotes
icps = cpspch(ipch)*i(gktrans)*semitone(rnd(0.5)-0.25)
kamp expseg 0.001,0.02,0.2,p3-0.01,0.001
ktonemoddep jspline 0.01,0.05,0.2
ktonemodrte jspline 6,0.1,0.2
ktone oscil ktonemoddep,ktonemodrte,gisine
kbrite rspline -2,3,0.0002,3
ibasfreq init icps
ioctcnt init 2
iphs init 0
a1 hsboscil kamp,ktone,kbrite,ibasfreq,gisine,

gioctfn,ioctcnt,iphs
amod oscil 1, ibasfreq*3.47, gisine
arm = a1*amod
kmix expseg 0.001, 0.01, rnd(1),

rnd(3)+0.3, 0.0018
a1 ntrpol a1, arm, kmix
a1 pareq a1/10, 400, 15, .707
a1 tone a1, 500

426 17 Iain McCurdy: Csound Haiku

kpanrte jspline 5, 0.05, 0.1
kpandep jspline 0.9, 0.2, 0.4
kpan oscil kpandep, kpanrte, gisine
a1,a2 pan2 a1, kpan
a1 delay a1, rnd(0.1)
a2 delay a2, rnd(0.1)
kenv linsegr 1, 1, 0
a1 = a1*kenv
a2 = a2*kenv
outs a1, a2
gasendL = gasendL+a1/6
gasendR = gasendR+a2/6
endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.95,10000
outs aL, aR
clear gasendL,gasendR
endin

17.3.5 Haiku V

This piece is formed from two simple compositional elements: a continuous motor
rhythm formed from elements resembling struck wooden bars, and periodic punctu-
ating gestures comprising of more sustained metallic sounds. The two sound types
are created from the same synthesising instrument. The differences in their char-
acter are created by their dramatically differing durations and also by sending the
instrument a different set of p-field values which govern key synthesis parameters.
The synthesis cell is based around the phaser2 opcode. This opcode implements
a series of second-order all-pass filters and is useful in creating a stack of inhar-
monically positioned resonances. Higher frequencies will decay more quickly than
lower ones and this allows phaser2 to imitate struck resonating objects which
would display the same tendency. The filters are excited by a single-cycle wavelet
of a sine wave. The period of this excitation signal (the reciprocal of the frequency)
can be used to control the brightness of the filtered sound – a wavelet with a longer
period will tend to excite the lower resonances more than the higher ones. The du-
ration of time for which the synthesis cell will resonate is controlled mainly by the
phaser2’s feedback parameter. The more sustained metallic sounds are defined by
having a much higher value for feedback (0.996) than the shorter sounds (0.9). The
continuous motor rhythm is perceived as a repeating motif of four quavers with the
pitches of the four quavers following their own slow glissandi. This introduces the
possiblity of contrary motion between the different lines traced by the four quavers
of the motif.

17.3 The Pieces 427

Listing 17.7 Csound Haiku V

ksmps = 32
nchnls = 2
0dbfs = 1

gisine ftgen 0, 0, 4096, 10, 1
gasendL init 0
gasendR init 0
seed 0
alwayson "start_sequences"
alwayson "reverb"

instr start_sequences
iBaseRate random 1, 2.5
event_i "i","sound_instr",0,3600*24*7,iBaseRate,0.9,

0.03,0.06,7,0.5,1
event_i "i","sound_instr",1/(2*iBaseRate),3600*24*7,

iBaseRate,0.9,0.03,0.06,7,0.5,1
event_i "i","sound_instr",1/(4*iBaseRate),3600*24*7,

iBaseRate,0.9,0.03,0.06,7,0.5,1
event_i "i","sound_instr",3/(4*iBaseRate),3600*24*7,

iBaseRate,0.9,0.03,0.06,7,0.5,1
ktrig1 metro iBaseRate/64
schedkwhennamed ktrig1,0,0,"sound_instr",1/iBaseRate,

64/iBaseRate,iBaseRate/16,0.996,0.003,0.01,3,0.7,1
schedkwhennamed ktrig1,0,0,"sound_instr",2/iBaseRate,

64/iBaseRate,iBaseRate/16,0.996,0.003,0.01,4,0.7,1
ktrig2 metro iBaseRate/72
schedkwhennamed ktrig2,0,0,"sound_instr",3/iBaseRate,

72/iBaseRate,iBaseRate/20,0.996,0.003,0.01,5,0.7,1
schedkwhennamed ktrig2,0,0,"sound_instr",4/iBaseRate,

72/iBaseRate,iBaseRate/20,0.996,0.003,0.01,6,0.7,1
endin

instr sound_instr
ktrig metro p4
if ktrig=1 then
reinit PULSE
endif
PULSE:
ioct random 7.3,10.5
icps init cpsoct(ioct)
aptr linseg 0,1/icps,1
rireturn

428 17 Iain McCurdy: Csound Haiku

a1 tablei aptr, gisine, 1
kamp rspline 0.2, 0.7, 0.1, 0.8
a1 = a1*(kampˆ3)
kphsoct rspline 6, 10, p6, p7
isep random 0.5, 0.75
ksep transeg isep+1, 0.02, -50, isep
kfeedback rspline 0.85, 0.99, 0.01, 0.1
aphs2 phaser2 a1,cpsoct(kphsoct),0.3,p8,p10,isep,p5
iChoRate random 0.5,2
aDlyMod oscili 0.0005,iChoRate,gisine
acho vdelay3 aphs2+a1,(aDlyMod+0.0005+0.0001)*1000,100
aphs2 sum aphs2,acho
aphs2 butlp aphs2,1000
kenv linseg 1, p3-4, 1, 4, 0
kpan rspline 0, 1, 0.1, 0.8
kattrel linsegr 1, 1, 0
a1, a2 pan2 aphs2*kenv*p9*kattrel, kpan
a1 delay a1, rnd(0.01)+0.0001
a2 delay a2, rnd(0.01)+0.0001
ksend rspline 0.2, 0.7, 0.05, 0.1
ksend = ksendˆ2
outs a1*(1-ksend), a2*(1-ksend)
gasendL = gasendL+(a1*ksend)
gasendR = gasendR+(a2*ksend)

endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.85,5000
outs aL, aR
clear gasendL, gasendR
endin

17.3.6 Haiku VI

This piece imagines an instrument with six resonating strings as the sound-producing
model. The strings are modelled using the wguide1 opcode (Fig. 17.10), which
provides a simple waveguide model consisting of a delay line fed into a first-order
low-pass filter with a feedback loop encapsulating the entire unit.

The waveguides are excited by sending short-enveloped impulses of pink noise
into them. This provides a softer and more realistic ‘pluck’ impulse than would be
provided by a one-sample click. When a trigger ktrig is generated a new pluck
impulse is instigated by forcing a reinitialisation of the envelope that shapes the pink
noise.

17.3 The Pieces 429

Fig. 17.10 The schematic of the wguide1 opcode

Listing 17.8 Mechanism to create a retriggerable soft ‘pluck’ impulse

ktrig metro krate
if ktrig==1 then
reinit update
endif
update:
aenv expseg 0.0001,0.02,1,0.2,0.0001,1,0.0001
apluck pinkish aenv
rireturn

The six waveguides are essentially sent the same impulse, but for each waveguide
the audio of the pluck is delayed by a randomly varying amount between 50 and 250
milliseconds. This offsetting will result in a strumming effect as opposed to the six
waveguides being excited in perfect sync. The strumming occurs periodically at a
rate that varies between 0.005 and 0.15 Hz. The initial pitches of each waveguide
follow the conventional tuning of a six-string guitar (E-A-G-D-B-E) but they each
experience an additional and continuous detuning determined by rspline opcodes
as if each string is being continuously and independently detuned. The detuning of
the six waveguides in relation to when pluck impulses occur is shown in Fig. 17.11.

Each waveguide output then experiences a slowly changing and random auto-
panning before being fed into a reverb. The full schematic of steps is shown in Fig.
17.12. The use of a large amount of reverb with a long reverberant tail effectively
creates pitch clusters as the waveguides slowly glissando, and therefore results in
interesting ‘beating’ effects.

Listing 17.9 Csound Haiku VI

ksmps = 32
nchnls = 2
0dbfs = 1

gasendL init 0
gasendR init 0

430 17 Iain McCurdy: Csound Haiku

Fig. 17.11 The slow modulations of the pitches of the six waveguides are shown by the six continu-
ous curves. The occurrence of the pluck impulses is shown by the vertical lines. Their misalignment
indicates the strumming effect that has been implemented

Fig. 17.12 Schematic showing the flow of audio through the main elements used in Haiku VI

seed 0
alwayson "trigger_6_notes_and_plucks"
alwayson "reverb"

instr trigger_6_notes_and_plucks
event_i "i","string",0,60*60*24*7,40
event_i "i","string",0,60*60*24*7,45
event_i "i","string",0,60*60*24*7,50
event_i "i","string",0,60*60*24*7,55
event_i "i","string",0,60*60*24*7,59

17.3 The Pieces 431

event_i "i","string",0,60*60*24*7,64
krate rspline 0.005, 0.15, 0.1, 0.2
ktrig metro krate
if ktrig==1 then
reinit update

endif
update:
aenv expseg 0.0001, 0.02, 1, 0.2, 0.0001, 1, 0.0001
apluck pinkish aenv
rireturn
koct randomi 5, 10, 2
gapluck butlp apluck, cpsoct(koct)
endin

instr string
adlt rspline 50, 250, 0.03, 0.06
apluck vdelay3 gapluck, adlt, 500
adtn jspline 15, 0.002, 0.02
astring wguide1 apluck,cpsmidinn(p4)*semitone(adtn),\

5000,0.9995
astring dcblock astring
kpan rspline 0, 1, 0.1, 0.2
astrL, astrR pan2 astring, kpan
outs astrL, astrR
gasendL = gasendL+(astrL*0.6)
gasendR = gasendR+(astrR*0.6)
endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.85,10000
outs aL, aR
clear gasendL, gasendR
endin

17.3.7 Haiku VII

This piece shares a method of generating rhythmic material with Haiku II. Again
a sequence of durations is stored in a GEN 2 function table and a loop fragment
is read from within this sequence. These durations are converted into a series of
triggers using the seqtime opcode. The key difference with the employment of
this technique in this piece, besides the rhythmic sequence being different, is that
the tempo is much slower to the point where the gaps between notes become greatly
dramatised. This time the rhythmic sequence stored in a function table is

432 17 Iain McCurdy: Csound Haiku

giseq ftgen 0,0,-12,-2,
3/2,2,3,1,1,3/2,1/2,3/4,5/2,2/3,2,1

The duration values start from the fifth parameter field, 3/2. The duration value
of 2/3 is inserted to undermine the regularity and coherence implied by other val-
ues which are more suggestive of ‘simple’ time. Two synthesis cells are used; the
first uses a similar technique to that used in Csound Haiku II – the use of a GEN
9 table to imitate an inharmonic spectrum – but this time the sound has a longer
duration and uses a stretched percussive amplitude and low-pass filter envelope to
imitate a resonating bell sound. The second synthesis cell mostly follows the pitch
of the first and is generally much quieter, functioning as a sonic shadow of the first.
It is generated using a single instance of gbuzz whose pitch is modulated by a
high-frequency jspline function, making the pitch less distinct and adding an
‘airiness’. This type of sound is often described as a ‘pad’ although in this example
it could more accurately be described as a distant screech. To add a further sense of
space the gbuzz sound passes entirely through the reverb before reaching Csound’s
audio output. In performance the piece will slowly randomly cross-fade between the
GEN 9 bell-like sound and the gbuzz pad sound. The flow of instruments is shown
in Fig. 17.13.

Fig. 17.13 Instrument schematic of Csound Haiku VII: “TRIGGER SEQUENCE” triggers notes
in “TRIGGER NOTES” which in turn triggers notes in “LONG BELL” and “GBUZZ LONG
NOTE” which then synthesise the audio

The long bell sounds are triggered repeatedly using schedkwhen whereas the
gbuzz long note is triggered by event i and only plays a single note during the
same event. The rhythm of events that the long bell follows will be determined by
looping a fragment of the values in the giseq table but the pitch can change owing
to the influence of the k-rate function kSemiDrop upon kcps:

kSemiDrop line rnd(2), p3, -rnd(2)
kcps = cpsmidinn(inote+int(kSemiDrop))

The use of the int() function upon kSemiDrop means that changes in pitch
will only occur in semitone steps and the choice of values in defining the line
function means that kSemiDrop can only be a falling line. rnd(2) creates a
fractional value in the range 0 to 2 and rnd(-2) creates a value in the range 0 to
-2. This sense of a descending chromatic scale is key to the mood of this piece and
can also be observed in the representation of pitch shown in Fig. 17.14. This balance
between the use of descending chromaticism and its undermining through the use

17.3 The Pieces 433

of other intervals leaves the internal workings of the piece tantalising but slightly
enigmatic to the listener.

Fig. 17.14 The pitches of six voices are indicated by the six lines. The predominance of descending
semitone steps can be seen. The larger intervals are produced when the start of a new sequence
occurs

Listing 17.10 Csound Haiku VII

ksmps = 32
nchnls = 2
0dbfs = 1

giampscl ftgen 0,0,-20000,-16,1,20,0,1,19980,-30,0.1
giwave ftgen 0,0,4097,9, 3,1,0, 10,1/10,0, 18,1/14,0,\
26,1/18,0, 34,1/22,0, 42,1/26,0, 50,1/30,0, 58,1/34,0
gicos ftgen 0,0,131072, 11, 1
giseq ftgen 0,0,-12, \

-2,3/2,2,3,1,1,3/2,1/2,3/4,5/2,2/3,2,1
gasendL init 0
gasendR init 0
seed 0
alwayson "trigger_sequence"
alwayson "reverb"

434 17 Iain McCurdy: Csound Haiku

instr trigger_sequence
ktrig metro 0.2
schedkwhennamed ktrig,0,0,"trigger_notes",0,30
kcrossfade rspline 0, 1, 0.01, 0.1
gkcrossfade = kcrossfadeˆ3
endin

instr trigger_notes
itime_unit random 2, 10
istart random 0, 6
iloop random 6, 13
ktrig_out seqtime int(itime_unit),int(istart),

int(iloop),0,giseq
idur random 8, 15
inote random 0, 48
inote = (int(inote))+36
kSemiDrop line rnd(2), p3, -rnd(2)
kcps = cpsmidinn(inote+int(kSemiDrop))
ipan random 0, 1
isend random 0.05, 0.2
kflam random 0, 0.02
kamp rspline 0.008, 0.4, 0.05, 0.2
ioffset random -0.2, 0.2
kattlim rspline 0, 1, 0.01, 0.1
schedkwhennamed ktrig_out,0,0,"long_bell",kflam,idur,
kcps*semitone(ioffset), ipan, isend, kamp
event_i "i","gbuzz_long_note",0,30,cpsmidinn(inote+19)
endin

instr long_bell
acps transeg 1, p3, 3, 0.95
iattrnd random 0, 1
iatt = (iattrnd>(p8ˆ1.5)?0.002:p3/2)
aenv expsega 0.001,iatt,1,p3-0.2-iatt,0.002,0.2,0.001
aperc expseg 10000, 0.003, p4, 1, p4
iampscl table p4, giampscl
ijit random 0.5, 1
a1 oscili p7*aenv*iampscl*ijit*(1-gkcrossfade),

(acps*aperc)/2,giwave
a2 oscili p7*aenv*iampscl*ijit*(1-gkcrossfade),

(acps*aperc*semitone(rnd(.02)))/2,giwave
adlt rspline 1, 5, 0.4, 0.8
acho vdelay a1, adlt, 40
a1 = a1-acho
acho vdelay a2, adlt, 40

17.3 The Pieces 435

a2 = a2-acho
icf random 0, 1.75
icf = p4+(p4*(icfˆ3))
kcfenv expseg icf, 0.3, icf, p3-0.3, 20
a1 butlp a1, kcfenv
a2 butlp a2, kcfenv
a1 butlp a1, kcfenv
a2 butlp a2, kcfenv
outs a1, a2
gasendL = gasendL+(a1*p6)
gasendR = gasendR+(a2*p6)

endin

instr gbuzz_long_note
kenv expseg 0.001, 3, 1, p3-3, 0.001
kmul rspline 0.01, 0.1, 0.1, 1
kNseDep rspline 0,1,0.2,0.4
kNse jspline kNseDep,50,100
agbuzz gbuzz gkcrossfade/80,p4/2*semitone(kNse),

5,1,kmul*kenv,gicos
a1 delay agbuzz, rnd(0.08)+0.001
a2 delay agbuzz, rnd(0.08)+0.001
gasendL = gasendL+(a1*kenv)
gasendR = gasendR+(a2*kenv)

endin

instr reverb
aL,aR reverbsc gasendL,gasendR,0.95,10000
outs aL,aR
clear gasendL, gasendR
endin

17.3.8 Haiku VIII

This piece creates waves of pointillistic gestures within which individual layers and
voices are distinguishable by the listener. The principal device for achieving this
is the use of aleatoric but discrete duration values for the note events. This means
that there are very long note events and very short note events but not a continuum
between them; this allows the ear to group events into streams or phrases emanating
from the same instrument. Radical modulation of parameters that could break this
perceptive streaming, such as pitch, is avoided. A sequence of note triggering from
instrument to instrument is employed. The instrument ‘start layers’ is triggered from
within instrument 0 (the orchestra header area) using an event i statement for

436 17 Iain McCurdy: Csound Haiku

zero seconds meaning that it will carry out initialisation-time statements only and
then cease. The i-time statements it carries out simply start three long instances of
the instrument “layer”. Adding or removing streams of notes in the piece can easily
be achieved by simply adding or removing iterations of the event i statement
in the instrument “start layers”. Each layer then generates streams of notes using
schedkwhen statements which trigger the instrument “note”. The synthesis cell in
this piece again makes use of the gbuzz opcode but the sound is more percussive.
The fundamental pitch of a stream of notes generated by a layer changes only very
occasionally as dictated by a random sample and hold function generator:

knote randomh 0,12,0.1

The frequency with which new values for knote will be generated is 0.1 Hz;
each note will persist for 10 seconds before changing. The number of partials em-
ployed by gbuzz in each note of the stream and the lowest partial present are cho-
sen randomly upon each new note. The number of partials can be any integer from
1 to 500 and the lowest partial can be any integer from 1 to 12. This generates quite
a sense of angularity from note to note but the perceptual grouping from note to
note is maintained by virtue of the fact that the fundamental frequency changes so
infrequently. The waveform used by gbuzz is not the usual cosine wave but instead
is a sine wave with a weak fifth partial:

giwave ftgen 0,0,131072,10,1,0,0,0,0.05

A distinctive colouration is added by employing occasional pitch bends on notes.
The likelihood that a note will bend is determined using interrogation of a random
value, the result of which will dictate whether a conditional branch implementing
the pitch bend should be followed:

iprob random 0,1
if iprob<=0.1 then
irange random -8,4
icurve random -4,4
abend linseg 1,p3,semitone(irange)
aperc = aperc*abend

endif

The range of random values is from 0 to 1 and the conditional threshold is 0.1.
A similar approach is employed to apply a frequency-shifting effect to just some of
the notes. The frequency shifting is carried out using the hilbert transformation
opcode. This effect is reserved for the longer notes for reasons of efficiency – the
effect would be less perceivable in shorter notes. The code that conditionally adds
frequency shifting is shown below:

iprob2 random 0,1
if iprob2<=0.2&&p3>1 then
kfshift transeg 0,p3,-15,rnd(200)-100
ar,ai hilbert a1
asin oscili 1, kfshift, gisine, 0

17.3 The Pieces 437

acos oscili 1, kfshift, gisine, 0.25
amod1 = ar*acos
amod2 = ai*asin
a1 = ((amod1-amod2)/3)+a1
endif

Using GEN 17 we create a step function that defines the possible time gaps be-
tween consecutive notes in a layer and their probabilities. The table given below will
create the distribution shown in Fig. 17.15:

gigaps ftgen 0,0,-100,-17, 0,32,5,2,45,1/2,70,1/8,90,2/9

Fig. 17.15 Time gap distribution: the length of a horizontal line corresponding to a particular value
defines the probability of that value

A new time gap value between consecutive events will be chosen once every
second using an indexing variable created using a random sample and hold function.
Normalised indexing is used with the table opcode so that the indexing range for the
entire table ranges from 0 to 1. A trigger that will trigger notes is created using
metro, the frequency of which will be the reciprocal of the time gap. Random
values are selected and triggers are generated using the code snippet shown below:

kndx randomh 0,1,1
kgap table kndx,gigaps,1
ktrig metro 1/kgap

438 17 Iain McCurdy: Csound Haiku

From the GEN 17 distribution table gigapswe can see that the majority of time
gaps will be 2 seconds. 5% of the time the gap duration value will be 32 seconds but
it is very unlikely this gap value will persist for an entire trigger period as new gap
values are generated every second. The instrument “layer” triggers the instrument
“note” and it determines its own duration, again by randomly selecting a value from
the distribution table gidurs (Fig. 17.16):

gidurs ftgen 0,0,-100,-17, 0,0.4, 85,4

Fig. 17.16 Note duration distribution

85% of note durations will be 0.4 seconds and only 15% will be 4 seconds but the
but the longer notes’ predominance will seem more significant simply on account
of their longer persistence.

Listing 17.11 Csound Haiku VIII

ksmps = 32
nchnls = 2
0dbfs = 1

gigaps ftgen 0,0,-100,-17,0,32,5,2,45,1/2,70,1/8,90,2/9
gidurs ftgen 0,0,-100,-17, 0,0.4, 85,4
giwave ftgen 0,0,131072,10,1,0,0,0,0.05
gisine ftgen 0,0,4096,10,1
gasendL init 0
gasendR init 0
seed 0

17.3 The Pieces 439

event_i "i","start_layers",0,0
alwayson "reverb"

instr start_layers
event_i "i","layer",0,3600*24*7
event_i "i","layer",0,3600*24*7
event_i "i","layer",0,3600*24*7
endin

instr layer
kndx randomh 0,1,1
kgap table kndx,gigaps,1
ktrig metro 1/kgap
knote randomh 0,12,0.1
kamp rspline 0,0.1,1,2
kpan rspline 0.1,0.9,0.1,1
kmul rspline 0.1,0.9,0.1,0.3
schedkwhen ktrig,0,0,"note",rnd(0.1),0.01,int(knote)*3,\

kamp,kpan,kmul
endin

instr note
iratio = int(rnd(20))+1
p3 table rnd(1), gidurs, 1
aenv expseg 1, p3, 0.001
aperc expseg 5, 0.001, 1, 1, 1
iprob random 0, 1
if iprob<=0.1 then
irange random -8, 4
icurve random -4, 4
abend linseg 1, p3, semitone(irange)
aperc = aperc*abend

endif
kmul expon abs(p7), p3, 0.0001
a1 gbuzz p5*aenv, cpsmidinn(p4)*iratio*aperc,\

int(rnd(500))+1,rnd(12)+1,kmul,giwave
iprob2 random 0,1
if iprob2<=0.2\&&p3>1 then
kfshift transeg 0, p3, -15, rnd(200)-100
ar,ai hilbert a1
asin oscili 1, kfshift, gisine, 0
acos oscili 1, kfshift, gisine, 0.25
amod1 = ar*acos
amod2 = ai*asin
a1 = ((amod1-amod2)/3)+a1

440 17 Iain McCurdy: Csound Haiku

endif
a1 butlp a1, cpsoct(rnd(8)+4)
a1,a2 pan2 a1, p6
a1 delay a1, rnd(0.03)+0.001
a2 delay a2, rnd(0.03)+0.001
outs a1, a2
gasendL = gasendL+a1*0.3
gasendR = gasendR+a2*0.3

endin

instr reverb
aL,aR reverbsc gasendL, gasendR, 0.75, 10000
outs aL, aR
clear gasendL, gasendR
endin

17.3.9 Haiku IX

This piece is based around sweeping arpeggios that follow the intervals of the har-
monic series. The overlapping of steps of these arpeggios and the long attack and
decay times of their amplitude envelopes means that the result is more that of a
shifting spectral texture. The sequence of instruments used to generate arpeggios
and notes is shown in Fig. 17.17.

Fig. 17.17 Instrument schematic of Csound Haiku IX

The waveform used by the partials of these harmonic series sweeps is not a pure
sine wave but is itself a stack of sinusoidal elements from the harmonic series. The
notes of the arpeggios will often overlap so this use of a rich waveform will pro-
vide dense clustering of partials as the arpeggio sweeps. Each arpeggio plays for 25
seconds and the fundamental frequency ibas of this arpeggio is chosen randomly
at the start of this 25 seconds and does not change thereafter. The fundamental is
defined using the following steps:

ibas random 0,24
ibas = cpsmidinn((int(ibas)*3)+24)

Before conversion to a value in hertz, ibas can be an integer value within the
set 24, 27, 30, 96. As these are MIDI note numbers the interval between adjacent

17.3 The Pieces 441

possible fundamentals is always a minor third. This arrangement partly lends the
piece the mood attributed to a diminished arpeggio. The values for the frequency of
generation of arpeggios (krate in instrument “trigger arpeggio”), the rate of note
generation within an arpeggio (krate in instrument “arpeggio”) and the duration
of individual notes within an arpeggio have been carefully chosen to allow for the
generation of rich textures with many overlapping notes but also for the occasional
possibility of significant pauses and silence between arpeggios. To permit these ex-
tremes, but rarely in close succession, allows the piece to maintain interest over a
number of minutes.

Listing 17.12 Csound Haiku IX

ksmps = 32
nchnls = 2
0dbfs = 1

gasendL init 0
gasendR init 0
giwave ftgen 0,0,128, 10, 1, 1/4, 1/16, 1/64
giampscl1 ftgen 0,0,-20000,-16,1,20,0,1,19980,-20,0.01
seed 0
alwayson "trigger_arpeggio"
alwayson "reverb"

instr trigger_arpeggio
krate randomh 0.0005, 0.2, 0.04
ktrig metro krate
schedkwhennamed ktrig,0,0,"arpeggio",0,25
endin

instr arpeggio
ibas random 0, 24
ibas = cpsmidinn((int(ibas)*3)+24)
krate rspline 0.1, 3, 0.3, 0.7
ktrig metro krate
kharm1 rspline 1, 14, 0.4, 0.8
kharm2 random -3, 3
kharm mirror kharm1+kharm2, 1, 23
kamp rspline 0, 0.05, 0.1, 0.2
schedkwhen ktrig,0,0,"note",0,4,ibas*int(kharm),kamp
endin

instr note
aenv linsegr 0, p3/2, 1, p3/2, 0, p3/2, 0
iampscl table p4, giampscl1

442 17 Iain McCurdy: Csound Haiku

asig oscili p5*aenv*iampscl, p4, giwave
adlt rspline 0.01, 0.1, 0.2, 0.3
adelsig vdelay asig, adlt*1000, 0.1*1000
aL,aR pan2 asig+adelsig, rnd(1)
outs aL, aR
gasendL = gasendL+aL
gasendR = gasendR+aR
endin

instr reverb
aL, aR reverbsc gasendL,gasendR,0.88,10000
outs aL, aR
clear gasendL,gasendR
endin

17.4 Conclusions

The Csound Haiku pieces provide a demonstration of Csound’s ability to jettison the
traditional score in favour of notes being generated in the orchestra in real time. In-
struments no longer need be regarded merely as individual synthesisers; their roles
can be as generators of notes for other instruments or as generators of global vari-
ables for use by multiple iterations of later instruments. It has also been shown
that these note-generating instruments can be chained in series to multiply the note
structures formed. Some of the techniques used for note generation can be described
as algorithmic composition and to this end a number of Csound’s opcodes for ran-
dom value and function generation have been employed. Extensive use was made
of rspline and jspline for the generation of random spline functions. These
opcodes were found to be particularly strong at generating natural flowing gestures
when applied to a wide range of synthesis and note generation parameters. These
pieces also exemplify the richness of some of Csound’s opcodes for sound synthesis
and also the brevity of code with which they can be deployed.

Chapter 18

Øyvind Brandtsegg: Feedback Piece

Abstract This chapter presents a case study of a live electronics piece where the
only sound source is audio feedback captured with two directional microphones.
The performer controls the timbre by means of microphone position. Algorithms
for automatic feedback reduction are used, and timbral colouring added by using
delays, granular effects, and spectral panning.

18.1 Introduction

The piece is based on audio feedback as the only sound generator. It was originally
inspired by the works of Alvin Lucier and Agostino Di Scipio, and how they use
audio feedback to explore the characteristics of a physical space. Audio from the
speakers is picked up by microphones (two shotgun/supercardioid microphones)
and treated with a slow feedback suppression technique. In my feedback piece, a
performer holds these two microphones and moves around in the concert space,
exploring the different resonant characteristics. Different parts of the room will have
resonances at specific frequencies, and the microphone position in relation to the
speakers will also greatly affect the feedback potential.

Some subtle colouring effects are added, for example delays to extend the tail of
the changing timbres and also to help to get feedback at lower sound levels. Spectral-
panning techniques are used to spread timbral components to different locations in
the room. During the later part of the piece, granular effects are used to further
shape and extend the available sonic palette, still maintaining the concept of using
microphone feedback as the only sound source. The overall form of the piece is
set by a timed automation of the effects treatment parameters, and the actual sonic
content is determined by the performer moving the microphones around the room
where the piece is performed. The relationship between material and form is thus
explored, in the context of the particular performance venue. Example recordings of
the piece can be found at [21, 20].

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_18

443

444 18 Øyvind Brandtsegg: Feedback Piece

18.2 Feedback-Processing Techniques

As the signal from audio feedback picked up by microphones in the room is the
only sound source for the piece, the digital treatment of the signal is significant
for allowing the instrument a certain amount of timbral plasticity. The performer
ultimately shapes the sound by way of microphone positioning, but the potential
for timbral manipulation of the feedback lies in the adaptive filters. Some of these
filters selectively reduce feedback at specific frequencies, while others maintain or
increase the potential for feedback. Before A/D conversion, the microphone signal
is gently compressed, as the signal level picked up by the microphone can vary
greatly between the furthest corner of the room and a position directly in front of
the speaker. A regular equalising stage is also used, manually tuned according to
venue and speaker system, with the purpose of evening out the general frequency
response of the system. The adaptive filters for digitally controlling the feedback
consist of three different effects in series. The effects are

1. Autolevel
2. Adaptive spectral equalizer
3. Adaptive parametric equalizer

The autolevel effect measures the input level and compares this to a desired (tar-
get) level, then calculates a gain factor as the ratio between the two. Gain adjustment
is bypassed if the input level is below a certain threshold (i.e. the background noise
level). The gain factor is limited to a maximum value, and the rate of change for the
gain factor is filtered so as to avoid abrupt glitches.

Listing 18.1 Autolevel effect, trying to maintain a constant output signal level, excluding sounds
below the noise threshold

kRefLevel = ampdbfs(-10)
kLevelRate = 10
kMaxLevelFact = 10
kLowThreshold = ampdbfs(-25)
krmsOut init 1
kLevel init 1
aLeve init 1
krmsIn rms ain
kLevel divz kRefLevel, krmsIn, 1
kLevel = (krmsIn < kLowThreshold ? 1 : kLevel)
kLevel limit kLevel, 0, kMaxLevelFact
kLevel tonek kLevel, kLevelRate
aLevel interp kLevel*0.5
aout = ain * aLevel

In an audio signal generated by feedback from speaker to microphone, we will
have a set of clearly defined partials and these will generally be the spectral com-
ponents with the highest energy. The adaptive spectral equaliser uses an FFT (or

18.2 Feedback-Processing Techniques 445

more specifically a streaming phase vocoder, pvs opcodes) to analyze the spectrum,
and then selectively lower the amplitudes of the loudest frequencies. This is done by
creating a masking table, where each table index corresponds to a specific frequency
(a bin of the pvs signal). The masking table is initially filled with all 1’s. When we
want to lower the energy of theNstrongest spectral components, we iterate over the
set of binsNtimes, each time looking for the bin with the highest energy and setting
the masking table to zero for the index of the strongest component. We can then use
the table as an adjustable spectral mask by means of the pvsmaska opcode, adjust-
ing the amount of gain reduction for the selected bands with the kdepth parameter.
To be dynamically updated the spectral profile, we run this process periodically at
a selectable update rate. Each time we have an updated spectral profile, we use the
ftmorf opcode to gradually change from the old profile to the new one.

Listing 18.2 Global ftables for the adaptive spectral equalizer

gifftsize = 256
giFftTabSize = (gifftsize / 2)+1
; amplitudes and frequencies for the pvs bins
gifna ftgen 0,0,giFftTabSize,7,0,giFftTabSize,0
gifnf ftgen 0,0,giFftTabSize,7,0,giFftTabSize,0
; all 1’s
gi1 ftgen 0,0,giFftTabSize,7,1,giFftTabSize,1
; tables for storing and morphing spectral masks
gifnaMod ftgen 0,0,giFftTabSize,7,0,giFftTabSize,0
gifnaMod1 ftgen 0,0,giFftTabSize,7,0,giFftTabSize,0
gifnaMod2 ftgen 0,0,giFftTabSize,7,0,giFftTabSize,0
gifnaMorf ftgen 0,0,4,-2,gifnaMod2,gifnaMod1,

gifnaMod2,gifnaMod1

Listing 18.3 Adaptive spectral equalizer instrument code

fsin pvsanal ain,gifftsize,gifftsize/4,gifftsize,1
kflag pvsftw fsin,gifna,gifnf

kpvsNumBands = 4
kpvsAmpMod = 1
kpvsResponseTime = 1
kpvsSmoothTime = 0.5

kpvsResponseCps divz 1,kpvsResponseTime,1
kmetro metro kpvsResponseCps
kdoflag init 0
kdoflag = kdoflag + kmetro
kswitch init 1 ; count 1,2,1,2
kswitch = (kswitch == 1 ? \

kswitch + kmetro : kswitch - kmetro)

446 18 Øyvind Brandtsegg: Feedback Piece

; copy pvs data from table to array
; modify amplitude of single bin
; repeat the above N number of times

if (kdoflag > 0) && (kflag > 0) then
kArr2[] init giFftTabSize-2
kArrM[] init giFftTabSize-2
copyf2array kArr2, gifna
copyf2array kArrM, gi1
kcount = 0

process:
kMa, kMaxIndx maxarray kArr2
kArr2[kMaxIndx] = 0
kArrM[kMaxIndx] = 0
kcount = kcount + 1
if kcount < kpvsNumBands then
kgoto process
endif

if kswitch == 1 then
copya2ftab kArrM, gifnaMod2
reinit morftable
else ; (if switch is 2)
copya2ftab kArrM, gifnaMod1
reinit morftable
endif
kdoflag = 0
endif

morftable:
iswitch = i(kswitch)
kinterp = kpvsSmoothTime*kpvsResponseTime
ikinterp = i(kinterp)
kmorfindx linseg iswitch, ikinterp, iswitch+1,

1, iswitch+1
ftmorf kmorfindx, gifnaMorf, gifnaMod
rireturn

; modify and resynth
fsout pvsmaska fsin, gifnaMod, kpvsAmpMod
aout pvsynth fsout

The adaptive spectral effect can be thought of as an equaliser with a large number
of static and narrow bands. It works quite effectively to reduce feedback and the ad-
justable response time allows a certain room for feedback to build up before being

18.3 Coloring Effects 447

damped. In addition to this, a parametric equaliser coupled with a pitch tracker is
used as an alternative and complementary means of reducing feedback. We could
use the term “homing filter” to describe its behaviour. No claims are made about the
efficiency and transparency of this method for any other purposes than use in this
composition. The frequency of a band-stop filter is controlled by the pitch tracker.
If the pitch tracker output jumps to a new frequency, the band-stop filter slowly
approaches this frequency, possibly removing components that did not create feed-
back, as it travels across the frequency range to close in on the target frequency. In
this respect it is in no way considered a “correct” feedback reducer, but acts as part
of the complex but deterministic audio system for the composition.

Listing 18.4 Adaptive parametric equalizer. One band is shown, it is commonly used with at least
three of these in series

kFiltFreq chnget "HomingRate"
kStrength1 chnget "FilterAmount1"
kFiltQ1 chnget "FilterQ1"

kamp rms a1
acps,alock plltrack a1, 0.3, 20, 0.33, 20, 2000,

ampdbfs(-70)
kcps downsamp acps
kcps limit kcps, 20, 2000
kcps tonek kcps, kFiltFreq
kamp tonek kamp*5, kFiltFreq
kdamp = 1-(kamp*kStrength1)
kgain limit kdamp, 0.01, 1
a2 pareq a1, kcps, kgain, kFiltQ1

18.3 Coloring Effects

To enhance and prolong the feedback effects, a simple stereo delay with crossfeed
between channels is used. The piece is played with two microphones, and each mi-
crophone is mainly routed to its own output channel. The crossfeed in the delay
processing allows a certain amount of feedback from one microphone to bleed into
the signal chain of the other microphone, creating a more enveloping spatial image.
Granular processing with the Hadron Particle Synthesizer1 is used to extend the
sonic palette with noisy, intermittent, and pitch-shifted textures. Spectral-panning
techniques are also used to spread the frequency components of each signal chain to
several audio outputs, inspired by Peiman Koshravi’s circumspectral panning tech-
niques [58] which he in turn picked up from Denis Smalley [117].

1 www.partikkelaudio.com

448 18 Øyvind Brandtsegg: Feedback Piece

Listing 18.5 Spectral panner

sr = 44100
ksmps = 256
nchnls = 2
0dbfs=1

giSine ftgen 0, 0, 65536, 10, 1
gifftsize = 2048

iNumBins = gifftsize/2
; tables to spectral panning shapes
gipantab1 ftgen 0,0,iNumBins,7,0,iNumBins, 0
gipantab2 ftgen 0,0,iNumBins,7,1,iNumBins, 1

; spectral points (anchors) for panning curve
ifq1 = 120
iHzPrBin = sr/iNumBins ; Hz per bin
iBin1 = round(ifq1/iHzPrBin) ; bin number for this fq
iBin2 = round(ifq1*2/iHzPrBin)
iBin3 = round(ifq1*4/iHzPrBin)
iBin4 = round(ifq1*8/iHzPrBin)
iBin5 = round(ifq1*16/iHzPrBin)
iBin6 = round(ifq1*32/iHzPrBin)
iBin7 = round(ifq1*64/iHzPrBin)
iBin8 = round(ifq1*128/iHzPrBin)

; spectral panning shape A
gipantab1A ftgen 0,0,iNumBins,27, 0, 0, iBin1, 0, iBin8,

1, iNumBins-1, 0
; complementary spectral panning shape
gipantab2A ftgen 0,0,iNumBins,27, 0, 0, iBin1, 1, iBin8,

0, iNumBins-1, 1

; shape B
gipantab1B ftgen 0,0,iNumBins,27, 0, 0, iBin1, 0, iBin5,

1, iBin8, 0, iNumBins-1, 1
gipantab2B ftgen 0,0,iNumBins,27, 0, 0, iBin1, 1, iBin5,

0, iBin8, 1, iNumBins-1, 0

; shape C
gipantab1C ftgen 0,0,iNumBins,27, 0, 0, iBin1, 0, iBin4,

1, iBin7, 0, iNumBins-1, 0
gipantab2C ftgen 0,0,iNumBins,27, 0, 0, iBin1, 1, iBin4,

0, iBin7, 1, iNumBins-1, 1

18.3 Coloring Effects 449

; shape D
gipantab1D ftgen 0,0,iNumBins,27, 0, 0, iBin1, 0, iBin3,

1, iBin5, 0, iBin7, 1, iNumBins-1, 1
gipantab2D ftgen 0,0,iNumBins,27, 0, 0, iBin1, 1, iBin3,

0, iBin5, 1, iBin7, 0, iNumBins-1, 0

; morphing between shapes
gimorftable1 ftgen 0,0,4,-2, gipantab1A, gipantab1B,

gipantab1C, gipantab1D
gimorftable2 ftgen 0,0,4,-2, gipantab2A, gipantab2B,

gipantab2C, gipantab2D

instr 1
; spectral panning
kDepth chnget "Depth"
kMorph chnget "Morph"
kMorphLfoAmp chnget "MorphLfoAmp"
kMorphLfoFreq chnget "MorphLfoFreq"
kLFO poscil 0.5, kMorphLfoFreq, giSine
kLFO = (kLFO + 0.5)*kMorphLfoAmp
kMorph = kMorph+kLFO
kMorph limit kMorph, 0, 3

ain inch 1
fsin pvsanal ain,gifftsize,gifftsize/3,gifftsize,0
fin1 pvsmix fsin,fsin ; just a simple copy
fin2 pvsmix fsin,fsin

; morph between spectral panning shapes
ftmorf kMorph, gimorftable1, gipantab1
ftmorf kMorph, gimorftable2, gipantab2
fin1 pvsmaska fin1, gipantab2, kDepth
fin2 pvsmaska fin2, gipantab1, kDepth

a1 pvsynth fin1
a2 pvsynth fin2
; try to make up gain
a1 = a1*ampdbfs(kDepth*3)
a2 = a2*ampdbfs(kDepth*3)

outs a1, a2
endin

450 18 Øyvind Brandtsegg: Feedback Piece

18.4 Hosting and Interfacing

The processors are compiled as VST plug-ins using Cabbage, so as to be used with
any VST host. I find it quite useful to rely on one of the standard DAWs or VST
hosts to provide “bread and butter” functionality like signal i/o, metering, routing,
and mixing. I have been using Reaper as the main host for this purpose. For prac-
tical purposes related to the full live rig (enabling several other pieces and impro-
visations), I have split the processing load between two computers, sending audio
via ADAT between the two machines (Fig. 18.1). This allows the use of large audio
buffer sizes for relaxed processing on the second computer while retaining the possi-
bility for small buffer sizes and low latency on the primary computer. The delays and
granular effects for the feedback piece are calculated on the second computer. The
effects automation for the feedback piece was originally entered as an automation
track in AudioMulch, and due to practical issues related to exporting said automa-
tion tracks, I have continued using that host for the automated effects in this piece.
The adaptive filters and other feedback-conditioning processes run under Reaper on
the first computer. If I were making a technical rig for this piece only, it would be
quite possible to run it all on one single computer.

Fig. 18.1 Signal flow between the two computers, also showing the patching of effects within
AudioMulch

18.5 Automation and Composed Form

The main form of the piece can be split into two sections, where the first one is free
and the second is automated. Automation in this context relates to a timed script for
changes to the effect parameters, gradually changing the instrument’s timbre over

18.6 Spatial and Performative Considerations 451

time. The actual content and sonic gestures for the first section are not notated, and
are indeed free to be performed differently in each performance of the piece. How-
ever, when I play it, I usually try to make two or three very similar sounds in the
beginning of the piece, making the sound almost completely stop between each pair
of gestures. This also serves as a way of sharing with the audience how this instru-
ment works, showing the relationship between gestures and resulting sound. I then
go on to vary the gestures and so develop nuances of the timbre. The free section has
an unspecified duration, but usually continues until the sonic material has been suf-
ficiently exposed. The automated part is then started by means of a trigger signal on
a MIDI pedal, sending a play message to the automation host (see Fig. 18.2). Dur-
ing the automated part, the balance between a relatively clean feedback signal and a
heavily processed signal is gradually changed. Automation envelopes for the param-
eters are shown in Fig. 18.3. The granular effects processing significantly changes
the recognisable harmonic feedback tone into a scattering noise based texture. Parts
of the granular processing are controlled by pitch tracking, so there is an additional
layer of feedback between the pitch of the sound in the room and the specific param-
eters of the granular processing in Hadron, which again is sent out into the room.
The automated section concludes by returning the balance of effects processing to a
situation where the feedback signal is relatively clean. Performance-wise, I usually
try to conclude the piece with a few repetitive sounds/gestures as a means of making
a connection to the beginning, and reminding the listener of the basic premise for
the piece.

Fig. 18.2 Overall blockwise form

18.6 Spatial and Performative Considerations

The performer of the piece holds the two directional microphones, usually with
wireless transmitters so as to increase mobility and reduce the clutter of cable when
moving around the space. Microphone gain is controlled by means of EMG (muscle
activity) sensors. When the performer tenses the arm muscles, the signal level is in-
creased. This allows for expressive control, and is also a reasonable safety measure
to ensure the feedback does not get out of hand (pun intended). An additional “free
gift” of this performance setup is that the piece actually requires physical effort to
perform. This is in contrast to many other forms of electronic music performance,
where there is no direct relation between the physical effort and the produced sound.

452 18 Øyvind Brandtsegg: Feedback Piece

Fig. 18.3 Effects parameter automation in AudioMulch

From experience I also know that this can lend a certain dramatic aspect to the per-
formance situation. The EMG system I personally use is a BodySynth built by Ed
Severinghaus in the 1990s, but it would also be possible to make a similar system
using an Arduino board with EMG sensors and a wireless expansion board.
An interesting aspect of the sound-producing mechanism created by this system is
the complex relationship governing the availability and resonance of different fun-
damental frequencies. The distance between microphone and speaker effectively
controls the potential fundamental frequencies, as a function of distance and the
speed of sound. In addition, the resonances of the room allow some frequencies
more aptitude for feedback, and these resonances change with the performer’s posi-
tion in the room. The position of the microphone in relation to the separate compo-
nents of the speaker also greatly affects the feedback potential. The treble drivers are
sometimes quite directional, allowing for precise control of feedback in the higher
spectral register. One can also physically intervene in the feedback path by putting
a hand between the speaker and the microphone, and in this manner balance the
amount of high frequency content in the feedback timbre (see Fig. 18.4). Similarly,
some speaker types radiate bass frequencies via backwards facing bass ports, so go-
ing up close to a speaker and “hugging it” may both muffle some direct sound and
also put the microphones in as position where deeper frequencies are more pregnant.
The software components controlling the feedback loop will also affect the spectral
potential. Some of the components are specifically designed to reduce feedback,
and others are designed to increase or maintain the feedback potential. The adaptive
filters will continuously change in relation to the spectral content of the incoming

18.6 Spatial and Performative Considerations 453

sound, so it may not be possible to recreate the exact same sound with the same per-
formative gesture at different points in time. The dynamic nature of the instrument
thus may seem to create a very difficult situation for the performer, but keep in mind
that there is nothing random in the signal chain. Even if it is governed by complex
adaptive processes, it is completely deterministic, and thus ultimately controllable.

Fig. 18.4 Using a hand between speaker and microphone to obstruct the feedback path, affecting
the spectral balance of the feedback signal

Chapter 19

Joachim Heintz: Knuth and Alma, Live

Electronics with Spoken Word

Abstract This chapter exemplifies the usage of Csound in a live electronics setup.
After introducing the general idea, two branches of working with spoken word as
live input are shown. Knuth analyses the internal rhythm and triggers events at
recognised accents, whereas Alma analyses sounding units of different sizes and
brings them back in different modes. The concept is shown as a work in progress,
with both realisations for improvisation and sketches for possible compositions.

19.1 Introduction

To compose a piece of music and to write a computer program seem to be rather
different kinds of human activity. For music and composition, inspiration, intuition
and a direct contact with the body1 seem to be substantial, whereas clear (“cold”)
thinking, high abstraction and limitless control seem to be essential for writing a
computer program. Arts must be dirty, programs must be clean. Arts must be imme-
diate, programs are abstractions and formalisms.

Yet actually, there are various inner connections between composing and pro-
gramming2. Programming should not be restricted to an act of technical application.
Writing a program is a creative act, based on decisions which are at least in part intu-
itive ones. And on the other hand, the way contemporary music thinks, moves, forms
is deeply connected to terms like parameters, series, permutations or substitutions.
Whether it may be welcomed or not, abstractions and concepts are a substantial part
of modern thinking in the arts, where they appear in manifold ways.

To program means to create a world in which the potential for change is in-
scribed. One of the most difficult choices in programming can be to decide on this
shape instead of so many other possible shapes. Programming is always “on the

1 Composing music, singing or playing an instrument is “embodied” in a similar way as reacting
to rhythm, harmonies etc. on the listener’s part.
2 I have described some of these links in my article about composing before and with the computer
[50].

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_19

455

456 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

way”; it is not the one perfect form, but it articulates one of many possible expres-
sions. Changes and transformations are the heart of programming; programs do not
only allow change, they demand it.

So I would like to discuss here a compositional case study which is very much
related to a concept rather than to a piece, and which is at the time of writing (De-
cember 2015) still at the beginning. I don’t know myself whether it will evolve fur-
ther, and if so, where to. I will show the basic idea first, then two different branches,
and I will close with questions for future developments.

19.2 Idea and Set-up

There is a German children’s song, called “Ich geh mit meiner Laterne”. Children
sing it in the streets in autumn, when dusk falls early, parading a paper-built lantern,
with a candle in it. The song tells of the child going with the lantern in the same way
as the lantern goes with the child, and establishes a relation between the stars in the
sky and the lanterns here on earth.

I remembered this song after I wrote a couple of texts3 and wondered how texts
could be read in a different way, using live electronics. The set-up for this should be
simple: in the same way as the children go anywhere with their lantern, the person
who reads a text should be able to go anywhere with her live-electronics set-up. So
I only use a small speaker, a microphone and a cheap and portable computer. The
human speaker sits at a table, the loudspeaker is put on the table, too, and the human
speaker goes with his electronics companion as his companion goes with him.

Within this set-up, I have worked on two concepts which focus on two different
aspects of the spoken word. The one which I called Knuth deals with the inter-
nal rhythm of the language. The other, Alma, plays with the sounding units of the
speaker’s exclamations and thereby brings different parts of the past back into the
present.

19.3 Knuth

At the core of Knuth, rhythmic analysis of speech is employed to provide its musical
material. This triggers any pre-recorded or synthesised sound, immediately or with
any delay, and feeds the results of the analysis into the way the triggered sounds are
played back.

3 www.joachimheintz.de/laotse-und-schwitters.html

19.3 Knuth 457

19.3.1 Rhythm Analysis

The most significant rhythmical element of speech is the syllable. Metrics counts
syllables and distinguishes marked and unmarked, long and short syllables. Drum-
mers in many cultures learn their rhythms and when to beat the drums by speaking
syllables together with drumming. Vinko Globokar composed his piece Toucher
[47] as a modification of this practice, thereby musicalising parts of the Galileo
piece of Bertolt Brecht [23].

But how can we analyse the rhythm of spoken words, for instance the famous
Csound community speech example (Fig. 19.1), the “Quick Brown Fox”4? What
we would like to get out is similar to our perception: to place a marker as soon as a
vowel is recognised.

Fig. 19.1 “The quick brown fox jumps over the lazy dog” with desired recognition of internal
rhythm

I chose a certain FFT application to get there. The Csound opcode pvspitch
attempts to analyse the fundamental of a signal in the frequency domain [96]. Con-
sidering that a vowel is the harmonic part of speech, this should coincide with the
task at hand. If no fundamental can be analysed, pvspitch returns zero as fre-
quency. A threshold can be fed directly into the opcode to exclude everything which
is certainly no peak because it is too soft. We only have to add some code to avoid
repetitive successful analyses.

Listing 19.1 Rhythm detection by Knuth

/* get input (usually live, here sample) */
aLiveIn soundin "fox.wav"

/* set threshold (dB) */
kThreshDb = -20

4 http://csound.github.io/docs/manual/examples/fox.wav

458 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

/* set minimum time between two analyses */
kMinTim = 0.2

/* initialise time which has passed since
last detection */

kLastAnalysis init i(kMinTim)

/* count time since last detection */
kLastAnalysis += ksmps/sr

/* initialise the previous state of frequency
analysis to zero hz */

kFreqPrev init 0

/* set fft size */
iFftSize = 512

/* perform fft */
fIn pvsanal aLiveIn,iFftSize,iFftSize/4,iFftSize,1

/* analyse input */
kFreq, kAmp pvspitch fIn, ampdb(kThreshDb)

/* ask for the new value being the first
one jumping over kthresh */

if kFreqPrev == 0 &&
kFreq > 0 &&
kLastAnalysis > kMinTim then

/* trigger subinstrument and pass
analysed values */

event "i", "whatever", 0, 1, kFreq, kAmp
/* reset time */
kLastAnalysis = 0

endif

/* update next previous freq to this freq */
kFreqPrev = kFreq

The result is shown in Fig. 19.2).

19.3.2 Possibilities

This analysis of rhythm internal to speech may not be sufficient for scientific pur-
poses; yet it is close enough to the human recognition of emphases to be used in an

19.3 Knuth 459

Fig. 19.2 “The quick brown fox jumps over the lazy dog” analysed by Knuth

artistic context. A basic implementation which I realised in CsoundQt (see Figure
19.3) offers an instrument for improvisation. The performer can select sounds which
are triggered by Knuth in real time via MIDI. It is possible to mix samples and to
vary their relative volumes. The basic analysis parameters (threshold, minimal time
between two subsequent vowels, minimum/maximum frequency to be analysed) can
be changed, too. And by request of some performers I introduced a potential delay,
so that a detected vowel does not trigger a sound before a certain time. The detected
base frequency is used to play back the samples at different speeds. In a similar
way, a reverberation is applied, so that a vowel with a high frequency results in
an upwards-transposed and more dry sound, whereas a low frequency results in a
downwards-transposed and more reverberative sound.

Fig. 19.3 Knuth as an instrument for improvisation in CsoundQt

For a composition, or a conceptual piece, instead of an improvisation, an ap-
proach similar to Globokar’s Toucher could already be implemented using an instru-
ment based on the described one. Besides, instead of distinguishing vowels, Knuth
could distinguish base frequencies, and/or the intensities of the accents. This could
be linked with sounds, mixtures and structures, and all linkings could be changed in
time.

460 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

19.4 Alma

Alma looks at the body of spoken words from a different perspective, playing with
the speaker’s vocalisations to recover elements of the past into the present.

19.4.1 Game of Times

Imagine someone who is reading a text. While they are reading, parts of what has
already been read come back, in specific forms or modes. Parts of the past come
back, thus confusing the perception of time as a flow, or succession. A Game of
Times begins, and the text changes its face. Instead of a stream, always proceeding
from past to future, it becomes a space in which all that has gone can come back and
be here, in this moment, in the present. A line becomes a collection of fragments,
and the fragments build up a new space, in which no direction is preferred. You can
go back, you can go ahead, you can cease to move, you can jump, you can break
down, you can rise again in a new mode of movement. But definitely, the common
suggestion of a text as succession will experience strong irritations.

19.4.2 Speech as Different-Sized Pieces of Sounding Matter

So Alma is about the past, and she only works with the material the speaker has
already uttered. But this material is not equivalent to all that has been recorded in
a buffer. It would be unsatisfactory to play back some part of this past randomly:
sometimes a syllable, sometimes the second half of a word, sometimes silence.

Moreover, the sounding matter must be analysed and selected. The choice for
Alma is this: start by recognising sounding units of different sizes. A very small
size of such a sounding unit approximately matches the phonemes; a middle size
matches the syllables; a larger size matches whole words or even parts of sentences.

The number of sizes or levels is not restricted to three; there can be as many as
desired, as many as are needed for a certain Game of Times. The method used to
distinguish a unit is very easy: a sounding unit is considered as something which
has a pause before and afterwards. The measurement is simply done by rms: if
sounding material is below a certain rms threshold, it is considered as a pause. So
the two parameters which determine the result are the threshold and the time span
over which the rms value is measured. Figures 19.4–19.6 show three different results
of sounding units in the “Quick Brown Fox” example, depending on threshold and
time span.

19.4 Alma 461

Fig. 19.4 Sounding units analysed with -40 dB threshold and 0.04 seconds rms time span: four
large units

Fig. 19.5 Sounding units analysed with -40 dB threshold and 0.01 seconds rms time span: eleven
units of very different sizes

Fig. 19.6 Sounding units analysed with -20 dB threshold and 0.04 seconds rms time span: eight
units of medium size

462 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

The basic code to achieve this is quite simple, reporting whether the state defined
as silence has changed. Usually, these changes are then written in a table or array,
indicating the start and end of sounding units.5

Listing 19.2 Analysis of sounding units by Alma

opcode IsSilence, k, akkj
aIn, kMinTim, kDbLim, iHp xin
/* rms */
iHp = iHp == -1 ? 5 : iHp
kRms rms aIn, iHp
/* time */
kTimeK init 0
kTimeK += 1
kTime = kTimeK/kr
/* analyse silence as rms */
kIsSilence = dbamp(kRms) < kDbLim ? 1 : 0
/* reset clock if state changes */
if changed(kIsSilence) == 1 then
kNewTime = kTime

endif
/* output */
if kIsSilence == 1 &&

kTime > kNewTime+kMinTim then
kOut = 1
else
kOut = 0
endif
xout kOut
endop

/* minimal silence time (sec) */
giMinSilTim = .04
/* threshold (dB) */
giSilDbThresh = -40
/* maximum number of markers which can be written */
giMaxNumMarkers = 1000
/* array for markers */
gkMarkers[] init giMaxNumMarkers

instr WriteMarker
/* input (usually live) */
aIn soundin "fox.wav"
/* initialise marker number */

5 To be precise, the units start and end a bit earlier, so half of the rms time span is subtracted from
the current time.

19.4 Alma 463

kMarkerNum init 0
/* analyse silence */
kSil IsSilence aIn, giMinSilTim,

giSilDbThresh, 1/giMinSilTim
/* store pointer positions */
if changed(kSil) == 1 then
kPointer = times:k() - giMinSilTim/2
gkMarkers[kMarkerNum] = kPointer
kMarkerNum += 1

endif
endin

In Figs. 19.4–19.6, we observe that the results only roughly correspond to the
above-mentioned distinction between phonemes, syllables and words. As humans,
we recognise these through complex analyses, whereas Alma deals with the spoken
language only in relation to one particular aspect: sounding units, separated by “si-
lence”. It very much depends on the speaker, her way of connecting and separating
the sounds, whether or not expected units are detected by Alma, or unexpected ones
are derived. I like these surprises and consider them to be an integral part of the
game.

19.4.3 Bringing Back the Past: Four Modes

Currently Alma can bring back the past in four different modes. None of these modes
is a real “playback”. All change or re-arrange the sounding past in a certain way.
This is a short overview:

1. A large number of small speech particles create a sound which resembles a wave
breaking on the shore. This is done via a special way of scratching, combined
with a variable delay feedback unit. Depending mainly on the speed of scratch-
ing, the language is barely or not at all recognised.

2. Units in the overall size of syllables are put together in a new order, so that new
words are created. Pauses between the syllables can be added, so that instead of
words a more scattered image is created, one might say a landscape of syllables.

3. A short rhythm is given in proportions, for instance 1/2, 2/3, 1/3, 1/4, 3/4, 1.
This rhythm controls the playback of isolated sound units, so that the natural,
free rhythm of the language is left in favour of a metric rhythm. To avoid perfect
repetitions, the rhythm is varied by applying permutations and different scalings
of expansion/compression.

4. A sound snippet is transformed6 into a bell-like sound which gently seems to
speak. This sound can be of very different durations, starting from the original
(= short) duration to a stretch factor of a thousand. Although it reproduces the

6 via some FFT code which selects a number of prominent bins.

464 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

most prominent partials of the original sound, it sounds high and adds a pitched,
slowly decaying sound to the overall image.

19.4.4 Improvisation or Composition

As for Knuth, one major application for Alma is to be an instrument for improvisa-
tion. Figure 19.7 shows the CsoundQt interface for a MIDI-driven improvisation.

Fig. 19.7 Alma as an instrument for improvisation in CsoundQt

The microphone input is recorded in one huge buffer of arbitrary length, for in-
stance ten minutes. The threshold can be adjusted in real time, as well as some
parameters for the four modes. The markers for the modes are written in four ta-
bles, created automatically by an array which holds pairs of silence time span and
maximum number of markers to be written.

Listing 19.3 Generation of marker tables in Alma

/* pairs of time span and number of markers */
giArrCreator[] fillarray .005, 100000, .02, 10000,

.001, 500000, .01, 50000
instr CreateFtables
iIndx = 0
;for each pair

while iIndx < lenarray(giArrCreator) do
iTableNum = giTableNumbers[iIndx/2]
;create a table
event_i "f", iTableNum, 0, -iMarkers, 2, 0
;start an instance of instr WriteMarker
iSilenceTime = giArrCreator[iIndx]
schedule "WriteMarker", 0, p3, iTableNum,

iMarkers, iSilenceTime
iIndx += 2

od
turnoff

19.4 Alma 465

endin

As for compositional sketches, I am currently working on some studies which
focus on only one of the four modes. For the second mode for example, I took a text
by Ludwig Wittgenstein [132]7, separated it into parts of three, five, seven, nine or
eleven words, followed by pauses of one, two, three, four, five or six time units.8

Alma herself acts in a similar way, creating new “sentences” of five, seven, nine or
thirteen “words” and breaks of two, four, six or eight time units afterwards.9

Listing 19.4 Alma reading a text in her way

/* time unit in seconds */
giTimUnit = 1.2
/* number of syllables in a word */
giWordMinNumSyll = 1
giWordMaxNumSyll = 5
/* pause between words (sec) */
giMinDurWordPause = 0
giMaxDurWordPause = .5
/* possible number of words in a "sentence" */
giNumWordSent[] fillarray 5, 7, 9, 13
/* possible pauses (in TimUnits) after a sentence */
giDurSentPause[] fillarray 2, 4, 6, 8
/* possibe maximum decrement of volume (db) */
giMaxDevDb = -40

instr NewLangSentence

/* how many words */
iNumWordsIndx = int(random(0,

lenarray:i(giNumWordSent)-.001))
iNumWords = giNumWordSent[iNumWordsIndx]

/* which one pause at the end */
iLenPauseIndx =

int(random(0,lenarray:i(giDurSentPause)-.001))
iLenPause = giDurSentPause[iLenPauseIndx]

/* get current pointer position and
make sure it is even (= end of a section) */

S_MarkerChnl sprintf "MaxMarker_%d", giMarkerTab
iCurrReadPos chnget S_MarkerChnl

7 Numbers 683 and 691.
8 A time unit is what the speaker feels as an inner pulse, so something around one second.
9 I presented this study as part of my talk at the 3rd International Csound Conference in St. Peters-
burg, 2015.

466 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

iCurrReadPos = iCurrReadPos % 2 == 1 ?
iCurrReadPos-1 : iCurrReadPos-2

/* make sure not to read negative */
if iCurrReadPos < 2 then
prints {{ Not enough Markers available.

Instr %d turned off.\n}}, p1
turnoff

endif

/* set possible read position */
iMinReadPos = 1
iMaxReadPos = iCurrReadPos-1

/* actual time */
kTime timeinsts

/* time for next word */
kTimeNextWord init 0

/* word count */
kWordCount init 0

/* if next word */
if kTime >= kTimeNextWord then

/* how many units */
kNumUnits = int(random:k(giWordMinNumSyll,

giWordMaxNumSyll))

/* call instrument to play units */
kNum = 0
kStart = 0
while kNum < kNumUnits do

/* select one of the sections */
kPos = int(random:k(iMinReadPos, iMaxReadPos+.999))
kPos = kPos % 2 == 1 ?

kPos : kPos-1 ;get odd = start marker

/* calculate duration */
kDur = (table:k(kPos+1, giMarkerTab) -

table:k(kPos, giMarkerTab)) * giBufLenSec

/* reduce if larger than giSylMaxTim */

19.4 Alma 467

kDur = kDur > giSylMaxTim ? giSylMaxTim : kDur

/* get max peak in this section */
kReadStart =

table:k(kPos, giMarkerTab) * giBufLenSec ;sec
kReadEnd = kReadStart + kDur
kPeak GetPeak giBuf, kReadStart*sr, kReadEnd*sr

/* normalisation in db */
kNormDb = -dbamp(kPeak)

/* calculate db deviation */
kDevDb random giMaxDevDb, 0

/* fade in/out */
iFade = giMinSilTim/2 < 0.003 ?

0.003 : giMinSilTim/2

/* add giMinSilTim duration at the end */
event "i", "NewLangPlaySnip", kStart,

kDur+giMinSilTim, table:k(kPos, giMarkerTab),
iFade, kDevDb+kNormDb

/* but not for the start
(so crossfade is possible) */

kStart += kDur

/* increase pointer */
kNum += 1

od

/* which pause after this word */
kPause random giMinDurWordPause, giMaxDurWordPause

/* set time for next word to it */
kTimeNextWord += kStart + kPause

/* increase word count */
kWordCount += 1

endif

/* terminate this instance and
create a new one if number

468 19 Joachim Heintz: Knuth and Alma, Live Electronics with Spoken Word

of words are generated */
if kWordCount == iNumWords then
event "i", "NewLangSentence", iLenPause, p3
turnoff
endif

endin

instr NewLangPlaySnip
iBufPos = p4
iFade = p5
iDb = p6
aSnd poscil3 1, 1/giBufLenSec, giBuf, iBufPos
aSnd linen aSnd, iFade, p3, iFade
out aSnd * ampdb(iDb)
endin

I think the main question for further steps with Alma is how the human speaker
reacts to the accompaniment which comes out of the lantern. I hope I can go on
exploring this field.10

19.5 Conclusions

This chapter showed an example of the usage of Csound for a live electronics set-up
in both an improvisational and compositional environment. It explained how the ba-
sic idea derives from a mixture of rational and irrational, adult and childish, recent
and past images, feelings, desires and thoughts, leading to two different emanations,
called Knuth and Alma. It showed how Knuth is able to detect the irregular accents
of spoken word, or its internal rhythm. Different possibilities of artistic working
and playing with Knuth based on these detections were demonstrated, implemented
either as a MIDI-based instrument for improvisation, or as a concept for a prede-
fined composition. For the second branch, Alma’s way of analysing and marking
sounding units of different sizes was explained in detail. The implementation of an
instrument for improvising with Alma was shown, as well as a study for reading a
text in partnership with her. The code snippets in this chapter display some ways to
write a flexible, always developing live electronics set-up in Csound.

10 Thanks here to Laureline Koenig, Tom Schröpfer, Anna Heintz-Buschart and others who ac-
companied my journey with Knuth and Alma.

Chapter 20

John ffitch: Se’nnight

Abstract In this chapter, the background and processes are explored that were used
in the composition of Se’nnight, the seventh work in a sequence Drums and Different
Canons that explores the onset of chaos in certain sequences.

20.1 Introduction

I have been interested for a long time in sequences of notes that never repeat, but are
very similar, thereby combining familiarity and surprise. This led me to the areas of
the onset of chaos. Quite separately I get an emotional reaction to small intervals,
much less than a semitone. I started a series of pieces with these two interests un-
der the umbrella title Drums and Different Canons. The first of this family used a
synthetic marimba sound with added bell sounds governed by the Hénon and torus
maps (see Section 20.2).

This was followed by five further pieces as shown in Table 20.1. But the seventh
piece owes much to the first, which was described in [38].

Table 20.1 Drums and Different Canons Series
Date Title Style Main Map Length
1 1996 Drums & Different Canons#1 Tape Hénon/Torus 07:00
2 2000 Stalactite Tape Lorenz 07:37
3 2001 For Connie Piano Lorenz 04:00
4 2002 Unbounded Space Tape Hénon 06:50
5 2002/2003 Charles à Nuit Tape Hénon 05:02
6 2010 Universal Algebra Quad Hénon 05:22
7 2011-2015 Se’nnight Ambisonic Hénon 13:40

In this chapter I present the background in near-chaos that is central to the series,
describe the initial idea, and how it developed into the final work.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_20

469

470 20 John ffitch: Se’nnight

20.2 Hénon Map and Torus Map

The underlying mathematical idea in the whole series of pieces is the use of recur-
rence relations to generate a sequence of numbers that can be mapped to things such
as frequency and duration, these sequences showing near self-similarity.

Central to this is the Hénon map, which is a pair of recurrence equations

xn+1 = 1−ax2
n + yn

yn+1 = bxn

with two parameters a and b. For values a = 1.4, b = 0.3 the behaviour is truly
chaotic, and those are the values I used in the first piece in this series. Starting from
the point (0,0) the values it delivers look as in Fig. 20.1.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+

+

+

Fig. 20.1 Chaotic Hénon map

This picture shows the values but not the order, which is illustrated in Fig. 20.2.
The paths are similar but never repeat; that is its attraction to me. I will use it as

a score generator.
The other map used in the development of Se’nnight is the Chirikov standard

map, which is on a torus (so I sometimes call it the torus map):

In+1 = In +K sin(Θn)
Θn+1 = Θn + In+1

20.3 Genesis of Se’nnight 471

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 20.2 Path of Hénon points

with I and Θ reduced to the range [0,2π). Values from this map have been used as
gestures in Drums and Different Canons. In the final version of Se’nnight this was
not used but remains a potential component and an inspiration.

20.3 Genesis of Se’nnight

I often find titles, and then they generate the ideas or structure of a piece. In the case
of Se’nnight the title came from a calendar adorned with archaic or little-used words,
and this was one of the words that took my attention as one that eventually might
become a title. Much later and independently, it occurred to me that a multiple-
channel piece might be possible, in the sense that I knew of two locations that had
eight speakers, and I might be able to persuade them to play something — I had been
somewhat reserved in trying this after hearing the piece Pre-Composition by Mark
Applebaum which, among other things, mocks the problem of getting an eight-
channel piece performed. My personal studio became equipped with quad sound
about this time so I decided on a two-dimensional surround sound model.

I did spend a little time wondering about VBAP or ambisonics, or just eight
sources; knowing ambisonic pieces and how they affected me I decided on this
format, with a HRTF version to assist in the creative process.

The other idea was to revisit the first of the series as it remains one of my favourite
works, and seems to have more possibilities in it.

472 20 John ffitch: Se’nnight

20.4 Instruments

The main instrument in Number 1 was a synthetic marimba built in a modal-
modelling way, that originally I found in a set of Csound examples written by Jon
Nelson. I have loved the sound of the marimba since hearing one played on Santa
Monica Pier. For Se’nnight I updated the original instrument a bit, and made pro-
vision to position the sound at an angle round the midpoint. Actually two versions
were eventually made; one for ambisonics and one for HRTF, but more about that
later. Each note is static in space and presumed to be at equal distance.

The other main instrument, reused from the second movement of the first piece,
Gruneberg, is a synthetic drum, also originating from Jon Nelson, which I tweaked
a little.

The third instrument is new, just a use of the fmbell with the attack removed.
As one can see the instruments are few in number but my interest is largely in
investigating the range of sounds and pitches they can produce with parameters
driven by the near-chaos sequences. It could be said that this is a minimal method
but the whole series does this in different ways. Any complexity is in the score.

20.5 Score Generation

The score is generated by three C programs.

20.5.1 Score1

The first program uses the Hénon map to create a sequence of the drum instrument,
using the constants a = 1.5, b = 0.2. The x values are used to select a pitch (in hun-
dredths of an octave) and location, and y for time intervals between events. The raw
values are scaled, pitch=5.7+x*2.4; duration=fabs(10.0*y). There
is also code to vary the other parameters of the drum. This mapping was achieved
after a great deal of experimentation. The location mapping mainly follows the pitch
with some global movement.

The amplitude of the notes is different and, in a strange way, regular. The time
between events is quantised to 500 beats per minute, but there is no regular beat. The
piece is in 5/4 time with a beat every 7/500 of a minute. The 5/4 time, actually based
on the first half of the Hindustani jhaptaal rhythm pattern1, is manifest as amplitude
variations of the first note on or after the beat. This generates a stuttering beat which
I like:

/* Jhaptaal */
#define beats_per_bar (5)

1 dhin na | dhin dhin na | tin na | din din na

20.5 Score Generation 473

double vol[beats_per_bar] = { 1.5, 0.5, 1.0, 0.5, 0.0};
int pulse = 7;
int next_beat = 0;

double volume(int tt)
{

double amp = -6.0; /* Base amplitude */

if (tt >= next_beat) { /* If first event after beat */
/* increase amplitude */

amp += vol[(tt/pulse) % beats_per_bar];
next_beat += pulse; /* and record next beat time */

}
return amp;

}

The program generate 1,700 events, again chosen after much listening and many
variants. The later part of the events has a narrowed location.

int main(int argc, char *argv)
{

double x = 0.0,
y = 0.0;

int i;

initial();
for (i=0; i<1700; i++) { /* Some iterations */

output(x, y);
henon(&x, &y);
if (tt>1240) {

minloc = (tt-1240)*135.0/(1500.0-1240.0);
maxloc = 360.0-minloc;

}
}
tail();

}

For an early version that was all there was, but the wider possibilities beckoned.

20.5.2 Score2 and Score3

The second score section uses much of the structure of the first, but uses a modified
bell sound at fixed locations as well as the marimba, using the Henon function in
a number of shortish sequences. Again the final form came after many trials and
changes, adjusting sounds as well as timings.

474 20 John ffitch: Se’nnight

I named and archived two further versions of the work before fixing on the final
form.

20.6 Start and End

I like my music to have a recognisable ending, and to a lesser extent a start. In
the case of the first piece in the series this was a strict cannon of falling tones, as
both start and end. For Se’nnight I took the same cannon but repeated it from eight
different directions around the space. The ending was originally the same, but after
consideration and advice the ending was made more reverberant and noticeable.
Rather than synthesise this sequence I took the original output, resampled it to 48
kHz, and just used a playback instrument. This was something of a short cut as I
usually do everything in Csound.

The other global component that was added to the final assembly was an ampli-
tude envelope for the whole work, mainly for a fade at the end:

instr 1
gaenv transeg 1, p3-15, 0, 1, 15, -1, 0
endin
....
i1 0 1500

20.7 Multichannel Delivery

Part of the design was to create a two-dimensional circle around any listener, and
ultimately to use ambisonics. But for some of the development in a small studio
environment I used the HRTF opcodes; so for the marimba

al, ar hrtfstat a7, p7, 0, "h48-l.dat","h48-r.dat",
9, 48000

out al, ar

In the ambisonic rendering these lines read

aw,ax,ay,az,ar,as,at,au,av,ak,al,
am,an,ao,ap,aq
bformenc1 a7,p7,0
out aw, ax,ay,ar,au,av,al,am,ap,aq

There are 16 outputs in second-order ambisonics, but six of them relate to height
positions which, as I am not using them, are perforce zero. Hence the output is
a ten-channel WAV file. Because there is to be further processing this is saved in
floating-point format.

20.8 Conclusions 475

There are then simple orchestras to read this high-order audio and output as
stereo, quad or octal files:

<CsoundSynthesizer>
<CsInstruments>

sr = 48000
kr = 4800
ksmps = 10
nchnls = 8

gis init 1.264

instr 1
aZ init 0
aw,ax,ay,ar,au,av,
al, am, ap, aq diskin2 "ambi.wav", 1
ao1, ao2, ao3, ao4,
ao5, ao6, ao7, ao8 bformdec1 4,

aw, ax, ay, aZ, ar, aZ, aZ, au,
av, aZ, al, am, aZ, aZ, ap, aq

out gis*ao1,gis*ao2,gis*ao3,
gis*ao4,gis*ao5,gis*ao6,
gis*ao7,gis*ao8

endin
</CsInstruments>
<CsScore>
i1 0 821
</CsScore>
</CsoundSynthesizer>

The variable gis is a scaling factor that was determined experimentally, and
differs for the various speaker configurations. I have not yet looked into the theory
of this, but rendering to floats and using the scale utility is a simple pragmatic way
to determine suitable scales. As a programmer I wrapped up all the computational
details via a Makefile mechanism.

20.8 Conclusions

In this chapter I have tried to give some notion of my compositional methods. I rely
heavily on small C programs to generate sound sequences, often with a near-chaos
component. I also rely on Csound and its commitment to backward compatibility as
the software platform.

476 20 John ffitch: Se’nnight

This piece is rather longer than most of my works but it needed the space, and
true to its name it has seven loose sections. To save you looking it up, Se’nnight is
archaic Middle English for a week.

Chapter 21

Steven Yi: Transit

Abstract This chapter discusses the process of composing Transit using Csound
and Blue. It will introduce the Blue integrated music environment and discuss how
it both augments the features of Csound and fits within a composition workflow.

21.1 Introduction

The act of music composition has always been an interesting experience to me. A
large part of my musical process is spending time listening to existing material in
a work and making adjustments intuitively. I may be listening and suddenly find
myself making a change: a movement of sound to a new place in time, the writing
of code to create new material and so on. At other times, I take a very rational
approach to analysing the material, looking for relationships and calculating new
types of combinations to experiment with. I suppose it is this way for everyone; that
writing music should oscillate between listening and writing, between the rational
and irrational.

The process of developing each work tends to unfold along its own unique path.
In Transit, I was inspired by listening to the music of Terry Riley to create a work
that involved long feedback delay lines. I began with a mental image of performers
in a space working with electronics and worked to develop a virtual system to mimic
what I had in mind. Once the setup was developed, I experimented with improvising
material live and notating what felt right. I then continued this cycle of improvisation
and notation to extend and develop the work.

For Transit, I used both Csound and my own graphical computer music environ-
ment Blue to develop the work. Csound offers so many possibilities but it can be-
come very complex to use without a good approach to workflow and project design.
Blue provides numerous features that worked well for my own process of compos-
ing this work. The following will discuss the phases of development that occurred
while developing this piece and how I employed both Csound and Blue to realise
my compositional goals.

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_21

477

478 21 Steven Yi: Transit

21.2 About Blue

Blue is a cross-platform integrated music environment for music composition.1 It
employs Csound as its audio engine and offers users a set of tools for performing
and composing music. It provides a graphical user interface that augments Csound
with additional concepts and tools, while still exposing Csound programming and
all of the features that Csound provides to the user.

Blue is built upon Csound’s audio engine and language. All features in Blue,
even purely visual ones where users are not exposed to any Csound, generate code
using the abstractions available in Csound. For example, a single Blue instrument
may generate multiple Csound instrument definitions, user-defined opcodes, score
events and function tables. Looking at it from another point of view, Csound pro-
vides a small but versatile set of concepts that can support building large and com-
plex systems such as visual applications like Blue.

Blue users can opt to use as many or as few of Blue’s features as they like. They
can start by working in a traditional Csound way and develop their work using only
Csound orchestra and score code. From here, they can choose to use different parts
of Blue if it serves their needs. For example, some may use the orchestra manager
and convert their text-only instruments into graphical instruments; others may use
the score timeline to organise score material visually using its graphic interface; and
still others may decide to use the Blue mixer and effects system to assemble and
work with their project’s signal graph.

Blue plays a major role in my work and is the primary way through which I
compose with Csound. Figures, 21.1–21.4 show the primary tools in Blue that I
used in writing Transit. I will discuss these tools and my approach to composing
with Blue below.

21.3 Mixer, Effects and the Signal Graph

For most of my works, I usually begin with the search for sounds. Besides my time
spent specifically on composing, I will spend time just working on developing new
instruments and effects. In my sound development time, I may write new Csound
instruments to try out new designs or I may use previously made designs and explore
their parameters to develop new “patches” for the instrument. It is in this time of
sonic exploration that a sound may catch my attention and I begin to experiment
with it and start to create a foundation for a new piece.

Once composing begins, I develop the signal graph of the piece by routing the
output of instruments used to generate the sounds through Blue’s mixer system. It
is there that I work on signal routing and inserting effects for processing such as
reverberation and equalisation.

1 http://blue.kunstmusik.com

21.3 Mixer, Effects and the Signal Graph 479

Fig. 21.1 Blue’s Mixer interface, used to define signal routing and effects processing.

In Transit, I used a different approach where I had an image of performers on a
stage in mind and began with developing the signal graph using Blue’s mixer and
effects system. I started by adding Blue Synth Builder instruments (described in
Section 21.4) that I had previously developed to my project. Using known instru-
ments allowed me to develop and test the mixer setup first and work on the sounds
for the work later.

The primary processing focus for this work was the feedback delay. This is a
simple delay line where the output of the delay is multiplied and fed back into the
delay. The result is an exponentially decaying echo of any sound fed into the delay
effect. Rather than write this effect from scratch, I used the “Tempo-Sync Stereo
Delay” by William Light (a.k.a. filterchild) that was contributed to BlueShare —
a built-in, online instrument and effects exchange platform available within Blue.
Blue effects are written using Csound orchestra code and a graphical interface editor
available within the program.

Figure 21.1 shows the mixer setup used for the piece. In Blue, each instrument
within the project’s orchestra has a single mixer channel associated with it. Blue’s
mixer channels are not bound to any number of audio channels: a Blue instrument
may send one or many channels to the mixer and effects will process as many chan-
nels as they are designed to take as inputs. Each channel’s strip has bins for pre-
and post-fader effects and a final output channel can be chosen from the dropdown
at the bottom of the channel strip. Channels can either route to sub-channels or the
master channel. Sub-channels in turn can route to other sub-channels or the mas-
ter channel. Blue restricts channel output to prevent feedback within the mixer (i.e.

480 21 Steven Yi: Transit

one cannot route from a channel to a sub-channel and back to the original channel).
Users may also insert sends as an effect within one of the channel’s bins that will
send a user-scaled copy of the audio signal to a sub-channel or the master channel.

For Transit, there are four main channels shown for each of the four instruments
used, a sub-channel named DelayLine that I added and the master channel. Channel
1’s output is primarily routed out to the master channel but it also sends an atten-
uated copy of the signal to the DelayLine sub-channel. Channel 2 and 3’s outputs
are primarily routed to the DelayLine sub-channel. Channel 4 is only routed to the
Master channel and has an additional reverb in its post-fader bin. All of the instru-
ment signals are ultimately routed through the master channel, where a reverb effect
(a thin wrapper to the reverbsc opcode) is used.

While Blue’s mixer and effects system provides the user with a graphical system
for creating signal-processing graphs, the underlying generated code uses standard
Csound abstractions of instruments and user-defined opcodes. First, each Blue in-
strument uses the blueMixerOut pseudo-opcode to output signals to the mixer.
Blue processes instrument code before it gets to Csound and if it finds any lines
with blueMixerOut, it will auto-generate global audio-rate variables and replace
those lines with ones that assign signal values to the variables. These global vari-
ables act as an audio signal bus.2 Next, each Blue effect is generated as a user-
defined opcode. Finally, all mixing code is done in a single Blue-generated mixer
instrument. Here, the global audio signals are first read into local variables, then
processed by calls to effects UDOs. Summing and multiplication of signals is done
where appropriate. The final audio signals are written to Csound’s output channels
to be written to the soundcard or to disk, depending upon whether the project is
rendering in real time or non-real time.

Blue’s mixer system proved valuable while developing Transit. I was able to
quickly organise the signal-routing set-up and use pre-developed effects for pro-
cessing. I could certainly have manually written the Csound code for mixing and
effects, but I generally prefer using Blue’s mixer interface to help visualise the sig-
nal graph as well as provide a faster and more intuitive way to make adjustments to
parameters (i.e. fader strengths, reverb times, etc.).

21.4 Instruments

Once the initial signal graph was developed, I turned my attention to the source
sounds to the graph. Blue provides its own instrument system that is an extension
of Csound’s. In Blue, users can write Csound code to write standard Csound instru-
ments, much as one would when using Csound directly. In addition, users can use
completely graphical instruments without writing any Csound code, use the Blue
Synth Builder (BSB) to develop instruments that use both Csound code and graphi-

2 Blue’s mixer system was developed long before arrays were available. Future versions of Blue
may instead use a global audio signal array for bussing, to provide easier to read generated code.

21.4 Instruments 481

Fig. 21.2 Blue’s Orchestra Manager, used to both define and edits instruments used within the
work as well as organise the user’s personal instrument library

cal widgets (or simply use just the graphical user interface to work with previously
developed instruments), or use scripting languages to develop Csound instruments.

For Transit, I used three types of instruments I had previously developed: two in-
stances of PhaseShaper (a phase-distortion synthesis instrument) and one instance
each of b64 (an instrument design based on the SID synthesis chip, commonly found
in Commodore 64 computers) and Alpha (a three-oscillator subtractive synthesizer).
These instruments are Blue Synth Builder (BSB) instruments where the main code
is written in the Csound orchestra language and a graphical interface is developed
using BSB’s GUI editor. The system lets the user write Csound code using place-
holder values inside angle brackets (shown in listing 21.2) within the Csound or-
chestra code where values from the GUI interface will be used.

While the three instrument types differ in their internal design, the instruments
share a common approach to their external design. By internal design I am referring
to the individual synthesis and processing code within each instrument and by ex-
ternal design I am referring to how the instruments are called through their p-fields.
For my work, I have developed a basic instrument template using user-defined op-
codes that allows instruments to be called with either a five- or eight-p-field note
statement or event opcode call.

Listing 21.1 Instrument p-field format examples

; 5-pfield note format
; p1 - instrument ID
; p2 - start time

482 21 Steven Yi: Transit

; p3 - duration
; p4 - Pitch in Csound PCH format
; p5 - amplitude (decibel)
i1 0 2 8.00 -12

; 8-pfield note format
; p1 - instrument ID
; p2 - start time
; p3 - duration
; p4 - Start PCH
; p5 - End PCH
; p6 - amplitude (decibel)
; p7 - articulation shape
; p8 - stereo space [-1.0,1.0]
i1 0 2 8.00 9.00 -12 0 0.1

Listing 21.1 shows examples of the two different note p-field formats. The five-
pfield format is suitable for simple note writing that maps closely to the values
one would find with MIDI-based systems: pitch and amplitude map closely to a
MIDI Note On event’s key and velocity values. I use this format most often when
performing instruments using either Blue’s virtual MIDI keyboard or a hardware
MIDI keyboard.

The eight-p-field format allows for more complex notation possibilities such as
defining start and end PCH values for glissandi, articulation shape to use for the note
(i.e. ADSR, swell, fade in and out), as well as spatial location in the stereo field. I
use this format most often when composing with Blue’s score timeline as it provides
the flexibility I need to realise the musical ideas I most often find myself exploring.

Listing 21.2 Basic instrument template

;; MY STANDARD TEMPLATE
instr x

;; INITIALISE VARIABLES
...

;; STANDARD PROCESSING
kpchline, kamp, kenv, kspace yi_instr_gen \

i(<ampEnvType>), i(<attack>), i(<decay>), \
i(<sustain>), i(<release>), <space>

;; INSTRUMENT-SPECIFIC CODE
...

;; OUTPUT PROCESSING
aLeft, aRight pan2 aout, kspace

21.5 Improvisation and Sketching 483

blueMixerOut aLeft, aRight

endin

Listing 21.2 shows the basic instrument template I use for my instruments. The
template begins with initialising variables such as the number of p-fields given for
the event, duration and whether the note is a tied note. Next, the yi instr gen
UDO uses the pcount opcode to determine if a five- or eight-pfield note is given
and processes according the values of the p-fields together with the values passed in
to the UDO from BSB’s GUI widgets. yi instr gen returns k-rate values for fre-
quency (kpchline), total amplitude (kamp), amplitude envelope (kenv) and spa-
tial location (kspace). These values are then used by the instrument-specific code
and an output signal is generated. The final signal goes through stereo-output pro-
cessing and the results are sent to Blue’s mixer using the blueMixerOut pseudo-
opcode.

Using a standardised external instrument design has been very beneficial for me
over the years. It allows me to easily change instruments for a work as well as
quickly get to writing scores as I know the design well. I can also revisit older
pieces and reuse score generation code or instruments in new works as I know they
use the same format. For Transit, I was able to reuse instruments I had previously
designed and quickly focus on customising the sounds, rather than have to spend a
lot of time re-learning or writing and adjusting instrument code.

In addition, the use of graphical widgets in my instruments allowed me to both
quickly see as well as modify current settings for parameters. I enjoy writing signal-
processing code using Csound’s orchestra language, but I have found that when it
comes to configuring the parameters of my instruments, I work much better using a
visual interface rather than a textual one. Blue provides me with the necessary tools
to design and use instruments quickly and effectively.

21.5 Improvisation and Sketching

After the initial instrument and effects mixer graph was set up, I started experi-
menting with the various instruments using BlueLive, a feature in Blue for real-time
performance. BlueLive offers two primary modes of operation: real-time instrument
performance using either Blue’s virtual MIDI keyboard or its hardware MIDI sys-
tem; and score text definition, generation and performance using SoundObjects and
the BlueLive graphical user interface.

BlueLive operates by using the current Blue project to generate a Csound CSD
file that does not include pre-composed score events from Blue’s score timeline.
Once the Csound engine is running, Blue will either transform incoming MIDI
events into Csound score text or generate score from SoundObjects and send the
event text to the running instance of Csound for performance.

484 21 Steven Yi: Transit

Fig. 21.3 BlueLive, a tool for real-time instrument performance and score generation

When I first start to develop a work, I often find myself using real-time instrument
performance to improvise. This serves two purposes: first, it allows me to explore
the parameters of the instruments and effects I have added to my project to make
adjustments to their settings, and second, it allows me to experiment with score ideas
and start developing material for the piece.

Once a gesture or idea takes a hold of my interest, I notate the idea using the Blue-
Live interface using SoundObjects. SoundObjects are items that generate Csound
code, most typically Csound score. There are many kinds of SoundObjects, each
with their own editor interface that may be textual, graphical or both in nature. For
Transit, I began by using GenericScore and Clojure SoundObjects. The former al-
lows writing standard Csound score text and the latter allows writing code using the
Clojure programming language to generate scores.

Figure 21.3 shows the primary interface for BlueLive. A table is used to organise
SoundObjects; the user can use it to either trigger them one at a time or toggle
to trigger repeatedly. When an object in the table is selected, the user can edit its
contents using the ScoreObject editor window.3

When composing Transit, BlueLive allowed me to rapidly experiment with ideas
and explore sonic possibilities of my instruments and effects. It streamlined my
workflow by letting me make adjustments and audition changes live without having
to restart Csound. It is a key tool I use often when sketching musical material for a
work.

3 SoundObjects are a sub-class of a more generalised type of object called ScoreObject. Further
information about differences between the two can be found in Blue’s user manual.

21.6 Score 485

21.6 Score

Fig. 21.4 Blue Score, used to organise objects in time for pre-composed works

After notating a number of SoundObjects and experimenting live, I began the
process of composing the work by transferring SoundObjects from BlueLive to
Blue’s score timeline (shown in Figure 21.4). Blue’s score timeline is organised into
LayerGroups that are are made up of various Layers. Each LayerGroup has its own
kinds of layers and unique interfaces for creating and organising musical ideas in
time. Each LayerGroup is laid out with space between the layers, much like groups
of instruments are organised in orchestral scores.

For Transit, I used only SoundObject LayerGroups and used three kinds of
SoundObjects: the previously mentioned GenericScore and Clojure objects as well
as PianoRolls. PianoRolls offer visual editing of notes in time and are commonly
found in digital audio workstation and sequencer software. The choice to use one
object rather than another was done purely by intuition: I simply reached for the tool
that most made sense at the time while composing.

The ability to choose from a variety of tools for notating scores is an important
feature for me in Blue. Each LayerGroup and SoundObject type has its own advan-
tages for expressing different musical ideas. Just as using only text can feel limiting
to me, I will also feel confined if I can only use visual tools for notating musical
ideas. Sometimes ideas develop more intuitively with one kind of object or another
and I am happy to have many options available and to use different kinds of objects
together in the same visual timeline system.

486 21 Steven Yi: Transit

I find that visually organising and manipulating objects on a timeline is the opti-
mal way for me to work. I value Csound’s score format for its flexibility and expres-
siveness and often use it for writing single notes or small gestures. However, once
a piece grows to a certain level of complexity, I find it difficult to mentally manage
all of the parts of a piece using text alone. With Blue, I can directly write Csound
score for the parts where it is useful, but I can also leverage all of the other features
of Blue’s score to aid me in my composing.

One final note about the score in Transit: in addition to the organisation of ideas
into layers and objects, I also configured the timeline to divide time into equal four
beat units at a tempo of 76 beats per minute (BPM). Note that the BPM for the
score differs from the BPM for the delay line, which is set to 55 BPM. I found
these values by trial and error to create different temporal layers for the work. This
provided an interesting polyphonic quality between the notes as written and their
processed echoes through time.

21.7 Conclusions

In this chapter, I discussed my own approach to composing using Csound and Blue
in the piece Transit. Using Blue allowed me to build upon my knowledge of Csound
orchestra code to develop and use graphical instruments and effects. These instru-
ments and effects were then used with Blue’s mixer system, which provided a way to
visualise and develop the signal graph. BlueLive and Blue’s score timeline allowed
me to perform real-time sketching of material as well as organise and develop my
composition in time. Overall, Blue provided an efficient environment for working
with Csound that let me focus on my musical tasks and simplified composing Tran-
sit.

Chapter 22

Victor Lazzarini: Noctilucent Clouds

Abstract This chapter presents a case study of a fixed-media piece composed en-
tirely using Csound. It discusses the main ideas that motivated the work, and its
three basic ingredients: a non-standard spectral delay method; a classic algorithm
using time-varying delays; and feedback. The source sounds used for the piece are
discussed, as well as its overall structure. The case study is completed by looking at
how post-production aspects can be seamlessly integrated into the orchestra code.

22.1 Introduction

There are many ways to go about using Csound in fixed-media electronic music
composition. An initial approach might be to create orchestras to generate specific
sounds, render them to soundfiles and arrange, edit, mix and further process these
using a multi-track sequencer. This is often a good starting point for dipping our
toes in the water. However, very quickly, we will realise that Csound offers very
precise control over all the aspects of producing the final work. Very soon we find
ourselves ditching the multi-tracker and start coding the whole process in Csound.
One of the additional advantages of this is that the composition work is better doc-
umented, and the final program becomes the equivalent to the traditional score: a
textual representation of the composition, which can be preserved for further use.

The path leading to this might start with a few separate sketches, which can be
collated as the work grows, and it can begin to take shape in various versions. Once
the complete draft of the piece is done, we can work on mastering and retouching
it to perfect the final sound of the work. It is also important to note that the process
of composing can be quite chaotic, sometimes leading to messy code that creates
the right result for us, even though it might not use the most orthodox methods. It
is good to allow for some lucky coincidences and chance discoveries, which are at
times what gives a special touch to the composition.

My approach in composing Noctilucent Clouds followed this path, starting with
some unconnected sketches, and the exploration of particular processes. Some of

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5_22

487

488 22 Victor Lazzarini: Noctilucent Clouds

the experimentation with these ideas paid off, and the composition of the piece pro-
gressed following the most successful results. The overall shape and structure was
only arrived at later, once a good portion of the start had already been drafted. This
allowed me to grow it from the material, rather than impose it from the outside. Once
the piece was completely constructed, I went back to tame some of its excesses, to
give a well-rounded shape lacking in the raw instrument output.

22.2 The Basic Ingredients

The processes used in this piece can be grouped into three main methods: spectral
delays, variable time-domain delay effects and feedback. Although they are used
together, closely linked, it is possible to discuss their operation and function sep-
arately. This also allows us a glimpse of the sketching process that goes on in the
early stages of composition.

22.2.1 Dynamic Spectral Delays

The original idea for this piece came from discussions on the Csound e-mail list
on the topic of delays, and how these could be implemented at sub-band level (i.e.
independent frequency bands). I had written a pair of opcodes, pvsbuffer and
pvsbufread (discussed earlier in Chapter 14), that implemented a circular buffer
for phase vocoder (PV) data, and noted that these could be used to create spectral
signal delays. These are delay lines that are created in the frequency domain, acting
on specific sub-bands of the spectrum, applying different delay times to each. The
idea is simple: once a buffer is set up, we can have multiple readers at these different
bands in the spectrum.

A small number of these can be coded by hand, but if we are talking of a larger
number, it could be quite tedious to do. Also, we would like to be able to use a vari-
able number of bands, instead of fixing these. In order to do this, we have to find a
way of dynamically spawning the readers as required. This can be done recursively,
as shown in various examples in this book, or alternatively we can use a loop to
instantiate instruments containing the readers. This turns out to be simpler for this
application.

The reader instrument signals will have to be mixed together. This can be done
either in the time domain or in the spectral domain. The results are not exactly the
same, as the implementation of PV signal mixing accounts for masking effects, and
removes the softer parts of the spectrum. However, it is preferable to work in the
frequency domain to avoid having to take multiple inverse DFTs, one for each sub-
band. This way, we can have one single synthesis operation per channel.

To implement these ideas we can split the different components of the code into
four instruments:

22.2 The Basic Ingredients 489

1. A source and phase vocoder analysis instrument that will feed the buffer. Only
one instance of this is required.

2. A control instrument that will dynamically spawn the readers and exit. Different
instances can start groups of readers.

3. The buffer reader instrument, which will be instantiated by 2.
4. A resynthesis instrument, of which only one instance is required.

We will need global variables to act as busses for the PV signals, and to carry the
time and buffer references from the writer to the readers. An important implementa-
tion detail here is that we will need to be careful when clearing the f-sig bus. We will
have to make sure this is done in the correct sequence with the synthesis, otherwise
the output will be zero. Normally, this is not required for the streaming PV opcodes,
but because we are making the f-sig zero deliberately, it needs to happen exactly
after the synthesis.

There are two solutions: one is to fix ksmps to the hopsize, which will align
the analysis rate to the k-rate; the other is to make the clearing happen only after
an analysis period has elapsed. If this is not done, the clearing step will prevent
the streaming mechanism from working. The reason for this is that PV signals and
opcodes work using an internal frame counter, and this can get out of sync with
the synthesis that happens exactly every hopsize samples. In normal use, we do not
clear f-sigs, and the synthesis always happens at the end of a signal graph, so this
situation never arises.

Another aspect to note is that we need to find a convenient way to set the indi-
vidual delay for each band. We can do this by defining a curve in a function table,
from which the readers can take their individual delays. The bands themselves can
be defined in various ways, but making them have a constant Q is a perceptually
relevant method. The reader bands can be defined from a starting point upwards,
and we just need to space them evenly until the maximum frequency (e.g. sr

2). The
bandwidth is then determined by the Q value.

A simplified example extracted from the piece is shown in listing 22.1. In this
code, we spawn 120 readers, covering 50 Hz upwards with Q = 10. The delay times
range from 0.5 to 10 seconds, and are defined in a function table created with GEN
5 (which creates exponential curve segments).

Listing 22.1 Dynamic spectral delays example. Note that the bus clearing is protected to make
sure it happens in sync with the synthesis

gisiz init 1024
gfmix pvsinit gisiz
gifn1 ftgen 1,0,gisiz,-5,

10,gisiz/8,
.5,gisiz/4,
2,gisiz/8,
8,gisiz/2,4

instr 1
asig diskin2 p4,1

490 22 Victor Lazzarini: Noctilucent Clouds

fsig pvsanal asig,gisiz,gisiz/4,gisiz,1
gibuf,gkt pvsbuffer fsig,10
endin
schedule(1,0,60,"src1x.wav")

instr 2
kst init p4
ibands init p5
kq init p6
kcnt init 0
kdel init 0
even:
kpow pow sr/(2*kst), kcnt/ibands
kcf = kst*kpow
kdel tablei (2*kcf)/sr, p7, 1
event "i",p8,0,p3,kdel,kcf,kcf/kq,p7
kcnt = kcnt + 1
if kcnt < ibands kgoto even
turnoff
endin
schedule(2,0,60,50,120,10,gifn1,3)

instr 3
icf = p5
ihbw = p6/2
idel tablei (2*icf)/sr, p7, 1
fsig pvsbufread gkt-idel,gibuf,icf-ihbw,icf+ihbw
gfmix pvsmix fsig, gfmix
endin

instr 20
kcnt init 0
asig pvsynth gfmix
outs asig
if kcnt >= gisiz/4 then
gfmix pvsgain gfmix,0
kcnt -= gisiz/4
endif
kcnt += ksmps
endin
schedule(20,0,60)

This example is very close to the early sketches of the dynamic spectral delays
that I did for the piece. In their final form, I made four reader variants to be used at
different times. These included some extra spectral smoothing and frequency shift-
ing. The reader instruments also feature a choice of two output channels, and in-

22.2 The Basic Ingredients 491

terpolation between two function tables to obtain the delay values, controlled by
instrument parameters.

22.2.2 Variable Delay Processing

Comb filters are simple, but very interesting devices. With very short delay times
and high feedback gain, they resonate at their fundamental frequency and its har-
monics; with long delay times, they work as an echo, repeating the sounds going
into them. One of the ideas I had been keen to explore in a piece for a long time was
the transition between these two states by moving the delay time swiftly between the
areas that make these effects come into play. This is reasonably straightforward to
achieve with a variable delay processor with an internal feedback (a variable comb
filter), which is implemented by the opcode flanger.

The result can be quite striking, but it needs to be carefully managed, and tuned
to yield the correct results. The main idea is to play with these transitions, so we can
encode a series of delay times on a function table, and then read these to feed the
time-varying parameter. In order to provide a good scope for manipulation, I use an
oscillator to read the table at different speeds and with variable amplitude so that the
range of delay times can be expanded or compressed. The output of the oscillator
then modulates the flanger.

Listing 22.2 demonstrates the principle. It uses an instrument adapted from the
piece, which reads the source file directly, and then places it in the flanger. In the
actual work, the signal feeding the variable delay is taken from the two spectral
delay mix channels. However, this example shows the raw effect very clearly, and
we can hear how it relates to the other materials in the piece.

Listing 22.2 Variable delay line processing, with feedback, moving from echoes to resonant fil-
tering

nchnls = 2
gifn1 ftgen 3,0,1024,-5,

.5,102,

.5,52,

.01,802,

.001,70,.5
instr 10
asig diskin2 "src1x.wav",1
aspeed line p5, p3, p6
adelnv linseg p4, p3-20,p4,10,p7,10,p4
a1 oscili adelnv,1/aspeed,gifn1
asig1 flanger asig*0.2,a1,p8,1
asig2 flanger asig*0.2,0.501-a1,p8,1
asi2 dcblock asig2
asi1 dcblock asig1

492 22 Victor Lazzarini: Noctilucent Clouds

outs asig1,asig2
endin
schedule(10,0,140,1,60,30,0.01,0.99)

In the final code, I have four versions with slight variations of this instrument
used for different sections of the work. They also incorporate the long feedback path
between source input and process output, which is discussed in the next section.

22.2.3 Feedback

The instrument designs discussed in the previous sections are also connected to-
gether via a global feedback path, which takes the output of the flanger and mixes it
back into the spectral delay input. This places a delay of ksmps samples in the return
path. Due to the fact that the spectral delay output is placed at a higher instrument
than the flanger, we have one further ksmps block delay. Spectral processing also
places a latency equivalent to N +h, where N is the DFT size and h is the hopsize,
between its input and its output. By making ksmps equal to h and N four times this
value, we have a total feedback delay of 7×h.

In the piece, the total feedback delay is equivalent to about 3.73 ms, creating a
comb filter with a fundamental at around 268.1 Hz. I also placed an inverse comb
in the feedback path, with a varying delay time, which alters some of the high-
frequency comb filter peaks. The effect of the feedback line sharpens some of the
gestures used in the piece. It needs to be controlled carefully, otherwise it can get
very explosive in some situations.

Listing 22.3 shows an input connected to the flanger effect, with a high ksmps
to mimic the effect in the piece. It does not include the spectral delays for sake of
simplicity, but it demonstrates how the feedback connection can affect the flanger
process output. A representation of the total feedback path in the piece is shown in
Fig. 22.1.

Listing 22.3 Feedback path from flanger output back to input as used in the piece

nchnls=2
ksmps=1792

gifn1 ftgen 3,0,1024,-5,
.5,102,
.5,52,
.01,802,
.001,70,.5

gafdb init 0
instr 1
gamix = diskin2:a("src1x.wav",1) + gafdb
endin
schedule(1,0,140)

22.3 Source Sounds 493

instr 10
aspeed line p6, p3, p7
adelnv linseg p5, p3-20,p5,10,p8,10,p5
a1 oscili adelnv,1/aspeed,gifn1
asig1 flanger gamix,a1,p11,5
asig2 flanger gamix,0.501-a1,p11,5
afdb line p9,p3,p10
ak1 expseg 0.001,5,p4,p3-5,p4,1,0.001
asi2 dcblock asig2*ak1
asi1 dcblock asig1*ak1
gafdb = asi1*afdb + asi2*afdb
adel oscili adelnv, -1/aspeed,gifn1
afdb vdelay gafdb,adel,1
gafdb =(afdb + gafdb)*0.5
asi1 clip asi1,0,0dbfs
asi2 clip asi2,0,0dbfs
outs asi2, asi1
endin
schedule(10,0,140,0.1,1,60,30,0.01,0.2,0.2,0.99)

spectral delays

�
z−ksmps

�

z−ksmps

flanger

��×
�

� gain
�

icomb

�

� �+
�

�

Fig. 22.1 The complete feedback signal path between instruments in the Noctilucent Clouds code.
The boxes marked z−ksmps denote ksmps-sample delays

22.3 Source Sounds

Conceptually, the source sounds for this piece are not particularly important. Any
audio material with a reasonably complex and time-varying spectrum would do.

494 22 Victor Lazzarini: Noctilucent Clouds

In practice, however, once I settled for the final sources used, I started to tune the
transformations to make the most of their characteristics. Thus, in the process, they
became an integral part of the work.

Fig. 22.2 The first page of the piano score for Time-Lines IV, which is used as the source material
for the transformations in Noctilucent Clouds

The selection of these was made more or less randomly with various recordings
I had at hand. After trying different types of materials, I experimented with the
recording of one of my instrumental pieces, Time-Lines IV for piano. The actual

22.4 Large-Scale Structure 495

version used was an early draft containing half of the final work, whose last few
bars ended up being edited out of the score. As this seemed to have worked well
for the beginning of the piece, I brought in a recording of the second half of the
finished piece to complement it. This had the effect of shaping the overall piece in
two sections. The start of the piano score is shown in Fig. 22.2.

The piece uses a lot of repeated-note rhythmic figures, which get scrambled once
they pass through the spectral delay processing. The thickening of the texture caused
by this, the variable delays and the feedback obscures almost completely the origi-
nal texture, casting a veil over it. This is one of the key ideas I wanted to explore in
the piece, how the signal processing can build sound curtains that hide the original
sounds from the listener. It also gives the title to the piece: Noctilucent Clouds are
the visible edge of a much brighter polar cloud layer in the upper atmosphere, a
metaphor for the original musical material that lies on the other side of the process-
ing veil.

22.4 Large-Scale Structure

The work is divided evenly into two sections of 241 seconds (4:01 minutes). These
two sections form, from the point of view of dynamics, an inverted arch, with a dip
and a short silence in the middle. This is also slightly translated to the musical mate-
rials, as the big intense sections at the start and end have a certain common textural
quality. However,no real repetition of sonic material is audible, even though the un-
derlying piano piece is actually structured as an ABA form. The transformations
are worked in different ways, providing the variation between the beginning and the
final sections.

The overarching principle of hiding the sources dominates almost the whole of
the piece, but not completely, as the piano music is revealed at the end of the work.
The idea here is to lift the veil and let the original source show its face. As it coin-
cides with the end of the piano score, it works as a ‘composed’ end for the piece,
and it provides a ready-made solution for the tricky issue of finishing the work. The
final few bars of the piano piece are shown in Fig. 22.3, where we can observe that
the descending gesture has a definite ‘concluding’ characteristic.

It is fair to say that, beyond a few general ideas, such as this ‘hiding and then re-
vealing’ concept, no special effort was made to define the large-scale structure very
precisely prior to the actual composition process. This can be attributed to the fact
that the underlying piano work was already very well defined in structural terms.
Although this music is hidden from the listener, it actually provides the shape for
the transformations that were imposed on it, as I tuned and adjusted the instruments
to make the most of the source material. This is evident in the fact that the afore-
mentioned dip in the middle is also a feature of the piano score, which is dominated
by rhythmically intense and frantic outer sections, and a quieter, steadier middle.

496 22 Victor Lazzarini: Noctilucent Clouds

Fig. 22.3 The final bars of the score, where the piano music is finally fully revealed to the listener

22.5 Post-production

Once the piece was finalised, a final step was required to give it a more polished
form. It is often the case with some of the more unusual processing techniques
(especially with spectral methods), that many of the interesting sound results are
somewhat raw and unbalanced, sometimes leaning too heavily on certain frequency
bands, or lacking energy in others. The process also led to some sections being too
loud in comparison to others, and an adjustment of the overall amplitude curve was
needed.

To implement these post-production, mastering requirements, I routed all the au-
dio to a main output instrument, shown in listing 22.4. This allowed me to make all
the necessary changes to overall output, without having to modify a very complex
code, which relies on very delicately poised and precise parameter settings. In this
instrument, I used a graphic equaliser to adjust the overall spectral envelope, and
an envelope generator to balance the amplitude of the various sections. This instru-
ment runs from the beginning to the end, and is responsible for switching Csound
off when the piece ends (using an ‘e’ event). It also prints time and rms values each
second as it runs.

Listing 22.4 Main output instrument, taking the signals from all sources, and applying equalisa-
tion and volume adjustments

instr 1000
al = gaout1 + gaout3 + gaeff1
ar = gaout2 + gaout4 + gaeff2
ig1 = ampdb(1)
ig2 = ampdb(-1.44)
ig3 = ampdb(-2.88)
ig4 = ampdb(-3.84)
ig5 = ampdb(-4.56)
ig6 = ampdb(-3.36)
ig7 = ampdb(-1.68)

22.5 Post-production 497

ig8 = ampdb(2.88)
ig9 = ampdb(6)
aleq eqfil al, 75, 75,ig1
aleq eqfil aleq, 150, 150,ig2
aleq eqfil aleq, 300, 300,ig3
aleq eqfil aleq, 600, 600,ig4
aleq eqfil aleq,1200,1200,ig5
aleq eqfil aleq,2400,2400,ig6
aleq eqfil aleq,4800,4800,ig7
aleq eqfil aleq,9600,9600,ig8
al eqfil aleq,15000,10000,ig9
aleq eqfil ar, 75, 75,ig1
aleq eqfil aleq, 150, 150,ig2
aleq eqfil aleq, 300, 300,ig3
aleq eqfil aleq, 600, 600,ig4
aleq eqfil aleq,1200,1200,ig5
aleq eqfil aleq,2400,2400,ig6
aleq eqfil aleq,4800,4800,ig7
aleq eqfil aleq,9600,9600,ig8
ar eqfil aleq,15000,10000,ig9
again1 expseg 8,30, 2,15,

1.5,30,1,45, 1,20,
1,25, 2,55,1,140,
1,30, 2,30, 1.8,30,
3,30,3

again2 expseg 8,30,2,15,
2,30, 2,45,2,20,
2,25,1,55,1,140,
1,30,2,30,1.8,30,
3,30,3

asig_left = al*again1*0.94
asig_right = ar*again2*0.8
outs asig_left,asig_right
ktrig = int(times:k())
printf "%ds - L:%.1f R:%.1f \n",

ktrig,ktrig,
rms(asig_left),
rms(asig_right)

gaout1 = 0
gaout2 = 0
gaout3 = 0
gaout4 = 0
gaeff1 = 0
gaeff2 = 0
xtratim 0.1

498 22 Victor Lazzarini: Noctilucent Clouds

if release() == 1 then
event "e", 0, 0
endif
endin
schedule(1000,0,482)

Feeding this instrument are three sources per channel: the direct spectral envelope
output, the flanger signal and an effect bus that is used for reverb in the middle
section, and for a string resonator at the end. This approach also allows me to create
other versions that can use different routings for the sources, and/or create specific
EQ and amplitude adjustments for a given performance situation.

22.5.1 Source Code Packaging

One final detail is how to make the piece available. As a fixed-medium work, a
soundfile or a CD recording would appear to be sufficient. However, it is possible
to take advantage of the fact that the whole work is defined by its source code and
distribute it as a Csound file (CSD). The advantage is that it allows the piece to be
studied and even reused in other settings, as well as adjusted for specific perfor-
mance venues (e.g. equalisation, amplitude control etc.). Most modern computers
would have no problem in running the work in real time, so even offline rendering
is not at all necessary. All we need is to have Csound installed.

The only issue to be resolved is how to make the two audio source files available.
We could package them as an archive, but there is a more flexible way. We can take
advantage of the CSD functionality and include the source files together with the
code. They are encoded and added as two extra sections with their associated tags at
the end of the CSD. When Csound runs it unpacks the files, and performs the piece.
Packaging is done with the makecsd utility. From the command line, we can just
do

makecsd -o noctilucent.csd noctilucent.orc \
src1x.wav src2x.wav

and the result will be a CSD file noctilucent.csd containing the piece and its audio
sources. This will be a large file (111 MB) as it contains all the audio data, but any
high-quality rendering of the piece would exceed that, so there is no trade-off.

22.6 Conclusions

This chapter explored the process of composing a fixed-media piece using Csound
as the only software resource. It employed some non-standard methods such as spec-
tral delays, together with a classic technique of flanging to completely transform its
source material. If anything is to be learned at all from this case study, and indeed

22.6 Conclusions 499

from this book, it is that experimenting is good, and experimenting with knowledge
and skill is even better. Also while we should try to be definite and precise about
what we do, it is never a problem to let chance and lucky coincidences play a part
in the process.

Another important thing to note is that complicated-looking orchestras are often
arrived at in stages, with earlier versions using few components, and more function-
ality added as the piece gets developed. This allows the work to grow organically
from a few basic principles into more complex structures. Simplicity and elegance
go together well, and it is from one that we get to the other.

Noctilucent Clouds was premiered in Edinburgh, October 2012. It has also
spawned a sister piece, Timelines + Clouds, for piano and live electronics, which
turns the process inside out, exposing the piano, and creating the ‘clouds’ around it.
It shares some instruments and processing ideas with this piece, and it is designed
to be performed with Csound, of course.

References

1. Abe, T., Kobayashi, T., Imai, S.: The IF spectrogram: a new spectral representation. In:
Proceedings of ASVA 97, pp. 423–430 (1997)

2. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs, 2nd edn.
MIT Press, Cambridge (1996)

3. Aird, M., Laird, J.: Extending digital waveguides to include material modelling. In: Proceed-
ing of DAFx-01, pp. 138–142. University of Limerick (2001)

4. Aird, M., Laird, J., ffitch, J.: Modelling a drum by interfacing 2-D and 3-D waveguide
meshes. In: I. Zannos (ed.) ICMC2000, pp. 82–85. ICMA (2000)

5. Arfib, D.: Digital synthesis of complex spectra by means of multiplication of non-linear
distorted sine waves. In: Audio Engineering Society Convention 59 (1978). URL http:
//www.aes.org/e-lib/browse.cfm?elib=3035

6. Bartlett, B.: A scientific explanation of phasing (flanging). J. Audio Eng. Soc 18(6), 674–675
(1970). URL http://www.aes.org/e-lib/browse.cfm?elib=1454

7. Beauchamp, J.: Introduction to MUSIC 4C. School of Music, University of Illinois at
Urbana-Champaign (1996)

8. Beauchamp, J.: Analysis and synthesis of musical instrument sounds. In: J. Beauchamp
(ed.) Analysis, Synthesis, and Perception of Musical Sounds: The Sound of Music, Modern
Acoustics and Signal Processing, pp. 1–89. Springer, New York (2007)

9. Beauchamp, J. (ed.): Analysis, Synthesis, and Perception of Musical Sounds: The Sound of
Music. Modern Acoustics and Signal Processing. Springer (2007)

10. Begault, D.R.: 3-D Sound for Virtual Reality and Multimedia. Academic Press Professional,
Inc., San Diego, CA, USA (1994)

11. Bilbao, S.: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musi-
cal Acoustics. John Wiley and Sons, Chichester (2009)

12. Bilbao, S., ffitch, J.: Prepared piano sound synthesis. In: Proc. of the Int. Conf. on Digital
Audio Effects (DAFx-06), pp. 77–82. Montreal, Quebec, Canada (2006)

13. Blauert, J.: Spatial Hearing : The Psychophysics of Human Sound Localization. MIT Press,
Cambridge (1997)

14. Borgonovo, A., Haus, G.: Musical sound synthesis by means of two-variable functions: Ex-
perimental criteria and results. In: Proceedings of the International Computer Music Confer-
ence, pp. 35–42. ICMA, San Francisco (1984)

15. Boulanger, R. (ed.): The Csound Book. MIT Press, Cambridge (2000)
16. Boulanger, R., Lazzarini, V. (eds.): The Audio Programming Book. MIT Press (2010)
17. Bracewell, R.: The Fourier Transform and Its Applications. Electrical Engineering Series.

McGraw-Hill, New York (2000)
18. Bradford, R., Dobson, R., ffitch, J.: Sliding is smoother than jumping. In: ICMC 2005 free

sound, pp. 287–290. Escola Superior de Música de Catalunya (2005). URL http://www.cs.
bath.ac.uk/∼jpff/PAPERS/BradfordDobsonffitch05.pdf

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5

501

502 References

19. Bradford, R., Dobson, R., ffitch, J.: The sliding phase vocoder. In: Proceedings of the 2007
International Computer Music Conference, pp. 449–452 (2007). URL http://cs.bath.ac.uk/
jpff/PAPERS/spv-icmc2007.pdf

20. Brandtsegg, Ø.: Feedback piece, live recording (2012). URL https://soundcloud.com/
brandtsegg/feed-dokkhuset-2012-03

21. Brandtsegg, Ø.: Feedback piece. in compilation CD “Beyond Boundaries: European Elec-
troacoustic Music”, Casa Musicale Eco (2014)

22. Brandtsegg, Ø., Saue, S., Johansen, T.: Particle synthesis, a unified model for granular
synthesis. In: Proceedings of the Linux Audio Conference 2011 (2011). URL http:
//lac.linuxaudio.org/2011/papers/39.pdf

23. Brecht, B.: Leben des Galilei. Suhrkamp Verlag, Berlin (1967)
24. Brun, M.L.: A derivation of the spectrum of FM with a complex modulating wave. Computer

Music Journal 1(4), 51–52 (1977). URL http://www.jstor.org/stable/40731301
25. Carty, B.: Movements in Binaural Space. Lambert Academic, Berlin (2012)
26. Chowning, J.: The synthesis of complex spectra by means of frequency modulation. Journal

of the AES 21(7), 526–534 (1973)
27. Cook, P.: A toolkit of audio synthesis classes and instruments in C++ (1995). URL https:

//ccrma.stanford.edu/software/stk/
28. Cook, P.: Physically inspired sonic modelling (PhIsm): Synthesis of percussive sounds. Com-

puter Music Journal 21(3), 38–49 (1997)
29. Cutland, N.: Computability. Cambridge University Press, Cambridge (1980)
30. Dattorro, J.: Effect design, part 1: Reverberator and other filters. J. Audio Eng. Soc 45(9),

660–684 (1997). URL http://www.aes.org/e-lib/browse.cfm?elib=10160
31. Dattorro, J.: Effect design, part 2: Delay line modulation and chorus. J. Audio Eng. Soc

45(10), 764–788 (1997). URL http://www.aes.org/e-lib/browse.cfm?elib=10159
32. Dirichlet, P.G.L.: Sur la convergence des séries trigonometriques qui servent à répresenter

une fonction arbitraire entre des limites donneés. J. for Math. 4, 157–169 (1829)
33. Djoharian, P.: Shape and material design in physical modeling sound synthesis. In: I. Zannos

(ed.) ICMC 2000, pp. 38–45. ICMA (2000)
34. Dodge, C., Jerse, T.A.: Computer Music: Synthesis, Composition and Performance, 2nd edn.

Schirmer, New York (1997)
35. Dolson, M.: The phase vocoder: A tutorial. Computer Music Journal 10(4), 14–27 (1986).

URL http://www.jstor.org/stable/3680093
36. Dudley, H.: The vocoder. J. Acoust. Soc. Am. 11(2), 169 (1939)
37. Ervik, K., Brandtsegg, Ø.: Creating reverb effects using granular synthesis. In: J. Heintz,

A. Hofmann, I. McCurdy (eds.) Ways Ahead: Proceedings of the First International Csound
Conference, pp. 181–187. Cambridge Scholars Publishing (2013)

38. ffitch, J.: Composing with chaos. In: R. Boulanger (ed.) The Csound Book: Tutorials in
Software Synthesis and Sound Design. MIT Press (2000). On CD-ROM with book

39. ffitch, J.: On the design of Csound 5. In: Proceedings of 4th Linux Audio Developers Con-
ference, pp. 79–85. Karlsruhe, Germany (2006)

40. ffitch, J.: Introduction to program design. In: R. Boulanger, V. Lazzarini (eds.) The Audio
Programming Book, pp. 383–430. MIT Press, Cambridge (2010)

41. ffitch, J., Dobson, R., Bradford, R.: Sliding DFT for fun and musical profit. In: F. Barknecht,
M. Rumori (eds.) 6th International Linux Audio Conference, pp. 118–124. LAC2008, Kun-
sthochschule für Medien Köln (2008). URL http://lac.linuxaudio.org/2008/download/papers/
10.pdf

42. Flanagan, F., Golden, R.: Phase vocoder. Bell System Technical Journal 45, 1493–1509
(1966)

43. Fourier, J.: Théorie analytique de la chaleur. Chez Firmin Didot, Père et fils, Paris (1822)
44. Friedman, D.H.: Instantaneous-frequency distribution vs. time: an interpretation of the phase

structure of speech. In: Proceedings of the ICASSP, pp. 1121–4. IEEE, Los Alamitos (1985)
45. Gardner, W.G.: Efficient convolution without input-output delay. Journal of the Audio Engi-

neering Society 43(3), 127–136 (1995)

References 503

46. Gerzon, M.A.: Periphony: with-height sound reproduction. J. Audio Eng. Soc 21(1), 2–10
(1973). URL http://www.aes.org/e-lib/browse.cfm?elib=2012

47. Globokar, V.: Toucher. Edition Peters, London (1978)
48. Gold, B., Blankenship, P., McAuley, R.: New applications of channel vocoders. IEEE Trans.

on ASSP 29(1), 13–23 (1981)
49. Harris, F.: On the use of windows for harmonic analysis with the discrete Fourier transform.

Proceedings of the IEEE 66(1), 51–83 (1978)
50. Heintz, J.: Läuft es sich in kinderschuhen besser? : Über kompositorisches denken mit

und vor dem computer. MusikTexte (141), 43–50 (2014). URL http://joachimheintz.de/
lauft-es-sich-in-kinderschuhen-besser.html

51. Heller, A.J., Lee, R., Benjamin, E.M.: Is my decoder ambisonic? In: 125th AES Convention,
San Francisco. San Francisco, CA, USA (2008)

52. Hinkle-Turner, E.: Women Composers and Music Technology in the United States:
Crossing the Line. Ashgate, Aldershot (2006). URL https://books.google.ie/books?id=
FBydHQwZwWkC

53. Howe, H.: A report from princeton. Perspectives of New Music 4(2), 68–75 (1966)
54. Ingalls, M.: Improving the composer’s interface: Recent developments to Csound for the

Power Macintosh computer. In: R. Boulanger (ed.) The Csound Book. MIT Press, Cambridge
(2000)

55. Jaffe, D.A.: Spectrum analysis tutorial, part 1: The discrete Fourier transform. Computer
Music Journal 11(2), 9–24 (1987). URL http://www.jstor.org/stable/3680316

56. Jaffe, D.A.: Spectrum analysis tutorial, part 2: Properties and applications of the discrete
Fourier transform. Computer Music Journal 11(3), 17–35 (1987). URL http://www.jstor.org/
stable/3679734

57. Karplus, K., Strong, A.: Digital synthesis of plucked string and drum timbres. Computer
Music Journal 7(2), 43–55 (1983)

58. Khosravi, P.: Circumspectral sound diffusion with Csound. Csound Journal (15) (2011).
URL http://www.csounds.com/journal/issue15/sound\ diffusion.html

59. Kleimola, J., Lazzarini, V., Vämäki, V., Timoney, J.: Feedback amplitude modulation syn-
thesis. EURASIP J. Adv. Sig. Proc. 2011 (2011)

60. Kontogeorgakopoulos, A., Cadoz, C.: Cordis Anima physical modeling and simulation sys-
tem analysis. In: 4th Sound and Music Computing Conference, pp. 275–282. National and
Kapodistrian University of Athens (2007)

61. Laird, J., Masri, P., Canagarajah, C.: Efficient and accurate synthesis of circular membranes
using digital waveguides. In: IEE Colloquim: Audio and Music Technology: The Challenge
of Creative DSP, pp. 12/1–12/6 (1998)

62. Laurens, H.: Electrical musical instrument (1934). URL http://www.google.com/patents/
US1956350. US Patent 1,956,350

63. Lazzarini, V.: Introduction to digital audio signals. In: R. Boulanger, V. Lazzarini (eds.) The
Audio Programming Book, pp. 431–462. MIT Press, Cambridge (2010)

64. Lazzarini, V.: Programming the phase vocoder. In: R. Boulanger, V. Lazzarini (eds.) The
Audio Programming Book, pp. 557–580. MIT Press, Cambridge (2010)

65. Lazzarini, V.: Spectral audio programming basics: The DFT, the FFT, and convolution. In:
R. Boulanger, V. Lazzarini (eds.) The Audio Programming Book, pp. 521–538. MIT Press,
Cambridge (2010)

66. Lazzarini, V.: The STFT and spectral processing. In: R. Boulanger, V. Lazzarini (eds.) The
Audio Programming Book, pp. 539–556. MIT Press, Cambridge (2010)

67. Lazzarini, V.: Time-domain audio programming. In: R. Boulanger, V. Lazzarini (eds.) The
Audio Programming Book, pp. 463–520. MIT Press, Cambridge (2010)

68. Lazzarini, V.: The development of computer music programming systems. Journal of New
Music Research 42(1), 97–110 (2013)

69. Lazzarini, V., ffitch, J., Timoney, J., Bradford, R.: Streaming spectral processing with
consumer-level graphics processing units. In: Proc. of the Int. Conf. on Digital Audio Effects
(DAFx-14), pp. 1–8. Erlangen, Germany (2014)

504 References

70. Lazzarini, V., Timoney, J.: New methods of formant analysis-synthesis for musical applica-
tions. In: Proc. Intl. Computer Music Conf., pp. 239–242. Montreal, Canada (2009)

71. Lazzarini, V., Timoney, J.: New perspectives on distortion synthesis for virtual analog oscil-
lators. Computer Music Journal 34(1), 28–40 (2010)

72. Lazzarini, V., Timoney, J.: Theory and practice of modified frequency modulation synthesis.
J. Audio Eng. Soc 58(6), 459–471 (2010). URL http://www.aes.org/e-lib/browse.cfm?elib=
15506

73. Lazzarini, V., Timoney, J.: Synthesis of resonance by nonlinear distortion methods. Com-
puter Music Journal 37(1), 35–43 (2013)

74. Lazzarini, V., Timoney, J., Lysaght, T.: Time-stretching using the instantaneous frequency
distribution and partial tracking. In: Proc. of the International Computer Music Conference
2005. Barcelona, Spain (2005). URL http://hdl.handle.net/2027/spo.bbp2372.2005.163

75. Lazzarini, V., Timoney, J., Lysaght, T.: Spectral processing in Csound 5. In: Proceedings of
International Computer Music Conference, pp. 102–105. New Orleans, USA (2006)

76. Lazzarini, V., Timoney, J., Lysaght, T.: The generation of natural-synthetic spectra by means
of adaptive frequency modulation. Computer Music Journal 32(2), 9–22 (2008). URL http:
//www.jstor.org/stable/40072628

77. Le Brun, M.: Digital waveshaping synthesis. J. Audio Eng. Soc 27(4), 250–266 (1979). URL
http://www.aes.org/e-lib/browse.cfm?elib=3212

78. Lefebvre, A., Scavone, G.: Refinements to the model of a single woodwind instrument tone-
hole. In: Proceedings of the 2010 International Symposium on Musical Acoustics (2010)

79. Lefford, N.: An interview withBarry Vercoe. Computer Music Journal 23(4), 9–17 (1999)
80. Lorrain, D.: A panoply of stochastic ‘cannons’. Computer Music Journal 4(1), 53–81 (1980).

URL http://www.jstor.org/stable/3679442
81. Mathews, M.: An acoustical compiler for music and psychological stimuli. Bell System

Technical Journal 40(3), 553–557 (1961)
82. Mathews, M.: The digital computer as a musical instrument. Science 183(3592), 553–557

(1963)
83. Mathews, M., Miller, J.E.: MUSIC IV Programmer’s Manual. Bell Telephone Labs (1964)
84. Mathews, M., Miller, J.E., Moore, F.R., Pierce, J.R.: The Technology of Computer Music.

MIT Press, Cambridge (1969)
85. McAulay, R., Quatieri, T.: Speech analysis/synthesis based on a sinusoidal representation.

Acoustics, Speech and Signal Processing, IEEE Transactions on 34(4), 744–754 (1986)
86. McCartney, J.: Rethinking the computer music language: Supercollider. Computer Music

Journal 26(4), 61–68 (2002)
87. MIDI Manufacturers Association: Midi 1.0 specification (1983). URL http://www.midi.org/

techspecs/
88. Mitra, S.K.K.: Digital Signal Processing: A Computer-Based Approach, 2nd edn. McGraw-

Hill Higher Education, New York (2000)
89. Moore, F.R.: Table lookup noise for sinusoidal digital oscillators. Computer Music Journal

1(2), 26–29 (1977). URL http://www.jstor.org/stable/23320138
90. Moore, F.R.: Elements of Computer Music. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA (1990)
91. Moorer, J.A.: The synthesis of complex audio spectra by means of discrete summation for-

mulas. J. Audio Eng. Soc 24(9), 717–727 (1976). URL http://www.aes.org/e-lib/browse.
cfm?elib=2590

92. Moorer, J.A.: The use of the phase vocoder in computer music applications. J. Audio Eng.
Soc 26(1/2), 42–45 (1978). URL http://www.aes.org/e-lib/browse.cfm?elib=3293

93. Moorer, J.A.: About this reverberation business. Computer Music Journal 3, 13–28 (1979)
94. Moorer, J.A.: Audio in the new millennium. J. Audio Eng. Soc. 48(5), 490–498 (2000)
95. Nyquist, H.: Certain topics in telegraph transmission theory. Transactions of the AIEE 47,

617–644 (1928)
96. O Cinneide, A.: Introducing pvspitch: A pitch tracking opcode for Csound. Csound Journal

2006(2). URL http://csoundjournal.com/2006winter/pvspitch.html

References 505

97. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time Signal Processing (2nd Ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1999)

98. Palamin, J.P., Palamin, P., Ronveaux, A.: A method of generating and controlling musical
asymmetrical spectra. J. Audio Eng. Soc 36(9), 671–685 (1988). URL http://www.aes.org/
e-lib/browse.cfm?elib=5132

99. Pampin, J.: ATS: A system for sound analysis transformation and synthesis based on a sinu-
soidal plus crtitical-band noise model and psychoacoustics. In: Proceedings of the Interna-
tional Computer Music Conference, p. 402?405. Miami, FL (2004)

100. Park, T.: An interview with Max Mathews. Computer Music Journal 33(3), 9–22 (2009)
101. Pope, S.: Machine Tongues XV: Three packages for software sound synthesis. Computer

Music Journal 17(2), 23–54 (1993)
102. Puckette, M.: Formant-based audio synthesis using nonlinear distortion. J. Audio Eng. Soc

43(1/2), 40–47 (1995). URL http://www.aes.org/e-lib/browse.cfm?elib=7961
103. Puckette, M.: The theory and technique of computer music. World Scientific Publ., New

York (2007)
104. Pulkki, V.: Virtual sound source positioning using vector base amplitude panning. J. Audio

Eng. Soc 45(6), 456–466 (1997). URL http://www.aes.org/e-lib/browse.cfm?elib=7853
105. Randall, J.K.: A report from Princeton. Perspectives of New Music 3(2), 84–92 (1965)
106. Regalia, P., Mitra, S.: Tunable digital frequency response equalization filters. Acoustics,

Speech and Signal Processing, IEEE Transactions on 35(1), 118–120 (1987)
107. Ren, Z., Yeh, H., Lin, M.C.: Example-guided physically based modal sound synthesis. ACM

Transactions on Graphics 32(1), 1 (2013)
108. Risset, J.C.: An Introductory Catalogue of Computer Synthesized Sounds. Bell Telephone

Labs (1969)
109. Roads, C.: Microsound. MIT Press, Cambridge (2001). URL http://books.google.no/books?

id=IFW0QgAACAAJ
110. Roads, C., Mathews, M.: Interview with Tongues. Computer Music Journal 4(4), pp. 15–22

(1980)
111. Roberts, A.: MUSIC 4BF, an all-FORTRAN music-generating computer program. In: Pro-

ceedings of the 17th Annual Meeting of the AES. Audio Engineering Society, Preprint 397
(1965)

112. Rodet, X.: Time domain formant- wave-function synthesis. Computer Music Journal 8(3),
9–14 (1984)

113. Scavone, G., P.R, C.: Real-time computer modeling of woodwind instruments. In: Proceed-
ings of the 1998 International Symposium on Musical Acoustics, pp. 197–202. Acoustical
Society of America (1998)

114. Schottstaedt, B.: The simulation of natural instrument tones using frequency modulation with
a complex modulating wave. Computer Music Journal 1(4), 46–50 (1977). URL http://www.
jstor.org/stable/40731300

115. Schroeder, M.R., Logan, B.F.: -colorless- artificial reverberation. J. Audio Eng. Soc 9(3),
192–197 (1961). URL http://www.aes.org/e-lib/browse.cfm?elib=465

116. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engineers
37(1), 10–21 (1949)

117. Smalley, D.: Space-form and the acousmatic image. Organized Sound 12(1) (2007)
118. Smith, J.O.: A new approach to digital reverberation using closed waveguide networks.

No. 31 in Report. CCRMA, Dept. of Music, Stanford University (1985). URL https:
//books.google.ie/books?id=EpIXAQAAIAAJ

119. Smith, J.O.: Viewpoints on the history of digital synthesis. In: Proc. 1991 Int. Computer
Music Conf., Montreal, pp. 1–10. Computer Music Association (1991)

120. Stautner, J., Puckette, M.: Designing multi-channel reverberators. Computer Music Journal
6(1), 52–65 (1982)

121. Steiglitz, K.: A Digital Signal Processing Primer, with Applications to Digital Audio and
Computer Music. Addison-Wesley Longman, Redwood City (1996)

122. Tenney, J.: Sound generation by means of a digital computer. Journal of Music Theory 7(1),
24–70 (1963)

506 References

123. Tomisawa, N.: Tone production method for an electronic musical instrument (1981). URL
http://www.google.com/patents/US4249447. US Patent 4,249,447

124. Vercoe, B.: Reference manual for the MUSIC 360 language for digital sound synthesis. Stu-
dio for Experimental Music, MIT (1973)

125. Vercoe, B.: MUSIC 11 Reference Manual. Studio for Experimental Music, MIT (1981)
126. Vercoe, B.: Computer system and languages for audio research. The New World of Digital

Audio (Audio Engineering Society Special Edition) pp. 245–250 (1983)
127. Vercoe, B.: Extended Csound. In: Proc. Int. Computer Music Conf. 1996, Hong Kong, pp.

141–142. Computer Music Association (1996)
128. Vercoe, B.: Audio-pro with multiple DSPs and dynamic load distribution. British Telecom

Technology Journal 22(4), 180–186 (2004)
129. Vercoe, B., Ellis, D.: Real-time Csound, software synthesis with sensing and control. In:

Proc. Int. Computer Music Conf. 1990, Glasgow, pp. 209–211. Computer Music Association
(1990)

130. Verplank, B., Mathews, M., Shaw, R.: Scanned synthesis. The Journal of the Acoustical
Society of America 109(5), 2400 (2001)

131. Windham, G., Steiglitz, K.: Input generators for digital sound synthesis. Journal of the
Acoustic Society of America 47(2), 665–6

132. Wittgenstein, L.: Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt (1953)
133. Wright, M., Freed, A.: Open sound control: A new protocol for communicating with sound

synthesizers. In: Proceedings of the ICMC, pp. 101–104. Thessaloniki, Greece (1997)
134. Wright, M., Freed, A., Momeni, A.: Open sound control, state of the art 2003. In: Pro-

ceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03),
pp. 153–159. Montreal, Canada (2003). URL http://www.music.mcgill.ca/musictech/nime/
onlineproceedings/Papers/NIME03\ Wright.pdf

135. Yi, S., Lazzarini, V.: Csound for android. In: Proceedings of Linux Audio Developers Con-
ference 2012. Centre for Computer Research in Music and Acoustics, Stanford Univ., USA
(2012)

136. Zicarelli, D.: How I learned to love a program that does nothing. Computer Music Journal
26(4), 31–43 (2002)

137. Zoelzer, U. (ed.): DAFx: Digital Audio Effects. John Wiley & Sons, Inc., New York (2002)

Index

*=, 55
+=, 55, 130
-=, 55
-60dB, 259
/=, 55
#define, 87, 162
#else, 88
#ifdef, 88
#ifundef, 88
#include, 86, 163
#undefine, 88
0dbfs, 26, 63, 79
3D audio, 290
5.1 surround, 291

a(), 63
Adaptive FM, 276
ADC, 25
additive synthesis, 243, 323

analysis, 249
analysis bands, 251
analysis frame, 251
analysis-synthesis, 249
inharmonic spectrum, 244
organs, 245
parameters, 243
partials, 243, 249
phase vocoder, 251
streaming, 249

ADSR, 223
aftertouch, 172
aliasing, 24
all-pass filter, 220, 260, 388

amplitude and frequency response, 262
second-order coefficients, 281
second-order phase response, 281

Alma, 456, 460

alpass, 261
ALSA, 40
alsa raw midi, 178
alsa sequencer, 178
ambisonics, 290, 471
amplitude, 210, 297
amplitude and frequency representation, 306
amplitude modulation, 368
amplitude response, 220, 286
analysis-synthesis, 295
API, 14, 195
Applebaum, Mark, 471
array, 97, 130

a-rate, 97, 101, 102
expressions, 100
f-sig, 100
function tables, 101
i-time, 98
initialisation, 97
k-rate, 99
oscillator sources, 102
reading, 99
setting, 98
strings, 100

assignment, 59
asynchronous read and write, 131
ATS, 326
atsa, 328
ATSadd, 329
ATSaddnz, 332
ATSbufread, 335
ATScross, 335
ATSinfo, 329
ATSread, 329
ATSreadnz, 332
ATSsinnoi, 334
audio

© Springer International Publishing Switzerland 2016
V. Lazzarini et al., Csound, DOI 10.1007/978-3-319-45370-5

507

508 Index

offline, 41
real-time, 38

audio engine, 14
audio IO, 35, 69
audio rate, 11, 59
audio tables, 35
averaging filter, 386
azimuth, 291

b-format, 290
bamboo, 399
band-pass filter, 220
band-reject filter, 220
bandlimited noise, 273
bank of oscillators, 116
Bark scale, 327
barmodel, 398
Bell Labs, vii
Bessel functions, 235, 238
bformdec1, 291
bformenc1, 291
binaural audio, 289
binit, 323
bins, 298, 306
Blue, 478
Boolean expressions, 106
branching, 106

i-time, 107
init and perf-time, 108
perf-time, 109
time-based, 109

Brecht, Bertolt, 457
buffer, 36
bus channels, 134
busses, 129

C language, 44
C++ language, 44
cabasa, 399
case-sensitive, 53
cepstral coefficients, 313
cepstrum, 313
cggoto, 108, 109
channel masking, 357
channel vocoder, 225, 316
Chirikov standard map, 470
chn, 134
chnclear, 134
chnexport, 135
chnget, 134, 201
chnmix, 134
chnset, 134, 201
chorus, 273
Chowning, John, x, 234

cigoto, 107
circular buffer, 256
Closure, 44
coefficient, 296
comb, 259
comb filter, 259

amplitude and impulse response, 260
high-frequency attenuation, 263

comments, 56
compilation, 203
Compile(), 197
CompileOrc(), 203
compiler, viii, 4
component reverberator, 262
composability, 139
conditional assignment, 111
conditionals, 106
control change, 172
control rate, 11, 59

local, 144
quantisation, 12, 29

convolution, 268, 286, 287
copya2ftab, 101
copyf2array, 101
CORDIS-ANIMA, 399
coremidi, 178
cos(), 67
cosine amplitude, 297
cosine phase, 296
crash, xv
cross-synthesis, 315, 335
crunch, 399
CSD format, 18
<CsInstruments>, 18
<CsOptions>, 20
<CsScore>, 19

Csound, 12
API, 44
API example, 44
application levels, 15
compilation, 31, 46
CsLadspa, 21
csound, 21
Csound 5, 14
Csound 6, 14
csound∼, 21
csound6∼, 21
CsoundVST, 21
debugger, 48
events, 29, 48
extended, 13
FLOSS Manual, xv
function tables, 48
general IO, 47

Index 509

global code, 33
help, 22
instantiation, 46
instruments, 29
Journal, xv
k-cycle, 27, 31
manual, 34
messages, 47
MIT-EMS, 12
numeric score, 47
opcodes, 29, 48
options, 20, 46
orchestra, 18, 31
order of execution, 125
performance, 47
performance loop, 45
plugin, 139
real-time audio, 47
real-time MIDI, 47
Reference Manual, xv, 20
releases, xvi
score, 19, 155
source code, xvi
test suite, xv
threading, 48
turnoff, 32
UDO, 139
Univ. of Bath, 13
utilities, 48
Winsound, 21
wrappers, 44

csound.github.io, xv
CsoundArgVList, 197
CsoundMYFLTArray, 201
CsoundPerformanceThread, 198
CsoundQt, 459
cubic phase interpolation, 323

DAC, 20, 25
data type, 6, 59, 91
date, 60
dB, 79
dcblock2, 391
dconv, 269
DEC PDP-11, 11
decoding, 291
delay, 257
delay line, 247, 255, 257, 386
delayr, 257, 387
delayw, 257, 387
deltap, 268
deltap3, 271
deltapi, 271
deltapx, 271

derivative, 275
digital audio, 23
discrete Fourier transform (DFT), 286, 298,

299, 301–303, 306
discrete-time, 298
diskin, 77, 102
distortion synthesis, 228
domain-specific language, 53
Doppler shift, 276, 277
dripwater, 399
dual-band decoding, 291
DX7, xi

echo, 258
effects, 125
elevation, 291
embedding, 195
encoding, 291
envelope follower, 225
envelope generator, 80
envelope shaping, 496
envelope tables, 35, 75
eqfil, 284
equalisation, 284, 496
escape character, 92
escape sequence

ctrl-c, 22, 45
Euler’s method, 400
event, 31
event, 115
event i, 116
events, 29, 200
expon, 81
expressions, 10, 55
expseg, 81

f-sig, 94
subtypes, 94
update rate, 95

factorial, 148
fast convolution, 302
fast Fourier transform, 301
FDN, 265
feedback, 127, 258, 492
feedback delay, 259
feedback gain, 258
feedback matrix, 265
fft, 301
fftinv, 302
FIFO, 256
fillarray, 97
filter, 219, 280, 314

amplitude response, 286
analysis, 302

510 Index

bandwidth, 221, 281
brickwall, 286
coefficients, 281, 286
convolution, 222, 286
delays, 280
equation, 281
feedback, 219
feedforward, 219
finite impulse response, 222, 285
frequency, 221, 281
impulse response, 222, 286
infinite impulse response, 222
order, 220
phase response, 281
Q, 222
resonance, 221
second-order all-pass, 280
spectral, 314
types, 220, 221

filterbank, 223
finite difference methods, 397
finite impulse response, 280
fipple, 391
FIR, 222, 285, 289, 302

design, 287
fixed media, 487
flanger, 271, 491
flow control, 105
foldover, 24
formant, 239, 242, 312, 372, 377
formant preservation, 313
FORTRAN, 7
Fourier series, 213, 297
Fourier theory, 296
Fourier transform, 296
frequency, 210
frequency domain, 255, 295
frequency modulation, x, 141, 234, 274
frequency response, 220
frequency scaling, 311
frequency shifting, 312
frontends, 20

Blue, 21
Cabbage, 21
csound, 21
CsoundQt, xv, 21
WinXsound, 21

ftconv, 304
ftgen, 73
ftmorf, 377
function table, 5, 33, 73, 131

GEN, 74
GEN 2, 75
GEN 7, 74

guard point, 73
re-scaling, 74
size, 73

functions, 67
fundamental analysis frequency, 298

GEN 1, 216, 270
GEN 9, 298, 325
GEN routines, 33
GEN10, 213, 298
GEN19, 298
Gerzon, Michael, 290
GetAudioChannel(), 201
GetChannel(), 200
GetInputBuffer(), 202
GetOutputBuffer(), 202
GetScoreTime() , 199
GetSpin(), 201
GetSpout(), 201
glisson, 374
global space, 58
Globokar, Vinko, 457, 459
goto, 108
GPU, 311
grain, 337

clock synchronisation, 363
clouds, 342
delay, 344
long, 338
masking, 353
morphing, 378
periodic clock, 340
pitch-synchronous, 373
reverb, 348

grainlet, 375
granular processing, 343
granular synthesis, 337
graphic equaliser, 284
guard point, 35

extended, 35
guiro, 399
Guttman, Newman, vii

Hénon map, 470
Hanning window, 300
hardware buffer, 36
held note, 117
heredoc, 192
high-pass filter, 220
hopsize, 251
HRIR, 289
HRTF, 288, 291, 471
hrtfearly, 290
hrtfmove, 290

Index 511

hrtfmove2, 290
hrtfreverb, 267, 290
hrtfstat, 290

i(), 61
i-time, 59
if ... goto, 108
if ... igoto, 107
if ... kgoto, 109
if ... then, 108, 109
igoto, 107
IID, 289, 291, 293
IIR, 222, 289

design, 281
improvisation, 464
impulse response, 268, 286
in, 69
inch, 69
indeterminate duration, 117
infinite impulse response, 280
init, 61, 97
init time, 9, 56

order of execution, 128
InputMessage(), 200
INScore, 187
instance, 29, 31

order of execution, 128
instrument, 4, 29

arguments, 58
expressions, 55
init-pass, 56
k-cycle, 57, 61
k-period, 57
order of execution, 128
parameters, 58
performance-time, 56
scheduling, 54, 114
state, 143
statements, 54
syntax, 54

instrument connections, 125
instrument graph, 31
interp, 63
interpolation, 271
inverse discrete Fourier transform, 299, 302
IP, 171
IR, 222, 268, 286, 303
issue tracking, xv
ITD, 289, 291

jack midi, 178
JackIO kit, 40
Java, 44
Jhaptaal, 472

JNI, 44

k(), 61, 64
k-period, 62
kgoto, 109
Knuth, 456
kr, 11, 27
ksmps, 11, 27, 62

local, 144

label, 106
leaky integrator, 146
LFO, 72, 271, 273, 276
libsndfile, 41
liftering, 313
line, 81
linear frequency interpolation, 323
linear time-invariant, 222
linen, 80
linseg, 81
live electronics, 456
localhost, 183
logic operators, 106
looping, 111
loss, 386
low-pass filter, 220, 386, 391
Lua, 44

magnitude spectrum, 297
makecsd, 498
mandol, 388
marimba, 396
masking table, 354
massign, 173
Mathews, Max, vii, 4, 7
MIDI, 18, 32, 171, 181, 248, 459

bytes, 172
channel messages, 171
Csound implementation, 173
files, 174, 176
input, 173
mapping to p-fields, 176
message data, 172
message types, 172
NOTE OFF, 18, 117
NOTE ON, 18, 117
output, 176
system exclusive, 172

midinn, 78
Miller, Joan, 5
mincer, 312, 317
Minimoog, 223, 224
mixing, 71
modal synthesis, 395

512 Index

mode, 396
modified Bessel functions, 241
Modified FM, 240
modmatrix, 132
modular systems, 4
modulation, 71, 126, 271, 279
morphing, 316
mouthpiece, 391
multiple-partition convolution, 305
multitap delay, 268
MUSIC 11, ix, 11, 12
MUSIC 360, 9
MUSIC I, vii, 4
MUSIC II, vii, 4
MUSIC III, viii, 4
MUSIC IV, vii, 5
MUSIC IVB, 7
MUSIC IVBF, 7
Music Programming System, 3
MUSIC V, vii, xii, 7

near-field compensation, 291
negative frequency, 297
Nelson, Jon, 472
netcat, 192
Newton’s second law, 400
non-standard tunings, 79
normalisation, 34
NOTE OFF, 172
NOTE ON, 172
numeric score, 5, 18, 19
Nyquist frequency, 25
Nyquist-Shannon theorem, 24

object, 196
oct, 78
opcodes, 10, 29, 65

alternative syntax, 66
order of execution, 127
polymorphic, 68, 71
syntax, 66

operator precedence, 55
options, 197
-+rtmidi, 177
--port, 192
-B, 39, 40
-F, 174
-M, 174
-Q, 176
-U, 41
-B, 36
-b, 36, 39, 40
-i, 37
-o, 37

-odac, 20
--help, 22

OSC, 18, 181
oscil, 70
oscil3, 70
oscili, 70
oscillator, vii, 69, 113, 213
oscillator bank, 114, 249, 250
OSCinit, 182
OSCreceive, 182
OSCsend, 182
out, 63, 69
outch, 69

p(), 58, 60
PAF, 239
panning, 293
pantophonic, 291
partial track manipulation, 326
partial tracking, 322
partials, 323
particle synthesis, 337
partikkel, 338, 340, 344, 354, 357, 363,

374, 377
partikkelsync, 363
partitioned convolution, 304
patch-cord, 126
pch, 78
PCH notation, 10
perf-time, 56
Perform(), 198
performance time, 9
PerformKsmps(), 198
periphony, 290
pgmassign, 173
phase, 210, 219, 297
phase difference, 306
phase increment, 63, 70, 216
phase modulation, 234

asymmetrical, 237
phase response, 220, 281, 394
phase shift, 281
phase spectrum, 297
phase vocoder, 251, 306

analysis, 307, 310
f-sig resynthesis, 96
f-sig sources, 95
parameters, 310
sliding, 95, 311
streaming, 310
synthesis, 309

phaser, 282
amplitude and phase response, 283

phasor, 72, 76

Index 513

phonemes, 463
physically-inspired synthesis, 399
pinna, 289
pitch bend, 172
pitch shift, 278
pitch shifter, 279
platerev, 398
pluck, 388
plucked string, 386
polynomial tables, 35
polyphonic aftertouch, 172
port, 280
portaudio, 39
portMidi, 177
positive frequency, 297
power-of-two size, 34, 73, 102, 213, 251, 301,

327
prepiano, 398
preprocessor, 86
print, 55
printf, 93
printk, 57
prints, 92
Processing, 185
program change, 172
pulsar, 376
puts, 93
pvanal, 318
PVOCEX, 318
pvsanal, 310
pvsbandp, 314
pvsbandr, 314
pvsbuffer, 319
pvsbufread, 319
pvsbufread2, 320
pvscale, 311
pvscross, 315
pvsdiskin, 319
pvsfilter, 315
pvsfread, 319
pvshift, 312
pvsifd, 322
pvsmaska, 314
pvsmorph, 316
pvspitch, 457
pvstencil, 315
pvsvoc, 315
pvswarp, 313
pvsynth, 310
Python, 44, 45, 196

csnd6 module, 196
Csound object, 197
import, 196
interpreter, 196

IPython, 196

Q control, 222
quantisation, 23, 24

ramp waveform, 63
randi, 327
randomness, 82
re-scaling, 34
readscore, 166
ReadScore(), 200
real-time events, 114
recursion, 116, 131, 134, 147–149, 226, 246
reed, 391
reentrant, 44
reinit, 120
repluck, 388
Reset(), 199
residual, 324, 327
resyn, 323
reverb, 134, 262

FDN, 265
hybrid, 269
standard design, 264

reverb time, 259
reverbsc, 267
rewindscore, 166
RewindScore(), 199
rfft, 301
rifft, 301
Risset, Jean-Claude, vii, 8
Risset-Shepard tones, x, 8
rnd(), 62
Roads, Curtis, 338
row-major order, 403

sampler, 216
sampling, 23
sampling increment, 70, 216
sandpaper, 399
scalar, 62
scaling, 70
scanned synthesis, 402

dampening, 402
matrix, 402
model, 403
scanning, 404
vector form of matrix, 403

scans, 404
scanu, 403
schedkwhen, 116
score, 155

a-statement, 165
b-statement, 165

514 Index

carry, 159
comments, 156
CSD file, 156
e-statement, 158
expressions, 161
external generators, 167
f-statement, 157
f0, 157
i-statement, 156
include, 163
loops, 164
m-statement, 164
macros, 162
n-statement, 164
next-p, 161
previous-p, 161
processor, 159
q-statement, 157
r-statement, 163
ramping, 161
s-statement, 158
sort, 160
statements, 156
syntax, 155
t-statement, 160
v-statement, 160
x-statement, 158
y-statement, 162

scoreline, 166
scoreline i, 166
scripting language, 45
second-order all-pass filter, 281
segmentation fault, xv
sekere, 399
sequencer, 487
SetChannel(), 200
setksmps, 145
SetOption(), 197
SetScoreOffsetSeconds(), 199
setscorepos, 166
Shepard, Roger, x
signal graph, 126
signals, 59

aliasing, 24
analogue, 25
continuous-time, 23
digital, 23
precision, 25
quantisation, 24
real-valued, 297
sample, 26

sin(), 67
sine amplitude, 297
sine phase, 296

sinsyn, 323
sinusoid, 210
sinusoidal modelling, 321
sinusoidal tracks, 321, 324
sleighbells, 399
sliding phase vocoder, 311
smearing, 298
sockrecv, 191
socksend, 191
software buffer, 36
software bus, 134, 200
software release, xvi
soundfiles, 41

formats, 41
spectral coefficient, 296
spectral delay, 319, 488
spectral domain, 295
spectral envelope, 312, 313
spectrogram, 302
spectrum, 210, 296

magnitude, 297
phase, 297

speech analysis, 456
speed of sound, 277
spin, 37
spout, 37
spring-mass model, 399

displacement, 399
period, 401
position, 400
spring constant, 400
velocity, 400

sprintf, 93
sr, 11, 24
stencilling, 315
STFT, 306, 326
stix, 399
strcat, 93
strcmp, 93
strcpy, 93
streaming, 304, 310, 323
strecv, 191
streson, 388
strindex, 93
strings, 91

data type, 93
escape sequence, 92
multi-line, 92

strlen, 92, 93
strlower, 93
strsub, 93
strtod, 93
strtoI, 93
strupper, 93

Index 515

stsend, 191
subinstruments, 150
subtractive synthesis, 212
summation formulae, 228

bandlimited, 230
non-bandlimited, 231
pulse, 228

SWIG, 195
syllables, 463
syncgrain, 338

table, 75, 132
table lookup, vii, 69
table manipulation, 202
TableCopyIn(), 202
TableCopyOut(), 202
TableGet(), 202
TableLength(), 202
TableSet(), 202
tablew, 132
tags, 18
tambourine, 399
TCP, 191
temposcal, 312, 317
Tenney, James, 5
text, 91
text file

CSD format, 18
The Quick Brown Fox, 457, 460
ties, 118
tigotol, 119
time domain, 255
time-frequency methods, 295
Time-Lines IV, 494
timescaling, 317
timout, 109
tival, 119
Tkinter, 203
tonewheel organ, 245

busses, 247
key contacts, 246
mechanism, 246
vibrato/chorus, 247

tradsyn, 323
trainlet, 360, 375
transformation, 326
Turing-complete, 53

UDO, 209
input arguments, 140
output arguments, 141
polymorphic, 140, 142
recursion, 147
syntax, 140

UDP, 181, 191
UDP server, 192
unit generator, 4, 65
until, 112
update rate, 59
upsamp, 63
utility, 41

Varèse, Edgar, viii
variable, 59

a-rate, 62
f-sig, 94
global, 64, 129
i-time, 59
k-rate, 61
p-type, 60
S-type, 93
synthetic, 126
w-sig, 96

variable delay, 270
rate of change, 274, 277
time derivative, 275

VBAP, 293
vbap, 293
vbaplsinit, 293
vector, 62
Vercoe, Barry, 11
vibes, 396
vibrato, 274
virtual analogue models, 223
vocoder

applications, 227
bands, 225
excitation, 225

waterfall spectrogram, 302
wave equation, 385, 397
wave terrain synthesis, 405
waveform, 210
waveguide, 386

clarinet, 391
flute, 394
loss, 386
mesh, 394
pitch, 386
string instruments, 386
wind instruments, 390

waveshaping, 232
hyperbolic tangent, 232
sawtooth, 233

wavetables, 35
wgbow, 388
wgbrass, 394
wclar, 391

516 Index

wgflute, 394
wgpluck, 388
wgpluck2, 388
while, 112
windowing, 299
Wittgenstein, Ludwig, 465
words, 463

wrap-around, 70

xin, 141
xout, 141

z-transform, 298
zero-latency convolution, 305

	Foreword
	Preface
	Acknowledgements
	Contents
	Acronyms
	Part I
Introduction

	1
Music Programming Systems
	1.1 Introduction
	1.2 Early Music Programming Languages
	1.2.1 MUSIC IV
	1.2.2 MUSIC V
	1.2.3 MUSIC 360
	1.2.4 MUSIC 11

	1.3 Csound
	1.3.1 Csound 5
	1.3.2 Csound 6
	1.3.3 Compatibility and Preservation

	1.4 Conclusions

	2
Key System Concepts
	2.1 Introduction
	2.2 General Principles of Operation
	2.2.1 CSD Text Files
	2.2.2 Using the Numeric Score
	2.2.3 Csound Options

	2.3 Frontends
	2.3.1 The csound Command
	2.3.2 Console messages

	2.4 Audio Computation, the Sampling Theorem, and Quantisation
	2.4.1 Aliasing
	2.4.2 Quantisation Precision
	2.4.3 Audio Channels

	2.5 Control Rate, ksmps and Vectors
	2.6 Instruments, Instances, and Events
	2.6.1 The Life Cycle of an Instrument
	2.6.2 Global Code

	2.7 Function Tables
	2.7.1 GEN Routines
	2.7.2 Normalisation
	2.7.3 Precision
	2.7.4 Guard Point
	2.7.5 Table types

	2.8 Audio Input and Output
	2.8.1 Audio Buffers
	2.8.2 The Audio IO Layers
	2.8.3 Real-Time Audio
	2.8.4 Offline Audio

	2.9 Csound Utilities
	2.10 Environment Variables
	2.10.1 Configuration File

	2.11 The Csound API
	2.11.1 A Simple Example
	2.11.2 Levels of Functionality

	2.12 Conclusions

	Part II
The Language

	3
Fundamentals
	3.1 Introduction
	3.2 Instruments
	3.2.1 Statements
	3.2.2 Expressions
	3.2.3 Comments
	3.2.4 Initialisation Pass
	3.2.5 Performance Time
	3.2.6 Parameters
	3.2.7 Global Space Code

	3.3 Data Types and Variables
	3.3.1 Init-Time Variables
	3.3.2 Control-Rate Variables
	3.3.3 Audio-Rate Variables
	3.3.4 Global Variables

	3.4 Opcodes
	3.4.1 Structure
	3.4.2 Syntax
	3.4.3 Functions
	3.4.4 Initialisation and Performance

	3.5 Fundamental Opcodes
	3.5.1 Input and Output
	3.5.2 Oscillators
	3.5.3 Table Generators
	3.5.4 Table Access
	3.5.5 Reading Soundfiles
	3.5.6 Pitch and Amplitude Converters
	3.5.7 Envelope Generators
	3.5.8 Randomness

	3.6 The Orchestra Preprocessor
	3.7 Conclusions

	4
Advanced Data Types
	4.1 Introduction
	4.2 Strings
	4.2.1 Usage

	4.3 Spectral-Domain Signals
	4.3.1 f-sig Variables
	4.3.2 w-sig Variables

	4.4 Arrays
	4.4.1 Initialisation
	4.4.2 Setting Values
	4.4.3 Reading Values
	4.4.4 Performance Time
	4.4.5 String and f-sig Arrays
	4.4.6 Arithmetic Expressions
	4.4.7 Arrays and Function tables
	4.4.8 Audio Arrays

	4.5 Conclusions

	5
Control of Flow and Scheduling
	5.1 Introduction
	5.2 Program Flow Control
	5.2.1 Conditions
	5.2.2 Branching
	5.2.3 Loops

	5.3 Scheduling
	5.3.1 Performance-Time Event Generation
	5.3.2 Recursion
	5.3.3 MIDI Notes
	5.3.4 Duration Control
	5.3.5 Ties

	5.4 Reinitialisation
	5.5 Compilation
	5.6 Conclusions

	6
Signal Graphs and Busses
	6.1 Introduction
	6.2 Signal Graphs
	6.3 Execution Order
	6.3.1 Instances
	6.3.2 Instruments

	6.4 Busses
	6.4.1 Global Variables
	6.4.2 Tables
	6.4.3 Software Bus

	6.5 Conclusions

	7
User-Defined Opcodes
	7.1 Introduction
	7.2 Syntax
	7.2.1 Arguments

	7.3 Instrument State and Parameters
	7.4 Local Control Rate
	7.5 Recursion
	7.6 Subinstruments
	7.7 Conclusions

	Part III
Interaction

	8
The Numeric Score
	8.1 Introduction
	8.2 Basic Statements
	8.3 Sections
	8.4 Preprocessing
	8.4.1 Carry
	8.4.2 Tempo
	8.4.3 Sort
	8.4.4 Next-p and Previous-p
	8.4.5 Ramping
	8.4.6 Expressions
	8.4.7 Macros
	8.4.8 Include

	8.5 Repeated Execution and Loops
	8.6 Performance Control
	8.6.1 Extract
	8.6.2 Orchestra Control of Score Playback
	8.6.3 Real-Time Events

	8.7 External Score Generators
	8.8 Alternatives to the Numeric Score
	8.9 Conclusions

	9
MIDI Input and Output
	9.1 Introduction
	9.2 MIDI Messages
	9.2.1 Channel Message Types

	9.3 The Csound MIDI System
	9.3.1 Input
	9.3.2 Output
	9.3.3 MIDI Backends

	9.4 Conclusions

	10
Open Sound Control and Networking
	10.1 Introduction
	10.2 Open Sound Control
	10.2.1 The OSC Protocol
	10.2.2 Csound Implementation
	10.2.3 Inter-application Examples

	10.3 Network Opcodes
	10.4 Csound UDP Server
	10.5 Conclusions

	11
Scripting Csound
	11.1 Introduction
	11.2 Csound API
	11.3 Managing an Instance of Csound
	11.3.1 Initialisation
	11.3.2 First Compilation
	11.3.3 Performing
	11.3.4 Score Playback Control and Clean-up

	11.4 Sending Events
	11.5 The Software Bus
	11.5.1 Control Data
	11.5.2 Audio Channels

	11.6 Manipulating Tables
	11.7 Compiling Orchestra Code
	11.8 A Complete Example
	11.9 Conclusions

	Part IV
Instrument Development

	12
Classic Synthesis
	12.1 Introduction
	12.1.1 Waveforms and Spectra

	12.2 Source-Modifier Methods
	12.2.1 Sources
	12.2.2 Modifiers
	12.2.3 Design Example 1: Analogue Modelling
	12.2.4 Design Example 2: Channel Vocoder

	12.3 Distortion Synthesis Methods
	12.3.1 Summation Formulae
	12.3.2 Waveshaping
	12.3.3 Frequency and Phase Modulation
	12.3.4 Phase-Aligned Formant Synthesis
	12.3.5 Modified FM Synthesis

	12.4 Additive Synthesis
	12.4.1 A Tonewheel Organ Instrument
	12.4.2 Synthesis by Analysis

	12.5 Conclusions

	13
Time-Domain Processing
	13.1 Introduction
	13.2 Delay Lines
	13.2.1 Feedback
	13.2.2 All-Pass Filters
	13.2.3 Reverb
	13.2.4 Convolution

	13.3 Variable Delays
	13.3.1 Flanger
	13.3.2 Chorus
	13.3.3 Vibrato
	13.3.4 Doppler
	13.3.5 Pitch Shifter

	13.4 Filters
	13.4.1 Design Example: a Second-Order All-Pass Filter
	13.4.2 Equalisation
	13.4.3 FIR Filters
	13.4.4 Head-Related Transfer Functions

	13.5 Multichannel Spatial Audio
	13.5.1 Ambisonics
	13.5.2 Vector Base Amplitude Panning

	13.6 Conclusions

	14
Spectral Processing
	14.1 Introduction
	14.2 Tools for Spectral Analysis and Synthesis
	14.2.1 Fourier Transform
	14.2.2 Fourier Series
	14.2.3 Discrete Fourier Transform

	14.3 Fast Convolution
	14.4 The Phase Vocoder
	14.4.1 Frequency Effects
	14.4.2 Formant Extraction
	14.4.3 Spectral Filters
	14.4.4 Cross-synthesis and Morphing
	14.4.5 Timescaling
	14.4.6 Spectral Delays
	14.4.7 Miscellaneous Effects

	14.5 Sinusoidal Modelling
	14.5.1 Additive Synthesis
	14.5.2 Residual Extraction
	14.5.3 Transformation

	14.6 Analysis Transformation and Synthesis
	14.6.1 The ATS Analysis
	14.6.2 The ATS Analysis File Format
	14.6.3 Resynthesis of the Sinusoidal Part
	14.6.4 Resynthesis of the Residual Part
	14.6.5 Transformations

	14.7 Conclusions

	15
Granular Synthesis
	15.1 Introduction
	15.1.1 Low Grain Rates, Long Grains
	15.1.2 High Grain Rates, Periodic Grain Clock
	15.1.3 Grain Clouds, Irregular Grain Clock

	15.2 Granular Synthesis Versus Granular Effects Processing
	15.2.1 Grain Delay
	15.2.2 Granular Reverb

	15.3 Manipulation of Individual Grains
	15.3.1 Channel Masks, Outputs and Spatialisation
	15.3.2 Waveform Mixing

	15.4 Clock Synchronisation
	15.5 Amplitude Modulation and Granular Synthesis
	15.6 Pitch Synchronous Granular Synthesis
	15.7 Morphing Between Classic Granular Synthesis Types
	15.7.1 Glissons
	15.7.2 Grainlets
	15.7.3 Trainlets
	15.7.4 Pulsars
	15.7.5 Formant Synthesis
	15.7.6 Morphing Between Types of Granular Synthesis

	15.8 Conclusions

	16
Physical Models
	16.1 Introduction
	16.2 Waveguides
	16.2.1 Simple Plucked String
	16.2.2 Wind Instruments
	16.2.3 More Waveguide Ideas

	16.3 Modal Models
	16.4 Differential Equations and Finite Differences
	16.5 Physically Inspired Models
	16.6 Other Approaches
	16.6.1 Spring-Mass System
	16.6.2 Scanned Synthesis
	16.6.3 ... and More

	16.7 Conclusions

	Part V
Composition Case Studies

	17
Iain McCurdy: Csound Haiku
	17.1 Introduction
	17.2 Groundwork
	17.3 The Pieces
	17.3.1 Haiku I
	17.3.2 Haiku II
	17.3.3 Haiku III
	17.3.4 Haiku IV
	17.3.5 Haiku V
	17.3.6 Haiku VI
	17.3.7 Haiku VII
	17.3.8 Haiku VIII
	17.3.9 Haiku IX

	17.4 Conclusions

	18
Øyvind Brandtsegg: Feedback Piece
	18.1 Introduction
	18.2 Feedback-Processing Techniques
	18.3 Coloring Effects
	18.4 Hosting and Interfacing
	18.5 Automation and Composed Form
	18.6 Spatial and Performative Considerations

	19
Joachim Heintz: Knuth and Alma, Live Electronics with SpokenWord
	19.1 Introduction
	19.2 Idea and Set-up
	19.3 Knuth
	19.3.1 Rhythm Analysis
	19.3.2 Possibilities

	19.4 Alma
	19.4.1 Game of Times
	19.4.2 Speech as Different-Sized Pieces of Sounding Matter
	19.4.3 Bringing Back the Past: Four Modes
	19.4.4 Improvisation or Composition

	19.5 Conclusions

	20
John ffitch: Se’nnight
	20.1 Introduction
	20.2 H´enon Map and Torus Map
	20.3 Genesis of Se’nnight
	20.4 Instruments
	20.5 Score Generation
	20.5.1 Score1
	20.5.2 Score2 and Score3

	20.6 Start and End
	20.7 Multichannel Delivery
	20.8 Conclusions

	21
Steven Yi: Transit
	21.1 Introduction
	21.2 About Blue
	21.3 Mixer, Effects and the Signal Graph
	21.4 Instruments
	21.5 Improvisation and Sketching
	21.6 Score
	21.7 Conclusions

	22
Victor Lazzarini: Noctilucent Clouds
	22.1 Introduction
	22.2 The Basic Ingredients
	22.2.1 Dynamic Spectral Delays
	22.2.2 Variable Delay Processing
	22.2.3 Feedback

	22.3 Source Sounds
	22.4 Large-Scale Structure
	22.5 Post-production
	22.5.1 Source Code Packaging

	22.6 Conclusions

	References
	Index

