

Fundamentals of Computer Graphics
Third Edition

Fundamentals of Computer Graphics
Third Edition

Peter Shirley Steve Marschner
NVIDIA Corporation Cornell University

with
Michael Ashikhmin
Michael Gleicher
Naty Hoffman
Garrett Johnson
Tamara Munzner
Erik Reinhard
Kelvin Sung
William B. Thompson
Peter Willemsen
Brian Wyvill

A K Peters

Natick, Massachusetts

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110714

International Standard Book Number-13: 978-1-4398-6552-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright hold-
ers of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from
the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface xi

1 Introduction 1
1.1 Graphics Areas . 1
1.2 Major Applications . 3
1.3 Graphics APIs . 4
1.4 Graphics Pipeline . 4
1.5 Numerical Issues . 5
1.6 Efficiency . 7
1.7 Designing and Coding Graphics Programs 8

2 Miscellaneous Math 13
2.1 Sets and Mappings . 13
2.2 Solving Quadratic Equations 17
2.3 Trigonometry 18
2.4 Vectors . 21
2.5 Curves and Surfaces. 30
2.6 Linear Interpolation . 44
2.7 Triangles . 44

3 Raster Images 53
3.1 Raster Devices . 54
3.2 Images, Pixels, and Geometry 59

v

vi Contents

3.3 RGB Color . 64
3.4 Alpha Compositing .. 65

4 Ray Tracing 69
4.1 The Basic Ray-Tracing Algorithm 70
4.2 Perspective . 71
4.3 Computing Viewing Rays . 73
4.4 Ray-Object Intersection . 76
4.5 Shading . 81
4.6 A Ray-Tracing Program . 84
4.7 Shadows . 86
4.8 Ideal Specular Reflection . 87
4.9 Historical Notes . 88

5 Linear Algebra 91
5.1 Determinants . 91
5.2 Matrices . 93
5.3 Computing with Matrices and Determinants 98
5.4 Eigenvalues and Matrix Diagonalization 103

6 Transformation Matrices 111
6.1 2D Linear Transformations . 111
6.2 3D Linear Transformations . 125
6.3 Translation and Affine Transformations 130
6.4 Inverses of Transformation Matrices 134
6.5 Coordinate Transformations 135

7 Viewing 141
7.1 Viewing Transformations . 142
7.2 Projective Transformations . 148
7.3 Perspective Projection . 151
7.4 Some Properties of the Perspective Transform 156
7.5 Field-of-View . 156

8 The Graphics Pipeline 161
8.1 Rasterization . 162
8.2 Operations Before and After Rasterization 173
8.3 Simple Antialiasing . 180
8.4 Culling Primitives for Efficiency 181

Contents vii

9 Signal Processing 185
9.1 Digital Audio: Sampling in 1D 186
9.2 Convolution . 189
9.3 Convolution Filters .. 203
9.4 Signal Processing for Images 210
9.5 Sampling Theory . 218

10 Surface Shading 233
10.1 Diffuse Shading . 233
10.2 Phong Shading 236
10.3 Artistic Shading . 239

11 Texture Mapping 243
11.1 3D Texture Mapping . 244
11.2 2D Texture Mapping . 250
11.3 Texture Mapping for Rasterized Triangles 252
11.4 Bump Textures . 255
11.5 Displacement Mapping 256
11.6 Environment Maps . 256
11.7 Shadow Maps . 258

12 Data Structures for Graphics 261
12.1 Triangle Meshes . 262
12.2 Scene Graphs . 276
12.3 Spatial Data Structures . 278
12.4 BSP Trees for Visibility 289
12.5 Tiling Multidimensional Arrays 297

13 More Ray Tracing 303
13.1 Transparency and Refraction 304
13.2 Instancing . 307
13.3 Constructive Solid Geometry 309
13.4 Distribution Ray Tracing . 309

14 Sampling 317
14.1 Integration . 317
14.2 Continuous Probability 322
14.3 Monte Carlo Integration . 326
14.4 Choosing Random Points 329

viii Contents

15 Curves 339
15.1 Curves . 339
15.2 Curve Properties . 345
15.3 Polynomial Pieces .. 348
15.4 Putting Pieces Together 356
15.5 Cubics . 359
15.6 Approximating Curves . 365
15.7 Summary . 382

16 Implicit Modeling 385
16.1 Implicit Functions, Skeletal Primitives

and Summation Blending . 386
16.2 Rendering . 394
16.3 Space Partitioning .. 395
16.4 More on Blending . 401
16.5 Constructive Solid Geometry 402
16.6 Warping . 404
16.7 Precise Contact Modeling . 406
16.8 The BlobTree . 408
16.9 Interactive Implicit Modeling Systems 410

17 Computer Animation 413
17.1 Principles of Animation . 414
17.2 Keyframing . 418
17.3 Deformations . 426
17.4 Character Animation . 427
17.5 Physics-Based Animation . 433
17.6 Procedural Techniques . 436
17.7 Groups of Objects .. 439

18 Using Graphics Hardware 445
18.1 What Is Graphics Hardware 445
18.2 Describing Geometry for the Hardware 446
18.3 Processing Geometry into Pixels 453

19 Building Interactive Graphics Applications 467
19.1 The Ball Shooting Program 468
19.2 Programming Models . 470
19.3 The Modelview-Controller Architecture 487

Contents ix

19.4 Example Implementations . 499
19.5 Applying Our Results . 509

20 Light 517
20.1 Radiometry . 517
20.2 Transport Equation . 526
20.3 Photometry . 528

21 Color 531
21.1 Colorimetry . 533
21.2 Color Spaces 542
21.3 Chromatic Adaptation . 548
21.4 Color Appearance . 552

22 Visual Perception 553
22.1 Vision Science . 554
22.2 Visual Sensitivity . 555
22.3 Spatial Vision . 571
22.4 Objects, Locations, and Events 585
22.5 Picture Perception . 593

23 Tone Reproduction 597
23.1 Classification . 600
23.2 Dynamic Range . 601
23.3 Color . 603
23.4 Image Formation . 605
23.5 Frequency-Based Operators 605
23.6 Gradient-Domain Operators 607
23.7 Spatial Operators . 608
23.8 Division . 610
23.9 Sigmoids . 611
23.10 Other Approaches . 616
23.11 Night Tonemapping . 619
23.12 Discussion . 620

24 Global Illumination 623
24.1 Particle Tracing for Lambertian Scenes 624
24.2 Path Tracing . 627
24.3 Accurate Direct Lighting . 629

x Contents

25 Reflection Models 637
25.1 Real-World Materials . 637
25.2 Implementing Reflection Models 639
25.3 Specular Reflection Models 641
25.4 Smooth Layered Model . 642
25.5 Rough Layered Model 645

26 Computer Graphics in Games 653
26.1 Platforms . 653
26.2 Limited Resources . 655
26.3 Optimization Techniques . 659
26.4 Game Types . 660
26.5 The Game Production Process 664

27 Visualization 675
27.1 Background .. 677
27.2 Data Types . 678
27.3 Human-Centered Design Process 680
27.4 Visual Encoding Principles . 682
27.5 Interaction Principles . 689
27.6 Composite and Adjacent Views 690
27.7 Data Reduction . 696
27.8 Examples . 701

28 Spatial-Field Visualization 709
28.1 2D Scalar Fields . 710
28.2 3D Scalar Fields . 711

References 721

Index 745

Preface

This edition ofFundamentals of Computer Graphics adds four new contributed
chapters and contains substantial reorganizations and improvements to the core
material. The new chapters add coverage of implicit modeling and of two impor-
tant graphics applications: games and information visualization. The fourth new
contributed chapter is a major upgrade to the material on color science. As with
the chapters added in the second edition, we have chosen the contributors both for
their expertise and for their clear way of expressing ideas.

We have made a number of changes to the early chapters of the book, integrat-
ing the second author’s experience teaching introductory graphics at Cornell using
thefirst and second editions. Most of these have been revised and updated, partic-
ularly the chapters on images, viewing, ray tracing, the graphics pipeline, and the
material on triangle meshes. Some of the original material from these chapters
has been reorganized, sometimes with topics appearing in different chapters than
in the previous editions.

Our aim in this reorganization has been to move the elementary material to-
wards the beginning. In ourthinking, Chapters 2 through 8 constitute the “core
core,” taking the straight and narrow path through what is absolutely required
for understanding how images get onto the screen using the complementary ap-
proaches of ray tracing and rasterization. Ray tracing is coveredfirst, since it is
the simplest way to generate images of 3D scenes, followed by the mathemati-
cal machinery required for the graphics pipeline, then the pipeline itself. After
that, the “outer core” covers other topics that would commonly be included in an
introductory class. For example, ray tracing is split into two chapters, with the
more advanced material now in Chapter13. The material on spatial data struc-

xi

xii Preface

tures (some formerly under Ray Tracing and Hidden Surfaces) is consolidated in
Chapter 12 together with an expanded section on triangle meshes.

In all these revisions, we have endeavored to retain the informal, intuitive
style of presentation that characterizes the earlier editions, while at the same time
improving consistency, precision, and completeness. We hope the reader willfind
the result is a better platform for a variety of courses in computer graphics.

About the Cover

The cover image is fromTiger in the Water by J. W. Baker (brushed and air-
brushed acrylic on canvas, 16” by 20”, www.jwbart.com).

The subject of a tiger is a reference to a wonderful talk given by Alain Fournier
(1943–2000) at the Cornell Workshop in 1998. His talk was an evocative verbal
description of the movements of a tiger. He summarized his point:

Even though modelling and rendering in computer graphics have
been improved tremendously in the past 35 years, we are still not
at the point where we can model automatically a tiger swimming in
the river in all its glorious details. By automatically I mean in a way
that does not need careful manual tweaking by an artist/expert.

The bad news is that we have still a long way to go.

The good news is that we have still a long way to go.

Online Resources

The web site for this book is http://www.cs.cornell.edu/∼srm/fcg3/. We will con-
tinue to maintain a list of errata and links to courses that use the book, as well as
teaching materials that match the book’s style. Most of thefigures in this book are
in Abobe Illustrator format, and we would be happy to convert specific figures into
portable formats on request. Please feel free to contact us at shirley@cs.utah.edu
or srm@cs.cornell.edu.

Acknowledgments

The following people have provided helpful information, comments, or feedback
about the various editions of this book: Ahmet Oğuz Akyüz, Josh Andersen,
Zeferino Andrade, Adam Berger, Adeel Bhutta, Solomon Boulos, Stephen
Chenney, Michael Coblenz, Greg Coombe, Frederic Cremer, Brian Curtin, Dave

http://www.jwbart.com
http://www.cs.cornell.edu/%E2%88%BCsrm/fcg3/.We
mailto:shirley@cs.utah.edu
mailto:srm@cs.cornell.edu

Preface xiii

Edwards, Jonathon Evans, Karen Feinauer, Amy Gooch, Eungyoung Han, Chuck
Hansen, Andy Hanson, Razen Al Harbi,Dave Hart, John Hart, John “Spike”
Hughes, Helen Hu, Vicki Interrante, Doug James, Henrik Wann Jensen, Shi Jin,
Mark Johnson, Ray Jones, Revant Kapoor, Kristin Kerr, Erum Arif Khan, Mark
Kilgard, Dylan Lacewell, Mathias Lang, Philippe Laval, Marc Levoy, Howard
Lo, Joann Luu, Ron Metoyer, Keith Morley, Eric Mortensen, Koji Nakamaru,
Micah Neilson, Blake Nelson, Michael Nikelsky, James O’Brien, Steve Parker,
Sumanta Pattanaik, Matt Pharr, Peter Poulos, Shaun Ramsey, Rich Riesenfeld,
Nate Robins, Nan Schaller, Chris Schryvers, Tom Sederberg, Richard Sharp,
Sarah Shirley, Peter-Pike Sloan, Hannah Story, Tony Tahbaz, Jan-Phillip
Tiesel, Bruce Walter, Alex Williams, Amy Williams, Chris Wyman, and
Kate Zebrose.

Ching-Kuang Shene and David Solomon allowed us to borrow their exam-
ples. Henrik Wann Jensen, Eric Levin, Matt Pharr, and Jason Waltman generously
provided images. Brandon Mansfield helped improve the discussion of hierarchi-
cal bounding volumes for ray tracing. PhilipGreenspun (philip.greenspun.com)
kindly allowed us to use his photographs. We are extremely thankful to J. W.
Baker for helping create the cover Pete envisioned. In addition to being a talented
artist, he was a great pleasure to work with personally.

Many works that were helpful in preparing this book are cited in the chap-
ter notes. However, a few key texts that influenced the content and presentation
deserve special recognition here. These include the two classic computer graph-
ics texts from which we both learned the basics:Computer Graphics: Princi-

ples & Practice (Foley et al., 1990) andComputer Graphics (Hearn & Baker,
1986). Other texts include both of Alan Watt’s influential books (Watt, 1993,
1991), Hill’s Computer Graphics Using OpenGL (Francis S. Hill, 2000), Angel’s
Interactive Computer Graphics: A Top-Down Approach Using OpenGL (Angel,
2002), Hugues Hoppe’s University of Washington dissertation (Hoppe, 1994), and
Rogers’ two excellent graphics texts (D. F. Rogers, 1985, 1989).

We would like to especially thank Alice and Klaus Peters for encouraging
Pete to write thefirst edition of this book and for their great skill in bringing a
book to fruition. Their patience with the authors and their dedication to making
their books the best they can be has been instrumental in guiding us through three
editions. This book certainly would not exist without their extraordinary efforts.

Salt Lake City, Utah
Ithaca, New York

May 2009

1

Introduction

The termcomputer graphics describes any use of computers to create and ma-
nipulate images. This book introduces the algorithmic and mathematical tools
that can be used to create all kinds of images—realistic visual effects, informative
technical illustrations, or beautiful computer animations. Graphics can be two- or
three-dimensional; images can be completely synthetic or can be produced by ma-
nipulating photographs. This book is about the fundamental algorithms and math-
ematics, especially those used to produce synthetic images of three-dimensional
objects and scenes.

Actually doing computer graphics inevitably requires knowing about spe-
cific hardware,file formats, and usually a graphics API (see Section 1.3) or two.
Computer graphics is a rapidly evolvingfield, so the specifics of that knowledge API: application program in-

terface.are a moving target. Therefore, in this book we do our best to avoid depending
on any specific hardware or API. Readers are encouraged to supplement the text
with relevant documentation for their software and hardware environment. For-
tunately, the culture of computer graphics has enough standard terminology and
concepts that the discussion in this book should map nicely to most environments.

This chapter defines some basic terminology, and provides some historical
background as well as information sources related to computer graphics.

1.1 Graphics Areas

Imposing categories on anyfield is dangerous, but most graphics practitioners
would agree on the following major areas of computer graphics:

1

2 1. Introduction

• Modeling deals with the mathematical specification of shape and appear-
ance properties in a way that can be stored on the computer. For example,
a coffee mug might be described as a set of ordered 3D points along with
some interpolation rule to connect the points and a reflection model that
describes how light interacts with the mug.

• Rendering is a term inherited from art and deals with the creation of
shaded images from 3D computer models.

• Animation is a technique to create an illusion of motion through sequences
of images. Animation uses modeling and rendering but adds the key issue
of movement over time, which is not usually dealt with in basic modeling
and rendering.

There are many other areas that involve computer graphics, and whether they are
core graphics areas is a matter of opinion. These will all be at least touched on in
the text. Such related areas include the following:

• User interaction deals with the interface between input devices such as
mice and tablets, the application, feedback to the user in imagery, and
other sensory feedback. Historically, this area is associated with graph-
ics largely because graphics researchers had some of the earliest access to
the input/output devices that are now ubiquitous.

• Virtual reality attempts toimmerse the user into a 3D virtual world. This
typically requires at least stereo graphics and response to head motion.
For true virtual reality, sound and force feedback should be provided as
well. Because this area requires advanced 3D graphics and advanced dis-
play technology, it is often closely associated with graphics.

• Visualization attempts to give users insight into complex information via
visual display. Often there are graphic issues to be addressed in a visualiza-
tion problem.

• Image processingdeals with the manipulation of 2D images and is used in
both thefields of graphics and vision.

• 3D scanninguses range-finding technology to create measured 3D models.
Such models are useful for creating rich visual imagery, and the processing
of such models often requires graphics algorithms.

• Computational photography is the use of computer graphics, computer
vision, and image processing methods to enable new ways of photographi-
cally capturing objects, scenes, and environments.

1.2. Major Applications 3

1.2 Major Applications

Almost any endeavor can make some use of computer graphics, but the major
consumers of computer graphics technology include the following industries:

• Video gamesincreasingly use sophisticated 3D models and rendering al-
gorithms.

• Cartoons are often rendered directly from 3D models. Many traditional
2D cartoons use backgrounds rendered from 3D models, which allows a
continuously moving viewpoint without huge amounts of artist time.

• Visual effectsuse almost all types of computer graphics technology. Al-
most every modernfilm uses digital compositing to superimpose back-
grounds with separatelyfilmed foregrounds. Manyfilms also use 3D mod-
eling and animation to create synthetic environments, objects, and even
characters that most viewers will never suspect are not real.

• Animated films use many of the same techniques that are used for visual
effects, but without necessarily aiming for images that look real.

• CAD/CAM stands forcomputer-aided design andcomputer-aided manu-

facturing. Thesefields use computer technology to design parts and prod-
ucts on the computer and then, using these virtual designs, to guide the
manufacturing process. For example, many mechanical parts are designed
in a 3D computer modeling package and then automatically produced on a
computer-controlled milling device.

• Simulation can be thought of as accurate video gaming. For example, a
flight simulator uses sophisticated 3D graphics to simulate the experience
of flying an airplane. Such simulations can be extremely useful for initial
training in safety-critical domains suchas driving, and for scenario training
for experienced users such as specific fire-fighting situations that are too
costly or dangerous to create physically.

• Medical imaging creates meaningful images of scanned patient data. For
example, a computed tomography (CT) dataset is composed of a large 3D
rectangular array of density values. Computer graphics is used to create
shaded images that help doctors extract the most salient information from
such data.

• Information visualization creates images of data that do not necessarily
have a “natural” visual depiction. For example, the temporal trend of the

4 1. Introduction

price of ten different stocks does not have an obvious visual depiction, but
clever graphing techniques can help humans see the patterns in such data.

1.3 Graphics APIs

A key part of using graphics libraries is dealing with agraphics API. An applica-

tion program interface (API) is a standard collection of functions to perform a set
of related operations, and a graphics API is a set of functions that perform basic
operations such as drawing images and 3D surfaces into windows on the screen.

Every graphics program needs to be able to use two related APIs: a graphics
API for visual output and a user-interface API to get input from the user. There
are currently two dominant paradigms for graphics and user-interface APIs. The
first is the integrated approach, exemplified by Java, where the graphics and user-
interface toolkits are integrated and portablepackages that are fully standardized
and supported as part of the language. The second is represented by Direct3D
and OpenGL, where the drawing commands are part of a software library tied to
a language such as C++, and the user-interface software is an independent entity
that might vary from system to system. In this latter approach, it is problematic
to write portable code, although for simple programs it may be possible to use a
portable library layer to encapsulate the system specific user-interface code.

Whatever your choice of API, the basic graphics calls will be largely the same,
and the concepts of this book will apply.

1.4 Graphics Pipeline

Every desktop computer today has a powerful 3Dgraphics pipeline. This is a
special software/hardware subsystem that efficiently draws 3D primitives in per-
spective. Usually these systems are optimized for processing 3D triangles with
shared vertices. The basic operations in the pipeline map the 3D vertex locations
to 2D screen positions and shade the triangles so that they both look realistic and
appear in proper back-to-front order.

Although drawing the triangles in valid back-to-front order was once the most
important research issue in computer graphics, it is now almost always solved
using the z-buffer, which uses a special memory buffer to solve the problem in a
brute-force manner.

It turns out that the geometric manipulation used in the graphics pipeline can
be accomplished almost entirely in a 4D coordinate space composed of three tra-

1.5. Numerical Issues 5

ditional geometric coordinates and a fourthhomogeneous coordinate that helps
with perspective viewing. These 4D coordinates are manipulated using 4× 4
matrices and 4-vectors. The graphics pipeline, therefore, contains much machin-
ery for efficiently processing and composing such matrices and vectors. This
4D coordinate system is one of the most subtle and beautiful constructs used in
computer science, and it is certainly the biggest intellectual hurdle to jump when
learning computer graphics. A big chunk of thefirst part of every graphics book
deals with these coordinates.

The speed at which images can be generated depends strongly on the number
of triangles being drawn. Because interactivity is more important in many appli-
cations than visual quality, it is worthwhile to minimize the number of triangles
used to represent a model. In addition, if the model is viewed in the distance,
fewer triangles are needed than when the model is viewed from a closer distance.
This suggests that it is useful to represent a model with a varyinglevel of detail

(LOD).

1.5 Numerical Issues

Many graphics programs are really just 3D numerical codes. Numerical issues
are often crucial in such programs. In the “old days,” it was very difficult to han-
dle such issues in a robust and portable manner because machines had different
internal representations for numbers, and even worse, handled exceptions in dif-
ferent and incompatible ways. Fortunately, almost all modern computers conform
to theIEEE floating-point standard (IEEE Standards Association, 1985). This al-
lows the programmer to make many convenient assumptions about how certain
numeric conditions will be handled.

Although IEEEfloating-point has many features that are valuable when cod-
ing numeric algorithms, there are only a few that are crucial to know for most
situations encountered in graphics. First, and most important, is to understand
that there are three “special” values for real numbers in IEEEfloating-point:

1. infinity (∞). This is a valid number that is larger than all other valid num-
bers.

2. minus infinity (−∞). This is a valid number that is smaller than all other
valid numbers.

3. not a number (NaN).This is an invalid number that arises from an opera-
tion with undefined consequences, such as zero divided by zero.

The designers of IEEEfloating-point made some decisions that are extremely
convenient for programmers. Many of these relate to the three special values

6 1. Introduction

above in handling exceptions such as division by zero. In these cases an exception
is logged, but in many cases the programmer can ignore that. Specifically, for any
positive real numbera, the following rules involving division by infinite values
hold:IEEE floating-point has two

representations for zero,
one that is treated as pos-
itive and one that is treated
as negative. The distinction
between – 0 and + 0 only
occasionally matters, but it
is worth keeping in mind
for those occasions when it
does.

+a/(+∞) = +0

−a/(+∞) = −0

+a/(−∞) = −0

−a/(−∞) = +0

Other operations involving infinite values behave the way one would expect.
Again for positivea, the behavior is:

∞ + ∞ = +∞
∞−∞ = NaN

∞×∞ = ∞
∞/∞ = NaN

∞/a = ∞
∞/0 = ∞
0/0 = NaN

The rules in a Boolean expression involving infinite values are as expected:

1. All finite valid numbers are less than+∞.

2. All finite valid numbers are greater than−∞.

3. −∞ is less than+∞.

The rules involving expressions that have NaN values are simple:

1. Any arithmetic expression that includes NaN results in NaN.

2. Any Boolean expression involving NaN is false.

Perhaps the most useful aspect of IEEEfloating-point is how divide-by-zero is
handled; for any positive real numbera, the following rules involving division by
zero values hold:Some care must be taken

if negative zero (– 0) might
arise. +a/ +0 = +∞

−a/ +0 = −∞

1.6. Efficiency 7

There are many numeric computations that become much simpler if the pro-
grammer takes advantage of the IEEE rules. For example, consider the expres-
sion:

a =
1

1
b + 1

c

.

Such expressions arise with resistors and lenses. If divide-by-zero resulted in a
program crash (as was true in many systems before IEEEfloating-point), then
two if statements would be required to check for small or zero values ofb or c.
Instead, with IEEEfloating-point, ifb or c is zero, we will get a zero value fora as
desired. Another common technique to avoid special checks is to take advantage
of the Boolean properties of NaN. Consider the following code segment:

a = f(x)

if (a > 0) then
do something

Here, the functionf may return “ugly” values such as∞ or NaN, but theif con-
dition is still well-defined: it is false fora = NaN or a = −∞ and true for
a = +∞. With care in deciding which values are returned, often theif can make
the right choice, with no special checks needed. This makes programs smaller,
more robust, and more efficient.

1.6 Efficiency

There are no magic rules for making code more efficient. Efficiency is achieved
through careful tradeoffs, and these tradeoffs are different for different architec-
tures. However, for the foreseeable future, a good heuristic is that programmers
should pay more attention to memory access patterns than to operation counts.
This is the opposite of the best heuristicof two decades ago. This switch has oc-
curred because the speed of memory has notkept pace with the speed of proces-
sors. Since that trend continues, the importance of limited and coherent memory
access for optimization should only increase.

A reasonable approach to making code fast is to proceed in the following
order, taking only those steps which are needed:

1. Write the code in the most straightforward way possible. Compute inter-
mediate results as needed on thefly rather than storing them.

2. Compile in optimized mode.

3. Use whatever profiling tools exist tofind critical bottlenecks.

8 1. Introduction

4. Examine data structures to look for ways to improve locality. If possible,
make data unit sizes match the cache/page size on the target architecture.

5. If profiling reveals bottlenecks in numeric computations, examine the as-
sembly code generated by the compiler for missed efficiencies. Rewrite
source code to solve any problems youfind.

The most important of these steps is thefirst one. Most “optimizations” make the
code harder to read without speeding things up. In addition, time spent upfront
optimizing code is usually better spent correcting bugs or adding features. Also,
beware of suggestions from old texts; some classic tricks such as using integers
instead of reals may no longer yield speed because modern CPUs can usually
performfloating-point operations just as fast as they perform integer operations.
In all situations, profiling is needed to be sure of the merit of any optimization for
a specific machine and compiler.

1.7 Designing and Coding Graphics Programs

Certain common strategies are often useful in graphics programming. In this
section we provide some advice that you mayfind helpful as you implement the
methods you learn about in this book.

1.7.1 Class Design

A key part of any graphics program is to have good classes or routines for geomet-
ric entities such as vectors and matrices, as well as graphics entities such as RGB
colors and images. These routines should be made as clean and efficient as pos-I believe strongly in the

KISS (“keep it simple,
stupid”) principle, and in
that light the argument for
two classes is not com-
pelling enough to justify the
added complexity. —P.S.

sible. A universal design question is whether locations and displacements should
be separate classes because they have different operations, e.g., a location mul-
tiplied by one-half makes no geometric sense while one-half of a displacement
does (Goldman, 1985; DeRose, 1989). Thereis little agreement on this question,
which can spur hours of heated debate among graphics practitioners, but for the
sake of example let’s assume we will not make the distinction.I like keeping points and

vectors separate because
it makes code more read-
able and can let the com-
piler catch some bugs.
—S.M.

This implies that some basic classes to be written include:

• vector2. A 2D vector class that stores anx- andy-component. It should
store these components in a length-2 array so that an indexing operator can
be well supported. You should also include operations for vector addition,
vector subtraction, dot product, cross product, scalar multiplication, and
scalar division.

1.7. Designing and Coding Graphics Programs 9

• vector3. A 3D vector class analogous to vector2.

• hvector. A homogeneous vector with four components (see Chapter 7).

• rgb. An RGB color that stores three components. You should also include
operations for RGB addition, RGB subtraction, RGB multiplication, scalar
multiplication, and scalar division.

• transform . A 4 × 4 matrix for transformations. You should include a
matrix multiply and member functions to apply to locations, directions, and
surface normal vectors. As shown in Chapter 6, these are all different.

• image. A 2D array of RGB pixels with an output operation. You might also consider a
special class for unit-length
vectors, although I have
found them more pain than
they are worth. —P.S.

In addition, you might or might not want to add classes for intervals, orthonormal
bases, and coordinate frames.

1.7.2 Float vs. Double
I suggest using doubles for
geometric computation and
floats for color computation.
For data that occupies a lot
of memory, such as trian-
gle meshes, I suggest stor-
ing float data, but convert-
ing to double when data is
accessed through member
functions. —P.S.

Modern architecture suggests that keeping memory use down and maintaining
coherent memory access are the keys to efficiency. This suggests using single-
precision data. However, avoiding numerical problems suggests using double-
precision arithmetic. The tradeoffs depend on the program, but it is nice to have a
default in your class definitions.

1.7.3 Debugging Graphics Programs
I advocate doing all com-
putations with floats until
you find evidence that dou-
ble precision is needed in a
particular part of the code.
—S.M.

If you ask around, you mayfind that as programmers become more experienced,
they use traditional debuggers less and less. One reason for this is that using such
debuggers is more awkward for complex programs than for simple programs.
Another reason is that the most difficult errors are conceptual ones where the
wrong thing is being implemented, and it is easy to waste large amounts of time
stepping through variable values without detecting such cases. We have found
several debugging strategies to be particularly useful in graphics.

The Scientific Method

In graphics programs there is an alternative to traditional debugging that is often
very useful. The downside to it is that it is very similar to what computer pro-
grammers are taught not to do early in their careers, so you may feel “naughty”
if you do it: we create an image and observe what is wrong with it. Then, we

10 1. Introduction

develop a hypothesis about what is causing the problem and test it. For example,
in a ray-tracing program we might have many somewhat random looking dark
pixels. This is the classic “shadow acne” problem that most people run into when
they write a ray tracer. Traditional debugging is not helpful here; instead, we must
realize that the shadow rays are hitting the surface being shaded. We might notice
that the color of the dark spots is the ambient color, so the direct lighting is what
is missing. Direct lighting can be turned off in shadow, so you might hypothesize
that these points are incorrectly being tagged as in shadow when they are not. To
test this hypothesis, we could turn off the shadowing check and recompile. This
would indicate that these are false shadow tests, and we could continue our de-
tective work. The key reason that this method can sometimes be good practice is
that we never had to spot a false value or really determine our conceptual error.
Instead, we just narrowed in on our conceptual error experimentally. Typically
only a few trials are needed to track things down, and this type of debugging is
enjoyable.

Images as Coded Debugging Output

In many cases, the easiest channel by which to get debugging information out of a
graphics program is the output image itself. If you want to know the value of some
variable for part of a computation that runs for every pixel, you can just modify
your program temporarily to copy that value directly to the output image and skip
the rest of the calculations that would normally be done. For instance, if you
suspect a problem with surface normals is causing a problem with shading, you
can copy the normal vectors directly to the image (x goes to red,y goes to green,
z goes to blue), resulting in a color-coded illustration of the vectors actually being
used in your computation. Or, if you suspect a particular value is sometimes out
of its valid range, make your program write bright red pixels where that happens.
Other common tricks include drawing the back sides of surfaces with an obvious
color (when they are not supposed to be visible), coloring the image by the ID
numbers of the objects, or coloring pixels by the amount of work they took to
compute.

Using a Debugger

There are still cases, particularly when the scientific method seems to have led
to a contradiction, when there’s no substitute for observing exactly what is going
on. The trouble is that graphics programs often involve many, many executions
of the same code (once per pixel, for instance, or once per triangle), making it
completely impractical to step through in the debugger from the start. And the
most difficult bugs usually only occur for complicated inputs.

1.7. Designing and Coding Graphics Programs 11

A useful approach is to “set a trap” for the bug. First, make sure your program
is deterministic—run it in a single thread and make sure that all random numbers
are computed fromfixed seeds. Then,find out which pixel or triangle is exhibiting A special debugging mode

that uses fixed random-
number seeds is useful.

the bug and add a statement before the code you suspect is incorrect that will be
executed only for the suspect case. For instance, if youfind that pixel(126, 247)

exhibits the bug, then add:

if x = 126 andy = 247 then
print “blarg!”

If you set a breakpoint on the print statement, you can drop into the debugger just
before the pixel you’re interested in is computed. Some debuggers have a “condi-
tional breakpoint” feature that can achieve the same thing without modifying the
code.

In the cases where the program crashes, a traditional debugger is useful for
pinpointing the site of the crash. You should then start backtracking in the pro-
gram, using asserts and recompiles, tofind where the program went wrong. These
asserts should be left in the program for potential future bugs you will add. This
again means the traditional step-though process is avoided, because that would
not be adding the valuable asserts to your program.

Data Visualization for Debugging

Often it is hard to understand what your program is doing, because it computes a
lot of intermediate results before itfinally goes wrong. The situation is similar to
a scientific experiment that measures a lot of data, and one solution is the same:
make good plots and illustrations for yourself to understand what the data means.
For instance, in a ray tracer you might write code to visualize ray trees so youI like to format debugging

print statements so that the
output happens to be a
Matlab or Gnuplot script
that makes a helpful plot.
—S.M.

can see what paths contributed to a pixel, or in an image resampling routine you
might make plots that show all the points where samples are being taken from the
input. Time spent writing code to visualize your program’s internal state is also
repaid in a better understanding of its behavior when it comes time to optimize it.

Notes

The discussion of software engineering is influenced by theEffective C++ se-
ries (Meyers, 1995, 1997), theExtreme Programming movement (Beck & Andres,
2004), and (Kernighan & Pike, 1999). The discussion of experimental debugging
is based on discussions with Steve Parker.

There are a number of annual conferences related to computer graphics, in-
cluding ACM SIGGRAPH and SIGGRAPH Asia, Grpahics Interface, the Game

12 1. Introduction

Developers Conference (GDC), Eurographics, Pacific Graphics, High Perfor-
mance Graphics, the Eurographics Symposium on Rendering, and IEEE VisWeek.
These can be readily found by web searches on their names.

2

Miscellaneous Math

Much of graphics is just translating math directly into code. The cleaner the math,
the cleaner the resulting code; so much of this book concentrates on using just the
right math for the job. This chapter reviews various tools from high school and
college mathematics and is designed to be used more as a reference than as a tu-
torial. It may appear to be a hodge-podgeof topics and indeed it is; each topic
is chosen because it is a bit unusual in “standard” math curricula, because it is
of central importance in graphics, or because it is not typically treated from a ge-
ometric standpoint. In addition to establishing a review of the notation used in
the book, the chapter also emphasizes a few points that are sometimes skipped
in the standard undergraduate curricula, such as barycentric coordinates on tri-
angles. This chapter is not intended to be a rigorous treatment of the material;
instead intuition and geometric interpretation are emphasized. A discussion of
linear algebra is deferred until Chapter 5just before transformation matrices are
discussed. Readers are encouraged to skim this chapter to familiarize themselves
with the topics covered and to refer back to it as needed. The exercises at the end
of the chapter may be useful in determining which topics need a refresher.

2.1 Sets and Mappings

Mappings, also calledfunctions, are basic to mathematics and programming. Like
a function in a program, a mapping in math takes an argument of onetype and
maps it to (returns) an object of a particular type. In a program we say “type;” in

13

14 2. Miscellaneous Math

math we would identify the set. When we have an object that is a member of a
set, we use the∈ symbol. For example,

a ∈ S,

can be read “a is a member of setS.” Given any two setsA andB, we can create
a third set by taking theCartesian product of the two sets, denotedA × B. This
setA × B is composed of all possible ordered pairs(a, b) wherea ∈ A and
b ∈ B. As a shorthand, we use the notationA2 to denoteA× A. We can extend
the Cartesian product to create a set of all possible ordered triples from three sets
and so on for arbitrarily long ordered tuples from arbitrarily many sets.

Common sets of interest include:

• R—the real numbers;

• R
+—the non-negative real numbers (includes zero);

• R
2—the ordered pairs in the real 2D plane;

• R
n—the points inn-dimensional Cartesian space;

• Z—the integers;

• S2—the set of 3D points (points inR3) on the unit sphere.

Note that althoughS2 is composed of points embedded in three-dimensional
space, they are on a surface that can be parameterized with two variables, so it
can be thought of as a 2D set. Notation for mappings uses the arrow and a colon,
for example:

f : R �→ Z,

which you can read as “There is a function calledf that takes a real number as
input and maps it to an integer.” Here, the set that comes before the arrow is called
thedomain of the function, and the set on the right-hand side is called thetarget.
Computer programmers might be more comfortable with the following equivalent
language: “There is a function calledf which has one real argument and returns
an integer.” In other words, the set notation above is equivalent to the common
programming notation:

Figure 2.1. A bijection
f and the inverse function
f−1. Note that f –1 is also
a bijection.

integerf(real) ← equivalent→ f : R �→ Z.

So the colon-arrow notation can be thought of as a programming syntax. It’s that
simple.

The pointf(a) is called theimage of a, and the image of a setA (a subset of
the domain) is the subset of the target that contains the images of all points inA.
The image of the whole domain is called therange of the function.

2.1. Sets and Mappings 15

2.1.1 Inverse Mappings

If we have a functionf : A �→ B, there may exist aninverse function f−1 : B �→
A, which is defined by the rulef−1(b) = a whereb = f(a). This definition only
works if everyb ∈ B is an image of some point underf (that is, the range equals
the target) and if there is only one such point (that is, there is only onea for which
f(a) = b). Such mappings or functions are calledbijections. A bijection maps
everya ∈ A to a uniqueb ∈ B, and for everyb ∈ B, there is exactly onea ∈ A

such thatf(a) = b (Figure 2.1). A bijection between a group of riders and horses
indicates that everybody rides a single horse, and every horse is ridden. The two
functions would berider(horse) andhorse(rider). These are inverse functions of
each other. Functions that are not bijections have no inverse (Figure 2.2).

An example of a bijection isf : R �→ R,with f(x) = x3. The inverse
function isf−1(x) = 3

√
x. This example shows that the standard notation can be

Figure 2.2. The function
g does not have an inverse
because two elements of d
map to the same element
of E. The function h has no
inverse because element T
of F has no element of d
mapped to it.

somewhat awkward becausex is used as a dummy variable in bothf andf−1. It
is sometimes more intuitive to use different dummy variables, withy = f(x) and
x = f−1(y). This yields the more intuitivey = x3 andx = 3

√
y. An example of a

function that does not have an inverse issqr : R �→ R, wheresqr(x) = x2. This
is true for two reasons:first x2 = (−x)2, and second no members of the domain
map to the negative portions of the target. Note that we can define an inverse if
we restrict the domain and range toR

+. Then
√

x is a valid inverse.

2.1.2 Intervals

Often we would like to specify that a function deals with real numbers that are
restricted in value. One such constraint is to specify aninterval. An example of
an interval is the real numbers between zero and one, not including zero or one.
We denote this(0, 1). Because it does not include its endpoints, this is referred
to as anopen interval. The correspondingclosed interval, which does contain its
endpoints, is denoted with square brackets:[0, 1]. This notation can be mixed, i.e.,
[0, 1) includes zero but not one. When writing an interval[a, b], we assume that
a ≤ b. The three common ways to representan interval are shown in Figure 2.3.
The Cartesian products of intervals are often used. For example, to indicate that
a pointx is in the unit cube in 3D, we sayx ∈ [0, 1]3.

a < x < b

(a, b]

a b

_

Figure 2.3. Three equiv-
alent ways to denote the
interval from a to b that
includes b but not a.

Intervals are particularly useful in conjunction with set operations:intersec-

tion, union, anddifference. For example, the intersection of two intervals is the
set of points they have in common. The symbol∩ is used for intersection. For ex-
ample,[3, 5)∩ [4, 6] = [4, 5). For unions, the symbol∪ is used to denote points in
either interval. For example,[3, 5)∪ [4, 6] = [3, 6]. Unlike thefirst two operators,
the difference operator produces different results depending on argument order.

16 2. Miscellaneous Math

The minus sign is used for the difference operator, which returns the points in the
left interval that are not also in the right. For example,[3, 5) − [4, 6] = [3, 4) and
[4, 6] − [3, 5) = [5, 6]. These operations are particularly easy to visualize using
interval diagrams (Figure 2.4).

Figure 2.4. Interval opera-
tions on [3,5) and [4,6].

2.1.3 Logarithms

Although not as prevalent today as they were before calculators,logarithms are
often useful in problems where equations with exponential terms arise. By defi-
nition, every logarithm has abase a. The “log basea” of x is written loga x and
is defined as “the exponent to whicha must be raised to getx,” i.e.,

y = loga x ⇔ ay = x.

Note that the logarithm basea and the function that raisesa to a power are inverses
of each other. This basic definition has several consequences:

aloga(x) = x;

loga(ax) = x;

loga(xy) = loga x + loga y;

loga(x/y) = loga x − loga y;

loga x = loga b logb x.

When we apply calculus to logarithms, the special numbere = 2.718 . . . often
turns up. The logarithm with basee is called thenatural logarithm. We adopt the
common shorthandln to denote it:

ln x ≡ loge x.

Note that the “≡” symbol can be read “is equivalent by definition.” Like π, the
special numbere arises in a remarkable number of contexts. Manyfields use a par-
ticular base in addition toe for manipulations and omit the base in their notation,
i.e., log x. For example, astronomers often use base 10 and theoretical computer
scientists often use base 2. Because computer graphics borrows technology from
manyfields we will avoid this shorthand.

The derivatives of logarithms and exponents illuminate why the natural loga-
rithm is “natural”:

d

dx
loga x =

1

x ln a
;

d

dx
ax = ax ln a.

The constant multipliers above are unity only fora = e.

2.2. Solving Quadratic Equations 17

2.2 Solving Quadratic Equations

A quadratic equation has the form

Ax2 + Bx + C = 0,

wherex is a real unknown, andA, B, andC are known constants. If you think
of a 2Dxy plot with y = Ax2 + Bx + C, the solution is just whateverx values
are “zero crossings” iny. Becausey = Ax2 + Bx + C is a parabola, there will
be zero, one, or two real solutions depending on whether the the parabola misses,
grazes, or hits thex-axis (Figure 2.5).

To solve the quadratic equation analytically, wefirst divide byA:

x2 +
B

A
x +

C

A
= 0.

Then we “complete the square” to group terms:
(

x +
B

2A

)2

− B2

4A2
+

C

A
= 0.

Moving the constant portion to the right-hand side and taking the square root gives
Figure 2.5. The geometric
interpretation of the roots
of a quadratic equation is
the intersection points of a
parabola with the x-axis.

x +
B

2A
= ±

√

B2

4A2
− C

A
.

SubtractingB/(2A) from both sides and grouping terms with the denominator
2A gives the familiar form:1

x =
−B ±

√
B2 − 4AC

2A
. (2.1)

Here the “±” symbol means there are two solutions, one with a plus sign and
one with a minus sign. Thus3 ± 1 equals “two or four.” Note that the term that
determines the number of real solutions is

D ≡ B2 − 4AC,

which is called thediscriminant of the quadratic equation. IfD > 0, there are two
real solutions (also calledroots). If D = 0, there is one real solution (a “double”
root). If D < 0, there are no real solutions.

For example, the roots of2x2 + 6x + 4 = 0 arex = −1 andx = −2, and the
equationx2+x+1 has no real solutions. The discriminants of these equations are
D = 4 andD = −3, respectively, so we expect the number of solutions given.
In programs, it is usually a good idea to evaluateD first and return “no roots”
without taking the square root ifD is negative.

1A robust implementation will use the equivalent expression2C/(−B ∓
√

B2 − 4AC) to com-
pute one of the roots, depending on the sign of B (Exercise 7).

18 2. Miscellaneous Math

2.3 Trigonometry

In graphics we use basic trigonometry in many contexts. Usually, it is nothing too
fancy, and it often helps to remember the basic definitions.

2.3.1 Angles

Although we take angles somewhat for granted, we should return to their defini-
tion so we can extend the idea of the angle onto the sphere. An angle is formed
between two half-lines (infinite rays stemming from an origin) or directions, and
some convention must be used to decide between the two possibilities for the an-
gle created between them as shown in Figure 2.6. Anangle is defined by the
length of the arc segment it cuts out on the unit circle. A common convention is
that the smaller arc length is used, and the sign of the angle is determined by the

Figure 2.6. Two half-
lines cut the unit circle into
two arcs. The length of
either arc is a valid an-
gle “between” the two half-
lines. Either we can use the
convention that the smaller
length is the angle, or that
the two half-lines are spec-
ified in a certain order and
the arc that determines an-
gle φ is the one swept out
counterclockwise from the
first to the second half-line.

order in which the two half-lines are specified. Using that convention, all angles
are in the range[−π, π].

Each of these angles isthe length of the arc of the unit circle that is “cut” by

the two directions. Because the perimeter of the unit circle is2π, the two possible
angles sum to2π. The unit of these arc lengths isradians. Another common unit
is degrees, where the perimeter of the circle is 360 degrees. Thus, an angle that is
π radians is 180 degrees, usually denoted180◦. The conversion between degrees
and radians is

degrees=
180

π
radians;

radians=
π

180
degrees.

2.3.2 Trigonometric Functions

Given a right triangle with sides of lengtha, o, andh, whereh is the length of
the longest side (which is always opposite the right angle), orhypotenuse, an
important relation is described by thePythagorean theorem:

a2 + o2 = h2.

You can see that this is true from Figure 2.7, where the big square has area(a+o)2,
Figure 2.7. A geo-
metric demonstration of the
Pythagorean theorem.

the four triangles have the combined area2ao, and the center square has areah2.
Because the triangles and inner squaresubdivide the larger square evenly,

we have2ao + h2 = (a + o)2, which is easily manipulated to the form above.

2.3. Trigonometry 19

We define sine andcosine of φ, as well as the other ratio-based trigonometric
expressions: sin φ ≡ o/h;

csc φ ≡ h/o;

cosφ ≡ a/h;

sec φ ≡ h/a;

tan φ ≡ o/a;

cotφ ≡ a/o.

These definitions allow us to set uppolar coordinates, where a point is coded
as a distance from the origin and a signed angle relative to the positivex-axis
(Figure 2.8). Note the convention that angles are in the rangeφ ∈ (−π, π], and

Figure 2.8. Polar coordi-
nates for the point (xa, ya) =
(1,

√
3) is (ra, φa) = (2, π/3).

that the positive angles are counterclockwise from the positivex-axis. This con-
vention that counterclockwise maps to positive numbers is arbitrary, but it is used
in many contexts in graphics so it is worth committing to memory.

Trigonometric functions are periodic and can take any angle as an argument.
For examplesin(A) = sin(A + 2π). This means the functions are not invertible
when considered with the domainR. This problem is avoided by restricting the
range of standard inverse functions, and this is done in a standard way in almost
all modern math libraries (e.g., (Plauger, 1991)). The domains and ranges are:

asin : [−1, 1] �→ [−π/2, π/2];

acos : [−1, 1] �→ [0, π];

atan : R �→ [−π/2, π/2];

atan2 : R
2 �→ [−π, π].

(2.2)

The last function, atan2(s, c) is often very useful. It takes ans value proportional
Figure 2.9. The function
atan2(s,c) returns the angle
A and is often very useful in
graphics.

to sin A and ac value that scalescosA by the same factor and returnsA. The
factor is assumed to be positive. One way to think of this is that it returns the
angle of a 2D Cartesian point(s, c) in polar coordinates (Figure 2.9).

2.3.3 Useful Identities

This section lists without derivation a variety of useful trigonometric identities.
Shifting identities: sin(−A) = − sinA

cos(−A) = cosA

tan(−A) = − tanA

sin(π/2 − A) = cosA

cos(π/2 − A) = sin A

tan(π/2 − A) = cotA

20 2. Miscellaneous Math

Pythagorean identities: sin2 A + cos2 A = 1

sec2 A − tan2 A = 1

csc2 A − cot2 A = 1

Addition and subtraction identities:

sin(A + B) = sin A cosB + sin B cosA

sin(A − B) = sin A cosB − sin B cosA

sin(2A) = 2 sinA cos A

cos(A + B) = cosA cosB − sin A sin B

cos(A − B) = cosA cosB + sin A sin B

cos(2A) = cos2 A − sin2 A

tan(A + B) =
tan A + tanB

1 − tan A tan B

tan(A − B) =
tan A − tan B

1 + tan A tan B

tan(2A) =
2 tanA

1 − tan2 A

Half-angle identities:
sin2(A/2) = (1 − cosA)/2

cos2(A/2) = (1 + cosA)/2

Product identities:

sin A sin B = −(cos(A + B) − cos(A − B))/2

sin A cosB = (sin(A + B) + sin(A − B))/2

cosA cosB = (cos(A + B) + cos(A − B))/2

The following identities are for arbitrary triangles with side lengthsa, b, andc,
each with an angle opposite it given byA, B, C, respectively (Figure 2.10):

sin A

a
=

sin B

b
=

sinC

c
(Law of sines)

c2 = a2 + b2 − 2ab cosC (Law of cosines)

a + b

a − b
=

tan
(

A+B
2

)

tan
(

A−B
2

) (Law of tangents)

The area of a triangle can also be computed in terms of these side lengths:
Figure 2.10. Geometry for
triangle laws. triangle area=

1

2

√

(a + b + c)(−a + b + c)(a − b + c)(a + b − c).

2.4. Vectors 21

2.4 Vectors

A vector describes a length and a direction. It can be usefully represented by an
arrow. Two vectors are equal if they have the same length and direction even if we
think of them as being located in different places (Figure 2.11). As much as pos-
sible, you should think of a vector as an arrow and not as coordinates or numbers.
At some point we will have to represent vectors as numbers in our programs, but
even in code they should be manipulated as objects and only the low-level vector
operations should know about their numeric representation (DeRose, 1989). Vec-
tors will be represented as bold characters, e.g.,a. A vector’s length is denoted
‖a‖. A unit vector is any vector whose length is one. Thezero vector is the vector
of zero length. The direction of the zero vector is undefined.

Figure 2.11. These two
vectors are the same be-
cause they have the same
length and direction.

Vectors can be used to represent many different things. For example, they can
be used to store anoffset, also called adisplacement. If we know “the treasure is
buried two paces east and three paces north of the secret meeting place,” then we
know the offset, but we don’t know where to start. Vectors can also be used to
store alocation, another word forposition or point. Locations can be represented
as a displacement from another location. Usually there is some understoodorigin

location from which all other locations are stored as offsets. Note that locations
are not vectors. As we shall discuss, you can add two vectors. However, it usually
does not make sense to add two locations unless it is an intermediate operation
when computing weighted averages of a location (Goldman, 1985). Adding two
offsets does make sense, so that is one reason why offsets are vectors. But this
emphasizes that a location is not a offset; it is an offset from a specific origin
location. The offset by itself is not the location.

2.4.1 Vector Operations

Vectors have most of the usual arithmetic operations that we associate with real
numbers. Two vectors are equal if and only if they have the same length and direc-
tion. Two vectors are added according to theparallelogram rule. This rule states

Figure 2.12. Two vec-
tors are added by arranging
them head to tail. This can
be done in either order.

that the sum of two vectors is found by placing the tail of either vector against the
head of the other (Figure 2.12). The sum vector is the vector that “completes the
triangle” started by the two vectors. The parallelogram is formed by taking the
sum in either order. This emphasizes that vector addition is commutative:

a + b = b + a.

Note that the parallelogramrule just formalizes our intuition about displacements.
Think of walking along one vector, tail to head, and then walking along the other.

22 2. Miscellaneous Math

The net displacement is just the parallelogram diagonal. You can also create a
unary minus for a vector:−a (Figure 2.13) is a vector with the same length asa

but opposite direction. This allows us to also define subtraction:

Figure 2.13. The vector
–a has the same length
but opposite direction of the
vector a.

b− a ≡ −a + b.

You can visualize vector subtraction witha parallelogram (Figure 2.14). We can
write

a + (b − a) = b.

Vectors can also be multiplied. In fact, there are several kinds of products involv-

Figure 2.14. Vector sub-
traction is just vector addi-
tion with a reversal of the
second argument.

ing vectors. First, we canscale the vector by multiplying it by a real numberk.
This just multiplies the vector’s length without changing its direction. For exam-
ple,3.5a is a vector in the same direction asa but it is 3.5 times as long asa. We
discuss two products involving two vectors, the dot product and the cross prod-
uct, later in this section, and a product involving three vectors, the determinant, in
Chapter 5.

2.4.2 Cartesian Coordinates of a Vector

A 2D vector can be written as a combination of any two non-zero vectors which
are not parallel. This property of the two vectors is calledlinear independence.
Two linearly independent vectors form a 2Dbasis, and the vectors are thus re-
ferred to asbasis vectors. For example, a vectorc may be expressed as a combi-
nation of two basis vectorsa andb (Figure 2.15):

c = aca + bcb. (2.3)

Note that the weightsac and bc are unique. Bases are especially useful if the
Figure 2.15. Any 2D
vector c is a weighted sum
of any two non-parallel 2D
vectors a and b.

two vectors areorthogonal, i.e., they are at right angles to each other. It is even
more useful if they are also unit vectors in which case they areorthonormal. If we
assume two such “special” vectorsx andy are known to us, then we can use them
to represent all other vectors in aCartesian coordinate system, where each vector
is represented as two real numbers. For example, a vectora might be represented
as

a = xax + yay,

wherexa and ya are the real Cartesian coordinates of the 2D vectora (Fig-
ure 2.16). Note that this is not really any different conceptually from Equa-
tion (2.3), where the basis vectors were not orthonormal. But there are several

Figure 2.16. A 2D Carte-
sian basis for vectors.

advantages to a Cartesian coordinatesystem. For instance, by the Pythagorean
theorem, the length ofa is

‖a‖ =
√

x2
a + y2

a.

2.4. Vectors 23

It is also simple to compute dot products, cross products, and coordinates of vec-
tors in Cartesian systems, as we’ll see in the following sections.

By convention we write the coordinates ofa either as an ordered pair(xa, ya)

or a column matrix:

a =

[

xa

ya

]

.

The form we use will depend on typographic convenience. We will also occasion-
ally write the vector as a row matrix, which we will indicate asaT:

aT =
[

xa ya

]

.

We can also represent 3D, 4D, etc., vectors in Cartesian coordinates. For the 3D
case, we use a basis vectorz that is orthogonal to bothx andy.

2.4.3 Dot Product

The simplest way to multiply two vectors is thedot product. The dot product of
a andb is denoteda · b and is often called thescalar product because it returns
a scalar. The dot product returns a value related to its arguments’ lengths and the
angleφ between them (Figure 2.17):

a · b = ‖a‖ ‖b‖ cosφ, (2.4)

The most common use of the dot product in graphics programs is to compute the
Figure 2.17. The dot
product is related to length
and angle and is one of the
most important formulas in
graphics.

cosine of the angle between two vectors.
The dot product can also be used tofind theprojection of one vector onto

another. This is the lengtha→b of a vectora that is projected at right angles onto
a vectorb (Figure 2.18):

a→b = ‖a‖ cosφ =
a · b
‖b‖ . (2.5)

The dot product obeys the familiar associative and distributive properties we have
in real arithmetic:

Figure 2.18. The projec-
tion of a onto b is a length
found by Equation (2.5).

a · b = b · a,

a · (b + c) = a · b + a · c, (2.6)

(ka) · b = a · (kb) = ka · b.

If 2D vectorsa andb are expressed in Cartesian coordinates, we can take ad-
vantage ofx · x = y · y = 1 andx · y = 0 to derive that their dot product

24 2. Miscellaneous Math

is

a · b = (xax + yay) · (xbx + yby)

= xaxb(x · x) + xayb(x · y) + xbya(y · x) + yayb(y · y)

= xaxb + yayb.

Similarly in 3D we canfind

a · b = xaxb + yayb + zazb.

2.4.4 Cross Product

The cross producta × b is usually used only for three-dimensional vectors; gen-
eralized cross products are discussed in references given in the chapter notes. The
cross product returns a 3D vector that is perpendicular to the two arguments of
the cross product. The length of the resulting vector is related tosinφ:

‖a × b‖ = ‖a‖ ‖b‖ sinφ.

The magnitude‖a×b‖ is equal to the area of the parallelogram formed by vectors
a andb. In addition,a × b is perpendicular to botha andb (Figure 2.19). Note

Figure 2.19. The cross
product a × b is a 3D vector
perpendicular to both 3D
vectors a and b, and its
length is equal to the area
of the parallelogram shown.

that there are only two possible directions for such a vector. By definition, the
vectors in the direction of thex-, y- andz-axes are given by

x = (1, 0, 0),

y = (0, 1, 0),

z = (0, 0, 1),

and we set as a convention thatx × y must be in the plus or minusz direction.
The choice is somewhat arbitrary, but it is standard to assume that

z = x × y.

All possible permutations of the three Cartesian unit vectors are

x × y = +z,

y × x = −z,

y × z = +x,

z × y = −x,

z × x = +y,

x× z = −y.

2.4. Vectors 25

Because of thesin φ property, we also know that a vector cross itself is the
zero-vector, sox×x = 0 and so on. Note that the cross product isnot commuta-
tive, i.e.,x×y �= y×x. The careful observer will note that the above discussion
does not allow us to draw an unambiguous picture of how the Cartesian axes re-
late. More specifically, if we putx andy on a sidewalk, withx pointing East
andy pointing North, then doesz point up to the sky or into the ground? The
usual convention is to havez point to the sky. This is known as aright-handed

coordinate system. This name comes from the memory scheme of “grabbing”x

with your right palm andfingers and rotating it towardy. The vectorz should
align with your thumb. This is illustrated in Figure 2.20.

Figure 2.20. The “right-
hand rule” for cross prod-
ucts. Imagine placing the
base of your right palm
where a and b join at their
tails, and pushing the ar-
row of a toward b. Your ex-
tended right thumb should
point toward a × b.

The cross product has the nice property that

a × (b + c) = a × b + a× c,

and
a × (kb) = k(a × b).

However, a consequence of the right-hand rule is

a× b = −(b × a).

In Cartesian coordinates, we can use an explicit expansion to compute the cross
product:

a × b = (xax + yay + zaz) × (xbx + yby + zbz)

= xaxbx × x + xaybx× y + xazbx × z

+ yaxby × x + yayby × y + yazby × z

+ zaxbz × x + zaybz × y + zazbz × z

= (yazb − zayb)x + (zaxb − xazb)y + (xayb − yaxb)z.

(2.7)

So, in coordinate form,

a × b = (yazb − zayb, zaxb − xazb, xayb − yaxb). (2.8)

2.4.5 Orthonormal Bases and Coordinate Frames

Managing coordinate systems is one of the core tasks of almost any graphics
program; key to this is managingorthonormal bases. Any set of two 2D vectors
u andv form an orthonormal basis provided that they are orthogonal (at right
angles) and are each of unit length. Thus,

‖u‖ = ‖v‖ = 1,

26 2. Miscellaneous Math

and
u · v = 0.

In 3D, three vectorsu, v, andw form an orthonormal basis if

‖u‖ = ‖v‖ = ‖w‖ = 1,

and
u · v = v · w = w · u = 0.

This orthonormal basis isright-handed provided

w = u× v,

and otherwise it is left-handed.
Note that the Cartesian canonical orthonormal basis is just one of infinitely

many possible orthonormal bases. What makes it special is that it and its implicit
origin location are used for low-level representation within a program. Thus,
the vectorsx, y, andz are never explicitly stored and neither is the canonical

Figure 2.21. There is always a master or “canonical” coordinate system with origin o and
orthonormal basis x, y , and z. This coordinate system is usually defined to be aligned to the
global model and is thus often called the “global” or “world” coordinate system. This origin
and basis vectors are never stored explicitly. All other vectors and locations are stored with
coordinates that relate them to the global frame. The coordinate system associated with the
plane are explicitly stored in terms of global coordinates.

2.4. Vectors 27

origin locationo. The global model is typically stored in this canonical coordinate
system, and it is thus often called theglobal coordinate system. However, if we
want to use another coordinate system with originp and orthonormal basis vectors
u, v, andw, then wedo store those vectors explicitly. Such a system is called
a frame of reference or coordinate frame. For example, in aflight simulator, we
might want to maintain a coordinate system with the origin at the nose of the
plane, and the orthonormal basis aligned with the airplane. Simultaneously, we
would have the master canonical coordinate system (Figure 2.21). The coordinate
system associated with a particular object, such as the plane, is usually called a
local coordinate system.

At a low level, the local frame is stored in canonical coordinates. For example,
if u has coordinates(xu, yu, zu),

u = xux + yuy + zuz.

A location implicitly includes an offset from the canonical origin:

p = o + xpx + ypy + zpz,

where(xp, yp, zp) are the coordinates ofp.
Note that if we store a vectora with respect to theu-v-w frame, we store a

triple (ua, va, wa) which we can interpret geometrically as

a = uau + vav + waw.

To get the canonical coordinates of a vectora stored in theu-v-w coordinate
system, simply recall thatu, v, andw are themselves stored in terms of Cartesian
coordinates, so the expressionuau + vav + waw is already in Cartesian coordi-
nates if evaluated explicitly. To get theu-v-w coordinates of a vectorb stored in
the canonical coordinate system, we can use dot products:

ub = u · b; vb = v · b; wb = w · b

This works because we know that forsome ub, vb, andwb,

ubu + vbv + wbw = b,

and the dot product isolates theub coordinate:

u · b = ub(u · u) + vb(u · v) + wb(u · w)

= ub

This works becauseu, v, andw are orthonormal.
Using matrices to manage changes of coordinate systems is discussed in Sec-

tions 6.2.1 and 6.5.

28 2. Miscellaneous Math

2.4.6 Constructing a Basis from a Single Vector

Often we need an orthonormal basis that is aligned with a given vector. That is,
given a vectora, we want an orthonormalu, v, andw such thatw points in the
same direction asa (Hughes & Möller, 1999), but we don’t particularly care what
u andv are. One vector isn’t enough to uniquely determine the answer; we just
need a robust procedure that willfind any one of the possible bases.

This can be done using cross products as follows. First makew a unit vector
in the direction ofa:This same procedure can,

of course, be used to con-
struct the three vectors in
any order; just pay atten-
tion to the order of the cross
products to ensure the ba-
sis is right handed.

w =
a

‖a‖ .

Then choose any vectort not collinear withw, and use the cross product to build
a unit vectoru perpendicular tow:

u =
t × w

‖t × w‖ .

If t is collinear withw the denominator will vanish, and if they are nearly collinear
the results will have low precision. A simple procedure tofind a vector suffi-
ciently different fromw is to start witht equal tow and change the smallest
magnitude component oft to 1. For example, ifw = (1/

√
2,−1/

√
2, 0) then

t = (1/
√

2,−1/
√

2, 1). Oncew andu are in hand, completing the basis is
simple:

v = w × u.

An example of a situation where this construction is used is surface shading,
where a basis aligned to the surface normal is needed but the rotation around
the normal is often unimportant.

2.4.7 Constructing a Basis from Two Vectors

The procedure in the previous section can also be used in situations where the
rotation of the basis around the given vector is important. A common example
is building a basis for a camera: it’s important to have one vector aligned in the
direction the camera is looking, but the orientation of the camera around that
vector isnot arbitrary, and it needs to be specified somehow. Once the orientation
is pinned down, the basis is completely determined.

A common way to fully specify a frame is by providing two vectorsa (which
specifiesw) andb (which specifiesv). If the two vectors are known to be per-u = a × b also produces an

orthonormal basis, but it is
left-handed.

pendicular it is a simple matter to construct the third vector byu = b× a.

2.4. Vectors 29

To be sure that the resulting basis really is orthonormal, even if the input vec-
tors weren’t quite, a procedure much like the single-vector procedure is advisable:

w =
a

‖a‖ ,

u =
b × w

‖b× w‖ ,

v = w × u.

In fact, this procedure works justfine whena andb are not perpendicular. In this If you want me to set w and
v to two non-perpendicular
directions, something has
to give—with this scheme
I’ll set everything the way
you want, except I’ll make
the smallest change to v so
that it is in fact perpendicu-
lar to w.

case,w will be constructed exactly in the direction ofa, andv is chosen to be the
closest vector tob among all vectors perpendicular tow.

This procedurewon’t work if a andb are collinear. In this caseb is of no
help in choosing which of the directions perpendicular toa we should use: it is
perpendicular to all of them.

What will go wrong with the
computation if a and b are
parallel?

In the example of specifying camera positions (Section 4.3), we want to con-
struct a frame that hasw parallel to the direction the camera is looking, andv

should point out the top of the camera. To orient the camera upright, we build the
basis around the view direction, using thestraight-up direction as the reference
vector to establish the camera’s orientation around the view direction. Settingv
as close as possible to straight up exactly matches the intuitive notion of “holding
the camera straight.”

2.4.8 Squaring Up a Basis

Occasionally you mayfind problems caused in your computations by a basis that
is supposed to be orthonormal but where error has crept in—due to rounding error
in computation, or to the basis having been stored in afile with low precision, for
instance.

The procedure of the previous section can be used; simply constructing the
basis anew using the existingw andv vectors will produce a new basis that is
orthonormal and is close to the old one.

This approach is good for many applications, but it is not the best available.
It does produce accurately orthogonal vectors, and for nearly orthogonal starting
bases the result will not stray far from the starting point. However, it is asym-
metric: it “favors”w overv andv overu (whose starting value is thrown away).
It chooses a basis close to the starting basis but has no guarantee of choosingthe

closest orthonormal basis. When this is not good enough, the SVD (Section 5.4.1)
can be used to compute an orthonormal basis thatis guaranteed to be closest to
the original basis.

30 2. Miscellaneous Math

2.5 Curves and Surfaces

The geometry of curves, and especially surfaces, plays a central role in graphics,
and here we review the basics of curves and surfaces in 2D and 3D space.

2.5.1 2D Implicit Curves

Intuitively, acurve is a set of points that can be drawn on a piece of paper without
lifting the pen. A common way to describe a curve is using animplicit equation.
An implicit equation in two dimensions has the form

f(x, y) = 0.

The functionf(x, y) returns a real value. Points(x, y) where this value is zero
are on the curve, and points where the value is non-zero are not on the curve. For
example, let’s say thatf(x, y) is

f(x, y) = (x − xc)
2 + (y − yc)

2 − r2, (2.9)

where(xc, yc) is a 2D point andr is a non-zero real number. If we takef(x, y) =

Figure 2.22. An implicit
function f (x,y) = 0 can be
thought of as a height field
where f is the height (top).
A path where the height is
zero is the implicit curve
(bottom).

0, the points where this equality holds are on the circle with center(xc, yc) and ra-
diusr. The reason that this is called an “implicit” equation is that the points(x, y)

on the curve cannot be immediately calculated from the equation and instead must
be determined by solving the equation. Thus, the points on the curve are not gen-
erated by the equationexplicitly, but they are buried somewhereimplicitly in the
equation.

It is interesting to note thatf does have values for all(x, y). We can think off
as a terrain, with sea-level atf = 0 (Figure 2.22). The shore is the implicit curve.
The value off is the altitude. Another thing to note is that the curve partitions
space into regions wheref > 0, f < 0, andf = 0. So you evaluatef to decide
whether a point is “inside” a curve. Note thatf(x, y) = c is a curve for any
constantc, andc = 0 is just used as a convention. For example iff(x, y) = x2 +

y2−1, varyingc just gives a variety of circles centered at the origin (Figure 2.23).
We can compress our notation using vectors. If we havec = (xc, yc) and

p = (x, y), then our circle with centerc and radiusr is defined by those position
Figure 2.23. An implicit
function f (x,y) = 0 can be
thought of as a height field
where f is the height (top).
A path where the height is
zero is the implicit curve
(bottom).

vectors that satisfy
(p− c) · (p − c) − r2 = 0.

This equation, if expanded algebraically, will yield Equation (2.9), but it is easier
to see that this is an equation for a circle by “reading” the equation geometrically.
It reads, “pointsp on the circle have the following property: the vector fromc to

2.5. Curves and Surfaces 31

p when dotted with itself has valuer2.” Because a vector dotted with itself is just
its own length squared, we could also read the equation as, “pointsp on the circle
have the following property: the vector fromc to p has squared lengthr2.”

Even better, is to observe that the squared length is just the squared distance
from c to p, which suggests the equivalent form

‖p− c‖2 − r2 = 0,

and, of course, this suggests
‖p− c‖ − r = 0.

The above could be read “the pointsp on the circle are those a distancer from
the center pointc,” which is as good a definition of circle as any. This illustrates
that the vector form of an equation oftensuggests more geometry and intuition
than the equivalent full-blown Cartesian form withx andy. For this reason, it
is usually advisable to use vector forms when possible. In addition, you can
support a vector class in your code; the code is cleaner when vector forms are
used. The vector-oriented equations are also less error prone in implementation:
once you implement and debug vector types in your code, the cut-and-paste errors
involving x, y, andz will go away. It takes a little while to get used to vectors in
these equations, but once you get the hang of it, the payoff is large.

2.5.2 The 2D Gradient

If we think of the functionf(x, y) as a heightfield with height= f(x, y), the
gradient vector points in the direction of maximum upslope, i.e., straight uphill.
The gradient vector∇f(x, y) is given by

∇f(x, y) =

(

∂f

∂x
,
∂f

∂y

)

.

The gradient vector evaluated at a point on the implicit curvef(x, y) = 0 is
perpendicular to thetangent vector of the curve at that point. This perpendicular
vector is usually called thenormal vector to the curve. In addition, since the
gradient points uphill, it indicates the direction of thef(x, y) > 0 region.

In the context of heightfields, the geometric meaning of partial derivatives and
gradients is more visible than usual. Suppose that near the point(a, b), f(x, y) is

Figure 2.24. A surface
height = f(x,y) is locally pla-
nar near (x,y) = (a,b). The
gradient is a projection of
the uphill direction onto the
height = 0 plane.

a plane (Figure 2.24). There is a specific uphill and downhill direction. At right
angles to this direction is a direction that is level with respect to the plane. Any
intersection between the plane and thef(x, y) = 0 plane will be in the direction
that is level. Thus the uphill/downhill directions will be perpendicular to the line
of intersectionf(x, y) = 0. To see why the partial derivative has something to do

32 2. Miscellaneous Math

with this, we need to visualize its geometric meaning. Recall that the conventional
derivative of a 1D functiony = g(x) is

dy

dx
≡ lim

∆x→0

∆y

∆x
= lim

∆x→0

g(x + ∆x) − g(x)

∆x
. (2.10)

This measures theslope of thetangent line to g (Figure 2.25).
The partial derivative is a generalization of the 1D derivative. For a 2D func-

tion f(x, y), we can’t take the same limit forx as in Equation (2.10), because
f can change in many ways for a given change inx. However, if we holdy
constant, we can define an analog of the derivative, called thepartial derivative

(Figure 2.26):
Figure 2.25. The deriva-
tive of a 1D function mea-
sures the slope of the line
tangent to the curve.

∂f

∂x
≡ lim

∆x→0

f(x + ∆x, y) − f(x, y)

∆x
.

Why is it that the partial derivatives ofx andy are the components of the gradient
vector? Again, there is more obvious insight in the geometry than in the algebra.
In Figure 2.27, we see the vectora travels along a path wheref does not change.
Note that this is again at a small enough scale that the surface height(x, y) =

f(x, y) can be considered locally planar. From thefigure, we see that the vector
a = (∆x, ∆y).

Because the uphill direction is perpendicular toa, we know the dot product is
equal to zero:

(∇f) · a ≡ (x∇, y∇) · (xa, ya) = x∇∆x + y∇∆y = 0. (2.11)

We also know that the change inf in the direction(xa, ya) equals zero:
Figure 2.26. The par-
tial derivative of a 2D func-
tion with respect to f must
hold y constant to have a
unique value, as shown by
the dark point. The hollow
points show other values of
f that do not hold y con-
stant.

∆f =
∂f

∂x
∆x +

∂f

∂y
∆y ≡ ∂f

∂x
xa +

∂f

∂y
ya = 0. (2.12)

Given any vectors(x, y) and (x′, y′) that are perpendicular, we know that the
angle between them is 90 degrees, and thus their dot product equals zero (recall
that the dot product is proportional to the cosine of the angle between the two
vectors). Thus, we havexx′ + yy′ = 0. Given (x, y), it is easy to construct
valid vectors whose dot product with(x, y) equals zero, the two most obvious
being (y,−x) and (−y, x); you can verify that these vectors give the desired
zero dot product with(x, y). A generalization of this observation is that(x, y) is
perpendicular tok(y,−x) wherek is any non-zero constant. This implies that

(xa, ya) = k

(

∂f

∂y
,−∂f

∂x

)

. (2.13)

Combining Equations (2.11) and (2.13) gives

(x∇, y∇) = k′
(

∂f

∂x
,
∂f

∂y

)

,

2.5. Curves and Surfaces 33

wherek′ is any non-zero constant. By definition, “uphill” implies a positive
change inf , so we would likek′ > 0, andk′ = 1 is a perfectly good convention.

As an example of the gradient, consider the implicit circlex2 + y2 − 1 =

0 with gradient vector(2x, 2y), indicating that the outside of the circle is the
positive region for the functionf(x, y) = x2 + y2 − 1. Note that the length
of the gradient vector can be different depending on the multiplier in the implicit
equation. For example, the unit circle can be described byAx2+Ay2−A = 0 for
any non-zeroA. The gradient for this curve is(2Ax, 2Ay). This will be normal
(perpendicular) to the circle, but will have a length determined byA. ForA > 0,
the normal will point outward from the circle, and forA < 0, it will point inward.
This switch from outward to inward is as it should be, since the positive region
switches inside the circle. In terms of the height-field view,h = Ax2 + Ay2 −A,
and the circle is at zero altitude. ForA > 0, the circle encloses a depression,
and forA < 0, the circle encloses a bump. AsA becomes more negative, the

Figure 2.27. The vector a
points in a direction where f
has no change and is thus
perpendicular to the gradi-
ent vector ∇f.

bump increases in height, but theh = 0 circle doesn’t change. The direction
of maximum uphill doesn’t change, but the slope increases. The length of the
gradient reflects this change in degree of the slope. So intuitively, you can think
of the gradient’s direction as pointing uphill and its magnitude as measuring how
uphill the slope is.

Implicit 2D Lines

The familiar “slope-intercept” form of the line is

y = mx + b. (2.14)

This can be converted easily to implicit form (Figure 2.28):

y − mx − b = 0. (2.15)

Herem is the “slope” (ratio of rise to run) andb is they value where the line
crosses they-axis, usually called they-intercept . The line also partitions the 2D
plane, but here “inside” and “outside” might be more intuitively called “over” and
“under.”

Figure 2.28. A 2D line can
be described by the equa-
tion y − mx − b = 0.

Because we can multiply an implicit equation by any constant without chang-
ing the points where it is zero,kf(x, y) = 0 is the same curve for any non-zero
k. This allows several implicit forms for the same line, for example,

2y − 2mx − 2b = 0.

One reason the slope-intercept form is sometimes awkward is that it can’t rep-
resent some lines such asx = 0 becausem would have to be infinite. For this

34 2. Miscellaneous Math

reason, a more general form is often useful:

Ax + By + C = 0, (2.16)

for real numbersA, B, C.
Suppose we know two points on the line,(x0, y0) and(x1, y1). WhatA, B,

andC describe the line through these two points? Because these points lie on the
line, they must both satisfy Equation (2.16):

Ax0 + By0 + C = 0,

Ax1 + By1 + C = 0.

Unfortunately we have two equations andthree unknowns:A, B, andC. This
problem arises because of the arbitrary multiplier we can have with an implicit
equation. We could setC = 1 for convenience:

Ax + By + 1 = 0,

but we have a similar problem to the infinite slope case in slope-intercept form:
lines through the origin would need to haveA(0) + B(0) + 1 = 0, which is a
contradiction. For example, the equation for a 45-degree line through the origin
can be writtenx− y = 0, or equally welly − x = 0, or even17y − 17x = 0, but
it cannot be written in the formAx + By + 1 = 0.

Whenever we have such pesky algebraic problems, we try to solve the prob-
lems using geometric intuition as a guide. One tool we have, as discussed in
Section 2.5.2, is the gradient. For the lineAx + By + C = 0, the gradient vector
is (A, B). This vector is perpendicular to the line (Figure 2.29), and points to the

Figure 2.29. The gradient
vector (A, B) is perpendi-
cular to the implicit line Ax
+ By + C = 0.

side of the line whereAx + By + C is positive. Given two points on the line
(x0, y0) and(x1, y1), we know that the vector between them points in the same
direction as the line. This vector is just(x1−x0, y1−y0), and because it is paral-
lel to the line, it must also be perpendicular to the gradient vector(A, B). Recall
that there are an infinite number of(A, B, C) that describe the line because of the
arbitrary scaling property of implicits. We want any one of the valid(A, B, C).

We can start with any(A, B) perpendicular to(x1−x0, y1−y0). Such a vector
is just (A, B) = (y0 − y1, x1 − x0) by the same reasoning as in Section 2.5.2.
This means that the equation of the line through(x0, y0) and(x1, y1) is

(y0 − y1)x + (x1 − x0)y + C = 0. (2.17)

Now we just need tofind C. Because(x0, y0) and(x1, y1) are on the line, they
must satisfy Equation (2.17). We can plug either value in and solve forC. Doing
this for(x0, y0) yieldsC = x0y1 − x1y0, and thus the full equation for the line is

(y0 − y1)x + (x1 − x0)y + x0y1 − x1y0 = 0. (2.18)

2.5. Curves and Surfaces 35

Again, this is one of infinitely many valid implicit equations for the line through
two points, but this form has no division operation and thus no numerically de-
generate cases for points withfinite Cartesian coordinates. A nice thing about
Equation (2.18) is that we can always convert to the slope-intercept form (when
it exists) by moving the non-y terms to the right-hand side of the equation and
dividing by the multiplier of they term:

y =
y1 − y0

x1 − x0
x +

x1y0 − x0y1

x1 − x0
.

An interesting property of the implicit line equation is that it can be used tofind
the signed distance from a point to the line. The value ofAx + By + C is

Figure 2.30. The value
of the implicit function f(x,y)
= Ax + By + C is a con-
stant times the signed dis-
tance from Ax + By + C = 0.

proportional to the distance from the line (Figure 2.30). As shown in Figure 2.31,
the distance from a point to the line is the length of the vectork(A, B), which is

distance= k
√

A2 + B2. (2.19)

For the point(x, y) + k(A, B), the value off(x, y) = Ax + By + C is

f(x + kA, y + kB) = Ax + kA2 + By + kB2 + C

= k(A2 + B2).
(2.20)

The simplification in that equation is a result of the fact that we know(x, y) is on
the line, soAx+By +C = 0. From Equations (2.19) and (2.20), we can see that
the signed distance from lineAx + By + C = 0 to a point(a, b) is

distance=
f(a, b)√
A2 + B2

.

Here “signed distance” means that its magnitude (absolute value) is the geometric
Figure 2.31. The vec-
tor k(A,B) connects a point
(x,y) on the line closest to
a point not on the line.
The distance is proportional
to k.

distance, but on one side of the line, distances are positive and on the other they are
negative. You can choose between the equally valid representationsf(x, y) = 0

and−f(x, y) = 0 if your problem has some reason to prefer a particular side
being positive. Note that if(A, B) is a unit vector, thenf(a, b) is the signed
distance. We can multiply Equation (2.18) by a constant that ensures that(A, B)

is a unit vector:

f(x, y) =
y0 − y1

√

(x1 − x0)2 + (y0 − y1)2
x +

x1 − x0
√

(x1 − x0)2 + (y0 − y1)2
y

+
x0y1 − x1y0

√

(x1 − x0)2 + (y0 − y1)2
= 0. (2.21)

Note that evaluatingf(x, y) in Equation (2.21) directly gives the signed distance,
but it does require a square root to set up the equation. Implicit lines will turn
out to be very useful for triangle rasterization (Section 8.1.2). Other forms for 2D
lines are discussed in Chapter 14.

36 2. Miscellaneous Math

Implicit Quadric Curves

In the previous section we saw that a linear functionf(x, y) gives rise to an im-
plicit line f(x, y) = 0. If f is instead a quadratic function ofx andy, with the
general form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

the resulting implicit curve is called a quadric. Two-dimensional quadric curves
Figure 2.32. The ellipse
with center (xc, yc) and
semi-axes of length a
and b.

include ellipses and hyperbolas, as well as the special cases of parabolas, circles,
and lines.

Examples of quadric curves include the circle with center(xc, yc) and ra-
diusr:

(x − xc)
2 + (y − yc)

2 − r2 = 0

where(xc, yc) is the center of the ellipse, anda andb are the minor and majorTry setting a = b = r in the
ellipse equation and com-
pare to the circle equation.

semi-axes (Figure 2.32).and axis-aligned ellipses of the form

(x − xc)
2

a2
+

(y − yc)
2

b2
− 1 = 0.

2.5.3 3D Implicit Surfaces

Just as implicit equations can be used to define curves in 2D, they can be used to
define surfaces in 3D. As in 2D, implicit equationsimplicitly define a set of points
that are on the surface

f(x, y, z) = 0.

Any point(x, y, z) that is on the surface results in zero when given as an argument
to f . Any point not on the surface results in some number other than zero. You
can check whether a point is on the surface by evaluatingf , or you can check
which side of the surface the point lies on by looking at the sign off , but you
cannot always explicitly construct points on the surface. Using vector notation,
we will write such functions ofp = (x, y, z) as

f(p) = 0.

2.5.4 Surface Normal to an Implicit Surface

A surface normal (which is needed for lighting computations, among other things)
is a vector perpendicular to the surface. Each point on the surface may have a
different normal vector. In the same way that the gradient provides a normal to

2.5. Curves and Surfaces 37

an implicit curve in 2D, the surface normal at a pointp on an implicit surface is
given by the gradient of the implicit function

n = ∇f(p) =

(

∂f(p)

∂x
,
∂f(p)

∂y
,
∂f(p)

∂z

)

.

The reasoning is the same as for the 2D case: the gradient points in the direction
of fastest increase inf , which is perpendicular to the direction’s tangent to the
surface, in whichf remains constant. The gradient vector points toward the side
of the surface wheref(p) > 0, which we may think of as “into” the surface or
“out from” the surface in a given context. If the particular form off creates inward
facing gradients and outward facing gradients are desired, the surface−f(p) = 0

is the same as surfacef(p) = 0 but has directionally reversed gradients, i.e.,
−∇f(p) = ∇(−f(p)).

2.5.5 Implicit Planes

As an example, consider the infinite plane through pointa with surface normaln.
The implicit equation to describe this plane is given by

(p − a) · n = 0. (2.22)

Note thata andn are known quantities. The pointp is any unknown point that
satisfies the equation. In geometric terms this equation says “the vector froma to
p is perpendicular to the plane normal.” Ifp were not in the plane, then(p − a)

would not make a right angle withn (Figure 2.33).
Figure 2.33. Any of the
points p shown are in the
plane with normal vector
n that includes point a if
Equation (2.2) is satisfied.

Sometimes we want the implicit equation for a plane through pointsa, b,
andc. The normal to this plane can be found by taking the cross product of any
two vectors in the plane. One such cross product is

n = (b − a) × (c − a).

This allows us to write the implicit plane equation:

(p − a) · ((b − a) × (c − a)) = 0. (2.23)

A geometric way to read this equation is that the volume of the parallelepiped
defined byp − a, b − a, andc − a is zero, i.e., they are coplanar. This can
only be true ifp is in the same plane asa, b, andc. The full-blown Cartesian
representation for this is given by the determinant (this is discussed in more detail
in Section 5.3):

∣

∣

∣

∣

∣

∣

x − xa y − ya z − za

xb − xa yb − ya zb − za

xc − xa yc − ya zc − za

∣

∣

∣

∣

∣

∣

= 0. (2.24)

38 2. Miscellaneous Math

The determinant can be expanded (see Section 5.3 for the mechanics of expanding
determinants) to the bloated form with many terms.

Equations (2.23) and (2.24) are equivalent, and comparing them is instruc-
tive. Equation (2.23) is easy to interpret geometrically and will yield efficient
code. In addition, it is relatively easy to avoid a typographic error that compiles
into incorrect code if it takes advantage of debugged cross and dot product code.
Equation (2.24) is also easy to interpret geometrically and will be efficient pro-
vided an efficient 3× 3 determinant function is implemented. It is also easy to
implement without a typo if a functiondeterminant(a,b, c) is available. It will
be especially easy for others to read your code if you rename thedeterminant

functionvolume. So both Equations (2.23) and (2.24) map well into code. The
full expansion of either equation intox-, y-, andz-components is likely to gener-
ate typos. Such typos are likely to compile and, thus, be especially pesky. This
is an excellent example of clean math generating clean code and bloated math
generating bloated code.

3D Quadric Surfaces

Just as quadratic polynomials in two variables define quadric curves in 2D, quadratic
polynomials inx, y, andz definequadric surfaces in 3D. For instance, a sphere
can be written as

f(p) = (p − c)2 − r2 = 0,

and an axis-aligned ellipsoid may be written as

f(p) =
(x − xc)

2

a2
+

(y − yc)
2

b2
+

(z − zc)
2

c2
− 1 = 0.

3D Curves from Implicit Surfaces

One might hope that an implicit 3D curve could be created with the formf(p) =

0. However, all such curves are just degenerate surfaces and are rarely useful in
practice. A 3D curve can be constructed from the intersection of two simultaneous
implicit equations:

f(p) = 0,

g(p) = 0.

For example, a 3D line can be formed from the intersection of two implicit planes.
Typically, it is more convenient to use parametric curves instead; they are dis-
cussed in the following sections.

2.5. Curves and Surfaces 39

2.5.6 2D Parametric Curves

A parametric curve is controlled by a singleparameter that can be considered a
sort of index that moves continuously along the curve. Such curves have the form

[

x
y

]

=

[

g(t)
h(t)

]

.

Here(x, y) is a point on the curve, andt is the parameter that influences the curve.
For a givent, there will be some point determined by the functionsg andh. For
continuousg andh, a small change int will yield a small change inx andy.
Thus, ast continuously changes, points are swept out in a continuous curve. This
is a nice feature because we can use the parametert to explicitly construct points
on the curve. Often we can write a parametric curve in vector form,

p = f(t),

wheref is a vector-valued function,f : R �→ R
2. Such vector functions can

generate very clean code, so they should be used when possible.
We can think of the curve with a position as a function of time. The curve

can go anywhere and could loop and cross itself. We can also think of the curve
as having a velocity at any point. For example, the pointp(t) is traveling slowly
neart = −2 and quickly betweent = 2 andt = 3. This type of “moving point”
vocabulary is often used when discussing parametric curves even when the curve
is not describing a moving point.

2D Parametric Lines

A parametric line in 2D that passes through pointsp0 = (x0, y0) andp1 =

(x1, y1) can be written
[

x
y

]

=

[

x0 + t(x1 − x0)
y0 + t(y1 − y0)

]

.

Because the formulas forx andy have such similar structure, we can use the
vector form forp = (x, y) (Figure 2.34):

Figure 2.34. A 2D para-
metric line through p0 and
p1. The line segment de-
fined by t ∈ [0,1] is shown
in bold.

p(t) = p0 + t(p1 − p0).

You can read this in geometric form as: “start at pointp0 and go some distance
towardp1 determined by the parametert.” A nice feature of this form is that
p(0) = p0 andp(1) = p1. Since the point changes linearly witht, the value of
t betweenp0 andp1 measures the fractional distance between the points. Points

40 2. Miscellaneous Math

with t < 0 are to the “far” side ofp0, and points witht > 1 are to the “far” side
of p1.

Parametric lines can also be described as just a pointo and a vectord:

p(t) = o + t(d).

When the vectord has unit length, the line isarc-length parameterized. This
meanst is an exact measure of distance along the line. Any parametric curve can
be arc-length parameterized, which is obviously a very convenient form, but not
all can be converted analytically.

2D Parametric Circles

A circle with center(xc, yc) and radiusr has a parametric form:

[

x
y

]

=

[

xc + r cosφ
yc + r sinφ

]

.

To ensure that there is a unique parameterφ for every point on the curve, we can
restrict its domain:φ ∈ [0, 2π) or φ ∈ (−π, π] or any other half open interval of
length2π.

An axis-aligned ellipse can be constructed by scaling thex andy parametric
equations separately:

[

x
y

]

=

[

xc + a cosφ
yc + b sinφ

]

.

2.5.7 3D Parametric Curves

A 3D parametric curve operates much like a 2D parametric curve:

x = f(t),

y = g(t),

z = h(t).

For example, a spiral around thez-axis is written as:

x = cos t,

y = sin t,

z = t.

2.5. Curves and Surfaces 41

As with 2D curves, the functionsf , g, andh are defined on a domainD ⊂ R if
we want to control where the curve starts and ends. In vector form we can write

⎡

⎣

x
y
z

⎤

⎦ = p(t).

The parametric curve is the
range of p: R → R

3.In this chapter we only discuss 3D parametric lines in detail. General 3D
parametric curves are discussed more extensively in Chapter 15.

3D Parametric Lines

A 3D parametric line can be written as a straightforward extension of the 2D
parametric line, e.g.,

x = 2 + 7t,

y = 1 + 2t,

z = 3 − 5t.

This is cumbersome and does not translate well to code variables, so we will write
it in vector form:

p = o + td,

where, for this example,o andd are given by

o = (2, 1, 3),

d = (7, 2,−5).

Note that this is very similar to the 2D case. The way to visualize this is to
imagine that the line passes thougho and is parallel tod. Given any value oft,
you get some pointp(t) on the line. For example, att = 2, p(t) = (2, 1, 3) +

2(7, 2,−5) = (16, 5,−7). This general concept is the same as for two dimensions
(Figure 2.30).

As in 2D, a line segment can be described by a 3D parametric line and an
interval t ∈ [ta, tb]. The line segment between two pointsa andb is given by
p(t) = a + t(b − a) with t ∈ [0, 1]. Herep(0) = a, p(1) = b, andp(0.5) =

(a + b)/2, the midpoint betweena andb.
A ray, or half-line, is a 3D parametric line with a half-open interval, usu-

ally [0,∞). From now on we will refer to all lines, line segments, and rays
as “rays.” This is sloppy, but corresponds to common usage and makes the
discussion simpler.

42 2. Miscellaneous Math

2.5.8 3D Parametric Surfaces

The parametric approach can be used to define surfaces in 3D space in much the
same way we define curves, except that there are two parameters to address the
two-dimensional area of the surface. These surfaces have the form

x = f(u, v),

y = g(u, v),

z = h(u, v).

or, in vector form,The parametric surface is
the range of the function p:
R

2 → R
3.

⎡

⎣

x
y
z

⎤

⎦ = p(u, v).

Example. For example, a point on the surface of the Earth can be described by thePretend for the sake of ar-
gument that the Earth is ex-
actly spherical.

two parameters longitude and latitude. If we define the origin to be at the center of
the earth, and letr be the radius of the Earth, then a spherical coordinate system
centered at the origin (Figure 2.35), lets us derive the parametric equationsThe θ and φ here may

or may not seem reversed
depending on your back-
ground; the use of these
symbols varies across dis-
ciplines. In this book we will
always assume the mean-
ing of θ and φ used in
Equation (2.25) and de-
picted in Figure 2.35.

x = r cosφ sin θ,

y = r sinφ sin θ,

z = r cos θ.

(2.25)

Ideally, we’d like to write this in vector form, but it isn’t feasible for this particular
parametric form.

We would also like to be able tofind the(θ, φ) for a given(x, y, z). If we
assume thatφ ∈ (−π, π] this is easy to do using theatan2 function from Equa-
tion (2.2):

θ = acos(z/
√

x2 + y2 + z2),

φ = atan2(y, x).
(2.26)

With implicit surfaces, the derivative of the functionf gave us the surface
normal. With parametric surfaces, the derivatives ofp also give information about
the surface geometry.

Figure 2.35. The ge-
ometry for spherical coordi-
nates.

Consider the functionq(t) = p(t, v0). This function defines a parametric
curve obtained by varyingu while holdingv fixed at the valuev0. This curve,
called anisoparametric curve (or sometimes “isoparm” for short) lies in the sur-
face. The derivative ofq gives a vector tangent to the curve, and since the curve

2.5. Curves and Surfaces 43

lies in the surface the vectorq′ also lies in the surface. Since it was obtained by
varying one argument ofp, the vectorq′ is the partial derivative ofp with respect
to u, which we’ll denotepu. A similar argument shows that the partial derivative
pv gives the tangent to the isoparametric curves for constantu, which is a second
tangent vector to the surface.

The derivative ofp, then, gives two tangent vectors at any point on the sur-
face. The normal to the surface may be found by taking the cross product of
these vectors: since both are tangent to the surface, their cross product, which is
perpendicular to both tangents, is normal to the surface. The right-hand rule for
cross products provides a way to decide which side is the front, or outside, of the
surface; we will use the convention that the vector

n = pu × pv

points toward the outside of the surface.

2.5.9 Summary of Curves and Surfaces

Implicit curves in 2D or surfaces in 3D are defined by scalar-valued functions of
two or three variables,f : R

2 → R or f : R
3 → R, and the surface consists of all

points where the function is zero:

S = {p |f(p) = 0}.

Parametric curves in 2D or 3D are defined by vector-valued functions of one vari-
able,p : D ⊂ R → R

2 or p : D ⊂ R → R
3, and the curve is swept out ast

varies over all ofD:

S = {p(t) |t ∈ D}.

Parametric surfaces in 3D are defined by vector-valued functions of two variables,
p : D ⊂ R

2 → R
3, and the surface consists of the images of all points(u, v) in

the domain:

S = {p(t) |(u, v) ∈ D}.

For implicit curves and surfaces, the normal vector is given by the derivative
of f (the gradient), and the tangent vector (for a curve) or vectors (for a surface)
can be derived from the normal by constructing a basis.

For parametric curves and surfaces, the derivative ofp gives the tangent vector
(for a curve) or vectors (for a surface), and the normal vector can be derived from
the tangents by constructing a basis.

44 2. Miscellaneous Math

2.6 Linear Interpolation

Perhaps the most common mathematical operation in graphics islinear interpo-

lation. We have already seen an example of linear interpolation of position to
form line segments in 2D and 3D, where two pointsa andb are associated with
a parametert to form the linep = (1− t)a + tb. This isinterpolation becausep
goes througha andb exactly att = 0 andt = 1. It is linear interpolation because
the weighting termst and1 − t are linear polynomials oft.

Another common linear interpolation is among a set of positions on thex-
axis:x0, x1, . . ., xn, and for eachxi we have an associated height,yi. We want to
create a continuous functiony = f(x) that interpolates these positions, so thatf

goes through every data point, i.e.,f(xi) = yi. For linear interpolation, the points
(xi, yi) are connected by straight line segments. It is natural to use parametric
line equations for these segments. The parametert is just the fractional distance
betweenxi andxi+1:

f(x) = yi +
x − xi

xi+1 − xi
(yi+1 − yi). (2.27)

Because the weighting functions are linear polynomials ofx, this is linear inter-
polation.

The two examples above have the common form of linear interpolation. We
create a variablet that varies from 0 to 1 as we move from data itemA to data
item B. Intermediate values are just the function(1 − t)A + tB. Notice that
Equation (2.27) has this form with

t =
x − xi

xi+1 − xi
.

2.7 Triangles

Triangles in both 2D and 3D are the fundamental modeling primitive in many
graphics programs. Often information such as color is tagged onto triangle ver-
tices, and this information is interpolated across the triangle. The coordinate sys-
tem that makes such interpolation straightforward is calledbarycentric coordi-

nates; we will develop these from scratch. We will also discuss 2D triangles,
which must be understood before we can draw their pictures on 2D screens.

2.7. Triangles 45

2.7.1 2D Triangles

If we have a 2D triangle defined by 2D pointsa, b, andc, we canfirst find its
area:

area=
1

2

∣

∣

∣

∣

xb − xa xc − xa

yb − ya yc − ya

∣

∣

∣

∣

=
1

2
(xayb + xbyc + xcya − xayc − xbya − xcyb) .

(2.28)

The derivation of this formula can be found in Section 5.3. This area will have a
positive sign if the pointsa, b, andc are in counterclockwise order and a negative
sign, otherwise.

Often in graphics, we wish to assign a property, such as color, at each trian-
gle vertex and smoothly interpolate the value of that property across the triangle.
There are a variety of ways to do this, but the simplest is to usebarycentric co-
ordinates. One way to think of barycentric coordinates is as a non-orthogonal
coordinate system as was discussed briefly in Section 2.4.2. Such a coordinate
system is shown in Figure 2.36, where the coordinate origin isa and the vectors
from a to b andc are the basis vectors. With that origin and those basis vectors,
any pointp can be written as

p = a + β(b − a) + γ(c − a). (2.29)

Figure 2.36. A 2D triangle with vertices a, b, c can be used to set up a non-orthogonal
coordinate system with origin a and basis vectors (b – a) and (c – a). A point is then
represented by an ordered pair (β, γ). For example, the point p = (2.0, 0.5), i.e., p = a
+ 2.0 (b – a) + 0.5 (c – a).

46 2. Miscellaneous Math

Note that we can reorder the terms in Equation (2.29) to get

p = (1 − β − γ)a + βb + γc.

Often people define a new variableα to improve the symmetry of the equations:

α ≡ 1 − β − γ,

which yields the equation

p(α, β, γ) = αa + βb + γc, (2.30)

with the constraint that
α + β + γ = 1. (2.31)

Barycentric coordinates seem like an abstract and unintuitive construct atfirst,
but they turn out to be powerful and convenient. You mayfind it useful to think
of how street addresses would work in a city where there are two sets of parallel
streets, but where those sets are not at right angles. The natural system would
essentially be barycentric coordinates, and you would quickly get used to them.
Barycentric coordinates are defined for all points on the plane. A particularly nice
feature of barycentric coordinates is that a pointp is inside the triangle formed by
a, b, andc if and only if

0 < α < 1,

0 < β < 1,

0 < γ < 1.

If one of the coordinates is zero and the other two are between zero and one, then
you are on an edge. If two of the coordinates are zero, then the other is one,
and you are at a vertex. Another nice property of barycentric coordinates is that
Equation (2.30) in effect mixes the coordinates of the three vertices in a smooth
way. The same mixing coefficients(α, β, γ) can be used to mix other properties,
such as color, as we will see in the next chapter.

Given a pointp, how do we compute its barycentric coordinates? One way is
to write Equation (2.29) as a linear system with unknownsβ andγ, solve, and set
α = 1 − β − γ. That linear system is

[

xb − xa xc − xa

yb − ya yc − ya

] [

β
γ

]

=

[

xp − xa

yp − ya

]

. (2.32)

Although it is straightforward to solve Equation (2.32) algebraically, it is often
fruitful to compute a direct geometric solution.

2.7. Triangles 47

One geometric property of barycentric coordinates is that they are the signed
scaled distance from the lines through the triangle sides, as is shown forβ in
Figure 2.37. Recall from Section 2.5.2 that evaluating the equationf(x, y) for the
line f(x, y) = 0 returns the scaled signed distance from(x, y) to the line. Also
recall that iff(x, y) = 0 is the equation for a particular line, so iskf(x, y) = 0

for any non-zerok. Changingk scales the distance and controls which side of the
line has positive signed distance, and which negative. We would like to choose
k such that, for example,kf(x, y) = β. Sincek is only one unknown, we can
force this with one constraint, namely that at pointb we knowβ = 1. So if the
line fac(x, y) = 0 goes through botha andc, then we can computeβ for a point
(x, y) as follows:

Figure 2.37. The bary-
centric coordinate β is the
signed scaled distance
from the line through a
and c.

β =
fac(x, y)

fac(xb, yb)
, (2.33)

and we can computeγ andα in a similar fashion. For efficiency, it is usually wise
to compute only two of the barycentric coordinates directly and to compute the
third using Equation (2.31).

To find this “ideal” form for the line throughp0 andp1, we canfirst use the
technique of Section 2.5.2 tofind some valid implicit lines through the vertices.
Equation (2.18) gives us

fab(x, y) ≡ (ya − yb)x + (xb − xa)y + xayb − xbya = 0.

Note thatfab(xc, yc) probably does not equal one, so it is probably not the ideal
form we seek. By dividing through byfab(xc, yc) we get

γ =
(ya − yb)x + (xb − xa)y + xayb − xbya

(ya − yb)xc + (xb − xa)yc + xayb − xbya
.

The presence of the division might worryus because it introduces the possibility
of divide-by-zero, but this cannot occur for triangles with areas that are not near
zero. There are analogous formulas forα andβ, but typically only one is needed:

Figure 2.38. The bary-
centric coordinates are pro-
portional to the areas of the
three subtriangles shown.

β =
(ya − yc)x + (xc − xa)y + xayc − xcya

(ya − yc)xb + (xc − xa)yb + xayc − xcya
,

α = 1 − β − γ.

Another way to compute barycentric coordinates is to compute the areasAa, Ab,
andAc, of subtriangles as shown in Figure 2.38. Barycentric coordinates obey
the rule

α = Aa/A,

β = Ab/A,

γ = Ac/A,

(2.34)

48 2. Miscellaneous Math

whereA is the area of the triangle. Note thatA = Aa + Ab + Ac, so it can be
computed with two additions rather than a full area formula. This rule still holds
for points outside the triangle if the areas are allowed to be signed. The reason
for this is shown in Figure 2.39. Note that these are signed areas and will be
computed correctly as long as the same signed area computation is used for both
A and the subtrianglesAa, Ab, andAc.

Figure 2.39. The area of
the two triangles shown is
base times height and are
thus the same, as is any tri-
angle with a vertex on the
β = 0.5 line. The height
and thus the area is propor-
tional to β.

2.7.2 3D Triangles

One wonderful thing about barycentric coordinates is that they extend almost
transparently to 3D. If we assume the pointsa, b, andc are 3D, then we can
still use the representation

p = (1 − β − γ)a + βb + γc.

Now, as we varyβ andγ, we sweep out a plane.

The normal vector to a triangle can be found by taking the cross product of
any two vectors in the plane of the triangle (Figure 2.40). It is easiest to use two
of the three edges as these vectors, for example,

n = (b − a) × (c − a). (2.35)

Note that this normal vector is not necessarily of unit length, and it obeys the
right-hand rule of cross products.

Figure 2.40. The nor-
mal vector of the triangle is
perpendicular to all vectors
in the plane of the triangle,
and thus perpendicular to
the edges of the triangle.

The area of the triangle can be found by taking the length of the cross product:

area=
1

2
‖(b − a) × (c − a)‖. (2.36)

Note that this isnot a signed area, so it cannot be used directly to evaluate barycen-
tric coordinates. However, we can observe that a triangle with a “clockwise” ver-
tex order will have a normal vector that points in the opposite direction to the
normal of a triangle in the same plane with a “counterclockwise” vertex order.
Recall that

a · b = ‖a‖ ‖b‖ cosφ,

whereφ is the angle between the vectors. Ifa andb are parallel, thencosφ = ±1,
and this gives a test of whether the vectors point in the same or opposite directions.

2.7. Triangles 49

This, along with Equations (2.34), (2.35), and (2.36) suggest the formulas

α =
n · na

‖n‖2
,

β =
n · nb

‖n‖2
,

γ =
n · nc

‖n‖2
,

wheren is Equation (2.35) evaluated with verticesa, b, andc; na is Equa-
tion (2.35) evaluated with verticesb, c, andp, and so on, i.e.,

na = (c − b) × (p − b),

nb = (a − c) × (p − c),

nc = (b − a) × (p − a).

(2.37)

Frequently Asked Questions

• Why isn’t there vector division?

It turns out that there is no “nice” analogy of division for vectors. However, it
is possible to motivate the quaternions by examining this questions in detail (see
Hoffman’s book referenced in the chapter notes).

• Is there something as clean as barycentric coordinates for polygons with
more than three sides?

Unfortunately there is not. Even convex quadrilaterals are much more compli-
cated. This is one reason triangles are such a common geometric primitive in
graphics.

• Is there an implicit form for 3D lines?

No. However, the intersection of two 3D planes defines a 3D line, so a 3D line
can be described by two simultaneous implicit 3D equations.

50 2. Miscellaneous Math

Notes

The history of vector analysis is particularly interesting. It was largely invented
by Grassman in the mid-1800s but was ignored and reinvented later (Crowe,
1994). Grassman now has a following in the graphicsfield of researchers who
are developingGeometric Algebra based on some of his ideas (Doran & Lasenby,
2003). Readers interested in why the particular scalar and vector products are
in some sense the right ones, and why we do not have a commonly-used vector
division, will find enlightenment in the conciseAbout Vectors (Hoffmann, 1975).
Another important geometric tool is thequaternion invented by Hamilton in the
mid-1800s. Quaternions are useful in many situations, but especially where ori-
entations are concerned (Hanson, 2005).

Exercises

1. Thecardinality of a set is the number of elements it contains. Under IEEE
floating point representation (Section 1.5), what is the cardinality of the
floats?

2. Is it possible to implement a function that maps 32-bit integers to 64-bit in-
tegers that has a well-defined inverse? Do all functions from 32-bit integers
to 64-bit integers have well-defined inverses?

3. Specify the unit cube (x-, y-, andz-coordinates all between 0 and 1 inclu-
sive) in terms of the Cartesian product of three intervals.

4. If you have access to the natural log functionln(x), specify how you could
use it to implement alog(b, x) function whereb is the base of the log. What
should the function do for negativeb values? Assume an IEEEfloating
point implementation.

5. Solve the quadratic equation2x2 + 6x + 4 = 0.

6. Implement a function that takes in coefficientsA, B, andC for the quadratic
equationAx2 + By + C = 0 and computes the two solutions. Have the
function return the number of valid (not NaN) solutions andfill in the return
arguments so the smaller of the two solutions isfirst.

7. Show that the two forms of the quadratic formula on page 17 are equivalent
(assuming exact arithmetic) and explain how to choose one for each root in

2.7. Triangles 51

order to avoid subtracting nearly equalfloating point numbers, which leads
to loss of precision.

8. Show by counterexample that it is not always true that for 3D vectorsa, b,
andc, a × (b × c) = (a × b) × c.

9. Given the non-parallel 3D vectorsa andb, compute a right-handed or-
thonormal basis such thatu is parallel toa andv is in the the plane defined
by a andb.

10. What is the gradient off(x, y, z) = x2 + y − 3z3?

11. What is a parametric form for the axis-aligned 2D ellipse?

12. What is the implicit equation of the plane through 3D points(1, 0, 0),
(0, 1, 0), and(0, 0, 1)? What is the parametric equation? What is the nor-
mal vector to this plane?

13. Given four 2D pointsa0, a1, b0, andb1, design a robust procedure to
determine whether the line segmentsa0a1 andb0b1 intersect.

14. Design a robust procedure to compute the barycentric coordinates of a 2D
point with respect to three 2D non-collinear points.

3

Raster Images

Most computer graphics images are presented to the user on some kind ofraster

display. Raster displays show images as rectangular arrays ofpixels. A common Pixel is short for “picture el-
ement.”example is aflat-panel computer display or television, which has a rectangular

array of small light-emitting pixels that can individually be set to different colors
to create any desired image. Different colors are achieved by mixing varying
intensities of red, green, and blue light. Most printers, such as laser printers and
ink-jet printers, are also raster devices. They are based on scanning: there is no
physical grid of pixels, but the image is laid down sequentially by depositing ink
at selected points on a grid. Color in printers is more

complicated, involving mix-
tures of at least four pig-
ments.

Rasters are also prevalent in input devices for images. A digital camera con-
tains an image sensor comprising a grid of light-sensitive pixels, each of which
records the color and intensity of light falling on it. A desktop scanner contains a
linear array of pixels that is swept across the page being scanned, making many
measurements per second to produce a grid of pixels.

Because rasters are so prevalent in devices,raster images are the most com- Or maybe it’s because
raster images are so con-
venient that raster devices
are prevalent.

mon way to store and process images. A raster image is simply a 2D array that
stores thepixel value for each pixel—usually a color stored as three numbers, for
red, green, and blue. A raster image stored in memory can be displayed by using
each pixel in the stored image to control the color of one pixel of the display.

But we don’t always want to display an image this way. We might want to
change the size or orientation of the image, correct the colors, or even show the
image pasted on a moving three-dimensional surface. Even in televisions, the dis-
play rarely has the same number of pixels as the image being displayed. Consid-

53

54 3. Raster Images

erations like these break the direct link between image pixels and display pixels.
It’s best to think of a raster image as adevice-independent description of the im-
age to be displayed, and the display device as a way of approximating that ideal
image.

There are other ways of describing images besides using arrays of pixels.
A vector image is described by storing descriptions of shapes—areas of color
bounded by lines or curves—with no reference to any particular pixel grid. In
essence this amounts to storing theinstructions for displaying the image rather
than the pixels needed to display it. The main advantage of vector images is that
they areresolution independent and can be displayed well on very high resolution
devices. The corresponding disadvantage is that they must berasterized before
they can be displayed. Vector images are often used for text, diagrams, mechani-
cal drawings, and other applications where crispness and precision are important
and photographic images and complex shading aren’t needed.

In this chapter, we discuss the basics of raster images and displays, paying
particular attention to the nonlinearities of standard displays. The details of howOr: you have to know what

those numbers in your im-
age actually mean.

pixel values relate to light intensities are important to have in mind when we
discuss computing images in later chapters.

3.1 Raster Devices

Before discussing raster images in the abstract, it is instructive to look at the basic
operation of some specific devices that use these images. A few familiar raster
devices can be categorized into a simple hierarchy:

• Output

– Display

∗ Transmissive: liquid crystal display (LCD)

∗ Emissive: light emitting diode (LED) display

– Hardcopy

∗ Binary: ink-jet printer

∗ Continuous tone: dye sublimation printer

• Input

– 2D array sensor: digital camera

– 1D array sensor:flatbed scanner

3.1. Raster Devices 55

3.1.1 Displays

Current displays, including televisions and digital cinematic projectors as well as
displays and projectors for computers, are nearly universally based onfixed arrays
of pixels. They can be separated into emissive displays, which use pixels that

ON OFF ON

+

–

anode

cathodes

LEDs

Figure 3.1. The opera-
tion of a light-emitting diode
(LED) display.

directly emit controllable amounts of light, and transmissive displays,in which
the pixels themselves don’t emit light but instead vary the amount of light that
they allow to pass through them. Transmissive displays require a light source to
illuminate them: in a direct-viewed display this is abacklight behind the array;
in a projector it is a lamp that emits light that is projected onto the screen after
passing through the array. An emissive display is its own light source.

pixel subpixels

Figure 3.2. The red,
green, and blue subpixels
within a pixel of a flat-panel
display.

Light-emitting diode (LED) displays are an example of the emissive type.
Each pixel is composed of one or more LEDs, which are semiconductor devices
(based on inorganic or organic semiconductors) that emit light with intensity de-
pending on the electrical current passing through them (see Figure 3.1).

The pixels in a color display are divided into three independently controlled
subpixels—one red, one green, and one blue—each with its own LED made us-
ing different materials so that they emit light of different colors (Figure 3.2).

Grooved
alignment layers

Horizontal
polarization filter

Liquid crystals

Vertical
polarization filter

Polarized light

Unpolarized
backlight

Grooved
alignment layers

Horizontal
polarization filter

Liquid crystals

Vertical
polarization filter

Unpolarized
backlight

Figure 3.3. One pixel of an LCD display in the off state (bottom), in which the front polarizer
blocks all the light that passes the back polarizer, and the on state (top), in which the liquid
crystal cell rotates the polarization of the light so that it can pass through the front polarizer.
Figure courtesy Erik Reinhard (Reinhard et al., 2008).

56 3. Raster Images

When the display is viewed from a distance, the eye can’t separate the individual
subpixels, and the perceived color is a mixture of red, green, and blue.

Liquid crystal displays (LCDs) are an example of the transmissive type. A
liquid crystal is a material whose molecular structure enables it to rotate the po-
larization of light that passes through it, and the degree of rotation can be adjusted
by an applied voltage. An LCD pixel (Figure 3.3) has a layer of polarizingfilm
behind it, so that it is illuminated by polarized light—let’s assume it is polarized
horizontally.

A second layer of polarizingfilm in front of the pixel is oriented to trans-
mit only vertically polarized light. If the applied voltage is set so that the liquid
crystal layer in between does not change the polarization, all light is blocked and
the pixel is in the “off” (minimum intensity) state. If the voltage is set so that

ON OFF ON

+
–

polarizer

polarizer
backlight

liquid
crystal

Figure 3.4. The opera-
tion of a liquid crystal dis-
play (LCD).

the liquid crystal rotates the polarization by 90 degrees, then all the light that en-
tered through the back of the pixel will escape through the front, and the pixel
is fully “on”—it has its maximum intensity. Intermediate voltages will partly
rotate the polarization so that the front polarizer partly blocks the light, result-
ing in intensities between the minimum and maximum (Figure 3.4). Like color
LED displays, color LCDs have red, green, and blue subpixels within each pixel,
which are three independent pixels with red, green, and blue colorfilters over
them.

Any type of display with afixed pixel grid, including these and other tech-
nologies, has a fundamentallyfixedresolution determined by the size of the grid.
For displays and images, resolution simply means the dimensions of the pixelThe resolution of a dis-

play is sometimes called
its “native resolution” since
most displays can handle
images of other resolutions,
via built-in conversion.

grid: if a desktop monitor has a resolution of 1920× 1200 pixels, this means that
it has 2,304,000 pixels arranged in 1920 columns and 1200 rows.

An image of a different resolution, tofill the screen, must be converted into a
1920× 1200 image using the methods of Chapter 9.

3.1.2 Hardcopy Devices

The process of recording images permanently on paper has very different con-
straints from showing images transiently on a display. In printing, pigments are
distributed on paper or another medium so that when light reflects from the pa-
per it forms the desired image. Printers are raster devices like displays, but many
printers can only printbinary images—pigment is either deposited or not at each
grid position, with no intermediate amounts possible.

An ink-jet printer (Figure 3.5) is an example of a device that forms a raster
image by scanning. An ink-jet print head contains liquid ink carrying pigment,

paper

inkjet
head

ink
droplet

Figure 3.5. The operation
of an ink-jet printer.

which can be sprayed in very small drops under electronic control. The head

3.1. Raster Devices 57

moves across the paper, and drops are emitted as it passes grid positions that
should receive ink; no ink is emitted in areas intended to remain blank. After
each sweep the paper is advanced slightly, and then the next row of the grid is laid
down. Color prints are made by using several print heads, each spraying ink with aThere are also continuous

ink-jet printers that print in
a continuous helical path
on paper wrapped around a
spinning drum, rather than
moving the head back and
forth.

different pigment, so that each grid position can receive any combination of differ-
ent colored drops. Because all drops are thesame, an ink-jet printer prints binary
images: at each grid point there is a dropor no drop; there are no intermediate
shades.

An ink-jet printer has no physical array of pixels; the resolution is deter-
mined by how small the drops can be made and how far the paper is advanced
after each sweep. Many ink-jet printers have multiple nozzles in the print head,
enabling several sweeps to be made in one pass, but it is the paper advance,
not the nozzle spacing, that ultimately determines the spacing of the rows.

Thethermal dye transfer process is an example of acontinuous tone printing
process, meaning that varying amounts of dye can be deposited at each pixel—it
is not all-or-nothing like an ink-jet printer (Figure 3.6). Adonor ribbon contain-
ing colored dye is pressed between the paper, ordye receiver, and aprint head

containing a linear array of heating elements, one for each column of pixels in the
image. As the paper and ribbon move past the head, the heating elements switch

donor
ribbon

dye
receiver

linear array
thermal
print head

Figure 3.6. The opera-
tion of a thermal dye trans-
fer printer.

on and off to heat the ribbon in areas where dye is desired, causing the dye to dif-
fuse from the ribbon to the paper. This process is repeated for each of several dye
colors. Since higher temperatures cause more dye to be transferred, the amount of
each dye deposited at each grid position can be controlled, allowing a continuous
range of colors to be produced. The number of heating elements in the print head
establishes afixed resolution in the direction across the page, but the resolution
along the page is determined by the rate of heating and cooling compared to the
speed of the paper.

Unlike displays, the resolution of printers is described in terms of thepixel

density instead of the total count of pixels. So a thermal dye transfer printer that
has elements spaced 300 per inch across its print head has a resolution of 300
pixels per inch (ppi) across the page. If the resolution along the page is chosen
to be the same we can simply say the printer’s resolution is 300 ppi. An ink-jetThe term “dpi” is all too of-

ten used to mean “pixels
per inch,” but dpi should
be used in reference to bi-
nary devices and ppi in ref-
erence to continuous-tone
devices.

printer that places dots on a grid with 1200grid points per inch is described as
having a resolution of 1200dots per inch (dpi). Because the ink-jet printer is a
binary device, it requires a muchfiner grid for at least two reasons. Because edges
are abrupt black/white boundaries, very high resolution is required to avoid stair-
stepping, or aliasing, from appearing (see Section 8.3). When continuous-tone
images are printed, the high resolution is required to simulate intermediate colors
by printing varying-density dot patterns calledhalftones.

58 3. Raster Images

3.1.3 Input Devices

Raster images have to come from somewhere, and any image that wasn’t com-
puted by some algorithm has to have been measured by someraster input device,
most often a camera or scanner. Even in rendering images of 3D scenes, pho-
tographs are used constantly as texture maps (see Chapter 11). A raster input
device has to make a light measurement for each pixel, and (like output devices)
they are usually based on arrays of sensors.

A digital camera is an example of a 2D array input device. The image sensor

lens

image
sensor

scene

Figure 3.7. The operation
of a digital camera.

in a camera is a semiconductor device with a grid of light-sensitive pixels. Two
common types of arrays are known as CCDs (charge-coupled devices) and CMOS
(complimentary metal–oxide–semiconductor) image sensors. The camera’s lens
projects an image of the scene to be photographed onto the sensor, and then each
pixel measures the light energy falling on it, ultimately resulting in a number that
goes into the output image (Figure 3.7). In much the same way as color displays
use red, green, and blue subpixels, most color cameras work by using acolor-filter

array or mosaic to allow each pixel to see only red, green, or blue light, leaving
the image processing software tofill in the missing values in a process known as
demosaicking (Figure 3.8).

Figure 3.8. Most color
digital cameras use a color-
filter array similar to the
Bayer mosaic shown here.
Each pixel measures either
red, green, or blue light.

Other cameras use three separate arrays, or three separate layers in the array, to
measure independent red, green, and blue values at each pixel, producing a usable
color image without further processing. The resolution of a camera is determined
by thefixed number of pixels in the array and is usually quoted using the total
count of pixels: a camera with an array of 3000 columns and 2000 rows produces
an image of resolution 3000× 2000, which has 6 million pixels, and is called a
6 megapixel (MP) camera. It’s importantto remember that a mosiac sensor doesPeople who are selling

cameras use "mega" to
mean 106, not 220 as with
megabytes.

not measure a complete color image, so a camera that measures the same number
of pixels but with independent red, green, and blue measurements records more
information about the image than one with a mosaic sensor.

A flatbed scanner also measures red, green, and blue values for each of a grid
of pixels, but like a thermal dye transfer printer it uses a 1D array that sweeps
across the page being scanned, making many measurements per second. The
resolution across the page isfixed by the size of the array, and the resolutionThe resolution of a scanner

is sometimes called its “op-
tical resolution” since most
scanners can produce im-
ages of other resolutions,
via built-in conversion.

along the page is determined by the frequency of measurements compared to the
speed at which the scan head moves. A color scanner has a3 × nx array, where
nx is the number of pixels across the page, with the three rows covered by red,
green, and bluefilters. With an appropriate delay between the times at which the
three colors are measured, this allows three independent color measurements at
each grid point. As with continuous-tone printers, the resolution of scanners is
reported in pixels per inch (ppi).

3.2. Images, Pixels, and Geometry 59

With this concrete information about where our images come from and where
they will go, we’ll now discuss images more abstractly, in the way we’ll use them
in graphics algorithms.

R

lens

array
detector

Figure 3.9. The operation
of a flatbed scanner.

3.2 Images, Pixels, and Geometry

We know that a raster image is a big array of pixels, each of which stores informa-
tion about the color of the image at its grid point. We’ve seen what various output
devices do with images we send to them and how input devices derive them from
images formed by light in the physical world. But for computations in the com-
puter we need a convenient abstraction that is independent of the specifics of any
device, that we can use to reason about how to produce or interpret the values
stored in images.

When we measure or reproduce images, they take the form of two-dimensional
distributions of light energy: the light emitted from the monitor as a function of
position on the face of the display; the light falling on a camera’s image sensor
as a function of position across the sensor’s plane; thereflectance, or fraction of “A pixel is not a little

square!”
—Alvy Ray Smith (A. R.
Smith, 1995)

light reflected (as opposed to absorbed) as a function of position on a piece of pa-
per. So in the physical world, images are functions defined over two-dimensional
areas—almost always rectangles. So we can abstract an image as a function

I(x, y) : R → V,

whereR ⊂ R
2 is a rectangular area andV is the set of possible pixel values. The Are there any raster de-

vices that are not rectangu-
lar?

simplest case is an idealized grayscale image where each point in the rectangle
has just a brightness (no color), and we can sayV = R

+ (the non-negative reals).
An idealized color image, with red, green, and blue values at each pixel, has
V = (R+)3. We’ll discuss other possibilities forV in the next section.

How does a raster image relate to this abstract notion of a continuous image?
Looking to the concrete examples, a pixel from a camera or scanner is a measure-
ment of the average color of the image over some small area around the pixel. A
display pixel, with its red, green, and blue subpixels, is designed so that the aver-
age color of the image over the face of the pixel is controlled by the corresponding
pixel value in the raster image. In both cases, the pixel value is a local average
of the color of the image, and it is called apoint sample of the image. In other
words, when wefind the valuex in a pixel, it means “the value of the image in the
vicinity of this grid point isx.” The idea of images as sampled representations of
functions is explored further in Chapter 9.

A mundane but important question is where the pixels are located in 2D space.
This is only a matter of convention, but establishing a consistent convention is

60 3. Raster Images

Figure 3.10. Coordinates of a four pixel × three pixel screen. Note that in some APIs the
y-axis will point downwards.

important! In this book, a raster image is indexed by the pair(i, j) indicating theIn some APIs, and many
file formats, the rows of an
image are organized top-to-
bottom, so that (0, 0) is at
the top left. This is for his-
torical reasons: the rows in
analog television transmis-
sion started from the top.

column (i) and row (j) of the pixel, counting from the bottom left. If an image
hasnx columns andny rows of pixels, the bottom-left pixel is(0, 0) and the top-
right is pixel (nx − 1, ny − 1). We need 2D real screen coordinates to specify
pixel positions. We will place the pixels’ sample points at integer coordinates, as
shown by the 4× 3 screen in Figure 3.10.

The rectangular domain of the image has widthnx and heightny and is cen-
tered on this grid, meaning that it extends half a pixel beyond the last sample point
on each side. So the rectangular domain of anx × ny image isSome systems shift the co-

ordinates by half a pixel
to place the sample points
halfway between the inte-
gers but place the edges of
the image at integers.

R = [−0.5, nx − 0.5]× [−0.5, ny − 0.5] .

Again, these coordinates are simply conventions, but they will be important
to remember later when implementing cameras and viewing transformations.

3.2.1 Pixel Values

So far we have described the values of pixels in terms of real numbers, represent-
ing intensity (possibly separately for red, green, and blue) at a point in the image.
This suggests that images should be arrays offloating-point numbers, with either
one (forgrayscale, or black and white, images) or three (for RGB color images)
32-bit floating point numbers stored per pixel. This format is sometimes used,

3.2. Images, Pixels, and Geometry 61

when its precision and range of values are needed, but images have a lot of pix-
els and memory and bandwidth for storing and transmitting images are invariably Why 115 MB and not 120

MB?scarce. Just one ten-megapixel photograph would consume about 115 MB of
RAM in this format.

Less range is required for images that are meant to be displayed directly.
While the range of possible light intensities is unbounded in principle, any given
device has a decidedlyfinite maximum intensity, so in many contexts it is per-
fectly sufficient for pixels to have a bounded range, usually taken to be[0, 1] for
simplicity. For instance, the possible values in an 8-bit image are0, 1/255, 2/255,

. . . , 254/255, 1. Images stored withfloating-point numbers, allowing a wide The denominator of 255,
rather than 256, is awk-
ward, but being able to rep-
resent 0 and 1 exactly is im-
portant.

range of values, are often calledhigh dynamic range (HDR) images to distinguish
them fromfixed-range, orlow dynamic range (LDR) images that are stored with
integers. See Chapter 23 for an in-depth discussion of techniques and applications
for high dynamic range images.

Here are some pixel formats with typical applications:

• 1-bit grayscale—text and other images where intermediate grays are not
desired (high resolution required);

• 8-bit RGBfixed-range color (24 bits total per pixel)—web and email appli-
cations, consumer photographs;

• 8- or 10-bitfixed-range RGB (24–30 bits/pixel)—digital interfaces to com-
puter displays;

• 12- to 14-bitfixed-range RGB (36–42 bits/pixel)—raw camera images for
professional photography;

• 16-bitfixed-range RGB (48 bits/pixel)—professional photographyand print-
ing; intermediate format for image processing offixed-range images;

• 16-bit fixed-range grayscale (16 bits/pixel)—radiology and medical imag-
ing;

• 16-bit “half-precision”floating-point RGB—HDR images; intermediate for-
mat for real-time rendering;

• 32-bit floating-point RGB—general-purpose intermediate format for soft-
ware rendering and processing of HDR images.

Reducing the number of bits used to store each pixel leads to two distinc-
tive types ofartifacts, or artificially introducedflaws, in images. First, encoding
images withfixed-range values producesclipping when pixels that would other-
wise be brighter than the maximum value are set, or clipped, to the maximum

62 3. Raster Images

representable value. For instance, a photograph of a sunny scene may include re-
flections that are much brighter than white surfaces; these will be clipped (even if
they were measured by the camera)when the image is converted to afixed range
to be displayed. Second, encoding images with limited precision leads toquan-

tization artifacts, orbanding, when the need to round pixel values to the nearest
representable value introduces visible jumps in intensity or color. Banding can
be particularly insidious in animation and video, where the bands may not be
objectionable in still images but become very visible when they move back and
forth.

3.2.2 Monitor Intensities and Gamma

All modern monitors take digital input for the “value” of a pixel and convert this
to an intensity level. Real monitors have some non-zero intensity when they are
off because the screen reflects some light. For our purposes we can consider this
“black” and the monitor fully on as “white.” We assume a numeric description
of pixel color that ranges from zero to one. Black is zero, white is one, and a
gray halfway between black and white is 0.5. Note that here “halfway” refers to
the physical amount of light coming from the pixel, rather than the appearance.
The human perception of intensity is non-linear and will not be part of the present
discussion; see Chapter 22 for more.

There are two key issues that must be understood to produce correct images
on monitors. Thefirst is that monitors are non-linear with respect to input. For
example, if you give a monitor 0, 0.5, and 1.0 as inputs for three pixels, the
intensities displayed might be 0, 0.25, and 1.0 (off, one-quarter fully on, and
fully on). As an approximate characterization of this non-linearity, monitors are
commonly characterized by aγ (“gamma”) value. This value is the degree of
freedom in the formula

displayed intensity= (maximum intensity)aγ , (3.1)

wherea is the input pixel value between zero and one. For example, if a monitor
has a gamma of 2.0, and we input a value ofa = 0.5, the displayed intensity
will be one fourth the maximumpossible intensity because0.52 = 0.25. Note
that a = 0 maps to zero intensity anda = 1 maps to the maximum intensity
regardless of the value ofγ. Describing a display’s non-linearity usingγ is only
an approximation; we do not need a great deal of accuracy in estimating theγ of
a device. A nice visual way to gauge the non-linearity is tofind what value ofa

3.2. Images, Pixels, and Geometry 63

gives an intensity halfway between black and white. Thisa will be

0.5 = aγ .

If we canfind thata, we can deduceγ by taking logarithms on both sides:

γ =
ln 0.5

ln a
.

Figure 3.11. Alternat-
ing black and white pixels
viewed from a distance are
halfway between black and
white. The gamma of a
monitor can be inferred by
finding a gray value that
appears to have the same
intensity as the black and
white pattern.

We canfind thisa by a standard technique where we display a checkerboard
pattern of black and white pixels next to a square of gray pixels with inputa

(Figure 3.11), then ask the user to adjusta (with a slider, for instance) until the two
sides match in average brightness. Whenyou look at this image from a distance
(or without glasses if you are nearsighted), the two sides of the image will look
about the same whena is producing an intensity halfway between black and white.
This is because the blurred checkerboard is mixing even numbers of white and
black pixels so the overall effect is auniform color halfway between white and
black.

Once we knowγ, we cangamma correct our input so that a value ofa = 0.5

is displayed with intensity halfway between black and white. This is done with
the transformation For monitors with analog

interfaces, which have dif-
ficulty changing intensity
rapidly along the horizontal
direction, horizontal black
and white stripes work bet-
ter than a checkerboard.

a′ = a
1
γ .

When this formula is plugged into Equation (3.1) we get

displayed intensity= (a′)γ =
(

a
1
γ

)γ

(maximum intensity)

= a(maximum intensity).

Another important characteristic of real displays is that they take quantized input
values. So while we can manipulate intensities in the floating point range[0, 1],
the detailed input to a monitor is afixed-size integer. The most common range for
this integer is 0–255 which can be held in 8 bits of storage. This means that the
possible values fora are not any number in[0, 1] but instead

possible values fora =

{

0

255
,

1

255
,

2

255
, . . . ,

254

255
,
255

255

}

.

This means the possible displayed intensity values are approximately

{

M

(

0

255

)γ

, M

(

1

255

)γ

, M

(

2

255

)γ

, . . . , M

(

254

255

)γ

, M

(

255

255

)γ}

,

64 3. Raster Images

whereM is the maximum intensity. In applications where the exact intensities
need to be controlled, we would have to actually measure the 256 possible inten-
sities, and these intensities might be different at different points on the screen,
especially for CRTs. They might also vary with viewing angle. Fortunately few
applications require such accurate calibration.

3.3 RGB Color

Most computer graphics images are defined in terms of red-green-blue (RGB)
color. RGB color is a simple space that allows straightforward conversion toIn grade school you prob-

ably learned that the pri-
maries are red, yellow, and
blue, and that, e. g., yel-
low + blue = green. This
is subtractive color mixing,
which is fundamentally dif-
ferent from the more famil-
iar additive mixing that hap-
pens in displays.

the controls for most computer screens. In this section RGB color is discussed
from a user’s perspective, and operational facility is the goal. A more thorough
discussion of color is given in Chapter21, but the mechanics of RGB color space
will allow us to write most graphics programs. The basic idea of RGB color space
is that the color is displayed by mixing threeprimary lights: one red, one green,
and one blue. The lights mix in anadditive manner.

In RGB additive color mixing we have (Figure 3.12):

red+ green= yellow

green+ blue= cyan

blue+ red= magenta

red+ green+ blue= white.

The color “cyan” is a blue-green, and the color “magenta” is a purple.
Figure 3.12. The addi-
tive mixing rules for colors
red/green/blue.

If we are allowed to dim the primary lights from fully off (indicated by pixel
value 0) to fully on (indicated by 1), we can create all the colors that can be

Figure 3.13. The RGB color cube in 3D and its faces unfolded. Any RGB color is a point in
the cube. (See also Plate I.)

3.4. Alpha Compositing 65

displayed on an RGB monitor. The red, green, and blue pixel values create a
three-dimensionalRGB color cube that has a red, a green, and a blue axis. Al-
lowable coordinates for the axes range from zero to one. The color cube is shown
graphically in Figure 3.13.

The colors at the corners of the cube are:

black= (0, 0, 0)

red= (1, 0, 0)

green= (0, 1, 0)

blue= (0, 0, 1)

yellow = (1, 1, 0)

magenta= (1, 0, 1)

cyan= (0, 1, 1)

white = (1, 1, 1).

Actual RGB levels are often given in quantized form, just like the grayscales
discussed in Section 3.2.2. Each component is specified with an integer. The
most common size for these integers is one byte each, so each of the three RGB
components is an integer between 0 and 255. The three integers together take
up three bytes, which is 24 bits. Thus a system that has “24-bit color” has 256
possible levels for each of the three primary colors. Issues of gamma correction
discussed in Section 3.2.2 also apply to each RGB component separately.

3.4 Alpha Compositing

Often we would like to only partially overwrite the contents of a pixel. A common
example of this occurs incompositing, where we have a background and want
to insert a foreground image over it. For opaque pixels in the foreground, we
just replace the background pixel. For entirely transparent foreground pixels, we
do not change the background pixel. Forpartially transparent pixels, some care
must be taken. Partially transparent pixels can occur when the foreground object
has partially transparent regions, such as glass, but the most frequent case where
foreground and background must be blended is when the foreground object only
partly covers the pixel, either at the edge of the foreground object, or when there
are sub-pixel holes such as between the leaves of a distant tree.

The most important piece of information needed to blend a foreground object
over a background object is thepixel coverage, which tells the fraction of the
pixel covered by the foreground layer. We can call this fractionα. If we want

66 3. Raster Images

to composite a foreground colorcf over background colorcb, and the fraction of
the pixel covered by the foreground isα, then we can use the formula

c = αcf + (1 − α)cb. (3.2)

For an opaque foreground layer, the interpretation is that the foreground object
covers areaα within the pixel’s rectangle and the background object covers the
remaining area, which is(1 − α). For a transparent layer (think of an imageSince the weights of the

foreground and background
layers add up to 1, the
color won’t change if the
foreground and background
layers have the same color.

painted on glass or on tracing paper, using translucent paint), the interpretation is
that the foreground layer blocks the fraction(1 − α) of the light coming through
from the background and contributes a fractionα of its own color to replace what
was removed. An example of using Equation (3.2) is shown in Figure 3.14.

The α values for all the pixels in an image might be stored in a separate
grayscale image, which is then known as analpha mask or transparency mask.
Or the information can be stored as a fourth channel in an RGB image, in which
case it is called thealpha channel, and the image can be called an RGBA image.
With 8-bit images, each pixel then takes up 32 bits, which is a conveniently sized
chunk in many computer architectures.

Although Equation (3.2) is what is usually used, there are a variety of situa-
tions whereα is used differently (Porter & Duff, 1984).

Figure 3.14. An example of compositing using Equation (3.2). The foreground image is
in effect cropped by the α channel before being put on top of the background image. The
resulting composite is shown on the bottom.

3.4. Alpha Compositing 67

3.4.1 Image Storage

Most RGB image formats use eight bits for each of the red, green, and blue chan-
nels. This results in approximately three megabytes of raw information for a sin-
gle million-pixel image. To reduce the storage requirement, most image formats
allow for some kind of compression. At a high level, such compression is ei-
therlossless or lossy. No information is discarded in lossless compression, while
some information is lost unrecoverably in a lossy system. Popular image storage
formats include:

• jpeg. This lossy format compresses image blocks based on thresholds in
the human visual system. This format works well for natural images.

• tiff. This format is most commonly used to hold binary images or losslessly
compressed 8- or 16-bit RGB although many other options exist.

• ppm. This very simple lossless, uncompressed format is most often used
for 8-bit RGB images although many options exist.

• png. This is a set of lossless formats with a good set of open source man-
agement tools.

Because of compression and variants, writing input/output routines for images
can be involved. Fortunately one can usually rely on library routines to read and
write standardfile formats. For quick-and-dirty applications, where simplicity is
valued above efficiency, a simple choice is to use raw ppmfiles, which can often
be written simply by dumping the array that stores the image in memory to afile,
prepending the appropriate header.

Frequently Asked Questions

• Why don’t they just make monitors linear and avoid all this gamma busi-
ness?

Ideally the 256 possible intensities of a monitor shouldlook evenly spaced as op-
posed to being linearly spaced in energy. Because human perception of intensity is
itself non-linear, a gamma between 1.5 and3 (depending on viewing conditions)
will make the intensities approximately uniform in a subjective sense. In this way
gamma is a feature. Otherwise the manufacturers would make the monitors linear.

68 3. Raster Images

Exercises

1. Simulate an image acquired from the Bayer mosaic by taking a natural im-
age (preferably a scanned photo rather than a digital photo where the Bayer
mosaic may already have been applied) and creating a grayscale image
composed of interleaved red/green/blue channels. This simulates the raw
output of a digital camera. Now create a true RGB image from that output
and compare with the original.

4

Ray Tracing

One of the basic tasks of computer graphics isrendering three-dimensional ob-
jects: taking a scene, or model, composed of many geometric objects arranged
in 3D space and producing a 2D image that shows the objects as viewed from
a particular viewpoint. It is the same operation that has been done for centuries
by architects and engineers creating drawings to communicate their designs to
others.

Fundamentally, rendering is a process that takes as its input a set of objects and
produces as its output an array of pixels. One way or another, rendering involvesIf the output is a vector

image rather than a raster
image, rendering doesn’t
have to involve pixels, but
we’ll assume raster images
in this book.

considering how each object contributes to each pixel; it can be organized in two
general ways. Inobject-order rendering, each object is considered in turn, and
for each object all the pixels that it influences are found and updated. Inimage-

order rendering, each pixel is considered in turn, and for each pixel all the objects
that influence it are found and the pixel value is computed. You can think of
the difference in terms of the nesting of loops: in image-order rendering the “for
each pixel” loop is on the outside, whereas in object-order rendering the “for each
object” loop is on the outside.

Image-order and object-order rendering approaches can compute exactly the
same images, but they lend themselves to computing different kinds of effects
and have quite different performance characteristics. We’ll explore the compara- In a ray tracer it is easy to

compute accurate shadows
and reflections, which are
awkward in the object-order
framework.

tive strengths of the approaches in Chapter 8 after we have discussed them both,
but, broadly speaking, image-order rendering is simpler to get working and more
flexible in the effects that can be produced, and usually (though not always) takes
much more execution time to produce a comparable image.

69

70 4. Ray Tracing

Figure 4.1. The ray is “traced” into the scene and the first object hit is the one seen through
the pixel. In this case, the triangle T2 is returned.

Ray tracing is an image-order algorithm for making renderings of 3D scenes,
and we’ll consider itfirst because it’s possible to get a ray tracer working with-
out developing any of the mathematical machinery that’s used for object-order
rendering.

4.1 The Basic Ray-Tracing Algorithm

A ray tracer works by computing one pixel at a time, and for each pixel the basic
task is tofind the object that is seen at that pixel’s position in the image. Each
pixel “looks” in a different direction, and any object that is seen by a pixel must
intersect theviewing ray, a line that emanates from the viewpoint in the direction
that pixel is looking. The particular object we want is the one that intersects
the viewing ray nearest the camera, since it blocks the view of any other objects
behind it. Once that object is found, ashading computation uses the intersection
point, surface normal, and other information (depending on the desired type of
rendering) to determine the color of the pixel. This is shown in Figure 4.1, where
the ray intersects two triangles, but only thefirst triangle hit,T2, is shaded.

A basic ray tracer therefore has three parts:

1. ray generation, which computes the origin and direction of each pixel’s
viewing ray based on the camera geometry;

2. ray intersection, whichfinds the closest object intersecting the viewing ray;

3. shading, which computes the pixel color based on the results of ray inter-
section.

4.2. Perspective 71

The structure of the basic ray tracing program is:

for each pixeldo
compute viewing ray
findfirst object hit by ray and its surface normaln

set pixel color to value computed from hit point, light, andn

This chapter covers basic methods for ray generation, ray intersection, and shad-
ing, that are sufficient for implementing a simpledemonstration ray tracer. For a
really useful system, more efficient ray intersection techniques from Chapter 12
need to be added, and the real potential of a ray tracer will be seen with the more
advanced shading methods from Chapter 10and the additional rendering tech-
niques from Chapter 13.

4.2 Perspective

The problem of representing a 3D object or scene with a 2D drawing or paint-
ing was studied by artists hundreds of years before computers. Photographs also
represent 3D scenes with 2D images. While there are many unconventional ways
to make images, from cubist painting tofish-eye lenses (Figure 4.2) to peripheral
cameras, the standard approach for both art and photography, as well as computer
graphics, islinear perspective, in which 3D objects are projected onto animage

plane in such a way that straight lines in the scene become straight lines in the
image.

Figure 4.2. An image
taken with a fisheye lens is
not a linear perspective im-
age. Photo courtesy Philip
Greenspan.

The simplest type of projection isparallel projection, in which 3D points are
mapped to 2D by moving them along aprojection direction until they hit the
image plane (Figures 4.3–4.4). The view that is produced is determined by the
choice of projection direction and image plane. If the image plane is perpendicular

axis-aligned
orthographic

orthographic

Figure 4.3. When projection lines are parallel and perpendicular to the image plane, the
resulting views are called orthographic.

72 4. Ray Tracing

perspective oblique

Figure 4.4. A parallel projection that has the image plane at an angle to the projection di-
rection is called oblique (right). In perspective projection, the projection lines all pass through
the viewpoint, rather than being parallel (left). The illustrated perspective view is non-oblique
because a projection line drawn through the center of the image would be perpendicular to
the image plane.

to the view direction, the projection is calledorthographic; otherwise it is called
oblique.Some books reserve “or-

thographic” for projection
directions that are parallel
to the coordinate axes.

Parallel projections are often used for mechanical and architectural drawings
because they keep parallel lines parallel and they preserve the size and shape of
planar objects that are parallel to the image plane.

The advantages of parallel projection are also its limitations. In our everyday
experience (and even more so in photographs) objects look smaller as they get
farther away, and as a result parallel lines receding into the distance do not ap-
pear parallel. This is because eyes andcameras don’t collect light from a single
viewing direction; they collect light that passes through a particular viewpoint.
As has been recognized by artists since the Renaissance, we can produce natural-

Figure 4.5. In three-point perspective, an artist picks “vanishing points” where parallel
lines meet. Parallel horizontal lines will meet at a point on the horizon. Every set of parallel
lines has its own vanishing points. These rules are followed automatically if we implement
perspective based on the correct geometric principles.

4.3. Computing Viewing Rays 73

looking views usingperspective projection: we simply project along lines that
pass through a single point, theviewpoint, rather than along parallel lines (Fig-
ure 4.4). In this way objects farther from the viewpoint naturally become smaller
when they are projected. A perspective view is determined by the choice of view-
point (rather than projection direction) and image plane. As with parallel views
there are oblique and non-oblique perspective views; the distinction is made based
on the projection direction at the center of the image.

You may have learned about the artistic conventions ofthree-point perspec-

tive, a system for manually constructing perspective views (Figure 4.5). A sur-
prising fact about perspective is that all the rules of perspective drawing will be
followed automatically if we follow the simple mathematical rule underlying per-
spective: objects are projected directly toward the eye, and they are drawn where
they meet a view plane in front of the eye.

4.3 Computing Viewing Rays

From the previous section, the basic tools of ray generation are the viewpoint (or
view direction, for parallel views) and the image plane. There are many ways to
work out the details of camera geometry; in this section we explain one based
on orthonormal bases that supports normal and oblique parallel and orthographic
views.

In order to generate rays, wefirst need a mathematical representation for a ray.
A ray is really just an origin point and a propagation direction; a 3D parametric
line is ideal for this. As discussed in Section 2.5.7, the 3D parametric line from
the eyee to a points on the image plane (Figure 4.6) is given by

Figure 4.6. The ray from
the eye to a point on the im-
age plane.

p(t) = e + t(s − e).

This should be interpreted as, “we advance frome along the vector(s − e) a
fractional distancet to find the pointp.” So givent, we can determine a pointp.
The pointe is the ray’sorigin, ands − e is the ray’sdirection. Caution: we are overload-

ing the variable t, which is
the ray parameter and also
the v-coordinate of the top
edge of the image.

Note thatp(0) = e, andp(1) = s, and more generally, if0 < t1 < t2, then
p(t1) is closer to the eye thanp(t2). Also, if t < 0, thenp(t) is “behind” the eye.
These facts will be useful when we search for the closest object hit by the ray that
is not behind the eye.

To compute a viewing ray, we need to knowe (which is given) ands. Finding
s may seem difficult, but it is actually straightforward if we look at the problem
in the right coordinate system.

74 4. Ray Tracing

Figure 4.7. The sample points on the screen are mapped to a similar array on the 3D
window. A viewing ray is sent to each of these locations.

All of our ray-generation methods start from an orthonormal coordinate frame
known as thecamera frame, which we’ll denote bye, for the eye point, or view-
point, andu, v, andw for the three basis vectors, organized withu pointing right-

up

viewu

v

w

Figure 4.8. The vectors of
the camera frame, together
with the view direction and
up direction. The w vec-
tor is opposite the view di-
rection, and the v vector is
coplanar with w and the up
vector.

ward (from the camera’s view),v pointing upward, andw pointing backward, so
that{u,v,w} forms a right-handed coordinate system. The most common way
to construct the camera frame is from the viewpoint, which becomese, theview

direction, which is−w, and theup vector, which is used to construct a basis that
hasv andw in the plane defined by the view direction and the up direction, usingSince v and w have to be

perpendicular, the up vec-
tor and v are not generally
the same. But setting the
up vector to point straight
upward in the scene will ori-
ent the camera in the way
we would think of as “up-
right.”

the process for constructing an orthonormal basis from two vectors described in
Section 2.4.7.

4.3.1 Orthographic Views

For an orthographic view, all the rays will have the direction−w. Even though
a parallel view doesn’t have a viewpoint per se, we can still use the origin of theIt might seem logical that

orthographic viewing rays
should start from infinitely
far away, but then it would
not be possible to make or-
thographic views of an ob-
ject inside a room, for in-
stance.

camera frame to define the plane where the rays start, so that it’s possible for
objects to be behind the camera.

The viewing rays should start on the plane defined by the pointe and the
vectorsu andv; the only remaining information required iswhere on the plane the
image is supposed to be. We’ll define the image dimensions with four numbers,
for the four sides of the image:l and r are the positions of the left and right
edges of the image, as measured frome along theu direction; andb andt are theMany systems assume that

l = – r and b = – t so that a
width and a height suffice.

positions of the bottom and top edges of the image, as measured frome along the
v direction. Usuallyl < 0 < r andb < 0 < t. (See Figure 4.9.)

In Section 3.2 we discussed pixel coordinates in an image. Tofit an image
with nx × ny pixels into a rectangle of size(r − l) × (t − b), the pixels are
spaced a distance(r − l)/nx apart horizontally and(t − b)/ny apart vertically,

4.3. Computing Viewing Rays 75

u
e

v

w

ue
w

v

Parallel projection
same direction, different origins

Perspective projection
same origin, different directions

Figure 4.9. Ray generation using the camera frame. Left: In an orthographic view, the rays
start at the pixels’ locations on the image plane, and all share the same direction, which is
equal to the view direction. Right: In a perspective view, the rays start at the viewpoint, and
each ray’s direction is defined by the line through the viewpoint, e, and the pixel’s location on
the image plane.

with a half-pixel space around the edge to center the pixel grid within the image
rectangle. This means that the pixel at position(i, j) in the raster image has the
position With l and r both specified,

there is redundancy: mov-
ing the viewpoint a bit to
the right and correspond-
ingly decreasing l and r will
not change the view (and
similarly on the v-axis).

u = l + (r − l)(i + 0.5)/nx,

v = b + (t − b)(j + 0.5)/ny,
(4.1)

where(u, v) are the coordinates of the pixel’s position on the image plane, mea-
sured with respect to the origine and the basis{u,v}.

In an orthographic view, we can simply use the pixel’s image-plane position
as the ray’s starting point, and we already know the ray’s direction is the view
direction. The procedure for generating orthographic viewing rays is then:

computeu andv using (4.1)
ray.direction← −w

ray.origin← e + uu + v v

It’s very simple to make an oblique parallel view: just allow the image plane
normalw to be specified separately from the view directiond. The procedure is
then exactly the same, but withd substituted for−w. Of coursew is still used to
constructu andv.

4.3.2 Perspective Views

For a perspective view, all the rays have the same origin, at the viewpoint; it
is the directions that are different for each pixel. The image plane is no longer

76 4. Ray Tracing

positioned ate, but rather some distanced in front of e; this distance is theimage

plane distance, often loosely called thefocal length, because choosingd plays the
same role as choosing focal length in a real camera. The direction of each ray is
defined by the viewpoint and the position of the pixel on the image plane. This
situation is illustrated in Figure 4.9, and the resulting procedure is similar to the
orthographic one:

computeu andv using (4.1)
ray.direction← −dw + uu + v v

ray.origin← e

As with parallel projection, oblique perspective views can be achieved by spec-
ifying the image plane normal separately from the projection direction, then re-
placing−dw with dd in the expression for the ray direction.

4.4 Ray-Object Intersection

Once we’ve generated a raye+ td, we next need tofind thefirst intersection with
any object wheret > 0. In practice it turns out to be useful to solve a slightly
more general problem:find thefirst intersection between the ray and a surface that
occurs at at in the interval[t0, t1]. The basic ray intersection is the case where
t0 = 0 andt1 = +∞. We solve this problem for both spheres and triangles. In
the next section, multiple objects are discussed.

4.4.1 Ray-Sphere Intersection

Given a rayp(t) = e + td and an implicit surfacef(p) = 0 (see Section 2.5.3),
we’d like to know where they intersect. Intersection points occur when points on
the ray satisfy the implicit equation, so the values oft we seek are those that solve
the equation

f(p(t)) = 0 or f(e + td) = 0.

A sphere with centerc = (xc, yc, zc) and radiusR can be represented by the
implicit equation

(x − xc)
2 + (y − yc)

2 + (z − zc)
2 − R2 = 0.

We can write this same equation in vector form:

(p− c) · (p − c) − R2 = 0.

4.4. Ray-Object Intersection 77

Any pointp that satisfies this equation is on the sphere. If we plug points on the
ray p(t) = e + td into this equation, we get an equation in terms oft that is
satisfied by the values oft that yield points on the sphere:

(e + td− c) · (e + td− c) − R2 = 0.

Rearranging terms yields

(d · d)t2 + 2d · (e− c)t + (e− c) · (e− c) − R2 = 0.

Here, everything is known except the parametert, so this is a classic quadratic
equation int, meaning it has the form

At2 + Bt + C = 0.

The solution to this equation is discussed in Section 2.2. The term under the
square root sign in the quadratic solution,B2 − 4AC, is called thediscriminant

and tells us how many real solutions there are. If the discriminant is negative,
its square root is imaginary and the line and sphere do not intersect. If the dis-
criminant is positive, there are two solutions: one solution where the ray enters
the sphere and one where it leaves. If the discriminant is zero, the ray grazes
the sphere, touching it at exactly one point. Plugging in the actual terms for the
sphere and canceling a factor of two, we get

t =
−d · (e− c) ±

√

(d · (e − c))
2 − (d · d) ((e− c) · (e − c) − R2)

(d · d)
.

In an actual implementation, you shouldfirst check the value of the discriminant
before computing other terms. If the sphere is used only as a bounding object for
more complex objects, then we need only determine whether we hit it; checking
the discriminant suffices.

As discussed in Section 2.5.4, the normal vector at pointp is given by the
gradientn = 2(p− c). The unit normal is(p − c)/R.

4.4.2 Ray-Triangle Intersection

There are many algorithms for computing ray-triangle intersections. We will
present the form that uses barycentric coordinates for the parametric plane con-
taining the triangle, because it requires no long-term storage other than the ver-
tices of the triangle (Snyder & Barr, 1987).

78 4. Ray Tracing

To intersect a ray with a parametric surface, we set up a system of equations
where the Cartesian coordinates all match:

xe + txd = f(u, v)

ye + tyd = g(u, v)

ze + tzd = h(u, v)

⎫

⎪

⎬

⎪

⎭

or, e + td = f (u, v).

Here, we have three equations and three unknowns (t, u, andv), so we can solve
numerically for the unknowns. If we are lucky, we can solve for them analytically.

In the case where the parametric surface is a parametric plane, the parametric
equation can be written in vector form as discussed in Section 2.7.2. If the vertices
of the triangle area, b, andc, then the intersection will occur when

e + td = a + β(b − a) + γ(c − a), (4.2)

for somet, β, andγ. The intersectionp will be ate+ td as shown in Figure 4.10.
Again, from Section 2.7.2, we know the intersection is inside the triangle if and
only if β > 0, γ > 0, andβ + γ < 1. Otherwise, the ray has hit the plane outside

Figure 4.10. The ray hits
the plane containing the tri-
angle at point p.

the triangle, so it misses the triangle. If there are no solutions, either the triangle
is degenerate or the ray is parallel to the plane containing the triangle.

To solve fort, β, andγ in Equation (4.2), we expand it from its vector form
into the three equations for the three coordinates:

xe + txd = xa + β(xb − xa) + γ(xc − xa),

ye + tyd = ya + β(yb − ya) + γ(yc − ya),

ze + tzd = za + β(zb − za) + γ(zc − za).

This can be rewritten as a standard linear system:
⎡

⎣

xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd

⎤

⎦

⎡

⎣

β
γ
t

⎤

⎦ =

⎡

⎣

xa − xe

ya − ye

za − ze

⎤

⎦ .

The fastest classic method to solve this3× 3 linear system isCramer’s rule. This
gives us the solutions

β =

∣

∣

∣

∣

∣

∣

xa − xe xa − xc xd

ya − ye ya − yc yd

za − ze za − zc zd

∣

∣

∣

∣

∣

∣

|A| ,

γ =

∣

∣

∣

∣

∣

∣

xa − xb xa − xe xd

ya − yb ya − ye yd

za − zb za − ze zd

∣

∣

∣

∣

∣

∣

|A| ,

4.4. Ray-Object Intersection 79

t =

∣

∣

∣

∣

∣

∣

xa − xb xa − xc xa − xe

ya − yb ya − yc ya − ye

za − zb za − zc za − ze

∣

∣

∣

∣

∣

∣

|A| ,

where the matrixA is

A =

⎡

⎣

xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd

⎤

⎦ ,

and|A| denotes the determinant ofA. The3×3 determinants have common sub-
terms that can be exploited. Looking at the linear systems with dummy variables

⎡

⎣

a d g
b e h
c f i

⎤

⎦

⎡

⎣

β
γ
t

⎤

⎦ =

⎡

⎣

j
k
l

⎤

⎦ ,

Cramer’s rule gives us

β =
j(ei − hf) + k(gf − di) + l(dh − eg)

M
,

γ =
i(ak − jb) + h(jc − al) + g(bl − kc)

M
,

t = −f(ak − jb) + e(jc − al) + d(bl − kc)

M
,

where
M = a(ei − hf) + b(gf − di) + c(dh − eg).

We can reduce the number of operations by reusing numbers such as
“ei-minus-hf.”

The algorithm for the ray-triangle intersection for which we need the linear so-
lution can have some conditions for early termination. Thus, the function should
look something like:

boolean raytri(rayr, vector3a, vector3b, vector3c, interval[t0, t1])
computet
if (t < t0) or (t > t1) then

return false
computeγ
if (γ < 0) or (γ > 1) then

return false

80 4. Ray Tracing

computeβ
if (β < 0) or (β > 1 − γ) then

return false
return true

4.4.3 Ray-Polygon Intersection

Given a planar polygon withm verticesp1 throughpm and surface normaln,
we first compute the intersection points between the raye + td and the plane
containing the polygon with implicit equation

(p− p1) · n = 0.

We do this by settingp = e + td and solving fort to get

t =
(p1 − e) · n

d · n .

This allows us to computep. If p is inside the polygon, then the ray hits it, and
otherwise it does not.

We can answer the question of whetherp is inside the polygon by projecting
the point and polygon vertices to thexy plane and answering it there. The easiest
way to do this is to send any 2D ray out fromp and to count the number of
intersections between that ray and the boundary of the polygon (Sutherland et al.,
1974; Glassner, 1989). If the number of intersections is odd, then the point is
inside the polygon; otherwise it is not. This is true because a ray that goes in
must go out, thus creating a pair of intersections. Only a ray that starts inside
will not create such a pair. To make computation simple, the 2D ray may as well
propagate along thex-axis:

[

x
y

]

=

[

xp

yp

]

+ s

[

1
0

]

.

It is straightforward to compute the intersection of that ray with the edges such as
(x1, y1, x2, y2) for s ∈ (0,∞).

A problem arises, however, for polygons whose projection into thexy plane
is a line. To get around this, we can choose among thexy, yz, or zx planes for
whichever is best. If we implement our points to allow an indexing operation,
e.g.,p(0) = xp then this can be accomplished as follows:

if (abs(zn) > abs(xn)) and(abs(zn) > abs(yn)) then
index0 = 0

4.5. Shading 81

index1 = 1
else if(abs(yn) > abs(xn)) then

index0 = 0
index1 = 2

else
index0 = 1
index1 = 2

Now, all computations can usep(index0) rather thanxp, and so on.
Another approach to polygons, one that is often used in practice, is to replace

them by several triangles.

4.4.4 Intersecting a Group of Objects

Of course, most interesting scenes consist of more than one object, and when we
intersect a ray with the scene we mustfind only the closest intersection to the
camera along the ray. A simple way to implement this is to think of a group of
objects as itself being another type of object. To intersect a ray with a group, you
simply intersect the ray with the objects in the group and return the intersection
with the smallestt value. The following code tests for hits in the intervalt ∈
[t0, t1]:

Figure 4.11. A simple
scene rendered with only
ray generation and surface
intersection, but no shad-
ing; each pixel is just set to
a fixed color depending on
which object it hit.

hit = false
for each objecto in the groupdo

if (o is hit at ray parametert andt ∈ [t0, t1]) then
hit = true
hitobject =o

t1 = t

return hit

4.5 Shading

Once the visible surface for a pixel is known, the pixel value is computed by eval-
uating ashading model. How this is done depends entirely on the application—
methods range from very simple heuristics to elaborate numerical computations.
In this chapter we describe the two most basic shading models; more advanced
models are discussed in Chapter 10.

Most shading models, one way or another, are designed to capture the process
of light reflection, whereby surfaces are illuminated by light sources and reflect

82 4. Ray Tracing

part of the light to the camera. Simple shading models are defined in terms of
illumination from a point light source. The important variables in light reflection
are the light directionl, which is a unit vector pointing towards the light source;
the view directionv, which is a unit vector pointing toward the eye or camera; the
surface normaln, which is a unit vector perpendicular to the surface at the point
where reflection is taking place; and the characteristics of the surface—color,
shininess, or other properties depending on the particular model.

4.5.1 Lambertian Shading
Illumination from real point
sources falls off as distance
squared, but that is often
more trouble than it’s worth
in a simple renderer.

The simplest shading model is based on an observation made by Lambert in the
18th century: the amount of energy from a light source that falls on an area of
surface depends on the angle of the surface to the light. A surface facing directly
towards the light receives maximum illumination; a surface tangent to the light
direction (or facing away from the light) receives no illumination; and in between
the illumination is proportional to the cosine of the angleθ between the surface
normal and the light source (Figure 4.12). This leads to theLambertian shading

model:
L = kd I max(0,n · l)

whereL is the pixel color;kd is thediffuse coefficient, or the surface color; and
I is the intensity of the light source. Becausen and l are unit vectors, we can

l n

v

Figure 4.12. Geometry for
Lambertian shading.

usen · l as a convenient shorthand (both on paper and in code) forcos θ. This
equation (as with the other shading equations in this section) applies separately to
the three color channels, so the red component of the pixel value is the product of
the red diffuse component, the red light source intensity, and the dot product; the
same holds for green and blue.When in doubt, make light

sources neutral in color,
with equal red, green, and
blue intensities.

The vectorl is computed by subtracting the intersection point of the ray and
surface from the light source position. Don’t forget thatv, l, andn all must be
unit vectors; failing to normalize these vectors is a very common error in shading
computations.

4.5.2 Blinn-Phong Shading

Lambertian shading isview independent: the color of a surface does not depend
on the direction from which you look. Many real surfaces show some degree
of shininess, producing highlights, orspecular reflections, that appear to move
around as the viewpoint changes. Lambertian shading doesn’t produce any high-
lights and leads to a very matte, chalky appearance, and many shading models

4.5. Shading 83

Figure 4.13. A simple

scene rendered with diffuse

shading from a single light

source.

Figure 4.14. A simple

scene rendered with diffuse

shading and shadows (Sec-

tion 4.7) from three light

sources.

Figure 4.15. A sim-

ple scene rendered with dif-

fuse shading (right), Blinn-

Phong shading (left), and

shadows (Section 4.7) from

three light sources.

add aspecular component to Lambertian shading; the Lambertian part is then the
diffuse component.

A very simple and widely used model for specular highlights was proposed
by Phong (Phong, 1975) and later updated by Blinn (J. F. Blinn, 1976) to the form
most commonly used today. The idea is to produce reflection that is at its brightest
whenv andl are symmetrically positioned across the surface normal, which is
when mirror reflection would occur; the refelction then decreases smoothly as the
vectors move away from a mirror configuration.

l n h

v

Figure 4.16. Geometry for
Blinn-Phong shading.

We can tell how close we are to a mirror configuration by comparing the
half vectorh (the bisector of the angle betweenv and l) to the surface normal
(Figure 4.16). If the half vector is near the surface normal, the specular component
should be bright; if it is far away it should be dim. This result is achieved by
computing the dot product betweenh andn (remember they are unit vectors, so Typical values of p: 10—

“eggshell”; 100—mildly
shiny; 1000—really glossy;
10,000—nearly mirror-like.

n ·h reaches its maximum of 1 when the vectors are equal), then taking the result
to a powerp > 1 to make it decrease faster. The power, orPhong exponent,
controls the apparent shininess of the surface. The half vector itself is easy to
compute: sincev andl are the same length, their sum is a vector that bisects the
angle between them, which only needs to be normalized to produceh.

Putting this all together, the Blinn-Phong shading model is as follows: When in doubt, make the
specular color gray, with
equal red, green, and blue
values.h =

v + l

‖v + l‖ ,

L = kd I max(0,n · l) + ks I max(0,n · h)p,

whereks is thespecular coefficient, or the specular color, of the surface.

84 4. Ray Tracing

4.5.3 Ambient Shading

Surfaces that receive no illumination at all will be rendered as completely black,
which is often not desirable. A crude but useful heuristic to avoid black shadowsIn the real world, surfaces

that are not illuminated by
light sources are illumi-
nated by indirect reflections
from other surfaces.

is to add a constant component to the shading model, one whose contribution
to the pixel color depends only on the object hit, with no dependence on the
surface geometry at all. This is known as ambient shading—it is as if surfaces
were illuminated by “ambient” light that comes equally from everywhere. For
convenience in tuning the parameters, ambient shading is usually expressed as
the product of a surface color with an ambient light color, so that ambient shading
can be tuned for surfaces individually or for all surfaces together. Together with
the rest of the Blinn-Phong model, ambient shading completes the full version of
a simple and useful shading model:

L = ka Ia + kd I max(0,n · l) + ks I max(0,n · h)n, (4.3)

whereka is the surface’s ambient coefficient, or “ambient color,” andIa is theWhen in doubt set the am-
bient color to be the same
as the diffuse color.

ambient light intensity.

4.5.4 Multiple Point Lights

A very useful property of light issuperposition—the effect caused by more than
one light source is simply the sum of the effects of the light sources individually.
For this reason, our simple shading model can easily be extended to handleN

light sources:

L = ka Ia +

N
∑

i=1

[kd Ii max(0,n · li) + ks Ii max(0,n · hi)
p] , (4.4)

whereIi, li, andhi are the intensity, direction, and half vector of theith light
source.

4.6 A Ray-Tracing Program

We now know how to generate a viewing ray for a given pixel, how tofind the
closest intersection with an object, and how to shade the resulting intersection.
These are all the parts required for a program that produces shaded images with
hidden surfaces removed.

4.6. A Ray-Tracing Program 85

for each pixeldo
compute viewing ray
if (ray hits an object witht ∈ [0,∞)) then

Computen
Evaluate shading model and set pixel to that color

else
set pixel color to background color

Here the statement “if ray hits an object...” can be implemented using the algo-
rithm of Section 4.4.4.

In an actual implementation, the surface intersection routine needs to some-
how return either a reference to the object that is hit, or at least its normal vec-
tor and shading-relevant material properties. This is often done by passing a
record/structure with such information. In an object-oriented implementation, it
is a good idea to have a class called something likesurface with derived classes
triangle, sphere, group, etc. Anything that a ray can intersect would be under that
class. The ray-tracing program would then have one reference to a “surface” for
the whole model, and new types of objects and efficiency structures can be added
transparently.

4.6.1 Object-Oriented Design for a Ray-Tracing Program

As mentioned earlier, the key class hierarchy in a ray tracer are the geometric
objects that make up the model. These should be subclasses of some geometric
object class, and they should support ahit function (Kirk & Arvo, 1988). To
avoid confusion from use of the word “object,”surface is the class name often
used. With such a class, you can create a ray tracer that has a general interface
that assumes little about modeling primitives and debug it using only spheres. An
important point is that anything that can be “hit” by a ray should be part of this
class hierarchy, e.g., even a collection of surfaces should be considered a subclass
of the surface class. This includes efficiency structures, such as bounding volume
hierarchies; they can be hit by a ray, so they are in the class.

For example, the “abstract” or “base” class would specify the hit function as
well as a bounding box function that will prove useful later:

class surface
virtual bool hit(raye + td, realt0, realt1, hit-record rec)
virtual box bounding-box()

Here(t0, t1) is the interval on the ray where hits will be returned, and rec is a
record that is passed by reference; it contains data such as thet at the intersection

86 4. Ray Tracing

when hit returns true. The type box is a 3D “bounding box,” that is two points that
define an axis-aligned box that encloses the surface. For example, for a sphere,
the function would be implemented by

box sphere::bounding-box()

vector3 min = center - vector3(radius,radius,radius)
vector3 max = center + vector3(radius,radius,radius)
return box(min, max)

Another class that is useful is material. This allows you to abstract the material
behavior and later add materials transparently. A simple way to link objects and
materials is to add a pointer to a material in the surface class, although more
programmable behavior might be desirable. A big question is what to do with
textures; are they part of the material class or do they live outside of the material
class? This will be discussed more in Chapter 11.

4.7 Shadows

Once you have a basic ray tracing program, shadows can be added very easily.
Recall from Section 4.5 that light comes from some directionl. If we imagine
ourselves at a pointp on a surface being shaded, the point is in shadow if we
“look” in direction l and see an object. If there are no objects, then the light is not
blocked.

This is shown in Figure 4.17, where the rayp + tl does not hit any objects
and is thus not in shadow. The pointq is in shadow because the rayq + tl

does hit an object. The vectorl is the same for both points because the light
is “far” away. This assumption will later be relaxed. The rays that determine
in or out of shadow are calledshadow rays to distinguish them from viewing
rays.

Figure 4.17. The point p
is not in shadow while the
point q is in shadow.

To get the algorithm for shading, we add an if statement to determine whether
the point is in shadow. In a naive implementation, the shadow ray will check
for t ∈ [0,∞), but because of numerical imprecision, this can result in an inter-
section with the surface on whichp lies. Instead, the usual adjustment to avoid
that problem is to test fort ∈ [ǫ,∞) whereǫ is some small positive constant
(Figure 4.18).

If we implement shadow rays for Phong lighting with Equation 4.3 then we
have the following:

4.8. Ideal Specular Reflection 87

Figure 4.18. By testing
in the interval starting at ǫ,
we avoid numerical impre-
cision causing the ray to hit
the surface p is on.

function raycolor(raye + td, realt0, realt1)

hit-record rec, srec
if (scene→hit(e + td, t0, t1, rec)) then

p = e + (rec.t)d
colorc = rec.ka Ia

if (not scene→hit(p + sl, ǫ, ∞, srec)) then
vector3h = normalized(normalized(l) + normalized(−d))

c = c + rec.kd I max(0, rec.n · l) + (rec.ks) I (rec.n · h)rec.p

return c

else
return background-color

Note that the ambient color is added whetherp is in shadow or not. If there are
multiple light sources, we can send a shadow ray before evaluating the shading
model for each light. The code above assumes thatd andl are not necessarily unit
vectors. This is crucial ford, in particular, if we wish to cleanly addinstancing

later (see Section 13.2).

4.8 Ideal Specular Reflection

Figure 4.19. When look-
ing into a perfect mirror, the
viewer looking in direction d
will see whatever the viewer
“below” the surface would
see in direction r.

It is straightforward to addideal specular reflection, ormirror reflection, to a ray-
tracing program. The key observation is shown in Figure 4.19 where a viewer
looking from directione sees what is in directionr as seen from the surface. The
vectorr is found using a variant of the Phong lighting reflection Equation (10.6).
There are sign changes because the vectord points toward the surface in this case,
so,

r = d− 2(d · n)n, (4.5)

In the real world, some energy is lost when the light reflects from the surface, and
this loss can be different for different colors. For example, gold reflects yellow
more efficiently than blue, so it shifts the colors of the objects it reflects. This can
be implemented by adding a recursive call inraycolor:

Figure 4.20. A simple
scene rendered with diffuse
and Blinn-Phong shading,
shadows from three light
sources, and specular re-
flection from the floor.

colorc = c + kmraycolor(p + sr, ǫ, ∞)

wherekm (for “mirror reflection”) is the specular RGB color. We need to make
sure we test fors ∈ [ǫ,∞) for the same reason as we did with shadow rays; we
don’t want the reflection ray to hit the object that generates it.

The problem with the recursive call above is that it may never terminate. For
example, if a ray starts inside a room, it will bounce forever. This can befixed by

88 4. Ray Tracing

adding a maximum recursion depth. The code will be more efficient if a reflection
ray is generated only ifkm is not zero (black).

4.9 Historical Notes

Ray tracing was developed early in the history of computer graphics (Appel,
1968) but was not used much until a while later when sufficient compute power
was available (Kay & Greenberg, 1979; Whitted, 1980).

Ray tracing has a lower asymptotic time complexity than basic object-order
rendering (Snyder & Barr, 1987; Muuss, 1995; Parker, Martin, et al., 1999; Wald
et al., 2001). Although it was traditionally thought of as an offline method, real-
time ray tracing implementations are becoming more and more common.

Frequently Asked Questions

• Why is there no perspective matrix in ray tracing?

The perspective matrix in a z-buffer exists so that we can turn the perspective pro-
jection into a parallel projection. Thisis not needed in ray tracing, because it is
easy to do the perspective projection implicitly by fanning the rays out from the
eye.

• Can ray tracing be made interactive?

For sufficiently small models and images, any modern PC is sufficiently pow-
erful for ray tracing to be interactive. In practice, multiple CPUs with a shared
frame buffer are required for a full-screen implementation. Computer power is in-
creasing much faster than screen resolution, and it is just a matter of time before
conventional PCs can ray trace complex scenes at screen resolution.

• Is ray tracing useful in a hardware graphics program?

Ray tracing is frequently used forpicking. When the user clicks the mouse on a
pixel in a 3D graphics program, the program needs to determine which object is
visible within that pixel. Ray tracing is an ideal way to determine that.

4.9. Historical Notes 89

Exercises

1. What are the ray parameters of theintersection points between ray(1, 1, 1)+

t(−1,−1,−1) and the sphere centered at the origin with radius 1? Note:
this is a good debugging case.

2. What are the barycentric coordinates and ray parameter where the ray
(1, 1, 1) + t(−1,−1,−1) hits the triangle with vertices(1, 0, 0), (0, 1, 0),
and(0, 0, 1)? Note: this is a good debugging case.

3. Do a back of the envelope computation of the approximate time complexity
of ray tracing on “nice” (non-adversarial) models. Split your analysis into
the cases of preprocessing and computing the image, so that you can predict
the behavior of ray tracing multiple frames for a static model.

5

Linear Algebra

Perhaps the most universal tools of graphics programs are the matrices that
change ortransform points and vectors. In the next chapter, we will see
how a vector can be represented as a matrix with a single column, and how
the vector can be represented in a different basis via multiplication with a
square matrix. We will also describe how we can use such multiplications to
accomplish changes in the vector such as scaling, rotation, and translation. In this

Figure 5.1. The signed
area of the parallelogram is
|ab|, and in this case the
area is positive.

chapter, we review basic linear algebrafrom a geometric perspective, focusing on
intuition and algorithms that work well in the two- and three-dimensional case.

This chapter can be skipped by readers comfortable with linear algebra. How-
ever, there may be some enlightening tidbits even for such readers, such as the
development of determinants and the discussion of singular and eigenvalue de-
composition.

5.1 Determinants

We usually think of determinants as arising in the solution of linear equations.
However, for our purposes, we will think of determinants as another way to mul-
tiply vectors. For 2D vectorsa andb, the determinant|ab| is the area of the

Figure 5.2. The
signed volume of the paral-
lelepiped shown is denoted
by the determinant |abc |,
and in this case the volume
is positive because the vec-
tors form a right-handed ba-
sis.

parallelogram formed bya andb (Figure 5.1). This is a signed area, and the
sign is positive ifa andb are right-handed and negative if they are left-handed.
This means|ab| = −|ba|. In 2D we can interpret “right-handed” as meaning we
rotate thefirst vector counterclockwise to close the smallest angle to the second
vector. In 3D the determinant must be taken with three vectors at a time. For
three 3D vectors,a, b, andc, the determinant|abc| is the signed volume of the

91

92 5. Linear Algebra

parallelepiped (3D parallelogram; a sheared 3D box) formed by the three vectors
(Figure 5.2). To compute a 2D determinant, wefirst need to establish a few of its
properties. We note that scaling one side of a parallelogram scales its area by the
same fraction (Figure 5.3):

|(ka)b| = |a(kb)| = k|ab|.

Also, we note that “shearing” a parallelogram does not change its area (Fig-
ure 5.4):

Figure 5.3. Scaling a par-
allelogram along one direc-
tion changes the area in the
same proportion.

|(a + kb)b| = |a(b + ka)| = |ab|.
Finally, we see that the determinant has the following property:

|a(b + c)| = |ab| + |ac|, (5.1)

because as shown in Figure 5.5 we can “slide” the edge between the two parallel-
ograms over to form a single parallelogram without changing the area of either of
the two original parallelograms.

Now let’s assume a Cartesian representation fora andb:
Figure 5.4. Shearing
a parallelogram does not
change its area. These
four parallelograms have
the same length base and
thus the same area.

|ab| = |(xax + yay)(xbx + yby)|
= xaxb|xx| + xayb|xy| + yaxb|yx| + yayb|yy|
= xaxb(0) + xayb(+1) + yaxb(−1) + yayb(0)

= xayb − yaxb.

This simplification uses the fact that|vv| = 0 for any vectorv, because the
parallelograms would all be collinear withv and thus without area.

In three dimensions, the determinant of three 3D vectorsa, b, andc is denoted
|abc|. With Cartesian representations for the vectors, there are analogous rules
for parallelepipeds as there are for parallelograms, and we can do an analogous
expansion as we did for 2D:

|abc| = |(xax + yay + zaz)(xbx + yby + zbz)(xcx + ycy + zcz)|
= xaybzc − xazbyc − yaxbzc + yazbxc + zaxbyc − zaybxc.

Figure 5.5. The geometry
behind Equation 5.1. Both
of the parallelograms on the
left can be sheared to cover
the single parallelogram on
the right.

As you can see, the computation of determinants in this fashion gets uglier as the
dimension increases. We will discuss less error-prone ways to compute determi-
nants in Section 5.3.

Example. Determinants arise naturally when computing the expression for one
vector as a linear combination of two others—for example, if we wish to express
a vectorc as a combination of vectorsa andb:

c = aca + bcb.

5.2. Matrices 93

Figure 5.6. On the left, the vector c can be represented using two basis vectors as aca +
bcb. On the right, we see that the parallelogram formed by a and c is a sheared version of
the parallelogram formed by bcb and a.

We can see from Figure 5.6 that

|(bcb)a| = |ca|,

because these parallelograms are just sheared versions of each other. Solving for
bc yields

bc =
|ca|
|ba| .

An analogous argument yields

ac =
|bc|
|ba| .

This is the two-dimensional version ofCramer’s rule which we will revisit in
Section 5.3.2.

5.2 Matrices

A matrix is an array of numeric elements that follow certain arithmetic rules. An
example of a matrix with two rows and three columns is

[

1.7 −1.2 4.2
3.0 4.5 −7.2

]

.

94 5. Linear Algebra

Matrices are frequently used in computer graphics for a variety of purposes in-
cluding representation of spatial transforms. For our discussion, we assume the
elements of a matrix are all real numbers. This chapter describes both the mechan-
ics of matrix arithmetic and thedeterminant of “square” matrices, i.e., matrices
with the same number of rows as columns.

5.2.1 Matrix Arithmetic

A matrix times a constant results in a matrix where each element has been multi-
plied by that constant, e.g.,

2

[

1 −4
3 2

]

=

[

2 −8
6 4

]

.

Matrices also add element by element, e.g.,
[

1 −4
3 2

]

+

[

2 2
2 2

]

=

[

3 −2
5 4

]

.

For matrix multiplication, we “multiply” rows of thefirst matrix with columns of
the second matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11 . . . a1m

...
...

ai1 . . . aim

...
...

ar1 . . . arm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

b11 . . .
...

bm1 . . .

b1j

...
bmj

. . . b1c

...
. . . bmc

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p11 . . . p1j . . . p1c

...
...

...
pi1 . . . pij . . . pic

...
...

...
pr1 . . . prj . . . prc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

So the elementpij of the resulting product is

pij = ai1b1j + ai2b2j + · · · + aimbmj . (5.2)

Taking a product of two matrices is only possible if the number of columns of the
left matrix is the same as the number of rows of the right matrix. For example,

⎡

⎣

0 1
2 3
4 5

⎤

⎦

[

6 7 8 9
0 1 2 3

]

=

⎡

⎣

0 1 2 3
12 17 22 27
24 33 42 51

⎤

⎦ .

Matrix multiplication isnot commutative in most instances:

AB �= BA. (5.3)

5.2. Matrices 95

Also, if AB = AC, it does not necessarily follow thatB = C. Fortunately,
matrix multiplication is associative and distributive:

(AB)C = A(BC),

A(B + C) = AB + AC,

(A + B)C = AC + BC.

5.2.2 Operations on Matrices

We would like a matrix analog of the inverse of a real number. We know the
inverse of a real numberx is 1/x and that the product ofx and its inverse is1.
We need a matrixI that we can think of as a “matrix one.” This exists only for
square matrices and is known as theidentity matrix; it consists of ones down the
diagonal and zeroes elsewhere. For example, the four by four identity matrix is

I =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

.

Theinverse matrix A−1 of a matrixA is the matrix that ensuresAA−1 = I.
For example,

[

1 2
3 4

]−1

=

[

−2.0 1.0
1.5 −0.5

]

because

[

1 2
3 4

] [

−2.0 1.0
1.5 −0.5

]

=

[

1 0
0 1

]

.

Note that the inverse ofA−1 is A. SoAA−1 = A−1A = I. The inverse of a
product of two matrices is the product of the inverses, but with the order reversed:

(AB)−1 = B−1A−1. (5.4)

We will return to the question of computing inverses later in the chapter.
The transpose AT of a matrixA has the same numbers but the rows are

switched with the columns. If we label the entries ofAT asa′
ij then

aij = a′
ji.

For example,
⎡

⎣

1 2
3 4
5 6

⎤

⎦

T

=

[

1 3 5
2 4 6

]

.

96 5. Linear Algebra

The transpose of a product of two matrices obeys a rule similar to Equation (5.4):

(AB)T = BTAT.

The determinant of a square matrix is simply the determinant of the columns
of the matrix, considered as a set of vectors. The determinant has several nice
relationships to the matrix operations just discussed, which we list here for refer-
ence:

|AB| = |A| |B| (5.5)
∣

∣A−1
∣

∣ =
1

|A| (5.6)
∣

∣

∣
AT
∣

∣

∣
= |A| (5.7)

5.2.3 Vector Operations in Matrix Form

In graphics, we use a square matrix to transform a vector represented as a matrix.
For example if you have a 2D vectora = (xa, ya) and want to rotate it by 90
degrees about the origin to form vectora′ = (−ya, xa), you can use a product of
a2×2 matrix and a2×1 matrix, called acolumn vector. The operation in matrix
form is

[

0 −1
1 0

] [

xa

ya

]

=

[

−ya

xa

]

.

We can get the same result by using the transpose of this matrix and multiplying
on the left (“premultiplying”) with a row vector:

[

xa ya

]

[

0 1
−1 0

]

=
[

−ya xa

]

.

These days, postmultiplication using column vectors is fairly standard, but in
many older books and systems you will run across row vectors and premulti-
plication. The only difference is that the transform matrix must be replaced with
its transpose.

We can use also matrix formalism to encode operations on just vectors. If we
consider the result of the dot product as a 1× 1 matrix, it can be written

a · b = aTb.

For example, if we take two 3D vectors we get

[

xa ya za

]

⎡

⎣

xb

yb

zb

⎤

⎦ =
[

xaxb + yayb + zazb

]

.

5.2. Matrices 97

A related vector product is theouter product between two vectors, which can
be expressed as a matrix multiplication with a column vector on the left and a row
vector on the right:abT. The result is a matrix consisting of products of all pairs
of an entry ofa with an entry ofb. For 3D vectors, we have

⎡

⎣

xa

ya

za

⎤

⎦

[

xb yb zb

]

=

⎡

⎣

xaxb xayb xazb

yaxb yayb yazb

zaxb zayb zazb

⎤

⎦ .

It is often useful to think of matrix multiplication in terms of vector operations.
To illustrate using the three-dimensional case, we can think of a 3× 3 matrix as
a collection of three 3D vectors in two ways: either it is made up of three column
vectors side-by-side, or it is made up of three row vectors stacked up. For instance,
the result of a matrix-vector multiplicationy = Ax can be interpreted as a vector
whose entries are the dot products ofx with the rows ofA. Naming these row
vectorsri, we have

⎡

⎣

|
y

|

⎤

⎦ =

⎡

⎣

— r1 —
— r2 —
— r3 —

⎤

⎦

⎡

⎣

|
x

|

⎤

⎦ ;

yi = ri · x.

Alternatively, we can think of the same product as a sum of the three columnsci

of A, weighted by the entries ofx:
⎡

⎣

|
y

|

⎤

⎦ =

⎡

⎣

| | |
c1 c2 c3

| | |

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ ;

y = x1c1 + x2c2 + x3c3.

Using the same ideas, one can understand a matrix-matrix productAB as an
array containing the pairwise dot products of all rows ofA with all columns ofB
(cf. (5.2)); as a collection of products of the matrixA with all the column vectors
of B, arranged left to right; as a collection of products of all the row vectors of
A with the matrixB, stacked top to bottom; or as the sum of the pairwise outer
products of all columns ofA with all rows ofB. (See Exercise 8.)

These interpretations of matrix multiplication can often lead to valuable geo-
metric interpretations of operations that may otherwise seem very abstract.

5.2.4 Special Types of Matrices

The identity matrix is an example of adiagonal matrix, where all non-zero ele-
ments occur along the diagonal. The diagonal consists of those elements whose
column index equals the row index counting from the upper left.

98 5. Linear Algebra

The identity matrix also has the property that it is the same as its transpose.
Such matrices are calledsymmetric.

The identity matrix is also anorthogonal matrix, because each of its columnsThe idea of an orthogonal
matrix corresponds to the
idea of an orthonormal ba-
sis, not just a set of orthog-
onal vectors—an unfortu-
nate glitch in terminology.

considered as a vector has length1 and the columns are orthogonal to one another.
The same is true of the rows (see Exercise 2). The determinant of any orthogonal
matrix is either+1 or−1.

A very useful property of orthogonal matrices is that they are nearly their own
inverses. Multiplying an orthogonal matrix by its transpose results in the identity,

RTR = I = RRT for orthogonalR.

This is easy to see because the entries ofRTR are dot products between the
columns ofR. Off-diagonal entries are dot products between orthogonal vec-
tors, and the diagonal entries are dot products of the (unit-length) columns with
themselves.

Example. The matrix
⎡

⎣

8 0 0
0 2 0
0 0 9

⎤

⎦

is diagonal, and therefore symmetric, but not orthogonal (the columns are orthog-
onal but they are not unit length).

The matrix
⎡

⎣

1 1 2
1 9 7
2 7 1

⎤

⎦

is symmetric, but not diagonal or orthogonal.

The matrix
⎡

⎣

0 1 0
0 0 1
1 0 0

⎤

⎦

is orthogonal, but neither diagonal nor symmetric.

5.3 Computing with Matrices and Determinants

Recall from Section 5.1 that the determinant takesn n-dimensional vectors and
combines them to get a signedn-dimensional volume of then-dimensional par-
allelepiped defined by the vectors. For example, the determinant in 2D is the area

5.3. Computing with Matrices and Determinants 99

of the parallelogram formed by the vectors. We can use matrices to handle the
mechanics of computing determinants.

If we have 2D vectorsr ands, we denote the determinant|rs|; this value is
the signed area of the parallelogram formed by the vectors. Suppose we have
two 2D vectors with Cartesian coordinates(a, b) and(A, B) (Figure 5.7). The
determinant can be written in terms of column vectors or as a shorthand:

Figure 5.7. The 2D de-
terminant in Equation 5.8 is
the area of the parallelo-
gram formed by the 2D vec-
tors.

∣

∣

∣

∣

[

a
b

] [

A
B

]
∣

∣

∣

∣

≡
∣

∣

∣

∣

a A
b B

∣

∣

∣

∣

= aB − Ab. (5.8)

Note that the determinant of a matrix is the same as the determinant of its trans-
pose: ∣

∣

∣

∣

a A
b B

∣

∣

∣

∣

=

∣

∣

∣

∣

a b
A B

∣

∣

∣

∣

= aB − Ab.

This means that for any parallelogram in 2D there is a “sibling” parallelogram that
has the same area but a different shape (Figure 5.8). For example the parallelo-
gram defined by vectors(3, 1) and(2, 4) has area10, as does the parallelogram
defined by vectors(3, 2) and(1, 4).

Figure 5.8. The sibling
parallelogram has the same
area as the parallelogram in
Figure 5.7.

Example. The geometric meaning of the 3D determinant is helpful in seeing why
certain formulas make sense. For example, the equation of the plane through the
points(xi, yi, zi) for i = 0, 1, 2 is

∣

∣

∣

∣

∣

∣

x − x0 x − x1 x − x2

y − y0 y − y1 y − y2

z − z0 z − z1 z − z2

∣

∣

∣

∣

∣

∣

= 0.

Each column is a vector from point(xi, yi, zi) to point(x, y, z). The volume of
the parallelepiped with those vectors as sides is zero only if(x, y, z) is coplanar
with the three other points. Almost all equations involving determinants have
similarly simple underlying geometry.

As we saw earlier, we can compute determinants by a brute force expansion
where most terms are zero, and there is a great deal of bookkeeping on plus and
minus signs. The standard way to manage the algebra of computing determinants
is to use a form ofLaplace’s expansion. The key part of computing the determi-
nant this way is tofind cofactors of various matrix elements. Each element of a
square matrix has a cofactor which is the determinant of a matrix with one fewer
row and column possibly multiplied by minus one. The smaller matrix is obtained
by eliminating the row and column that the element in question is in. For exam-
ple, for a10×10 matrix, the cofactor ofa82 is the determinant of the9×9 matrix
with the 8th row and 2nd column eliminated. The sign of a cofactor is positive if

100 5. Linear Algebra

the sum of the row and column indices is even and negative otherwise. This can
be remembered by a checkerboard pattern:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

So, for a4 × 4 matrix,

A =

⎡

⎢

⎢

⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤

⎥

⎥

⎦

.

The cofactors of thefirst row are

ac
11 =

∣

∣

∣

∣

∣

∣

a22 a23 a24

a32 a33 a34

a42 a43 a44

∣

∣

∣

∣

∣

∣

, ac
12 = −

∣

∣

∣

∣

∣

∣

a21 a23 a24

a31 a33 a34

a41 a43 a44

∣

∣

∣

∣

∣

∣

,

ac
13 =

∣

∣

∣

∣

∣

∣

a21 a22 a24

a31 a32 a34

a41 a42 a44

∣

∣

∣

∣

∣

∣

, ac
14 = −

∣

∣

∣

∣

∣

∣

a21 a22 a23

a31 a32 a33

a41 a42 a43

∣

∣

∣

∣

∣

∣

.

The determinant of a matrix is found by taking the sum of products of the elements
of any row or column with their cofactors. For example, the determinant of the
4 × 4 matrix above taken about its second column is

|A| = a12a
c
12 + a22a

c
22 + a32a

c
32 + a42a

c
42.

We could do a similar expansion about any row or column and they would all
yield the same result. Note the recursive nature of this expansion.

Example. A concrete example for the determinant of a particular3× 3 matrix by
expanding the cofactors of thefirst row is

∣

∣

∣

∣

∣

∣

0 1 2
3 4 5
6 7 8

∣

∣

∣

∣

∣

∣

= 0

∣

∣

∣

∣

4 5
7 8

∣

∣

∣

∣

− 1

∣

∣

∣

∣

3 5
6 8

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

3 4
6 7

∣

∣

∣

∣

= 0(32 − 35) − 1(24 − 30) + 2(21 − 24)

= 0.

5.3. Computing with Matrices and Determinants 101

We can deduce that the volume of the parallelepiped formed by the vectors
defined by the columns (or rows since the determinant of the transpose is the
same) is zero. This is equivalent to saying that the columns (or rows) are not
linearly independent. Note that the sum of thefirst and third rows is twice the
second row, which implies linear dependence.

5.3.1 Computing Inverses

Determinants give us a tool to compute the inverse of a matrix. It is a very inef-
ficient method for large matrices, but often in graphics our matrices are small. A
key to developing this method is that the determinant of a matrix with two iden-
tical rows is zero. This should be clear because the volume of then-dimensional
parallelepiped is zero if two of its sides are the same. Suppose we have a4× 4 A

and we wish tofind its inverseA−1. The inverse is

A−1 =
1

|A|

⎡

⎢

⎢

⎣

ac
11 ac

21 ac
31 ac

41

ac
12 ac

22 ac
32 ac

42

ac
13 ac

23 ac
33 ac

43

ac
14 ac

24 ac
34 ac

44

⎤

⎥

⎥

⎦

.

Note that this is just the transpose of the matrix where elements ofA are replaced
by their respective cofactors multiplied by the leading constant (1 or -1). This
matrix is called theadjoint of A. The adjoint is the transpose of thecofactor

matrix of A. We can see why this is an inverse. Look at the productAA−1

which we expect to be the identity. If we multiply thefirst row ofA by thefirst
column of the adjoint matrix we need to get|A| (remember the leading constant
above divides by|A|:

⎡

⎢

⎢

⎣

a11 a12 a13 a14

· · · ·
· · · ·
· · · ·

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ac
11 · · ·

ac
12 · · ·

ac
13 · · ·

ac
14 · · ·

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

|A| · · ·
· · · ·
· · · ·
· · · ·

⎤

⎥

⎥

⎦

.

This is true because the elements in thefirst row of A are multiplied exactly
by their cofactors in thefirst column of the adjoint matrix which is exactly the
determinant. The other values along the diagonal of the resulting matrix are|A|
for analogous reasons. The zeros follow a similar logic:

⎡

⎢

⎢

⎣

· · · ·
a21 a22 a23 a24

· · · ·
· · · ·

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ac
11 · · ·

ac
12 · · ·

ac
13 · · ·

ac
14 · · ·

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

· · · ·
0 · · ·
· · · ·
· · · ·

⎤

⎥

⎥

⎦

.

102 5. Linear Algebra

Note that this product is a determinant ofsome matrix:

a21a
c
11 + a22a

c
12 + a23a

c
13 + a24a

c
14.

The matrix in fact is
⎡

⎢

⎢

⎣

a21 a22 a23 a24

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44.

⎤

⎥

⎥

⎦

.

Because thefirst two rows are identical, the matrix is singular, and thus, its deter-
minant is zero.

The argument above does not apply just to four by four matrices; using that
size just simplifies typography. For any matrix, the inverse is the adjoint matrix
divided by the determinant of the matrix being inverted. The adjoint is the trans-
pose of the cofactor matrix, which is just the matrix whose elements have been
replaced by their cofactors.

Example. The inverse of one particular three by three matrix whose determinant
is 6 is

⎡

⎣

1 1 2
1 3 4
0 2 5

⎤

⎦

−1

=
1

6

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∣

∣

∣

∣

3 4
2 5

∣

∣

∣

∣

−
∣

∣

∣

∣

1 2
2 5

∣

∣

∣

∣

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

−
∣

∣

∣

∣

1 4
0 5

∣

∣

∣

∣

∣

∣

∣

∣

1 2
0 5

∣

∣

∣

∣

−
∣

∣

∣

∣

1 2
1 4

∣

∣

∣

∣

∣

∣

∣

∣

1 3
0 2

∣

∣

∣

∣

−
∣

∣

∣

∣

1 1
0 2

∣

∣

∣

∣

∣

∣

∣

∣

1 1
1 3

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1

6

⎡

⎣

7 −1 −2
−5 5 −2

2 −2 2

⎤

⎦ .

You can check this yourself bymultiplying the matricesand making sure you get
the identity.

5.3.2 Linear Systems

We often encounter linear systems in graphics with “n equations andn unknowns,”
usually forn = 2 or n = 3. For example,

3x + 7y + 2z = 4,

2x − 4y − 3z = −1,

5x + 2y + z = 1.

5.4. Eigenvalues and Matrix Diagonalization 103

Herex, y, andz are the “unknowns” for which we wish to solve. We can write
this in matrix form:

⎡

⎣

3 7 2
2 −4 −3
5 2 1

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦ =

⎡

⎣

4
−1

1

⎤

⎦ .

A common shorthand for such systems isAx = b where it is assumed thatA is
a square matrix with known constants,x is an unknown column vector (with ele-
mentsx, y, andz in our example), andb is a column matrix of known constants.

There are many ways to solve such systems, and the appropriate method de-
pends on the properties and dimensions of the matrixA. Because in graphics
we so frequently work with systems of sizen ≤ 4, we’ll discuss here a method
appropriate for these systems, known asCramer’s rule, which we saw earlier,
from a 2D geometric viewpoint, in the example on page 92. Here, we show this
algebraically. The solution to the above equation is

x =

∣

∣

∣

∣

∣

∣

4 7 2
−1 −4 −3

1 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 7 2
2 −4 −3
5 2 1

∣

∣

∣

∣

∣

∣

; y =

∣

∣

∣

∣

∣

∣

3 4 2
2 −1 −3
5 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 7 2
2 −4 −3
5 2 1

∣

∣

∣

∣

∣

∣

; z =

∣

∣

∣

∣

∣

∣

3 7 4
2 −4 −1
5 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 7 2
2 −4 −3
5 2 1

∣

∣

∣

∣

∣

∣

.

The rule here is to take a ratio of determinants, where the denominator is|A| and
the numerator is the determinant of a matrix created by replacing a column ofA

with the column vectorb. The column replaced corresponds to the position of
the unknown in vectorx. For example,y is the second unknown and the second
column is replaced. Note that if|A| = 0, the division is undefined and there is
no solution. This is just another version of the rule that ifA is singular (zero
determinant) then there is no unique solution to the equations.

5.4 Eigenvalues and Matrix Diagonalization

Square matrices haveeigenvalues andeigenvectors associated with them. The
eigenvectors are thosenon-zero vectors whose directions do not change when
multiplied by the matrix. For example, suppose for a matrixA and vectora, we
have

Aa = λa. (5.9)

This means we have stretched or compresseda, but its direction has not changed.
The scale factorλ is called the eigenvalue associated with eigenvectora. Knowing

104 5. Linear Algebra

the eigenvalues and eigenvectors of matrices is helpful in a variety of practical
applications. We will describe them to gain insight into geometric transformation
matrices and as a step toward singular values and vectors described in the next
section.

If we assume a matrix has at least oneeigenvector, then we can do a standard
manipulation tofind it. First, we write both sides as the product of a square matrix
with the vectora:

Aa = λIa, (5.10)

whereI is an identity matrix. This can be rewritten

Aa − λIa = 0. (5.11)

Because matrix multiplication is distributive, we can group the matrices:

(A − λI) a = 0. (5.12)

This equation can only be true if the matrix(A − λI) is singular, and thus its
determinant is zero. The elements in this matrix are the numbers inA except
along the diagonal. For example, for a2 × 2 matrix the eigenvalues obey
∣

∣

∣

∣

a11 − λ a12

a21 a22 − λ

∣

∣

∣

∣

= λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0. (5.13)

Because this is a quadratic equation, we know there are exactly two solutions for
λ. These solutions may or may not be unique or real. A similar manipulation
for ann × n matrix will yield annth-degree polynomial inλ. Because it is not
possible, in general, tofind exact explicit solutions of polynomial equations of
degree greater than four, we can only compute eigenvalues of matrices4 × 4 or
smaller by analytic methods. For larger matrices, numerical methods are the only
option.

An important special case where eigenvalues and eigenvectors are particu-
larly simple is symmetric matrices (whereA = AT). The eigenvalues of real
symmetric matrices are always real numbers, and if they are also distinct, their
eigenvectors are mutually orthogonal. Such matrices can be put intodiagonal

form:
A = QDQT, (5.14)

whereQ is an orthogonal matrix andD is a diagonal matrix. The columns ofQRecall that an orthogo-
nal matrix has orthonor-
mal rows and orthonormal
columns.

are the eigenvectors ofA and the diagonal elements ofD are the eigenvalues of
A. PuttingA in this form is also called theeigenvalue decomposition, because it
decomposesA into a product of simpler matrices that reveal its eigenvectors and
eigenvalues.

5.4. Eigenvalues and Matrix Diagonalization 105

Example. Given the matrix

A =

[

2 1
1 1

]

,

the eigenvalues ofA are the solutions to

λ2 − 3λ + 1 = 0.

We approximate the exact values for compactness of notation:

λ =
3 ±

√
5

2
, ≈

[

2.618
0.382

]

.

Now we canfind the associated eigenvector. Thefirst is the nontrivial (notx =

y = 0) solution to the homogeneous equation,
[

2 − 2.618 1
1 1 − 2.618

] [

x
y

]

=

[

0
0

]

.

This is approximately(x, y) = (0.8507, 0.5257). Note that there are infinitely
many solutions parallel to that 2D vector, and we just picked the one of unit length.
Similarly the eigenvector associated withλ2 is (x, y) = (−0.5257, 0.8507). This
means the diagonal form ofA is (within some precision due to our numeric ap-
proximation):

[

2 1
1 1

]

=

[

0.8507 −0.5257
0.5257 0.8507

] [

2.618 0
0 0.382

] [

0.8507 0.5257
−0.5257 0.8507

]

.

We will revisit the geometry of this matrix as a transform in the next chapter.

5.4.1 Singular Value Decomposition

We saw in the last section that any symmetric matrix can be diagonalized, or de-
composed into a convenient product of orthogonal and diagonal matrices. How-
ever, most matrices we encounter in graphics are not symmetric, and the eigen-
value decomposition for non-symmetric matrices is not nearly so convenient or
illuminating, and in general involves complex-valued eigenvalues and eigenvec-
tors even for real-valued inputs. We would recommend

learning in this order: sym-
metric eigenvalues/vectors,
singular values/vectors,
and then unsymmetric
eigenvalues, which are
much trickier.

There is another generalization of the symmetric eigenvalue decomposition to
non-symmetric (and even non-square) matrices; it is thesingular value decom-

position (SVD). The main difference between the eigenvalue decomposition of a
symmetric matrix and the SVD of a non-symmetric matrix is that the orthogonal
matrices on the left and right sides are not required to be the same in the SVD:

A = USVT.

106 5. Linear Algebra

HereU andV are two, potentially different, orthogonal matrices, whose columns
are known as the left and rightsingular vectors of A, andS is a diagonal matrix
whose entries are known as thesingular values of A. WhenA is symmetric and
has all non-negative eigenvalues, the SVD and the eigenvalue decomposition are
the same.

There is another relationship between singular values and eigenvalues that
can be used to compute the SVD (though this is not the way an industrial-strength
SVD implementation works). First we defineM = AAT. We assume that we
can perform a SVD onM:

M = AAT = (USVT)(USVT)T = US(VTV)SUT = US2UT.

The substitution is based on the fact that(BC)T = CTBT, that the transpose
of an orthogonal matrix is its inverse, and the transpose of a diagonal matrix
is the matrix itself. The beauty of this new form is thatM is symmetric and
US2UT is its eigenvalue decomposition, whereS2 contains the (all non-negative)
eigenvalues. Thus, wefind that the singular values of a matrix are the square roots
of the eigenvalues of the product of the matrix with its transpose, and the left
singular vectors are the eigenvectors of that product. A similar argument allows
V, the matrix of right singular vectors, to be computed fromATA.

Example. We now make this concrete with an example:

A =

[

1 1
0 1

]

; M = AAT =

[

2 1
1 1

]

.

We saw the eigenvalue decomposition for this matrix in the previous section. We
observe immediately

[

1 1
0 1

]

=

[

0.8507 −0.5257
0.5257 0.8507

] [√
2.618 0

0
√

0.382

]

VT.

We can solve forV algebraically:

V = (S−1UTM)T.

The inverse ofS is a diagonal matrix with the reciprocals of the diagonal elements
of S. This yields

[

1 1
0 1

]

= U

[

σ1 0
0 σ2

]

VT

=

[

0.8507 −0.5257
0.5257 0.8507

] [

1.618 0
0 0.618

] [

0.5257 0.8507
−0.8507 0.5257

]

.

5.4. Eigenvalues and Matrix Diagonalization 107

This form used the standard symbolσi for theith singular value. Again, for a
symmetric matrix, the eigenvalues and the singular values are the same (σi = λi).
We will examine the geometry of SVD further in Section 6.1.6.

Frequently Asked Questions

• Why is matrix multiplication defined the way it is rather than just element
by element?

Element by element multiplication is a perfectly good way to define matrix mul-
tiplication, and indeed it has nice properties. However, in practice it is not very
useful. Ultimately most matrices are used to transform column vectors, e.g., in
3D you might have

b = Ma,

wherea andb are vectors andM is a3×3 matrix. To allow geometric operations
such as rotation, combinations of all three elements ofa must go into each element
of b. That requires us to either go row-by-row or column-by-column throughM.
That choice is made based on composition of matrices having the desired property,

M2(M1a) = (M2M1)a

which allows us to use one composite matrixC = M2M1 to transform our vector.
This is valuable when many vectors will be transformed by the same composite
matrix. So, in summary, the somewhat weird rule for matrix multiplication is en-
gineered to have these desired properties.

• Sometimes I hear that eigenvalues and singular values are the same
thing and sometimes that one is the square of the other. Which is right?

If a real matrixA is symmetric, and its eigenvalues are non-negative, then its
eigenvalues and singular values are the same. IfA is not symmetric, the ma-
trix M = AAT is symmetric and has non-negative real eignenvalues. The sin-
gular values ofA andAT are the same and are the square roots of the singu-
lar/eigenvalues ofM. Thus, when the square root statement is made, it is because
two different matrices (with a very particular relationship) are being talked about:
M = AAT.

Notes

The discussion of determinants as volumes is based onA Vector Space Approach

to Geometry (Hausner, 1998). Hausner has an excellent discussion of vector

108 5. Linear Algebra

analysis and the fundamentals of geometry as well. The geometric derivation
of Cramer’s rule in 2D is taken fromPractical Linear Algebra: A Geometry Tool-

box (Farin & Hansford, 2004). That book also has geometric interpretations of
other linear algebra operations such as Gaussian elimination. The discussion of
eigenvalues and singular values is based primarily onLinear Algebra and Its Ap-

plications (Strang, 1988). The example of SVD of the shear matrix is based on a
discussion inComputer Graphics and Geometric Modeling (Salomon, 1999).

Exercises

1. Write an implicit equation for the 2D line through points(x0, y0) and
(x1, y1) using a 2D determinant.

2. Show that if the columns of a matrix are orthonormal, then so are the rows.

3. Prove the properties of matrix determinants stated in Equations (5.5)–(5.7).

4. Show that the eigenvalues of a diagonal matrix are its diagonal elements.

5. Show that for a square matrixA, AAT is a symmetric matrix.

6. Show that for three 3D vectorsa, b, c, the following identity holds:|abc| =

(a × b) · c.

7. Explain why the volume of the tetrahedron with side vectorsa, b, c (see
Figure 5.2) is given by|abc|/6.

8. Demonstrate the four interpretations of matrix-matrix multiplication by tak-
ing the following matrix-matrix multiplication code, rearranging the nested
loops, and interpreting the resulting code in terms of matrix and vector op-
erations.

function mat-mult(in a[m][p], in b[p][n], out c[m][n]) {
// the array c is initialized to zero
for i = 1 to m

for j = 1 to n
for k = 1 to p
c[i][j] += a[i][k] * b[k][j]

}

9. Prove that ifA, Q, andD satisfy Equation (5.14),v is theith row of Q,
andλ is theith entry on the diagonal ofD, thenv is an eigenvector ofA
with eigenvalueλ.

5.4. Eigenvalues and Matrix Diagonalization 109

10. Prove that ifA, Q, andD satisfy Equation (5.14), the eigenvalues ofA are
all distinct, andv is an eigenvector ofA with eigenvalueλ, then for some
i, v is theith row ofQ andλ is theith entry on the diagonal ofD.

11. Given the(x, y) coordinates of the three vertices of a 2D triangle, explain
why the area is given by

1

2

∣

∣

∣

∣

∣

∣

x0 x1 x2

y0 y1 y2

1 1 1

∣

∣

∣

∣

∣

∣

.

6

Transformation Matrices

The machinery of linear algebra can be used to express many of the operations
required to arrange objects in a 3D scene, view them with cameras, and get them
onto the screen.Geometric transformations like rotation, translation, scaling, and
projection can be accomplished with matrix multiplication, and thetransforma-

tion matrices used to do this are the subject of this chapter.
We will show how a set of points transforms if the points are represented as

offset vectors from the origin, and we will use the clock shown in Figure 6.1 as
an example of a point set. So think of the clock as a bunch of points that are the
ends of vectors whose tails are at the origin. We also discuss how these transforms
operate differently on locations (points), displacement vectors, and surface normal
vectors.

6.1 2D Linear Transformations

We can use a 2× 2 matrix to change, or transform, a 2D vector:
[

a11 a12

a21 a22

] [

x
y

]

=

[

a11x + a12y
a21x + a22y

]

.

This kind of operation, which takes in a 2-vector and produces another 2-vector
by a simple matrix multiplication, is alinear transformation.

By this simple formula we can achieve a variety of useful transformations,
depending on what we put in the entries of the matrix, as will be discussed in

111

112 6. Transformation Matrices

the following sections. For our purposes, consider moving along thex-axis a
horizontal move and along they-axis, a vertical move.

6.1.1 Scaling

The most basic transform is ascale along the coordinate axes. This transform can
change length and possibly direction:

scale(sx, sy) =

[

sx 0
0 sy

]

.

Note what this matrix does to a vector with Cartesian components(x, y):

[

sx 0
0 sy

] [

x
y

]

=

[

sxx
syy

]

.

So just by looking at the matrix of an axis-aligned scale we can read off the two
scale factors.

Example. The matrix that shrinksx andy uniformly by a factor of two is (Fig-
ure 6.1)

scale(0.5, 0.5) =

[

0.5 0
0 0.5

]

.

A matrix which halves in the horizontal and increases by three-halves in the ver-
tical is (see Figure 6.2)

scale(0.5, 1.5) =

[

0.5 0
0 1.5

]

.

Figure 6.1. Scaling uniformly by half for each axis: The axis-aligned scale matrix has
the proportion of change in each of the diagonal elements and zeroes in the off-diagonal
elements.

6.1. 2D Linear Transformations 113

Figure 6.2. Scaling non-uniformly in x and y: The scaling matrix is diagonal with non-equal
elements. Note that the square outline of the clock becomes a rectangle and the circular
face becomes an ellipse.

6.1.2 Shearing

A shear is something that pushes things sideways, producing something like a
deck of cards across which you push your hand; the bottom card stays put and
cards move more the closer they are to the top of the deck. The horizontal and
vertical shear matrices are

shear-x(s) =

[

1 s
0 1

]

, shear-y(s) =

[

1 0
s 1

]

.

Example. The transform that shears horizontally so that vertical lines become45◦

lines leaning towards the right is (see Figure 6.3)

shear-x(1) =

[

1 1
0 1

]

.

Figure 6.3. An x-shear matrix moves points to the right in proportion to their y-coordinate.
Now the square outline of the clock becomes a parallelogram and, as with scaling, the circular
face of the clock becomes an ellipse.

114 6. Transformation Matrices

Figure 6.4. A y-shear matrix moves points up in proportion to their x-coordinate.

An analogous transform vertically is (see Figure 6.4)

shear-y(1) =

[

1 0
1 1

]

.

In both cases the square outline of the sheared clock becomes a parallelogram,In fact, the image of a cir-
cle under any matrix trans-
formation is an ellipse.

and the circular face of the sheared clock becomes an ellipse.

Another way to think of a shear is in terms of rotation of only the vertical
(or horizontal) axes. The shear transform that takes a vertical axis and tilts it
clockwise by an angleφ is

[

1 tan φ
0 1

]

.

Similarly, the shear matrix which rotates the horizontal axis counterclockwise by
angleφ is

[

1 0
tanφ 1

]

.

6.1.3 Rotation

Suppose we want to rotate a vectora by an angleφ counterclockwise to get
vectorb (Figure 6.5). Ifa makes an angleα with the x-axis, and its length is
r = x2

a + y2
a, then we know that

xa = r cosα,

ya = r sin α.

6.1. 2D Linear Transformations 115

Becauseb is a rotation ofa, it also has lengthr. Because it is rotated an angle
φ from a, b makes an angle(α + φ) with the x-axis. Using the trigonometric
addition identities (Section 2.3.3):

Figure 6.5. The geometry
for Equation (6.1).

xb = r cos(α + φ) = r cosα cosφ − r sin α sin φ,

yb = r sin(α + φ) = r sin α cosφ + r cosα sinφ.
(6.1)

Substitutingxa = r cosα andya = r sin α gives

xb = xa cosφ − ya sinφ,

yb = ya cosφ + xa sinφ.

In matrix form, the transformation that takesa to b is then

rotate(φ) =

[

cosφ − sinφ
sin φ cosφ

]

.

Example. A matrix that rotates vectors byπ/4 radians (45 degrees) is (see Fig-
ure 6.6)

[

cos π
4 − sin π

4
sin π

4 cos π
4

]

=

[

0.707 −0.707
0.707 0.707

]

.

(0,1)

(0,1)

(-.707,.707)

(.707,.707)

Figure 6.6. A rotation by 45 degrees. Note that the rotation is counterclockwise and that
cos(45◦) = sin(45◦) ≈ .707.

A matrix that rotates byπ/6 radians (30 degrees) in theclockwise direction is
a rotation by−π/6 radians in our framework (see Figure 6.7):

[

cos −π
6 − sin −π

6
sin −π

6 cos −π
6

]

=

[

0.866 0.5
−0.5 0.866

]

.

116 6. Transformation Matrices

(0,1)

(.866,.5)

(.5,.866)

(1,0)

Figure 6.7. A rotation by minus thirty degrees. Note that the rotation is clockwise and that
cos(-30◦) ≈ .866 and sin(-30◦) = -.5.

Because the norm of each row of a rotation matrix is one (sin2 φ+cos2 φ = 1),
and the rows are orthogonal (cosφ(− sin φ) + sin φ cosφ = 0), we see that ro-
tation matrices are orthogonal matrices (Section 5.2.4). By looking at the matrix
we can read off two pairs of orthonormal vectors: the two columns, which are the
vectors to which the transformation sends the canonical basis vectors(1, 0) and
(0, 1); and the rows, which are the vectors that the transformations sendsto the
canonical basis vectors.

Said briefly, Rei = u i and
Rv i = u i, for a rotation with
columns u i and rows v i.

6.1.4 Reflection

We can reflect a vector across either of the coordinate axes by using a scale with
one negative scale factor (see Figures 6.8 and 6.9):

reflect-y=

[

−1 0
0 1

]

, reflect-x=

[

1 0
0 −1

]

.

Figure 6.8. A reflection about the y-axis is achieved by multiplying all x-coordinates by -1.

6.1. 2D Linear Transformations 117

Figure 6.9. A reflection about the x-axis is achieved by multiplying all y-coordinates by -1.

While one might expect that the matrix with−1 in both elements of the diagonal
is also a reflection, in fact it is just a rotation byπ radians.

This rotation can also be
called a “reflection through
the origin.”

6.1.5 Composition and Decomposition of Transformations

It is common for graphics programs to apply more than one transformation to an
object. For example, we might want tofirst apply a scaleS, and then a rotation
R. This would be done in two steps on a 2D vectorv1:

first,v2 = Sv1, then,v3 = Rv2.

Another way to write this is

v3 = R (Sv1) .

Because matrix multiplication is associative, we can also write

v3 = (RS)v1.

In other words, we can represent the effects of transforming a vector by two ma-
trices in sequence using a single matrix of the same size, which we can compute
by multiplying the two matrices:M = RS (Figure 6.10).

It is very important to remember that these transforms are applied from the
right side first. So the matrixM = RS first appliesS and thenR.

118 6. Transformation Matrices

x

1.0 0

 0 0.5

y

x

y

x

y
.707 -707

.707 .707.707 -.353

.707 .353

Figure 6.10. Applying the two transform matrices in sequence is the same as applying the
product of those matrices once. This is a key concept that underlies most graphics hardware
and software.

Example. Suppose we want to scale by one-half in the vertical direction and then
rotate byπ/4 radians (45 degrees). The resulting matrix is

[

0.707 −0.707
0.707 0.707

] [

1 0
0 0.5

]

=

[

0.707 −0.353
0.707 0.353

]

.

It is important to always remember that matrix multiplication is not commutative.
So the order of transformsdoes matter. In this example, rotatingfirst, and then
scaling, results in a different matrix (see Figure 6.11):

[

1 0
0 0.5

] [

0.707 −0.707
0.707 0.707

]

=

[

0.707 −0.707
0.353 0.353

]

.

Example. Using the scale matrices we have presented, nonuniform scaling can
only be done along the coordinate axes. If we wanted to stretch our clock by
50% along one of its diagonals, so that 8:00 through 1:00 move to the northwest
and 2:00 through 7:00 move to the southeast, we can use rotation matrices in
combination with an axis-aligned scaling matrix to get the result we want. The
idea is to use a rotation to align the scaling axis with a coordinate axis, then
scale along that axis, then rotate back. In our example, the scaling axis is the
“backslash” diagonal of the square, and we can make it parallel to thex-axis with

6.1. 2D Linear Transformations 119

Figure 6.11. The order in which two transforms are applied is usually important. In this
example, we do a scale by one-half in y and then rotate by 45◦. Reversing the order in which
these two transforms are applied yields a different result.

a rotation by+45◦. Putting these operations together, the full transformation is

rotate(−45◦) scale(1.5, 1) rotate(45◦).

Remember to read the
transformations from right
to left.

In mathematical notation, this can be writtenRSRT. The result of multiply-
ing the three matrices together is It is no coincidence that

this matrix is symmetric—
try applying the transpose-
of-product rule to the for-
mula RSRT.

[

1.25 −0.25
−0.25 1.25

]

120 6. Transformation Matrices

Building up a transformation from rotation and scaling transformations actu-
ally works for any linear transformation at all, and this fact leads to a powerful
way of thinking about these transformations, as explored in the next section.

6.1.6 Decomposition of Transformations

Sometimes it’s necessary to “undo” a composition of transformations, taking a
transformation apart into simpler pieces. For instance, it’s often useful to present
a transformation to the user for manipulation in terms of separate rotations and
scale factors, but a transformation mightbe represented internally simply as a

Figure 6.12. Singular Value Decomposition (SVD) for a shear matrix. Any 2D matrix can
be decomposed into a product of rotation, scale, rotation. Note that the circular face of the
clock must become an ellipse because it is just a rotated and scaled circle.

6.1. 2D Linear Transformations 121

matrix, with the rotations and scales already mixed together. This kind of manip-
ulation can be achieved if the matrix can be computationally disassembled into the
desired pieces, the pieces adjusted, and the matrix reassembled by multiplying the
pieces together again.

It turns out that this decomposition, or factorization, is possible, regardless of
the entries in the matrix—and this fact provides a fruitful way of thinking about
transformations and what they do to geometry that is transformed by them.

Symmetric Eigenvalue Decomposition

Let’s start with symmetric matrices. Recall from Section 5.4 that a symmetric ma-
trix can always be taken apart using the eigenvalue decomposition into a product
of the form

A = RSRT

whereR is an orthogonal matrix andS is a diagonal matrix; we will call the
columns ofR (the eigenvectors) by the namesv1 andv2, and we’ll call the diag-
onal entries ofS (the eigenvalues) by the namesλ1 andλ2.

In geometric terms we can now recognizeR as a rotation andS as a scale, so
this is just a multi-step geometric transformation (Figure 6.13):

1. Rotatev1 andv2 to thex- andy-axes (the transform byRT).

2. Scale inx andy by (λ1, λ2) (the transform byS).

3. Rotate thex- andy-axes back tov1 andv2 (the transform byR).

If you like to count di-
mensions: a symmetric 2
× 2 matrix has 3 de-
grees of freedom, and the
eigenvalue decomposition
rewrites them as a rotation
angle and two scale factors.

Looking at the effect of these three transforms together, we can see that they have
the effect of a nonuniform scale along a pair of axes. As with an axis-aligned
scale, the axes are perpendicular, but they aren’t the coordinate axes; instead they

RT

v2

v1

σ2v2

σ1v1

S R

Figure 6.13. What happens when the unit circle is transformed by an arbitrary symmetric
matrix A, also known as a non–axis-aligned, nonuniform scale. The two perpendicular vec-
tors v1 and v2, which are the eigenvectors of A, remain fixed in direction but get scaled. In
terms of elementary transformations, this can be seen as first rotating the eigenvectors to
the canonical basis, doing an axis-aligned scale, and then rotating the canonical basis back
to the eigenvectors.

122 6. Transformation Matrices

Figure 6.14. A symmetric matrix is always a scale along some axis. In this case it is along
the φ = 31.7◦ direction which means the real eigenvector for this matrix is in that direction.

are the eigenvectors ofA. This tells us something about what it means to be a
symmetric matrix: symmetric matrices are just scaling operations—albeit poten-
tially nonuniform and non–axis-aligned ones.

Example. Recall the example from Section 5.4:
[

2 1
1 1

]

= R

[

λ1 0
0 λ2

]

RT

=

[

0.8507 −0.5257
0.5257 0.8507

] [

2.618 0
0 0.382

] [

0.8507 0.5257
−0.5257 0.8507

]

= rotate(31.7◦) scale(2.618, 0.382) rotate(−31.7◦).

The matrix above, then, according to its eigenvalue decomposition, scales in a
direction31.7◦ counterclockwise from three o’clock (thex-axis). This is a touch
before 2 p.m. on the clockface as is confirmed by Figure 6.14.

We can also reverse the diagonalization process; to scale by(λ1, λ2) with the
first scaling direction an angleφ clockwise from thex-axis, we have
[

cosφ sin φ
− sin φ cosφ

] [

λ1 0
0 λ2

] [

cosφ − sinφ
sin φ cosφ

]

=

[

λ1 cos2 φ + λ2 sin2 φ (λ2 − λ1) cosφ sin φ
(λ2 − λ1) cosφ sin φ λ2 cos2 φ + λ1 sin2 φ

]

.

We should take heart that this is a symmetric matrix as we know must be true
since we constructed it from a symmetric eigenvalue decomposition.

6.1. 2D Linear Transformations 123

VT
v2

v1

σ2u2

σ1u1

S U

Figure 6.15. What happens when the unit circle is transformed by an arbitrary matrix A.
The two perpendicular vectors v1 and v2, which are the right singular vectors of A, get scaled
and changed in direction to match the left singular vectors, u1 and u2. In terms of elementary
transformations, this can be seen as first rotating the right singular vectors to the canonical
basis, doing an axis-aligned scale, and then rotating the canonical basis to the left singular
vectors.

Singular Value Decomposition

A very similar kind of decompositioncan be done with non-symmetric matrices
as well: it’s the Singular Value Decomposition (SVD), also discussed in Sec-
tion 5.4.1. The difference is that the matrices on either side of the diagonal matrix
are no longer the same:

A = USVT

The two orthogonal matrices that replace the single rotationR are calledU and
V, and their columns are calledui (the left singular vectors) andvi (the right

singular vectors), respectively. In this context, the diagonal entries ofS are called
singular values rather than eigenvalues. The geometric interpretation is very sim-
ilar to that of the symmetric eigenvalue decomposition (Figure 6.15):

1. Rotatev1 andv2 to thex- andy-axes (the transform byVT).

2. Scale inx andy by (σ1, σ2) (the transform byS).

3. Rotate thex- andy-axes tou1 andu2 (the transform byU).

For dimension counters: a
general 2 × 2 matrix has
4 degrees of freedom, and
the SVD rewrites them as
two rotation angles and two
scale factors. One more bit
is needed to keep track of
reflections, but that doesn’t
add a dimension.The principal difference is between a single rotation and two different orthogonal

matrices. This difference causes another, less important, difference. Because the
SVD has different singular vectors on the two sides, there is no need for neg-
ative singular values: we can alwaysflip the sign of a singular value, reverse
the direction of one of the associated singular vectors, and end up with the same
transformation again. For this reason, the SVD always produces a diagonal ma-
trix with all positive entries, but the matricesU andV are not guaranteed to be
rotations—they could include reflection as well. In geometric applications like
graphics this is an inconvenience, but a minor one: it is easy to differentiate ro-
tations from reflections by checking the determinant, which is+1 for rotations

124 6. Transformation Matrices

and−1 for reflections, and if rotations are desired, one of the singular values can
be negated, resulting in a rotation–scale–rotation sequence where the reflection is
rolled in with the scale, rather than with one of the rotations.

Example. The example used in Section 5.4.1 is in fact a shear matrix (Figure 6.12):

[

1 1
0 1

]

= R2

[

σ1 0
0 σ2

]

R1

=

[

0.8507 −0.5257
0.5257 0.8507

] [

1.618 0
0 0.618

] [

0.5257 0.8507
−0.8507 0.5257

]

= rotate(31.7◦) scale(1.618, 0.618) rotate(−58.3◦).

An immediate consequence of the existence of SVD is that all the 2D transforma-
tion matrices we have seen can be made from rotation matrices and scale matrices.
Shear matrices are a convenience, but they are not required for expressing trans-
formations.

In summary, every matrix can be decomposed via SVD into a rotation times
a scale times another rotation. Only symmetric matrices can be decomposed via
eigenvalue diagonalization into a rotation times a scale times the inverse-rotation,
and such matrices are a simple scale in an arbitrary direction. The SVD of a
symmetric matrix will yield the same triple product as eigenvalue decomposition
via a slightly more complex algebraic manipulation.

Paeth Decomposition of Rotations

Another decomposition uses shears to represent non-zero rotations (Paeth, 1990).
The following identity allows this:

[

cosφ − sin φ
sin φ cosφ

]

=

[

1 cos φ−1
sin φ

0 1

] [

1 0
sin φ 1

] [

1 cos φ−1
sin φ

0 1

]

.

For example, a rotation byπ/4 (45 degrees) is (see Figure 6.16)

rotate(
π

4
) =

[

1 1 −
√

2
0 1

] [

1 0√
2

2 1

] [

1 1 −
√

2
0 1

]

. (6.2)

This particular transform is useful for raster rotation because shearing is a
very efficient raster operation for images; it introduces some jagginess, but will

6.2. 3D Linear Transformations 125

Figure 6.16. Any 2D rotation can be accomplished by three shears in sequence. In this
case a rotation by 45◦ is decomposed as shown in Equation 6.2.

leave no holes. The key observation is that if we take a raster position(i, j) and
apply a horizontal shear to it, we get

[

1 s
0 1

] [

i
j

]

=

[

i + sj
j

]

.

If we round sj to the nearest integer, this amounts to taking each row in the
image and moving it sideways by some amount—a different amount for each
row. Because it is the same displacement within a row, this allows us to rotate
with no gaps in the resulting image. A similar action works for a vertical shear.
Thus, we can implement a simple raster rotation easily.

6.2 3D Linear Transformations

The linear 3D transforms are an extension of the 2D transforms. For example, a
scale along Cartesian axes is

scale(sx, sy, sz) =

⎡

⎣

sx 0 0
0 sy 0
0 0 sz

⎤

⎦ . (6.3)

126 6. Transformation Matrices

Rotation is considerably more complicated in 3D than in 2D, because there are
more possible axes of rotation. However, if we simply want to rotate about the
z-axis, which will only changex- andy-coordinates, we can use the 2D rotation
matrix with no operation onz:

rotate-z(φ) =

⎡

⎣

cosφ − sin φ 0
sin φ cosφ 0

0 0 1

⎤

⎦ .

Similarly we can construct matrices to rotate about thex-axis and they-axis:

rotate-x(φ) =

⎡

⎣

1 0 0
0 cosφ − sinφ
0 sin φ cosφ

⎤

⎦ ,To understand why the mi-
nus sign is in the lower left
for the y-axis rotation, think
of the three axes in a circu-
lar sequence: y after x; z
after y; x after z.

rotate-y(φ) =

⎡

⎣

cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

⎤

⎦ .

We will discuss rotations about arbitrary axes in the next section.
As in two dimensions, we can shear along a particular axis, for example,

shear-x(dy , dz) =

⎡

⎣

1 dy dz

0 1 0
0 0 1

⎤

⎦ .

As with 2D transforms, any 3D transformation matrix can be decomposed using
SVD into a rotation, scale, and another rotation. Any symmetric 3D matrix has
an eigenvalue decomposition into rotation, scale, and inverse-rotation. Finally, a
3D rotation can be decomposed into a product of 3D shear matrices.

6.2.1 Arbitrary 3D Rotations

As in 2D, 3D rotations areorthogonal matrices. Geometrically, this means that
the three rows of the matrix are the Cartesian coordinates of three mutually-
orthogonal unit vectors as discussed in Section 2.4.5. The columns are three,
potentially different, mutually-orthogonal unit vectors. There are an infinite num-
ber of such rotation matrices. Let’s write down such a matrix:

Ruvw =

⎡

⎣

xu yu zu

xv yv zv

xw yw zw

⎤

⎦ .

6.2. 3D Linear Transformations 127

Here,u = xux + yuy + zuz and so on forv andw. Since the three vectors are
orthonormal we know that

u · u = v · v = w · w = 1,

u · v = v · w = w · u = 0.

We can infer some of the behavior of the rotation matrix by applying it to the
vectorsu, v andw. For example,

Ruvwu =

⎡

⎣

xu yu zu

xv yv zv

xw yw zw

⎤

⎦

⎡

⎣

xu

yu

zu

⎤

⎦ =

⎡

⎣

xuxu + yuyu + zuzu

xvxu + yvyu + zvzu

xwxu + ywyu + zwzu

⎤

⎦ .

Note that those three rows ofRuvwu are all dot products:

Ruvwu =

⎡

⎣

u · u
v · u
w · u

⎤

⎦ =

⎡

⎣

1
0
0

⎤

⎦ = x.

Similarly, Ruvwv = y, andRuvww = z. SoRuvw takes the basisuvw to the
corresponding Cartesian axes via rotation.

If Ruvw is a rotation matrix with orthonormal rows, thenRT
uvw is also a ro-

tation matrix with orthonormal columns, and in fact is the inverse ofRuvw (the
inverse of an orthogonal matrix is always its transpose). An important point is that
for transformation matrices, the algebraic inverse is also the geometric inverse. So
if Ruvw takesu to x, thenRT

uvw takesx to u. The same should be true ofv and
y as we can confirm:

RT
uvwy =

⎡

⎣

xu xv xw

yu yv yw

zu zv zw

⎤

⎦

⎡

⎣

0
1
0

⎤

⎦ =

⎡

⎣

xv

yv

zv

⎤

⎦ = v.

So we can always create rotation matrices from orthonormal bases.
If we wish to rotate about an arbitrary vectora, we can form an orthonormal

basis withw = a, rotate that basis to the canonical basisxyz, rotate about the
z-axis, and then rotate the canonical basis back to theuvw basis. In matrix form,
to rotate about thew-axis by an angleφ:

⎡

⎣

xu xv xw

yu yv yw

zu zv zw

⎤

⎦

⎡

⎣

cosφ − sinφ 0
sin φ cosφ 0

0 0 1

⎤

⎦

⎡

⎣

xu yu zu

xv yv zv

xw yw zw

⎤

⎦ .

Here we havew a unit vector in the direction ofa (i.e. a divided by its own
length). But what areu andv? A method tofind reasonableu andv is given in
Section 2.4.6.

128 6. Transformation Matrices

If we have a rotation matrix and we wish to have the rotation in axis-angle
form, we can compute the one real eigenvalue (which will beλ = 1), and the
corresponding eigenvector is the axis of rotation. This is the one axis that is not
changed by the rotation.

See Chapter 17 for a comparison of the few most-used ways to represent ro-
tations, besides rotation matrices.

6.2.2 Transforming Normal Vectors

While most 3D vectors we use represent positions (offset vectors from the origin)
or directions, such as where light comes from, some vectors representsurface

normals. Surface normal vectors are perpendicular to the tangent plane of a sur-
face. These normals do not transform the way we would like when the underlying
surface is transformed. For example, if the points of a surface are transformed by
a matrixM, a vectort that is tangent to the surface and is multiplied byM will
be tangent to the transformed surface. However, a surface normal vectorn that is
transformed byM may not be normal to the transformed surface (Figure 6.17).

We can derive a transform matrixN which does taken to a vector perpen-
dicular to the transformed surface. One way to attack this issue is to note that a
surface normal vector and a tangent vector are perpendicular, so their dot product
is zero, which is expressed in matrix form as

nTt = 0. (6.4)

If we denote the desired transformed vectors astM = Mt and nN = Nn,
our goal is tofind N such thatnT

NtM = 0. We canfind N by some algebraic

Figure 6.17. When a normal vector is transformed using the same matrix that transforms
the points on an object, the resulting vector may not be perpendicular to the surface as is
shown here for the sheared rectangle. The tangent vector, however, does transform to a
vector tangent to the transformed surface.

6.2. 3D Linear Transformations 129

tricks. First, we can sneak an identity matrix into the dot product, and then take
advantage ofM−1M = I:

nTt = nTIt = nTM−1Mt = 0.

Although the manipulations above don’t obviously get us anywhere, note that we
can add parentheses that make the above expression more obviously a dot product:

(

nTM−1
)

(Mt) =
(

nTM−1
)

tM = 0.

This means that the row vector that is perpendicular totM is the left part of the
expression above. This expression holds for any of the tangent vectors in the
tangent plane. Since there is only one direction in 3D (and its opposite) that
is perpendicular to all such tangent vectors, we know that the left part of the
expression above must be the row vector expression fornN , i.e., it isnT

N , so this
allows us to inferN:

nT
N = nTM−1,

so we can take the transpose of that to get

nN =
(

nTM−1
)T

=
(

M−1
)T

n. (6.5)

Therefore, we can see that the matrix which correctly transforms normal vectors
so they remain normal isN = (M−1)T, i.e., the transpose of the inverse matrix.
Since this matrix may change the length ofn, we can multiply it by an arbitrary
scalar and it will still producenN with the right direction. Recall from Section 5.3
that the inverse of a matrix is the transpose of the cofactor matrix divided by the
determinant. Because we don’t care about the length of a normal vector, we can
skip the division andfind that for a3 × 3 matrix,

N =

⎡

⎣

mc
11 mc

12 mc
13

mc
21 mc

22 mc
23

mc
31 mc

32 mc
33

⎤

⎦ .

This assumes the element ofM in row i and columnj is mij . So the full expres-
sion forN is

N =

⎡

⎣

m22m33 − m23m32 m23m31 − m21m33 m21m32 − m22m31

m13m32 − m12m33 m11m33 − m13m31 m12m31 − m11m32

m12m23 − m13m22 m13m21 − m11m23 m11m22 − m12m21

⎤

⎦ .

130 6. Transformation Matrices

6.3 Translation and Affine Transformations

We have been looking at methods to change vectors using a matrixM. In two
dimensions, these transforms have the form,

x′ = m11x + m12y,
y′ = m21x + m22y.

We cannot use such transforms tomove objects, only to scale and rotate them. In
particular, the origin(0, 0) always remainsfixed under a linear transformation. To
move, ortranslate, an object by shifting all its points the same amount, we need
a transform of the form,

x′ = x + xt,
y′ = y + yt.

There is just no way to do that by multiplying(x, y) by a 2 × 2 matrix. One
possibility for adding translation to our system of linear transformations is to
simply associate a separate translation vector with each transformation matrix,
letting the matrix take care of scaling and rotation and the vector take care of
translation. This is perfectly feasible, but the bookkeeping is awkward and the
rule for composing two transformations is not as simple and clean as with linear
transformations.

Instead, we can use a clever trick to get a single matrix multiplication to do
both operations together. The idea is simple: represent the point(x, y) by a 3D
vector[x y 1]T, and use3 × 3 matrices of the form

⎡

⎣

m11 m12 xt

m21 m22 yt

0 0 1

⎤

⎦

The fixed third row serves to copy the1 into the transformed vector, so that all
vectors have a1 in the last place, and thefirst two rows computex′ andy′ as
linear combinations ofx, y, and1:

⎡

⎣

x′

y′

1

⎤

⎦ =

⎡

⎣

m11 m12 xt

m21 m22 yt

0 0 1

⎤

⎦

⎡

⎣

x
y
1

⎤

⎦ =

⎡

⎣

m11x + m12y + xt

m21x + m22y + yt

1

⎤

⎦ .

The single matrix implements a linear transformation followed by a translation!
This kind of transformation is called anaffine transformation, and this way of
implementing affine transformations by adding an extra dimension is calledho-

mogeneous coordinates (Roberts, 1965; Riesenfeld, 1981; Penna & Patterson,
1986). Homogeneous coordinates not only clean up the code for transformations,

6.3. Translation and Affine Transformations 131

but this scheme also makes it obvious how to compose two affine transformations:
simply multiply the matrices.

A problem with this new formalism arises when we need to transform vec-
tors that are not supposed to be positions—they represent directions, or offsets
between positions. Vectors that represent directions or offsets should not change
when we translate an object. Fortunately, we can arrange for this by setting the
third coordinate to zero:

⎡

⎣

1 0 xt

0 1 yt

0 0 1

⎤

⎦

⎡

⎣

x
y
0

⎤

⎦ =

⎡

⎣

x
y
0

⎤

⎦ .

If there is a scaling/rotation transformation in the upper-left2 × 2 entries of the
matrix, it will apply to the vector, but the translation still multiplies with the zero
and is ignored. Furthermore, the zero is copied into the transformed vector, so
direction vectors remain direction vectors after they are transformed.

This is exactly the behavior we want for vectors, so theyfit smoothly into the
system: the extra (third) coordinate will be either1 or 0 depending on whether we
are encoding a position or a direction. We actually do need to store the homoge-

This gives an explanation
for the name “homoge-
neous:” translation, rota-
tion, and scaling of posi-
tions and directions all fit
into a single system.neous coordinate so we can distinguish between locations and other vectors. For

example,
⎡

⎣

3
2
1

⎤

⎦ is a location and

⎡

⎣

3
2
0

⎤

⎦ is a displacement or direction.

Later, when we do perspective viewing, we will see that it is useful to allow the
homogeneous coordinate to take on values other than one or zero.

Homogeneous coordinates are used nearly universally to represent transfor-
mations in graphics systems. In particular, homogeneous coordinates underlie the Homogeneous coordinates

are also ubiquitous in com-
puter vision.

design and operation of renderers implemented in graphics hardware. We will see
in Chapter 7 that homogeneous coordinates also make it easy to draw scenes in
perspective, another reason for their popularity.

Homogeneous coordinates can be considered just a clever way to handle the
bookkeeping for translation, but there is also a different, geometric interpretation.
The key observation is that when we do a 3D shear based on thez-coordinate we
get this transform:

⎡

⎣

1 0 xt

0 1 yt

0 0 1

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦ =

⎡

⎣

x + xtz
y + ytz

z

⎤

⎦ .

Note that this almost has the form we want inx andy for a 2D translation, but
has az hanging around that doesn’t have a meaning in 2D. Now comes the key

132 6. Transformation Matrices

decision: we will add a coordinatez = 1 to all 2D locations. This gives us

⎡

⎣

1 0 xt

0 1 yt

0 0 1

⎤

⎦

⎡

⎣

x
y
1

⎤

⎦ =

⎡

⎣

x + xt

y + yt

1

⎤

⎦ .

By associating a (z = 1)-coordinate with all 2D points, we now can encode trans-
lations into matrix form. For example, tofirst translate in 2D by(tx, ty) and then
rotate by angleφ we would use the matrix

M =

⎡

⎣

cosφ − sinφ 0
sin φ cosφ 0

0 0 1

⎤

⎦

⎡

⎣

1 0 xt

0 1 yt

0 0 1

⎤

⎦ .

Note that the 2D rotation matrix is now3× 3 with zeros in the “translation slots.”
With this type of formalism, which uses shears alongz = 1 to encode translations,
we can represent any number of 2D shears, 2D rotations, and 2D translations as
one composite 3D matrix. The bottom row of that matrix will always be(0, 0, 1),
so we don’t really have to store it. We just need to remember it is there when we
multiply two matrices together.

In 3D, the same technique works: we can add a fourth coordinate, a homoge-
neous coordinate, and then we have translations:

⎡

⎢

⎢

⎣

1 0 0 xt

0 1 0 yt

0 0 1 zt

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x + xt

y + yt

z + zt

1

⎤

⎥

⎥

⎦

.

Again, for a direction vector, the fourth coordinate is zero and the vector is thus
unaffected by translations.

Example (Windowing transformations). Often in graphics we need to create a trans-
form matrix that takes points in the rectangle[xl, xh] × [yl, yh] to the rectangle
[x′

l, x
′
h] × [y′

l, y
′
h]. This can be accomplished with a single scale and translate in

sequence. However, it is more intuitive to create the transform from a sequence
of three operations (Figure 6.18):

1. Move the point(xl, yl) to the origin.

2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point(x′
l, y

′
l).

6.3. Translation and Affine Transformations 133

(xl, yl)

(x′l, y′l)

(xh, yh)

(x′h, y′h)

(xh – xl, yh – yl)

(x′h – x′l, y′h – y′l)

Figure 6.18. To take one rectangle (window) to the other, we first shift the lower-left corner
to the origin, then scale it to the new size, and then move the origin to the lower-left corner
of the target rectangle.

Remembering that the right-hand matrix is appliedfirst, we can write

window = translate(x′
l, y

′
l) scale

(

x′

h−x′

l

xh−xl
,

y′

h−y′

l

yh−yl

)

translate(−xl,−yl)

=

⎡

⎢

⎣

1 0 x′
l

0 1 y′
l

0 0 1

⎤

⎥

⎦

⎡

⎢

⎢

⎣

x′

h−x′

l

xh−xl
0 0

0
y′

h−y′

l

yh−yl
0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎣

1 0 −xl

0 1 −yl

0 0 1

⎤

⎥

⎦

=

⎡

⎢

⎢

⎣

x′

h−x′

l

xh−xl
0

x′

lxh−x′

hxl

xh−xl

0
y′

h−y′

l

yh−yl

y′

lyh−y′

hyl

yh−yl

0 0 1

⎤

⎥

⎥

⎦

. (6.6)

It is perhaps not surprising to some readers that the resulting matrix has the form
it does, but the constructive process with the three matrices leaves no doubt as to
the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing
transformation, which maps the box[xl, xh] × [yl, yh] × [zl, zh] to the box

134 6. Transformation Matrices

[x′
l, x

′
h] × [y′

l, y
′
h] × [z′l, z

′
h]:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x′

h−x′

l

xh−xl
0 0

x′

lxh−x′

hxl

xh−xl

0
y′

h−y′

l

yh−yl
0

y′

lyh−y′

hyl

yh−yl

0 0
z′

h−z′

l

zh−zl

z′

lzh−z′

hzl

zh−zl

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6.7)

It is interesting to note that if we multiply an arbitrary matrix composed of
scales, shears, and rotations with a simple translation (translation comes second),
we get

⎡

⎢

⎢

⎣

1 0 0 xt

0 1 0 yt

0 0 1 zt

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a11 a12 a13 xt

a21 a22 a23 yt

a31 a32 a33 zt

0 0 0 1

⎤

⎥

⎥

⎦

.

Thus, we can look at any matrix and think of it as a scaling/rotation part and a
translation part because the components are nicely separated from each other.

An important class of transforms arerigid-body transforms. These are com-
posed only of translations and rotations, so they have no stretching or shrinking
of the objects. Such transforms will have a pure rotation for theaij above.

6.4 Inverses of Transformation Matrices

While we can always invert a matrix algebraically, we can use geometry if we
know what the transform does. For example, the inverse of scale(sx, sy, sz) is
scale(1/sx, 1/sy, 1/sz). The inverse of a rotation is the same rotation with the
opposite sign on the angle. The inverse of a translation is a translation in the
opposite direction. If we have a series of matricesM = M1M2 · · ·Mn then
M−1 = M−1

n · · ·M−1
2 M−1

1 .
Also, certain types of transformation matrices are easy to invert. We’ve al-

ready mentioned scales, which are diagonal matrices; the second important ex-
ample is rotations, whichare orthogonal matrices. Recall (Section 5.2.4) that the
inverse of an orthogonal matrix is its transpose. This makes it easy to invert ro-
tations and rigid body transformations (see Exercise 6). Also, it’s useful to know
that a matrix with[0 0 0 1] in the bottom row has an inverse that also has[0 0 0 1]

in the bottom row (see Exercise 7).
Interestingly, we can use SVD to invert a matrix as well. Since we know

that any matrix can be decomposed into a rotation times a scale times a rotation,

6.5. Coordinate Transformations 135

inversion is straightforward. For example in 3D we have

M = R1scale(σ1, σ2, σ3)R2,

and from the rules above it follows easily that

M−1 = RT
2 scale(1/σ1, 1/σ2, 1/σ3)R

T
1 .

6.5 Coordinate Transformations

All of the previous discussion has been in terms of using transformation matrices
to move points around. We can also think of them as simply changing the coor-
dinate system in which the point is represented. For example, in Figure 6.19, we
see two ways to visualize a movement. In different contexts, either interpretation
may be more suitable.

For example, a driving game may have a model of a city and a model of
a car. If the player is presented with a view out the windshield, objects inside
the car are always drawn in the same place on the screen, while the streets and
buildings appear to move backward as the player drives. On each frame, we
apply a transformation to these objects that moves them farther back than on the
previous frame. One way to think of this operation is simply that it moves the
buildings backward; another way to think of it is that the buildings are staying put
but the coordinate system in which we want to draw them—which is attached to
the car—is moving. In the second interpretation, the transformation is changing

Figure 6.19. The point (2,1) has a transform “translate by (-1,0)” applied to it. On the top
right is our mental image if we view this transformation as a physical movement, and on the
bottom right is our mental image if we view it as a change of coordinates (a movement of the
origin in this case). The artificial boundary is just an artifice, and the relative position of the
axes and the point are the same in either case.

136 6. Transformation Matrices

the coordinates of the city geometry, expressing them as coordinates in the car’s
coordinate system. Both ways will lead to exactly the same matrix that is applied
to the geometry outside the car.

If the game also supports an overhead view to show where the car is in the
city, the buildings and streets need to be drawn infixed positions while the car
needs to move from frame to frame. The same two interpretations apply: we
can think of the changing transformation as moving the car from its canonical
position to its current location in the world; or we can think of the transformation
as simply changing the coordinates of the car’s geometry, which is originally
expressed in terms of a coordinate system attached to the car, to express them
instead in a coordinate systemfixed relative to the city. The change-of-coordinates
interpretation makes it clear that the matrices used in these two modes (city-to-car
coordinate change vs. car-to-city coordinate change) are inverses of one another.

The idea of changing coordinate systems is much like the idea of type conver-
sions in programming. Before we can add afloating-point number to an integer,
we need to convert the integer tofloating point or thefloating-point number to an
integer, depending on our needs, so that the types match. And before we can draw
the city and the car together, we need to convert the city to car coordinates or the
car to city coordinates, depending on our needs, so that the coordinates match.

When managing multiple coordinate systems, it’s easy to get confused and
wind up with objects in the wrong coordinates, causing them to show up in un-
expected places. But with systematic thinking about transformations between
coordinate systems, you can reliably get the transformations right.

Geometrically, a coordinate system, or coordinateframe, consists of an origin
and a basis—a set of three vectors. Orthonormal bases are so convenient thatIn 2D, of course, there are

two basis vectors. we’ll normally assume frames are orthonormal unless otherwise specified. In a
frame with originp and basis{u,v,w}, the coordinates(u, v, w) describe the
point

p + uu + vv + ww.

When we store these vectors in the computer, they need to be represented in
terms of some coordinate system. To get things started, we have to designate
some canonical coordinate system, often called “global” or “world” coordinates,
which is used to describe all other systems. In the city example, we might adopt
the street grid and use the convention that thex-axis points along Main Street,
they-axis points up, and thez-axis points along Central Avenue. Then when we
write the origin and basis of the car frame in terms of these coordinates it is clear
what we mean.

In 2D our convention is is to use the pointo for the origin, andx andy forIn 2D, right handed means
y is counter-clockwise from
x.

the right-handed orthonormal basis vectorsx andy (Figure 6.20).

6.5. Coordinate Transformations 137

Figure 6.20. The point p can be represented in terms of either coordinate system.

Another coordinate system might have an origine and right-handed orthonor-
mal basis vectorsu andv. Note that typically the canonical datao, x, andy are
never stored explicitly. They are the frame-of-reference for all other coordinate
systems. In that coordinate system, we often write down the location ofp as an
ordered pair, which is shorthand for a full vector expression:

p = (xp, yp) ≡ o + xpx + ypy.

For example, in Figure 6.20,(xp, yp) = (2.5, 0.9). Note that the pair(xp, yp)

implicitly assumes the origino. Similarly, we can expressp in terms of another
equation:

p = (up, vp) ≡ e + upu + vpv.

In Figure 6.20, this has(up, vp) = (0.5,−0.7). Again, the origine is left as an
implicit part of the coordinate system associated withu andv.

We can express this same relationship using matrix machinery, like this:
⎡

⎣

xp

yp

1

⎤

⎦ =

⎡

⎣

1 0 xe

0 1 ye

0 0 1

⎤

⎦

⎡

⎣

xu xv 0
yu yv 0
0 0 1

⎤

⎦

⎡

⎣

up

vp

1

⎤

⎦ =

⎡

⎣

xu xv xe

yu yv ye

0 0 1

⎤

⎦

⎡

⎣

up

vp

1

⎤

⎦ .

Note that this assumes we have the pointe and vectorsu andv stored in canonical
coordinates; the (x, y)-coordinate system is thefirst among equals. In terms of the
basic types of transformations we’ve discussed in this chapter, this is a rotation
(involvingu andv) followed by a translation (involvinge). Looking at the matrix
for the rotation and translation together, you can see it’s very easy to write down:
we just putu, v, ande into the columns of a matrix, with the usual[0 0 1] in the
third row. To make this even clearer we can write the matrix like this:

pxy =

[

u v e

0 0 1

]

puv.

We call this matrix theframe-to-canonical matrix for the (u, v) frame. It takes
points expressed in the(u, v) frame and converts them to the same points ex-
pressed in the canonical frame.

The name “frame-to-
canonical” is based on
thinking about changing
the coordinates of a vector
from one system to an-
other. Thinking in terms of
moving vectors around, the
frame-to-canonical matrix
maps the canonical frame
to the (u,v) frame.

138 6. Transformation Matrices

To go in the other direction we have

⎡

⎣

up

vp

1

⎤

⎦ =

⎡

⎣

xu yu 0
xv yv 0
0 0 1

⎤

⎦

⎡

⎣

1 0 −xe

0 1 −ye

0 0 1

⎤

⎦

⎡

⎣

xp

yp

1

⎤

⎦ .

This is a translation followed by a rotation; they are the inverses of the rotation and
translation we used to build the frame-to-canonical matrix, and when multiplied
together they produce the inverse of the frame-to-canonical matrix, which is (not
surprisingly) called the canonical-to-frame matrix:

puv =

[

u v e

0 0 1

]−1

pxy.

The canonical-to-frame matrix takes points expressed in the canonical frame and
converts them to the same points expressed in the (u,v) frame. We have written
this matrix as the inverse of the frame-to-canonical matrix because it can’t im-
mediately be written down usingthe canonical coordinates ofe, u, andv. But
remember that all coordinate systems are equivalent; it’s only our convention of
storing vectors in terms ofx- andy-coordinates that creates this seeming asym-
metry. The canonical-to-frame matrixcan be expressed simply in terms of the (u,
v) coordinates ofo, x, andy:

puv =

[

xuv yuv ouv

0 0 1

]

pxy.

All these ideas work strictly analogously in 3D, where we have

⎡

⎢

⎢

⎣

xp

yp

zp

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 0 xe

0 1 0 ye

0 0 1 ze

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xu xv xw 0
yu yv yw 0
zu zv zw 0
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

up

vp

wp

1

⎤

⎥

⎥

⎦

pxyz =

[

u v w e

0 0 0 1

]

puvw,

(6.8)

and
⎡

⎢

⎢

⎣

up

vp

wp

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xp

yp

zp

1

⎤

⎥

⎥

⎦

puvw =

[

u v w e

0 0 0 1

]−1

pxyz.

(6.9)

6.5. Coordinate Transformations 139

Frequently Asked Questions

• Can’t I just hardcode transforms rather than use the matrix formalisms?

Yes, but in practice it is harder to derive, harder to debug, and not any more ef-
ficient. Also, all current graphics APIs use this matrix formalism so it must be
understood even to use graphics libraries.

• The bottom row of the matrix is always (0,0,0,1). Do I have to store it?

You do not have to store it unless you include perspective transforms (Chapter 7).

Notes

The derivation of the transformation properties of normals is based onProper-

ties of Surface Normal Transformations (Turkowski, 1990). In many treatments
through the mid-1990s, vectors were represented as row vectors and premulti-
plied, e.g.,b = aM. In our notation this would bebT = aTMT. If you want to
find a rotation matrixR that takes one vectora to a vectorb of the same length:
b = Ra you could use two rotations constructed from orthonormal bases. A more
efficient method is given inEfficiently Building a Matrix to Rotate One Vector to

Another (Akenine-Möller et al., 2008).

Exercises

1. Write down the4 × 4 3D matrix to move by(xm, ym, zm).

2. Write down the4 × 4 3D matrix to rotate by an angleθ about they-axis.

3. Write down the4× 4 3D matrix to scale an object by 50% in all directions.

4. Write the 2D rotation matrix that rotates by 90 degrees clockwise.

5. Write the matrix from Exercise 4 as a product of three shear matrices.

6. Find the inverse of the rigid body transformation:
[

R t

0 0 0 1

]

whereR is a3 × 3 rotation matrix andt is a 3-vector.

140 6. Transformation Matrices

7. Show that the inverse of the matrix for an affine transformation (one that
has all zeros in the bottom row except for a one in the lower right entry)
also has the same form.

8. Describe in words what this 2D transform matrix does:
⎡

⎣

0 −1 1
1 0 1
0 0 1

⎤

⎦ .

9. Write down the3×3 matrix that rotates a 2D point by angleθ about a point
p = (xp, yp).

10. Write down the4× 4 rotation matrix that takes the orthonormal 3D vectors
u = (xu, yu, zu), v = (xv, yv, zv), andw = (xw , yw, zw), to orthonormal
3D vectorsa = (xa, ya, za), b = (xb, yb, zb), andc = (xc, yc, zc), So
Mu = a, Mv = b, andMw = c.

11. What is the inverse matrix for the answer to the previous problem?

7

Viewing

In the previous chapter we saw how to use matrix transformations as a tool for
arranging geometric objects in 2D or 3D space. A second important use of geo-
metric transformations is in moving objects between their 3D locations and their
positions in a 2D view of the 3D world. This 3D to 2D mapping is called aviewing

transformation, and it plays an important role in object-order rendering, in which
we need to rapidlyfind the image-space location of each object in the scene.

When we studied ray tracing in Chapter 4, we covered the different types of
perspective and orthographic views and how to generate viewing rays according
to any given view. This chapter is about the inverse of that process. Here we
explain how to use matrix transformations to express any parallel or perspective
view. The transformations in this chapter project 3D points in the scene (world
space) to 2D points in the image (image space), and they will project any point on
a given pixel’s viewing ray back to that pixel’s position in image space.

If you have not looked at it recently, it is advisable to review the discussion of
perspective and ray generation in Chapter 4 before reading this chapter.

By itself, the ability to project points from the world to the image is only
good for producingwireframe renderings—renderings in which only the edges
of objects are drawn, and closer surfaces do not occlude more distant surfaces
(Figure 7.1). Just as a ray tracer needs tofind the closest surface intersection
along each viewing ray, an object-order renderer displaying solid-looking objects
has to work out which of the (possibly many) surfaces drawn at any given point
on the screen is closest and display only that one. In this chapter, we assume we
are drawing a model consisting only of 3D line segments that are specified by

141

142 7. Viewing

Figure 7.1. Left: wireframe cube in orthographic projection. Middle: wireframe cube in
perspective projection. Right: perspective projection with hidden lines removed.

the (x, y, z) coordinates of their two end points. Later chapters will discuss the
machinery needed to produce renderings of solid surfaces.

7.1 Viewing Transformations

The viewing transformation has the job of mapping 3D locations, represented
as(x, y, z) coordinates in the canonical coordinate system, to coordinates in the
image, expressed in units of pixels. It is a complicated beast that depends onSome APIs use “viewing

transformation” for just the
piece of our viewing trans-
formation that we call the
camera transformation.

many different things, including the camera position and orientation, the type
of projection, thefield of view, and the resolution of the image. As with all
complicated transformations it is best approached by breaking it up in to a product
of several simpler transformations. Most graphics systems do this by using a
sequence of three transformations:

• A camera transformation oreye transformation, which is a rigid body trans-
formation that places the camera at theorigin in a convenient orientation.
It depends only on the position and orientation, orpose, of the camera.

• A projection transformation, which projects points from camera space so
that all visible points fall in the range−1 to 1 in x andy. It depends only
on the type of projection desired.

• A viewport transformation or windowing transformation, which maps this
unit image rectangle to the desired rectangle in pixel coordinates. It de-
pends only on the size and position of the output image.

To make it easy to describe the stages of the process (Figure 7.2), we give names
to the coordinate systems that are the inputs and output of these transformations.
The camera transformation converts points in canonical coordinates (or world

7.1. Viewing Transformations 143

object space

world space

camera space

sc
re

en
 s

pa
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

canonical
view volume

Figure 7.2. The sequence of spaces and transformations that gets objects from their
original coordinates into screen space.

space) tocamera coordinates or places them incamera space. The projection
transformation moves points from camera space to thecanonical view volume.

Other names: camera
space is also “eye space”
and the camera transfor-
mation is sometimes the
“viewing transformation;”
the canonical view volume
is also “clip space” or
“normalized device coor-
dinates;” screen space is
also “pixel coordinates.”

Finally, the viewport transformation maps the canonical view volume toscreen

space.
Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,
then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problem whose solution will be reused for any viewing condition.
We assume that the geometry we want to view is in thecanonical view volume, The word “canonical” crops

up again—it means some-
thing arbitrarily chosen for
convenience. For instance,
the unit circle could be
called the “canonical circle.”

and we wish to view it with an orthographic camera looking in the−z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian
coordinates are between−1 and+1—that is,(x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We projectx = −1 to the left side of the screen,x = +1 to the right side of the
screen,y = −1 to the bottom of the screen, andy = +1 to the top of the screen.

Recall the conventions for pixel coordinates from Chapter 3: each pixel “owns”
a unit square centered at integer coordinates; the image boundaries have a half-
unit overshoot from the pixel centers; and the smallest pixel center coordinates

144 7. Viewing

are(0, 0). If we are drawing into an image (or window on the screen) that has
nx by ny pixels, we need to map the square[−1, 1]2 to the rectangle[−0.5, nx −
0.5] × [−0.5, ny − 0.5].Mapping a square to a po-

tentially non-square rectan-
gle is not a problem; x and
y just end up with differ-
ent scale factors going from
canonical to pixel coordi-
nates.

For now we will assume that all line segments to be drawn are completely
inside the canonical view volume. Later we will relax that assumption when we
discussclipping.

Since the viewport transformation maps one axis-aligned rectangle to another,
it is a case of the windowing transform given by Equation (6.6):

⎡

⎣

xscreen

yscreen

1

⎤

⎦ =

⎡

⎣

nx

2 0 nx−1
2

0
ny

2
ny−1

2

0 0 1

⎤

⎦

⎡

⎣

xcanonical

ycanonical

1

⎤

⎦ . (7.1)

Note that this matrix ignores thez-coordinate of the points in the canonical view

Figure 7.3. The canonical
view volume is a cube with
side of length two centered
at the origin.

volume, because a point’s distance along the projection direction doesn’t affect
where that point projects in the image. But before we officially call this theview-

port matrix, we add a row and column to carry along thez-coordinate without
changing it. We don’t need it in this chapter, but eventually we will need thez

values because they can be used to make closer surfaces hide more distant surfaces
(see Section 8.2.3).

Mvp =

⎡

⎢

⎢

⎣

nx

2 0 0 nx−1
2

0
ny

2 0
ny−1

2

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

. (7.2)

7.1.2 The Orthographic Projection Transformation

Of course, we usually want to render geometry in some region of space other than
the canonical view volume. Ourfirst step in generalizing the view will keep the
view direction and orientationfixed looking along−z with +y up, but will allow
arbitrary rectangles to be viewed. Rather than replacing the viewport matrix, we’ll
augment it by multiplying it with another matrix on the right.

Under these constraints, the view volume is an axis-aligned box, and we’ll
name the coordinates of its sides so that the view volume is[l, r] × [b, t] × [f, n]

shown in Figure 7.4. We call this box theorthographic view volume and refer to

7.1. Viewing Transformations 145

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along theminus z-axis with
Figure 7.4. The ortho-
graphic view volume.

his head pointing in they-direction.1 This implies thatn > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negativez

values then thez = n “near” plane is closer to the viewer if and only ifn > f ;
heref is a smaller number thann, i.e., a negative number of larger absolute value
thann.

This concept is shown in Figure 7.5. The transform from orthographic view
volume to the canonical view volume is another windowing transform, so we can
simply substitute the bounds of the orthographic and canonical view volumes into
Equation (6.7) to obtain the matrix for this transformation: n and f appear in what

might seem like reverse or-
der because n – f, rather
than f – n, is a positive num-
ber.

Morth =

⎡

⎢

⎢

⎣

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f −n+f

n−f

0 0 0 1

⎤

⎥

⎥

⎦

. (7.3)

Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

1Most programmersfind it intuitive to have thex-axis pointing right and they-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the−z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along+z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. Areference that argues
for the left-handed system instead is given in the notes at the end of the chapter.

146 7. Viewing

To draw 3D line segments in the orthographic view volume, we project them
into screenx- andy-coordinates and ignorez-coordinates. We do this by com-
bining Equations (7.2) and (7.3). Note that in a program we multiply the matrices
together to form one matrix and then manipulate points as follows:

⎡

⎢

⎢

⎣

xpixel

ypixel

zcanonical

1

⎤

⎥

⎥

⎦

= (MvpMorth)

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

.

Thez-coordinate will now be in[−1, 1]. We don’t take advantage of this now, but
it will be useful when we examine z-buffer algorithms.

The code to draw many 3D lines with endpointsai andbi thus becomes both
simple and efficient:This is a first example of

how matrix transformation
machinery makes graphics
programs clean and effi-
cient.

constructMvp

constructMorth

M = MvpMorth

for each line segment(ai,bi) do
p = Mai

q = Mbi

drawline(xp, yp, xq, yq)

7.1.3 The Camera Transformation

We’d like to able to change the viewpoint in 3D and look in any direction. There
are a multitude of conventions for specifying viewer position and orientation. We
will use the following one (see Figure 7.6):

Figure 7.6. The user
specifies viewing as an eye
position e, a gaze direc-
tion g, and an up vector
t. We construct a right-
handed basis with w point-
ing opposite to the gaze
and v being in the same
plane as g and t.

• the eye positione,

• the gaze directiong,

• the view-up vectort.

The eye position is a location that the eye “sees from.” If you think of graphics
as a photographic process, it is the center of the lens. The gaze direction is any
vector in the direction that the viewer is looking. The view-up vector is any vector
in the plane that both bisects the viewer’s head into right and left halves and points
“to the sky” for a person standing on the ground. These vectors provide us with
enough information to set up a coordinate system with origine and auvw basis,

7.1. Viewing Transformations 147

Figure 7.7. For arbitrary viewing, we need to change the points to be stored in the “appro-
priate” coordinate system. In this case it has origin e and offset coordinates in terms of uvw .

using the construction of Section 2.4.7:

w = − g

‖g‖ ,

u =
t × w

‖t× w‖ ,

v = w × u.

Our job would be done if all points we wished to transform were stored in co-
ordinates with origine and basis vectorsu, v, andw. But as shown in Figure 7.7,
the coordinates of the model are stored in terms of the canonical (or world) ori-
gino and thex-, y-, andz-axes. To use the machinery we have already developed,
we just need to convert the coordinates of the line segment endpoints we wish to
draw fromxyz-coordinates intouvw-coordinates. This kind of transformation
was discussed in Section 6.5, and the matrix that enacts this transformation is the
canonical-to-basis matrix of the camera’s coordinate frame:

Mcam =

[

u v w e

0 0 0 1

]−1

=

⎡

⎢

⎢

⎣

xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1

⎤

⎥

⎥

⎦

. (7.4)

Alternatively, we can think of this same transformation asfirst movinge to the
origin, then aligningu,v,w to x,y, z.

To make our previouslyz-axis-only viewing algorithm work for cameras with
any location and orientation, we just need to add this camera transformation

148 7. Viewing

to the product of the viewport and projection transformations, so that it con-
verts the incoming points from world to camera coordinates before they are pro-
jected:

constructMvp

constructMorth

constructMcam

M = MvpMorthMcam

for each line segment(ai,bi) do
p = Mai

q = Mbi

drawline(xp, yp, xq, yq)

Again, almost no code is needed once the matrix infrastructure is in place.

7.2 Projective Transformations

We have left perspective for last because it takes a little bit of cleverness to make
it fit into the system of vectors and matrix transformations that has served us so
well up to now. To see what we need to do, let’s look at what the perspective
projection transformation needs to do with points in camera space. Recall that theFor the moment we will ig-

nore the sign of z to keep
the equations simpler, but it
will return on page 152.

viewpoint is positioned at the origin and the camera is looking along thez-axis.
The key property of perspective is that the size of an object on the screen is

proportional to1/z for an eye at the origin looking up the negative z-axis. This
can be expressed more precisely in an equation for the geometry in Figure 7.8:

ys =
d

z
y, (7.5)

Figure 7.8. The geometry for Equation (7.5). The viewer’s eye is at e and the gaze direction
is g (the minus z-axis). The view plane is a distance d from the eye. A point is projected
toward e and where it intersects the view plane is where it is drawn.

7.2. Projective Transformations 149

wherey is the distance of the point along they-axis, andys is where the point
should be drawn on the screen.

We would really like to use the matrix machinery we developed for ortho-
graphic projection to draw perspective images; we could then just multiply an-
other matrix into our composite matrix and use the algorithm we already have.
However, this type of transformation, in which one of the coordinates of the input
vector appears in the denominator, can’t be achieved using affine transformations.

We can allow for division with a simple generalization of the mechanism of
homogeneous coordinates that we have been using for affine transformations.
We have agreed to represent the point(x, y, z) using the homogeneous vector
[x y z 1]T; the extra coordinate,w, is always equal to1, and this is ensured by
always using[0 0 0 1]T as the fourth row of an affine transformation matrix.

Rather than just thinking of the1 as an extra piece bolted on to coerce matrix
multiplication to implement translation, we now define it to be the denominator
of thex-, y-, andz-coordinates: the homogeneous vector[x y z w]T represents
the point(x/w, y/w, z/w). This makes no difference whenw = 1, but it allows a
broader range of transformations to be implemented if we allow any values in the
bottom row of a transformation matrix, causingw to take on values other than1.

Concretely, linear transformations allow us to compute expressions like

x′ = ax + by + cz

and affine transformations extend this to

x′ = ax + by + cz + d.

Treatingw as the denominator further expands the possibilities, allowing us to
compute functions like

x′ =
ax + by + cz + d

ex + fy + gz + h
;

this could be called a “linear rational function” ofx, y, andz. But there is an extra
constraint—the denominators are the same for all coordinates of the transformed
point:

x′ =
a1x + b1y + c1z + d1

ex + fy + gz + h
,

y′ =
a2x + b2y + c2z + d2

ex + fy + gz + h
,

z′ =
a3x + b3y + c3z + d3

ex + fy + gz + h
.

150 7. Viewing

Expressed as a matrix transformation,
⎡

⎢

⎢

⎣

x̃
ỹ
z̃
w̃

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

e f g h

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

and
(x′, y′, z′) = (x̃/w̃, ỹ/w̃, z̃/w̃).

A transformation like this is known as aprojective transformation or a
homography.

Example. The matrix

M =

⎡

⎣

2 0 −1
0 3 0
0 2

3
1
3

⎤

⎦

represents a 2D projective transformation that transforms the unit square ([0, 1]×
[0, 1]) to the quadrilateral shown in Figure 7.9.

1

1

3

3
1

unit
square

Figure 7.9. A projec-
tive transformation maps a
square to a quadrilateral,
preserving straight lines but
not parallel lines.

For instance, the lower-right corner of the square at(1, 0) is represented by
the homogeneous vector[1 0 1]T and transforms as follows:

⎡

⎣

2 0 −1
0 3 0
0 2

3
1
3

⎤

⎦

⎡

⎣

1
0
1

⎤

⎦ =

⎡

⎣

1
0
1
3

⎤

⎦ ,

which represents the point(1/ 1
3 , 0/ 1

3), or (3, 0). Note that if we use the matrix

3M =

⎡

⎣

6 0 −3
0 9 0
0 2 1

⎤

⎦

instead, the result is[3 0 1]T, which also represents(3, 0). In fact, any scalar
multiple cM is equivalent: the numerator and denominator are both scaled byc,
which does not change the result.

There is a more elegant way of expressingthe same idea, which avoids treating
thew-coordinate specially. In this view a 3D projective transformation is simply
a 4D linear transformation, with the extra stipulation that all scalar multiples of a
vector refer to the same point:

x ∼ αx for all α �= 0.

The symbol∼ is read as “is equivalent to” and means that the two homogeneous
vectors both describe the same point in space.

7.3. Perspective Projection 151

Figure 7.10. The point x = 1.5 is represented by any point on the line x = 1.5h, such
as points at the hollow circles. However, before we interpret x as a conventional Cartesian
coordinate, we first divide by h to get (x,h) = (1.5,1) as shown by the black point.

Example. In 1D homogeneous coordinates, in which we use 2-vectors to repre-
sent points on the real line, we could represent the point(1.5) using the homoge-
neous vector[1.5 1]T, or any other point on the linex = 1.5h in homogeneous
space. (See Figure 7.10.)

In 2D homogeneous coordinates, in which we use 3-vectors to represent points
in the plane, we could represent the point(−1,−0.5) using the homogeneous
vector[−2;−1; 2]T, or any other point on the linex = α[−1 − 0.5 1]T. Any
homogeneous vector on the line can be mapped to the line’s intersection with the
planew = 1 to obtain its Cartesian coordinates. (See Figure 7.11.)

x

y

w

(–1, –.5, 1)

(–2, –1, 2)

αv

v

w = 1

Figure 7.11. A point in
homogeneous coordinates
is equivalent to any other
point on the line through
it and the origin, and nor-
malizing the point amounts
to intersecting this line with
the plane w = 1.

It’s fine to transform homogeneous vectors as many times as needed, with-
out worrying about the value of thew-coordinate—in fact, it isfine if the w-
coordinate is zero at some intermediate phase. It is only when we want the ordi-
nary Cartesian coordinates of a point that we need to normalize to an equivalent
point that hasw = 1, which amounts to dividing all the coordinates byw. Once
we’ve done this we are allowed to read off the(x, y, z)-coordinates from thefirst
three components of the homogeneous vector.

7.3 Perspective Projection

The mechanism of projective transformations makes it simple to implement the
division byz required to implement perspective. In the 2D example shown in Fig-
ure 7.8, we can implement the perspective projection with a matrix transformation

152 7. Viewing

as follows:
[

ys

1

]

∼
[

d 0 0
0 1 0

]

⎡

⎣

y
z
1

⎤

⎦ .

This transforms the 2D homogeneous vector[y; z; 1]T to the 1D homogeneous
vector[dy z]T, which represents the 1D point(dy/z) (because it is equivalent to
the 1D homogeneous vector[dy/z 1]T. This matches Equation (7.5).

For the “official” perspective projection matrix in 3D, we’ll adopt our usual
convention of a camera at the origin facing in the−z direction, so the distance
of the point(x, y, z) is −z. As with orthographic projection, we also adopt the
notion of near and far planesthat limit the range of distances to be seen. In this
context, we will use the near plane as the projection plane, so the image plane
distance is−n.Remember, n < 0.

The desired mapping is thenys = (n/z)y, and similarly forx. This transfor-
mation can be implemented by theperspective matrix:

P =

⎡

⎢

⎢

⎣

n 0 0 0

0 n 0 0

0 0 n + f −fn

0 0 1 0

⎤

⎥

⎥

⎦

.

The first, second, and fourth rows simply implement the perspective equation.
The third row, as in the orthographic and viewport matrices, is designed to bring
thez-coordinate “along for the ride” so that we can use it later for hidden surface
removal. In the perspective projection, though, the addition of a non-constant
denominator prevents us from actually preserving the value ofz—it’s actually
impossible to keepz from changing while gettingx andy to do what we need
them to do. Instead we’ve opted to keepz unchanged for points on the near or farMore on this later.

planes.
There are many matrices that could function as perspective matrices, and all

of them non-linearly distort thez-coordinate. This specific matrix has the nice
properties shown in Figures 7.12 and 7.13; it leaves points on the(z = n)-
plane entirely alone, and it leaves points on the(z = f)-plane while “squishing”
them inx andy by the appropriate amount. The effect of the matrix on a point
(x, y, z) is

P

⎡

⎢

⎢

⎢

⎢

⎣

x

y

z

1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

x

y

z n+f
n − f

z
n

⎤

⎥

⎥

⎥

⎥

⎦

∼

⎡

⎢

⎢

⎢

⎢

⎣

nx
z

ny
z

n + f − fn
z

1

⎤

⎥

⎥

⎥

⎥

⎦

.

7.3. Perspective Projection 153

Figure 7.12. The perspective projection leaves points on the z = n plane unchanged and
maps the large z = f rectangle at the back of the perspective volume to the small z = f
rectangle at the back of the orthographic volume.

Figure 7.13. The perspective projection maps any line through the origin/eye to a line
parallel to the z-axis and without moving the point on the line at z = n.

154 7. Viewing

As you can see,x andy are scaled and, more importantly, divided byz. Because
both n and z (inside the view volume) are negative, there are no “flips” in x

andy. Although it is not obvious (see the exercise at the end of the chapter),
the transform also preserves the relative order ofz values betweenz = n and
z = f , allowing us to do depth ordering after this matrix is applied. This will be
important later when we do hidden surface elimination.

Sometimes we will want to take the inverse ofP, for example to bring a screen
coordinate plusz back to the original space, as we might want to do for picking.
The inverse is

P−1 =

⎡

⎢

⎢

⎣

1
n 0 0 0
0 1

n 0 0
0 0 0 1

0 0 − 1
fn

n+f
fn

⎤

⎥

⎥

⎦

.

Since multiplying a homogeneous vector by a scalar does not change its meaning,
the same is true of matrices that operate on homogeneous vectors. So we can
write the inverse matrix in a prettier form by multiplying through bynf :

P−1 =

⎡

⎢

⎢

⎣

f 0 0 0
0 f 0 0
0 0 0 fn
0 0 −1 n + f

⎤

⎥

⎥

⎦

.

This matrix is not literally
the inverse of the matrix
P, but the transformation
it describes is the inverse
of the transformation de-
scribed by P.

Taken in the context of the orthographic projection matrixMorth in Equa-
tion (7.3), the perspective matrix simply maps the perspective view volume (which
is shaped like a slice, orfrustum, of a pyramid) to the orthographic view volume
(which is an axis-aligned box). The beauty of the perspective matrix is, that once
we apply it, we can use an orthographic transform to get to the canonical view
volume. Thus, all of the orthographic machinery applies, and all that we have
added is one matrix and the division byw. It is also heartening that we are not
“wasting” the bottom row of our four by four matrices!

ConcatenatingP with Morth results in theperspective projection matrix,

Mper = MorthP.

One issue, however, is: How arel,r,b,t determined for perspective? They
identify the “window” through which we look. Since the perspective matrix does
not change the values ofx andy on the(z = n)-plane, we can specify(l, r, b, t)
on that plane.

To integrate the perspective matrix into our orthographic infrastructure, we
simply replaceMorth with Mper, which inserts the perspective matrixP after the
camera matrixMcam has been applied but before the orthographic projection. So

7.3. Perspective Projection 155

the full set of matrices for perspective viewing is

M = MvpMorthPMcam.

The resulting algorithm is:

computeMvp

computeMper

computeMcam

M = MvpMperMcam

for each line segment(ai,bi) do
p = Mai

q = Mbi

drawline(xp/wp, yp/wp, xq/wq, yq/wq)

Note that the only change other than the additional matrix is the divide by the
homogeneous coordinatew.

Multiplied out, the matrixMper looks like this:

Mper =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2n
r−l 0 l+r

l−r 0

0 2n
t−b

b+t
b−t 0

0 0 f+n
n−f

2fn
f−n

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This or similar matrices often appear in documentation, and they are less mysteri-
ous when one realizes that they are usually the product of a few simple matrices.

Example. Many APIs such asOpenGL (Shreiner et al., 2004) use the same canon-
ical view volume as presented here. Theyalso usually have the user specify the
absolute values ofn andf . The projection matrix forOpenGL is

MOpenGL=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2|n|
r−l 0 r+l

r−l 0

0 2|n|
t−b

t+b
t−b 0

0 0 |n|+|f |
|n|−|f |

2|f ||n|
|n|−|f |

0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Other APIs setn andf to 0 and1, respectively. Blinn (J. Blinn, 1996) recom-
mends making the canonical view volume[0, 1]3 for efficiency. All such decisions
will change the the projection matrix slightly.

156 7. Viewing

7.4 Some Properties of the Perspective Transform

An important property of the perspective transform is that it takes lines to lines
and planes to planes. In addition, it takes line segments in the view volume to line
segments in the canonical volume. To see this, consider the line segment

q + t(Q − q).

When transformed by a4×4 matrixM, it is a point with possibly varying homo-
geneous coordinate:

Mq + t(MQ− Mq) ≡ r + t(R − r).

The homogenized 3D line segment is

r + t(R − r)

wr + t(wR − wr)
. (7.6)

If Equation (7.6) can be rewritten in a form

r

wr
+ f(t)

(

R

wR
− r

wr

)

, (7.7)

then all the homogenized points lie on a 3D line. Brute force manipulation of
Equation (7.6) yields such a form with

f(t) =
wRt

wr + t(wR − wr)
. (7.8)

It also turns out that the line segments do map to line segments preserving the
ordering of the points (Exercise 8), i.e., they do not get reordered or “torn.”

A byproduct of the transform taking line segments to line segments is that
it takes the edges and vertices of a triangle to the edges and vertices of another
triangle. Thus, it takes triangles to triangles and planes to planes.

7.5 Field-of-View

While we can specify any window using the(l, r, b, t) andn values, sometimes
we would like to have a simpler system where we look through the center of the
window. This implies the constraint that

l = −r,

b = −t.

7.5. Field-of-View 157

Figure 7.14. The field-of-view θ is the angle from the bottom of the screen to the top of the
screen as measured from the eye.

If we also add the constraint that the pixels are square, i.e., there is no distortion
of shape in the image, then the ratio ofr to t must be the same as the ratio of the
number of horizontal pixels to the number of vertical pixels:

nx

ny
=

r

t
.

Oncenx andny are specified, this leaves only one degree of freedom. That is
often set using thefield-of-view shown asθ in Figure 7.14. This is sometimes
called the verticalfield-of-view to distinguish it from the angle between left and
right sides or from the angle between diagonal corners. From thefigure we can
see that

tan
θ

2
=

t

|n| .

If n andθ are specified, then we can derivet and use code for the more general
viewing system. In some systems, the value ofn is hard-coded to some reasonable
value, and thus we have one fewer degree of freedom.

Frequently Asked Questions

• Is orthographic projection ever useful in practice?

It is useful in applications where relative length judgements are important. It can
also yield simplifications where perspective would be too expensive as occurs in
some medical visualization applications.

• The tessellated spheres I draw in perspective look like ovals. Is this a
bug?

158 7. Viewing

No. It is correct behavior. If you place your eye in the same relative position to
the screen as the virtual viewer has with respect to the viewport, then these ovals
will look like circles because theythemselves are viewed at an angle.

• Does the perspective matrix take negative z values to positive z values
with a reversed ordering? Doesn’t that cause trouble?

Yes. The equation for transformedz is

z′ = n + f − fn

z
.

So z = +ǫ is transformed toz′ = −∞ andz = −ǫ is transformed toz = ∞.
So any line segments that spanz = 0 will be “torn” although all points will be
projected to an appropriate screen location. This tearing is not relevant when all
objects are contained in the viewing volume. This is usually assured byclipping

to the view volume. However, clipping itself is made more complicated by the
tearing phenomenon as is discussed in Chapter 8.

• The perspective matrix changes the value of the homogeneous coordi-
nate. Doesn’t that make the move and scale transformations no longer
work properly?

Applying a translation to a homogeneous point we have

⎡

⎢

⎢

⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

hx
hy
hz
h

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

hx + htx
hy + hty
hz + htz

h

⎤

⎥

⎥

⎦

homogenize−−−−−−−→

⎡

⎢

⎢

⎣

x + tx
y + ty
z + tz

1

⎤

⎥

⎥

⎦

.

Similar effects are true for other transforms (see Exercise 5).

Notes

Most of the discussion of viewing matrices is based on information inReal-Time

Rendering (Akenine-Möller et al., 2008), theOpenGL Programming Guide (Shreiner
et al., 2004),Computer Graphics (Hearn & Baker, 1986), and3D Game Engine

Design (Eberly, 2000).

7.5. Field-of-View 159

Exercises

1. Construct the viewport matrix required for a system in which pixel coordi-
nates count down from the top of the image, rather than up from the bottom.

2. Multiply the viewport and orthographic projection matrices, and show that
the result can also be obtained by a single application of Equation (6.7).

3. Derive the third row of Equation (7.3) from the constraint thatz is preserved
for points on the near and far planes.

4. Show algebraically that the perspective matrix preserves order ofz values
within the view volume.

5. For a4×4 matrix whose top three rows are arbitrary and whose bottom row
is (0, 0, 0, 1), show that the points(x, y, z, 1) and(hx, hy, hz, h) transform
to the same point after homogenization.

6. Verify that the form ofM−1
p given in the text is correct.

7. Verify that the full perspective to canonical matrixMprojection takes(r, t, n)

to (1, 1, 1).

8. Write down a perspective matrix forn = 1, f = 2.

9. For the pointp = (x, y, z, 1), what are the homogenized and unhomoge-
nized result for that point transformed by the perspective matrix in Exer-
cise 6?

10. For the eye positione = (0, 1, 0), a gaze vectorg = (0,−1, 0), and a view-
up vectort = (1, 1, 0), what is the resulting orthonormaluvw basis used
for coordinate rotations?

11. Show, that for a perspective transform, line segments that start in the view
volume do map to line segments in the canonical volume after homogeniza-
tion. Further, show that the relative ordering of points on the two segments
is the same.Hint: Show that thef(t) in Equation (7.8) has the properties
f(0) = 0, f(1) = 1, the derivative off is positive for allt ∈ [0, 1], and the
homogeneous coordinate does not change sign.

8

The Graphics Pipeline

The previous several chapters have established the mathematical scaffolding we
need to look at the second major approach to rendering: drawing objects one by
one onto the screen, orobject-order rendering. Unlike in ray tracing, where we
consider each pixel in turn andfind the objects that influence its color, we’ll now
instead consider each geometric object in turn andfind the pixels that it could have
an effect on. The process offinding all the pixels in an image that are occupied by

Any graphics system has
one or more types of “prim-
itive object” that it can han-
dle directly, and more com-
plex objects are converted
into these “primitives.” Tri-
angles are the most often
used primitive.a geometric primitive is calledrasterization, so object-order rendering can also

be called rendering by rasterization. The sequence of operations that is required,Rasterization-based sys-
tems are also called
scanline renderers.

starting with objects and ending by updating pixels in the image, is known as the
graphics pipeline.

Object-order rendering has enjoyed great success because of its efficiency.
For large scenes, management of dataaccess patterns is crucial to performance,
and making a single pass over the scene visiting each bit of geometry once has
significant advantages over repeatedly searching the scene to retrieve the objects
required to shade each pixel.

The title of this chapter suggests that there is only one way to do object-
order rendering. Of course this isn’t true—two quite different examples of graph-
ics pipelines with very different goals are the hardware pipelines used to sup-
port interactive rendering via APIs like OpenGL and Direct3D and the software
pipelines used infilm production, supporting APIs like RenderMan. Hardware
pipelines must run fast enough to react in real time for games, visualizations,
and user interfaces. Production pipelines must render the highest quality anima-
tion and visual effects possible and scale to enormous scenes, but may take much

161

162 8. The Graphics Pipeline

more time to do so. Despite the different design decisions resulting from these
divergent goals, a remarkable amount is shared among most, if not all, pipelines,
and this chapter attempts to focus on these common fundamentals, erring on the
side of following the hardware pipelines more closely.

The work that needs to be done in object-order rendering can be organized
into the task of rasterization itself, the operations that are done to geometry be-
fore rasterization, and the operations that are done to pixels after rasterization.
The most common geometric operation is applying matrix transformations, as
discussed in the previous two chapters, to map the points that define the geometry
from object space to screen space, so that the input to the rasterizer is expressed
in pixel coordinates, orscreen space. The most common pixelwise operation is
hidden surface removal which arranges for surfaces closer to the viewer to appear
in front of surfaces farther from the viewer. Many other operations also can be in-
cluded at each stage, thereby achieving a wide range of different rendering effects
using the same general process.

For the purposes of this chapter we’ll discuss the graphics pipeline in terms of
four stages (Figure 8.1). Geometric objects are fed into the pipeline from an inter-DISPLAY

BLENDING

FRAMEBUFFER IMAGE

FRAGMENTS

TRANSFORMED GEOMETRY

COMMAND STREAM

FRAGMENT PROCESSING

RASTERIZATION

VERTEX PROCESSING

APPLICATION

Figure 8.1. The stages of
a graphics pipeline.

active application or from a scene descriptionfile, and they are always described
by sets of vertices. The vertices are operated on in thevertex-processing stage,
then the primitives using those vertices are sent to therasterization stage. The
rasterizer breaks each primitive into a number offragments, one for each pixel
covered by the primitive. The fragments are processed in thefragment processing

stage, and then the various fragments corresponding to each pixel are combined
in the fragment blending stage.

We’ll begin by discussing rasterization, then illustrate the purpose of the geo-
metric and pixel-wise stages by a series of examples.

8.1 Rasterization

Rasterization is the central operation in object-order graphics, and therasterizer

is central to any graphics pipeline. For eachprimitive that comes in, the rasterizer
has two jobs: itenumerates the pixels that are covered by the primitive and it
interpolates values, called attributes, across the primitive—the purpose for these
attributes will be clear with later examples. The output of the rasterizer is a set of
fragments, one for each pixel covered by the primitive. Each fragment “lives” at
a particular pixel and carries its own set of attribute values.

In this chapter, we will present rasterization with a view toward using it to
render three-dimensional scenes. The same rasterization methods are used to draw

8.1. Rasterization 163

lines and shapes in 2D as well—although it is becoming more and more common
to use the 3D graphics system “under the covers” to do all 2D drawing.

8.1.1 Line Drawing

Most graphics packages contain a line drawing command that takes two endpoints
in screen coodinates (see Figure 3.10) and draws a line between them. For exam-
ple, the call for endpoints (1,1) and (3,2) would turn on pixels (1,1) and (3,2) and
fill in one pixel between them. For general screen coordinate endpoints(x0, y0)

and(x1, y1), the routine should draw some “reasonable” set of pixels that approx-
imate a line between them. Drawing such lines is based on line equations, and weEven though we often use

integer-valued endpoints
for examples, it’s impor-
tant to properly support
arbitrary endpoints.

have two types of equations to choose from: implicit and parametric. This section
describes the approach using implicit lines.

Line Drawing Using Implicit Line Equations

The most common way to draw lines using implicit equations is themidpoint al-
gorithm (Pitteway (1967); van Aken and Novak (1985)). The midpoint algorithm
ends up drawing the same lines as theBresenham algorithm (Bresenham, 1965)
but it is somewhat more straightforward.

Thefirst thing to do isfind the implicit equation for the line as discussed in
Section 2.5.2:

f(x, y) ≡ (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0 = 0. (8.1)

We assume thatx0 ≤ x1. If that is not true, we swap the points so that it is true.
The slopem of the line is given by

m =
y1 − y0

x1 − x0
.

The following discussion assumesm ∈ (0, 1]. Analogous discussions can be
derived form ∈ (−∞,−1], m ∈ (−1, 0], andm ∈ (1,∞). The four cases cover
all possibilities.

For the casem ∈ (0, 1], there is more “run” than “rise,” i.e., the line is moving
faster inx than iny. If we have an API where they-axis points downwards,
we might have a concern about whether this makes the process harder, but, in
fact, we can ignore that detail. We can ignore the geometric notions of “up”
and “down,” because the algebra is exactly the same for the two cases. Cautious
readers can confirm that the resulting algorithm works for they-axis downwards
case. The key assumption of the midpoint algorithm is that we draw the thinnest

164 8. The Graphics Pipeline

line possible that has no gaps. A diagonal connection between two pixels is not
considered a gap.

As the line progresses from the left endpoint to the right, there are only two
possibilities: draw a pixel at the same height as the pixel drawn to its left, or draw
a pixel one higher. There will always be exactly one pixel in each column of pixels

Figure 8.2. Three
“reasonable” lines that go
seven pixels horizontally
and three pixels vertically.

between the endpoints. Zero would imply a gap, and two would be too thick a line.
There may be two pixels in the same row for the case we are considering; the line
is more horizontal than vertical so sometimes it will go right, and sometimes up.
This concept is shown in Figure 8.2, where three “reasonable” lines are shown,
each advancing more in the horizontal direction than in the vertical direction.

The midpoint algorithm form ∈ (0, 1] first establishes the leftmost pixel and
the column number (x-value) of the rightmost pixel and then loops horizontally
establishing the row (y-value) of each pixel. The basic form of the algorithm is:

y = y0

for x = x0 to x1 do
draw(x, y)

if (some condition) then
y = y + 1

Note thatx andy are integers. In words this says, “keep drawing pixels from left
to right and sometimes move upwards in they-direction while doing so.” The key
is to establish efficient ways to make the decision in theif statement.

An effective way to make the choice is to look at themidpoint of the line
between the two potential pixel centers. More specifically, the pixel just drawn
is pixel (x, y) whose center in real screen coordinates is at(x, y). The candidate
pixels to be drawn to the right are pixels(x+1, y) and(x+1, y+1).The midpoint
between the centers of the two candidate pixels is(x + 1, y + 0.5). If the line
passes below this midpoint we draw the bottom pixel, and otherwise we draw the
top pixel (Figure 8.3).

To decide whether the line passes above or below(x+1, y+0.5), we evaluate
f(x, y + 0.5) in Equation (8.1). Recall from Section 2.5.1 thatf(x, y) = 0 for
points (x, y) on the line,f(x, y) > 0 for points on one side of the line, and
f(x, y) < 0 for points on the other side of the line. Because−f(x, y) = 0 and

Figure 8.3. Top: the line
goes above the midpoint so
the top pixel is drawn. Bot-
tom: the line goes below
the midpoint so the bottom
pixel is drawn.

f(x, y) = 0 are both perfectly good equations for the line, it is not immediately
clear whetherf(x, y) being positive indicates that(x, y) is above the line, or
whether it is below. However, we canfigure it out; the key term in Equation (8.1)
is the y term (x1 − x0)y. Note that(x1 − x0) is definitely positive because
x1 > x0. This means that asy increases, the term(x1−x0)y gets larger (i.e., more
positive or less negative). Thus, the casef(x, +∞) is definitely positive, and
definitely above the line, implying points above the line are all positive. Another

8.1. Rasterization 165

way to look at it is that they component of the gradient vector is positive. So
above the line, wherey can increase arbitrarily,f(x, y) must be positive. This
means we can make our code more specific byfilling in the if statement:

if f(x + 1, y + 0.5) < 0 then
y = y + 1

The above code will work nicely for lines of the appropriate slope (i.e., between
zero and one). The reader can work out the other three cases which differ only in
small details.

If greater efficiency is desired, using anincremental method can help. An
incremental method tries to make a loop more efficient by reusing computation
from the previous step. In the midpoint algorithm as presented, the main compu-
tation is the evaluation off(x + 1, y + 0.5). Note that inside the loop, after the
first iteration, either we already evaluatedf(x − 1, y + 0.5) or f(x − 1, y − 0.5)

(Figure 8.4). Note also this relationship:
Figure 8.4. When using
the decision point shown
between the two light gray
pixels, we just drew the
dark gray pixel, so we eval-
uated f at one of the two left
points shown.

f(x + 1, y) = f(x, y) + (y0 − y1)

f(x + 1, y + 1) = f(x, y) + (y0 − y1) + (x1 − x0).

This allows us to write an incremental version of the code:

y = y0

d = f(x0 + 1, y0 + 0.5)

for x = x0 to x1 do
draw(x, y)

if d < 0 then
y = y + 1

d = d + (x1 − x0) + (y0 − y1)

else
d = d + (y0 − y1)

This code should run faster since it haslittle extra setup costcompared to the
non-incremental version (that is not always true for incremental algorithms), but
it may accumulate more numeric error because the evaluation off(x, y + 0.5)

may be composed of many adds for long lines. However, given that lines are
rarely longer than a few thousand pixels, such an error is unlikely to be critical.
Slightly longer setup cost, but faster loop execution, can be achieved by storing
(x1 −x0)+ (y0− y1) and(y0− y1) as variables. We might hope a good compiler
would do that for us, but if the code is critical, it would be wise to examine the
results of compilation to make sure.

166 8. The Graphics Pipeline

8.1.2 Triangle Rasterization

We often want to draw a 2D triangle with 2D pointsp0 = (x0, y0), p1 = (x1, y1),
andp2 = (x2, y2) in screen coordinates. This is similar to the line drawing
problem, but it has some of its own subtleties. As with line drawing, we may
wish to interpolate color or other properties from values at the vertices. This is
straightforward if we have the barycentric coordinates (Section 2.7). For example,
if the vertices have colorsc0, c1, andc2, the color at a point in the triangle with
barycentric coordinates(α, β, γ) is

c = αc0 + βc1 + γc2.

This type of interpolation of color is known in graphics asGouraud interpolation
after its inventor (Gouraud, 1971).

Another subtlety of rasterizing triangles is that we are usually rasterizing tri-
angles that share vertices and edges. This means we would like to rasterize ad-
jacent triangles so there are no holes. We could do this by using the midpoint
algorithm to draw the outline of each triangle and thenfill in the interior pixels.
This would mean adjacent triangles both draw the same pixels along each edge.
If the adjacent triangles have different colors, the image will depend on the order
in which the two triangles are drawn. The most common way to rasterize trian-
gles that avoids the order problem and eliminates holes is to use the convention
that pixels are drawn if and only if their centers are inside the triangle, i.e., the
barycentric coordinates of the pixel center are all in the interval(0, 1). This raises
the issue of what to do if the center is exactly on the edge of the triangle. There
are several ways to handle this as will be discussed later in this section. The key
observation is that barycentric coordinates allow us to decide whether to draw a
pixel and what color that pixel should be if we are interpolating colors from the
vertices. So our problem of rasterizing the triangle boils down to efficientlyfind-
ing the barycentric coordinates of pixel centers (Pineda, 1988). The brute-force
rasterization algorithm is:

for all x do
for all y do

compute(α, β, γ) for (x, y)

if (α ∈ [0, 1] andβ ∈ [0, 1] andγ ∈ [0, 1]) then
c = αc0 + βc1 + γc2

drawpixel(x, y) with colorc

The rest of the algorithm limits the outer loops to a smaller set of candidate pixels
and makes the barycentric computation efficient.

8.1. Rasterization 167

We can add a simple efficiency by finding the bounding rectangle of the
three vertices and only looping over this rectangle for candidate pixels to draw.
We can compute barycentric coordinates using Equation (2.33). This yields the
algorithm:

xmin = floor (xi)

xmax = ceiling (xi)

ymin = floor (yi)

ymax = ceiling (yi)

for y = ymin to ymax do
for x = xmin to xmax do

α = f12(x, y)/f12(x0, y0)

β = f20(x, y)/f20(x1, y1)

γ = f01(x, y)/f01(x2, y2)

if (α > 0 andβ > 0 andγ > 0) then
c = αc0 + βc1 + γc2

drawpixel(x, y) with colorc

Herefij is the line given by Equation (8.1) with the appropriate vertices:

f01(x, y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0,

f12(x, y) = (y1 − y2)x + (x2 − x1)y + x1y2 − x2y1,

f20(x, y) = (y2 − y0)x + (x0 − x2)y + x2y0 − x0y2.

Note that we have exchanged the testα ∈ (0, 1) with α > 0 etc., because if
all of α, β, γ are positive, then we know they are all less than one becauseα +

β + γ = 1. We could also compute only two of the three barycentric variables

Figure 8.5. A colored triangle with barycentric interpolation. Note that the changes in color
components are linear in each row and column as well as along each edge. In fact it is
constant along every line, such as the diagonals, as well. (See also Plate II.)

168 8. The Graphics Pipeline

and get the third from that relation, but it is not clear that this saves computation
once the algorithm is made incremental, which is possible as in the line drawing
algorithms; each of the computations ofα, β, andγ does an evaluation of the
form f(x, y) = Ax + By + C. In the inner loop, onlyx changes, and it changes
by one. Note thatf(x + 1, y) = f(x, y) + A. This is the basis of the incremental
algorithm. In the outer loop, the evaluation changes forf(x, y) to f(x, y + 1),
so a similar efficiency can be achieved. Becauseα, β, andγ change by constant
increments in the loop, so does the colorc. So this can be made incremental as
well. For example, the red value for pixel(x + 1, y) differs from the red value
for pixel (x, y) by a constant amount that can be precomputed. An example of a
triangle with color interpolation is shown in Figure 8.5.

Dealing with Pixels on Triangle Edges

We have still not discussed what to do for pixels whose centers are exactly on
the edge of a triangle. If a pixel is exactly on the edge of a triangle, then it is
also on the edge of the adjacent triangle if there is one. There is no obvious way
to award the pixel to one triangle or the other. The worst decision would be to
not draw the pixel because a hole would result between the two triangles. Better,
but still not good, would be to have both triangles draw the pixel. If the triangles
are transparent, this will result in a double-coloring. We would really like to
award the pixel to exactly one of the triangles, and we would like this process
to be simple; which triangle is chosen does not matter as long as the choice is
well defined.

Figure 8.6. The off-
screen point will be on one
side of the triangle edge
or the other. Exactly one
of the non-shared vertices
a and b will be on the
same side.

One approach is to note that any off-screen point is definitely on exactly one
side of the shared edge and that is the edge we will draw. For two non-overlapping
triangles, the vertices not on the edge are on opposite sides of the edge from each
other. Exactly one of these vertices will be on the same side of the edge as the
off-screen point (Figure 8.6). This is the basis of the test. The test if numbersp

andq have the same sign can be implemented as the testpq > 0, which is very
efficient in most environments.

Note that the test is not perfect because the line through the edge may also
go through the offscreen point, but we have at least greatly reduced the number
of problematic cases. Which off-screen point is used is arbitrary, and(x, y) =

(−1,−1) is as good a choice as any. We will need to add a check for the case of a
point exactly on an edge. We would like this check not to be reached for common
cases, which are the completely inside or outside tests. This suggests:

xmin = floor (xi)

xmax = ceiling (xi)

8.1. Rasterization 169

ymin = floor (yi)

ymax = ceiling (yi)

fα = f12(x0, y0)

fβ = f20(x1, y1)

fγ = f01(x2, y2)

for y = ymin to ymax do
for x = xmin to xmax do

α = f12(x, y)/fα

β = f20(x, y)/fβ

γ = f01(x, y)/fγ

if (α ≥ 0 andβ ≥ 0 andγ ≥ 0) then
if (α > 0 or fαf12(−1,−1) > 0) and(β > 0 or fβf20(−1,−1) > 0)

and(γ > 0 or fγf01(−1,−1) > 0) then
c = αc0 + βc1 + γc2

drawpixel(x, y) with colorc

We might expect that the above code would work to eliminate holes and double-
draws only if we use exactly the same line equation for both triangles. In fact,
the line equation is the same only if the two shared vertices have the same order
in the draw call for each triangle. Otherwise the equation mightflip in sign. This
could be a problem depending on whether the compiler changes the order of op-
erations. So if a robust implementation is needed, the details of the compiler and
arithmetic unit may need to be examined. Thefirst four lines in the pseudocode
above must be coded carefully to handlecases where the edge exactly hits the
pixel center.

In addition to being amenable to an incremental implementation, there are
several potential early exit points. For example, ifα is negative, there is no need
to computeβ orγ. While this may well result in a speed improvement, profiling is
always a good idea; the extra branches could reduce pipelining or concurrency and
might slow down the code. So as always, test any attractive-looking optimizations
if the code is a critical section.

Another detail of the above code is that the divisions could be divisions by
zero for degenerate triangles, i.e., iffγ = 0. Either thefloating point error condi-
tions should be accounted for properly, or another test will be needed.

8.1.3 Clipping

Simply transforming primitives into screen space and rasterizing them does not
quite work by itself. This is because primitives that are outside the view volume—

170 8. The Graphics Pipeline

z=fz=n

z'

z

n

f

n+f

eye
gaze
direction

eye
gaze
direction

a

b

c

a’

b’

c’

Figure 8.7. The depth z is transformed to the depth z ′ by the perspective transform. Note
that when z moves from positive to negative, z ′ switches from negative to positive. Thus
vertices behind the eye are moved in front of the eye beyond z ′ = n + f. This will lead to
wrong results, which is why the triangle is first clipped to ensure all vertices are in front of the
eye.

8.1. Rasterization 171

particularly, primitives that are behindthe eye—can end up being rasterized, lead-
ing to incorrect results. For instance, consider the triangle shown in Figure 8.7.
Two vertices are in the view volume, but the third is behind the eye. The projec-
tion transformation maps this vertex to a nonsensical location behind the far plane,
and if this is allowed to happen the triangle will be rasterized incorrectly. For this
reason, rasterization has to be preceded by aclipping operation that removes parts
of primitives that could extend behind the eye.

Clipping is a common operation in graphics, needed whenever one geometric
entity “cuts” another. For example, if you clip a triangle against the planex = 0,
the plane cuts the triangle into two parts if the signs of thex-coordinates of the
vertices are not all the same. In most applications of clipping, the portion of the
triangle on the “wrong” side of the plane is discarded. This operation for a single
plane is shown in Figure 8.8.

Figure 8.8. A polygon
is clipped against a clipping
plane. The portion “inside”
the plane is retained.

In clipping to prepare for rasterization, the “wrong” side is the side outside
the view volume. It is always safe to clip away all geometry outside the view
volume—that is, clipping against allsix faces of the volume—but many systems
manage to get away with only clipping against the near plane.

This section discusses the basic implementation of a clipping module. Those
interested in implementing an industrial-speed clipper should see the book by
Blinn mentioned in the notes at the end of this chapter.

The two most common approaches for implementing clipping are

1. in world coordinates using the six planes that bound the truncated viewing
pyramid,

2. in the 4D transformed space before the homogeneous divide.

Either possibility can be effectively implemented (J. Blinn, 1996) using the fol-
lowing approach for each triangle:

for each of six planesdo
if (triangle entirely outside of plane) then

break(triangle is not visible)
else iftriangle spans planethen

clip triangle
if (quadrilateral is left) then

break into two triangles

8.1.4 Clipping Before the Transform (Option 1)

Option 1 has a straightforward implementation. The only question is, “What are
the six plane equations?” Because these equations are the same for all triangles

172 8. The Graphics Pipeline

rendered in the single image, we do not need to compute them very efficiently.
For this reason, we can just invert the transform shown in Figure 5.11 and apply
it to the eight vertices of the transformed view volume:

(x, y, z) =(l, b, n)

(r, b, n)

(l, t, n)

(r, t, n)

(l, b, f)

(r, b, f)

(l, t, f)

(r, t, f)

The plane equations can be inferred from here. Alternatively, we can use vector
geometry to get the planes directly from the viewing parameters.

8.1.5 Clipping in Homogeneous Coordinates (Option 2)

Surprisingly, the option usually implemented is that of clipping in homogeneous
coordinates before the divide. Here the view volume is 4D, and it is bounded by
3D volumes (hyperplanes). These are:

−x + lw = 0

x − rw = 0

−y + bw = 0

y − tw = 0

−z + nw = 0

z − fw = 0

These planes are quite simple, so the efficiency is better than for Option 1. They
still can be improved by transforming the view volume[l, r] × [b, t] × [f, n] to
[0, 1]3. It turns out that the clipping of the triangles is not much more complicated
than in 3D.

8.1.6 Clipping against a Plane

No matter which option we choose, we must clip against a plane. Recall from
Section 2.5.5 that the implicit equation for a plane through pointq with normal

8.2. Operations Before and After Rasterization 173

n is
f(p) = n · (p − q) = 0.

This is often written
f(p) = n · p + D = 0. (8.2)

Interestingly, this equation not only describes a 3D plane, but it also describes a
line in 2D and the volume analog of a plane in 4D. All of these entities are usually
called planes in their appropriate dimension.

If we have a line segment between pointsa andb, we can “clip” it against
a plane using the techniques for cutting the edges of 3D triangles in BSP tree
programs described in Section 12.4.3. Here, the pointsa andb are tested to
determine whether they are on opposite sides of the planef(p) = 0 by checking
whetherf(a) andf(b) have different signs. Typicallyf(p) < 0 is defined to be
“inside” the plane, andf(p) > 0 is “outside” the plane. If the plane does split the
line, then we can solve for the intersection point by substituting the equation for
the parametric line,

p = a + t(b − a),

into thef(p) = 0 plane of Equation (8.2). This yields

n · (a + t(b − a)) + D = 0.

Solving fort gives

t =
n · a + D

n · (a − b)
.

We can thenfind the intersection point and “shorten” the line.
To clip a triangle, we again can follow Section 12.4.3 to produce one or two

triangles .

8.2 Operations Before and After Rasterization

Before a primitive can be rasterized, the vertices that define it must be in screen
coordinates, and the colors or other attributes that are supposed to be interpolated
across the primitive must be known. Preparing this data is the job of thevertex-

processing stage of the pipeline. In this stage,incoming vertices are transformed
by the modeling, viewing, and projection transformations, mapping them from
their original coordinates into screen space (where, recall, position is measured
in terms of pixels). At the same time, other information, such as colors, surface
normals, or texture coordinates, is transformed as needed; we’ll discuss these
additional attributes in the examples below.

174 8. The Graphics Pipeline

After rasterization, further processing is done to compute a color and depth
for each fragment. This processing can be as simple as just passing through an in-
terpolated color and using the depth computed by the rasterizer; or it can involve
complex shading operations. Finally, the blending phase combines the fragments
generated by the (possibly several) primitives that overlapped each pixel to com-
pute thefinal color. The most common blending approach is to choose the color
of the fragment with the smallest depth (closest to the eye).

The purposes of the different stages are best illustrated by examples.

8.2.1 Simple 2D Drawing

The simplest possible pipeline does nothing in the vertex or fragment stages, and
in the blending stage the color of each fragment simply overwrites the value of the
previous one. The application supplies primitives directly in pixel coordinates,
and the rasterizer does all the work. This basic arrangement is the essence of
many simple, older APIs for drawing user interfaces, plots, graphs, and other 2D
content. Solid color shapes can be drawn by specifying the same color for all
vertices of each primitive, and our model pipeline also supports smoothly varying
color using interpolation.

8.2.2 A Minimal 3D Pipeline

To draw objects in 3D, the only change needed to the 2D drawing pipeline is a
single matrix transformation: the vertex-processing stage multiplies the incoming
vertex positions by the product of the modeling, camera, projection, and viewport
matrices, resulting in screen-space triangles that are then drawn in the same way
as if they’d been specified directly in 2D.

One problem with the minimal 3D pipeline is that in order to get occlusion
relationships correct—to get nearer objects in front of farther away objects—
primitives must be drawn in back-to-front order. This is known as thepainter’s

algorithm for hidden surface removal, by analogy to painting the background of
a paintingfirst, then painting the foreground over it. The painter’s algorithm is
a perfectly valid way to remove hidden surfaces, but it has several drawbacks.

Figure 8.9. Two occlu-
sion cycles, which cannot
be drawn in back-to-front
order.

It cannot handle triangles that intersectone another, because there is no correct
order in which to draw them. Similarly, several triangles, even if they don’t inter-
sect, can still be arranged in anocclusion cycle, as shown in Figure 8.9, another
case in which the back-to-front order does not exist. And most importantly, sort-
ing the primitives by depth is slow, especially for large scenes, and disturbs the

8.2. Operations Before and After Rasterization 175

efficientflow of data that makes object-order rendering so fast. Figure 8.10 shows
the result of this process when the objects are not sorted by depth.

Figure 8.10. The result
of drawing two spheres of
identical size using the min-
imal pipeline. The sphere
that appears smaller is far-
ther away but is drawn last,
so it incorrectly overwrites
the nearer one.

8.2.3 Using a z-Buffer for Hidden Surfaces

In practice the painter’s algorithm is rarely used; instead a simple and effective
hidden surface removal algorithm known as thez-buffer algorithm is used. The
method is very simple: at each pixel we keep track of the distance to the closest
surface that has been drawn so far, and we throw away fragments that are farther
away than that distance. The closest distance is stored by allocating an extra value
for each pixel, in addition to the red, green, and blue color values, which is known
as the depth, or z-value. Thedepth buffer, or z-buffer, is the name for the grid of
depth values.

The z-buffer algorithm is implemented in the fragment blending phase, by
comparing the depth of each fragment with the current value stored in the z-buffer.
If the fragment’s depth is closer, both its color and its depth value overwrite the
values currently in the color and depth buffers. If the fragment’s depth is farther Of course there can be ties

in the depth test, in which
case the order may well
matter.

away, it is discarded. To ensure that thefirst fragment will pass the depth test, thez

buffer is initialized to the maximum depth (the depth of the far plane). Irrespective
of the order in which surfaces are drawn, the same fragment will win the depth
test, and the image will be the same.

The z-buffer algorithm requires eachfragment to carry a depth. This is done
simply by interpolating thez-coordinate as a vertex attribute, in the same way that
color or other attributes are interpolated.

The z-buffer is such a simple and practical way to deal with hidden surfaces in
object-order rendering that it is by far the dominant approach. It is much simpler
than geometric methods that cut surfacesinto pieces that can be sorted by depth,
because it avoids solving any problems that don’t need to be solved. The depth

Figure 8.11. The result
of drawing the same two
spheres using the z-buffer.

order only needs to be determined at the locations of the pixels, and that is all
that the z-buffer does. It is universally supported by hardware graphics pipelines
and is also the most commonly used method for software pipelines. Figure 8.11
shows an example result.

Precision Issues

In practice, thez-values stored in the buffer are non-negative integers. This is
preferable to truefloats because the fast memory needed for the z-buffer is some-
what expensive and is worth keeping to a minimum.

The use of integers can cause some precision problems. If we use an integer
range havingB values{0, 1, . . . , B−1}, we can map0 to the near clipping plane

176 8. The Graphics Pipeline

Figure 8.12. A z-buffer rasterizing two triangles in each of two possible orders. The first
triangle is fully rasterized. The second triangle has every pixel computed, but for three of the
pixels the depth-contest is lost, and those pixels are not drawn. The final image is the same
regardless.

8.2. Operations Before and After Rasterization 177

z = n andB−1 to the far clipping planez = f . Note, that for this discussion, we
assumez, n, andf are positive. This will result in the same results as the negative
case, but the details of the argument are easier to follow. We send eachz-value to
a “bucket” with depth∆z = (f −n)/B. We would not use the integer z-buffer if
memory were not a premium, so it is useful to makeB as small as possible.

If we allocateb bits to store thez-value, thenB = 2b. We need enough bits
to make sure any triangle in front of another triangle will have its depth mapped
to distinct depth bins.

For example, if you are rendering a scene where triangles have a separation of
at least one meter, then∆z < 1 should yield images without artifacts. There are
two ways to make∆z smaller: moven andf closer together or increaseb. If b is
fixed, as it may be in APIs or on particular hardware platforms, adjustingn andf

is the only option.
The precision of z-buffers must be handled with great care when perspective

images are created. The value∆z above is usedafter the perspective divide.
Recall from Section 7.3 that the result of the perspective divide is

z = n + f − fn

zw
.

The actual bin depth is related tozw, the world depth, rather thanz, the post-
perspective divide depth. We can approximate the bin size by differentiating both
sides:

∆z ≈ fn∆zw

z2
w

.

Bin sizes vary in depth. The bin size in world space is

∆zw ≈ z2
w∆z

fn
.

Note that the quantity∆z is as discussed before. The biggest bin will be for
z′ = f , where

∆zmax
w ≈ f∆z

n
.

Note that choosingn = 0, a natural choice if we don’t want to lose objects right
in front of the eye, will result in an infinitely large bin—a very bad condition. To
make∆zmax

w as small as possible, we want to minimizef and maximizen. Thus,
it is always important to choosen andf carefully.

8.2.4 Per-vertex Shading

So far the application sending triangles into the pipeline is responsible for setting
the color; the rasterizer just interpolates the colors and they are written directly

178 8. The Graphics Pipeline

into the output image. For some applications this is sufficient, but in many cases
we want 3D objects to be drawn with shading, using the same illumination equa-
tions that we used for image-order rendering in Chapter 4. Recall that these equa-
tions require a light direction, an eye direction, and a surface normal to compute
the color of a surface.

One way to handle shading computations is to perform them in the vertex
stage. The application provides normal vectors at the vertices, and the positions
and colors of the lights are provided separately (they don’t vary across the surface,
so they don’t need to be specified for each vertex). For each vertex, the direction
to the viewer and the direction to each light are computed based on the positions
of the camera, the lights, and the vertex. The desired shading equation is evaluated
to compute a color, which is then passed to the rasterizer as the vertex color. Per-
vertex shading is sometimes calledGouraud shading.

One decision to be made is the coordinate system in which shading com-
putations are done. World space or eye space are good choices. It is impor-
tant to choose a coordinate system that is orthonormal when viewed in world
space, because shading equations dependon angles between vectors, which are
not preserved by operations like nonuniform scale that are often used in the mod-
eling transformation, or perspective projection, often used in the projection to the
canonical view volume. Shading in eye space has the advantage that we don’t
need to keep track of the camera position, because the camera is always at the
origin in eye space, in perspective projection, or the view direction is always+z

in orthographic projection.
Per-vertex shading has the disadvantage that it cannot produce any details in

the shading that are smaller than the primitives used to draw the surface, because
it only computes shading once for each vertex and never in between vertices.

Figure 8.13. Two
spheres drawn using per-
pixel (Gouraud) shading.
Because the triangles are
large, interpolation artifacts
are visible.

For instance, in a room with afloor that is drawn using two large triangles and
illuminated by a light source in the middle of the room, shading will be evaluated
only at the corners of the room, and the interpolated value will likely be much too
dark in the center. Also, curved surfacesthat are shaded with specular highlights
must be drawn using primitives small enough that the highlights can be resolved.

Figure 8.13 shows our two spheres drawn with per-vertex shading.

8.2.5 Per-fragment Shading
Per-fragment shading is
sometimes called Phong
shading, which is confusing
because the same name
is attached to the Phong
illumination model.

To avoid the interpolation artifacts associated with per-vertex shading, we can
avoid interpolating colors by performing the shading computationsafter the in-
terpolation, in the fragment stage. In per-fragment shading, the same shading
equations are evaluated, but they are evaluated for each fragment using interpo-
lated vectors, rather than for each vertexusing the vectors from the application.

8.2. Operations Before and After Rasterization 179

In per-fragment shading the geometric information needed for shading is
passed through the rasterizer as attributes, so the vertex stage must coordinate
with the fragment stage to prepare the data appropriately. One approach is to in-
terpolate the eye-space surface normal and the eye-space vertex position, which
then can be used just as they would in per-vertex shading.

Figure 8.14 shows our two spheres drawn with per-vertex shading.

Figure 8.14. Two spheres
drawn using per-fragment
shading. Because the trian-
gles are large, interpolation
artifacts are visible.

8.2.6 Texture Mapping

Textures (discussed in Chapter 11) are images that are used to add extra detail to
the shading of surfaces that would otherwise look too homogeneous and artificial.
The idea is simple: each time shading is computed, we read one of the values
used in the shading computation—the diffuse color, for instance—from a texture
instead of using the attribute values that are attached to the geometry being ren-
dered. This operation is known as atexture lookup: the shading code specifies a
texture coordinate, a point in the domain of the texture, and the texture-mapping
systemfinds the value at that point in the texture image and returns it. The texture
value is then used in the shading computation.

The most common way to define texture coordinates is simply to make the
texture coordinate another vertex attribute. Each primitive then knows where it
lives in the texture.

8.2.7 Shading Frequency

The decision about where to place shading computations depends on how fast the
color changes—thescale of the details being computed. Shading with large-scale
features, such as diffuse shading on curved surfaces, can be evaluated fairly infre-
quently and then interpolated: it can be computed with a lowshading frequency.
Shading that produces small-scale features, such as sharp highlights or detailed
textures, needs to be evaluated at a high shading frequency. For details that need
to look sharp and crisp in the image, the shading frequency needs to be at least
one shading sample per pixel.

So large-scale effects can safely be computed in the vertex stage, even when
the vertices defining the primitives are many pixels apart. Effects that require a
high shading frequency can also be computed at the vertex stage, as long as the
vertices are close together in the image; alternatively, they can be computed at the
fragment stage when primitives are larger than a pixel.

180 8. The Graphics Pipeline

For example, a hardware pipeline as used in a computer game, generally us-
ing primitives that cover several pixels to ensure high efficiency, normally does
most shading computations per fragment. On the other hand, the PhotoRealistic
RenderMan system does all shading computations per vertex, afterfirst subdivid-
ing, ordicing, all surfaces into small quadrilaterals calledmicropolygons that are
about the size of pixels. Since the primitives are small, per-vertex shading in this
system achieves a high shading frequency that is suitable for detailed shading.

8.3 Simple Antialiasing

Just as with ray tracing, rasterization will produce jagged lines and triangle edges
if we make an all-or-nothing determination of whether each pixel is inside the
primitive or not. In fact, the set of fragments generated by the simple triangle
rasterization algorithms described in this chapter, sometimes called standard or
aliased rasterization, is exactly the same as the set of pixels that would be mapped
to that triangle by a ray tracer that sends one ray through the center of each pixel.
Also as in ray tracing, the solution is to allow pixels to be partly covered by a
primitive (Crow, 1978). In practice this form of blurring helps visual quality,
especially in animations. This is shown as the top line of Figure 8.15.

There are a number of different approaches to antialiasing in rasterization
applications. Just as with a ray tracer, we can produce an antialiased image by
setting each pixel value to the average color of the image over the square area
belonging to the pixel, an approach known asbox filtering. This means we haveThere are better filters than

the box, but a box filter will
suffice for all but the most
demanding applications.

to think of all drawable entities as having well-defined areas. For example, the line
in Figure 8.15 can be thought of as approximating a one-pixel-wide rectangle.

Figure 8.15. An antialiased and a jaggy line viewed at close range so individual pixels are
visible.

8.4. Culling Primitives for Efficiency 181

The easiest way to implement box-filter antialiasing is bysupersampling: cre-
ate images at very high resolutions and then downsample. For example, if our
goal is a 256× 256 pixel image of a line with width 1.2 pixels, we could rasterize
a rectangle version of the line with width 4.8 pixels on a 1024× 1024 screen,
and then average 4× 4 groups of pixels to get the colors for each of the 256×
256 pixels in the “shrunken” image. This is an approximation of the actual box-
filtered image, but works well when objects are not extremely small relative to the
distance between pixels.

Supersampling is quite expensive, however. Because the very sharp edges
that cause aliasing are normally caused by the edges of primitives, rather than
sudden variations in shading within a primitive, a widely used optimization is
to sample visibility at a higher rate than shading. If information about coverage
and depth is stored for several points within each pixel, very good antialiasing
can be achieved even if only one color is computed. In systems like RenderMan
that use per-vertex shading, this is achieved by rasterizing at high resolution: it is
inexpensive to do so because shading is simply interpolatedto produce colors for
the many fragments, or visibility samples. In systems with per-fragment shading,
such as hardware pipelines,multisample antialiasing is achieved by storing for
each fragment a single color plus a coverage mask and a set of depth values.

8.4 Culling Primitives for Efficiency

The strength of object-order rendering, that it requires a single pass over all the
geometry in the scene, is also a weaknessfor complex scenes. For instance, in a
model of an entire city, only a few buildings are likely to be visible at any given
time. A correct image can be obtained by drawing all the primitives in the scene,
but a great deal of effort will be wasted processing geometry that is behind the
visible buildings, or behind the viewer, and therefore doesn’t contribute to the
final image.

Identifying and throwing away invisible geometry to save the time that would
be spent processing it is known asculling. Three commonly implemented culling
strategies (often used in tandem) are:

• view volume culling—the removal of geometry that is outside the view
volume;

• occlusion culling—the removal of geometry that may be within the view
volume but is obscured, or occluded, by other geometry closer to the
camera;

• backface culling—the removal of primitives facing away from the camera.

182 8. The Graphics Pipeline

We will briefly discuss view volume culling and backface culling, but culling
in high performance systems is acomplex topic; see (Akenine-M¨oller et al., 2008)
for a complete discussion and for information about occlusion culling.

8.4.1 View Volume Culling

When an entire primitive lies outside the view volume, it can be culled, since it
will produce no fragments when rasterized. If we can cull many primitives with a
quick test, we may be able to speed up drawing significantly. On the other hand,
testing primitives individually to decide exactly which ones need to be drawn may
cost more than just letting the rasterizer eliminate them.

View volume culling, also known asview frustum culling, is especially help-
ful when many triangles are grouped into an object with an associated bounding
volume. If the bounding volume lies outside the view volume, then so do all the
triangles that make up the object. For example, if we have 1000 triangles bounded
by a single sphere with centerc and radiusr, we can check whether the sphere
lies outside the clipping plane,

(p − a) · n = 0,

wherea is a point on the plane, andp is a variable. This is equivalent to checking
whether the signed distance from the center of the spherec to the plane is greater
than+r. This amounts to the check that

(c − a) · n
‖n‖ > r.

Note that the sphere may overlap the plane even in a case where all the triangles
do lie outside the plane. Thus, this is a conservative test. How conservative the
test is depends on how well the sphere bounds the object.

The same idea can be applied hierarchically if the scene is organized in one
of the spatial data structures described in Chapter 12.

8.4.2 Backface Culling

When polygonal models are closed, i.e., they bound a closed space with no holes,
then they are often assumed to have outward facing normal vectors as discussed
in Chapter 10. For such models, the polygons that face away from the eye are
certain to be overdrawn by polygons that face the eye. Thus, those polygons can
be culled before the pipeline even starts. The test for this condition is the same
one used for silhouette drawing given in Section 10.3.1.

8.4. Culling Primitives for Efficiency 183

Frequently Asked Questions

• I’ve often seen clipping discussed at length, and it is a much more in-
volved process than that described in this chapter. What is going on here?

The clipping described in this chapter works, but lacks optimizations that an
industrial-strength clipper would have. These optimizations are discussed in de-
tail in Blinn’s definitive work listed in the chapter notes.

• How are polygons that are not triangles rasterized?

These can either be done directly scan-line by scan-line, or they can be broken
down into triangles. The latter appears to be the more popular technique.

• Is it always better to antialias?

No. Some images look crisper without antialiasing. Many programs use unan-
tialiased “screen fonts” because they are easier to read.

• The documentation for my API talks about “scene graphs” and “matrix
stacks.” Are these part of the graphics pipeline?

The graphics pipeline is certainly designed with these in mind, and whether we
define them as part of the pipeline is a matter of taste. This book delays their
discussion until Chapter 12.

• Is a uniform distance z-buffer better than the standard one that includes
perspective matrix non-linearities?

It depends. One “feature” of the non-linearities is that the z-buffer has more res-
olution near the eye and less in the distance. If a level-of-detail system is used,
then geometry in the distance is coarser and the “unfairness” of the z-buffer can
be a good thing.

• Is a software z-buffer ever useful?

Yes. Most of the movies that use 3D computer graphics have used a variant of the
software z-buffer developed by Pixar (Cook et al., 1987) .

184 8. The Graphics Pipeline

Notes

A wonderful book about designing a graphics pipeline isJim Blinn’s Corner:

A Trip Down the Graphics Pipeline (J. Blinn, 1996). Many nice details of the
pipeline and culling are in3D Game Engine Design (Eberly, 2000) andReal-Time

Rendering (Akenine-Möller et al., 2008).

Exercises

1. Suppose that in the perspective transform we haven = 1 andf = 2. Under
what circumstances will we have a “reversal” where a vertex before and
after the perspective transformflips from in front of to behind the eye or
vice-versa?

2. Is there any reason not to clip inx andy after the perspective divide (see
Figure 11.2, stage 3)?

3. Derive the incremental form of the midpoint line-drawing algorithm with
colors at endpoints for0 < m ≤ 1.

4. Modify the triangle-drawing algorithm so that it will draw exactly one pixel
for points on a triangle edge which goes through(x, y) = (−1,−1).

5. Suppose you are designing an integer z-buffer forflight simulation where
all of the objects are at least one meter thick, are never closer to the viewer
than 4 meters, and may be as far away as 100 km. How many bits are
needed in the z-buffer to ensure there are no visibility errors? Suppose that
visibility errors only matter near the viewer, i.e., for distances less than 100
meters. How many bits are needed in that case?

9

Signal Processing

In graphics, we often deal with functions of a continuous variable: an image is
thefirst example you have seen, but you will encounter many more as you con-
tinue your exploration of graphics. By their nature continuous functions can’t be
directly represented in a computer; we have to somehow represent them using
a finite number of bits. One of the most useful approaches to representing con-
tinuous functions is to usesamples of the function: just store the values of the
function at many different points andreconstruct the values in between when and
if they are needed.

You are by now familiar with the idea of representing an image using a two-
dimensional grid of pixels—so you have already seen a sampled representation!
Think of an image captured by a digital camera: the actual image of the scene that
was formed by the camera’s lens is a continuous function of the position on the
image plane, and the camera converted that function into a two-dimensional grid
of samples. Mathematically, the camera converted a function of typeR

2 → C

(whereC is the set of colors) to a two-dimensional array of color samples, or a
function of typeZ

2 → C.
Another example of a sampled representation is a 2D digitizing tablet such

as the screen of a tablet computer or PDA.In this case the original function is
the motion of the stylus, which is a time-varying 2D position, or a function of
typeR → R

2. The digitizer measures the position of the stylus at many points in
time, resulting in a sequence of 2D coordinates, or a function of typeZ → R

2. A

185

186 9. Signal Processing

motion capture system does exactly the same thing for a special marker attached
to an actor’s body: it takes the 3D position of the marker over time (R → R

3) and
makes it into a series of instantaneous position measurements (Z → R

3).
Going up in dimension, a medical CT scanner, used to non-invasively examine

the interior of a person’s body, measures density as a function of position inside
the body. The output of the scanner is a 3D grid of density values: it converts the
density of the body (R3 → R) to a 3D array of real numbers (Z

3 → R).
These examples seem different, but in fact they can all be handled using ex-

actly the same mathematics. In all casesa function is being sampled at the points
of a lattice in one or more dimensions, and in all cases we need to be able to
reconstruct that original continuous function from the array of samples.

From the example of a 2D image, it may seem that the pixels are enough,
and we never need to think about continuous functions again once the camera has
discretized the image. But what if we want to make the image larger or smaller on
the screen, particularly by non-integer scale factors? It turns out that the simplest
algorithms to do this perform badly, introducing obvious visual artifacts known
asaliasing. Explaining why aliasing happens and understanding how to prevent it
requires the mathematics of sampling theory. The resulting algorithms are rather
simple, but the reasoning behind them, and the details of making them perform
well, can be subtle.

Representing continuous functions in a computer is, of course, not unique to
graphics; nor is the idea of sampling and reconstruction. Sampled representations
are used in applications from digital audio to computational physics, and graphics
is just one (and by no means thefirst) user of the related algorithms and mathe-
matics. The fundamental facts about how to do sampling and reconstruction have
been known in thefield of communications since the 1920s and were stated in
exactly the form we use them by the 1940s (Shannon & Weaver, 1964).

This chapter starts by summarizing sampling and reconstruction using the
concrete one-dimensional example of digital audio. Then we go on to present
the basic mathematics and algorithms that underlie sampling and reconstruction
in one and two dimensions. Finally we go into the details of the frequency-domain
viewpoint, which provides many insights into the behavior of these algorithms.

9.1 Digital Audio: Sampling in 1D

Although sampled representations had already been in use for years in telecom-
munications, the introduction of the compact disc in 1982, following the increased
use of digital recording for audio in the previous decade, was thefirst highly vis-
ible consumer application of sampling.

9.1. Digital Audio: Sampling in 1D 187

lowpass filter

lowpass filter

A/D
converter

D/A
converter

Figure 9.1. Sampling and reconstruction in digital audio.

In audio recording, a microphone converts sound, which exists as pressure
waves in the air, into a time-varying voltage that amounts to a measurement of the
changing air pressure at the point where the microphone is located. This electrical
signal needs to be stored somehow so that it may be played back at a later time
and sent to a loudspeaker that converts the voltage back into pressure waves by
moving a diaphragm in synchronization with the voltage.

The digital approach to recording the audio signal (Figure 9.1) uses sampling:
an analog-to-digital converter (A/D converter, or ADC) measures the voltage
many thousand times per second, generating a stream of integers that can eas-
ily be stored on any number of media, saya disk on a computer in the recording
studio, or transmitted to another location, say the memory in a portable audio
player. At playback time, the data is readout at the appropriate rate and sent to a
digital-to-analog converter (D/A converter, or DAC). The DAC produces a volt-
age according to the numbers it receives, and, provided we take enough samples
to fairly represent the variation in voltage, the resulting electrical signal is, for all
practical purposes, identical to the input.

It turns out that the number of samples per second required to end up with a
good reproduction depends on how high-pitched the sounds are that we are trying
to record. A sample rate that works fine for reproducing a string bass or a kick
drum produces bizarre-sounding results if we try to record a piccolo or a cymbal;
but those sounds are reproduced justfine with a higher sample rate. To avoid these
undersampling artifacts the digital audio recorderfilters the input to the ADC to
remove high frequencies that can cause problems.

Another kind of problem arises on the output side. The DAC produces a
voltage that changes whenever a new sample comes in, but stays constant until
the next sample, producing a stair-step shaped graph. These stair-steps act like
noise, adding a high-frequency, signal-dependent buzzing sound. To remove this
reconstruction artifact, the digital audio playerfilters the output from the DAC to
smooth out the waveform.

188 9. Signal Processing

Figure 9.2. A sine wave (gray curve) sampled at two different rates. Top: at a high sample
rate, the resulting samples (black dots) represent the signal well. Bottom: a lower sample
rate produces an ambiguous result: the samples are exactly the same as would result from
sampling a wave of much lower frequency (dashed curve).

9.1.1 Sampling Artifacts and Aliasing

The digital audio recording chain can serve as a concrete model for the sampling
and reconstruction processes that happen in graphics. The same kind of under-
sampling and reconstruction artifacts also happen with images or other sampled
signals in graphics, and the solution is the same:filtering before sampling and
filtering again during reconstruction.

A concrete example of the kind of artifacts that can arise from too-low sample
frequencies is shown in Figure 9.2. Here we are sampling a simple sine wave
using two different sample frequencies: 10.8 samples per cycle on the top and
1.2 samples per cycle on the bottom. The higher rate produces a set of samples
that obviously capture the signal well, but the samples resulting from the lower
sample rate are indistinguishable from samples of a low-frequency sine wave—in
fact, faced with this set of samples the low-frequency sinusoid seems the more
likely interpretation.

Once the sampling has been done, it is impossible to know which of the two
signals—the fast or the slow sine wave—was the original, and therefore there is
no single method that can properly reconstruct the signal in both cases. Because
the high frequency signal is “pretending to be” a low-frequency signal, this phe-
nomenon is known asaliasing.

Aliasing shows up wheneverflaws in sampling and reconstruction lead to arti-
facts at surprising frequencies. In audio, aliasing takes the form of odd-sounding
extra tones—a bell ringing at 10KHz, after being sampled at 8KHz, turns into a

9.2. Convolution 189

6KHz tone. In images, aliasing often takes the form ofmoiré patterns that re-
sult from the interaction of the sample grid with regular features in an image, for
instance the window blinds in Figure 9.34.

Another example of aliasing in a synthetic image is the familiar stair-stepping
on straight lines that are rendered with only black and white pixels (Figure 9.34).
This is an example of small-scale features(the sharp edges of the lines) creating
artifacts at a different scale (for shallow-slope lines the stair steps are very long).

The basic issues of sampling and reconstruction can be understood simply
based on features being too small or too large, but some more quantitative ques-
tions are harder to answer:

• What sample rate is high enough to ensure good results?

• What kinds offilters are appropriate for sampling and reconstruction?

• What degree of smoothing is required to avoid aliasing?

Solid answers to these questions will have to wait until we have developed the
theory fully in Section 9.5

9.2 Convolution

Before we discuss algorithms for sampling and reconstruction, we’llfirst examine
the mathematical concept on which they are based—convolution. Convolution
is a simple mathematical concept that underlies the algorithms that are used for
sampling,filtering, and reconstruction. It also is the basis of how we will analyze
these algorithms later in the chapter.

Convolution is an operation on functions: it takes two functions and combines
them to produce a new function. In this book, the convolution operator is denoted
by a star: the result of applying convolution to the functionsf andg is f ⋆ g. We
say thatf is convolved withg, andf ⋆ g is the convolution off andg.

Convolution can be applied either to continuous functions (functionsf(x) that
are defined for any real argumentx) or to discrete sequences (functionsa[i] that
are defined only for integer argumentsi). It can also be applied to functions de-
fined on one-dimensional, two-dimensional, or higher-dimensional domains (that
is, functions of one, two, or more arguments). We will start with the discrete,
one-dimensional casefirst, then continue to continuous functions and two- and
three-dimensional functions.

For convenience in the definitions, we generally assume that the functions’
domains go on forever, though of course in practice they will have to stop some-
where, and we have to handle the end points in a special way.

190 9. Signal Processing

continuous moving average discrete moving average

x x+rx–r i i+ri–r

Figure 9.3. Smoothing using a moving average.

9.2.1 Moving Averages

To get a basic picture of convolution, consider the example of smoothing a 1D
function using a moving average (Figure 9.3). To get a smoothed value at any
point, we compute the average of the function over a range extending a distance
r in each direction. The distancer, called theradius of the smoothing operation,
is a parameter that controls how much smoothing happens.

We can state this idea mathematically for discrete or continuous functions. If
we’re smoothing a continuous functiong(x), averaging means integratingg over
an interval and then dividing by the length of the interval:

h(x) =
1

2r

∫ x+r

x−r

g(t) dt.

On the other hand, if we’re smoothing a discrete functionb[i], averaging means
summingb for a range of indices and dividing by the number of values:

c[i] =
1

2r + 1

i+r
∑

j=i−r

b[j]. (9.1)

In each case, the normalization constant is chosen so that if we smooth a constant
function the result will be the same function.

This idea of a moving average is the essence of convolution; the only differ-
ence is that in convolution the moving average is a weighted average.

9.2.2 Discrete Convolution

We will start with the most concrete case of convolution: convolving a discrete
sequencea[i] with another discrete sequenceb[i]. The result is a discrete sequence
(a ⋆ b)[i]. The process is just like smoothingb with a moving average, but this

9.2. Convolution 191

Σ

0 0 1 4 6 4 1 0 0 ……

b

a =

a

 b

× 1
16

Figure 9.4. Computing one value in the discrete convolution of a sequence b with a filter a
that has support five samples wide. Each sample in a ⋆ b is an average of nearby samples
in b, weighted by the values of a.

time instead of equally weighting all samples within a distancer, we use a second
sequencea to give a weight to each sample (Figure 9.4). The valuea[j] gives the
weight for a sample that is a distancej from the indexi where we are evaluating
the convolution. Here is the definition of (a ⋆ b), expressed as a formula:

(a ⋆ b)[i] =
∑

j

a[j]b[i − j]. (9.2)

By omitting bounds onj, we indicate that this sum runs over all integers (that
is, from −∞ to +∞). Figure 9.4 illustrates how one output sample is com-
puted, using the example ofa = 1

16 [. . . , 0, 1, 4, 6, 4, 1, 0, . . .]—that is,a[0] = 6
16 ,

a[±1] = 4
16 , etc.

In graphics, one of the two functions will usually havefinite support (as does
the example in Figure 9.4), which means that it is non-zero only over afinite
interval of argument values. If we assume thata hasfinite support, there is some
radius r such thata[j] = 0 whenever|j| > r. In that case, we can write the sum

192 9. Signal Processing

above as

(a ⋆ b)[i] =

r
∑

j=−r

a[j]b[i − j],

and we can express the definition in code as

function convolve(sequencea, sequenceb, int r, int i)
s = 0

for j = −r to r

s = s + a[j]b[i − j]

return s

Convolution Filters

Convolution is important because we can use it to performfiltering. Looking back
at ourfirst example offiltering, the moving average, we can now reinterpret that
smoothing operation as convolution with a particular sequence. When we com-
pute an average over some limited range of indices, that is the same as weighting
the points in the range all identically and weighting the rest of the points with
zeros. This kind offilter, which has a constant value over the interval where it is
non-zero, is known as abox filter (because it looks like a rectangle if you draw its

1

0 r–r

2r + 1

Figure 9.5. A discrete box
filter.

graph—see Figure 9.5). For a boxfilter of radiusr the weight is1/(2r + 1):

a[j] =

{

1
2r+1 −r ≤ j ≤ r,

0 otherwise.

If you substitute thisfilter into Equation (9.2), you willfind that it reduces to the
moving average in Equation (9.1).

As in this example, convolutionfilters are usually designed so that they sum
to 1. That way, they don’t affect the overall level of the signal.

Example (Convolution of a box and a step). For a simple example offiltering, let
the signal be thestep function

b[i] =

{

1 i ≥ 0,

0 i < 0,

and thefilter be thefive-point boxfilter centered at zero,

a[j] =
1

5

{

1 −2 ≤ j ≤ 2,

0 otherwise.

9.2. Convolution 193

1

1

0
0.6

1
5/ 1

5/

1
5/

0 0 0 0 0 0 0 0 .2 .2 .2 .2 .2 0

0 0 0 .2 .2 .2 0

b[i]

a[j]

a[j]b[i – j]

a[j]

a[j]b[i – j]

(a b)[i]

×

=

×

==

×
ΣΣ

Σ

0

0

0 0

0 6–7

i

i

j

j

j

Figure 9.6. Discrete convolution of a box function with a step function.

What is the result of convolvinga andb? At a particular indexi, as shown in
Figure 9.6, the result is the average of the step function over the range fromi − 2

to i + 2. If i < −2, we are averaging all zeros and the result is zero. Ifi ≥ 2,
we are averaging all ones and the result is one. In between there arei + 3 ones,
resulting in the valuei+3

5 . The output is a linear ramp that goes from0 to 1 over

five samples:15 [. . . , 0, 0, 1, 2, 3, 4, 5, 5, . . .].

Properties of Convolution

The way we’ve written it so far, convolution seems like an asymmetric operation:
b is the sequence we’re smoothing, anda provides the weights. But one of the nice
properties of convolution is that it actually doesn’t make any difference which is
which: thefilter and the signal are interchangeable. To see this, just rethink the
sum in Equation (9.2) with the indices counting from the origin of the sequence
b, rather than from the origin ofa where we are computing the value. That is, we

194 9. Signal Processing

replacej with i − k. The result of this change of variable is

(a ⋆ b)[i] =
∑

k

a[i − k]b[i − (i − k)]

=
∑

k

b[k]a[i − k].

This is exactly the same as Equation (9.2) but withb acting as thefilter anda

acting as the signal. So for any sequencesa andb, (a ⋆ b) = (b ⋆ a), and we say
that convolution is acommutative operation.1

More generally, convolution is a “multiplication-like” operation. Like multi-
plication or addition of numbers or functions, neither the order of the arguments
nor the placement of parentheses affects the result. Also, convolution relates to
addition in the same way that multiplication does. To be precise, convolution is
commutative andassociative, and it isdistributive over addition.

commutative: (a ⋆ b)[i] = (b ⋆ a)[i]

associative: (a ⋆ (b ⋆ c))[i] = ((a ⋆ b) ⋆ c)[i]

distributive: (a ⋆ (b + c))[i] = (a ⋆ b + a ⋆ c)[i]

These properties are very natural if we think of convolution as being like multi-
plication, and they are very handy to know about because they can help us save
work by simplifying convolutions before we actually compute them. For instance,
suppose we want to take a sequenceb and convolve it with threefilters,a1, a2,
anda3—that is, we wanta3 ⋆ (a2 ⋆ (a1 ⋆ b)). If the sequence is long and the
filters are short (that is, they have small radii), it is much faster tofirst convolve
the threefilters together (computinga1 ⋆a2 ⋆a3) andfinally to convolve the result
with the signal, computing(a1 ⋆ a2 ⋆ a3) ⋆ b, which we know from commutativity
and associativity gives the same result.

1

0

Figure 9.7. The discrete
identity filter.

A very simplefilter serves as anidentity for discrete convolution: it is the
discretefilter of radius zero, or the sequenced[i] = . . . , 0, 0, 1, 0, 0, . . . (Figure
9.7). If we convolved with a signalb, there will be only one non-zero term in the
sum:

(d ⋆ b)[i] =

j=0
∑

j=0

d[j]b[i − j]

= b[i].

1You may have noticed that one of the functions in the convolution sum seems to beflipped over—
that is,a[j] gives the weight for the samplej units earlier in the sequence, whilea[−j] gives the
weight for the samplej units later in the sequence. The reason for this has to do with ensuring
associativity; see Exercise 4. Most of thefilters we use are symmetric, so you hardly ever need to
worry about this.

9.2. Convolution 195

So clearly, convolvingb with d just gives backb again. The sequenced is known
as thediscrete impluse. It is occasionally useful in expressing afilter: for instance,
the process of smoothing a signalb with a filter a and then subtracting that from
the original could be expressed as a single convolution with thefilter d − a:

c = b − a ⋆ b = d ⋆ b − a ⋆ b = (d − a) ⋆ b.

9.2.3 Convolution as a Sum of Shifted Filters

There is a second, entirely equivalent, way of interpreting Equation (9.2). Look-
ing at the samples ofa⋆b one at a time leads to the weighted-average interpretation
that we have already seen. But if we omit the[i], we can instead think of the sum
as adding together entire sequences. One piece of notation is required to make
this work: if b is a sequence, then the same sequence shifted to the right byj

places is calledb→j (Figure 9.8):

b→j [i] = b[i − j].

Then, we can write Equation (9.2) as a statement about the whole sequence(a⋆b)

–4 –2 0 2 4 6

i

–4 –2 0 2 4 6

i

b 3[i]b 3[i]

b[i]b[i]

Figure 9.8. Shifting a se-
quence b to get b→j.

rather than element-by-element:

(a ⋆ b) =
∑

j

a[j]b→j .

Looking at it this way, the convolution is a sum of shifted copies ofb, weighted
by the entries ofa (Figure 9.9). Because of commutativity, we can pick eithera

Σ
0

0 5 10 15

a[j]

a[j]b ja[j]b j

a[5]b 5

a[5]a[5] a[9]

a[9]b 9

a b

Figure 9.9. Discrete convolution as a sum of shifted copies of the filter.

196 9. Signal Processing

or b as thefilter; if we chooseb, then we are adding up one copy of thefilter for
every sample in the input.

9.2.4 Convolution with Continuous Functions

While it is true that discrete sequences are what we actually work with in a com-
puter program, these sampled sequences are supposed to represent continuous
functions, and often we need to reason mathematically about the continuous func-
tions in order tofigure out what to do. For this reason it is useful to define con-
volution between continuous functions and also between continuous and discrete
functions.

The convolution of two continuous functions is the obvious generalization of
Equation (9.2), with an integral replacing the sum:

(f ⋆ g)(x) =

∫ +∞

−∞
f(t)g(x − t) dt. (9.3)

One way of interpreting this definition is that the convolution off andg, evaluated
at the argumentx, is the area under the curve of the product of the two functions

0

0 0

x

t t

0 xx1 x2

areaarea

g(x)

f(t)

f(t)g(x – t)

(f g)(x)

××

==

Figure 9.10. Continuous convolution.

9.2. Convolution 197

after we shiftf so thatf(0) lines up withg(x). Just like in the discrete case,
the convolution is a moving average, with thefilter providing the weights for the
average (See Figure 9.10).

Like discrete convolution, convolution of continuous functions is commuta-
tive and associative, and it is distributive over addition. Also as with the discrete
case, the continuous convolution can be seen as a sum of copies of thefilter rather
than the computation of weighted averages. Except, in thiscase, there are in-
finitely many copies of thefilter:

(f ⋆ g) =

∫ +∞

−∞
f(t)g→t dt.

Example (Convolution of two box functions). Let f be a box function:

f(x) =

{

1 − 1
2 ≤ x < 1

2 ,

0 otherwise.

Then what isf ⋆ f? The definition (Equation (9.3)) gives

(f ⋆ f)(x) =

∫ ∞

−∞
f(t)f(x − t) dt.

Figure 9.11 shows the two cases of this integral. The two boxes might have zero
overlap, which happens whenx ≤ −1 or x ≥ 1; in this case the result is zero.
When−1 < x < 1, the overlap depends on the separation between the two boxes,

–½ 0 ½

0 ½

0 0

f(x)

f(t)

f(t)f(x – t)

(f f)(x)

x

x

t t

–½3

Figure 9.11. Convolving two boxes yields a tent function.

198 9. Signal Processing

which is|x|; the result is1 − |x|. So

(f ⋆ f)(x) =

{

1 − |x| −1 < x < 1,

0 otherwise.

This function, known as thetent function, is another commonfilter (see Sec-
tion 9.3.1).

The Dirac Delta Function

In discrete convolution, we saw that the discrete impulsed acted as an identity:
d ⋆ a = a. In the continuous case, there is also an identity function, called the
Dirac impulse or Dirac delta function, denotedδ(x).

Intuitively, the delta function is a very narrow, very tall spike that has infinites-
imal width but still has area equal to 1 (Figure 9.12). The key defining property of

Figure 9.12. The Dirac
delta function δ(x).

the delta function is that multiplying it by a function selects out the value exactly
at zero:

∫ ∞

−∞
δ(x)f(x)dx = f(0).

The delta function does not have a well-defined value at0 (you can think of its
value loosely as+∞), but it does have the valueδ(x) = 0 for all x �= 0.

From this property of selecting out single values, it follows that the delta func-
tion is the identity for continuous convolution (Figure 9.13). The convolution of

2.1
1.4

2.9

2.1

2.1

1.4

1.4

2.9

2.9

f (x)

δ(t)

δ(t)f (x – t)

(δ f)(x)

x

x

t t t

Figure 9.13. Convolving a function with δ(x) returns a copy of the same function.

9.2. Convolution 199

δ with a functionf is

(δ ⋆ f)(x) =

∫ ∞

−∞
δ(t)f(x − t)dt = f(x).

Soδ ⋆ f = f .

9.2.5 Discrete-Continuous Convolution

There are two ways to connect the discrete and continuous worlds. One is sam-
pling: we convert a continuous function into a discrete one by writing down the
function’s value at all integer arguments and forgetting about the rest. Given a
continuous functionf(x), we can sample it to convert to a discrete sequencea[i]:

a[i] = f(i).

Going the other way, from a discrete function, or sequence, to a continuous func-
tion, is calledreconstruction. This is accomplished using yet another form of
convolution, the discrete-continuous form. In this case, we arefiltering a discrete
sequencea[i] with a continuousfilter f(x):

(a ⋆ f)(x) =
∑

i

a[i]f(x − i).

The value of the reconstructed functiona⋆f atx is a weighted sum of the samples
a[i] for values ofi nearx (Figure 9.14). The weights come from thefilter f , which
is evaluated at a set of points spaced one unit apart. For example, ifx = 5.3 and

a[i]

f(x – i)

a[i] f(x – i)

(a����f)(x)

x1 x2

0 0 0

x3

× × ×

= = =

Σ Σ Σ

Figure 9.14. Discrete-continuous convolution.

200 9. Signal Processing

f has radius 2,f is evaluated at 1.3, 0.3,−0.7, and−1.7. Note that for discrete-
continuous convolution we generally write the sequencefirst and thefilter second,
so that the sum is over integers.

As with discrete convolution, we can put bounds on the sum if we know the
filter’s radius,r, eliminating all points where the difference betweenx andi is at
leastr:

(a ⋆ f)(x) =

⌊x+r⌋
∑

i=⌈x−r⌉
a[i]f(x − i).

Note, that if a point falls exactly at distancer from x (i.e., if x− r turns out to be
an integer), it will be left out of the sum. This is in contrast to the discrete case,
where we included the point ati − r.

Expressed in code, this is:

function reconstruct(sequencea, filter f , realx)
s = 0

r = f.radius

for i = ⌈x − r⌉ to ⌊x + r⌋ do
s = s + a[i]f(x − i)

return s

As with the other forms of convolution, discrete-continuous convolution may
be seen as summing shifted copies of thefilter (Figure 9.15):

(a ⋆ f) =
∑

i

a[i]f→i.

Discrete-continuous convolution is closely related to splines. For uniform
splines (a uniform B-spline, for instance), the parameterized curve for the spline

Σ

a[i]

a[i]f j

a f

Figure 9.15. Reconstruction (discrete-continuous convolution) as a sum of shifted copies
of the filter.

9.2. Convolution 201

is exactly the convolution of the spline’s basis function with the control point
sequence (see Section 15.6.2).

9.2.6 Convolution in More Than One Dimension

So far, everything we have said about sampling and reconstruction has been one-
dimensional: there has been a single variablex or a single sequence indexi.
Many of the important applications of sampling and reconstruction in graphics,
though, are applied to two-dimensional functions—in particular, to 2D images.
Fortunately, the generalization of sampling algorithms and theory from 1D to 2D,
3D, and beyond is conceptually very simple.

Beginning with the definition of discrete convolution, we can generalize it to
two dimensions by making the sum into a double sum:

(a ⋆ b)[i, j] =
∑

i′

∑

j′

a[i′, j′]b[i − i′, j − j′].

If a is afinitely supportedfilter of radiusr (that is, it has(2r + 1)2 values),
then we can write this sum with bounds (Figure 9.16):

(a ⋆ b)[i, j] =

i′=r
∑

i′=−r

j′=r
∑

j′=−r

a[i′, j′]b[i − i′, j − j′]

a[1, –1] a[0, –1] a[–1, –1]

a[1, 0] a[0, 0] a[–1, 0]

a[1, 1] a[0, 1] a[–1, 1]

j

i

Figure 9.16. The weights for the nine input samples that contribute to the discrete convolu-
tion at point (i, j) with a filter a of radius 1.

202 9. Signal Processing

and express it in code:

function convolve2d(sequence2da, sequence2db, int i, int j)
s = 0

r = a.radius
for i′ = −r to r do

for j′ = −r to r do
s = s + a[i′][j′]b[i − i′][j − j′]

return s

This definition can be interpreted in the same way as in the 1D case: each
output sample is a weighted average of an area in the input, using the 2Dfilter as
a “mask” to determine the weight of each sample in the average.

Continuing the generalization, we can write continuous-continuous (Figure
9.17) and discrete-continuous (Figure 9.18) convolutions in 2D as well:

y ′

x ′
(x , y)

f (–x ′, –y ′)dx ′dy ′

dx ′
dy ′

Figure 9.17. The weight
for an infinitesimal area in
the input signal resulting
from continuous convolu-
tion at (x, y).

(f ⋆ g)(x, y) =

∫ ∫

f(x′, y′)g(x − x′, y − y′) dx′ dy′;

(a ⋆ f)(x, y) =
∑

i

∑

j

a[i, j]f(x − i, y − j).

In each case, the result at a particular point is a weighted average of the input near
that point. For the continuous-continuous case, it is a weighted integral over a
region centered at that point, and in the discrete-continuous case it is a weighted
average of all the samplesthat fall near the point.

f(1.3, –1.5) f(.3, –1.5) f(–.7, –1.5) f(–1.7, –1.5)

f(1.3, –.5) f(.3, –.5) f(–.7, –.5) f(–1.7, –.5)

f(1.3, .5) f(.3, .5) f(–.7, .5) f(–1.7, .5)

f(1.3, 1.5) f(.3, 1.5) f(–.7, 1.5) f(–1.7, 1.5)

x

y
.5

.3

Figure 9.18. The weights for the 16 input samples that contribute to the discrete-continuous
convolution at point (x, y) for a reconstruction filter of radius 2.

9.3. Convolution Filters 203

Once we have gone from 1D to 2D, it should be fairly clear how to generalize
further to 3D or even to higher dimensions.

9.3 Convolution Filters

Now that we have the machinery of convolution, let’s examine some of the par-
ticularfilters commonly used in graphics.

9.3.1 A Gallery of Convolution Filters

The Box Filter

The boxfilter (Figure 9.19) is a piecewise constant function whose integral is
equal to one. As a discretefilter, it can be written as

1

r–r

2r + 1

1

r–r

2r

x

i

Figure 9.19. The discrete
and continuous box filters.

abox,r[i] =

{

1/(2r + 1) |i| ≤ r,

0 otherwise.

Note that for symmetry we include both endpoints.
As a continuousfilter, we write

fbox,r(x) =

{

1/(2r) −r ≤ x < r,

0 otherwise.

In this case, we exclude one endpoint which makes the box of radius0.5 usable
as a reconstructionfilter. It is because the boxfilter is discontinuous that these
boundary cases are important, and so for this particularfilter, we need to pay
attention to them. We write justfbox for the common case ofr = 1

2 .

The Tent Filter

The tent, or linearfilter (Figure 9.20) is a continuous, piecewise linear function:
Figure 9.20. The tent filter
and two scaled versions.

ftent(x) =

{

1 − |x| |x| < 1,

0 otherwise;

ftent,r(x) =
ftent(x/r)

r
.

For filters that are at leastC0 (that is, there are no sudden jumps in the value,
as there are with the box), we no longer need to separate the definitions of the

204 9. Signal Processing

discrete and continuousfilters: the discretefilter is just the continuousfilter sam-
pled at the integers. Also note that for simplicity we defineftent,r by scaling the
“standard size” tentfilter ftent. From now on, we’ll take this scaling for granted:
once we define afilter f , then we can usefr to mean “thefilter f stretched out
by r and also scaled down byr.” Note thatfr has the same integral asf , and we
will always make sure that the value of the integral is equal to 1.0.

The Gaussian Filter

The Gaussian function (Figure 9.21), also known as the normal distribution, is
an importantfilter theoretically and practically. We’ll see more of its special
properties as the chapter goes on:

Figure 9.21. The
Gaussian filter. fg(x) =

1√
2π

e−x2/2.

The Gaussian does not havefinite support, although because of the exponential
decay, its values rapidly become small enough to ignore. When necessary, then,
we can trim the tails from the function by setting it to zero outside some radius.
The Gaussian makes a good samplingfilter because it is very smooth; we’ll make
this statement more precise later in the chapter.

The B-spline Cubic Filter

Many filters are defined as piecewise polynomials, and cubicfilters with four
pieces are often used as reconstructionfilters. One suchfilter is known as the B-
splinefilter (Figure 9.22) because of its origins as a blending function for spline
curves (see Chapter 15):

Figure 9.22. The B-spline
filter.

fB(x) =
1

6

⎧

⎪

⎨

⎪

⎩

−3(1 − |x|)3 + 3(1 − |x|)2 + 3(1 − |x|) + 1 −1 ≤ x ≤ 1,

(2 − |x|)3 1 ≤ |x| ≤ 2,

0 otherwise.

Among piecewise cubics, the B-spline is special because it has continuousfirst
and second derivatives—that is, it isC2. A more concise way of defining this
filter is FB = fbox ⋆ fbox ⋆ fbox ⋆ fbox; proving that the longer form above is
equivalent is a nice exercise in convolution (see Exercise 3).

The Catmull-Rom Cubic Filter

Figure 9.23. The Catmull-
Rom filter.

Another piecewise cubicfilter named for a spline, the Catmull-Romfilter (Figure
9.23), has the value zero atx = −2, −1, 1, and2, which means it willinterpolate

9.3. Convolution Filters 205

the samples when used as a reconstructionfilter (Section 9.3.2):

fC(x) =
1

2

⎧

⎪

⎨

⎪

⎩

−3(1 − |x|)3 + 4(1 − |x|)2 + (1 − |x|) −1 ≤ x ≤ 1,

(2 − |x|)3 − (2 − |x|)2 1 ≤ |x| ≤ 2,

0 otherwise.

The Mitchell-Netravali Cubic Filter

For the all-important application of resampling images, Mitchell and Netravali
(Mitchell & Netravali, 1988) made a study of cubicfilters and recommended one
part way between the previous twofilters as the best all-around choice (Figure
9.24). It is simply a weighted combination of the previous twofilters:

8
9

1

1

2–1–2
x

Figure 9.24. The Mitchell-
Netravali filter.

fM (x) =
1

3
fB(x) +

2

3
fC(x)

=
1

18

⎧

⎪

⎨

⎪

⎩

−21(1− |x|)3 + 27(1 − |x|)2 + 9(1 − |x|) + 1 −1 ≤ x ≤ 1,

7(2 − |x|)3 − 6(2 − |x|)2 1 ≤ |x| ≤ 2,

0 otherwise.

9.3.2 Properties of Filters

Filters have some traditional terminology that goes with them, which we use to
describe thefilters and compare them to one another.

The impulse response of a filter is just another name for the function: it is
the response of thefilter to a signal that just contains an impluse (and recall that
convolving with an impulse just gives back thefilter).

0 0 1 0 0

reconstructed
signal

samples

filter

weights

Figure 9.25. An interpolating filter reconstructs
the sample points exactly because it has the
value zero at all non-zero integer offsets from
the center.

A continuousfilter is interpolat-

ing if, when it is used to reconstruct
a continuous function from a dis-
crete sequence, the resulting func-
tion takes on exactly the values of
the samples at the sample points—
that is, it “connects the dots” rather
than producing a function that only
goes near the dots. Interpolatingfil-
ters are exactly thosefilters f for
whichf(0) = 1 andf(i) = 0 for all non-zero integersi (Figure 9.25).

206 9. Signal Processing

overshoot

overshoot

Figure 9.26. A filter with negative lobes will
always produce some overshoot when filtering
or reconstructing a sharp discontinuity.

A filter that takes on negative
values hasringing or overshoot: it
will produce extra oscillations in the
value around sharp changes in the
value of the function beingfiltered.

For instance, the Catmull-Rom
filter has negative lobes on either
side, and if youfilter a step function
with it, it will exaggerate the step a bit, resulting in function values that under-
shoot 0 and overshoot 1 (Figure 9.26).

A continuousfilter is ripple free if, when used as a reconstructionfilter, it
will reconstruct a constant sequence as aconstant function (Figure 9.27). This is
equivalent to the requirement that thefilter sum to one on any integer-spaced grid:

∑

i

f(x + i) = 1 for all x.

A continuousfilter has adegree of continuity, which is the highest-order
derivative that is defined everywhere. Afilter, like the boxfilter, that has sud-
den jumps in its value is not continuous at all. Afilter that is continuous but
has sharp corners (discontinuities in thefirst derivative), such as the tentfilter,
has order of continuity zero, and we say it isC0. A filter that has a continuous
derivative (no sharp corners), such as the piecewise cubicfilters in the previous
section, isC1; if its second derivative is also continuous, as is true of the B-spline
filter, it is C2. The order of continuity of afilter is particularly important for a
reconstructionfilter because the reconstructed function inherits the continuity of
thefilter.

ripple-free

not ripple-free

Σ = 1

Σ ≠ 1

Figure 9.27. The tent filter of radius 1 is a ripple-free reconstruction filter; the Gaussian
filter with standard deviation 1/2 is not.

9.3. Convolution Filters 207

Separable Filters

So far we have only discussedfilters for 1D convolution, but for images and other
multidimensional signals we needfilters too. In general, any 2D function could
be a 2Dfilter, and occasionally it is useful to define them this way. But, in most
cases, we can build suitable 2D (or higher-dimensional)filters from the 1Dfilters
we have already seen.

The most useful way of doing this is by using aseparable filter. The value of
a separablefilter f2(x, y) at a particularx andy is simply the product off1 (the
1D filter) evaluated atx and aty:

f2(x, y) = f1(x)f1(y).

Similarly, for discretefilters,

a2[i, j] = a1[i]a1[j].

Any horizontal or vertical slice throughf2 is a scaled copy off1. The integral of
f2 is the square of the integral off1, so in particular iff1 is normalized, then so
is f2.

Example (The separable tent filter). If we choose the tent function forf1, the re-
sulting piecewise bilinear function (Figure 9.28) is

f2,tent(x, y) =

{

(1 − |x|)(1 − |y|) |x| < 1 and |y| < 1,

0 otherwise.

The profiles along the coordinate axes are tent functions, but the profiles along
the diagonals are quadratics (for instance, along the linex = y in the positive
quadrant, we see the quadratic function(1 − x)2).

Figure 9.28. The separable 2D tent filter.

208 9. Signal Processing

Figure 9.29. The 2D Gaussian filter, which is both separable and radially symmetric.

Example (The 2D Gaussian filter). If we choose the Gaussian function forf1, the
resulting 2D function (Figure 9.29) is

f2,g(x, y) =
1

2π

(

e−x2/2e−y2/2
)

,

=
1

2π

(

e−(x2+y2)/2
)

,

=
1

2π
e−r2/2.

Notice that this is (up to a scale factor) the same function we would get if we
revolved the 1D Gaussian around the origin to produce a circularly symmetric
function. The property of being both circularly symmetric and separable at the
same time is unique to the Gaussian function. The profiles along the coordinate
axes are Gaussians, but so are the profiles along any direction at any offset from
the center.

The key advantage of separablefilters over other 2Dfilters has to do with ef-
ficiency in implementation. Let’s substitute the definition of a2 into the definition
of discrete convolution:

(a2 ⋆ b)[i, j] =
∑

i′

∑

j′

a1[i
′]a1[j

′]b[i − i′, j − j′].

Note thata1[i
′] does not depend onj′ and can be factored out of the inner sum:

=
∑

i′

a1[i
′]
∑

j′

a1[j
′]b[i − i′, j − j′].

9.3. Convolution Filters 209

Let’s abbreviate the inner sum asS[k]:

S[k] =
∑

j′

a1[j
′]b[k, j − j′];

(a2 ⋆ b)[i, j] =
∑

i′

a1[i
′]S[i − i′]. (9.4)

With the equation in this form, we can first compute and storeS[i − i′] for each
value of i′, and then compute the outer sum using these stored values. Atfirst
glance this does not seem remarkable, since we still had to do work proportional
to (2r + 1)2 to compute all the inner sums. However, it’s quite different if we
want to compute the value at many points[i, j].

Suppose we need to computea2 ⋆ b at [2, 2] and [3, 2], anda1 has a radius
of 2. Examining Equation (9.4), we can see that we will needS[0], . . . , S[4] to
compute the result at[2, 2], and we will needS[1], . . . , S[5] to compute the result
at [3, 2]. So, in the separable formulation,we can just compute all six values ofS

and shareS[1], . . . , S[4] (Figure 9.30).
This savings has great significance for largefilters. Filtering anm by n 2D

image with afilter of radiusr in the general case requires computation of(2r+1)2

products per pixel, whilefiltering the image with a separablefilter of the same size
requires2(2r + 1) products (at the expense of some intermediate storage). This
change in asymptotic complexity fromO(r2) to O(r) enables the use of much
largerfilters.

Figure 9.30. Com-
puting two output points
using separate 2D arrays
of 25 samples (above) vs.
filtering once along the
columns, then using sepa-
rate 1D arrays of five sam-
ples (below).

The algorithm is:

function filterImage(imageI, filter f)
r = f.radius

nx = I.width

ny = I.height

allocate storage arrayS[0, . . . , nx − 1]

allocate imageIout[r, . . . , nx − r − 1][r, . . . , ny − r − 1]

initialize S andIout to all zero
for y = r to ny − r − 1 do

for x = 0 to nx − 1 do
S[x] = 0

for i = −r to r do
S[x] = S[x] + f [i]I[x][y − i]

for x = r to nx − r − 1 do
for i = −r to r do

Iout[x][y] = Iout[x][y] + f [i]S[x − i]

return Iout

210 9. Signal Processing

For simplicity, this function avoids all questions of boundaries by trimmingr

pixels off all four sides of the output image. In practice there are various ways to
handle the boundaries; see Section 9.4.3.

9.4 Signal Processing for Images

We have discussed sampling,filtering, and reconstruction in the abstract so far,
using mostly 1D signals for examples. But as we observed at the beginning of the
chapter, the most important and most common application of signal processing in
graphics is for sampled images. Let us look carefully at how all this applies to
images.

9.4.1 Image Filtering Using Discrete Filters

Perhaps the simplest application of convolution is processing images using dis-
crete convolution. Some of the most widely used features of image manipulation
programs are simple convolutionfilters. Blurring of images can be achieved by
convolving with many common lowpassfilters, ranging from the box to the Gaus-

original

linear blur

box blur

Gaussian blur

Figure 9.31. Blurring an image by convolution with each of three different filters.

9.4. Signal Processing for Images 211

Figure 9.32. Sharpening an image using a convolution filter.

sian (Figure 9.31). A Gaussianfilter creates a very smooth-looking blur and is
commonly used for this purpose.

The opposite of blurring is sharpening, and one way to do this is by using
the “unsharp mask” procedure: subtract a fractionα of a blurred image from the
original. With a rescaling to avoid changing the overall brightness, we have

Isharp= (1 + α)I − α(fg,σ ⋆ I)

=
(

(1 + α)d − αfg,σ

)

⋆ I

= fsharp(σ, α) ⋆ I,

wherefg,σ is the Gaussianfilter of width σ. Using the discrete implused and
the distributive property of convolution, we were able to write this whole process
as a singlefilter that depends on both the width of the blur and the degree of
sharpening (Figure 9.32).

Another example of combining two discretefilters is a drop shadow. It’s com-
mon to take a blurred, shifted copy of an object’s outline to create a soft drop
shadow (Figure 9.33). We can express the shifting operation as convolution with

Figure 9.33. A soft drop
shadow.

an off-center impulse:

dm,n(i, j) =

{

1 i = m andj = n,

0 otherwise.

Shifting, then blurring, is achieved by convolving with bothfilters:

Ishadow= fg,σ ⋆ (dm,n ⋆ I)

= (fg,σ ⋆ dm,n) ⋆ I

= fshadow(m, n, σ) ⋆ I.

Here we have used associativity to group the two operations into a singlefilter
with three parameters.

212 9. Signal Processing

Figure 9.34. Two artifacts of aliasing in images: moiré patterns in periodic textures (left),
and “jaggies” on straight lines (right).

9.4.2 Antialiasing in Image Sampling

In image synthesis, we often have the task of producing a sampled representation
of an image for which we have a continuous mathematical formula (or at least a
procedure we can use to compute the color at any point, not just at integer pixel
positions). Ray tracing is a common example (see Chapter 4). In the language
of signal processing, we have a continuous 2D signal (the image) that we need to
sample on a regular 2D lattice. If we go ahead and sample the image without any
special measures, the result will exhibit various aliasing artifacts (Figure 9.34). At
sharp edges in the image, we see stair-step artifacts known as “jaggies.” In areas
where there are repeating patterns, we see wide bands known asmoiré patterns.

The problem here is that the image contains too many small-scale features;
we need to smooth it out byfiltering it before sampling. Looking back at the defi-
nition of continuous convolution in Equation (9.3), we need to average the image
over an area around the pixel location, rather than just taking the value at a single

box tent B-spline

Figure 9.35. A comparison of three different sampling filters being used to antialias a
difficult test image that contains circles that are spaced closer and closer as they get larger.

9.4. Signal Processing for Images 213

point. The specific methods for doing this are discussed in Chapter 4. A simple
filter like a box will improve the appearance of sharp edges, but it still produces
some moiré patterns (Figure 9.35). The Gaussianfilter, which is very smooth, is
much more effective against the moir´e patterns, at the expense of overall some-
what more blurring. These two examples illustrate the tradeoff between sharpness
and aliasing that is fundamental to choosing antialiasingfilters.

9.4.3 Reconstruction and Resampling

One of the most common image operations where carefulfiltering is crucial is
resampling—changing the sample rate, or changing the image size.

Suppose we have taken an image with a digital camera that is 3000 by 2000
pixels in size, and we want to display it on a monitor that has only 1280 by 1024
pixels. In order to make itfit, while maintaining the 3:2 aspect ratio, we need to
resample it to 1278 by 852 pixels. How should we go about this?

=

sample

original sequence

reconstructed function

reconstruction filter

resampled sequence

Figure 9.36. Resampling an image consists of two logical steps that are combined into a
single operation in code. First, we use a reconstruction filter to define a smooth, continuous
function from the input samples. Then, we sample that function on a new grid to get the
output samples.

214 9. Signal Processing

One way to approach this problem is to think of the process as dropping pixels:
the size ratio is between 2 and 3, so we’ll have to drop out one or two pixels
between pixels that we keep. It’s possible to shrink an image in this way, but
the quality of the result is low—the images in Figure 9.34 were made using pixel
dropping. Pixel dropping is very fast, however, and it is a reasonable choice to
make a preview of the resized imageduring an interactive manipulation.

The way to think about resizing images is as aresampling operation: we
want a set of samples of the image on a particular grid that is defined by the new
image dimensions, and we get them by sampling a continuous function that is
reconstructed from the input samples (Figure 9.36). Looking at it this way, it’s
just a sequence of standard image processing operations:first we reconstruct a
continuous function from the input samples, and then we sample that function
just as we would sample any other continuous image. To avoid aliasing artifacts,
appropriatefilters need to be used at each stage.

input sample points output sample points

Figure 9.37. The sample locations for the input and
output grids in resampling a 12 by 9 image to make
an 8 by 6 one.

A small example is shown in
Figure 9.37: if the original im-
age is 12× 9 pixels and the new
one is 8× 6 pixels, there are
2/3 as many output pixels as in-
put pixels in each dimension, so
their spacing across the image is
3/2 the spacing of the original
samples.

In order to come up with
a value for each of the output
samples, we need to somehow
compute values for the image in
between the samples. The pixel-
dropping algorithm gives us one
way to do this: just take the
value of the closest sample in
the input image and make that the output value. This is exactly equivalent to
reconstructing the image with a 1-pixel-wide boxfilter and then point sampling.

Of course, if the main reason for choosing pixel dropping or other very sim-
ple filtering is performance, one would neverimplement that method as a special
case of the general reconstruction-and-resampling procedure. In fact, because
of the discontinuities, it’s difficult to make boxfilters work in a general frame-
work. But, for high-quality resampling, the reconstruction/sampling framework
provides valuableflexibility.

9.4. Signal Processing for Images 215

To work out the algorithmic details it’s simplest to drop down to 1D and dis-
cuss resampling a sequence. The simplest way to write an implementation is in
terms of thereconstruct function we defined in Section 9.2.5.

function resample(sequencea, floatx0, float∆x, int n, filter f)
create sequenceb of lengthn

for i = 0 to n − 1 do
b[i] = reconstruct(a, f, x0 + i∆x)

return b

The parameterx0 gives the position of thefirst sample of the new sequence in
terms of the samples of the old sequence. That is, if thefirst output sample falls
midway between samples 3 and 4 in the input sequence,x0 is 3.5.

This procedure reconstructs a continuous image by convolving the input se-
quence with a continuousfilter and then point samples it. That’s not to say that
these two operations happen sequentially—the continuous function exists only in
principle and its values are computed only at the sample points. But mathemati-
cally, this function computes a set of point samples of the functiona ⋆ f .

This point sampling seems wrong, though, because we justfinished saying
that a signal should be sampled with an appropriate smoothingfilter to avoid
aliasing. We should be convolving the reconstructed function with a sampling
filter g and point samplingg ⋆ (f ⋆ a). But since this is the same as(g ⋆ f) ⋆ a,
we can roll the samplingfilter together with the reconstructionfilter; one convo-
lution operation is all we need (Figure 9.38). This combined reconstruction and
samplingfilter is known as aresampling filter.

reconstruct

sample

smooth(fr fs)

fr

fs

Figure 9.38. Resampling involves filtering for reconstruction and for sampling. Since two
convolution filters applied in sequence can be replaced with a single filter, we only need one
resampling filter, which serves the roles of reconstruction and sampling.

216 9. Signal Processing

When resampling images, we usually specify asource rectangle in the units of
the old image that specifies the part we want to keep in the new image. For exam-
ple, using the pixel sample positioning convention from Chapter 3, the rectangle
we’d use to resample the entire image is(−0.5, nold

x − 0.5) × (−0.5, nold
y − 0.5).

Given a source rectangle(xl, xh) × (yl, yh), the sample spacing for the new im-
age is∆x = (xh − xl)/nnew

x in x and∆y = (yh − yl)/nnew
y in y. The lower-left

sample is positioned at(xl + ∆x/2, yl + ∆y/2).
Modifying the 1D pseudocode to use this convention, and expanding the call

to the reconstruct function into the double loop that is implied, we arrive at:

function resample(sequencea, floatxl, floatxh, int n, filter f)
create sequenceb of lengthn

r = f.radius

x0 = xl + ∆x/2

for i = 0 to n − 1 do
s = 0

x = x0 + i∆x

for j = ⌈x − r⌉ to ⌊x + r⌋ do
s = s + a[j]f(x − j)

b[i] = s

return b

This routine contains all the basics of resampling an image. One last issue that
remains to be addressed is what to do at the edges of the image, where the simple
version here will access beyond the bounds of the input sequence. There are
several things we might do:

• Just stop the loop at the ends of the sequence. This is equivalent to padding
the image with zeros on all sides.

• Clip all array accesses to the end of the sequence—that is, returna[0] when
we would want to accessa[−1]. This is equivalent to padding the edges of
the image by extending the last row or column.

• Modify thefilter as we approach the edge so that it does not extend beyond
the bounds of the sequence.

The first option leads to dim edges when we resample the whole image, which
is not really satisfactory. The second option is easy to implement; the third is
probably the best performing. The simplest way to modify thefilter near the edge
of the image is torenormalize it: divide thefilter by the sum of the part of thefilter
that falls within the image. This way, thefilter always adds up to 1 over the actual
image samples, so it preserves image intensity. For performance, it is desirable

9.4. Signal Processing for Images 217

upsample
× 3

downsample
× 3

radius 1 radius 2 radius 3

Figure 9.39. The effects of using different sizes of a filter for upsampling (enlarging) or
downsampling (reducing) an image.

to handle the band of pixels within afilter radius of the edge (which require this
renormalization) separately from the center (which contains many more pixels
and does not require renormalization).

The choice offilter for resampling is important. There are two separate issues:
the shape of thefilter and the size (radius). Because thefilter serves both as a
reconstructionfilter and a samplingfilter, the requirements of both roles affect
the choice offilter. For reconstruction, we would like afilter smooth enough to
avoid aliasing artifacts when we enlarge the image, and thefilter should be ripple-
free. For sampling, thefilter should be large enough to avoid undersampling and
smooth enough to avoid moir´e artifacts. Figure 9.39 illustrates these two different
needs.

Generally we will choose onefilter shape and scale it according to the relative
resolutions of the input and output. The lower of the two resolutions determines
the size of thefilter: when the output is more coarsely sampled than the input
(downsampling, or shrinking the image), the smoothing required for proper sam-
pling is greater than the smoothing required for reconstruction, so we size thefil-
ter according to the output sample spacing(radius 3 in Figure 9.39). On the other
hand, when the output is morefinely sampled (upsampling, or enlarging the im-
age) then the smoothing required for reconstruction dominates (the reconstructed
function is already smooth enough to sample at a higher rate than it started),
so the size of thefilter is determined by the input sample spacing (radius 1 in
Figure 9.39).

Choosing thefilter itself is a tradeoff between speed and quality. Common
choices are the boxfilter (when speed is paramount), the tentfilter (moderate
quality), or a piecewise cubic (excellent quality). In the piecewise cubic case, the

218 9. Signal Processing

Figure 9.40. Resampling an image using a separable approach.

degree of smoothing can be adjusted by interpolating betweenfB andfC ; the
Mitchell-Netravalifilter is a good choice.

Just as with imagefiltering, separablefilters can provide a significant speed-
up. The basic idea is to resample all the rows first, producing an image with
changed width but not height, then to resample the columns of that image to
produce thefinal result (Figure 9.40). Modifying the pseudocode given earlier so
that it takes advantage of this optimization is reasonably straightforward.

9.5 Sampling Theory

If you are only interested in implementation, you can stop reading here; the al-
gorithms and recommendations in the previous sections will let you implement
programs that perform sampling and reconstruction and achieve excellent results.
However, there is a deeper mathematicaltheory of sampling with a history reach-
ing back to thefirst uses of sampled representations in telecommunications. Sam-
pling theory answers many questions that are difficult to answer with reasoning
based strictly on scale arguments.

But most important, sampling theory gives valuable insight into the workings
of sampling and reconstruction. It gives the student who learns it an extra set of
intellectual tools for reasoning about how to achieve the best results with the most
efficient code.

9.5. Sampling Theory 219

n

πn
4

1

1

2

2

3

3

4

4

Figure 9.41. Approximating a square wave with finite sums of sines.

9.5.1 The Fourier Transform

The Fourier transform, along with convolution, is the main mathematical concept
that underlies sampling theory. You can read about the Fourier transform in many
math books on analysis, as well as in books on signal processing.

The basic idea behind the Fourier transform is to express any function by
adding together sine waves (sinusoids) of all frequencies. By using the appropri-
ate weights for the different frequencies, we can arrange for the sinusoids to add
up to any (reasonable) function we want.

As an example, the square wave in Figure 9.41 can be expressed by a sequence
of sine waves:

∞
∑

n=1,3,5,...

4

πn
sin 2πnx.

ThisFourier series starts with a sine wave (sin 2πx) that has frequency 1.0—same
as the square wave—and the remaining terms add smaller and smaller corrections
to reduce the ripples and, in the limit, reproduce the square wave exactly. Note
that all the terms in the sum have frequencies that are integer multiples of the
frequency of the square wave. This is because other frequencies would produce
results that don’t have the same period as the square wave.

A surprising fact is that a signal does not have to be periodic in order to be
expressed as a sum of sinusoids in this way: a non-periodic signal just requires
more sinusoids. Rather than summing over a discrete sequence of sinusoids, we
will instead integrate over a continuous family of sinusoids. For instance, a box

220 9. Signal Processing

1

1

2

2

3

4

4

sin πu
πu

3

Figure 9.42. Approximating a box function with integrals of cosines up to each of four cutoff
frequencies.

function can be written as the integral of a family of cosine waves:
∫ ∞

−∞

sinπu

πu
cos 2πuxdu. (9.5)

This integral in Equation (9.5) is adding up infinitely many cosines, weighting
the cosine of frequencyu by the weight(sin πu)/πu. The result, as we include
higher and higher frequencies, converges to the box function (see Figure 9.42).
When a functionf is expressed in this way, this weight, which is a function of the
frequencyu, is called theFourier transform of f , denotedf̂ . The functionf̂ tells
us how to buildf by integrating over a family of sinusoids:

f(x) =

∫ ∞

−∞
f̂(u)e2πiuxdu. (9.6)

Equation (9.6) is known as theinverse Fourier transform (IFT) because it starts
with the Fourier transform off and ends up withf .2

Note that in Equation (9.6) the complex exponentiale2πiux has been substi-
tuted for the cosine in the previous equation. Also,f̂ is a complex-valued func-
tion. The machinery of complex numbers is required to allow the phase, as well

2Note that the term “Fourier transform” is used both for the functionf̂ and for the operation that
computesf̂ from f . Unfortunately, this rather ambiguous usage is standard.

9.5. Sampling Theory 221

as the frequency, of the sinusoids to be controlled; this is necessary to represent
any functions that are not symmetric across zero. The magnitude off̂ is known
as theFourier spectrum, and, for our purposes, this is sufficient—we won’t need
to worry about phase or use any complex numbers directly.

It turns out that computinĝf from f looks very much like computingf
from f̂ :

f̂(u) =

∫ ∞

−∞
f(x)e−2πiuxdx. (9.7)

Equation (9.7) is known as the (forward)Fourier transform (FT). The sign in
the exponential is the only difference between the forward and inverse Fourier
transforms, and it is really just a technical detail. For our purposes, we can think
of the FT and IFT as the same operation.

Sometimes thef–f̂ notation is inconvenient, and then we will denote the
Fourier transform off byF{f} and the inverse Fourier transform off̂ byF−1{f̂}.

A function and its Fourier transform are related in many useful ways. A few
facts (most of them easy to verify) thatwe will use later in the chapter are:

• A function and its Fourier transform have the same squared integral:

x

f (x)

u

f (u)̂ equal
energy

Figure 9.43. The Fourier
transform preserves the
squared integral of the
signal.

∫

(f(x))2dx =

∫

(f̂(u))2du.

The physical interpretation is that the two have the same energy (Figure
9.43).

In particular, scaling a function up bya also scales its Fourier transform by
a. That is,F{af} = aF{f}.

• Stretching a function along thex-axis squashes its Fourier transform along
theu-axis by the same factor (Figure 9.44):

F{f(x/b)} = bf̂(bx).

(The renormalization byb is needed to keep the energy the same.)

This means that if we are interested in a family of functions of different
width and height (say all box functions centered at zero), then we only
need to know the Fourier transform of one canonical function (say the box
function with width and height equal to one), and we can easily know the
Fourier transforms of all the scaled and dilated versions of that function.

222 9. Signal Processing

x

f (x)

x

f (x /2)

u

f (u)̂

u

2f (2u)̂

Figure 9.44. Scaling a signal along the x-axis in the space domain causes an inverse scale
along the u-axis in the frequency domain.

For example, we can instantly generalize Equation (9.5) to give the Fourier
transform of a box of widthb and heighta:

ab
sinπbu

πbu
.

• The average value off is equal tof̂(0). This makes sense sincêf(0) is sup-
posed to be the zero-frequency component of the signal (the DC component
if we are thinking of an electrical voltage).

• If f is real (which it always is for us),̂f is an even function—that is,̂f(u) =

f̂(−u). Likewise, if f is an even function then̂f will be real (this is not
usually the case in our domain, but remember that we really are only going
to care about the magnitude off̂).

9.5.2 Convolution and the Fourier Transform

Onefinal property of the Fourier transform that deserves special mention is its
relationship to convolution (Figure 9.45). Briefly,

F{f ⋆ g} = f̂ ĝ.

9.5. Sampling Theory 223

Figure 9.45. A commutative diagram to show visually the relationship between convolution
and multiplication. If we multiply f and g in space, then transform to frequency, we end up in
the same place as if we transformed f and g to frequency and then convolved them. Likewise,
if we convolve f and g in space and then transform into frequency, we end up in the same
place as if we transformed f and g to frequency, then multiplied them.

The Fourier transform of the convolution of two functions is the product of the
Fourier transforms. Following the by now familiar symmetry,

f̂ ⋆ ĝ = F{fg}.
The convolution of two Fourier transforms is the Fourier transform of the product
of the two functions. These facts are fairly straightforward to derive from the
definitions.

This relationship is the main reason Fourier transforms are useful in studying
the effects of sampling and reconstruction. We’ve seen how sampling,filtering,
and reconstruction can be seen in terms of convolution; now the Fourier transform
gives us a new domain—the frequency domain—in which these operations are
simply products.

9.5.3 A Gallery of Fourier Transforms

Now that we have some facts about Fourier transforms, let’s look at some exam-
ples of individual functions. In particular, we’ll look at somefilters from Sec-
tion 9.3.1, which are shown with their Fourier transforms in Figure 9.46. We have
already seen the box function:

F{fbox} =
sin πu

πu
= sincπu.

The function3 sinx/x is important enough to have its own name, sincx.

3You may notice thatsin πu/πu is undefined foru = 0. It is, however, continuous across zero,
and we take it as understood that we use the limiting value of this ratio, 1, atu = 0.

224 9. Signal Processing

1

1

1

–1

1–1

x u

f tent(x)

fB(x)

sinc2(u)

fbox(x) sinc(u) 1

1

1

1–1

x

x

x u
–4 4

–4 4

u

u

sinc4(u) 1

–4 4

1

1–1

fg(x) 1

–4 4

2
3

1
√2π

√2π fg(2πu)

Figure 9.46. The Fourier transforms of the box, tent, B-spline, and Gaussian filters.

The tent function is the convolution of the box with itself, so its Fourier trans-
form is just the square of the Fourier transform of the box function:

F{ftent} =
sin2 πu

π2u2
= sinc2πu.

We can continue this process to get the Fourier transform of the B-splinefilter
(see Exercise 3):

F{fB} =
sin4 πu

π4u4
= sinc4πu.

The Gaussian has a particularly nice Fourier transform:

F{fG} = e−(2πu)2/2.

It is another Gaussian! The Gaussian with standard deviation 1.0 becomes a Gaus-
sian with standard deviation1/2π.

9.5. Sampling Theory 225

9.5.4 Dirac Impulses in Sampling Theory

The reason impulses are useful in sampling theory is that we can use them to talk
about samples in the context of continuous functions and Fourier transforms. We
represent a sample, which has a position and a value, by an impulse translated
to that position and scaled by that value. A sample at positiona with valueb is
represented bybδ(x− a). This way we can express the operation of sampling the
functionf(x) ata as multiplyingf by δ(x − a). The result isf(a)δ(x − a).

Sampling a function at a series of equally spaced points is therefore expressed
as multiplying the function by the sum of a series of equally spaced impulses,
called animpulse train (Figure 9.47). An impulse train with periodT , meaning
that the impulses are spaced a distanceT apart is

sT (x) =

∞
∑

i=−∞
δ(x − T i).

The Fourier transform ofs1 is the same ass1: a sequence of impulses at all
integer frequencies. You can see why this should be true by thinking about what
happens when we multiply the impulse train by a sinusoid and integrate. We wind
up adding up the values of the sinusoid at all the integers. This sum will exactly
cancel to zero for non-integer frequencies, and it will diverge to+∞ for integer
frequencies.

Because of the dilation property of the Fourier transform, we can guess that
the Fourier transform of an impulse train with periodT (which is like a dilation
of s1) is an impulse train with period1/T . Making the samplingfiner in the space
domain makes the impulses farther apart in the frequency domain.

0 1 x

s1(x)

0 x

s1/2(x)

0 u

s1(u)

0 u

s2(u)

1

11

Figure 9.47. Impulse trains. The Fourier transform of an impulse train is another impulse
train. Changing the period of the impulse train in space causes an inverse change in the
period in frequency.

226 9. Signal Processing

9.5.5 Sampling and Aliasing

Now we have built the mathematical machinery we need to understand the sam-
pling and reconstruction process from the viewpoint of the frequency domian.
The key advantage of introducing Fourier transforms is that it makes the effects
of convolutionfiltering on the signal much clearer, and it provides more precise
explanations of why we need tofilter when sampling and reconstructing.

We start the process with the original, continuous signal. In general its Fourier
transform could include components at any frequency, although for most kinds of
signals (especially images), we expect the content to decrease as the frequency
gets higher. Images also tend to have a large component at zero frequency—
remember that the zero-frequency, or DC, component is the integral of the whole
image, and since images are all positive values this tends to be a large number.

Let’s see what happens to the Fourier transform if we sample and reconstruct
without doing any specialfiltering (Figure 9.48). When we sample the signal, we
model the operation as multiplication with an impulse train; the sampled signal is
fsT . Because of the multiplication-convolution property, the FT of the sampled
signal isf̂ ⋆ ŝT = f̂ ⋆ s1/T .

x u0

aliasing

aliasing

or
ig

in
al

sa
m

pl
ed

re
co

ns
tr

uc
te

d

T
T
1

Figure 9.48. Sampling and reconstruction with no filtering. Sampling produces alias spectra
that overlap and mix with the base spectrum. Reconstruction with a box filter collects even
more information from the alias spectra. The result is a signal that has serious aliasing
artifacts.

Plate I. The RGB color
cube in 3D and its faces un-
folded. Any RGB color is a
point in the cube. (See also
Figure 3.13.)

Plate II. A colored triangle
with barycentric interpola-
tion. Note that the changes
in color components are lin-
ear in each row and column
as well as along each edge.
In fact it is constant along
every line, such as the di-
agonals, as well. (See also
Figure 8.5.)

Plate III. Left: a Phong-
illuminated image. Middle:
cool-to-warm shading is not
useful without silhouettes.
Right: cool-to-warm shad-
ing plus silhouettes. Image
courtesy Amy Gooch. (See
also Figure 10.9.)

Plate IV. The color of the
glass is affected by total in-
ternal reflection and Beer’s
Law. The amount of light
transmitted and reflected is
determined by the Fresnel
Equations. The complex
lighting on the ground plane
was computed using parti-
cle tracing as described in
Chapter 24. (See also Fig-
ure 13.3.)

Plate V. An example of
depth of field. The caus-
tic in the shadow of the
wine glass is computed us-
ing particle tracing (Chap-
ter 24). (See also Fig-
ure 13.16.)

Plate VI. “Spiral Stairs.”
A complex BlobTree im-
plicit model created in Er-
win DeGroot’s BlobTree.net
system. (See also Figure
16.28.)

Plate VII. “The Next
Step.” A complex Blob-
Tree implicit model cre-
ated interactively in Ryan
Schmidt’s Shapeshop by
artist, Corien Clapwijk (An-
dusan). (See also Figure
16.31.)

Plate VIII. Each sphere is
rendered using only a ver-
tex shader that computes
Phong shading. Because
the computation is being
performed on a per-vertex
basis, the Phong highlight
only begins to appear accu-
rate after the amount of ge-
ometry used to model the
sphere is increased dras-
tically. (See also Figure
18.7.)

Plate IX. The results
of running the fragment
shader from Section 18.3.4.
Note that the Phong high-
light does appear on the
left-most model which is
represented by a single
polygon. In fact, be-
cause lighting is calculated
at the fragment, rather than
at each vertex, the more
coarsely tessellated sphere
models also demonstrate
appropriate Phong shad-
ing. (See also Figure 18.8.)

Plate XI. HSV color space.
Hue varies around the cir-
cle, saturation varies with
radius, and value varies
with height.

Plate XII. Which color is
closer to red: green or vi-
olet?

Plate X. The visible spec-
trum. Wavelengths are in
nanometers.

Plate XIII. The effect
shown in Figure 22.29 is
even more powerful when
shown in color. Figure cour-
tesy Albert Yonas.

Plate XV. Image used
for demonstrating the color
transfer technique. Re-
sults are shown in Color
Plates XVI and XVIII. (See
also Figure 23.12 and Fig-
ure 23.30.)

Plate XIV. Per-channel
gamma correction may de-
saturate the image. The
left image was desaturated
with a value of s = 0.5. The
right image was not desatu-
rated (s = 1). (See also Fig-
ure 23.11.)

Plate XVI. The image on
the left is used to adjust the
colors of the image shown
in Color Plate XV. The re-
sult is shown on the right.
(See also Figure 23.13.)

Plate XIX. Simulated night
scene using the image
shown in Color Plate XV.
(See also Figure 23.30.)

Plate XVII. Linear interpo-
lation for color correction.
The parameter c is set to
0.0 in the left image and to
1.0 in the right image. (See
also Figure 23.24.)

Plate XVIII. The image on
the left is used to transform
the image of Color Plate XV
into a night scene, shown
here on the right. (See also
Figure 23.31.)

Plate XX. Aerial perspec-
tive, in which atmospheric
effects reduce contrast and
shift colors towards blue,
provides a depth cue over
long distances.

Plate XXI. A comparison
between a rendering and
a photo. Figure courtesy
Sumant Pattanaik and the
Cornell Program of Com-
puter Graphics. (See also
Figure 24.9.)

Plate XXII. The image
shows extreme motion blur
effects. The shadows use
distribution ray tracing be-
cause they are moving dur-
ing the image. Model by
Joseph Hamdorf and Young
Song. Rendering by Eric
Levin.

Plate XXIII. Distribution ray-traced images with 1 sample
per pixel, 16 samples per pixel, and 256 samples per pixel.
Images courtesy Jason Waltman.

Plate XXIV. Top: A dif-
fuse shading model is used.
Bottom: Subsurface scatter-
ing is allowed using a tech-
nique from “A Practical Model
for Sub-surface Light Trans-
port,” Jensen et al., Proceed-
ings of SIGGRAPH 2001. Im-
ages courtesy Henrik Jensen.

Plate XXV. Ray-traced and
photon-mapped image of
an interior. Most of the light-
ing is indirect. Image cour-
tesy Henrik Jensen.

Plate XXVI. The brightly
colored pattern in the
shadow is a “caustic” and
is a product of light focused
through the glass. It was
computed using photon
tracing. Image courtesy
Henrik Jensen.

Plate XXVII. Top: A set of
ellipsoids approximates the
model. Bottom: The ellip-
soids are used to create a
gravity-like implicit function
which is then displaced. Im-
age courtesy Eric Levin.

9.5. Sampling Theory 227

Recall thatδ is the identity for convolution. This means that

(f̂ ⋆ s1/T)(u) =
∞
∑

i=−∞
f̂(u − i/T);

that is, convolving with the impulse train makes a whole series of equally spaced
copies of the spectrum off . A good intuitive interpretation of this seemingly odd
result is that all those copies just express the fact (as we saw back in Section 9.1.1)
that frequencies that differ by an integer multiple of the sampling frequency are
indistinguishable once we have sampled—they will produce exactly the same set
of samples. The original spectrum is called thebase spectrum and the copies are
known asalias spectra.

The trouble begins if these copies of the signal’s spectrum overlap, which will
happen if the signal contains any significant content beyond half the sample fre-
quency. When this happens, the spectra add, and the information about different
frequencies is irreversibly mixed up. This is the first place aliasing can occur, and
if it happens here, it’s due to undersampling—using too low a sample frequency
for the signal.

Suppose we reconstruct the signal using the nearest-neighbor technique. This
is equivalent to convolving with a box of width1. (The discrete-continuous con-
volution used to do this is the same as a continuous convolution with the series
of impulses that represent the samples.) The convolution-multiplication property
means that the spectrum of the reconstructed signal will be the product of the
spectrum of the sampled signal and the spectrum of the box. The resulting recon-
structed Fourier transform contains the base spectrum (though somewhat attenu-
ated at higher frequencies), plus attenuated copies of all the alias spectra. Because
the box has a fairly broad Fourier transform, these attenuated bits of alias spectra
are significant, and they are the second form of aliasing, due to an inadequate
reconstructionfilter. These alias components manifest themselves in the image as
the pattern of squares that is characteristic of nearest-neighbor reconstruction.

Preventing Aliasing in Sampling

To do high quality sampling and reconstruction, we have seen that we need to
choose sampling and reconstructionfilters appropriately. From the standpoint of
the frequency domain, the purpose of lowpassfiltering when sampling is to limit
the frequency range of the signal so that the alias spectra do not overlap the base
spectrum. Figure 9.49 shows the effect of sample rate on the Fourier transform of
the sampled signal. Higher sample rates move the alias spectra farther apart, and
eventually whatever overlap is left does not matter.

228 9. Signal Processing

or
ig

in
al

sa
m

pl
ed

sa
m

pl
ed

 ×
 2

sa
m

pl
ed

 ×
 4

T
T
1

T
T
1

T
T
1

aliasing

aliasing

minimal
aliasing

x u0

Figure 9.49. The effect of sample rate on the frequency spectrum of the sampled signal.
Higher sample rates push the copies of the spectrum apart, reducing problems caused by
overlap.

The key criterion is that the width of the spectrum must be less than the dis-
tance between the copies—that is, the highest frequency present in the signal
must be less than half the sample frequency. This is known as theNyquist crite-

rion, and the highest allowable frequency is known as theNyquist frequency or
Nyquist limit. TheNyquist-Shannon sampling theorem states that a signal whose
frequencies do not exceed the Nyquist limit (or, said another way, a signal that is
bandlimited to the Nyquist frequency) can, in principle, be reconstructed exactly
from samples.

With a high enough sample rate for a particular signal, we don’t need to use
a samplingfilter. But if we are stuck with a signal that contains a wide range of
frequencies (such as an image with sharp edges in it), we must use a sampling
filter to bandlimit the signal before we can sample it. Figure 9.50 shows the
effects of three lowpass (smoothing)filters in the frequency domain, and Figure
9.51 shows the effect of using these samefilters when sampling. Even if the
spectra overlap withoutfiltering, convolving the signal with a lowpassfilter can
narrow the spectrum enough to eliminate overlap and produce a well-sampled

9.5. Sampling Theory 229

1

or
ig

in
al

m
ild

 b
lu

r
st

ro
ng

 b
lu

r

x u0

filter

filter

1

Figure 9.50. Applying lowpass (smoothing) filters narrows the frequency spectrum of a
signal.

or
ig

in
al

sa
m

p.
: n

o
fil

te
r

sa
m

p.
: m

ild
 b

lu
r

sa
m

p.
: s

tr
on

g
bl

ur

x u0

severe
aliasing

some
aliasing

minimal
aliasing

Figure 9.51. How the lowpass filters from Figure 9.50 prevent aliasing during sampling.
Lowpass filtering narrows the spectrum so that the copies overlap less, and the high fre-
quencies from the alias spectra interfere less with the base spectrum.

230 9. Signal Processing

1

1

1

or
ig

in
al

bo
x

re
co

n.
te

nt
 r

ec
on

.
B

-s
pl

in
e

re
co

n.

x u0

filter

filter

filter

severe
aliasing

some
aliasing

minimal
aliasing

Figure 9.52. The effects of different reconstruction filters in the frequency domain. A
good reconstruction filter attenuates the alias spectra effectively while preserving the base
spectrum.

or
ig

in
al

re
co

ns
tr

uc
te

d
re

sa
m

pl
ed

x u0

Figure 9.53. Resampling viewed in the frequency domain. The resampling filter both
reconstructs the signal (removes the alias spectra) and bandlimits it (reduces its width) for
sampling at the new rate.

9.5. Sampling Theory 231

representation of the filtered signal. Of course, we have lost the high frequencies,
but that’s better than having them get scrambled with the signal and turn into
artifacts.

Preventing Aliasing in Reconstruction

From the frequency domain perspective, the job of a reconstructionfilter is to re-
move the alias spectra while preservingthe base spectrum. In Figure 9.48, we can
see that the crudest reconstructionfilter, the box, does attenuate the alias spec-
tra. Most important, it completely blocks the DC spike for all the alias spectra.
This is a characteristic of all reasonable reconstructionfilters: they have zeroes
in frequency space at all multiples of the sample frequency. This turns out to be
equivalent to the ripple-free property in the space domain.

So a good reconstructionfilter needs to be a good lowpassfilter, with the
added requirement of completely blocking all multiples of the sample frequency.
The purpose of using a reconstructionfilter different from the boxfilter is to more
completely eliminate the alias spectra, reducing the leakage of high-frequency ar-
tifacts into the reconstructed signal, while disturbing the base spectrum as little
as possible. Figure 9.52 illustrates the effects of different filters when used dur-
ing reconstruction. As we have seen, the boxfilter is quite “leaky” and results in
plenty of artifacts even if the sample rate is high enough. The tentfilter, result-
ing in linear interpolation, attenuates high frequencies more, resulting in milder
artifacts, and the B-splinefilter is very smooth, controlling the alias spectra very
effectively. It also smooths the base spectrum some—this is the tradeoff between
smoothing and aliasing that we saw earlier.

Preventing Aliasing in Resampling

When the operations of reconstruction and sampling are combined in resampling,
the same principles apply, but with onefilter doing the work of both reconstruction
and sampling. Figure 9.53 illustrates how a resampling filter must remove the
alias spectraand leave the spectrum narrow enough to be sampled at the new
sample rate.

9.5.6 Ideal Filters vs. Useful Filters

Following the frequency domain analysis to its logical conclusion, afilter that is
exactly a box in the frequency domain is ideal for both sampling and reconstruc-
tion. Such afilter would prevent aliasing at both stages without diminishing the
frequencies below the Nyquist frequency at all.

232 9. Signal Processing

Recall that the inverse and forward Fourier transforms are essentially iden-
tical, so the spatial domainfilter that has a box as its Fourier transform is the
functionsinπx/πx = sincπx.

However, the sincfilter is not generally used in practice, either for sampling or
for reconstruction, because it is impractical and because, even though it is optimal
according to the frequency domain criteria, it doesn’t produce the best results for
many applications.

For sampling, the infinite extent of the sincfilter, and its relatively slow rate
of decrease with distance from the center, is a liability. Also, for some kinds of
sampling, the negative lobes are problematic. A Gaussianfilter makes an excel-
lent samplingfilter even for difficult cases where high-frequency patterns must be
removed from the input signal, because its Fourier transform falls off exponen-
tially, with no bumps that tend to let aliases leak through. For less difficult cases,
a tentfilter generally suffices.

For reconstruction, the size of the sinc function again creates problems, but
even more importantly, the many ripples create “ringing” artifacts in reconstructed
signals.

Exercises

1. Show that discrete convolution is commutative and associative. Do the
same for continuous convolution.

2. Discrete-continuous convolutioncan’t be commutative, because its argu-
ments have two different types. Show that it is associative, though.

3. Prove that the B-spline is the convolution of four box functions.

4. Show that the “flipped” definition of convolution is necessary by trying to
show that convolution is commutative and associative using this (incorrect)
definition (see the footnote on page 194):

(a ⋆ b)[i] =
∑

j

a[j]b[i + j]

5. Prove thatF{f ⋆ g} = f̂ ĝ andf̂ ⋆ ĝ = F{fg}.

10

Surface Shading

To make objects appear to have more volume, it can help to useshading, i.e., the
surface is “painted” with light. This chapter presents the most common heuristic
shading methods. Thefirst two, diffuse and Phong shading, were developed in the
1970s and are available in most graphics libraries. The last, artistic shading, uses
artistic conventions to assign color to objects. This creates images reminiscent of
technical drawings, which is desirable in many applications.

10.1 Diffuse Shading

Many objects in the world have a surface appearance loosely described as “matte,”
indicating that the object is not at all shiny. Examples include paper, unfinished
wood, and dry unpolished stones. To a large degree, such objects do not have a
color change with a change in viewpoint. For example, if you stare at a partic-
ular point on a piece of paper and move while keeping your gazefixed on that
point, the color at that point will stay relatively constant. Such matte objects can
be considered as behaving asLambertian objects. This section discusses how to
implement the shading of such objects. A key point is that all formulas in this
chapter should be evaluated in world coordinates and not in the warped coordi-
nates after the perspective transform is applied. Otherwise, the angles between
normals are changed and the shading will be inaccurate.

233

234 10. Surface Shading

10.1.1 Lambertian Shading Model

A Lambertian object obeysLambert’s cosine law, which states that the colorc
of a surface is proportional to the cosine of the angle between the surface normal
and the direction to the light source (Gouraud, 1971):

c ∝ cos θ,

or in vector form,
Figure 10.1. The geome-
try for Lambert’s Law. Both
n and l are unit vectors.

c ∝ n · l,
wheren and l are shown in Figure 10.1. Thus, the color on the surface will
vary according to the cosine of the angle between the surface normal and the
light direction. Note that the vectorl is typically assumed not to depend on the
location of the object. That assumption is equivalent to assuming the light is
“distant” relative to object size. Such a “distant” light is often called adirectional

light, because its position is specified only by a direction.
A surface can be made lighter or darker by changing the intensity of the light

source or the reflectance of the surface. The diffuse reflectancecr is the fraction
of light reflected by the surface. This fraction willbe different for different color
components. For example, a surface is red if it reflects a higher fraction of red
incident light than blue incident light. If we assume surface color is proportional
to the light reflected from a surface, then the diffuse reflectancecr—an RGB
color—must also be included:

Figure 10.2. When a sur-
face points away from the
light, it should receive no
light. This case can be ver-
ified by checking whether
the dot product of l and n is
negative.

c ∝ crn · l. (10.1)

The right-hand side of Equation (10.1) is an RGB color with all RGB components
in the range[0, 1]. We would like to add the effects of light intensity while keeping
the RGB components in the range[0, 1]. This suggests adding an RGB intensity
termcl which itself has components in the range[0, 1]:

c = crcln · l. (10.2)

This is a very convenient form, but it can produce RGB components forc that
are outside the range[0, 1], because the dot product can be negative. The dot
product is negative when the surface is pointing away from the light as shown in
Figure 10.2.

The “max” function can be added to Equation (10.2) to test for that case:

c = crclmax(0,n · l). (10.3)

Another way to deal with the “negative” light is to use an absolute value:

c = crcl|n · l|. (10.4)

10.1. Diffuse Shading 235

While Equation (10.4) may seem physically implausible, it actually corresponds
to Equation (10.3) with two lights in opposite directions. For this reason it is often
calledtwo-sided lighting (Figure 10.3).

Figure 10.3. Using Equa-
tion (10.4), the two-sided
lighting formula, is equiva-
lent to assuming two op-
posing light sources of the
same color.

10.1.2 Ambient Shading

One problem with the diffuse shading of Equation (10.3) is that any point whose
normal faces away from the light will be black. In real life, light is reflected all
over, and some light is incident from every direction. In addition, there is often
skylight giving “ambient” lighting. One way to handle this is to use several light
sources. A common trick is to always put a dim source at the eye so that all
visible points will receive some light. Another way is to use two-sided lighting
as described by Equation (10.4). A more common approach is to add an ambient
term (Gouraud, 1971). This is just a constant color term added to Equation (10.3):

c = cr (ca + clmax(0,n · l)) .

Intuitively, you can think of the ambient colorca as the average color of all sur-
faces in the scene. If you want to ensure that the computed RGB color stays in
the range[0, 1]3, thenca + cl ≤ (1, 1, 1). Otherwise your code should “clamp”
RGB values above one to have the value one.

10.1.3 Vertex-Based Diffuse Shading

If we apply Equation (10.1) to an object made up of triangles, it will typically
have a faceted appearance. Often, the triangles are an approximation to a smooth
surface. To avoid the faceted appearance, we can place surface normal vectors at
the vertices of the triangles (Phong,1975), and apply Equation (10.3) at each of
the vertices using the normal vectors at the vertices (see Figure 10.4). This will
give a color at each triangle vertex, and this color can be interpolated using the
barycentric interpolation described in Section 8.1.2.

One problem with shading at triangle vertices is that we need to get the nor-
mals from somewhere. Many models will come with normals supplied. If you
tessellate your own smooth model, you can create normals when you create the
triangles. If you are presented with a polygonal model that does not have nor-
mals at vertices and you want to shade it smoothly, you can compute normals by
a variety of heuristic methods. The simplest is to just average the normals of the
triangles that share each vertex and use this average normal at the vertex. This

236 10. Surface Shading

Figure 10.4. A circle (left) is approximated by an octagon (right). Vertex normals record the
surface normal of the original curve.

average normal will not automatically be of unit length, so you should convert it
to a unit vector before using it for shading.

10.2 Phong Shading

Some surfaces are essentially like matte surfaces, but they havehighlights. Ex-
amples of such surfaces include polished tilefloors, gloss paint, and whiteboards.
Highlights move across a surface as the viewpoint moves. This means that we
must add a unit vectore toward the eye into our equations. If you look carefully
at highlights, you will see that they are really reflections of the light; sometimes
these reflections are blurred. The color of these highlights is the color of the
light—the surface color seems to have little effect. This is because the reflection
occurs at the object’s surface, and the lightthat penetrates the surface and picks
up the object’s color is scattered diffusely.

10.2.1 Phong Lighting Model

Figure 10.5. The geom-
etry for the Phong illumina-
tion model. The eye should
see a highlight if σ is small.

We want to add a fuzzy “spot” the same color as the light source in the right place.
The center of the dot should be drawn where the directione to the eye “lines” up
with the natural direction of reflectionr as shown in Figure 10.5. Here “lines
up” is mathematically equivalent to “whereσ is zero.” We would like to have the

10.2. Phong Shading 237

highlight have some non-zero area, so that the eye sees some highlight wherever
σ is small.

Givenr, we’d like a heuristic function that is bright whene = r and falls off
gradually whene moves away fromr. An obvious candidate is the cosine of the
angle between them:

c = cl(e · r),

There are two problems with using this equation. Thefirst is that the dot product
can be negative. This can be solved computationally with an “if” statement that
sets the color to zero when the dot product is negative. The more serious problem
is that the highlight produced by this equation is much wider than that seen in real

Figure 10.6. The effect of the Phong exponent on highlight characteristics. This uses
Equation (10.5) for the highlight. There is also a diffuse component, giving the objects a
shiny but non-metallic appearance. Image courtesy Nate Robins.

238 10. Surface Shading

life. The maximum is in the right place and it is the right color, but it is just too
big. We can narrow it without reducing its maximum color by raising to a power:

c = clmax(0, e · r)p. (10.5)

Herep is called thePhong exponent; it is a positive real number (Phong, 1975).
The effect that changing the Phong exponent has on the highlight can be seen in
Figure 10.6.

To implement Equation (10.5), wefirst need to compute the unit vectorr.
Given unit vectorsl andn, r is the vectorl reflected aboutn. Figure 10.7 shows
that this vector can be computed as

r = −l + 2(l · n)n, (10.6)

where the dot product is used to computecos θ.
Figure 10.7. The geom-
etry for calculating the vec-
tor r.

An alternative heuristic model based on Equation (10.5) eliminates the need to
check for negative values of the number used as a base for exponentiation (Warn,
1983). Instead ofr, we computeh, the unit vector halfway betweenl ande

(Figure 10.8):

h =
e + l

‖e + l‖ .

The highlight occurs whenh is nearn, i.e., whencosω = h · n is near 1. This
suggests the rule:

c = cl(h · n)p. (10.7)

The exponentp here will have analogous control behavior to the exponent in
Equation (10.5), but the angle betweenh andn is half the size of the angle be-
tweene andr, so the details will be slightly different. The advantage of using the
cosine betweenn andh is that it is always positive for eye and light above the
plane. The disadvantage is that a square root and divide is needed to computeh.

In practice, we want most materials to have a diffuse appearance in addition
to a highlight. We can combine Equations (10.3) and (10.7) to get

Figure 10.8. The unit vec-
tor h is halfway between l
and e.

c = cr (ca + clmax(0,n · l)) + cl(h · n)p. (10.8)

If we want to allow the user to dim the highlight, we can add a control termcp:

c = cr (ca + clmax(0,n · l)) + clcp(h · n)p. (10.9)

The termcp is a RGB color, which allows us to change highlight colors. This is
useful for metals wherecp = cr, because highlights on metal take on a metallic
color. In addition, it is often useful to makecp a neutral value less than one, so
that colors stay below one. For example, settingcp = 1 − M whereM is the
maximum component ofcr will keep colors below one for one light source and
no ambient term.

10.3. Artistic Shading 239

10.2.2 Surface Normal Vector Interpolation

Smooth surfaces with highlights tend to change color quickly compared to Lam-
bertian surfaces with the same geometry. Thus, shading at the normal vectors can
generate disturbing artifacts.

These problems can be reduced by interpolating the normal vectors across the
polygon and then applying Phong shading at each pixel. This allows you to get
good images without making the size of the triangles extremely small. Recall
from Chapter 3, that when rasterizing a triangle, we compute barycentric coordi-
nates(α, β, γ) to interpolate the vertex colorsc0, c1, c2:

c = αc0 + βc1 + γc2. (10.10)

We can use the same equation to interpolate surface normalsn0, n1, andn2:

n = αn0 + βn1 + γn2. (10.11)

And Equation (10.9) can then be evaluated for then computed at each pixel. Note
that then resulting from Equation (10.11) is usually not a unit normal. Better
visual results will be achieved if it is converted to a unit vector before it is used
in shading computations. This type of normal interpolation is often calledPhong

normal interpolation (Phong, 1975).

10.3 Artistic Shading

The Lambertian and Phong shading methods are based on heuristics designed to
imitate the appearance of objects in the real world. Artistic shading is designed to
mimic drawings made by human artists (Yessios, 1979; Dooley & Cohen, 1990;
Saito & Takahashi, 1990; L. Williams, 1991). Such shading seems to have advan-
tages in many applications. For example, auto manufacturers hire artists to draw
diagrams for car owners’ manuals. This is more expensive than using much more
“realistic” photographs, so there is probably some intrinsic advantage to the tech-
niques of artists when certain types of communication are needed. In this section,
we show how to make subtly shaded line drawings reminiscent of human-drawn
images. Creating such images is often callednon-photorealistic rendering, but
we will avoid that term because many non-photorealistic techniques are used for
efficiency that are not related to any artistic practice.

10.3.1 Line Drawing

The most obvious thing we see in human drawings that we don’t see in real life is
silhouettes. When we have a set of triangles with shared edges, we should draw

240 10. Surface Shading

an edge as a silhouette when one of the two triangles sharing an edge faces toward
the viewer, and the other triangle facesaway from the viewer. This condition can
be tested for two normalsn0 andn1 by

draw silhouette if(e · n0)(e · n1) ≤ 0.

Heree is a vector from the edge to the eye. This can be any point on the edge or
either of the triangles. Alternatively, iffi(p) = 0 are the implicit plane equations
for the two triangles, the test can be written

draw silhouette iff0(e)f1(e) ≤ 0.

We would also like to draw visible edges of a polygonal model. To do this, we
can use either of the hidden surface methods of Chapter 12 for drawing in the
background color and then draw the outlines of each triangle in black. This, in
fact, will also capture the silhouettes. Unfortunately, if the polygons represent a
smooth surface, we really don’t want to draw most of those edges. However, we
might want to draw allcreases where there really is a corner in the geometry. We
can test for creases by using a heuristic threshold:

draw crease if(n0 · n1) ≤ threshold.

This combined with the silhouette test will give nice-looking line drawings.

10.3.2 Cool-to-Warm Shading

When artists shade line drawings, they often use low intensity shading to give
some impression of curve to the surface and to give colors to objects (Gooch et
al., 1998). Surfaces facing in one direction are shaded with a cool color, such
as a blue, and surfaces facing in the opposite direction are shaded with a warm
color, such as orange. Typically these colors are not very saturated and are also
not dark. That way, black silhouettes show up nicely. Overall this gives a cartoon-
like effect. This can be achieved by setting up a direction to a “warm” lightl and
using the cosine to modulate color, where the warmth constantkw is defined on
[0, 1]:

kw =
1 + n · l

2
.

The colorc is then just a linear blend of the cool colorcc and the warm colorcw:

c = kwcw + (1 − kw)cc.

10.3. Artistic Shading 241

Figure 10.9. Left: a Phong-illuminated image. Middle: cool-to-warm shading is not useful
without silhouettes. Right: cool-to-warm shading plus silhouettes. Image courtesy Amy
Gooch. (See also Plate III.)

There are many possiblecw andcb that will produce reasonable looking results.
A good starting place for a guess is

cc = (0.4, 0.4, 0.7),

cc = (0.8, 0.6, 0.6).

Figure 10.9 shows a comparison between traditional Phong lighting and this type
of artistic shading.

Frequently Asked Questions

• All of the shading in this chapter seems like enormous hacks. Is that
true?

Yes. However, they are carefully designed hacks that have proven useful in prac-
tice. In the long run, we will probably have better-motivated algorithms that in-
clude physics, psychology, and tone-mapping. However, the improvements in
image quality will probably be incremental.

242 10. Surface Shading

• I hate calling pow(). Is there a way to avoid it when doing Phong lighting?

A simple way is to only have exponents that are themselves a power of two,
i.e., 2, 4, 8, 16, In practice, this is not a problematic restriction for most
applications. A look-up table is also possible, but will often not give a large
speed-up.

Exercises

1. The moon is poorly approximated by diffuse or Phong shading. What ob-
servations tell you that this is true?

2. Velvet is poorly approximated by diffuse or Phong shading. What observa-
tions tell you that this is true?

3. Why do most highlights on plastic objects look white, while those on gold
metal look gold?

11

Texture Mapping

The shading models presented in Chapter 10 assume that a diffuse surface has
uniform reflectancecr. This is fine for surfaces such as blank paper or painted
walls, but it is inefficient for objects such as a printed sheet of paper. Such objects
have an appearance whose complexity arises from variation in reflectance prop-
erties. While we could use such small triangles that the variation is captured by
varying the reflectance properties of the triangles, this would be inefficient.

The common technique to handle variations of reflectance is to store the re-
flectance as a function or a a pixel-based image and “map” it onto a surface (Cat-
mull, 1975). The function or image is called atexture map, and the process of
controlling reflectance properties is calledtexture mapping. This is not hard to
implement once you understand the coordinate systems involved. Texture map-
ping can be classified by several different properties:

1. the dimensionality of the texture function,

2. the correspondences defined between points on the surface and points in the
texture function, and

3. whether the texture function is primarily procedural or primarily a table
look-up.

These items are usually closely related, so we will somewhat arbitrarily classify
textures by their dimension. Wefirst cover 3D textures, often calledsolid tex-
tures orvolume textures. We will then cover 2D textures, sometimes calledimage

243

244 11. Texture Mapping

textures. When graphics programmers talk about textures without specifying di-
mension, they usually mean 2D textures. However, we begin with 3D textures
because, in many ways, they are easier to understand and implement. At the end
of the chapter we discuss bump mapping and displacement mapping which use
textures to change surface normals and position, respectively. Although those
methods modify properties other than reflectance, the images/functions they use
are still called textured. This is consistent with common usage where any image
used to modify object appearance is called a texture.

11.1 3D Texture Mapping

In previous chapters we usedcr as the diffuse reflectance at a point on an object.
For an object that does not have a solid color, we can replace this with a function
cr(p) which maps 3D points to RGB colors (Peachey, 1985; Perlin, 1985). This
function might just return the reflectance of the object that containsp. But for
objects withtexture, we should expectcr(p) to vary asp moves across a surface.
One way to do this is to create a 3D texture that defines an RGB value at every
point in 3D space. We will only call it for pointsp on the surface, but it is usually
easier to define it for all 3D points than a potentially strange 2D subset of points
that are on an arbitrary surface. Such a strategy is clearly suitable for surfaces that
are “carved” from a solid medium, such as a marble sculpture.

Note that in a ray-tracing program, we have immediate access to the pointp

seen through a pixel. However, for a z-buffer or BSP-tree program, we only know
the point after projection into device coordinates. We will show how to resolve
this problem in Section 11.3.1.

11.1.1 3D Stripe Textures

There are a surprising number of ways to make a striped texture. Let’s assume we
have two colorsc0 andc1 that we want to use to make the stripe color. We need
some oscillating function to switch between the two colors. An easy one is a sine:

RGB stripe(pointp)

if (sin(xp) > 0) then
return c0

else
return c1

11.1. 3D Texture Mapping 245

We can also make the stripe’s widthw controllable:

RGB stripe(pointp, realw)

if (sin(πxp/w) > 0) then
return c0

else
return c1

If we want to interpolate smoothly between the stripe colors, we can use a param-
etert to vary the color linearly:

RGB stripe(pointp, realw)
t = (1 + sin(πpx/w))/2

return (1 − t)c0 + tc1

These three possibilities are shown in Figure 11.1.

Figure 11.1. Various
stripe textures result from
drawing a regular array of
xy points while keeping z
constant.

11.1.2 Texture Arrays

Another way we can specify texture in space is to store a 3D array of color values
and to associate a spatial position to each of these values. Wefirst discuss this
for 2D arrays in 2D space. Such textures can be applied in 3D by using two of
the dimensions, e.g.x andy, to determine what texture values are used. We then
extend those 2D results to 3D.

We will assume the two dimensions to be mapped are calledu andv. We also
assume we have annx by ny image that we use as the texture. Somehow we need
every(u, v) to have an associated color found from the image. A fairly standard
way to make texturing work for(u, v) is to first remove the integer portion of
(u, v) so that it lies in the unit square. This has the effect of “tiling” the entire
uv plane with copies of the now-square texture (Figure 11.2). We then use one of
three interpolation strategies to compute the image color for that coordinate. The
simplest strategy is to treat each image pixel as a constant colored rectangular tile
(Figure 11.3 (a). To compute the colors, we applyc(u, v) = cij , wherec(u, v) is
the texture color at(u, v) andcij is the pixel color for pixel indices:

i = ⌊unx⌋,
j = ⌊vny⌋;

(11.1)

⌊x⌋ is thefloor of x, (nx, ny) is the size of the image being textured, and the
indices start at(i, j) = (0, 0). This method for a simple image is shown in Fig-
ure 11.3 (b).

246 11. Texture Mapping

(0,1)

Figure 11.2. The tiling of an image onto the (u,v) plane. Note that the input image is
rectangular, and that this rectangle is mapped to a unit square on the (u,v) plane.

For a smoother texture, a bilinear interpolation can be used as shown in Fig-
ure 11.3 (c). Here we use the formula

c(u, v) = (1 − u′)(1 − v′)cij

+ u′(1 − v′)c(i+1)j

+ (1 − u′)v′ci(j+1)

+ u′v′c(i+1)(j+1)

where

u′ = nxu − ⌊nxu⌋,
v′ = nyv − ⌊nyv⌋.

The discontinuities in the derivative in intensity can cause visible mach bands, so
hermite smoothing can be used:

c(u, v) = (1 − u′′)(1 − v′′)cij+

+ u′′(1 − v′′)c(i+1)j

+ (1 − u′′)v′′ci(j+1)

+ u′′v′′c(i+1)(j+1),

11.1. 3D Texture Mapping 247

Figure 11.3. (a) The image on the left has nine pixels that are all either black or white. The
three interpolation strategies are (b) nearest-neighbor, (c) bilinear, and (d) hermite.

where

u′′ = 3(u′)2 − 2(u′)3,

v′′ = 3(v′)2 − 2(v′)3,

which results in Figure 11.3 (d).
In 3D, we have a 3D array of values. All of the ideas from 2D extend naturally.

As an example, let’s assume that we will dotrilinear interpolation between val-
ues. First, we compute the texture coordinates(u′, v′, w′) and the lower indices
(i, j, k) of the array element to be interpolated:

c(u, v, w) = (1 − u′)(1 − v′)(1 − w′)cijk

+ u′(1 − v′)(1 − w′)c(i+1)jk

+ (1 − u′)v′(1 − w′)ci(j+1)k

+ (1 − u′)(1 − v′)w′cij(k+1)

+ u′v′(1 − w′)c(i+1)(j+1)k

+ u′(1 − v′)w′c(i+1)j(k+1)

+ (1 − u′)v′w′ci(j+1)(k+1)

+ u′v′w′c(i+1)(j+1)(k+1),

(11.2)

where

u′ = nxu − ⌊nxu⌋,
v′ = nyv − ⌊nyv⌋,
w′ = nzw − ⌊nzw⌋.

(11.3)

11.1.3 Solid Noise

Although regular textures such as stripes are often useful, we would like to be able
to make “mottled” textures such as we see on birds’ eggs. This is usually done

248 11. Texture Mapping

by using a sort of “solid noise,” usually calledPerlin noise after its inventor, who
received a technical Academy Award for its impact in thefilm industry (Perlin,
1985).

Getting a noisy appearance by calling arandom number for every point would
not be appropriate, because it would just be like “white noise” in TV static. We
would like to make it smoother without losing the random quality. One possibility
is to blur white noise, but there is no practical implementation of this. Another
possibility is to make a large lattice with a random number at every lattice point,
and then interpolate these random points for new points between lattice nodes;
this is just a 3D texture array as described in the last section with random numbers
in the array. This technique makes the lattice too obvious. Perlin used a variety
of tricks to improve this basic lattice technique so the lattice was not so obvious.
This results in a rather baroque-looking set of steps, but essentially there are just
three changes from linearly interpolating a 3D array of random values. Thefirst
change is to use Hermite interpolation to avoid mach bands, just as can be done
with regular textures. The second change is the use of random vectors rather than
values, with a dot product to derive a random number; this makes the underlying
grid structure less visually obvious by moving the local minima and maxima off
the grid vertices. The third change is to use a 1D array and hashing to create a
virtual 3D array of random vectors. This adds computation to lower memory use.
Here is his basic method:

n(x, y, z) =

⌊x⌋+1
∑

i=⌊x⌋

⌊y⌋+1
∑

j=⌊y⌋

⌊z⌋+1
∑

k=⌊z⌋
Ωijk(x − i, y − j, z − k),

where(x, y, z) are the Cartesian coordinates ofx, and

Ωijk(u, v, w) = ω(u)ω(v)ω(w) (Γijk · (u, v, w)) ,

andω(t) is the cubic weighting function:

ω(t) =

{

2|t|3 − 3|t|2 + 1 if |t| < 1,

0 otherwise.

Figure 11.4. Absolute
value of solid noise, and
noise for scaled x and y val-
ues.

Thefinal piece is thatΓijk is a random unit vector for the lattice point(x, y, z) =

(i, j, k). Since we want any potentialijk, we use a pseudorandom table:

Γijk = G (φ(i + φ(j + φ(k)))) ,

where G is a precomputed array ofn random unit vectors, andφ(i) =

P [i mod n] whereP is an array of lengthn containing a permutation of the

11.1. 3D Texture Mapping 249

integers 0 throughn − 1. In practice, Perlin reportsn = 256 works well. To
choose a random unit vector(vx, vy, vz) first set

vx = 2ξ − 1,

vy = 2ξ′ − 1,

vz = 2ξ′′ − 1,

whereξ, ξ′, ξ′′ are canonical random numbers (uniform in the interval[0, 1)).
Then, if(v2

x +v2
y +v2

z) < 1, make the vector a unit vector. Otherwise keep setting
it randomly until its length is less than one, and then make it a unit vector. This
is an example of arejection method, which will be discussed more in Chapter 14.
Essentially, the “less than” test gets a random point in the unit sphere, and the
vector for the origin to that point is uniformly random. That would not be true of
random points in the cube, so we “get rid” of the corners with the test.

Because solid noise can be positive or negative, it must be transformed before
being converted to a color. The absolute value of noise over a ten by ten square is
shown in Figure 11.4, along with stretched versions. There versions are stretched
by scaling the points input to the noise function.

Figure 11.5. Using
0.5(noise+1) (top) and
0.8(noise+1) (bottom) for
intensity.

The dark curves are where the original noise function changed from positive
to negative. Since noise varies from−1 to 1, a smoother image can be achieved
by using(noise+1)/2 for color. However, since noise values close to 1 or−1 are
rare, this will be a fairly smooth image. Larger scaling can increase the contrast
(Figure 11.5).

11.1.4 Turbulence

Many natural textures contain a variety of feature sizes in the same texture. Perlin
uses a pseudofractal “turbulence” function:

nt(x) =
∑

i

|n(2ix)|
2i

This effectively repeatedly adds scaled copies of the noise function on top of itself
as shown in Figure 11.6.

The turbulence can be used to distort the stripe function:

RGB turbstripe(pointp, double w)
doublet = (1 + sin(k1zp + turbulence(k2p))/w)/2

return t ∗ s0 + (1 − t) ∗ s1

Various values fork1 andk2 were used to generate Figure 11.7.

250 11. Texture Mapping

Figure 11.6. Turbulence function with (from top left to bottom right) one through eight terms
in the summation.

Figure 11.7. Various turbulent stripe textures with different k1 , k2. The top row has only the
first term of the turbulence series.

11.2 2D Texture Mapping

For 2D texture mapping, we use a 2D coordinate, often calleduv, which is used
to create a reflectanceR(u, v). The key is to take an image and associate a(u, v)

coordinate system on it so that it can, in turn, be associated with points on a 3D
surface. For example, if the latitudes andlongitudes on the world map are associ-
ated with a polar coordinate system on the sphere, we get a globe (Figure 11.8).

It is crucial that the coordinates on the image and the object match in “just the
right way.” As a convention, the coordinate system on the image is set to be the
unit square(u, v) ∈ [0, 1]2. For (u, v) outside of this square, only the fractional
parts of the coordinates are used resulting in a tiling of the plane (Figure 11.2).

11.2. 2D Texture Mapping 251

Figure 11.8. A Miller cylindrical projection map world map and its placement on the sphere.
The distortions in the texture map (i.e., Greenland being so large) exactly correspond to the
shrinking that occurs when the map is applied to the sphere.

Note that the image has a different number of pixels horizontally and vertically,
so the image pixels have a non-uniform aspect ratio in(u, v) space.

To map this(u, v) ∈ [0, 1]2 image onto a sphere, wefirst compute the polar
coordinates. Recall the spherical coordinate system described by Equation (2.25).
For a sphere of radiusR with center(cx, cy, cz), the parametric equation of the
sphere is

x = xc + R cosφ sin θ,

y = yc + R sin φ sin θ,

z = zc + R cos θ.

We canfind (θ, φ):

θ = arccos

(

z − zc

R

)

,

φ = arctan2(y − yc, x − xc),

wherearctan2(a, b) is the theatan2 of most math libraries which returns the
arctangent ofa/b. Because(θ, φ) ∈ [0, π] × [−π, π], we convert to(u, v) as
follows, afterfirst adding2π to φ if it is negative:

u =
φ

2π
,

v =
π − θ

π
.

This mapping is shown in Figure 11.8. There is a similar, although likely more
complicated way, to generate coordinates for most 3D shapes.

252 11. Texture Mapping

11.3 Texture Mapping for Rasterized Triangles

For surfaces represented by triangle meshes, texture coordinates are defined by
storing(u, v) texture coordinates at each vertex of the mesh (see Section 12.1).
So, if a triangle is intersected at barycentric coordinates(β, γ), you interpolate
the(u, v) coordinates the same way you interpolate points. Recall that the point
at barycentric coordinate(β, γ) is

p(β, γ) = a + β(b − a) + γ(c − a).

A similar equation applies for(u, v):

u(β, γ) = ua + β(ub − ua) + γ(uc − ua),

v(β, γ) = va + β(vb − va) + γ(vc − va).

Several ways a texture can be applied by changing the(u, v) at triangle ver-
tices are shown in Figure 11.10. This sort of calibration texture map makes it
easier to understand the texture coordinates of your objects during debugging
(Figure 11.9).

Figure 11.9. Top: a cal-
ibration texture map. Bot-
tom: the sphere viewed
along the y-axis.

We would like to get the same textureimages whether we use a ray tracing
program or a rasterization method, such as a z-buffer. There are some subtleties in
achieving this with correct-looking perspective, but we can address this at the ras-
terization stage. The reason things are not straightforward is that just interpolating

Figure 11.10. Various mesh textures obtained by changing (u,v) coordinates stored at
vertices.

11.3. Texture Mapping for Rasterized Triangles 253

texture coordinates in screen space results in incorrect images, as shown for the
grid texture shown in Figure 11.11. Because things in perspective get smaller as
the distance to the viewer increases, the lines that are evenly spaced in 3D should
compress in 2D image space. More careful interpolation of texture coordinates is
needed to accomplish this.

Figure 11.11. Left: correct
perspective. Right: interpo-
lation in screen space.

11.3.1 Perspective Correct Textures

We can implement texture mapping on triangles by interpolating the(u, v) coor-
dinates, modifying the rasterization method of Section 8.1.2, but this results in the
problem shown at the right of Figure 11.11. A similar problem occurs for triangles
if screen space barycentric coordinates are used as in the following rasterization
code:

for all x do
for all y do

compute(α, β, γ) for (x, y)

if α ∈ (0, 1) andβ ∈ (0, 1) andγ ∈ (0, 1) then
t = αt0 + βt1 + γt2

drawpixel(x, y) with color texture(t) for a solid texture
or with texture(β, γ) for a 2D texture.

This code will generate images, but there is a problem. To unravel the basic prob-
lem, let’s consider the progression from world spaceq to homogeneous pointr to
homogenized points:

⎡

⎢

⎢

⎣

xq

yq

zq

1

⎤

⎥

⎥

⎦

transform−−−−−→

⎡

⎢

⎢

⎣

xr

yr

zr

hr

⎤

⎥

⎥

⎦

homogenize−−−−−−−→

⎡

⎢

⎢

⎣

xr/hr

yr/hr

zr/hr

1

⎤

⎥

⎥

⎦

≡

⎡

⎢

⎢

⎣

xs

ys

zs

1

⎤

⎥

⎥

⎦

.

If we use screen space, we are interpolating ins. However, we would like to be
interpolating in spaceq or r, where the homogeneous division has not yet non-
linearly distorted the barycentric coordinates of the triangle.

The key observation is that1/hr is interpolated with no distortion. Likewise,
so isu/hr andv/hr. In fact, so isk/hr, wherek is any quantity that varies
linearly across the triangle. Recall from Section 7.4 that if we transform all points
along the line segment between pointsq andQ and homogenize, we have

s +
hRt

hr + t(hR − hr)
(S − s),

254 11. Texture Mapping

but if we linearly interpolate in the homogenized space we have

s + a(S− s).

Although those lines sweep out the same points, typicallya �= t for the same
points on the line segment. However, if we interpolate1/h, we do get the same
answer regardless of which space we interpolate in. To see this is true, confirm
(Exercise 2):

1

hr
+

hRt

hr + t(hR − hr)

(

1

hR
− 1

hr

)

=
1

hr
+ t

(

1

hR
− 1

hr

)

(11.4)

This ability to interpolate1/h linearly with no error in the transformed space
allows us to correctly texture triangles. Perhaps the least confusing way to deal
with this distortion is to compute the world space barycentric coordinates of the
triangle(βw, γw) in terms of screen space coordinates(β, γ). We note thatβs/h

andγs/h can be interpolated linearly in screen space. For example, at the screen
space position associated with screen space barycentric coordinates(β, γ), we
can interpolateβw/h without distortion. Becauseβw = 0 at vertex 0 and vertex
2, andβw = 1 at vertex 1, we have

βs

h
=

0

h0
+ β

(

1

h1
− 0

h0

)

+ γ

(

0

h2
− 0

h0

)

. (11.5)

Because of all the zero terms, Equation (11.5) is fairly simple. However, to get
βw from it, we must knowh. Because we know1/h is linear in screen space, we
have

1

h
=

1

h0
+ β

(

1

h1
− 1

h0

)

+ γ

(

1

h2
− 1

h0

)

. (11.6)

Dividing Equation (11.5) by Equation (11.6) gives

βw =

β
h1

1
h0

+ β
(

1
h1

− 1
h0

)

+ γ
(

1
h2

− 1
h0

) .

Multiplying numerator and denominator byh0h1h2 and doing a similar set of
manipulations for the analogous equations inγw gives

βw =
h0h2β

h1h2 + h2β(h0 − h1) + h1γ(h0 − h2)
,

γw =
h0h1γ

h1h2 + h2β(h0 − h1) + h1γ(h0 − h2)
.

(11.7)

Note that the two denominators are the same.

11.4. Bump Textures 255

For triangles that use the perspective matrix from Chapter 7, recall thatw =

z/n wherez is the distance from the viewer perpendicular to the screen. Thus,
for that matrix1/z also varies linearly. We can use this fact to modify our
scan-conversion code for three pointsti = (xi, yi, zi, hi) that have been passed
through the viewing matrices, but have not been homogenized:

Compute bounds forx = xi/hi andy = yi/hi

for all x do
for all y do

compute(α, β, γ) for (x, y)

if (α ∈ [0, 1] andβ ∈ [0, 1] andγ ∈ [0, 1]) then
d = h1h2 + h2β(h0 − h1) + h1γ(h0 − h2)

βw = h0h2β/d

γw = h0h1γ/d

αw = 1 − βw − γw

u = αwu0 + βwu1 + γwu2

v = αwv0 + βwv1 + γwv2

drawpixel(x, y) with color texture(u, v)

For solid textures, just recall that by the definition of barycentric coordinates

p = (1 − βw − γw)p0 + βwp1 + γwp2,

wherepi are the world space vertices. Then, just call a solid texture routine for
pointp.

11.4 Bump Textures
Although we have only discussed changing reflectance using texture, you can also
change the surface normal to give an illusion offine-scale geometry on the sur-
face. We can apply abump map that perturbs the surface normal
(J. F. Blinn, 1978).
One way to do this is:

vector3n = surfaceNormal(x)

n += k1 ∗ vectorTurbulence(k2 ∗ x)

return t ∗ s0 + (1 − t) ∗ s1

This is shown in Figure 11.12.
To implementvectorTurbulence, wefirst needvectorNoise which produces a

simple spatially-varying 3D vector:

nv(x, y, z) =

⌊x⌋+1
∑

i=⌊x⌋

⌊y⌋+1
∑

j=⌊y⌋

⌊z⌋+1
∑

k=⌊z⌋
Γijkω(x)ω(y)ω(z).

256 11. Texture Mapping

Then,vectorTurbulence is a direct analog of turbulence: sum a series of scaled
versions ofvectorNoise.

Figure 11.12. Vector tur-
bulence on a sphere of ra-
dius 1.6. Lighting directly
from above. Top: k1 = 0.
Middle: k1 = 0.08, k2 = 8.
Bottom: k1 = 0.24, k2=8.

11.5 Displacement Mapping

One problem with Figure 11.12 is that the bumps neither cast shadows nor affect
the silhouette of the object. These limitations occur because we are not really
changing any geometry. If we want more realism, we can apply adisplacement

map (Cook et al., 1987). A displacement map actually changes the geometry
using a texture. A common simplification is that the displacement will be in the
direction of the surface normal.

Figure 11.13. The points
p on the circle are each dis-
placed in the direction of n
by the function f (p). If f is
continuous, then the result-
ing points p′ form a contin-
uous surface.

If we take all pointsp on a surface, with associated surface normal vectorsn,
then we can make a new surface using a 3D textured(p):

p′ = p + f(p)n.

This concept is shown in Figure 11.13.
Displacement mapping is straightforward to implement in a z-buffer code by

storing the surface to be displaced as afine mesh of many triangles. Each vertex
in the mesh can then be displaced along the normal vector direction. This results
in large models, but it is quite robust.

11.6 Environment Maps

Often we would like to have a texture-mapped background and for objects to
have specular reflections of that background. This can be accomplished using
environment maps (J. F. Blinn, 1976). An environment map can be implemented
as a background function that takes in a viewing directionb and returns a RGB
color from a texture map. There are many ways to store environment maps. For
example, we can use a spherical table indexed by spherical coordinates. In this
section, we will instead describe a cube-based table with six square texture maps,
often called acube map.

The basic idea of a cube map is that we have an infinitely large cube with
a texture on each face. Because the cube is large, the origin of a ray does not
change what the ray “sees.” This is equivalent to an arbitrarily-sized cube that is
queried by a ray whose origin is at the Cartesian origin. As an example of how
a given directionb is converted to(u, v) coordinates, consider the right face of

11.6. Environment Maps 257

Figure 11.14. The cube map has six axis-aligned textures that store the background. The
right face contains a single texture.

Figure 11.14. Here we havexb as the maximum magnitude component. In that
case, we can compute(u, v) for that texture to be

u =
y + x

2x
,

v =
z + x

2x
.

There are analogous formulas for the otherfive faces.
So for any reflection raya + tb we returncubemap(b) for the background

color. In a z-buffer implementation, we need to perform this calculation on a
pixel-by-pixel basis. If at a given pixel we know the viewing directionc and the
surface normal vectorn, we can compute the reflected directionb (Figure 11.15).
We can do this by modifying Equation (10.6) to get

b = −c +
2(c · n)n

‖c‖2
. (11.8)

Here the denominator of the fraction accounts for the fact thatc may not be a unit
Figure 11.15. The vector
b is the reflection of vector
c with respect to the surface
normal n.

vector. Because we need to knowb at each pixel, we can either computeb at
each triangle vertex and interpolateb in a perspective correct manner, or we can
interpolaten and computeb for each pixel. This will allow us to callcubemap(b)
at each pixel.

258 11. Texture Mapping

11.7 Shadow Maps

The basic observation to be made about a shadow map is that if we rendered the
scene using the location of a light source as the eye, the visible surfaces would all
be lit, and the hidden surfaces would all be in shadow. This can be used to deter-
mine whether a point being rasterized is in shadow (L. Williams, 1978). First, we
rasterize the scene from the point of view of the light source using matrixMs.
This matrix is just the same as the full transform matrixM used for viewing in
Section 7.3, but it uses the light position for the eye and the light’s main direction
for the view-plane normal.

Recall that the matrixM takes an(x, y, z) in world coordinates and converts
it to an (x′, y′, z′) in relation to the screen. While rasterizing in a perspectively
correct manner, we can get the(x, y, z) that is seen through the center of each
pixel. If we also rasterize that point usingMs and round the resultingx- and
y-coordinates, we will get

(i, j, depth).

We can compare this depth with thez-value in the shadow depth map at pixel
(i, j). If it is the same, then the point is lit, and otherwise it is in shadow. Because
of computational inaccuracies, we shouldactually test whether the points are the
same to within a small constant.

Because we typically don’t want the light to only be within a square window,
often aspot light is used. This attenuates the value of the light source based on
closeness to the sides of the shadow buffer. For example, if the shadow buffer is
n×n pixels, then for pixel(i, j) in the shadow buffer, we can apply the attenuation
coefficient based on the fractional radiusr:

r =

√

(

2i − n

n

)2

+

(

2j − n

n

)2

.

Any radially decreasing function will then give a spot-like look.

Frequently Asked Questions

• How do I implement displacement mapping in ray tracing?

There is no ideal way to do it. Generating all the triangles and caching the ge-
ometry when necessary will prevent memory overload (Pharr & Hanrahan, 1996;
Pharr et al., 1997). Trying to intersect the displaced surface directly is possible

11.7. Shadow Maps 259

when the displacement function is restricted (Patterson et al., 1991; Heidrich &
Seidel, 1998; Smits et al., 2000).
• Why don’t my images with textures look realistic?

Humans are good at seeing small imperfections in surfaces. Geometric imperfec-
tions are typically absent in computer-generated images that use texture maps for
details, so they look “too smooth.”

• My textured animations look bad when there are many texels visible in-
side a pixel. What should I do?

The problem is that the texture resolution is too high for that image. We would
like a smaller down-sampled version of the texture. However, if we move closer,
such a down-sampled texture would look too blurry. What we really need is to
be able to dynamically choose the texture resolution based on viewing conditions
so that about one texel is visible through each pixel. A common way to do that
is to useMIP-mapping (L. Williams, 1983). That technique establishes a multi-
resolution set of textures and chooses one of the textures for each polygon or
pixel. Typically the resolutions vary by a factor of two, e.g.,5122, 2562, 1282,
etc.

Notes
The discussion of perspective-correct textures is based onFast Shadows and

Lighting Effects Using Texture Mapping (Segal et al., 1992) and on3D Game

Engine Design (Eberly, 2000).

Exercises

1. Find several ways to implement an infinite 2D checkerboard using surface
and solid techniques. Which is best?

2. Verify that Equation (11.4) is a valid equality using brute-force algebra.

3. How could you implement solid texturing by using the z-buffer depth and
a matrix transform?

12

Data Structures for Graphics

Certain data structures seem to pop up repeatedly in graphics applications, per-
haps because they address fundamental underlying ideas like surfaces, space, and
scene structure. This chapter talks about several basic and unrelated categories
of data structures that are among the most common and useful: mesh structures,
spatial data structures, scene graphs, and tiled multidimensional arrays.

For meshes, we discuss the basic storage schemes used for storing static
meshes and for transferring meshes to graphics APIs. We also discuss the winged-
edge data structure (Baumgart, 1974) and the related half-edge structure, which
are useful for managing models where the tessellation changes, such as in sub-
division or model simplification. Although these methods generalize to arbitrary
polygon meshes, we focus on the simpler case of triangle meshes here.

Next, the scene-graph data structure is presented. Various forms of this data
structure are ubiquitous ingraphics applications because they are so useful in
managing objects and transformations. All new graphics APIs are designed to
support scene graphs well.

For spatial data structures, we discuss three approaches to organizing models
in 3D space—bounding volume hierarchies,hierarchical space subdivision, and
uniform space subdivision—and the use of hierarchical space subdivision (BSP
trees) for hidden surface removal. The same methods are also used for other
purposes including geometry culling and collision detection.

Finally, the tiled multidimensional array is presented. Originally developed
to help paging performance in applications where graphics data needed to be
swapped in from disk, such structures are now crucial for memory locality on
machines regardless of whether the arrayfits in main memory.

261

262 12. Data Structures for Graphics

12.1 Triangle Meshes

Most real-world models are composed of complexes of triangles with shared ver-
tices. These are usually known astriangular meshes, triangle meshes, or trian-

gular irregular networks (TINs) and handling them efficiently is crucial to the
performance of many graphics programs. The kind of efficiency that is impor-
tant depends on the application. Meshes are stored on disk and in memory, and
we’d like to minimize the amount of storage consumed. When meshes are trans-
mitted across networks or from the CPU to the graphics system, they consume
bandwidth, which is often even more precious than storage. In applications that
perform operations on meshes, besides simply storing and drawing them—such
as subdivision, mesh editing, mesh compression, or other operations—efficient
access to adjacency information is crucial.

Triangle meshes are generally used to represent surfaces, so a mesh is not just
a collection of unrelated triangles, but rather a network of triangles that connect to
one another through shared vertices and edges to form a single continuous surface.
This is a key insight about meshes: a mesh can be handled more efficiently than a
collection of the same number of unrelated triangles.

The minimum information required for a triangle mesh is a set of triangles
(triples of vertices) and the positions (in 3D space) of their vertices. But many,
if not most, programs require the ability to store additional data at the vertices,
edges, or faces to support texture mapping,shading, animation, and other opera-
tions. Vertex data is the most common: eachvertex can have material parameters,
texture coordinates, irradiances—any parameters whose values change across the
surface. These parameters are then linearly interpolated across each triangle to
define a continuous function over the whole surface of the mesh. However, it is
also occasionally important to be able to store data per edge or per face.

12.1.1 Mesh Topology

The idea that meshes are surface-like can be formalized as constraints on themesh

topology—the way the triangles connect together, without regard for the vertex
positions. Many algorithms will only work, or are much easier to implement, on a
mesh with predictable connectivity. The simplest and most restrictive requirement
on the topology of a mesh is for the surface to be amanifold. A manifold mesh is
“watertight”—it has no gaps and separates the space on the inside of the surface
from the space outside. It also looks like a surface everywhere on the mesh.We’ll leave the precise def-

initions to the mathemati-
cians; see the chapter
notes.

The termmanifold comes from the mathematicalfield of topology: roughly
speaking, a manifold (specifically a two-dimensional manifold, or 2-manifold) is

12.1. Triangle Meshes 263

a surface in which a small neighborhood around any point could be smoothed out
into a bit offlat surface. This idea is most clearly explained by counterexample:
if an edge on a mesh has three triangles connected to it, the neighborhood of a
point on the edge is different from the neighborhood of one of the points in the
interior of one of the triangles, because it has an extra “fin” sticking out of it
(Figure 12.1). If the edge has exactly two triangles attached to it, points on the

Figure 12.1. Non-manifold
(left) and manifold (right) in-
terior edges.

edge have neighborhoods just like points in the interior, only with a crease down
the middle. Similarly, if the triangles sharing a vertex are in a configuration like
the left one in Figure 12.2, the neighborhood is like two pieces of surface glued

Figure 12.2. Non-manifold
(left) and manifold (right) in-
terior vertices.

together at the center, which can’t beflattened without doubling it up. The vertex
with the simpler neighborhood shown at right is justfine.

Many algorithms assume that meshes are manifold, and it’s always a good
idea to verify this property to prevent crashes or infinite loops if you are handed a
malformed mesh as input. This verification boils down to checking that all edges
are manifold and checking that all verticesare manifold by verifying the following
conditions:

• Every edge is shared by exactly two triangles.

• Every vertex has a single, complete loop of triangles around it.

Figure 12.1 illustrates how an edge can fail thefirst test by having too many tri-
angles, and Figure 12.2 illustrates how a vertex can fail the second test by having
two separate loops of triangles attached to it.

Manifold meshes are convenient, but sometimes it’s necessary to allow meshes
to have edges, orboundaries. Such meshes are not manifolds—a point on the
boundary has a neighborhood that is cut off on one side. They are not necessarily
watertight. However, we can relax the requirements of a manifold mesh to those
for amanifold with boundary without causing problems for most mesh processing
algorithms. The relaxed conditions are:

OK OK bad

Figure 12.3. Conditions at
the edge of a manifold with
boundary.

• Every edge is used by either one or two triangles.

• Every vertex connects to a single edge-connected set of triangles.

Figure 12.3 illustrates these conditions:from left to right, there is an edge with
one triangle, a vertex whose neighboring triangles are in a single edge-connected
set, and a vertex with two disconnected sets of triangles attached to it.

Finally, in many applications it’s important to be able to distinguish the “front”
or “outside” of a surface from the “back” or “inside”—this is known as theori-

entation of the surface. For a single triangle we define orientation based on the
order in which the vertices are listed: the front is the side from which the trian-
gle’s three vertices are arranged in counterclockwise order. A connected mesh is

AB

C

D

AB

C

D

OK bad

Figure 12.4. Triangles
(B,A,C) and (D,C,A) are
consistently oriented,
whereas (B,A,C) and
(A,C,D) are inconsistently
oriented.

264 12. Data Structures for Graphics

consistently oriented if its triangles all agree on which side is the front—and this
is true if and only if every pair of adjacent triangles is consistently oriented.

In a consistently oriented pair of triangles, the two shared vertices appear in
opposite orders in the two triangles’ vertex lists (Figure 12.4). What’s important is
consistency of orientation—some systems define the front using clockwise rather
than counterclockwise order.

Figure 12.5. A triangu-
lated Mobius band, which is
not orientable.

Any mesh that has non-manifold edges can’t be oriented consistently. But
it’s also possible for a mesh to be a valid manifold with boundary (or even a
manifold), and yet have no consistent way to orient the triangles—they are not
orientable surfaces. An example is the M¨obius band shown in Figure 12.5. This
is rarely an issue in practice, however.

12.1.2 Indexed Mesh Storage

A simple triangular mesh is shown in Figure 12.6. You could store these three
triangles as independent entities, each of this form:

Triangle {
vector3 vertexPosition[3]

}

This would result in storing vertexb three times and the other vertices twice
each for a total of nine stored points (three vertices for each of three triangles). Or
you could instead arrange to share the common vertices and store only four, re-

a

d

c

b

vertex 0 vertex 1 vertex 2

0 (ax, ay, az) (bx, by, bz) (cx, cy, cz)
1 (bx, by, bz) (dx, dy, dz) (cx, cy, cz)
2 (ax, ay, az)

vertices

0 (0, 1, 2)
1 (1, 3, 2)
2 (0, 3, 1)

position

0 (ax, ay, az)
1 (bx, by, bz)
2 (cx, cy, cz)
3 (dx, dy, dz)

(dx, dy, dz) (bx, by, bz)

separate triangles: shared vertices:

triangles vertices

Figure 12.6. A three-triangle mesh with four vertices, represented with separate triangles
(left) and with shared vertices (right).

12.1. Triangle Meshes 265

sulting in ashared-vertex mesh. Logically, this data structure has triangles which
point to vertices which contain the vertex data:

Triangle {
Vertex v[3]

}

Vertex {
vector3 position // or other vertex data

}

v[2]

v[0] v[1]

Figure 12.7. The triangle-
to-vertex references in a
shared-vertex mesh.

Note that the entries in the v array are references, or pointers, to Vertex objects;
the vertices are not contained in the triangle.

In implementation, the vertices and triangles are normally stored in arrays,
with the triangle-to-vertex references handled by storing array indices:

IndexedMesh {
int tInd[nt][3]
vector3 verts[nv]

}

The index of thekth vertex of theith triangle is found in tInd[i][k], and the
position of that vertex is stored in the corresponding row of the verts array; see
Figure 12.8 for an example. This way of storing a shared-vertex mesh is anin-

dexed triangle mesh.
Separate triangles or shared vertices will both work well. Is there a space

advantage for sharing vertices? If our mesh hasnv vertices andnt triangles, and
if we assume that the data forfloats, pointers, and ints all require the same storage
(a dubious assumption), the space requirements are:

p0

p1

p2

p3p9

p10

p4

p6

p5

p7

p8

T0

0

2

1

T1

2

2

2

1

1

1

0

0

0

T7

T8

T9
T10

T
T12

T13

T15

16T17

T18

T19

T2

T3

T4

T5

T6

verts[0]

verts[1]

verts[2]

verts[3]

tInd[0]

tInd[1]

tInd[2]

tInd[3]

0, 2, 1

0, 3, 2

10, 2, 3

2, 10, 7

…

x0, y0, z0

x1, y1, z1

x2, y2, z2

x3, y3, z3

…

Figure 12.8. A larger triangle mesh, with part of its representation as an indexed triangle
mesh.

266 12. Data Structures for Graphics

• Triangle. Three vectors per triangle, for9nt units of storage;

• IndexedMesh.One vector per vertex and three ints per triangle, for3nv +

3nt units of storage.

The relative storage requirements depend on the ratio ofnt to nv.

Is this factor of two worth
the complication? I think
the answer is yes, and it be-
comes an even bigger win
as soon as you start adding
“properties” to the vertices.

As a rule of thumb, a large mesh has eachvertex connected to about six tri-
angles (although there can be any number for extreme cases). Since each triangle
connects to three vertices, this means that there are generally twice as many tri-
angles as vertices in a large mesh:nt ≈ 2nv. Making this substitution, we can
conclude that the storage requirements are18nv for the Triangle structure and9nv

for IndexedMesh. Using shared vertices reduces storage requirements by about a
factor of two; and this seems to hold in practice for most implementations.

12.1.3 Triangle Strips and Fans

Indexed meshes are the most common in-memory representation of triangle
meshes, because they achieve a good balance of simplicity, convenience, and
compactness. They are also commonly used to transfer meshes over networks
and between the application and graphicspipeline. In applications where even
more compactness is desirable, the triangle vertex indices (which take up two-
thirds of the space in an indexed mesh with only positions at the vertices) can be
expressed more efficiently usingtriangle strips andtriangle fans.

Figure 12.9. A triangle
fan.

A triangle fan is shown in Figure 12.9. In an indexed mesh, the triangles
array would contain [(0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5)]. We are storing
12 vertex indices, although there are only six distinct vertices. In a triangle fan,
all the triangles share one common vertex, and the other vertices generate a set
of triangles like the vanes of a collapsible fan. The fan in thefigure could be
specified with the sequence [0, 1, 2, 3, 4, 5]: thefirst vertex establishes the center,
and subsequently each pair of adjacent vertices (1-2, 2-3, etc.) creates a triangle.

The triangle strip is a similar concept, but it is useful for a wider range of
meshes. Here, vertices are added alternating top and bottom in a linear strip as
shown in Figure 12.10. The triangle strip in thefigure could be specified by the
sequence [0 1 2 3 4 5 6 7], and every subsequence of three adjacent vertices (0-
1-2, 1-2-3, etc.) creates a triangle. For consistent orientation, every other triangle
needs to have its order reversed. In the example, this results in the triangles (0, 1,

Figure 12.10. A triangle
strip.

2), (2, 1, 3), (2, 3, 4), (4, 3, 5), etc. For each new vertex that comes in, the oldest
vertex is forgotten and the order of the two remaining vertices is swapped. See
Figure 12.11 for a larger example.

12.1. Triangle Meshes 267

p0

p1

p2

p3p9

p10

p4

p6

p5

p7

p8

p4

p1

p *

verts[0] x0, y0, z0

x1, y1, z1

x2, y2, z2

x3, y3, z3

verts[1]

…

[0]

tStrips

4, 0, 1, 2, 5, 8

[1] 6, 9, 0, 3, 2, 10, 7

…

Figure 12.11. Two triangle strips in the context of a larger mesh. Note that neither strip can
be extended to include the triangle marked with an asterisk.

In both strips and fans,n + 2 vertices suffice to describen triangles—a sub-
stantial savings over the3n vertices required by a standard indexed mesh. Long
triangle strips will save approximately a factor of three if the program is vertex-
bound.

It might seem that triangle strips are only useful if the strips are very long,
but even relatively short strips already gain most of the benefits. The savings in
storage space (for only the vertex indices) are as follows:

strip length 1 2 3 4 5 6 7 8 16 100 ∞
relative size 1.00 0.67 0.56 0.50 0.47 0.44 0.43 0.42 0.38 0.34 0.33

So, in fact, there is a rather rapid diminishing return as the strips grow longer.
Thus, even for an unstructured mesh, it is worthwhile to use some greedy algo-
rithm to gather them into short strips.

12.1.4 Data Structures for Mesh Connectivity

Indexed meshes, strips, and fans are all good, compact representations for static
meshes. However, they do not readily allow for meshes to be modified. In order to
efficiently edit meshes, more complicated data structures are needed to efficiently
answer queries such as:

• Given a triangle, what are the three adjacent triangles?

• Given an edge, which two triangles share it?

268 12. Data Structures for Graphics

• Given a vertex, which faces share it?

• Given a vertex, which edges share it?

There are many data structures for triangle meshes, polygonal meshes, and polyg-
onal meshes with holes (see the notes at the end of the chapter for references). In
many applications the meshes are very large, so an efficient representation can be
crucial.

The most straightforward, though bloated, implementation would be to have
three types,Vertex, Edge, andTriangle, and to just store all the relationships di-
rectly:

Triangle {
Vertex v[3]
Edge e[3]

}

Edge {
Vertex v[2]
Triangle t[2]

}

Vertex {
Triangle t[]
Edge e[]

}

This lets us directly look up answers to the connectivity questions above, but
because this information is all inter-related, it stores more than is really needed.
Also, storing connectivity in vertices makes for variable-length data structures
(since vertices can have arbitrary numbers of neighbors), which are generally less
efficient to implement. Rather than committing to store all these relationships
explicitly, it is best to define a class interface to answer these questions, behind
which a more efficient data structure can hide. It turns out we can store only some
of the connectivity and efficiently recover the other information when needed.

Thefixed-size arrays in the Edge and Triangle classes suggest that it will be
more efficient to store the connectivity information there. In fact, for polygon
meshes, in which polygons have arbitrary numbers of edges and vertices, only
edges havefixed-size connectivity information, which leads to many traditional
mesh data structures being based on edges. But for triangle-only meshes, storing
connectivity in the (less numerous) faces is appealing.

A good mesh data structure should be reasonably compact and allow efficient
answers to all adjacency queries. Efficient means constant-time: the time tofind

12.1. Triangle Meshes 269

neighbors should not depend on the size of the mesh. We’ll look at three data
structures for meshes, one based on triangles and two based on edges.

The Triangle-Neighbor Structure

We can create a compact mesh data structure based on triangles by augmenting the
basic shared-vertex mesh with pointers from the triangles to the three neighboring
triangles, and a pointer from each vertex toone of the adjacent triangles (it doesn’t
matter which one); see Figure 12.12:

Triangle {
Triangle nbr[3];
Vertex v[3];

}

Vertex {
// ... per-vertex data ...
Triangle t; // any adjacent tri

}

v[2]

v[0] v[1]

nbr[1]
nbr[2]

nbr[0]

t

t

t

Figure 12.12. The ref-
erences between triangles
and vertices in the triangle
neighbor structure.

In the array Triangle.nbr, thekth entry points to the neighboring triangle that
shares verticesk andk + 1. We call this structure thetriangle-neighbor struc-

ture. Starting from standard indexed mesh arrays, it can be implemented with two
additional arrays: one that stores the three neighbors of each triangle, and one
that stores a single neighboring triangle for each vertex. (See Figure 12.13 for an
example):

p0

p1

p2

p3p9

p10

p4

p6

p5

p7

p8

T0

0

2

1

T1

2

2

2

1

1

1

0

0

0

T7

T8

T9
T10

T
T12

T13

T15

16T17

T18

T19

T2

T3

T4

T5

T6

T

0

[0]

[1]

[2]

[3]

…

[0] 0, 2, 1

1, 6, 7

10, 2, 0

3, 1, 12

2, 13, 4

[1]

[2]

[3]

0, 3, 2

10, 2, 3

2, 10, 7

…

…

[0] 0

[1]

[2]

[3]

6

3

1

vTri

tInd

tNbr

Figure 12.13. The triangle neighbor structure as encoded in arrays, and the sequence that
is followed in traversing the neighboring triangles of vertex 2.

270 12. Data Structures for Graphics

Mesh {
// ... per-vertex data ...
int tInd[nt][3]; // vertex indices
int tNbr[nt][3]; // indices of neighbor triangles
int vTri[nv]; // index of any adjacent triangle

}

Clearly the neighboring triangles and vertices of a triangle can be found di-
rectly in the data structure, but by using this triangle adjacency information care-
fully it is also possible to answer connectivity queries about vertices in constant
time. The idea is to move from triangle to triangle, visiting only the triangles
adjacent to the relevant vertex. If trianglet has vertexv as itskth vertex, then
the triangle t.nbr[k] is the next triangle aroundv in the clockwise direction. This
observation leads to the following algorithm to traverse all the triangles adjacent
to a given vertex:

Of course, a real program
would do something with
the triangles as it found
them.

TrianglesOfVertex(v) {
t = v.t
do {

find i such that (t.v[i] == v)
t = t.nbr[i]

} while (t != v.t)
}

This operationfinds each subsequent triangle in constant time—even though a
search is required tofind the position of the central vertex in each triangle’s vertex
list, the vertex lists have constant size so the search takes constant time. However,
that search is awkward and requires extra branching.

A small refinement can avoid these searches. The problem is that once we
follow a pointer from one triangle to the next, we don’t know from which way
we came: we have to search the triangle’s vertices tofind the vertex that con-
nects back to the previous triangle. To solve this, instead of storing pointers to
neighboring triangles, we can store pointers to specific edges of those triangles by
storing an index with the pointer:

Triangle {
Edge nbr[3];
Vertex v[3];

}

Edge { // the i-th edge of triangle t
Triangle t;
int i; // in {0,1,2}

}

12.1. Triangle Meshes 271

Vertex {
// ... per-vertex data ...
Edge e; // any edge leaving vertex

}

In practice theEdge is stored by borrowing two bits of storage from the triangle
indext to store the edge indexi, so that the total storage requirements remain the
same.

In this structure the neighbor array for a triangle tellswhich of the neighboring
triangles’ edges are shared with the three edges of that triangle. With this extra
information, we always know where tofind the original triangle, which leads to
an invariant of the data structure: for anyjth edge of any trianglet,

t.nbr[j].t.nbr[t.nbr[j].i].t == t.

Knowing which edge we came in through lets us know immediately which edge to
leave through in order to continue traversing around a vertex, leading to a stream-
lined algorithm:

TrianglesOfVertex(v) {
{t, i} = v.e;
do {

{t, i} = t.nbr[i];
} while (t != v.t);

}

The triangle-neighbor structure is quite compact. For a mesh with only vertex
positions, we are storing four numbers (three coordinates and an edge) per vertex
and six (three vertex indices and three edges) per face, for a total of4nv + 6nt ≈
16nv units of storage per vertex, compared with9nv for the basic indexed mesh.

The triangle neighbor structure as presented here works only for manifold
meshes, because it depends on returning to the starting triangle to terminate the
traversal of a vertex’s neighbors, which will not happen at a boundary vertex that
doesn’t have a full cycle of triangles. However, it is not difficult to generalize
it to manifolds with boundary, by introducing a suitable sentinel value (such as
−1) for the neighbors of boundary triangles and taking care that the boundary
vertices point to the most counterclockwise neighboring triangle, rather than to
any arbitrary triangle.

The Winged-Edge Structure

One widely used mesh data structure that stores connectivity information at the
edges instead of the faces is thewinged-edge data structure. This data struc-

272 12. Data Structures for Graphics

e0

e1
e2

e12
e13

e14

e15

e3

e4

e5

e6
e7

e8

e9

e10

e18

e16 e17

e19

e3 e4

[0]

[1]

[2]

…

ln rp lp rn

1 4 2 3

18 0 16 2

12 1 3 0

winged edge table

Figure 12.14. An example of a winged-edge mesh structure, stored in arrays.

Figure 12.15. A tetrahedron and the associated elements for a winged-edge data structure.
The two small tables are not unique; each vertex and face stores any one of the edges with
which it is associated.

12.1. Triangle Meshes 273

ture makes edges thefirst-class citizen of the data structure, as illustrated in Fig-
ures 12.14 and 12.15.

In a winged-edge mesh, each edge stores pointers to the two vertices it con-
nects (thehead and tail vertices), the two faces it is part of (theleft and right

faces), and, most importantly, the nextand previous edges in the counterclock-
wise traversal of its left and right faces(Figure 12.16). Each vertex and face also
stores a pointer to a single, arbitrary edge that connects to it:

lnext

lprev

rprev

rnext

left right

head

tail

Figure 12.16. The refer-
ences from an edge to the
neighboring edges, faces,
and vertices in the winged-
edge structure.

Edge {
Edge lprev, lnext, rprev, rnext;
Vertex head, tail;
Face left, right;

}

Face {
// ... per-face data ...
Edge e; // any adjacent edge

}

Vertex {
// ... per-vertex data ...
Edge e; // any incident edge

}

The winged-edge data structure supportsconstant-time access to the edges of
a face or of a vertex, and from those edges the adjoining vertices or faces can be
found:

EdgesOfVertex(v) {
e = v.e;
do {

if (e.tail == v)
e = e.lprev;

else
e = e.rprev;

} while (e != v.e);
}

EdgesOfFace(f) {
e = f.e;
do {

if (e.left == f)
e = e.lnext;

else
e = e.rnext;

274 12. Data Structures for Graphics

} while (e != f.e);
}

These same algorithms and data structures will work equally well in a polygon
mesh that isn’t limited to triangles; this is one important advantage of edge-based
structures.

As with any data structure, the winged-edge data structure makes a variety of
time/space trade-offs. For example, we can eliminate theprev references. This
makes it more difficult to traverse clockwise around faces or counterclockwise
around vertices, but when we need to know the previous edge, we can always
follow the successor edges in a circle until we get back to the original edge. This
saves space, but it makes some operations slower. (See the chapter notes for more
information on these tradeoffs).

The Half-Edge Structure

The winged-edge structure is quite elegant, but it has one remaining awkward-
ness—the need to constantly check which way the edge is oriented before moving
to the next edge. This check is directly analogous to the search we saw in the basic
version of the triangle neighbor structure: we are looking tofind out whether we
entered the present edge from the head or from the tail. The solution is also almost
indistinguishable: rather than storing data for each edge, we store data for each
half-edge. There is one half-edge for each of the two triangles that share an edge,
and the two half-edges are oriented oppositely, each oriented consistently with its
own triangle.

The data normally stored in an edge is split between the two half-edges. Each
half-edge points to the face on its side of the edge and to the vertex at its head, and
each contains the edge pointers for its face. It also points to its neighbor on the

h0

h3h5

h6

h1

h4 h2

h9

h10

hedge[0]

hedge[1]

hedge[2]

pair next

1 2

0 10

3 4

hedge[3] 2 9

hedge[4] 5 0

hedge[5]

…

4 6

Figure 12.17. An example of a half-edge mesh structure, stored in arrays.

12.1. Triangle Meshes 275

other side of the edge, from which the other half of the information can be found.
Like the winged-edge, a half-edge can contain pointers to both the previous and
next half-edges around its face, or only to the next half-edge. We’ll show the
example that uses a single pointer.

pair

next

head

left

Figure 12.18. The refer-
ences from a half-edge to
its neighboring mesh com-
ponents.

HEdge {
HEdge pair, next;
Vertex v;
Face f;

}

Face {
// ... per-face data ...
HEdge h; // any h-edge of this face

}

Vertex {
// ... per-vertex data ...
HEdge h; // any h-edge pointing toward this vertex

}

Traversing a half-edge structure is just like traversing a winged-edge structure
except that we no longer need to check orientation, and we follow thepair pointer
to access the edges in the opposite face.

EdgesOfVertex(v) {
h = v.h;
do {

h = h.pair.next;
} while (h != v.h);

}

EdgesOfFace(f) {
h = f.h;
do {

h = h.next;
} while (h != f.h);

}

The vertex traversal here is clockwise, which is necessary because of omitting
theprev pointer from the structure.

Because half-edges are generally allocated in pairs (at least in a mesh with
no boundaries), many implementations can do away with thepair pointers. For
instance, in an implementation based on array indexing (such as shown in Fig-
ure 12.17), the array can be arranged so that an even-numbered edgei always
pairs with edgei + 1 and an odd-numbered edgej always pairs with edgej − 1.

276 12. Data Structures for Graphics

In addition to the simple traversal algorithms shown in this chapter, all three of
these mesh topology structures can support “mesh surgery” operations of various
sorts, such as splitting or collapsing vertices, swapping edges, adding or removing
triangles, etc.

12.2 Scene Graphs

A triangle mesh manages a collection of triangles that constitute an object in a
scene, but another universal problem in graphics applications is arranging the
objects in the desired positions. As we saw in Chapter 6, this is done using trans-
formations, but complex scenes can contain a great many transformations and
organizing them well makes the scene much easier to manipulate. Most scenes
admit to a hierarchical organization, and the transformations can be managed ac-
cording to this hierarchy using ascene graph.

To motivate the scene-graph data structure, we will use the hinged pendulum
shown in Figure 12.19. Consider how we would draw the top part of the pendu-
lum:

M1 = rotate(θ)
M2 = translate(p)

M3 = M2M1

Apply M3 to all points in upper pendulum

The bottom is more complicated, but wecan take advantage of the fact that it is
attached to the bottom of the upper pendulum at pointb in the local coordinate
system. First, we rotate the lower pendulum so that it is at an angleφ relative to

Figure 12.19. A hinged pendulum. On the left are the two pieces in their “local” coordinate
systems. The hinge of the bottom piece is at point b and the attachment for the bottom piece
is at its local origin. The degrees of freedom for the assembled object are the angles (θ,φ)
and the location p of the top hinge.

12.2. Scene Graphs 277

its initial position. Then, we move it so that its top hinge is at pointb. Now it is

Figure 12.20. The scene
graph for the hinged pendu-
lum of Figure 12.19.

at the appropriate position in the local coordinates of the upper pendulum, and it
can then be moved along with that coordinate system. The composite transform
for the lower pendulum is:

Ma = rotate(φ)

Mb = translate(b)

Mc = MbMa

Md = M3Mc

Apply Md to all points in lower pendulum

Thus, we see that the lower pendulum not only lives in its own local coordinate
system, but also that coordinate system itself is moved along with that of the upper
pendulum.

Figure 12.21. A ferry,
a car on the ferry, and
the wheels of the car (only
two shown) are stored in a
scene-graph.

We can encode the pendulum in a data structure that makes management of
these coordinate system issues easier, as shown in Figure 12.20. The appropriate
matrix to apply to an object is just the product of all the matrices in the chain from
the object to the root of the data structure. For example, consider the model of a
ferry that has a car that can move freely on the deck of the ferry, and wheels that
each move relative to the car as shown in Figure 12.21.

As with the pendulum, each object should be transformed by the product of
the matrices in the path from the root to the object:

• ferry transform usingM0

• car body transform usingM0M1

• left wheel transform usingM0M1M2

• left wheel transform usingM0M1M3

An efficient implementation can be achieved using amatrix stack, a data structure
supported by many APIs. A matrix stack is manipulated usingpush andpop op-
erations that add and delete matrices from the right-hand side of a matrix product.
For example, calling:

push(M0)

push(M1)

push(M2)

creates the active matrixM = M0M1M2. A subsequent call topop() strips the
last matrix added so that the active matrix becomesM = M0M1. Combining
the matrix stack with a recursive traversal of a scene graph gives us:

278 12. Data Structures for Graphics

function traverse(node)
push(Mlocal)

draw object using composite matrix from stack
traverse(left child)

traverse(right child)
pop()

There are many variations on scene graphs but all follow the basic idea above.

12.3 Spatial Data Structures

In many, if not all, graphics applications, the ability to quickly locate geometric
objects in particular regions of space is important. Ray tracers need tofind objects
that intersect rays; interactive applications navigating an environment need tofind
the objects visible from any given viewpoint; games and physical simulations re-
quire detecting when and where objects collide. All these needs can be supported
by variousspatial data structures designed to organize objects in space so they
can be looked up efficiently.

In this section we will discuss examples of three general classes of spatial data
structures. Structures that group objects together into a hierarchy areobject par-

titioning schemes: objects are divided into disjoint groups, but the groups may
end up overlapping in space. Structuresthat divide space into disjoint regions
arespace partitioning schemes: space is divided into separate partitions, but one
object may have to intersect more than one partition. Space partitioning schemes
can be regular, in which space is divided into uniformly shaped pieces, or irregu-
lar, in which space is divided adaptively into irregular pieces, with smaller pieces
where there are more and smaller objects.

Figure 12.22. Left: a uniform partitioning of space. Right: adaptive bounding-box hierarchy.
Image courtesy David DeMarle.

12.3. Spatial Data Structures 279

We will use ray tracing as the primary motivation while discussing these struc-
tures, though they can all also be used forview culling or collision detection. In
Chapter 4, all objects were looped over while checking for intersections. ForN

objects, this is anO(N) linear search and is thus slow for large scenes. Like most
search problems, the ray-object intersection can be computed in sub-linear time
using “divide and conquer” techniques, provided we can create an ordered data
structure as a preprocess. There are many techniques to do this.

This section discusses three of these techniques in detail: bounding volume hi-
erarchies (Rubin & Whitted, 1980; Whitted, 1980; Goldsmith & Salmon, 1987),
uniform spatial subdivision (Cleary et al., 1983; Fujimoto et al., 1986; Ama-
natides & Woo, 1987), and binary space partitioning (Glassner, 1984; Jansen,
1986; Havran, 2000). An example of thefirst two strategies is shown in Fig-
ure 12.22.

12.3.1 Bounding Boxes

A key operation in most intersection-acceleration schemes iscomputing the in-
tersection of a ray with a bounding box (Figure 12.23). This differs from conven-
tional intersection tests in that we do not need to know where the ray hits the box;
we only need to know whether it hits the box.

To build an algorithm for ray-box intersection, we begin by considering a 2D
ray whose direction vector has positivex andy components. We can generalize
this to arbitrary 3D rays later. The 2D bounding box is defined by two horizontal
and two vertical lines:

Figure 12.23. The ray is
only tested for intersection
with the surfaces if it hits the
bounding box.

x = xmin,

x = xmax,

y = ymin,

y = ymax.

The points bounded by these lines can be described in interval notation:

(x, y) ∈ [xmin, xmax] × [ymin, ymax].

As shown in Figure 12.24, the intersection test can be phrased in terms of these
intervals. First, we compute the ray parameter where the ray hits the linex =

xmin:

txmin =
xmin − xe

xd
.

280 12. Data Structures for Graphics

Figure 12.24. The ray will be inside the interval x ∈ [xmin, xmax] for some interval in its
parameter space t ∈ [txmin, txmax]. A similar interval exists for the y interval. The ray intersects
the box if it is in both the x interval and y interval at the same time, i.e., the intersection of the
two one-dimensional intervals is not empty.

We then make similar computations fortxmax, tymin, andtymax. The ray hits the
box if and only if the intervals[txmin, txmax] and [tymin, tymax] overlap, i.e., their
intersection is non-empty. In pseudocode this algorithm is:

txmin = (xmin − xe)/xd

txmax = (xmax− xe)/xd

tymin = (ymin − ye)/yd

tymax = (ymax− ye)/yd

if (txmin > tymax) or (tymin > txmax) then
return false

else
return true

The if statement may seem non-obvious. To see the logic of it, note that there is
no overlap if thefirst interval is either entirely to the right or entirely to the left of
the second interval.

Thefirst thing we must address is the case whenxd or yd is negative. Ifxd is
negative, then the ray will hitxmax before it hitsxmin. Thus the code for computing

12.3. Spatial Data Structures 281

txmin andtxmax expands to:

if (xd ≥ 0) then
txmin = (xmin − xe)/xd

txmax = (xmax− xe)/xd

else
txmin = (xmax− xe)/xd

txmax = (xmin − xe)/xd

A similar code expansion must be made for they cases. A major concern is that
horizontal and vertical rays have a zero value foryd andxd, respectively. This
will cause divide by zero which may be a problem. However, before addressing
this directly, we check whether IEEEfloating point computation handles these
cases gracefully for us. Recall from Section 1.5 the rules for divide by zero: for
any positive real numbera,

+a/0 = +∞;

−a/0 = −∞.

Consider the case of a vertical ray wherexd = 0 andyd > 0. We can then
calculate

txmin =
xmin − xe

0
;

txmax =
xmax− xe

0
.

There are three possibilities of interest:

1. xe ≤ xmin (no hit);

2. xmin < xe < xmax (hit);

3. xmax ≤ xe (no hit).

For thefirst case we have

txmin =
positive number

0
;

txmax =
positive number

0
.

This yields the interval(txmin, txmin) = (∞,∞). That interval will not overlap
with any interval, so there will be no hit, as desired. For the second case, we have

txmin =
negative number

0
;

txmax =
positive number

0
.

282 12. Data Structures for Graphics

This yields the interval(txmin, txmin) = (−∞,∞) which will overlap with all
intervals and thus will yield a hit as desired. The third case results in the interval
(−∞,−∞) which yields no hit, as desired. Because these cases work as desired,
we need no special checks for them. As is often the case, IEEEfloating point
conventions are our ally. However, there is still a problem with this approach.

Consider the code segment:

if (xd ≥ 0) then
tmin = (xmin − xe)/xd

tmax = (xmax− xe)/xd

else
tmin = (xmax− xe)/xd

tmax = (xmin − xe)/xd

This code breaks down whenxd = −0. This can be overcome by testing on the
reciprocal ofxd (A. Williams et al., 2005):

a = 1/xd

if (a ≥ 0) then
tmin = a(xmin − xe)

tmax = a(xmax− xe)

else
tmin = a(xmax− xe)

tmax = a(xmin − xe)

12.3.2 Hierarchical Bounding Boxes

The basic idea of hierarchical bounding boxes can be seen by the common tactic
of placing an axis-aligned 3D bounding box around all the objects as shown in
Figure 12.25. Rays that hit the bounding box will actually be more expensive
to compute than in a brute force search, because testing for intersection with the
box is not free. However, rays that miss the box are cheaper than the brute force
search. Such bounding boxes can be made hierarchical by partitioning the set of

Figure 12.25. A 2D ray e
+ t d is tested against a 2D
bounding box.

objects in a box and placing a box aroundeach partition as shown in Figure 12.26.
The data structure for the hierarchy shown in Figure 12.27 might be a tree with
the large bounding box at the root and the two smaller bounding boxes as left and
right subtrees. These would in turn eachpoint to a list of three triangles. The
intersection of a ray with this particular hard-coded tree would be:

if (ray hits root box) then
if (ray hits left subtree box) then

12.3. Spatial Data Structures 283

check three triangles for intersection
if (ray intersects right subtree box) then

check other three triangles for intersection
if (an intersections returned from each subtree) then

return the closest of the two hits
else if(a intersection is returned from exactly one subtree) then

return that intersection
else

return false
else

return false

Some observations related to this algorithm are that there is no geometric ordering

Figure 12.26. The bound-
ing boxes can be nested by
creating boxes around sub-
sets of the model.

between the two subtrees, and there is no reason a ray might not hit both subtrees.
Indeed, there is no reason that the two subtrees might not overlap.

A key point of such data hierarchies is that a box is guaranteed to bound all
objects that are below it in the hierarchy, but they arenot guaranteed to contain
all objects that overlap it spatially, as shown in Figure 12.27. This makes this

Figure 12.27. The
gray box is a tree node
that points to the three gray
spheres, and the thick black
box points to the three black
spheres. Note that not all
spheres enclosed by the
box are guaranteed to be
pointed to by the corre-
sponding tree node.

geometric search somewhat more complicated than a traditional binary search on
strictly ordered one-dimensional data. The reader may note that several possible
optimizations present themselves. We defer optimizations until we have a full
hierarchical algorithm.

If we restrict the tree to be binary and require that each node in the tree have a
bounding box, then this traversal code extends naturally. Further, assume that all
nodes are either leaves in the tree and contain a primitive, or that they contain one
or two subtrees.

The bvh-node class should be of type surface, so it should implement
surface::hit. The data it contains should be simple:

class bvh-node subclass of surface
virtual bool hit(raye + td, realt0, realt1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
box bbox

The traversal code can then be called recursively in an object-oriented style:

function bool bvh-node::hit(raya + tb, realt0, realt1, hit-record rec)
if (bbox.hitbox(a+ tb, t0, t1)) then

hit-record lrec, rrec

284 12. Data Structures for Graphics

left-hit = (left �= NULL) and(left → hit(a + tb, t0, t1, lrec))
right-hit = (right �= NULL) and(right→ hit(a + tb, t0, t1, rrec))
if (left-hit and right-hit) then

if (lrec.t< rrec.t) then
rec = lrec

else
rec = rrec

return true
else if(left-hit) then

rec = lrec
return true

else if(right-hit) then
rec = rrec
return true

else
return false

else
return false

Note that becauseleft and right point to surfaces rather than bvh-nodes
specifically, we can let the virtual functions take care of distinguishing between
internal and leaf nodes; the appropriate hit function will be called. Note that
if the tree is built properly, we caneliminate the check for left being
NULL. If we want to eliminate the check for right being NULL, we can
replace NULL right pointers with a redundant pointer to left. This will
end up checking left twice, but will eliminate the check throughout
the tree. Whether that is worth it will depend on the details of tree
construction.

There are many ways to build a tree for a bounding volume hierarchy. It is
convenient to make the tree binary, roughly balanced, and to have the boxes of
sibling subtrees not overlap too much. A heuristic to accomplish this is to sort
the surfaces along an axis before dividingthem into two sublists. If the axes are
defined by an integer withx = 0, y = 1, andz = 2 we have:

function bvh-node::create(object-array A, int AXIS)
N = A.length
if (N= 1) then

left = A[0]

right = NULL
bbox = bounding-box(A[0])

12.3. Spatial Data Structures 285

else if(N= 2) then
left-node = A[0]

right-node = A[1]

bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
sort A by the object center along AXIS
left= new bvh-node(A[0..N/2− 1], (AXIS +1) mod 3)

right = new bvh-node(A[N/2..N−1], (AXIS +1) mod 3)

bbox = combine(left → bbox, right→ bbox)

The quality of the tree can be improved by carefully choosing AXIS each time.
One way to do this is to choose the axis such that the sum of the volumes of the
bounding boxes of the two subtrees is minimized. This change compared to ro-
tating through the axes will make little difference for scenes composed of isotopi-
cally distributed small objects, but it may help significantly in less well-behaved
scenes. This code can also be made more efficient by doing just a partition rather
than a full sort.

Another, and probably better, way to build the tree is to have the subtrees
contain about the same amount of space rather than the same number of objects.
To do this we partition the list based on space:

function bvh-node::create(object-array A, int AXIS)
N = A.length
if (N = 1) then

left = A[0]

right = NULL
bbox = bounding-box(A[0])

else if(N = 2) then
left = A[0]

right = A[1]

bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
find the midpointm of the bounding box of A along AXIS
partition A into lists with lengths k and(N-k) surroundingm
left = new bvh-node(A[0..k], (AXIS +1) mod 3)

right = new bvh-node(A[k+1..N−1], (AXIS +1) mod 3)

bbox = combine(left → bbox, right→ bbox)

Although this results in an unbalanced tree, it allows for easy traversal of empty
space and is cheaper to build because partitioning is cheaper than
sorting.

286 12. Data Structures for Graphics

Figure 12.28. In uniform spatial subdivision, the ray is tracked forward through cells until
an object in one of those cells is hit. In this example, only objects in the shaded cells are
checked.

12.3.3 Uniform Spatial Subdivision

Another strategy to reduce intersection tests is to divide space. This is funda-
mentally different from dividing objects as was done with hierarchical bounding
volumes:

• In hierarchical bounding volumes, eachobject belongs to one of two sibling
nodes, whereas a point in space may be inside both sibling nodes.

• In spatial subdivision, each point in space belongs to exactly one node,
whereas objects may belong to many nodes.

In uniform spatial subdivision, the scene is partitioned into axis-aligned boxes.
These boxes are all the same size, although they are not necessarily cubes. The
ray traverses these boxes as shown in Figure 12.28. When an object is hit, the
traversal ends.

The grid itself should be a subclass of surface and should be implemented as
a 3D array of pointers to surface. For empty cells these pointers are NULL. For
cells with one object, the pointer points to that object. For cells with more than
one object, the pointer can point to a list, another grid, or another data structure,
such as a bounding volume hierarchy.

This traversal is done in an incremental fashion. The regularity comes from
the way that a ray hits each set of parallel planes, as shown in Figure 12.29. To
see how this traversal works,first consider the 2D case where the ray direction
has positivex andy components and starts outside the grid. Assume the grid is
bounded by points(xmin, ymin) and(xmax, ymax). The grid hasnx × ny cells.

12.3. Spatial Data Structures 287

Figure 12.29. Although the pattern of cell hits seems irregular (left), the hits on sets of
parallel planes are very even.

Our first order of business is tofind the index(i, j) of the first cell hit by
the raye + td. Then, we need to traverse the cells in an appropriate order. The
key parts to this algorithm arefinding the initial cell(i, j) and deciding whether
to incrementi or j (Figure 12.30). Note that when we check for an intersection

Figure 12.30. To decide
whether we advance right
or upwards, we keep track
of the intersections with the
next vertical and horizontal
boundary of the cell.

with objects in a cell, we restrict the range oft to be within the cell (Figure 12.31).
Most implementations make the 3D array of type “pointer to surface.” To improve
the locality of the traversal, the array can be tiled as discussed in Section 12.5.

12.3.4 Axis-Aligned Binary Space Partitioning

Figure 12.31. Only hits
within the cell should be re-
ported. Otherwise the case
above would cause us to re-
port hitting object b rather
than object a.

We can also partition space in a hierarchical data structure such as abinary space

partitioning tree (BSP tree). This is similar to the BSP tree used for visibility
sorting in Section 12.4, but it’s most common to use axis-aligned, rather than
polygon-aligned, cutting planes for ray intersection.

A node in this structure contains a single cutting plane and a left and right
subtree. Each subtree contains all the objects on one side of the cutting plane.
Objects that pass through the plane are stored in in both subtrees. If we assume
the cutting plane is parallel to theyz plane atx = D, then the node class is:

class bsp-node subclass of surface
virtual bool hit(raye + td, realt0, realt1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
realD

288 12. Data Structures for Graphics

Figure 12.32. The four
cases of how a ray relates
to the BSP cutting plane
x = D.

We generalize this toy andz cutting planes later. The intersection code can then
be called recursively in an object-oriented style. The code considers the four
cases shown in Figure 12.32. For our purposes, the origin of these rays is a point
at parametert0:

p = a + t0b.

The four cases are:

1. The ray only interacts with the left subtree, and we need not test it for
intersection with the cutting plane. It occurs forxp < D andxb < 0.

2. The ray is tested against the left subtree, and if there are no hits, it is then
tested against the right subtree. We need tofind the ray parameter atx = D,
so we can make sure we only test for intersections within the subtree. This
case occurs forxp < D andxb > 0.

3. This case is analogous to case 1 and occurs forxp > D andxb > 0.

4. This case is analogous to case 2 and occurs forxp > D andxb < 0.

The resulting traversal code handling these cases in order is:

function bool bsp-node::hit(raya + tb, realt0, realt1, hit-record rec)
xp = xa + t0xb

if (xp < D) then
if (xb < 0) then

return (left �= NULL) and(left→hit(a + tb, t0, t1, rec))
t = (D − xa)/xb

if (t > t1) then
return (left �= NULL) and(left→hit(a + tb, t0, t1, rec))

if (left �= NULL) and(left→hit(a + tb, t0, t, rec)) then
return true

return (right �= NULL) and(right→hit(a + tb, t, t1, rec))
else

analogous code for cases 3 and 4

This is very clean code. However, to get it started, we need to hit some root object
that includes a bounding box so we can initialize the traversal,t0 andt1. An issue
we have to address is that the cutting plane may be along any axis. We can add
an integer indexaxis to the bsp-node class. If we allow an indexing operator
for points, this will result in some simple modifications to the code above, for
example,

12.4. BSP Trees for Visibility 289

xp = xa + t0xb

would become

up = a[axis] + t0b[axis]

which will result in some additional array indexing, but will not generate more
branches.

While the processing of a single bsp-node is faster than processing a bvh-node,
the fact that a single surface may exist in more than one subtree means there are
more nodes and, potentially, a higher memory use. How “well” the trees are built
determines which is faster. Building the tree is similar to building the BVH tree.
We can pick axes to split in a cycle, and we can split in half each time, or we can
try to be more sophisticated in how we divide.

12.4 BSP Trees for Visibility

Another geometric problem in which spatial data structures can be used is deter-
mining the visibility ordering of objects in a scene with changing viewpoint.

If we are making many images of afixed scene composed of planar polygons,
from different viewpoints—as is often the case for applications such as games—
we can use abinary space partitioning scheme closely related to the method for
ray intersection discussed in the previous section. The difference is that for vis-
ibility sorting we use non–axis-aligned splitting planes, so that the planes can be
made coincident with the polygons. This leads to an elegant algorithm known as
the BSP tree algorithm to order the surfaces from front to back. The key aspect
of the BSP tree is that it uses a preprocess to create a data structure that is useful
for any viewpoint. So, as the viewpoint changes, the same data structure is used
without change.

12.4.1 Overview of BSP Tree Algorithm

The BSP tree algorithm is an example of apainter’s algorithm. A painter’s algo-
rithm draws every object from back-to-front, with each new polygon potentially
overdrawing previous polygons, as is shown in Figure 12.33. It can be imple-
mented as follows:

sort objects back to front relative to viewpoint
for each objectdo

draw object on screen

290 12. Data Structures for Graphics

Figure 12.33. A painter’s algorithm starts with a blank image and then draws the scene one
object at a time from back-to-front, overdrawing whatever is already there. This automatically
eliminates hidden surfaces.

The problem with thefirst step (the sort) is that the relative order of multiple
objects is not always well defined, even if the order of every pair of objects is.
This problem is illustrated in Figure 12.34 where the three triangles form acycle.

The BSP tree algorithm works on any scene composed of polygons where
no polygon crosses the plane defined by any other polygon. This restriction is
then relaxed by a preprocessing step. Forthe rest of this discussion, triangles are
assumed to be the only primitive, but the ideas extend to arbitrary polygons.

Figure 12.34. A cycle oc-
curs if a global back-to-front
ordering is not possible for
a particular eye position.

The basic idea of the BSP tree can be illustrated with two triangles,T1 and
T2. We first recall (see Section 2.5.3) the implicit plane equation of the plane
containingT1: f1(p) = 0. The key property of implicit planes that we wish to
take advantage of is that for all pointsp+ on one side of the plane,f1(p

+) > 0;

12.4. BSP Trees for Visibility 291

and for all pointsp− on the other side of the plane,f1(p
−) < 0. Using this

property, we canfind out on which side of the planeT2 lies. Again, this assumes
all three vertices ofT2 are on the same side of the plane. For discussion, assume
thatT2 is on thef1(p) < 0 side of the plane. Then, we can drawT1 andT2 in the
right order for any eyepointe:

if (f1(e) < 0) then
drawT1

drawT2

else
drawT2

drawT1

The reason this works is that ifT2 ande are on the same side of the plane con-
tainingT1, there is no way forT2 to be fully or partially blocked byT1 as seen
from e, so it is safe to drawT1 first. If e andT2 are on opposite sides of the
plane containingT1, thenT2 cannot fully or partially blockT1, and the opposite
drawing order is safe (Figure 12.35).

This observation can be generalized to many objects provided none of them
span the plane defined byT1. If we use a binary tree data structure withT1

as root, thenegative branch of the tree contains all the triangles whose
vertices havefi(p) < 0, and thepositive branch of the tree contains all the
triangles whose vertices havefi(p) > 0. We can draw in proper order
as follows:

function draw(bsptree tree, pointe)
if (tree.empty)then

return

e

Figure 12.35. When e and T2 are on opposite sides of the plane containing T1, then it is
safe to draw T2 first and T1 second. If e and T2 are on the same side of the plane, then T1
should be drawn before T2. This is the core idea of the BSP tree algorithm.

292 12. Data Structures for Graphics

if (ftree.root(e) < 0) then
draw(tree.plus,e)
rasterize tree.triangle
draw(tree.minus,e)

else
draw(tree.minus,e)
rasterize tree.triangle
draw(tree.plus,e)

The nice thing about that code is that it will work for any viewpointe, so the
tree can be precomputed. Note that, if each subtree is itself a tree, where the root
triangle divides the other triangles into two groups relative to the plane containing
it, the code will work as is. It can be made slightly more efficient by terminat-
ing the recursive calls one level higher, but the code will still be simple. A tree
illustrating this code is shown in Figure 12.36. As discussed in Section 2.5.5, the
implicit equation for a pointp on a plane containing three non-colinear pointsa,
b, andc is

f(p) = ((b− a) × (c − a)) · (p − a) = 0. (12.1)

Figure 12.36. Three triangles and a BSP tree that is valid for them. The “positive” and
“negative” are encoded by right and left subtree position, respectively.

12.4. BSP Trees for Visibility 293

It can be faster to store the(A, B, C, D) of the implicit equation of the form

f(x, y, z) = Ax + By + Cz + D = 0. (12.2)

Equations (12.1) and (12.2) are equivalent, as is clear when you recall that the
gradient of the implicit equation is the normal to the triangle. The gradient of
Equation (12.2) isn = (A, B, C) which is just the normal vector

n = (b − a) × (c − a).

We can solve forD by plugging in any point on the plane, e.g.,a:

D = −Axa − Bya − Cza

= −n · a.

This suggests the form:

f(p) = n · p − n · a
= n · (p − a)

= 0,

which is the same as Equation (12.1) once you recall thatn is computed using the
cross product. Which form of the plane equation you use and whether you store
only the vertices,n and the vertices, orn, D, and the vertices, is probably a matter
of taste—a classic time-storage tradeoff that will be settled best by profiling. For
debugging, using Equation (12.1) is probably the best.

The only issue that prevents the code above from working in general is that
one cannot guarantee that a triangle can be uniquely classified on one side of a
plane or the other. It can have two vertices on one side of the plane and the third
on the other. Or it can have vertices on the plane. This is handled by splitting the
triangle into smaller triangles using the plane to “cut” them.

12.4.2 Building the Tree

If none of the triangles in the dataset crosseach other’s planes, so that all triangles
are on one side of all other triangles, a BSP tree that can be traversed using the
code above can be built using the following algorithm:

tree-root = node(T1)

for i ∈ {2, . . . , N} do
tree-root.add(Ti)

294 12. Data Structures for Graphics

function add(triangleT)

if (f(a) < 0 andf(b) < 0 andf(c) < 0) then
if (negative subtree is empty) then

negative-subtree = node(T)

else
negative-subtree.add(T)

else if(f(a) > 0 andf(b) > 0 andf(c) > 0) then
if positive subtree is emptythen

positive-subtree = node(T)

else
positive-subtree.add(T)

else
we have assumed this case is impossible

a

b

c

A

B

Figure 12.37. When a tri-
angle spans a plane, there
will be one vertex on one
side and two on the other.

The only thing we need tofix is the case where the triangle crosses the dividing
plane, as shown in Figure 12.37. Assume, for simplicity, that the triangle has
verticesa andb on one side of the plane, and vertexc is on the other side. In this
case, we canfind the intersection pointsA andB and cut the triangle into three
new triangles with vertices

T1 = (a,b,A),

T2 = (b,B,A),

T3 = (A,B, c),

as shown in Figure 12.38. This order of vertices is important so that the direction
of the normal remains the same as for the original triangle. If we assume that
f(c) < 0, the following code could add these three triangles to the tree assuming
the positive and negative subtrees are not empty:

positive-subtree = node(T1)

positive-subtree = node(T2)

negative-subtree = node(T3)

A precision problem that will plague a naive implementation occurs when a vertex
is very near the splitting plane. For example, if we have two vertices on one side of
the splitting plane and the other vertex is only an extremely small distance on the

Figure 12.38. When a
triangle is cut, we break it
into three triangles, none
of which span the cutting
plane.

other side, we will create a new triangle almost the same as the old one, a triangle
that is a sliver, and a triangle of almost zero size. It would be better to detect this
as a special case and not split into three new triangles. One might expect this case
to be rare, but because many models have tessellated planes and triangles with

12.4. BSP Trees for Visibility 295

shared vertices, it occurs frequently, and thus must be handled carefully. Some
simple manipulations that accomplish this are:

function add(triangleT)

fa = f(a)

fb = f(b)

fc = f(c)

if (abs(fa) < ǫ) then
fa = 0

if (abs(fb) < ǫ) then
fb = 0

if (abs(fc) < ǫ) then
fc = 0

if (fa ≤ 0 and fb≤ 0 and fc≤ 0) then
if (negative subtree is empty) then

negative-subtree = node(T)

else
negative-subtree.add(T)

else if(fa ≥ 0 and fb≥ 0 and fc≥ 0) then
if (positive subtree is empty) then

positive-subtree = node(T)

else
positive-subtree.add(T)

else
cut triangle into three triangles and add to each side

This takes any vertex whosef value is withinǫ of the plane and counts it as
positive or negative. The constantǫ is a small positive real chosen by the user.
The technique above is a rare instance where testing forfloating-point equality is
useful and works because the zero value is set rather than being computed. Com-
paring for equality with a computedfloating-point value is almost never advisable,
but we are not doing that.

12.4.3 Cutting Triangles

Filling out the details of the last case “cut triangle into three triangles and add to
each side” is straightforward, but tedious. We should take advantage of the BSP
tree construction as a preprocess where highest efficiency is not key. Instead, we
should attempt to have a clean compact code. A nice trick is to force many of the
cases into one by ensuring thatc is on one side of the plane and the other two
vertices are on the other. This is easilydone with swaps. Filling out the details

296 12. Data Structures for Graphics

in the final else statement (assuming the subtrees are non-empty for simplicity)
gives:

if (fa ∗ fc ≥ 0) then
swap(fb, fc)

swap(b, c)

swap(fa, fb)

swap(a,b)

else if(fb ∗ fc ≥ 0) then
swap(fa, fc)

swap(a, c)

swap(fa, fb)

swap(a,b)

computeA
computeB
T1 = (a,b,A)

T2 = (b,B,A)

T3 = (A,B, c)

if (fc ≥ 0) then
negative-subtree.add(T1)

negative-subtree.add(T2)

positive-subtree.add(T3)

else
positive-subtree.add(T1)

positive-subtree.add(T2)

negative-subtree.add(T3)

This code takes advantage of the fact that the product ofa andb are positive if they
have the same sign—thus, thefirst if statement. If vertices are swapped, we must
do two swaps to keep the vertices ordered counterclockwise. Note that exactly
one of the vertices may lie exactly on the plane, in which case the code above will
work, but one of the generated triangles will have zero area. This can be handled
by ignoring the possibility, which is not that risky, because the rasterization code
must handle zero-area triangles in screen space (i.e., edge-on triangles). You can
also add a check that does not add zero-area triangles to the tree. Finally, you can
put in a special case for when exactly one offa, fb, andfc is zero which cuts the
triangle into two triangles.

To computeA andB, a line segment and implicit plane intersection is needed.
For example, the parametric line connectinga andc is

p(t) = a + t(c − a).

12.5. Tiling Multidimensional Arrays 297

The point of intersection with the planen · p + D = 0 is found by pluggingp(t)

into the plane equation:

n · (a + t(c − a)) + D = 0,

and solving fort:

t = − n · a + D

n · (c − a)
.

Calling this solutiontA, we can write the expression forA:

A = a + tA(c − a).

A similar computation will giveB.

12.4.4 Optimizing the Tree

The efficiency of tree creation is much less of a concern than tree traversal because
it is a preprocess. The traversal of the BSP tree takes time proportional to the
number of nodes in the tree. (How well balanced the tree is does not matter.)
There will be one node for each triangle, including the triangles that are created
as a result of splitting. This number can depend on the order in which triangles
are added to the tree. For example, in Figure 12.39, ifT1 is the root, there will be
two nodes in the tree, but ifT2 is the root, there will be more nodes, becauseT1

will be split.
It is difficult to find the “best” order of triangles to add to the tree. ForN

triangles, there areN ! orderings that are possible. So trying all orderings is not
usually feasible. Alternatively, some predetermined number of orderings can be

Figure 12.39. Using T1
as the root of a BSP tree
will result in a tree with two
nodes. Using T2 as the root
will require a cut and thus
make a larger tree.

tried from a random collection of permutations, and the best one can be kept for
thefinal tree.

The splitting algorithm described above splits one triangle into three trian-
gles. It could be more efficient to split a triangle into a triangle and a con-
vex quadrilateral. This is probably not worth it if all input models have only
triangles, but would be easy to support for implementations that accommodate
arbitrary polygons.

12.5 Tiling Multidimensional Arrays

Effectively utilizing the memory hierarchy is a crucial task in designing algo-
rithms for modern architectures. Making sure that multidimensional arrays have

298 12. Data Structures for Graphics

data in a “nice” arrangement is accomplished bytiling, sometimes also called
bricking. A traditional 2D array is stored as a 1D array together with an indexing
mechanism; for example, anNx by Ny array is stored in a 1D array of length
NxNy and the 2D index(x, y) (which runs from(0, 0) to (Nx−1, Ny−1)) maps
to the 1D index (running from0 to NxNy − 1) using the formula

Figure 12.40. The mem-
ory layout for an untiled 2D
array with Nx = 4 and Ny =
3.

index= x + Nxy.

An example of how that memory lays out is shown in Figure 12.40. A problem
with this layout is that although two adjacent array elements that are in the same
row are next to each other in memory, two adjacent elements in the same column
will be separated byNx elements in memory. This can cause poor memory lo-
cality for largeNx. The standard solution to this is to usetiles to make memory
locality for rows and columns more equal. An example is shown in Figure 12.41
where 2× 2 tiles are used. The details of indexing such an array are discussed in
the next section. A more complicated example, with two levels of tiling on a 3D
array, is covered after that.

A key question is what size to make the tiles. In practice, they should be
similar to the memory-unit size on the machine. For example, if we are using

Figure 12.41. The mem-
ory layout for a tiled 2D ar-
ray with Nx = 4 and Ny = 3
and 2 × 2 tiles. Note that
padding on the top of the
array is needed because Ny
is not a multiple of the tile
size two.

16-bit (2-byte) data values on a machine with 128-byte cache lines, 8× 8 tilesfit
exactly in a cache line. However, using 32-bitfloating-point numbers, whichfit
32 elements to a cache line, 5× 5 tiles are a bit too small and 6× 6 tiles are a
bit too large. Because there are also coarser-sized memory units such as pages,
hierarchical tiling with similar logic can be useful.

12.5.1 One-Level Tiling for 2D Arrays

If we assume anNx×Ny array decomposed into squaren×n tiles (Figure 12.42),
then the number of tiles required is

Bx = Nx/n,

By = Ny/n.

Here, we assume thatn dividesNx andNy exactly. When this is not true, the
array should bepadded. For example, ifNx = 15 andn = 4, thenNx should
be changed to 16. To work out a formula for indexing such an array, wefirst find
the tile indices(bx, by) that give the row/column for the tiles (the tiles themselves
form a 2D array):

bx = x ÷ n,

by = y ÷ n,

12.5. Tiling Multidimensional Arrays 299

Figure 12.42. A tiled 2D array composed of Bx × By tiles each of size n by n.

where÷ is integer division, e.g.,12 ÷ 5 = 2. If we order the tiles along rows as
shown in Figure 12.40, then the index of thefirst element of the tile(bx, by) is

index= n2(Bxby + bx).

The memory in that tile is arranged like a traditional 2D array as shown in Fig-
ure 12.41. The partial offsets(x′, y′) inside the tile are

x′ = x mod n,

y′ = y mod n,

wheremod is the remainder operator, e.g.,12 mod 5 = 2. Therefore, the offset
inside the tile is

offset= y′n + x′.

Thus the full formula forfinding the 1D index element(x, y) in anNx×Ny array
with n × n tiles is

index= n2(Bxby + bx) + y′n + x′,

= n2((Nx ÷ n)(y ÷ n) + x ÷ n) + (y mod n)n + (x mod n).

This expression contains many integer multiplication, divide and modulus oper-
ations, which are costly on some processors. Whenn is a power of two, these
operations can be converted to bitshifts and bitwise logical operations. However,
as noted above, the ideal size is not always a power of two. Some of the mul-
tiplications can be converted to shift/add operations, but the divide and modulus

300 12. Data Structures for Graphics

operations are more problematic. The indices could be computed incrementally,
but this would require tracking counters, with numerous comparisons and poor
branch prediction performance.

However, there is a simple solution; note that the index expression can be
written as

index= Fx(x) + Fy(y),

where

Fx(x) = n2(x ÷ n) + (x mod n),

Fy(y) = n2(Nx ÷ n)(y ÷ n) + (y mod n)n.

We tabulateFx andFy, and usex andy to find the index into the data array.
These tables will consist ofNx andNy elements, respectively. The total size of
the tables willfit in the primary data cache of the processor, even for very large
data set sizes.

12.5.2 Example: Two-Level Tiling for 3D Arrays

Effective TLB utilization is also becoming a crucial factor in algorithm perfor-
mance. The same technique can be used to improve TLB hit rates in a 3D arrayTLB: translation lookaside

buffer, a cache that is part
of the virtual memory sys-
tem.

by creatingm × m × m bricks ofn × n × n cells. For example, a40 × 20 × 19

volume could be decomposed into4 × 2 × 2 macrobricks of2 × 2 × 2 bricks of
5 × 5 × 5 cells. This corresponds tom = 2 andn = 5. Because 19 cannot be
factored bymn = 10, one level of padding is needed. Empirically useful sizes
arem = 5 for 16 bit datasets andm = 6 for float datasets.

The resulting index into the data array can be computed for any(x, y, z) triple
with the expression

index = ((x ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)((Ny ÷ n) ÷ m)

+((y ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)

+((z ÷ n) ÷ m)n3m3

+((x ÷ n) mod m)n3m2

+((y ÷ n) mod m)n3m

+((z ÷ n) mod m)n3

+(x mod (n2))n2

+(y mod n)n

+(z mod n),

whereNx, Ny andNz are the respective sizes of the dataset.

12.5. Tiling Multidimensional Arrays 301

Note that, as in the simpler 2D one-level case, this expression can be written as

index= Fx(x) + Fy(y) + Fz(z),

where

Fx(x) = ((x ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)((Ny ÷ n) ÷ m)

+((x ÷ n) mod m)n3m2

+(x mod n)n2,

Fy(y) = ((y ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)

+((y ÷ n) mod m)n3m +

+(y mod n)n,

Fz(z) = ((z ÷ n) ÷ m)n3m3

+((z ÷ n) mod m)n3

+(z mod n).

Frequently Asked Questions

• Does tiling really make that much difference in performance?

On some volume rendering applications, a two-level tiling strategy made as much
as a factor-of-ten performance difference. When the array does notfit in main
memory, it can effectively prevent thrashing in some applications such as image
editing.

• How do I store the lists in a winged-edge structure?

For most applications it is feasible to use arrays and indices for the references.
However, if many delete operations are to be performed, then it is wise to use
linked lists and pointers.

Notes

The discussion of the winged-edge data structure is based on the course notes of
Ching-Kuang Shene (Shene, 2003). There are smaller mesh data structures than
winged-edge. The trade-offs in using such structures is discussed inDirected

Edges—A Scalable Representation for Triangle Meshes (Campagna et al., 1998).

302 12. Data Structures for Graphics

The tiled-array discussion is based onInteractive Ray Tracing for Volume Visual-

ization (Parker, Martin, et al., 1999). A structure similar to the triangle neighbor
structure is discussed in a technical report by Charles Loop (Loop, 2000). A dis-
cussion of manifolds can be found in an introductory topology text (Munkres,
2000).

Exercises

1. What is the memory difference for a simple tetrahedron stored as four in-
dependent triangles and one stored in a winged-edge data structure?

2. Diagram a scene graph for a bicycle.

3. How many look-up tables are needed for a single-level tiling of ann-
dimensional array?

4. GivenN triangles, what is the minimum number of triangles that could be
added to a resulting BSP tree? What is the maximum number?

13

More Ray Tracing

A ray tracer is a great substrate on which to build all kinds of advanced rendering
effects. Many effects that take significant work tofit into the object-order ras-
terization framework, including basics like the shadows and reflections already
presented in Chapter 4, are simple and elegant in a ray tracer. In this chapter we
discuss some fancier techniques that can be used to ray-trace a wider variety of
scenes and to include a wider variety of effects. Some extensions allow more gen-
eral geometry: instancing and constructive solid geometry (CSG) are two ways
to make models more complex with minimal complexity added to the program.
Other extensions add to the range of materials we can handle: refraction through
transparent materials, like glass and water, and glossy reflections on a variety of
surfaces are essential for realism in many scenes.

This chapter also discusses the general framework ofdistribution ray trac-

ing (Cook et al., 1984), a powerful extension to the basic ray-tracing idea in which
multiple random rays are sent through each pixel in an image to produce images
with smooth edges and to simply and elegantly (if slowly) produce a wide range
of effects from soft shadows to camera depth-of-field. If you start with a brute-

force ray intersection loop,
you’ll have ample time to
implement an acceleration
structure while you wait for
images to render.

The price of the elegance of ray tracing is exacted in terms of computer time:
most of these extensions will trace a very large number of rays for any non-trivial
scene. Because of this, it’s crucial to use the methods described in Chapter 12 to
accelerate the tracing of rays.

303

304 13. More Ray Tracing

13.1 Transparency and Refraction

In Chapter 4 we discussed the use of recursive ray tracing to compute specular,
or mirror, reflection from surfaces. Another type of specular object is adielec-

tric—a transparent material that refracts light. Diamonds, glass, water, and air are
dielectrics. Dielectrics alsofilter light; some glassfilters out more red and blue
light than green light, so the glass takes on a green tint. When a ray travels from
a medium with refractive indexn into one with a refractive indexnt, some of the
light is transmitted, and it bends. This is shown fornt > n in Figure 13.1. Snell’s
law tells us that

n sin θ = nt sin φ.

Computing the sine of an angle between two vectors is usually not as convenientExample values of n:
air: 1.00;
water: 1.33–1.34;
window glass: 1.51;
optical glass: 1.49–1.92;
diamond: 2.42.

as computing the cosine, which is a simple dot product for the unit vectors such
as we have here. Using the trigonometric identitysin2 θ + cos2 θ = 1, we can
derive a refraction relationship for cosines:

cos2 φ = 1 − n2
(

1 − cos2 θ
)

n2
t

.

Note that ifn andnt are reversed, then so areθ andφ as shown on the right of
Figure 13.1.

To convertsin φ andcosφ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of the surface normal,n, and the ray direction,d.

From Figure 13.2, we can see thatn andb form an orthonormal basis for the
plane of refraction. By definition, we can describe the direction of the transformed

Figure 13.1. Snell’s Law describes how the angle φ depends on the angle θ and the
refractive indices of the object and the surrounding medium.

13.1. Transparency and Refraction 305

ray,t, in terms of this basis:

t = sinφb − cosφn.

Since we can described in the same basis, andd is known, we can solve forb:

d = sin θb− cos θn,

b =
d + n cos θ

sin θ
.

This means that we can solve fort with known variables:
Figure 13.2. The vectors
n and b form a 2D orthonor-
mal basis that is parallel to
the transmission vector t.

t =
n (d + n cos θ))

nt
− n cosφ

=
n (d− n(d · n))

nt
− n

√

1 − n2 (1 − (d · n)2)

n2
t

.

Note that this equation works regardless of which ofn andnt is larger. An im-
mediate question is, “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known astotal internal reflection, and it is responsible for much of the
rich appearance of glass objects.

The reflectivity of a dielectric varies withthe incident angle according to the
Fresnel equations. A nice way to implement something close to the Fresnel equa-
tions is to use theSchlick approximation (Schlick, 1994a),

R(θ) = R0 + (1 − R0) (1 − cos θ)5 ,

whereR0 is the reflectance at normal incidence:

R0 =

(

nt − 1

nt + 1

)2

.

Note that thecos θ terms above are always for the angle in air (the larger of the
internal and external angles relative to the normal).

For homogeneous impurities, as is foundin typical colored glass, a light-
carrying ray’s intensity willbe attenuated according toBeer’s Law. As the ray
travels through the medium it loses intensity according todI = −CI dx, where
dx is distance. Thus,dI/dx = −CI. We can solve this equation and get the
exponentialI = k exp(−Cx) + k′. The degree of attenuation is described by
the RGB attenuation constanta, which is the amount of attenuation after one
unit of distance. Putting in boundary conditions, we know thatI(0) = I0, and

306 13. More Ray Tracing

Figure 13.3. The color of the glass is affected by total internal reflection and Beer’s Law.
The amount of light transmitted and reflected is determined by the Fresnel equations. The
complex lighting on the ground plane was computed using particle tracing as described in
Chapter 24. (See also Plate IV.)

I(1) = aI(0). The former impliesI(x) = I0 exp(−Cx). The latter implies
I0a = I0 exp(−C), so−C = ln(a). Thus, thefinal formula is

I(s) = I(0)e− ln(a)s,

whereI(s) is the intensity of the beam at distances from the interface. In practice,
we reverse-engineera by eye, because such data is rarely easy tofind. The effect
of Beer’s Law can be seen in Figure 13.3, where the glass takes on a green tint.

To add transparent materials to our code, we need a way to determine when
a ray is going “into” an object. The simplest way to do this is to assume that all
objects are embedded in air with refractive index very close to 1.0, and that surface
normals point “out” (toward the air). The code segment for rays and dielectrics
with these assumptions is:

if (p is on a dielectric) then
r = reflect(d, n)

if (d · n < 0) then
refract(d,n, n, t)

c = −d · n
kr = kg = kb = 1

13.2. Instancing 307

else
kr = exp(−art)

kg = exp(−agt)

kb = exp(−abt)

if refract(d,−n, 1/n, t) then
c = t · n

else
return k ∗ color(p + tr)

R0 = (n − 1)2/(n + 1)2

R = R0 + (1 − R0)(1 − c)5

return k(R color(p + tr) + (1 − R) color(p + tt))

The code above assumes that the natural log has been folded into the constants
(ar, ag, ab). The refract function returns false if there is total internal re-
flection, and otherwise itfills in the last argument of the argument
list.

13.2 Instancing

An elegant property of ray tracing is that it allows very naturalinstancing. The
basic idea of instancing is to distort all points on an object by a transformation
matrix before the object is displayed. For example, if we transform the unit circle
(in 2D) by a scale factor(2, 1) in x andy, respectively, then rotate it by45◦, and
move one unit in thex-direction, the result is an ellipse with an eccentricity of
2 and a long axis along the(x = −y)-direction centered at(0, 1) (Figure 13.4).
The key thing that makes that entity an “instance” is that we store the circle and
the composite transform matrix. Thus, the explicit construction of the ellipse is
left as a future operation at render time.

Figure 13.4. An instance
of a circle with a series of
three transforms is an el-
lipse.

The advantage of instancing in ray tracing is that we can choose the space in
which to do intersection. If the base object is composed of a set of points, one of
which isp, then the transformed object is composed of that set of points trans-
formed by matrixM, where the example point is transformed toMp. If we have
a raya+ tb that we want to intersect with the transformed object, we can instead
intersect aninverse-transformed ray with the untransformed object (Figure 13.5).
There are two potential advantages to computing in the untransformed space (i.e.,
the right-hand side of Figure 13.5):

1. the untransformed object may have a simpler intersection routine, e.g., a
sphere versus an ellipsoid;

308 13. More Ray Tracing

Figure 13.5. The ray intersection problem in the two spaces are just simple transforms of
each other. The object is specified as a sphere plus matrix M. The ray is specified in the
transformed (world) space by location a and direction b.

2. many transformed objects can share the same untransformed object thus
reducing storage, e.g., a traffic jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 6.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 13.5, we can
determine the intersection of a ray and an object transformed by matrixM. If we
create an instance class of typesurface, we need to create ahit

function:

instance::hit(raya + tb, realt0, realt1, hit-record rec)
rayr′ = M−1a + tM−1b

if (base-object→hit(r′, t0, t1, rec)) then
rec.n = (M−1)Trec.n
return true

else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either space. Also note that we need not
compute or store the matrixM.

13.3. Constructive Solid Geometry 309

This brings up a very important point: the ray directionb mustnot be re-
stricted to a unit-length vector, or none of the infrastructure above works. For this
reason, it is useful not to restrict ray directions to unit vectors.

13.3 Constructive Solid Geometry

One nice thing about ray tracing is that any geometric primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to addconstructive solid geometry (CSG) to a ray
tracer (Roth, 1982). The basic idea of CSG is to use set operations to combine
solid shapes. These basic operations are shown in Figure 13.6. The operations
can be viewed asset operations. For example, we can considerC the set of all
points in the circle andS the set of all points in the square. The intersection

Figure 13.6. The ba-
sic CSG operations on a 2D
circle and square.

operationC ∩ S is the set of all points that are both members ofC andS. The
other operations are analogous.

Although one can do CSG directly on the model, if all that is desired is an
image, we do not need to explicitly change the model. Instead, we perform the set
operations directly on the rays as they interact with a model. To make this natural,
we find all the intersections of a ray with a model rather than just the closest. For
example, a raya + tb might hit a sphere att = 1 and t = 2. In the context
of CSG, we think of this as the ray being inside the sphere fort ∈ [1, 2]. We
can compute these “inside intervals” for all of the surfaces and do set operations
on those intervals (recall Section 2.1.2). This is illustrated in Figure 13.7, where
the hit intervals are processed to indicate that there are two intervals inside the
difference object. Thefirst hit for t > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals.
When thefirst hitpoint is determined, the material property and surface normal is
that associated with the hitpoint. In addition, you must pay attention to precision
issues because there is nothing to prevent the user from taking two objects that
abut and taking an intersection. Thiscan be made robust by eliminating any
interval whose thickness is below a certain tolerance.

Figure 13.7. Intervals are
processed to indicate how
the ray hits the composite
object.13.4 Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated usingdistribution ray tracing (Cook et al., 1984) . The conventionally
ray-traced images look clean, because everything is crisp; the shadows are per-

310 13. More Ray Tracing

fectly sharp, the reflections have no fuzziness, and everything is in perfect focus.

Figure 13.8. Sixteen reg-
ular samples for a single
pixel.

Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter 24), we
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way to
antialias (recall Section 8.3) the image.

13.4.1 Antialiasing

Figure 13.9. A simple
scene rendered with one
sample per pixel (lower left
half) and nine samples per
pixel (upper right half).

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the true
average. If the screen coordinates bounding the pixel are[i, i + 1] × [j, j + 1],
then we can replace the loop:

for each pixel(i, j) do
cij = ray-color(i + 0.5, j + 0.5)

with code that samples on a regularn × n grid of samples within each pixel:

for each pixel(i, j) do
c = 0

for p = 0 to n − 1 do
for q = 0 to n − 1 do

c = c + ray-color(i + (p + 0.5)/n, j + (q + 0.5)/n)

cij = c/n2

This is usually calledregular sampling. The 16 sample locations in a pixel for
n = 4 are shown in Figure 13.8. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel atnxn by nyn

resolution and then averaging blocks ofn by n pixels to get anx by ny image.

One potential problem with taking samples in a regular pattern within a pixel
is that regular artifacts such as moiré patterns can arise. These artifacts can be

Figure 13.10. Sixteen ran-
dom samples for a single
pixel.

turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 13.10. This is usually calledrandom sampling and involves just
a small change to the code:

13.4. Distribution Ray Tracing 311

for each pixel(i, j) do
c = 0

for p = 1 to n2 do
c = c+ ray-color(i + ξ, j + ξ)

cij = c/n2

Hereξ is a call that returns a uniform random number in the range[0, 1). Unfor-
tunately, the noise can be quite objectionable unless many samples are taken. A
compromise is to make a hybrid strategy that randomly perturbs a regular grid:

Figure 13.11. Sixteen
stratified (jittered) samples
for a single pixel shown with
and without the bins high-
lighted. There is exactly
one random sample taken
within each bin.

for each pixel(i, j) do
c = 0

for p = 0 to n − 1 do
for q = 0 to n − 1 do

c = c + ray-color(i + (p + ξ)/n, j + (q + ξ)/n)

cij = c/n2

That method is usually calledjittering or stratified sampling (Figure 13.11).

13.4.2 Soft Shadows

The reason shadows are hard to handle in standard ray tracing is that lights are
infinitesimal points or directions and are thus either visible or invisible. In real
life, lights have non-zero area and can thus be partially visible. This idea is shown
in 2D in Figure 13.12. The region where the light is entirely invisible is called
the umbra. The partially visible region is called thepenumbra. There is not a
commonly used term for the region not in shadow, but it is sometimes called the
anti-umbra.

The key to implementing soft shadows is to somehow account for the light
being an area rather than a point. An easy way to do this is to approximate the
light with a distributed set ofN point lights each with oneN th of the intensity
of the base light. This concept is illustrated at the left of Figure 13.13 where nine

Figure 13.12. A
soft shadow has a gradual
transition from the unshad-
owed to shadowed region.
The transition zone is the
“penumbra” denoted by p in
the figure.

lights are used. You can do this in a standard ray tracer, and it is a common trick
to get soft shadows in an off-the-shelf renderer. There are two potential problems
with this technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the program a great deal. The second
problem is that the shadows have sharp transitions inside the penumbra.

Distribution ray tracing introduces a small change in the shadowing code.
Instead of representing the area light at a discrete number of point sources, we
represent it as an infinite number and choose one at random for each viewing ray.

312 13. More Ray Tracing

Figure 13.13. Left: an area light can be approximated by some number of point lights; four
of the nine points are visible to p so it is in the penumbra. Right: a random point on the light
is chosen for the shadow ray, and it has some chance of hitting the light or not.

This amounts to choosing a random point on the light for any surface point being
lit as is shown at the right of Figure 13.13.

If the light is a parallelogram specified by a corner pointc and two edge
vectorsa andb (Figure 13.14), then choosing a random pointr is straightforward:

r = c + ξ1a + ξ2b,

whereξ1 andξ2 are uniform random numbers in the range[0, 1).
We then send a shadow ray to this point as shown at the right in Figure 13.13.

Note that the direction of this ray is not unit length, which may require some
modification to your basic ray tracer depending upon its assumptions.

Figure 13.14. The geom-
etry of a parallelogram light
specified by a corner point
and two edge vectors.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always have the
ray in the upper left-hand corner of the pixel generate a shadow ray to the upper
left-hand corner of the light. Instead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered, but so
that there is no correlation between pixel samples and light samples. A good way
to accomplish this is to generate two distinct sets ofn2 jittered samples and pass
samples into the light source routine:

for each pixel(i, j) do
c = 0

generateN = n2 jittered 2D points and store in array r[]

generateN = n2 jittered 2D points and store in array s[]

shuffle the points in array s[]
for p = 0 to N − 1 do

c = c + ray-color(i + r[p].x(), j + r[p].y(), s[p])

cij = c/N

13.4. Distribution Ray Tracing 313

This shuffle routine eliminates any coherence between arraysr ands. The shadow
routine will just use the 2D random point stored ins[p] rather than calling the
random number generator. A shuffle routine for an array indexed from0 to N −1

is:

for i = N − 1 downto1 do
choose random integerj between0 andi inclusive
swap array elementsi andj

13.4.3 Depth of Field

The soft focus effects seen in most photos can be simulated by collecting light at
a non-zero size “lens” rather than at a point. This is calleddepth of field. The
lens collects light from a cone of directions that has its apex at a distance where
everything is in focus (Figure 13.15). We can place the “window” we are sampling
on the plane where everything is in focus (rather than at thez = n plane as we did
previously) and the lens at the eye. The distance to the plane where everything is
in focus we call thefocus plane, and the distance to it is set by the user, just as the
distance to the focus plane in a real camera is set by the user or rangefinder.

Figure 13.15. The lens
averages over a cone of
directions that hit the pixel
location being sampled.

Figure 13.16. An example of depth of field. The caustic in the shadow of the wine glass is
computed using particle tracing as described in Chapter 24. (See also Plate V.)

314 13. More Ray Tracing

To be most faithful to a real camera, we should make the lens a disk. However,
we will get very similar effects with a square lens (Figure 13.17). So we choose
the side-length of the lens and take random samples on it. The origin of the
view rays will be these perturbed positions rather than the eye position. Again, a
shuffling routine is used to prevent correlation with the pixel sample positions. An
example using 25 samples per pixel and a large disk lens is shown in Figure 13.16.

Figure 13.17. To create
depth-of-field effects, the
eye is randomly selected
from a square region. 13.4.4 Glossy Reflection

Some surfaces, such as brushed metal, are somewhere between an ideal mirror
and a diffuse surface. Some discernible image is visible in the reflection but it
is blurred. We can simulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 13.18.

Only two details need to be worked out: how to choose the vectorr′ and what
to do when the resulting perturbed ray is below the surface from which the ray is
reflected. The latter detail is usually settled by returning a zero color when the
ray is below the surface.

Figure 13.18. The re-
flection ray is perturbed to
a random vector r ′.

To chooser′, we again sample a random square. This square is perpendicular
to r and has widtha which controls the degree of blur. We can set up the square’s
orientation by creating an orthonormal basis withw = r using the techniques in
Section 2.4.6. Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points(ξ, ξ′) ∈ [0, 1]2, then the
analogous point on the desired square is

u = −a

2
+ ξa,

v = −a

2
+ ξ′a.

Because the square over which we will perturb is parallel to both theu andv

vectors, the rayr′ is just
r′ = r + uu + vv.

Note thatr′ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

13.4.5 Motion Blur

We can add a blurred appearance to objects as shown in Figure 13.19. This is
calledmotion blur and is the result of the image being formed over a non-zero

13.4. Distribution Ray Tracing 315

Figure 13.19. The bottom right sphere is in motion, and a blurred appearance results.
Image courtesy Chad Barb.

span of time. In a real camera, the aperture is open for some time interval during
which objects move. We can simulate the open aperture by setting a time variable
ranging fromT0 to T1. For each viewing ray we choose a random time,

T = T0 + ξ(T1 − T0).

We may also need to create some objects to move with time. For example, we
might have a moving sphere whose center travels fromc0 toc1 during the interval.
GivenT , we could compute the actual center and do a ray–intersection with that
sphere. Because each ray is sent at a different time, each will encounter the sphere
at a different position, and thefinal appearance will be blurred. Note that the
bounding box for the moving sphere should bound its entire path so an efficiency
structure can be built for the whole time interval (Glassner, 1988).

316 13. More Ray Tracing

Notes

There are many, many other advanced methods that can be implemented in the
ray-tracing framework. Some resources for further information are Glassner’sAn

Introduction to Ray Tracing andPrinciples of Digital Image Synthesis, Shirley’s
Realistic Ray Tracing, and Pharr and Humphreys’sPhysically Based Rendering:

From Theory to Implementation.

Frequently Asked Questions

• What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), uni-
form subdivision grids, and bounding volume hierarchies. Most people who use
BSP trees make the splitting planes axis-aligned, and such trees are usually called
k-d trees. There is no clear-cut answer for which is best, but all are much, much
better than brute-force search in practice. If I were to implement only one, it
would be the bounding volume hierarchy because of its simplicity and robustness.

• Why do people use bounding boxes rather than spheres or ellipsoids?

Sometimes spheres or ellipsoids are better. However, many models have polyg-
onal elements that are tightly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.

14

Sampling

Many applications in graphics require “fair” sampling of unusual spaces, such as
the space of all possible lines. For example, we might need to generate random
edges within a pixel, or random sample points on a pixel that vary in density
according to some density function. This chapter provides the machinery for such
probability operations. These techniques will also prove useful for numerically
evaluating complicated integrals usingMonte Carlo integration, also covered in
this chapter.

14.1 Integration

Although the words “integral” and “measure” often seem intimidating, they relate
to some of the most intuitive concepts found in mathematics, and they should not
be feared. For our very non-rigorous purposes, ameasure is just a function that
maps subsets toR+ in a manner consistent with our intuitive notions of length,
area, and volume. For example, on the 2D real planeR

2, we have the area measure
A which assigns a value to a set of points in the plane. Note thatA is just a
function that takes pieces of the plane and returns area. This means the domain of
A is all possible subsets ofR2, which we denote as thepower set P(R2). Thus,
we can characterizeA in arrow notation:

A : P(R2) → R
+.

317

318 14. Sampling

An example of applying the area measure shows that the area of the square with
side length one is one:

A([a, a + 1] × [b, b + 1]) = 1,

where(a, b) is just the lower left-hand corner of the square. Note that a single
point such as(3, 7) is a valid subset ofR2 and has zero area:A((3, 7)) = 0. The
same is true of the set of pointsS on thex-axis,S = (x, y) such that(x, y) ∈ R

2

andy = 0, i.e.,A(S) = 0. Such sets are calledzero measure sets.
To be considered a measure, a function has to obey certain area-like properties.

For example, we have a functionµ : P(S) → R
+. For µ to be a measure, the

following conditions must be true:

1. The measure of the empty set is zero:µ(∅) = 0,

2. The measure of two distinct sets together is the sum of their measure alone.
This rule with possible intersections is

µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B),

where∪ is the set union operator and∩ is the set intersection operator.

When we actually compute measures, we usually useintegration. We can think
of integration as really just notation:

A(S) ≡
∫

x∈S

dA(x).

You can informally read the right-hand side as “take all pointsx in the regionS,
and sum their associated differential areas.” The integral is often written other
ways including

∫

S

dA,

∫

x∈S

dx,

∫

x∈S

dAx,

∫

x
dx.

All of the above formulas represent “the area of regionS.” We will stick with the
first one we used, because it is so verbose it avoids ambiguity. To evaluate such
integrals analytically, we usually need to lay down some coordinate system and
use our bag of calculus tricks to solve the equations. But have no fear if those
skills have faded, as we usually have to numerically approximate integrals, and
that requires only a few simple techniques which are covered later in this chapter.

Given a measure on a setS, we can always create a new measure by weighting
with a non-negative functionw : S → R

+. This is best expressed in integral

14.1. Integration 319

notation. For example, we can start with the example of the simple area measure
on [0, 1]2:

∫

x∈[0,1]2
dA(x),

and we can use a “radially weighted” measure by inserting a weighting function
of radius squared:

∫

x∈[0,1]2
‖x‖2dA(x).

To evaluate this analytically, we can expand using a Cartesian coordinate system
with dA ≡ dx dy:

∫

x∈[0,1]2
‖x‖2dA(x) =

∫ 1

x=0

∫ 1

y=0

(x2 + y2) dx dy.

The key thing here is that if you think of the‖x‖2 term as married to thedA term,
and that these together form a new measure, we can call that measureν. This
would allow us to writeν(S) instead of the whole integral. If this strikes you
as just a bunch of notation and bookkeeping, you are right. But it does allow us
to write down equations that are either compact or expanded depending on our
preference.

14.1.1 Measures and Averages

Measures really start paying off when taking averages of a function. You can
only take an average with respect to a particular measure, and you would like to
select a measure that is “natural” for the application or domain. Once a measure
is chosen, the average of a functionf over a regionS with respect to measureµ is

average(f) ≡
∫

x∈S
f(x) dµ(x)

∫

x∈S
dµ(x)

.

For example, the average of the functionf(x, y) = x2 over[0, 2]2 with respect to
the area measure is

average(f) ≡
∫ 2

x=0

∫ 2

y=0 x2 dx dy
∫ 2

x=0

∫ 2

y=0 dx dy
=

4

3
.

This machinery helps solve seemingly hard problems where choosing the measure
is the tricky part. Such problems often arise inintegral geometry, a field that
studies measures on geometric entities, such as lines and planes. For example,

320 14. Sampling

one might want to know the average length of a line through[0, 1]2. That is, by
definition,

average(length)=

∫

linesL through[0, 1]2 length(L)dµ(L)
∫

linesL through[0, 1]2 dµ(L)
.

All that is left, once we know that, is choosing the appropriateµ for the applica-
tion. This is dealt with for lines in the next section.

14.1.2 Example: Measures on the Lines in the 2D Plane

What measureµ is “natural”?
If you parameterize the lines asy = mx + b, you might think of a given line

as a point(m, b) in “slope-intercept” space. An easy measure to use would be
dm db, but this would not be a “good” measure in that not all equal size “bundles”
of lines would have the same measure. More precisely, the measure would not be

Figure 14.1. These
two bundles of lines should
have the same measure.
They have different inter-
section lengths with the
y-axis so using db would be
a poor choice for a differen-
tial measure.

invariant with respect to change of coordinate system. For example, if you took
all lines through the square[0, 1]2, the measure of lines through it would not be
the same as the measure through a unit square rotated forty-five degrees. What
we would really like is a “fair” measure that does not change with rotation or
translation of a set of lines. This idea is illustrated in Figures 14.1 and 14.2.

To develop a natural measure on the lines, we shouldfirst start thinking of
them as points in a dual space. Thisis a simple concept: the liney = mx + b

can be specified as the point(m, b) in a slope-intercept space. This concept is
illustrated in Figure 14.3. It is more straightforward to develop a measure in
(φ, b) space. In that spaceb is they-intercept, whileφ is the angle the line makes
with the x-axis, as shown in Figure 14.4. Here, the differential measuredφ db

almost works, but it would not be fair due to the effect shown in Figure 14.1. To

Figure 14.2. These
two bundles of lines should
have the same measure.
Since they have different
values for change in slope,
using dm would be a poor
choice for a differential
measure.

account for the larger spanb that a constant width bundle of lines makes, we must
add a cosine factor:

dµ = cosφ dφ db.

It can be shown that this measure, up to a constant, is the only one that is invariant
with respect to rotation and translation.

This measure can be converted into an appropriate measure for other param-
eterizations of the line. For example, the appropriate measure for(m, b) space
is

dµ =
dm db

(1 + m2)
3
2

.

14.1. Integration 321

For the space of lines parameterized in(u, v) space,

ux + vy + 1 = 0,

the appropriate measure is

dµ =
du dv

(u2 + v2)
3
2

.

For lines parameterized in terms of(a, b), the x-intercept andy-intercept, the
measure is

Figure 14.3. The set of
points on the line y = m x +
b in (x, y) space can also
be represented by a sin-
gle point in (m, b) space so
the top line and the bottom
point represent the same
geometric entity: a 2D line.

dµ =
ab da db

(a2 + b2)
3
2

.

Note that any of those spaces are equally valid ways to specify lines, and which is
best depends upon the circumstances. However, one might wonder whether there
exists a coordinate system where the measure of a set of lines is just an area in the
dual space. In fact, there is such a coordinate system, and it is delightfully simple;
it is thenormal coordinates which specify a line in terms of the normal distance
from the origin to the line, and the angle the normal of the line makes with respect
to thex-axis (Figure 14.5). The implicit equation for such lines is

x cos θ + y sin θ − p = 0.

And, indeed, the measure in that space is
x

y

φ

Figure 14.4. In angle-
intercept space we param-
eterize the line by angle
φ ∈ [−π/2, π/2) rather
than slope.

dµ = dp dθ.

We shall use these measures to choose fair random lines in a later section.

Figure 14.5. The normal
coordinates of a line use
the normal distance to the
origin and an angle to spec-
ify a line.

14.1.3 Example: Measure of Lines in 3D

In 3D there are many ways to parameterize lines. Perhaps, the simplest way is
to use their intersection with a particular plane along with some specification of
their orientation. For example, we could chart the intersection with thexy plane
along with the spherical coordinates of its orientation. Thus, each line would be
specified as a(x, y, θ, φ) quadruple. This shows that lines in 3D are 4D entities,
i.e., they can be described as points in a 4D space.

The differential measure of a line should not vary with(x, y), but bundles of
lines with equal cross section should have equal measure. Thus, a fair differential
measure is

dµ = dx dy sin θ dθ dφ.

322 14. Sampling

Another way to parameterize lines is to chart the intersection with two parallel
planes. For example, if the line intersects the planez = 0 at (x = u, y = v) and
the planez = 1 at (x = s, y = t), then the line can be described by the quadruple
(u, v, s, t). Note, that like the previous parameterization, this one is degenerate
for lines parallel to thexy plane. The differential measure is more complicated
for this parameterization although it can be approximated as

dµ ≈ du dv a ds dt,

for bundles of lines nearly parallel to thez-axis. This is the measure often implic-
itly used in image-based rendering.

For sets of lines that intersect a sphere, we can use the parameterization of the
two points where the line intersects the sphere. If these are in spherical coordi-
nates, then the point can be described by the quadruple(θ1, φ1, θ2, φ2) and the
measure is just the differential area associated with each point:

dµ = sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2.

This implies that picking two uniform random endpoints on the sphere results in
a line with uniform density. This observation was used to compute form-factors
by Mateu Sbert in his dissertation (Sbert, 1997).

Note that sometimes we want to parameterize directed lines, and sometimes
we want the order of the endpoints not to matter. This is a bookkeeping detail
that is especially important for rendering applications where the amount of light
flowing along a line is different in the two directions along the line.

14.2 Continuous Probability

Many graphics algorithms use probabilityto construct random samples to solve
integration and averaging problems. This is the domain of applied continuous
probability which has basic connections to measure theory.

14.2.1 One-Dimensional Continuous Probability Density Functions

Loosely speaking, acontinuous random variable x is a scalar or vector
quantity that “randomly” takes onsome value from the real line
R = (−∞, +∞). The behavior ofx is entirely described by the distribution
of values it takes. This distribution of values can be quantitatively described by

14.2. Continuous Probability 323

theprobability density function (pdf),p, associated withx (the relationship is de-
notedx ∼ p). The probability thatx assumes a particular value in some interval
[a, b] is given by the following integral:

Probability(x ∈ [a, b]) =

∫ b

a

p(x)dx. (14.1)

Loosely speaking, the probability density functionp describes the relative likeli-
hood of a random variable taking a certain value; ifp(x1) = 6.0 andp(x2) = 3.0,
then a random variable with densityp is twice as likely to have a value “near”x1

than it it to have a value nearx2. The densityp has two characteristics:

p(x) ≥ 0 (probability is non-negative), (14.2)

∫ +∞

−∞
p(x)dx = 1 (Probability(x ∈ R) = 1). (14.3)

As an example, thecanonical random variableξ takes on values between zero
(inclusive) and one (non-inclusive) with uniform probability (hereuniform simply
means each value forξ is equally likely). This implies that the probability density
functionq for ξ is

q(ξ) =

{

1 if 0 ≤ ξ < 1,
0 otherwise,

The space over whichξ is defined is simply the interval[0, 1). The probability
thatξ takes on a value in a certain interval[a, b] ∈ [0, 1) is

Probability(a ≤ ξ ≤ b) =

∫ b

a

1 dx = b − a.

14.2.2 One-Dimensional Expected Value

The average value that a real functionf of a one-dimensional random variable
with underlying pdfp will take on is called itsexpected value, E(f(x)) (some-
times writtenEf(x)):

E(f(x)) =

∫

f(x)p(x)dx.

The expected value of a one-dimensional random variable can be calculated by
settingf(x) = x. The expected value has a surprising and useful property: the

324 14. Sampling

expected value of the sum of two random variables is the sum of the expected
values of those variables:

E(x + y) = E(x) + E(y),

for random variablesx andy. Because functions of random variables are them-
selves random variables, this linearity of expectation applies to them as well:

E(f(x) + g(y)) = E(f(x)) + E(g(y)).

An obvious question to ask is whether this property holds if the random variables
being summed are correlated (variables that are not correlated are calledindepen-

dent). This linearity property in fact does holdwhether or not the variables are
independent! This summation property is vital for most Monte Carlo applications.

14.2.3 Multi-Dimensional Random Variables

The discussion of random variables and their expected values extends naturally
to multi-dimensional spaces. Most graphics problems will be in such higher-
dimensional spaces. For example, manylighting problems are phrased on the
surface of the hemisphere. Fortunately, if we define a measureµ on the space the
random variables occupy, everything is very similar to the one-dimensional case.
Suppose the spaceS has associated measureµ; for exampleS is the surface of
a sphere andµ measures area. We can define a pdfp : S �→ R, and if x is a
random variable withx ∼ p, then the probability thatx will take on a value in
some regionSi ⊂ S is given by the integral

Probability(x ∈ Si) =

∫

Si

p(x)dµ.

HereProbability (event) is the probability thatevent is true, so the integral is the
probability thatx takes on a value in the regionSi.

In graphics,S is often an area (dµ = dA = dxdy) or a set of directions (points
on a unit sphere:dµ = dω = sin θ dθ dφ). As an example, a two-dimensional
random variableα is a uniformly distributed random variable on a disk of radius
R. Hereuniformly means uniform with respect to area, e.g., the way a bad dart
player’s hits would be distributed on a dart board. Since it is uniform, we know
thatp(α) is some constant. From the fact that the area of the disk isπr2 and that
the total probability is one, we can deduce that

p(α) =
1

πR2
.

14.2. Continuous Probability 325

This means that the probability thatα is in a certain subsetS1 of the disk is just

Probability(α ∈ S1) =

∫

S1

1

πR2
dA.

This is all very abstract. To actually use this information, we need the integral in
a form we can evaluate. SupposeSi is the portion of the disk closer to the center
than the perimeter. If we convert to polar coordinates, thenα is represented as
a (r, φ) pair, andS1 is the region wherer < R/2. Note, that just becauseα
is uniform, it does not imply thatφ or r are necessarily uniform (in fact,φ is
uniform, andr is not uniform). The differential areadA is justr dr dφ. Thus,

Probability

(

r <
R

2

)

=

∫ 2π

0

∫ R
2

0

1

πR2
r dr dφ = 0.25.

The formula for expected value of a real function applies to the multi-dimensional
case:

E(f(x)) =

∫

S

f(x)p(x)dµ,

wherex ∈ S andf : S �→ R, andp : S �→ R. For example, on the unit square
S = [0, 1] × [0, 1] andp(x, y) = 4xy, the expected value of thex coordinate for
(x, y) ∼ p is

E(x) =

∫

S

f(x, y)p(x, y)dA

=

∫ 1

0

∫ 1

0

4x2y dx dy

=
2

3
.

Note that heref(x, y) = x.

14.2.4 Variance

Thevariance, V (x), of a one-dimensional random variable is, by definition, the
expected value of the square of the difference betweenx andE(x):

V (x) ≡ E([x − E(x)]
2
).

Some algebraic manipulation gives the non-obvious expression:

V (x) = E(x2) − [E(x)]
2
.

326 14. Sampling

The expressionE([x − E(x)]
2
) is more useful for thinking intuitively about vari-

ance, while the algebraically equivalent expressionE(x2) − [E(x)]
2 is usually

convenient for calculations. The variance of a sum of random variables is the
sum of the variancesif the variables are independent. This summation property
of variance is one of the reasons it is frequently used in analysis of probabilistic
models. The square root of the variance is called thestandard deviation, σ, which
gives some indication of expected absolute deviation from the expected value.

14.2.5 Estimated Means

Many problems involve sums of independent random variablesxi, where the vari-
ables share a common densityp. Such variables are said to beindependent identi-

cally distributed (iid) random variables. When the sum is divided by the number
of variables, we get an estimate ofE(x):

E(x) ≈ 1

N

N
∑

i=1

xi.

As N increases, the variance of this estimate decreases. We wantN to be large
enough so that we have confidence that the estimate is “close enough.” However,
there are no sure things in Monte Carlo; we just gain statistical confidence that
our estimate is good. To be sure, we would have to haveN = ∞. This confidence
is expressed by theLaw of Large Numbers:

Probability

[

E(x) = lim
N→∞

1

N

N
∑

i=1

xi

]

= 1.

14.3 Monte Carlo Integration

In this section, the basic Monte Carlo solution methods for definite integrals are
outlined. These techniques are then straightforwardly applied to certain integral
problems. All of the basic material of this section is also covered in several of the
classic Monte Carlo texts. (See the Notes section at the end of this chapter.)

As discussed earlier, given a functionf : S �→ R and a random variable
x ∼ p, we can approximate the expected value off(x) by a sum:

E(f(x)) =

∫

x∈S

f(x)p(x)dµ ≈ 1

N

N
∑

i=1

f(xi). (14.4)

14.3. Monte Carlo Integration 327

Because the expected value can be expressed as an integral, the integral is also
approximated by the sum. The form of Equation (14.4) is a bit awkward; we
would usually like to approximate an integral of a single functiong rather than a
productfp. We can accomplish this by substitutingg = fp as the integrand:

∫

x∈S

g(x)dµ ≈ 1

N

N
∑

i=1

g(xi)

p(xi)
. (14.5)

For this formula to be valid,p must be positive wheng is nonzero.
So to get a good estimate, we want as many samples as possible, and we want

theg/p to have a low variance (g andp should have a similar shape). Choosingp

intelligently is calledimportance sampling, because ifp is large whereg is large,
there will be more samples in important regions. Equation (14.4) also shows
the fundamental problem with Monte Carlo integration:diminishing return. Be-
cause the variance of the estimate is proportional to1/N , the standard deviation
is proportional to1/

√
N . Since the error in the estimate behaves similarly to the

standard deviation, we will need to quadrupleN to halve the error.
Another way to reduce variance is to partitionS, the domain of the integral,

into several smaller domainsSi, and evaluate the integral as a sum of integrals
over theSi. This is calledstratified sampling, the technique that jittering employs
in pixel sampling (Chapter 4). Normally only one sample is taken in eachSi (with
densitypi), and in this case the variance of the estimate is:

var

(

N
∑

i=1

g(xi)

pi(xi)

)

=

N
∑

i=1

var

(

g(xi)

pi(xi)

)

. (14.6)

It can be shown that the variance of stratified sampling is never higher than un-
stratified if all strata have equal measure:

∫

Si

p(x)dµ =
1

N

∫

S

p(x)dµ.

The most common example of stratified sampling in graphics is jittering for pixel
sampling as discussed in Section 13.4.

As an example of the Monte Carlo solution of an integralI, setg(x) equal to
x over the interval (0, 4):

I =

∫ 4

0

xdx = 8. (14.7)

The impact of the shape of the functionp on the variance of theN sample esti-
mates is shown in Table 14.1. Note that the variance is reduced when the shape
of p is similar to the shape ofg. The variance drops to zero ifp = g/I, but

328 14. Sampling

Method Sampling function Variance Samples needed for
standard error of 0.008

importance (6 − x)/(16) 56.8N−1 887,500

importance 1/4 21.3N−1 332,812

importance (x + 2)/16 6.3N−1 98,437

importance x/8 0 1

stratified 1/4 21.3N−3 70

Table 14.1. Variance for Monte Carlo estimate of
∫ 4

0 x dx.

I is not usually known or we would not have to resort to Monte Carlo. One im-
portant principle illustrated in Table 14.1 is that stratified sampling is oftenfar

superior to importance sampling (Mitchell, 1996). Although the variance for this
stratification onI is inversely proportional to the cube of the number of samples,
there is no general result for the behavior of variance under stratification. There
are some functions for which stratification does no good. One example is a white
noise function, where the variance is constant for all regions. On the other hand,
most functions will benefit from stratified sampling, because the variance in each
subcell will usually be smaller than the variance of the entire domain.

14.3.1 Quasi–Monte Carlo Integration

A popular method for quadrature is to replace the random points in Monte Carlo
integration withquasi-random points. Such points are deterministic, but are in
some sense uniform. For example, on the unit square[0, 1]2, a set ofN quasi-
random points should have the following property on a region of areaA within
the square:

number of points in the region≈ AN.

For example, a set of regular samples in a lattice has this property.

Quasi-random points can improve performance in many integration applica-
tions. Sometimes care must be taken to make sure that they do not introduce
aliasing. It is especially nice that, in anyapplication where calls are made to ran-
dom or stratified points in[0, 1]d, one can substituted-dimensional quasi-random
points with no other changes.

The key intuition motivating quasi–Monte Carlo integration is that when es-
timating the average value of an integrand, any set of sample points will do, pro-
vided they are “fair.”

14.4. Choosing Random Points 329

14.4 Choosing Random Points

We often want to generate sets of random or pseudorandom points on the unit
square for applications such as distribution ray tracing. There are several methods
for doing this, e.g., jittering (see Section 13.4). These methods give us a set of
N reasonably equidistributed points on the unit square[0, 1]2 : (u1, v1) through
(uN , vN).

Sometimes, our sampling space may not be square (e.g., a circular lens), or
may not be uniform (e.g, afilter function centered on a pixel). It would be nice if
we could write a mathematical transformation that would take our equidistributed
points(ui, vi) as input and output a set of points in our desired sampling space
with our desired density. For example, to sample a camera lens, the transformation
would take(ui, vi) and output(ri, φi) such that the new points are approximately
equidistributed on the disk of the lens. While we might be tempted to use the
transform

Figure 14.6. The trans-
form that takes the horizon-
tal and vertical dimensions
uniformly to (r, φ) does not
preserve relative area; not
all of the resulting areas are
the same.

φi = 2πui,

ri = viR,

it has a serious problem. While the points do cover the lens, they do so non-
uniformly (Figure 14.6). What we need in this case is a transformation that takes
equal-area regions to equal-area regions—one that takes uniform sampling distri-
butions on the square to uniform distributions on the new domain.

There are several ways to generate such non-uniform points or uniform points
on non-rectangular domains, and the following sections review the three most
often used: function inversion, rejection, and Metropolis.

14.4.1 Function Inversion

If the density f(x) is one-dimensional and defined over the interval
x ∈ [xmin, xmax], then we can generate random numbersαi that have density
f from a set of uniform random numbersξi, whereξi ∈ [0, 1]. To do this, we
need the cumulative probability distribution functionP (x):

Probability(α < x) = P (x) =

∫ x

xmin

f(x′)dµ.

To getαi, we simply transformξi:

αi = P−1(ξi),

330 14. Sampling

whereP−1 is the inverse ofP . If P is not analytically invertible, then numerical
methods will suffice, because an inverse exists for all valid probability distribution
functions.

Note that analytically inverting a function is more confusing than it should be
due to notation. For example, if we have the function

y = x2,

for x > 0, then the inverse function is expressed in terms ofy as a function ofx:

x =
√

y.

When the function is analytically invertible, it is almost always that simple. How-
ever, things are a little more opaque with the standard notation:

f(x) = x2,

f−1(x) =
√

x.

Herex is just a dummy variable. You mayfind it easier to use the less standard
notation:

y = x2,

x =
√

y,

while keeping in mind that these are inverse functions of each other.
For example, to choose random pointsxi that have density

p(x) =
3x2

2

on [−1, 1], we see that

P (x) =
x3 + 1

2
,

and
P−1(x) = 3

√
2x − 1,

so we can “warp” a set of canonical random numbers(ξ1, · · · , ξN) to the properly
distributed numbers

(x1, · · · , xN) = (3
√

2ξ1 − 1, · · · , 3
√

2ξN − 1).

Of course, this same warping function can be used to transform “uniform” jittered
samples into nicely distributed samples with the desired density.

14.4. Choosing Random Points 331

If we have a random variableα = (αx, αy) with two-dimensional density
(x, y) defined on[xmin, xmax] × [ymin, ymax], then we need the two-dimensional
distribution function:

Probability(αx < x andαy < y) = F (x, y) =

∫ y

ymin

∫ x

xmin

f(x′, y′)dµ(x′, y′).

Wefirst choose anxi using the marginal distributionF (x, ymax) and then choose
yi according toF (xi, y)/F (xi, ymax). If f(x, y) is separable (expressible as
g(x)h(y)), then the one-dimensional techniques can be used on each dimension.

Returning to our earlier example, suppose we are sampling uniformly from
the disk of radiusR, sop(r, φ) = 1/(πR2). The two-dimensional distribution
function is

Probability(r < r0 and φ < φ0) = F (r0, φ0) =

∫ φ0

0

∫ r0

0

rdrdφ

πR2
=

φr2

2πR2
.

This means that a canonical pair(ξ1, ξ2) can be transformed to a uniform random
point on the disk:

φ = 2πξ1,

r = R
√

ξ2.

This mapping is shown in Figure 14.7.
Figure 14.7. A map-
ping that takes equal area
regions in the unit square
to equal area regions in the
disk.

To choose reflected ray directions for some realistic rendering applications,
we choose points on the unit hemisphere according to the density:

p(θ, φ) =
n + 1

2π
cosn θ.

Wheren is a Phong-like exponent,θ is the angle from the surface normal andθ ∈
[0, π/2] (is on the upper hemisphere) andφ is the azimuthal angle (φ ∈ [0, 2π]).
The cumulative distribution function is

P (θ, φ) =

∫ φ

0

∫ θ

0

p(θ′, φ′) sin θ′dθ′dφ′. (14.8)

The sin θ′ term arises because, on the sphere,dω = cos θdθdφ. When the
marginal densities are found,p (as expected) is separable, and wefind that a
(ξ1, ξ2) pair of canonical random numbers can be transformed to a direction by

θ = arccos
(

(1 − ξ1)
1

n+1

)

,

φ = 2πξ2.

332 14. Sampling

Again, a nice thing about this is that a set of jittered points on the unit square can
be easily transformed to a set of jittered points on the hemisphere with the desired
distribution. Note that ifn is set to1, we have a diffuse distribution, as is often
needed.

Often we must map the point on the sphere into an appropriate direction with
respect to auvw basis. To do this, we canfirst convert the angles to a unit vector�a:

a = (cosφ sin θ, sin φ sin θ, cos θ)

As an efficiency improvement, we can avoid taking trigonometric functions of
inverse trigonometric functions (e.g.,cos (arccos θ)). For example, whenn = 1

(a diffuse distribution), the vectora simplifies to

a =
(

cos (2πξ1)
√

ξ2, sin (2πξ1)
√

ξ2,
√

1 − ξ2

)

14.4.2 Rejection

A rejection method chooses points according to some simple distribution and re-
jects some of them that are in a more complex distribution. There are several
scenarios where rejection is used, and we show some of these by example.

Suppose we want uniform random points within the unit circle. We canfirst
choose uniform random points(x, y) ∈ [−1, 1]2 and reject those outside the cir-
cle. If the functionr() returns a canonical random number, then the procedure
is:

done = false
while (not done) do

x = −1 + 2r()

y = −1 + 2r()

if (x2 + y2 < 1) then
done = true

If we want a random numberx ∼ p and we know thatp : [a, b] �→ R, and
that for all x, p(x) < m, then we can generate random points in the rectangle
[a, b] × [0, m] and take those wherey < p(x):

done = false
while (not done) do

x = a + r()(b − a)

y = r()m

if (y < p(x)) then
done = true

14.4. Choosing Random Points 333

This same idea can be applied to take random points on the surface of a sphere.
To pick a random unit vector with uniform directional distribution, wefirst pick a
random point in the unit sphere and then treat that point as a direction vector by
taking the unit vector in the same direction:

done = false
while (not done) do

x = −1 + 2r()

y = −1 + 2r()

z = −1 + 2r()

if ((l =
√

x2 + y2 + z2) < 1) then
done = true

x = x/l

y = y/l

z = z/l

Although the rejection method is usually simple to code, it is rarely compatible
with stratification. For this reason, it tends to converge more slowly and should
thus be used mainly for debugging, or in particularly difficult circumstances.

14.4.3 Metropolis

TheMetropolis method uses randommutations to produce a set of samples with
a desired density. This concept is used extensively in theMetropolis Light Trans-

port algorithm referenced in the chapter notes. Suppose we have a random point
x0 in a domainS. Further, suppose for any pointx, we have a way to generate
randomy ∼ px. We use the marginal notationpx(y) ≡ p(x → y) to denote this
density function. Now, suppose we letx1 be a random point inS selected with
underlying densityp(x0 → x1). We generatex2 with densityp(x1 → x0) and so
on. In the limit, where we generate an infinite number of samples, it can be proved
that the samples will have some underlying density determined byp regardless of
the initial pointx0.

Now, suppose we want to choosep such that the underlying density of samples
to which we converge is proportional to a functionf(x) wheref is a non-negative
function with domainS. Further, suppose we can evaluatef , but we have little
or no additional knowledge about its properties (such functions are common in
graphics). Also, suppose we have the ability to make “transitions” fromxi to
xi+1 with underlying density functiont(xi → xi+1). To addflexibility, further
suppose we add the potentially non-zero probability thatxi transitions to itself,

334 14. Sampling

i.e.,xi+1 = xi. We phrase this as generating a potential candidatey ∼ t(xi → y)

and “accepting” this candidate (i.e.,xi+1 = y) with probabilitya(xi → y) and re-
jecting it (i.e.,xi+1 = xi) with probability1−a(xi → y). Note that the sequence
x0, x1, x2, . . . will be a random set, but there will be some correlation among sam-
ples. They will still be suitable for Monte Carlo integration or density estimation,
but analyzing the variance of those estimates is much more challenging.

Now, suppose we are given a transition functiont(x → y) and a functionf(x)

of which we want to mimic the distribution, can we usea(y → x) such that the
points are distributed in the shape off? Or more precisely,

{x0, x1, x2, . . .} ∼ f
∫

s
f

.

It turns out this can be forced by making sure thexi arestationary in some strong
sense. If you visualize a huge collection of sample pointsx, you want the “flow”
between two points to be the same in each direction. If we assume the density of
points nearx andy are proportional tof(x) andf(y), respectively, then theflow
in the two directions should be the same:

flow(x → y) = kf(x)t(x → y)a(x → y),

flow(y → x) = kf(y)t(y → x)a(y → x),

wherek is some positive constant. Setting these twoflows constant gives a con-
straint ona:

a(y → x)

a(x → y)
=

f(x)t(x → y)

f(y)t(y → x)
.

Thus, if eithera(y → x) or a(x → y) is known, so is the other. Making them
larger improves the chance of acceptance, so the usual technique is to set the
larger of the two to1.

A difficulty in using the Metropolis sample generation technique is that it is
hard to estimate how many points are needed before the set of points is “good.”
Things are accelerated if thefirst n points are discarded, although choosingn

wisely is non-trivial.

14.4.4 Example: Choosing Random Lines in the Square

As an example of the full process of designing a sampling strategy, consider the
problem offinding random lines that intersect the unit square[0, 1]2. We want
this process to be fair; that is, we would like the lines to be uniformly distributed
within the square. Intuitively, we can see that there is some subtlety to this prob-
lem; there are “more” lines at an oblique angle than in horizontal or vertical di-
rections. This is because the cross section of the square is not uniform.

14.4. Choosing Random Points 335

Ourfirst goal is tofind a function-inversion method, if one exists, and then to
fall back on rejection or Metropolis ifthat fails. This is because we would like
to have stratified samples in line space. We try using normal coordinatesfirst,
because the problem of choosing randomlines in the square is just the problem
of finding uniform random points in whatever part of(r, θ) space corresponds to
lines in the square.

Consider the region where−π/2 < θ < 0. What values ofr correspond to
lines that hit the square? For those angles,r < cos θ are all the lines that hit
the square as shown in Figure 14.8. Similar reasoning in the other four quadrants
finds the region in(r, θ) space that must be sampled, as shown in Figure 14.9.
The equation of the boundary of that regionrmax(θ)is

Figure 14.8. The largest
distance r corresponds to a
line hitting the square for
θ ∈ [− π/2, 0]. Because
the square has sidelength
one, r = cos θ.

rmax(θ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if θ ∈ [−π,−π
2],

cos θ if θ ∈ [−π
2 , 0],√

2 cos(θ − π
4) if θ ∈ [0, π

2],

sin θ if θ ∈ [π
2 , π].

Because the region underrmax(θ) is a simple function bounded below byr = 0,
we can sample it byfirst choosingθ according to the density function:

p(θ) =
rmax(θ)

∫ π

−π rmax(θ)dθ
.

The denominator here is4. Now, we can compute the cumulative probability
distribution function:

P (θ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if θ ∈ [−π,−π
2],

(1 + sin θ)/4 if θ ∈ [−π
2 , 0],

(1 +
√

2
2 sin(θ − π

4))/2 if θ ∈ [0, π
2],

(3 − cos θ)/4 if θ ∈ [π
2 , π].

Figure 14.9. The maximum radius for lines hitting the unit square [0,1]2 as a function of θ.

336 14. Sampling

We can invert this by manipulatingξ1 = P (θ) into the formθ = g(ξ1). This
yields

θ =

⎧

⎪

⎨

⎪

⎩

arcsin(4ξ1 − 1) if ξ1 < 1
4 ,

arcsin(
√

2
2 (2ξ1 − 1)) + π

4 if ξ1 ∈ [14 , 3
4],

arccos(3 − 4ξ1) if ξ1 > 3
4 .

Once we haveθ, thenr is simply:

r = ξ2rmax(θ).

As discussed earlier, there are many parameterizations of the line, and each has an
associated “fair” measure. We can generate random lines in any of these spaces
as well. For example, in slope-intercept space, the region that hits the square is
shown in Figure 14.10. By similar reasoning to the normal space, the density
function for the slope is

p(m) =
1 + |m|

4

with respect to the differential measure

dµ =
dm

(1 + m2)
3
2

.

Figure 14.10. The region of (m,b) space that contains lines that intersect the unit square
[0,1]2.

14.4. Choosing Random Points 337

This gives rise to the cumulative distribution function:

P (m) =

{

1
4 + m+1

4
√

1+m2
if m < 0,

3
4 + m−1

4
√

1+m2
if m ≥ 0.

These can be inverted by solving two quadratic equations. Given anm generated
usingξ1, we then have

b =

{

(1 − m)ξ2 if ξ < 1
2 .

−m + (1 + m)ξ2 otherwise.

This is not a better way than using normal coordinates; it is just an alternative
way.

Frequently Asked Questions

• This chapter discussed probability but not statistics. What is the
distinction?

Probability is the study of how likely an event is. Statistics infers characteristics
of large, butfinite, populations of random variables. In that sense, statistics could
be viewed as a specific type of applied probability.

• Is Metropolis sampling the same as the Metropolis Light Transport
Algorithm?

No. The Metropolis Light Transport (Veach & Guibas, 1997) algorithm uses
Metropolis sampling as part of its procedure, but it is specifically for rendering,
and it has other steps as well.

Notes

The classic reference for geometric probability isGeometric Probability

(Solomon, 1978). Another method for picking random edges in a square is given
in Random–Edge Discrepancy of Supersampling Patterns (Dobkin & Mitchell,
1993). More information on quasi-Monte Carlo methods for graphics can be
found in Efficient Multidimensional Sampling (Kollig & Keller, 2002). Three
classic and very readable books on Monte Carlo methods areMonte Carlo Meth-

ods (Hammersley & Handscomb, 1964),Monte Carlo Methods, Basics (Kalos &
Whitlock, 1986), andThe Monte Carlo Method (Sobel et al., 1975).

338 14. Sampling

Exercises

1. What is the average value of the functionxyz in the unit cube(x, y, z) ∈
[0, 1]3?

2. What is the average value ofr on the unit-radius disk:(r, φ) ∈ [0, 1] ×
[0, 2π)?

3. Show that the uniform mapping of canonical random points(ξ1, ξ2) to the
barycentric coordinates of any triangle is:β = 1 − √

1 − ξ1, andγ =

(1 − u)ξ2.

4. What is the average length of a line inside the unit square? Verify your
answer by generating ten million random lines in the unit square and aver-
aging their lengths.

5. What is the average length of a line inside the unit cube? Verify your answer
by generating ten million random lines in the unit cube and averaging their
lengths.

6. Show from the definition of variance thatV (x) = E(x2) − [E(x)]
2
.

15
Michael Gleicher

Curves

15.1 Curves

Intuitively, think of acurve as something you can draw with a pen. The curve is
the set of points that the pen traces over an interval of time. While we usually
think of a pen writing on paper (e.g., a curve that is in a 2D space), the pen could
move in 3D to generate aspace curve, or you could imagine the pen moving in
some other kind of space.

Mathematically, definitions of curve can be seen in at least two ways:

1. The continuous image of some interval in ann-dimensional space.

2. A continuous map from a one-dimensional space to ann-dimensional space.

Both of these definitions start with the idea of an interval range (the time over
which the pen traces the curve). However, there is a significant difference: in
thefirst definition, the curve is the set of points the pen traces (the image), while
in the second definition, the curve is the mapping between time and that set of
points. For this chapter, we use thefirst definition.

A curve is an infinitely large set of points. The points in a curve have the
property that any point has two neighbors, except for a small number of points
that have one neighbor (these are the endpoints). Some curves have no endpoints,
either because they are infinite (like a line) or they areclosed (loop around and
connect to themselves).

339

340 15. Curves

Because the “pen” of the curve is thin (infinitesimally), it is difficult to create
filled regions. While space-filling curves are possible (by having them fold over
themselves infinitely many times), we do not consider such mathematical oddities
here. Generally, we think of curves as the outlines of things, not the “insides.”

The problem that we need to address is how to specify a curve—to give a
name or representation to a curve so that we can represent it on a computer. For
some curves, the problem of naming them is easy since they have known shapes:
line segments, circles, elliptical arcs, etc. A general curve that does not have a
“named” shape is sometimes called afree-form curve. Because a free-form curve
can take on just about any shape, they are much harder to specify.

There are three main ways to specify curves mathematically:

1. Implicit curve representations define the set of points on a curve by giving a
procedure that can test to see if a point in on the curve. Usually, an implicit
curve representation is defined by animplicit function of the form

f(x, y) = 0,

so that the curve is the set of points for which this equation is true. Note that
the implicit functionf is a scalar function (it returns a single real number).

2. Parametric curve representations provide a mapping from afree parameter

to the set of points on the curve. That is, this free parameter provides an
index to the points on the curve. The parametric form of a curve is a func-
tion that assigns positions to values of the free parameter. Intuitively, if you
think of a curve as something you can draw with a pen on a piece of paper,
the free parameter is time, ranging over the interval from the time that we
began drawing the curve to the time that wefinish. Theparametric function

of this curve tells us where the pen is at any instant in time:

(x, y) = f(t).

Note that the parametric function is a vector-valued function. This example
is a 2D curve, so the output of the function is a 2-vector; in 3D it would be
a 3-vector.

3. Generative or procedural curve representations provide procedures that can
generate the points on the curve that do not fall into thefirst two categories.
Examples of generative curve descriptions include subdivision schemes and
fractals.

Remember that a curve is a set of points. These representations give us ways
to specify those sets. Any curve has many possible representations. For this

15.1. Curves 341

reason, mathematicians typically are careful to distinguish between a curve and
its representations. In computer graphics we are often sloppy, since we usually
only refer to the representation, not the actual curve itself. So when someone says
“an implicit curve,” they are either referring to the curve that is represented by
some implicit function or to the implicit function that is one of the representations
of some curve. Such distinctions are not usually important, unless we need to
consider different representations of the same curve. We will consider different
curve representations in this chapter,so we will be more careful. When we use a
term like “polynomial curve,” we will mean the curve that can be represented by
the polynomial.

By the definition given at the beginning of the chapter, for something to be a
curve it must have a parametric representation. However, many curves have other
representations. For example, a circle in 2D with its center at the origin and radius
equal to 1 can be written in implicit form as

f(x, y) = x2 + y2 − 1 = 0,

or in parametric form as

(x, y) = f(t) = (cos t, sin t), t ∈ [0, 2π).

The parametric form need not be the most convenient representation for a given
curve. In fact, it is possible to have curves with simple implicit or generative
representations for which it is difficult to find a parametric representation.

Different representations of curves have advantages and disadvantages. For
example, parametric curves are mucheasier to draw, because we can sample the
free parameter. Generally, parametric forms are the most commonly used in com-
puter graphics since they are easier to work with. Our focus will be on parametric
representations of curves.

15.1.1 Parameterizations and Re-Parameterizations

A parametric curve refers to the curve that is given by a specific parametric func-
tion over some particular interval. To be more precise, a parametric curve has a
given function that is a mapping from an interval of the parameters. It is often
convenient to have the parameter run over the unit interval from 0 to 1. When the
free parameter varies over the unit interval, we often denote the parameter asu.

If we view the parametric curve to be aline drawn with a pen, we can consider
u = 0 as the time when the pen isfirst set down on the paper and the unit of time
to be the amount of time it takes to draw the curve (u = 1 is the end of the curve).

342 15. Curves

The curve can be specified by a function that maps time (in these unit coordinates)
to positions. Basically, the specification of the curve is a function that can answer
the question, “Where is the pen at timeu?”

If we are given a functionf(t) that specifies a curve over interval[a, b], we
can easily define a new functionf2(u) that specifies the same curve over the unit
interval. We canfirst define

g(u) = a + (b − a)u,

and then
f2(u) = f(g(u)).

The two functions,f and f2 both represent the same curve; however, they pro-
vide differentparameterizations of the curve. The process of creating a new pa-
rameterization for an existing curve is calledre-parameterization, and the map-
ping from old parameters to the new ones (g, in this example) is called there-

parameterization function.

If we have defined a curve by some parameterization, infinitely many oth-
ers exist (because we can always re-parameterize). Being able to have multiple
parameterizations of a curve is useful, because it allows us to create parameteriza-
tions that are convenient. However, it can also be problematic, because it makes
it difficult to compare two functions to see if they represent the same curve.

The essence of this problem is more general: the existence of the free parame-
ter (or the element of time) adds an invisible, potentially unknown element to our
representation of the curves. When we look at the curve after it is drawn, we don’t
necessarily know the timing. The pen might have moved at a constant speed over
the entire time interval, or it might have started slowly and sped up. For example,
while u = 0.5 is halfway through the parameter space, it may not be half-way
along the curve if the motion of the pen starts slowly and speeds up at the end.
Consider the following representations of a very simple curve:

(x, y) = f(u) = (u, u),

(x, y) = f(u) = (u2, u2),

(x, y) = f(u) = (u5, u5).

All three functions represent the same curve on the unit interval; however when
u is not0 or 1, f(u) refers to a different point depending on the representation of
the curve.

If we are given a parameterization of a curve, we can use it directly as our
specification of the curve, or we can develop a more convenient parameterization.
Usually, thenatural parameterization is created in a way that is convenient (or

15.1. Curves 343

natural) for specifying the curve, so we don’t have to know about how the speed
changes along the curve.

If we know that the pen moves at a constant velocity, then the values of the
free parameters have more meaning. Halfway through parameter space is halfway
along the curve. Rather than measuring time, the parameter can be thought to
measure length along the curve. Such parameterizations are calledarc-length

parameterizations because they define curves by functions that map from the dis-
tance along the curve (known as the arc length) to positions. We often use the
variables to denote an arc length parameter.

Technically, a parameterization is an arc-length parameterization if the mag-
nitude of itstangent (that is, the derivative of the parameterization with respect to
the parameter) has constant magnitude. Expressed as an equation,

∣

∣

∣

∣

df(s)

ds

∣

∣

∣

∣

2

= c.

Computing the length along a curve can be tricky. In general, it is defined by
the integral of the magnitude of the derivative (intuitively, the magnitude of the
derivative is the velocity of the pen as it moves along the curve). So, given a value
for the parameterv, you can computes (the arc-length distance along the curve
from the pointf(0) to the pointf(v)) as

s =

∫ v

0

∣

∣

∣

∣

df(t)

dt

∣

∣

∣

∣

2

dt, (15.1)

wheref(t) is a function that defines the curve with a natural parameterization.
Using the arc-length parameterization requires being able to solve Equation

(15.1) fort, givens. For many of the kinds of curves we examine, it cannot be
done in a closed-form (simple) manner and must be done numerically.

Generally, we use the variableu to denote free parameters that range over the
unit interval,s to denote arc-length free parameters, andt to represent parameters
that aren’t one of the other two.

15.1.2 Piecewise Parametric Representations

For some curves, defining a parametric function that represents their shape is easy.
For example, lines, circles, and ellipses all have simple functions that define the
points they contain in terms of a parameter. For many curves,finding a function
that specifies their shape can be hard. The main strategy that we use to create com-
plex curves is divide-and-conquer: we break the curve into a number of simpler
smaller pieces, each of which has a simple description.

344 15. Curves

(a) (b) (c)

Figure 15.1. (a) A curve that can be easily represented as two lines; (b) a curve that can
be easily represented as a line and a circular arc; (c) a curve approximating curve (b) with
five line segments

For example, consider the curves in Figure 15.1. Thefirst two curves are
easily specified in terms of two pieces. In the case of the curve in Figure 15.1(b),
we need two different kinds of pieces: a line segment and a circle.

To create a parametric representation of a compound curve (like the curve
in Figure 15.1(b)), we need to have our parametric function switch between the
functions that represent the pieces. If we define our parametric functions over the
range0 ≤ u ≤ 1, then the curve in Figures 15.1(a) or (b) might be defined as

f(u) =

{

f1(2u) if u ≤ 0.5,

f2(2u − 1) if u > 0.5,
(15.2)

wheref1 is a parameterization of thefirst piece,f2 is a parameterization of the
second piece, and both of these functions are defined over the unit interval.

We need to be careful in defining the functionsf1 andf2 to make sure that the
pieces of the curvefit together. Iff1(1) �= f2(0), then our curve pieces will not
connect and will not form a single continuous curve.

To represent the curve in Figure 15.1(b), we needed to use two different types
of pieces: a line segment and a circular arc. For simplicity’s sake, we may prefer
to use a single type of piece. If we try to represent the curve in Figure 15.1(b)
with only one type of piece (line segments), we cannot exactly recreate the curve
(unless we use an infinite number of pieces). While the new curve made of line
segments (as in Figure 15.1(c)) may not be exactly the same shape as in Fig-
ure 15.1(b), it might be close enough for our use. In such a case, we might prefer
the simplicity of using the simpler line segment pieces to having a curve that more
accurately represents the shape.

Also, notice that as we use an increasing number of pieces, we can get a better
approximation. In the limit (using an infinite number of pieces), we can exactly
represent the original shape.

15.2. Curve Properties 345

One advantage to using a piecewise representation is that it allows us to make
a tradeoff between

1. how well our represented curve approximates the real shape we are trying
to represent;

2. how complicated the pieces that we use are;

3. how many pieces we use.

So, if we are trying to represent a complicated shape, we might decide that a
crude approximation is acceptable and use a small number of simple pieces. To
improve the approximation, we can choose between using more pieces and using
more complicated pieces.

In computer graphics practice, we tend toprefer using relatively simple curve
pieces (either line segments, arcs, or polynomial segments).

15.1.3 Splines

Before computers, when draftsmen wanted to draw a smooth curve, one tool they
employed was a stiff piece of metal that they would bend into the desired shape
for tracing. Because the metal would bend, not fold, it would have a smooth
shape. The stiffness meant that the metal would bend as little as possible to make
the desired shape. This stiff piece of metal was called aspline.

Mathematicians found that they could represent the curves created by a draft-
man’s spline with piecewise polynomial functions. Initially, they used the term
spline to mean a smooth, piecewise polynomial function. More recently, the term
spline has been used to describe any piecewise polynomial function. We prefer
this latter definition.

For us, aspline is a piecewise polynomial function. Such functions are very
useful for representing curves.

15.2 Curve Properties

To describe a curve, we need to give some facts about its properties. For “named”
curves, the properties are usually specific according to the type of curve. For
example, to describe a circle, we might provide its radius and the position of its
center. For an ellipse, we might also provide the orientation of its major axis and
the ratio of the lengths of the axes. For free-form curves however, we need to
have a more general set of properties to describe individual curves.

346 15. Curves

Some properties of curves are attributed to only a single location on the curve,
while other properties require knowledge of the whole curve. For an intuition of
the difference, imagine that the curve is a train track. If you are standing on the
track on a foggy day you can tell that the track is straight or curved and whether
or not you are at an end point. These arelocal properties. You cannot tell whether
or not the track is a closed curve, or crosses itself, or how long it is. We call this
type of property, aglobal property.

The study of local properties of geometric objects (curves and surfaces) is
known asdifferential geometry. Technically, to be a differential property, there
are some mathematical restrictions about the properties (roughly speaking, in the
train-track analogy, you would not be able to have a GPS or a compass). Rather
than worry about this distinction, we will use the termlocal property rather than
differential property.

Local properties are important tools fordescribing curves because they do not
require knowledge about the whole curve. Local properties include

• continuity,

• position at a specific place on the curve,

• direction at a specific place on the curve,

• curvature (and other derivatives).

Often, we want to specify that a curve includes a particular point. A curve is
said tointerpolate a point if that point is part of the curve. A functionf interpo-
lates a valuev if there is some value of the parameteru for which f(t) = v. We
call the place of interpolation, that is the value oft, thesite.

15.2.1 Continuity

It will be very important to understand the local properties of a curve where two
parametric pieces come together. If a curve is defined using an equation like
Equation (15.2), then we need to be careful about how the pieces are defined. If
f1(1) �= f2(0), then the curve will be “broken”—we would not be able to draw
the curve in a continuous stroke of a pen. We call the condition that the curve
piecesfit togethercontinuity conditions because if they hold, the curve can be
drawn as a continuous piece. Because our definition of ”curve” at the beginning
of the chapter requires a curve to be continuous, technically a ”broken curve” is
not a curve.

15.2. Curve Properties 347

In addition to the positions, we can also check that the derivatives of the pieces
match correctly. Iff ′1(1) �= f ′2(0), then the combined curve will have an abrupt
change in itsfirst derivative at the switching point; thefirst derivative will not
be continuous. In general, we say that a curve isCn continuous if all of its
derivatives up ton match across pieces. We denote the position itself as the
zeroth derivative, so that theC0 continuity condition means that the positions
of the curve are continuous, andC1 continuity means that positions and
first derivatives are continuous. The definition of curve requires the curve to
beC0.

An illustration of some continuity conditions is shown in Figure 15.2. A dis-
continuity in thefirst derivative (the curve isC0 but notC1) is usually noticeable
because it displays a sharp corner. A discontinuity in the second derivative is
sometimes visually noticeable. Discontinuities in higher derivatives might mat-
ter, depending on the application. For example, if the curve represents a motion,
an abrupt change in the second derivative is noticeable, so third derivative con-
tinuity is often useful. If the curve is going to have afluid flowing over it (for
example, if it is the shape for an airplane wing or boat hull), a discontinuity in the
fourth orfifth derivative might cause turbulence.

The type of continuity we have just introduced (Cn) is commonly referred to
asparametric continuity as it depends on the parameterization of the two curve
pieces. If the “speed” of each piece is different, then they will not be continuous.
For cases where we care about the shape of the curve, and not its parameteriza-
tion, we definegeometric continuity that requires that the derivatives of the curve
pieces match when the curves are parameterized equivalently (for example, us-
ing an arc-length parameterization). Intuitively, this means that the corresponding
derivatives must have the same direction, even if they have different magnitudes.

C 0

C1

C2

G1

G2

Figure 15.2. An illustration of various types of continuity between two curve segments.

348 15. Curves

So, if theC1 continuity condition is

f ′1(1) = f ′2(0),

theG1 continuity condition would be

f ′1(1) = k f ′2(0),

for some value of scalark. Generally, geometric continuity is less restrictive
than parametric continuity. ACn curve is alsoGn except when the parametric
derivatives vanish.

15.3 Polynomial Pieces

The most widely used representations of curves in computer graphics is done
by piecing together basic elements that are defined by polynomials and called
polynomial pieces. For example, a line element is given by a linear polynomial.
In Section 15.3.1, we give a formal definition and explain how to put pieces of
polynomial together.

15.3.1 Polynomial Notation

Polynomials are functions of the form

f(t) = a0 + a1t + a2t
2 + . . . + antn. (15.3)

Theai are called thecoefficients. andn is called the degree of the polynomial if
an �= 0. We also write Equation (15.3) in the form

f(t) =

n
∑

i=0

ait
i. (15.4)

We call this thecanonical form of the polynomial.
We can generalize the canonical form to

f(t) =

n
∑

i=0

cibi(t), (15.5)

wherebi(t) is a polynomial. We can choose these polynomials in a convenient
form for different applications, and we call thembasis functions or blending

functions (see Section 15.3.5). In Equation (15.4), theti are thebi(t) of Equa-
tion (15.5). If the set of basis functions is chosen correctly, any polynomial of
degreen + 1 can be represented by an appropriate choice ofc.

15.3. Polynomial Pieces 349

The canonical form does not always have convenient coefficients. For prac-
tical purposes, throughout this chapter, we willfind sets of basis functions such
that the coefficients are convenient ways to control the curves represented by the
polynomial functions.

To specify a curve embedded in two dimensions, one can either specify two
polynomials int: one for howx varies witht and one for howy varies witht;
or specify a single polynomial where each of theai is a 2D point. An analogous
situation exists for any curve in ann-dimensional space.

15.3.2 A Line Segment

To introduce the concepts of piecewise polynomial curve representations, we will
discuss line segments. In practice, line segments are so simple that the mathemat-
ical derivations will seem excessive. However, by understanding this simple case,
things will be easier when we move on to more complicated polynomials.

Consider a line segment that connects pointp0 to p1. We could write the
parametric function over the unit domain for this line segment as

f(u) = (1 − u)p0 + up1. (15.6)

By writing this in vector form, we have hidden the dimensionality of the points
and the fact that we are dealing with each dimension separately. For example,
were we working in 2D, we could have created separate equations:

fx(u) = (1 − u)x0 + ux1,

fy(u) = (1 − u)y0 + uy1.

The line that we specify is determined by the two end points, but from now
on we will stick to vector notation since it is cleaner. We will call the vector of
control parameters,p, thecontrol points, and each element ofp, acontrol point.

While describing a line segment by the positions of its endpoints is obvious
and usually convenient, there are other ways to describe a line segment. For
example,

1. the position of the center of the line segment, the orientation, and the length;

2. the position of one endpoint and the position of the second point relative to
thefirst;

3. the position of the middle of the line segment and one endpoint.

350 15. Curves

It is obvious that given one kind of a description of a line segment, we can switch
to another one.

A different way to describe a line segment is using the canonical form of the
polynomial (as discussed in Section 15.3.1),

f(u) = a0 + ua1. (15.7)

Any line segment can be represented either by specifyinga0 anda1 or the end-
points (p0 andp1). It is usually more convenient to specify the endpoints, because
we can compute the other parameters from the endpoints.

To write the canonical form as a vector expression, we define a vectoru that
is a vector of the powers ofu:

u =
[

1 u u2 u3 . . . un
]

,

so that Equation (15.4) can be written as

f(u) = u · a. (15.8)

This vector notation will make transforming between different forms of the curve
easier.

Equation (15.8) describes a curve segment by the set of polynomial coeffi-
cients for the simple form of the polynomial. We call such a representation the
canonical form. We will denote the parameters of the canonical form bya.

While it is mathematically simple, the canonical form is not always the most
convenient way to specify curves. For example, we might prefer to specify a
line segment by the positions of its endpoints. If we want to definep0 to be the
beginning of the segment (where the segment is whenu = 0) andp1 to be the
end of the line segment (where the line segment is atu = 1), we can write

p0 = f(0) = [1 0] · [a0 a1] ,
p1 = f(1) = [1 1] · [a0 a1] .

(15.9)

We can solve these equations fora0 anda1:

a0 = p0,

a1 = p1 − p0.

Matrix Form for Polynomials

While thisfirst example was easy enough to solve, for more complicated examples
it will be easier to write Equation (15.9) in the form

[

p0

p1

]

=

[

1 0
1 1

] [

a0

a1

]

.

15.3. Polynomial Pieces 351

Alternatively, we can write

p = C a, (15.10)

where we callC, theconstraint matrix.1 If having vectors of points bothers you,
you can consider each dimension independently (so thatp is [x0 x1] or [y0 y1])
anda is handled correspondingly).

We can solve Equation (15.10) fora by finding the inverse ofC. This inverse
matrix which we will denote byB is called thebasis matrix. The basis matrix
is very handy since it tells us how to convert between the convenient parameters
p and the canonical forma, and, therefore, gives us an easy way to evaluate the
curve

f(u) = u B p.

We canfind a basis matrix for whatever form of the curve that we want, providing
that there are no non-linearities in the definition of the parameters. Examples of
non-linearly defined parameters include the length and angle of the line segment.

Now, suppose we want to parameterize the line segment so thatp0 is the half-
way point (u = 0.5), andp1 is the ending point (u = 1). To derive the basis
matrix for this parameterization, we set

p0 = f(0.5) = 1 a0 + 0.5 a1,

p1 = f(1) = 1 a0 + 1 a1.

So

C =

[

1 .5
1 1

]

,

and therefore

B = C−1 =

[

2 −1
−2 2

]

.

15.3.3 Beyond Line Segments

Line segments are so simple thatfinding a basis matrix is trivial. However, it was
good practice for curves of higher degree. First, let’s consider quadratics (curves
of degree two). The advantage of the canonical form (Equation (15.4)) is that it
works for these more complicated curves, just by lettingn be a larger number.

1We assume the form of a vector (row or column) is obvious from the context, and we will skip all
of the transpose symbols for vectors.

352 15. Curves

A quadratic (a degree-two polynomial) has three coefficients,a0, a1, anda2.
These coefficients are not convenient for describing the shape of the curve. How-
ever, we can use the same basis matrix method to devise more convenient param-
eters. If we know the value ofu, Equation (15.4) becomes a linear equation in the
parameters, and the linear algebra from the last section still works.

Suppose that we wanted to describe our curves by the position of the begin-
ning (u = 0), middle2 (u = 0.5), and end (u = 1). Entering the appropriate
values into Equation (15.4):

p0 = f(0) = a0 + 01 a1 + 02 a2,
p1 = f(0.5) = a0 + 0.51 a1 + 0.52 a2,
p2 = f(1) = a0 + 11 a1 + 12 a2.

So the constraint matrix is

C =

⎡

⎣

1 0 0
1 .5 .25
1 1 1

⎤

⎦ ,

and the basis matrix is

B = C−1 =

⎡

⎣

1 0 0
−3 4 −1

2 −4 2

⎤

⎦ .

There is an additional type of constraint (or parameter) that is sometimes con-
venient to specify: the derivative of the curve (with respect to its free parameter)
at a particular value. Intuitively, the derivatives tell us how the curve is changing,
so that thefirst derivative tells us what direction the curve is going, the second
derivative tells us how quickly the curve is changing direction, etc. We will see
examples of why it is useful to specify derivatives later.

For the quadratic,
f(u) = a0 + a1u + a2u

2,

the derivatives are simple:

f ′(u) =
df

du
= a1 + 2a2u,

and

f ′′(u) =
d2f

du2
=

df ′

du
= 2a2.

2Notice that this is the middle of the parameter space, which might not be the middle of the curve
itself.

15.3. Polynomial Pieces 353

Or, more generally,

f ′(u) =
∑n

i=1 iui−1ai,

f ′′(u) =
∑n

i=2 i(i − 1)ui−2ai.

For example, consider a case where we want to specify a quadratic curve
segment by the position,first, and second derivative at its middle (u = 0.5).

p0 = f(0.5) = a0+ 0.51 a1+ 0.52 a2,
p1 = f ′(0.5) = a1+ 2 0.5 a2,
p2 = f ′′(0.5) = 2 a2.

The constraint matrix is

C =

⎡

⎣

1 .5 .25
0 1 1
0 0 2

⎤

⎦ ,

and the basis matrix is

B = C−1 =

⎡

⎣

1 −.5 .125
0 1 −.5
0 0 .5

⎤

⎦ .

15.3.4 Basis Matrices for Cubics

Cubic polynomials are popular in graphics (See Section 15.5). The derivations
for the various forms of cubics are just like the derivations we’ve seen already in
this section. We will work through one more example for practice.

A very useful form of a cubic polynomial is theHermite form, where we
specify the position andfirst derivative at the beginning and end, that is,

p0 = f(0) = a0 + 01 a1 + 02 a2+ 03 a3,
p1 = f ′(0) = a1 +2 01 a2+ 3 02 a3,
p2 = f(1) = a0 + 11 a1 + 12 a2+ 13 a3,
p3 = f ′(1) = a1 +2 11 a2+ 3 12 a3.

354 15. Curves

Thus, the constraint matrix is

C =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

⎤

⎥

⎥

⎦

,

and the basis matrix is

B = C−1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0

−3 −2 3 −1
2 1 −2 1

⎤

⎥

⎥

⎦

.

We will discuss Hermite cubic splines in Section 15.5.2.

15.3.5 Blending Functions

If we know the basis matrix,B, we can multiply it by the parameter vector,u, to
get a vector of functions

b(u) = u B.

Notice that we denote this vector byb(u) to emphasize the fact that its value
depends on the free parameteru. We call the elements ofb(u) theblending func-

tions, because they specify how to blend the values of the control point vector
together:

f(u) =
n
∑

i=0

bi(u)pi. (15.11)

It is important to note that for a chosen value ofu, Equation (15.11) is alinear

equation specifying alinear blend (or weighted average) of the control points.
This is true no matter what degree polynomials are “hidden” inside of thebi

functions.
Blending functions provide a nice abstraction for describing curves. Any type

of curve can be represented as a linear combination of its control points, where
those weights are computed as some arbitrary functions of the free parameter.

15.3.6 Interpolating Polynomials

In general, a polynomial of degreen can interpolate a set ofn + 1 values. If
we are given a vectorp = (p0, . . . , pn) of points to interpolate and a vector

15.3. Polynomial Pieces 355

t = (t0, . . . , tn) of increasing parameter values,ti �= tj , we can use the methods
described in the previous sections to determine ann + 1×n + 1 basis matrix that
gives us a functionf(t) such thatf(ti) = pi. For any given vectort, we need to
set up and solve ann = 1 × n + 1 linear system. This provides us with a set of
n + 1 basis functions that perform interpolation:

f(t) =

n
∑

i=0

pibi(t).

These interpolating basis functions can be derived in other ways. One partic-
ularly elegant way to define them is theLagrange form:

bi =
n
∏

j=0,j =i

x − tj
ti − tj

. (15.12)

There are more computationally efficient ways to express the interpolating basis
functions than the Lagrange form (see De Boor (1978) for details).

Interpolating polynomials provide a mechanism for defining curves that in-
terpolate a set of points. Figure 15.3 shows some examples. While it is possible
to create a single polynomial to interpolate any number of points, we rarely use
high-order polynomials to represent curves in computer graphics. Instead, inter-
polating splines (piecewise polynomial functions) are preferred. Some reasons
for this are considered in Section 15.5.3.

1

2

3

4

5
1

2 3 4 5

6
1

2

4

3

5

6

(a) Interpolating polynomial through (b) Interpolating polynomial through (c) Interpolating polynomial through five and six points
five points six points

Figure 15.3. Interpolating polynomials through multiple points. Notice the extra wiggles
and over-shooting between points. In (c), when the sixth point is added, it completely
changes the shape of the curve due to the non-local nature of interpolating polynomials.

356 15. Curves

15.4 Putting Pieces Together

Now that we’ve seen how to make individual pieces of polynomial curves, we can
consider how to put these pieces together.

15.4.1 Knots

The basic idea of a piecewise parametric function is that each piece is only used
over some parameter range. For example, if we want to define a function that
has two piecewise linear segments that connect three points (as shown in Fig-
ure 15.4(a)), we might define

f(u) =

{

f1(2u) if 0 ≤ u < 1
2 ,

f2(2u − 1) if 1
2 ≤ u < 1,

(15.13)

wheref1 and f2 are functions for each of the two line segments. Notice that
we have re-scaled the parameter for each of the pieces to facilitate writing their
equations as

f1(u) = (1 − u)p1 + up2.

For each polynomial in our piecewise function, there is a site (or parameter
value) where it starts and ends. Sites where a piece function begins or ends are
calledknots. For the example in Equation (15.13), the values of the knots are
0, 0.5, and1.

We may also write piecewise polynomial functions as the sum of basis func-
tions, each scaled by a coefficient. For example, we can re-write the two line
segments of Equation (15.13) as

f(u) = p1b1(u) + p2b2(u) + p3b3(u), (15.14)

0 .5.5 1

0

.5.5

1
b1(u)

b2(u)

b3(u)

p1

p2

p3

(a) (b)

Figure 15.4. (a) Two line segments connect three points; (b) the blending functions for each
of the points are graphed at right.

15.4. Putting Pieces Together 357

where the functionb1(u) is defined as

b1(u) =

{

1 − 2u if 0 ≤ u < 1
2 ,

0 otherwise,

andb2 andb3 are defined similarly. These functions are plotted in Figure 15.4(b).
The knots of a polynomial function are the combination of the knots of all of

the pieces that are used to create it. Theknot vector is a vector that stores all of
the knot values in ascending order.

Notice that in this section we have used two different mechanisms for combin-
ing polynomial pieces: usingindependent polynomial pieces for different ranges
of the parameter and blending together piecewise polynomial functions.

15.4.2 Using Independent Pieces

In Section 15.3, we defined pieces of polynomials over the unit parameter range.
If we want to assemble these pieces, we need to convert from the parameter of the
overall function to the value of the parameter for the piece. The simplest way to
do this is to define the overall curve over the parameter range[0, n] wheren is the
number of segments. Depending on the value of the parameter, we can shift it to
the required range.

15.4.3 Putting Segments Together

If we want to make a single curve from two line segments, we need to make sure
that the end of thefirst line segment is at the same location as the beginning of the
next. There are three ways to connect the two segments (in order of simplicity):

1. Represent the line segment as its two endpoints, and then use the same point
for both. We call this ashared-point scheme.

2. Copy the value of the end of thefirst segment to the beginning of the second
segment every time that the parameters of thefirst segment change. We call
this adependency scheme.

3. Write an explicit equation for the connection, and enforce it through nu-
merical methods as the other parameters are changed.

While the simpler schemes are preferable since they require less work, they also
place more restrictions on the way the line segments are parameterized. For ex-
ample, if we want to use the center of the line segment as a parameter (so that the

358 15. Curves

user can specify it directly), we will use the beginning of each line segment and
the center of the line segment as their parameters. This will force us to use the
dependency scheme.

Notice that if we use a shared point or dependency scheme, the total number
of control points is less thann ∗ m, wheren is the number of segments andm

is the number of control points for each segment; many of the control points of
the independent pieces will be computedas functions of other pieces. Notice
that if we use either the shared-point scheme for lines (each segment uses its two

Each line segment is parameterized by its endpoint and
its centerpoint.

Each line segment is parameterized by its endpoints.

The endpoint of segment two is equated
to the "free" end of segment one.

The end of one segment is shared with the beginning endpoint of the next segment.

Moving a control point causes a change only in a localized region.

A change in any control point causes
ALL later line segments to be affected.

The endpoint of segment three is equated
 to the "free" end of segment two, etc.

Figure 15.5. A chain of line segments with local control and one with non-local control.

15.5. Cubics 359

endpoints as parameters and shares interior points with its neighbors), or if we
use the dependency scheme (such as the example one with thefirst endpoint and
midpoint), we end up withn + 1 controls for ann-segment curve.

Dependency schemes have a more serious problem. A change in one place in
the curve can propagate through the entire curve. This is called a lack oflocality.

Locality means that if you move a point on a curve it will only effect a local
region. The local region might be big, but it will befinite. If a curve’s controls do
not have locality, changing a control point may effect points infinitely far away.

To see locality, and the lack thereof, in action, consider two chains of line
segments, as shown in Figure 15.5. One chain has its pieces parameterized by
their endpoints and uses point-sharing to maintain continuity. The other has its
pieces parameterized by an endpoint and midpoint and uses dependency propa-
gation to keep the segments together. The two segment chains can represent the
same curves: they are both a set ofn connected line segments. However, because
of locality issues, the endpoint-shared form is likely to be more convenient for the
user. Consider changing the position of thefirst control point in each chain. For
the endpoint-shared version, only thefirst segment will change, while all of the
segments will be affected in the midpoint version, as in Figure 15.5. In fact, for
any point moved in the endpoint-shared version, at most two line segments will
change. In the midpoint version, all segments after the control point that is moved
will change, even if the chain is infinitely long.

In this example, the dependency propagation scheme was the one that did not
have local control. This is not always true. There are direct sharing schemes that
are not local and propagation schemes that are local.

We emphasize that locality is a convenience of control issue. While it is in-
convenient to have the entire curve change every time, the same changes can be
made to the curve. It simply requires moving several points in unison.

15.5 Cubics

In graphics, when we represent curves using piecewise polynomials we usually
use either line segments or cubic polynomials for the pieces. There are a number
of reasons why cubics are popular in computer graphics:

• Piecewise cubic polynomials allow forC2 continuity, which is generally
sufficient for most visual tasks. TheC1 smoothness that quadratics offer is
often insufficient. The greater smoothness offered by higher-order polyno-
mials is rarely important.

360 15. Curves

• Cubic curves provide the minimum-curvature interpolants to a set of points.
That is, if you have a set ofn + 3 points and define the “smoothest” curve
that passes through them (that is the curve that has the minimum curvature
over its length), this curve can be represented as a piecewise cubic withn

segments.

• Cubic polynomials have a nice symmetry where position and derivative can
be specified at the beginning and end.

• Cubic polynomials have a nice tradeoff between the numerical issues in
computation and the smoothness.

Notice that we do not have to use cubics. They just tend to be a good tradeoff
between the amount of smoothness and complexity. Different applications may
have different tradeoffs. We focus on cubics since they are the most commonly
used.

The canonical form of a cubic polynomial is

f(u) = a0 + a1 u + a2 u2 + a3 u3.

As we discussed in Section 15.3, these canonical form coefficients are not a con-
venient way to describe a cubic segment.

We seek forms of cubic polynomials for which the coefficients are a conve-
nient way to control the resulting curve represented by the cubic. One of the main
conveniences will be to provide ways to insure the connectedness of the pieces
and the continuity between the segments.

Each cubic polynomial piece requires four coefficients or control points. That
means for a piecewise polynomial withn pieces, we may require up to4n control
points if no sharing between segments is done or dependencies used. More often,
some part of each segment is either shared or depends on an adjacent segment, so
the total number of control points is much lower. Also, note that a control point
might be a position or a derivative of the curve.

Unfortunately, there is no single “best” representation for a piecewise cubic.
It is not possible to have a piecewise polynomial curve representation that has all
of the following desirable properties:

1. each piece of the curve is a cubic;

2. the curve interpolates the control points;

3. the curve has local control;

4. the curve hasC2 continuity.

15.5. Cubics 361

We can have any three of these properties, but not all four; there are repre-
sentations that have any combination of three. In this book, we will discuss cubic
B-splines that do not interpolate their control points (but have local control and
areC2); Cardinal splines and Catmull-Rom splines that interpolate their control
points and offer local control, but are notC2; and natural cubics that interpolate
and areC2, but do not have local control.

The continuity properties of cubics refer to the continuity between the seg-
ments (at the knot points). The cubic pieces themselves have infinite continuity
in their derivatives (the way we have been talking about continuity so far). Note
that if you have a lot of control points (or knots), the curve can be wiggly, which
might not seem “smooth.”

15.5.1 Natural Cubics

With a piecewise cubic curve, it is possible to create aC2 curve. To do this, we
need to specify the position andfirst and second derivative at the beginning of
each segment (so that we can make sure that it is the same as at the end of the
previous segment). Notice, that each curve segment receives three out of its four
parameters from the previous curve in the chain. TheseC2 continuous chains of
cubics are sometimes referred to asnatural cubic splines.

For one segment of the natural cubic, we need to parameterize the cubic by
the positions of its endpoints and thefirst and second derivative at the beginning
point. The control points are therefore

p0 = f(0) = a0 + 01a1 + 02 a2 + 03 a3,
p1 = f ′(0) = 11a1 +2 01 a2 +3 02 a3,
p2 = f ′′(0) = 2 11a2 +6 01 a3,
p3 = f(1) = a0 + 11 a1 + 12 a2 + 13 a3.

Therefore, the constraint matrix is

C =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 2 0
1 1 1 1

⎤

⎥

⎥

⎦

,

and the basis matrix is

B = C−1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 .5 0

−1 −1 −.5 1

⎤

⎥

⎥

⎦

.

362 15. Curves

Given a set ofn control points, a natural cubic spline hasn−1 cubic segments.
Thefirst segment uses the control points to define its beginning position, ending
position, andfirst and second derivative at the beginning. A dependency scheme
copies the position, andfirst and second derivative of the end of thefirst segment
for use in the second segment.

A disadvantage of natural cubic splines is that they are not local. Any change
in any segment may require the entire curve to change (at least the part after
the change was made). To make matters worse, natural cubic splines tend to be
ill-conditioned: a small change at the beginning of the curve can lead to large
changes later. Another issue is that we only have control over the derivatives of
the curve at its beginning. Segments after the beginning of the curve determine
their derivatives from their beginning point.

15.5.2 Hermite Cubics

Hermite cubic polynomials were introduced in Section 15.3.4. A segment of a
cubic Hermite spline allows the positions andfirst derivatives of both of its end
points to be specified. A chain of segments can be linked into aC1 spline by
using the same values for the position and derivative of the end of one segment
and for the beginning of the next.

Given a set ofn control points, where every other control point is a derivative
value, a cubic Hermite spline contains(n−2)/2 cubic segments. The spline inter-
polates the points, as shown in Figure 15.6, but can guarantee onlyC1 continuity.

Hermite cubics are convenient becausethey provide local control over the
shape, and provideC1 continuity. However, since the user must specify both po-
sitions and derivatives, a special interface for the derivatives must be provided.
One possibility is to provide the user with points that represent where the deriva-
tive vectors would end if they were “placed” at the position point.

Figure 15.6. A Hermite cubic spline made up of three segments.

15.5. Cubics 363

15.5.3 Cardinal Cubics

A cardinal cubic spline is a type ofC1 interpolating spline made up of cubic
polynomial segments. Given a set ofn control points, a cardinal cubic spline uses
n−2 cubic polynomial segments to interpolate all of its points except for thefirst
and last.

Cardinal splines have a parameter calledtension that controls how “tight” the
curve is between the points it interpolates. The tension is a number in the range
[0, 1) that controls how the curve bends towards the next control point. For the
important special case oft = 0, the splines are calledCatmull-Rom splines.

Each segment of the cardinal spline uses four control points. For segmenti,
the points used arei, i + 1, i + 2, andi + 3 as the segments share three points
with their neighbors. Each segment begins at its second control point and ends at
its third control point. The derivative at the beginning of the curve is determined

p4 - p2

p1

p2 p3

p4

p3- p1

Figure 15.7. A segment of
a cardinal cubic spline inter-
polates its second and third
control points (p2 and p3),
and uses its other points to
determine the derivatives at
the beginning and end.

by the vector between thefirst and third control points, while the derivative at the
end of the curve is given by the vector between the second and forth points, as
shown in Figure 15.7.

The tension parameter adjusts how much the derivatives are scaled. Specif-
ically, the derivatives are scaled by(1 − t)/2. The constraints on the cubic are
therefore

f(0) = p2,
f(1) = p3,
f ′(0) = 1

2 (1 − t)(p3 − p1),
f ′(1) = 1

2 (1 − t)(p4 − p2).

Solving these equations for the control points (definings = (1 − t)/2) gives

p0 = f(1) − 2
1−t f

′(0) = a0 +(1 − 1
s) a1 + a2 + a3,

p1 = f(0) = a0,
p2 = f(1) = a0 + a1 + a2 + a3,
p3 = f(0) + 1

s f
′(1) = a0 + 1

s a1 +2 1
s a2 +3 1

s a3.

This yields the cardinal matrix

B = C−1 =

⎡

⎢

⎢

⎣

0 1 0 0
−s 0 s 0
2s s − 3 3 − 2s −s
−s 2 − s s − 2 s

⎤

⎥

⎥

⎦

.

Since the third point of segmenti is the second point of segmenti+1, adjacent
segments of the cardinal spline connect. Similarly, the same points are used to
specify thefirst derivative of each segment, providingC1 continuity.

364 15. Curves

1 2

3
4

5

6 7

Figure 15.8. Cardinal splines through seven control points with varying values of tension
parameter t.

Cardinal splines are useful, because they provide aneasy way to interpolate
a set of points withC1 continuity and local control. They are onlyC1, so they
sometimes get “kinks” in them. The tension parameter gives some control over
what happens between the interpolated points, as shown in Figure 15.8, where a
set of cardinal splines through a set of points is shown. The curves use the same
control points, but they use different values for the tension parameters. Note that
thefirst and last control points are not interpolated.

Given a set ofn points to interpolate, you might wonder why we might prefer
to use a cardinal cubic spline (that is a set ofn− 2 cubic pieces) rather than a sin-
gle, ordern polynomial as described in Section 15.3.6. Some of the disadvantages
of the interpolating polynomial are:

• The interpolating polynomial tends to overshoot the points, as seen in Fig-
ure 15.9. This overshooting gets worse as the number of points grows
larger. The cardinal splines tend to be well behaved in between the points.

• Control of the interpolating polynomial is not local. Changing a point at the
beginning of the spline affects the entire spline. Cardinal splines are local:
any place on the spline is affected by its four neighboring points at most.

• Evaluation of the interpolating polynomial is not local. Evaluating a point
on the polynomial requires access to all of its points. Evaluating a point
on the piecewise cubic requires afixed small number of computations, no
matter how large the total number of points is.

There are a variety of other numerical and technical issues in using interpolating
splines as the number of points grows larger. See (De Boor, 2001) for more
information.

A cardinal spline has the disadvantage that it does not interpolate thefirst or
last point, which can be easilyfixed by adding an extra point at either end of

15.6. Approximating Curves 365

Figure 15.9. Splines interpolating nine control points (marked with small crosses). The
thick gray line shows an interpolating polynomial. The thin, dark line shows a Catmull-Rom
spline. The latter is made of seven cubic segments, which are each shown in alternating
gray tones.

the sequence. The cardinal spline also is not as continuous—providing onlyC1

continuity at the knots.

15.6 Approximating Curves

It might seem like the easiest way to control a curve is to specify a set of points
for it to interpolate. In practice, however, interpolation schemes often have unde-
sirable properties because they have less continuity and offer no control of what
happens between the points. Curve schemes that only approximate the points are
often preferred. With an approximating scheme, the control points influence the
shape of the curve, but do not specify it exactly. Although we give up the ability
to directly specify points for the curve to pass through, we gain better behavior
of the curve and local control. Should we need to interpolate a set of points, the
positions of the control points can be computed such that the curve passes through
these interpolation points.

The two most important types of approximating curves in computer graphics
are Bézier curves and B-spline curves.

15.6.1 Bézier Curves

Bézier curves are one of the most common representations for free-form curves
in computer graphics. The curves are named for Pierre B´ezier, one of the people
who was instrumental intheir development. B´ezier curves have an interesting
history where they were concurrently developed by several independent groups.

A Bézier curve is a polynomial curve that approximates its control points. The
curves can be a polynomial of any degree. A curve of degreed is controlled by

366 15. Curves

d + 1 control points. The curve interpolates itsfirst and last control points, and
the shape is directly influenced by the other points.

Often, complex shapes are made by connecting a number of B´ezier curves of
low degree, and in computer graphics, cubic (d = 3) Bézier curves are commonly
used for this purpose. Many popular illustration programs, such as Adobe Illus-
trator, and font representation schemes, such as that used in Postscript, use cubic
Bézier curves. B´ezier curves are extremely popularin computer graphics because
they are easy to control, have a number of useful properties, and there are very
efficient algorithms for working with them.

Bézier curves are constructed such that:

• The curve interpolates thefirst and last control points, withu = 0 and1,
respectively.

• Thefirst derivative of the curve at its beginning (end) is determined by the
vector between thefirst and second (next to last and last) control points.
The derivatives are given by the vectors between these points scaled by the
degree of the curve.

• Higher derivatives at the beginning (end) of the curve depend on the points
at the beginning (end) of the curve. Thenth derivative depends on thefirst
(last)n + 1 points.

For example, consider the B´ezier curve of degree 3 as in Figure 15.10. The
curve has four (d + 1) control points. It begins at thefirst control point (p0)
and ends at the last (p1). Thefirst derivative at the beginning is proportional to
the vector between thefirst and second control points(p1 − p0). Specifically,
f ′(0) = 3(p1 − p0). Similarly, thefirst derivative at the end of the curve is given

p0

p1

p2

p3

p
1

-p
0

p3-p2

f’(0)=3(p1-p0)

f’(1)=3(p3-p2)

Figure 15.10. A cubic Bézier curve is controlled by four points. It interpolates the first and
last, and the beginning and final derivatives are three times the vectors between the first two
(or last two) points.

15.6. Approximating Curves 367

by f ′(1) = 3(p3 − p2). The second derivative at the beginning of the curve can
be determined from control pointsp0, p1 andp2.

Using the facts about B´ezier cubics in the preceding paragraph, we can use the
methods of Section 15.5 to create a parametric function for them. The definitions
of the beginning and end interpolation and derivatives give

p0 = f(0) = a30
3 + a20

2 + a10 + a0,
p3 = f(1) = a31

3 + a21
2 + a11 + a0,

3(p1 − p0) = f ′(0) = 3a30
2 + 2a20 + a1,

3(p3 − p2) = f ′(1) = 3a31
2 + 2a21 + a1.

This can be solved for the basis matrix

B = C−1 =

⎡

⎢

⎢

⎣

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

⎤

⎥

⎥

⎦

,

and then written as

f(u) = (1−3u+3u2−u3)p0 +(3u−6u2 +3u3)p1 +(3u2−3u3)p2 +(u3)p3,

or

f(u) =

d
∑

i=0

bi,3pi,

where thebi,3 are the Bézier blending functions of degree 3:

b0,3 = (1 − u)3,
b1,3 = 3u(1 − u)2,
b2,3 = 3u2(1 − u),
b3,3 = u3.

Fortunately, the blending functions for B´ezier curves have a special form that
works for all degrees. These functions are known as theBernstein basis polyno-

mials and have the general form

bk,n(u) = C(n, k) uk (1 − u)(n−k),

wheren is the order of the B´ezier curve, andk is the blending function number
between 0 andn (inclusive).C(n, k) are the binomial coefficients:

C(n, k) =
n!

k! (n − k)!
.

368 15. Curves

Figure 15.11. Various Bézier segments of degree 2–6. The control points are shown with
crosses, and the control polygons (line segments connecting the control points) are also
shown.

Given the positions of the control pointspk, the function to evaluate the B´ezier
curve of ordern (with n + 1 control points) is

p(u) =

n
∑

k=0

pkC(n, k) uk (1 − u)(n−k).

Some Bézier segments are shown in Figure 15.11.
Bézier segments have several useful properties:

• The curve is bounded by the convex hull of the control points.

• Any line intersects the curve no more times than it intersects the set of
line segments connecting the control points. This is called thevariation

diminishing property. This property is illustrated in Figure 15.12.

• The curves are symmetric: reversing the order of the control points yields
the same curve, with a reversed parameterization.

• The curves areaffine invariant. This means that translating, scaling, rotat-
ing, or skewing the control points is the same as performing those opera-
tions on the curve itself.

• There are good simple algorithms for evaluating and subdividing B´ezier
curves into pieces that are themselves B´ezier curves. Because subdivision
can be done effectively using the algorithm described later, a divide and
conquer approach can be used to create effective algorithms for important
tasks such as rendering B´ezier curves, approximating them with line seg-
ments, and determining the intersection between two curves.

15.6. Approximating Curves 369

Figure 15.12. The variation diminishing property of Bézier curves means that the curve
does not cross a line more than its control polygon does. Therefore, if the control polygon
has no “wiggles,” the curve will not have them either. B-splines (Section 15.6.2) also have
this property.

When Bézier segments are connected togetherto make a spline, connectivity be-
tween the segments is created by sharing the endpoints. However, continuity
of the derivatives must be created by positioning the other control points. This
provides the user of a B´ezier spline with control over the smoothness. ForG1

continuity, the second-to-last point of thefirst curve and the second point of the
Figure 15.13. Two Bézier
segments connect to form
a C1 spline, because the
vector between the last two
points of the first segment
is equal to the vector be-
tween the first two points of
the second segment.

second curve must be collinear with the equated endpoints. ForC1 continu-
ity, the distances between the points must be equal as well. This is illustrated
in Figure 15.13. Higher degrees of continuity can be created by properly posi-
tioning more points.

Geometric Intuition for Bezier Curves

Bézier curves can be derived from geometric principles, as well as from the alge-
braic methods described above. We outline the geometric principles because they
provides intuition on how B´ezier curves work.

Imagine that we have a set of control points from which we want to create
a smooth curve. Simply connecting the points with lines (to form the control
polygon) will lead to something that is non-smooth. It will have sharp corners. We
could imagine “smoothing” this polygon by cutting offthe sharp corners, yielding
a new polygon that is smoother, but still not“smooth” in the mathematical sense
(since the curve is still a polygon, and therefore onlyC1. We can repeat this
process, each time yielding a smoother polygon, as shown in Figure 15.14. In the
limit, that is if we repeated the process infinitely many times, we would obtain a
C1 smooth curve.

What we have done with corner cutting is defining asubdivision scheme. That
is, we have defined curves by a process for breaking a simpler curve into smaller
pieces (e.g., subdividing it). The resulting curve is thelimit curve that is achieved

370 15. Curves

Figure 15.14. Subdivision procedure for quadratic Béziers. Each line segment is divided in
half and these midpoints are connected (gray points and lines). The interior control point is
moved to the midpoint of the new line segment (white circle).

by applying the process infinitely many times. If the subdivision scheme is de-
fined correctly, the result will be a smooth curve, and it will have a parametric
form.

Let us consider applying corner cutting to a single corner. Given three points
(p0, p1, p2), we repeatedly “cut off the corners” as shown in Figure 15.15. At
each step, we divide each line segment inhalf, connect the midpoints, and then
move the corner point to the midpoint of the new line segment. Note that in this
process, new points are introduced, moved once, and then remain in this position
for any remaining iterations. The endpoints never move.

If we compute the “new” position forp2 as the midpoint of the midpoints, we
get the expression

p′
2 =

1

2
(
1

2
p0 +

1

2
p1) +

1

2
(
1

2
p1 +

1

2
p2).

The construction actually works for other proportions of distance along each
segment. If we letu be the distance between the beginning and the end of each

cu
t

Figure 15.15. By repeatedly cutting the corners off a polygon, we approach a smooth curve.

15.6. Approximating Curves 371

segment where we place the middle point, we can re-write this expression as

p(u) = (1 − u)((1 − u)p0 + up1) + u((1 − u)p1 + up2).

Regrouping terms gives the quadratic B´ezier function:

B2(u) = (1 − u)2p0 + 2u(1 − u)p1 + u2p2.

The De Casteljau Algorithm

One nice feature of B´ezier curves is that there is a very simple and general method
for computing and subdividing them. The method, called thede Casteljau algo-

rithm, uses a sequence of linear interpolations to compute the positions along the
Bézier curve of arbitrary order. It is the generalization of the subdivision scheme
described in the previous section.

The de Casteljau algorithm begins by connecting every adjacent set of points
with lines, andfinding the point on these lines that is theu interpolation, giving a
set ofn−1 points. These points are then connected with straight lines, those lines
are interpolated (again byu), giving a set ofn−2 points. This process is repeated
until there is one point. An illustration of this process is shown in Figure 15.16.

The process of computing a point on a B´ezier segment also provides a method
for dividing the segment at the point. The intermediate points computed during
the de Casteljau algorithm form the new control points of the new, smaller seg-
ments, as shown in Figure 15.17.

The existence of a good algorithm for dividing B´ezier curves makes divide-
and-conquer algorithms possible. For example, when drawing a B´ezier curve
segment, it is easy to check if the curve isclose to being a straight line because it is
bounded by its convex hull. If the control points of the curve are all close to being
co-linear, the curve can be drawn as a straight line. Otherwise, the curve can be

1

2 3

4 1

2 3

4

Figure 15.16. An illustration of the de Casteljau algorithm for a cubic Bézier. The left-hand
image shows the construction for u = 0.5. The right-hand image shows the construction for
0.25, 0.5, and 0.75.

372 15. Curves

A

B C

D

CDAB

BC

AC BDAD

Figure 15.17. The de Casteljau algorithm is used to subdivide a cubic Bézier segment.
The initial points (black diamonds A, B, C, and D) are linearly interpolated to yield gray circles
(AB, BC, CD), which are linearly interpolated to yield white circles (AC, BD), which are linearly
interpolated to give the point on the cubic AD. This process also has subdivided the Bézier
segment with control points A,B,C,D into two Bézier segments with control points A, AB, AC,
AD and AD, BD, CD, D.

divided into smaller pieces, and the process can be repeated. Similar algorithms
can be used for determining the intersection between two curves. Because of the
existence of such algorithms, other curve representations are often converted to
Bézier form for processing.

15.6.2 B-splines

B-splines provide a method for approximating a set ofn points with a curve made
up of polynomials of degreed that givesC(d−1) continuity. Unlike the B´ezier
splines of the previous section, B-splines allow curves to be generated for any
desired degree of continuity (almost up to the number of points). Because of
this, B-splines are a preferred way to specify very smooth curves (high degrees
of continuity) in computer graphics. If we want aC2 or higher curve through an
arbitrary number of points, B-splines are probably the right method.

We can represent a curve using a linear combination of B-spline basis func-
tions. Since these basis functions are themselves splines, we call them basis
splines or B-splines for short. Each B-spline or basis function is made up of a
set ofd + 1 polynomials each of degreed. The methods of B-splines provide
general procedures for defining these functions.

The term B-spline specifically refers to one of the basis functions, not the
function created by the linear combination of a set of B-splines. However, there
is inconsistency in how the term is used in computer graphics. Commonly, a “B-
spline curve” is used to mean a curve represented by the linear combination of
B-splines.

The idea of representing a polynomial as the linear combination of other poly-
nomials has been discussed in Section 15.3.1 and 15.3.5. Representing a spline

15.6. Approximating Curves 373

as a linear combination of other splines was shown in Section 15.4.1. In fact, the
example given is a simple case of a B-spline.

The general notation for representing a function as a linear combination of
other functions is

f(t) =

n
∑

i=1

pibi(t), (15.15)

where thepi are the coefficients and thebi are the basis functions. If the coeffi-
cients are points (e.g. 2 or 3 vectors), we refer to them as control points. The key
to making such a method work is to define thebi appropriately. B-splines provide
a very general way to do this.

A set of B-splines can be defined for a number of coefficientsn and a param-
eter valuek.3 The value ofk is one more than the degree of the polynomials used
to make the B-splines (k = d + 1.)

B-splines are important because they provide a very general method for cre-
ating functions (that will be useful for representing curves) that have a number
of useful properties. A curve withn points made with B-splines with parameter
valuek:

• is C(k−2) continuous;

• is made of polynomials of degreek − 1;

• has local control—any site on the curve only depends onk of the control
points;

• is bounded by the convex hull of the points;

• exhibits the variation diminishing property illustrated in Figure 15.12.

A curve created using B-splines does not necessarily interpolate its control points.

We will introduce B-splines byfirst looking at a specific, simple case to in-
troduce the concepts. We will then generalize the methods and show why they
are interesting. Because the method for computing B-splines is very general, we
delay introducing it until we have shown what these generalizations are.

3The B-spline parameter is actually theorder of the polynomials used in the B-splines. While this
terminology is not uniform in the literature, the use of the B-spline parameterk as a value one greater
than the polynomial degree is widely used, although some texts (see the chapter notes) write all of the
equations in terms of polynomial degree.

374 15. Curves

b1,2(t) b2,2(t)

0 1 2 3 4
0

1

0 1 2 3 4
0

1

Figure 15.18. B-splines with d = 1 or k = 2.

Uniform Linear B-splines

Consider a set of basis functions of the following form:

bi,2(t) =

⎧

⎪

⎨

⎪

⎩

t − i if i ≤ t < i + 1,

2 − t + i if i + 1 ≤ t ≤ i + 2,

0 otherwise.

(15.16)

Each of these functions looks like a little triangular “hat” betweeni andi+2 with
its peak ati + 1. Each is a piecewise polynomial, with knots ati, i + 1, andi + 2.

Two of them are graphed in Figure 15.18.
Each of these functionsbi,2 is afirst degree (linear) B-spline. Because we will

consider B-splines of other parameter values later, we denote these with the 2 in
the subscript.

Notice that we have chosen to put the lower edge of the B-spline (its first knot)
at i. Therefore thefirst knot of thefirst B-spline (i = 1) is at1. Iteration over the
B-splines or elements of the coefficient vector is from1 to n (see Equation 15.15).
When B-splines are implemented, as well as in many other discussions of them,
they often are numbered from0 to n − 1.

We can create a function from a set ofn control points using Equation 15.15,
with these functions used for thebi to create an “overall function” that was influ-
enced by the coefficients. If we were to use these (k = 2) B-splines to define the
overall function, we would define a piecewise polynomial function that linearly
interpolates the coefficientspi betweent = k andt = n + 1. Note that while
(k = 2) B-splines interpolate all of their coefficients, B-splines of higher degree
do this under some specific conditions that we will discuss in Section 15.6.3.

Some properties of B-splines can be seen in this simple case. We will write
these in the general form usingk, the parameter, andn for the number of coeffi-
cients or control points.

• Each B-spline hask + 1 knots.

• Each B-spline is zero before itsfirst knot and after its last knot.

15.6. Approximating Curves 375

• The overall spline has local control because each coefficient is only mul-
tiplied by one B-spline, and this B-spline is non-zero only betweenk + 1

knots.

• The overall spline hasn + k knots.

• Each B-spline isC(k−2) continuous, therefore the overall spline isC(k−2)

continuous.

• The set of B-splines sums to 1 for all parameter values between knotsk

andn + 1. This range is where there arek B-splines that are non-zero.
Summing to 1 is important because it means that the B-splines are shift
invariant: translating the control points will translate the entire curve.

• Between each of its knots, the B-spline is a single polynomial of degree
d = k − 1. Therefore, the overall curve (that sums these together) can also
be expressed as a single, degreed polynomial between any adjacent knots.

In this example, we have chosen the knots to be uniformly spaced. We will con-
sider B-splines with non-uniform spacing later. When the knot spacing is uniform,
each of the B-splines are identical except for being shifted. B-splines with uni-
form knot spacing are sometimes calleduniform B-splines or periodic B-splines.

Uniform Quadratic B-splines

The properties of B-splines listed in the previous section were intentionally writ-
ten for arbitraryn andk. A general procedure for constructing the B-splines will
be provided later, butfirst, lets consider another specific case withk = 3.

The B-splineb2,3 is shown in Figure 15.19. It is made of quadratic pieces
(degree 2), and has 3 of them. It isC1 continuous and is non-zero only within
the 4 knots that it spans. Notice that a quadratic B-spline is made of 3 pieces,
one between knot 1 and 2, one between knot 2 and 3, and one between knot 3

0

1

0 1 2 3 4 5

Figure 15.19. The B-spline b2,3 with uniform knot spacing.

376 15. Curves

0

1

0 1 2 3 4 5 6 7 8 9 10

Figure 15.20. The set of seven B-splines with k = 3 and uniform knot spacing
[1, 2, 3, 4, 5, 6, 7, 8, 10].

and 4. In Section 15.6.3 we will see a general procedure for building these func-
tions. For now, we simply examine these functions:

bi,3(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2u2 if i ≤ t < i + 1 u = t − i,

−u2 + u + 1
2 if i + 1 ≤ t < i + 2 u = t − (i + 1),

1
2 (1 − u)2 if i + 2 ≤ t < i + 3 u = t − (i + 2),

0 otherwise.

(15.17)

In order to make the expressions simpler, we wrote the function for each part as
if it applied over the range0 to 1.

If we evaluate the overall function made from summing together the B-splines,
at any time onlyk (3 in this case) of them are non-zero. One of them will be in
the first part of Equation 15.17, one will be in the second part, and one will be
in the third part. Therefore, we can think of any piece of the overall function as
being made up of a degreed = k − 1 polynomial that depends onk coefficients.
For thek = 3 case, we can write

f(u) =
1

2
(1 − u)2pi + (−u2 + u +

1

2
)pi+1 +

1

2
u2pi+2

whereu = t−i. This defines the piece of the overall function wheni ≤ t < i+1.

If we have a set ofn points, we can use the B-splines to create a curve. If we
have seven points, we will need a set of seven B-splines. A set of seven B-splines

1

2

3

4

5

6

7

Figure 15.21. Curve made from seven quadratic (k=3) B-splines, using seven control
points.

15.6. Approximating Curves 377

for k = 3 is shown in Figure 15.20. Notice that there aren + k (10) knots, that
the sum of the B-splines is 1 over the rangek to n + 1 (knots 3 through 8). A
curve specified using these B-splines and a set of points is shown in Figure 15.21.

Uniform Cubic B-splines

Because cubic polynomials are so popular incomputer graphics, the special case
of B-splines withk = 4 is sufficiently important that we consider it before dis-
cussing the general case. A B-spline of third degree is defined by 4 cubic poly-
nomial pieces. The general process by which these pieces are determined is de-
scribed later, but the result is

bi,4(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
6u3 if i ≤ t < i + 1 u = t − i,

1
6 (−3u3 + 3u2 + 3u + 1) if i + 1 ≤ t < i + 2 u = t − (i + 1),

1
6 (3u3 − 6u2 + 4) if i + 2 ≤ t < i + 3 u = t − (i + 2),

1
6 (−u3 + 3u2 − 3u + 1) if i + 3 ≤ t < i + 4 u = t − (i + 3),

0 otherwise.
(15.18)

This degree 3 B-spline is graphed fori = 1 in Figure 15.22.

We can write the function for the overall curve between knotsi + 3 andi + 4

as a function of the parameteru between0 and1 and the four control points that
influence it:

f(u) =
1

6
(−u3 + 3u2 − 3u + 1)pi +

1

6
(3u3 − 6u2 + 4)pi+1

+
1

6
(−3u3 + 3u2 + 3u + 1)pi+2 +

1

6
u3pi+3.

b0(t)

b1(t-1)

b3(t-3)

b2(t-2)
2
3

t=i t=i+1 t=i+2 t=i+3 t=i+4

Figure 15.22. The cubic (k = 4) B-spline with uniform knots.

378 15. Curves

This can be re-written using the matrix notation of the previous sections, giv-
ing a basis matrix for cubic B-splines of

Mb =
1

6

⎡

⎢

⎢

⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥

⎥

⎦

.

Unlike the matrices that were derived from constraints in Section 15.5, this ma-
trix is created from the polynomials that are determined by the general B-spline
procedure defined in the next section.

15.6.3 Non-uniform B-splines

One nice feature of B-splines is that they can be defined for anyk > 1. So if we
need a smoother curve, we can simply increase the value ofk. This is illustrated
in Figure 15.1.

So far, we have said that B-splines generalize to anyk > 1 and anyn ≥ d.

There is one last generalization to introduce before we show how to actually com-
pute these B-splines. B-splines are defined for any non-decreasing knot vector.

For a givenn andk, the set of B-splines (and the function created by their
linear combination) hasn + k knots. We can write the value of these knots as
a vector, that we will denote ast. For the uniform B-splines, the knot vector is
[1, 2, 3, . . . , n + k]. However, B-splines can be generated for any knot vector of
lengthn + k, providing the values are non-decreasing (e.g.,ti+1 ≥ ti).

There are two main reasons why non-uniform knot spacing is useful: it gives
us control over what parameter range of the overall function each coefficient af-

k=3

k=2 k=4

k=5

Figure 15.1. B-spline curves using the same uniform set of knots and the same control
points, for various values of k. Note that as k increases, the valid parameter range for the
curve shrinks.

15.6. Approximating Curves 379

fects, and it allows us to repeat knots (e.g., create knots with no spacing in be-
tween) in order to create functions with different properties around these points.
The latter will be considered later in this section.

The ability to specify knot values for B-splines is similar to being able to spec-
ify the interpolation sites for interpolating spline curves. It allows us to associate
curve features with parameter values. By specifying a non-uniform knot vector,
we specify what parameter range each coefficient of a B-spline curve affects. Re-
member that B-splinei is non-zero only between knoti and knoti+k. Therefore,
the coefficient associated with it only affects the curve between these parameter
values.

One place where control over knot values is particularly useful is in inserting
or deleting knots near the beginning of a sequence. To illustrate this, consider a
curve defined using linear B-splines (k = 2) as discussed in Section 15.6.2. For
n = 4, the uniform knot vector is[1, 2, 3, 4, 5, 6]. This curve is controlled by a
set of four points and spans the parameter ranget = 2 to t = 5. The “end” of
the curve (t = 5) interpolates the last control point. If we insert a new point in
the middle of the point set, we would need a longer knot vector. The locality
properties of the B-splines prevent this insertion from affecting the values of the
curve at the ends. The longer curve would still interpolate its last control point
at its end. However, if we chose to keep the uniform knot spacing, the new knot
vector would be[1, 2, 3, 4, 5, 6, 7]. The end of the curve would be att = 6, and the
parameter value at which the last control point is interpolated will be a different
parameter value than before the insertion. With non-uniform knot spacing, we can
use the knot vector[1, 2, 3, 3.5, 4, 5, 6] so that the ends of the curve are unaffected
by the change. Theabilities to have non-uniform knot spacing makes the locality
property of B-splines an algebraic property, as well as a geometric one.

We now introduce the general method for defining B-splines. Given values
for the number of coefficientsn, the B-spline parameterk, and the knot vectort
(which has lengthn + k), the following recursive equations define the B-splines:

bi,1,t(t) =

{

1 if ti ≤ t < ti+1,

0 otherwise.
(15.19)

bi,k,t(t) = t−ti

ti+k−1−ti
bi,k−1(t) + ti+k−t

ti+k−ti+1
bi+1,k−1(t). (15.20)

This equation is know as theCox-de Boor recurrence. It may be used to compute
specific values for specific B-splines. However, it is more often applied alge-
braically to derive equations such as Equation 15.17 or 15.18.

As an example, consider how we would have derived Equation 15.17. Using
a uniform knot vector[1, 2, 3, . . .], ti = i, and the valuek = 3 in Equation 15.20

380 15. Curves

yields

bi,3(t) =
t − i

(i + 2) − i
bi,2 +

(i + 3) − t

(i + 3) − (i + 1)
bi+1,2 (15.21)

=
1

2
(t − i)bi,2 +

1

2
(i + 3 − t)bi+1,2.

Continuing the recurrence, we must evaluate the recursive expressions:

bi,2(t) =
t − i

(i + 2 − 1) − i
bi,1 +

(i + 2) − t

(i + 2) − (i + 1)
bi+1,1

= (t − i)bi,1 + (i + 2 − t)bi+1,1

bi+1,2(t) =
t − (i + 1)

((i + 1) + 2 − 1) − (i + 1)
bi+1,1

+
((i + 1) + 2) − t

((i + 1) + 2) − ((i + 1) + 1)
b(i+1)+1,1

= (t − i + 1)bi+1,1 + (i + 3 − t)bi+2,1.

Inserting these results into Equation 15.22 gives:

bi,3(t) =
1

2
(t − i)((t − i)bi,1 + (i + 2 − t)bi+1,1)

+
1

2
(i + 3 − t)(t − i + 1)bi+1,1 + (i + 3 − t)bi+2,1.

To see that this expression is equivalent to Equation 15.17, we note that each
of the (k = 1) B-splines is like a switch, turning on only for a particular parameter
range. For instance,bi,1 is only non-zero betweeni andi+1. So, if i ≤ t < i+1,

only thefirst of the (k = 1) B-splines in the expression is non-zero, so

bi,3(t) =
1

2
(t − i)2 if i ≤ t < i + 1.

Similar manipulations give the other parts of Equation 15.17.

Repeated Knots and B-spline Interpolation

While B-splines have many nice properties, functions defined using them gener-
ally do not interpolate the coefficients. This can be inconvenient if we are using
them to define a curve that we want to interpolate a specific point. We give a
brief overview of how to interpolate a specific point using B-splines here. A more
complete discussion can be found in the books listed in the chapter notes.

15.6. Approximating Curves 381

(a) Uniform knots (b) Non-uniform knots

Figure 15.23. A curve parameterized by quadratic B-splines (k = 3) with seven control
points. On the left, uniform knots vector [1,2,3,4,5,6,7,8,9,10] is used. On the right, the non-
uniform knot spacing [1,2,3,4,4,6,7,8,8,10] is used. The duplication of the 4th and 8th knot
means that all interior knots of the 3rd and 7th B-spline are equal, so the curve interpolates
the control point associated with those points.

One way to cause B-splines to interpolate their coefficients is to repeat knots.
If all of the interior knots for a particular B-spline have the same value, then the
overall function will interpolate this B-spline’s coefficient. An example of this is
shown in Figure 15.23.

Interpolation by repeated knots comes at a high cost: it removes the smooth-
ness of the B-spline and the resulting overall function and represented curve.
However, at the beginning and end of the spline, where continuity is not an is-
sue, knot repetition is useful for creatingendpoint interpolating B-splines. While
thefirst (or last) knot’s value is not important for interpolation, for simplicity, we
make thefirst (or last)k knots have the same value to achieve interpolation.

Endpoint interpolating quadratic B-splines are shown in Figure 15.24. The
first two and last two B-splines are different than the uniform ones. Their expres-
sions can be derived through the use of the Cox-de Boor recurrence:

b1,3,[0,0,0,1,2,...](t) =

{

(1 − t)2 if 0 ≤ t < 1,

0 otherwise.

1

0

0 1 2 3 4 5 6

Figure 15.24. Endpoint-interpolating quadratic (k =3) B-splines, for n = 8. The knot vector
is [0,0,0,1,2,3,4,5,6,6,6]. The first and last two B-splines are aperiodic, while the middle four
(shown as dotted lines) are periodic and identical to the ones in Figure 15.20.

382 15. Curves

b2,3,[0,0,0,1,2,...](t) =

⎧

⎪

⎨

⎪

⎩

2u − 3
2u2 if 0 ≤ t < 1 u = t,

1
2 (1 − u)2 if 1 ≤ t < 2 u = t − 1,

0 otherwise.

15.6.4 NURBS

Despite all of the generality B-splines provide, there are some functions that can-
not be exactly represented using them. In particular, B-splines cannot represent
conic sections. To represent such curves, a ratio of two polynomials is used. Non-
uniform B-splines are used to represent both the numerator and the denominator.
The most general form of these are non-uniform rational B-splines, or NURBS
for short.

NURBS associate a scalar weighthi with every control pointpi and use the
same B-splines for both:

f(u) =

∑n
i=1 hipibi,k,t
∑n

i=1 hibi,k,t
,

wherebi,k,t are the B-splines with parameterk and knot vectort.
NURBS are very widely used to represent curves and surfaces in geometric

modeling because of the amazing versatility they provide, in addition to the useful
properties of B-splines.

15.7 Summary

In this chapter, we have discussed a number of representations for free-form
curves. The most important ones for computer graphics are:

• Cardinal splines use a set of cubic pieces to interpolate control points. They
are generally preferred to interpolating polynomials because they are local
and easier to evaluate.

• Bézier curves approximate their control points and have many useful prop-
erties and associated algorithms. For this reason, they are popular in graph-
ics applications.

• B-spline curves represent the curve as a linear combination of B-spline
functions. They are general and havemany useful properties such as being
bounded by their convex hull and being variation diminishing. B-splines
are often used when smooth curves are desired.

15.7. Summary 383

Notes

The problem of representing shapes mathematically is an entirefield unto itself,
generally known as Geometric Modeling. Representing curves is just the be-
ginning and is generally a precursor tomodeling surfaces and solids. A more
thorough discussion of curves can be found in most geometric modeling texts,
see for exampleGeometric Modeling (Mortenson, 1985) for a text that is accessi-
ble to computer graphics students. Many geometric modeling books specifically
focus on smooth curves and surfaces. Texts such asAn Introduction to Splines

for Use in Computer Graphics (Bartels et al., 1987),Curves and Surfaces for

CAGD: A Practical Guide (Farin, 2002) andGeometric Modeling with Splines:

An Introduction (E. Cohen et al., 2001) provide considerable detail about curve
and surface representations. Other books focus on the mathematics of splines;A

Practical Guide to Splines (De Boor, 2001) is a standard reference.
The history of the development of curveand surface representations is com-

plex, see the chapter by Farin inHandbook of Computer Aided Geometric Design

(Farin et al., 2002) or the book on the subjectAn Introduction to NURBS: With

Historical Perspective (D. F. Rogers, 2000) for a discussion. Many ideas were
independently developed by multiple groups who approached the problems from
different disciplines. Because of this, it can be difficult to attribute ideas to a sin-
gle person or to point at the “original” sources. It has also led to a diversity of
notation, terminology, and ways of introducing the concepts in the literature.

15.7.1 Exercises

For Exercises 1–4,find the constraint matrix, the basis matrix, and the basis func-
tions. To invert the matrices you can use a program such as MATLAB or OCTAVE
(a free MATLAB-like system).

1. A line segment: parameterized withp0 located 25% of the way along the
segment (u = 0.25), andp1 located 75% of the way along the segment.

2. A quadratic: parameterized withp0 as the position of the beginning point
(u = 0), p1, thefirst derivative at the beginning point, andp2, the second
derivative at the beginning point.

3. A cubic: its control points are equally spaced (p0 hasu = 0, p1 hasu =

1/3, p2 hasu = 2/3, andp3 hasu = 1).

4. A quintic: (a degreefive polynomial, so the matrices will be6×6) wherep0

is the beginning position,p1 is the beginning derivative,p2 is the middle

384 15. Curves

(u = 0.5) position,p3 is thefirst derivative at the middle,p4 is the position
at the end, andp5 is thefirst derivative at the end.

5. The Lagrange Form (Equation (15.12)) can be used to represent the inter-
polating cubic of Exercise 3. Use it at several different parameter values to
confirm that it does produce the same results as the basis functions derived
in Exercise 3.

6. Devise an arc-length parameterization for the curve represented by the para-
metric function

f(u) = (u, u2).

7. Given the four control points of a segment of a Hermite spline, compute the
control points of an equivalent B´ezier segment.

8. Use the de Castijeau algorithm to evaluate the position of the cubic B´ezier
curve with its control points at (0,0), (0,1), (1,1) and (1,0) for parameter
valuesu = 0.5 andu = 0.75. Drawing a sketch will help you do this.

9. Use the Cox / de Boor recurrence to derive Equation (15.16).

16
Brian Wyvill

Implicit Modeling

Implicit modeling (also known as implicit surfaces) in computer graphics covers
many different methods for defining models. These includeskeletal implicit mod-

eling, offset surfaces, level sets, variational surfaces, andalgebraic surfaces. In
this chapter we briefly touch on these methods and describe how to build skeletal
implicit models in more detail. Curves can be defined by implicit equations of the
form

f(x, y) = 0.

If we consider a closed curve, such as a circle, with radiusr, then the implicit
equation can be written as

f(x, y) = x2 + y2 − r2 = 0. (16.1)

The value off(x, y) can be positive (outside the circle), negative (inside the
circle), or zero for points precisely on the circle. The equivalent in three dimen-
sions is a closed surface around a set of points that occupy a given volume or
region of space. The volume forms a scalarfield, i.e., we can compute a value for
every point and as can be seen for the circle, the negative values are bounded by
the implicit curve or surface. The surface can be visualized as a contour in the
field, connecting points with a particular value such as zero (see Equation (16.1)).
To compute such a surface implies searching through space tofind the points that
satisfy the implicit equation; this method is unlikely to lead to an efficient al-
gorithm for circle drawing (and even less likely in three dimensions). This was
perhaps the reason that algorithmic methods for modeling with parametric curves

385

386 16. Implicit Modeling

and surfaces were investigated before implicit methods; however, there are some
good reasons to develop algorithms to visualize implicit surfaces. Chapter 28
mentions scalarfields in the context of volume visualization. In this chapter we
explore the implications of deriving the data from a modeling process rather than
from a scanner.

Despite the computational overhead offinding the implicit surface, designing
with implicit modeling techniques offers some advantages over other modeling
methods. Many geometric operations are simplified using implicit methods in-
cluding:

• the definition of blends;

• the standard set operations (union, intersection, difference, etc.) of con-
structive solid geometry (CSG);

• functional composition with other implicit functions (e.g., R-functions,
Barthe blends, Ricci blends, and warping);

• inside/outside tests, (e.g., for collision detection).

Visualizing the surfaces can be done either by direct ray tracing using an algorithm
as described in (Kalra & Barr, 1989; Mitchell, 1990; Hart & Baker, 1996; deGroot
& Wyvill, 2005) or by first converting to polygons (Wyvill et al., 1986).

One of thefirst methods was proposed by Ricci as far back as 1973 (Ricci,
1973), who also introduced CSG in the same paper. Jim Blinn’s algorithm for

Figure 16.1. Blinn’s
Blobby Man 1980. Image
courtesy Jim Blinn.

finding contours in electron densityfields, known asBlobby molecules (J. Blinn,
1982), Nishimura’sMetaballs (Nishimura et al., 1985) and Wyvills’Soft Ob-

jects (Wyvill et al., 1986) were all early examples of implicit modeling meth-
ods. Jim Blinn’sBlobby Man (see Figure 16.1) was thefirst rendering of a non-
algebraic implicit model.

16.1 Implicit Functions, Skeletal Primitives
and Summation Blending

In the context of modeling animplicit function is defined as a functionf applied
to a pointp ∈ E

3 yielding a scalar value∈ R.
The implicit function fi(x, y, z) may be split into a distance function

di(x, y, z) and afall-off filter function1 gi(r), wherer stands for the distance
from the skeleton and the subscript refers to theith skeletal element.

1These functions have been given many names by researchers in the past, e.g.,filter, potential,

radial-basis, kernel, but we usefall-off filter as a simple term to describe their appearance.

16.1. Implicit Functions, Skeletal Primitives and Summation Blending 387

Figure 16.2. Fall-off filter functions (0 ≤ r ≤ 1). (a) Blinn’s Gaussian or “blobby” function;
(b) Nishimura’s “metaball” function; (c) Wyvill et al.’s “soft objects” function; (d) the Wyvill
function.

We will use the following notation:

fi(x, y, z) = gi ◦ di(x, y, z) (16.2)

A simple example is a point primitive, and we take the analogy of a star ra-
diating heat into space. Thefield value (temperature in this example) may be
measured at any pointp and can be found by taking the distance fromp to the
center of the star and supplying the value to a fall-offfilter function similar to
one of those given in Figure 16.2. In these sample functions, thefield is given a
value of 1 at the center of the star; the value falls off with distance. The surface
of a model may be derived from the implicit functionf(x, y, z) as the points of
space whose values are equal to some desirediso-value (iso); in the star example,
a spherical shell for values of iso∈ (0, 1).

In general,filter functions (gi) are chosen so that thefield values are max-
imized on the skeleton and fall off to zero at some chosen distance from the
skeleton. In the simple case where the resulting surfaces are blended together,
the globalfieldf(x, y, z) of an object, the implicit function, may be defined as

f(x, y, z) =

i=n
∑

i=1

fi(x, y, z), (16.3)

388 16. Implicit Modeling

Figure 16.3. Each column shows two point primitives approaching each other. From left
to right: the fall-off filter functions used are Blobby, Metaball, soft objects, and Wyvill. Image
courtesy Erwin DeGroot.

wheren skeletal elements contribute to the resultingfield value. An example is
shown in (Figure 16.3) in which thefield at any point(x, y, z) is calculated as in
Equation (16.3).

In this case, two point primitives are placed in close proximity. As the two
points are brought together, the surfaces bulge and then blend together. The term
filter function is used because the functioncauses the primitives to be blurred
together somewhat akin to afilter function for images. The summation blend is
the most compact and efficient blending operation that can be applied to implicit
surfaces (see Equation (16.3)).

One advantage of usingfilter functions withfinite support is that primitives
that are far fromp will have zero contribution and thus need not be consid-
ered (Wyvill et al., 1986).

16.1.1 C1 Continuity and the Gradient

The most basic form of continuity isC0 continuity, which ensures that there are no
“jumps” in a function. Higher-order continuity is defined in terms of derivatives
of functions (see Chapter 15).

16.1. Implicit Functions, Skeletal Primitives and Summation Blending 389

In the case of a 3D scalarfieldf , thefirst derivative is a vector function known
as thegradient, written∇f and defined as

∇f(p) =

{

∂f(p)

∂x
,
∂f(p)

∂y
,
∂f(p)

∂z

}

.

If ∇f is defined at all points, and the three one-dimensional partial derivatives
are eachC0, thenf is C1. Informally, C1 surface continuity means that the
surface normal varies smoothly over the surface. The surface normal is the unit
vector perpendicular to the surface. If no unique surface normal can be defined
on the edge of a cube, for example, then the surface is notC1. For points on an
implicit surface the surface normal can be computed by normalizing the gradient
vector∇f . In the example of the circle, points inside have a negative value and
those on the outside have a positive one. For many types of implicit surfaces, the
sense of inside and outside is inverted, and since the normal vector must always
point outwards, it can be opposite to the gradient direction.

Skeletal implicit primitives are created by applying a fall-offfilter function to
an unsigned distancefield as in Equation (16.2). Although the distancefield is
neverC1 at the skeleton, these discontinuities can be removed by using a suitable
fall-off function (Akleman & Chen, 1999). If an operator,g, combines implicit
functions,f1 andf2, where all points areC1, theng(f1, f2) is not necessarily
C1. For example it is possible to make a sharp CSG junction using the min and
max operators. The combination isnot C1 continuous because the min and max
operators don’t have that property (see Section 16.5).

The analysis of operators is complicated by the fact that it is sometimes de-
sirable to create aC1 discontinuity. This case occurs whenever a crease in the
surface is desired. For example, a cube is notC1 because tangent discontinu-
ities occur at each edge. To create creases usingC1 primitives, the operator must
introduceC1 discontinuities, and hence cannot beC1 itself.

16.1.2 Distance Fields, R-Functions, and F-Reps

Thedistance field is defined with respect to some geometric objectT:

F(T, p) = min
q∈T

|q − p| .

Visually, F(T, p) is the shortest distance fromp to T. Hence, whenp lies onT,
F(T, p) = 0 and the surface created by the implicit function is the objectT. Out-
side ofT, a non-zero distance is returned. The functionT can be any geometric
entity embedded in 3D—a point, curve, surface, or solid. Procedural modeling

390 16. Implicit Modeling

with distancefields started with Ricci (Ricci, 1973);R-functions (Rvachev, 1963)
werefirst applied to shape modeling more than 20 years later (see (Shapiro, 1994)
and (A. Pasko et al., 1995)).

An R-function or Rvachev function is a function whose sign can change if
and only if the sign of one of its arguments changes; that is, its sign is determined
solely by its arguments. R-functions provide a robust theoretical framework for
boolean composition of real functions, permitting the construction ofCn CSG
operators (Shapiro, 1988). These CSG operators can be used to create blending
operators simply by adding afixed offset to the result (A. Pasko et al., 1995).
Although these blending functions are no longer technically R-functions, they
have most of the desirable properties and can be mixed freely with R-functions
to create complex hierarchical models (Shapiro, 1988). These R-function-based
blending and CSG operators are referred to asR-operators (see Section 16.4).
The Hyperfun system (Adzhiev et al., 1999) is based onF-reps (function repre-
sentation), another name for an implicit surface. The system uses a procedural
C-like language to describe many types of implicit surfaces.

16.1.3 Level Sets

It is useful to represent an implicit field discretely via a regular grid (Barthe et al.,
2002) or an adaptive grid (Frisken et al., 2000). This is exactly what the polygo-
nization algorithm does in the case oflevel sets; moreover, the grid can be used
for various other purposes beside building polygons. Discrete representations of
f are commonly obtained by sampling a continuous function at regular intervals.
For example, the sampled function may be defined by other volume model repre-
sentations (V. V. Savchenko et al., 1998). The data may also be a physical object
sampled using three-dimensional imaging techniques. Discrete volume data has
most often been used in conjunction with thelevel sets method (Osher & Sethian,
1988), which defines a means for dynamically modifying the data structure using
curvature-dependent speed functions. Interactive modeling environments based
on level sets have been defined (Museth et al., 2002), although level sets are only
one method employing a discrete representation of the implicitfield. Methods
for interactively defining discrete representations using standard implicit surfaces
techniques have also been explored (Baerentzen & Christensen, 2002).

A key advantage to employing a discrete data structure is its ability to act as a
unifying approach for all of the various volume models defined by potentialfields
(discrete or not) (V. V. Savchenko et al., 1998). The conversion of any continuous
function to a discrete representation introduces the problem of how to reconstruct
a continuous function, needed for the combined purposes of additional modeling

16.1. Implicit Functions, Skeletal Primitives and Summation Blending 391

operations and visualization of the resulting potentialfield. A well known solution
to this problem is to apply afilter g using the convolution operator (see Chapter 9).
The choice of afilter is guided by the desired properties of the reconstruction, and
manyfilters have been explored (Marschner & Lobb, 1994). The salient point is
that there is typically a trade-off between the efficiency of the chosenfilter and
the smoothness of the resulting reconstruction; see also Section 16.9.

To be interactive, a discrete system must restrict the size of the grid relative
to the available computing power. This, in turn, limits the ability of the mod-
eler to include high-frequency details. Additionally, the smoothing triquadratic
filter makes it impossible to include sharp edges should they be desired. A par-
tial solution to this problem is the use of adaptive grids, although with any dis-
crete representation there will be limitations. A discrete grid is used in (Schmidt,
Wyvill, & Galin, 2005) to act as a cache representing aBlobTree node. The grid in
this work is used for fast prototyping and uses trilinear interpolation for position
and the slower, more accurate triquadraticinterpolation to calculate gradient val-
ues, because the eye is more discerning in observing gradient errors than position
errors.

16.1.4 Variational Implicit Surfaces

It is often required to convert sampled data to an implicit representation. Varia-
tional implicit surfaces interpolate or approximate a set of points using a weighted
sum of globally-supported basis functions (V. Savchenko et al., 1995; Turk &
O’Brien, 1999; J. C. Carr et al., 2001; Turk & O’Brien, 2002). These radially
symmetric basis functions are applied at each sample point. The continuity of
such a surface depends on the choice of basis function. TheC2 thin-plate spline
is most commonly used (Turk & O’Brien, 2002; J. C. Carr et al., 2001). Like
Blinn’s exponential function (see Figure 16.2), this function is unbounded as is
the resulting variational implicit surface.

If the field is is globallyC2, creases cannot be defined;2 however, anisotropic
basis functions can be used to producefields which change more rapidly and may
appear to have creases (Dinh et al., 2001). At the appropriate scale, the surface
is still smooth. The smoothfield implies that self-intersections do not occur, and
hence volumes are always well-defined. The thin-plate spline guarantees that
global curvature is minimized (Duchon, 1977). Variational interpolation has many
properties which are desirable for 3D modeling, however controlling the resulting
surfaces can be difficult.

2Except see Section 15.2.

392 16. Implicit Modeling

Variational implicit surfaces can also be based on compactly-supported radial
basis functions (CS-RBFs) to reduce the computational cost of variational inter-
polation techniques (Morse et al., 2001). Each CS-RBF only influences a local
region, so computingf(p) requires only evaluation of basis functions within some
small neighborhood ofp. As with the globally-supported counterpart, the result-
ing field is Ck, creases are not supported, and self-intersections cannot occur.3

The local support of each basis function results in a bounded globalfield. This
also guarantees that additional iso-contours will be present, as noted by various
researchers (Ohtake et al., 2003; Reuter, 2003).

16.1.5 Convolution Surfaces

Convolution surfaces, introduced by Bloomenthal and Shoemake (Bloomenthal
& Shoemake, 1991) are produced by convolving a geometric skeletonS with a
kernel function h. Hence, the value at any position in space is defined by an
integral over the skeleton:

f(p) =

∫

S

g(r)h(p − r) dr .

Any finitely-supported function can be used ash; see (Sherstyuk, 1999) for a
detailed analysis of different kernels.

Like skeletal primitives, convolution surfaces have boundedfields. Blinn’s
“blobby molecules” is the simplest form of a convolution surface (J. Blinn, 1982);
in this case, the skeleton consists of points only. This idea was extended by
Bloomenthal to include line, arc, triangle, and polygon skeletons (Bloomenthal
& Shoemake, 1991). These represent1D and2D primitives;3D primitives were
later described by Bloomenthal (Bloomenthal, 1995).

Figure 16.4. Two blended
cylinders. Left: summa-
tion blend; right: convolu-
tion surface with barely dis-
cernible bulge (Bloomen-
thal, 1997). Image courtesy
Erwin DeGroot.

Combination of convolution surfaces is defined by composition of the under-
lying geometric skeletons and has the advantage of eliminating the bulges that
tend to occur when composing multiple skeletal primitives with additive blend-
ing. The surface resulting from convolution of the combined skeleton does not
have bulges, as in Figure 16.4, and thefield is continuous even if the combined
skeleton is non-convex. Convolution surfaces are offset afixed distance from
convex portions of a skeleton, but produce afillet along concave portions of a
skeleton.

An example of skeletal elements convolved to build a complex model is shown
in Figure 16.5. The hand model contains fourteen primitives.

3Note,k > 0 depending on the RBF (see Section 15.2).

16.1. Implicit Functions, Skeletal Primitives and Summation Blending 393

Figure 16.5. Skeletal elements convolved to build a hand model. Image courtesy Jules
Bloomenthal.

16.1.6 Defining Skeletal Primitives

As we will see in the following sections rendering the implicit models requires
finding thefield value and gradient for a large number of points. We need the
distance to supply to Equation (16.2) and the gradient is useful for rootfinding as
well as lighting calculations. Supplying the distance to the fall-offfilter functions
of Figure 16.2 is a matter of calculating the nearest distance to the skeletal primi-
tive, simple for point primitives but a little trickier for more complex geometrical
shapes. A line segment primitive (AB) can be defined as a cylinder around a line
with hemispherical end caps (see Figure 16.6). PointP0 lies on the surface where

Figure 16.6. Line primi-
tive ab and example points
p0, p1, p2 showing distance
calculation.

f(P0) = iso andf(P1) = 0 since it lies outside of the influence of the line primi-
tive. The distance from somePi to the line is found by simply projecting onto the
line AB and calculating the perpendicular distance, e.g.,|CP0|; this can be found
from AC, sinceA, P0, andB, are all known:

�AC = �AB
�AP0 · �AB

‖AB‖2 .

In Figure 16.6 thefield value ofP2 > 0, sinceP2 is in the hemispherical end-
cap, which can be checked separately. Variations of this idea can define primitives

394 16. Implicit Modeling

with endcaps of different radii producing interesting cone shapes. An example is
shown in Figure 16.7.

Figure 16.7. Cylin-
der primitive blended with a
sphere. Image courtesy Er-
win DeGroot.

A great variety of geometrical skeletonshave been described, and, in princi-
ple, it is simply a matter of defining the distance to the skeleton from some pointp

and also the gradient atp. For example, an offset surface of a triangle can be de-
fined from the vertices of the triangle and a radiusr. A simple way to implement
this is to use line segment primitives to describe bounding cylinders connecting
the vertices (radiusr). The distance from a pointq within the triangle that does
not fall within the boundingfields of one of the line segment primitives is returned
as the perpendicular distance to the plane of the triangle. Other examples include
an implicit disk, defined by a circle and a thickness parameter, a torus also defined
by a circle and the radius of the cross section (or inner and outer circle radii), a
circular cone from a disk and a height, a cube with rounded corners, etc. (see
Figure 16.8).

16.2 Rendering

Modeling methods, such as parametric surfaces, lend themselves to visualization,
since it is easy to iterate over points on the surface that can be found directly from
the defining equations; for example(x, y) = (cos θ, sin θ), θ ∈ [0, 2π) produces
a circle.

Figure 16.8. Implicit
models from various skele-
tal primitives. Image cour-
tesy Erwin DeGroot.

There are two techniques that are commonly used to render implicit surfaces:
ray tracing and surface tiling. In practice, a designer wants to visualize an implicit
surface model quickly, sacrificing quality for speed for interaction purposes. Pro-
totyping algorithms have been concerned with producing a polygon mesh that can
be rendered in real time on modern workstations. Finding the polygonal mesh
which best approximates the desired surface is referred to aspolygonization or
surface tiling. For animation or for afinal visualization, where quality is pre-
ferred over speed, ray tracing implicit surfaces directly withoutfirst polygonizing
produces excellent results.

Figure 16.9. A ray-traced
dinosaur model showing
the underlying skeletal
primitives. Image courtesy
Erwin DeGroot.

As previously mentioned,finding an implicit surface requires searching
through space tofind the points that satisfy,f(p) = 0. There are two main ap-
proaches to executing such a search: space partitioning—partitioning space into
manageable units such as cubes, and non-space partitioning, e.g., marching trian-
gles (Hartmann, 1998; Akkouche & Galin, 2001) and the shrinkwrap algorithm
(Overveld & Wyvill, 2004).

In this chapter we describe the original space partitioning algorithm and leave
it to the reader to explore the more advanced methods. This algorithm together

16.3. Space Partitioning 395

with post-processing for mesh refinement (see Chapter 12) and caching provide a
method for interactive viewing of implicit models on modern workstations.

16.3 Space Partitioning

16.3.1 Exhaustive Search

The basic cubic space partitioning algorithm for tiling implicit surfaces wasfirst
published in (Wyvill et al., 1986) and a similar algorithm oriented towards volume
visualization, called marching cubes in (W. Lorensen & Cline, 1987). Since then
there have been many refinements and extensions.

A first approach tofinding the implicit surface might be to subdivide space
uniformly into a regular lattice of cubic cells and calculate a value for every ver-
tex. Each cell is replaced with a set ofpolygons that best approximates the part
of the surface contained within that cell. The problem with this method is that
many of the cells will be completely outside or completely inside the volume;
thus, many cells that contain no part of the surface are processed. For large grids
of data this can be very time consuming and memory intensive.

To avoid storing the whole grid, a hash table is used to store only the cubes
that contain a piece of the surface, based on the data structures used in (Wyvill et
al., 1986). Working software was published inGraphics Gems IV (Bloomenthal,
1990). The algorithm is based onnumerical continuation; it starts with a seed
cube that intersects part of the surface and builds neighboring cubes as necessary
to follow the surface.

The algorithm has two parts. In thefirst part, cubic cells are found that contain
the surface and in the second part, each cube is replaced by triangles. Thefirst
part of the algorithm is driven by a queueof cubes, each of which contains part of
the surface; the second part of the algorithm is table-driven.

16.3.2 Algorithm Description

A fast overview of the algorithm is as follows:

• divide space into cubic voxels;

• search for surface, starting from a skeletal element;

• add voxel to queue, mark it visited;

• search neighbors;

• when done, replace voxel with polygons.

396 16. Implicit Modeling

First, space is subdivided into a cubic lattice, and the next task is tofind a seed
cube containingpart of the surface. A cube vertexvi inside the surface will have
a field valuevi >= iso and a vertex outside the surface will have afield value
vi < iso; thus, an edge with one of each type of vertex will intersect the surface.
We call this anintersecting edge. Thefield value at the nearest cube vertex to the
first primitive can be evaluated by summing the contributions of the primitives
as per Equation (16.3), although other operators can also be used as will be seen
later. We will assume thatf(v0) > iso, which indicates thatv0 lies within the
solid. The value ofiso is chosen by the user; an example isiso = 0.5 when using
the soft fall-off function, which has some symmetry properties that lead to nice
blending (see Figure 16.3). The vertices along one axis are evaluated in turn until
a valuevi < iso is found. The cube containing theintersecting edge is the seed
cube.

The neighbors of the seed cube are examined, and those that contain at least
oneintersecting edge are added to the queue ready for processing. To process a
cube we examine each face. If any of the bounding edges have oppositely signed

Surface Skeleton Voxel

-

+

Figure 16.10. A section through the cubic lattice. The + sign indicates a vertex inside the
surface (f (vi ≥ iso) and - is outside f (vi < iso).

16.3. Space Partitioning 397

vertices, the surface will pass through that face and the face neighbor must be
processed. When this process has been completed for all the faces, the second
phase of the algorithm is applied to the cube. If the surface is closed, eventually
a cube will be re-visited and no more unmarked neighbors found, and the search
algorithm will terminate. Processing a cube involves marking it as processed
and processing its unmarked neighbors. Those that containintersecting edges are
processed until the entire surface has been covered (see Figure 16.10).

Each cube is indexed by anidentifying vertex which we define to be the lower-
left far corner (i.e., the vertex with the lowest(x, y, z)-coordinate values (see Fig-
ure 16.11)). For each vertex that is inside the surface, the corresponding bit will
be set to form the address in an 8-bit table (see Figure 16.11 and Section 16.3.3).

The identifying vertex is addressed by integersi, j, k, computed from the
(x, y, z)-coordinate location of the cube such thatx = side ∗ i, etc., whereside is
the size of the cube. The identifying vertex of each cube may appear in as many
as eight other cubes, and it would be inefficient to store these vertices more than
once. Thus, the vertices are stored uniquely in a chained hash table. Since most

00 1

2 3

4 5

6 7

TopTop

FrontFront

RightRight

0 0 00000001
1 01 00000010
2 010 00000100
3 011 00001000
4 100 00010000
5 101 00100000
6 110 01000000
7 111 10000000

Vertex If (+Vertex I f (+)

Figure 16.11. Vertex num-
bering.

of the space does not contain any partof the surface, only those cubes that are
visited will be stored. The implicit function value is found for each vertex as it is
stored in the hash table.

Nothing is known about the topology of the surface so a search must be started
from every primitive to avoid any disconnected parts of the surface being missed.
A scalar can be used to scale the influence of a primitive. If the scalar can be less
than zero, then it is possible to search along an axis withoutfinding an intersect-
ing edge. In this case, a more sophisticated search must be done tofind a seed
cube (Galin & Akkouche, 1999).

Data Structures

The hash table entry holdsfive values:

• thei, j, k lattice indices of the identifying vertex (see Figure 16.11);

• f , the implicit function value of the identifying vertex;

• Boolean to indicate whether this cube has been visited.

The hash function computes an address in the hash table by selecting a few bits out
of each ofi, j, k and combining them arithmetically. For example, thefive least
significant bits produces a 15-bit address for a table, which must have a length
of 215. Such a hash function can be neatly implemented in the C-preprocessor as
follows:

398 16. Implicit Modeling

#define NBITS 5
#define BMASK 037
#define HASH(a,b,c) (((a&BMASK)<<NBITS|b&BMASK)

<<NBITS|c&BMASK)
#define HSIZE 1<<NBITS*3

The queue (FIFO list) is used as temporary storage to identify the neighbors
for processing. The algorithm begins with a seed cube that is marked as visited
and placed on the queue. Thefirst cube on the queue is dequeued and all its
unvisited neighbors are added to the queue. Each cube is processed and passed to
the second phase of the algorithm if it contains part of the surface. The queue is
then processed until empty.

16.3.3 Polygonization Algorithm

The second phase of the algorithm treats each cube independently. The cell is
replaced by a set of triangles that best matches the shape of the part of the surface
that passes through the cell. The algorithm must decide how to polygonize the cell
given the implicit function values at each vertex. These values will be positive or
negative (i.e., less than or greater than the iso-value), giving 256 combinations

Table 1

00000000

V1 set

V0 & V1 set

V0 set

V2 set

all unset

00000001

00000010

00000011

00000100

V0..V7 set

V1..V7 set

all set except

V1 unset11111101

11111110

11111111

Table 2

Table 2

0

1

2

3

V2-V0

1

3

polys

edges

V2-V3

V2-V6

edges to

intersect

Figure 16.12. Table 2 contains the edges intersected by the surface. Table 1 points to the
appropriate entry in Table 2.

16.3. Space Partitioning 399

of positive or negative vertices for the eight vertices of the cube. A table of 256
entries provides the right vertices to use in each triangle (Figure 16.12). For ex-
ample, entry4(00000100) points to a second table that records the vertices that
bound theintersecting edges. In this example, vertex number2 is inside the sur-
face (f(V 2) >= iso) and, therefore, we wish to draw a triangle that connects the
points on the surface that intersect with edges bounded by (V 2, V 0), (V 2, V 3),
and (V 2, V 6) as shown in Figure 16.13.

Finding Cube-Surface Intersections

Figure 16.13 shows a cube where vertexV2 is inside the surface and all other
vertices are outside. Intersections with the surface occur on three edges as shown.
The surface intersects edgeV2 −V6 at the pointA. The fastest but inaccurate way
to calculateA is to use linear interpolation:

+

-

-

-

-
-

-
V3

V0

V6

V2

A

Figure 16.13. Finding the
intersection of the surface
with a cube edge.

f(A) − f(V2)

f(V6) − f(V2)
=

|A − V2|
side

.

If the cube side is1 and the iso-value sought forf(A) is 0.5, then

A = V3 +
0.5 − f(V2)

f(V6) − f(V2)
.

This works well for a static image but in animation error differences between
frames will be very noticeable. A root-finding method such asregula falsi should
be employed. This becomes more computationally costly as the gradient is needed
to evaluate the point of intersection. The gradient is also needed at surface points
for rendering. For many types of primitives it is simpler tofind a numerical ap-
proximation using sample points aroundp, as in

∇f(p) =

(

f(p + ∆x) − f(p)

∆x
,
f(p + ∆y) − f(p)

∆y
,
f(p + ∆z) − f(p)

∆z

)

.

A reasonable value for∆ has been found empirically to be0.01 ∗ side where side
is the length of a cube edge.

For manufacturing a mesh, as opposed to a set of independent triangles, a
second hash table can maintain a list of all theintersecting edges. Since each cube
edge is shared by up to four neighbors, the edge hash table prevents repetition of
the surface-cube edge intersection calculation. The hash address can be derived
from the same hash function as for vertices (applied to the edge endpoints).

400 16. Implicit Modeling

+ +

+
-

-

-

-

-

+
+

+
-

-

-

-

-

+

-

-

+-

-

Figure 16.14. Examples of vertices inside (+) and outside (-) the surface. Note the extra
sample gives a clue to avoid ambiguous cases.

16.3.4 Sampling Problems

Ambiguities occur when opposite corners of a face (or the cube) have the same
sign and the other pair of vertices on the face have the opposite sign (see Figure
16.14). A sample taken in the center of the face will give a clue as to whether the

-

-

+

+

Figure 16.15. Cube too
large to capture small vari-
ation in implicit function.

cube represents the meeting of two surfaces or a saddle. It should be made clear
that a spatial grid stores a sample of the implicit function at every vertex. If the
function happens to vary considerably within a cell the polygonal representation
will not show such variations (see Figure 16.15). The surface cannot be resolved
by sampling alone unless something is known about the curvature of the surface.
A good discussion of this topic appears in (Kalra & Barr, 1989).

This ambiguity problem (not the under-sampling problem) is avoided by sub-
dividing the cubic cell into tetrahedra. The tetrahedra can then be polygonized
unambiguously. Since there are four vertices in each tetrahedron, a table of six-
teen entries will provide the correct triangle information. The disadvantage is that
approximately twice the number of polygons will be generated.

Subdividing a Cube

Without requiring additional cell vertices, a cube may be decomposed intofive or
six tetrahedra as shown in Figure 16.16. These decompositions introduce diago-
nals on the cube faces, and to maintain a consistent diagonal direction between

16.4. More on Blending 401

Figure 16.16. Decomposing a cube into six tetrahedra. Image courtesy Erwin DeGroot.

neighbors, the six decomposition is preferable. The introduction of diagonal
edges produces a higher-resolution surface than replacing each cube directly with
triangles. The decomposition into tetrahedra and the replacement of the tetrahe-
dra with triangles are fast, table-driven algorithms, which produce topologically
consistent meshes.

16.3.5 Cell Polygonization

Two obvious problems emerge from the use of uniform space subdivision. The
size of triangles output by this algorithm do not adapt to the curvature of the sur-
face and a further sample is required to solve the ambiguities, in which cubic cells
are replaced by polygons. A space subdivision algorithm based on an octree was
developed by Bloomenthal (Bloomenthal, 1988), which does adapt to the curva-
ture of the surface. Cells are subdivided into eight octants and cracks are avoided
by using a restricted octree scheme, i.e., neighboring cells cannot differ by more
than one level of subdivision. This indeed reduces the number of polygons gen-
erated, but full advantage of large cells can only be taken if theflat regions of
the surface happen to fall entirely within the appropriate octants. The algorithm
proves in practice to be considerably slower than the uniform voxel algorithm and
is more complicated to implement.

16.4 More on Blending

Section 16.1 showed that blending can be made to occur whenfield values are
summed. Ricci, in his landmark paper (Ricci, 1973), describes super-elliptic

402 16. Implicit Modeling

blending. Given two functionsFA andFB, previously we simply found the im-
plicit value asFtotal = FA + FB . We can denote this more general blending
operator asA ⋄ B. The Ricci blend is defined as:

fA⋄B = (fA
n + fB

n)
1
n . (16.4)

It is interesting to point out the following properties:

lim
n→+∞

(fA
n + fB

n)
1
n = max (fA, fB),

lim
n→−∞

(fA
n + fB

n)
1
n = min (fA, fB).

Figure 16.17. By varying
n, the Ricci blend may be
made to change smoothly
from blend to union. Image
courtesy Erwin DeGroot.

Moreover, this generalized blending is associative, i.e.,f(A⋄B)⋄C = fA⋄(B⋄C).
The standard blending operator+ proves to be a special case of the super-elliptic
blend withn = 1. Whenn varies from1 to infinity, it creates a set of blends
interpolating between blendingA + B and unionA ∪ B (see Figure 16.17). Fig-
ure 16.27 shows the nodes to be binary or unary; in fact the binary nodes can
easily be extended using the above formulation to n-ary nodes.

The power of Ricci’s operators is that they areclosed under the operations
on the space of all possible implicit volumes, meaning that an application of an
operator simply produces another scalarfield defining another implicit volume.
This newfield can be composed with otherfields, again using Ricci’s operators.
Equation (16.4) will always produce the exact union of two implicit volumes,
regardless of how complex they are. Compared with the difficulties involved in
applying boolean CSG operations to B-rep surfaces, solid modeling with implicit
volumes is incredibly simple.

Following Pasko’s functional representation (A. Pasko et al., 1995), another
generalized blending function may be defined:

fA⋄B =

(

fA + fB + α

√

fA
2 + fB

2

)

(

fA
2 + fB

2
)

n
2 .

Whenα ∈ [−1, 1] varies from−1 to 1, it creates a set of blends interpolating
the union and the intersection operators. However, this operator is no longer
associative which is incompatible with the definition of n-ary operators.

16.5 Constructive Solid Geometry

Implicit models are frequently termedimplicit surfaces; however, they are inher-
ently volume models and useful forsolid modeling operations. Ricci introduced a
constructive geometry for defining complex shapes from operations such as union,

16.5. Constructive Solid Geometry 403

intersection, difference, and blend upon primitives (Ricci, 1973). The surface was
considered as the boundary between the half spacesf(p) < 1, defining the in-
side, andf(p) > 1 defining the outside. This initial approach to solid modeling
evolved intoconstructive solid geometry or CSG (Ricci, 1973; Requicha, 1980).
CSG is typically evaluated bottom-up according to a binary tree, with low-degree
polynomial primitives as the leaf nodes and internal nodes representing Boolean
set operations. These methods are readily adapted for use in implicit modeling,
and in the case of skeletal implicit surfaces, the Boolean set operations union
∪max, intersection∩min and difference\minmax are defined as follows (Wyvill et
al., 1999):

∪max f =
k−1
max
i=0

(fi) , (16.5)

∩min f =
k−1
min
i=0

(fi) ,

\minmax f = min

(

f0, 2 ∗ iso − k−1
max
j=1

(fj)

)

.

The Ricci operators are illustrated in Figure 16.18 for point primitivesA

andB. For union (bottom left) thefield at all points inside the union will be the
greater offA() andfB(). For intersection (center), points in the region marked
asP1 will have valuemin (fA(P1), fB(P1)) = 0, since the contribution ofB will
be zero outside of its range of influence. Similarly, for the region marked asP2,
(influence ofA is zero, i.e., the minimum) leaving only the intersection region
with positive values. Difference works similarly using the iso-value in the three
marked regions (Pi) as follows:

f(P0) = min (fB(P0), 2 ∗ iso − fA(P0))

= min([iso, 1], [2 ∗ iso − 1, iso])

= [2 ∗ iso − 1, iso] < iso

f(P1) = min (fB(P1), 2 ∗ iso − fA(P1))

= min([0, iso], [2 ∗ iso − 1, iso]) < iso

f(P2) = min (fB(P2), 2 ∗ iso − fA(P2))

= min([iso, 1], [iso, 2 ∗ iso]) >= iso

CSG operators create creases, i.e.,C1 discontinuities. For example, themin()

operator (Equation (16.5)) createsC1 discontinuities at all points wheref1(p) =

f2(p). When applied to two spheres, the discontinuities produced by this union
operator result in a crease on the surface, as shown in Figure 16.18, which is
the desired result. Discontinuities unfortunately extend into thefield outside of

404 16. Implicit Modeling

P1
P0 P2

Figure 16.18. Ricci operators for CSG. Image courtesy Erwin DeGroot.

the surface, which is not visible in this image. If a blend is then applied to the
result of the union, theC1-discontinuous plane in thefield produces a shading
discontinuity (Figure 16.19).

Crease

Figure 16.19. Two
point primitives on the left
are connected by the Ricci
union. A third primitive is
blended to the result, creat-
ing an unwanted crease in
the field. Image courtesy
Erwin DeGroot.

The problem can be avoided to an extent (G. Pasko et al., 2002), and CSG op-
erators have been developed that areC1 at all points except those wheref1(p) =

f2(p) = iso (Barthe et al., 2003).

16.6 Warping

The ability to distort the shape of a surface by warping the space in its neigh-
borhood is a useful modeling tool. A warp is a continuous functionw(x, y, z)

that mapsR3 ontoR
3. Sederberg provides a good analogy for warping when de-

scribing free form deformations (Sederberg & Parry, 1986). He suggests that the
warped space can be likened to a clear,flexible, plastic parallelepiped in which
the objects to be warped are embedded. A warped element may be defined by
simply applying some warp functionw(p) to the implicit equation:

fi(x, y, z) = gi ◦ di ◦ wi(x, y, z). (16.6)

A warped element may be fully characterized by the distance to its skele-
ton di(x, y, z), its fall-off filter functiongi(r), and eventually its warp function
wi(x, y, z). To render or perform operations on an implicit surface, the implicit

P

Q

Figure 16.20. Point Q
returns the field value for
point P.

value of many pointsf(P) must be found. First,P is transformed by the warp
function to some new pointQ, andf(Q) is returned in place off(P). In Fig-
ure 16.20, instead of returning the implicit value of some pointf(Q), the value

16.6. Warping 405

for f(P) is returned. In this case, the iso-value is returned and the implicit surface
(curve in 2D) passes throughQ instead ofP . Thus, the circle is warped into an
ellipse.

Barr introduced the notion of global and local deformations using the opera-
tions of twist, taper, andbend applied to parametric surfaces (Barr, 1984). The
deformations can be nested to produce models such as the one shown in Fig-
ure 16.27. Conceptually, these are easy to apply to an implicit surface, as indi-
cated in Equation (16.6).

Note that the normal cannot be calculated in a similar manner to warping a
point. This problem is similar to the problem outlined in Section 13.2 on in-
stancing. In this case, the normal can most easily be approximated using Equa-
tion (16.3.3) although the use of the Jacobian, as suggested in (Barr, 1984), yields
precise results. The Barr warps are described in the following sections.

16.6.1 Twist

In this example, the twist is around thez-axis byθ (see Figure 16.21) for three
blended implicit cylinders with a twist warp applied to them.

The twist aroundz is expressed as

w(x, y, z) =

⎧

⎨

⎩

x ∗ cos(θ(z)) − y ∗ sin(θ(z))
x ∗ sin(θ(z)) + y ∗ cos(θ(z))

z

⎫

⎬

⎭

. Figure 16.21. Three
blended implicit cylinders
twisted together. Image
courtesy Erwin DeGroot.

Figure 16.22. Three
blended implicit cylinders,
twisted then tapered. Im-
age courtesy Erwin DeG-
root.

16.6.2 Taper

Taper is applied along one major axis. A linear taper has proved to be the most
useful although quadratic and cubic tapers are easily implemented. For example
a linear taper along they-axis involves changing bothx- andz-coordinates. A
linear scale is applied toy betweenymax andymin:

s(y) =
ymax − y

ymax − ymin
w(x, y, z) =

⎧

⎨

⎩

s(y)x
y

s(y)z

⎫

⎬

⎭

16.6.3 Bend

Bend is also applied along one major axis. For the bend example below, the
bending rate isk measured in radians per unit length, the axis of the bend is

406 16. Implicit Modeling

(x0, 1/k), and the angleθ is defined as(x − x0) ∗ k. The bend aroundz is

Figure 16.23. Three
blended implicit cylinders,
twisted together, tapered
and bent. Image courtesy
Erwin DeGroot.

w(x, y, z) =

⎧

⎨

⎩

− sin(θ) ∗ (y − 1/k) + x0

cos(θ) ∗ (y − 1/k) + 1/k
z

⎫

⎬

⎭

16.7 Precise Contact Modeling

Precise contact modeling (PCM) is a method of deforming implicit surface prim-
itives in contact situations while maintaining a precise contact surface withC1

continuity (Gascuel, 1993). PCM is important in that it is a simple and automatic
way of showing how a model can react to its environment. This cannot be so
easily done with non-implicit methods (see Figure 16.24).

PCM is implemented by the inclusion of a deforming functions(p) that mod-
ifies thefield value returned for each point. For each pair of objects, collision is

Figure 16.24. Sea
anemone deforms to im-
plicit rock. Image courtesy
Mai Nur and X. Liang.

first detected using a bounding-box test. Once it is established that a collision is
likely, PCM is applied. A local, geometric deformation termsi is computed and
added to the implicit functionfi. The volume of the colliding objects is divided
into an interpenetration region and a deformation region. The result of applying
si is that the interpenetration region is compressed so that contact is maintained
without interpenetration occurring (see Figure 16.25). The effect ofsi is attenu-
ated to zero within the propagation region so that the volume outside of the two
regions is not deformed.

interpenetration

region
propagation

region

f = f0 1
f = 00

f = 01

P0

P

Figure 16.25. A 2D slice through objects in collision showing the various regions and PCM
deformation. Image courtesy Erwin DeGroot.

16.7. Precise Contact Modeling 407

Given two skeletal elements generatingfieldsf1(p) andf2(p), the surface
around each one is calculated as

f1(p) + s1(p) = 0,

f2(p) + s2(p) = 0.

We need to generate a surface common to both elements (dotted line in Fig-
ure 16.25), i.e., where they share a solution in the interpenetration region for some
p in that region:

s1(p) − f1(p) = iso, (16.7)

s2(p) − f2(p) = iso.

Intuitively, the deeper within object1 that object2 penetrates, the higher the im-
plicit value of object1 and thus the more that object2 will be compressed.

The function,si is defined to produce a smooth junction at the boundary of
the interpenetration region, in other words wheresi = 0 but its derivative is
greater than zero. From here to the boundary of the propagation region,si is used
to attenuate the propagation to zero. Thenearest point on the interpenetration
region boundaryp0 is found by following the gradient.

Within the propagation regionsi(p) = hi(r), wherep = (x, y, z) is the point
whose implicit value is being calculated andr = ‖p−p0‖ (see Figure 16.26). The
value ofri, set by the user, defines the size of the propagation region; no defor-
mation occurs beyond this region. To control how much the objects inflate in the
propagation region, the user provides a value for the parameterα. The maximum
value ofhi is Mi. The current minimum ofsi is negative in the interpenetra-
tion region and is given assimin, whereMi = −αisi min. Thus an object will

Figure 16.26. The function, hi(r) is the value of the deformation function wi in the propaga-
tion region.

408 16. Implicit Modeling

be compressed in the interpenetration region and will inflate in the propagation
region. The equation forhi is formed in two parts by two cubic polynomials that
are designed to join atr = ri/2, where the slope is zero:

c =
4(wik − 4Mi)

w3
i

,

d =
4(3Mi − wik)

w2
i

,

hi(r) = cr3 + dr2 + kr if r ∈ [0, wi/2],

hi(r) =
4Mi

w3
i

(r − wi)
2(4r − wi)

3 if r ∈ [wi/2, wi].

It is desirable that we haveC1-continuity as we move from the interpenetra-
tion to the propagation region. Thus,h′

i(0) = k in Figure 16.26, is the directional
derivative ofsi at the junction (marked asp0 in Figure 16.25). As indicated in
Equation (16.7),si = −fi in the interpenetration region, thus:

k = ‖∇(fi, p0)‖

PCM is only an approximation to a properly deformed surface, but it is an
attractive algorithm due to its simplicity.

16.8 The BlobTree

The BlobTree is a method that employs a tree structure that extended the CSG
tree to include various blending operations using skeletal primitives (Wyvill et
al., 1999). A system with similar capabilities, theHyperfun project, used a spe-
cialized language to describe F-rep objects (Adzhiev et al., 1999).

In the BlobTree system, models are defined by expressions that combine im-
plicit primitives and the operators∪ (union), ∩ (intersection),− (difference),
+ (blend),⋄ (super-elliptic blend), andw (warp). The BlobTree is not only the
data structure built from these expressions but also a way of visualizing the struc-
ture of the models. The operators listed above are binary with the exception of
warp, which is a unary operator. In general it is more efficient to use n-ary rather
than binary operators. The BlobTree incorporates affine transformations as nodes
so that it is also a scene graph and primitives (e.g., skeletons) form the leaf nodes.

16.8. The BlobTree 409

Figure 16.27. BlobTree. The spiral staircase is built from a central textured cylinder to
which the stairs and the railing are blended. The railing is comprised of a series of cylinders
blended with two circle (torus) primitives, blended together and further blended with a vertical
cylinder. The BlobTree is also a scene graph and instancing nodes repeat the various parts
transformed by the appropriate matrices. Each stair is made from a tapered polygon primitive
(that becomes an offset surface); intersection and union nodes combine the inflated disk with
the stair.

16.8.1 Traversing the BlobTree

An example of a BlobTree including the Barr warps and CSG operations is shown
in Figure 16.27. Other nodes can include 2D texturing (Schmidt et al., 2006), pre-
cise contact modeling, as well as animation and other attributes. The traversal of
the BlobTree is in essence very simple. All that is required to render the object
either by polygonizing or ray tracing is tofind the implicit value of any point (and
the corresponding gradient). This can be done by traversing the tree. Polygoniza-
tion and ray-tracing algorithms need to evaluate the implicitfield function at a
large number of points in space. The functionf(N , M) returns thefield value for
the nodeN at the pointM , which depends on the type of the node. The valuesL
andR indicate that the left or right branch of the tree is explored.The algorithm
below is written (for simplicity) as if the tree were binary:

functionf(N , M) :

• primitive: f(M);

• warp:f(L(N), w(M));

• blend:f(L(N), M) + f(R(N), M));

410 16. Implicit Modeling

Figure 16.28. “Spiral Stairs.” A complex BlobTree implicit model created in Erwin DeGroot’s
BlobTree.net system. (See also Plate VI.)

• union:max(f(L(N), M), f(R(N), M));

• intersection:min(f(L(N), M), f(R(N), M));

• difference:min(f(L(N), M),−f(R(N), M)).

A complex BlobTree model showing many of the features that have been in-
tegrated is shown in Figure 16.28.

16.9 Interactive Implicit Modeling Systems

Early sketch-based modeling systems, such as Teddy (Igarashi et al., 1999), used
a few drawn strokes from the user to infer a polygonal model in 3-space. With
better hardware and improved algorithms, sketch-based implicit modeling sys-
tems are now possible. Shapeshop uses implicit sweep surfaces to manufacture

Figure 16.29. Outlines
are inflated. Image cour-
tesy Erwin DeGroot.

3D strokes from 2D user strokes and also preserves the hierarchy of the BlobTree
unlike the early systems that produced homogeneous meshes (Schmidt, Wyvill,
Sousa, & Jorge, 2005). This enables a user to produce complex models of ar-
bitrary topology from a few simple strokes. The marginfigures show a closed

16.9. Interactive Implicit Modeling Systems 411

drawn stroke (Figure 16.29) inflated into a an implicit sweep and a second sweep
(Figure 16.30) that has a smaller sweep object subtracted using CSG.

Figure 16.30. BlobTree
operations can be applied,
e.g., CSG difference. Im-
age courtesy Erwin DeG-
root.

One of the improvements that made this possible is a caching system that uses
a fixed 3D grid of implicit values at each node of the BlobTree representing the
values found by traversing the tree below the node (Schmidt, Wyvill, & Galin,
2005). If the value of some pointp is required at nodeN , a value may be returned
without traversing the tree belowN , provided that part of the tree is unaltered.
Instead, an interpolation scheme (see Chapter 28) is used tofind a value forp. This
scheme speeds up traversal for complex BlobTrees and is one factor in enabling a
system to run at interactive rates.

The next generation of implicit modeling systems will exploit hardware
and software advances to be able to handle more and more complex hierarchical
models interactively. A more complex Shapeshop example is shown in Fig-
ure 16.31.

Figure 16.31. “The Next Step.” A complex BlobTree implicit model created interactively in
Ryan Schmidt’s Shapeshop by artist, Corien Clapwijk (Andusan). (See also Plate VII.)

412 16. Implicit Modeling

Exercises

1. In an implicit surface modeling system the fall-offfilter function is defined
as

f(r) =

{

0, r > R,
1 − r/R, otherwise,

whereR is a constant. A point primitive placed at(−1, 0) and another
at (1, 0) are rendered to show thef = 0.5 iso-surface. The valueR, the
distance where the potential due to the point falls to zero in both cases, is
1.5.

Calculate the potential at the point(0, 0) and at+0.5 intervals until the
point (2.5, 0). Sketch the0.5 contour and the contour at which thefield
falls to zero.

2. Why are the ambiguous cases in the polygonization algorithm considered
to be a sampling problem?

3. Calculate the error involved in using linear interpolation to estimate the
intersection of an implicit surface and a cubic voxel.

4. Design an implicit primitive function using the skeleton of your choice. The
function must take as input a point and return an implicit value and also the
gradient at that point.

17
Michael Ashikhmin

Computer Animation

Animation is derived from the Latinanima and means the act, process, or result
of imparting life, interest, spirit, motion, or activity. Motion is a defining property
of life and much of the true art of animation is about how to tell a story, show
emotion, or even express subtle details of human character through motion. A
computer is a secondary tool for achievingthese goals—it is a tool which a skillful
animator can use to help get the result he wants faster and without concentrating
on technicalities in which he is not interested. Animation without computers,
which is now often called “traditional” animation, has a long and rich history of
its own which is continuously being written by hundreds of people still active in
this art. As in any establishedfield, some time-tested rules have been crystallized
which give general high-level guidance to how certain things should be done and
what should be avoided. These principles of traditional animation apply equally
to computer animation, and we will discuss some of them below.

The computer, however, is more than just a tool. In addition to making the
animator’s main task less tedious, computers also add some truly unique abil-
ities that were simply not available or were extremely difficult to obtain be-
fore. Modern modeling tools allow the relatively easy creation of detailed three-
dimensional models, rendering algorithms can produce an impressive range of
appearances, from fully photorealistic to highly stylized, powerful numerical sim-
ulation algorithms can help to produce desired physics-based motion for partic-
ularly hard to animate objects, and motion capture systems give the ability to
record and use real-life motion. These developments led to an exploding use
of computer animation techniques in motion pictures and commercials, automo-

413

414 17. Computer Animation

tive design and architecture, medicine and scientific research among many other
areas. Completely new domains and applications have also appeared including
fully computer-animated featurefilms, virtual/augmented reality systems and, of
course, computer games.

Other chapters of this book cover many of the developments mentioned above
(for example, geometric modeling and rendering) more directly. Here, we will
provide an overview only of techniques and algorithms directly used to create and
manipulate motion. In particular, we will loosely distinguish and briefly describe
four main computer animation approaches:

• Keyframing gives the most direct control to the animator who provides nec-
essary data at some moments in time and the computerfills in the rest.

• Procedural animation involves specially designed, often empirical, mathe-
matical functions and procedures whose output resembles some particular
motion.

• Physics-based techniques solve differential equation of motion.

• Motion capture uses special equipment or techniques to record real-world
motion and then transfers this motion into that of computer models.

We do not touch upon the artistic side of thefield at all here. In general, we can
not possibly do more here than just scratch the surface of the fascinating subject
of creating motion with a computer. We hope that readers truly interested in the
subject will continue their journey well beyond the material of this chapter.

17.1 Principles of Animation

In his seminal 1987 SIGGRAPH paper (Lasseter, 1987), John Lasseter brought
key principles developed as early as the 1930’s by traditional animators of Walt
Disney studios to the attention of the then-fledgling computer animation com-
munity. Twelve principles were mentioned:squash and stretch; timing; antic-

ipation; follow through and overlapping action; slow-in and slow-out; staging;

arcs; secondary action; straight-ahead and pose-to-pose action; exaggeration;

solid drawing skill; appeal. Almost two decades later,these time-tested rules,
which can make a difference between a natural and entertaining animation and a
mechanistic-looking and boring one, are as important as ever. For computer ani-
mation, in addition, it is very important tobalance control andflexibility given to
the animator with the full advantage ofthe computer’s abilities. Although these
principles are widely known, many factors affect how much attention is being

17.1. Principles of Animation 415

paid to these rules in practice. While a character animator working on a feature
film might spend many hours trying to follow some of these suggestions (for ex-
ample, tweaking his timing to be just right), many game designers tend to believe
that their time is better spent elsewhere.

17.1.1 Timing

Timing, or the speed of action, is at the heart of any animation. How fast things
happen affects the meaning of action, emotional state, and even perceived weight
of objects involved. Depending on its speed, the same action, a turn of a charac-
ter’s head from left to right, can mean anything from a reaction to being hit by a
heavy object to slowly seeking a book on a bookshelf or stretching a neck mus-
cle. It is very important to set timing appropriate for the specific action at hand.
Action should occupy enough time to be noticed while avoiding too slow and
potentially boring motions. For computer animation projects involving recorded
sound, the sound provides a natural timing anchor to be followed. In fact, in most
productions, the actor’s voice is recordedfirst and the complete animation is then
synchronized to this recording. Since large and heavy objects tend to move slower
than small and light ones (with less acceleration, to be more precise), timing can
be used to provide significant information about the weight of an object.

17.1.2 Action Layout

At any moment during an animation, it should be clear to the viewer what idea (ac-
tion, mood, expression) is being presented. Goodstaging, or high-level planning
of the action, should lead a viewer’s eye to where the important action is currently
concentrated, effectively telling him “look at this, and now, look at this” without
using any words. Some familiarity with human perception can help us with this
difficult task. Since human visual systems react mostly to relative changes rather
than absolute values of stimuli, a sudden motion in a still environment or lack of
motion in some part of a busy scene naturally draws attention. The same action
presented so that the silhouette of the object is changing can often be much more
noticeable compared with a frontalarrangement (see Figure 17.1(a)).

On a slightly lower level, each action can be split into three parts:anticipation

(preparation for the action), the action itself andfollow-through (termination of
the action). In many cases the action itself is the shortest part and, in some sense,
the least interesting. For example, kicking a football might involve extensive
preparation on the part of the kicker and long “visual tracking” of the departing

416 17. Computer Animation

Figure 17.1. Action layout. Left: Staging action properly is crucial for bringing attention
to currently important motion. The act of raising a hand would be prominent on the top but
harder to notice on the bottom. A change in nose length, on the contrary, might be completely
invisible in the first case. Note that this might be intentionally hidden, for example, to be
suddenly revealed later. Neither arrangement is particularly good if both motions should be
attended to. Middle: The amount of anticipation can tell much about the following action.
The action which is about to follow (throwing a ball) is very short but it is clear what is about
to happen. The more wound up the character is, the faster the following action is perceived
to be. Right: The follow-through phase is especially important for secondary appendages
(hair) whose motion follows the leading part (head). The motion of the head is very simple,
but leads to non-trivial follow-through behavior of the hair itself. It is impossible to create a
natural animation without a follow-through phase and overlapping action in this case. Figure
courtesy Peter Shirley and Christina Villarruel.

ball with ample opportunities to show the stress of the moment, emotional state
of the kicker, and even the reaction to the expected result of the action. The action
itself (motion of the leg to kick the ball) is rather plain and takes just a fraction of
a second in this case.

The goal of anticipation is to prepare the viewer to what is about to happen.
This becomes especially important if the action itself is very fast, greatly im-
portant, or extremely difficult. Creating a more extensive anticipation for such

17.1. Principles of Animation 417

actions serves to underscore these properties and, in case of fast events, makes
sure the action will not be missed (see Figure 17.1(b)).

In real life, the main action often causes one or more otheroverlapping ac-

tions. Different appendages or loose parts of the object typically drag behind the
main leading section and keep moving for a while in the follow-through part of
the main action as shown in Figure 17.1(c). Moreover, the next action often starts
before the previous one is completely over. A player might start running while
he is still tracking the ball he just kicked. Ignoring such naturalflow is gener-
ally perceived as if there are pauses between actions and can result in robot-like
mechanical motion. While overlapping isnecessary to keep the motion natural,
secondary action is often added by the animator to make motion more interesting
and achieve realistic complexity of the animation. It is important not to allow
secondary action to dominate the main action.

17.1.3 Animation Techniques

Several specific techniques can be used to make motion look more natural. The
most important one is probablysquash and stretch which suggests to change the
shape of a moving object in a particular way as it moves. One would generally
stretch an object in the direction of motion and squash it when a force is ap-
plied to it, as demonstrated in Figure 17.2 for a classic animation of a bouncing
ball. It is important to preserve the total volume as this happens to avoid the il-
lusion of growing or shrinking of the object. The greater the speed of motion (or
the force), the more stretching (or squashing) is applied. Such deformations are
used for several reasons. For very fast motion, an object can move between two

Figure 17.2. Clas-
sic example of applying the
squash and stretch princi-
ple. Note that the volume
of the bouncing ball should
remain roughly the same
throughout the animation.

sequential frames so quickly that there is no overlap between the object at the
time of the current frame and at the time of the previous frame which can lead
to strobing (a variant of aliasing). Having the object elongated in the direction of
motion can ensure better overlap and helps the eye tofight this unpleasant effect.
Stretching/squashing can also be used to showflexibility of the object with more
deformation applied for more pliable materials. If the object is intended to appear
as rigid, its shape is purposefully left the same when it moves.

Natural motion rarely happens along straight lines, so this should generally be
avoided in animation andarcs should be used instead. Similarly, no real-world
motion can instantly change itsspeed—this would require an infinite amount of
force to be applied to an object. It is desirable to avoid such situations in anima-
tion as well. In particular, the motion should start and end gradually (slow in and

out). While hand-drawn animation is sometimes done viastraight-ahead action

with an animator starting at thefirst frame and drawing one frame after another in

418 17. Computer Animation

sequence until the end,pose-to-pose action, also known askeyframing, is much
more suitable for computer animation. In this technique, animation is carefully

Key frames (created first)

Time

Straight ahead order of frame creation

Figure 17.3. Keyfram-
ing (top) encourages de-
tailed action planning while
straight-ahead action (bot-
tom) leads to a more spon-
taneous result.

planned through a series of relatively sparsely spaced key frames with the rest
of the animation (in-between frames)filled in only after the keys are set (Fig-
ure 17.3). This allows more precise timing and allows the computer to take over
the most tedious part of the process—the creation of the in-between frames—
using algorithms presented in the next section.

Almost any of the techniques outlined above can be used with some reason-
able amount ofexaggeration to achieve greater artistic effect or underscore some
specific property of an action or a character. The ultimate goal is to achieve some-
thing the audience will want to see, something which isappealing. Extreme com-
plexity or too much symmetry in a character or action tends to be less appealing.
To create good results, a traditional animator needssolid drawing skills. Analo-
gously, a computer animator should certainly understand computer graphics and
have a solid knowledge of the tools he uses.

17.1.4 Animator Control vs. Automatic Methods

In traditional animation, the animator has complete control over all aspects of the
production process and nothing prevents thefinal product to be as it was planned
in every detail. The price paid for thisflexibility is that every frame is created by
hand, leading to an extremely time- and labor-consuming enterprise. In computer
animation, there is a clear tradeoff between, on the one hand, giving an animator
more direct control over the result, but asking him to contribute more work and,
on the other hand, relying on more automatic techniques which might require
setting just a few input parameters but offer little or no control over some of the
properties of the result. A good algorithm should provide sufficient flexibility
while asking an animator only the information which is intuitive, easy to provide,
and which he himself feels is necessary for achieving the desired effect. While
perfect compliance with this requirement is unlikely in practice since it would
probably take something close to a mind-reading machine, we do encourage the
reader to evaluate any computer-animation technique from the point of view of
providing suchbalance.

17.2 Keyframing

The term keyframing can be misleading when applied to 3D computer animation
since no actual completed frames (i.e., images) are typically involved. At any
given moment, a 3D scene being animated is specified by a set of numbers: the

17.2. Keyframing 419

Frames

S
ce

ne
 p

ar
am

et
er

s

Time

Figure 17.4. Different patterns of setting keys (black circles above) can be used simultane-
ously for the same scene. It is assumed that there are more frames before as well as after
this portion.

positions of centers of all objects, their RGB colors, the amount of scaling applied
to each object in each axis, modeling transformations between different parts of
a complex object, camera position and orientation, light sources intensity, etc. To
animate a scene, some subset of these values have to change with time. One can,
of course, directly set these values at every frame, but this will not be particularly
efficient. Short of that, some number of important moments in time (key frames
tk) can be chosen along the timeline of animation for each of the parameters and
values of this parameter (key valuesfk) are set only for these selected frames.
We will call a combination(tk, fk) of key frame and key value simply a key.
Key frames do not have to be the same for different parameters, but it is often
logical to set keys at least for some of them simultaneously. For example, key
frames chosen forx-, y- andz-coordinates of a specific object might be set at
exactly the same frames forming a single position vector key(tk,pk). These key

Frame positions

t

t

f Keys

df/dt

Figure 17.5. A continuous
curve f(t) is fit through the
keys provided by the ani-
mator even though only val-
ues at frame positions are
of interest. The derivative
of this function gives the
speed of parameter change
and is at first determined
automatically by the fitting
procedure.

frames, however, might be completely different from those chosen for the object’s
orientation or color. The closer key frames are to each other, the more control the
animator has over the result; however the cost of doing more work of setting the
keys has to be assessed. It is, therefore, typical to have large spacing between
keys in parts of the animation which are relatively simple, concentrating them in
intervals where complex action occurs as shown in Figure 17.4.

Once the animator sets the key(tk, fk), the system has to compute values of
f for all other frames. Although we are ultimately interested only in a discrete set
of values, it is convenient to treat this as a classical interpolation problem which
fits a continuousanimation curve f(t) through a provided set of data points (Fig-
ure 17.5). Extensive discussion of curvefitting algorithms can be found in Chap-

420 17. Computer Animation

ter 15, and we will not repeat it here. Since the animator initially provides only the
keys and not the derivative (tangent), methods which compute all necessary infor-
mation directly from keys are preferable for animation. The speed of parameter
change along the curve is given by the derivative of the curve with respect to time
df/dt. Therefore, to avoid sudden jumps in velocity,C1 continuity is typically
necessary. A higher degree of continuity is typically not required from animation
curves, since the second derivative, which corresponds to acceleration or applied
force, can experience very sudden changes in real-world situations (ball hitting a
solid wall), and higher derivatives do not directly correspond to any parameters of
physical motion. These consideration make Catmull-Rom splines one of the best
choices for initial animation curve creation.

Most animation systems give the animator the ability to perform interactive
fine editing of this initial curve, including inserting more keys, adjusting existing
keys, or modifying automatically computed tangents. Another useful technique
which can help to tweak the shape of the curve is called TCB control (TCB stands
for tension, continuity and bias). The idea is to introduce three new parameters
which can be used to modify the shape of the curve near a key through coordinated
adjustment of incoming and outgoing tangents at this point. For keys uniformly
spaced in time with distance∆t between them, the standard Catmull-Rom ex-
pression for incomingT in

i and outgoingT out
i tangents at an internal key(tk, fk)

can be rewritten as

T in
k = T out

k =
1

2∆t
(fk+1 − fk) +

1

2∆t
(fk − fk−1).

Modified tangents of a TCB spline are

T in
k =

(1 − t)(1 − c)(1 + b)

2∆t
(fk+1 − fk) +

(1 − t)(1 + c)(1 − b)

2∆t
(fk − fk−1),

T out
k =

(1 − t)(1 + c)(1 + b)

2∆t
(fk+1 − fk) +

(1 − t)(1 − c)(1 − b)

2∆t
(fk − fk−1).

The tension parametert controls the sharpness of the curve near the key by scaling
both incoming and outgoing tangents. Larger tangents (lower tension) lead to a
flatter curve shape near the key. Biasb allows the animator to selectively increase
the weight of a key’s neighbors locally pulling the curve closer to a straight line
connecting the key with its left (b near 1, “overshooting” the action) or right (b

near−1, “undershooting” the action) neighbors. A non-zero value of continuityc

makes incoming and outgoing tangents different allowing the animator to create
kinks in the curve at the key value. Practically useful values of TCB parameters
are typically confined to the interval[−1; 1] with defaultst = c = b = 0 corre-
sponding to the original Catmull-Rom spline. Examples of possible curve shape
adjustments are shown in Figure 17.6.

17.2. Keyframing 421

high tension, t>0low tension, t<0

low continuity, c<0

low bias, b<0 high bias, b>0

high continuity, c> 0original spline, t=c=b=0

original spline, t=c=b=0

original spline, t=c=b=0

Figure 17.6. Editing the default interpolating spline (middle column) using TCB controls.
Note that all keys remain at the same positions.

17.2.1 Motion Controls

So far, we have described how to control the shape of the animation curve through
key positioning andfine tweaking of tangent values at the keys. This, however,
is generally not sufficient when one would like to have control both over where
the object is moving, i.e., its path, and how fast it moves along this path. Given a
set of positions in space as keys, automatic curve-fitting techniques canfit a curve
through them, but resulting motion is only constrained by forcing the object to
arrive at a specified key positionpk at the corresponding key frametk, and noth-
ing is directly said about the speed of motion between the keys. This can create
problems. For example, if an object moves along thex-axis with velocity 11 me-
ters per second for 1 second and then with 1 meter per second for 9 seconds, it
will arrive at positionx = 20 after 10 seconds thus satisfying animator’s keys
(0,0) and (10, 20). It is rather unlikely that this jerky motion was actually de-
sired, and uniform motion with speed 2 meters/second is probably closer to what
the animator wanted when setting thesekeys. Although typically not displaying

422 17. Computer Animation

such extreme behavior, polynomial curves resulting from standardfitting proce-
dures do exhibit non-uniform speed of motion between keys as demonstrated in
Figure 17.7. While this can be tolerable (within limits) for some parameters for
which the human visual system is not very good at determining non-uniformities
in the rate of change (such as color or even rate of rotation), we have to do bet-
ter for positionp of the object where velocity directly corresponds to everyday
experience.

We will first distinguish curve parameterization used during thefitting proce-
dure from that used for animation. When a curve isfit through position keys, we
will write the result as a functionp(u) of some parameteru. This will describe
the geometry of the curve in space. The arc lengths is the physical length of the

t=0

t=9 t=12

t=6
t=3

Figure 17.7. All three
motions are along the same
2D path and satisfy the set
of keys at the tips of the
black triangles. The tips of
the white triangles show ob-
ject position at ∆t = 1 in-
tervals. Uniform speed of
motion between the keys
(top) might be closer to
what the animator wanted
but automatic fitting proce-
dures could result in either
of the other two motions.

curve. A natural way for the animator to control the motion along the now existing
curve is to specify an extra functions(t) which corresponds to how far along the
curve the object should be at any given time. To get an actual position in space,
we need one more auxiliary functionu(s) which computes a parameter valueu

for given arc lengths. The complete process of computing an object position for
a given timet is then given by composing these functions (see Figure17.8):

p(t) = p(u(s(t))).

Several standard functions can be used as the distance-time functions(t).
One of the simplest is the linear function corresponding to constant velocity:
s(t) = vt with v = const. Another common example is the motion with con-
stant accelerationa (and initial speedv0) which is described by the parabolic
s(t) = v0t + at2/2. Since velocity is changing gradually here, this function
can help to model desirable ease-in and ease-out behavior. More generally, the

P(u(s(t)))

P(u)t

s

s(t)

s(t)

u(s(t))

u u(s)

s

Figure 17.8. To get position in space at a given time t, one first utilizes user-specified motion
control to obtain the distance along the curve s(t) and then compute the corresponding curve
parameter value u(s(t)). Previously fitted curve P(u) can now be used to find the position
P(u(s(t))).

17.2. Keyframing 423

slope ofs(t) gives the velocity of motion with negative slope corresponding to
the motion backwards along the curve. To achieve mostflexibility, the ability to
interactively edits(t) is typically provided to the animator by the animation sys-
tem. The distance-time function is not the only way to control motion. In some
cases it might be more convenient for theuser to specify a velocity-time function
v(t) or even an acceleration-time functiona(t). Since these are correspondingly
first and second derivatives ofs(t), to use these type of controls, the systemfirst
recovers the distance-time function by integrating the user input (twice in the case
of a(t)).

The relationship between the curve parameteru and arc lengths is established
automatically by the system. In practice, the systemfirst determines arc length
dependance on parameteru (i.e., the inverse functions(u)). Using this function,
for any givenS it is possible to solve the equations(u)− S = 0 with unknownu
obtainingu(S). For most curves, the functions(u) can not be expressed in closed
analytic form and numerical integration is necessary (see Chapter 14). Standard
numerical root-finding procedures (such as the Newton-Raphson method, for ex-
ample) can then be directly used to solve the equations(u) − S = 0 for u.

u=0.8

u=0.4

u=0.6 u=1.0

u=0

u=0.2

s(u)u

0.2

0.4

1.0

0.8

0.6

0.0

2.5

8.5

7.0

5.0

4.0

0.0

Figure 17.9. To cre-
ate a tabular version of
s(u), the curve can be ap-
proximated by a number
of line segments connect-
ing points on the curve po-
sitioned at equal parame-
ter increments. The table
is searched to find the u-
interval for a given S. For
the curve above, for exam-
ple, the value of u corre-
sponding to the position of
S = 6.5 lies between u = 0.6
and u = 0.8.

An alternative technique is to approximate the curve itself as a set of linear
segments between pointspi computed at some set of sufficiently densely spaced
parameter valuesui. One then creates a table of approximate arc lengths

s(ui) ≈
i
∑

j=1

||pj − pj−1|| = s(ui−1) + ||pi − pi−1||.

Sinces(u) is a non-decreasing function ofu, one can thenfind the interval con-
taining the valueS by simple searching through the table (see Figure17.9). Linear
interpolation of the interval’su end values is then performed tofinally find u(S).
If greater precision is necessary, a few steps of the Newton-Raphson algorithm
with this value as the starting point can be applied.

17.2.2 Interpolating Rotation

The techniques presented above can be used to interpolate the keys set for most of
the parameters describing the scene. Three-dimensional rotation is one important
motion for which more specialized interpolation methods and representations are
common. The reason for this is that applying standard techniques to 3D rotations
often leads to serious practical problems. Rotation (a change in orientation of an
object) is the only motion other than translation which leaves the shape of the
object intact. It therefore plays a special role in animating rigid objects.

424 17. Computer Animation

X

YY

Z
X

Z

Y Y

X
Z X

Z

rotate(X)
rotate(Z) rotate(Y)

Figure 17.10. Three Euler angles can be used to specify arbitrary object orientation through
a sequence of three rotations around coordinate axes embedded into the object (axis Y
always points to the tip of the cone). Note that each rotation is given in a new coordinate
system. Fixed angle representation is very similar but the coordinate axes it uses are fixed
in space and do not rotate with the object.

There are several ways to specify the orientation of an object. First, trans-
formation matrices as described in Chapter 6 can be used. Unfortunately, naive
(element-by-element) interpolation of rotation matrices does not produce a correct
result. For example, the matrix “half-way” between 2D clock- and counterclock-
wise 90 degree rotation is the null matrix:

1

2

[

0 1
−1 0

]

+
1

2

[

0 −1
1 0

]

=

[

0 0
0 0

]

.

The correct result is, of course, the unit matrix corresponding to no rotation. Sec-
ond, one can specify arbitrary orientation as a sequence of exactly three rotations
around coordinate axes chosen in some specific order. These axes can befixed in
space (fixed-angle representation) or embedded into the object therefore changing
after each rotation (Euler-angle representation as shown in Figure 17.10). These
three angles of rotation can be animated directly through standard keyframing,
but a subtle problem known as gimbal lock arises. Gimbal lock occurs if dur-
ing rotation one of the three rotation axes is by accident aligned with another,
thereby reducing by one the number of available degrees of freedom as shown in
Figure 17.11 for a physical device. This effect is more common than one might

rotate(X)

rotate(Z)

rotate(Y)

Original configuration

rotate(Z)

rotate(Y)

rotate(X)

Gimbal lock configuration

Figure 17.11. In this
example, gimbal lock oc-
curs when a 90 degree
turn around axis Z is made.
Both X and Y rotations are
now performed around the
same axis leading to the
loss of one degree of free-
dom.

think—a single 90 degree turn to the right (or left) can potentially put an object
into a gimbal lock. Finally, any orientation can be specified by choosing an appro-
priate axis in space and angle of rotation around this axis. While animating in this
representation is relatively straightforward, combining two rotations, i.e.,finding
the axis and angle corresponding to a sequence of two rotations both represented
by axis and angle, is non-trivial. A special mathematical apparatus,quaternions

17.2. Keyframing 425

has been developed to make this representation suitable both for combining sev-
eral rotations into a single one and for animation.

Given a 3D vectorv = (x, y, z) and a scalars, a quaternionq is formed by
combining the two into a four component object:q = [s x y z] = [s; v]. Several
new operations are then defined for quaternions. Quaternion addition simply sums
scalar and vector parts separately:

q1 + q2 ≡ [s1 + s2; v1 + v2].

Multiplication by a scalara gives a new quaternion

aq ≡ [as; av].

More complex quaternion multiplication is defined as

q1 · q2 ≡ [s1s2 − v1v2; s1v2 + s2v1 + v1 × v2],

where× denotes a vector cross product. It is easy to see that, similar to matrices,
quaternion multiplication is associative, but not commutative. We will be inter-
ested mostly in normalized quaternions—those for which the quaternion norm
|q| =

√
s2 + v2 is equal to one. Onefinal definition we need is that of an inverse

quaternion:
q−1 = (1/|q|)[s; −v].

To represent a rotation by angleφ around an axis passing through the origin
whose direction is given by the normalized vectorn, a normalized quaternion

q = [cos(φ/2); sin(φ/2)n]

is formed. To rotate pointp, one turns it into the quaternionqp = [0; p] and
q2

q1

Figure 17.12. Inter-
polating quaternions should
be done on the surface of
a 3D unit sphere embed-
ded in 4D space. How-
ever, much simpler interpo-
lation along a 4D straight
line (open circles) followed
by re-projection of the re-
sults onto the sphere (black
circles) is often sufficient.

computes the quaternion product

q′p = q · qp · q−1

which is guaranteed to have a zero scalar part and the rotated point as its vector
part. Composite rotation is given simply by the product of quaternions represent-
ing each of the separate rotation steps. To animate with quaternions, one can treat
them as points in a four-dimensional space and set keys directly in this space. To
keep quaternions normalized, one should, strictly speaking, restrict interpolation
procedures to a unit sphere (a 3D object) in this 4D space. However, a spherical
version of even linear interpolation (often calledslerp) already results in rather
unpleasant math. Simple 4D linear interpolation followed by projection onto the
unit sphere shown in Figure 17.12 is much simpler and often sufficient in practice.
Smoother results can be obtained via repeated application of a linear interpolation
procedure using the de Casteljau algorithm.

426 17. Computer Animation

17.3 Deformations

Although techniques for object deformation might be more properly treated as
modeling tools, they are traditionally discussed together with animation methods.
Probably the simplest example of an operation which changes object shape is a
non-uniform scaling. More generally, some function can be applied to local co-
ordinates of all points specifying the object (i.e., vertices of a triangular mesh
or control polygon of a spline surface), repositioning these points and creating a
new shape:p′ = f(p, γ) whereγ is a vector of parameters used by the deforma-
tion function. Choosing differentf (and combining them by applying one after
another) can help to create very interesting deformations. Examples of useful
simple functions include bend, twist, and taper which are shown in Figure 17.13.
Animating shape change is very easy in this case by keyframing the parameters
of the deformation function. Disadvantages of this technique include difficulty of
choosing the mathematical function forsome non-standard deformations and the
fact that the resulting deformation isglobal in the sense that the complete object,
and not just some part of it, is reshaped.

BendOriginal shape

Taper Twist

Figure 17.13. Popular ex-
amples of global deforma-
tions. Bending and twist an-
gles as well as the degree
of taper can all be animated
to achieve dynamic shape
change.

To deform an object locally while providing more direct control over the re-
sult, one can choose a single vertex, move it to a new location and adjust vertices
within some neighborhood to follow the seed vertex. The area affected by the de-
formation and the specific amount of displacement in different parts of the object
are controlled by an attenuation function which decreases with distance (typically
computed over the object’s surface) to the seed vertex. Seed vertex motion can be
keyframed to produce animated shape change.

A more general deformation technique is called free-form deformation (FFD)
(Sederberg & Parry, 1986). A local (in most cases rectilinear) coordinate grid
is first established to encapsulate the part of the object to be deformed, and co-
ordinates(s, t, u) of all relevant points are computed with respect to this grid.
The user then freely reshapes the grid of lattice pointsPijk into a new distorted
latticeP′

ijk (Figure 17.14). The object is reconstructed using coordinates com-
puted in the original undistorted grid in the trivariate analog of B´ezier interpolants
(see Chapter 15) with distorted lattice pointsP′

ijk serving as control points in this
expression:

P (s, u, t) =
L
∑

i=0

(

i
L

)

(1 − s)L−isi
M
∑

j=0

(

j
M

)

(1 − t)M−jtj
N
∑

k=0

(

k
N

)

(1 − u)N−kukP′
ijk,

whereL, M, N are maximum indices of lattice points in each dimension. In ef-
fect, the lattice serves as a low resolution version of the object for the purpose of
deformation, allowing for a smooth shape change of an arbitrarily complex ob-

17.4. Character Animation 427

ject through a relatively small number of intuitive adjustments. FFD lattices can
themselves be treated as regular objects by the system and can be transformed, an-
imated, and even further deformed if necessary, leading to corresponding changes
in the object to which the lattice is attached. For example, moving adeforma-

tion tool consisting of the original lattice and distorted lattice representing a bulge
across an object results in a bulge moving across the object.

Figure 17.14. Adjusting
the FFD lattice results in the
deformation of the object.

17.4 Character Animation

Animation of articulatedfigures is most often performed through a combination
of keyframing and specialized deformation techniques. The character model in-
tended for animation typically consists of at least two main layers as shown in
Figure 17.15. The motion of a highly detailed surface representing the outer shell
or skin of the character is what the viewer will eventually see in thefinal prod-
uct. Theskeleton underneath it is a hierarchical structure (a tree) of joints which
provides a kinematic model of thefigure and is used exclusively for animation.
In some cases, additional intermediate layer(s) roughly corresponding to muscles
are inserted between the skeleton and the skin.

skeleton

skin

Figure 17.15. (Left) A hierarchy of joints, a skeleton, serves as a kinematic abstraction of
the character; (middle) repositioning the skeleton deforms a separate skin object attached
to it; (right) a tree data structure is used to represent the skeleton. For compactness, the
internal structure of several nodes is hidden (they are identical to a corresponding sibling).

428 17. Computer Animation

Each of the skeleton’s joints acts as a parent for the hierarchy below it. The
root represents the whole character and is positioned directly in the world coor-
dinate system. If a local transformation matrix which relates a joint to its parent
in the hierarchy is available, one can obtain a transformation which relates local
space of any joint to the world system (i.e., the system of the root) by simply con-
catenating transformations along the path from the root to the joint. To evaluate
the whole skeleton (i.e.,find position and orientation of all joints), a depth-first
traversal of the complete tree of joints is performed. A transformation stack is a
natural data structure to help with this task. While traversing down the tree, the
current composite matrix is pushed on the stack and new one is created by mul-
tiplying the current matrix with the one stored at the joint. When backtracking
to the parent, this extra transformation should be undone before another branch is
visited; this is easily done by simply popping the stack. Although this general and
simple technique for evaluating hierarchies is used throughout computer graphics,
in animation (and robotics) it is given a special name—forward kinematics (FK).
While general representations for all transformations can be used, it is common to
use specialized sets of parameters, such as link lengths or joint angles, to specify
skeletons. To animate with forward kinematics, rotational parameters of all joints
are manipulated directly. The technique also allows the animator to change the
distance between joints (link lengths), but one should be aware that this corre-
sponds to limb stretching and can often look rather unnatural.

Forward kinematics requires the user to set parameters for all joints involved
in the motion (Figure 17.16 (top)). Most of these joints, however, belong to in-

Original

After hip rotation

After knee rotation

Effector motion

hip and knee joint angles

computed automatically

IK solver connection

Figure 17.16. Forward kinematics (top) requires the animator to put all joints into correct

position. In inverse kinematic (bottom), parameters of some internal joints are computed

based on desired end effector motion.

17.4. Character Animation 429

ternal nodes of the hierarchy, and their motion is typically not something the
animator wants to worry about. In most situations, the animator just wants them
to move naturally “on their own,” and one is much more interested in specify-
ing the behavior of the end point of a joint chain, which typically corresponds to
something performing a specific action, such as an ankle or a tip of afinger. The
animator would rather have parameters of all internal joints be determined from
the motion of the end effector automatically by the system.Inverse kinematics

(IK) allows us to do just that (see Figure 17.16 (bottom)).
Let x be the position of the end effector andα be the vector of parameters

needed to specify all internal joints along the chain from the root to thefinal joint.
Sometimes the orientation of thefinal joint is also directly set by the animator, in
which case we assume that the corresponding variables are included in the vector
x. For simplicity, however, we will write all specific expressions for the vector:

x = (x1, x2, x3)
T .

Since each of the variables inx is a function ofα, it can be written as a vector
equationx = F(α). If we change the internal joint parameters by a small amount
δα, a resulting changeδx in the position of the end effector can be approximately
written as

δx =
∂F

∂α
δα, (17.1)

where∂F
∂α is the matrix of partial derivatives called the Jacobian:

∂F

∂α
=

⎡

⎢

⎣

∂f1

∂α1

∂f1

∂α2
... ∂f1

∂αn
∂f2

∂α1

∂f2

∂α2
... ∂f2

∂αn
∂f3

∂α1

∂f3

∂α2
... ∂f3

∂αn

⎤

⎥

⎦
.

At each moment in time, we know the desired position of the end effector (set by
the animator) and, of course, the effector’s current position. Subtracting the two,
we will get the desired adjustmentδx. Elements of the Jacobian matrix are related
to changes in a coordinate of the end effector when a particular internal parameter
is changed while others remainfixed (see Figure 17.17). These elements can

X

X

kneeΔ

Δ

Figure 17.17. Partial
derivative ∂x/∂αknee is
given by the limit of
∆x/∆αknee. Effector dis-
placement is computed
while all joints, except the
knee, are kept fixed.

be computed for any given skeleton configuration using geometric relationships.
The only remaining unknowns in the system of equations (17.1) are the changes in
internal parametersα. Once we solve for them, we updateα = α+δα which gives
all the necessary information for the FK procedure to reposition the skeleton.

Unfortunately, the system (17.1) can not usually be solved analytically and,
moreover, it is in most cases underconstrained, i.e., the number of unknown inter-
nal joint parametersα exceeds the number of variables in vectorx. This means
that different motions of the skeleton can result in the same motion of the end

430 17. Computer Animation

effector. Some examples are shown on Figure 17.18. Many ways of obtaining
specific solution for such systems are available, including those taking into ac-
count naturalconstraints needed for some real-life joints (bending a knee only in
one direction, for example). One should also remember that the computed Jaco-
bian matrix is valid only for one specific configuration, and it has to be updated as
the skeleton moves. The complete IK framework is presented in Figure 17.19. Of

IK root effector
position

Figure 17.18. Mul-
tiple configurations of in-
ternal joints can result in
the same effector position.
(Top) disjoint “flipped” solu-
tions; (bottom) a continuum
of solutions.

course, the root joint for IK does not have to be the root of the whole hierarchy,
and multiple IK solvers can be applied to independent parts of the skeleton. For
example, one can use separate solvers for right and left feet and yet another one
to help animate grasping with the right hand, each with its own root.

Old skeleton configuration

Update constraints

new values for internal joint parameters

replace old skeleton
configuration with the new one

YES, done

NO

new skeleton configuration

solve equation 1.1

Compute the Jacobian and
desired effector motion

apply forward kinematic to reposition skeleton

Effector at desired position ?

Figure 17.19. A diagram of the inverse kinematic
algorithm.

A combination of FK
and IK approaches is typ-
ically used to animate the
skeleton. Many com-
mon motions (walking or
running cycles, grasping,
reaching, etc.) exhibit well-
known patterns of mutual
joint motion making it pos-
sible to quickly create nat-
urally looking motion or
even use a library of such
“clips.” The animator then
adjusts this generic result
according to the physical
parameters of the character
and also to give it more in-
dividuality.

When a skeleton changes its position, it acts as a special type of deformer
applied to the skin of the character. The motion is transferred to this surface by

Figure 17.20. Top:
Rigid skinning assigns skin
vertices to a specific joint.
Those belonging to the el-
bow joint are shown in
black; Bottom: Soft skin-
ning can blend the in-
fluence of several joints.
Weights for the elbow joint
are shown (lighter = greater
weight). Note smoother
skin deformation of the in-
ner part of the skin near the
joint.

assigning each skin vertex one (rigid skinning) or more (smooth skinning) joints
as drivers (see Figure 17.20). In thefirst case, a skin vertex is simply frozen
into the local space of the corresponding joint, which can be the one nearest in
space or one chosen directly by the user. The vertex then repeats whatever mo-
tion this joint experiences, and its position in world coordinates is determinedby
standard FK procedure. Although it is simple, rigid skinning makes it difficult
to obtain sufficiently smooth skin deformation in areas near the joints or also for
more subtle effects resembling breathingor muscle action. Additional specialized
deformers calledflexors can be used for this purpose. In smooth skinning, several
joints can influence a skin vertex according to some weight assigned by the ani-

17.4. Character Animation 431

mator, providing more detailed control over the results. Displacement vectors,di,
suggested by different joints affecting a given skin vertex (each again computed
with standard FK) are averaged according to their weightswi to compute thefi-
nal displacement of the vertexd =

∑

widi. Normalized weights (
∑

wi = 1)
are the most common but not fundamentally necessary. Setting smooth skinning
weights to achieve the desired effect is not easy and requires significant skill from
the animator.

17.4.1 Facial Animation

Skeletons are well suited for creating most motions of a character’s body, but they
are not very convenient for realistic facial animation. The reason is that the skin
of a human face is moved by muscles directly attached to it contrary to other parts
of the body where the primary objective of the muscles is to move the bones of
the skeleton and any skin deformation is a secondary outcome. The result of this
facial anatomical arrangement is a very rich set of dynamic facial expressions
humans use as one of the main instruments of communication. We are all very
well trained to recognize such facial variations and can easily notice any unnatural
appearance. This not only puts special demands on the animator but also requires
a high-resolution geometric model of the face and, if photorealism is desired,
accurate skin reflection properties and textures.

While it is possible to set key poses of the face vertex-by-vertex and inter-
polate between them or directly simulate the behavior of the underlying muscle
structure using physics-based techniques (see Section 17.5 below), more special-
ized high-level approaches also exist. The static shape of a specific face can be
characterized by a relatively small set of so-calledconformational parameters

(overall scale, distance from the eye to the forehead, length of the nose, width of
the jaws, etc.) which are used to morph a generic face model into one with individ-
ual features. An additional set ofexpressive parameters can be used to describe
the dynamic shape of the face for animation. Examples include rigid rotation of
the head, how wide the eyes are open, movement of some feature point from its
static position, etc. These are chosen so that most of the interesting expressions
can be obtained through some combination of parameter adjustments, therefore,
allowing a face to be animated via standard keyframing. To achieve a higher level
of control, one can use expressive parameters to create a set of expressions corre-
sponding to common emotions (neutral, sadness, happiness, anger, surprise, etc.)
and then blend these key poses to obtain a “slightly sad” or “angrily surprised”
face. Similar techniques can be used toperform lip-synch animation, but key
poses in this case correspond to different phonemes. Instead of using a sequence

432 17. Computer Animation

of static expressions to describe a dynamic one, the Facial Action Coding Sys-
tem (FACS) (Eckman & Friesen, 1978) decomposes dynamic facial expressions
directly into a sum of elementary motions called action units (AUs). The set of
AUs is based on extensive psychological research and includes such movements
as raising the inner brow, wrinkling the nose, stretching lips, etc. Combining AUs
can be used to synthesize a necessary expression.

17.4.2 Motion Capture

Even with the help of the techniques described above, creating realistic-looking
character animation from scratch remains a daunting task. It is therefore only
natural that much attention is directed towards techniques which record an actor’s
motion in the real world and then apply it to computer-generated characters. Two
main classes of suchmotion capture (MC) techniques exist: electromagnetic and
optical.

In electromagnetic motion capture, an electromagnetic sensor directly mea-
sures its position (and possibly orientation) in 3D often providing the captured
results in real time. Disadvantages of this technique include significant equip-
ment cost, possible interference from nearby metal objects, and noticeable size
of sensors and batteries which can be an obstacle in performing high-amplitude
motions. In optical MC, small colored markers are used instead of active sensors
making it a much less intrusive procedure. Figure 17.21 shows the operation of
such a system. In the most basic arrangement, the motion is recorded by two cali-
brated video cameras, and simple triangulation is used to extract the marker’s 3D
position. More advanced computer visionalgorithms used for accurate tracking
of multiple markers from video are computationally expensive, so, in most cases,
such processing is done offline. Optical tracking is generally less robust than

Figure 17.21. Optical
motion capture: markers
attached to a performer’s
body allow skeletal motion
to be extracted. Image
courtesy of Motion Analysis
Corp.

electromagnetic. Occlusion of a given marker in some frames, possible misiden-
tification of markers, and noise in images are just a few of the common problem
which have to be addressed. Introducing more cameras observing the motion from
different directions improves both accuracy and robustness, but this approach is
more expensive and it takes longer to process such data. Optical MC becomes
more attractive as available computational power increases and better computer
vision algorithms are developed. Because of low impact nature of markers, opti-
cal methods are suitable for delicate facial motion capture and can also be used
with objects other than humans—for example, animals or even tree branches in
the wind.

With several sensors or markers attached to a performer’s body, a set of time-
dependant 3D positions of some collection of points can be recorded. These track-

17.5. Physics-Based Animation 433

ing locations are commonly chosen near joints, but, of course, they still lie on skin
surface and not at points where actualbones meet. Therefore, some additional
care and a bit of extra processing is necessary to convert recorded positions into
those of the physical skeleton joints. For example, putting two markers on oppo-
site sides of the elbow or ankle allows the system to obtain better joint position
by averaging locations of the two markers. Without such extra care, very notice-
able artifacts can appear due to offset joint positions as well as inherent noise
and insufficient measurement accuracy. Because of physical inaccuracy during
motion, for example, character limbs can loose contact with objects they are sup-
posed to touch during walking or grasping, problems like foot-sliding (skating)
of the skeleton can occur. Most of these problems can be corrected by using in-
verse kinematics techniques which can explicitly force the required behavior of
the limb’s end.

Recovered joint positions can now be directly applied to the skeleton of a
computer-generated character. This procedure assumes that the physical dimen-
sions of the character are identical to those of the performer. Retargeting recorded
motion to a different character and, more generally, editing MC data, requires
significant care to satisfy necessary constraints (such as maintaining feet on the
ground or not allowing an elbow to bend backwards) and preserve an overall nat-
ural appearance of the modified motion. Generally, the greater the desired change
from the original, the less likely it will be possible to maintain the quality of the
result. An interesting approach to the problem is to record a large collection of
motions and stich together short clips from this library to obtain desired move-
ment. Although this topic is currently a very active research area, limited ability
to adjust the recorded motion to the animator’s needs remains one of the main
disadvantages of motion capture technique.

17.5 Physics-Based Animation

The world around us is governed by physical laws many of which can be formal-
ized as sets of partial or, in some simpler cases, ordinary differential equations.
One of the original applications of computers was (and remains) solving such
equations. It is therefore only natural to attempt to use numerical techniques
developed over the several past decades to obtain realistic motion for computer
animation.

Because of its relative complexity and significant cost, physics-based anima-
tion is most commonly used in situations when other techniques are either un-
available or do not produce sufficiently realistic results. Prime examples include

434 17. Computer Animation

animation offluids (which includes many gaseous phase phenomena described
by the same equations—smoke, clouds,fire, etc.), cloth simulation (an exam-

Figure 17.22. Real-
istic cloth simulation is of-
ten performed with physics-
based methods. In this ex-
ample, forces are due to
collisions and gravity.

ple is shown in Figure 17.22), rigid body motion, and accurate deformation of
elastic objects. Governing equations and details of commonly used numerical
approaches are different in each of these cases, but many fundamental ideas and
difficulties remain applicable across applications. Many methods for numerically
solving ODEs and PDEs exist but discussing them in details is far beyond the
scope of this book. To give the reader aflavor of physics-based techniques and
some of the issues involved, we will briefly mention here only thefinite differ-
ence approach—one of the conceptuallysimplest and most popular families of
algorithms which has been applied to most, if not all, differential equations en-
countered in animation.

The key idea of this approach is to replace a differential equation with its dis-
crete analog—a difference equation. To do this, the continuous domain of interest
is represented by afinite set of points at which the solution will be computed. In
the simplest case, these are defined on a uniform rectangular grid as shown in Fig-
ure 17.23. Every derivative present inthe original ODE or PDE is then replaced
by its approximation through function values at grid points. One way of doing
this is to subtract the function value at a given point from the function value for
its neighboring point on the grid:

df(t)

dt
≈ ∆f

∆t
=

f(t + ∆t) − f(t)

∆t
or

∂f(x, t)

∂x
≈ ∆f

∆x
=

f(x + ∆x, t) − f(x, t)

∆x
.

(17.2)

Figure 17.23. Two possible difference schemes for an equation involving derivatives ∂f/∂x
and ∂f/∂t. (Left) An explicit scheme expresses unknown values (open circles) only through
known values at the current (black circles) and possibly past (gray circles) time; (Right) Im-
plicit schemes mix known and unknown values in a single equation making it necessary to
solve all such equations as a system. For both schemes, information about values on the
right boundary is needed to close the process.

17.5. Physics-Based Animation 435

These expressions are, of course, not the only way. One can, for example, use
f(t − ∆t) instead off(t) above and divide by2∆t. For an equation containing
a time derivative, it is now possible to propagate values of an unknown function
forward in time in a sequence of∆t-size steps by solving the system of difference
equations (one at each spatial location) for unknownf(t + ∆t). Some initial
conditions, i.e., values of the unknown function att = 0, are necessary to start the
process. Other information, such as values on the boundary of the domain, might
also be required depending on the specific problem.

The computation off(t+∆t) can be done easily for so calledexplicit schemes
when all other values present are taken at the current time and the only unknown
in the corresponding difference equationf(t + ∆t) is expressed through these
known values.Implicit schemes mix values at current and future times and might
use, for example,

f(x + ∆x, t + ∆t) − f(x, t + ∆t)

∆x

as an approximation of∂f
∂x . In this case one has to solve a system of algebraic

equations at each step.

The choice of difference scheme can dramatically affect all aspects of the
algorithm. The most obvious among them isaccuracy. In the limit ∆t → 0

or ∆x → 0, expressions of the type in Equation (17.2) are exact, but forfinite
step size some schemes allow better approximation of the derivative than others.
Stability of a difference scheme is related to how fast numerical errors, which are
always present in practice, can grow withtime. For stable schemes this growth is
bounded, while for unstable ones it is exponential and can quickly overwhelm the
solution one seeks (see Figure 17.24). It is important to realize that while some

stable

f(t)

t

exact

unstable

Figure 17.24. An unsta-
ble solution might follow the
exact one initially, but can
deviate arbitrarily far from it
with time. Accuracy of a
stable solution might still be
insufficient for a specific ap-
plication.

inaccuracy in the solution is tolerable (and, in fact, accuracy demanded in physics
and engineering is rarely needed for animation), an unstable result is completely
meaningless, and one should avoid using unstable schemes. Generally, explicit
schemes are either unstable or can become unstable at larger step sizes while
implicit ones are unconditionally stable. Implicit schemes allows greater step size
(and, therefore, fewer steps) which is why they are popular despite the need to
solve a system of algebraic equations at each step. Explicit schemes are attractive
because of their simplicity if their stability conditions can be satisfied. Developing
a good difference scheme and corresponding algorithm for a specific problem is
not easy, and for most standard situations it is well advised to use an existing
method. Ample literature discussing details of these techniques is available.

One should remember that, in many cases, just computing all necessary terms
in the equation is a difficult and time-consuming task on its own. In rigid body
or cloth simulation, for example, most of the forces acting on the system are due

436 17. Computer Animation

to collisions among objects. At each step during animation, one therefore has to
solve a purely geometric, but very non-trivial, problem of collision detection. In
such conditions, schemes which require fewer evaluations of such forces might
provide significant computational savings.

Although the result of solving appropriate time-dependant equations gives
very realistic motion, this approach has its limitations. First of all, it is very
hard to control the result of physics-based animation. Fundamental mathematical
properties of these equations state that once the initial conditions are set, the solu-
tion is uniquely defined. This does not leave much room for animator input and, if
the result is not satisfactory for some reason, one has only a few options. They are
mostly limited to adjusting initial condition used, changing physical properties of
the system, or even modifying the equations themselves by introducing artificial
terms intended to “drive” the solution in the direction the animator wants. Making
such changes requires significant skill as well as understanding of the underlying
physics and, ideally, numerical methods. Without this knowledge, the realism
provided by physics-based animation can be destroyed or severe numerical prob-
lems might appear.

17.6 Procedural Techniques

Imagine that one could write (and implement on a computer) a mathematical func-
tion which outputs precisely the desiredmotion given some animator guidance.
Physics-based techniques outlined above can be treated as a special case of such
an approach when the “function” involved is the procedure to solve a particular
differential equation and “guidance” isthe set of initial and boundary conditions,
extra equation terms, etc.

However, if we are only concerned with thefinal result, we do not have to
follow a physics-based approach. For example, a simple constant amplitude
wave on the surface of a lake can be directly created by applying the function
f(x, t) = A cos(ωt − kx + φ) with constant frequencyω, wave vectork and
phaseφ to get displacement at the 2D pointx at time t. A collection of such
waves with random phases and appropriately chosen amplitudes, frequencies, and
wave vectors can result in a very realistic animation of the surface of water with-
out explicitly solving anyfluid dynamics equations. It turns out that other rather
simple mathematical functions can also create very interesting patterns or objects.
Several such functions, most based on lattice noises, have been described in Chap-
ter 11. Adding time dependance to these functions allows us to animate certain
complex phenomena much easier and cheaper than with physics-based techniques

17.6. Procedural Techniques 437

while maintaining very high visual quality of the results. Ifnoise(x) is the un-
derlying pattern-generating function, one can create a time-dependant variant of it
by moving the argument position through the lattice. The simplest case is motion
with constant speed:timenoise(x, t) =noise(x + vt), but more complex motion
through the lattice is, of course, also possible and, in fact, more common. One
such path, a spiral, is shown in Figure 17.25. Another approach is to animate pa-
rameters used to generate thenoise function. This is especially appropriate if the
appearance changes significantly with time—a cloud becoming more turbulent,
for example. In this way one can animate the dynamic process of formation of
clouds using the function which generates static ones.

t=0

Figure 17.25. A path
through the cube defin-
ing procedural noise is tra-
versed to animate the re-
sulting pattern.

For some procedural techniques, time dependance is a more integral compo-
nent. The simplestcellular automata operate on a 2D rectangular grid where
a binary value is stored at each location (cell). To create a time varying pat-
tern, some user-provided rules for modifying these values are repeatedly applied.
Rules typically involve some set of conditions on the current value and that of
the cell’s neighbors. For example, the rules of the popular 2DGame of Life cel-
lular automaton invented in 1970 by British mathematician John Conway are the
following:

1. A dead cell (i.e., binary value at a given location is 0) with exactly three
live neighbors becomes a live cell (i.e., its value set to 1).

2. A live cell with two or three live neighbors stays alive.

3. In all other cases, a cell dies or remains dead.

Once the rules are applied to all grid locations, a new pattern is created and a
new evolution cycle can be started. Three sample snapshots of the live cell distri-
bution at different times are shown in Figure 17.26. More sophisticated automata

Figure 17.26. Several (non-consecutive) stages in the evolution of a Game of Life automa-
ton. Live cells are shown in black. Stable objects, oscillators, travelling patterns, and many
other interesting constructions can result from the application of very simple rules. Figure
created using a program by Alan Hensel.

438 17. Computer Animation

simultaneously operate on several 3D grids of possiblyfloating point values and
can be used for modeling dynamics of clouds and other gaseous phenomena or
biological systems for which this apparatus was originally invented (note the ter-
minology). Surprising pattern complexity can arise from just a few well-chosen
rules, but how to write such rules to create the desired behavior is often not obvi-
ous. This is a common problem with procedural techniques: there is only limited,
if any, guidance on how to create new procedures or even adjust parameters of
existing ones. Therefore, a lot of tweaking and learning by trial-and-error (“by
experience”) is usually needed to unlock the full potential of procedural methods.

Another interesting approach which was also originally developed to describe
biological objects is the technique calledL-systems (after the name of their origi-
nal inventor, Astrid Lindenmayer). This approach is based ongrammars or sets of
recursive rules for rewriting strings of symbols. There are two types of symbols:
terminal symbols stand for elements of something we want to represent with a
grammar. Depending on their meaning, grammars can describe structure of trees
and bushes, buildings and whole cities,or programming and natural languages.
In animation, L-systems are most popular for representing plants and correspond-
ing terminals are instructions to the geometric modeling system: put a leaf (or a
branch) at a current position—we will use the symbol@ and just draw a circle,
move current position forward by some number of units (symbolf), turn current
direction 60 degrees around world Z-axis (symbol+), pop (symbol[) or push
(symbol]) current position/orientation, etc. Auxiliarynonterminal symbols (de-
noted by capital letters) have only semantic rather than any direct meaning. They
are intended to be eventually rewritten through terminals. We start from the spe-
cial nonterminal start symbolS and keep applying grammar rules to the current
string in parallel, i.e., replace all nonterminals currently present to get the new
string, until we end up with a string containing only terminals and no more sub-
stitution is therefore possible. This string of modeling instructions is then used to

B

B

A

B

A

B
B

AS

Figure 17.27. Con-
secutive derivation steps
using a simple L-system.
Capital letters denote
non-terminals and illustrate
positions at which corre-
sponding non-terminal will
be expanded. They are not
part of the actual output.

output the actual geometry. For example, a set of rules (productions)

S → A

A → [+B]fA

A → B

B → fB

B → f@

might result in the following sequence of rewriting steps demonstrated in Fig-
ure 17.27

S �−→ A �−→ [+B]fA �−→ [+fB]f [+B]fA �−→
[+ff@]f [+fB]fB �−→ [+ff@]f [+ff@]ff@

17.7. Groups of Objects 439

As shown above, there are typically many different productions for the same non-
terminal allowing the generation of many different objects with the same gram-
mar. The choice of which rule to apply can depend on which symbols are located
next to the one being replaced (context-sensitivity) or can be performed at ran-
dom with some assigned probability for each rule (stochastic L-systems). More
complex rules can model interaction withthe environment, such as pruning to a
particular shape, and parameters can beassociated with symbols to control geo-
metric commands issued.

L-systems already capture plant topology changes with time: each interme-
diate string obtained in the rewriting process can be interpreted as a “younger”
version of the plant (see Figure 17.27). For more significant changes, different
productions can be in effect at different times allowing the structure of the plant
to change significantly as it grows. A young tree, for example, produces a lot of
new branches while an older one branches only moderately.

Very realistic plant models have been created with L-systems. However, as
with most procedural techniques, one needs some experience to meaningfully
apply existing L-systems, and writing new grammars to capture some desired
effect is certainly not easy.

17.7 Groups of Objects

To animate multiple objects one can, of course, simply apply standard techniques
outlined above to each of them. This works reasonably well for a moderate num-
ber of independent objects whose desired motion is known in advance. However,
in many cases, some kind of coordinated action in a dynamic environment is nec-
essary. If only a few objects are involved, the animator can use an artificial intel-
ligence (AI)-based system to automatically determine immediate tasks for each
object based on some high-level goal, plan necessary motion, and execute the
plan. Many modern games use suchautonomous objects to create smart monsters
or player’s collaborators.

Interestingly, as the number of objects in a group grows from just a few to
several dozens, hundreds, and thousands, individual members of a group must
have only very limited “intelligence” in order for the group as a whole to exhibit
what looks like coordinated goal-driven motion. It turns out that thisflocking

is emergent behavior which can arise as a result of limited interaction of group
members with just a few of their closest neighbors (Reynolds, 1987). Flocking
should be familiar to anyone who has observed the fascinatingly synchronized
motion of aflock of birds or a school offish. The technique can also be used to
control groups of animals moving over terrain or even a human crowd.

440 17. Computer Animation

gravity

goal

velocity matching
collision avoidance

flock centering

physical forces

navigation module

steering

collision avoidance goal

pilot module

physical constraints desired velocity

feasible velocity

flight module

boid control adjustments

Figure 17.28. (Left) Individual flock member (boid) can experience several urges of different
importance (shown by line thickness) which have to be negotiated into a single velocity vec-
tor. A boid is aware of only its limited neighborhood (circle). (Right) Boid control is commonly
implemented as three separate modules.

At any given moment, the motion of a member of a group, often called boid
when applied toflocks, is the result of balancing several often contradictory ten-
dencies, each of which suggests its own velocity vector (see Figure 17.28). First,
there are external physical forcesF acting on the boid, such as gravity or wind.
New velocity due to those forces can be computed directly through Newton’s law
as

vphysics
new = vold + F∆t/m.

Second, a boid should react to global environment and to the behavior of other
group members. Collision avoidance is one of the main results of such interac-
tion. It is crucial forflocking that each group member has only limitedfield of
view, and therefore is aware only of things happening within some neighborhood
of its current position. To avoid objects in the environment, the simplest, if imper-
fect, strategy is to set up a limited extent repulsive forcefield around each such
object. This will create a second desired velocity vectorvcol avoid

new , also given
by Newton’s law. Interaction with other group members can be modeled by si-
multaneously applying different steering behaviors resulting in several additional
desired velocity vectorsvsteer

new . Moving away from neighbors to avoid crowding,
steering towardsflock mates to ensureflock cohesion and adjusting a boid’s speed
to align with average heading of neighbors are most common. Finally, some addi-
tional desired velocity vectorsvgoal

new are usually applied to achieve needed global
goals. These can be vectors along some path in space, following some specific

17.7. Groups of Objects 441

designated leader of theflock, or simply representing migratory urge of aflock
member.

Once allvnew are determined, thefinal desired vector is negotiated based on
priorities among them. Collision avoidance and velocity matching typically have
higher priority. Instead of simple averaging of desired velocity vectors which can
lead to cancellation of urges and unnatural “moving nowhere” behavior, an ac-
celeration allocation strategy is used. Somefixed total amount of acceleration is
made available for a boid and fractions of it are being given to each urge in order
of priority. If the total available acceleration runs out, some lower priority urges
will have less effect on the motion or be completely ignored. The hope is that
once the currently most important task (collision avoidance in most situations) is
accomplished, other tasks can be taken care of in near future. It is also important
to respect some physical limitations of real objects, for example, clamping too
high accelerations or speeds to some realistic values. Depending on the internal
complexity of theflock member, thefinal stage of animation might be to turn the
negotiated velocity vector into a specific set of parameters (bird’s wing positions,
orientation of plane model in space, leg skeleton bone configuration) used to con-
trol a boid’s motion. A diagram of a system implementingflocking is shown on
Figure 17.28 (right).

A much simpler, but still very useful, version of group control is implemented
by particle systems (Reeves, 1983). The number of particles in a system is typi-
cally much larger than number of boids in aflock and can be in the tens or hun-
dreds of thousands, or even more. Moreover, the exact number of particles can
fluctuate during animation with new particles being born and some of the old
ones destroyed at each step. Particles are typically completely independent from
each other, ignoring one’s neighbors and interacting with the environment only
by experiencing external forces and collisions with objects,not through collision
avoidance as was the case forflocks. At each step during animation, the sys-
temfirst creates new particles with some initial parameters, terminates old ones,
and then computes necessary forces and updates velocities and positions of the
remaining particles according to Newton’s law.

All parameters of a particle system (number of particles, particle life span,
initial velocity, and location of a particle, etc.) are usually under the direct control
of the animator. Prime applications of particle systems include modelingfire-
works, explosions, spraying liquids, smoke andfire, or other fuzzy objects and
phenomena with no sharp boundaries. To achieve a realistic appearance, it is im-
portant to introduce some randomness to all parameters, for example, having a
random number of particles born (and destroyed) at each step with their velocities
generated according to some distribution. In addition to setting appropriate initial

442 17. Computer Animation

Particle source

Local wind field

Figure 17.29. After being emitted by a directional source, particles collide with an object
and then are blown down by a local wind field once they clear the obstacle.

parameters, controlling the motion of a particle system is commonly done by cre-
ating a specific force pattern in space—blowing a particle in a new direction once
it reaches some specific location or adding a center of attraction, for example.
One should remember that with all their advantages, simplicity of implementa-
tion and ease of control being the prime ones, particle systems typically do not
provide the level of realism characteristic of true physics-based simulation of the
same phenomena.

Notes

In this chapter we have concentrated on techniques used in 3D animation. There
also exist a rich set of algorithms to help with 2D animation production and post-
processing of images created by computer graphics rendering systems. These
include techniques for cleaning up scanned-in artist drawings, feature extrac-
tion, automatic 2D in-betweening, colorization, image warping, enhancement and
compositing, and many others.

One of the most significant developments in the area of computer animation
has been the increasing power and availability of sophisticated animation systems.
While different in their specific set of features, internal structure, details of user
interface, and price, most such systems include extensive support not only for
animation, but also for modeling and rendering turning them into complete pro-
duction platforms. It is also common to use these systems to create still images.
For example, many images forfigures in this section were produced using Maya
software generously donated by Alias.

17.8. Notes 443

Large-scale animation production is an extremely complex process which typ-
ically involves a combined effort by dozens of people with different backgrounds
spread across many departments or evencompanies. To better coordinate this ac-
tivity, a certain production pipeline is established which starts with a story and
character sketches, proceeds to recordnecessary sound, build models, and rig
characters for animation. Once actual animation commences, it is common to
go back and revise the original designs, models, and rigs tofix any discovered
motion and appearance problems. Setting up lighting and material properties is
then necessary, after which it is possible to start rendering. In most sufficiently
complex projects, extensive postprocessing and compositing stages bring together
images from different sources andfinalize the product.

We conclude this chapter by reminding the reader that in thefield of computer
animation any technical sophistication is secondary to a good story, expressive
characters, and other artisticfactors, most of which are hard or simply impossible
to quantify. It is safe to say that Snow White and her seven dwarfs will always
share the screen with green ogres and donkeys, and most of the audience will be
much more interested in the characters and the story rather than in which, if any,
computers (and in what exact way)helped to create either of them.

18
Peter Willemsen

Using Graphics Hardware

Throughout most of this book, the focus has been on the fundamentals underlying
computer graphics rather than on implementation details. This chapter takes a
slightly different route and blends the details of using graphics hardware with the
practical issues associated with programming that hardware.

This chapter, however, is not written to teach you OpenGL,TM other graphics
APIs, or even the nitty gritty specifics of graphics hardware programming. The
purpose of this chapter is to introduce the basic concepts and thought processes
that are necessary when writing programs that use graphics hardware.

18.1 What Is Graphics Hardware

Graphics hardware describes the hardware components necessary to quickly ren-
der 3D objects as pixels on your computer’s screen using specialized rasterization-
based hardware architectures. The use of this term is meant to elicit a sense of
the physical components necessary for performing these computations. In other
words, we’re talking about the chipsets, transistors, buses, and processors found
on many current video cards. As we will see in this chapter, current graphics
hardware is very good at processing descriptions of 3D objects and transforming
them into the colored pixels thatfill your monitor.

One thing has been certain with graphics hardware: it changes veryquickly

with new extensions and features being added continually! One explanation for
the fast pace is the video game industry and its economic momentum. Essentially

445

446 18. Using Graphics Hardware

Geometry
Processing

Pixel
Processing

User
Program

primitives
2D screen

coordinates

Figure 18.1. The basic graphics hardware pipeline consists of stages that transform 3D
data into 2D screen objects ready for rasterizing and coloring by the pixel processing stages.

what this means is that each new graphicscard provides better performance and
processing capabilities. As a result, graphics hardware is being used for tasks
that support a much richer use of 3D graphics. For instance, researchers are per-
forming computation on graphics hardware to perform ray-tracing (Purcell et al.,
2002) and even solve the Navier-Stokes equations to simulatefluid flow (Harris,
2004).Real-Time Graphics : By

real-time graphics, we

generally mean that the

graphics-related compu-

tations are being carried

out fast enough that the

results can be viewed

immediately. Being able

to conduct operations at

60Hz is considered real

time. Once the time to

refresh the display (frame

rate) drops below 15Hz,

the speed is considered

more interactive than it is

real-time, but this distinc-

tion is not critical. Because

the computations need to

be fast, the equations used

to render the graphics are

often approximations to

what could be done if more

time were available.

Most graphics hardware has been built to perform a set offixed operations
organized as a pipeline designed to push vertices and pixels through different
stages. Thefixed functionality of the pipeline ensures that basic coloring, lighting,
and texturing can occur veryquickly—often referred to asreal-time graphics.

Figure 18.1 illustrates the real-time graphics pipeline. The important things
to note about the pipeline follow:

• The user program, or application, supplies the data to the graphics hardware
in the form ofprimitives, such as points, lines, or polygons describing the
3D geometry. Images or bitmaps are also supplied for use in texturing
surfaces.

• Geometric primitives are processed on a per-vertex basis and are trans-
formed from 3D coordinates to 2D screen triangles.

• Screen objects are passed to the pixel processors, rasterized, and then col-
ored on a per-pixel basis before being output to the frame buffer, and even-
tually to the monitor.

18.2 Describing Geometry for the Hardware

As a graphics programmer, you need to be concerned with how the data associ-
ated with your 3D objects is transferredonto the memory cache of the graphics
hardware. Unfortunately (or maybe fortunately), as a programmer you don’t have
complete control over this process. There are a variety of ways to place your

18.2. Describing Geometry for the Hardware 447

data on the graphics hardware, and each has its own advantages which will be
discussed in this section. Any of the APIs you might use to program your video
card will provide different methods to load data onto the graphics hardware mem-
ory. The examples that follow are presented in pseudocode that is based loosely
on the C function syntax of OpenGL,TM but semantically the examples should be
applicable to other graphics APIs. Primitives : The three

primitives (points, lines,

and polygons) are the only

primitives available! Even

when creating spline-based

surfaces, such as NURBs,

the surfaces are tessellated

into triangle primitives by

the graphics hardware.

Most graphics hardware work with specific sets of geometric primitives. The
primitive types leverage primitive complexity for processing speed on the graph-
ics hardware. Simpler primitives can be processed very fast. The caveat is that
the primitive types need to be general purpose so as to model a wide range of
geometry from very simple to very complex. On typical graphics hardware, the
primitive types are limited to one or more of the following:

• points—single vertices used to represent points or particle systems;

• lines—pairs of vertices used to represent lines, silhouettes, or edge-
highlighting; Point Rendering : Point

and line primitives may ini-

tially appear to be lim-

ited in use, but researchers

have used points to ren-

der very complex geome-

try (Rusinkiewicz & Levoy,

2000; Dachsbacher et al.,

2003).

• polygons—triangles, triangle strips, indexed triangles, indexed triangle
strips, quadrilaterals, general convex polygons, etc., used for describing tri-
angle meshes, geometric surfaces, andother solid objects, such as spheres,
cones, cubes, or cylinders.

These three primitives form the basic building blocks for most geometry you
will define. (An example of a triangle mesh is shown in Figure 18.2.) Using these
primitives, you can build descriptions of your geometry using one of the graphics
APIs and send the geometry to the graphics hardware for rendering. For instance,

Figure 18.2. How your geometry is organized will affect the performance of your applica-
tion. This wireframe depiction of the Little Cottonwood Canyon terrain dataset shows tens of
thousands of triangles organized in a triangle mesh running at real-time rates. The image is
rendered using the VTerrain Project terrain system courtesy of Ben Discoe.

448 18. Using Graphics Hardware

to transfer the description of a line to the graphics hardware, we might use the
following:

beginLine();
vertex(x1, y1, z1);
vertex(x2, y2, z2);

endLine();

In this example, two things occur. First, one of the primitive types is declared and
made active by thebeginLine() function call. The line primitive is then made
inactive by theendLine() function call. Second, all vertices declared between
these two functions are copied directly to the graphics card for processing with
thevertex function calls.

A second example creates a set of triangles grouped together in a strip (refer
to Figure 18.3); we could use the following code:

v0v4

v3

v2

v1

t0

t1

t2

Figure 18.3. A trian-
gle strip composed of five
vertices defining three tri-
angles.

beginTriangleStrip();
vertex(x0, y0, z0);
vertex(x1, y1, z1);
vertex(x2, y2, z2);
vertex(x3, y3, z3);
vertex(x4, y4, z4);

endTriangleStrip();

In this example, the primitive type,TriangleStrip, is made active and the set
of vertices that define the triangle strip are copied to the graphics card memory for
processing. Note that ordering does matter when describing geometry. In the tri-
angle strip example, connectivity between adjacent triangles is embedded within
the ordering of the vertices. Trianglet0 is constructed from vertices(v0, v1, v2),
trianglet1 from vertices(v1, v3, v2), and trianglet2 from vertices(v2, v3, v4).

The key point to learn from these simple examples is that geometry is defined
for rendering on the graphics hardware using a primitive type along with a set of
vertices. The previous examples are simple and push the vertices directly onto
the graphics hardware. However, in practice, you will need to make conscious
decisions about how you will push your data to the graphics hardware. These
issues will be discussed shortly.

As geometry is passed to the graphics hardware, additional data can be spec-
ified for each vertex. This extra data is useful for defining state attributes, that
might represent the color of the vertex, the normal direction at the vertex, texture
coordinates at the vertex, or other per-vertex data. For instance, to set the color
and normal state parameters at each vertex of a triangle strip, we might use the
following code:

18.2. Describing Geometry for the Hardware 449

beginTriangleStrip();
color(r0, g0, b0); normal(n0x, n0y, n0z);
vertex(x0, y0, z0);
color(r1, g1, b1); normal(n1x, n1y, n1z);
vertex(x1, y1, z1);
color(r2, g2, b2); normal(n2x, n2y, n2z);
vertex(x2, y2, z2);
color(r3, g3, b3); normal(n3x, n3y, n3z);
vertex(x3, y3, z3);
color(r4, g4, b4); normal(n4x, n4y, n4z);
vertex(x4, y4, z4);

endTriangleStrip();

Here, the color and normal direction at each vertex are specified just prior to the
vertex being defined. Each vertex in this example has a unique color and normal
direction. Thecolor function sets the active color state using a RGB 3-tuple.
The normal direction state at each vertex is set by thenormal function. Both the
color andnormal function affect the current rendering state on the graphics
hardware. Any vertices defined after these state attributes are set will be bound
with those state attributes.

This is a good moment to mention that the graphics hardware maintains a
fairly elaborate set of state parameters that determine how vertices and other com-
ponents are rendered. Some state is bound to vertices, such as color, normal direc-
tion, and texture coordinates, while another state may affect pixel level rendering.
Thegraphics state at any particular moment describes a large set of internal hard-
ware parameters. This aspect of graphics hardware is important to consider when
you write 3D applications. As you might suspect, making frequent changes to the
graphics state affects performance at least to some extent. However, attempting
to minimize graphics state changes is only one of many areas where thoughtful
programming should be applied. You should attempt to minimize state changes
when you can, but it is unlikely that you can group all of your geometry to com-
pletely reduce state context switches. One data structure that can help minimize
state changes, especially on static scenes, is the scene graph data structure. Prior
to rendering any geometry, the scene graph can re-organize the geometry and as-
sociated graphics state in an attempt to minimize state changes. Scene graphs are
described in Chapter 12.

color(r, g, b);
normal(nx, ny, nz);
beginTriangleStrip();

vertex(x0, y0, z0);
vertex(x1, y1, z1);
vertex(x2, y2, z2);

450 18. Using Graphics Hardware

vertex(x3, y3, z3);
vertex(x4, y4, z4);

endTriangleStrip();

All vertices in thisTriangleStrip have the same color and normal direction,
so these state parameters can be set prior to defining the vertices. This minimizes
both function call overhead and changes to the internal graphics state.

Many things can affect the performance of a graphics program, but one of the
potentially large contributors to performance (or lack thereof) is how your geome-
try is organized and whether it is storedin the memory cache of the graphics card.
In the pseudocode examples provided so far, geometry has been pushed onto the
graphics hardware in what is often calledimmediate mode rendering. As vertices
are defined, they are sent directly to the graphics hardware. The primary disad-
vantage of immediate mode rendering is that the geometry is sent to the graphics
hardware each iteration of your application. If your geometry is static (i.e., it
doesn’t change), then there is no real need to resend the data each time you re-
draw a frame. In these and other circumstances, it is more desirable to store the
geometry in the graphics card’s memory.

The graphics hardware in your computer is connected to the rest of the system
via a data bus, such as the PCI, AGP, or PCI-Express buses. When you send data
to the graphics hardware, it is sent by the CPU on your machine across one of
these buses, eventually being stored in the memory on your graphics hardware. If
you have very large triangle meshes representing complex geometry, passing all
this data across the bus can end up resulting in a large hit to performance. This
is especially true if the geometry is being rendered in immediate mode, as the
previous examples have illustrated.

There are various ways to organize geometry; some can help reduce the over-
all bandwidth needed for transmitting the geometry across the graphics bus. Some
possible organization approaches include:

• triangles. Triangles are specified with three vertices. A triangle mesh
created in this manner requires that each triangle in the mesh be defined
separately with many vertices potentially duplicated. For a triangle mesh
containingm triangles,3m vertices will be sent to the graphics hardware.

• triangle strips. Triangles are organized in strips; thefirst three vertices
specify thefirst triangle in the strip and each additional vertex adds a tri-
angle. If you create a triangle mesh withm triangles organized as a single
triangle strip, you send three vertices to the graphics hardware for the first
triangle followed by a single vertex for each additional triangle in the strip
for a total ofm + 2 vertices.

18.2. Describing Geometry for the Hardware 451

• indexed triangles. Triangle vertices are arranged as an array of vertices
with a separate array defining the triangles using indices into the vertex
array. Vertex arrays are sent to the graphics card with very few function
calls.

• indexed triangle strips. Similar to indexed triangles, triangle vertices are
stored in a vertex array. However, triangles are organized in strips with
the index array defining the strip layout. This is the most compact of the
organizational structures for defining triangle meshes as it combines the
benefits of triangles strips with the compactness of vertex arrays.

Of the different organizational structures, the use of vertex arrays, either through
indexed triangles or indexed triangle strips, provides a good option for increasing
the performance of your application. The tight encapsulation of the organization
means that many fewer function calls need to be made as well. Once the vertices
and indices are stored in an array, only a few function calls need to be made to
transfer the data to the graphics hardware, whereas with the pseudocode examples
illustrated previously, a function is called for each vertex.

At this point, you may be wondering how the graphics state such as colors,
normals, or texture coordinates are defined when vertex arrays are used. In the
immediate-mode rendering examples earlier in the chapter, interleaving the graph-
ics state with the associated vertices is obvious based on the order of the function
calls. When vertex arrays are used, graphics state can either be interleaved in the
vertex array or specified in separate arrays that are passed to the graphics hard-
ware.

Even if the geometry is organized efficiently when it is sent to the graphics
hardware, you can achieve higher performance gains if you can store your geom-
etry in the graphics hardware’s memory for the duration of your application. A
somewhat unfortunate fact about current graphics hardware is that many of the
specifications describing the layout of the graphics hardware memory and cache
structure are often not widely publicized. Fortunately though, there are ways us-
ing graphics APIs that allow programmers to place geometry into the graphics
hardware memory resulting in applications that run faster.

Two commonly used methods to store geometry and graphics state in the
graphics hardware cache involve creatingdisplay lists or vertex buffer objects.

Display lists compile a compact list representation of the geometry and the
state associated with the geometry and store the list in the memory on the graphics
hardware. The benefits of display lists are that they are general purpose and good
at storing a static geometric representation plus associated graphics state on the
hardware. They do not work well at all for continuously changing geometry and

452 18. Using Graphics Hardware

graphics state, since the display list must be recompiled and then storedagain

in the graphics hardware memory for every iteration in which the display list
changes.

displayID = createDisplayList();
color(r, g, b);
normal(nx, ny, nz);
beginTriangleStrip();

vertex(x0, y0, z0);
vertex(x1, y1, z1);
...
vertex(xN, yN, zN);

endTriangleStrip();
endDisplayList();

In the above example, a display list is created that contains the definition of a tri-
angle strip with its associated color and normal information. The commands be-
tween thecreateDisplayList andendDisplayList function calls pro-
vide the elements that define the display list. Display lists are most often created
during an initialization phase of an application. After the display list is created, it
is stored in the memory of the graphics hardware and can be referenced for later
use by the identifier assigned to the list.

// draw the display list created earlier
drawDisplayList(displayID);

When it is time to draw the contents of the display list, a single function call will
instruct the graphics hardware to access the memory indexed through the display
list identifier and display the contents.Optimal Organization :

Much research effort has

gone into looking at ways

to optimize triangle meshes

for maximum performance

on graphics hardware. A

good place to start read-

ing if you want to delve fur-

ther into understanding how

triangle mesh organization

affects performance is the

SIGGRAPH 1999 paper on

the optimization of mesh lo-

cality (Hoppe, 1999).

A second method to store geometry on the graphics hardware for the duration
of your application is through vertex buffer objects (VBOs). VBOs are specialized
buffers that reside in high-performance memory on the graphics hardware and
store vertex arrays and associated graphics state. They can also provide a mapping
from your application to the memory on the graphics hardware to allow for fast
access and updating to the contents of the VBO.

The chief advantage of VBOs is that they provide a mapping into the graphics
hardware memory. With VBOs, geometry can be modified during an application
with a minimal loss of performance ascompared with using immediate mode
rendering or display lists. This is extremely useful if portions of your geometry
change during each iteration of your application or if the indices used to organize
your geometry change.

VBOs are created in much the same way indexed triangles and indexed trian-
gle strips are built. A buffer object isfirst created on the graphics card to make

18.3. Processing Geometry into Pixels 453

room for the vertex array containing the vertices of the triangle mesh. Next, the
vertex array and index array are copied over to the graphics hardware. When it
is time to render the geometry, the vertex buffer object identifier can be used to
instruct the graphics hardware to draw your geometry. If you are already using
vertex arrays in your application, modifying your code to use VBOs should likely
require a minimal change.

18.3 Processing Geometry into Pixels

After the geometry has been placed in the graphics hardware memory, each ver-
tex must be lit as well as transformed into screen coordinates during the geometry
processing stage. In thefixed-function graphics pipeline illustrated in Figure 18.1,
vertices are transformed from a model coordinate system to a screen coordinate
frame of reference. This process and the matrices involved are described in Chap-
ters 7 and 8. The modelview and projection matrices needed for this transfor-
mation are defined using functions provided with the graphics API you decide to
use.

Lighting is calculated on a per-vertex basis. Depending on the global shading
parameters, the triangle face will either have aflat-shaded look or the face color
will be diffusely shaded (Gouraud shading) by linearly interpolating the color at
each triangle vertex across the face of the triangle. The latter method produces
a much smoother appearance. The color at each vertex is computed based on
the assigned material properties, the lights in the scene, and various lighting
parameters.

The lighting model in thefixed-function graphics pipeline is good for fast
lighting of vertices; we make a tradeoff for increased speed over accurate illu-
mination. As a result, Phong shaded surfaces are not supported with thisfixed-
function framework.

Figure 18.4. The distance
to the light source is small
relative to the size of the tri-
angle.

In particular, the diffuse shading algorithm built into the graphics hardware
often fails to compute the appropriate illumination since the lighting is only being
calculated at each vertex. For example, when the distance to the light source is
small, as compared with the size of the face being shaded, the illumination on
the face will be incorrect. Figure 18.4 illustrates this situation. The center of
the triangle will not be illuminated brightly despite being very close to the light
source, since the lighting on the vertices, which are far from the light source, are
used to interpolate the shading across the face.

With thefixed-function pipeline, this issue can only be remedied by increasing
the tessellation of the geometry. This solution works but is of limited use in real-

454 18. Using Graphics Hardware

time graphics as the added geometry required for more accurate illumination can
result in slower rendering.

However, with current hardware, the problem of obtaining better approxima-
tions for illumination can be solved without necessarily increasing the geometric
complexity of the objects. The solution involves replacing thefixed-function rou-
tines embedded within the graphics hardware with your own programs. These
small programs run on the graphics hardware and perform a part of the geometry
processing and pixel-processing stages of the graphics pipeline.

18.3.1 Programming the Pipeline

Fairly recent changes to the organization of consumer graphics hardware has gen-
erated a substantial buzz from game developers, graphics researchers, and many
others. It is quite likely that you have heard aboutGPU programming, graph-

ics hardware programming, or evenshader programming. These terms and the
changes in consumer hardware that have spawned them primarily have to do with
how the graphics hardware rendering pipeline can now be programmed.Definition : Fragment is a

term that describes the in-

formation associated with

a pixel prior to being pro-

cessed by the graphics

hardware. This definition

includes much of the data

that might be used to cal-

culate the color of the pixel,

such as the pixel’s scene

depth, texture coordinates,

or stencil information.

Specifically, the changes have opened up two specific aspects of the graphics
hardware pipeline. Programmers now have the ability to modify how the hard-
ware processes vertices and shades pixels by writingvertex shaders and frag-

ment shaders (also sometimes referred to asvertex programs or fragment pro-

grams). Vertex shaders are programs that perform the vertex and normal trans-
formations, texture coordinate generation, and per-vertex lighting computations
normally computed in the geometry processing stage. Fragment shaders are pro-
grams that perform the computations in the pixel processing stage of the graphics
pipeline and determine exactly how each pixel is shaded, how textures are ap-
plied, and if a pixel should be drawn or not. These small shader programs are
sent to the graphics hardware from the user program (see Figure 18.5), but they
are executed on the graphics hardware. What this programmability means for

Geometry
Processing

Pixel
Processing

User
Program

primitives
2D screen

coordinates

vertex program
pixel shader

Figure 18.5. The programmable graphics hardware pipeline. The user program supplies
primitives, vertex programs, and fragment programs to the hardware.

18.3. Processing Geometry into Pixels 455

you is that you essentially have a multi-processor machine. This turns out to be
a good way to think about your graphics hardware, since it means that you may
be able to use the graphics hardware processor to relieve the load on the CPU in
some of your applications. The graphics hardware processors are often referred
to asGPUs. GPU stands for graphics processing unit and highlights the fact
that graphics hardware components now contain a separate processor dedicated
to graphics-related computations. Historical : Programming

the pipeline is not entirely

new. One of the first

introductions of a graphics

hardware architecture

designed for program-

ming flexibility were the

PixelFlow architectures

and shading languages

from UNC (Molnar et

al., 1992; Lastra et al.,

1995; Olano & Lastra,

1998). Additional efforts

to provide custom shading

techniques have included

shade trees (Cook,

1984), RenderMan (Pixar,

2000), accelerated multi-

pass rendering using

OpenGLTM (Peercy et al.,

2000), and other real-time

shading languages (Proud-

foot et al., 2001; McCool et

al., 2004).

Interestingly, modern GPUs contain more transistors than modern CPUs. For
the time being, GPUs are utilizing most of these transistors for computations and
less for memory or cache management operations.

However, this will not always be the case as graphics hardware continues to
advance. And just because the computations are geared towards 3D graphics,
it does not mean that you cannot perform computations unrelated to computer
graphics on the GPU. The manner in which the GPU is programmed is differ-
ent from your general purpose CPU and will require a slightly modified way of
thinking about how to solve problems and program the graphics hardware.

The GPU is a stream processor that excels at 3D vector operations such as
vector multiplication, vector addition,dot products, and other operations neces-
sary for basic lighting of surfaces and texture mapping. As stream processors,
both the vertex and fragment processingcomponents include the ability to pro-
cess multiple primitives at the same time. In this regard, the GPU acts as a SIMD
(Single Instruction, Multiple Data) processor, and in certain hardware implemen-
tations of the fragment processor, up to 16 pixels can be processed at a time.
When you write programs for these processing components, it will be helpful, at
least conceptually, to think of the computations being performed concurrently on
your data. In other words, the vertex shader program will run for all vertices at
the same time. The vertex computations will then be followed by a stage in which
your fragment shader program will execute simultaneously on all fragments. It
is important to note that while the computations on vertices or fragments occur
concurrently, the staging of the pipeline components still occur in the same order.

The manner in which vertex and fragment shaders work is simple. You write
a vertex shader program and a fragment shader program and send it to the graph-
ics hardware. These programs can be used on specific geometry, and when your
geometry is processed, the vertex shader is used to transform and light the ver-
tices, while the fragment shader performs thefinal shading of the geometry on a
per-pixel basis. Just as you can texture map different images onto different pieces
of geometry, you can also write different shader programs to act upon different
objects in your application. Shader programs are a part of the graphics state so
you do need to be concerned with how your shader programs might get swapped
in and out based on the geometry being rendered.

456 18. Using Graphics Hardware

The details tend to be a bit more complicated, however. Vertex shaders usually
perform two basic actions: set the color at the vertex and transform the vertex into
screen coordinates by multiplying the vertex by the modelview and projection
matrices. The perspective divide and clipping steps are not performed in a vertex
program. Vertex shaders are also often used to set the stage for a fragment shader.
In particular, you may have vertex attributes, such as texture coordinates or other
application-dependent data, that the vertex shader calculates or modifies and then
sends to the fragment processing stage for use in your fragment shader. It may
seem strange atfirst, but vertex shaders can be used to manipulate the positions
of the vertices. This is often useful for generating simulated ocean wave motion
entirely on the GPU.

In a fragment shader, it is required that the program outputs the fragment
color. This may involve looking up texture values and combining them in some
manner with values obtained by performing a lighting calculation at each pixel;
or, it may involve killing the fragment from being drawn entirely. Because op-
erations in the fragment shader operate at the fragment level, the real power of
the programmable graphics hardware is inthe fragment shader. This added pro-
cessing power represents one of the key differences between thefixed function
pipeline and the programmable pipeline. In thefixed pipeline, fragment process-
ing used illumination values interpolated between the vertices of the triangle to
compute the fragment color. With the programmable pipeline, the color at each
fragment can be computed independently. For instance, in the example situation
posed in Figure 18.4, Gouraud shading of a triangle face fails to produce a reason-
able solution becauselighting only occurs at the vertices which are farther away
from the light than the center of the triangle. In a fragment shader, the lighting
equation can be evaluated at each fragment, rather than at each vertex, resulting
in a more accurate rendering of the face.

18.3.2 Basic Execution Model

When writing vertex or fragment shaders, there are a few important things to un-
derstand in terms of how vertex and fragment programs execute and access data
on the GPU. Because these programs run entirely on the GPU, thefirst details
you will need tofigure out are which data your shaders will use and how to get
that data to them. There are several characteristics associated with the data types
used in shader programs. The following terms, which come primarily from the
OpenGLTM Shading Language framework, are used to describe the conceptual
aspects of these data characteristics. The concepts are the same across different
shading language frameworks. In the shaders you write, variables are character-
ized using one of the following terms:

18.3. Processing Geometry into Pixels 457

• attributes. Attribute variables represent data that changes frequently, often
on a per-vertex basis. Attribute variables are often tied to the changing
graphics state associated with each vertex. For instance, normal vectors or
texture coordinates are considered to be attribute data since they are part of
the graphics state associated with each vertex.

• uniforms. Uniform variables represent data that cannot change during the
execution of a shader program. However, uniform variables can be mod-
ified by your application between executions of a shader. This provides
another way for your application to communicate data to a shader. Uniform
data often represent the graphics state associated with an application. For
instance, the modelview and projection matrices can be accessed through
uniform variables. Information about light sources in your application can
also be obtained through uniform variables. In these examples, the data
does not change while the shader is executing, but could (e.g., the light
could move) prior to the next iteration of the application.

• varying. Varying data is used to pass data between a vertex shader and
a fragment shader. The reason the data is consideredvarying is because
it is written by vertex shaders on a per-vertex basis, but read by fragment
shaders as value interpolated across the face of the primitive between neigh-
boring vertices.

Variables defined using one of these three characteristics can either be built-in
variables or user-defined variables. In addition to accessing the built-in graphics
state, attribute and uniform variables are one of the ways to communicate user-
defined data to your vertex and fragment programs. Varying data is the only means
to pass data from a vertex shader to a fragment shader. Figure 18.6 illustrates the
basic execution of the vertex and fragment processors in terms of the inputs and
outputs used by the shaders.

Another way to pass data to vertex and fragment shaders is by using texture
maps as sources and sinks of data. This may come as a surprise if you have been
thinking of texture maps solely as images that are applied to the outside surface of
geometry. The reason texture maps are important is because they give you access
to the memory on the graphics hardware. When you write applications that run
on the CPU, you control the memory your application requires and have direct
access to it when necessary. On graphics hardware, memory is not accessed in
the same manner. In fact, you are not directly able to allocate and deallocate gen-
eral purpose memory chunks, and this particular aspect usually requires a slight
change in thinking.

458 18. Using Graphics Hardware

per-vertex attributes

uniform graphics state

texture data

special: vertex position,
vertex color

varying per-pixel data

vertex
processor

vertex transformation,
per-vertex lighting,

computation

vertex shader

varying per-pixel data

uniform graphics state

texture data

special: fragment color
or other attributes

fragment
processor

per-pixel lighting,
texture map generation,

computation

fragment shader

texture data

Figure 18.6. The execution model for shader programs. Input, such as per-vertex attributes,
graphics state-related uniform variables, varying data, and texture maps are provided to
vertex and fragment programs within the shader processor. Shaders output special variables
used in later parts of the graphics pipeline.

Texture maps on graphics hardware, however, can be created, deleted, and
controlled through the graphics API you use. In other words, for general data
used by your shader, you will create texture maps that contain that data and then
use texture access functions to look up the data in the texture map. Technically,
textures can be accessed by both vertex and fragment shaders. However, in prac-Note: The shader lan-

guage examples used in

this chapter are presented

using GLSL (OpenGLTM

Shading Language). This

language was chosen since

it is being developed by

the OpenGLTM Architec-

ture Review Board and

will likely become a stan-

dard shading language for

OpenGLTM with the release

of OpenGLTM 2.0. As

of this writing, GLSL can

be used on most mod-

ern graphics cards with up-

dated graphics hardware

drivers.

tice, texture lookups from the vertex shader are not currently supported on all
graphics cards. An example that utilizes a texture map as a data source is bump
mapping. Bump mapping uses a normal map which defines how the normal vec-
tors change across a triangle face. A bump mapping fragment shader would look
up the normal vector in the normal map “texture data” and use it in the shading
calculations at that particular fragment.

You need to be concerned about the types of data you put into your tex-
ture maps. Not all numerical data types are well supported and only recently
has graphics hardware includedfloating point textures with 16-bit components.
Moreover,none of the computation being performed on your GPU is done with
double-precision math! If numerical precision is important for your application,
you will need to think through these issues very carefully to determine if using
the graphics hardware for computation is useful.

So what do these shader programs look like? One way to write vertex and
fragment shaders is through assembly language instructions. For instance, per-
forming a matrix multiplication in shader assembly language looks something
like this:

DP4 p[0].x, M[0], v[0];
DP4 p[0].y, M[1], v[0];
DP4 p[0].z, M[2], v[0];
DP4 p[0].w, M[3], v[0];

18.3. Processing Geometry into Pixels 459

In this example, theDP4 instruction is a 4-component dot product function. It
stores the result of the dot product in thefirst register and performs the dot
product between the last two registers. In shader programming, registers hold
4-components corresponding to thex, y, z, andw components of a homogeneous
coordinate, or ther, g, b, anda components of a RGBA tuple. So, in this example,
a simple matrix multiplication,

p = Mv

is computed by fourDP4 instructions. Each instruction computes one element of
thefinal result.

Fortunately though, you are not forced to program in assembly language. The
good news is that higher-level languages are available to write vertex and frag-
ment shaders. NVIDIA’s Cg, the OpenGLTM Shading Language (GLSL), and
Microsoft’s High Level Shading Language(HLSL) all provide similar interfaces
to the programmable aspects of graphics hardware. Using the notation of GLSL,
the same matrix multiplication performed above looks like this:

p = M * v;

wherep andv are vertex data types andM is a matrix data type. As evidenced
here, one advantage of using a higher-level language over assembly language is
that various data types are available to the programmer. In all of these languages,
there are built-in data types for storing vectors and matrices, as well as arrays and
constructs for creating structures. Many different functions are also built in to
these languages to help compute trigonometric values (sin, cos, etc...), minimum
and maximum values, exponential functions (log2, sqrt, pow, etc...), and other
math or geometric-based functions.

18.3.3 Vertex Shader Example

Vertex shaders give you control over how your vertices are lit and transformed.
They are also used to set the stage for fragment shaders. An interesting aspect to
vertex shaders is that you still are able to use geometry-caching mechanisms, such
as display lists or VBOs, and thus, benefit from their performance gains while us-
ing vertex shaders to do computation on the GPU. For instance, if the vertices
represent particles and you can model the movement of the particles using a ver-
tex shader, you have nearly eliminated the CPU from these computations. Any
bottleneck in performance that may have occurred due to data being passed be-
tween the CPU and the GPU will be minimized. Prior to the introduction of vertex
shaders, the computation of the particle movement would have been performed

460 18. Using Graphics Hardware

on the CPU and each vertex would have been re-sent to the graphics hardware
on each iteration of your application. The ability to perform computations on the
vertices already stored in the graphics hardware memory is a big performance
win.

One of the simplest vertex shaders transforms a vertex into clip coordinates
and assigns the front-facing color to the color attribute associated with the vertex.

void main(void)
{

gl_Position = gl_ModelViewProjectionMatrix *
gl_Vertex;

gl_FrontColor = gl_Color;
}

In this example,gl ModelViewProjectionMatrix is a built-in uniform
variable supplied by the GLSL run-time environment. The variablesgl Vertex
and gl Color are built-in vertex attributes; the special output variables,
gl Position andgl FrontColor are used by the vertex shader to set the
transformed position and the vertex color.

A more interesting vertex shader that implements the surface- shading equa-
tions developed in Chapter 10 illustrates the effect of per-vertex shading using the
Phong shading algorithm.

void main(void)
{

vec4 v = gl_ModelViewMatrix * gl_Vertex;
vec3 n = normalize(gl_NormalMatrix * gl_Normal);
vec3 l = normalize(gl_LightSource[0].position - v);
vec3 h = normalize(l - normalize(v));

float p = 16;
vec4 cr = gl_FrontMaterial.diffuse;
vec4 cl = gl_LightSource[0].diffuse;
vec4 ca = vec4(0.2, 0.2, 0.2, 1.0);

vec4 color;
if (dot(h,n) > 0)

color = cr * (ca + cl * max(0,dot(n,l))) +
cl * pow(dot(h,n), p);

else
color = cr * (ca + cl * max(0,dot(n,l)));

gl_FrontColor = color;
gl_Position = ftransform();

}

18.3. Processing Geometry into Pixels 461

From the code presented in this shader, you should be able to gain a sense of
shader programming and how it resembles C-style programming. Several things
are happening with this shader. First, we create a set of variables to hold the
vectors necessary for computing Phong shading:v,n, l, andh. Note that the
computation in the vertex shader is performed ineye-space. This is done for a va-
riety of reasons, but one reason is that the light-source positions accessible within
a shader have already been transformed into the eye coordinate frame. When you
create shaders, the coordinate system that you decide to use will likely depend
on the types of computations being performed; this is an important factor to con-
sider. Also, note the use of built-in functions and data structures in the example.
In particular, there are several functions used in this shader:normalize, dot,
max, pow, andftransform. These functions are provided with the shader
language. Additionally, the graphics state associated with materials and light-
ing can be accessed through built-in uniform variables:gl FrontMaterial
andgl LightSource[0]. The diffuse component of the material and light
is accessed through thediffuse member of these variables. The color at the
vertex is computed using Equation (10.8) and then stored in the special output
variablegl FrontColor. The vertex position is transformed using the func-

Figure 18.7. Each sphere is rendered using only a vertex shader that computes Phong
shading. Because the computation is being performed on a per-vertex basis, the Phong
highlight only begins to appear accurate after the amount of geometry used to model the
sphere is increased drastically. (See also Plate VIII.)

462 18. Using Graphics Hardware

tion ftransform which is a convenience function that performs the multipli-
cation with the modelview and projection matrices. Figure 18.7 shows the results
from running this vertex shader with differently tessellated spheres. Because the
computations are performed on a per-vertex basis, a large amount of geometry is
required to produce a Phong highlight on the sphere that appears correct.

18.3.4 Fragment Shader Example

Fragment shaders are written in a manner very similar to vertex shaders, and to
emphasize this, Equation (10.8) from will be implemented with a fragment shader.
In order to do this, wefirst will need to write a vertex shader to set the stage for
the fragment shader.

The vertex shader required for this example is fairly simple, but introduces the
use ofvarying variables to communicate data to the fragment shader.

varying vec4 v;
varying vec3 n;

void main(void)
{

v = gl_ModelViewMatrix * gl_Vertex;
n = normalize(gl_NormalMatrix * gl_Normal);

gl_Position = ftransform();
}

Recall that varying variables will be set on a per-vertex basis by a vertex shader,
but when they are accessed in a fragment shader, the values willvary (i.e., be
interpolated) across the triangle, or geometric primitive. In this case, the vertex
position in eye-spacev and the normal at the vertexn are calculated at each
vertex. Thefinal computation performed by the vertex shader is to transform the
vertex into clip coordinates since the fragment shader will compute the lighting
at each fragment. It is not necessary to set the front-facing color in this vertex
shader.

The fragment shader program computes the lighting at each fragment using
the Phong shading model.

varying vec4 v;
varying vec3 n;

void main(void)
{

18.3. Processing Geometry into Pixels 463

vec3 l = normalize(gl_LightSource[0].position - v);
vec3 h = normalize(l - normalize(v));

float p = 16;
vec4 cr = gl_FrontMaterial.diffuse;
vec4 cl = gl_LightSource[0].diffuse;
vec4 ca = vec4(0.2, 0.2, 0.2, 1.0);

vec4 color;
if (dot(h,n) > 0)

color = cr * (ca + cl * max(0,dot(n,l))) +
cl * pow(dot(h,n),p);

else
color = cr * (ca + cl * max(0,dot(n,l)));

gl_FragColor = color;
}

Thefirst thing you should notice is the similarity between the fragment shader
code in this example and the vertex shader code presented in Section 18.3.3. The

Figure 18.8. The results of running the fragment shader from Section 18.3.4. Note that
the Phong highlight does appear on the left-most model which is represented by a single
polygon. In fact, because lighting is calculated at the fragment, rather than at each vertex,
the more coarsely tessellated sphere models also demonstrate appropriate Phong shading.
(See also Plate IX.)

464 18. Using Graphics Hardware

main difference is in the use of the varying variables,v andn. In the fragment
shader, the view vectors and normal values are interpolated across the surface of
the model between neighboring vertices. The results are shown in Figure 18.8.
Immediately, you should notice the Phong highlight on the quadrilateral, which
only contains four vertices. Because the shading is being calculated at the frag-
ment level using the Phong equation with the interpolated (i.e., varying) data,
more consistent and accurate Phong shading is produced with far less geometry.

18.3.5 General Purpose Computing on the GPU

After studying the vertex and fragment shader examples, you may be wondering
if you can write programs to perform other types of computations on the GPU.
Obviously, the answer is yes, as many problems can be coded to run on the GPU
given the various languages available for programming on the GPU. However, a
few facts are important to remember. Foremost,floating point math processing
on graphics hardware is not currently double-precision. Secondly, you will likely
need to transform your problem into a form thatfits within a graphics-related
framework. In other words, you will need to use the graphics APIs to set up the
problem, use texture maps as data rather than traditional memory, and write vertex
and fragment shaders to frame and solve your problem.

Having stated that, the GPU may still be an attractive platform for computa-
tion, since the ratio of transistors that are dedicated to performing computation
is much higher on the GPU than it is on the CPU. In many cases, algorithms
running on GPUs run faster than on a CPU. Furthermore, GPUs perform SIMD
computation, which is especially true at the fragment-processing level. In fact,
it can often help to think about the computation occurring on the fragment pro-
cessor as a highly parallel version of a genericforeach construct, performing
simultaneous operations on a set of elements.

There has been a large amount of investigation to perform General Purpose
computation on GPUs, often referred to as GPGPU. Among other things, re-
searchers are using the GPU as a means to simulate the dynamics of clouds (Harris
et al., 2003), implement ray tracers (Purcell et al., 2002; N. A. Carr et al., 2002),
compute radiosity (Coombe et al., 2004), perform 3D segmentation using level
sets (A. E. Lefohn et al., 2003), or solve the Navier-Stokes equations (Harris,
2004).

General purpose computation is often performed on the GPU using multiple
rendering “passes,” and most computation is done using the fragment processor
due to its highly data-parallel setup. Each pass, called akernel, completes a por-
tion of the computation. Kernels work on streams of data with several kernels

18.3. Processing Geometry into Pixels 465

strung together to form the overall computation. Thefirst kernel completes the
first part of the computation, the second kernel works on thefirst kernel’s data,
and so on, until the calculation is complete. In this style of programming, working
with data and data structures on the GPU is different than conventional program-
ming and does require a bitof thought. Fortunately, recent efforts are providing
abstractions and information for creating efficient data structures for GPU pro-
gramming (A. Lefohn et al., 2005).

Using the GPU for general purpose programming does require that you un-
derstand how to program the graphics hardware. For instance, most applications
that perform GPGPU will render a simple quadrilateral, or sets of quadrilater-
als, with vertex and fragment shaders operating on that geometry. The geometry
doesn’t have to be visible, or drawn to the screen, but it is necessary to allow
the vertex and fragment operations to occur. This focus on graphics does make
the learning curve for general purpose computing on this hardware an adventure.
Fortunately, recent efforts are working tomake the interface to the GPU more like
traditional programming. The Brook for GPUs project (Buck et al., n.d.) is a sys-
tem that provides a C-like interface to afford stream computations on the GPU,
which should allow more people to take advantage of the computational power on
modern graphics hardware.

Frequently Asked Questions

• How do I debug shader programs?

On most platforms, debugging both vertex shaders and fragment shaders is not
simple. There is very little runtime support for debugginggraphics applications
in general, and even less available for runtime debugging of shader programs.
However, this is starting to change. In the latest versions of Mac OS X, Linux,
and Windows, support for shader programming is incorporated. A good solution
for debugging shader programs is to use one of the shader development tools
available from various graphics hardware manufacturers.

Notes

There are many good resources available to learn more about the technical de-
tails involved with programming graphics hardware. A good starting point might
be the OpenGLTM Programming Guide (Shreiner et al., 2004). The OpenGLTM

Shading Language (Rost, 2004) and The Cg Tutorial (Fernando & Killgard, 2003)

466 18. Using Graphics Hardware

provide details on how to program using a shading language. More advanced
technical information and examples for programming the vertex and fragment
processors can be found in the GPU Gems series of books
(Fernando, 2004; Pharr & Fernando, 2005). A source of information for learning
more about general purpose computation on GPUs (GPGPU) can be found on the
GPGPU.org web site (http://www.gpgpu.org).

Exercises

1. How fast is the GPU as compared to performing the operations on the CPU?
Write a program in which you can parameterize how much data is processed
on the GPU, ranging from no computation using a shader program to all
of the computation being performed using a shader program. How does
the performance of you application change when the computation is being
performed solely on the GPU?

2. Are there sizes of triangle strip lengths that work better than others? Try
to determine the maximum size of a triangle strip that maximizes perfor-
mance. What does this tell you about the memory, or cache structure, on
the graphics hardware?

http://www.gpgpu.org

Plate XXVIII. The spectrum locus for the CIE 1931 standard

observer. (See also Figure 21.6).

Plate XXIX. The chromaticity boundaries of the CIE RGB

primaries at 435.8, 546.1, and 700 nm (solid) and a typical

HDTV (dashed). (See also Figure 21.7.)

u'

v' v'

u'

0.5

0.70.60.50.40.30.20.10.0
0.0

0.1

0.2

0.3

0.4

Plate XXX. The CIE u′v′ chromaticity diagram. (See also

Figure 21.8.)

Plate XXXI. A series of light sources plotted in the CIE u′v′
chromaticity diagram. A white piece of paper illuminated by
any of these light sources maintains a white color appear-
ance. (See also Figure 21.11.)

400 450 500 550 600 650 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Wavelength (nm)

S
en

si
tiv

ity

Color representing
CIE A rendered into
the sRGB color spaceL

M
S

CIE A

Solid lines: relative cone responses
Dashed lines: relative adapted cone responses

Plate XXXII. An exam-
ple of von Kries–style inde-
pendent photoreceptor gain
control. The relative cone
responses (solid line) and
the relative adapted cone
responses to CIE illumi-
nant A (dashed) are shown.
The separate patch of color
represents CIE illuminant
A rendered into the sRGB
color space. (See also Fig-
ure 21.12.)

Plate XXXIII. Crysis exem-
plifies the realistic and de-
tailed graphics expected of
first-person shooters. Im-
age courtesy Crytek. (See
also Figure 26.2.)

Plate XXXIV. An example
of highly stylized, non-
photorealistic rendering
from the game Okami.
Image courtesy Capcom
Entertainment, Inc. (See
also Figure 26.3.)

Plate XXXV. The LittleBig-
Planet developers took care
to choose techniques that
fit the game’s constraints,
combining them in unusual
ways to achieve stunning
results. LittleBigPlanet c©
2007 Sony Computer En-
tertainment Europe. De-
veloped by Media Molecule.
LittleBigPlanet is a trade-
mark of Sony Computer En-
tertainment Europe. (See
also Figure 26.4.)

Plate XXXVI. The normal
map used in Figure 26.8. In
this image, the red, green
and blue channels of the
texture contain the X, Y, and
Z coordinates of the surface
normals. Image courtesy
Keith Bruns. (See also Fig-
ure 26.9.)

Plate XXXVII. An early ver-
sion of a diffuse color tex-
ture for the mesh from Fig-
ure 26.8, shown in Photo-
shop. Image courtesy Keith
Bruns. (See also Figure
26.10.)

Plate XXXVIII. A render-
ing (in ZBrush) of the mesh
with normal map and early
diffuse color texture (from
Plate XXXVII) applied. Im-
age courtesy Keith Bruns.
(See also Figure 26.11.)

Plate XXXIX. Final version
of the color texture from
Plate XXXVII. Image cour-
tesy Keith Bruns. (See also
Figure 26.12.)

Plate XL. Rendering of the
mesh with normal map and
final color texture (from Fig-
ure 26.12) applied. Image
courtesy Keith Bruns. (See
also Figure 26.13.)

Plate XLI. Shader config-
uration in Maya. The in-
terface on the right is used
to select the shader, assign
textures to shader inputs,
and set the values of non-
texture shader inputs (such
as the “Specular Color” and
“Specular Power” sliders).
The rendering on the left is
updated dynamically while
these properties are modi-
fied, enabling immediate vi-
sual feedback. Image cour-
tesy Keith Bruns. (See also
Figure 26.14.)

Plate XLII. The
Tableau/Polaris system
default mappings for four
visual channels according
to data type. Image cour-
tesy Chris Stolte (Stolte et
al., 2008), c© 2008 IEEE.
(See also Figure 27.6.)

Plate XLIII. Complex
glyphs require significant
display area so that the
encoded information can
be read. Image courtesy
Matt Ward, created with
the SpiralGlyphics soft-
ware (M. O. Ward, 2002).
(See also Figure 27.14.)

Plate XLIV. Left: The standard rainbow colormap has two defects: it uses hue to denote ordering, and it is
not perceptually isolinear. (See also Figure 27.8.) Right: The structure of the same dataset is far more clear
with a colormap where monotonically increasing lightness is used to show ordering and hue is used instead
for segmenting into categorical regions. (See also Figure 27.9.) Courtesy Bernice Rogowitz.

Plate XLV. Top: A 3D rep-
resentation of this time se-
ries dataset introduces the
problems of occlusion and
perspective distortion. Bot-
tom: The linked 2D views of
derived aggregate curves
and the calendar allow di-
rect comparison and show
more fine-grained patterns.
Image courtesy Jarke van
Wijk (van Wijk & van Selow,
1999), c© 1999 IEEE. (See
also Figure 27.10.)

Plate XLVI. Tarantula
shows an overview of
source code using one-
pixel lines color coded
by execution status of
a software test suite.
Image courtesy John
Stasko (Jones et al., 2002),
c© 2002 ACM, Inc. In-

cluded here by permission.
(See also Figure 27.11.)

Plate XLVII. Visual lay-
ering with size, saturation,
and brightness in the Con-
stellation system (Munzner,
2000). (See also Figure
27.12.)

Plate XLVIII. The Improvise toolkit was used to create this multiple-view visualization. Image courtesy Chris
Weaver. (See also Figure 27.16.)

Plate XLIX. The Tree-
Juxtaposer system features
stretch and squish naviga-
tion and guaranteed vis-
ibility of regions marked
with colors (Munzner et al.,
2003). (See also Figure
27.17).

Plate LI. Hierarchical parallel coordinates show high-dimensional data at multiple levels of detail. Image courtesy Matt
Ward (Fua et al., 1999), c© 1999 IEEE. (See also Figure 27.21).

Plate L. Dimensionality
reduction with the Glimmer
multidimensional scaling
approach shows clusters
in a document dataset (In-
gram et al., 2009), c© 2009
IEEE. (See also Figure
27.19.)

Plate LII. Treemap showing a filesystem of nearly one million files. Image courtesy Jean-Daniel Fekete (Fekete & Plaisant,
2002), c© 2002 IEEE. (See also Figure 27.25.)

Plate LIII. Two matrices of linked small multiples showing cancer demographic
data (MacEachren et al., 2003), c© 2003 IEEE. (See also Figure 27.26).

19
Kelvin Sung

Building Interactive Graphics
Applications

While most of the other chapters in this book discuss the fundamental algorithms
in the field of computer graphics, this chapter treats the integration of these al-
gorithms into applications. This is an important topic since the knowledge of
fundamental graphics algorithms does not always easily lead to an understanding
of the best practices in implementing these algorithms in real applications.

We start with a simple example: a program that allows the user to simulate the
shooting of a ball (under the influence of gravity). The user can specify initial ve-
locity, create balls of different sizes, shoot the ball, and examine the parabolic free
fall of the ball. Some fundamental concepts we will need include mesh structure
for the representation of the ball (sphere); texture mapping, lighting, and shading
for the aesthetic appearance of the ball; transformations for the trajectories of the
ball; and rasterization techniques for the generation of the images of the balls.

To implement the simple ball shooting program, one also needs knowledge of

• graphical user interface (GUI) systems for efficient and effective user inter-
action;

• software architecture and design patterns for crafting an implementation
framework that is easy to maintain and expand;

• application program interfaces (APIs) for choosing the appropriate support
and avoiding a massive amount of unnecessary coding.

467

468 19. Building Interactive Graphics Applications

To gain an appreciation for these three important aspects of building the ap-
plication, we will complete the following steps:

• analyze interactive applications;

• understand different programming models and recognize important func-
tional components in these models;

• define the interaction of the components;

• design solution frameworks for integrating the components; and

• demonstrate example implementations based on different sets of existing
APIs.

We will use the ball shooting program as our example and begin by refining the
detailed specifications. For clarity, we avoid graphics-specific complexities in
3D space and confine our example to 2D space. Obviously, our simple program
is neither sophisticated nor representative of real applications. However, with
slightly refined specifications, this example contains all the essential components
and behavioral characteristics of more complex real-world interactive systems.

We will continue to build complexity into our simple example, adding new
concepts until we arrive at a software architecture framework that is suitable for
building general interactive graphics applications. We will examine the validity of
our results and discuss how the lessons learned from this simple example can be
applied to other familiar real-world applications (e.g., PowerPoint, Maya, etc.).

19.1 The Ball Shooting Program

Our simple program has the following elements and behaviors.

• The balls (objects). The user can left-mouse-button-click and drag-out a
new ball (circle) anywhere on the screen (see Figure 19.1). Dragging-out a
ball includes:

– (A). Initial mouse-button-click position defines the center of the cir-
cle;

– (B).Mouse button down and moving the mouse is the dragging action;

– (C). Current mouse position while dragging allows us to define the
radius and the initial velocity. The radius R (in pixel units) is the dis-
tance to the center defined in (A). The vector from the current position
to the center is the initial velocity V (in units of pixel per second).

19.1. The Ball Shooting Program 469

(R): Radius

(V): Initial velocity

(A): Initial mouse
click position

Dragging

(C) Current
mouse position

(B) Dragging

Figure 19.1. Dragging out a ball.

Once created, the ball will begin traveling with the defined initial velocity.

• HeroBall (Hero/active object). The user can also right-mouse-button-
click to select a ball to be the current HeroBall. The HeroBall’s velocity
can be controlled by the slider bars (discussed below) where its velocity
is displayed. (A newly created ball is by default the current HeroBall.)
A right-mouse-button-click on unoccupied space indicates that no current
HeroBall exists.

• Velocity slider bars (GUI elements). The user can monitor and control
two slider bars (x- andy-directions with magnitudes) to change the veloc-
ity of the HeroBall. When there is no HeroBall, the slider bar values are
undefined.

• The simulation.

– Ball traveling/collisions (object intrinsic behaviors). A ball knows
how to travel based on its current velocity and one ball can potentially
collide with another. For simplicity, we will assume all balls have
identical mass and all collisions are perfectly elastic.

– Gravity (external effects on objects).The velocity of a ball is con-
stantly changing due to the defined gravitational force.

– Status bar (application state echo).The user can monitor the ap-
plication state by examining the information in the status bar. In our
application, the number of balls currently on the screen is updated in
the status bar.

470 19. Building Interactive Graphics Applications

Ball Shooting Program

Velocity (X) 12.48 (Pixel/Sec)

Velocity (Y) 9.12 (Pixel/Sec)

QUITStatus: Currently there are 5 balls on screen.

User

Velocity

MotionMotion trajectory
for the next second

SliderSlider bar
numeric echo

Dragged
out balls

Current
Hero Ball

Application
Status

Figure 19.2. The ball shooting program.

Our application starts with an empty screen. The user clicks and drags to
create new balls with different radii and velocities. Once a ball travels off of the
screen, it is removed. To avoid unnecessary details, we do not include the drawing
of the motion trajectories or the velocity vector in our solutions. Notice that a
slider bar communicates its current state to the user in two ways: the position of
the slider knob and the numeric echo (see Figure 19.2).

We have now described the behavior of a simple interactive graphics appli-
cation. In the rest of this chapter, we will learn the concepts that support the
implementation of this type of application.

19.2 Programming Models

For many of us, when we werefirst introduced to computer programming, we
learned that the program should always start and end with themain() function—
when themain() function returns, all the work must have been completed and the
program terminates. Since the overall control remains internal to themain() func-
tion during the entire life time of the program, the type of model for this approach
to solving problems is called aninternal control model, or control-driven pro-

gramming. As we will see, an alternative paradigm,event-driven programming

or an external control model approach, is the more appropriate way to design
solutions to interactive programs.

19.2. Programming Models 471

In this section, we willfirst formulate a solution to the 2D ball shooting pro-
gram based on the, perhaps more familiar, control-driven programming model.
We will then analyze the solution, identify shortcomings, and describe the moti-
vation for the external control model or event-driven programming approach.

The pseudocode which follows is C++/Java-like. We assume typical function-
ality from the operating System (OperatingSystem::) and from a graphical user
interface API (GUISystem::). The purpose of the pseudocode is to assist us in
analyzing the foundation control structure (i.e., if/while/case) of the solution. For
this reason, the details of application- and graphics-specific operations are inten-
tionally glossed over. For example, the details of how toUpdateSimulation() is
purposely omitted.

19.2.1 Control-Driven Programming

The main advantage of control-driven programming is that it is fairly straightfor-
ward to translate a verbal description of a solution to a program control structure.
In this case, we verbalize our solution as follows:

while the user does not want to quit (A);

parse and execute the user’s command (B);

update the velocities and positions of the balls (C);

then draw all the balls (D);

andfinally before we poll the user for another command,

tell the user what is going on by echoing current application state to
the status bar (E).

while user command is not quit

parse and excute user’s command

if (OperatingSystem::SufficientClockTimeHasElapesd)
UpdateSimulation() // update the positions and velocities

// of the all the balls (in AllWorldBalls set)

DrawBalls(AllWorldBalls) // all the balls in AllWorldBalls set

EchoToStatusBar() // Sets status bar: number of balls on screen

(A): As long as user is
not ready to quit

(B): Parse the user
command

(C): periodically
update positions and
velocities of the balls

(D): Draw all balls to
the computer screen

(E): Sets status bar
with number of balls

Figure 19.3. Programming structure from a verbalized solution.

472 19. Building Interactive Graphics Applications

Figure 19.3 shows a translation from this verbal solution into a simple pro-
gramming structure. We introduce the set ofAllWorldBalls to represent all the
balls that are currently on the computer screen. The only other difference between
the pseudocode in Figure 19.3 and our verbalized solution is in the added elapsed
time check in Step (C):SufficientClockTimeHasElapsed. (Recall that the veloci-
ties are defined in pixels per second.) To support proper pixel displacements, we
must know real elapsed time between updates.

As we add additional details to parse and execute the user’s commands (B), the
solution must be expanded. The revised solution in Figure 19.4 shows the details
of a central parsing switch statement (B) and the support for all three commands
a user can issue: defining a new HeroBall (B1); selecting a HeroBall (B2); and
adjusting current HeroBall velocity with the slider bars (B3). Undefined user
actions (e.g., mouse movement with no button pressed) are simply ignored (B4).

Notice that HeroBall creation (B1) involves three user actions: mouse down
(B1), followed by mouse drag (B1-1), andfinally mouse up (B1-2). The parsing
of this operation is performed in multiple consecutive passes through the outer
while-loop (A): thefirst time through, we create the new HeroBall (B1); in the
subsequent passes, we perform the actualdragging operation (B1-1). We assume
that mouse drag (B1-1) will never be invoked without mouse button down (B1)
action, and thus the HeroBall is always defined during the dragging operation.

TheLeftMouseButtonUp action (B1-2) is an implicit action not defined in the
original specification. In our implementation, we choose this implicit action to
activate the insertion of the new HeroBall into the AllWorldBalls set. In this
way the HeroBall is not a member of the AllWorldBalls set until after the user has
completed the dragging operation. This delay ensures that the HeroBall’s velocity
and position will not be affected when theUpdateSimulation() procedure updates
all the balls in AllWorldBalls set (C). This means a user can take the time to
drag out a new HeroBall without worrying that the ball will free fall before the
release of the mouse button. The simple amendment in the drawing operation
(D1) ensures a proper drawing of the new HeroBall before it is inserted into the
AllWorldBalls set.

When we examine this solution in the context of supporting user interaction,
we have to concern ourselves with efficiency issues as well as the potential for
increased complexity.

Efficiency Concerns. Typically a user interacts with an application in bursts of
activity—continuous actions followed by periods of idling. This can be explained
by the fact that, as users, we typically perform some tasks in the application and
then spend time examining the results. For example, when working with a word

19.2. Programming Models 473

main() {

while (GUISystem::UserAction != Quit) {

switch (GUISystem::UserAction) {

// Begins creating a new Hero Ball
caseGUISystem::LeftMouseButtonDown:

HeroBall = CreateHeroBall() // heronot in AllWorldBalls set
DefiningNewHeroBall = true

// Drags out the new Hero Ball
caseGUISystem::LeftMouseButtonDrag:

RefineRadiusAndVelocityOfHeroBall()
SetSliderBarsWithHeroBallVelocity()

// Finishes creating the new Hero Ball
caseGUISystem::LeftMouseButtonUp:

InsertHeroBallToAllWorldBalls()
DefiningNewHeroBall = false

// Selects a current hero ball
caseGUISystem::RightMouseButtonDown:

HeroBall = SelectHeroBallBasedOnCurrentMouseXY()
if (HeroBall != null)

SetSliderBarsWithHeroBallVelocity()

// Sets hero velocity with slider bars
caseGUISystem::SliderBarChange:

if (HeroBall != null)
SetHeroBallVelocityWithSliderBarValues()

// Ignores all other user actions e.g. Mouse Move with no buttons, etc
default:

} // end of switch(userAction)

// Move balls by velocities under gravity and remove off-screen ones
if (OperatingSystem::SufficientClockTimeHasElapesd)

UpdateSimulation()

DrawBalls(AllWorldBalls)
// Draw the new Hero Ball that is currently being defined

if (DefiningNewHeroBall)
DrawBalls(HeroBall)

EchoToStatusBar() // Sets Status Bar with number of balls currently on screen

} // end of while(UserAction != Quit)
} // end of main() function. Program terminates.

(B1-1) Support
for drag actions

(B1): Define new
Hero Ball

(B2): Select
current Hero Ball

(B3): Set Hero
Ball Velocity

(A):

(B4): Undefined
actions are ignored

(B1-2) Implicit
Action

(B):

(C):

(D):

(D1): Draw the
new Hero Ball

(E):

Figure 19.4. Programming solution based on the control-driven programming model.

processor, our typical work pattern consists of bursts of typing/editing followed
by periods of reading (with no input action). In our example application, we
can expect the user to drag out some circles and then observe the free-falling of
the circles. The continuous while-loop polling of user commands in themain()

function means that when the user is not performing any action, our program will

474 19. Building Interactive Graphics Applications

still be actively running and wasting machine resources. During activity bursts,
at the maximum, users are capable of generating hundreds of input actions per
second (e.g., mouse-pixel movements per second). If we compare this rate to the
typical CPU instruction capacities that are measured at109 per second, the huge
discrepancy indicates that, even during activity bursts, the user command-parsing
switch statement (B) is spending most of the time in the default case not doing
anything.

Complexity Concerns. Notice that ourentire solution is in themain() function.
This means that all relevant user actions must be parsed and handled by the user
command-parsing switch statement (B). In a modern multi-program shared win-
dow environment, many actions performed by users are actually non-
application specific. For example, if a user performs a left mouse button click or
drag in the drawing area of the program window, our application should react by
dragging out a new HeroBall. However, if the user performs the same actions in
the title area of the program window, our application should forward these actions
to the GUI/Operating/Window system and commence the coordination of moving
the entire program window. As experienced users in window environments, we
understand that there are numerous such non-application specific operations, and
we expect all applications to honor these actions (e.g., iconize, re-size, raise or
lower a window, etc.). Following the solution given in Figure 19.4, for every user
action that we want to honor, we must include a matching supporting case in the
parsing switch statement (B). This requirement quickly increases the complexity
of our solution and becomes a burden to implementing any interactive applica-
tions.

An efficient GUI system should remain idle by default (not taking up ma-
chine resources) and only become active in the presence of interesting activities
(e.g., user input actions). Furthermore, to integrate interactive applications in
sophisticated multi-programming window environments, it is important that the
supporting GUI system automatically takes care of mundane and standard user
actions.

19.2.2 Event-Driven Programming

Event-driven programming remedies the efficiency and complexity concerns with
a defaultMainEventLoop() function defined in the GUI system. For event-driven
programs, theMainEventLoop() replaces themain() function, because all pro-
grams start and end in this function. Just as in the case of themain() func-
tion for control-driven programming, when theMainEventLoop() function re-

19.2. Programming Models 475

UISystem::MainEventLoop() {

SystemInitialization()
// For initialization of application state and
// registration of event service routines

loop forever {

WaitFor (GUISystem::NextEvent)
// Program will stop and wait for the next event

switch (GUISystem::NextEvent) {

caseGUISystem::LeftMouseButtonDown:
if (user application registered for this event)

Execute user defined service routine.
else

Execute default UISystem routine.

caseGUISystem::Iconize:
if (user application registered for this event)

Execute user defined service routine.
else

GUISystem::DefaultIconizeBehavior()

} // end of switch(GUISystem::NextEvent)
} // end of loop forever

} // end of GUISystem::MainEventLoop() function. Program terminates.

(A): For application
initialization

(C): Stop and wait
for next event

(D): Central parsing
switch statement

(B): Continuous
outer loop

Every possible
event

Figure 19.5. The default MainEventLoop function.

turns, all work should have been completed, and the program terminates. The
MainEventLoop() function defines the central control structure for all event-driven
programming solutions and typically cannot be changed by a user application. In
this way, the overall control of an application is actually external to the user’s
program code. For this reason, event-driven programming is also referred to as
the external control model.

Figure 19.5 depicts a typicalMainEventLoop() implementation. In this case,
our program is the user application that is based on theMainEventLoop() func-
tion. Structurally, theMainEventLoop() is very similar to themain() function
of Figure 19.4: with a continuous loop (B) containing a central parsing switch
statement (D). The important differences between the two functions include:

• (A) SystemInitialization(). Recall that event-driven programs start and end
in the MainEventLoop() function. SystemInitialization() is a mechanism
defined to invoke the user program from within theMainEventLoop(). It
is expected that user programs implementSystemInitialization() to initial-
ize the application state and to register event service routines (refer to the
discussion in (D)).

476 19. Building Interactive Graphics Applications

• (B) Continuous outer loop. Since this is a general control structure to
be shared by all event-driven programs, there is no way to determine the
termination condition. User program are expected to override appropriate
event service routines and terminate the program from within the service
routine.

• (C) Stop and wait. Instead of actively polling the user for actions (wasting
machine resources), theMainEventLoop() typically stops the entire appli-
cation process and waits for asynchronous operating system calls to re-
activate the application process in the presence of relevant user actions.

• (D) Events and central parsing switch statement.Included in this state-
ment are all possible actions/events (cases) that a user can perform.
Associated with each event (case) is a default behavior and a toggle
that allows user applications to override the default behavior. During
SystemInitialization(), the user application can register an alternate service
routine for an event by toggling the override.

To develop an event-driven solution, our program mustfirst register event service
routines with the GUI system. After that, our entire program solution is based on
waiting and servicing user events. While control-driven programming solutions
are based on an algorithmic organization of control structures in themain() func-
tion, an event-driven programming solution is based on the specification of events
that cause changes to a defined application state. This is a different paradigm for
designing programming solutions. The key difference here is that, as program-
mers, we have no explicit control over the algorithmic organization of the events:
over which, when, or how often an event should occur.

The program in Figure 19.6 implements the left mouse button operations for
our ball shooting program. We see that during system initialization (A), the pro-
gram defines an appropriate application state (A1) and registers left mouse button
(LMB) down/drag/up events (A2). The corresponding event service routines (D1,
D2, and D3) are also defined. At the end of each event service routine, we redraw
all the balls to ensure that the user can see an up-to-date display at all times. No-
tice the absence of any control structure organizing the initialization and service
routines. Recall that this is an event-driven program: the overall control structure
is defined in the MainEventLoop which is external to our solution.

Figure 19.7 shows how our program from Figure 19.6 is linked with the pre-
definedMainEventLoop() from the GUI system. TheMainEventLoop() calls the
SystemInitialization() function defined in our solution (A). As described, after
the initialization, our entire program is essentially the three event service rou-
tines (D1, D2, and D3). However, we have no control over the invocation of

19.2. Programming Models 477

(A) System Initialization:
(A1): Define Application State:

AllWorldBalls: A set of defined Balls, initialze to empty
HeroBall: current active ball, initialize to null

(A2): Register Event Service Routines
Register for:Left Mouse Button Down Event
Register for: Left Mouse Button Drag Event
Register for: Left Mouse Button Up Event

// We care about these events, inform us if these events happen

(D) Events Services:
(D1): Left Mouse Button Down// service routine for this event

HeroBall = Create a new ball at current mouse position
DrawAllBalls(AllWorldBalls, HeroBall) // Draw all balls (including HeroBall)

(D2): Left Mouse Button Drag // service routine for this event
RefineRadiusAndVelocityOfHeroBall()
DrawAllBalls(AllWorldBalls, HeroBall) // Draw all balls (inlucding HeroBall)

(D3): Left Mouse Button Up // service routine for this event
InsertHeroBallToAllWorldBalls()
DrawAllBalls(AllWorldBalls, null) // Draw all balls

Figure 19.6. A simple event-driven program specification.

these routines. Instead, a user performs actions that trigger events which drive
these routines. These routines in turn change the application state. In this way,
an event-driven programming solution is based on specification of events (LMB
events) that cause changes to a defined application state (AllWorldBalls and Her-
oBall). Since the user command parsing switch statement (D in Figure 19.7) in the
MainEventLoop() contains a case and the corresponding default behavior for ev-
ery possible user actions, without any added complexity, our solution honors the
non-application specific actions in the environment (e.g., iconize, moving, etc).

In the context of event-driven programming, an event can be perceived as
an asynchronous notification that something interesting has happened. The mes-
senger for thenotification is the underlying GUI system. The mechanism for
receiving an event is via overriding the corresponding event service routine.

For these reasons, when discussing event-driven programming, there is always
a supporting GUI system. This GUI system is generally referred to as the graphi-
cal user interface (GUI) application programming interface (API).
Examples of GUI APIs include: Java Swing Library, OpenGL Utility

ToolKit (GLUT), The Fast Light ToolKit (FLTK), Microsoft Foundation Classes

(MFC), etc.
From the above discussion, we see that the registration for services of appro-

priate events is the core of designing and developing solutions for event-driven
programs. Before we begin developing a complete solution for our ball shooting
program, let us spend some time understandingevents.

478 19. Building Interactive Graphics Applications

SystemInitialization() { // (A)
// (A1): Define Application State:
AllWorldBalls: A set of defined Balls, initialze to empty
HeroBall = null

// (A2): Register Event Service Routines
GUISystem::RegisterServiceRoutine(GUystem:: LMBDown, LMBDoneRoutine)
GUISystem::RegisterServiceRoutine(GUystem:: LMBDrag, LMBDragRoutine)
GUystem::RegisterServiceRoutine(GUystem:: LMBUp, LMBUpRoutine)

// “LMB” stands for: Left Mouse Button
}

// Event Service Routines (D)
LMBDownRoutine(mousePosition) // D1: Left Mouse Button Down service routine

HeroBall = new ball at mousePosition
DrawAllBalls(AllWorldBalls, HeroBall) // Draw all balls (including HeroBall)

LMBDragRoutine(mousePosition) // D2: Left Mouse Button Drag service routine
RefineRadiusAndVelocityOfHeroBall(mousePosition)
DrawAllBalls(AllWorldBalls, HeroBall) // Draw all balls (inlucding HeroBall)

LMBUpRoutine(mousePosition) // D3: Left Mouse Button Up service routine
InsertHeroBallToAllWorldBalls()
DrawAllBalls(AllWorldBalls, null) // Draw all balls

GUISystem::MainEventLoop() {

SystemInitialization()
// This will call the user defined function

loop forever {
WaitFor (GUISystem::NextEvent) {
// Process wil stop and wait for the next event
switch (GUISystem::NextEvent) {

caseGUISystem::LeftMouseButtonDown:
if (user application registered for this event)

Invoke LeftMouseButtonDownServiceRoutine(currentMousePosition)
else

Execute default GUISystem routine.

caseGUISystem::LeftMouseButtonDrag:
if (user application registered for this event)

Invoke LeftMouseButtonDragServiceRoutine(currentMousePosition)
else

Execute default GUISystem routine.

caseGUISystem::LeftMouseButtonUp:
if (user application registered for this event)

Invoke LeftMouseButtonUpServiceRoutine(currentMousePosition)
else

Execute default GUISystem routine.
// there are many other events that does not concern us

} // end ofswitch(GUISystem::NextEvent)
} // end of loop forever

} // end of GUISystem::MainEventLoop() function. Program terminates.

Pre-defined GUI
system function

User solution
program

Establish

(A)

(B)

(C)

(D)

(D1)

(D3)

(D2)

Establish these links

Figure 19.7. Linking MainEventLoop with our solution.

Graphical User Interface (GUI) Events

In general, an application may receive events generated by the user, the applica-
tion itself, or by the GUI system. In this section, we describe each of these event
sources and discuss the application’s role in servicing these events.

S1: The User. These are events triggered by the actions a user performs on the
input devices. Notice that input devices include actual hardware devices (e.g.,

19.2. Programming Models 479

mouse, keyboard, etc.) and/or software-simulated GUI elements (e.g., slider bars,
combo boxes, etc.). Typically, a user performs actions for two very different
reasons:

• S1a: Application specific. These are input actions that are part of the
application. Clicking and dragging inthe application screen area to create a
HeroBall is an example of an action performed on a hardware input device.
Changing the slider bars to control the HeroBall’s velocity is an example of
an action performed on a software-simulated GUI element. Both of these
actions and the resulting events are application specific; the application (our
program) is solely responsible for servicing these events.

• S1b: General. These are input actions defined by the operating environ-
ment. For example, a user clicks and drags in the window title-bar area
expecting to move the entire application window. The servicing of these
types of events requires collaboration between our application and the GUI
system. We will discuss the servicing of these types of events in more detail
when explaining events that originate from the GUI system in S3c.

Notice that the meaning of a user’s action iscontext sensitive. It depends on where
the action is performed: click and drag in the application screen area vs. slider
bar vs. application window title-bar area. In any case, the underlying GUI system
is responsible for parsing the context and determining which application element
receives a particular event.

S2: The Application. These are events defined by the application, typically de-
pending on some run-time conditions. During run time, if and when the condition
is favorable, the supporting GUI system triggers the event and conveys the favor-
able conditions to the application. A straightforward example is a periodic alarm.
Modern GUI systems typically allow an application to define (sometimes multi-
ple) timer events . Once defined, the GUI system will trigger an event to wake
up the application when the timer expires. As we will see, this timer event is es-
sential for supporting real-time simulations. Since the application (our program)
requested the generation of these types of events, our program is solely respon-
sible for serving them. The important distinction between application-defined
and user-generated events is that application-defined events can bespontaneous:
when properly defined, even when the user is not doing anything, these types of
events may trigger.

S3: The GUI System. These are events that originate from within the GUI
system in order to convey state information to the application. There are typically

480 19. Building Interactive Graphics Applications

three reasons for these events:

• S3a: Internal GUI states change.These are events signaling an internal
state change of the GUI system. The GUI system typically generates an
event before the creation of the application’s main window. This provides
an opportunity for the application to perform the corresponding initializa-
tion. In some GUI systems (e.g., MFC) theSystemInitialization() func-
tionality is accomplished with these types of events: user applications are
expected to override the appropriate windows’ creation event and initialize
the application state. Modern, general purpose commercial GUI systems
typically define a large number of events signaling detailed state changes in
anticipation of supporting different types of applications and requirements.
For example, for the creation of the application’s main window, the GUI
system may define events for the following states:

– before resource allocation;

– after resource allocation but before initialization;

– after initialization but before initial drawing, etc.

A GUI system usually defines meaningful default behaviors for such events.
To program an effective application based on a GUI system, one must un-
derstand the different groups of events and only service the appropriate
selections.

• S3b: External environment requests attention. These are events indi-
cating that there are changes in the operating environment that potentially
require application attention. For example, a user has moved another ap-
plication window to cover a portion of our application window, or a user
has minimized our application window. The GUI system and the window
environment typically have appropriate service routines for these types of
events. An application would only choose to service these events when
special actions must be performed. Forexample, in a real-time simulation
program, the application may choose to suspend the simulation if the appli-
cation window is minimized. In this situation, an application must service
the minimized and the maximized events.

• S3c: External environment requests application collaboration.These
are typically events requesting the application’s collaboration to complete
the service ofgeneral user actions (please refer to S1b). For example, if
a user click-drags the application window’s title bar, the GUI system re-
acts by letting the user “drag” the entire application window. This “drag”

19.2. Programming Models 481

operation is implemented by continuously erasing and redrawing the entire
application window at the current mouse pointer position on the computer
display. The GUI system has full knowledge of the appearance of the ap-
plication window (e.g., the window frames, the menus, etc.), but it has no
knowledge of the application window content (e.g., how many free falling
balls traveling at what velocity, etc.). In this case, the GUI system redraws
the application window frame and generates a Redraw/Paint event for the
application, requesting assistance in completing the service of the user’s
“drag” operation. As an application in a shared window environment, our
application is expected to honor and service these types of events. The most
common events in this category include: Redraw/Paint and Resize. Re-
draw/Paint is the single most important event an application must service,
because it supports the most common operations a user may perform in a
shared window environment. Resize is also an important event to which
the application must respond becausethe application is in charge of GUI
element placement policy (e.g., if window size is increased, how should the
GUI elements be placed in the larger window).

19.2.3 The Event-Driven Ball Shooting Program

In Section 19.2.1, we started a control-driven programming solution to the ball
shooting program based on verbalizing the conditions (controls) under which the
appropriate actions should be taken:

while favorable condition, parse the input...

As we have seen, with appropriate modifications, we were able to detail the con-
trol structures for our solution.

From the discussion in Section 19.2.2, we see that to design an event-driven
programming solution we must

1. define the application state;

2. describe how user actions change the application state;

3. map the user actions to events that the GUI system supports; and

4. override corresponding event service routines to implement user actions.

The specification in Section 19.1 detailed the behaviors of our ball shooting pro-
gram. The description is based on actions performed on familiar input devices

482 19. Building Interactive Graphics Applications

(e.g., slider bars and mouse) that changethe appearance on the display screen.
Thus, the specification from Section 19.1 describes items (2) and (3) from the
above list without explicitly defining what the application state is. Our job in de-
signing a solution is to derive the implicitly defined application state and design
the appropriate service routines.

Figure 19.8 presents our event-driven programming solution. As expected,
the application state (A1) is defined inSystemInitialization(). The AllWorldBalls
set and HeroBall can be derived from the specification in Section 19.1. TheDefin-

ingNewHeroBall flag is a transient (temporary) application state designed to sup-
port user actions across multiple events (click-and-drag). Usingtransient appli-
cation states is a common approach to support consecutive inter-related events.

Figure 19.8 shows the registration of three types of service routines (A2):

• user-generated application specific events (S1a);

• an application defined event (S2);

• a GUI system-generated event requesting collaboration (S3c).

The timer event definition (A2S2) sets up a periodic alarm for the application to
update the simulation of the free falling balls. The service routines of the user-
generated application specific events (D1-D5) are remarkably similar to the cor-
responding case statements in the control-driven solution presented in Figure 19.4
(B1-B3). It should not be surprising that this is so, because we are implement-
ing the exact same user actions based on the same specification. Line 3 of the
LMBDownRoutine() (D1L3) demonstrates that, when necessary, our application
can request the GUI system to initiate events. In this case, we signal the GUI
system that an application redraw is necessary. Notice that event service routines
are simply functions in our program. This means, at D1L3 we could also call
RedrawRoutine() (D7) directly. The difference is that a call toRedrawRoutine()

will force a redraw immediately while requesting the generation of a redraw event
allows the GUI system to optimize the number of redraws. For example, if the
user performs a LMB click and starts dragging immediately, with our D1 and D2
implementation, the GUI system can gather the manyGenerateRedrawEvent re-
quests in a short period of time and only generate one re-draw event. In this way,
we can avoid performing more redraws than necessary.

In order to achieve a smooth animation, we should perform about 20–40 up-
dates per second. It follows that theSimulationUpdateInterval should be no more
than 50 milliseconds so that theServiceTimer() routine can be invoked more than
20 times per second. (Notice that a redraw event is requested at the end of the
ServiceTimer() routine.) This means, at the very least, our application is guaran-
teed to receive more than 20 redraw events in one second. For this reason, the

19.2. Programming Models 483

SystemInitialization() { // (A)
// (A1): Define Application State

AllWorldBalls: A set of defined Balls, initialze to empty
HeroBall = null
DefiningNewHeroBall = false

// (A2): Register Event Service Routines
// S1a: Application Specific User Events

GUISystem::RegisterServiceRoutine(GUISystem:: LMBDown, LMBDownRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: LMBDrag, LMBDragRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: LMBUp, LMBUpRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: RMBDown, RMBDownRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: SliderBar, SliderBarRoutine)

// S2: Application Define Event
GUISystem::DefineTimerPeriod(SimulationUpdateInterval)
GUISystem::RegisterServiceRoutine(GUISystem:: TimerEvent, ServiceTimer)

// Triggers TimerEvent every: SimulationUpdateInterval period
// S3c: Honor collaboration request from the GUI system

GUISystem::RegisterServiceRoutine(GUISystem:: RedrawEvent, RedrawRoutine)
}

// Event Service Routines (D)
LMBDownRoutine(mousePosition) // D1: Left Mouse Button Down service routine

HeroBall = CreateHeroBall (mousePosition)
DefiningNewHeroBall = true
GUISystem::GenerateRedrawEvent

LMBDragRoutine(mousePosition) // D2: Left Mouse Button Drag service routine
RefineRadiusAndVelocityOfHeroBall(mousePosition)
SetSliderBarsWithHeroBallVelocity()
GUISystem::GenerateRedrawEvent // Generates a redraw event

LMBUpRoutine(mousePosition) // D3: Left Mouse Button Up service routine
InsertHeroBallToAllWorldBalls()
DefiningNewHeroBall = false

RMBDownRoutine (mousePosition) // D4: Right Mouse Button Down service routine
HeroBall = SelectHeroBallBasedOn (mousePosition)
if (HeroBall != null) SetSliderBarsWithHeroBallVelocity()

SliderBarRoutine (sliderBarValues) // D5: Slider Bar changes service routine
if (HeroBall != null)

SetSliderBarsWithHeroBallVelocity(sliderBarValues)

ServiceTimer () // D6: Timer expired service routine
UpdateSimulation() // Move balls by velocities and remove off-screen ones
EchoToStatusBar() // Sets status bar with number of balls on screen
GUISystem:: GenerateRedrawEvent // Generates a redraw event
if (HeroBall != null) // Reflect propoer HeroBall velocity

SetSliderBarsWithHeroBallVelocity(sliderBarValues)

RedrawRoutine () // D7:Redraw event service routine
DrawBalls(AllWorldBalls)
if (DefiningNewHeroBall)

DrawBalls(HeroBall) // Draw the new Hero Ball that is being defined

A2S2: Defines
a Timer Event

D1L3: Force a
Redraw Event

A1: Application
State

Figure 19.8. Programming solution based on the event-driven programming model.

484 19. Building Interactive Graphics Applications

GenerateRedrawEvent requests in D1 and D2 are really not necessary. The ser-
vicing of our timer events will guarantee us an up-to-date display screen at all
times.

19.2.4 Implementation Notes

The application state of an event-driven program must persist over the entire life
time of the program. In terms of implementation, this means that the application
state must be defined based on variables that are dynamically allocated during run
time and that reside on the heap memory. These are in contrast to local variables
that reside on the stack memory and which do not persist over different function
invocations.

The mapping of user actions to events in the GUI system often results inim-

plicit and/or undefined events. In our ball shooting program, the actions to define
a HeroBall involve left mouse button down and drag. When mapping these ac-
tions to events in our implementation (in Figure 19.4 and Figure 19.8), we realize
that we should also pay attention to the implicit mouse button up event. Another
example is the HeroBall selection action: right mouse button down. In this case,
right mouse button drag and up events are not serviced by our application, and
thus, they are undefined (to our application).

When one user action (e.g.,“drag out the HeroBall”) is mapped to a group
of consecutive events (e.g., mouse button down, then drag, then up) afinite state
diagram can usually be derived to help design the solution. Figure 19.9 depicts
the finite state diagram for defining the HeroBall in our ball shooting program.

1

Application
State

2 3

LMB Up
LMB Drag

LMB Up
LMB Drag

LMB Down

Define
HeroBall
Center

Define
HeroBall

Velocity &
Size

Done
Defining
HeroBall

Service
Routines LMBUpRoutine()LMBDragRoutine()LMBDownRoutine()

Figure 19.9. State diagram for defining the HeroBall.

19.2. Programming Models 485

The left mouse button down event puts the program into State 1 where, in our
solution from Figure 19.8,LMBDownRoutine() implements this state and defines
the center of the HeroBall, etc. In this case the transition between states is trig-
gered by the mouse events, and we see that it is physically impossible to move
from State 2 back to State 1. However, we do need to handle the case where the
user action causes a transition from State 1 to State 3 directly (mouse button down
and release without any dragging actions). This state diagram helps us analyze
possible combinations of state transitions and perform appropriate initializations.

Event-drivenapplications interface with the user through physical (e.g., mouse
clicks) or simulated GUI elements (e.g., quit button, slider bars). An input GUI
element (e.g., the quit button) is an artifact (e.g., an icon) for the user to direct
changes to the application state, while an output GUI element (e.g., the status
bar) is an avenue for the application to present application state information to
the user as feedback. For both types of elements, information onlyflows in one
direction—either from the user to the application (input) or from the application
to the user (output). When working with GUI elements that serve both input and
output purposes, special care is required. For example, after the user selects or
defines a HeroBall, the slider bars reflects the velocity of the free falling HeroBall
(output), while at any time, the user can manipulate the slider bar to alter the Her-
oBall velocity (input). In this case, the GUI element’s displayed state and the ap-
plication’s internal state are connected. The application must ensure that these two
states are consistent. Notice that in the solution shown in Figure 19.4, this state
consistency is not maintained. When a user clicks the RMB (B2 in Figure 19.4)
to select a HeroBall, the slider bar values are updated properly; however, as the
HeroBall free falls under gravity, the slider bar values are not updated. The so-
lution presented in Figure 19.8fixes this problem by using theServiceTimer()

function.
Event service routines are functions defined in our program that cause acall-

back from the MainEventLoop in the presence of relevant events. For this reason,
these service routines are also referred to ascallback functions. The application
program registers callback functions with the GUI system by passing the address
of the function to the GUI system. This is the registration mechanism implied in
Figure 19.7 and Figure 19.8. Simple GUI systems (e.g., GLUT or FLTK) usually
support this form of registration mechanism. The advantage of this mechanism is
that it is easy to understand, straightforward to program, and often contributes to
a small memory footprint in the resulting program. The main disadvantage of this
mechanism is the lack of organizational structure for the callback functions.

In commercial GUI systems, there are a large numbers of events with which
user applications must deal, and a structured organization of the service routines
can assist the programmability of the GUI system. Modern commercial GUI sys-

486 19. Building Interactive Graphics Applications

tems are often implemented based on object-oriented languages (e.g., C++ for
MFC, Java for Java Swing). For these systems, many event service registrations
are implemented as sub-classes of an appropriate GUI system class, and they over-
ride corresponding virtual functions. In this way, the event service routines are
organized according to the functionality of GUI elements. The details of different
registration mechanisms will be explained in Section 19.4.1 when we describe the
implementation details.

Event service routines (or callback functions) are simply functions in our pro-
gram. However, these functions also serve the important role as the server of
external asynchronous events. The following are guidelines one should take into
account when implementing event service routines:

1. An event service routine should only service the triggering event and imme-
diately return the control back to theMainEventLoop(). This may seem to
be a “no-brainer.” However, because of our familiarity with control-driven
programming, it is often tempting to anticipate/poll subsequent events with
a control structure in the service routine. For example, when servicing the
left mouse button down event, we know that the mouse drag event will hap-
pen next. After allocating and defining the circle center, we have properly
initialized data to work with the HeroBall object. It may seem easier to
simply include a while loop to poll and service mouse drag events. How-
ever, with all the other external events that may happen (e.g., timer event,
external redraw events, etc.), this monopolizing of control in one service
routine is not only a bad design decision, but also it may cause the program
to malfunction.

2. An event service routine should bestateless, and individual invocations
should be independent. In terms of implementation, this essentially means
event service routines should not define localstatic variables that record
data from previous invocations. Because we have no control over when,
or how often, events are triggered, when these variables are used as data,
or conditions for changing application states, it can easily lead to disas-
trously and unnecessarily complex solutions. We can always define extra
state variables in the application state to record temporary state information
that must persist over multiple event services. TheDefiningNewHeroBall

flag in Figure 19.8 is one such example.

3. An event service routine should check for invocation conditions regard-
less of common senselogical sequence. For example, although logically,
a mouse drag event can never happen unless a mouse down event has al-
ready occurred, in reality, a user may depress a mouse button from outside

19.3. The Modelview-Controller Architecture 487

of our application window and then drag the mouse into our application
window. In this case, we will receive a mouse drag event without the cor-
responding mouse down event. For this reason, the mouse drag service
routine should check theinvocation condition that the proper initialization
has indeed happened. Notice in Figure 19.8, we do not include proper in-
vocation condition checking. For example, in theLMBDragRoutine(), we
do not verify thatLMBDownRotine() has been invoked (by checking the
DefiningNewHeroBall flag). In a real system, this may causes the program
to malfunction and/or crash.

19.2.5 Summary

In this section we have discussedprogramming models or strategies for organiz-

ing statements of our program. We have seen that forinteractive applications,
where an application continuously waits and reacts to a user’s input actions, or-
ganizing the program statements based on designing control structures results in
complex and inefficient programs. Existing GUI systems analyze all possible
user actions, design control structures to interact with the user,implement default
behaviors for all user actions, and provide this functionality in GUI APIs. To
develop interactive applications, we take advantage of the existing control struc-
ture in the GUI API (i.e., theMainEventLoop()) and modify the default behaviors
(via event service routines) of user actions. In order to properly collaborate with
existing GUI APIs, the strategy for organizing the program statements should be
based on specifying user actions that cause changes to the application state.

Now that we understand how to organize the statements of our program, let’s
examine strategies for organizing functional modules of our solution.

19.3 The Modelview-Controller Architecture

The event-driven ball shooting program presented in Section 19.2.3 and Fig-
ure 19.8 addresses programmability and efficiency issues when interacting with a
user. In the development of that model, we glossed over many supporting func-
tions (e.g.,UpdateSimulation()) needed in our solution. In this section, we de-
velop strategies for organizing these functions. Notice that we are not interested
in the implementation details of these functions. Instead, we are interested in
grouping related functions into components. We then pay attention to how the
differentcomponents collaborate to support the functionality of our application.

488 19. Building Interactive Graphics Applications

In this way, we derive a framework that is suitable for implementing general in-
teractive graphics applications. With a proper framework guiding our design and
implementation, we will be better equipped to develop programs that are easier to
understand, maintain, modify, and expand.

19.3.1 The Modelview-Controller Framework

Based on our experience developing solutions in Section 19.2, we understand that
interactive graphics applications can be described as applications that allow users
to interactively update their internal states. These applications provide real-time
visualization of their internal states (e.g., the free-falling balls) with computer
graphics (e.g., drawing circles). Themodelview-controller (MVC) framework
provides a convenient structure for discussing this type of application. In the
MVC framework, themodel is the application state, theview is responsible for
setting up support for the model to present itself to the user, and thecontroller

is responsible for providing the support for the user to interact with the model.
Within this framework, our solution from Figure 19.8 is simply the implementa-
tion of a controller. In this section, we will develop the understanding of the other
two components in the MVC framework and how these components collaborate
to support interactive graphics applications.

Figure 19.10 shows the details of a MVC framework to describe the behavior
of a typical interactive graphics application. We continue to use the ball shooting
program as our example to illustrate the details of the components. The top-right
rectangular box is the model, the bottom-right rectangular box is the view, and
the rectangular box on the left is the controller component. These three boxes
represent program code we, as application developers, must develop. The two
dotted rounded boxes represent external graphics and GUI APIs. These arethe

external libraries that we will use as a base for building our system. Examples of
popular Graphics APIs include OpenGL, Microsoft Direct-3D (D3D), Java 3D,
among others. As mentioned in Section 19.2.2, examples of popular GUI APIs
include GLUT, FLTK, MFC, and Java Swing Library.

The model component defines the persistent application state (e.g., AllWorld-
Balls, HeroBalls, etc.) and implements interface functions for this application
state (e.g.,UpdateSimulation()). Since we are working with a “graphics” ap-
plication, we expect graphical primitives to be part of the representation for the
application state (e.g., CirclePrimitives). This fact is represented in Figure 19.10
by the application state (the ellipse) partially covering the Graphics API box. In
the rest of this section, we will use the terms model and persistent application
state interchangeably.

19.3. The Modelview-Controller Architecture 489

TransformPoints

Figure 19.10. Components of an interactive graphics application.

The view component is in charge ofdrawing to thedrawing area on the ap-
plication window (e.g., drawing the free falling balls). More specifically, the view
component is responsible for initializing the graphics API transformation such
that drawing of the model’s graphical primitives will appear in the appropriate
drawing area. The arrow from the view to the model component signifies that the
actual application state redraw must be performed by the model component. Only
the model component knows the details of the entire application state (e.g., size
and location of the free falling circles) so only the model component can redraw
the entire application. The view component is also responsible for transform-
ing user mouse click positions to a coordinate system that the model understands
(e.g., mouse button clicks for dragging out the hero ball).

The top leftexternal events arrow in Figure 19.10 shows that all external
events are handled by theMainEventLoop(). The relevant events will be for-
warded to the event service routines in the controller component. Since the con-
troller component is responsible for interacting with the user, the design is typi-
cally based on event-driven programming techniques. The solution presented in
Section 19.2.3 and Figure 19.8 is an example of a controller component imple-
mentation. The arrow from the controller to the model indicates that most external
events eventually change the model component (e.g., creating a new HeroBall or
changing the current HeroBall velocity). The arrow from the controller to the
view component indicates that the user input point transformation is handled by
the view component. Controllers typicallyreturn mouse click positions in the de-
vice coordinate with the origin at the top-left corner. In the application model, it is
more convenient for us to work with a coordinate system with a lower-left origin.

490 19. Building Interactive Graphics Applications

The view component with its transformation functionality has the knowledge to
perform the necessary transformation.

Since the model must understand the transformation set up by the view, it is
important that the model and the view components are implemented based on the
same Graphics API. However, this sharing of an underlying supporting API does
not mean that the model and view are an integrated component. On the contrary,
as will be discussed in the following sections, it is advantageous to clearly dis-
tinguish between these two components and to establish well-defined interfaces
between them.

19.3.2 Applying MVC to the Ball Shooting Program

With the described MVC framework and the understanding of how responsibili-
ties are shared among the components, we can now extend the solution presented
in Figure 19.8 and complete the design of the ball shooting program.

The Model

The model is the application state and thus this is the core of our program. When
describing approaches to designing an event-driven program in Section 19.2.3,
thefirst two points mentioned were:

1. define the application state, and

2. describe how a user changes this application state.

These two points are the guidelines for designing the model component. In
an object-oriented environment, the model component can be implemented as
classes, andstate of the application can be implemented as instance variables,
with “how a user changes this application state” implemented as methods of the
classes.

Figure 19.11 shows that the instance variables representing the state are typ-
ically private to the model component. As expected, we have a “very graphical”
application state. To properly support this state, we define the CirclePrimitive
class based on the underlying graphics API. The CirclePrimitive class supports the
definition of center, radius, drawing, and moving of the circle, etc. Figure 19.11
also shows the four categories of methods that a typical model component must
support.

19.3. The Modelview-Controller Architecture 491

class ApplicationModel {
private:
// Application’s private state

vector<CirclePrimitive> AllWorldBalls // World balls, initially empty
CirclePrimitive HeroBall // The Hero Ball
bool DefiningNewHero // If LMB drag is true

public:
bool IsDefinningHeroBall()

// If LMB drag is true, same as if we are in
// the middle of defiing the a new hero ball

bool HeroBallExists()
// Current hero ball is not null

int NumBallsOnScreen()
// Number of balls currently on screen

float HeroVelocityX()
// Hero’s velocity, x-component

float HeroVelocityY()
// Hero’s velocity, y-component

void CreateHeroBall (mousePosition)
// Creates new hero ball, with center at mousePosition
// radius and velocity are initialized to zero

void DragHeroBallTo (mousePosition)
// Refine radius and velocity of hero ball based on
// hero’s center and current mousePosition

void SetHeroBallVelocity (velocityX, velocityY)
// Sets current hero ball velocity
// if there is no current hero ball, nothing happens

void InsertHeroToAllWorld()
// Done defining HeroBall, insert into WorldBallSet

void SelectHeroBall (mousePosition)
// Sets hero ball to be the one currently under
// mousePosition sets to null if none exists

void UpdateSimulation()
// Move balls by their velocities, update velocity
// by gravity and remove off-screen ones

void RedrawApplicationState()
// Draw all the freefalling balls (including the HeroBall)
// to the desired region on the application window.

}

1. Application
state inquires

2. Application
state changes
from user events

3. Application
state changes
from application
events

4. Application
state visualization

Class built on
Graphics API

Figure 19.11. The model component of the ball shooting program.

1. Application state inquiries. These are functions that return the applica-
tion state. These functions are important for maintaining up-to-date GUI
elements (e.g., status echo or velocity slider bars).

2. Application state changes from user events.These are functions that
change the application state according to a user’s input actions. Notice that
the function names should reflect the functionality (e.g., CreateHeroBall)
and not the user event actions (e.g., ServiceLMBDown). It is common for
a group of functions to support a definedfinite state transition. For exam-

492 19. Building Interactive Graphics Applications

ple, CreateHeroBall, DragHeroBall, and InsertHeroToWorld implement the
finite state diagram of Figure 19.9.

3. Application state changes from application (timer) events. This is a
function that updates the application state resulting from purposeful and
usually synchronous application timer events. For the ball shooting pro-
gram, we update all of the velocities, displace the balls’ positions by the
updated velocities and compute ball-to-ball collisions, as well as remove
off-screen balls.

4. Application state visualization.This is a function that knows how to draw
the application state (e.g., drawing the necessary number of circles at the
corresponding positions). It is expected that a view component will initial-
ize appropriate regions on the application window, set up transformations,
and invoke this function to draw into the initialized region.

It is important to recognize that the user’s asynchronous events are arriving in
between synchronous application timer events. In practice, a user observes an
instantaneous application state (the graphics in the application window) and gen-
erates asynchronous events to alter the application state for the next round of
simulation. For example, a user seesthat the HeroBall is about to collide with
another ball and decides to change the HeroBall’s velocity to avoid the collision
that would have happened in the next round of simulation. This means, before
synchronous timer update, we must ensure all existing asynchronous user events
are processed. In addition, the application should provide continuous feedback to
ensure that users are observing an up-to-date application state. This subtle han-
dling of event arrival and processing order is not an issue for simple, single-user
applications like our ball shooting program. On large scale multi-user networked
interactive systems, where input event and output display latencies may be signif-
icant, theUpdateSimulation() function is often divided into pre-update, update,
and post-update.

The View

Figure 19.12 shows the ApplicationView class supporting the two main func-
tionalities of a view component: coordinate space transformation and initializa-
tion for redraw. As discussed earlier, the controller is responsible for calling the
DeviceToWorldXform() to communicate user input points to the model compo-
nent. The viewport class is introduced to encapsulate the highly API-dependent
device initialization and transformation procedures.

19.3. The Modelview-Controller Architecture 493

classViewport {
private:

// An area on application window for drawing.
// Actual implemenation of the viewport is GraphicsAPI dependent.

public:
void EraseViewport()

// Erase the area on the application window
void ActivateViewportForDrawing()

// All subsequent Graphics API draw commands
// will show up on this viewport

}
classApplicationView {

private:
// a view’s private state information
Viewport TargetDrawArea

// An area of the application main window that
// this view will be drawing to

public:
void DeviceToWorldXform(inputDevicePoint, outputModelPoint)

// transform the input device coordinate point to
// output point in a coordinate system that the model understands

void DrawView(ApplicationModel TheModel)
// Erase and activate theTargetDrawArea and then
// Sets up transformation for TheModel
// calls TheModel.DrawApplicationState() to draw all the balls.

}

Figure 19.12. The view component of the ball shooting program.

The Controllers

We can improve the solution of Figure 19.8 to better support the specified func-
tionality of the ball shooting program. Recall that the application window de-
picted in Figure 19.2 has two distinct regions for interpreting events: the upper
application drawing area where mouse button events are associated with defin-
ing/selecting the HeroBall and the lower GUI element area where mouse button
events on the GUI elements have different meanings (e.g., mouse button events
on the slider bars generate SliderBarChange events, etc.). We also notice that the
upper application drawing area is the exact same area where the ApplicationView
must direct the drawings of the ApplicationModel state.

Figure 19.13 introduces two types of controller classes: aViewController and
a GenericController. Each controller class is dedicated to receiving input events
from the corresponding region on the application window. The ViewController
creates an ApplicationView during initialization such that the view can be tightly
paired for drawing of the ApplicationModel state in the same area. In addition,
the ViewController class also defines the appropriate mouse event service routines
to support the interaction with the HeroBall. The GenericController is meant to
contain GUI elements for interacting with the application state.

494 19. Building Interactive Graphics Applications

classViewController {
private:

ApplicationModel TheModel = null // Reference to the application state
ApplicationView TheView = null // for drawing to the desirable region

public:
void InitializeController(ApplicationMode aModel, anArea) {

// Define and initialize the Application State
TheModel = aModel
TheView = newApplicationView(anArea)

// Register Event Service Routines
GUISystem::RegisterServiceRoutine(GUISystem:: LMBDown, LMBDownRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: LMBDrag, LMBDragRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: LMBUp, LMBUpRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: RMBDown, RMBDownRoutine)
GUISystem::RegisterServiceRoutine(GUISystem:: RedrawEvent, RedrawRoutine)

}

// Event Service Routines
// … define the 5 event routines similar to the ones in Figure 8 …

}
classGenericController {

private:
ApplicationModel TheModel = null // Reference to the application state

public:
void InitializeController(ApplicationModel aModel, anArea) {

TheModel = aModel

// Register Event Service Routines
GUISystem::RegisterServiceRoutine(GUISystem:: SliderBar, SliderBarRoutine)
GUISystem::DefineTimerPeriod(SimulationUpdateInterval)
GUISystem::RegisterServiceRoutine(GUISystem:: TimerEvent, ServiceTimer)

}

// Event Service Routines
// … define the 2 event routines similar to the ones in Figure 8 …

}
// _______________________________________
// GUI API: MainEventLoop will call this function to initialize our applicaiton
SystemInitialization() {

ApplicationModel aModel = new ApplicationModel();
ViewController aViewController = new ViewController()
GenericController aGenericController = new GenericController()

aViewController.InitializeController(aModel, drawingAreaOfWindow)
aGenericController.InitializeController(aModel, uiAreaOfWindow)

}

Creates a new
View for the
specified area

Application
initialization

An area on the
application
window

Controller with a
View and
Application State

Controller with
no View

Figure 19.13. The controller component of the ball shooting program.

The bottom of Figure 19.13 illustrates that the GUI API MainEventLoop will
still call the SystemInitialization() function to initialize the application. In this
case, we create one instance each of ViewController and GenericController. The
ViewController is initialized to monitor mouse button events in the drawing area
of the application window (e.g., LMB click to define HeroBall), while the Gener-
icController is initialized to monitor the GUI element state changes (e.g., LMB
dragging of a slider bar). Notice that the service of the timer event is global to the
entire application and should be defined in only one of the controllers (either one
will do).

In practice, the GUI API MainEventLoopdispatches events to the controllers
based on thecontext of the event. The context of an event is typically defined by

19.3. The Modelview-Controller Architecture 495

the location of the mouse pointer or the currentfocus of the GUI element (i.e.,
which element is active). The application is responsible for creating a controller
for any region on the window that it will receive events directly from the GUI
API.

19.3.3 Using the MVC to Expand the Ball Shooting Program

One interesting characteristic of the MVC solution presented in Section 19.3.2
is that the model component does not have any knowledge of the view or the
controller components. This clean interface allows us to expand our solution by
inserting additional view/controller pairs.

For example, Figure 19.14 shows an extension to the ball shooting program
given in Figure 19.2. It has an additional small view in the UI (user interface) area
next to the quit button. The small view is exactly the same as theoriginal large

view, except that it covers a smaller area on the application window.
Figure 19.15 shows that, with our MVC solution design, we can implement

the small view by creating a new instance of ViewController (an additional Ap-
plicaitonView will be created by the ViewController) for the desired application
window area. Notice that the GenericController’s window area actually contains

Ball Shooting Simulation Program

Velocity (X) 12.48 (Pixel/Sec)

Velocity (Y) 9.12 (Pixel/Sec)

QUITStatus:

Small View
window area

Currently there are 5 balls on screen.

Small
View

Original
Large View

Figure 19.14. The ball shooting program with large and small views.

496 19. Building Interactive Graphics Applications

// _______________________________________
// GUI API: MainEventLoop will call this function to initialize our applicaiton
SystemInitialization() {

ApplicationModel aModel = new ApplicationModel();
ViewController aLargeViewController = new ViewController()
GenericController aGenericController = new GenericController()

aLargeViewController.InitializeController(aModel, drawingAreaOfWindow)
aGenericController.InitializeController(aModel, uiAreaOfWindow)

ViewController aSmallViewController = new ViewController()
aSmallViewController.InitializeController(aModel, smallViewDrawingArea)

}

New instance of
ViewController (and
ApplicationView)

Figure 19.15. Implementing the small view for the ball shooting program.

the area of the small ViewController. When a user event is triggered in this area,
the “top-layer” controller (the visible one) will receive the event. After the initial-
ization, the new small view will behave in exactly the same manner as the original
large view.

For simplicity, Figure 19.14 shows two identical view/controller pairs. In gen-
eral, a new view/controller pair is createdto present a different visualization of the
application state. For example, with slight modifications to the view component’s
transformation functionality, the large view of Figure 19.14 can be configured
into a zoom view and the small view can be configured into awork view, where
the zoom view can zoom into different regions (e.g., around the HeroBall) and the
work view can present the entire application space (e.g., all the free falling balls).

Figure 19.16 shows the components of the solution in Figure 19.15 and how
these components interact. We see that the model component supports the op-
erations of all the view and controller components and yet it does not have any
knowledge of these components. This distinct and simple interface has the fol-
lowing advantages:

1. simplicity. The model component is the core of the application and usually
is the most complicated component. By keeping the design of this compo-
nent independent from any particular controller (user input/events) or view
(specific drawing area), we can avoid unnecessary complexity.

2. portability. The controller component typically performs thetranslation

of user actions to model-specific function calls. The implementation of this
translation is usually simple and specific to the underlying GUI API. Keep-
ing the model clean from the highly API-dependent controller facilitates
portability of a solution to other GUI platforms.

3. expandability. The model component supports changing of its internal
state and understands how to draw its contents. As we have seen (Fig-

19.3. The Modelview-Controller Architecture 497

External
Events

GUI API
MainEventLoop

ApplicationModel:
AllWorldBalls, HeroBall,

DefiningNewHeroBall

GenericController
Events from GUI

elements

ViewController
Events from Large
View drawing area

ApplicationView
Transformation
information for Large
View drawing area.

ViewController
Events from Small
View drawing area

ApplicationView
Transformation
information for Small
View drawing area.

Figure 19.16. Components of the ball shooting program with small view.

ures 19.15 and 19.16), this means that it is straightforward to add new
view/controller pairs to increase the interactivity of the application.

19.3.4 Interaction among the MVC Components

The MVC framework is a tool for describing general interactive systems. One
of the beauties of the framework is that itis straightforward to support multiple
view/controller pairs. Each view/controller pair shares responsibilities in exactly
the same way: the viewpresents the model and the controller allows the events
(user-generated or otherwise) to change the model component.

For an application with multiple view/controller pairs, like the one depicted
in Figure 19.16, we see that a user can change the model component via any of
the three controllers. In addition, the application itself is also capable of changing
the model state. All components must however, ensure that a coherent and up-
to-date presentation is maintained for the user. For example, when a user drags
out a new HeroBall, both the large and small view components must display the
dragging of the ball, while the GenericController component must ensure that the
slider bars properly echo the implicitly defined HeroBall velocity. In the classical
MVC model, the coherency among different components is maintained with an
elaborate protocol (e.g., via the observer design pattern). Although the classical

498 19. Building Interactive Graphics Applications

MVC model works very well, the elaborate protocol requires that all components
communicate or otherwise tokeep track of changes in the model component.

In our case, and in the case of most modern interactive graphics systems,
the application defines the timer event for simulation computation. To support
smooth simulation results, we have seen that the timer event typically triggers
within real-time response thresholds (e.g., 20–50 milliseconds). When servicing
the timer events, our application can take the opportunity to maintain coherent
states among all components. For example, in theServiceTimer() function in
Figure 19.8, we update the velocity slider bars based on current HeroBall veloc-
ity. In effect, during each timer event service, the applicationpushes the up-to-
date model information to all components andforces the components to refresh
their presentation for the user. In this way, the communication protocol among
the components becomes trivial. All components keep a reference to the model,
and each view/controller pair in the application does not need to be aware of
the existence of other view/controller pairs. In between periodic timer events, the
user’s asynchronous events change the model. These changes are only made in the
model component, and no other components in the application need to be aware
of the changes. During the periodic timer service, besides computing the model’s
simulation update, all components poll the model for up-to-date state information.
For example, when the user clicks and drags with the left mouse button pressed, a
new HeroBall will be defined in the model component. During this time, the large
and small view components will not display the new HeroBall, and the velocity
slider bars will not show the new HeroBall’s velocity. These components will get
and display up-to-date HeroBall information only during the application timer
event servicing. Since the timer event is triggered more than 30 times per second,
the user will observe a smooth and up-to-date application state in all components
at all times.

19.3.5 Applying the MVC Concept

The MVC framework is applicable to general interactive systems. As we have
seen in this section, interactive systems with the MVC framework result in clearly
defined component behaviors. Inaddition, with clearly defined interfaces among
the components, it becomes straightforward to expand the system with additional
view/controller pairs.

An interactive system does not need to be an elaborate software application.
For example, the slider bar is a fully functional interactive system. The model
component contains a currentvalue (typically afloating point number), the view
component presents this value to the user, and the controller allows the user to in-

19.4. Example Implementations 499

teractively change this value. A typical view component draws rectangular icons
(bar and knobs) representing the current value in the model component, while
the controller component typically supports mouse down and drag events to in-
teractively change the value in the model component. With this understanding,
it becomes straightforward to expand the system with additional view/controller
pairs. For example, in our ball shooting program, the slider bars have an addi-
tional view component where the numeric value of the model is displayed. In
this case, there is no complementary controller component defined for the nu-
meric view; an example complementary controller would allow the user to type
in numeric values.

19.4 Example Implementations

Figure 19.17 shows two implementations of the solution presented in Section
19.3.3. The version on the left is based on OpenGL and FLTK, while the ver-
sion to the right is based on D3D and MFC. In this section, we present the details
of these two implementations. The lessons we want to learn are that (a) a proper
MVC solution framework should be independent from any implementation and
(b) a well designed implementation should be realizable based on and/or easily
ported to any suitable API.

Before examining the details of each implementation, we will develop some
understanding for working with modern GUI and graphics APIs.

19.4.1 Working with GUI APIs

Building the graphical user interface (GUI) of an application involves two distinct
steps. Thefirst step is todesign the layout of the user interface system. In this
step, an application developer places GUI elements (e.g., buttons, slider bars, etc.)

Figure 19.17. Ball shooting programs with OpenGL+FLTK and D3D+MFC.

500 19. Building Interactive Graphics Applications

in an area that representsthe application window. The GUI elements are typically
two-dimensional graphical artifacts (e.g., a 3D looking icon representing a slider
bar). The goal of thisfirst step is to arrange these graphical artifacts to achieve
user friendliness and maximum usability (e.g., what is the best place/color/size
for the slider bar, etc.). The second step in building a GUI for an application
is to semantically link the GUI elements to the functionality of the application
(e.g., update HeroBall velocity when the slider bar is dragged). In this step, an
application developer builds the code for the necessary functionality (e.g., code
for changing HeroBall velocity) andregisters this code with the on-screen graph-
ical artifacts (e.g., the slider bar). This is precisely theevent service registration

described in Section 19.2.2.
Modern GUI APIs support the building of a graphical user interface with a

GUI builder. A GUI builder is an interactive graphical editor that allows its user
to interactively place and manipulate the appearances of GUI elements. In ad-
dition, the GUI builder assists the application developer to compose or generate
service routines and links those serviceroutines to the events generated by the
GUI elements.

Figure 19.18 illustrates the mechanism by which the GUI builder (in the mid-
dle of thefigure) links the graphical user interface front-end (left side of the the
figure) to the user-developed program code (right side of thefigure). The pat-
terned ellipse, the GUI Builder, is shown in the middle of Figure 19.18 The arrow
pointing left towards the application (A Simple Program) indicates that the appli-
cation developer works with the GUI builder to design the layout of the applica-
tion (e.g., where to place the button or the status echo area). The arrows pointing
from the GUI builder toward theMainEventLoop andEvent Service Linkage mod-

Event services handled by extra
external linkage object
(generated by the GUI Builder).

Events from GUI
elements (software
simulated devices)

MainEventLoop

Interactively builds
GUI elements

Application
Developer

Under the direction
of the developer,
generates/registers
event service code

Event services handled
directly by overriding
virtual functions.

Events from mouse
(hardware device)

GUI Builder
Application

GUI Builder

Event
Service
Linka ge

A Simple Program

Status Echo Area Button

Application

View

Controller Model

Figure 19.18. Working with a GUI API.

19.4. Example Implementations 501

ules indicate that the GUI builder is capable of generating programming code to
register event services. In Figure 19.18, there are two dotted connections between
the mouse and the button GUI element through the MainEventLoop module to the
event service linkage and the application controller modules. These two connec-
tions represent the two different mechanisms with which GUI APIs support event
services:

1. External Service Linkage. Some GUI builders generate extra program
modules (e.g., in the form of source codefiles) with code fragments sup-
plied by the application developer to semantically link the GUI elements to
the application functionality. For example, when the “button” of “A Simple
Program” is clicked, the GUI builder ensures that a function in the “Event
Service Linkage” module will be called. It is the application developer’s
responsibility to insert code fragmentsinto this function to implement the
required action.

2. Internal Direct Code Modification. Some GUI builders insert linkage
programming code directly into the application source code. For example,
the GUI builder modifies the source code of the application’s controller
class and inserts a new function to be called when the “button” of “A Sim-
ple Program” is clicked. Notice that the GUI Builder only inserts an empty
function; the application developer is still responsible forfilling in the de-
tails of this new function.

The advantage of an external service linkage mechanism is that the GUI builder
only has minimal knowledge of the application source code. This provides a sim-
ple andflexible development environment where the developer is free to organize
the source code structure, variable names, etc., in any appropriate way. However,
the externally generated programming module implies a loosely integrated envi-
ronment. For example, to modify the “button” behavior of “A Simple Program,”
the application developer must invoke the GUI builder, modify code fragments,
and re-generate the external program module. The Internal Direct Code Modifi-
cation mechanism in contrast provides a better integrated environment where the
GUI builder modifies the application program source code directly. However, to
support proper “direct code modification,” the GUI builder must have intimate
knowledge of, and often places severe constraints on, the application source code
system (e.g., source code organization,file names, variable names, etc.).

19.4.2 Working with Graphics APIs

Figure 19.19 illustrates that one way tounderstand a modern graphics API is by
considering the API as a functional interface to the underlying graphics hardware.

502 19. Building Interactive Graphics Applications

(C2): Drawing
commands

Graphics
Hardware
Context

Prepare
f

Application

Rendering State

M M M

(C1): Prepare
for drawing

(A): Initialize
Graphics Hardware

(B): Create Graphics
Context

Rendering State

M M M

Figure 19.19. Working with a graphics API.

It is convenient to consider this functional interface as consisting of two stages:
Graphics Hardware Context (GHC) andGraphics Device Context (GDC).

1. Graphics Hardware Context (GHC). This stage is depicted as the vertical
ellipse on the right of Figure 19.19. We consider the GHC as a configuration
which wraps over the hardware video display card. An application creates a
GHC for each unique configuration (e.g., depth of frame buffer or z-buffer,
etc.) of the hardware video card(s). Many Graphics Device Contexts (see
below) can be connected to each GHC to support drawing to multiple on-
screen areas from the same application.

2. Graphics Device Context (GDC).This stage is depicted as a cylindrical
pipe in Figure 19.19. The multiple pipes in thefigure illustrates that an ap-
plication can create multiple GDCs to connect to the same GHC. Through
each GDC, an application can draw to distinct areas on the application win-
dow. To properly support this functionality, each GDC represents a com-
pleterendering state. A rendering state encompasses all the information
that affects thefinal appearance of an image. This includes primitive at-
tributes, illumination parameters, coordinate transformations, etc. Exam-
ples of primitive attributes are color, size, pattern, etc., while examples of
illumination parameters include light position, light color, surface material
properties, etc. Graphics APIs typically support coordinate transformation
with a series of two or three matrix processors. In Figure 19.19, the “M”

19.4. Example Implementations 503

boxes inside the GDC pipes are the matrix processors. Each matrix pro-
cessor has a transformation matrix and transforms input vertices using this
matrix. Since these processors operate in series, together they are capable
of implementing multi-stage coordinate space transformations (e.g., object
to world, world to eye, and eye to projected space). The application must
load these matrix processors with appropriate matrices to implement a de-
sired transformation.

With this understanding, Figure 19.19 illustrates that to work with a graphics
API, an application will

(A) initialize one or more GHCs. Each GHC represents a unique configuration
of the graphics video card(s). In typical cases, one GHC is initialized and
configured to be shared by the entire application.

(B) create one or more GDCs.Each GDC supports drawing to distinct areas
on the application window. For example, an application might create a
GDC for each view component in an application.

(C) draw using a GDC. An application draws to a desired window area via
the corresponding GDC. Referring to Figure 19.19, an application sets the
rendering state (C1) and then issues drawing commands to the GDC (C2).
Setting of the rendering state involves setting of all relevant primitive and
illumination attributes and computing/loading appropriate transformation
matrices into the matrix processors. A drawing command is typically a
series of vertex positions accompanied by instructions on how to interpret
the vertices (e.g., two vertex positions and an instruction that these are end
points of a line).

In practice, modern graphics APIs are highly configurable and support many ab-
stract programming modes. For example, Microsoft’s Direct3D supports a draw-
ing mode where the matrix processors can be by-passed entirely (e.g., when ver-
tices are pre-transformed).

19.4.3 Implementation Details

Figure 19.20 shows the design of our implementation for the solution presented
in Section 19.3.3.1 Here, the MainUIWindow object represents the entire ball
shooting program. This object contains the GUI elements (slider bars, quit button,

1Source code for this section can be found at http://faculty.washington.edu/ksung/fcg3/ball.tar.zip

http://faculty.washington.edu/ksung/fcg3/ball.tar.zip

504 19. Building Interactive Graphics Applications

MainUIWindow

// GUI Elements:
SliderBars, EchoArea, QuitButton

LargeView
Service Mouse Events
Draws Application State TheModel

HeroBall,
AllWorldBalls, etc.SmallView

Service Mouse Events
Draws Application State

Figure 19.20. Implementation of the ball shooting program with two views.

etc.), the model (application state), and two instances of view/controller pairs (one
each for LargeView and SmallView).

OpenGL with FLTK

Figure 19.21 shows a screen shot ofFluid, FLTK’s GUI builder, during the con-
struction of the GUI for the ball shooting program. In the lower-right corner of
Figure 19.21, we see that (A) Fluid allows an application developer to interac-
tively place graphical representations of GUI elements (3D-looking icons); (B)
is an area representing the application window. In addition (C), the application
developer can interactively select each GUI element to define its physical appear-
ances (color, shape, size, etc.). In the lower-left corner of Figure 19.21, we see
that (D) the application developer has the option to type in program fragments
to service events generated by the corresponding GUI element. In this case, we
can see that the developer must type in the program fragment for handling the X
velocity slider bar events. Notice that this program fragment is separated from

(B): Area representing
the application window

Fluid (FLTK
GUI Builder)

(D): Application
developer types in this
code to service the X
velocity slider bar event.

Applicati
on
developer

Application
developer
would type in

(C): Application Developer
can create GUI elements and
define their appearances.

GUI elementsGUI
l t

(A): Interactively
placed GUI elements

Figure 19.21. Fluid: FLTK’s GUI Builder.

19.4. Example Implementations 505

// Forward declaration of mouse event service routines
void ServiceMouse(int button, int state, int x, int y); // service mouse button click
void ServiceActiveMouse(int x, int y); // service mouse drag

classMainUIWindow {
UserInterface UI; // This is Linkage Code generated by Fluid (GUI Builder)

// This object services events geneated by GUI elements
Model *TheModel; // The application State (Figure 11)
FlGlutWindow *LargeView; // These are View/Controller pairs that understand graphics
FlGlutWindow *SmallView; // outputs (GDC) and mouse events (controller)

MainUIWindow (Model *m) { // The constructor
TheModel = m; // Sets the model …
LargeView = new FlGlutWindow(TheModel); // Create LargeView
LargeView->mouse = ServiceMouse; // callback functions for service mouse events
LargeView->motion = ServiceActiveMouse;
// Create SmallView … exactly the same as LargeView (not shown)
glutTimeFunc(// set up timer and services) // Set up timer …

}
};

Figure 19.22. MainUIWindow based on OpenGL and FLTK.

the rest of the program source code system and is associated with Fluid (the GUI
builder). At the conclusion of the GUI layout design, Fluid generates new source
codefiles to be included with the rest of the application development environment.
Since these source codefiles are controlled and generated by the GUI builder, the
application developer must invoke the GUI builder in order to update/maintain
the event service routines. In this way, FLTK implements external service linkage
as described in Section 19.4.1. In our implementation, we instructFluid to create
a UserInterface class (.h and .cppfiles) for the integration with the rest of our
application development environment.

Figure 19.22 shows theMainUIWindow implementation with OpenGL and
FLTK. In this case, graphics operations are performed through OpenGL and user
interface operations are supported by FLTK. As described, theUserInterface ob-
ject in the MainUIWindow is created by Fluid for servicing GUI events. The-
Model is the application state as detailed in Figure 19.11. The two FlGlutWindow
objects are based on a predefined FLTK class designed specifically for support-
ing drawing with OpenGL. The constructor of MainUIWindow shows that the
mouse event services are registered viaa callback mechanism. As discussed in
Section 19.2.4, the FLTK (Fast Light ToolKit) is an example of a light weight
GUI API. Here, we see examples of usingcallback as a registration mechanism
for receiving user events.

FlGlutWindow is a FLTK pre-defined FlGlut Window class object (see Fig-
ure 19.23) designed specifically to support drawing with OpenGL. Each instance
of a FlGlutWindow object is a combination of a controller (e.g., to receive mouse
events) and a Graphics Device Context (GDC). We see that thedraw() function

506 19. Building Interactive Graphics Applications

// Fl_Glut_Window is a pure virtual class supplied by FLTK specifically for supporting
// windows with OpenGL output and for receiving mouse events.
class FlGlutWindow : publicFl_Glut_Window {

FlGlutWindow(Model *m); // Constructor
Model *TheModel; // The application state: initialized during construction time.
float WorldWidth, WorldHeight; // World Space Dimension

void HardwareToWorldPoint(int hwX, int hwY, float &wcX, float &wcY);
// Transform mouse clicks (hwX, hwY) to World Cooridnate (wcX, wcY)

virtual void draw() { // virtual function from Fl_Glut_Window for drawing
glClearColor(0.8f, 0.8f, 0.95f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT); // Clearing the background color
glMatrixMode(GL_PROJECTION); // Programming the OpenGL’s GL_PROJECTION

glLoadIdentity(); // Matrix Processor to the propoer transfrotm
gluOrtho2D(0.0f, WorldWidth, 0.0f, WorldHeight);

TheModel->DrawApplicaitonState(); // Drawing of the application state
}

};

Figure 19.23. FlGlutWindow: OpenGL/FLTK view/controller pair.

first sets the rendering state (e.g., clearcolor and matrix values), including com-
puting and programming the matrix processor (e.g., GLPROJECTION), before
calling TheModel to re-draw the application state.

Direct3D with MFC

Figure 19.24 shows a screen shot of the MFC resource editor, MFC’s GUI builder,
during the construction of the ball shooting program. Similar to Fluid (Fig-
ure 19.21), in the middle of Figure 19.24, (A) we see that the resource editor

(B): Area representing
the application window

(D): Event service
source code is integrated
with the rest of the
source code system.

GUI elementsGUI
l t

(A): Interactively
placed GUI elements

(C):
Applicatio
n

(C): Application Developer
can create GUI elements and
define their appearances.

Figure 19.24. The MFC resource editor.

19.4. Example Implementations 507

classMainUIWindow : public CDialog {
Model *TheModel; // The application State (Figure 11)
LPDIRECT3D9 TheGHC; // This is the Graphics Hardware Context
CWndD3D *LargeView; // These are View/Controller pairs that understand drawing
CWndD3D *SmallView; // with D3D (GDC) and UI element events (controller)

CSliderCtrl XSlider, YSlider; // These are the GUI elements
CStringEcho StatusEcho;

void OnTimer(); // Override the Timer service function
void OnHScroll(…); // Override the Scroll bar service function

};

Figure 19.25. MainUIWindow based on Microsoft Direct3D and MFC.

also supports interactive designing of the GUI element layout in (B), an area rep-
resenting the application window. Although the GUI builder interfaces operate
differently, we observe that in (C), the MFC resource editor also supports the
definition/modification of the physical appearance of GUI elements. However,
unlike Fluid, the MFC resource editor is tightly integrated with the rest of the
development environment. In this case, a developer can register for event ser-
vices by inheriting or overriding appropriate service routines. The MFC resource
editor automatically inserts code fragments into the application source code sys-
tem. To support this functionality, the application source code organization is
governed/shared with the GUI builder; the application developer is not entirely
free to renamefiles/classes and/or to re-organize implementation source codefile
system structure. MFC implements internal direct code modification for event
service linkage, as described in Section 19.4.1.

Figure 19.25 shows theMainUIWindow implementation with Direct3D and
MFC. In this implementation, graphics operations are performed through Di-
rect3D while user interface operations are supported by MFC. Once again, The-
Model is the application state as detailed in Figure 19.11.LPDIRECT3D9 is
the Graphics Hardware Context (GHC) interface object. This object is created
and initialized in the MainUIWindow constructor (not shown here). The two
CWndD3D objects are defined to support drawing with Direct3D. We notice that
one major difference between Figure 19.25 and Figure 19.22 is in the GUI ele-
ment support. In Figure 19.25, we see that the GUI element objects (e.g., XSlider)
and the corresponding service routines (e.g., OnHScroll()) are integrated into the
MainUIWindow object. This is in contrast to the solution shown in Figure 19.22
where GUI elements are grouped into a separate object (e.g., the UserInterface
object) with callback event service registrations. As discussed in Section 19.2.4,
MFC is an example of a large commercial GUI API, where many event services
are registered based on object-oriented function overrides (e.g., the OnHScroll()
and OnTimer() functions).

508 19. Building Interactive Graphics Applications

// CWnd is the MFC base class for all window objects. Here we subclass to create a D3D output
// window by including a D3D Graphics Device Context.
class CWndD3D: publicCWnd {

LPDIRECT3DDEVICE9 D3DDevice; // This is the D3D Graphics Device Context (GDC)
Model *TheModel; // The application state
void InitD3D(LPDIRECT3D9); // Create D3DDevice (GDC) to connect to GHC

void RedrawView() { // Draws the Application State
// Compute world coordinate to device transform
D3DMATRIX transform = ComputeTransformation();
D3DDevice->SetTransform(D3DTS_WORLD, &transform);

// Programming the D3D_WORLD matrix with the computed transform matrix

D3DDevice->Clear(bgColor, D3DCLEAR_TARGET);
D3DDevice->BeginScene();

TheModel->DrawApplicationState(D3DDevice);
D3DDevice->EndScene();
D3DDevice->Present();

}

void HardwareToWorldPoint(CPoint hwPt, float &wcX, float &wcY);
// Transform mouse clicks (hwPt) to world coordinate (wcX, wcY)

void OnLButtonDown(CPoint hwPt);// Override mouse button/drag service functions

};

Figure 19.26. CWndD3D: Direct3D/MFC view/controller pair.

CWndD3D is a sub-class of the MFC CWnd class (see Figure 19.26). CWnd
is the base class designed for a generic MFC window. By sub-classing from this
base class, CWndD3D can support all default window-related events (e.g., mouse
events). TheLPDIRECT3DDEVICE9 object is the D3D Graphics Device Con-
text (GDC) interface object. TheInitD3D() function creates and initializes the
GDC object and connects this object to theLPDIRECT3D9 (GHC). In this way,
a CWndD3D sub-class is a basic view/controller pair: it supports the view func-
tionality with drawing via the D3D GDC and controller functionality with input
via MFC. TheRedrawView() function is similar to thedraw() function of Fig-
ure 19.23 where wefirst set up the rendering state (e.g., bgColor and matrix),
including programming the matrix processor (e.g.,D3DTS WORLD), before call-
ing the model to draw itself.

In conclusion, we see that Figure 19.20 represents an implementation of the
solution presented in Section 19.3.3 while Section 19.4.3 presented two versions
of the implementation for Figure 19.20. Although the GUI Builder, event service
registration, and actual API function calls are very different, thefinal program-
ming source code structures are remarkably similar. In fact, the two versions
share the exact same source codefiles for theModel class. In addition, although
the drawing functions forCirclePrimitive are different for OpenGL and D3D, we
were able to share the source codefiles for the rest of the primitive behaviors (e.g.,

19.5. Applying Our Results 509

set center/radius, travel with velocity, collide, etc.). We reaffirm our assertion that
software framework, solution structures, and event implementations should be
designed independent of any APIs.

19.5 Applying Our Results

We have seen that the event-driven programming model is well suited for design-
ing and implementing programs that interact with users. In addition, we have seen
that the modelview-controller framework is a convenient and powerful structure
for organizing functional modules in an interactive graphics application. In devel-
oping a solution to the ball shooting program, we have demonstrated that knowl-
edge from event-driven programming helps us design the controller component
(e.g., handling of mouse events, etc.), computer graphics knowledge helps us de-
sign the view component (e.g., transformation and drawing of circles, etc.), while
the model component is highly dependent upon the specific application (e.g., free
falling and colliding circles). Our discussion so far has been based on a very sim-
ple example. We will now explore the applicability of the MVC framework and
its implementation in real-world applications.

19.5.1 Example 1: PowerPoint

Figure 19.27 shows how we can apply our knowledge in analyzing and gaining
insights into Microsoft PowerPoint,2 a popular interactive graphics application. A
screen shot of a slide creation session using the PowerPoint application is shown
at the left of Figure 19.27. The right side of Figure 19.27 shows how we can
apply the implementation framework to gain insights into the PowerPoint appli-
cation. The MainUIWindow at the right of Figure 19.27 is the GUI window of

the entire application, and it contains theGUI elements that affect/echo the entire
application state (e.g., main menu, status area, etc.). We can consider the MainUI-
Window as the module that contains TheModel component and includes the four
view/controller pairs.

Recall that TheModel is the state of theapplication and that this component
contains all the data that the user interactively creates. In the case of PowerPoint,
the user creates a collection of presentation slides, and thus TheModel contains all
the information about these slides (e.g. layout design style, content of the slides,

2Powerpoint is a registered trademark of Microsoft.

510 19. Building Interactive Graphics Applications

Figure 19.27. Understanding PowerPoint using the MVC implementation framework.

notes associated with each slide, etc.).With this understanding of TheModel com-
ponent, the rest of the application can be considered as a convenient tool for pre-
senting TheModel (the view) to the user and changing TheModel (the controller)
by the user. In this way, these convenient tools are precisely the view/controller
pairs (e.g., ViewController components from Figure 19.16).

In Figure 19.27, each of the four view/controller pairs (i.e., OverviewPane,
WorkPane, StylePane, and NotesPane) presents, and supports changing of differ-
ent aspects of TheModel component:

• OverviewPane.The view component displays multiple consecutive slides
from all the slides that the user has created; the controller component sup-
ports user scrolling through all these slides and selecting one for editing.

• WorkPane. The view component displays the details of the slide that is cur-
rently being edited; the controller supports selecting and editing the content
of this slide.

• StylePane. The view component displays the layout design of the slide
that is currently being edited; the controller supports selecting and defining
a new layout design for this slide.

• NotesPane.The view component displays the notes that the user has cre-
ated for the slide that is currently being edited; the controller supports edit-
ing of this notes.

As is the case with most modern interactive applications, PowerPoint defines an
application timer event to support user-defined animations (e.g., animated se-

19.5. Applying Our Results 511

Figure 19.28. Understanding Maya with the MVC implementation framework.

quences between slide transitions). The coherency of the four view/controller
pairs can be maintained during the servicing of this application timer event. For
example, the user works with the StylePane to change the layout of the current
slide in TheModel component. In the meantime, before servicing the next timer
event, OverviewPane and WorkPane are not aware of the changes and display an
out-of-date design for the current slide. During the servicing of the timer event,
the MainUIWindow forces all view/controller pairs to poll TheModel and refresh
their contents. As discussed in Section 19.3.4, since the timer events are typically
triggered more than 30 times in a second, the user is not be able to detect the brief
out-of-date display and observes a consistent display at all times. In this way, the
four view/controller pairs only need to keep a reference to TheModel component
and do not need to have any knowledge ofeach other. Thus, it is straightforward
to insert and delete view/controller pairs into/from the application.

19.5.2 Example 2: Maya

We now apply our knowledge in analyzing and understanding Maya3, an inter-
active 3D modeling/animation/rendering system. The left side of Figure 19.28
shows a screen shot of Maya in a simple 3D content creation session. As in the
case of Figure 19.27, the right side of Figure 19.28 shows how we can apply
the implementation framework to gain insights into the Maya application. Once
again we see that the MainUIWindow is the GUI window of the entire application

3Maya is a registered trademark of Alias.

512 19. Building Interactive Graphics Applications

containing GUI elements that affect/echo the entire application state, TheModel
component, and all the view/controller pairs.

Since Maya is a 3D media creation system, TheModel component contains 3D
content information (e.g. scene graph, 3D geometry, material properties, lighting,
camera, animation, etc.). Once again, the rest of the components in the MainUI-
Window are designed to facilitate the user’s view and to change TheModel. Here
is the functionality of the four view/controller pairs:

• GraphPane.The view component displays the scene graph of the 3D con-
tent; the controller component supports navigating the graph and selecting
scene nodes in the graph.

• CameraPane.The view component renders the scene graph from a cam-
era viewing position; the controller component supports manipulating the
camera view and selecting objects in the scene.

• MaterialPane. The view component displays all the defined materials; the
controller component supports selecting and editing materials.

• OutlinePane.The view component displays all the transform nodes in the
scene; the controller component supports manipulating the transforms (e.g.
create/change parent-child relationships, etc.).

Once again, the coherency among the different view/controller pairs can be main-
tained while servicing the application timer events.

We do not speculate that PowerPoint or Maya is implemented according to
our framework. These are highly sophisticated commercial applications and the
underlying implementation is certainly much more complex. However, based on
the knowledge we have gained from this chapter, we can begin to understand how
to approach discussing, designing, and building such interactive graphics appli-
cations. Remember that the important lesson we want to learn from this chapter
is how to organize the functionality of an interactive graphics application into
components and understand how the components interact so that we can better
understand, maintain, modify, and expand an interactive graphics application.

Notes

I fi rst learned about the model view controller framework and event-driven pro-
gramming from SmallTalk (Goldberg & Robson, 1989) (You may also want to
refer to the SmallTalk web site (http://www.smalltalk.org/main/).) BothDesign
Patterns—Elements of Reusable Object-Oriented Design(Gamma et al., 1995)

http://www.smalltalk.org/main/

19.5. Applying Our Results 513

andPattern-Oriented Software Architecture(Buschmann et al., 1996) are excel-
lent sources forfinding out more about design patterns and software architec-
ture frameworks in general. I recommend3D Game Engine Architecture(Eberly,
2004) as a good source for discussions on issues relating to implementing real-
time graphics systems. I learned MFC and Direct3D mainly by referring to the
online Microsoft Developer Network pages (http://msdn.microsoft.com). In addi-
tion, I find Prosise’s bookProgramming Windows with MFC(Prosise, 1999) to be
very helpful. I refer to theOpenGL Programming Guide(Shreiner et al., 2004),
Reference Manual(Shreiner, 2004), and FLTK on-line help (http://www.fltk.org/)
when developing my OpenGL/FLTK programs.

Exercises

1. Here is the specification for dragging out a line:

• Left mouse button (LMB) clicks define the center of the line.

• LMB drags out a line such that the line extends in two directions. The
first direction extends from the center (LMB click) position toward the
current mouse position. The second direction extends in the opposite
direction from thefirst with exactly the same length.

• Right mouse button (RMB) click-drag moves the line such that the
center of the line follows the current mouse position.

(a) Follow the steps outlined in Section 19.2.3 and design an event-driven
programming solution for this specification.

(b) Implement your design with FLTK and OpenGL.

(c) Implement your design with MFC and Direct-3D.

Notice that in this case the useful application internal state information (the
center position of the line) and the drawing presentation requirements (end
points of the line) do not coincide exactly. When defining the application
state, we should pay attention to what is the most important and convenient
information to store in order to support the specified functionality.

2. For the line defined in Exercise 1, define a velocity that is the same as
the slope of the line: once created, the line will travel along the direction
defined by its slope. Use the length of the line as the speed. (Note that
longer lines travel faster than shorter lines).

http://msdn.microsoft.com
http://www.fltk.org/

514 19. Building Interactive Graphics Applications

3. Here is the specification for dragging out a rectangle:

• LMB click defines the center of the rectangle.

• LMB drag out a rectangle such that the rectangle extends from the
center position and one of the corner positions of the rectangle always
follows the current mouse position.

• RMB click-drag moves the rectangle such that the center of the rect-
angle follows the current mouse position.

(a) Follow the steps outlined in Section 19.2.3 and design an event-driven
programming solution for this specification.

(b) Implement your design with FLTK and OpenGL.

(c) Implement your design with MFC and Direct-3D.

4. For the rectangle in Exercise 3:

(a) Support the definition of a velocity similar to that of HeroBall velocity
in Section 19.1: once created, the rectangle will travel along a direc-
tion that is the vector defined from its center towards the LMB release
position.

(b) Design and implement collision between two rectangles (this is a sim-
ple 2D bound intersection check).

5. With results from Exercise 4, we can approximate a simple Pong game:

• The paddles are rectangles;

• A pong-ball is drawn as a circle but we will use the bounding square (a
square that centers at the center of the circle, with dimension defined
by the diameter of the circle) to approximate collision with the paddle.

Design and implement a single-player pong-game where a ball (circle)
drops under gravitational force and the user must manipulate a paddle to
bounce the ball upward to prevent it from dropping below the application
window. You should:

(a) design a specification (similar to that of Section 19.1) for this pong
game;

(b) follow the steps outlined in Section 19.2.3 to design an event-driven
programming solution;

(c) implement your design either with OpenGL or Direct-3D.

19.7. Exercises 515

6. Extend the ApplicationView in Figure 19.12 to include functionality for
setting a world coordinate windowbound. The world coordinate window
bound defines a rectangular region in the world for displaying in the View-
port. Define a method for setting the world coordinate window bound and
modify the ApplicaitonView::DeviceToWorldXform() function to support
transforming mouse clicks to world coordinate space.

7. Integrate your results from Exercise 6 into the two-view ball shooting pro-
gram from Figure 19.14 such that the small view can be focused around the
current HeroBall. When there is no current HeroBall, the small view should
display nothing. When user LMB click-drags, or when user RMB selects a
HeroBall, the small view’s world coordinate window bound should center
at the HeroBall center and include a region that is 1.5 times the HeroBall
diameter.

2 02 0

Light

In this chapter, we discuss the practical issues of measuring light, usually called
radiometry. The terms that arise in radiometry may atfirst seem strange and have
terminology and notation that may be hard to keep straight. However, because
radiometry is so fundamental to computer graphics, it is worth studying radiome-
try until it sinks in. This chapter also coversphotometry, which takes radiometric
quantities and scales them to estimate how much “useful” light is present. For
example, a green light may seem twice as bright as a blue light of the same power
because the eye is more sensitive to greenlight. Photometry attempts to quantify
such distinctions.

20.1 Radiometry

Although we can define radiometric units in many systems, we useSI (Interna-
tional System of Units) units. Familiar SI units include the metric units ofmeter

(m) andgram (g). Light is fundamentally a propagating form of energy, so it is
useful to define the SI unit of energy, which is thejoule (J).

20.1.1 Photons

To aid our intuition, we will describe radiometry in terms of collections of large
numbers ofphotons, and this section establishes what is meant by a photon in this

517

518 20. Light

context. For the purposes of this chapter, a photon is a quantum of light that has
a position, direction of propagation, and a wavelengthλ. Somewhat strangely,
the SI unit used for wavelength isnanometer (nm). This is mainly for historical
reasons, and1 nm = 10−9 m. Another unit, theangstrom, is sometimes used, and
one nanometer is ten angstroms. A photon also has a speedc that depends only
on the refractive indexn of the medium through which it propagates. Sometimes
the frequencyf = c/λ is also used for light. This is convenient because unlike
λ andc, f does not change when the photon refracts into a medium with a new
refractive index. Another invariant measure is the amount of energyq carried by
a photon, which is given by the following relationship:

q = hf =
hc

λ
, (20.1)

whereh = 6.63 × 10−34 J s is Plank’s Constant. Although these quantities can
be measured in any unit system, we will use SI units whenever possible.

20.1.2 Spectral Energy

If we have a large collection of photons, their total energyQ can be computed
by summing the energyqi of each photon. A reasonable question to ask is “How
is the energy distributed across wavelengths?” An easy way to answer this is to
partition the photons into bins, essentially histogramming them. We then have
an energy associated with an interval. For example, we can count all the energy
betweenλ = 500 nm andλ = 600 nm and have it turn out to be 10.2 J, and this
might be denotedq[500, 600] = 10.2. If we divided the wavelength interval into
two 50 nm intervals, we mightfind thatq[500, 550] = 5.2 andq[550, 600] = 5.0.
This tells us there was a little more energy in the short wavelength half of the
interval[500, 600]. If we divide into 25 nm bins, we mightfindq[500, 525] = 2.5,
and so on. The nice thing about the system is that it is straightforward. The bad
thing about it is that the choice of the interval size determines the number.

A more commonly used system is to divide the energy by the size of the
interval. So instead ofq[500, 600] = 10.2 we would have

Qλ[500, 600] =
10.2

100
= 0.12 J(nm)

−1
.

This approach is nice, because the size of the interval has much less impact on
the overall size of the numbers. An immediate idea would be to drive the interval
size∆λ to zero. This could be awkward, because for a sufficiently small∆λ, Qλ

will either be zero or huge depending on whether there is a single photon or no

20.1. Radiometry 519

photon in the interval. There are two schools of thought to solve that dilemma.
Thefirst is to assume that∆λ is small, but not so small that the quantum nature of
light comes into play. The second is to assume that the light is a continuum rather
than individual photons, so a true derivativedQ/dλ is appropriate. Both ways of
thinking about it are appropriate and lead to the same computational machinery.
In practice, it seems that most people who measure light prefer small, butfinite,
intervals, because thatis what they can measure in the lab. Most people who
do theory or computation prefer infinitesimal intervals, because that makes the
machinery of calculus available.

The quantityQλ is calledspectral energy, and it is anintensive quantity as op-
posed to anextensive quantity such as energy, length, or mass. Intensive quantities
can be thought of as density functions that tell the density of an extensive quantity
at an infinitesimal point. For example, the energyQ at a specific wavelength is
probably zero, but the spectral energy (energy density)Qλ is a meaningful quan-
tity. A probably more familiar example is that the population of a country may
be 25 million, but the population at a pointin that country is meaningless. How-
ever, the populationdensity measured in people per square meter is meaningful,
provided it is measured over large enough areas. Much like with photons, popula-
tion density works best if we pretend that we can view population as a continuum
where population density never becomes granular even when the area is small.

We will follow the convention of graphics where spectral energy is almost al-
ways used, and energy is rarely used. This results in a proliferation ofλ subscripts
if “proper” notation is used. Instead, we will drop the subscript and useQ to de-
note spectral energy. This can result in some confusion when people outside of
graphics read graphics papers, so be aware of this standards issue. Your intuition
about spectral power might be aided by imagining a measurement device with an
energy sensor that measures light energyq. If you place a coloredfilter in front of
the sensor that allows only light in the interval[λ − ∆λ/2, λ + ∆λ/2], then the
spectral power atλ is Q = ∆q/∆λ.

20.1.3 Power

It is useful to estimate a rate of energy production for light sources. This rate is
calledpower, and it is measured inwatts, W , which is another name forjoules

per second. This is easiest to understand in asteady state, but because power is
an intensive quantity (a density over time), it is well defined even when energy
production is varying over time. The units of power may be more familiar, e.g., a
100-watt light bulb. Such bulbs draw approximately 100 J of energy each second.
The power of the light produced will actually be less than 100 W because of

520 20. Light

heat loss, etc., but we can still use this example to help understand more about
photons. For example, we can get a feel for how many photons are produced in a
second by a100 W light. Suppose the average photon produced has the energy of
aλ = 500 nm photon. The frequency of such a photon is

f =
c

λ
=

3 × 108 ms−1

500 × 10−9 m
= 6 × 1014 s−1.

The energy of that photon ishf ≈ 4 × 10−19 J. That means a staggering1020

photons are produced each second, even if the bulb is not very efficient. This
explains why simulating a camera with a fast shutter speed and directly simulated
photons is an inefficient choice for producing images.

As with energy, we are really interested inspectral power measured in
W(nm)−1. Again, although the formal standard symbol for spectral power is
Φλ, we will useΦ with no subscript for convenience and consistency with most
of the graphics literature. One thing to note is that the spectral power for a light
source is usually a smaller number than the power. For example, if a light emits
a power of100 W evenly distributed over wavelengths400 nm to800 nm, then
the spectral power will be100 W/400 nm = 0.25 W(nm)

−1. This is something to
keep in mind if you set the spectral power of light sources by hand for debugging
purposes.

The measurement device for spectral energy in the last section could be mod-
ified by taking a reading with a shutter that is open for a time interval∆t centered
at timet. The spectral power would then be∆Q/(∆t∆λ).

20.1.4 Irradiance

The quantityirradiance arises naturally if you ask the question “How much light
hits this point?” Of course the answer is “none,” and again we must use a density
function. If the point is on a surface, it is natural to use area to define our density
function. We modify the device from the last section to have afinite ∆A area
sensor that is smaller than the lightfield being measured. The spectral irradiance
H is just the power per unit area∆Φ/∆A. Fully expanded this is

H =
∆q

∆A ∆t∆λ
. (20.2)

Thus, the full units of irradiance areJm−2s−1(nm)
−1. Note that the SI units for

radiance include inverse-meter-squared for area and inverse-nanometer for wave-
length. This seeming inconsistency (using both nanometer and meter) arises be-
cause of the natural units for area and visible light wavelengths.

20.1. Radiometry 521

When the light is leaving a surface, e.g., when it is reflected, the same quantity
as irradiance is calledradiant exitance, E. It is useful to have different words
for incident and exitant light, because the same point has potentially different
irradiance and radiant exitance.

20.1.5 Radiance

Although irradiance tells us how much light is arriving at a point, it tells us little
about the direction that light comes from. To measure something analogous to
what we see with our eyes, we need to be able to associate “how much light” with
a specific direction. We can imagine a simple device to measure such a quantity
(Figure 20.1). We use a small irradiance meter and add a conical “baffler” which
limits light hitting the counter to a range of angles with solid angle∆σ. The
response of the detector is as follows:

Figure 20.1. By adding
a blinder that shows only
a small solid angle ∆σ to
the irradiance detector, we
measure radiance.

response=
∆H

∆σ

=
∆q

∆A ∆σ ∆t ∆λ
.

This is the spectralradiance of light travelling in space. Again, we will drop the
“spectral” in our discussion and assume that it is implicit.

Δ

Δ

Figure 20.2. The signal a radiance detector receives does not depend on the distance to
the surface being measured. This figure assumes the detectors are pointing at areas on the
surface that are emitting light in the same way.

522 20. Light

Radiance is what we are usually computing in graphics programs. A won-
derful property of radiance is that it does not vary along a line in space. To see
why this is true, examine the two radiance detectors both looking at a surface
as shown in Figure 20.2. Assume the lines the detectors are looking along are
close enough together that the surface is emitting/reflecting light “the same” in
both of the areas being measured. Because the area of the surface being sampled
is proportional to squared distance, and because the light reaching the detector is
inversely proportional to squared distance, the two detectors should have the same
reading.

It is useful to measure the radiance hitting a surface. We can think of placing
the cone baffler from the radiance detector at a point on the surface and measur-
ing the irradianceH on the surface originating from directions within the cone
(Figure 20.3). Note that the surface “detector” is not aligned with the cone. For
this reason we need to add a cosine correction term to our definition of radiance:

response=
∆H

∆σ cos θ

=
∆q

∆A cos θ ∆σ ∆t ∆λ
.

Figure 20.3. The ir-
radiance at the surface as
masked by the cone is
smaller than that measured
at the detector by a cosine
factor.

As with irradiance and radiant exitance, it is useful to distinguish between radi-
ance incident at a point on a surface and exitant from that point. Terms for these
concepts sometimes used in the graphics literature aresurface radiance Ls for
the radiance of (leaving) a surface, andfield radiance Lf for the radiance incident
at a surface. Both require the cosine term, because they both correspond to the
configuration in Figure 20.3:

Ls =
∆E

∆σ cos θ

Lf =
∆H

∆σ cos θ
.

Radiance and Other Radiometric Quantities

If we have a surface whosefield radiance isLf , then we can derive all of the
other radiometric quantities from it. This is one reason radiance is considered the
“fundamental” radiometric quantity. For example, the irradiance can be expressed
as

H =

∫

all k
Lf (k) cos θ dσ.

Figure 20.4. The direction
k has a differential solid an-
gle dσ associated with it.

This formula has several notational conventions that are common in graphics
that make such formulae opaque to readers not familiar with them (Figure 20.4).
First,k is an incident direction and can be thought of as a unit vector, a direction,

20.1. Radiometry 523

or a (θ, φ) pair in spherical coordinates with respect to the surface normal. The
direction has a differential solid angledσ associated with it. Thefield radiance is
potentially different for every direction, so we write it as a functionL(k).

As an example, we can compute the irradianceH at a surface that has con-
stantfield radianceLf in all directions. To integrate, we use a classic spherical
coordinate system and recall that the differential solid angle is

dσ ≡ sin θ dθ dφ,

so the irradiance is

H =

∫ 2π

φ=0

∫ π
2

θ=0

Lf cos θ sin θ dθ dφ

= πLf .

This relation shows us ourfirst occurrence of a potentially surprising constantπ.
These factors ofπ occur frequently in radiometry and are an artifact of how we
chose to measure solid angles, i.e., the area of a unit sphere is a multiple ofπ

rather than a multiple of one.
Similarly, we canfind the power hitting a surface by integrating the irradiance

across the surface area:

Φ =

∫

all x
H(x)dA,

wherex is a point on the surface, anddA is the differential area associated with
that point. Note that we don’t have special terms or symbols for incoming ver-
sus outgoing power. That distinction does not seem to come up enough to have
encouraged the distinction.

20.1.6 BRDF

Because we are interested in surface appearance, we would like to characterize
how a surface reflects light. At an intuitive level, for any incident light coming
from directionki, there is some fraction scattered in a small solid angle near the
outgoing directionko. There are many ways we could formalize such a concept,
and not surprisingly, the standard way to do so is inspired by building a simple
measurement device. Such a device is shown in Figure 20.5, where a small light
source is positioned in directionki as seen from a point on a surface, and a detec-
tor is placed in directionko. For every directional pair(ki,ko), we take a reading
with the detector.

Now we just have to decide how to measure the strength of the light source
and make our reflection function independent of this strength. For example, if we

524 20. Light

Figure 20.5. A simple measurement device for directional reflectance. The positions of light
and detector are moved to each possible pair of directions. Note that both k i and ko point
away from the surface to allow reciprocity.

replaced the light with a brighter light, we would not want to think of the surface
as reflecting light differently. We could place a radiance meter at the point being
illuminated to measure the light. However, for this to get an accurate reading that
would not depend on the∆σ of the detector, we would need the light to subtend a
solid angle bigger than∆σ. Unfortunately, the measurement taken by our roving
radiance detector in directionko will also count light that comes from points
outside the new detector’s cone. So this does not seem like a practical solution.

Alternatively, we can place an irradiance meter at the point on the surface be-
ing measured. This will take a reading that does not depend strongly on subtleties
of the light source geometry. This suggests characterizing reflectance as a ratio:

ρ =
Ls

H
,

where this fractionρ will vary with incident and exitant directionski andko, H

is the irradiance for light positionki, andLs is the surface radiance measured in
directionko. If we take such a measurement for all direction pairs, we end up
with a 4D functionρ(ki,ko). This function is called thebidirectional reflectance

distribution function (BRDF). The BRDF is all we need to know to characterize
the directional properties of how a surface reflects light.

Directional Hemispherical Reflectance

Given a BRDF it is straightforward to ask “What fraction of incident light is
reflected?” However, the answer is not so easy; the fraction reflected depends on
the directional distribution of incoming light. For this reason, we typically only

20.1. Radiometry 525

set a fraction reflected for afixed incident directionki. This fraction is called the
directional hemispherical reflectance. This fraction,R(ki) is defined by

R(ki) =
power in all outgoing directionsko

power in a beam from directionki
.

Note that this quantity is between zero and one for reasons of energy conservation.
If we allow the incident powerΦi to hit on a small area∆A, then the irradiance
is Φi/∆A. Also, the ratio of the incoming power is just the ratio of the radiance
exitance to irradiance:

R(ki) =
E

H
.

The radiance in a particular direction resulting from this power is by the definition
of BRDF:

L(ko) = Hρ(ki,ko)

=
Φi

∆A
.

And from the definition of radiance, we also have

L(ko) =
∆E

∆σo cos θo
,

whereE is the radiant exitance of the small patch in directionko. Using these
two definitions for radiance we get

Hρ(ki,ko) =
∆E

∆σo cos θo
.

Rearranging terms, we get

∆E

H
= ρ(ki,ko)∆σo cos θo.

This is just the small contribution toE/H that is reflected near the particularko.
To find the totalR(ki), we sum over all outgoingko. In integral form this is

R(ki) =

∫

all ko

ρ(ki,ko) cos θo dσo.

Ideal Diffuse BRDF

An idealized diffuse surface is calledLambertian. Such surfaces are impossible in
nature for thermodynamic reasons, but mathematically they do conserve energy.
The Lambertian BRDF hasρ equal to a constant for all angles. This means the

526 20. Light

surface will have the same radiance for all viewing angles, and this radiance will
be proportional to the irradiance.

If we computeR(ki) for a a Lambertian surface withρ = C we get

R(ki) =

∫

all ko

C cos θo dσo

=

∫ 2π

φo=0

∫ π/2

θo=0

k cos θo sin θo dθo dφo

= πC.

Thus, for a perfectly reflecting Lambertian surface (R = 1), we haveρ = 1/π,
and for a Lambertian surface whereR(ki) = r, we have

ρ(ki,ko) =
r

π
.

This is another example where the use of a steradian for the solid angle determines
the normalizing constant and thus introduces factors ofπ.

20.2 Transport Equation

With the definition of BRDF, we can describe the radiance of a surface in terms of
the incoming radiance from all different directions. Because in computer graphics
we can use idealized mathematics that might be impractical to instantiate in the
lab, we can also write the BRDF in terms of radiance only. If we take a small part
of the light with solid angle∆σi with radianceLi and “measure” the reflected
radiance in directionko due to this small piece of the light, we can compute
a BRDF (Figure 20.6). The irradiance due to the small piece of light isH =

Figure 20.6. The geometry for the transport equation in its directional form.

20.2. Transport Equation 527

Li cos θi∆σi. Thus the BRDF is

ρ =
Lo

Li cos θi∆σi
.

This form can be useful in some situations. Rearranging terms, we can write down
the part of the radiance that is due to light coming from directionki:

∆Lo = ρ(ki,ko)Li cos θi∆σi.

If there is light coming from many directionsLi(ki), we can sum all of them. In
integral form, with notation for surface andfield radiance, this is

Ls(ko) =

∫

all ki

ρ(ki,ko)Lf (ki) cos θidσi.

This is often called therendering equation in computer graphics (Immel et al.,
1986).

Sometimes it is useful to write the transport equation in terms of surface radi-
ances only (Kajiya, 1986). Note, that in a closed environment, thefield radiance
Lf (ki) comes from some surface with surface radianceLs(−ki) = Lf (ki) (Fig-
ure 20.7). The solid angle subtended by the pointx′ in thefigure is given by

∆σi =
∆A′ cos θ′

‖x− x′‖2
,

where∆A′ the the area we associate withx′. Substituting for∆σi in terms of
Figure 20.7. The
light coming into one point
comes from another point.

∆A′ suggests the following transport equation:

Ls(x,ko) =

∫

all x’ visible to x

ρ(ki,ko)Ls(x
′,x − x′) cos θi cos θ′

‖x − x′‖2
dA′ .

Note that we are using a non-normalized vectorx − x′ to indicate the direction
from x′ to x. Also note that we are writingLs as a function of position and
direction.

The only problem with this new transport equation is that the domain of inte-
gration is awkward. If we introduce a visibility function, we can trade off com-
plexity in the domain with complexity in the integrand:

Ls(x,ko) =

∫

all x’

ρ(ki,ko)Ls(x
′,x− x′)v(x,x′) cos θi cos θ′

‖x− x′‖2
dA′ ,

where

v(x,x′) =

{

1 if x andx’ are mutually visible,

0 otherwise.

528 20. Light

20.3 Photometry

For every spectral radiometric quantity there is a relatedphotometric quantity

that measures how much of that quantity is “useful” to a human observer. Given
a spectral radiometric quantityfr(λ), the related photometric quantityfp is

fp = 683
lm

W

∫ 800 nm

λ=380 nm

ȳ(λ)fr(λ) dλ,

where ȳ is the luminous efficiency function of the human visual system. This
function is zero outside the limits of integration above, so the limits could be
0 and∞ andfp would not change. The luminous efficiency function will be
discussed in more detail in Chapter 21, but we discuss its general properties here.
The leading constant is to make the definition consistent with historical absolute
photometric quantities.

The luminous efficiency function is not equally sensitive to all wavelengths
(Figure 20.8). For wavelengths below 380 nm (theultraviolet range), the light is
not visible to humans and thus has aȳ value of zero. From 380 nm it gradually
increases untilλ = 555 nm where it peaks. This is a pure green light. Then, it
gradually decreases until itreaches the boundary of the infrared region at 800 nm.

Figure 20.8. The lu-
minous efficiency function
versus wavelength (nm).

The photometric quantity that ismost commonly used in graphics islumi-

nance, the photometric analog of radiance:

Y = 683
lm

W

∫ 800 nm

λ=380 nm

ȳ(λ)L(λ) dλ.

The symbolY for luminance comes from colorimetry. Most otherfields use the
symbolL; we will not follow that convention because it is too confusing to useL

for both luminance and spectral radiance. Luminance gives one a general idea of
how “bright” something is independent of the adaptation of the viewer. Note that
the black paper under noonday sun is subjectively darker than the lower luminance
white paper under moonlight; reading too much into luminance is dangerous, but
it is a very useful quantity for getting a quantitative feel for relative perceivable
light output. The unitlm stands forlumens. Note that most light bulbs are rated
in terms of the power they consume in watts, and the useful light they produce in
lumens. More efficient bulbs produce more of their light whereȳ is large and thus
produce more lumens per watt. A “perfect” light would convert all power into
555 nm light and would produce 683 lumens per watt. The units of luminance are
thus(lm/W)(W/(m2sr)) = lm/(m2sr). The quantity one lumen per steradian is
defined to be onecandela (cd), so luminance is usually described in unitscd/m2.

20.3. Photometry 529

Frequently Asked Questions

• What is “intensity”?

The termintensity is used in a variety of contexts and its use varies with both era
and discipline. In practice, it is no longer meaningful as a specific radiometric
quantity, but it is useful for intuitive discussion. Most papers that use it do so in
place of radiance.

• What is “radiosity”?

The termradiosity is used in place of radiant exitance in somefields. It is also
sometimes used to describe world-space light transport algorithms.

Notes

A common radiometric quantity not described in this chapter isradiant intensity

(I), which is the spectral power per steradian emitted from an infinitesimal point
source. It should usually be avoided in graphics programs because point sources
cause implementation problems. A more rigorous treatment of radiometry can
be found inAnalytic Methods for Simulated Light Transport (Arvo, 1995). The
radiometric and photometric terms in this chapter are from theIllumination En-

gineering Society’s standard that is increasingly used by allfields of science and
engineering (American National Standard Institute, 1986). A broader discussion
of radiometric and appearance standards can be found inPrinciples of Digital

Image Synthesis (Glassner, 1995).

Exercises

1. For a diffuse surface with outgoing radianceL, what is the radiant exitance?

2. What is the total power exiting a diffuse surface with an area of4 m2 and a
radiance ofL?

3. If a fluorescent light and an incandescent light both consume 20 watts of
power, why is thefluorescent light usually preferred?

2 12 1
Erik Reinhard and Garrett Johnson

Color

Photons are the carriers of optical information. They propagate through media
taking on properties associated with waves. At surface boundaries they inter-
act with matter, behaving more as particles. They can also be absorbed by the
retina, where the information they carry is transcoded into electrical signals that
are subsequently processed by the brain. It is only there that a sensation of color
is generated.

As a consequence, the study of color in all its guises touches upon several
differentfields: physics for the propagation of light through space; chemistry for
its interaction with matter; neuroscience and psychology for aspects relating to
perception and cognition of color (Reinhard et al., 2008).

In computer graphics, we traditionally take a simplified view of how light
propagates through space. Photons travel along straight paths until they hit a sur-
face boundary and are then reflected according to a reflection function of some
sort. A single photon will carry a certain amount of energy, which is represented
by its wavelength. Thus, a photon will have only one wavelength. The relation-
ship between its wavelengthλ and the amount of energy it carries (∆E) is given
by

λ ∆E = 1239.9,

where∆E is measured in electron volts (eV).
In computer graphics, it is not very efficient to simulate single photons; in-

stead large collections of them are simulated at the same time. If we take a very
large number of photons, each carrying a possibly different amount of energy,

531

532 21. Color

300 400 500 600 700 800 900
0

20

40

60

80

100

120

R
el

at
iv

e
R

ad
ia

nt
 P

ow
er

Figure 21.1. A spectrum describes how much energy is available at each wavelength λ,
here measured as relative radiant power. This specific spectrum represents average daylight.

then together they represent a spectrum. A spectrum can be thought of as a graph
where the number of photons is plotted against wavelength. Because two photons
of the same wavelength carry twice as much energy as a single photon of that
wavelength, this graph can also be seen as a plot of energy against wavelength.
An example of a spectrum is shown in Figure 21.1. The range of wavelengths to
which humans are sensitive is roughly between 380 and 800 nanometers (nm).

When simulating light, it would therefore be possible to trace rays that each
carry a spectrum. A renderer that accomplishes this is normally called aspectral

renderer. From preceding chapters it should be clear that we are not normally
going through the expense of building spectral renderers. Instead, we replace
spectra with representations that typically use red, green, and blue components.
The reason that this is possible at all has to do with human vision and will be
discussed later in this chapter.

Simulating light by tracing rays takes care of the physics of light, although it
should be noted that several properties of light, including for instance polarization,
diffraction, and interference, are not modeled in this manner.

At surface boundaries, we normally model what happens with light by means
of a reflectance function. These functions can be measured directly by means
of gonioreflectometers, leading to a large amount of tabled data, which can be
more compactly represented by various different functions. Nonetheless, these
reflectance functions are empirical in nature, i.e., they abstract away the chemistry
that happens when a photon is absorbed and re-emitted by an electron. Thus,
reflectance functions are useful for modeling in computer graphics, but do not

21.1. Colorimetry 533

offer an explanation as to why certain wavelengths of light are absorbed and others
are reflected. We can therefore not use reflectance functions to explain why the
light reflected off a banana has a spectral composition that appears to us as yellow.
For that, we would have to study molecular orbital theory, a topic beyond the
scope of this book.

Finally, when light reaches the retina,it is transcoded into electrical signals
that are propagated to the brain. A large part of the brain is devoted to processing
visual signals, part of which gives rise to the sensation of color. Thus, even if
we know the spectrum of light that is reflected off a banana, we do not know yet
why humans associate the term “yellow” with it. Moreover, as we willfind out in
the remainder of this chapter, our perception of color is vastly more complicated
than it would seem atfirst glance. It changes with illumination, varies between
observers, and varies within an observer over time.

In other words, the spectrum of light coming off a banana is perceived in the
context of an environment. To predict how an observer perceives a “banana spec-
trum” requires knowledge of the environment that contains the banana as well as
the observer’s environment. In many instances, these two environments are the
same. However, when we are displaying a photograph of a banana on a moni-
tor, then these two environments will bedifferent. As human visual perception
depends on the environment the observer is in, it may perceive the banana in the
photograph differently from how an observer directly looking at the banana would
perceive it. This has a significant impact on how we should deal with color and
illustrates the complexities associated with color.

To emphasize the crucial role that human vision plays, we only have to look
at the definition of color: “Color is the aspect of visual perception by which an
observer may distinguish differences between two structure-freefields of view of
the same size and shape, such as may becaused by differences in the spectral
composition of the radiant energy concerned in the observation” (Wyszecki &
Stiles, 2000). In essence, without a human observer there is no color.

Luckily, much of what we know about color can be quantified, so that we
can carry out computations to correct for the idiosyncrasies of human vision and
thereby display images thatwill appear to observers the way the designer of those
images intended. This chapter contains the theory and mathematics required to
do so.

21.1 Colorimetry

Colorimetry is the science of color measurement and description. Since color
is ultimately a human response, color measurement should begin with human

534 21. Color

observation. The photodetectors in the human retina consist of rods and cones.
The rods are highly sensitive and come into play in low light conditions. Under
normal lighting conditions, the cones areoperational, mediating human vision.
There are three cone types and together they are primarily responsible for color
vision.

Although it may be possible to directly record the electrical output of cones
while some visual stimulus is being presented, such a procedure would be inva-
sive, while at the same time ignoring the sometimes substantial differences be-
tween observers. Moreover, much of the measurement of color was developed
well before such direct recording techniques were available.

The alternative is to measure color by means of measuring the human re-
sponse to patches of color. This leads to color matching experiments, which will
be described later in this section. Carrying out these experiments have resulted in
several standardized observers, which can be thought of as statistical approxima-
tions of actual human observers. First, however, we need to describe some of the
assumptions underlying thepossibility of color matching, which are summarized
by Grassmann’s laws.

21.1.1 Grassmann’s Laws

Given that humans have three different cone types, the experimental laws of
color matching can be summed up as the trichromatic generalization (Wyszecki
& Stiles, 2000), which states that any colorstimulus can be matched completely
with an additive mixture of three appropriately modulated color sources. This
feature of color is often used in practice, for instance by televisions and monitors
which reproduce many different colors by adding a mixture of red, green, and
blue light for each pixel. It is also the reason that renderers can be built using
only three values to describe each color.

The trichromatic generalization allows us to make color matches between any
given stimulus and an additive mixture of three other color stimuli. Grassmann
was thefirst to describe the algebraic rules to which color matching adheres. They
are known as Grassmann’s laws of additive color matching (Grassmann, 1853)
and are given here.

• Symmetry law. If color stimulusA matches color stimulusB, thenB

matchesA.

• Transitive law. If A matchesB andB matchesC, thenA matchesC.

• Proportionality law. If A matchesB, thenαA matchesαB, whereα is a
positive scale factor.

21.1. Colorimetry 535

• Additivity law. If A matchesB, C matchesD, andA+C matchesB +D,
then it follows thatA + D matchesB + C.

The additivity law forms the basis for color matching and colorimetry as a
whole.

21.1.2 Cone Responses

Each cone type is sensitive to a range of wavelengths, spanning most of the full
visible range. However, sensitivity to wavelengths is not evenly distributed, but
contains a peak wavelength at which sensitivity is greatest. The location of this
peak wavelength is different for each cone type. The three cone types are clas-
sified as S, M, and L cones, where the letters stand for short, medium, and long,
indicating where in the visible spectrum the peak sensitivity is located.

The response of a given cone is then the magnitude of the electrical signal it
outputs, as a function of the spectrum of wavelengths incident upon the cone. The
cone response functions for each conetype as a function of wavelengthλ are then
given byL(λ), M(λ), andS(λ). They are plotted in Figure 21.2.

The actual response to a stimulus with a given spectral compositionΦ(λ) is
then given for each cone type by

L =

∫

λ

Φ(λ) L(λ) dλ,

M =

∫

λ

Φ(λ) M(λ) dλ,

S =

∫

λ

Φ(λ) S(λ) dλ.

This triple of integrated responses are known as tristimulus values.

400 450 500 550 600 650 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

wavelength (nm)

se
ns

iti
vi

ty

L
M
S

Figure 21.2. The cone response functions for L, M, and S cones.

536 21. Color

21.1.3 Color Matching Experiments

Given that tristimulus values are created by integrating the product of two func-
tions over the visible range, it is immediately clear that the human visual system
does not act as a simple wavelength detector. Rather, our photo-receptors act as
approximately linear integrators. As a result, it is possible tofind two different
spectral compositions, sayΦ1(λ) andΦ2(λ), that after integration yield the same
response(L, M, S). This phenomenon is known asmetamerism, an example of
which is shown in Figure 21.3.

Metamerism is the key feature of human vision that allows the construction of
color reproduction devices, including the colorfigures in this book and anything
reproduced on printers, televisions, and monitors.

Color matching experiments also rely on the principle of metamerism. Sup-
pose we have three differently colored light sources, each with a dial to alter its
intensity. We call these three light sources primaries. We should now be able to
adjust the intensity of each in such a waythat when mixed together additively,
the resulting spectrum integrates to a tristimulus value that matches the perceived
color of a fourth unknown light source. When we carry out such an experiment,
we have essentially matched our primaries to an unknown color. The positions of
our three dials are then a representation of the color of the fourth light source.

In such an experiment, we have used Grassmann’s laws to add the three spec-
tra of our primaries. We have also used metamerism, because the combined spec-
trum of our three primaries is almost certainly different from the spectrum of the

L
M
S

400 450 500 550 600 650 700
wavelength (nm)

se
ns

iti
vi

ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 21.3. Two stimuli Φ1(λ) and Φ2(λ) leading to the same tristimulus values after
integration.

21.1. Colorimetry 537

fourth light source. However, the tristimulus values computed from these two
spectra will be identical, having produced a color match.

Note that we do not actually have to know the cone response functions to carry
out such an experiment. As long as we use the same observer under the same
conditions, we are able to match colors and record the positions of our dials for
each color. However, it is quite inconvenient to have to carry out such experiments
every time we want to measure colors. For this reason, we do want to know the
spectral cone response functions and average those for a set of different observers
to eliminate inter-observer variability.

21.1.4 Standard Observers

If we perform a color matching experiment for a large range of colors, carried out
by a set of different observers, it is possible to generate an average color match-
ing dataset. If we specifically use monochromatic light sources against which to
match our primaries, we can repeat this experiment for all visible wavelengths.
The resulting tristimulus values are then calledspectral tristimulus values, and
can be plotted against wavelengthλ, shown in Figure 21.4.

By using a well-defined set of primary light sources, the spectral tristimulus
values lead to three color matching functions. The Commission Internationale
d’Eclairage (CIE) has defined three such primaries to be monochromatic light
sources of 435.8, 546.1, and 700 nm, respectively. With these three monochro-
matic light sources, all other visible wavelengths can be matched by adding differ-

400 450 500 550 600 650 700

0.0

0.1

0.2

0.3

0.4

0.5

wavelength (nm)

se
ns

iti
vi

ty

Figure 21.4. Spectral tristimulus values averaged over many observers. The primaries
where monochromatic light sources with wavelengths of 435.8, 546.1, and 700 nm.

538 21. Color

ent amounts of each. The amount of each required to match a given wavelengthλ

is encoded in color matching functions, given byr̄(λ), ḡ(λ), andb̄(λ) and plotted
in Figure 21.4. Tristimulus values associated with these color matching functions
are termedR, G, andB.

Given that we are adding light, and light cannot be negative, you may have
noticed an anomaly in Figure 21.4: to create a match for some wavelengths, it
is necessary to subtract light. Although there is no such thing as negative light,
we can use Grassmann’s laws once more, and instead of subtracting light from
the mixture of primaries, we can add the same amount of light to the color that is
being matched.

The CIEr̄(λ), ḡ(λ), andb̄(λ) color matching functions allow us to determine
if a spectral distributionΦ1 matches a second spectral distributionΦ2 by simply
comparing the resulting tristimulus values obtained by integrating with these color
matching functions:

∫

λ

Φ1(λ) r̄(λ) =

∫

λ

Φ2(λ) r̄(λ),

∫

λ

Φ1(λ) ḡ(λ) =

∫

λ

Φ2(λ) ḡ(λ),

∫

λ

Φ1(λ) b̄(λ) =

∫

λ

Φ2(λ) b̄(λ).

Of course, a color match is only guaranteed if all three tristimulus values match.
The importance of these color matching functions lies in the fact that we are

now able to communicate and describe colors compactly by means of tristimulus
values. For a given spectral function, the CIE color matching functions provide a
precise way in which to calculate tristimulus values. As long as everybody uses
the same color matching functions, it should always be possible to generate a
match.

If the same color matching functions are not available, then it is possible to
transform one set of tristimulus values into a different set of tristimulus values
appropriate for a corresponding set of primaries. The CIE has defined one such
a transform for two specific reasons. First, in the 1930s numerical integrations
were difficult to perform, and even more so for functions that can be both posi-
tive and negative. Second, the CIE had already developed the photopic luminance
response function, CIEV (λ). It became desirable to have three integrating func-
tions, of whichV (λ) is one and all three being positive over the visible range.

To create a set of positive color matching functions, it is necessary to define
imaginary primaries. In other words, to reproduce any color in the visible spec-
trum, we need light sources that cannot be physically realized. The color match-
ing functions that were settled upon by the CIE are namedx̄(λ), ȳ(λ), andz̄(λ)

21.1. Colorimetry 539

400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

wavelength (nm)

se
ns

iti
vi

ty

Figure 21.5. The CIE x̄(λ), ȳ(λ), and z̄(λ) color matching functions.

and are shown in Figure 21.5. Note thatȳ(λ) is equal to the photopic luminance
response functionV (λ) and that each of these functions is indeed positive. They
are known as the CIE 1931 standard observer.

The corresponding tristimulus values are termedX , Y , andZ, to avoid con-
fusion withR, G, andB tristimulus values that are normally associated with real-
izable primaries. The conversion from(R, G, B) tristimulus values to(X, Y, Z)

tristimulus values is defined by a simple 3×3 transform:

⎡

⎣

X
Y
Z

⎤

⎦ =
1

0.17697

⎡

⎣

0.4900 0.3100 0.2000
0.17697 0.81240 0.01063
0.0000 0.0100 0.9900

⎤

⎦ ·

⎡

⎣

R
G
B

⎤

⎦ .

To calculate tristimulus values, we typically directly integrate the standard ob-
server color matching functionswith the spectrum of interestΦ(λ), rather than go
through the CIĒr(λ), ḡ(λ), andb̄(λ) color matching functionsfirst, followed by
the above transformation. It allows us to calculate consistent color measurements
and also determine when two colors match each other.

21.1.5 Chromaticity Coordinates

Every color can be represented by a set of three tristimulus values(X, Y, Z). We
could define an orthogonal coordinate system with X, Y, and Z axes and plot each
color in the resulting 3D space. This is called acolor space. The spatial extent of
the volume in which colors lie is then called the color gamut.

540 21. Color

Visualizing colors in a 3D color space is fairly difficult. Moreover, theY -
value of any color corresponds to its luminance, by virtue of the fact thatȳ(λ)

equalsV (λ). We could therefore project tristimulus values to a 2D space which
approximates chromatic information, i.e., information which is independent of
luminance. This projection is called achromaticity diagram and is obtained by
normalization while at the same time removing luminance information:

x =
X

X + Y + Z
,

y =
Y

X + Y + Z
,

z =
Z

X + Y + Z
.

Given thatx + y + z equals 1, thez-value is redundant, allowing us to plot the
x andy chromaticities against each other in a chromaticity diagram. Althoughx

andy by themselves are not sufficient to fully describe a color, we can use these
two chromaticity coordinates and one of the three tristimulus values, traditionally
Y , to recover the other two tristimulus values:

X =
x

y
Y,

Z =
1 − x − y

y
Y.

By plotting all monochromatic (spectral) colors in a chromaticity diagram,
we obtain a horseshoe-shaped curve. The points on this curve are calledspectrum

loci. All other colors will generate points lying inside this curve. The spectrum
locus for the 1931 standard observer is shown in Figure 21.6. The purple line

Figure 21.6. The spectrum locus for the CIE 1931 standard observer. (See also
Plate XXVIII.)

21.1. Colorimetry 541

Figure 21.7. The chromaticity boundaries of the CIE RGB primaries at 435.8, 546.1, and
700 nm (solid) and a typical HDTV (dashed). (See also Plate XXIX.)

between either end of the horseshoe does not represent a monochromatic color,
but rather a combination of short and long wavelength stimuli.

A (non-monochromatic) primary can be integrated over all visible wave-
lengths, leading to(X, Y, Z) tristimulus values, and subsequently to an(x, y)

chromaticity coordinate, i.e., a point on a chromaticity diagram. Repeating this
for two or more primaries yields a set of points on a chromaticity diagram that can
be connected by straight lines. The volume spanned in this manner represents the
range of colors that can be reproduced by the additive mixture of these primaries.
Examples of 3-primary systems are shown in Figure 21.7.

Chromaticity diagrams provide insight into additive color mixtures. However,
they should be used with care. First, the interior of the horseshoe should not
be colored, as any color reproduction system will have its own primaries and
can only reproduce some parts of the chromaticity diagram. Second, as the CIE
color matching functions do not represent human cone sensitivities, the distance
between any two points on a chromaticity diagram is not a good indicator for how
differently these colors will be perceived.

A more uniform chromaticity diagram was developed to at least in part ad-
dress the second of these problems. The CIEu′v′ chromaticity diagram provides
a perceptually more uniform spacing and is therefore generally preferred over
(x, y) chromaticity diagrams. It is computed from(X, Y, Z) tristimulus values
by applying a different normalization,

u′ =
4X

X + 15Y + 3Z
,

v′ =
9Y

X + 15Y + 3Z
.

542 21. Color

u'

v'

Figure 21.8. The CIE u′v′ chromaticity diagram. (See also Plate XXX.)

and can alternatively be computed directly from(x, y) chromaticity coordinates:

u′ =
4x

−2x + 12y + 3
,

v′ =
9y

−2x + 12y + 3
.

A CIE u′v′ chromaticity diagram is shown in Figure 21.8.

21.2 Color Spaces

As explained above, each color can be represented by three numbers, for instance
defined by(X, Y, Z) tristimulus values. However, its primaries are imaginary,
meaning that it is not possible to construct a device that has three light sources
(all positive) that can reproduce all colors in the visible spectrum.

For the same reason, image encoding and computations on images may not
be practical. There is, for instance, a large number of possibleXY Z values that
do not correspond to any physical color. This would lead to inefficient use of
available bits for storage and to a higher requirement for bit-depth to preserve
visual integrity after image processing. Although it may be possible to build a
capture device that has primaries that are close to the CIEXY Z color matching
functions, the cost of hardware and image processing make this an unattractive
option. It is not possible to build a display that corresponds to CIEXY Z. For
these reasons, it is necessary to design other color spaces: physical realizability,
efficient encoding, perceptual uniformity, and intuitive color specification.

The CIEXY Z color space is still actively used, mostly for the conversion
between other color spaces. It can be seenas a device-independent color space.

21.2. Color Spaces 543

Other color spaces can then be defined in terms of their relationship to CIEXY Z,
which is often specified by a specific transform. For instance, linear and additive
trichromatic display devices can be transformed to and from CIEXY Z by means
of a simple 3× 3 matrix. Some nonlinear additional transform may also be speci-
fied, for instance to minimize perceptual errors when data is stored with a limited
bit-depth, or to enable display directly on devices that have a nonlinear relation-
ship between input signal and the amount of light emitted.

21.2.1 Constructing a Matrix Transform

For a display device with three primaries, say red, green, and blue, we can mea-
sure the spectral composition of the emitted light by sending the color vectors
(1, 0, 0), (0, 1, 0), and(0, 0, 1). These vectors represent the three cases namely
where one of the primaries is full on, and the other two are off. From the measured
spectral output, we can then compute the corresponding chromaticity coordinates
(xR, yR), (xG, yG), and(xB, yB).

Thewhite point of a display is defined as the spectrum emitted when the color
vector(1, 1, 1) is sent to the display. Its corresponding chromaticity coordinate is
(xW , yW). The three primaries and the white point characterize the display and
are each required to construct a transformation matrix between the display’s color
space and CIEXY Z.

These four chromaticity coordinates can be extended to chromaticity triplets
reconstructing thez-coordinate fromz = 1−x−y, leading to triplets(xR, yR, zR),
(xG, yG, zG), (xB , yB, zB), and(xW , yW , zW). If we know the maximum lumi-
nance of the white point, we can compute its corresponding tristimulus value
(XW , YW , ZW) and then solve the following set of equations for the luminance
ratio scalarsSR, SG, andSB:

XW = xR SR + xG SG + xB SB,

YW = yR SR + yG SG + yB SB,

ZW = zR SR + zG SG + zB SB.

The conversion between RGB and XYZ is then given by
⎡

⎣

X
Y
Z

⎤

⎦ =

⎡

⎣

xR SR xG SG xB SB

yR SR yG SG yB SB

zR SR zG SG zB SB

⎤

⎦

⎡

⎣

R
G
B

⎤

⎦ .

The luminance of any given color can becomputed by evaluating the middle row
of a matrix constructed in this manner:

Y = yR SR R + yG SG G + yB SB B.

544 21. Color

R G B White
x 0.6400 0.3000 0.1500 0.3127
y 0.3300 0.6000 0.0600 0.3290

Figure 21.9. The (x, y) chromaticity coordinates for the primaries and white point specified
by ITU-R BT.709. The sRGB standard also uses these primaries and white point.

To convert between XYZ and RGB of a given device, the above matrix can
simply be inverted.

If an image is represented in an RGB color space for which the primaries and
white point are unknown, then the next best thing is to assume that the image was
encoded in a standard RGB color space. A reasonable choice is then to assume
that the image was specified according to ITU-R BT.709, which is the specifica-
tion used for encoding and broadcasting of HDTV. Its primaries and white point
are specified in Table 21.9. Note that the same primaries and white point are used
to define the well-known sRGB color space.The transformation between this
RGB color space and CIE XYZ is and vice-versa given by

⎡

⎣

X
Y
Z

⎤

⎦ =

⎡

⎣

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤

⎦

⎡

⎣

R
G
B

⎤

⎦ ;

⎡

⎣

R
G
B

⎤

⎦ =

⎡

⎣

3.2405 −1.5371 −0.4985
−0.9693 1.8706 0.0416

0.0556 −0.2040 1.0572

⎤

⎦

⎡

⎣

X
Y
Z

⎤

⎦ .

By substituting the maximumRGB values of the device, we can compute
the white point. For ITU-R BT.709, the maximum values are(RW , GW , BW) =

(100, 100, 100), leading to a white point of(XW , YW , ZW) = (95.05, 100.00,

108.90).
In addition to a linear transformation, the sRGB color space is characterized

by a subsequent nonlinear transform. The nonlinear encoding is given by

RsRGB =

{

1.055 R1/2.4 − 0.055 R > 0.0031308,

12.92 R R ≤ 0.0031308;

GsRGB =

{

1.055 G1/2.4 − 0.055 G > 0.0031308,

12.92 G G ≤ 0.0031308;

BsRGB =

{

1.055 B1/2.4 − 0.055 B > 0.0031308,

12.92 B B ≤ 0.0031308.

This nonlinear encoding helps minimize perceptual errors due to quantization er-
rors in digital applications.

21.2. Color Spaces 545

21.2.2 Device-Dependent RGB Spaces

As each device typically has its own set ofprimaries and white point, we call the
associated RGB color spaces device-dependent. It should be noted that even if all
these devices operate in an RGB space, they may have very different primaries
and white points. If we therefore have an image specified in some RGB space, it
may appear very different to us, depending upon which device we display it.

This is clearly an undesirable situation, resulting from a lack of color man-
agement. However, if the image is specified in a known RGB color space, it can
first be converted to XYZ, which is device independent, and then subsequently it
can be converted to the RGB space of the device on which it will be displayed.

There are several other RGB color spaces that are well defined. They each
consist of a linear matrix transform followed by a nonlinear transform, akin to the
aforementioned sRGB color space. The nonlinear transform can be parameterized
as follows:

Rnonlinear=

{

(1 + f)Rγ − f t < R ≤ 1,

s R 0 ≤ R ≤ t;

Gnonlinear=

{

(1 + f)Gγ − f t < G ≤ 1,

s G 0 ≤ G ≤ t;

Bnonlinear=

{

(1 + f)Bγ − f t < B ≤ 1,

s B 0 ≤ B ≤ t.

The parameterss, f , t andγ together with primaries and white point specify a
class of RGB color spaces that are used in various industries. Several common
transformations are listed in Table 21.10.

21.2.3 LMS Cone Space

The aforementioned cone signals can be expressed in terms of the CIE XYZ color
space. The matrix transform to computeLMS signals fromXY Z and vice-versa
are given by

⎡

⎣

L
M
S

⎤

⎦ =

⎡

⎣

0.38971 0.68898 −0.07868
−0.22981 1.18340 0.04641

0.00000 0.00000 1.00000

⎤

⎦

⎡

⎣

X
Y
Z

⎤

⎦ ;

⎡

⎣

X
Y
Z

⎤

⎦ =

⎡

⎣

1.91019 −1.11214 0.20195
0.37095 0.62905 0.00000
0.00000 0.00000 1.00000

⎤

⎦

⎡

⎣

L
M
S

⎤

⎦ .

546 21. Color

Color space XYZ to RGB matrix RGB to XYZ matrix Nonlinear transform

sRGB

⎡

⎣

3.2405 −1.5371 −0.4985

−0.9693 1.8760 0.0416

0.0556 −0.2040 1.0572

⎤

⎦

⎡

⎣

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

⎤

⎦

γ = 1/2.4 ≈ 0.42

f = 0.055

s = 12.92

t = 0.0031308

Adobe RGB (1998)

⎡

⎣

2.0414 −0.5649 −0.3447

−0.9693 1.8760 0.0416

0.0134 −0.1184 1.0154

⎤

⎦

⎡

⎣

0.5767 0.1856 0.1882

0.2974 0.6273 0.0753

0.0270 0.0707 0.9911

⎤

⎦

γ = 1

2
51
256

≈ 1

2.2

f = N.A.

s = N.A.

t = N.A.

HDTV (HD-CIF)

⎡

⎣

3.2405 −1.5371 −0.4985

−0.9693 1.8760 0.0416

0.0556 −0.2040 1.0572

⎤

⎦

⎡

⎣

0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

⎤

⎦

γ = 0.45

f = 0.099

s = 4.5

t = 0.018

NTSC (1953)/
ITU-R BT.601-4

⎡

⎣

1.9100 −0.5325 −0.2882

−0.9847 1.9992 −0.0283

0.0583 −0.1184 0.8976

⎤

⎦

⎡

⎣

0.6069 0.1735 0.2003

0.2989 0.5866 0.1145

0.0000 0.0661 1.1162

⎤

⎦

γ = 0.45

f = 0.099

s = 4.5

t = 0.018

PAL/SECAM

⎡

⎣

3.0629 −1.3932 −0.4758

−0.9693 1.8760 0.0416

0.0679 −0.2289 1.0694

⎤

⎦

⎡

⎣

0.4306 0.3415 0.1783

0.2220 0.7066 0.0713

0.0202 0.1296 0.9391

⎤

⎦

γ = 0.45

f = 0.099

s = 4.5

t = 0.018

SMPTE-C

⎡

⎣

3.5054 −1.7395 −0.5440

−1.0691 1.9778 0.0352

0.0563 −0.1970 1.0502

⎤

⎦

⎡

⎣

0.3936 0.3652 0.1916

0.2124 0.7010 0.0865

0.0187 0.1119 0.9582

⎤

⎦

γ = 0.45

f = 0.099

s = 4.5

t = 0.018

SMPTE-240M

⎡

⎣

2.042 −0.565 −0.345

−0.894 1.815 0.032

0.064 −0.129 0.912

⎤

⎦

⎡

⎣

0.567 0.190 0.193

0.279 0.643 0.077

0.000 0.073 1.016

⎤

⎦

γ = 0.45

f = 0.1115

s = 4.0

t = 0.0228

Wide Gamut

⎡

⎣

1.4625 −0.1845 −0.2734

−0.5228 1.4479 0.0681

0.0346 −0.0958 1.2875

⎤

⎦

⎡

⎣

0.7164 0.1010 0.1468

0.2587 0.7247 0.0166

0.0000 0.0512 0.7740

⎤

⎦

γ = N.A.

f = N.A.

s = N.A.

t = N.A.

Figure 21.10. Transformations for standard RGB color spaces (after (Pascale, 2003)).

This transform is known as the Hunt-Pointer-Estevez transform (Hunt, 2004) and
is used in chromatic adaptation transforms as well as in color appearance model-
ing.

21.2.4 CIE 1976 L∗a∗b∗

Color opponent spaces are characterized by a channel representing an achromatic
channel (luminance), as well as two channels encoding color opponency. These
are frequently red-green and yellow-blue channels. These color opponent chan-

21.2. Color Spaces 547

nels thus encode two chromaticities along one axis, which can have both positive
and negative values. For instance, a red-green channel encodes red for positive
values and green for negative values. The value zero encodes a special case: neu-
tral which is neither red or green. The yellow-blue channel works in much the
same way.

As at least two colors are encoded on each of the two chromatic axes, it is not
possible to encode a mixture of red and green. Neither is it possible to encode
yellow and blue simultaneously. While this may seem a disadvantage, it is known
that the human visual system computes similar attributes early in the visual path-
way. As a result, humans are not able to perceive colors that are simultaneously
red and green, or yellow and blue. We do not see anything resembling reddish-
green, or yellowish-blue. We are, however, able to perceive mixtures of colors
such as yellowish-red (orange) or greenish-blue, as these are encoded across the
chromatic channels.

The most relevant color opponent system for computer graphics is the CIE
1976L∗a∗b∗ color model. It is a perceptuallymore or less uniform color space,
useful, among other things, for the computation of color differences. It is also
known as CIELAB.

The input to CIELAB are the stimulus(X, Y, Z) tristimulus values as well as
the tristimulus values of a diffuse white reflecting surface that is lit by a known il-
luminant,(Xn, Yn, Zn). CIELAB therefore goes beyond being an ordinary color
space, as it takes into account a patch of color in the context of a known illumina-
tion. It can thus be seen as a rudimentary color appearance space.

The three channels defined in CIELAB areL∗, a∗, andb∗. TheL∗ channel
encodes the lightness of the color, i.e., the perceived reflectance of a patch with
tristimulus value(X, Y, Z). Thea∗ andb∗ are chromatic opponent channels. The
transform between XYZ and CIELAB is given by

⎡

⎣

L∗

a∗

b∗

⎤

⎦ =

⎡

⎣

0 116 0 −16
500 −500 0 0

0 200 −200 0

⎤

⎦

⎡

⎢

⎢

⎣

f (X/Xn)
f (Y/Yn)
f (Z/Zn)

1

⎤

⎥

⎥

⎦

.

The functionf is defined as

f(r) =

⎧

⎨

⎩

3
√

r for r > 0.008856,

7.787 r +
16

116
for r ≤ 0.008856.

As can be seen from this formulation, the chromatic channels do depend on the
luminanceY . Although this is perceptually accurate, it means that we cannot plot
the values ofa∗ andb∗ in a chromaticity diagram. The lightnessL∗ is normalized

548 21. Color

between 0 and 100 for black and white. Although thea∗ andb∗ channels are not
explicitly constrained, they typically in the range[−128, 128].

As CIELAB is approximately perceptually linear, it is possible to take two
colors, convert them to CIELAB, and then estimate the perceived color difference
by computing the Euclidean distance between them. This leads to the following
color difference formula:

∆E∗
ab =

[

(∆L∗)2 + (∆a∗)2 + (∆b∗)2
]1/2

.

The letterE stands for difference in sensation (in German, Empfindung) (Judd,
1932).

Finally, the inverse transform between CIELAB and XYZ is given by

X = Xn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

L∗

116
+

a∗

500
+

16

116

)3

if L∗ > 7.9996,

1

7.787

(

L∗

116
+

a∗

500

)

if L∗ ≤ 7.9996,

Y = Yn

⎧

⎪

⎨

⎪

⎩

(

L∗

116
+

16

116

)3

if L∗ > 7.9996,

1

7.787

L∗

116
if L∗ ≤ 7.9996,

Z = Zn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

L∗

116
− b∗

200
+

16

116

)3

if L∗ > 7.9996,

1

7.787

(

L∗

116
− b∗

200

)

if L∗ ≤ 7.9996.

21.3 Chromatic Adaptation

The CIELAB color space just described takes as input both a tristimulus value of
the stimulus and the tristimulus value of light reflected off a white diffuse patch.
As such, it forms the beginnings of a system in which the viewing environment is
taken into account.

The environment in which we observe objects and images has a large influence
on how we perceive those objects. The range of viewing environments that we
encounter in daily life is very large, from sunlight to starlight and from candlelight
to fluorescent light. The lighting conditions not only constitute a very large range
in the amount of light that is present, but also vary greatly in the color of the
emitted light.

21.3. Chromatic Adaptation 549

The human visual system accommodates these changes in the environment
through a process called adaptation. Three different types of adaptation can be
distinguished, namely light adaptation, dark adaptation, and chromatic adaptation.
Light adaptation refers to the changes that occur when we move from a very dark
to a very light environment. When this happens, atfirst we are dazzled by the
light, but soon we adapt to the new situation and begin to distinguish objects in
our environment. Dark adaptation refers to the opposite—when we go from a
light environment to a dark environment. Atfirst, we see very little, but after a
given amount of time, details will start to emerge. The time needed to adapt to
the dark is generally much longer than for light adaptation.

Chromatic adaptation refers to our ability to adapt, and largely ignore, vari-
ations in the color of the illumination. Chromatic adaptation is, in essence, the
biological equivalent of the white balancing operation that is available on most
modern cameras. The human visual system effectively normalizes the viewing
conditions to present a visual experience that is fairly consistent. Thus, we ex-
hibit a certain amount of color constancy: object reflectances appear relatively
constant despite variations in illumination.

Although we are able to largely ignore changes in viewing environment, we
are not able to do so completely. For instance, colors appear much more col-
orful on a sunny day than they do on a cloudy day. Although the appearances
have changed, we do not assume that object reflectances themselves have actually
changed their physical properties. We thus understand that the lighting conditions
have influenced the overall color appearance.

Nonetheless, color constancy does apply to chromatic content. Chromatic
adaptation allows white objects to appear white for a large number of lighting
conditions, as shown in Figure 21.11.

v'

u'

0.5

0.70.60.50.40.30.20.10.0
0.0

0.1

0.2

0.3

0.4

Figure 21.11. A series of light sources plotted in the CIE u′v′ chromaticity diagram. A white
piece of paper illuminated by any of these light sources maintains a white color appearance.
(See also Plate XXXI.)

550 21. Color

400 450 500 550 600 650 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Wavelength (nm)

S
en

si
tiv

ity

Color representing
CIE A rendered into
the sRGB color spaceL

M
S

CIE A

Solid lines: relative cone responses
Dashed lines: relative adapted cone responses

Figure 21.12. An example of von Kries–style independent photoreceptor gain control. The
relative cone responses (solid line) and the relative adapted cone responses to CIE illuminant
A (dashed) are shown. The separate patch of color represents CIE illuminant A rendered into
the sRGB color space. (See also Plate XXXII.)

Computational models of chromatic adaptation tend to focus on the gain con-
trol mechanism in the cones. One of the simplest models assumes that each cone
adapts independently to the energy that it absorbs. This means that different cone
types adapt differently dependent on the spectrum of the light being absorbed.
Such adaptation can then be modeled as an adaptive and independent rescaling of
the cone signals:

La = α L,

Ma = β M,

Sa = γ S,

where(La, Ma, Sa) are the chromatically adapted cone signals, andα, β, andγ

are the independent gain controls which are determined by the viewing environ-
ment. This type of independent adaptation is also known as von-Kries adaptation.
An example is shown in Figure 21.12.

The adapting illumination can be measured off a white surface in the scene. In
the ideal case, this would be a Lambertian surface. In a digital image, the adapting
illumination can also be approximated as the maximum tristimulus values of the
scene. The light measured or computed inthis manner is the adapting white, given
by (Lw, Mw, Sw). Von Kries adaptation is then simply a scaling by the reciprocal

21.3. Chromatic Adaptation 551

of the adapting white, carried out in cone response space:

⎡

⎣

La

Ma

Sa

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎣

1

Lw
0 0

0
1

Mw
0

0 0
1

Sw

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎣

L
M
S

⎤

⎦ .

In many cases, we are interested in what stimulus should be generated under
one illumination to match a given colorunder a different illumination. For ex-
ample, if we have a colored patch illuminated by daylight, we may ask ourselves
what tristimulus values should be generated to create a matching color patch that
will be illuminated by incandescent light.

We are thus interested in computing corresponding colors, which can be
achieved by cascading two chromatic adaptation calculations. In essence, the
above von Kries transform divides out the adapting illuminant—in our example,
the daylight illumination. If we subsequently multiply in the incandescent il-
luminant, we have computed a corresponding color. If the two illuminants are
given by (Lw,1, Mw,1, Sw,1) and (Lw,2, Mw,2, Sw,2), the corresponding color
(Lc, Mc, Sc) is given by

⎡

⎣

Lc

Mc

Sc

⎤

⎦ =

⎡

⎣

Lw,2 0 0
0 Mw,2 0
0 0 Sw,2

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

Lw,1
0 0

0
1

Mw,1
0

0 0
1

Sw,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

L
M
S

⎤

⎦ .

There are several more complicated and, therefore, more accurate chromatic
adaptation transform in existence (Reinhard et al., 2008). However, the simple
von Kries model remains remarkably effective in modeling chromatic adaptation
and can thus be used to achieve white balancing in digital images.

The importance of chromatic adaptation in the context of rendering, is that we
have moved one step closer to taking into account the viewing environment of the
observer, without having to correct for it by adjusting the scene and rerendering
our imagery. Instead, we can model and render our scenes, and then, as an image
post-process, correct for the illumination of the viewing environment. To ensure
that white balancing does not introduce artifacts, however, it is important to ensure
that the image is rendered to afloating-point format. If rendered to traditional 8-
bit image formats, the chromatic adaptation transform may amplify quantization
errors.

552 21. Color

21.4 Color Appearance

While colorimetry allows us to accurately specify and communicate color in a
device-independent manner, and chromatic adaptation allows us to predict color
matches across changes in illumination, these tools are still insufficient to describe
what colors actually look like.

To predict the actual perception of an object, we need to know more informa-
tion about the environment and take thatinformation into account. The human
visual system is constantly adapting to its environment, which means that the per-
ception of color will be strongly influenced by such changes. Color appearance
models take into account measurements of the stimulus itself, as well as the view-
ing environment. This means that the resulting description of color is independent
of viewing condition.

The importance of color appearance modeling can be seen in the following
example. Consider an image being displayed on an LCD screen. When making
a print of the same image and viewing it in a different context, more often than
not the image will look markedly different. Color appearance models can be
used to predict the changes required to generate an accurate cross-media color
reproduction (Fairchild, 2005).

Although color appearance modeling offers important tools for color repro-
duction, actual implementations tend to be relatively complicated and cumber-
some in practical use. It can be anticipated that this situation may change over
time. However, until then, we leave their description to more specialized text
books (Fairchild, 2005).

Notes

Of all the books on color theory, Reinhard et al.’s work (Reinhard et al., 2008) is
most directly geared towards engineering disciplines, including computer graph-
ics, computer vision, and image processing. Other general introductions to color
theory are given by Berns (Berns, 2000) and Stone (Stone, 2003). Wyszecki and
Stiles have produced a comprehensive volume of data and formulae, forming an
indispensable reference work (Wyszecki & Stiles, 2000). For color reproduction,
we recommend Hunt’s book (Hunt, 2004). Color appearance models are compre-
hensively described in Fairchild’s book (Fairchild, 2005). For color issues related
to video and HDTV Poynton’s book is essential. (Poynton, 2003).

2 22 2
William B. Thompson

Visual Perception

The ultimate purpose of computer graphics is to produce images for viewing by
people. Thus, the success of a computer graphics system depends on how well it
conveys relevant information to a human observer. The intrinsic complexity of the
physical world and the limitations of display devices make it impossible to present
a viewer with the identical patterns of light that would occur when looking at a
natural environment. When the goal of a computer graphics system is physical
realism, the best we can hope for is that the system beperceptually effective:
displayed images should “look” as intended. For applications such as technical
illustration, it is often desirable to visually highlight relevant information and
perceptual effectiveness becomes an explicit requirement.

Artists and illustrators have developed empirically a broad range of tools and
techniques for effectively conveying visual information. One approach to improv-
ing the perceptual effectiveness of computer graphics is to utilize these methods
in our automated systems. A second approach builds directly on knowledge of
the human vision system by using perceptualeffectiveness as an optimization cri-
teria in the design of computer graphics systems. These two approaches are not
completely distinct. Indeed, one of thefirst systematic examinations of visual
perception is found in the notebooks of Leonardo da Vinci.

The remainder of this chapter provides a partial overview of what is known
about visual perception in people. The emphasis is on aspects of human vision
that are most relevant to computer graphics. The human visual system is ex-
tremely complex in both its operation andits architecture. A chapter such as this

553

554 22. Visual Perception

can at best provide a summary of key points, and it is important to avoid over
generalizing from what is presented here. More in-depth treatments of visual per-
ception can be found in Wandell (1995) and Palmer (1999); Gregory (1997) and
Yantis (2000) provide additional useful information. A good computer vision ref-
erence such as Forsyth and Ponce (2002) is also helpful. It is important to note
that despite over 150 years of intensive research, our knowledge of many aspects
of vision is still very limited and imperfect.

22.1 Vision Science

Vision is generally agreed to be the most powerful of the senses in humans.
Vision produces more useful information about the world than does hearing,Light:

• travels far

• travels fast

• travels in straight lines

• interacts with stuff

• bounces off things

• is produced in nature

• has lots of energy
—Steven Shafer

Figure 22.1. The nature of
light makes vision a power-
ful sense.

touch, smell, or taste. This is a direct consequence of the physics of light (Fig-
ure 22.1). Illumination is pervasive, especially during the day but also at night
due to moonlight, starlight, and artificial sources. Surfaces reflect a substantial
portion of incident illumination and do so in ways that are idiosyncratic to par-
ticular materials and that are dependent on the shape of the surface. The fact
that light (mostly) travels in straight lines through the air allows vision to acquire
information from distant locations.

The study of vision has a long and rich history. Much of what we know
about the eye traces back to the work of philosophers and physicists in the 1600s.
Starting in the mid-1800s, there was an explosion of work by perceptual psy-
chologists exploring the phenomenology of vision and proposing models of how
vision might work. The mid-1900s saw the start of modern neuroscience, which
investigates both thefine-scale workings of individual neurons and the large-scale
architectural organization of the brain and nervous system. A substantial portion
of neuroscience research has focused onvision. More recently, computer science
has contributed to the understanding of visual perception by providing tools for
precisely describing hypothesized models of visual computations and by allow-
ing empirical examination of computer vision programs. The termvision science

was coined to refer to the multidisciplinary study of visual perception involving
perceptual psychology, neuroscience, and computational analysis.

Vision science views the purpose of vision as producing information about
objects, locations, and events in the world from imaged patterns of light reach-
ing the viewer. Psychologists use the termdistal stimulus to refer to the physical
world under observation andproximal stimulus to refer to the retinal image.1 Us-

1In computer vision, the termscene is often used to refer to the external world, while the term
image is used to refer to the projection of the scene onto a sensing plane.

22.2. Visual Sensitivity 555

ing this terminology, the function of vision is to generate a description of aspects
of the distal stimulus given the proximal stimulus. Visual perception is said to be
veridical when the description that is produced accurately reflects the real world.
In practice, it makes little sense to think of these descriptions of objects, locations,
and events in isolation. Rather, vision is better understood in the context of the
motor and cognitive functions that it serves.

22.2 Visual Sensitivity

Vision systems create descriptions of the visual environment based on properties
of the incident illumination. As a result, it is important to understand what prop-
erties of incident illumination the human vision system can actually detect. One
critical observation about the human vision system is that it is primarily sensi-
tive to patterns of light rather than being sensitive to the absolute magnitude of
light energy. The eye does not operate as a photometer. Instead, it detects spatial,
temporal, and spectral patterns in the light imaged on the retina and information
about these patterns of light form the basis for all of visual perception.

There is a clear ecological utility to the vision system’s sensitivity to variations
in illumination over space and time. Being able to accurately sense changes in the
environment is crucial to our survival.2 A system which measures changes in
light energy rather than the magnitude of the energy itself also makes engineering
sense, since it makes it easier to detect patterns of light over large ranges in light
intensity. It is a good thing for computer graphics that vision operates in this
manner. Display devices are physically limited in their ability to project light
with the power and dynamic range typical of natural scenes. Graphical displays
would not be effective if they needed to produce the identical patterns of light as
the corresponding physical world. Fortunately, all that is required is that displays
be able to produce similar patterns of spatial and temporal change to the real
world.

22.2.1 Brightness and Contrast

In bright light, the human visual system is capable of distinguishing gratings con-
sisting of high contrast parallel light and dark bars asfine as 50–60 cycles/degree.
(In this case, a “cycle” consists of an adjacent pair of light and dark bars.) For

2It is sometime said that the primary goals of vision are to support eating, avoiding being eaten,
reproduction, and avoidance of catastrophe while moving. Thinking about vision as a goal-directed
activity is often useful, but needs to be done so at a more detailed level.

556 22. Visual Perception

Figure 22.2. The contrast between stripes increases in a constant manner from top to
bottom, yet the threshold of visibility varies with frequency.

comparison, the best currently available LCD computer monitor, at a normal
viewing distance, can display patterns asfine as about 20 cycles/degree. The
minimum contrast difference at an edgedetectable by the human visual system
in bright light is about 1% of the average luminance across the edge. In most
8-bit displays, differences of a single gray level are often noticeable over at least
a portion of the range of intensities due to the nature of the mapping from gray
levels to actual display luminance.

Characterizing the ability of the visual system to detect fine scale patterns (vi-

sual acuity) and to detect changes in brightnessis considerably more complicated
than for cameras and similar image acquisition devices. As shown in Figure 22.2,
there is an interaction between contrast and acuity in human vision. In thefigure,
the scale of the pattern decreases from left to right while the contrast increases
from top to bottom. If you view thefigure at a normal viewing distance, it will
be clear that the lowest contrast at which a pattern is visible is a function of the
spatial frequency of the pattern.

There is a linear relationship between the intensity of lightL reaching the eye
from a particular surface point in the world, the intensity of lightI illuminating
that surface point, and the reflectivityR of the surface at the point being observed:

L = αI · R, (22.1)

22.2. Visual Sensitivity 557

Figure 22.3. Lightness constancy. Cast a shadow over one of the patterns with your hand
and notice that the apparent brightness of the two center squares remains nearly the same.

whereα is dependent on the relationship between the surface geometry, the pat-
tern of incident illumination, and the viewing direction. While the eye is only
able to directly measureL, human vision is much better at estimatingR thanL.
To see this, view Figure 22.3 in bright direct light. Use your hand to shadow one
of the patterns, leaving the other directly illuminated. While the light reflected off
of the two patterns will be significantly different, the apparent brightness of the
two center squares will seemnearly the same. The termlightness is often used
to describe the apparent brightness of a surface, as distinct from its actual lumi-
nance. In many situations, lightness is invariant to large changes in illumination,
a phenomenon referred to aslightness constancy.

The mechanisms by which the human visual system achieves lightness con-
stancy are not well understood. As shown in Figure 22.2, the vision system is
relatively insensitive to slowly varying patterns of light, which may serve to dis-
count the effects of slowly varying illumination. Apparent brightness is affected
by the brightness of surrounding regions (Figure 22.4). This can aid lightness
constancy when regions are illuminated dissimilarly. While thissimultaneous

contrast effect is often described as a modification of the perceived lightness of

(a) (b)

Figure 22.4. (a) Simultaneous contrast: the apparent brightness of the center bar is affected
by the brightness of the surrounding area; (b) The same bar without a variable surround.

558 22. Visual Perception

(a) (b)

Figure 22.5. The Munker-White illusion shows the complexity of simultaneous contrast. In
Figure 22.4, the central region looked lighter when the surrounding area was darker. In (a),
the gray strips on the left look lighter than the gray strips on the right, even though they are
nearly surrounded by regions of white; (b) shows the gray strips without the black lines.

one region based on contrasting brightness in the surrounding region, it is actually
much more complicated than that (Figures 22.5 and 22.6). For more on lightness
perception, see (Gilchrist et al., 1999) and (Adelson, 1999).

a

b

Figure 22.6. The percep-
tion of lightness is affected
by the perception of 3D
structure. The two surfaces
marked (a) have the same
brightness, as do the two
surfaces marked (b) (after
Adelson (1999)).

While the visual system largely ignores slowly varying intensity patterns, it
is extremely sensitive toedges consisting of lines of discontinuity in brightness.
Edges in imaged light intensity often correspond to surface boundaries or other
important features in the environment (Figure 22.7). The vision system can also
detect localized differences in motion, stereo disparity, texture, and several other

(a) (b)

Figure 22.7. (a) Original gray scale image, (b) image edges, which are lines of high spatial
variability in some direction.

22.2. Visual Sensitivity 559

Figure 22.8. The visual system sometimes sees “edges” even when there are no sharp
discontinuities in brightness, as is the case at the right side of the central pattern in this
image.

image properties. The vision system has very little ability, however, to detect
spatial discontinuities in color when not accompanied by differences in one of
these other properties.

Perception of edges seems to interact with perception of form. While edges
give the visual system the information it needs to recognize shapes, slowly varying
brightness can appear as a sharp edge if the resulting edge creates a more complete
form (Figure 22.8). Figure 22.9 shows asubjective contour, an extreme form of
this effect in which a closed contour is seen even though no such contour exists
in the actual image. Finally, the vision system’s sensitivity to edges also appears
to be part of the mechanism involved in lightness perception. Note that the region
enclosed by the subjective contour in Figure 22.9 appears a bit brighter than the
surrounding area of the page. Figure 22.10 shows a different interaction between
edges and lightness. In this case, a particular brightness profile at the edge has
a dramatic effect on the apparent brightness of the surfaces to either side of the
edge.

Figure 22.9. Sometimes, the visual system will “see” subjective contours without any
associated change in brightness.

560 22. Visual Perception

Figure 22.10. Perceived lightness depends more on local contrast at edges than on bright-
ness across surfaces. Try covering the vertical edge in the middle of the figure with a pencil.
This figure is an instance of the Craik-O’Brien-Cornsweet illusion.

As indicated above, people can detectdifferences in the brightness between
two adjacent regions if the difference is at least 1% of the average brightness.
This is an example ofWeber’s law, which states that there is a constant ratio
between thejust noticeable differences (jnd) in a stimulus and the magnitude of
the stimulus:

∆I

I
= k1, (22.2)

whereI is the magnitude of the stimulus,∆I is the magnitude of the just notice-
able difference, andk1 is a constant particular to the stimulus. Weber’s law was
postulated in 1846 and still remains a useful characterization of many perceptual
effects.Fechner’s law, proposed in 1860, generalized Weber’s law in a way that
allowed for the description of the strength of any sensory experience, not just
jnd’s:

S = k2 log(I), (22.3)

whereS is the perceptual strength of the sensory experience,I is the physical
magnitude of the corresponding stimulus, andk2 is a scaling constant specific to
the stimulus. Current practice is to model the association between perceived and
actual strength of a stimulus using a power function (Stevens’s law):

S = k3I
b, (22.4)

whereS andI are as before,k3 is another scaling constant, andb is an exponent
specific to the stimulus. For a large number of perceptual quantities involving
vision, b < 1. The CIE L*a*b* color space, described elsewhere, uses a mod-
ified Stevens’s law representation to characterize perceptual differences between
brightness values. Note that in thefirst two characterizations of the perceptual
strength of a stimulus and in Steven’s Law whenb < 1, changes in the stimulus

22.2. Visual Sensitivity 561

when it has a small average magnitude create larger perceptual effects than do the
same physical change in the stimulus when it has a larger magnitude.

The “laws” describe above are not physical constraints on how perception
operates. Rather, they are generalizations about how the perceptual system re-
sponds to particular physical stimuli. In thefield of perceptual psychology, the
quantitative study of the relationships between physical stimuli and their percep-
tual effects is calledpsychophysics. While psychophysical laws are empirically
derived observations rather than mechanistic accounts, the fact that so many per-
ceptual effects are well modeled by simple power functions is striking and may
provide insights into the mechanisms involved.

22.2.2 Color

In 1666, Isaac Newton used prisms to show that apparently white sunlight could
be decomposed into aspectrum of colors and that these colors could be recom-
bined to produce light that appeared white. We now know that light energy is
made up of a collection of photons, eachwith a particular wavelength. Thespec-

tral distribution of light is a measure of the average energy of the light at each
wavelength. For natural illumination, the spectral distribution of light reflected
off of surfaces varies significantly depending on the surface material. Character-
izations of this spectral distribution can therefore provide visual information for
the nature of surfaces in the environment.

Most people have a pervasive sense of color when they view the world. Color
perception depends on the frequency distribution of light, with the visible spec-
trum for humans ranging from a wavelength of about 370 nm to a wavelength of
about 730 nm (see Plate X). The manner in which the visual systems derives a
sense of color from this spectral distribution wasfirst systematically examined in
1801 and remained extremely controversial for 150 years. The problem is that the
visual system responds to patterns of spectral distribution very differently than
patterns of luminance distribution. “The history of the investi-

gation of colour vision is re-

markable for its acrimony.”

—Richard Gregory (1997)

Even accounting for phenomena such as lightness constancy, distinctly differ-
ent spatial distributions almost always look distinctly different. More importantly
given that the purpose of the visual system is to produce descriptions of the distal
stimulus given the proximal stimulus, perceived patterns of lightness correspond
at least approximately to patterns of brightness over surfaces in the environment.
The same is not true of color perception.Many quite different spectral distri-
butions of light can produce a sense of any specific color. Correspondingly, the
sense that a surface is a specific color provides little direct information about the
spectral distribution of light coming from the surface. For example, a spectral

562 22. Visual Perception

distribution consisting of a combination of light at wavelengths of 700 nm and
540 nm, with appropriately chosen relative strengths, will look indistinguishable
from light at the single wavelength of 580 nm. (Perceptually indistinguishable
colors with different spectral compositions are referred to asmetamers.) If we see
the color “yellow,” we have no way of knowing if it was generated by one or the
other of these distributions or an infinite family of other spectral distributions. For
this reason, in the context of vision the termcolor refers to a purely perceptual
quality, not a physical property.

There are two classes of photoreceptors in the human retina.Cones are in-
volved in color perception, whilerods are sensitive to light energy across the
visible range and do not provide information about color. There are three types of
cones, each with a different spectral sensitivity (Figure 22.11).S-cones respond
to short wavelengths in the blue range of the visible spectrum.M-cones respond
to wavelengths in the middle (greenish) region of the visible spectrum.L-cones

respond to somewhat longer wavelengths covering the green and red portions of
the visible spectrum.

While it is common to describe the three types of cones asred, green, and
blue, this is neither correct terminology nor does it accurately reflect the cone
sensitivities shown in Figure 22.11. TheL-cones andM-cones are broadly tuned,
meaning that they respond to a wide range of frequencies. There is also substantial
overlap between the sensitivity curves of the three cone types. Taken together,
these two properties mean that it is not possible to reconstruct an approximation
to the original spectral distribution given the responses of the three cone types.
This is in contrast to spatial sampling in the retina (and in digital cameras), where

400 500 600 700
wavelength (nanometers)

se
ns

iti
vi

ty

S-cones

M-cones

L-cones

Figure 22.11. Spectral sensitivity of the short, medium, and long cones in the human retina.

22.2. Visual Sensitivity 563

the receptors are narrowly tuned in their spatial sensitivity in order to be able to
detectfine detail in local contrast.

The fact that there are are only three types of color sensitive photoreceptors
in the human retina greatly simplifies the task of displaying colors on computer
monitors and in other graphical displays. Computer monitors display colors as
a weighted combination of threefixed color distributions. Most often, the three
colors are a distinct red, a distinct green, and a distinct blue. As a result, in
computer graphics, color is often represented by ared-green-blue (RGB) triple,
representing the intensities of red, green, and blue primaries needed to display
a particular color. Threebasis colors are sufficient to display most perceptible
colors, since appropriately weighted combinations of three appropriately chosen
colors can produce metamers for these perceptible colors.

There are at least two significant problems with the RGB color representation.
The first is that different monitors have different spectral distributions for their
red, green, and blue primaries. As a result, perceptually correct color rendition
involves remapping RGB values for each monitor. This is of course only possible
if the original RGB values satisfy some well defined standard, which is often not
the case. See Chapter 21 for more information on this issue. The second problem
is that RGB values do not define a particular color in a way that corresponds to
subjective perception. When we see the color “yellow,” we do not have the sense
that it is made up of equal parts of red and green light. Rather, it looks like a single
color, with additional properties involving brightness and the “amount” of color.
Representing color as the output of the S-cones, M-cones, and L-cones is no help
either, since we have no more phenomenological sense of color as characterized
by these properties than we do as characterized by RGB display properties.

There are two different approaches tocharacterizing color in a way that more
closely reflects human perception. The various CIE color spaces aim to to be
“perceptually uniform” so that the magnitude of the difference in the represented
values of two colors is proportional to theperceived difference in color (Wyszecki
& Stiles, 2000). This turns out to be a difficult goal to accomplish, and there
have been several modifications to the CIE model over the years. Furthermore,
while one of the dimensions of the CIE color spaces corresponds to perceived
brightness, the other two dimensions that specify chromaticity have no intuitive
meaning.

The second approach to characterizing color in a more natural manner starts
with the observation that there are three distinct and independent properties that
dominate the subjective sense of color.Lightness, the apparent brightness of a
surface, has already been discussed.Saturation refers to the purity or vividness
of a color. Colors can range from totally unsaturated gray to partially saturated

564 22. Visual Perception

pastels to fully saturated “pure” colors. The third property,hue, corresponds most
closely to the informal sense of the word“color” and is characterized in a manner
similar to colors in the visible spectrum, ranging from dark violet to dark red.
Plate XI shows a plot of the hue-saturation-lightness (HSV) color space. Since
the relationship between brightness and lightness is both complex and not well
understood, HSV color spaces almost alwaysuse brightness instead of attempting
to estimate lightness. Unlike wavelengths in the spectrum, however, hue is usu-
ally represented in a manner that reflects the fact that the extremes of the visible
spectrum are actually similar in appearance (Plate XII). Simple transformations
exist between RGB and HSV representations of a particular color value. As a
result, while the HSV color space is motivated by perceptual considerations, it
contains no more information than does an RGB representation.

The hue-saturation-lightness approach to describing color is based on the
spectral distribution at a single point and so only approximates the perceptual
response to spectral distributions of light distributed over space. Color percep-
tion is subject to similar constancy and simultaneous contrast effects as is light-
ness/brightness, neither of which are captured in the RGB representation and as
a result are not captured in the HSV representation. For an example of color
constancy, look at a piece of white paper indoors under incandescent light and
outdoors under direct sunlight. The paper will look “white” in both cases, even
though incandescent light has a distinctly yellow hue and so the light reflected off
of the paper will also have a yellow hue, while sunlight has a much more uniform
color spectrum.

Another aspect of color perception notcaptured by either the CIE color spaces
or HSV encoding is the fact that we see a small number of distinct colors when
looking at a continuous spectrum of visible light (Plate X) or in a naturally oc-
curring rainbow. For most people, the visible spectrum appears to be divided into
four to six distinct colors: red, yellow, green, and blue, plus perhaps light blue and
purple. Considering non-spectral colors as well, there are only eleven basic color
terms commonly used in English:red, green, blue, yellow, black, white, gray,
orange, purple, brown, andpink. The partitioning of the intrinsically continuous
space of spectral distributions into a relatively small set of perceptual categories
associated with well defined linguistic terms seems to be a basic property of per-
ception, not just a cultural artifact (Berlin & Kay, 1969). The exact nature of the
process, however, is not well understood.

22.2.3 Dynamic Range

Natural illumination varies in intensity over 6 orders of magnitude (Figure 22.12).
The human vision system is able to operate over this full range of brightness lev-

22.2. Visual Sensitivity 565

els. However, at any one point in time the visual system is only able to detect vari-
ations in light intensity over a much smaller range. As the average brightness to
which the visual system is exposed changes over time, the range of discriminable
brightnesses changes in a corresponding manner. This effect is most obvious if we
move rapidly from a brightly lit outdoor area to a very dark room. Atfirst, we are

direct sunlight 105

indoor lighting 102

moonlight 10−1

starlight 10−3

Figure 22.12. Approx-
imate luminance level of
a white surface under dif-
ferent types of illumination
in candelas per meter
squared (cd/m2). (Wandell,
1995).

able to see little. After a while, however, details in the room start to become ap-
parent. Thedark adaptation that occurs involves a number physiological changes
in the eye. It takes several minutes for significant dark adaptation to occur and 40
minutes or so for complete dark adaptation. If we then move back into the bright
light, not only is vision difficult but it can actually be painful.Light adaptation is
required before it is again possible to see clearly. Light adaptation occurs much
more quickly than dark adaptation, typically requiring less than a minute.

The two classes of photoreceptors in the human retina are sensitive to dif-
ferent ranges of brightness. The cones provide visual information over most of
what we consider normal lighting conditions, ranging from bright sunlight to dim
indoor lighting. The rods are only effective at very low light levels.Photopic

vision involves bright light in which only the cones are effective.Scotopic vision
involves dark light in which only the rods are effective. There is a range of inten-
sities within which both cones and rods are sensitive to changes in light, which is
referred to asmesopic conditions (see Chapter 23).

22.2.4 Field-of-View and Acuity

Each eye in the human visual system has afield-of-view of approximately 160◦

horizontal by 135◦ vertical. With binocular viewing, there is only partial overlap
between thefields-of-view of the two eyes. This results in a wider overallfield-of-
view (approximately 200◦ horizontal by 135◦ vertical), with the region of overlap
being approximately 120◦ horizontal by 135◦ vertical.

With normal or corrected-to-normal vision, we usually have the subjective
experience of being able to see relativelyfine detail wherever we look. This is an
illusion, however. Only a small portion of the visualfield of each eye is actually
sensitive tofine detail. To see this, hold a piece of paper covered with normal-
sized text at arms length, as shown in Figure 22.13. Cover one eye with the hand
not holding the paper. While staring at your thumb and not moving your eye, note
that the text immediately above your thumb is readable while the text to either
side is not. High acuity vision is limited to a visual angle slightly larger than
your thumb held at arm’s length. We donot normally notice this because the
eyes usually move frequently, allowing different regions of the visualfield to be
viewed at high resolution. The visual system then integrates this information over

566 22. Visual Perception

Figure 22.13. If you hold a page of text at arm’s length and stare at your thumb, only the
text near your thumb will be readable. Photo by Peter Shirley.

time to produce the subjective experience of the whole visualfield being seen at
high resolution.

There is not enough bandwidth in the human visual cortex to process the infor-
mation that would result if there was a dense sampling of image intensity over the
whole of the retina. The combination of variable density photoreceptor packing
in the retina and a mechanism for rapid eye movements to point at areas of in-
terest provides a way to simultaneously optimize acuity andfield-of-view. Other
animals have evolved different ways of balancing acuity andfield-of-view that
are not dependent on rapid eye movements. Some have only high acuity vision,
but limited to a narrowfield-of-view. Others have widefield-of-view vision, but
limited ability to see detail.

The eye motions which focus areas of interest in the environment on the fovea
are calledsaccades. Saccades occur very quickly. The time from a triggering
stimulus to the completion of the eye movement is 150–200 ms. Most of this time
is spent in the vision system planning the saccade. The actual motion takes 20 ms
or so on average. The eyes are moving very quickly during a saccade, with the
maximum rotational velocity often exceeding 500◦/second. Between saccades,
the eyes point towards an area of interest (fixate), taking 300 ms or so to acquire
fine detail visual information. The mechanism by which multiplefixations are
integrated to form an overall subjective sense offine detail over a widefield of
view is not well understood.

Figure 22.14 shows the variable packing density of cones and rods in the hu-
man retina. The cones, which are responsible for vision under normal lighting,
are packed most closely at thefovea of the retina (Figure 22.14). When the eye

22.2. Visual Sensitivity 567

70 900
towards midlineaway from midline fovea

2
re

ce
pt

or
 d

en
si

ty
 /

m
m

51.5 x 10

1.0 x 105

50.5 x 10
cones

rods

Figure 22.14. Density of rods and cone in the human retina (after Osterberg (1935)).

is fixated at a particular point in the environment, the image of that point falls on
the fovea. The higher packing density of cones at the fovea results in a higher
sampling frequency of the imaged light (see Chapter 9) and hence greater detail
in the sampled pattern. Foveal vision encompasses about 1.7◦, which is the same
visual angle as the width of your thumb held at arm’s length.

While a version of Figure 22.14 appears in most introductory texts on human
visual perception, it provides only a partial explanation for the neurophysiological
limitations on visual acuity. The output of individual rods and cones are pooled in
various ways by neural interconnects in the eye, before the information is shipped
along the optic nerve to the visual cortex.3 This poolingfilters the signal provided
by the pattern of incident illumination in ways that have important impacts on the
patterns of light that are detectable. In particular, the farther away from the fovea,
the larger the area over which brightness is averaged. As a consequence, spatial
acuity drops sharply away from the fovea. Mostfigures showing rod and cone
packing density indicate the location of the retinalblind spot, where the nerve
bundle carrying optical information from the eye to the brain passes through the
retina, and there is no sensitivity to light. By and large, the only practical impact
of the blind spot on real-world perception is its use as an illusion in introduc-
tory perception texts, since normal eye movements otherwise compensate for the
temporary loss of information.

3All of the cells in the optic nerve and almost all cells in visual cortex have an associated retinal
receptive field. Patterns of light hitting the retina outside of a cell’s receptivefield have no effect on
thefiring rate of that cell.

568 22. Visual Perception

As shown in Figure 22.14, the packing density of rods drops to zero at the
center of the fovea. Away from the fovea, the rod densityfirst increases and then
decreases. One result of this is that there is no foveal vision when illumination
is very low. The lack of rods in the fovea can be demonstrated by observing a
night sky on a moonless night, well away from any city lights. Some stars will
be so dim that they will be visible if you look at at point in the sky slightly to the
side of the star, but they will disappear if you look directly at them. This occurs
because when you look directly at these features, the image of the features falls
only on the cones in the retina, which are not sufficiently light sensitive to detect
the feature. Looking slightly to the side causes the image to fall on the more
light sensitive cones. Scotopic vision is also limited in acuity, in part because
of the lower density of rods over much of the retina and in part because greater
pooling of signals from the rods occurs in the retina in order to increase the light
sensitivity of the visual information passed back to the brain.

22.2.5 Motion

When reading about visual perception and looking at staticfigures on a printed
page, it is easy to forget that motion is pervasive in our visual experience. The
patterns of light that fall on the retina are constantly changing due to eye and body
motion and the movement of objects in the world. This section covers our ability
to detect visual motion. Section 22.3.4 describes how visual motion can be used
to determine geometric information about the environment. Section 22.4.3 deals
with the use of motion to guide our movement through the environment.

The detectability of motion in a particular pattern of light falling on the retina
is a complex function of speed, direction, pattern size, and contrast. The issue is
further complicated because simultaneouscontrast effects occur for motion per-
ception in a manner similar to that observed in brightness perception. In the
extreme case of a single small pattern moving against a contrasting, homoge-
nous background, perceivable motion requires a rate of motion corresponding to
0.2◦–0.3◦/second of visual angle. Motion of the same pattern moving against a
textured pattern is detectable at about a tenth this speed.

With this sensitivity to retinal motion, combined with the frequency and ve-
locity of saccadic eye movements, it is surprising that the world usually appears
stable and stationary when we view it. The vision system accomplishes this in
three ways. Contrast sensitivity is reduced during saccades, reducing the visual
effects generated by these rapid changes in eye position. Between saccades, a
variety of sophisticated and complex mechanisms adjust eye position to compen-
sate for head and body motion and the motion of objects of interest in the world.
Finally, the visual system exploits information about the position of the eyes to

22.2. Visual Sensitivity 569

? ? ?

(a) (b)

Figure 22.15. The aperture problem: (a) If a straight line or edge moves in such a way
that its end points are hidden, the visual information is not sufficient to determine the actual
motion of the line. (b) 2D motion of a line is unambiguous if there are any corners or other
distinctive markings on the line.

assemble a mosaic of small patches of high resolution imagery from multiplefix-
ations into a single, stable whole.

The motion of straight lines and edges is ambiguous if no endpoints or cor-
ners are visible, a phenomenon referred to as theaperture problem (Figure 22.15).
The aperture problem arises because the component of motion parallel to the line
or edge does not produce any visual changes. The geometry of the real world
is sufficiently complex that this rarely causes difficulties in practice, except for
intentional illusions such as barber poles. The simplified geometry and textur-
ing found in some computer graphics renderings, however, has the potential to
introduce inaccuracies in perceived motion.

Real-time computer graphics,film, and video would not be possible without
an important perceptual phenomena: discontinuous motion, in which a series of
static images are visible for discrete intervals in time and then move by discrete
intervals in space, can be nearly indistinguishable from continuous motion. The
effect is calledapparent motion to highlight that the appearance of continuous
motion is an illusion.

Figure 22.16 illustrates the difference between continuous motion, which is
typical of the real world, and apparent motion, which is generated by almost all
dynamic image display devices. The motion plotted in Figure 22.16 (b) consists
of an average motion comparable to that shown in Figure 22.16 (a), modulated by
a high space-time frequency that accounts for the alternation between a stationary
pattern and one that moves discontinuously to a new location. Apparent percep-

570 22. Visual Perception

po
si

tio
n

time

po
si

tio
n

time

(a) (b)

Figure 22.16. (a) Continuous motion. (b) Discontinuous motion with the same average
velocity. Under some circumstances, the perception of these two motion patterns may be
similar.

tion of continuous motion occurs because the visual system is insensitive to the
high frequency component of the motion.

A compelling sense of apparent motion occurs when the rate at which indi-
vidual images appear is above about 10Hz, as long as the positional changes
between successive images is not too great. This rate is not fast enough, how-
ever, to produce a satisfying sense of continuous motion for most image display
devices. Almost all such devices introduce brightness variation as one image is
switched to the next. In well lit conditions, the human visual system is sensitive
to this varying brightness for rates of variations up to about 80 Hz. In lower light,
detectability is present up to about 40 Hz. When the rate of alternating brightness
is sufficiently high,flicker fusion occurs and the variation is no longer visible.

To produce a compelling sense of visualmotion, an image display must there-
fore satisfy two separate constraints:

• images must be updated at a rate≥ 10 Hz;
• any flicker introduced in the process of updating images must occur at a

rate≥ 60–80 Hz.

One solution is to require that the image update rate be greater than or equal to
60–80 Hz. In many situations, however, this is simply not possible. For computer
graphics displays, the frame computation time is often substantially greater than
12–15 msec. Transmission bandwidth and limitations of older monitor technolo-
gies limit normal broadcast television to 25–30 images per second. (Some HDTV
formats operate at 60 images/sec.) Movies update images at 24 frames/second
due to exposure time requirements and the mechanical difficulties of physically
movingfilm any faster than that.

22.3. Spatial Vision 571

Different display technologies solve this problem in different ways. Computer
displays refresh the displayed image at∼70–80 Hz, regardless of how often the
contents of the image change. The termframe rate is ambiguous for such displays,
since two values are required to characterize this display:refresh rate, which
indicates the rate at which the image is redisplayed andframe update rate, which
indicates the rate at which new images are generated for display. Standard non-
HDTV broadcast television uses a refresh rate of 60 Hz (NTSC, used in North
America and some other locations) or 50 Hz (PAL, used in most of the rest of
the world). The frame update rate is half the refresh rate. Instead of displaying
each new image twice, the display isinterlaced by dividing alternating horizontal
image lines into even and oddfields and alternating the display of these even and
odd fields. Flicker is avoided in movies by using a mechanical shutter to blink
each frame of thefilm three times before moving to the next frame, producing a
refresh rate of 72 Hz while maintaining the frame update rate of 24 Hz.

The use of apparent motion to simulate continuous motion occasionally pro-
duces undesirable artifacts. Best known of these is thewagon wheel illusion in
which the spokes of a rotating wheel appear to revolve in the opposite direction
from what would be expected given the translational motion of the wheel. The
wagon wheel illusion is an example of temporal aliasing. Spokes, or other spa-
tially periodic patterns on a rotating disk, produce a temporally periodic signal
for viewing locations that arefixed with respect to the center of the wheel or disk.
Fixed frame update rates have the effect of sampling this temporally periodic sig-
nal in time. If the temporal frequency of the sampled pattern is too high, under
sampling results in an aliased, lower temporal frequency appearing when the im-
age is displayed. Under some circumstances, this distortion of temporal frequency
causes a spatial distortion in which the wheel appears to move backwards. Wagon
wheel illusions are more likely to occur with movies than with video, since the
temporal sampling rate is lower.

Problems can also occur when apparentmotion imagery is converted from
one medium to another. This is of particular concern when 24 Hz movies are
transferred to video. Not only does a non-interlaced format need to be translated
to an interlaced format, but there is no straightforward way to move from 24
frames per second to 50 or 60fields per second. Some high-end display devices
have the ability to partially compensate for the artifacts introduced whenfilm is
converted to video.

22.3 Spatial Vision

One of the critical operations performed by the visual system is the estimation of
geometric properties of the visible environment, since these are central to deter-

572 22. Visual Perception

mining information about objects, locations, and events. Vision has sometimes
been described asinverse optics, to emphasize that one function of the visual sys-
tem is to invert the image formation process in order to determine the geometry,
materials, and lighting in the world that produced a particular pattern on light
on the retina. The central problem for a vision system is that properties of the
visible environment are confounded in the patterns of light imaged on the retina.
Brightness is a function of both illumination and reflectance, and can depend on
environmental properties across large regions of space due to the complexities of
light transport. Image locations of a projected environmental location at best can
be used to constrain the position of that location to a half-line. As a consequence,
it is rarely possible to uniquely determine the nature of the world that produced a
particular imaged pattern of light.

Determiningsurface layout—the location and orientation of visible surfaces
in the environment—is thought to be a key step in human vision. Most discus-
sions of how the vision system extracts information about surface layout from the
patterns of light it receives divide the problem into a set ofvisual cues, with each
cue describing a particular visual pattern which can be used to infer properties
of surface layout along with the needed rules of inference. Since surface layout
can rarely be determined accurately and unambiguously from vision alone, the
process of inferring surface layout usually requires additional, non-visual infor-
mation. This can come from other senses or assumptions about what is likely to
occur in the real world.

Visual cues are typically categorized into four categories.Ocularmotor cues

involve information about the position and focus of the eyes.Disparity cues in-
volve information extracted from viewing the same surface point with two eyes,
beyond that available just from the positioning of the eyes.Motion cues provide
information about the world that arises from either the movement of the observer
or the movement of objects.Pictorial cues result from the process of projecting
3D surface shapes onto a 2D pattern of light that falls on the retina. This sec-
tion deals with the visual cues relevant to the extraction of geometric information
about individualpoints on surfaces. More general extraction of location and shape
information is covered in Section 22.4.

22.3.1 Frames of Reference and Measurement Scales

Descriptions of the location and orientation of points on a visible surface must be
done within the context of a particular frame of references that specifies the ori-
gin, orientation, and scaling of the coordinate system used in representing the ge-
ometric information. The human vision system uses multiple frames of reference,

22.3. Spatial Vision 573

partially because of the different sorts of information available from different vi-
sual cues and partly because of the different purposes to which the information
is put (Klatzky, 1998).Egocentric representations are defined with respect to the
viewer’s body. They can be subdivided into coordinate systemsfixed to the eyes,
head, or body.Allocentric representations, also calledexocentric representations,
are defined with respect to something external to the viewer. Allocentric frames
of reference can be local to some configuration of objects in the environment or
can be globally defined in terms of distinctive locations, gravity, or geographic
properties.

The distance from the viewer to a particular visible location in the environ-
ment, expressed in an egocentric representation, is often referred to asdepth in
the perception literature. Surface orientation can be represented in either egocen-
tric or allocentric coordinates. In egocentric representations of orientation, the
termslant is used to refer to the angle between the line of sight to the point and
the surface normal at the point, while the termtilt refers to the orientation of the
projection of the surface normal onto a plane perpendicular to the line of sight.

Distance and orientation can be expressed in a variety ofmeasurement scales.
Absolute descriptions are specified using a standard that is not part of the sensed
information itself. These can be culturally defined standards (e.g, meters), or
standards relative to the viewer’s body (e.g., eye height, the width of one’s shoul-
ders). Relative descriptions relate one perceived geometric property to another
(e.g., pointa is twice as far away as pointb). Ordinal descriptions are a special

Cue a r o Requirements for absolute depth

Accommodation x x x very limited range

Binocular convergence x x x limited range

Binocular disparity - x x limited range

Linear perspective, height x x x requires viewpoint height

in picture, horizon ratio

Familiar size x x x

Relative size - x x

Aerial perspective ? x x adaptation to local conditions

Absolute motion parallax ? x x requires viewpoint velocity

Relative motion parallax - - x

Texture gradients - x -

Shading - x -

Occlusion - - x

Figure 22.17. Common visual cues for absolute (a), relative (r), and ordinal (o) depth.

574 22. Visual Perception

case of relative measure in which the sign, but not the magnitude, of the relation
is all that is represented. Figure 22.17 provides a list of the most commonly con-
sidered visual cues, along with a characterization of the sorts of information they
can potentially provide.

22.3.2 Ocularmotor Cues

Ocularmotor information about depth results directly from the muscular control
of the eyes. There are two distinct types of ocularmotor information.Accommo-

dation is the process by which the eye optically focuses at a particular distance.
Convergence (often referred to asvergence) is the process by which the two eyes
are pointed towards the same point in three-dimensional space. Both accommo-
dation and convergence have the potential to provide absolute information about
depth.

Physiologically, focusing in the humaneye is accomplished by distorting the
shape of the lens at the front of the eye. The vision system can infer depth from
the amount of this distortion. Accommodation is a relatively weak cue to distance
and is ineffective beyond about 2 m. Most people have increasing difficultly in
focusing over a range of distances as they get beyond about 45 years old. For
them, accommodation becomes even less effective.

Those not familiar with the specifics of visual perception sometimes confuse
depth estimation from accommodation withdepth information arising out of the

Figure 22.18. Does the central square appear in front of the pattern of circles or is it seen
as appearing through a square hole in the pattern of circles? The only difference in the two
images is the sharpness of the edge between the line and circle patterns (Marshall et al.
(1999), used by permission).

22.3. Spatial Vision 575

θ

ipd

z

Figure 22.19. The vergence of the two eyes provides information about the distance to the
point on which the eyes are fixated.

blur associated with limited depth-of-field in the eye. The accommodation depth
cue provides information about the distance to that portion of the visualfield that
it is in focus. It does not depend on the degree to which other portions of the visual
field are out of focus, other than that blur is used by the visual system to adjust
focus. Depth-of-field does seem to provide a degree of ordinal depth information
(Figure 22.18), though this effect has received only limited investigation.

If two eyesfixate on the same point in space, trigonometry can be used to
determine the distance from the viewer to the viewed location (Figure 22.19). For
the simplest case, in which the point of interest is directly in front of the viewer,

z =
ipd/2

tan θ
, (22.5)

wherez is the distance to a point in the world,ipd is theinterpupillary distance

indicating the distance between the eyes, andθ is thevergence angle indicating
the orientation of the eyes relative to straight ahead. For smallθ, which is the case
for the geometric configuration of human eyes,tan θ ≈ θ whenθ is expressed in
radians. Thus, differences in vergenceangle specify differences in depth by the
following relationship:

∆θ ≈ ipd

2
· 1

∆z
. (22.6)

As θ → 0 in uniform steps,∆z gets increasingly larger. This means that stereo
vision is less sensitive to changes in depth as the overall depth increases. Conver-
gence in fact only provides information on absolute depth for distances out to a
few meters. Beyond that, changes in distance produce changes in vergence angle
that are too small to be useful.

There is an interaction between accommodation and convergence in the hu-
man visual system: accommodation is used to help determine the appropriate

576 22. Visual Perception

vergence angle, while vergence angle is used to help set the focus distance. Nor-
mally, this helps the visual system when there is uncertainty is setting either ac-
commodation or vergence. However, stereographic computer displays break the
relationship between focus and convergence that occurs in the real world, leading
to a number of perceptual difficulties (Wann et al., 1995).

22.3.3 Binocular Disparity

The vergence angle of the eyes whenfixated on a common point in space is only
one of the ways that the visual system is able to determine depth from binocular
stereo. A second mechanism involves a comparison of the retinal images in the
two eyes and does not require information about where the eyes are pointed. A
simple example demonstrates the effect. Hold your arm straight out in front of
you, with your thumb pointed up. Stare at your thumb and then close one eye.
Now, simultaneously open the closed eye and close the open eye. Your thumb will
appear to be more or less stationary, while the more distant surfaces seen behind
your thumb will appear to move from side to side (Figure 22.20). The change
in retinal position of points in the scene between the left and right eyes is called
disparity.

The binocular disparity cue requires that the vision system be able to match
the image of points in the world in one eye with the imaged locations of those
points in the other eye, a process referred to as thecorrespondence problem. This
is a relatively complicated process and is only partially understood. Once cor-
respondences have been established, the relative positions on which particular

(left eye image) (right eye image)

Figure 22.20. Binocular disparity. The view from the left and right eyes shows an offset for
surface points at depths different from the point of fixation. Images courtesy Peter Shirley.

22.3. Spatial Vision 577

uncrossed
disparity

crossed
disparity

fixation point

more distant point

nearer point

Figure 22.21. Near the line of sight, surface points nearer than the fixation point produce
disparities in the opposite direction from those associated with surface points more distant
than the fixation point.

points in the world project onto the left and right retinas indicate whether the
points are closer than or farther away than the point offixation.Crossed disparity

occurs when the corresponding points aredisplaced outward relative to the fovea
and indicates that the surface point is closer than the point offixation.Uncrossed

disparity occurs when the corresponding points are displaced inward relative to
the fovea and indicates that the surface point is farther away than the point of
fixation (Figure 22.21).4 Binocular disparity is a relative depth cue, but it can
provide information about absolute depth when scaled by convergence. Equation
(22.5) applies to binocular disparity as well as binocular convergence. As with
convergence, the sensitivity of binocular disparity to changes in depth decreases
with depth.

22.3.4 Motion Cues

Relative motion between the eyes and visible surfaces will produce changes in the
image of those surfaces on the retina. Three-dimensional relative motion between
the eye and a surface point produces two-dimensional motion of the projection of
the surface point on the retina. This retinal motion is given the nameoptic flow.
Optic flow serves as the basis for several types of depth cues. In addition, optic
flow can be used to determine information about how a person is moving in the
world and whether or not a collision is imminent (Section 22.4.3).

If a person moves to the side while continuing tofixate on some surface point,
then opticflow provides information about depth similar to stereo disparity. This

4Technically, crossed and uncrossed disparities indicate that the surface point generating the dis-
parity is closer to or farther away from thehoropter. The horopter is not afixed distance away from
the eyes but rather it is a curved surface passing through the point offixation.

578 22. Visual Perception

(a) (b)

Figure 22.22. (a) Motion parallax generated by sideways movement to the right while
looking at an extended ground plane. (b) The same motion, with eye tracking of the fixation
point.

is referred to asmotion parallax. For other surface points that project to reti-
nal locations near thefixation point, zero opticflow indicates a depth equivalent
to thefixation point;flow in the opposite direction to head translation indicates
nearer points, equivalent to crossed disparity; andflow in the same direction as
head translation indicates farther points, equivalent to uncrossed disparity (Fig-
ure 22.22). Motion parallax is a powerful cue to relative depth. In principle,
motion parallax can provide absolute depth information if the visual system has
access to information about the velocity ofhead motion. In practice, motion par-
allax appears at best to be a weak cue for absolute depth.

In addition to egocentric depth information due to motion parallax, visual
motion can also provide information about the three-dimensional shape of ob-
jects moving relative to the viewer. In the perception literature, this is known as
the kinetic depth effect. In computer vision, it is referred to asstructure-from-

motion. The kinetic depth effect presumes that one component of object motion
is rotation in depth, meaning that there is a component of rotation around an axis
perpendicular to the line of sight.

A
B

C

Figure 22.23. Discon-
tinuities in optic flow sig-
nal surface boundaries. In
many cases, the sign of the
depth change (i.e., the or-
dinal depth) can be deter-
mined.

Optic flow can also provide information about the shape and location of sur-
face boundaries, as shown in Figure 22.23.Spatial discontinuities in opticflow
almost always either correspond to depth discontinuities or result from indepen-
dently moving objects. Simple comparisons of the magnitude of opticflow are
insufficient to determine the sign of depthchanges, except in the special case of
a viewer moving through an otherwise static world. Even when independently
moving objects are present, however, the sign of the change in depth across sur-
face boundaries can often be determined by other means. Motion often changes
the portion of the more distant surface visible at surface boundaries. The appear-
ance (accretion) or disappearance (deletion) of surface texture occurs because the
nearer, occluding surface progressively uncovers or covers portions of the more

22.3. Spatial Vision 579

distant, occluded surface. Comparisons of the motion of surface texture to either
side of a boundary can also be used to infer ordinal depth, even in the absence
of accretion or deletion of the texture. Discontinuities in opticflow and accre-
tion/deletion of surface texture are referred to asdynamic occlusion cues and are
another powerful source of visual information about the spatial structure of the
environment.

The speed that a viewer is traveling relative to points in the world cannot be
determined from visual motion alone (see Section 22.4.3). Despite this limitation,
it is possible to use visual information to determine the time it will take to reach a
visible point in the world even when speed cannot be determined. When velocity
is constant,time-to-contact (often referred to astime-to-collision) is given by the
retinal size of an entity towards which the observer is moving, divided by the rate
at which that image size is increasing.5 In the biological vision literature, this is
often called theτ function (Lee & Reddish, 1981). If distance information to the
structure in the world on which the time-to-collision estimate is based is available,
then this can be used to determine speed.

22.3.5 Pictorial Cues

An image can contain much information about the spatial structure of the world
from which it arose, even in the absence of binocular stereo or motion. As evi-
dence for this, note that the world still appears three-dimensional even if we close
one eye, hold our head stationary, and nothing moves in the environment. (As
discussed in Section 22.5, the situation is more complicated in the case of pho-
tographs and other displayed images.) There are three classes of suchpictorial

depth cues. The best known of these involvelinear perspective. There are also
Figure 22.24. The
classical linear perspective
effects include object size
scaled by distance, the con-
vergence of parallel lines,
the ground plane extending
to a visible horizon, and po-
sition on the ground plane
relative to the horizon. Im-
age courtesy Sam Pullara.

a number ofocclusion cues that provide information about ordinal depth even in
the absence of perspective. Finally,illumination cues involving shading, shadows
and interreflections, and aerial perspective also provide visual information about
spatial layout.

The termlinear perspective is often used to refer to properties of images in-
volving object size in the image scaled by distance, the convergence of parallel
lines, the ground plane extending to a visible horizon, and the relationship be-
tween the distance to objects on the ground plane and the image location of those
objects relative to the horizon (Figure 22.24). More formally, linear perspective
cues are those visual cues which exploit the fact that under perspective projection,
the image location onto which points in the world are projected is scaled by1

z ,

5The terms time-to-collision and time-to-contactare misleading, since contact will only occur if
the viewer’s trajectory actually passes through or near the entity under view.

580 22. Visual Perception

θ

h

 d

d = h cot θ

Figure 22.25. Absolute distance to locations on the ground plane can be determined based
on declination angle from the horizon and eye height.

wherez is the distance from the point of projection to the point in the environ-
ment. Direct consequences of this relationship are that points that are farther away
are projected to points closer to the center of the image (convergence of parallel
lines) and that the spacing between the image of points in the world decreases for
more distant world points (object size in the image is scaled by distance).6 The
fact that the image of an infinite flat surface in the world ends at afinite horizon
is explained by examining the perspective projection equation asz → ∞.

With the exception of size-related effects described in Section 22.4.2, most
pictorial depth cues involving linear perspective depend on objects of interest be-
ing in contact with a ground plane. In effect, these cues estimate not the distance
to the objects but, instead, the distance to the contact point on the ground plane.
Assuming observer and object are both on top of a horizontal ground plane, then
locations on the ground plane lower in the view will be close. Figure 22.25 illus-
trates this effect quantitatively. For a viewpointh above the ground and anangle

of declination θ between the horizon and a point of interest on the ground, the
point in question is a distanced = h cot θ from the point at which the observer
is standing. The angle of declination provides relative depth information for arbi-
traryfixed viewpoints and can provide absolute depth when scaling by eye height
(h) is possible.

While the human visual system almost certainly makes use of angle of decli-
nation as a depth cue, the exact mechanisms used to acquire the needed informa-
tion are not clear. The angleθ could be obtained relative to either gravity or the
visible horizon. There is some evidence that both are used in human vision. Eye
heighth could be based on posture, visually determined by looking at the ground
at one’s feet, or learned by experience and presumed to be constant. While a

6The actual mathematics for analyzing the specifics of biological vision are different, since eyes
are not well approximated by the planar projection formulation used in computer graphics and most
other imaging applications.

22.3. Spatial Vision 581

Figure 22.26. Shadows can indirectly function as a depth cue by associating the depth of
an object with a location on the ground plane (after Kersten et al. (1997)).

number of researchers have investigatedthis issue, if and how these values are
determined is not yet known with certainty.

Shadows provide a variety of types of information about three-dimensional
spatial layout.Attached shadows indicate that an object is in contact with another
surface, often consisting of the ground plane.Detached shadows indicate that an
object is close to some surface, but not in contact with that surface. Shadows can
serve as an indirect depth cue by causing an object to appear at the depth of the
location of the shadow on the ground plane (Yonas et al., 1978). When utilizing
this cue, the visual system seems to make the assumption that light is coming
from directly above (Figure 22.26).

Vision provides information about surface orientation as well as distance. It
is convenient to represent visually determined surface orientation in terms oftilt,
defined as the orientation in the image of the projection of the surface normal, and
slant, defined as the angle between the surface normal and the line of sight.

A visible surface horizon can be used tofind the orientation of an (effectively
infinite) surface relative to the viewer. Determining tilt is straightforward, since
the tilt of the surface is the orientation of the visible horizon. Slant can be re-
covered as well, since the lines of sight from the eye point to the horizon define
a plane parallel to the surface. In many situations, either the surface horizon is
not visible or the surface is small enough that its far edge does not correspond
to an actual horizon. In such cases, visible texture can still be used to estimate
orientation.

In the context of perception, the termtexture refers to visual patterns consist-
ing of sub-patterns replicated over a surface. The sub-patterns and their distri-
bution can befixed and regular, as for a checkerboard, or consistent in a more
statistical sense, as in the view of a grassyfield.7 When a textured surface is
viewed from an oblique angle, the projected view of the texture is distorted rela-
tive to the actual markings on the surface.Two quite distinct types of distortions
occur (Knill, 1998), both affected by the amount of slant. The position and size

7In computer graphics, the termtexture has a different meaning, referring to any image that is
applied to a surface as part of the rendering process.

582 22. Visual Perception

(a) (b) (c)

Figure 22.27. Texture cues for slant. (a) Near surface exhibiting compression and texture
gradient; (b) distant surface exhibiting only compression; (c) variability in appearance of near
surface with regular geometric variability.

of texture elements are subject to the linear perspective effects described above.
This produces atexture gradient (Gibson, 1950) due to both element size and
spacing decreasing with distance (Figure 22.27(a)). Both the image of individual
texture elements and the distribution of elements areforeshortened under oblique
viewing (Figure 22.27(b)). This produces a compression in the direction of tilt.
For example, an obliquely viewed circle appears as an ellipse, with the ratio of the
minor to major axes equal to the cosine of the slant. Note that foreshortening it-
self is not a result of linear perspective, though in practice both linear perspective
and foreshortening provide information about slant.8

For texture gradients to serve as a cue to surface slant, the average size and
spacing of texture elements must be constant over the textured surface. If spa-
tial variability in size and spacing in the image is not due in its entirely to the
projection process, then attempts to invert the effects of projection will produce
incorrect inferences about surface orientation. Likewise, the foreshortening cue
fails if the shape of texture elements is not isotropic, since then asymmetric tex-
ture element image shapes would occur in situations not associated with oblique
viewing. These are examples of the assumptions often required in order for spa-
tial visual cues to be effective. Such assumptions are reasonable to the degree that
they reflect commonly occurring properties of the world.

Shading also provides information about surface shape (Figure 22.28). The
brightness of viewed points on a surface depends on the surface reflectance and
the orientation of the surface with respect to directional light sources and the
observation point. When the relative position of an object, viewing direction,
and illumination direction remainfixed, changes in brightness over a constant
reflectance surface are indications of changes in the orientation of the surface of

8A third form of visual distortion occurs when surfaces with distinct 3D surface relief are viewed
obliquely (Leung & Malik, 1997), as shown in Figure 22.27(c). Nothing is currently know about if or
how this effect might be used by the human vision system to determine slant.

22.3. Spatial Vision 583

(a) (b)

Figure 22.28. Shape-from-shading. The images in (a) and (b) appear to have different
3D shapes because of differences in the rate of change of brightness over their surfaces.

Figure 22.29. Shading can generate a strong perception of three-dimensional shape. In this
figure, the effect is stronger if you view the image from several meters away using one eye.
It becomes yet stronger if you place a piece of cardboard in front of the figure with a hole cut
out slightly smaller than the picture (see Section 22.5). Image courtesy Albert Yonas. (See
also Plate XIII.)

584 22. Visual Perception

forkarrow

T L

(a) (b)

Figure 22.30. (a) Junctions provide information about occlusion and the convexity or con-
cavity of corners. (b) Common junction types for planar surface objects.

the object.Shape-from-shading is the process of recovering surface shape from
these variations in observed brightness. It is almost never possible to recover the
actual orientation of surfaces from shading alone, though shading can often be
combined with other cues to provide an effective indication of surface shape. For
surfaces withfine-scale geometric variability, shading can provide a compelling
three-dimensional appearance, even for an image rendered on a two-dimensional
surface (Figure 22.29).

There are a number of pictorial cues that yield ordinal information about
depth, without directly indicating actual distance. In line drawings, different types
of junctions provide constraints on the 3D geometry that could have generated the
drawing (Figure 22.30). Many of these effects occur in more natural images as
well. Most perceptually effective of the junction cues areT-junctions, which are
strong indicators that the surface opposite the stem of the T is occluding at least
one more distant surface. T-junctions often generate a sense ofamodal comple-

tion, in which one surface is seen to continue behind a nearer, occluding surface
(Figure 22.31).

Atmospheric effects cause visual changes that can provide information about
depth, particularly outdoors over long distances. Leonardo da Vinci was thefirst

Figure 22.31. T-junctions cause the left disk to appear to be continuing behind the rectangle,
while the right disk appears in front of the rectangle which is seen to continue behind the disk.

22.4. Objects, Locations, and Events 585

to describeaerial perspective (also calledatmospheric perspective), in which
scattering reduces the contrast of distant portions of the scene and causes them
to appear more bluish than if they were nearer (da Vinci, 1970) (see Plate XX).
Aerial perspective is predominately a relative depth cue, though there is some
speculation that it may affect perception of absolute distance as well. While many
people believe that more distant objects look blurrier due to atmospheric effects,
atmospheric scattering actually causes little blur.

22.4 Objects, Locations, and Events

While there is fairly wide agreement among current vision scientists that the pur-
pose of vision is to extract information about objects, locations, and events, there
is little consensus on the key features of what information is extracted, how it is
extracted, or how the information is used to perform tasks. Significant contro-
versies exist about the nature of object recognition and the potential interactions
between object recognition and other aspects of perception. Most of what we
know about location involves low-level spatial vision, not issues associated with
spatial relationships between complex objects or the visual processes required to
navigate in complex environments. We know a fair amount about how people
perceive their speed and heading as they move through the world, but have only
a limited understanding of actual event perception. Visual attention involves as-
pects of the perception of objects, locations, and events. While there is much data
about the phenomenology of visual attention for relatively simple and well con-
trolled stimuli, we know much less about how visual attention serves high-level
perceptual goals.

22.4.1 Object Recognition

Object recognition involves segregating an image into constituent parts corre-
sponding to distinct physical entities and determining the identity of those entities.
Figure 22.32 illustrates a few of the complexities associated with this process. We
have little difficulty recognizing that the image on the left is some sort of vehi-
cle, even though we have never before seen this particular view of a vehicle nor
do most of us typically associate vehicles with this context. The image on the
right is less easily recognizable until the page is turned upside down, indicating
an orientational preference in human object recognition.

Object recognition is thoughtto involve two, fairly distinct steps. Thefirst
step organizes the visualfield intogroupings likely to correspond to objects and

586 22. Visual Perception

(a) (b)

Figure 22.32. The complexities of object recognition. (a) We recognize a vehicle-like object
even though we have likely never seen this particular view of a vehicle before. (b) The image
is hard to recognize based on a quick view. It becomes much easier to recognize if the book
is turned upside down.

surfaces. These grouping processes are very powerful (see Figure 22.33), though
there is little or no conscious awareness of the low-level image features that gener-
ate the grouping effect.9 Grouping is based on the complex interaction of proxim-
ity, similarities in the brightness, color, shape, and orientation of primitive struc-
tures in the image, common motion, and a variety of more complex relationships.

The second step in object recognition is to interpret groupings as identified
objects. A computational analysis suggests that there are a number of distinctly

(a) (b)

Figure 22.33. Images are perceptually organized into groupings based on a complex set
of similarity and organizational criteria. (a) Similarity in brightness results in four horizontal
groupings. (b) Proximity resulting in three vertical groupings.

9The most common form of visual camouflage involves adding visual textures that fool the per-
ceptual grouping processes so that the view of the world cannot be organized in a way that separates
out the object being camouflaged.

22.4. Objects, Locations, and Events 587

template

Figure 22.34. Template matching. The bright spot in the right image indicates the best
match location to the template in the left image. Image courtesy National Archives and
Records Administration.

different ways in which an object can be identified. The perceptual data is unclear
as to which of these are actually used in human vision. Object recognition requires
that the vision system have available to it descriptions of each class of object
sufficient to discriminate each class from allothers. Theories of object recognition
differ in the nature of the information describing each class and the mechanisms
used to match these descriptions to actual views of the world.

Three general types of descriptions are possible.Templates represent object
classes in terms of prototypical views of objects in eachclass. Figure 22.34 shows
a simple example.Structural descriptions represent object classes in terms of dis-
tinctive features of each class likely to be easily detected in views of the object,
along with information about the geometric relationships between the features.
Structural descriptions can either be represented in 2D or 3D. For 2D models
of objects types, there must be a separate description for each distinctly differ-
ent potential view of the object. For 3D models, two distinct forms of matching
strategies are possible. In one, the three-dimensional structure of the viewed ob-
ject is determined prior to classification using whatever spatial cues are available
and then this 3D description of the view is matched to 3D prototypes of known
objects. The other possibility is that some mechanism allows the determination
of the orientation of the yet-to-be identified object under view. This orientation
information is used to rotate and project potential 3D descriptions in a way that
allows a 2D matching of the description and the viewed object. Finally, the last
option for describing the properties of object classes involvesinvariant features

which describe classes of objects in terms of more generic geometric properties,
particularly those that are likely be be insensitive to different views of the object.

22.4.2 Size and Distance

In the absence of more definitive information about depth, objects which project
onto a larger area of the retina are seen as closer compared with objects which

588 22. Visual Perception

Figure 22.35. Left: perspective and familiar size cues are consistent. Right: perspec-
tive and familiar size cues are inconsistent. Images courtesy Peter Shirley, Scott Kuhl, and
J. Dylan Lacewell.

project to a smaller retinal area, an effect calledrelative size. A more powerful
cue involvesfamiliar size, which can provide information for absolute distance
to recognizable objects of known size. The strength of familiar size as a depth
cue can be seen in illusions such as Figure 22.35, in which it is put in conflict
with ground-plane, perspective-based depth cues. Familiar size is one part of the
size-distance relationship, relating the physical size of an object, the optical size
of the same object projected onto the retina, and the distance of the object from
the eye (Figure 22.36).

When objects are sitting on top of aflat ground plane, additional sources for
depth information become available, particularly when the horizon is either vis-

θ

h

d

d ≈
1
2 h cot

(

θ

2

)

Figure 22.36. The size-distance relationship allows the distance to objects of known size
to be determined based on the visual angle subtended by the object. Likewise, the size of
an object at a know distance can be determined based on the visual angle subtended by the
object.

22.4. Objects, Locations, and Events 589

b
c

a

s

h

v viewpoint height
o object height

o ≈ v · s
h

(a) (b)

Figure 22.37. (a) The horizon ratio can be used to determine depth by comparing the visible
portion of an object below the horizon to the total vertical visible extent of the object. (b) A
real-world example.

ible or can be derived from other perspective information. The angle of decli-
nation to the contact point on the ground is a relative depth cue and provides
absolute egocentric distance when scaled by eye height, as previously shown in
Figure 22.25. Thehorizon ratio, in which the total visible height of an object
is compared with the visible extent of that portion of the object appearing below
the horizon, can be used to determine the actual size of objects, even when the
distance to the objects is not known (Figure 22.37). Underlying the horizon ratio
is the fact that for aflat ground plane, the line of sight to the horizon intersects
objects at a position that is exactly an eye height above the ground.

(a) (b)

Figure 22.38. (a) Size constancy makes hands positioned at different distances from the
eye appear to be nearly the same size for real-world viewing, even though the retinal sizes
are quite different. (b) The effect is less strong when one hand is partially occluded by the
other, particularly when one eye is closed. Images courtesy Peter Shirley and Pat Moulis.

590 22. Visual Perception

The human visual system is sufficiently able to determine the absolute size of
most viewed objects; our perception of size is dominated by the the actual physi-
cal size, and we have almost no conscious awareness of the corresponding retinal
size of objects. This is similar to lightness constancy, discussed earlier, in that
our perception is dominated by inferred properties of the world, not the low level
features actually sensed by photoreceptorsin the retina. Gregory (1997) describes
a simple example ofsize constancy. Hold your two hands out in front of you, one
at arms length and the other at half that distance away from you (Figure 22.38(a)).
Your two hands will look almost the same size, even though the retinal sizes differ
by a factor of two. The effect is much less strong if the nearer hand partially oc-

Figure 22.39. Shape
constancy—the table looks
rectangular even though its
shape in the image is an ir-
regular four sided polygon.

cludes the more distant hand, particularly if you close one eye (Figure 22.38(b)).
The visual system also exhibitsshape constancy, where the perception of geomet-
ric structure is close to actual object geometry than might be expected given the
distortions of the retinal image due to perspective (Figure 22.39).

22.4.3 Events

Most aspects of event perception are beyond the scope of this chapter, since they
involve complex non-visual cognitive processes. Three types of event perception
are primarily visual, however, and are also of clear relevance to computer graph-
ics. Vision is capable of providing information about how a person is moving in
the world, the existence of independently moving objects in the world, and the
potential for collisions either due to observer motion or due to objects moving
towards the observer.

Vision can be used to determine rotation and the direction of translation rel-
ative to the environment. The simplest case involves movement towards aflat
surface oriented perpendicularly to the line of sight. Presuming that there is suffi-
cient surface texture to enable the recovery of opticflow, theflow field will form
a symmetric pattern as shown in Figure 22.40(a). The location in thefield of view
of the focus of expansion of the flow field will have an associated line of sight
corresponding to the direction of translation. While opticflow can be used to vi-
sually determine the direction of motion, it does not contain enough information
to determine speed. To see this, consider the situation in which the world is made
twice as large and the viewer moves twice as fast. The decrease in the magnitude
of flow values due to the doubling of distances is exactly compensated for by the
increase in the magnitude offlow values due to the doubling of velocity, resulting
in an identicalflow field.

Figure 22.40(b) shows the opticflow field resulting from the viewer (or more
accurately, the viewer’s eyes) rotating around the vertical axis. Unlike the situa-

22.4. Objects, Locations, and Events 591

(a) (b) (c)

Figure 22.40. (a) Movement towards a flat, textured surface produces an expanding flow
field, with the focus of expansion indicating the line of sight corresponding to the direction
of motion. (b) The flow field resulting from rotation around the vertical axis while viewing
a flat surface oriented perpendicularly to the line of sight. (c) The flow field resulting from
translation parallel to a flat, textured surface.

tion with respect to translational motion, opticflow provides sufficient informa-
tion to determine both the axis of rotation and the (angular) speed of rotation. The
practical problem in exploiting this is that theflow resulting from pure rotational
motion around an axis perpendicular to the line of sight is quite similar to the
flow resulting from pure translation in the direction that is perpendicular to both
the line of sight and this rotational axis, making it difficult to visually discriminate
between the two very different types of motion (Figure 22.40(c)). Figure 22.41
shows the opticalflow patterns generated by movement through a more realistic
environment.

If a viewer is completely stationary, visual detection of moving objects is easy,
since such objects will be associated with the only non-zero opticflow in thefield

Figure 22.41. The optic flow generated by moving through an otherwise static environment
provides information about both the motion relative to the environment and the distances to
points in the environment. In this case, the direction of view is depressed from the horizon,
but as indicated by the focus of expansion, the motion is parallel to the ground plane.

592 22. Visual Perception

of view. The situation is considerablymore complicated when the observer is
moving, since the visualfield will be dominated by non-zeroflow, most or all of
which is due to relative motion between the observer and the static environment
(Thompson & Pong, 1990). In such cases, the visual system must be sensitive
to patterns in the opticflow field that are inconsistent withflow fields associated
with observer movement relative to a static environment (Figure 22.42).

Section 22.3.4 described how vision can be used to determine time to contact
with a point in the environment even when the speed of motion is not known.
Assuming a viewer moving with a straight, constant-speed trajectory and no in-
dependently moving objects in the world, contact will be made with whatever

Figure 22.42. Visual
detection of moving objects
from a moving observation
point requires recognizing
patterns in the optic flow
that cannot be associated
with motion through a static
environment.

surface is in the direction of the line of sight corresponding to the focus of expan-
sion at a time indicated by theτ relationship. An independently moving object
complicate the matter of determining if a collision will in fact occur. Sailors use
a method for detecting potential collisions that may also be employed in the hu-
man visual system: for non-accelerating straight-line motion, collisions will occur
with objects that are visually expanding but otherwise remain visually stationary
in the egocentric frame of reference.

One form of more complex event perception merits discussion here, since it is
so important in interactive computer graphics. People are particularly sensitive to
motion corresponding to human movement. Locomotion can be recognized when
the only features visible are lights on the walker’s joints (Johansson, 1973). Such
moving light displays are often even sufficient to recognize properties such as the
sex of the walker and the weight of the load that the walker may be carrying.
In computer graphics renderings, viewers will notice even small inaccuracies in
animated characters, particularly if they are intended to mimic human motion.

The termvisual attention covers a range of phenomenon from where we point
our eyes to cognitive effects involving what we notice in a complex scene and how

(a) (b) (c)

Figure 22.43. In (a) and (b), visual attention is quickly drawn to the item of different shape
or color. In (c), sequential search appears to be necessary in order to find the one item that
differs in both shape and color.

22.5. Picture Perception 593

we interpret what we notice (Pashler, 1998). Figure 22.43 provides an example of
how attentional processes affect vision, even for very simple images. In the left
two panels, the one pattern differing in shape or color from the rest immediately
“pops out” and is easily noticed. In the panel on the right, the one pattern differ-
ing in both shape and color is harder tofind. The reason for this is that the visual
system can do a parallel search for items distinguished by individual properties,
but requires more cognitive, sequential search when looking for items that are in-
dicated by the simultaneous presence of two distinguishing features. Graphically
based human-computer interfaces should be (but often are not!) designed with an
understanding of how to take advantage of visual attention processes in people so
as to communicate important information quickly and effectively.

22.5 Picture Perception

So far, this chapter has dealt with the visual perception that occurs when the world
is directly imaged by the human eye.When we view the results of computer
graphics, of course, we are looking at rendered images and not the real world.
This has important perceptual implications. In principle, it should be possible to
generate computer graphics that appears indistinguishable from the real world, at
least for monocular viewing without either object or observer motion. Imagine
looking out at the world through a glass window. Now, consider coloring each
point on the window to exactly match the color of the world originally seen at
that point.10 The light reaching the eye is unchanged by this operation, meaning
that perception should be the same whether the painted glass is viewed or the
real world is viewed through the window. The goal of computer graphics can be
thought of as producing the colored window without actually having the equiva-
lent real-world view available.

The problem for computer graphics and other visual arts is that we can’t in
practice match a view of the real world by coloring aflat surface. The brightness
and dynamic range of light in the real world is impossible to recreate using any
current display technology. Resolution of rendered images is also often less that
thefinest detail perceivable by human vision. Lightness and color constancy are
much less apparent in pictures than inthe real world, likely because the visual
system attempts to compensate for variability in the brightness and color of the
illumination based on the ambient illumination in the viewing environment rather
than the illumination associated with the rendered image. This is why the real-

10This idea wasfirst described by the painter Leon Battista Alberti in 1435 and is now known as
Alberti’s Window. It is closely related to thecamera obscura.

594 22. Visual Perception

istic appearance of color in photographs depends onfilm color balanced for the
nature of the light source present when the photograph was taken and why real-
istic color in video requires a white-balancing step. While much is known about
how limitations in resolution, brightness, and dynamic range affect the detectabil-
ity of simple patterns, almost nothing is known about how these display properties
affect spatial vision or object identification.

We have a better understanding of other aspects of this problem, which psy-
chologists refer to as the perception ofpictorial space (S. Rogers, 1995). One
difference between viewing images andviewing the real world is that accommo-
dation, binocular stereo, motion parallax, and perhaps other depth cues may indi-
cate that the surface under view is much different that the distances in the world
that it is intended to represent. The depths that are seen in such a situation tend
to be somewhere between the depths indicated by the pictorial cues in the image
and the distance to the image itself. When looking at a photograph or computer
display, this often results in a sense of scale smaller than intended. On the other
hand, seeing a movie in a big-screen theater produces a more compelling sense of
spaciousness than does seeing the same movie on television, even if the distance
to the TV is such that the visual angles are the same, since the movie screen is
farther away.

Computer graphics rendered using perspective projection has a viewpoint,
specified as a position and direction in model space, and a view frustum, which
specifies the horizontal and verticalfield of view and several other aspects of the
viewing transform. If the rendered image is not viewed from the correct location,
the visual angles to the borders of the image will not match the frustum used in
creating the image. All visual angles within the image will be distorted as well,
causing a distortion in all of the pictorial depth and orientation cues based on
linear perspective. This effect occurs frequently in practice, when a viewer is po-
sitioned either too close or too far away from a photograph or display surface. If
the viewer is too close, the perspective cues for depth will be compressed, and the
cues for surface slant will indicate that the surface is closer to perpendicular to the
line of sight than is actually the case. The situation is reversed if the viewer is too
far from the photograph or screen. The situation is even more complicated if the
line of sight does not go through the center of the viewing area, as is commonly
the case in a wide variety of viewing situations.

The human visual system is able to partially compensate for perspective dis-
tortions arising from viewing an image at the wrong location, which is why we
are able to sit in different seats at a movie theater and experience a similar sense
of the depicted space. When controlling viewing position is particularly impor-
tant, viewing tubes can be used. These are appropriately sized tubes, mounted

22.5. Picture Perception 595

in a fixed position relative to the display, and through which the viewer sees the
display. The viewing tube constrains the observation point to the (hopefully) cor-
rect position. Viewing tubes are also quite effective at reducing the conflict in
depth information between the pictorialcues in the image and the actual display
surface. They eliminate both stereo and motion parallax, which if present would
correspond to the display surface, not the rendered view. If they are small enough
in diameter, they also reduce other cuesto the location of the display surface by
hiding the picture frame or edge of the display device. Exotic visually immersive
display devices such as head-mounted displays (HMDs) go further in attempting
to hide visual cues to the position of the display surface while adding binocu-
lar stereo and motion parallax consistent with the geometry of the world being
rendered.

2 32 3
Erik Reinhard

Tone Reproduction

As discussed in Chapter 22, the human visual system adapts to a wide range of
viewing conditions. Under normal viewing, we may discern a range of around 4
to 5 log units of illumination, i.e., the ratio between brightest and darkest areas
where we can see detail may be as large as100, 000 : 1. Through adaptation
processes, we may adapt to an even larger range of illumination. We call images
that are matched to the capabilities of the human visual systemhigh dynamic

range.
Visual simulations routinely produce images with a high dynamic range

(Ward Larson & Shakespeare, 1998). Recent developments in image-capturing
techniques allow multiple exposures to bealigned and recombined into a single
high dynamic range image (Debevec & Malik, 1997). Multiple exposure tech-
niques are also available for video. In addition, we expect future hardware to be
able to photograph orfilm high dynamic range scenes directly. In general, we
may think of each pixel as a triplet of threefloating point numbers.

As it is becoming easier to create high dynamic range imagery, the need to
display such data is rapidly increasing. Unfortunately, most current display de-
vices, monitors and printers, are only capable of displaying around 2 log units
of dynamic range. We consider such devices to be of low dynamic range. Most
images in existence today are represented with a byte-per-pixel-per-color chan-
nel, which is matched to current display devices, rather than to the scenes they
represent.

Typically, low dynamic range images are not able to represent scenes with-
out loss of information. A common example is an indoor room with an out-

597

598 23. Tone Reproduction

Figure 23.1. With conventional photography, some parts of the scene may be under- or
over-exposed. To visualize the snooker table, the view through the window is burned out in
the left image. On the other hand, the snooker table will be too dark if the outdoor part of this
scene is properly exposed. Compare with Figure 23.2, which shows a high dynamic range
image prepared for display using a tone reproduction algorithm.

door area visible through the window. Humans are easily able to see details of
both the indoor part and the outside part. A conventional photograph typically
does not capture this full range of information—the photographer has to choose
whether the indoor or the outdoor part of the scene is properly exposed (see Fig-
ure 23.1). These decisions may be avoided by using high dynamic range imaging
and preparing these images for display using techniques described in this chapter
(see Figure 23.2).

There are two strategies available to display high dynamic range images. First,

Figure 23.2. A high dynamic range im-
age tonemapped for display using a recent
tone reproduction operator (Reinhard & De-
vlin, 2005). In this image, both the indoor
part and the view through the window are
properly exposed.

we may develop display devices which
can directly accommodate a high dy-
namic range (Seetzen et al., 2003,
2004). Second, we may prepare high
dynamic range images for display on
low dynamic range display devices (Up-
still, 1985). This is currently the more
common approach and the topic of this
chapter. Although we foresee that high
dynamic range display devices will be-
come widely used in the (near) future,
the need to compress the dynamic range
of an image may diminish, but will not
disappear. In particular, printed media
such as this book are by their very na-

ture low dynamic range.

Compressing the range of values of an image for the purpose of display on
a low dynamic range display device iscalled tonemapping or tone reproduction.

599

Figure 23.3. Linear scaling of high dynamic range images to fit a given display device may
cause significant detail to be lost (left and middle). The left image is linearly scaled. In the
middle image high values are clamped. For comparison, the right image is tonemapped,
allowing details in both bright and dark regions to be visible.

A simple compression function would be to normalize an image (see Figure 23.3
(left)). This constitutes a linear scaling which tends to be sufficient only if the dy-
namic range of the image is only marginally higher than the dynamic range of the
display device. For images with a higher dynamic range, small intensity differ-
ences will be quantized to the same display value such that visible details are lost.
In Figure 23.3 (middle) all pixel values larger than a user-specified maximum are
set to this maximum (i.e., they are clamped). This makes the normalization less
dependent on noisy outliers, but here we lose information in the bright areas of
the image. For comparison, Figure 23.3 (right) is a tonemapped version showing
detail in both the dark and the bright regions.

In general linear scaling will not be appropriate for tone reproduction. The
key issue in tone reproduction is then to compress an image while at the same
time preserving one or more attributes ofthe image. Different tone reproduction
algorithms focus on different attributes such as contrast, visible detail, brightness
or appearance.

Figure 23.4. Image used
for demonstrating the goal
of tone reproduction in Fig-
ure 23.5.

Ideally, displaying a tonemapped image on a low dynamic range display de-
vice would create the same visual response in the observer as the original scene.
Given the limitations of display devices, this will not be achievable, although we
could aim for approximating this goal as closely as possible.

As an example, we created the high dynamic range image shown in Fig-
ure 23.4. This image was then tonemapped and displayed on a display device.
The display device itself was then placed in the scene such that it displays its own
background (Figure 23.5). In the ideal case, the display should appear transpar-

600 23. Tone Reproduction

Figure 23.5. After tonemapping the image in Figure 23.4 and displaying it on a monitor,
the monitor is placed in the scene approximately at the location where the image was taken.
Dependent on the quality of the tone reproduction operator, the result should appear as if the
monitor is transparent.

ent. Dependent on the quality of the tone reproduction operator, as well as the
nature of the scene being depicted, this goal may be more or less achievable.

23.1 Classification

Although it would be possible to classify tone reproduction operators by which
attribute they aim to preserve, or for which task they were developed, we classify
algorithms according to their general technique. This will enable us to show the
differences and similarities between a significant number of different operators,
and so, hopefully, contribute to the meaningful selection of specific operators for
given tone reproduction tasks.

The main classification scheme we follow hinges upon the realization that tone
reproduction operators are based on insights gained from various disciplines. In
particular, several operators are based on knowledge of human visual perception.

The human visual system detects light using photoreceptors located in the
retina. Light is converted to an electrical signal which is partially processed in
the retina and then transmitted to the brain. Except for thefirst few layers of
cells in the retina, the signal derived from detected light is transmitted using im-
pulse trains. The information-carrying quantity is the frequency with which these
electrical pulses occur.

The range of light that the human visual system can detect is much larger
than the range of frequencies employed by the human brain to transmit infor-
mation. Thus, the human visual system effortlessly solves the tone reproduc-
tion problem—a large range of luminances is transformed into a small range of
frequencies of impulse trains. Emulating relevant aspects of the human visual
system is therefore a worthwhile approach to tone reproduction; this approach is
explained in more detail in Section 23.7.

23.2. Dynamic Range 601

A second class of operators is grounded in physics. Light interacts with sur-
faces and volumes before being absorbed by the photoreceptors. In computer
graphics, light interaction is generally modelled by the rendering equation. For
purely diffuse surfaces, this equation may be simplified to the product between
light incident upon a surface (illuminance), and this surface’s ability to reflect
light (reflectance) (Oppenheim et al., 1968).

Since reflectance is a passive property of surfaces, for diffuse surfaces it is,
by definition, low dynamic range—typically between0.005 and 1 (Stockham,
1972). The reflectance of a surface cannot be larger than1, since then it would
reflect more light than was incident upon the surface. Illuminance, on the other
hand, can produce arbitrarily large values and is limited only by the intensity and
proximity of the light sources.

The dynamic range of an image is thus predominantly governed by the illu-
minance component. In the face of diffuse scenes, a viable approach to tone re-
production may therefore be to separate reflectance from illuminance, compress
the illuminance component, andthen recombine the image.

However, the assumption that all surfaces in a scene are diffuse is generally
incorrect. Many high dynamic range images depict highlights and/or directly
visible light sources (Figure 23.3). The luminance reflected by a specular surface
may be almost as high as the light source it reflects.

Various tone reproduction operators currently used split the image into a high
dynamic range base layer and a low dynamic range detail layer. These layers
would represent illuminance and reflectance if the depicted scene were entirely
diffuse. For scenes containing directly visible light sources or specular highlights,
separation into base and detail layers still allows the design of effective tone re-
production operators, although no direct meaning can be attached to the separate
layers. Such operators are discussed in Section 23.5.

23.2 Dynamic Range

Conventional images are stored with one byte per pixel for each of the red, green
and blue components. The dynamic range afforded by such an encoding depends
on the ratio between smallest and largest representable value, as well as the step
size between successive values. Thus, for low dynamic range images, there are
only 256 different values per color channel.

High dynamic range images encode a significantly larger set of possible val-
ues; the maximum representable value may be much larger and the step size be-
tween successive values may be much smaller. Thefile size of high dynamic

602 23. Tone Reproduction

range images is therefore generally larger as well, although at least one standard
(the OpenEXR high dynamic rangefile format (Kainz et al., 2003)) includes a
very capable compression scheme.

A different approach to limit file sizes is to apply a tone reproduction operator
to the high dynamic data. The result may then be encoded in JPEG format. In
addition, the input image may be divided pixel-wise by the tonemapped image.

Figure 23.6. Dynamic
range of 2.65 log 2 units.

Figure 23.7. Dynamic
range of 3.96 log 2 units.

Figure 23.8. Dynamic
range of 4.22 log 2 units.

Figure 23.9. Dynamic
range of 5.01 log 2 units.

The result of this division can then be subsampled and stored as a small amount of

Figure 23.10. Dynamic
range of 6.56 log 2 units.

data in the header of the same JPEG image (G. Ward & Simmons, 2004). Thefile
size of such sub-band encoded images is of the same order as conventional JPEG
encoded images. Display programs can display the JPEG image directly or may
reconstruct the high dynamic range image by multiplying the tonemapped image
with the data stored in the header.

In general, the combination of smallest step size and ratio of the smallest and
largest representable values determines the dynamic range that an image encoding
scheme affords. For computer-generatedimagery, an image is typically stored as
a triplet offloating point values before it is written tofile or displayed on screen,
although more efficient encoding schemes are possible (Reinhard et al., 2005).
Since most display devices are stillfitted with eight-bit D/A converters, we may
think of tone reproduction as the mapping offloating point numbers to bytes such
that the result is displayable on a low dynamic range display device.

The dynamic range of individual images is generally smaller, and is deter-
mined by the smallest and largest luminances found in the scene. A simplistic
approach to measure the dynamic range of an image may therefore compute the
ratio between the largest and smallest pixel value of an image. Sensitivity to out-
liers may be reduced by ignoring a small percentage of the darkest and brightest
pixels.

Alternatively, the same ratio may be expressed as a difference in the logarith-
mic domain. This measure is less sensitive to outliers. The images shown in the
margin on this page are examples of images with different dynamic ranges. Note
that the night scene in this case does not have a smaller dynamic range than the
day scene. While all the values in the night scene are smaller, the ratio between
largest and smallest values is not.

However, the recording device or rendering algorithm may introduce noise
which will lower the useful dynamic range. Thus, a measurement of the dynamic
range of an image should factor in noise. A better measure of dynamic range
would therefore be a signal-to-noise ratio, expressed in decibels, as used in signal
processing.

23.3. Color 603

Figure 23.11. Per-channel gamma correction may desaturate the image. The left image
was desaturated with a value of s = 0.5. The right image was not desaturated (s = 1). (See
also Plate XIV)

23.3 Color

Tone reproduction operators normally compress luminance values, rather than
work directly on the red, green, and blue components of a color image. Af-
ter these luminance values have been compressed into display valuesLd(x, y),
a color image may be reconstructed by keeping the ratios between color channels
the same as they were before compression (usings = 1) (Schlick, 1994b):

Ir,d(x, y) =

(

Ir(x, y)

Lv(x, y)

)s

Ld(x, y),

Ig,d(x, y) =

(

Ig(x, y)

Lv(x, y)

)s

Ld(x, y),

Ib,d(x, y) =

(

Ib(x, y)

Lv(x, y)

)s

Ld(x, y).

The results frequently appear over-saturated, because human color perception is
non-linear with respect to overall luminance level. This means that if we view
an image of a bright outdoor scene on a monitor in a dim environment, our eyes
are adapted to the dim environment rather than the outdoor lighting. By keeping
color ratios constant, we do not take this effect into account.

Alternatively, the saturation constants may be chosen smaller than one. Such
per-channel gamma correction may desaturate the results to an appropriate level,
as shown in Figure 23.11 and Plate XIV (Fattal et al., 2002). A more compre-
hensive solution is to incorporate ideas from thefield of color appearance model-
ing into tone reproduction operators (Pattanaik et al., 1998; Fairchild & Johnson,
2004; Reinhard & Devlin, 2005).

Finally, if an example image with a representative color scheme is already
available, this color scheme may be applied to a new image.Such a mapping of

604 23. Tone Reproduction

colors between images may be used for subtle color correction such as saturation
adjustment or for more creative color mappings. The mapping proceeds by con-
verting both source and target images to a decorrelated color space. In such a
color space, the pixel values in each color channel may be treated independently
without introducing too many artifacts (Reinhard et al., 2001).

Mapping colors from one image to another in a decorrelated color space is
then straightforward: compute the mean and standard deviation of all pixels in the
source and target images for the three color channels separately.

Figure 23.12. Image used for demonstrat-
ing the color transfer technique. Results are
shown in Figures 23.13 and 23.31. (See
also Plates XV, XVI and XVIII.)

Then, shift and scale the target image
so that in each color channel the mean
and standard deviation of the target im-
age is the same as the source image.
The resulting image is then obtained by
converting from the decorrelated color
space to RGB and clamping negative
pixels to zero. The dynamic range of
the image may have changed as a re-
sult of applying this algorithm. It is
therefore recommended to apply this al-
gorithm on high dynamic range images
and apply a conventional tone reproduc-

tion algorithm afterwards. A suitable decorrelated color space is the opponent
space from Section 21.2.4.

The result of applying such a color transform to the image in Figure 23.12 is
shown in Figure 23.13.

Figure 23.13. The image on the left is used to adjust the colors of the image shown in
Figure 23.12. The result is shown on the right. (See also Plate XVI.)

23.4. Image Formation 605

23.4 Image Formation

For now we assume that an image is formed as the result of light being diffusely
reflected off of surfaces. Later in this chapter we relax this constraint to scenes
directly depicting light sources and highlights. The luminanceLv of each pixel is
then approximated by the following product:

Lv(x, y) = r(x, y) Ev(x, y).

Here,r denotes the reflectance of a surface, andEv denotes the illuminance. The
subscriptv indicates that we are using photometrically weighted quantities. Al-
ternatively, we may write this expression in the logarithmic domain (Oppenheim
et al., 1968):

D(x, y) = log(Lv(x, y))

= log(r(x, y) Ev(x, y))

= log(r(x, y)) + log(Ev(x, y)).

Photographic transparencies record images by varying the density of the material.
In traditional photography, this variation has a logarithmic relation with lumi-
nance. Thus, in analogy with common practice in photography, we will use the
termdensity representation (D) for log luminance. When represented in the log
domain, reflectance and illuminance become additive. This facilitates separation
of these two components, despite the fact that isolating either reflectance or il-
luminance is an under-constrained problem. In practice, separation is possible
only to a certain degree and depends on the composition of the image. Nonethe-
less, tone reproduction could be based on disentangling these two components of
image formation, as shown in the following two sections.

23.5 Frequency-Based Operators

For typical diffuse scenes, the reflectance component tends to exhibit high spatial
frequencies due to textured surfaces as well as the presence of surface edges. On
the other hand, illuminance tends to be a slowly varying function over space.

Since reflectance is low dynamic range and illuminance is high dynamic range,
we may try to separate the two components. The frequency-dependence of both
reflectance and illuminance provides a solution. We may for instance compute
the Fourier transform of an image and attenuate only the low frequencies. This
compresses the illuminance component while leaving the reflectance component

606 23. Tone Reproduction

Figure 23.14. Bilateral filtering removes small details but preserves sharp gradients (left).
The associated detail layer is shown on the right.

largely unaffected—the veryfirst digital tone reproduction operator known to us
takes this approach (Oppenheim et al., 1968).

More recently, other operators have also followed this line of reasoning. In
particular, bilateral and trilateralfilters were used to separate an image into base
and detail layers (Durand & Dorsey, 2002; Choudhury & Tumblin, 2003). Both
filters are edge-preserving smoothing operators which may be used in a variety of
different ways. Applying an edge-preserving smoothing operator to a density im-
age results in a blurred image in which sharp edges remain present (Figure 23.14
(left)). We may view such an image as a base layer. If we then pixel-wise divide
the high dynamic range image by the base layer, we obtain a detail layer which
contains all the high frequency detail (Figure 23.14 (right)).

For diffuse scenes, base and detail layers are similar to representations of
illuminance and reflectance. For images depicting highlights and light sources,

Figure 23.15. An image tonemapped using
bilateral filtering. The base and detail layers
shown in Figure 23.14 are recombined after
compressing the base layer.

this parallel does not hold. However,
separation of an image into base and
detail layers is possible regardless of
the image’s content. By compressing
the base layer before recombining into
a compressed density image, a low dy-
namic range density image may be cre-
ated (Figure 23.15). After exponentia-
tion, a displayable image is obtained.

Edge-preserving smoothing opera-
tors may also be used to compute a local
adaptation level for each pixel, which

may be used in a spatially varying or local tone reproduction operator. We de-
scribe this use of bilateral and trilateralfilters in Section 23.7.

23.6. Gradient-Domain Operators 607

Figure 23.16. The image on the left (tonemapped using gradient-domain compression)
shows a scene with highlights. These highlights show up as large gradients on the right,
where the magnitude of the gradients is mapped to a grayscale (black is a gradient of 0,
white is the maximum gradient in the image).

23.6 Gradient-Domain Operators

The arguments made for the frequency-based operators in the preceding section
also hold for the gradientfield. Assuming that no light sources are directly visible,
the reflectance component will be a constant function with sharp spikes in the
gradientfield. Similarly, the illuminance component will cause small gradients
everywhere.

Humans are generally able to separate illuminance from reflectance in typical
scenes. The perception of surface reflectance after discounting the illuminant is
calledlightness. To assess the lightness of an image depicting only diffuse sur-
faces, B. K. P. Horn was thefirst to separate reflectance and illuminance using a
gradientfield (Horn, 1974). He used simple thresholding to remove all small gra-
dients and then integrated the image, which involves solving a Poisson equation
using the Full Multigrid Method (Press et al., 1992).

The result is similar to an edge-preserving smoothingfilter. This is accord-
ing to expectation since Oppenheim’s frequency-based operator works under the
same assumptions of scene reflectivity and image formation. In particular, Horn’s
work was directly aimed at “mini-worlds of Mondrians,” which are simplified
versions of diffuse scenes which resemble the abstract paintings by the famous
Dutch painter Piet Mondrian.

Horn’s work cannot be employed directly as a tone reproduction operator,
since most high dynamic range images depict light sources. However, a relatively
small variation will turn this work into a suitable tone reproduction operator. If
light sources or specular surfaces are depicted in the image, then large gradients
will be associated with the edges of lightsources and highlights. These cause the
image to have a high dynamic range. An example is shown in Figure 23.16, where
the highlights on the snooker balls cause sharp gradients.

608 23. Tone Reproduction

Figure 23.17. An image tonemapped using
gradient-domain compression.

We could therefore compress a high
dynamic range image by attenuating
large gradients, rather than threshold-
ing the gradientfield. This approach
was taken by Fattal et al. who showed
that high dynamic range imagery may
be successfully compressed by integrat-
ing a compressed gradientfield (Fig-
ure 23.17) (Fattal et al., 2002). Fat-
tal’s gradient-domain compression is
not limited to diffuse scenes.

23.7 Spatial Operators

In the following sections, we discuss tone reproduction operators which apply
compression directly on pixels without transformation to other domains. Often
global and local operators are distinguished. Tone reproduction operators in the
former class change each pixel’s luminance values according to a compressive
function which is the same for each pixel.The term global stems from the fact that
many such functions need to be anchored tosome values determined by analyzing
the full image. In practice, most operators use the geometric averageL̄v to steer
the compression:

L̄v = exp

(

1

N

∑

x,y

log(δ + Lv(x, y)

)

. (23.1)

In Equation (23.1), a small constantδ is introduced to prevent the average to be-
come zero in the presence of black pixels. The geometric average is normally
mapped to a predefined display value. The effect of mapping the geometric aver-
age to different display values is shown in Figure 23.18. Alternatively, sometimes
the minimum or maximum image luminance is used. The main challenge faced
in the design of a global operator lies in the choice of the compressive function.

On the other hand, local operators compress each pixel according to a specific
compression function which is modulated by information derived from a selection
of neighboring pixels, rather than the full image. The rationale is that a bright
pixel in a bright neighborhood may be perceived differently than a bright pixel in
a dim neighborhood. Design challenges in the development of a local operator
involves choosing the compressive function, the size of the local neighborhood

23.7. Spatial Operators 609

Figure 23.18. Spatial tonemapping operator applied after mapping the geometric average
to different display values (left: 0.12, right: 0.38).

for each pixel, and the manner in which local pixel values are used. In general,
local operators achieve better compression than global operators (Figure 23.19),
albeit at a higher computational cost.

Both global and local operators are often inspired by the human visual sys-
tem. Most operators employ one of two distinct compressive functions, which
is orthogonal to the distinction between local and global operators. Display val-
uesLd(x, y) are most commonly derived from image luminancesLv(x, y) by the

Figure 23.19. A global tone reproduction operator (left) and a local tone reproduction
operator (right) (Reinhard et al., 2002) of each image. The local operator shows more detail;
for example the metal badge on the right shows better contrast and the highlights are crisper.

610 23. Tone Reproduction

following two functional forms:

Ld(x, y) =
Lv(x, y)

f(x, y)
, (23.2)

Ld(x, y) =
Lv(x, y)

Lv(x, y) + fn(x, y)
. (23.3)

In these equations,f(x, y) may either be a constant or a function which varies per
pixel. In the former case, we have a global operator, whereas a spatially varying
functionf(x, y) results in a local operator. The exponentn is usually a constant
which isfixed for a particular operator.

Equation (23.2) divides each pixel’s luminance by a value derived from either
the full image or a local neighborhood. Equation (23.3) has an S-shaped curve on
a log-linear plot and is called a sigmoid for that reason. This functional formfits
data obtained from measuring the electrical response of photoreceptors toflashes
of light in various species. In the following sections, we discuss both functional
forms.

23.8 Division

Each pixel may be divided by a constant to bring the high dynamic range image
within a displayable range. Such a division essentially constitutes linear scaling,
as shown in Figure 23.3. While Figure 23.3 shows ad-hoc linear scaling, this
approach may be refined by employing psychophysical data to derive the scaling
constantf(x, y) = k in Equation (23.2) (G. J. Ward, 1994; Ferwerda et al., 1996).

Alternatively, several approaches exist that compute a spatially varying di-
visor. In each of these cases,f(x, y) is a blurred version of the image, i.e.,
f(x, y) = Lblur

v (x, y). The blur is achieved by convolving the image with a
Gaussianfilter (Chiu et al., 1993; Rahman et al., 1996). In addition, the computa-
tion of f(x, y) by blurring the image may be combined with a shift in white point
for the purpose of color appearance modeling (Fairchild & Johnson, 2002; G. M.
Johnson & Fairchild, 2003; Fairchild & Johnson, 2004).

The size and the weight of the Gaussianfilter has a profound impact on the
resulting displayable image. The Gaussianfilter has the effect of selecting a
weighted local average. Tone reproduction is then a matter of dividing each pixel
by its associated weighted local average. If the size of thefilter kernel is chosen
too small, then haloing artifacts will occur (Figure 23.20 (left)). Haloing is a com-
mon problem with local operators and is particularly evident when tone mapping
relies on division.

23.9. Sigmoids 611

Figure 23.20. Images tonemapped by dividing by Gaussian blurred versions. The size
of the filter kernel is 64 pixels for the left image and 512 pixels for the right image. For
division-based algorithms, halo artifacts are minimized by choosing large filter kernels.

In general, haloing artifacts may be minimized in this approach by making the
filter kernel large (Figure 23.20 (right)). Reasonable results may be obtained by
choosing afilter size of at least one quarter of the image. Sometimes even larger
filter kernels are desirable to minimize artifacts. Note, that in the limit, the filter
size becomes as large as the image itself. In that case the local operator becomes
global, and the extra compression normally afforded by a local approach is lost.

The functional form whereby each pixel is divided by a Gaussian blurred pixel
at the same spatial position thus requires an undesirable tradeoff between amount
of compression and severity of artifacts.

23.9 Sigmoids

Equation (23.3) follows a different functional form from simple division, and,
therefore, affords a different tradeoff between amount of compression, presence
of artifacts, and speed of computation.

Sigmoids have several desirable properties. For very small luminance values,
the mapping is approximately linear, so that contrast is preserved in dark areas of
the image. The function has an asymptote at one, which means that the output
mapping is always bounded between0 and1.

In Equation (23.3), the functionf(x, y) may be computed as a global con-
stant or as a spatially varying function. Following common practice in electro-
physiology, we callf(x, y) the semi-saturation constant. Its value determines
which values in the input image are optimally visible after tonemapping. In par-
ticular, if we assume that the exponentn equals1, then luminance values equal
to the semi-saturation constant will be mapped to0.5. The effect of choosing
different semi-saturation constants is shown in Figure 23.21.

612 23. Tone Reproduction

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

10 10 10 10 10 10 10 10
-3 -2 -1 0 1 2 3 4

L = L / (L + 1)d w w

L = L / (L + 10) d w w

L = L / (L + 100) d w w

Ld

Lw

Figure 23.21. The choice of semi-saturation constant determines how input values are
mapped to display values.

The functionf(x, y) may be computed in several different ways (Reinhard
et al., 2005). In its simplest form,f(x, y) is set toL̄v/k, so that the geometric
average is mapped to user parameterk (Figure 23.22) (Reinhard et al., 2002). In
this case, a good initial value fork is 0.18, although for particularly bright or dark
scenes this value may be raised or lowered. Its value may be estimated from the
image itself (Reinhard, 2003). The exponentn in Equation (23.3) may be set to1.

In this approach, the semi-saturation constant is a function of the geometric
average, and the operator is therefore global. A variation of this global opera-

Figure 23.22. A linearly scaled image (left) and an image tonemapped using sigmoidal
compression (right).

23.9. Sigmoids 613

Figure 23.23. Linear interpolation varies contrast in the tonemapped image. The parameter
a is set to 0.0 in the left image, and to 1.0 in the right image.

tor computes the semi-saturation constant by linearly interpolating between the
geometric average and each pixel’s luminance:

f(x, y) = a Lv(x, y) + (1 − a) L̄v.

The interpolation is governed by user parametera which has the effect of vary-
ing the amount of contrast in the displayable image (Figure 23.23) (Reinhard &
Devlin, 2005). More contrast means less visible detail in the light and dark areas
and vice versa. This interpolation may be viewed as a half-way house between a
fully global and a fully local operator by interpolating between the two extremes
without resorting to expensive blurring operations.

Although operators typically compress luminance values, this particular op-
erator may be extended to include a simple form of chromatic adaptation. It thus
presents an opportunity to adjust the level of saturation normally associated with
tonemapping, as discussed at the beginning of this chapter.

Rather than compress the luminance channel only, sigmoidal compression is
applied to each of the three color channels:

Ir,d(x, y) =
Ir(x, y)

Ir(x, y) + fn(x, y)
,

Ig,d(x, y) =
Ig(x, y)

Ig(x, y) + fn(x, y)
,

Ib,d(x, y) =
Ib(x, y)

Ib(x, y) + fn(x, y)
.

The computation off(x, y) is also modified to bilinearly interpolate between the
geometric average luminance and pixel luminance and between each independent
color channel and the pixel’s luminance value. We therefore compute the geo-
metric average luminance valuēLv, as well as the geometric average of the red,
green and blue channels (Īr, Īg, andĪb). From these values, we computef(x, y)

614 23. Tone Reproduction

Figure 23.24. Linear interpolation for color correction. The parameter c is set to 0.0 in the
left image, and to 1.0 in the right image. (See also Plate XVII.)

for each pixel and for each color channel independently. We show the equation
for the red channel (fr(x, y)):

Gr(x, y) = c Ir(x, y) + (1 − c)Lv(x, y),

Ḡr(x, y) = c Īr + (1 − c) L̄v,

fr(x, y) = a Gr(x, y) + (1 − a) Ḡr(x, y).

The interpolation parametera steers the amount of contrast as before, and the new
interpolation parameterc allows a simple form of color correction (Figure 23.24
and Plate XVII).

So far we have not discussed the value of the exponentn in Equation (23.3).
Studies in electrophysiology report values betweenn = 0.2 andn = 0.9 (Hood et
al., 1979). While the exponent may be user-specified, for a wide variety of images
we may estimate a reasonable value from the geometric average luminanceL̄v and
the minimum and maximum luminance in the image (Lmin andLmax) with the
following empirical equation:

n = 0.3 + 0.7

(

Lmax − L̄v

Lmax − Lmin

)1.4

.

The several variants of sigmoidal compression shown so far are all global in na-
ture. This has the advantage that they are fast to compute, and they are very
suitable for medium to high dynamic range images. For very high dynamic range
images, it may be necessary to resort to a local operator, since this may give some
extra compression. A straightforward method to extend sigmoidal compression
replaces the global semi-saturation constant by a spatially varying function, which
may be computed in several different ways.

In other words, the functionf(x, y) is so far assumed to be constant, but may
also be computed as a spatially localizedaverage. Perhaps the simplest way to

23.9. Sigmoids 615

accomplish this is to once more use a Gaussian blurred image. Each pixel in
a blurred image represents a locally averaged value which may be viewed as a
suitable choice for the semi-saturation constant1.

As with division-based operators discussed in the previous section, we have
to consider haloing artifacts. However, when an image is divided by a Gaussian
blurred version of itself, the size of the Gaussianfilter kernel needs to be large
in order to minimize halos. If sigmoids are used with a spatially variant semi-
saturation constant, the Gaussianfilter kernel needs to be made small in order
to minimize artifacts. This is a significant improvement, since small amounts of
Gaussian blur may be efficiently computed directly in the spatial domain. In other
words, there is no need to resort to expensive Fourier transforms. In practice,filter
kernels of only a few pixels width are sufficient to suppress significant artifacts
while at the same time producing more local contrast in the tonemapped images.

One potential issue with Gaussian blur is that thefilter blurs across sharp
contrast edges in the same way that it blurs small details. In practice, if there

Figure 23.25. Example image used to
demonstrate the scale selection mechanism
shown in Figure 23.26.

is a large contrast gradient in the neigh-
borhood of the pixel under considera-
tion, this causes the Gaussian-blurred
pixel to be significantly different from
the pixel itself. This is the direct cause
for halos. By using a very largefil-
ter kernel in a division-based approach,
such large contrasts are averaged out.

In sigmoidal compression schemes,
a small Gaussianfilter minimizes the
chances of overlapping with a sharp
contrast gradient. In that case, halos
still occur, but their size is such that they

usually go unnoticed and instead are perceived as enhancing contrast.

Another way to blur an image, while minimizing the negative effects of nearby
large contrast steps, is to avoid blurring over such edges. A simple, but compu-
tationally expensive way, is to compute a stack of Gaussian-blurred images with
different kernel sizes. For each pixel, we may choose the largest Gaussian that
does not overlap with a significant gradient.

In a relatively uniform neighborhood, the value of a Gaussian-blurred pixel
should be the same regardless of thefilter kernel size. Thus, the difference be-
tween a pixelfiltered with two different Gaussians should be approximately zero.

1Although f(x, y) is now no longer a constant, we continue torefer to it as the semi-saturation
constant.

616 23. Tone Reproduction

Figure 23.26. Scale selection mechanism: the left image shows the scale selected for each
pixel of the image shown in Figure 23.25; the darker the pixel, the smaller the scale. A total
of eight different scales were used to compute this image. The right image shows the local
average computed for each pixel on the basis of the neighborhood selection mechanism.

This difference will only change significantly if the widerfilter kernel overlaps
with a neighborhood containing a sharp contrast step, whereas the smallerfilter
kernel does not.

It is possible, therefore, tofind the largest neighborhood around a pixel that
does not contain sharp edges by examining differences of Gaussians at different
kernel sizes. For the image shown in Figure 23.25, the scale selected for each pixel
is shown in Figure 23.26 (left). Such a scale selection mechanism is employed by
the photographic tone reproduction operator (Reinhard et al., 2002) as well as in
Ashikhmin’s operator (Ashikhmin, 2002).

Once the appropriate neighborhood for each pixel is known, the Gaussian
blurred averageLblur for this neighborhood (shown on the right of Figure 23.26)
may be used to steer the semi-saturation constant, such as for instance employed
by the photographic tone reproduction operator:

Ld =
Lw

1. + Lblur
.

An alternative, and arguably better, approach is to employ edge-preserving
smoothing operators, which are designed specifically for removing small details
while keeping sharp contrasts in tact. Several suchfilters, such as the bilateralfil-
ter (Figure 23.27), trilateralfilter, Susanfilter, the LCIS algorithm and the mean
shift algorithm are suitable, although some of them are expensive to compute (Du-
rand & Dorsey, 2002; Choudhury & Tumblin, 2003; Pattanaik & Yee, 2002; Tum-
blin & Turk, 1999; Comaniciu & Meer, 2002).

23.10 Other Approaches

Although the previous sections together discuss most tone reproduction operators
to date, there are one or two operators that do not directlyfit into the above cate-

23.10. Other Approaches 617

Figure 23.27. Sigmoidal compression (left) and sigmoidal compression using bilateral
filtering to compute the semi-saturation constant (right). Note the improved contrast in the
sky in the right image.

gories. The simplest of these are variations of logarithmic compression, and the
other is a histogram-based approach.

Dynamic range reduction may be accomplished by taking the logarithm, pro-
vided that this number is greater than 1. Any positive number may then be non-
linearly scaled between 0 and 1 using the following equation:

Ld(x, y) =
logb(1 + Lv(x, y))

logb(1 + Lmax)

While the baseb of the logarithm above is not specified, any choice of base will
do. This freedom to choose the base of the logarithm may be used to vary the
base with input luminance, and thus achieve an operator that is better matched to
the image being compressed (Drago et al., 2003). This method uses Perlin and
Hoffert’s bias function which takes user parameterp (Perlin & Hoffert, 1989):

biasp(x) = xlog10(p)/ log10(1/2).

Figure 23.28. Logarithmic compression using base 10 logarithms (left) and logarithmic
compression with varying base (right).

618 23. Tone Reproduction

Making the baseb dependent on luminance and smoothly interpolating bases be-
tween 2 and 10, the logarithmic mapping above may be refined:

Ld(x, y) =
log10(1 + Lv(x, y))

log10(1 + Lmax)
· 1

log10

(

2 + 8

(

(

Lv(x, y)

Lmax

)log10(p)/ log10(1/2)
)) .

For user parameterp, an initial value of around0.85 tends to yield plausible results
(Figure 23.28 (right)).

Alternatively, tone reproduction may be based on histogram equalization. Tra-
ditional histogram equalization aims to give each luminance value equal probabil-
ity of occurrence in the output image. Greg Ward refines this method in a manner
that preserves contrast (Ward Larson et al., 1997).

First, a histogram is computed from the luminances in the high dynamic range
image. From this histogram, a cumulative histogram is computed such that each
bin contains the number of pixels that have a luminance value less than or equal
to the luminance value that the bin represents. The cumulative histogram is a
monotonically increasing function. Plotting the values in each bin against the
luminance values represented by each bin therefore yields a function which may
be viewed as a luminance mapping function. Scaling this function, such that the
vertical axis spans the range of the display device, yields a tone reproduction
operator. This technique is called histogram equalization.

Ward further refined this method by ensuring that the gradient of this function
never exceeds1. This means, that if the difference between neighboring values
in the cumulative histogram is too large, this difference is clamped to1. This
avoids the problem that small changes in luminance in the input may yield large
differences in the output image. In other words, by limiting the gradient of the
cumulative histogram to1, contrast is never exaggerated. The resulting algorithm
is called histogram adjustment (see Figure 23.29).

Figure 23.29. A linearly scaled image (left) and a histogram adjusted image (right). Image
created with the kind permission of the Albin Polasek museum, Winter Park, Florida.

23.11. Night Tonemapping 619

23.11 Night Tonemapping

The tone reproduction operators discussed so far nearly all assume that the im-
age represents a scene underphotopic viewing conditions, i.e., as seen at normal
light levels. Forscotopic scenes, i.e., very dark scenes, the human visual system
exhibits distinctly different behavior. In particular, perceived contrast is lower,
visual acuity (i.e., the smallest detail that we can distinguish) is lower, and every-
thing has a slightly blue appearance.

To allow such images to be viewed correctly on monitors placed in photopic
lighting conditions, we may preprocess the image such that it appears as if we
were adapted to a very dark viewing environment. Such preprocessing frequently
takes the form of a reduction in brightness and contrast, desaturation of the image,
blue shift, and a reduction in visual acuity (Thompson et al., 2002).

A typical approach starts by converting the image from RGB to XYZ. Then,
scotopic luminanceV may be computed for each pixel:

V = Y

[

1.33

(

1 +
Y + Z

X

)

− 1.68

]

.

This single channel image may then be scaled and multiplied by an em-
pirically chosen bluish gray. An example is shown in Figure 23.30. If some

Figure 23.30. Simulated night scene using
the image shown in Figure 23.12. (See also
Plates XV and XIX.)

pixels are in the photopic range, then
the night image may be created by lin-
early blending the bluish gray image
with the input image. The fraction to
use for each pixel depends onV .

Loss of visual acuity may be mod-
elled by low-pass filtering the night im-
age, although this would give an incor-
rect sense of blurriness. A better ap-
proach is to apply a bilateralfilter to re-
tain sharp edges while blurring smaller
details (Tomasi & Manduchi, 1998).

Finally, the color transfer technique
outlined in Section 23.3 may also be used to transform a day-lit image into a
night scene. The effectiveness of this approach depends on the availability of a
suitable night image from which to transfer colors. As an example, the image in
Figure 23.12 is transformed into a night image in Figure 23.31.

620 23. Tone Reproduction

Figure 23.31. The image on the left is used to transform the image of Figure 23.12 into a
night scene, shown here on the right. (See also Plate XVIII.)

23.12 Discussion

Since global illumination algorithms naturally produce high dynamic range im-
ages, direct display of the resulting images is not possible. Rather than resort to
linear scaling or clamping, a tone reproduction operator should be used. Any tone
reproduction operator is better than using no tone reproduction. Dependent on the
requirements of the application, one ofseveral operators may be suitable.

For instance, real-time rendering applications should probably resort to a sim-
ple sigmoidal compression, since these are fast enough to also run in real time.
In addition, their visual quality is often good enough. The histogram adjustment
technique (Ward Larson et al., 1997) may also be fast enough for real-time oper-
ation.

For scenes containing a very high dynamic range, better compression may
be achieved with a local operator. However, the computational cost is frequently
substantially higher, leaving these operators suitable only for non-interactive ap-
plications. Among the fastest of the local operators is the bilateralfilter due to the
optimizations afforded by this technique (Durand & Dorsey, 2002).

This filter is interesting as a tone reproduction operator by itself, or it may
be used to compute a local adaptation level for use in a sigmoidal compression
function. In either case, thefilter respects sharp contrast changes and smoothes
over smaller contrasts. This is an important feature that helps minimize halo
artifacts which are a common problem with local operators.

An alternative approach to minimize halo artifacts is the scale selection mech-
anism used in the photographic tone reproduction operator (Reinhard et al., 2002),
although this technique is slower to compute.

In summary, while a large number of tone reproduction operators is cur-
rently available, only a small number of fundamentally different approaches exist.
Fourier-domain and gradient-domain operators are both rooted in knowledge of

23.12. Discussion 621

image formation. Spatial-domain operators are either spatially variant (local) or
global in nature. These operators are usually based on insights gained from study-
ing the human visual system (and the visual system of many other species).

2 42 4

Global Illumination

Many surfaces in the real world receive most or all of their incident light from
other reflective surfaces. This is often calledindirect lighting or mutual illumi-

nation. For example, the ceilings of most rooms receive little or no illumination
directly from luminaires (light emitting objects). The direct and indirect compo-
nents of illumination are shown in Figure 24.1.

Although accounting for the interreflection of light between surfaces is
straightforward, it is potentiallycostly because all surfaces may reflect any given
surface, resulting in as many asO(N2) interactions forN surfaces. Because the
entire global database of objects may illuminate any given object, accounting for
indirect illumination is often called theglobal illumination problem.

There is a rich and complex literature on solving the global illumination prob-
lem (e.g., (Appel, 1968; Goral et al., 1984; Cook et al., 1984; Immel et al., 1986;

Figure 24.1. In the left and middle images, the indirect and direct lighting, respectively,
are separated out. On the right, the sum of both components is shown. Global illumination
algorithms account for both the direct and the indirect lighting.

623

624 24. Global Illumination

Kajiya, 1986; Malley, 1988)). In this chapter we discuss two algorithms as exam-
ples: particle tracing and path tracing. Thefirst is useful for walkthrough appli-
cations such as maze games, and as a component of batch rendering. The second
is useful for realistic batch rendering. Then we discuss separating out “direct”
lighting where light takes exactly once bounce between luminaire and camera.

24.1 Particle Tracing for Lambertian Scenes

Recall the transport equation from Section 20.2:

Ls(ko) =

∫

all ki

ρ(ki,ko)Lf (ki) cos θidσi.

The geometry for this equation is shown Figure 24.2. When the illuminated point
is Lambertian, this equation reduces to:

Ls =
R

π

∫

all ki

Lf (ki) cos θidσi,

whereR is the diffuse reflectance. One way to approximate the solution to this
equation is to usefinite element methods. First, we break the scene intoN sur-
faces each with unknown surface radianceLi, reflectanceRi, and emitted radi-
anceEi. This results in the set ofN simultaneous linear equations

Li = Ei +
Ri

π

N
∑

j=1

kijLj ,

wherekij is a constant related to the original integral representation. We then
solve this set of linear equations, and we can renderN constant-colored polygons.
Thisfinite element approach is often calledradiosity.

Figure 24.2. The geometry for the transport equation in its directional form.

24.1. Particle Tracing for Lambertian Scenes 625

An alternative method to radiosity is to use a statistical simulation approach by
randomly following light “particles” from the luminaire though the environment.
This is a type ofparticle tracing. There are many algorithms that use some form
of particle tracing; we will discuss a form of particle tracing that deposits light
in the textures on triangles. First, we review some basic radiometric relations.
The radianceL of a Lambertian surface with areaA is directly proportional to the
incident power per unit area:

L =
Φ

πA
, (24.1)

whereΦ is the outgoing power from the surface. Note that in this discussion, all
radiometric quantities are either spectral or RGB depending on the implementa-
tion. If the surface has emitted powerΦe, incident powerΦi, and reflectanceR,
then this equation becomes

L =
Φe + RΦi

πA
.

If we are given a model withΦe andR specified for each triangle, we can proceed
luminaire by luminaire,firing power in the form of particles from each luminaire.
We associate a texture map with each triangle to store accumulated radiance, with
all texels initialized to

L =
Φe

πA
.

If a given triangle has areaA andnt texels, and it is hit by a particle carrying
powerφ, then the radiance of that texel is incremented by

∆L =
ntφ

πA
.

Once a particle hits a surface,we increment the radiance of the texel it hits, prob-
abilistically decide whether to reflect the particle, and if we reflect it we choose a
direction and adjust its power.

Note that we want the particle to terminate at some point. For each surface we
can assign a reflection probabilityp to each surface interaction. A natural choice
would be to letp = R as it is with light in nature. The particle would then scatter
around the environment not losing or gaining any energy until it is absorbed.
This approach works well when the particles carry a single wavelength (Walter et
al., 1997). However, when a spectrum or RGB triple is carried by the ray as is
often implemented (Jensen, 2001), there is no singleR and some compromise for
the value ofp should be chosen. The powerφ′ for reflected particles should be
adjusted to account for the possible extinction of the particles:

φ′ =
Rφ

p

626 24. Global Illumination

Figure 24.3. The path of a particle that survives with probability 0.5 and is absorbed at the
last intersection. The RGB power is shown for each path segment.

Note thatp can be set to any positive constant less than one, and that this constant
can be different for each interaction. Whenp > R for a given wavelength, the
particle will gain power at that wavelength, and whenp < R it will lose power
at that wavelength. The case where it gains power will not interfere with conver-
gence because the particle will stop scattering and be terminated at some point as
long asp < 1. For the remainder of this discussion we setp = 0.5. The path of a
single particle in such a system is shown in Figure 24.3.

A key part to this algorithm is that we scatter the light with an appropriate
distribution for Lambertian surfaces. As discussed in Section 14.4.1, we canfind
a vector with a cosine (Lambertian) distribution by transforming two canonical
random numbers(ξ1, ξ2) as follows:

a =
(

cos (2πξ1)
√

ξ2, sin (2πξ1)
√

ξ2,
√

1 − ξ2

)

. (24.2)

Note that this assumes the normal vector is parallel to thez-axis. For a triangle,
we must establish an orthonormal basis withw parallel to the normal vector. We
can accomplish this as follows:

w =
n

‖n‖ ,

u =
p1 − p0

‖p1 − p0‖
,

v = w × u ,

24.2. Path Tracing 627

wherepi are the vertices of the triangle. Then, by definition, our vector in the
appropriate coordinates is

a = cos (2πξ1)
√

ξ2u + sin (2πξ1)
√

ξ2v +
√

1 − ξ2w. (24.3)

In pseudocode our algorithm forp = 0.5 and one luminaire is:

for (Each ofn particles) do
RGBphi = Φ/n

compute uniform random pointa on luminaire
compute random directionb with cosine density
done = false
while not donedo

if (raya + tb hits at some pointc) then
addntRφ/(πA) to appropriate texel
if (ξ1 > 0.5) then

φ = 2Rφ

a = c

b = random direction with cosine density
else

done = true

Hereξi are canonical random numbers. Once this code has run, the texture maps
store the radiance of each triangle and can be rendered directly for any viewpoint
with no additional computation.

24.2 Path Tracing

While particle tracing is well suited to precomputation of the radiances of diffuse
scenes, it is problematic for creating images of scenes with general BRDFs or
scenes that contain many objects. The most straightforward way to create images
of such scenes is to usepath tracing (Kajiya, 1986). This is a probabilistic method
that sends rays from the eye and traces them back to the light. Often path tracing
is used only to compute the indirect lighting. Here we will present it in a way
that captures all lighting, which can be inefficient. This is sometimes calledbrute

force path tracing. In Section 24.3, more efficient techniques for direct lighting
can be added.

In path tracing, we start with the full transport equation:

Ls(ko) = Le(ko) +

∫

all ki

ρ(ki,ko)Lf (ki) cos θidσi.

628 24. Global Illumination

Figure 24.4. In path tracing, a ray is followed through a pixel from the eye and scattered
through the scene until it hits a luminaire.

We use Monte Carlo integration to approximate the solution to this equation for
each viewing ray. Recall from Section 14.3, that we can use random samples to
approximate an integral:

∫

x∈S

g(x)dµ ≈ 1

N

N
∑

i=1

g(xi)

p(xi)
,

where thexi are random points with probability density functionp. If we apply
this directly to the transport equation withN = 1 we get

Ls(ko) ≈ Le(ko) +
ρ(ki,ko)Lf (ki) cos θidσi

p(ki)
.

So if we have a way to select random directionski with a known densityp, we
can get an estimate. The catch is thatLf (ki) is itself an unknown. Fortunately
we can apply recursion and use a statistical estimate forLf(ki) by sending a ray
in that direction tofind the surface seen in that direction. We end when we hit
a luminaire andLe is non-zero (Figure 24.4). This method assumes lights have
zero reflectance, or we would continue to recurse.

In the case of a Lambertian BRDF (ρ = R/π), we can use a cosine density
function:

p(ki) =
cos θi

π
.

24.3. Accurate Direct Lighting 629

A direction with this density can be chosen according to Equation (24.3). This
allows some cancellation of cosine terms in our estimate:

Ls(ko) ≈ Le(ko) + RLf(ki).

In pseudocode such a path tracer for Lambertian surfaces would operate just
like the ray tracers described in Chapter 4, but theraycolor function would be
modified:

RGB raycolor(raya + tb, int depth)
if (ray hits at some pointc) then

RGB c = Le(−b)

if (depth< maxdepth) then
compute random directiond
return c + R raycolor(c + sd, depth+1)

else
return background color

This will result in a very noisy image unless either large luminaires or very large
numbers of samples are used. Note the color of the luminaires must be well above
one (sometimes thousands or tens of thousands) to make the surfaces havefinal
colors near one, because only those rays that hit a luminaire by chance will make
a contribution, and most rays will contribute only a color near zero. To generate
the random directiond, we use the same technique as we do in particle tracing
(see Equation (24.2)).

In the general case we might want to use spectral colors or use a more general
BRDF. In practice, we should have the material class contain member functions
to compute a random direction as well as compute thep associated with that
direction. This way materials can be added transparently to an implementation.

24.3 Accurate Direct Lighting

This section presents a more physically-based method of direct lighting than
Chapter 10. These methods will be useful in making global illumination algo-
rithms more efficient. The key idea is to send shadow rays to the luminaires as
described in Chapter 4, but to do so with careful bookkeeping based on the trans-
port equation from the previous chapter. The global illumination algorithms can
be adjusted to make sure they compute the direct component exactly once. For
example, in particle tracing, particles coming directly from the luminaire would
not be logged, so the particles would only encode indirect lighting. This makes

630 24. Global Illumination

nice looking shadows much more efficiently than computing direct lighting in the
context of global illumination.

24.3.1 Mathematical Framework

To calculate the direct light from oneluminaire (light emitting object) onto a non-
emitting surface, we solve a form of the transport equation from Section 20.2:

Ls(x,ko) =

∫

all x′

ρ(ki,ko)Le(x
′,−ki)v(x,x′) cos θi cos θ′

‖x− x′‖2
dA′ . (24.4)

Recall thatLe is the emitted radiance of the source,v is a visibility function that
is equal to 1 ifx “sees”x′ and zero otherwise, and the other variables are as
illustrated in Figure 24.5.

If we are to sample Equation (24.4) using Monte Carlo integration, we need
Figure 24.5. The direct
lighting terms for Equa-
tion (24.4).

to pick a random pointx′ on the surface of the luminaire with density functionp

(sox′ ∼ p). Just plugging into Equation (14.5) with one sample yields

Ls(x,ko) ≈
ρ(ki,ko)Le(x

′,−ki)v(x,x′) cos θi cos θ′

p(x′)‖x − x′‖2
. (24.5)

If we pick a uniform random point on the luminaire, thenp = 1/A, whereA is
the area of the luminaire. This gives

Ls(x,ko) ≈
ρ(ki,ko)Le(x

′,−ki)v(x,x′)A cos θi cos θ′

‖x − x′‖2
. (24.6)

We can use Equation (24.6) to sample planar (e.g., rectangular) luminaires in a
straightforward fashion. We simply pick a random point on each luminaire.

The code for one luminaire is:

color directLight(x, ko, n)
pick random pointx′ with normal vectorn′ on light
d = x′ − x

ki = d/‖d‖
if (rayx + td has no hits fort < 1 − ǫ) then

return ρ(ki,ko)Le(x
′,−ki)(n · d)(−n′ · d)/‖d‖4

else
return 0

The above code needs some extra tests such as clamping the cosines to zero if
they are negative.Note that the term‖d‖4 comes from the distance squared term

24.3. Accurate Direct Lighting 631

Figure 24.6. Various soft shadows on a backlit sphere with a square and an area light
source. Top: 1 sample. Bottom: 100 samples. Note that the shape of the light source is less
important than its size in determining shadow appearance.

and the two cosines, e.g.,n · d = ‖d‖ cos θ becaused is not necessarily a unit
vector.

Several examples of soft shadows are shown in Figure 24.6.

24.3.2 Sampling a Spherical Luminaire

Though a sphere with centerc and radiusR can be sampled using Equation (24.6),
this sampling will yield a very noisy image because many samples will be on the
back of the sphere, and thecos θ′ term varies so much. Instead, we can use a more
complexp(x′) to reduce noise.

Thefirst non-uniform density we might try isp(x′) ∝ cos θ′. This turns out to
be just as complicated as sampling withp(x′) ∝ cos θ′/‖x′ − x‖2, so we instead
discuss that here. We observe that sampling on the luminaire this way is the
same as using a constant density functionq(ki) = const defined in the space of
directions subtended by the luminaire as seen fromx. We now use a coordinate

632 24. Global Illumination

Figure 24.7. Geometry for direct lighting at point x from a spherical luminaire.

system defined withx at the origin, and a right-handed orthonormal basis with
w = (c − x)/‖c − x‖, andv = (w × n)/‖(w × n)‖ (see Figure 24.7). We
also define (α, φ) to be the azimuthal and polar angles with respect to theuvw

coordinate system.
The maximumα that includes the spherical luminaire is given by

αmax = arcsin

(

R

‖x− c‖

)

= arccos

√

1 −
(

R

‖x− c‖

)2

.

Thus, a uniform density (with respect to solid angle) within the cone of directions
subtended by the sphere is just the reciprocal of the solid angle2π(1 − cosαmax)

subtended by the sphere:

q(ki) =
1

2π

(

1 −
√

1 −
(

R
‖x−c‖

)2
) .

And we get

[

cosα
φ

]

=

⎡

⎣

1 − ξ1 + ξ1

√

1 −
(

R
‖x−c‖

)2

2πξ2

⎤

⎦ .

This gives us the directionki. To find the actual point, we need tofind thefirst
point on the sphere in that direction. The ray in that direction is just (x + tki),

24.3. Accurate Direct Lighting 633

Figure 24.8. A sphere with Le = 1 touching a sphere of reflectance 1. Where the two
spheres touch, the reflective sphere should have L(x′) = 1 . Left: 1 sample. Middle: 100
samples. Right: 100 samples, close-up.

whereki is given by

ki =

⎡

⎣

ux vx wx

uy vy wy

uz vz wz

⎤

⎦

⎡

⎣

cosφ sin α
sin φ sin α

cosα

⎤

⎦ .

We must also calculatep(x′), the probability density function with respect to the
area measure (recall that the density functionq is defined in solid angle space).
Since we know thatq is a valid probability density function using theω measure,
and we know thatdΩ = dA(x′) cos θ′/‖x′ − x‖2, we can relate any probability
density functionq(ki) with its associated probability density functionp(x′):

q(ki) =
p(x′) cos θ′

‖x′ − x‖2
. (24.7)

So we can solve forp(x′):

p(x′) =
cos θ′

2π‖x′ − x‖2

(

1 −
√

1 −
(

R
‖x−c‖

)2
) .

A good debugging case for this is shown in Figure 24.8.

24.3.3 Non-diffuse Luminaries

There is no reason the luminance of the luminaire cannot vary with both direction
and position. For example, it can vary with position if the luminaire is a television.
It can vary with direction for car headlights and other directional sources. Little
in our analysis need change from the previous sections, except thatLe(x

′) must
change toLe(x

′,−ki). The simplest way to vary the intensity with direction is to
use a Phong-like pattern with respect to the normal vectorn′. To avoid using an
exponent in the term for the total light output, we can use the form

Le(x
′,−ki) =

(n + 1)E(x′)

2π
cos(n−1)θ′,

634 24. Global Illumination

whereE(x′) is theradiant exitance (power per unit area) at pointx′, andn is the
Phong exponent. You get a diffuse light forn = 1. If the light is non-uniform
across its area, e.g., as a television set is, thenE will not be a constant.

Frequently Asked Questions

• My pixel values are no longer in some sensible zero-to-one range. What
should I display?

You should use one of thetone reproduction techniques described in Chapter 23.

• What global illumination techniques are used in practice?

For batch rendering of complex scenes, path tracing with one level of reflection
is often used. Path tracing is often augmented with a particle tracing prepro-
cess as described in Jensen’s book in the chapter notes. For walkthrough games,
some form of world-space preprocess is often used, such as the particle tracing
described in this chapter. For scenes with very complicated specular transport, an
elegant but involved method, Metropolis Light Transport (Veach & Guibas, 1997)
may be the best choice.

• How does the ambient component relate to global illumination?

For diffuse scenes, the radiance of a surface is proportional to the product of the
irradiance at the surface and the reflectance of the surface. The ambient com-
ponent is just an approximation to the irradiance scaled by the inverse ofπ. So
although it is a crude approximation, there can be some methodology to guessing
it (M. F. Cohen et al., 1988), and it is probably more accurate than doing nothing,
i.e., using zero for the ambient term. Because the indirect irradiance can vary
widely within a scene, using a different constant for each surface can be used for
better results rather than using a global ambient term.

• Why do most algorithms compute direct lighting using traditional ray
tracing?

Although global illumination algorithms automatically compute direct lighting,
and it is in fact slightly more complicated to make them compute only indi-
rect lighting, it is usually faster to compute direct lighting separately. There are
three reasons for this. First, indirect lighting tends to be smooth compared to

24.3. Accurate Direct Lighting 635

Figure 24.9. A comparison between a rendering and a photo. Image courtesy Sumant
Pattanaik and the Cornell Program of Computer Graphics. (See also Plate XXI.)

direct lighting (see Figure 24.1) so coarser representations can be used, e.g., low-
resolution texture maps for particle tracing. The second reason is that light sources
tend to be small, and it is rare to hit them by chance in a “from the eye” method
such as path tracing, while direct shadow rays are efficient. The third reason is
that direct lighting allows stratified sampling so it converges rapidly compared to
unstratified sampling. The issue of stratification is the reason that shadow rays are
used in Metropolis Light Transport despite the stability of its default technique for
dealing with direct lighting as just one type of path to handle.

• How artificial is it to assume ideal diffuse and specular behavior?

For environments that have only matte and mirrored surfaces, the Lambertian/
specular assumption works well. A comparison between a rendering using that
assumption and a photograph is shown in Figure 24.9.

• How many shadow rays are needed per pixel?

Typically between 16 and 400. Using narrow penumbra, a large ambient term (or
a large indirect component), and a masking texture (Ferwerda et al., 1997) can
reduce the number needed.

• How do I sample something like a filament with a metal reflector where
much of the light is reflected from the filament?

Typically the whole light is replaced bya simple source that approximates its
aggregate behavior. For viewing rays, the complicated source is used. So a car
headlight would look complex to the viewer, but the lighting code might see sim-
ple disk-shaped lights.

636 24. Global Illumination

• Isn’t something like the sky a luminaire?

Yes, and you can treat it as one. However, such large light sources may not be
helped by direct lighting; the brute-force techniques are likely to work better.

Notes

Global illumination has its roots in thefields of heat transfer and illumination en-
gineering as documented inRadiosity: A Programmer’s Perspective (Ashdown,
1994). Other good books related to global illumination includeRadiosity and

Global Illumination (M. F. Cohen & Wallace, 1993),Radiosity and Realistic

Image Synthesis (Sillion & Puech, 1994),Principles of Digital Image Synthe-

sis (Glassner, 1995),Realistic Image Synthesis Using Photon Mapping (Jensen,
2001),Advanced Global Illumination (Dutré et al., 2002), andPhysically Based

Rendering (Pharr & Humphreys, 2004). The probabilistic methods discussed
in this chapter are fromMonte Carlo Techniques for Direct Lighting Calcula-

tions (Shirley et al., 1996).

Exercises

1. For a closed environment, where every surface is a diffuse reflector and
emittor with reflectanceR and emitted radianceE, what is the total radi-
ance at each point?Hint: for R = 0.5 and E = 0.25 the answer is 0.5.

This is an excellent debugging case.

2. Using the definitions from Chapter 20, verify Equation (24.1).

3. If we want to render a typically-sized room with textures at centimeter-
square resolution, approximately how many particles should we send to get
an average of about 1000 hits per texel?

4. Develop a method to take random samples with uniform density from a
disk.

5. Develop a method to take random samples with uniform density from a
triangle.

6. Develop a method to take uniform random samples on a “sky dome” (the
inside of a hemisphere).

2 52 5

Reflection Models

As we discussed in Chapter 20, the reflective properties of a surface can be sum-
marized using the BRDF (Nicodemus et al., 1977; Cook & Torrance, 1982). In
this chapter, we discuss some of the most visually important aspects of material
properties and a few fairly simple models that are useful in capturing these prop-
erties. There are many BRDF models in use in graphics, and the models presented
here are meant to give just an idea of non-diffuse BRDFs.

25.1 Real-World Materials

Many real materials have a visible structure at normal viewing distances. For ex-
ample, most carpets have easily visible pile that contributes to appearance. For
our purposes, such structure is not part of the material property but is, instead, part
of the geometric model. Structure whose details are invisible at normal viewing
distances, but which do determine macroscopic material appearance, are part of
the material property. For example, thefibers in paper have a complex appearance
under magnification, but they are blurred together into an homogeneous appear-
ance when viewed at arm’s length. This distinction between microstructure that
is folded into BRDF is somewhat arbitrary and depends on what one defines as
“normal” viewing distance and visual acuity, but the distinction has proven quite
useful in practice.

In this section we define some categories of materials. Later in the chapter,
we present reflection models that target each type of material. In the notes at the
end of the chapter some models that account for more exotic materials are also
discussed.

637

638 25. Reflection Models

25.1.1 Smooth Dielectrics and Metals

Dielectrics are clear materials that refract light; their basic properties were sum-
marized in Chapter 4. Metals reflect and refract light much like dielectrics, but
they absorb light very, very quickly. Thus, only very thin metal sheets are trans-
parent at all, e.g., the thin gold plating on some glass objects. For a smooth
material, there are only two important properties:

1. How much light is reflected at each incident angle and wavelength.

2. What fraction of light is absorbed as it travels through the material for a
given distance and wavelength.

Figure 25.1. The amount
of light reflected and trans-
mitted by glass varies with
the angle.

The amount of light transmitted is whatever is not reflected (a result of energy
conservation). For a metal, in practice,we can assume all the light is immediately
absorbed. For a dielectric, the fraction is determined by the constant used in
Beer’s Law as discussed in Chapter 4.

Figure 25.2. Light is re-
peatedly reflected and re-
fracted by glass, with the
fractions of energy shown.

The amount of light reflected is determined by theFresnel equations as dis-
cussed in Chapter 4. These equations are straightforward, but cumbersome. The
main effect of the Fresnel Equations is to increase the reflectance as the incident
angle increases, particularly near grazing angles. This effect works for transmitted
light as well. These ideas are shown diagrammatically in Figure 25.1. Note that
the light is repeatedly reflected and refracted as shown in Figure 25.2. Usually
only one or two of the reflected images is easily visible.

25.1.2 Rough Surfaces

If a metal or dielectric is roughened to a small degree, but not so small that diffrac-
tion occurs, then we can think of it as a surface withmicrofacets (Cook & Tor-
rance, 1982). Such surfaces behave specularly at a closer distance, but viewed
at a further distance seem to spread the light out in a distribution. For a metal,
an example of this rough surface might be brushed steel, or the “cloudy” side of
most aluminum foil.

For dielectrics, such as a sheet of glass, scratches or other irregular surface
features make the glass blur the reflected and transmitted images that we can
normally see clearly. If the surface is heavily scratched, we call ittranslucent

rather than transparent. This is a somewhat arbitrary distinction, but it is usually
clear whether we would consider a glass translucent or transparent.

25.2. Implementing Reflection Models 639

25.1.3 Diffuse Materials

A material isdiffuse if it is matte, i.e., not shiny. Many surfaces we see are diffuse,
such as most stones, paper, and unfinished wood. To afirst approximation, diffuse
surfaces can be approximated with a Lambertian (constant) BRDF. Real diffuse
materials usually become somewhat specular for grazing angles. This is a subtle
effect, but can be important for realism.

25.1.4 Translucent Materials

Many thin objects, such as leaves and paper, both transmit and reflect light dif-
fusely. For all practical purposes no clear image is transmitted by these objects.
These surfaces can add a hue shift to the transmitted light. For example, red paper
is red because itfilters out non-red light for light that penetrates a short distance
into the paper, and then scatters back out. The paper also transmits light with a
red hue because the same mechanisms apply, but the transmitted light makes it all
the way through the paper. One implication of this property is that the transmitted
coefficient should be the same in both directions.

25.1.5 Layered Materials

Figure 25.3. Light hit-
ting a layered surface can
be reflected specularly, or it
can be transmitted and then
scatter diffusely off the sub-
strate.

Many surfaces are composed of “layers” or are dielectrics with embedded parti-
cles that give the surface a diffuse property (Phong, 1975). The surface of such
materials reflects specularly as shown in Figure 25.3, and thus obeys the Fresnel
equations. The light that is transmitted is either absorbed or scattered back up
to the dielectric surface where it may or may not be transmitted. That light that
is transmitted, scattered, and then retransmitted in the opposite direction forms a
diffuse “reflection” component.

Note that the diffuse component also is attenuated with the degree of the angle,
because the Fresnel equations cause reflection back into the surface as the angle
increases as shown in Figure 25.4. Thus instead of a constant diffuse BRDF, one
that vanishes near the grazing angle is more appropriate.

Figure 25.4. The light
scattered by the substrate
is less and less likely to
make it out of the surface as
the angle relative to the sur-
face normal increases.

25.2 Implementing Reflection Models

A BRDF model, as described in Section20.1.6, will produce a rendering which
is more physically based than the rendering we get from point light sources and
Phong-like models. Unfortunately, real BRDFs are typically quite complicated
and cannot be deduced fromfirst principles. Instead, they must either be measured

640 25. Reflection Models

and directly approximated from raw data, or they must be crudely approximated
in an empirical fashion. The latter empirical strategy is what is usually done, and
the development of such approximate models is still an area of research. This
section discusses several desirable properties of such empirical models.

First, physical constraints imply two properties of a BRDF model. Thefirst
constraint is energy conservation:

for all ki,R(ki) =

∫

all ko

ρ(ki,ko) cos θo dσo ≤ 1.

If you send a beam of light at a surface from any directionki, then the total
amount of light reflected over all directions will be at most the incident amount.
The second physical property we expect all BRDFs to have is reciprocity:

for all ki, ko, ρ(ki,ko) = ρ(ko,ki).

Second, we want a clear separation between diffuse and specular components.
The reason for this is that, although there is a mathematically-clean delta function
formulation for ideal specular components, delta functions must be implemented
as special cases in practice. Such special cases are only practical if the BRDF
model clearly indicates what is specular and what is diffuse.

Third, we would like intuitive parameters. For example, one reason the Phong
model has enjoyed such longevity is that its diffuse constant and exponent are
both clearly related to the intuitive properties of the surface, namely surface color
and highlight size.

Finally, we would like the BRDF function to be amenable to Monte Carlo
sampling. Recall from Chapter 14 that an integral can be sampled byN random
pointsxi ∼ p wherep is defined with the same measure as the integral:

∫

f(x)dµ ≈ 1

N

N
∑

j=1

f(xj)

p(xj)
.

Recall from Section 20.2 that the surface radiance in directionko is given by a
transport equation:

Ls(ko) =

∫

all ki

ρ(ki,ko)Lf (ki) cos θidσi.

If we sample directions with pdfp(ki) as discussed in Chapter 24, then we can
approximate the surface radiance with samples:

Ls(ko) ≈
1

N

N
∑

j=1

ρ(kj ,ko)Lf(kj) cos θj

p(kj)
.

25.3. Specular Reflection Models 641

This approximation will converge for anyp that is non-zero where the integrand
is non-zero. However, it will only converge well if the integrand is not very large
relative top. Ideally, p(k) should be approximately shaped like the integrand
ρ(kj ,ko)Lf (kj) cos θj . In practice,Lf is complicated, and the best we can ac-
complish is to havep(k) shaped somewhat likeρ(k,ko)Lf(k) cos θ.

For example, if the BRDF is Lambertian, then it is constant and the “ideal”
p(k) is proportional tocos θ. Because the integral ofp must be one, we can
deduce the leading constant:

∫

all k with θ < π/2

C cos θdσ = 1.

This implies thatC = 1/π, so we have

p(k) =
1

π
cos θ.

An acceptably efficient implementation will result as long asp doesn’t get too
small when the integrand is non-zero. Thus, the constant pdf will also suffice:

p(k) =
1

2π
.

This emphasizes that many pdfs may be acceptable for a given BRDF model.

25.3 Specular Reflection Models

For a metal, we typically specify the reflectance at normal incidenceR0(λ). The
reflectance should vary according to the Fresnel equations, and a good approxi-
mation is given by (Schlick, 1994a)

R(θ, λ) = R0(λ) + (1 − R0 (λ)) (1 − cos θ)
5
.

This approximation allows us to just set the normal reflectance of the metal either
from data or by eye.

For a dielectric, the same formula works for reflectance. However, we can set
R0(λ) in terms of the refractive indexn(λ):

R0(λ) =

(

n(λ) − 1

n(λ) + 1

)2

.

Typically,n does not vary with wavelength, but for applications where dispersion
is important,n can vary. The refractive indices that are often useful include water
(n = 1.33), glass (n = 1.4 to n = 1.7), and diamond (n = 2.4).

642 25. Reflection Models

Figure 25.5. Renderings of polished tiles using coupled model. These images were pro-
duced using a Monte Carlo path tracer. The sampling distribution for the diffuse term is
cos θ/π.

25.4 Smooth Layered Model

Reflection in matte/specular materials, such as plastics or polished woods, is gov-
erned by Fresnel equations at the surface and by scattering within the subsurface.
An example of this reflection can be seen in the tiles in the renderings in Fig-
ure 25.5. Note that the blurring in the specular reflection is mostly vertical due
to the compression of apparent bump spacing in the view direction. This effect
causes the vertically-streaked reflections seen on lakes on windy days; it can either
be modeled using explicit micro-geometry and a simple smooth-surface reflection
model or by a more general model that accounts for this asymmetry.

We could use the traditional Lambertian-specular model for the tiles, which
linearly mixes specular and Lambertian terms. In standard radiometric terms, this
can be expressed as

ρ(θ, φ, θ′, φ′λ) =
Rd(λ)

π
+ Rsρs(θ, φ, θ′, φ′),

whereRd(λ) is the hemispherical reflectance of the matte term,Rs is the specu-
lar reflectance, andρs is the normalized specular BRDF (a weighted Dirac delta
function on the sphere). This equation is a simplified version of the BRDF where
Rs is independent of wavelength. The independence of wavelength causes a high-
light that is the color of the luminaire, so a polished rather than a metal appearance
will be achieved. Ward (G. J. Ward, 1992) suggests to setRd(λ) + Rs ≤ 1 in
order to conserve energy. However, such models with constantRs fail to show
the increase in specularity for steep viewing angles. This is the key point: in the
real world the relative proportions of matte and specular appearance change with
the viewing angle.

25.4. Smooth Layered Model 643

One way to simulate the change in the matte appearance is to explicitly dampen
Rd(λ) asRs increases (Shirley, 1991):

ρ(θ, φ, θ′, φ′, λ) = Rf (θ)ρs(θ, φ, θ′, φ′) +
Rd(λ)(1 − Rf (θ))

π
,

whereRf (θ) is the Fresnel reflectance for a polish-air interface. The problem with
this equation is that it is not reciprocal, as can been seen by exchangingθ andθ′;
this changes the value of the matte damping factor because of the multiplication
by (1 − Rf (θ)). The specular term, a scaled Dirac delta function, is reciprocal,
but this does not make up for the non-reciprocity of the matte term. Although this
BRDF works well, its lack of reciprocity can cause some rendering methods to
have ill-defined solutions.

We now present a model that produces the matte/specular tradeoff while re-
maining reciprocal and energy conserving. Because the key feature of the new
model is that it couples the matte and specular scaling coefficients, it is called a
coupled model (Shirley et al., 1997).

Surfaces which have a glossy appearanceare often a clear dielectric, such
as polyurethane or oil, with some subsurface structure. The specular (mirror-
like) component of the reflection is caused by the smooth dielectric surface and
is independent of the structure below this surface. The magnitude of this specular
term is governed by the Fresnel equations.

The light that is not reflected specularly at the surface is transmitted through
the surface. There, either it is absorbed by the subsurface, or it is reflected from
a pigment or a subsurface and transmitted back through the surface of the pol-
ish. This transmitted light forms the matte component of reflection. Since the
matte component can only consist of the light that is transmitted, it will naturally
decrease in total magnitude for increasing angle.

To avoid choosing between physically plausible models and models with good
qualitative behavior over a range of incident angles, note that the Fresnel equa-
tions that account for the specular term,Rf (θ), are derived directly from the
physics of the dielectric-air interface. Therefore, the problem must lie in the
matte term. We could use a full-blown simulation of subsurface scattering as
implemented, but this technique is both costly and requires detailed knowledge
of subsurface structure, which is usually neither known nor easily measurable.
Instead, we can modify the matte term to be a simple approximation that captures
the important qualitative angularbehavior shown in Figure 25.4.

Let us assume that the matte term is not Lambertian, but instead is some other
function that depends only onθ, θ′ andλ: ρm(θ, θ′, λ). We discard behavior
that depends onφ or φ′ in the interest of simplicity. We try to keep the formu-
las reasonably simple because the physics of the matte term is complicated and

644 25. Reflection Models

sometimes requires unknown parameters. We expect the matte term to be close to
constant, and roughly rotationally symmetric (He et al., 1992).

An obvious candidate for the matte componentρm(θ, θ′, λ) that will be re-
ciprocal is theseparable form kRm(λ)f(θ)f(θ′) for some constantk and matte
reflectance parameterRm(λ). We could mergek andRm(λ) into a single term,
but we choose to keep them separated because this makes it more intuitive to set
Rm(λ)—which must be between 0 and 1 for all wavelengths. Separable BRDFs
have been shown to have several computational advantages, thus we use the sep-
arable model:

ρ(θ, φ, θ′, φ′, λ) = Rf (θ)ρs(θ, φ, θ′, φ′) + kRm(λ)f(θ)f(θ′).

We know that the matte component can only contain energy not reflected in the
surface (specular) component. This means that forRm(λ) = 1, the incident
and reflected energy are the same, which suggests the following constraint on the
BRDF for each incidentθ andλ:

Rf (θ) + 2πkf(θ)

∫ π
2

0

f(θ′) cos θ′ sin θ′dθ′ = 1. (25.1)

We can see thatf(θ) must be proportional to(1 − Rf (θ)). If we assume that
matte components that absorb some energy have the same directional pattern as
this ideal, we get a BRDF of the form

ρ(θ, φ, θ′, φ′, λ) = Rf (θ)ρs(θ, φ, θ′, φ′) + kRm(λ)[1 − Rf (θ)][1 − Rf (θ′)].

We could now insert the full form of the Fresnel equations to getRf (θ), and then
use energy conservation to solve for constraints onk. Instead, we will use the
approximation discussed in Section 25.1.1 Wefind that

f(θ) ∝ (1 − (1 − cos θ)5).

Applying Equation (25.1) yields

k =
21

20π(1 − R0)
. (25.2)

The full coupled BRDF is then

ρ(θ, φ, θ′, φ′, λ) =
[

R0 + (1 − cos θ)5(1 − R0)
]

ρs(θ, φ, θ′, φ′) +

kRm(λ)
[

1 − (1 − cos θ)5
] [

1 − (1 − cos θ′)5
]

. (25.3)

25.5. Rough Layered Model 645

The results of running the coupled model is shown in Figure 25.5. Note that
for the high viewpoint, the specular reflection is almost invisible, but it is clearly
visible in the low-angle photograph image, where the matte behavior is less obvi-
ous.

For reasonable values of refractive indices,R0 is limited to approximately the
range0.03 to 0.06 (the valueR0 = 0.05 was used for Figure 25.5). The value of
Rs in a traditional Phong model is harder to choose, because it typically must be
tuned for viewpoint in static images and tuned for a particular camera sequence
for animations. Thus, the coupled model is easier to use in a “hands-off” mode.

25.5 Rough Layered Model

The previous model isfine if the surface is smooth. However, if the surface is
not ideal, some spread is needed in the specular component. An extension of the
coupled model to this case is presented here (Ashikhmin & Shirley, 2000). At
a given point on a surface, the BRDF is a function of two directions, one in the
direction towards the light and one in the direction towards the viewer. We would
like to have a BRDF model that works for “common” surfaces, such as metal and
plastic, and has the following characteristics:

1. plausible. As defined by Lewis (R. R. Lewis, 1994), this refers to the
BRDF obeying energy conservation and reciprocity.

2. anisotropy. The material should model simple anisotropy, such as seen on
brushed metals.

3. intuitive parameters. For material, such as plastics, there should be pa-
rametersRd for the substrate andRs for the normal specular reflectance as
well as two roughness parametersnu andnv.

4. Fresnel behavior. Specularity should increase as the incident angle de-
creases.

5. non-Lambertian diffuse term. The material should allow for a diffuse
term, but the component should be non-Lambertian to assure energy con-
servation in the presence of Fresnel behavior.

6. Monte Carlo friendliness. There should be some reasonable probability
density function that allows straightforward Monte Carlo sample generation
for the BRDF.

646 25. Reflection Models

Figure 25.6. Geometry of reflection. Note that k1, k2, and h share a plane, which usually
does not include n.

A BRDF with these properties is a Fresnel-weighted Phong-style cosine lobe
model that is anisotropic.

We again decompose the BRDF into a specular component and a diffuse com-
ponent (Figure 25.6). Accordingly, we write our BRDF as the classical sum of
two parts:

ρ(k1,k2) = ρs(k1,k2) + ρd(k1,k2), (25.4)

where thefirst term accounts for the specular reflection (this will be presented in
the next section). While it is possible to use the Lambertian BRDF for the diffuse
termρd(k1,k2) in our model, we will discuss a better solution in Section 25.5.2
and how to implement the model in Section 25.5.3. Readers who just want to
implement the model should skip to that section.

25.5.1 Anisotropic Specular BRDF

To model the specular behavior, we use a Phong-style specular lobe but make this
lobe anisotropic and incorporate Fresnel behavior while attempting to preserve
the simplicity of the initial mode. This BRDF is

ρ(k1,k2) =

√

(nu + 1)(nv + 1)

8π

(n · h)nu cos2 φ+nv sin2 φ

(h · ki)max(cos θi, cos θo))
F (ki ·h) . (25.5)

Again we use Schlick’s approximation to the Fresnel equation:

F (ki · h) = Rs + (1 − Rs)(1 − (ki · h))5, (25.6)

whereRs is the material’s reflectance for the normal incidence. Becauseki ·h =

ko · h, this form is reciprocal. We have an empirical model whose terms are

25.5. Rough Layered Model 647

Figure 25.7. Metallic spheres for exponents 10, 100, 1000, 10000 increasing both left-to-
right and top-to-bottom.

chosen to enforce energy conservation and reciprocity. A full rationalization for
the terms is given in the paper by Ashikhmin, listed in the chapter notes.

The specular BRDF of Equation (25.5) is useful for representing metallic sur-
faces where the diffuse component of reflection is very small. Figure 25.7 shows
a set of metal spheres on a texture-mapped Lambertian plane. As the values of
parametersnu andnv change, the appearance of the spheres shift from rough
metal to almost perfect mirror, and from highly anisotropic to the more familiar
Phong-like behavior.

25.5.2 Diffuse Term for the Anisotropic Phong Model

It is possible to use a Lambertian BRDF together with the anisotropic specular
term; this is done for most models, but it does not necessarily conserve energy. A

648 25. Reflection Models

Figure 25.8. Three views for nu = nv = 400 and a diffuse substrate. Note the change in
intensity of the specular reflection.

better approach is a simple angle-dependent form of the diffuse component which
accounts for the fact that the amount of energy available for diffuse scattering
varies due to the dependence of the specular term’s total reflectance on the inci-
dent angle. In particular, diffuse color of a surface disappears near the grazing
angle, because the total specular reflectance is close to one. This well-known ef-
fect cannot be reproduced with a Lambertian diffuse term and is therefore missed
by most reflection models.

Following a similar approach to the coupled model, we canfind a form of the
diffuse term that is compatible with the anisotropic Phong lobe:

ρd(k1,k2) =
28Rd

23π
(1 − Rs)

(

1 −
(

1 − cos θi

2

)5
)(

1 −
(

1 − cos θo

2

)5
)

.

(25.7)
HereRd is the diffuse reflectance for normal incidence, andRs is the Phong lobe
coefficient. An example using this model is shown in Figure 25.8.

25.5.3 Implementing the Model

Recall that the BRDF is a combination of diffuse and specular components:

ρ(k1,k2) = ρs(k1,k2) + ρd(k1,k2). (25.8)

The diffuse component is given in Equation (25.7); the specular component is
given in Equation (25.5). It is not necessary to call trigonometric functions to

25.5. Rough Layered Model 649

compute the exponent, so the specular BRDF can be written:

ρ(k1,k2) =

√

(nu + 1)(nv + 1)

8π
(n · h)

(nu(h·u)2+nv(h·v)2)/(1−(hn)2)
(h·ki)max(cos θi,cos θo) F (ki · h).

(25.9)
In a Monte Carlo setting, we are interested in the following problem: givenk1,
generate samples ofk2 with a distribution whose shape is similar to the cosine-
weighted BRDF. Note that greatly undersampling a large value of the integrand is
a serious error, while greatly oversampling a small value is acceptable in practice.
The reader can verify that the densities suggested below have this property.

A suitable way to construct a pdf for sampling is to consider the distribution
of half vectors that would give rise to our BRDF. Such a function is

ph(h) =

√

(nu + 1)(nv + 1)

2π
(nh)nu cos2 φ+nv sin2 φ, (25.10)

where the constants are chosen to ensure it is a valid pdf.
We can just use the probability density functionph(h) of Equation (25.10) to

generate a randomh. However, to evaluate the rendering equation, we need both
a reflected vectorko and a probability density functionp(ko). It is important to
note that if you generateh according toph(h) and then transform to the resulting
ko:

ko = −ki + 2(ki · h)h, (25.11)

the density of the resultingko is not ph(ko). This is because of the difference in
measures inh andko. So the actual densityp(ko) is

p(ko) =
ph(h)

4(kih)
. (25.12)

Note that in an implementation where the BRDF is known to be this model, the
estimate of the rendering equation is quite simple as many terms cancel out.

It is possible to generate anh vector whose corresponding vectorko will point
inside the surface, i.e.,cos θo < 0. The weight of such a sample should be set
to zero. This situation corresponds to the specular lobe going below the horizon
and is the main source of energy loss in the model. Clearly, this problem becomes
progressively less severe asnu, nv become larger.

The only thing left now is to describe how to generateh vectors with the pdf
of Equation (25.10). We will start by generatingh with its spherical angles in
the range(θ, φ) ∈ [0, π

2] × [0, π
2]. Note that this is only thefirst quadrant of the

hemisphere. Given two random numbers(ξ1, ξ2) uniformly distributed in[0, 1],
we can choose

φ = arctan

(
√

nu + 1

nv + 1
tan

(

πξ1

2

))

, (25.13)

650 25. Reflection Models

and then use this value ofφ to obtainθ according to

cos θ = (1 − ξ2)
1/(nu cos2 φ+nv sin2 φ+1). (25.14)

To sample the entire hemisphere, we use the standard manipulation whereξ1 is
mapped to one of four possible functions depending on whether it is in[0, 0.25),
[0.25, 0.5), [0.5, 0.75), or [0.75, 1.0). For example forξ1 ∈ [0.25, 0.5), findφ(1−
4(0.5− ξ1)) via Equation (25.13), and then “flip” it about theφ = π/2 axis. This
ensures full coverage and stratification.

For the diffuse term, use a simpler approach and generate samples according
to a cosine distribution. This is sufficiently close to the complete diffuse BRDF
to substantially reduce variance of the Monte Carlo estimation.

Frequently Asked Questions

• My images look too smooth, even with a complex BRDF. What am I do-
ing wrong?

BRDFs only capture subpixel detail that is too small to be resolved by the eye.
Most real surfaces also have some small variations, such as the wrinkles in skin,
that can be seen. If you want true realism, some sort of texture or displacement
map is needed.

• How do I integrate the BRDF with texture mapping?

Texture mapping can be used to control any parameter on a surface. So any kinds
of colors or control parameters used by a BRDF should be programmable.

• I have very pretty code except for my material class. What am I doing
wrong?

You are probably doing nothing wrong. Material classes tend to be the ugly thing
in everybody’s programs. If youfind a nice way to deal with it, please let me
know! My own code uses a shader architecture (Hanrahan & Lawson, 1990)
which makes the material include much of the rendering algorithm.

Notes

There are many BRDF models described in the literature, and only a few of them
have been described here. Others include (Cook & Torrance, 1982; He et al.,

25.5. Rough Layered Model 651

1992; G. J. Ward, 1992; Oren & Nayar, 1994; Schlick, 1994a; Lafortune et al.,
1997; Stam, 1999; Ashikhmin et al., 2000; Ershov et al., 2001; Matusik et al.,
2003; Lawrence et al., 2004; Stark et al., 2005). The desired characteristics of
BRDF models is discussed inMaking Shaders More Physically Plausible (R. R.
Lewis, 1994).

Exercises

1. Suppose that instead of the Lambertian BRDF we used a BRDF of the form
C cosa θi. What mustC be to conserve energy?

2. The BRDF in Exercise 1 is not reciprocal. Can you modify it to be recipro-
cal?

3. Something like a highway sign is aretroreflector. This means that the
BRDF is large whenki andko are near each other. Make a model inspired
by the Phong model that captures retroreflection behavior while being re-
ciprocal and conserving energy.

2 62 6
Naty Hoffman

Computer Graphics in Games

Of all the applications of computer graphics, computer and video games attract
perhaps the most attention. The graphics methods selected for a given game have
a profound effect, not only on the game engine code, but also on the art asset
creation, and even sometimes on thegameplay, or core game mechanics.

Although game graphics rely on the material in all of the preceding chapters,
two chapters are particularly germane. Games need to make highly efficient use of
graphics hardware, so an understanding of the material in Chapter 18 is important.
Of course, games are interactive applications, and, as such, many of the principles
detailed in Chapter 19 apply.

In this chapter, I will detail the specific considerations that apply to graph-
ics in game development, from the platforms on which games run to the game
production process.

26.1 Platforms

Here, I use the termplatform to refer to a specific combination of hardware, op-
erating system, and API (application programming interface) for which a game
is designed. Games run on a large variety of platforms, ranging from virtual
machines used for browser-based games to dedicated game consoles using spe-
cialized hardware and APIs.

In the past, it was common for games to be designed for a single platform.
The increasing cost of game development has made this rare;multiplatform game

653

654 26. Computer Graphics in Games

development is now the norm. The incremental increase in development cost to
support multiple platforms is more than repaid by a potential doubling or tripling
of the customer base.

Some platforms are quite loosely defined. For example, when developing a
game for the Windows PC platform, the developer must account for a very large
variety of possible hardware configurations. Games are even expected to run (and
run well) on PC configurations that did not exist when the game was developed!
This is only possible due to the abstractions afforded by the APIs defining the
Windows platform.

One way in which developers account for wide variance in graphics perfor-
mance is byscaling—adjusting graphics quality in response to system capabil-
ities. This can ensure reasonable performance on low-end systems, while still
achieving competitive visuals on high-performance systems. This adjustment is
sometimes done automatically by profiling the system performance, but more of-
ten this control is left in the hands of the user, who can best judge his personal
preferences for quality versus speed. Display resolution is easiest to adjust, fol-
lowed by antialiasing quality. It is also fairly common to offer several quality
levels for visual effects such as shadows and motion blur, including the option of
turning the effect off entirely.

Differences in graphics performancecan be so large that some machines may
not run the game at a playable frame rate, even with the lowest quality settings;
for this reason PC game developers publish minimum and recommended machine
specifications for each game.

As platforms, game consoles are strictly defined. When developing a game
for, e.g., Nintendo’s Wii console, the developer knows exactly what hardware the
game will run on. If the platform’s hardware implementation is changed (often
done to reduce manufacturing costs), the console manufacturer must ensure that
the new implementation behavesexactly like the previous one, including timing
and performance. This is not to say that the console developer’s task is easy; con-
sole APIs tend to be much less abstract and closer to the underlying hardware.
This gives console development its own set of difficulties. In some sense, mul-
tiplatform development (which commonly includes at least two different console
platforms and often Windows as well) is the hardest of all, since the multiplatform
game developer has neither the assurance of afixed platform or the convenience
of a single high-level API.

Browser-basedvirtual machines such as Adobe Flash are an interesting class
of game platforms. Although such virtual machines run on a wide class of hard-
ware from personal computers to mobile phones, the high degree of abstraction
provided by the virtual machine results in a stable and unified development plat-

26.2. Limited Resources 655

form. The relative ease of development for these platforms and the huge pool
of potential customers makes them increasingly attractive to game developers.
However, these platforms are defined by the lowest common denominator of the
supported hardware, and virtual machines have lower performance than native
code on any given platform. For these reasons, such platforms are best suited to
games with modest graphics requirements.

Platforms can also be characterized bytheir openness to development, which
is a business or legal distinction rather than a technical one. For example, Win-
dows is open in the sense that development tools are widely available, and there
are no gatekeepers controlling access to the marketplace of Windows games. Ap-
ple’s iPhone is a somewhat more restricted platform in that all applications need
to pass a certification process and certain classes of applications are banned out-
right. Consoles are the mostrestrictive game platforms, where access to the de-
velopment tools is tightly controlled. This is opening up somewhat with the in-
troduction of online console game marketplaces, which tend to be more open. A
particularly interesting example is Microsoft’s Xbox LIVE Community Games
service, where the development tools are freely available and the “gatekeeping” is
performed primarily by peer review. Games distributed through this service must
use a virtual machine platform provided by Microsoft for security reasons.

The game platform determines many elements of the game experience. For
example, PC gamers use keyboard and mouse, while console gamers use special-
ized game controllers. Many console games support multiple players on the same
console, either sharing a screen or providing a window for each player. Due to the
difficulty of sharing keyboard and mouse, this type of play is not found on PC. A
handheld game system will have a different control scheme than a touch-screen
phone, etc.

Although game platforms vary widely, some common trends can be discerned.
Most platforms have multiple processing cores, divided between general-purpose
(CPU) and graphics-specific (GPU). Performance gains over time are due mostly
to increases in core count; gains in individual core performance are modest. As
GPU cores grow in generality, the lines between GPU and CPU cores are increas-
ingly blurred. Storage capacity tends to increase at a slower rate than processing
power, and communication bandwidth(between cores as well as between each
core and storage) grows at a slower pace still.

26.2 Limited Resources

One of the primary challenges of game graphics is the need to manage multiple
pools of limited resources. Each platform imposes its own constraints on hard-

656 26. Computer Graphics in Games

ware resources such as processing time,storage, and memory bandwidth. At a
higher level, development resources also need to be managed; there is afixed-size
team of programmers, artists and game designers with limited time to complete
the game, hopefully without workingtoo much overtime! This needs to be taken
into account when deciding which graphics techniques to adopt.

26.2.1 Processing Time

Early game developers only had to worry about budgeting a single processor.
Current game platforms contain multiple CPU and GPU cores. These processors
need to be carefully synchronizedto avoid deadlocks or excessive
stalls.

Since the time consumed by a single rendering command is highly variable,
graphics processors are decoupled from the rest of the system via acommand

buffer. This buffer acts as a queue; commands are deposited on one end and
the GPU reads rendering commands from the other. Increasing the size of this
buffer decreases the chances of GPU starvation. It is fairly common for games to
buffer an entire frame’s worth of rendering commands before sending them to the
GPU; this guarantees that GPU starvation does not occur. However, this approach
requires reserving enough storage space for two full frame’s worth of commands
(the GPU works on one, while the CPU deposits commands in the other). It
also increases the latency between the user’s input and the display, which can be
problematic for fast-paced games.

Processing budgets are determined by theframe rate, which is the frequency
at which the frame buffer is refreshed with new renderings of the scene. Onfixed
platforms (such as consoles), the frame rate experienced by the user is essentially
the same one seen by the game developer, so fairly strict frame–rate limits can be
imposed. Most games target a frame rate of 30 frames per second (fps); in games
where response latency is especially important, the target is often 60 fps. On
highly variable platforms (such as PCs),the frame-rate budgets are (by necessity)
defined more loosely.

The required frame rate gives the graphics programmer afixed budget per
frame to work with. In the case of a 30 fps target, the CPU cores have 33 millisec-
onds to gather inputs, process the game logic, perform any physical simulations,
traverse the scene description, and send the rendering commands to the graphics
hardware. In parallel, other tasks such as audio and network processing must be
handled, with their own required response times. While this is happening, the
GPU is typically executing the graphics commands submitted during the previous
frame.

26.2. Limited Resources 657

In most cases, CPU cores are ahomogeneous resource; all cores are the same,
and any of them are equally well suited to a given workload (there are some
exceptions, such as the Cell processor used in Sony’s PLAYSTATION 3 console).

In contrast, GPUs contain aheterogeneous mix of resources, each special-
ized to a certain set of tasks. Some of these resources consist offixed-function
hardware (for triangle rasterization, alpha blending, and texture sampling), and
some are programmable cores. On older GPUs, programmable cores were further
differentiated into vertex and pixel processing cores; newer GPU designs have
unified shader cores which can execute any of the programmable shader types.

Such heterogeneous resources are budgeted separately. Typically, at any point,
only one resource type will be the bottleneck, and the others will have excess ca-
pacity. On the one hand, this is good, since this capacity can be leveraged to
improve visual quality without decreasing performance. On the other hand, it
makes it harder to improve performance, since decreasing usage of any of the
non-bottleneck resources will have no effect. Even decreasing usage of the bot-
tleneck resource may only improve performance slightly, depending on the degree
of utilization of the “next bottleneck.”

26.2.2 Storage

Game platforms, like any modern computing system, possess multi-stagestor-

age hierarchies, with smaller, faster memory types at the top and larger, slower
storage at the bottom. This arrangement is borne of engineering necessity, al-
though it does complicate life for the developer. Most platforms include optical
disc storage, which is extremely slow and is used mostly for delivery. On plat-
forms such as Windows, a lengthy installation process is performed once to move
all data from the optical disc onto the hard drive, which is significantly faster.
The optical disc is never used again (except as an anti-piracy measure). On con-
sole platforms, this is less common, although it does sometimes happen when a
hard drive is guaranteed to be present, as on Sony’s PLAYSTATION 3 console.
More often, the hard drive (if present) is only used as a cache for the optical
disc.

The next step up the memory hierarchy is RAM, which on many platforms is
divided into general system RAM and VRAM (video RAM) which benefits from
a high-speed interface to the graphics hardware. A game level may be too large to
fit in RAM, in which case the game developer needs to manage moving the data
in and out of RAM as needed. On platforms such as Windows, virtual memory
is often used for this. On console platforms, custom data streaming and caching
systems are typically employed.

658 26. Computer Graphics in Games

Finally, both the CPU and GPU boast various kinds of on-chip memory and
caches. These are extremely small and fast and are usually managed by the graph-
ics API.

Graphics resources take up a lot of memory, so they are a primary focus of
storage budgets in game development. Textures are usually the greatest memory
consumers, followed by geometry (vertex data), andfinally other types of graphics
data such as animations. Not all memory can be used for graphics—audio also
takes up a fair bit, and game logic may use sizeable data structures. As in the case
of processing time, budgeting tends to be somewhat looser on Windows, where
the exact amount of memory present on the user’s system is unknown and virtual
memory covers a multitude of sins. In contrast, memory budgeting on console
platforms is quite strict—often the lead programmer keeps track of memory on a
spreadsheet and a programmer requiring more memory for their system needs to
beg, borrow, or steal it from someone else.

The various levels of the memory hierarchy differ not only in size, but also in
access speed. This has two separate dimensions:latency andbandwidth.

Latency is the time that elapses between a storage access request and itsfinal
fulfillment. This varies from a few clock cycles (for on-chip cache) to millions of
clock cycles (for data residing on optical disc). Latency is usually an issue for read
access (although write latency can also be an issue if the result needs to be read
back from memory soon after). In some cases, the read request isblocking, which
means that the processor core that submitted the read can do nothing else until the
request is fulfilled. In other cases, the read isnon-blocking; the processing core
can submit the read request, do other types of processing, and then use the results
of the read after it has arrived. Texture accesses by the GPU are an example of
non-blocking reads; an important aspect of GPU design is tofind ways to “hide”
texture read latency by performing unrelated computations while the texture read
is being fulfilled.

For this latency hiding to work, there must be a sufficient amount of computa-
tion relative to texture accesses. This is animportant consideration for the shader
writer; the optimal mix of computation vs. texture access keeps changing (in fa-
vor of more computation) as memory fails to keep up with increases in processing
power.

Bandwidth refers to the maximum rate of transfer to and from storage. It is
typically measured in gigabytes per second.

26.2.3 Development Resources

Besides hardware resources, such as processing power and storage space, the
game graphics programmer also has to contend with a different kind of limited

26.3. Optimization Techniques 659

resource—the time of his team-mates! When selecting graphics techniques, the
engineering resources needed to implement each technique must be taken into ac-
count, as well as any tools necessary to compute the input data (in many cases,
tools can take significantly more time than implementing the technique itself).
Perhaps most importantly, the impact on artist productivity must be taken into ac-
count. Most graphics techniques use assets created by game artists, who comprise
by far the largest part of most modern game teams. The graphics programmer
must foster the artist’s productivity and creativity, which will ultimately deter-
mine the visual quality of the game.

26.3 Optimization Techniques

Making wise use of these limited resources is the primary challenge of the game
graphics programmer. To this end, various optimization techniques are commonly
employed.

In many games, pixel shader processing is a primary bottleneck. Most GPUs
contain hierarchical depth-culling hardware which can avoid executing pixel
shaders on occluded surfaces. To make good use of this hardware, opaque ob-
jects can be rendered back-to-front. Alternatively, optimal depth-culling usage
can be achieved by performing adepth pre-pass, i.e., rendering all the opaque
objects into the depth buffer (without any color output or pixel shaders) before
rendering the scene normally. This does incur some overhead (due to the need to
render every object twice), but in many cases the performance gain is worth it.

The fastest way to render an object is to not render it at all; thus any method
of discerning early on that an object is occluded can be useful. This saves not
only pixel processing but also vertex processing and even CPU time that would
be spent submitting the object to the graphics API. View frustum culling (see
Section 8.4.1) is universally employed, but in many games it is not sufficient.
High-level occlusion culling algorithms are often used, utilizing data structures
such as PVS (potentially visible sets) or BSP (binary spatial partitioning) trees to
quickly narrow down the pool of potentially visible objects.

Even if an object is visible, it may be at such a distance that most of its detail
can be removed without apparent effect. LOD (level-of-detail) algorithms render
different representations of an object based on distance (or other factors, such
as screen coverage or importance). This can save significant processing, vertex
processing in particular. Examples can be seen in Figure 26.1.

In many cases, processing can be performed before the game even starts. The
results of suchpreprocessing can be stored and used each frame, thus speeding

660 26. Computer Graphics in Games

Figure 26.1. Two examples of game objects at a varying level of detail. The small inset
images show the relative sizes at which the simplified models might be used. Upper row of
images courtesy Crytek; lower row courtesy Valve Corp.

up the game. This is most commonly employed for lighting, where global illumi-
nation algorithms are utilized to compute lighting throughout the scene and store
it in lightmaps and other data structures for later use.

26.4 Game Types

Since game requirements vary widely, the selection of graphics techniques is
driven by the exact type of game being developed.

The allocation of processing time depends strongly on the frame rate. Cur-
rently, most console games tend to target 30 frames per second, since this enables
much higher graphics quality. However, certain game types with fast gameplay
require very low latency, and such games typically render at 60 frames per second.
This includes music games such asGuitar Hero andfirst-person shooters such as
Call of Duty.

The frame rate determines the available time to render the scene. The compo-
sition of the scene itself also varies widely from game to game. Most games have
a division betweenbackground geometry (scenery, mostly static) andforeground

26.4. Game Types 661

geometry (characters and dynamic objects). These are handled differently by the
rendering engine. For example, background geometry will often have lightmaps
containing precomputed lighting, which is not feasible for foreground objects.
Precomputed lighting is typically applied to foreground objects via some type of
volumetric representation which can take account of the changing position of each
object over time.

Some games have relatively enclosed environments, where the camera re-
mains largely in place. The purest examples arefighting games such as theStreet

Fighter series, but this is also true to some extent for games such asDevil May Cry

andGod of War. These games have cameras that are not under direct player con-
trol, and the game play tends to move from one enclosed environment to another,
spending a significant amount of playing time ineach. This allows the game de-
veloper to lavish large amounts of resources (processing, storage, and artist time)
on each room or enclosed environment, resulting in very high levels of graphics
fidelity.

Other games have extremely large worlds, where the player can move about
freely. This is most true for “sandbox games” such as theGrand Theft Auto series
and online role-playing games such asWorld of Warcraft. Such games pose great
challenges to the graphics developer, since resource allocation is very difficult
when during each frame the player can see a large extent of the world. Further
complicating things, the player can freely go to some formerly distant part of the
world and observe it from up close. Such games typically have changing time of
day, which makes precomputation of lighting difficult at best, if not impossible.

Most games, such asfirst-person shooters, are somewhere between the two
extremes. The player can see a fair amount of scenery each frame, but movement
through the game world is somewhat constrained. Many games also have afixed
time of day for each game level, forease of lighting precomputation.

The number of foreground objects rendered also varies widely between game
types. Real-time strategy games such as theCommand and Conquer series often
have many dozens, if not hundreds, of units visible on screen. Other types of
games have more limited quantities of visible characters, withfighting games
at the opposite extreme, where only two characters are visible, each rendered
with extremely high detail. A distinction must be drawn between the number of
characters visible at any time (which affects budgeting of processing time) and
the number ofunique characters which can potentially be visible at short notice
(which affects storage budgets).

The type orgenre of game also determines audience expectations of the graph-
ics. For example,first-person shooters have historically had very high levels of
graphicsfidelity, and this expectation drives the graphics design when developing

662 26. Computer Graphics in Games

Figure 26.2. Crysis exemplifies the realistic and detailed graphics expected of first-person
shooters. Image courtesy Crytek. (See also Plate XXXIII.)

Figure 26.3. An example of highly stylized, non-photorealistic rendering from the game
Okami. Image courtesy Capcom Entertainment, Inc. (See also Plate XXXIV.)

26.4. Game Types 663

new games in that genre; see Figure 26.2. On the other hand, puzzle games have
typically had relatively simplistic graphics, so most game developers will not in-
vest large amounts of programming or art resources into developing photorealistic
graphics for such games.

Although most games aim for a photorealistic look, a few do attempt more
stylized rendering. One interesting example of this isOkami, which can be seen
in Figure 26.3.

The management of development resources also differs by game type. Most
games have a closed development cycle of one to two years, which ends after
the game ships. Recently it has become common to have downloadable content
(DLC), which can be purchased after the game ships, so some development re-
sources need to be reserved for that. Persistent-world online games have a never-
ending development process where new content is continually being generated,
at least as long as the game is economically viable (which may be a period of
decades).

The creative exploitation of the specific requirements and restrictions of a
particular game is the hallmark of a skilled game graphics programmer. A good
example is the gameLittleBigPlanet, which has a “two-and-a-half-dimensional”
game world comprising a small number of two-dimensional layers, as well as a

Figure 26.4. The LittleBigPlanet developers took care to choose techniques that fit the
game’s constraints, combining them in unusual ways to achieve stunning results. LittleBig-
Planet c© 2007 Sony Computer Entertainment Europe. Developed by Media Molecule.
LittleBigPlanet is a trademark of Sony Computer Entertainment Europe. (See also Plate
XXXV.)

664 26. Computer Graphics in Games

non-interactive background. The graphics quality of this game is excellent, driven
by the use of unusual rendering techniques specialized to this type of environ-
ment; see Figure 26.4.

26.5 The Game Production Process

The game production process starts with the basic game design or concept. In
some cases (such as sequels), the basic gameplay and visual design is clear, and
only incremental changes are made. In the case of a new game type, extensive
prototyping is needed to determine gameplay and design. Most cases sit some-
where in the middle, where there are some new gameplay elements and the visual
design is somewhat open. After this step there may be agreenlight stage where
some early demo or concept is shown to the game publisher to get approval (and
funding!) for the game.

The next step is typicallypre-production. While other teams are working
on finishing up the last game, a small core team works on making any needed
changes to the game engine and production tool chain, as well as working out the
rough details of any new gameplay elements. This core team is working under a
strict deadline. After the existing game ships and the rest of the team comes back
from a well-deserved vacation, the entire tool chain and engine must be ready for
them. If the core team misses this deadline, several dozen developers may be left
idle—an extremely expensive proposition!

Full production is the next step, with the entire team creating art assets, de-
signing levels, tweaking gameplay, and implementing further changes to the game
engine. In a perfect world, everything done during this process would be used in
the final game, but in reality there is an iterative nature to game development
which will result in some work being thrown out and redone. The goal is to min-
imize this with careful planning and prototyping.

When the game is functionally complete, thefinal stage begins. The term
alpha release usually refers to the version which marks the start of extensive
internal testing,beta release to the one which marks the start of extensive external
testing, andgold release to thefinal release submitted to the console manufacturer,
but different companies have slightly varying definitions of these terms. In any
case, testing, orquality assurance (QA) is an important part of this phase, and it
involves testers at the game development studio, at the publisher, at the console
manufacturer, and possibly external QA contractors as well. These various rounds
of testing result in bug reports which are submitted back to the game developers
and worked on until the next release.

26.5. The Game Production Process 665

After the game ships, most of the developers go on vacation for a while, but
a small team may have to stay to work on patches or downloadable content. In
the meantime, a small core team has been working on pre-production for the next
game . . .

Art asset creation is an aspect of game production that is particularly relevant
to graphics development, so I will go into it in some detail.

26.5.1 Asset Creation

While the exact process of art asset creation varies from game to game, the outline
I give here is fairly representative. Inthe past, a single artist would create an
entire asset from start tofinish, but this process is now much more specialized,
involving people with different skill sets working on each asset at various times.
Some of these stages have clear dependencies (for example, a character cannot be
animated until it is rigged and cannot be rigged before it is modeled). Most game
developers have well-defined approval processes, where the art director or a lead
artist signs off on each stage before the asset is sent on to the next. Ideally an
asset proceeds through each stage exactly once, but in practice changes may be
made that require resubmission.

Figure 26.5. A mesh being modeled in Maya, with associated texture parameterization.
Image courtesy Keith Bruns.

666 26. Computer Graphics in Games

Initial Modeling

Typically the art asset creation process starts by modeling the object geometry.
This step is performed in a general-purpose modeling package such as Maya,
MAX or Softimage. The modeled geometry will be passed directly to the game
engine, so it is important to minimize vertex count while preserving good sil-
houettes. Character meshes must also be constructed so as to be amenable to
animation.

In this stage, a two-dimensional surface parameterization for textures is usu-
ally created. It is important that this parameterization be highly continuous, since
discontinuities require vertex duplication and may causefiltering artifacts. An
example of a mesh with its associated texture parameterization is shown in Fig-
ure 26.5.

Texturing

In the past texturing was a straightforward process of painting a color texture, typ-
ically in Photoshop. Now specialized detail modeling packages such as ZBrush
or Mudbox are commonly used to sculptfine surface detail. Figures 26.6 and 26.7
show an example of this process.

Figure 26.6. The mesh from Figure 26.5 has been brought into ZBrush for detail modeling.
Image courtesy Keith Bruns.

26.5. The Game Production Process 667

Figure 26.7. The mesh from Figure 26.6, with fine detail added to it in ZBrush. Image
courtesy Keith Bruns.

Figure 26.8. A visualization (in ZBrush) of the mesh from Figure 26.6, rendered with a
normal map derived from the detailed mesh in Figure 26.7. The bottom of the figure shows
the interface for ZBrush’s “Zmapper” tool, which was used to derive the normal map. Image
courtesy Keith Bruns.

668 26. Computer Graphics in Games

Figure 26.9. The normal map used in Figure 26.8. In this image, the red, green and blue
channels of the texture contain the X, Y, and Z coordinates of the surface normals. Image
courtesy Keith Bruns. (See also Plate XXXVI.)

Figure 26.10. An early version of a diffuse color texture for the mesh from Figure 26.8,
shown in Photoshop. Image courtesy Keith Bruns. (See also Plate XXXVII.)

26.5. The Game Production Process 669

Figure 26.11. A rendering (in ZBrush) of the mesh with normal map and early diffuse color
texture (from Figure 26.10) applied. Image courtesy Keith Bruns. (See also Plate XXXVIII.)

Figure 26.12. Final version of the color texture from Figure 26.10. Image courtesy Keith
Bruns. (See also Plate XXXIX.)

670 26. Computer Graphics in Games

Figure 26.13. Rendering of the mesh with normal map and final color texture (from Fig-
ure 26.12) applied. Image courtesy Keith Bruns. (See also Plate XL.)

If this additional detail were to be represented with actual geometry, millions
of triangles would be needed. Instead, the detail is commonly “baked” into a nor-
mal map which is applied onto the original, coarse mesh, as shown in Figures 26.8
and 26.9.

Besides normal maps, multiple textures containing surface properties such as
diffuse color, specular color, and smoothness (specular power) are also created.
These are either painted directly on the surface in the detail modeling application,
or in a two-dimensional application such as Photoshop. All of these texture maps
use the surface parameterization defined in the initial modeling phase. When the
texture is painted in a two-dimensional painting application, the artist must fre-
quently switch between the painting application and some other application which
can show a three-dimensional rendering of the object with the texture applied.
This iterative process is illustrated in Figures 26.10, 26.11, 26.12, and 26.13.

Shading

Shaders are typically applied in the same application used for initial modeling. In
this process, a shader (from the set of shaders defined for that game) is applied
to the mesh. The various textures resulting from the detail modeling stage are
applied as inputs to this shader, using the surface parameterization defined during
initial modeling. Various other shader inputs are set via visual experimentation
(“tweaking”); see Figure 26.14.

26.5. The Game Production Process 671

Figure 26.14. Shader configuration in Maya. The interface on the right is used to select
the shader, assign textures to shader inputs, and set the values of non-texture shader inputs
(such as the “Specular Color” and “Specular Power” sliders). The rendering on the left is up-
dated dynamically while these properties are modified, enabling immediate visual feedback.
Image courtesy Keith Bruns. (See also Plate XLI.)

Lighting

In the case of background scenery, lighting artists will typically start their work
after modeling, texturing, and shading has been completed. Light sources are
placed and their effect computed in a pre-processing step. The results of this
process are stored in lightmaps for later use by the rendering engine.

Animation

Character meshes undergo several additional steps related to animation. The pri-
mary method used to animate game characters isskinning. This requires arig,
consisting of a hierarchy of transform nodes that is attached to the character, a
process known asrigging. The area of effect of each transform node is painted
onto a subset of mesh vertices. Finally, animators create animations that move,
rotate, and scale these transform nodes, “dragging” the mesh behind them.

A typical game character will have many dozens of animations, correspond-
ing to different modes of motion (walking, running, turning) as well as different
actions such as attacks. In the case of amain character, the number of animations
can be in the hundreds. Transitions betweendifferent animations also need to be
defined.

672 26. Computer Graphics in Games

Figure 26.15. Morph target interface in Maya. The bottom row shows four different morph
targets, and the model at the top shows the effects of combining several morph targets
together. The interface at the upper left is used to control the degree to which each morph
target is applied. Image courtesy Keith Bruns.

For facial animation, another technique, calledmorph targets is sometimes
employed. In this technique, the mesh vertices are directly manipulated to deform
the mesh. Different copies of the deformed mesh are stored (e.g., for different
facial expressions) and combined by the game engine at runtime. The creation of
morph targets is shown in Figure 26.15.

Notes

There is a huge amount of information on real-time rendering and game pro-
gramming available, both in books and online. Here are some resources I can
recommend from personal familiarity:

Game Developer Magazine is a good source of information on game develop-
ment, as are slides from the talks given at the annualGame Developers Confer-

ence (GDC) and Microsoft’sGamefest conference. TheGPU Gems andShaderX

book series also contain good information—all of the former and thefirst two of
the latter are also available online.

Eric Lengyel’sMathematics for 3D Game Programming & Computer Graph-

ics, now in its second edition, is a good reference for the various types of math
used in graphics and games. A specific area of game programming that is closely

26.5. The Game Production Process 673

related to graphics is collision detection, for which Christer Ericson’sReal-Time

Collision Detection is the definitive resource.
Since itsfirst edition in 1999, Eric Haines and Tomas Akenine-M¨oller’s Real-

Time Rendering has endeavored to cover this fast-growingfield in a thorough
manner. As a longtime fan of this book, I was glad to have the opportunity to be
a coauthor on the third edition, which came out in mid-2008.

Reading is not enough—make sure you play a variety of games regularly to
get a good idea of the requirements of various game types, as well as the current
state of the art.

Exercises

1. Examine the visuals of two dissimilar games. What differences can you
deduce in the graphics requirements of these two games? Analyze the effect
on rendering time, storage budgets, etc.

2 72 7
Tamara Munzner

Visualization

A major application area of computer graphics isvisualization, where computer-
generated images are used to help people understand both spatial and non-spatial
data. Visualization is used when the goal is to augment human capabilities in
situations where the problem is not sufficiently well defined for a computer to
handle algorithmically. If a totally automatic solution can completely replace hu-
man judgement, then visualization is not typically required. Visualization can be
used to generate new hypotheses when exploring a completely unfamiliar dataset,
to confirm existing hypotheses in a partially understood dataset, or to present in-
formation about a known dataset to another audience.

Visualization allows people to offload cognition to the perceptual system, us-
ing carefully designed images as a form ofexternal memory. The human visual
system is a very high-bandwidth channel to the brain, with a significant amount
of processing occurring in parallel and at the pre-conscious level. We can thus
use external images as a substitute for keeping track of things inside our own
heads. For an example, let us consider the task of understanding the relationships
between a subset of the topics in the splendid bookGödel, Escher, Bach: The

Eternal Golden Braid (Hofstadter, 1979); see Figure 27.1.
When we see the dataset as a text list, at the low level we must read words

and compare them to memories of previously read words. It is hard to keep track
of just these dozen topics using cognition and memory alone, let alone the hun-
dreds of topics in the full book. The higher-level problem of identifying neigh-
borhoods, for instancefinding all the topics two hops away from the target topic
Paradoxes, is very difficult.

675

676 27. Visualization

Infinity - Lewis Carroll

Infinity - Zeno

Infinity - Paradoxes

Infinity - Halting problem

Zeno - Lewis Carroll

Paradoxes - Lewis Carroll

Paradoxes - Epimenides

Paradoxes - Self-ref

Epimenides - Self-ref

Epimenides - Tarski

Tarski - Epimenides

Halting problem - Decision procedures

Halting problem - Turing

Lewis Carroll - Wordplay

Tarski - Truth vs. provability

Tarski - Undecidability

Figure 27.1. Keeping track of relationships between topics is difficult using a text list.

Figure 27.2 shows an external visual representation of the same dataset as a
node-link graph, where each topic is anode and the linkage between two topics
is shown directly with a line. Following the lines by moving our eyes around the
image is a fast low-level operation with minimal cognitive load, so higher-level
neighborhoodfinding becomes possible. The placement of the nodes and the
routing of the links between them was created automatically by thedot graph
drawing program (Gansner et al., 1993).

We call the mapping of dataset attributes to a visual representation avisual

encoding. One of the central problems in visualization is choosing appropriate
encodings from the enormous space of possibile visual representations, taking
into account the characteristics of the human perceptual system, the dataset in
question, and the task at hand.

Infinity

Halting problemZeno Paradoxes

Lewis Carroll TuringDecision procedures

Self-ref

Epimenides

Wordplay Tarski

Truth vs. provability Undecidability

Figure 27.2. Substituting perception for cognition and memory allows us to understand
relationships between book topics quickly.

27.1. Background 677

27.1 Background

27.1.1 History

People have a long history of conveying meaning through static images, dating
back to the oldest known cave paintings from over thirty thousand years ago. We
continue to visually communicate today in ways ranging from rough sketches on
the back of a napkin to the slick graphic design of advertisements. For thousands
of years, cartographers have studied the problem of making maps that represent
some aspect of the world around us. Thefirst visual representations of abstract,
nonspatial datasets were created in the 18th century by William Playfair (Friendly,
2008).

Although we have had the power to create moving images for over one hun-
dred andfifty years, creating dynamic images interactively is a more recent de-
velopment only made possible by the widespread availability of fast computer
graphics hardware and algorithms in the past few decades. Static visualizations
of tiny datasets can be created by hand, but computer graphics enables interactive
visualization of large datasets.

27.1.2 Resource Limitations

When designing a visualization system, we must consider three different kinds
of limitations: computational capacity, human perceptual and cognitive capacity,
and display capacity.

As with any application of computer graphics, computer time and memory are
limited resources and we often have hard constraints. If the visualization system
needs to deliver interactive response, then it must use algorithms that can run in a
fraction of a second rather than minutes or hours.

On the human side, memory and attention must be considered asfinite re-
sources. Human memory is notoriouslylimited, both for long-term recall and
for shorter-term working memory. Later in this chapter, we discuss some of the
power and limitations of the low-level visual attention mechanisms that carry out
massively parallel processing of the visualfield. We store surprisingly little in-
formation internally in visual working memory, leaving us vulnerable tochange

blindness, the phenomenon where even very large changes are not noticed if we
are attending to something else in our view (Simons, 2000). Moreover, vigi-
lance is also a highly limited resource; our ability to perform visual search tasks
degrades quickly, with far worse results after several hours than in thefirst few
minutes (Ware, 2000).

678 27. Visualization

Display capacity is a third kind of limitation to consider. Visualization de-
signers often “run out of pixels,” where the resolution of the screen is not large
enough to show all desired information simultaneously. Theinformation density

of a particular frame is a measure of the amount of information encoded versus
the amount of unused space. There is a tradeoff between the benefits of showing
as much as possible at once, to minimize the need for navigation and exploration,
and the costs of showing too much at once, where the user is overwhelmed by
visual clutter.

27.2 Data Types

Many aspects of a visualization design are driven by the type of the data that we
need to look at. For example, is it a table of numbers, or a set of relations between
items, or inherently spatial data such as a location on the Earth’s surface or a
collection of documents?

We start by considering a table of data. We call the rowsitems of data and the
columns aredimensions, also known asattributes. For example, the rows might
represent people, and the columns might be names, age, height, shirt size, and
favorite fruit.

We distinguish between three types of dimensions: quantitative, ordered, and
categorical.Quantitative data, such as age or height, is numerical and we can
do arithmetic on it. For example, the quantity of 68 inches minus 42 inches is
26 inches. Withordered data, such as shirt size, we cannot do full-fledged arith-
metic, but there is a well-defined ordering. For example, Large minus Medium
is not a meaningful concept, but we know that Medium falls between Small and
Large.Categorical data, such as favorite fruit or names, does not have an implicit
ordering. We can only distinguish whether two things are the same (apples) or
different (apples vs. bananas).

Relational data, orgraphs, are another data type wherenodes are connected by
links. One specific kind of graph is atree, which is typically used for hierarchical
data. Both nodes and edges can have associated attributes. The wordgraph is
unfortunately overloaded in visualization. The node-link graphs we discuss here,
following the terminology of graph drawing and graph theory, could also be called
networks. In thefield of statistical graphics, graph is often used forchart, as in
the line charts for time-series data shown in Figure 27.10.

Some data is inherently spatial, such as geographic location or afield of mea-
surements at positions in three-dimensional space as in the MRI or CT scans used
by doctors to see the internal structure of a person’s body. The information as-
sociated with each point in space may be an unordered set of scalar quantities,

27.2. Data Types 679

or indexed vectors, or tensors. In contrast, non-spatial data can be visually en-
coded using spatial position, but that encoding is chosen by the designer rather
than given implicitly in the semantics of the dataset itself. This choice is the one
of the most central and difficult problems of visualization design.

27.2.1 Dimension and Item Count

The number of data dimensions that need to be visually encoded is one of the most
fundamental aspects of the visualization design problem. Techniques that work
for a low-dimensional dataset with a few columns will often fail for very high-
dimensional datasets with dozens or hundreds of columns. A data dimension may
have hierarchical structure, for examplewith a time series dataset where there are
interesting patterns at multiple temporal scales.

The number of data items is also important: a visualization that performs well
for a few hundred items often does not scale to millions of items. In some cases
the difficulty is purely algorithmic, where a computation would take too long; in
others it is an even deeper perceptualproblem that even an instantaneous algo-
rithm could not solve, where visual clutter makes the representation unusable by
a person. The range of possible values within a dimension may also be relevant.

27.2.2 Data Transformation and Derived Dimensions

Data is often transformed from one type to another as part of a visualization
pipeline for solving the domain problem. For example, an original data dimen-
sion might be made up of quantitative data:floating point numbers that represent
temperature. For some tasks, likefinding anomalies in local weather patterns, the
raw data might be used directly. For another task, like deciding whether water is
an appropriate temperature for a shower, the data might be transformed into an
ordered dimension: hot, warm, or cold. In this transformation, most of the detail
is aggregated away. In a third example, when making toast, an even more lossy
transformation into a categorical dimension might suffice: burned or not burned.

The principle of transforming data intoderived dimensions, rather than simply
visually encoding the data in its original form, is a powerful idea. In Figure 27.10,
the original data was an ordered collection of time-series curves. The transforma-
tion was to cluster the data, reducing the amount of information to visually encode
to a few highly meaningful curves.

680 27. Visualization

Figure 27.3. Four nested layers of validation for visualization.

27.3 Human-Centered Design Process

The visualization design process can be split into a cascading set of layers, as
shown in Figure 27.3. These layers alldepend on each other; the output of the
level above is input into the level below.

27.3.1 Task Characterization

A given dataset has many possible visual encodings. Choosing which visual en-
coding to use can be guided by the specific needs of some intended user. Different
questions, ortasks, require very different visual encodings. For example, consider
the domain of software engineering. The task of understanding the coverage of a
test suite is well supported by the Tarantula interface shown in Figure 27.11. How-
ever, the task of understanding the modular decomposition of the software while
refactoring the code might be better served by showing its hierarchical structure
more directly as a node-link graph.

Understanding the requirements of some target audience is a tricky problem.
In a human-centered design approach, the visualization designer works with a
group of target users over time (C. Lewis & Rieman, 1993). In most cases, users
know they need to somehow view their data but cannot directly articulate their
needs as clear-cut tasks in terms of operations on data types. The iterative design
process includes gathering information from the target users about their problems
through interviews and observation of them at work, creating prototypes, and
observing how users interact with those prototypes to see how well the proposed
solution actually works. The software engineering methodology of requirements
analysis can also be useful (Kovitz, 1999).

27.3.2 Abstraction

After the specific domain problem has been identified in thefirst layer, the next
layer requires abstracting it into a more generic representation as operations on

27.3. Human-Centered Design Process 681

the data types discussed in the previous section. Problems from very different
domains can map to the same visualization abstraction. These generic operations
include sorting,filtering, characterizing trends and distributions,finding anoma-
lies and outliers, andfinding correlation (Amar et al., 2005). They also include
operations that are specific to a particular data type, for example following a path
for relational data in the form of graphs or trees.

This abstraction step often involves data transformations from the original raw
data into derived dimensions. These derived dimensions are often of a different
type than the original data: a graph may be converted into a tree, tabular data may
be converted into a graph by using a threshold to decide whether a link should
exist based on thefield values, and so on.

27.3.3 Technique and Algorithm Design

Once an abstraction has been chosen, the next layer is to design appropriate visual
encoding and interaction techniques. Section 27.4 covers the principles of visual
encoding, and we discuss interaction principles in Sections 27.5. We present
techniques that take these principles into account in Sections 27.6 and 27.7.

A detailed discussion of visualization algorithms is unfortunately beyond the
scope of this chapter.

27.3.4 Validation

Each of the four layers has different validation requirements.
Thefirst layer is designed to determine whether the problem is correctly char-

acterized: is there really a target audience performing particular tasks that would
benefit from the proposed tool? An immediate way to test assumptions and con-
jectures is to observe or interview members of the target audience, to ensure that
the visualization designer fully understands their tasks. A measurement that can-
not be done until a tool has been built and deployed is to monitor its adoption
rate within that community, although of course many other factors in addition to
utility affect adoption.

The next layer is used to determine whether the abstraction from the domain
problem into operations on specific data types actually solves the desired problem.
After a prototype orfinished tool has been deployed, afield study can be carried
out to observe whether and how it is used by its intended audience. Also, images
produced by the system can be analyzed both qualitatively and quantitatively.

The purpose of the third layer is to verify that the visual encoding and in-
teraction techniques chosen by the designer effectively communicate the chosen
abstraction to the users. An immediate test is to justify that individual design

682 27. Visualization

choices do not violate known perceptual and cognitive principles. Such a justi-
fication is necessary but not sufficient, since visualization design involves many
tradeoffs between interacting choices. After a system is built, it can be tested
through formal laboratory studies where many people are asked to do assigned
tasks so that measurements of the time required for them to complete the tasks
and their error rates can be statistically analyzed.

A fourth layer is employed to verify that the algorithm designed to carry out
the encoding and interaction choices is faster or takes less memory than previous
algorithms. An immediate test is to analyze the computational complexity of
the proposed algorithm. After implementation, the actual time performance and
memory usage of the system can be directly measured.

27.4 Visual Encoding Principles

We can describe visual encodingsas graphical elements, calledmarks, that con-
vey information through visual channels. A zero-dimensional mark is a point, a
one-dimensional mark is a line, a two-dimensional mark is an area, and a three-
dimensional mark is a volume. Manyvisual channels can encode information,
including spatial position, color, size, shape, orientation, and direction of mo-
tion. Multiple visual channels can be used to simultaneously encode different

Figure 27.4. The four visual channels of horizontal and vertical spatial position, color,
and size are used to encode information in this scatterplot chart Image courtesy George
Robertson (Robertson et al., 2008), c© IEEE 2008.

27.4. Visual Encoding Principles 683

data dimensions; for example, Figure 27.4 shows the use of horizontal and ver-
tical spatial position, color, and size to display four data dimensions. More than
one channel can be used to redundantly code the same dimension, for a design
that displays less information but shows it more clearly.

27.4.1 Visual Channel Characteristics

Important characteristics of visual channels are distinguishability, separability,
and popout.

Channels are not all equally distinguishable. Many psychophysical experi-
ments have been carried out to measure the ability of people to make precise
distinctions about information encoded by the different visual channels. Our
abilities depend on whether the data type is quantitative, ordered, or categorical.
Figure 27.5 shows the rankings of visual channels for the three data types. Fig-
ure 27.6 shows some of the default mappings for visual channels in the
Tableau/Polaris system, which take into account the data type.

Spatial position is the most accurate visual channel for all three types of data,
and it dominates our perception of a visual encoding. Thus, the two most impor-
tant data dimensions are often mapped to horizontal and vertical spatial positions.

However, the other channels differ strongly between types. The channels of
length and angle are highly discriminable for quantitative data but poor for or-
dered and categorical, while in contrasthue is very accurate for categorical data
but mediocre for quantitative data.

We must always consider whether there is a good match between the dynamic

Position

Texture
Connection

Containment
Lightness

Shape
Length
Angle
Slope
Area

Volume

Position
Length
Angle
Slope
Area

Volume
Lightness

Texture

Containment
Shape

Connection

Saturation

Position
Lightness

Texture
Connection

Containment
Length
Angle
Slope
Area

Volume
Shape

Saturation

Saturation

Hue

Hue

Hue

Quantitative Ordered Categorical

Figure 27.5. Our ability to perceive information encoded by a visual channel depends on
the type of data used, from most accurate at the top to least at the bottom. Redrawn and
adapted from (Mackinlay, 1986).

684 27. Visualization

Figure 27.6. The Tableau/Polaris system default mappings for four visual channels accord-
ing to data type. Image courtesy Chris Stolte (Stolte et al., 2008), c© 2008 IEEE. (See also
Plate XLII.)

range necessary to show the data dimension and the dynamic range available in the
channel. For example, encoding with line width uses a one-dimensional mark and
the size channel. There are a limited number of width steps that we can reliably
use to visually encode information: a minimum thinness of one pixel is enforced
by the screen resolution (ignoring antialiasing to simplify this discussion), and
there is a maximum thickness beyond which the object will be perceived as a
polygon rather than a line. Line width can work very well to show three or four
different values in a data dimension, but it would be a poor choice for dozens or
hundreds of values.

Figure 27.7. Color and lo-
cation are separable chan-
nels well suited to encode
different data dimensions,
but the horizontal size and
and vertical size channels
are automatically fused into
an integrated perception of
area. Redrawn after (Ware,
2000).

Some visual channels areintegral, fused together at a pre-conscious level, so
they are not good choices for visually encoding different data dimensions. Others
areseparable, without interactions between them during visual processing, and
are safe to use for encoding multiple dimensions. Figure 27.7 shows two channel
pairs. Color and position are highly separable. We can see that horizontal size and
vertical size are not so easy to separate, because our visual system automatically
integrates these together into a unified perception of area.Size interacts with
many channels: as the size of an object grows smaller, it becomes more difficult
to distinguish its shape or color.

We can selectively attend to a channel so that items of a particular type “pop
out” visually, as discussed in Section 22.4.3. An example of visual popout is
when we immediately spot the red item amidst a sea of blue ones, or distinguish
the circle from the squares. Visual popout is powerful and scalable because it
occurs in parallel, without the need for conscious processing of the items one
by one. Many visual channels have this popout property, including not only the
list above but also curvature,flicker, stereoscopic depth, and even the direction
of lighting. However, in general we can only take advantage of popout for one
channel at a time. For example, a white circle does not pop out from a group of
circles and squares that can be white or black, as shown in Figure 22.43. When we

27.4. Visual Encoding Principles 685

need to search across more than one channel simultaneously, the length of time
it takes tofind the target object depends linearly on the number of objects in the
scene.

27.4.2 Color

Color can be a very powerful channel, but many people do not understand its
properties and use it improperly. As discussed in Section 22.2.2, we can consider
color in terms of three separate visual channels: hue, saturation, and lightness.
Region size strongly affects our ability tosense color. Color in small regions is
relatively difficult to perceive, and designers should use bright, highly saturated
colors to ensure that the color coding is distinguishable. The inverse situation
is true when colored regions are large, as in backgrounds, where low saturation
pastel colors should be used to avoid blinding the viewer.

Hue is a very strong cue for encoding categorical data. However, the available
dynamic range is very limited. People can reliably distinguish only around a
dozen hues when the colored regions are small and scattered around the display.
A good guideline for color coding is to keep the number of categories less than 8,
keeping in mind that the background and the neutral object color also count in the
total.

For ordered data, lightness and saturation are effective because they have an
implicit perceptual ordering. People can reliably order by lightness, always plac-
ing gray in between black and white. With saturation, people reliably place the
less saturated pink between fully saturated red and zero-saturation white. How-
ever, hue is not as as good a channel for ordered data because it does not have
an implicit perceptual ordering. When asked to create an ordering of red, blue,
green, and yellow, people do not all give the same answer. People can and do learn
conventions, such as green-yellow-red for traffic lights, or the order of colors in
the rainbow, but these constructions are at a higher level than pure perception.
Ordered data is typically shown with a discrete set of color values.

Quantitative data is shown with acolormap, a range of color values that can
be continuous or discrete. A very unfortunate default in many software packages
is the rainbow colormap, as shown in Figure 27.8. The standard rainbow scale
suffers from three problems. First, hue is used to indicate order. A better choice
would be to use lightness because it has an implicit perceptual ordering. Even
more importantly, the human eye responds most strongly to luminance. Second,
the scale is not perceptually linear: equal steps in the continuous range are not
perceived as equal steps by our eyes. Figure 27.8 shows an example, where the
rainbow colormap obfuscates the data. While the range from−2000 to−1000

686 27. Visualization

Figure 27.8. The standard rainbow colormap has two defects: it uses hue to denote
ordering, and it is not perceptually isolinear. Image courtesy Bernice Rogowitz. (See also
Plate XLIV.

has three distinct colors, cyan, green, and yellow, a range of the same size from
−1000 to 0 simply looks yellow throughout. The graphs on the right show that the
perceived value is strongly tied to the luminance, which is not even monotonically
increasing in this scale.

In contrast, Figure 27.9 shows the same data with a more appropriate col-
ormap, where the lightness increases monotonically. Hue is used to create a
semantically meaningful categorization: the viewer can discuss structure in the
dataset, such as the dark blue sea, the cyan continental shelf, the green lowlands,
and the white mountains.

Figure 27.9. The structure of the same dataset is far more clear with a colormap where
monotonically increasing lightness is used to show ordering and hue is used instead for
segmenting into categorical regions. Image courtesy Bernice Rogowitz. (See also Plate
XLIV.)

27.4. Visual Encoding Principles 687

In both the discrete and continuous cases, colormaps should take into account
whether the data is sequential or diverging. The ColorBrewer application (www.
colorbrewer.org) is an excellent resource for colormap construction (Brewer, 1999).

Another important issue when encoding with color is that a significant fraction
of the population, roughly 10% of men, is red-green color deficient. If a coding
using red and green is chosen because ofconventions in the target domain, re-
dundantly coding lightness or saturation in addition to hue is wise. Tools such as
the web site http://www.vischeck.com should be used to check whether a color
scheme is distinguishable to people with color deficient vision.

27.4.3 2D vs. 3D Spatial Layouts

The question of whether to use two or three channels for spatial position has been
extensively studied. When computer-based visualization began in the late 1980s,
and interactive 3D graphics was a new capability, there was a lot of enthusiasm
for 3D representations. As thefield matured, researchers began to understand the
costs of 3D approaches when used for abstract datasets (Ware, 2001).

Occlusion, where some parts of the dataset are hidden behind others, is a
major problem with 3D. Although hidden surface removal algorithms such as Z-
buffers and BSP trees allow fast computation of a correct 2D image, people must
still synthesize many of these images into an internal mental map. When peo-
ple look at realistic scenes made from familiar objects, usually they can quickly
understand what they see. However, when they see an unfamiliar dataset, where
a chosen visual encoding maps abstract dimensions into spatial positions, under-
standing the details of its 3D structure can be challenging even when they can use
interactive navigation controls to change their 3D viewpoint. The reason is once
again the limited capacity of human working memory (Plumlee & Ware, 2006).

Another problem with 3D isperspective distortion. Although real-world ob-
jects do indeed appear smaller when they are further from our eyes, foreshorten-
ing makes direct comparison of object heights difficult (Tory et al., 2006). Once
again, although we can often judge the heights of familiar objects in the real world
based on past experience, we cannot necessarily do so with completely abstract
data that has a visual encoding where the height conveys meaning. For exam-
ple, it is more difficult to judge bar heights in a 3D bar chart than in multiple
horizontally aligned 2D bar charts.

Another problem with unconstrained 3D representations is that text at arbi-
trary orientations in 3D space is far more difficult to read than text aligned in the
2D image plane (Grossman et al., 2007).

Figure 27.10 illustrates how carefully chosen 2D views of an abstract dataset
can avoid the problems with occlusion and perspective distortion inherent in 3D

http://www.colorbrewer.org
http://www.colorbrewer.org
http://www.vischeck.com

688 27. Visualization

Figure 27.10. Left: A 3D representation of this time series dataset introduces the prob-
lems of occlusion and perspective distortion. Right: The linked 2D views of derived aggre-
gate curves and the calendar allow direct comparison and show more fine-grained patterns.
Image courtesy Jarke van Wijk (van Wijk & van Selow, 1999), c© 1999 IEEE. (See also
Plate XLV.)

views. The top view shows a 3D representation created directly from the origi-
nal time-series data, where each cross-section is a 2D time-series curve showing
power consumption for one day, with one curve for each day of the year along the
extruded third axis. Although this representation is straightforward to create, we
can only see large-scale patterns such as the higher consumption during working
hours and the seasonal variation between winter and summer. To create the 2D
linked views at the bottom, the curves were hierarchically clustered, and only ag-
gregate curves representing the top clusters are drawn superimposed in the same
2D frame. Direct comparison between the curve heights at all times of the day
is easy because there is no perspective distortion or occlusion. The same color
coding is used in the calendar view, which is very effective for understanding
temporal patterns.

In contrast, if a dataset consists of inherently 3D spatial data, such as showing
fluid flow over an airplane wing or a medicalimaging dataset from an MRI scan,
then the costs of a 3D view are outweighed by its benefits in helping the user
construct a useful mental model of the dataset structure.

27.4.4 Text Labels

Text in the form of labels and legends is a very important factor in creating visu-
alizations that are useful rather than simply pretty. Axes and tick marks should be
labelled. Legends should indicate the meaning of colors, whether used as discrete
patches or in continuous color ramps. Individual items in a dataset typically have

27.5. Interaction Principles 689

meaningful text labels associated with them. In many cases showing all labels
at all times would result in too much visual clutter, so labels can be shown for
a subset of the items using label positioning algorithms that show labels at a de-
sired density while avoiding overlap (Luboschik et al., 2008). A straightforward
way to choose the best label to represent a group of items is to use a greedy algo-
rithm based on some measure of label importance, but synthesizing a new label
based on the characteristics of the group remains a difficult problem. A more
interaction-centric approach is to only show labels for individual items based on
an interactive indication from the user.

27.5 Interaction Principles

Several principles of interaction are important when designing a visualization.
Low-latency visual feedback allows users to explore morefluidly, for example
by showing more detail when the cursor simply hovers over an object rather than
requiring the user to explicitly click. Selecting items is a fundamental operation
when interacting with large datasets, as is visually indicating the selected set with
highlighting. Color coding is a common form of highlighting, but other channels
can also be used.

Many forms of interaction can be considered in terms of what aspect of the
display they change. Navigation can be considered a change of viewport. Sorting
is a change to the spatial ordering; that is, changing how data is mapped to the
spatial position visual channel. The entire visual encoding can also be changed.

27.5.1 Overview First, Zoom and Filter, Details on Demand

The influential mantra “Overviewfirst, zoom andfilter, details on demand” (Shnei-
derman, 1996) elucidates the role of interaction and navigation in visualization
design. Overviews help the user notice regions where further investigation might
be productive, whether through spatial navigation or throughfiltering. As we dis-
cuss below, details can be presented in many ways: with popups from clicking or
cursor hovering, in a separate window, and by changing the layout on thefly to
make room to show additional information.

27.5.2 Interactivity Costs

Interactivity has both power and cost. The benefit of interaction is that people can
explore a larger information space than can be understood in a single static image.

690 27. Visualization

However, a cost to interaction is that it requires human time and attention. If the
user must exhaustively check every possibility, use of the visualization system
may degenerate into human-powered search. Automatically detecting features
of interest to explicitly bring to the user’s attention via the visual encoding is a
useful goal for the visualization designer. However, if the task at hand could be
completely solved by automatic means, there would be no need for a visualization
in the first place. Thus, there is always a tradeoff betweenfinding automatable
aspects and relying on the human in the loop to detect patterns.

27.5.3 Animation

Animation shows change using time. Wedistinguish animation, where succes-
sive frames can only be played, paused, or stopped, from true interactive control.
There is considerable evidence that animated transitions can be more effective
than jump cuts, by helping people track changes in object positions or camera
viewpoints (Heer & Robertson, 2007). Although animation can be very effec-
tive for narrative and storytelling, it is often used ineffectively in a visualization
context (Tversky et al., 2002). It might seem obvious to show data that changes
over time by using animation, a visual modality that changes over time. How-
ever, people have difficulty in making specific comparisons between individual
frames that are not contiguous when they see an animation consisting of many
frames. The very limited capacity of human visual memory means that we are
much worse at comparing memories of things that we have seen in the past than
at comparing things that are in our currentfield of view. For tasks requiring com-
parison between up to several dozen frames, side-by-side comparison is often
more effective than animation. Moreover, if the number of objects that change
between frames is large, people will have a hard time tracking everything that
occurs (Robertson et al., 2008). Narrative animations are carefully designed to
avoid having too many actions occurring simultaneously, whereas a dataset being
visualized has no such constraint. For the special case of just two frames with a
limited amount of change, the very simple animation offlipping back and forth
between the two can be a useful way to identify the differences between them.

27.6 Composite and Adjacent Views

A very fundamental visual encoding choice is whether to have a single composite
view showing everything in the same frame or window, or to have multiple views
adjacent to each other.

27.6. Composite and Adjacent Views 691

27.6.1 Single Drawing

When there are only one or two data dimensions to encode, then horizontal and
vertical spatial position are the obvious visual channel to use, because we perceive
them most accurately andposition has the strongest influence on our internal men-
tal model of the dataset. The traditional statistical graphics displays of line charts,
bar charts, and scatterplots all use spatial ordering of marks to encode informa-
tion. These displays can be augmented with additional visual channels, such as
color and size and shape, as in the scatterplot shown in Figure 27.4.

The simplest possible mark is a single pixel. Inpixel-oriented displays, the
goal is to provide an overview of as many items as possible. These approaches use
the spatial position and color channels at a high information density, but preclude
the use of the size and shape channels. Figure 27.11 shows the Tarantula software
visualization tool (Jones et al., 2002), where most of the screen is devoted to an
overview of source code using one-pixel high lines (Eick et al., 1992). The color
and brightness of each line shows whether it passed, failed, or had mixed results
when executing a suite of test cases.

Figure 27.11. Tarantula shows an overview of source code using one-pixel lines color
coded by execution status of a software test suite. Image courtesy John Stasko (Jones et
al., 2002). (See also Plate XLVI.)

692 27. Visualization

Figure 27.12. Visual layering with size, saturation, and brightness in the Constellation
system (Munzner, 2000). (See also Plate XLVII.)

27.6.2 Superimposing and Layering

Multiple items can be superimposed in the same frame when their spatial position
is compatible. Several lines can be shown in the same line chart, and many dots in
the same scatterplot, when the axes are shared across all items. One benefit of a
single shared view is that comparing the position of different items is very easy. If
the number of items in the dataset is limited, then a single view will often suffice.
Visual layering can extend the usefulness of a single view when there are enough
items that visual clutter becomes a concern. Figure 27.12 shows how a redundant
combination of the size, saturation, and brightness channels serves to distinguish
a foreground layer from a background layer when the user moves the cursor over
a block of words.

27.6.3 Glyphs

We have been discussing the idea of visual encoding using simple marks, where
a single mark can only have one value for each visual channel used. With more
complex marks, which we will callglyphs, there is internal structure where sub-
regions have different visual channel encodings.

27.6. Composite and Adjacent Views 693

Figure 27.13. Complex marks, which we call glyphs, have subsections that visually encode
different data dimensions. Image courtesy Matt Ward (M. O. Ward, 2002).

Designing appropriate glyphs has the same challenges as designing visual en-
codings. Figure 27.13 shows a variety of glyphs, including the notorious faces
originally proposed by Chernoff. The danger of using faces to show abstract data
dimensions is that our perceptual and emotional response to different facial fea-

Figure 27.14. Complex glyphs require significant display area so that the encoded informa-
tion can be read. Image courtesy Matt Ward, created with the SpiralGlyphics software (M. O.
Ward, 2002). (See also Plate XLIII.)

694 27. Visualization

Figure 27.15. A dense array of simple glyphs. Image courtesy Georges Grinstein (S. Smith
et al., 1991), c© 1991 IEEE.

tures is highly nonlinear in a way that is not fully understood, but the variability
is greater than between the visual channels that we have discussed so far. We
are probably far more attuned to features that indicate emotional state such as
eyebrow orientation than other features such as nose size or face shape.

Complex glyphs require significant display area for each glyph, as shown in
Figure 27.14 where miniature bar charts show the value of four different dimen-
sions at many points along a spiral path. Simpler glyphs can be used to create
a global visual texture, the glyph size is so small that individual values cannot
be read out without zooming but region boundaries can be discerned from the
overview level. Figure 27.15 shows an example using stickfigures of the kind in
the upper right in Figure 27.13. Glyphs may be placed at regular intervals, or in
data-driven spatial positions using an original or derived data dimension.

27.6.4 Multiple Views

We now turn from approaches with only a single frame to those which use mul-
tiple views that are linked together. The most common form of linkage is linked
highlighting, where items selected in one view are highlighted in all others. In
linked navigation, movement in one view triggers movement in the others.

There are many kinds of multiple-view approaches. In what is usually called
simply themultiple-view approach, the same data is shown in several views, each
of which has a different visual encoding that shows certain aspects of the dataset

27.6. Composite and Adjacent Views 695

most clearly. The power of linked highlighting across multiple visual encodings
is that items that fall in a contiguous region in one view are often distributed very
differently in the other views. In thesmall-multiples approach, each view has
the same visual encoding for different datasets, usually with shared axes between
frames so that comparison of spatial position between them is meaningful. Side-
by-side comparison with small multiples is an alternative to the visual clutter of
superimposing all the data in the same view, and to the human memory limitations
of remembering previously seen frames in an animation that changes over time.

Theoverview-and-detail approach is to have the same data and the same visual
encoding in two views, where the only difference between them is the level of
zooming. In most cases, the overview uses much less display space than the
detail view. The combination of overview and detail views is common outside
of visualization in many tools rangingfrom mapping software to photo editing.
With a detail-on-demand approach, another view shows more information about
some selected item, either as a popup window near the cursor or in a permanent
window in another part of the display.

Figure 27.16. The Improvise toolkit was used to create this multiple-view visualization.
Image courtesy Chris Weaver. (See also Plate XLVIII.)

696 27. Visualization

Determining the most appropriate spatial position of the views themselves
with respect to each other can be as significant a problem as determining the
spatial position of marks within a single view. In some systems, the location of the
views is arbitrary and left up to the window system or the user. Aligning the views
allows precise comparison between them, either vertically, horizontally, or with
an array for both directions. Just as items can be sorted within a view, views can
be sorted within a display, typically with respect to a derived variable measuring
some aspect of the entire view as opposed to an individual item within it.

Figure 27.16 shows a visualization of census data that uses many views. In
addition to geographic information, the demographic information for each county
includes population, density, gender,median age, percent change since 1990,
and proportions of major ethnic groups. The visual encodings used include ge-
ographic, scatterplot, parallel coordinate, tabular, and matrix views. The same
color encoding is used across all the views, with a legend in the bottom mid-
dle. The scatterplot matrix shows linked highlighting across all views, where
the blue items are close together in some views and scattered in others. The
map in the upper-left corner is an overview for the large detail map in the cen-
ter. The tabular views allow direct sorting by and selection within a dimension
of interest.

27.7 Data Reduction

The visual encoding techniques that we have discussed so far show all of the items
in a dataset. However, many datasets areso large that showing everything simul-
taneously would result in so much visual clutter that the visual representation
would be difficult or impossible for a viewer to understand. The main strategies
to reduce the amount of data shown are overviews and aggregation,filtering and
navigation, the focus+context techniques, and dimensionality reduction.

27.7.1 Overviews and Aggregation

With tiny datasets, a visual encoding can easily show all data dimensions for all
items. For datasets of medium size, an overview that shows information about
all items can be constructed by showing less detail for each item. Many datasets
have internal or derivable structure at multiple scales. In these cases, a multiscale
visual representation can provide many levels of overview, rather than just a single
level. Overviews are typically used as a starting point to give users clues about
where to drill down to inspect in more detail.

27.7. Data Reduction 697

For larger datasets, creating an overview requires some kind of visual sum-
marization. One approach to data reduction is to use anaggregate representation
where a single visual mark in the overview explicitly represents many items.

The challenge of aggregation is to avoid eliminating the interesting signals
in the dataset in the process of summarization. In the cartographic literature, the
problem of creating maps at different scales while retaining the important dis-
tinguishing characteristics has been extensively studied under the name ofcarto-

graphic generalization (Slocum et al., 2008).

27.7.2 Filtering and Navigation

Another approach to data reduction is tofilter the data, showing only a subset of
the items. Filtering is often carried out by directly selecting ranges of interest in
one or more of the data dimensions.

Navigation is a specific kind of filtering based on spatial position, where
changing the viewpoint changes the visible set of items. Both geometric and non-
geometric zooming are used in visualization. With geometric zooming, the cam-
era position in 2D or 3D space can be changed with standard computer graphics
controls. In a realistic scene, items should be drawn at a size that depends on their
distance from the camera, and only their apparent size changes based on that dis-
tance. However, in a visual encoding of an abstract space, nongeometric zooming
can be useful. Insemantic zooming, the visual appearance of an object changes
dramatically based on the number of pixels available to draw it. For instance, an
abstract visual representation of a textfile could change from a tiny color-coded
box with no label to a medium-sized box containing only thefilename as a text
label to a large rectangle containing a multi-line summary of the file contents. In
realistic scenes, objects that are sufficiently far away from the camera are not vis-
ible in the images, for example, after they subtend less than one pixel of screen
area. Withguaranteed visibility, one of the original or derived data dimensions is
used as a measure of importance, and objects of sufficient importance must have
some kind of representation visible in the image plane at all times.

27.7.3 Focus+Context

Focus+context techniques are another approach to data reduction. A subset of the
dataset items are interactively chosen by the user to be the focus and are drawn
in detail. The visual encoding also includes information about some or all of the
rest of the dataset shown for context, integrated into the same view that shows the

698 27. Visualization

focus items. Many of these techniques use carefully chosen distortion to combine
magnified focus regions and minified context regions into a unified view.

One common interaction metaphor is a moveablefisheye lens. Hyperbolic
geometry provides an elegant mathematical framework for a single radial lens
that affects all objects in the view. Another interaction metaphor is to use mul-
tiple lenses of different shapes and magnification levels that affect only local re-
gions. Stretch and squish navigation uses the interaction metaphor of a rubber
sheet where stretching one region squishes the rest, as shown in Figure 27.17.
The borders of the sheet stayfixed so that all items are within the viewport, al-
though many items may be compressed to subpixel size. Thefisheye metaphor
is not limited to a geometric lens used after spatial layout; it can be used directly
on structured data, such as a hierarchical document where some sections are col-
lapsed while others are left expanded.

These distortion-based approachesare another example of non-literal navi-
gation in the same spirit as nongeometric zooming. When navigating within a
large and unfamiliar dataset with realistic camera motion, users can become dis-
oriented at high zoom levels when they can see only a small local region. These
approaches are designed to provide more contextual information than a single

Figure 27.17. The TreeJuxtaposer system features stretch and squish navigation and guar-
anteed visibility of regions marked with colors (Munzner et al., 2003). (See also Plate XLIX).

27.7. Data Reduction 699

Figure 27.18. The SpaceTree system shows the path between the root and the interactively
chosen focus node to provide context (Grosjean et al., 2002).

undistorted view, in hopes that people can stay oriented if landmarks remain rec-
ognizeable. However, these kinds of distortion can still be confusing or difficult
to follow for users. The costs and benefits of distortion, as opposed to multiple
views or a single realistic view, are not yet fully understood. Standard 3D per-
spective is a particularly familiar kind of distortion and was explicitly used as a
form of focus+context in early visualization work. However, as the costs of 3D
spatial layout discussed in Section 27.4 became more understood, this approach
became less popular.

Other approaches to providing context around focus items do not require dis-
tortion. For instance, the SpaceTree system shown in Figure 27.18 elides most
nodes in the tree, showing the path between the interactively chosen focus node
and the root of the tree for context.

27.7.4 Dimensionality Reduction

The data reduction approaches covered so far reduce the number of items to
draw. When there are many data dimensions,dimensionality reduction can also be
effective.

700 27. Visualization

With slicing, a single value is chosen from the dimension to eliminate, and
only the items matching that value for the dimension are extracted to include in
the lower-dimensional slice. Slicing is particularly useful with 3D spatial data, for
example when inspecting slices through a CT scan of a human head at different
heights along the skull. Slicing can be used to eliminate multiple dimensions at
once.

With projection, no information about the eliminated dimensions is retained;
the values for those dimensions are simply dropped, and all items are still shown.
A familiar form of projection is the standard graphics perspective transformation
which projects from 3D to 2D, losing information about depth along the way. In
mathematical visualization, the structure of higher-dimensional geometric objects
can be shown by projecting from 4D to 3D before the standard projection to the
image plane and using color to encode information from the projected-away di-
mension. This technique is sometimes calleddimensional filtering when it is used
for nonspatial data.

In some datasets, there may be interesting hidden structure in a much lower-
dimensional space than the number of original data dimensions. For instance,
sometimes directly measuring the independent variables of interest is difficult or
impossible, but a large set of dependent or indirect variables is available. The goal
is tofind a small set of dimensions that faithfully represent most of the structure or
variance in the dataset. These dimensions may be the original ones, or synthesized
new ones that are linear or nonlinear combinations of the originals. Principal com-
ponent analysis is a fast, widely used linear method. Many nonlinear approaches
have been proposed, including multidimensional scaling (MDS). These methods
are usually used to determine whether there are large-scale clusters in the dataset;

Figure 27.19. Dimensionality reduction with the Glimmer multidimensional scaling approach
shows clusters in a document dataset (Ingram et al., 2009), c© 2009 IEEE. (See also Plate L.)

27.8. Examples 701

the fine-grained structure in the lower-dimensional plots is usually not reliable
because information is lost in the reduction. Figure 27.19 shows document col-
lection in a single scatterplot. When the true dimensionality of the dataset is far
higher than two, a matrix of scatterplots showing pairs of synthetic dimensions
may be necessary.

27.8 Examples

We conclude this chapter with several examples of visualizing specific types of
data using the techniques discussed above.

27.8.1 Tables

Tabular data is extremely common, as all spreadsheet users know. The goal
in visualization is to encode this information through easily perceivable visual
channels rather than forcing people to read through it as numbers and text. Fig-
ure 27.20 shows the Table Lens, a focus+context approach where quantitative

Figure 27.20. The Table Lens provides focus+context interaction with tabular data, immedi-
ately reorderable by the values in each dimension column. Image courtesy Stuart Card (Rao
& Card, 1994), c© 1994 ACM, Inc. Included here by permission.

702 27. Visualization

Figure 27.21. Hierarchical parallel coordinates show high-dimensional data at multiple
levels of detail. Image courtesy Matt Ward (Fua et al., 1999), c© 1999 IEEE. (See also
Plate LI).

values are encoded as the length of one-pixel high lines in the context regions,
and shown as numbers in the focus regions. Each dimension of the dataset is
shown as a column, and the rows of itemscan be resorted according to the values
in that column with a single click in its header.

The traditional Cartesian approach of a scatterplot, where items are plotted
as dots with respect to perpendicular axes, is only usable for two and three di-
mensions of data. Many tables contain far more than three dimensions of data,
and the number of additional dimensions that can be encoded using other visual
channels is limited. Parallel coordinates are an approach for visualizing more di-
mensions at once using spatial position, where the axes are parallel rather than
perpendicular and ann-dimensional item is shown as a polyline that crosses each
of then axes once (Inselberg & Dimsdale, 1990; Wegman, 1990). Figure 27.21
shows an 8-dimensional dataset of 230,000 items at multiple levels of detail (Fua
et al., 1999), from a high-level view at the top tofiner detail at the bottom. With
hierarchical parallel coordinates, the items are clustered and an entire cluster of
items is represented by a band of varying width and opacity, where the mean is in
the middle and width at each axis dependson the values of the items in the cluster
in that dimension. The coloring of eachband is based on the proximity between
clusters according to a similarity metric.

27.8.2 Graphs

The field of graph drawing is concerned withfinding a spatial position for the
nodes in a graph in 2D or 3D space and routing the edges between these nodes
(Di Battista et al., 1999). In many casesthe edge-routing problem is simpli-

27.8. Examples 703

fied by using only straight edges, or by only allowing right-angle bends for the
class oforthogonal layouts, but some approaches handle true curves. If the graph
has directed edges, a layered approach can be used to show hierarchical struc-
ture through the horizontal or vertical spatial ordering of nodes, as shown in Fig-
ure 27.2.

Figure 27.22. Graph lay-
out aesthetic criteria. Top:
Edge crossings should be
minimized. Middle: Angular
resolution should be max-
imized. Bottom: Symme-
try is maximized on the left,
whereas crossings are min-
imized on the right, showing
the conflict between the in-
dividually NP-hard criteria.

A suite of aesthetic criteria operationalize human judgements about readable
graphs as metrics that can be computed on a proposed layout (Ware et al., 2002).
Figure 27.22 shows some examples. Some metrics should be minimized, such
as the number of edge crossings, the total area of the layout, and the number of
right-angle bends or curves. Others should be maximized, such as the angular
resolution or symmetry. The problem is difficult because most of these criteria
are individually NP-hard, and moreover they are mutually incompatible (Bran-
denburg, 1988).

Many approaches to node-link graph drawing use force-directed placement,
motivated by the intuitive physical metaphor of spring forces at the edges drawing
together repelling particles at the nodes. Although naive approaches have high
time complexity and are prone to being caught in local minima, much work has
gone into developing more sophisticated algorithms such as GEM (Frick et al.,
1994) or IPSep-CoLa (Dwyer et al., 2006). Figure 27.23 shows an interactive
system using ther-PolyLog energy model, where a focus+context view of the
clustered graph is created with both geometric and semanticfisheye (van Ham &
van Wijk, 2004).

Figure 27.23. Force-directed placement showing a clustered graph with both geometric
and semantic fisheye. Image courtesy Jarke van Wijk (van Ham & van Wijk, 2004), c© 2004
IEEE.

704 27. Visualization

Figure 27.24. Graphs can be shown with either matrix or node-link views. Image courtesy
Jean-Daniel Fekete (Henry & Fekete, 2006), c© 2006 IEEE.

Graphs can also be visually encoded by showing the adjacency matrix, where
all vertices are placed along each axis and the cell between two vertices is colored
if there is an edge between them. The MatrixExplorer system uses linked multi-
ple views to help social science researchers visually analyze social networks with
both matrix and node-link representations (Henry & Fekete, 2006). Figure 27.24
shows the different visual patterns created by the same graph structure in these
two views: A represents an actor connecting several communities; B is a com-
munity; and C is a clique, or a complete sub-graph. Matrix views do not suffer
from cluttered edge crossings, but many tasks including path following are more
difficult with this approach.

27.8.3 Trees

Trees are a special case of graphs so common that a great deal of visualization
research has been devoted to them. A straightforward algorithm to lay out trees in
the two-dimensional plane works well for small trees (Reingold & Tilford, 1981),
while a more complex but scalable approach runs in linear time (Buchheim et
al., 2002). Figures 27.17 and 27.18 also show trees with different approaches
to spatial layout, but all four of these methods visually encode the relationship
between parent and child nodes by drawing a link connecting them.

27.8. Examples 705

Figure 27.25. Treemap showing a filesystem of nearly one million files. Image courtesy
Jean-Daniel Fekete (Fekete & Plaisant, 2002), c© 2002 IEEE. (See also Plate LII.)

Treemaps use containment rather than connection to show the hierarchical
relationship between parent and child nodes in a tree (B. Johnson & Shneider-
man, 1991). That is, treemaps show child nodes nested within the outlines of
the parent node. Figure 27.25 shows a hierarchicalfilesystem of nearly one mil-
lion files, wherefile size is encoded by rectangle size andfile type is encoded by
color (Fekete & Plaisant, 2002). The size of nodes at the leaves of the tree can
encode an additional data dimension, but the size of nodes in the interior does not
show the value of that dimension; it is dictated by the cumulative size of their de-
scendants. Although tasks such as understanding the topological structure of the
tree or tracing paths through it are more difficult with treemaps than with node-
link approaches, tasks that involve understanding an attribute tied to leaf nodes
are well supported. Treemaps are space-filling representations that are usually
more compact than node-link approaches.

27.8.4 Geographic

Many kinds of analysis such as epidemiology require understanding both geo-
graphic and nonspatial data. Figure 27.26 shows a tool for the visual analysis
of a cancer demographics dataset that combines many of the ideas described in

706 27. Visualization

Figure 27.26. Two matrices of linked small multiples showing cancer demographic
data (MacEachren et al., 2003), c© 2003 IEEE. (See also Plate LIII).

27.8. Examples 707

this chapter (MacEachren et al., 2003). The top matrix of linked views features
small multiples of three types of visual encodings: geographic maps showing Ap-
palachian counties at the lower left, histograms across the diagonal of the matrix,
and scatterplots on the upper right. The bottom2 × 2 matrix, linking scatterplots
with maps, includes the color legend for both. The discrete bivariate sequential
colormap has lightness increasing sequentially for each of two complementary
hues and is effective for color-deficient people.

27.8.5 Spatial Fields

Most nongeographicspatial data is modeled as afield, where there are one or more
values associated with each point in 2D or 3D space. Scalarfields, for example
CT or MRI medical imaging scans, are usually visualized byfinding isosurfaces
or using direct volume rendering. Vectorfields, for exampleflows in water or air,
are often visualized using arrows, streamlines (McLouglin et al., 2009), andline

integral convolution (LIC) (Laramee et al., 2004). Tensorfields, such as those
describing the anisotropic diffusion of molecules through the human brain, are
particularly challenging to display (Kindlmann et al., 2000). In the next chapter,
spatialfields are discussed in detail.

Frequently Asked Questions

• What conferences and journals are good places to look for further infor-
mation about visualization?

The IEEE VisWeek conference comprises three subconferences: InfoVis (Infor-
mation Visualization), Vis (Visualization), and VAST (Visual Analytics Science
and Technology). There is also a European EuroVis conference and an Asian
PacificVis venue. Relevant journals include IEEE TVCG (Transactions on Visu-
alization and Computer Graphics) and Palgrave Information Visualization.

• What software and toolkits are available for visualization?

The most popular toolkit for spatial data isvtk, a C/C++ codebase available at
www.vtk.org. For abstract data, the Java-basedprefuse (http://www.prefuse.
org) and Processing (processing.org) toolkits are becoming widely used. The
ManyEyes site from IBM Research (www.many-eyes.com) allows people to up-
load their own data, create interactive visualizations in a variety of formats, and
carry on conversations about visual data analysis.

http://www.vtk.org
http://www.prefuse.org
http://www.prefuse.org
http://www.many-eyes.com

2 82 8

Spatial-Field Visualization

The topic of visualization was introduced in the previous chapter, together with
visual encodings appropriate for a wide range of types of data. For many visu-
alization applications, the main challenge lies infinding the appropriate spatial
mapping of the data, but in other casesthe data comes with a natural mapping.
For instance, a photograph is a set of measured data that has an obvious visual-
ization: simply display it on the screen. However, other ways of displaying the
data may be useful as well, depending on what the user is trying to learn from it.
An X-ray radiograph used to diagnose a broken bone is another example of a 2D
image that is normally displayed directly.

An X-ray is a 2Dscalar field: a dataset that describes a functionR
2 → R,

in this case representing a projection of the density of a patient’s body onto a
plane. Other kinds of medical images, such as computed tomagraphy (CT) images
or magnetic resonance images (MRIs), are 2D scalarfields that describeslices

through a patient’s body rather than projections. If many closely-spaced slices
are measured, then the resulting dataset is a3D scalar field, or volume dataset,
representing a functionR3 → R. This type of data can be displayed one slice
at a time, but it also invites perspective or orthographic views that can provide
additional insight into 3D shape.

The importance of scalarfields has led to a number of special techniques and
algorithms, particularly for rendering 3D views of volume data. As with other
kinds of visualization, the primary goal is to map the relevant features of the data
into visual features that play to the strengths of the human visual system.

709

710 28. Spatial-Field Visualization

28.1 2D Scalar Fields

Figure 28.1. A contour
plot for four levels of the
function 1 - x2 - y2.

For simplicity, assume that our 2D scalar data is defined as

f(x, y) =

{

1 − x2 − y2, if x2 + y2 < 1,

0 otherwise,
(28.1)

over the square(x, y) ∈ [−1, 1]2. In practice, we often have a sampled represen-
tation on a rectilinear grid that weinterpolate to get a continuousfield. We will
ignore that issue in 2D for simplicity.

One way to visualize a 2Dfield is to draw lines at afinite set of values
f(x, y) = fi (shown for the function in Equation 28.1 in Figure 28.1). This
is done on many topographic maps to indicate elevation. Isocontours are excel-
lent at communicating slope, but are hard to read “globally” to understand large
trends and extrema in the data.

Another common way to visualize 2D data is to use small pseudorandom dots
whose density is proportional to the value of the function. This is shown for our
test function in Figure 28.2. Such random density plots are useful for display on
black-and-white media, but are otherwise usually not a good choice for visualiza-
tion. Random density plots look smoother and smoother as more and smaller dots
are used maintaining overall density. As the dot size shrinks below human visual

Figure 28.2. A random
density plot for four levels of
the function 1 - x2 - y2.

acuity, the image looks smooth. This results in a grayscale continuous tone plot
of the function. It is hard for humans to read such plots, because our ability to
detect absolute intensity levels is poor. For this reason, color or thresholding is
often used. This is shown in grayscale in Figure 28.3. Formally, we can specify
such a mapping with just a functiong that maps scalar values to colors:

g : R �→ [0, 1]3 .

Here [0, 1]3 refers to the RGB cube. A common strategy is to specify a set of
colors to which specific values map and linearly interpolate colors between them.
A set of colors that increases in intensity and cycles in hue is often used. Such a
set of colors for the domain[0, 1] is

Figure 28.3. A grayscale
density plot of the function
1 - x2 - y2.

g(0.00) = (0.0, 0.0, 0.0)

g(0.25) = (0.0, 0.0, 1.0)

g(0.50) = (1.0, 0.0, 0.0)

g(0.75) = (1.0, 1.0, 0.0)

g(1.00) = (1.0, 1.0, 1.0)

28.2. 3D Scalar Fields 711

These plots are often calledpseudocolor displays. We can also display the func-
tion as a height plot as shown in Figure 28.4. This type of plot is good for showing
the shape of a function. Note that this plot makes it more obvious that the function
is spherical.

Figure 28.4. A height plot
of the function.

Often, more than one of these methods are used together in a single image,
such as a colored or contoured height plot. Another hybrid technique that is often
used is to shade the height plot and view it orthogonally from above. This is a
shaded relief map, often used for geographical applications.

28.2 3D Scalar Fields

In 3D we can use some of the same techniques as in 2D. We can make a con-
tour plot, where each contour is a 3D surface called anisosurface. We can also
generalize a random density plot to 3D by scattering particles in 3D. If we take
the limit, as we did in 2D to get a pseudocolor display, then we getdirect volume

rendering. These two methods are covered here. It is not clear how to generalize
height plots, because we have run out of dimensions.

28.2.1 Isosurfaces

Given a 3D scalarfieldf(x, y, z) we can create an isosurface forf(x, y, z) = f0.
In practice, we will havef defined in a 3D rectilinear table that we interpolate for

Figure 28.5. An isosur-
face from the NIH/NIM Visi-
ble Female data set.

intermediate values. An example image is shown in Figure 28.5
There are two basic approaches to creating images of isosurfaces. Thefirst is

to explicitly create a polygonal representation of the isosurface and then render
that representation using standard rendering techniques. The second is to use ray
tracing to create an image by direct intersection calculation. In ray tracing, no
explicit surface is computed. The explicit approach is better when we have small
datasets, or we need the isosurface itself rather than just an image of it. The ray
tracing approach is better for large datasets where we just need the image of the
isosurface.

Creating Polygonal Isosurfaces

The basic idea of creating polygonal isosurfaces treats every rectilinear cell as a
separate problem (Wyvill et al., 1986; W. E. Lorensen & Cline, 1987). Given an

712 28. Spatial-Field Visualization

isovaluef0, there is a surface in the cell if the minimum and maximum of the
eight vertex values surroundf0. What surfaces occur depend on the arrangement
of values above and belowf0. This is shown for three cases in Figure 28.6.

Figure 28.6. Three cases
for polygonal isosurfacing.
The black vertices are on
one side of the isovalue,
and the white on the other.

There are a total of28 = 256 cases for vertices above and below the isovalue.
We can just enumerate all the cases in a table, and do a look-up. We can also
take advantage of some symmetries to reduce the table size. For example, if we
reverse above/below vertices, we can halve the table size. If we are willing to do
flips and rotations, we can reduce the table to size 16, where only 15 of the cases
have polygons.

Ray Tracing

Although the above algorithm, usually calledmarching cubes is elegant and sim-
ple, some care must be taken to ensure accurate results (Nielson, 2003).

The algorithm for intersecting a ray with an isosurface has three phases: tra-
versing a ray through cells which do not contain an isosurface, analytically com-
puting the isosurface when intersecting avoxel containing the isosurface, shading
the resulting intersection point (Lin & Ching, 1996; Parker, Parker, et al., 1999).
This process is repeated for each pixel on the screen.

To find an intersection, the raya + tb traverses cells in the volume checking
each cell to see if its data range bounds an isovalue. If it does, an analytic com-
putation is performed to solve for the ray parametert at the intersection with the
isosurface:

ρ(xa + txb, ya + tyb, za + tzb) − ρiso = 0.

When approximatingρ with a trilinear interpolation between discrete grid points,
this equation will expand to a cubic polynomial int. This cubic can then be
solved in closed form tofind the intersections of the ray with the isosurface in
that cell. Only the roots of the polynomial which are contained in the cell are
examined. There may be multiple roots corresponding to multiple intersection
points. In this case, the smallestt (closest to the eye) is used. There may also
be no roots of the polynomial, in which case the ray misses the isosurface in the
cell.

A rectilinear volume is composed of a three-dimensional array of point sam-
ples that are aligned to the Cartesian axes and are equally spaced in a given dimen-
sion. A single cell from such a volume is shown in Figure 28.7. Other cells can
be generated by exchanging indices(i, j, k) for the zeros and ones in thefigure.

28.2. 3D Scalar Fields 713

Figure 28.7. The geometry for a cell. A “nice” uvw coordinate system is used to make
interpolation math cleaner.

The density at a point within the cell is found usingtrilinear interpolation:

ρ(u, v, w) = (1 − u)(1 − v)(1 − w)ρ000 (28.2)

+ (1 − u)(1 − v)(w)ρ001

+ (1 − u)(v)(1 − w)ρ010

+ (u)(1 − v)(1 − w)ρ100

+ (u)(1 − v)(w)ρ101

+ (1 − u)(v)(w)ρ011

+ (u)(v)(1 − w)ρ110

+ (u)(v)(w)ρ111,

where

u =
x − x0

x1 − x0
, (28.3)

v =
y − y0

y1 − y0
,

w =
z − z0

z1 − z0
.

714 28. Spatial-Field Visualization

Figure 28.8. Various coordinate systems used for interpolation and intersection.

Note that

1 − u =
x1 − x

x1 − x0
, (28.4)

1 − v =
y1 − y

y1 − y0
,

1 − w =
z1 − z

z1 − z0
.

If we redefine u0 = 1 − u and u1 = u, and use similar definitions for
v0, v1, w0, w1, then we get (Figure 28.8)

ρ =
∑

i,j,k=0,1

uivjwkρijk.

It is interesting that the true trilinear isosurface can be fairly complex. The case
where two opposite corners of the cube are on opposite sides of the isovalue from
the other six vertices is shown in Figure 28.9. This is quite different from the two
triangles given by polygonal isosurfacing for that case. One advantage of direct
intersection with the trilinear surface is that ambiguous cases do not arise.

For a given point(x, y, z) in the cell, the surface normal is given by the gra-
dient with respect to(x, y, z):

N = �∇ρ =

(

∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

)

.

Thus, the normal vector of(Nx, NY , Nz) = �∇ρ is
Figure 28.9. A true tri-
linear isosurface generated
using direct ray tracing.

Nx =
∑

i,j,k=0,1

(−1)i+1vjwk

x1 − x0
ρijk,

Ny =
∑

i,j,k=0,1

(−1)j+1uiwk

y1 − y0
ρijk ,

28.2. 3D Scalar Fields 715

Nz =
∑

i,j,k=0,1

(−1)k+1uivj

z1 − z0
ρijk.

Given a rayp = a + tb, the intersection with the isosurface occurs when
ρ(p) = ρiso. We can convert this ray into coordinates defined by(u0, v0, w0):
p0 = a0 + tb0 and a second ray defined byp1 = a1 + tb1. Here the rays are in
the two coordinate systems (Figure 28.8):

a0 = (ua
0 , v

a
0 , wa

0) =

(

x1 − xa

x1 − x0
,
y1 − ya

y1 − y0
,
z1 − za

z1 − z0

)

,

and

b0 = (ub
0, v

b
0, w

b
0) =

(

xb

x1 − x0
,

yb

y1 − y0
,

zb

z1 − z0

)

.

These equations are different becausea0 is a location andb0 is a direction. The
equations are similar fora1 andb1:

a1 = (ua
1 , v

a
1 , wa

1) =

(

xa − x0

x1 − x0
,
ya − y0

y1 − y0
,
za − z0

z1 − z0

)

,

and

b1 = (ub
1, v

b
1, w

b
1) =

(−xb

x1 − x0
,

−yb

y1 − y0
,

−zb

z1 − z0

)

.

Note thatt is the same for all three rays; it can be found by traversing the cells and
doing a brute-force algebraic solution fort. The intersection with the isosurface
ρ(p) = ρiso occurs when

ρiso =
∑

i,j,k=0,1

(

ua
i + tub

i

) (

va
j + tvb

j

) (

wa
k + twb

k

)

ρijk.

This can be simplified to a cubic polynomial int:

At3 + Bt2 + Ct + D = 0,

where

A =
∑

i,j,k=0,1

ub
iv

b
jw

b
kρijk,

B =
∑

i,j,k=0,1

(

ua
i vb

jw
b
k + ub

iv
a
j wb

k + ub
iv

b
jw

a
k

)

ρijk,

C =
∑

i,j,k=0,1

(

ub
iv

a
j wa

k + ua
i vb

jw
a
k + ua

i va
j wb

k

)

ρijk,

D = −ρiso +
∑

i,j,k=0,1

ua
i va

j wa
kρijk.

716 28. Spatial-Field Visualization

The solution to a cubic polynomial is discussed inCubic and Quartic Roots

(Schwarze, 1990). His code is available on the web in severalGraphics Gems

archive sites. Two modifications are needed to use it: linear solutions (his code
assumesA is non-zero), and the EQNEPS parameter is set to 1.0e-30, which
provided for maximum stability for large coefficients.

28.2.2 Direct Volume Rendering

Another way to create a picture of a 3D scalarfield is to do a 3D random density
plot using small opaque spheres. To avoid complications, the spheres can be made
a constant color and, in effect, they are light emitters with no reflectance. Such
a random density plot can be implemented directly using ray tracing and small
spheres, or with 3D points using a traditional graphics API. As in 2D, we can
take the limit as the sphere size goes to zero. This yields a 3D analog of the
pseudocolor display and is usually calleddirect volume rendering (Levoy, 1988;
Drebin et al., 1988; Sabella, 1988; Upson & Keeler, 1988).

There are two parameters that affect the appearance of a volume rendering:
sphere color, and sphere density. These are controlled by a user-specifiedtransfer

function:

color = c(ρ),

number density= d(ρ).

Here thenumber density is the number of spheres per unit volume. If we assume
that the spheres have a small cross-sectional areaa, and we consider a region
along the line of sight that is of a small thickness∆s such that no spheres appear
to overlap (Figure 28.10), then the color is

Figure 28.10. A thin slab
filled with opaque spheres. L(s + ∆s) = (1 − F)L(s) + Fc,

whereF is the fraction of the disk that is covered by spheres as seen from the
viewing direction. Because the disk is very thin, we can ignore spheres visually
overlapping, so this fraction is just the total cross-sectional area of the spheres
divided by the areaA of the disk:

F =
daA∆s

A
= da∆s,

which yields

L(s + ∆s) = (1 − da ∆s)L(s) + da∆sc.

28.2. 3D Scalar Fields 717

Figure 28.11. For direct volume rendering, we can take constant size steps along the ray
and numerically integrate.

We can rearrange terms to give something like a definition of the derivative:

L(s + ∆s) − L(s)

∆s
= −daL(s) + dac.

If we take the limit∆s → 0, we get a differential equation:

dL

ds
= −daL(s) + dac.

For constantd andc this equation has the solution

L(s) = L(0)e−das + c
(

1 − e−das
)

.

This would allow us to analytically compute color for constant density/color re-
gions. However, in practice bothd and c vary along the ray, and there is no
analytic solution to the differential equation. So, in practice, we use a numer-
ical technique. A simple way to proceed is to start at the back of the ray and
incrementally step along the ray as shown in Figure 28.11.

We can apply the original equation for each∆s slice:

L(s + ∆s) = (1 − d(x, y, z)a ∆s)L(s) + d(x, y, z)a ∆sc(x, y, z).

In pseudocode, we initialize the color to the background colorcb and then traverse
the volume from back to front:

718 28. Spatial-Field Visualization

Figure 28.12. A maximum-intensity projection of the NIH/NIM Visible Female dataset. Each
pixel contains a grayscale value that corresponds to the maximum density encountered along
that ray. Image courtesy Steve Parker.

28.2. 3D Scalar Fields 719

find volume entry and exit pointsa andb

L = cb

∆s = distance(a, b)
p = b

for i = 1 to N do
p = p− ∆s(b − a)

L = L + (1 − d(p)a∆sL + d(p)a ∆sc(p))

The step size∆s will determine the quality of the integration. To reduce the
number of variables, we can use a new density functiong(p) = d(p)a.

In some applications direct volume rendering is used to render something sim-
ilar to surfaces. In these cases the transfer function on density is “on” or “off” and
the gradient of the number density is used to get a surface normal for shading.
This can produce images of pseudosurfaces that are less sensitive to noise than
traditional isosurfacing.

Another way to do volume rendering ismaximum-intensity projection. Here,
we set each pixel to the maximum density value encountered along a ray. This
turns the ray integration into a search along the ray which is more efficient. Fig-
ure 28.12 shows an image generated using maximum-intensity projection.

Frequently Asked Questions

• What is the best transfer function for direct volume rendering?

The answer depends highly on the application and the characteristics of the data.
Some empirical tests have been run and can be found in (Pfister et al., 2001). Var-
ious optical models used in direct volume rendering are described in (Max, 1995).

• What do I do to visualize vector or tensor data?

Vector data is often visualized using streamlines, arrows, andline-integral convo-

lution (LIC). Such techniques are surveyed in (Interrante & Grosch, 1997). Tensor
data is more problematic. Even simple diffusion tensor data is hard to visualize
effectively because you just run out of display dimensions for mapping of data
dimensions. See (Kindlmann et al., 2000).

• How do I interactively view a volume by changing isovalues?

One way is to use ray tracing on a parallel machine. The other is to use polygonal
isosurfacing with a preprocess that helpssearch for cells containing an isosurface.

720 28. Spatial-Field Visualization

That search can be implemented using the data structure in (Livnat et al., 1996).

• My volume data is unstructured tetrahedra. How do I do isosurfacing or
direct volume rendering?

Isosurfacing can still be done in a polygonal fashion, but there are fewer cases to
preprocess. Ray tracing can also be usedfor isosurfacing or direct volume ren-
dering, but the traversal algorithm must progress through the unstructured data
either using neighbor pointers (Garrity, 1990) or by adding cells to an efficiency
structure (Parker, Parker, et al., 1999).

• What is “splatting” for direct volume rendering?

Splatting refers to projecting semitransparent voxels onto the screen using some
sort of painters’ algorithm (Laur & Hanrahan, 1991).

Exercises

1. If we have a tetrahedral data element with densities at each of the four
vertices, how many “cases” are there for polygonal isosurfaces?

2. Suppose we haven3 data elements in a volume. If the densities in the
volume are “well behaved,” approximately how many cells will contain an
isosurface for a particular isovalue?

3. Should we add shadowing to direct volume rendering? Why or why not?

References

Adelson, E. H. (1999). Lightness Perception and Lightness Illusions. In M. S.
Gazzaniga (Ed.),The New Cognitive Neurosciences (Second ed., pp. 339–
351). Cambridge, MA: MIT Press.

Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A., & Savchenko,
V. (1999, Sep). Hyperfun Project: A Framework for Collaborative Multi-
dimensional F-rep Modeling. InImplicit Surfaces ’99 (p. 59-69). Aire-la-
ville, Switzerland: Eurographics Association.

Akenine-Möller, T., Haines, E., & Hoffman, N. (2008).Real-Time Rendering

(Third ed.). Wellesley, MA: A K Peters.
Akkouche, S., & Galin, E. (2001). Adaptive Implicit Surface Polygonization

Using Marching Triangles.Computer Graphics Forum, 20(2), 67–80.
Akleman, E., & Chen, J. (1999). Generalized Distance Functions. InProceedings

of the International Conference on Shape Modeling and Applications (pp.
72–79). Washington, DC: IEEE Computer Society.

Amanatides, J., & Woo, A. (1987). A Fast Voxel Traversal Algorithm for Ray
Tracing. InProceedings of Eurographics (pp. 1–10). Amsterdam: Elsevier
Science Publishers.

Amar, R., Eagan, J., & Stasko, J. (2005). Low-Level Components of Analytic
Activity in Information Visualization. InProc. IEEE Symposium on In-

formation Visualization (InfoVis) (pp. 111–117). Washington, DC: IEEE
Computer Society.

American National Standard Institute. (1986).Nomenclature and Definitions for

Illumination Engineering. ANSI Report (New York). (ANSI/IES RP-16-
1986).

721

722 References

Angel, E. (2002). Interactive computer graphics: A top-down approach with

opengl (Third ed.). Reading, MA: Addison-Wesley.
Appel, A. (1968). Some Techniques for Shading Machine Renderings of Solids.

In Proceedings of the AFIPS Spring Joint Computing Conference (Vol. 32,
pp. 37–45). AFIPS.

Arvo, J. (1995).Analytic Methods for Simulated Light Transport. Unpublished
doctoral dissertation.

Ashdown, I. (1994).Radiosity: A Programmer’s Perspective. New York: John
Wiley & Sons.

Ashikhmin, M. (2002). A Tone Mapping Algorithm for High Contrast Images. In
EGRW ’02: Proceedings of the 13th Eurographics Workshop on Rendering

(pp. 145–155). Aire-la-Ville, Switzerland: Eurographics Association.
Ashikhmin, M., Premǒze, S., & Shirley, P. (2000). A Microfacet-Based BRDF

Generator. InProceedings of SIGGRAPH (pp. 65–74). Reading, MA:
Addison-Wesley Longman.

Ashikhmin, M., & Shirley, P. (2000). An Anisotropic Phong BRDF Model.
journal of graphics tools, 5(2), 25–32.

Baerentzen, J., & Christensen, N. (2002, May). Volume Sculpting Using the
Level-Set Method. InSMI ’02: Proceedings of Shape Modeling Interna-

tional 2002 (SMI ’02) (p. 175-182). Washington, DC: IEEE Computer
Society.

Barr, A. H. (1984). Global and Local Deformations of Solid Primitives.Proc.

SIGGRAPH ’84 Computer Graphics, 18(3), 21-30.
Bartels, R. H., Beatty, J. C., & Barsky, B. A. (1987).An Introduction to Splines

for Use in Computer Graphics and Geometric Modeling. San Francisco,
CA: Morgan Kaufmann.

Barthe, L., Dodgson, N. A., Sabin, M. A., Wyvill, B., & Gaildrat, V. (2003). Two-
dimensional Potential Fields for Advanced Implicit Modeling Operators.
Computer Graphics Forum, 22(1), 23–33.

Barthe, L., Mora, B., Dodgson, N. A., & Sabin, M. A. (2002). Interactive Implicit
Modelling based on C1 Reconstruction of Regular Grids.International

Journal of Shape Modeling, 8(2), 99-117.
Baumgart, B. (1974, October).Geometric Modeling for Computer Vision (Tech.

Rep. No. AIM-249). Palo Alto, CA: Stanford University AI Laboratory.
Beck, K., & Andres, C. (2004).Extreme Programming Explained: Embrace

Change (Second ed.). Reading, MA: Addison-Wesley.
Berlin, B., & Kay, P. (1969).Basic Color Terms: Their Universality and Evolu-

tion. Berkeley, CA: University of California Press.
Berns, R. S. (2000).Billmeyer and saltzman’s principles of color technology (3rd

ed.). New York: John Wiley and Sons.
Blinn, J. (1982). A Generalization of Algebraic Surface Drawing.ACM Trans-

actions on Graphics, 1(3), 235–258.
Blinn, J. (1996).Jim Blinn’s Corner. San Francisco, CA: Morgan Kaufmann.

References 723

Blinn, J. F. (1976). Texture and Reflection in Computer Generated Images.Com-

munications of the ACM, 19(10), 542-547.
Blinn, J. F. (1978). Simulation of Wrinkled Surfaces.Proc. SIGGRAPH ’78

Computer Graphics, 12(3), 286–292.
Bloomenthal, J. (1988). Polygonization of Implicit Surfaces.Computer Aided

Geometric Design, 4(5), 341-355.
Bloomenthal, J. (1990). Calculation of Reference Frames Along a Space Curve.

In A. Glassner (Ed.),Graphics Gems (pp. 567–571). Boston: Academic
Press.

Bloomenthal, J. (1995).Skeletal Design of Natural Forms. Unpublished doctoral
dissertation, University of Calgary, Canada.

Bloomenthal, J. (1997). Bulge Elimination in Convolution Surfaces.Computer

Graphics Forum, 16(1), 31–41.
Bloomenthal, J., & Shoemake, K. (1991). Convolution Surfaces.Proc. SIG-

GRAPGH ’91, Computer Graphics, 25(4), 251–257.
Brandenburg, F. J. (1988). Nice Drawing of Graphs are Computationally Hard.

In P. Gorney & M. J. Tauber (Eds.),Visualization in Human-Computer In-

teraction (pp. 1–15). Berlin: Springer-Verlag.
Bresenham, J. E. (1965). Algorithm for Computer Control of a Digital Plotter.

IBM Systems Journal, 4(1), 25–30.
Brewer, C. A. (1999). Color Use Guidelines for Data Representation. InProc.

Section on Statistical Graphics (pp. 55–60). Alexandria, VA: American
Statistical Association.

Buchheim, C., J¨unger, M., & Leipert, S. (2002). Improving Walker’s Algorithm
to Run in Linear Time. InGD ’02: Revised Papers from the 10th Interna-

tional Symposium on Graph Drawing (pp. 344–353). London: Springer-
Verlag.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., et al.
(n.d.). Brook for GPUs: Stream Computing on Graphics Hardware.ACM

Transactions on Graphics (TOG) (Proc. SIGGRAPH 2004.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).

Pattern-Oriented Software Architecture (Vols. 1, A System of Patterns).
New York: John Wiley & Sons.

Campagna, S., Kobbelt, L., & Seidel, H.-P. (1998). Directed Edges—A Scalable
Representation for Triangle Meshes.journal of graphics tools, 3(4), 1–12.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,
B. C., et al. (2001). Reconstruction and representation of 3d objects with
radial basis functions. InSiggraph ’01: Proceedings of the 28th annual

conference on computer graphics and interactive techniques (pp. 67–76).
New York: ACM.

Carr, N. A., Hall, J. D., & Hart, J. C. (2002). The Ray Engine. InHWWS

’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference

724 References

on Graphics Hardware (pp. 37–46). Aire-la-Ville, Switzerland: Eurograph-
ics Association.

Catmull, E. (1975). Computer Display of Curved Surfaces. InIEEE Conference

on Computer Graphics, Pattern Recognition and Data Structures (pp. 11–
17). Los Alamitos, CA: IEEE Press.

Chiu, K., Herf, M., Shirley, P., Swamy, S., Wang, C., & Zimmerman, K. (1993).
Spatially Nonuniform Scaling Functions for High Contrast Images. InPro-

ceedings of Graphics Interface ’93 (pp. 245–253). Wellesley, MA: A K
Peters & Canadian Human-Computer Communications Society.

Choudhury, P., & Tumblin, J. (2003). The Trilateral Filter for High Contrast
Images and Meshes. InEGRW ’03: Proceedings of the 14th Eurographics

Workshop on Rendering (pp. 186–196). Aire-la-Ville, Switzerland: Euro-
graphics Association.

Cleary, J., Wyvill, B., Birtwistle, G.,& Vatti, R. (1983). A Parallel Ray Tracing
Computer. InProceedings of the Association of Simula Users Conference

(pp. 77–80).
Cohen, E., Riesenfeld, R. F., & Elber, G. (2001).Geometric Modeling with

Splines: An Introduction. Wellesley, MA: A K Peters.
Cohen, M. F., Chen, S. E., Wallace, J. R., & Greenberg, D. P. (1988). A Progres-

sive Refinement Approach to Fast Radiosity Image Generation. InSIG-

GRAPH ’88: Proceedings of the 15th Annual Conference on Computer

Graphics and Interactive Techniques (pp. 75–84). New York: ACM Press.
Cohen, M. F., & Wallace, J. R. (1993).Radiosity and Realistic Image Synthesis.

Cambridge, MA: Academic Press, Inc.
Comaniciu, D., & Meer, P. (2002). Mean Shift: A Robust Approach Toward Fea-

ture Space Analysis.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(5), 603–619.
Cook, R. L. (1984). Shade Trees.Proc. SIGGRAPH ’84, Computer Graphics,

18(3), 223–231.
Cook, R. L., Carpenter, L., & Catmull, E. (1987). The Reyes Image Rendering

Architecture.Proc. SIGGRAPH ’87 Computer Graphics, 21(4), 95–102.
Cook, R. L., Porter, T., & Carpenter, L. (1984). Distributed Ray Tracing.Proc.

SIGGRAPH ’84, Computer Graphics, 18(3), 137–145.
Cook, R. L., & Torrance, K. E. (1982). A Reflectance Model for Computer

Graphics.ACM Transactions on Graphics, 1(1), 7–24.
Coombe, G., Harris, M. J., & Lastra, A. (2004). Radiosity on Graphics Hardware.

In GI ’04: Proceedings of the 2004 Conference on Graphics Interface (pp.
161–168). Wellesley, MA: A K Peters & Canadian Human-Computer Com-
munications Society.

Crow, F. C. (1978). The Use of Grayscale for Improved Raster Display of Vectors
and Characters. InSIGGRAPH ’78: Proceedings of the 5th Annual Con-

ference on Computer Graphics and Interactive Techniques (pp. 1–5). New
York: ACM Press.

References 725

Crowe, M. J. (1994).A History of Vector Analysis. Mineola, NY: Dover.
Curless, B., & Levoy, M. (1996). A Volumetric Method for Building Complex

Models from Range Images. InSIGGRAPH ’96: Proceedings of the 23rd

Annual Conference on Computer Graphics and Interactive Techniques (pp.
303–312). Reading, MA: Addison-Wesley.

da Vinci, L. (1970).The Notebooks of Leonardo da Vinci (Vol. 1). Mineola, NY:
Dover Press.

Dachsbacher, C., Vogelgsang, C., & Stamminger, M. (2003). Sequential Point
Trees.ACM Transactions on Graphics, (Proc. SIGGRAPH 03), 22(3), 657–
662.

Debevec, P. E., & Malik, J. (1997). Recovering High Dynamic Range Radi-
ance Maps from Photographs. InSIGGRAPH ’97: Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive Techniques (pp.
369–378). Reading, MA: Addison-Wesley.

De Boor, C. (1978).A Practical Guide to Splines. Berlin: Springer-Verlag.
De Boor, C. (2001).A Practical Guide to Splines. Berlin: Springer-Verlag.
deGroot, E., & Wyvill, B. (2005). Rayskip: Faster Ray Tracing of Implicit Sur-

face Animations. InGRAPHITE ’05: Proceedings of the 3rd International

Conference on Computer Graphics and Interactive Techniques in Australa-

sia and South East Asia (pp. 31–36). New York: ACM Press.
DeRose, T. (1989).A Coordinate-Free Approach to Geometric Programming

(Tech. Rep. No. 89-09-16). Seattle, WA: University of Washington.
Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1999).Graph Drawing:

Algorithms for the Visualization of Graphs. Englewood Cliffs, NJ: Prentice
Hall.

Dinh, H., Slabaugh, G., & Turk, G. (2001). Reconstructing Surfaces Using
Anisotropic Basis Functions. InInternational Conference on Computer

Vision (ICCV) 2001 (pp. 606–613). Washington, DC: IEEE.
Dobkin, D. P., & Mitchell, D. P. (1993). Random-Edge Discrepancy of Su-

persampling Patterns. InProceedings of Graphics Interface (pp. 62–69).
Wellesley, MA: A K Peters & Canadian Human-Computer Communica-
tions Society.

Dooley, D., & Cohen, M. F. (1990). Automatic Illustration of 3D Geometric Mod-
els: Lines. InSI3D ’90: Proceedings of the 1990 Symposium on Interactive

3D Graphics (pp. 77–82). New York: ACM Press.
Doran, C., & Lasenby, A. (2003).Geometric Algebra for Physicists. Cambridge,

UK: Cambridge University Press.
Drago, F., Myszkowski, K., Annen, T., & Chiba, N. (2003). Adaptive Logarithmic

Mapping for Displaying High Contrast Scenes.Computer Graphics Forum,
22(3), 419–426.

Drebin, R. A., Carpenter, L., & Hanrahan, P. (1988). Volume Rendering.Proc.

SIGGRAPH ’88, Computer Graphics, 22(4), 64–75.

726 References

Duchon, J. (1977). Constructive Theory of Functions of Several Variables. In
(pp. 85–100). Berlin: Springer-Verlag.

Durand, F., & Dorsey, J. (2002). Fast Bilateral Filtering for the Display of High-
Dynamic-Range Images.ACM Transactions on Graphics, 21(3), 257–266.

Dutré, P., Bala, K., & Bekaert, P. (2002).Advanced Global Illumination. Welles-
ley, MA: A K Peters.

Dwyer, T., Koren, Y., & Marriott, K. (2006). IPSep-CoLa: An Incremental Proce-
dure for Separation Constraint Layout of Graphs.IEEE Trans. Visualization

and Computer Graphics (Proc. InfoVis 06), 12(5), 821–828.
Eberly, D. (2000).3D Game Engine Design: A Practical Approach to Real-Time

Computer Graphics. San Francisco, CA: Morgan Kaufmann.
Eberly, D. (2004).3D Game Engine Architecture: Engineering Real-Time Appli-

cations with Wild Magic. San Francisco, CA: Morgan Kaufmann.
Eckman, P., & Friesen, W. V. (1978).Facial Action Coding System. Palo Alto,

CA: Consulting Psychologists Press.
Eick, S. G., Steffen, J. L., & Sumner, E. E., Jr. (1992). Seesoft-A Tool for

Visualizing Line Oriented Software Statistics.IEEE Trans. Software Eng.,
18(11), 957–968.

Ershov, S., Kolchin, K., & Myszkowski, K. (2001). Rendering Pearlescent Ap-
pearance Based on Paint-Composition Modelling.Computer Graphics Fo-

rum, 20(3), 227–238.
Fairchild, M. D. (2005). Color Appearance Models (Second ed.). New York:

John Wiley & Sons.
Fairchild, M. D., & Johnson, G. M. (2002). Meet iCAM: An Image Color Ap-

pearance Model. InIS&T/SID 10th Color Imaging Conference (pp. 33–38).
Springfield, VA: Society for Imaging Science & Technology.

Fairchild, M. D., & Johnson, G. M. (2004). The iCAM Framework for Image
Appearance, Image Differences, and Image Quality.Journal of Electronic

Imaging, 13, 126–138.
Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide. San

Francisco, CA: Morgan Kaufmann.
Farin, G., & Hansford, D. (2004).Practical Linear Algebra: A Geometry Tool-

box. Wellesley, MA: A K Peters.
Farin, G., Hoschek, J., & Kim, M.-S. (Eds.). (2002).Handbook of Computer

Aided Geometric Design. Amsterdam: Elsevier.
Fattal, R., Lischinski, D., & Werman, M. (2002). Gradient Domain High Dynamic

Range Compression.ACM Transactions on Graphics, 21(3), 249–256.
Fekete, J.-D., & Plaisant, C. (2002). Interactive Information Visualization of

a Million Items. InProc. IEEE Symposium on Information Visualization

(InfoVis 02) (pp. 117–124). Washington, DC: IEEE Computer Scoiety.
Fernando, R. (Ed.). (2004).GPU Gems: Programming Techniques, Tips, and

Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley.

References 727

Fernando, R., & Killgard, M. J. (2003).The Cg Tutorial: The Definitive Guide

to Programmable Real-Time Graphics. Reading, MA: Addison-Wesley.
Ferwerda, J. A., Pattanaik, S., Shirley, P., & Greenberg, D. P. (1996). A Model

of Visual Adaptation for Realistic Image Synthesis. InSIGGRAPH ’96:

Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques (pp. 249–258). New York: ACM Press.
Ferwerda, J. A., Shirley, P., Pattanaik, S. N., & Greenberg, D. P. (1997). A

Model of Visual Masking for Computer Graphics. InSIGGRAPH ’97:

Proceedings of the 24th Annual Conference on Computer Graphics and

Interactive Techniques (pp. 143–152). Reading, MA: Addison-Wesley.
Foley, J. D., Van Dam, A., Feiner, S. K., & Hughes, J. F. (1990).Computer

Graphics: Principles and Practice (Second ed.). Reading, MA: Addison-
Wesley.

Forsyth, D. A., & Ponce, J. (2002).Computer Vision: A Modern Approach.
Englewoods Cliffs, NJ: Prentice Hall.

Francis S. Hill, J. (2000).Computer Graphics Using OpenGL (Second ed.).
Englewood Cliffs, NJ: Prentice Hall.

Frick, A., Ludwig, A., & Mehldau, H. (1994). A Fast Adaptive Layout Algorithm
for Undirected Graphs. InGD ’94: Proceedings of the DIMACS Interna-

tional Workshop on Graph Drawing (pp. 388–403). London: Springer-
Verlag.

Friendly, M. (2008). A Brief History of Data Visualization. InHandbook of

Data Visualization (pp. 15–56). (Web document, http://www.math.yorku.
ca/SCS/Gallery/milestone/.)

Frisken, S., Perry, R., Rockwood, A., & Jones, T. (2000). Adaptively Sampled
Distance Fields. InSiggraph ’00: Proceedings of the 27th Annual Confer-

ence on Computer Graphics and Interactive Techniques (p. 249-254). New
York: ACM Press/Addison-Wesley Publishing Co.

Fua, Y.-H., Ward, M. O., & Rundensteiner, E. A. (1999). Hierarchical Parallel
Coordinates for Exploration of Large Datasets. InProc. IEEE Visualiza-

tion Conference (Vis ’99) (pp. 43–50). Washington, DC: IEEE COmputer
Society.

Fujimoto, A., Tanaka, T., & Iwata, K. (1986). ARTSccelerated Ray-Tracing
System.IEEE Computer Graphics & Applications, 6(4), 16–26.

Galin, E., & Akkouche, S. (1999). Incremental Polygonization of Implicit Sur-
faces.Graphical Models, 62(1), 19–39.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).Design Patterns—

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley.

Gansner, E. R., Koutsofois, E., North, S. C., & Vo, K.-P. (1993, March). A
Technique for Drawing Directed Graphs.IEEE Transactions on Software

Engineering, 19(3), 214–229.

http://www.math.yorku

728 References

Garrity, M. P. (1990). Raytracing Irregular Volume Data. InVVS ’90: Proceed-

ings of the 1990 Workshop on Volume Visualization (pp. 35–40). New York:
ACM Press.

Gascuel, M.-P. (1993, Aug). An Implicit Formulation for Precise Contact Model-
ing Between Flexible Solids. InSIGGRAPH ’93: Proceedings of the 20th

Annual Conference on Computer Graphics and Interactive Techniques (p.
313-320). New York: ACM Press.

Gibson, J. J. (1950).The Perception of the Visual World. Cambridge, MA:
Riverside Press.

Gilchrist, A. L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., et
al. (1999). An Anchoring Theory of Lightness Perception.Psychological

Review, 106(4), 795–834.
Glassner, A. (1984). Space Subdivision for Fast Ray Tracing.IEEE Computer

Graphics & Applications, 4(10), 15–22.
Glassner, A. (1988). Spacetime Ray Tracing for Animation.IEEE Computer

Graphics & Applications, 8(2), 60–70.
Glassner, A. (Ed.). (1989).An Introduction to Ray Tracing. London: Academic

Press.
Glassner, A. (1995).Principles of Digital Image Synthesis. San Francisco, CA:

Morgan Kaufmann.
Goldberg, A., & Robson, D. (1989).Smalltalk-80: The Language. Reading, MA:

Addison-Wesley.
Goldman, R. (1985). Illicit Expressions in Vector Algebra.ACM Transactions

on Graphics, 4(3), 223–243.
Goldsmith, J., & Salmon, J. (1987). Automatic Creation of Object Hierarchies

for Ray Tracing.IEEE Computer Graphics & Applications, 7(5), 14–20.
Gooch, A., Gooch, B., Shirley, P., & Cohen, E. (1998). A Non-Photorealistic

Lighting Model for Automatic Technical Illustration. InSIGGRAPH ’98:

Proceedings of the 25th Annual Conference on Computer Graphics and

Interactive Techniques (pp. 447–452). New York: ACM Press.
Goral, C. M., Torrance, K. E., Greenberg, D. P., & Battaile, B. (1984). Modeling

the Interaction of Light between Diffuse Surfaces.Proc. SIGGRAPH ’84,

Computer Graphics, 18(3), 213–222.
Gouraud, H. (1971). Continuous Shading of Curved Surfaces.Communications

of the ACM, 18(6), 623-629.
Grassmann, H. (1853). Zur Theorie der Farbenmischung.Annalen der Physik

und Chemie, 89, 69–84.
Gregory, R. L. (1997).Eye and Brain: The Psychology of Seeing (Fifth ed.).

Princeton, NJ: Princeton University Press.
Grosjean, J., Plaisant, C., & Bederson, B. (2002). SpaceTree: Supporting Explo-

ration in Large Node Link Tree, Design Evolution and Empirical Evalua-
tion. In Proc. IEEE Symposium on Information Visualization (InfoVis) (pp.
57–64). Washington, DC: IEEE Computer Society.

References 729

Grossman, T., Wigdor, D., & Balakrishnan, R. (2007). Exploring and Reducing
the Effects of Orientation on Text Readability in Volumetric Displays. In
Proc. ACM Conf. Human Factors in Computing Systems (CHI) (pp. 483–
492). New York: ACM Press.

Hammersley, J., & Handscomb, D. (1964).Monte-Carlo Methods. London:
Methuen.

Hanrahan, P., & Lawson, J. (1990). A Language for Shading and Lighting Calcu-
lations. InSIGGRAPH ’90: Proceedings of the 17th Annual Conference on

Computer Graphics and Interactive Techniques (pp. 289–298). New York:
ACM Press.

Hanson, A. J. (2005).Visualizing Quaternions. San Francisco, CA: Morgan
Kaufmann.

Harris, M. J. (2004). Fast Fluid Dynamics Simulation on the GPU. InGPU

Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics

(chap. 38). Reading, MA: Addison-Wesley.
Harris, M. J., Baxter, W. V., Scheuermann, T., & Lastra, A. (2003). Simulation of

Cloud Dynamics on Graphics Hardware. InHWWS ’03: Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware

(pp. 92–101). Aire-la-Ville, Switzerland: Eurographics Association.
Hart, J. C., & Baker, B. (1996, Oct). Implicit Modeling of Tree Surfaces. InPro-

ceedings of Implicit Surfaces ’96 (p. 143-152). Aire-la-Ville, Switzerland:
Eurographics Association.

Hartmann, E. (1998). A Marching Method for the Triangulation of Surfaces.The

Visual Computer, 14(3), 95–108.
Hausner, M. (1998).A Vector Space Approach to Geometry. Mineola, NY: Dover.
Havran, V. (2000).Heuristic Ray Shooting Algorithms. Unpublished doctoral

dissertation, Czech Technical University in Prague.
He, X. D., Heynen, P. O., Phillips, R. L., Torrance, K. E., Salesin, D. H., &

Greenberg, D. P. (1992). A Fast and Accurate Light Reflection Model.
Proc. SIGGRAPH ’92, Computer Graphics, 26(2), 253–254.

Hearn, D., & Baker, M. P. (1986).Computer Graphics. Englewood Cliffs, N.J.:
Prentice Hall.

Heer, J., & Robertson, G. (2007). Animated Transitions in Statistical Data
Graphics. IEEE Trans. on Visualization and Computer Graphics (Proc.

InfoVis07), 13(6), 1240–1247.
Heidrich, W., & Seidel, H.-P. (1998). Ray-Tracing Procedural Displacement

Shaders. InProceedings of Graphics Interface (pp. 8–16). Wellesley, MA:
A K Peters & Canadian Human-Computer Communications Society.

Henry, N., & Fekete, J.-D. (2006). MatrixExplorer: a Dual-Representation Sys-
tem to Explore Social Networks.IEEE Trans. Visualization and Computer

Graphics (Proc. InfoVis 06), 12(5), 677–684.
Hoffmann, B. (1975).About Vectors. Mineola, NY: Dover.

730 References

Hofstadter, D. (1979).Gödel, Escher, Bach: an Eternal Golden Braid. New
York: Basic Books.

Hood, D. C., Finkelstein, M. A., & Buckingham, E. (1979). Psychophysical Tests
of Models of the Response Function.Vision Research, 19, 401–406.

Hoppe, H. (1994).Surface Reconstruction from Unorganized Points. Unpub-
lished doctoral dissertation, University of Washington.

Hoppe, H. (1999). Optimization of Mesh Locality for Transparent Vertex
Caching. InSIGGRAPH ’99: Proceedings of the 26th Annual Conference

on Computer Graphics and Interactive Techniques (pp. 269–276). Reading,
MA: Addison-Wesley.

Horn, B. K. P. (1974). Determining Lightness from an Image.CVGIP, 3, 277–
299.

Hughes, J. F., & Möller, T. (1999). Building an Orthonormal Basis from a Unit
Vector. journal of graphics tools, 4(4), 33–35.

Hunt, R. W. G. (2004).The Reproduction of Color (6th ed.). Chichester, UK:
John Wiley and Sons.

IEEE Standards Association. (1985).IEEE Standard for Binary Floating-Point

Arithmetic (Tech. Rep.). New York: IEEE Report. (ANSI/IEEE Std 754-
1985)

Igarashi, T., Matsuoka, S., & Tanaka, H. (1999). Teddy: A Sketching Interface
for 3D Freeform Design. InSiggraph ’99: Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques (pp. 409–
416). New York: ACM Press/Addison-Wesley Publishing Co.

Immel, D. S., Cohen, M. F., & Greenberg, D. P. (1986). A Radiosity Method for
Non-Diffuse Environments.Proc. SIGGRAPH ’86, Computer Graphics,
20(4), 133–142.

Ingram, S., Munzner, T., & Olano, M. (2009). Glimmer: Multilevel MDS on the
GPU. IEEE Trans. Visualization and Computer Graphics, 15(2), 249–261.

Inselberg, A., & Dimsdale, B. (1990). Parallel Coordinates: A Tool for Visu-
alizing Multi-Dimensional Geometry. InVis ’90: Proceedings of the 1st

Conference on Visualization ’90. Los Alamitos, CA: IEEE Computer Soci-
ety Press.

Interrante, V., & Grosch, C. (1997). Strategies for Effectively Visualizing 3D
Flow with Volume LIC. InVIS ’97: Proceedings of the 8th Conference on

Visualization ’97 (pp. 421–ff.). Los Alamitos, CA: IEEE Computer Society
Press.

Jansen, F. W. (1986). Data Structures for Ray Tracing. InProceedings of a

Workshop Eurographics Seminars on Data Structures for Raster Graphics

(pp. 57–73). New York: Springer-Verlag.
Jensen, H. W. (2001).Realistic Image Synthesis Using Photon Mapping. Welles-

ley, MA: A K Peters.
Jensen, H. W., Marschner, S. R., Levoy, M., & Hanrahan, P. (2001). A Practical

Model for Subsurface Light Transport. InSiggraph ’01: Proceedings of the

References 731

28th Annual Conference on Computer Graphics and Interactive Techniques

(pp. 511–518). New York: ACM Press.
Johansson, G. (1973). Visual Perception of Biological Motion and a Model for

Its Analysis.Perception & Psychophysics, 14, 201–211.
Johnson, B., & Shneiderman, B. (1991). Treemaps: A Space-filling Approach

to the Visualization of Hierarchical Information. InVIS ’91: Proceedings

of the 2nd Conference on Visualization ’91 (pp. 284–291). Los Alamitos,
CA: IEEE Computer Society Press.

Johnson, G. M., & Fairchild, M. D. (2003). Rendering HDR Images. InIS&T/SID

11th Color Imaging Conference (pp. 36–41). Springfield, VA: Society for
Imaging Science & Technology.

Jones, J. A., Harrold, M. J., & Stasko, J. (2002). Visualization of Test Information
to Assist Fault Localization. InICSE ’02: Proceedings of the 24th Inter-

national Conference on Software Engineering (pp. 467–477). New York:
ACM Press.

Judd, D. B. (1932). Chromaticity Sensibility to Stimulus Differences.Journal of

the Optical Society of America, 22, 72–108.
Kainz, F., Bogart, R., & Hess, D. (2003). The OpenEXR Image File Format.

In SIGGRAPH Technical Sketches. New York: ACM Press. (see also:
http://www.openexr.com/)

Kajiya, J. T. (1986). The Rendering Equation.Proc SIGGRAPH ’86 Computer

Graphics, 20(4), 143–150.
Kalos, M., & Whitlock, P. (1986).Monte Carlo Methods, Basics. New York:

Wiley-Interscience.
Kalra, D., & Barr, A. (1989, July). Guaranteed Ray Intersections with Implicit

Functions.Computer Graphics (Proc. SIGGRAPH 89), 23(3), 297-306.
Kay, D. S., & Greenberg, D. (1979). Transparency for Computer Synthesized

Images.Proc. SIGGRAPH ’79 Computer Graphics, 13(2), 158–164.
Kernighan, B. W., & Pike, R. (1999).The Practice of Programming. Reading,

MA: Addison-Wesley.
Kersten, D., Mamassian, P., & Knill, D. C. (1997). Moving Cast Shadows Induce

Apparent Motion in Depth.Perception, 26(2), 171–192.
Kindlmann, G., Weinstein, D., & Hart, D. (2000). Strategies for Direct Volume

Rendering of Diffusion Tensor Fields.IEEE Transactions on Visualization

and Computer Graphics, 6(2), 124–138.
Kirk, D., & Arvo, J. (1988). The Ray Tracing Kernel. InProceedings of Aus-

graph. Melbourne, Australia: Australian Computer Graphics Association.
Klatzky, R. L. (1998). Allocentric and Egocentric Spatial Representations: Defi-

nitions, Distinctions, and Interconnections. In C. Freksa, C. Habel, & K. F.
Wender (Eds.),Spatial Cognition—An Interdiciplinary Approach to Repre-

sentation and Processing of Spatial Knowledge (Vol. 5, pp. 1–17). Berlin:
Springer-Verlag.

http://www.openexr.com/

732 References

Knill, D. C. (1998). Surface Orientation From Texture: Ideal Observers, Generic
Observers and the Information Content of Texture Cues.Vision Research,
38, 1655–1682.

Kollig, T., & Keller, A. (2002). Efficient Multidimensional Sampling.Computer

Graphics Forum, 21(3), 557–564.
Kovitz, B. L. (1999). Practical Sofware Requirements: A Manual of Content &

Style. New York: Manning.
Lacroute, P., & Levoy, M. (1994). Fast Volume Rendering Using a Shear-

Warp Factorization of the Viewing Transformation. InProceedings of SIG-

GRAPH 94 (pp. 451–458). New York: ACM Press.
Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., & Greenberg, D. P. (1997).

Non-Linear Approximation of Reflectance Functions. InProceedings of

SIGGRAPH ’97 (pp. 117–126). Reading, MA: Addison-Wesley.
Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F. H., & Weiskopf,

D. (2004). The State of the Art in Flow Visualization: Dense and Texture-
Based Techniques.Computer Graphics Forum, 23(2), 203–221.

Lasseter, J. (1987). Principles of Traditional Animation Applied to 3D Computer
Animation.Proc. SIGGRAPH ’87, Computer Graphics, 21(4), 35–44.

Lastra, A., Molnar, S., Olano, M., & Wang, Y. (1995). Real-Time Programmable
Shading. InSI3D ’95: Proceedings of the 1995 Symposium on Interactive

3D Graphics (pp. 59–66). New York: ACM Press.
Laur, D., & Hanrahan, P. (1991). Hierarchical Splatting: A Progressive Re-

finement Algorithm for Volume Rendering.Computer Graphics, 25(4),
285–288. (SIGGRAPH ’91)

Lawrence, J., Rusinkiewicz, S., & Ramamoorthi, R. (2004). Efficient BRDF
Importance Sampling Using a Factored Representation.ACM Transactions

on Graphics (Proc. SIGGRAPH ’04), 23(3), 496–505.
Lee, D. N., & Reddish, P. (1981). Plummeting Gannets: A Paradigm of Ecologi-

cal Optics.Nature, 293, 293–294.
Lefohn, A., Kniss, J., & Owens, J. (2005). Implementing Efficient Paral-

lel Data Structures on GPUs. InGPU Gems 2: Programming Tech-

niques for High-Performance Graphics and General Purpose Computation

(chap. 33). Reading, MA: Addison-Wesley.
Lefohn, A. E., Kniss, J. M., Hansen, C. D., & Whitaker, R. T. (2003). Interac-

tive Deformation and Visualization of Level Set Surfaces Using Graphics
Hardware. InIEEE Visualization (pp. 75–82). Los Alamitos, CA: IEEE
Press.

Leung, T., & Malik, J. (1997). On Perpendicular Texture: Why Do We See More
Flowers in the Distance? InProc. IEEE Conference on Computer Vision

and Pattern Recognition (pp. 807–813). Los Alamitos, CA: IEEE Press.
Levoy, M. (1988). Display of Surfaces from Volume Data.IEEE Computer

Graphics & Applications, 8(3), 29–37.

References 733

Levoy, M. (1990). Efficient Ray Tracing of Volume Data.ACM Transactions on

Graphics, 9(3), 245–261.
Lewis, C., & Rieman, J. (1993).Task-Centered User Interface Design: A Practi-

cal Introduction. http://hcibib.org/tcuid/.
Lewis, R. R. (1994). Making Shaders More Physically Plausible.Computer

Graphics Forum, 13(2), 109–120.
Lin, C.-C., & Ching, Y.-T. (1996). An Efficient Volume-Rendering Algorithm

with an Analytic Approach.The Visual Computer, 12(10), 515–526.
Livnat, Y., Shen, H.-W., & Johnson, C. R. (1996). A Near Optimal Isosurface

Extraction Algorithm Using the Span Space.IEEE Transactions on Visual-

ization and Computer Graphics, 2(1), 73–84.
Loop, C. (2000).Managing Adjacency in Triangular Meshes (Tech. Rep. No.

MSR-TR-2000-24). Bellingham, WA: Microsoft Research.
Lorensen, W., & Cline, H. (1987). Marching Cubes: A High Resolution 3D

Surface Construction Algorithm.Computer Graphics (Proc. SIGGRAPH

87), 21(4), 163-169.
Lorensen, W. E., & Cline, H. E. (1987). Marching Cubes: A High Resolution 3D

Surface Construction Algorithm.Proc. SIGGRAPH ’87, Computer Graph-

ics, 21(4), 163–169.
Luboschik, M., Schumann, H., & Cords, H. (2008). Particle-Based Labeling: Fast

Point-Feature Labeling without Obscuring Other Visual Features.IEEE

Trans. on Visualization and Computer Graphics (Proc. InfoVis08), 14(6),
1237–1244.

MacEachren, A., Dai, X., Hardisty, F., Guo, D., & Lengerich, G. (2003). Ex-
ploring High-D Spaces with Multiform Matrices and Small Multiples. In
Proc. ieee symposium on information visualization (infovis) (pp. 31–38).
Washington, DC: IEEE Computer Society Press.

Mackinlay, J. (1986). Automating the Design of Graphical Presentations of Re-
lational Information.ACM Trans. on Graphics (TOG), 5(2), 110–141.

Malley, T. (1988).A Shading Method for Computer Generated Images. Unpub-
lished master’s thesis, Computer Science Department, University of Utah.

Marschner, S. R., & Lobb, R. J. (1994, Oct). An Evaluation of Reconstruction Fil-
ters for Volume Rendering. InVIS ’94: Proceedings of the Conference on

Visualization ’94 (p. 100-107). Washington, DC: IEEE Computer Society
Press.

Marshall, J. A., Burbeck, C. A., Arely, D., Rolland, J. P., & Martin, K. E. (1999).
Occlusion Edge Blur: A Cue to Relative Visual Depth.Journal of the

Optical Society of America A, 13, 681–688.
Matusik, W., Pfister, H., Brand, M., & McMillan, L. (2003). A Data-Driven

Reflectance Model. ACM Transactions on Graphics (Proc. SIGGRAPH

’03), 22(3), 759–769.
Max, N. (1995). Optical Models for Direct Volume Rendering.IEEE Transac-

tions on Visualization and Computer Graphics, 1(2), 99–108.

http://hcibib.org/tcuid/

734 References

McCool, M., Toit, S. D., Popa, T., Chan, B., & Moule, K. (2004). Shader Algebra.
ACM Transactions on Graphics (Proc.SIGGRAPH ’04), 23(3), 787–795.

McLouglin, T., Laramee, R. S., Peikert, R., Post, F. H., & Chen, M. (2009). Over
Two Decades of Integration-Based Geometric Flow Visualization. InProc.

Eurographics 2009, State of the Art Reports. Aire-la-Ville, Switzerland:
Eurographics Association.

Meyers, S. (1995).More Effective C++: 35 New Ways to Improve Your Programs

and Designs. Reading, MA: Addison-Wesley.
Meyers, S. (1997).Effective C++: 50 Specific Ways to Improve Your Programs

and Designs (Second ed.). Reading, MA: Addison-Wesley.
Mitchell, D. P. (1990, May). Robust Ray Intersection with Interval Arithmetic.

In Graphics interface ’90 (p. 68-74). Wellesley, MA: Canadian Human-
Computer Communications Society & A K Peters.

Mitchell, D. P. (1996). Consequences of Stratified Sampling in Graphics. In
SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques (pp. 277–280). New York: ACM
Press.

Mitchell, D. P., & Netravali, A. N. (1988). Reconstruction Filters in Computer
Graphics.Computer Graphics, 22(4), 221–228.

Molnar, S., Eyles, J., & Poulton, J. (1992). Pixelflow: High-Speed Rendering
Using Image Composition.Computer Graphics, 26(2), 231–240. (SIG-
GRAPH ’92)

Morse, B., Yoo, T., Rheingans, P., Chen, D., & Subramanian, K. (2001). Inter-
polating Implicit Surfaces from Scattered Surface Data Using Compactly
Supported Radial Basis Functions. InProceedings of shape modeling in-

ternational (p. 89-98). Washington, DC: IEEE COmputer Society.
Mortenson, M. (1985).Geometric Modeling. New York: John Wiley & Sons.
Munkres, J. (2000).Topology (Second ed.). Englewood Cliffs, NJ: Prentice Hall.
Munzner, T. (2000).Interactive Visualization of Large Graphs and Networks. Un-

published doctoral dissertation, Stanford University Department of Com-
puter Science.

Munzner, T., Guimbreti`ere, F., Tasiran, S., Zhang, L., & Zhou, Y. (2003). Tree-
Juxtaposer: Scalable Tree Comparison Using Focus+Context with Guaran-
teed Visibility. ACM Transactions on Graphics (Proc. SIGGRAPH ’03),
22(3), 453–462.

Museth, K., Breen, D., Whitaker, R., & Barr, A. (2002). Level Set Surface Editing
Operators.ACM Transactions on Graphics, 21(3), 330-338.

Muuss, M. J. (1995). Towards Real-Time Ray-Tracing of Combinatorial Solid
Geometric Models. InProceedings of BRL-CAD Symposium.

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I., & Limperis, T.
(1977). Geometrical Considerations and Nomenclatture for Reflectance

(Tech. Rep. No. 160). Washington, D.C.: National Bureau of Standards.

References 735

Nielson, G. M. (2003). On Marching Cubes.IEEE Transactions on Visualization

and Computer Graphics, 9(3), 283–297.
Nishimura, H., Hirai, A., Kawai, T., Kawata, T., Shirikawa, I., & Omura, K.

(1985). Object Modeling by Distribution Function and a Method of Image
Generation. InJ. Electronics Comm. Conf. ’85 (Vol. J69-D, pp. 718–725).

Ohtake, Y., Belyaev, A., & Pasko, A. (2003). Dynamic Mesh Optimization for
Polygonized Implicit Surfaces with Sharp Features.The Visual Computer,
19(2), 115–126.

Olano, M., & Lastra, A. (1998). A Shading Language on Graphics Hardware: The
Pixelflow Shading System. InSIGGRAPH ’98: Proceedings of the 25th

Annual Conference on Computer Graphics and Interactive Techniques (pp.
159–168). New York: ACM Press.

Oppenheim, A. V., Schafer, R., & Stockham, T. (1968). Nonlinear Filtering of
Multiplied and Convolved Signals.Proceedings of the IEEE, 56(8), 1264–
1291.

Oren, M., & Nayar, S. K. (1994). Generalization of Lambert’s Reflectance
Model. In SIGGRAPH ’94: Proceedings of the 21st Annual Conference

on Computer Graphics and Interactive Techniques (pp. 239–246). New
York: ACM Press.

Osher, S., & Sethian, J. A. (1988). Fronts Propagating with Curvature-Dependent
Speed: Algorithms Based on Hamilton–Jacobi Formulations.Journal of

Computational Physics, 79(1), 12-49.
Osterberg, G. (1935). Topography of the Layer of Rods and Cones in the Human

Retina.Acta Ophthalmologica, 6(1), 11–97. (Supplement)
Overveld, K. van, & Wyvill, B. (2004). Shrinkwrap: An Efficient Adaptive

Algorithm for Triangulating an Iso-Surface .The Visual Computer, 20(6),
362-369.

Paeth, A. W. (1990). A Fast Algorithm for General Raster Rotation. InGraphics

Gems (pp. 179–195). Boston, MA: Academic Press.
Palmer, S. E. (1999).Vision Science—Photons to Phenomenology. Cambridge,

MA: MIT Press.
Parker, S., Martin, W., Sloan, P., Shirley, P., Smits, B., & Hansen, C. (1999).

Interactive Ray Tracing. InACM Symposium on Interactive 3D Graphics

(pp. 119–126). New York: ACM Press.
Parker, S., Parker, M., Livnat, Y., Sloan, P.-P., Hansen, C., & Shirley, P. (1999).

Interactive Ray Tracing for Volume Visualization.IEEE Transactions on

Visualization and Computer Graphics, 5(3).
Pascale, D. (2003).A review of RGB color spaces (Tech. Rep.). The BabelColor

Company. (www.babelcolor.com)
Pashler, H. E. (1998).The Psychology of Attention. Cambridge, MA: MIT Press.
Pasko, A., Adzhiev, V., Sourin, A., & Savchenko, V. (1995). Function represen-

tation in geometric modeling: concepts, implementation and applications.
The Visual Computer, 11(8), 419–428.

http://www.babelcolor.com

736 References

Pasko, G., Pasko, A., Ikeda, M., & Kunii, T. (2002, May). Bounded Blend-
ing Operations. InProceedings of the International Conference on Shape

Modeling and Applications (SMI 2002) (p. 95-103). Washington, DC: IEEE
Computer Society.

Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., & Greenberg, D. P. (1998).
A Multiscale Model of Adaptation and Spatial Vision for Realistic Image
Display. InSIGGRAPH ’98: Proceedings of the 25th Annual Conference

on Computer Graphics and Interactive Techniques (pp. 287–298). New
York: ACM Press.

Pattanaik, S. N., & Yee, H. (2002). Adaptive Gain Control for High Dynamic
Range Image Display. InSCCG ’02: Proceedings of the 18th Spring Con-

ference on Computer Graphics (pp. 83–87). New York: ACM Press.
Patterson, J., Hoggar, S., & Logie, J. (1991). Inverse Displacement Mapping.

Computer Graphics Forum, 10(2), 129–139.
Peachey, D. R. (1985). Solid Texturing of Complex Surfaces.Proc. SIGGRAPH

’85, Computer Graphics, 19(3), 279–286.
Peercy, M. S., Olano, M., Airey, J., & Ungar, P. J. (2000). Interactive Multi-

Pass Programmable Shading. InSIGGRAPH ’00: Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques (pp.
425–432). Reading, MA: Addison-Wesley.

Penna, M., & Patterson, R. (1986).Projective Geometry and Its Applications to

Computer Graphics. Englewood Cliffs, NJ: Prentice Hall.
Perlin, K. (1985). An Image Synthesizer.Computer Graphics, 19(3), 287–296.

(SIGGRAPH ’85)
Perlin, K., & Hoffert, E. M. (1989). Hypertexture.Computer Graphics, 23(3),

253–262. (SIGGRAPH ’89)
Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L. S., et

al. (2001). The Transfer Function Bake-Off.IEEE Computer Graphics &

Applications, 21(3), 16–22.
Pharr, M., & Fernando, R. (Eds.). (2005).GPU Gems 2: Programming Tech-

niques for High-Performance Graphics and General Purpose Computa-

tion. Reading, MA: Addison-Wesley.
Pharr, M., & Hanrahan, P. (1996). Geometry Caching for Ray-Tracing Displace-

ment Maps. InProceedings of the Eurographics Workshop on Rendering

Techniques ’96 (pp. 31–40). London, UK: Springer-Verlag.
Pharr, M., & Humphreys, G. (2004).Physically Based Rendering. San Francisco,

CA: Morgan Kaufmann.
Pharr, M., Kolb, C., Gershbein, R., & Hanrahan, P. (1997). Rendering Complex

Scenes with Memory-Coherent Ray Tracing. InSIGGRAPH ’97: Proceed-

ings of the 24th Annual Conference on Computer Graphics and Interactive

Techniques (pp. 101–108). Reading, MA: Addison-Wesley.
Phong, B.-T. (1975). Illumination for Computer Generated Images.Communica-

tions of the ACM, 18(6), 311–317.

References 737

Pineda, J. (1988). A Parallel Algorithm for Polygon Rasterization.Proc. SIG-

GRAPH ’88, Computer Graphics, 22(4), 17–20.
Pitteway, M. L. V. (1967). Algorithm for Drawing Ellipses or Hyperbolae with a

Digital Plotter.Computer Journal, 10(3), 282–289.
Pixar. (2000).The RenderMan Interface Specification. Emeryville, CA.
Plauger, P. J. (1991).The Standard C Library. Englewood Cliffs, NJ: Prentice

Hall.
Plumlee, M., & Ware, C. (2006). Zooming Versus Multiple Window Interfaces:

Cognitive Costs of Visual Comparisons.Proc. ACM Trans. on Computer-

Human Interaction (ToCHI), 13(2), 179–209.
Porter, T., & Duff, T. (1984). Compositing Digital Images. InSIGGRAPH ’84:

Proceedings of the 11th Annual Conference on Computer Graphics and

Interactive Techniques (pp. 253–259). New York: ACM Press.
Poynton, C. (2003).Digital Video and HDTV: Algorithms and Interfaces. San

Francisco: Morgan Kaufmann Publishers.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992).Nu-

merical Recipes in C: The Art of Scientific Computing (Second ed.). Cam-
bridge, UK: Cambridge University Press.

Prosise, J. (1999).Programming Windows with MFC (Second ed.). Bellingham,
WA: Microsoft Press.

Proudfoot, K., Mark, W. R., Tzvetkov, S., & Hanrahan, P. (2001). A Real-Time
Procedural Shading System for Programmable Graphics Hardware. InSIG-

GRAPH ’01: Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques (pp. 159–170). New York: ACM
Press.

Purcell, T. J., Buck, I., Mark, W. R., & Hanrahan, P. (2002). Ray Tracing on
Programmable Graphics Hardware.ACM Transactions on Graphics (Proc.

SIGGRAPH ’02), 21(3), 703–712.
Rahman, Z., Jobson, D. J., & Woodell, G. A. (1996). A Multiscale Retinex for

Color Rendition and Dynamic Range Compression. InSPIE Proceedings:

Applications of Digital Image Processing XIX (Vol. 2847). Bellingham,
WA: SPIE.

Rao, R., & Card, S. K. (1994). The Table Lens: Merging Graphical and Symbolic
Representations in an Interactive Focus+Context Visualization for Tabular
Information. InProc. ACM Human Factors in Computing Systems (CHI)

(pp. 318–322). New York: ACM Press.
Reeves, W. T. (1983). Particle Systems—A Technique for Modeling a Class of

Fuzzy Objects.ACM Transactions on Graphics, 2(2), 91–108.
Reingold, E. M., & Tilford, J. S. (1981). Tidier Drawings of Trees.IEEE Trans.

Software Engineering, 7(2), 223–228.
Reinhard, E. (2003). Parameter Estimation for Photographic Tone Reproduction.

journal of graphics tools, 7(1), 45–51.

738 References

Reinhard, E., Ashikhmin, M., Gooch, B., & Shirley, P. (2001). Color Transfer
Between Images.IEEE Computer Graphics and Applications, 21, 34–41.

Reinhard, E., & Devlin, K. (2005). Dynamic Range Reduction Inspired by Pho-
toreceptor Physiology.IEEE Transactions on Visualization and Computer

Graphics, 11(1), 13–24.
Reinhard, E., Khan, E. A., Aky¨uz, A. O., & Johnson, G. M. (2008).Color

Imaging: Fundamentals and Applications. Wellesley: A K Peters.
Reinhard, E., Stark, M., Shirley, P., & Ferwerda, J. (2002). Photographic Tone

Reproduction for Digital Images.ACM Transactions on Graphics (Proc.

SIGGRAPH ’02), 21(3), 267–276.
Reinhard, E., Ward, G., Debevec, P., & Pattanaik, S. (2005).High Dynamic

Range Imaging. San Francisco: Morgan Kaufmann.
Requicha, A. A. G. (1980). Representations for Rigid Solids: Theory, Mthods

and Systems.Computing Surveys, 12(4), 437–464.
Reuter, P. (2003).Reconstruction and Rendering of Implicit Surfaces from Large

Unorganized Point Sets. Unpublished doctoral dissertation, LABRI - Uni-
versite Bordeaux.

Reynolds, C. W. (1987). Flocks, Herds and Schools: A Distributed Behavioral
Model. Proc. SIGGRAPH ’87, Computer Graphics, 21(4), 25–34.

Ricci, A. (1973, May). Constructive Geometry for Computer Graphics.Computer

Journal, 16(2), 157-160.
Riesenfeld, R. F. (1981, January). Homogeneous Coordinates and Projective

Planes in Computer Graphics.IEEE Computer Graphics & Applications,
1(1), 50–55.

Roberts, L. (1965, May).Homogenous Matrix Representation and Manipulation

of N-Dimensional Constructs (Tech. Rep. No. MS-1505). Lexington, MA:
MIT Lincoln Laboratory.

Robertson, G., Fernandez, R., Fisher, D., Lee, B., & Stasko, J. (2008). Effective-
ness of Animation in Trend Visualization.IEEE Trans. on Visualization

and Computer Graphics (Proc. InfoVis08), 14(6), 1325–1332.
Rogers, D. F. (1985).Procedural Elements for Computer Graphics. New York:

McGraw Hill.
Rogers, D. F. (1989).Mathematical Elements for Computer Graphics. New York:

McGraw Hill.
Rogers, D. F. (2000).An Introduction to NURBS: With Historical Perspective.

San Francisco, CA: Morgan Kaufmann.
Rogers, S. (1995). Perceiving Pictorial Space. In W. Epstein & S. Rogers (Eds.),

Perception of Space and Motion (Vol. 5, pp. 119–163). San Diego: Aca-
demic Press.

Rost, R. J. (2004).OpenGL Shading Language. Reading, MA: Addison Wesley.
Roth, S. (1982). Ray Casting for Modelling Solids.Computer Graphics and

Image Processing, 18(2), 109–144.

References 739

Rubin, S. M., & Whitted, T. (1980). A 3-Dimensional Representation for Fast
Rendering of Complex Scenes.Proc. SIGGRAPH ’80, Computer Graphics,
14(3), 110–116.

Rusinkiewicz, S., & Levoy, M. (2000). QSplat: A Multiresolution Point Render-
ing System for Large Meshes. InSIGGRAPH ’00: Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques (pp.
343–352). Reading, MA: Addison-Wesley.

Rvachev, V. L. (1963). On the analytic description of some geometric objects.
Reports of the Ukrainian Acadamey of Sciences, 153, 765-767.

Sabella, P. (1988). A Rendering Algorithm for Visualizing 3D Scalar Fields.
Proc. SIGGRAPH ’88, Computer Graphics, 22(4), 51–58.

Saito, T., & Takahashi, T. (1990). Comprehensible Rendering of 3-D Shapes.
Proc. SIGGRAPH ’90, Computer Graphics, 24(4), 197–206.

Salomon, D. (1999).Computer Graphics and Geometric Modeling. New York:
Springer-Verlag.

Savchenko, V., Pasko, A., Okunev, O., & Kunii, T. (1995). Function Representa-
tion of Solids Reconstructed from Scattered Surface Points and Contours.
Computer Graphics Forum, 14(4), 181-188.

Savchenko, V. V., Pasko, A. A., Sourin, A. I., & Kunii, T. L. (1998). Volume
Modelling: Representations and Advanced Operations. InCGI ’98: Pro-

ceedings of the Computer Graphics International 1 (p. 4-13). Washington,
DC: IEEE COmputer Society.

Sbert, M. (1997).The Use of Global Random Directions to Compute Radiosity.

Global Monte Carlo Techniques. PhD. thesis, Universitat Polit`enica de
Catalunya.

Schlick, C. (1994a). An Inexpensive BRDF Model for Physically-Based Render-
ing. Computer Graphics Forum, 13(3), 233–246.

Schlick, C. (1994b). Quantization Techniques for the Visualization of High Dy-
namic Range Pictures. In P. Shirley, G. Sakas, & S. M¨uller (Eds.),Photo-

realistic Rendering Techniques (pp. 7–20). Berlin: Springer-Verlag.
Schmidt, R., Grimm, C., & Wyvill, B. (2006, July). Interactive Decal Com-

positing with Discrete Exponential Maps.ACM Transactions on Graphics,
25(3), 605–613.

Schmidt, R., Wyvill, B., & Galin, E. (2005). Interactive Implicit Modeling with
Hierarchical Spatial Caching. InSMI ’05: Proceedings of the Interna-

tional Conference on Shape Modeling and Applications 2005 (pp. 104–
113). Washington, DC: IEEE ComputerSociety. (Accepted for publica-
tion).

Schmidt, R., Wyvill, B., Sousa, M. C., & Jorge, J. A. (2005). Shapeshop:
Sketch-Based Solid Modeling with BlobTrees. InProceedings of the 2nd

Eurographics Workshop on Sketch-Based Interfaces and Modeling. Aire-
la-ville, Switzerland: Eurographics Association.

740 References

Schwarze, J. (1990). Cubic and Quartic Roots. InGraphics Gems (pp. 404–407).
San Diego, CA: Academic Press Professional, Inc.

Sederberg, T. W., & Parry, S. R. (1986). Free-Form Deformation of Solid Ge-
ometric Models.Proc. SIGGRAPH ’86, Computer Graphics, 20(4), 151–
160.

Seetzen, H., Heidrich, W., Stuerzlinger,W., Ward, G., Whitehead, L., Trenta-
coste, M., et al. (2004). High Dynamic Range Display Systems.ACM

Transactions on Graphics (Proc. SIGGRAPH ’04), 23(3), 760–768.
Seetzen, H., Whitehead, L. A., & Ward, G. (2003). A High Dynamic Range

Display Using Low and High Resolution Modulators. InThe Society for

Information Display International Symposium. San Jose, CA: Society for
Information Display.

Segal, M., Korobkin, C., Widenfelt, R. van, Foran, J., & Haeberli, P. (1992). Fast
Shadows and Lighting Effects Using Texture Mapping.Proc. SIGGRAPH

’92, Computer Graphics, 26(2), 249–252.
Shannon, C. E., & Weaver, W. (1964).The Mathematical Theory of Communica-

tion. Urbana, IL: University of Illinois Press.
Shapiro, V. (1988).Theory of R-Functions and Applications: A Primer (Tech.

Rep. No. CPA88-3). Ithaca, NY: Cornell University.
Shapiro, V. (1994). Real Functions for Representation of Rigid Solids.Computer

Aided Geometric Design, 11, 153–175.
Shene, C.-K. (2003). CS 3621 Introduction to Computing with Geometry

Notes. Available from World Wide Web. (http://www.cs.mtu.edu/∼shene/
COURSES/cs3621/NOTES/notes.html)

Sherstyuk, A. (1999). Interactive Shape Design with Convolution Surfaces. In
SMI ’99: Proceedings of the International Conference on Shape Modeling

and Applications (p. 56-65). Washington, DC: IEEE Computer Society.
Shirley, P. (1991).Physically Based Lighting Calculations for Computer Graph-

ics. Unpublished doctoral dissertation,University of Illinois, Urbana-
Champaign.

Shirley, P., Smits, B., Hu, H., & Lafortune, E. (1997). A Practitioners’ As-
sessment of Light Reflection Models. InPG ’97: Proceedings of the 5th

Pacific Conference on Computer Graphics and Applications (pp. 40–49).
Los Alamitos, CA: IEEE Computer Society.

Shirley, P., Wang, C., & Zimmerman, K. (1996). Monte Carlo Techniques for
Direct Lighting Calculations.ACM Transactions on Graphics, 15(1), 1–36.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. InProc. IEEE Visual Languages (pp. 336–
343). Washington, DC: IEEE Computer Society.

Shreiner, D. (Ed.). (2004).OpenGL Reference Manual: The Official Reference

Document to OpenGL, Version 1.4 (Fourth ed.). Reading, MA: Addison-
Wesley.

http://www.cs.mtu.edu/%E2%88%BCshene/COURSES/cs3621/NOTES/notes.html
http://www.cs.mtu.edu/%E2%88%BCshene/COURSES/cs3621/NOTES/notes.html

References 741

Shreiner, D., Neider, J., Woo, M., & Davis, T. (2004).OpenGL Programming

Guide (Fourth ed.). Reading, MA: Addison-Wesley.
Sillion, F. X., & Puech, C. (1994).Radiosity and Global Illumination. San

Francisco, California: Morgan Kaufmann Publishers, Inc.
Simons, D. J. (2000). Current Approaches to Change Blindness.Visual Cognition,

7(1/2/3), 1–15.
Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2008).The-

matic Cartography and Geovisualization (3rd ed.). Englewood Cliffs, NJ:
Prentice Hall.

Smith, A. R. (1995).A Pixel is Not a Little Square! (Technical Memo No. 6).
Bellingham, WA: Microsoft Research.

Smith, S., Grinstein, G., & Bergeron, R. D. (1991). Interactive Data Exploration
with a Supercomputer. InVIS ’91: Proceedings of the 2nd Conference

on Visualization ’91 (pp. 248–254). Los Alamitos, CA: IEEE Computer
Society Press.

Smits, B. E., Shirley, P., & Stark, M. M. (2000). Direct Ray Tracing of Displace-
ment Mapped Triangles. InProceedings of the Eurographics Workshop on

Rendering Techniques 2000 (pp. 307–318). London, UK: Springer-Verlag.
Snyder, J. M., & Barr, A. H. (1987). Ray Tracing Complex Models Containing

Surface Tessellations.Proc. SIGGRAPH ’87, Computer Graphics, 21(4),
119–128.

Sobel, I., Stone, J., & Messer, R. (1975).The Monte Carlo Method. Chicago, IL:
University of Chicago Press.

Solomon, H. (1978).Geometric Probability. Philadelphia, PA: SIAM Press.
Stam, J. (1999). Diffraction Shaders. InSIGGRAPH ’99: Proceedings of the 26th

Annual Conference On Computer Graphics And Interactive Techniques (pp.
101–110). Reading, MA: Addison-Wesley.

Stark, M. M., Arvo, J., & Smits, B. (2005). Barycentric Parameterizations
for Isotropic BRDFs. IEEE Transactions on Visualization and Computer

Graphics, 11(2), 126–138.
Stockham, T. (1972). Image Processing in the Context of a Visual Model.Pro-

ceedings of the IEEE, 60(7), 828–842.
Stolte, C., Tang, D., & Hanrahan, P. (2008). Polaris: A System for Query, Anal-

ysis, and Visualization of Multidimensional Databases.Commun. ACM,
51(11), 75–84.

Stone, M. C. (2003).A Field Guide to Digital Color. Natick, MA: A K Peters.
Strang, G. (1988).Linear Algebra and Its Applications (Third ed.). Florence,

KY: Brooks Cole.
Sutherland, I. E., Sproull, R. F., & Schumacker, R. A. (1974). A Characterization

of Ten Hidden-Surface Algorithms.ACM Computing Surveys, 6(1), 1–55.
Thompson, W. B., & Pong, T. C. (1990). Detecting Moving Objects.International

Journal of Computer Vision, 4(1), 39–57.

742 References

Thompson, W. B., Shirley, P., & Ferwerda, J. (2002). A Spatial Post-Processing
Algorithm for Images of Night Scenes.journal of graphics tools, 7(1),
1–12.

Tomasi, C., & Manduchi, R. (1998). Bilateral Filtering for Gray and Color
Images. InProc. IEEE International Conference on Computer Vision (pp.
836–846). Washington, DC: IEEE.

Tory, M., Kirkpatrick, A. E., Atkins, M. S., & Möller, T. (2006). Visualization
task performance with 2D, 3D, and combination displays.IEEE Trans.

Visualization and Computer Graphics (TVCG), 12(1), 2–13.
Tumblin, J., & Turk, G. (1999). LCIS: A boundary Hierarchy for Detail-

Preserving Contrast Reduction. In A. Rockwood (Ed.),SIGGRAPH ’99:

Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques (pp. 83–90). Reading, MA: Addison Wesley Long-
man.

Turk, G., & Levoy, M. (1994). Zippered Polygon Meshes from Range Images. In
SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques (pp. 311–318). New York: ACM
Press.

Turk, G., & O’Brien, J. (1999). Shape Transformation Using Variational Implicit
Functions. InSIGGRAPH ’99: Proceedings of the 26th Annual Conference

on Computer Graphics and Interactive Techniques (pp. 335–342). New
York: ACM Press/Addison-Wesley Publishing Co.

Turk, G., & O’Brien, J. F. (2002). Modelling with Implicit Surfaces that Interpo-
late. ACM Transactions on Graphics, 21(4), 855–873.

Turkowski, K. (1990). Properties of Surface-Normal Transformations. InGraph-

ics Gems (pp. 539–547). Boston: Academic Press.
Tversky, B., Morrison, J., & Betrancourt, M. (2002). Animation: Can It Facili-

tate?International Journal of Human Computer Studies, 57(4), 247–262.
Upson, C., & Keeler, M. (1988). V-Buffer: Visible Volume Rendering.Proc.

SIGGRAPH ’88, Computer Graphics, 22(4), 59–64.
Upstill, S. (1985).The Realistic Presentation of Synthetic Images: Image Pro-

cessing in Computer Graphics. Unpublished doctoral dissertation, Univer-
sity of California at Berkeley.

van Aken, J., & Novak, M. (1985). Curve-Drawing Algorithms for Raster Dis-
plays.ACM Transactions on Graphics, 4(2), 147–169.

van Ham, F., & van Wijk, J. J. (2004). Interactive Visualization of Small World
Graphs. InINFOVIS ’04: Proceedings of the IEEE Symposium on Informa-

tion Visualization (pp. 199–206). Washington, DC: IEEE Computer Society
Press.

van Wijk, J. J., & van Selow, E. R. (1999). Cluster and Calendar-Based Visu-
alization of Time Series Data. InINFOVIS ’99: Proceedings of the 1999

IEEE Symposium on Information Visualization (pp. 4–9). Washington, DC:
IEEE Computer Society Press.

References 743

Veach, E., & Guibas, L. J. (1997). Metropolis Light Transport. InSIGGRAPH

’97: Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques (pp. 65–76). Reading, MA: Addison-Wesley.
Wald, I., Slusallek, P., Benthin, C., & Wagner, M. (2001). Interactive Distributed

Ray Tracing of Highly Complex Models. InProceedings of the 12th Euro-

graphics Workshop on Rendering Techniques (pp. 277–288). London, UK:
Springer-Verlag.

Walter, B., Hubbard, P. M., Shirley, P., & Greenberg, D. F. (1997). Global Il-
lumination Using Local Linear Density Estimation.ACM Transactions on

Graphics, 16(3), 217–259.
Wandell, B. A. (1995).Foundations of Vision. Sunderland, MA: Sinauer Asso-

ciates.
Wann, J. P., Rushton, S., & Mon-Williams, M. (1995). Natural Problems for

Stereoscopic Depth Perception in Virtual Environments.Vision Research,
35(19), 2731–2736.

Ward, G., & Simmons, M. (2004). Subband Encoding of High Dynamic Range
Imagery. InFirst ACM Symposium on Applied Perception in Graphics and

Visualization (APGV) (pp. 83–90). NY: ACM Press.
Ward, G. J. (1992). Measuring and Modeling Anisotropic Reflection. Proc.

SIGGRAPH ’92, Computer Graphics, 26(2), 265–272.
Ward, G. J. (1994). The RADIANCE Lighting Simulation and Rendering System.

In A. Glassner (Ed.),SIGGRAPH ’94: Proceedings of the 21st Annual Con-

ference on Computer Graphics and Interactive Techniques (pp. 459–472).
New York: ACM Press.

Ward, M. O. (2002, December). A taxonomy of glyph placement strategies
for multidimensional data visualization.Information Visualization Journal,
1(3-4), 194–210.

Ward Larson, G., Rushmeier, H., & Piatko, C. (1997). A Visibility Matching Tone
Reproduction Operator for High Dynamic Range Scenes.IEEE Transac-

tions on Visualization and Computer Graphics, 3(4), 291–306.
Ward Larson, G., & Shakespeare, R. A. (1998).Rendering with Radiance. San

Francisco, CA: Morgan Kaufmann Publishers.
Ware, C. (2000).Information Visualization: Perception for Design. Boston, MA:

Morgan Kaufmann/Academic Press.
Ware, C. (2001). Designing With a 2 1/2 D Attitude.Information Design Journal,

10(3), 255–262.
Ware, C., Purchase, H., Colpys, L., & McGill, M. (2002). Cognitive Measures of

Graph Aesthetics.Information Visualization, 1(2), 103–110.
Warn, D. R. (1983). Lighting Controls for Synthetic Images.Proc. SIGGRAPH

’83, Computer Graphics, 17(3), 13–21.
Watt, A. (1991).Advanced Animation and Rendering Techniques. Reading, MA:

Addison-Wesley.
Watt, A. (1993).3D Computer Graphics. Reading, MA: Addison-Wesley.

744 References

Wegman, E. J. (1990, Sep). Hyperdimensional Data Analysis Using Parallel
Coordinates.Journ. American Statistical Association, 85(411), 664–675.

Wei, L.-Y., & Levoy, M. (2000). Fast Texture Synthesis Using Tree-Structured
Vector Quantization. InSIGGRAPH ’00: Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques (pp. 479–
488). New York: ACM Press/Addison-Wesley Publishing Co.

Whitted, T. (1980). An Improved Illumination Model for Shaded Display.Com-

munications of the ACM, 23(6), 343–349.
Williams, A., Barrus, S., Morley, R. K., & Shirley, P. (2005). An Efficient and

Robust Ray-Box Intersection Algorithm.journal of graphics tools, 10(1),
49–54.

Williams, L. (1978). Casting Curved Shadows on Curved Surfaces.Proc. SIG-

GRAPH ’78, Computer Graphics, 12(3), 270–274.
Williams, L. (1983). Pyramidal Parametrics.Proc. SIGGRAPH ’83, Computer

Graphics, 17(3), 1–11.
Williams, L. (1991). Shading in Two Dimensions. InProceedings of Graphics

Interface (pp. 143–151). Wellesley, MA: A K Peters & Canadian Human-
Computer Communications Society.

Wyszecki, G., & Stiles, W. (2000).Color Science: Concepts and Methods,

Quantitative Data and Formulae (Second ed.). New York: Wiley.
Wyvill, B., Galin, E., & Guy, A. (1999). Extending the CSG Tree: Warping,

Blending and Boolean Operations in an Implicit Surface Modeling System.
Computer Graphics Forum, 18(2), 149-158.

Wyvill, B., McPheeters, C., & Wyvill, G. (1986). Data Structures for Soft Objects.
The Visual Computer, 2(4), 227-234.

Yantis, S. (Ed.). (2000).Visual Perception: Essential Readings. London, UK:
Taylor & Francis Group.

Yessios, C. I. (1979). Computer Drafting of Stones, Wood, Plant and Ground
Materials.Proc. SIGGRAPH ’79, Computer Graphics, 13(2), 190–198.

Yonas, A., Goldsmith, L. T., & Hallstrom, J. L. (1978). The Development of
Sensitivity to Information from Cast Shadows in Pictures.Perception, 7,
333–342.

	Cover
	Fundamentals of Computer Graphics
	©
	Contents
	Preface
	1. Introduction
	1.1 Graphics Areas
	1.2 Major Applications
	1.3 Graphics APIs
	1.4 Graphics Pipeline
	1.5 Numerical Issues
	1.6 Efficiency
	1.7 Designing and Coding Graphics Programs
	Notes

	2. Miscellaneous Math
	2.1 Sets and Mappings
	2.2 Solving Quadratic Equations
	2.3 Trigonometry
	2.4 Vectors
	2.5 Curves and Surfaces
	2.6 Linear Interpolation
	2.7 Triangles
	Frequently Asked Questions
	Notes
	Exercises

	3. Raster Images
	3.1 Raster Devices
	3.2 Images, Pixels, and Geometry
	3.3 RGB Color
	3.4 Alpha Compositing
	Frequently Asked Questions
	Exercises

	4. Ray Tracing
	4.1 The Basic Ray-Tracing Algorithm
	4.2 Perspective
	4.3 Computing Viewing Rays
	4.4 Ray-Object Intersection
	4.5 Shading
	4.6 A Ray-Tracing Program
	4.7 Shadows
	4.8 Ideal Specular Reflection
	4.9 Historical Notes
	Frequently Asked Questions
	Exercises

	5. Linear Algebra
	5.1 Determinants
	5.2 Matrices
	5.3 Computing with Matrices and Determinants
	5.4 Eigenvalues and Matrix Diagonalization
	Frequently Asked Questions
	Notes
	Exercises

	6. Transformation Matrices
	6.1 2D Linear Transformations
	6.2 3D Linear Transformations
	6.3 Translation and Affine Transformations
	6.4 Inverses of Transformation Matrices
	6.5 Coordinate Transformations
	Frequently Asked Questions
	Notes
	Exercises

	7. Viewing
	7.1 Viewing Transformations
	7.2 Projective Transformations
	7.3 Perspective Projection
	7.4 Some Properties of the Perspective Transform
	7.5 Field-of-View
	Frequently Asked Questions
	Notes
	Exercises

	8. The Graphics Pipeline
	8.1 Rasterization
	8.2 Operations Before and After Rasterization
	8.3 Simple Antialiasing
	8.4 Culling Primitives for Efficiency
	Frequently Asked Questions
	Notes
	Exercises

	9. Signal Processing
	9.1 Digital Audio: Sampling in 1D
	9.2 Convolution
	9.3 Convolution Filters
	9.4 Signal Processing for Images
	9.5 Sampling Theory
	Exercises

	10. Surface Shading
	10.1 Diffuse Shading
	10.2 Phong Shading
	10.3 Artistic Shading
	Frequently Asked Questions
	Exercises

	11. Texture Mapping
	11.1 3D Texture Mapping
	11.2 2D Texture Mapping
	11.3 Texture Mapping for Rasterized Triangles
	11.4 Bump Textures
	11.5 Displacement Mapping
	11.6 Environment Maps
	11.7 Shadow Maps
	Frequently Asked Questions
	Notes
	Exercises

	12. Data Structures for Graphics
	12.1 Triangle Meshes
	12.2 Scene Graphs
	12.3 Spatial Data Structures
	12.4 BSP Trees for Visibility
	12.5 Tiling Multidimensional Arrays
	Frequently Asked Questions
	Notes
	Exercises

	13. More Ray Tracing
	13.1 Transparency and Refraction
	13.2 Instancing
	13.3 Constructive Solid Geometry
	13.4 Distribution Ray Tracing
	Notes
	Frequently Asked Questions

	14. Sampling
	14.1 Integration
	14.2 Continuous Probability
	14.3 Monte Carlo Integration
	14.4 Choosing Random Points
	Frequently Asked Questions
	Notes
	Exercises

	15. Curves
	15.1 Curves
	15.2 Curve Properties
	15.3 Polynomial Pieces
	15.4 Putting Pieces Together
	15.5 Cubics
	15.6 Approximating Curves
	15.7 Summary
	Notes

	16. Implicit Modeling
	16.1 Implicit Functions, Skeletal Primitives and Summation Blending
	16.2 Rendering
	16.3 Space Partitioning
	16.4 More on Blending
	16.5 Constructive Solid Geometry
	16.6 Warping
	16.7 Precise Contact Modeling
	16.8 The BlobTree
	16.9 Interactive Implicit Modeling Systems
	Exercises

	17. Computer Animation
	17.1 Principles of Animation
	17.2 Keyframing
	17.3 Deformations
	17.4 Character Animation
	17.5 Physics-Based Animation
	17.6 Procedural Techniques
	17.7 Groups of Objects
	Notes

	18. Using Graphics Hardware
	18.1 What Is Graphics Hardware
	18.2 Describing Geometry for the Hardware
	18.3 Processing Geometry into Pixels
	Frequently Asked Questions
	Notes
	Exercises

	19. Building Interactive Graphics Applications
	19.1 The Ball Shooting Program
	19.2 Programming Models
	19.3 The Modelview-Controller Architecture
	19.4 Example Implementations
	19.5 Applying Our Results
	Notes
	Exercises

	20. Light
	20.1 Radiometry
	20.2 Transport Equation
	20.3 Photometry
	Frequently Asked Questions
	Notes
	Exercises

	21. Color
	21.1 Colorimetry
	21.2 Color Spaces
	21.3 Chromatic Adaptation
	21.4 Color Appearance
	Notes

	22. Visual Perception
	22.1 Vision Science
	22.2 Visual Sensitivity
	22.3 Spatial Vision
	22.4 Objects, Locations, and Events
	22.5 Picture Perception

	23. Tone Reproduction
	23.1 Classification
	23.2 Dynamic Range
	23.3 Color
	23.4 Image Formation
	23.5 Frequency-Based Operators
	23.6 Gradient-Domain Operators
	23.7 Spatial Operators
	23.8 Division
	23.9 Sigmoids
	23.10 Other Approaches
	23.11 Night Tonemapping
	23.12 Discussion

	24. Global Illumination
	24.1 Particle Tracing for Lambertian Scenes
	24.2 Path Tracing
	24.3 Accurate Direct Lighting
	Frequently Asked Questions
	Notes
	Exercises

	25. Reflection Models
	25.1 Real-World Materials
	25.2 Implementing Reflection Models
	25.3 Specular Reflection Models
	25.4 Smooth Layered Model
	25.5 Rough Layered Model
	Frequently Asked Questions
	Notes
	Exercises

	26. Computer Graphics in Games
	26.1 Platforms
	26.2 Limited Resources
	26.3 Optimization Techniques
	26.4 Game Types
	26.5 The Game Production Process
	Notes
	Exercises

	27. Visualization
	27.1 Background
	27.2 Data Types
	27.3 Human-Centered Design Process
	27.4 Visual Encoding Principles
	27.5 Interaction Principles
	27.6 Composite and Adjacent Views
	27.7 Data Reduction
	27.8 Examples
	Frequently Asked Questions

	28. Spatial-Field Visualization
	28.1 2D Scalar Fields
	28.2 3D Scalar Fields
	Frequently Asked Questions
	Exercises

	References

