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Preface

We are in the age of pervasive computing with computing permeating every
facet of our living. In many cases we have access to a plenitude of excessive
computing power which we do not know what to do with; the situation was
exactly the opposite decades ago when computers were in their infancy. Since
we are no longer constrained by computing resources, it is high time that
computer science research should attempt to set foot in domains that are
hitherto not so much charted. Art or certain forms of art are one such domain.

There is a long trace of efforts by talented artists to try unremittingly to
transform the computer into a novel art creation tool, even at times when
computers were outrageously expensive, clumsy and had very limited power.
This is probably part of the “artist’s nature”—to take advantage of anything
on earth for art’s sake. But until recently the limited amount of computing
power available to any ordinary person had meant more hindrances than
opportunities to the innovative artists who fancied using the computer to do
art.

Seeing all the recent technical possibilities and the bilateral (that is, the
technologists’ and the artists’) very strong desire to let the computer have
a serious role in art, we feel that computer art will certainly be among the
few topics being intensively pursued by many in the very near future as well
as for many years to come. This book represents a possible contribution to
these efforts.

We cannot wait to say that by committing to this book project we were
not setting out, not at all, to try to replace the practice, method, habit and
process of traditional art creation. Not at all, as that is already part of human
nature, so to speak. Our ambition in our journey to explore digital art is to
look for or perhaps fabricate computer-assisted means that can extend the
bounds and enrich the experience of art creation, and we hope by so doing we
may open up new exciting venues and genres for the aspiring artists, which
were not feasible with the traditional approach. This book presents some of
the preliminary and original work done by us during the past six years, which
was sparked off by this vision.

The first piece of work reported in this book is the design and construc-
tion of an electronic hairy brush (e-brush for short) and its associated digital
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painting system. As computing is so pervasive, we believe an e-brush could
make painting and calligraphy more accessible to more people for more ap-
plications. We apply and develop computer science methods and algorithms,
especially those falling in the categories of computer graphics and interactive
techniques, for the basic e-brush as well as extended features for trying out
new artistic effects by the painter that are not possible with a traditional
brush. The basic e-brush targets a faithful emulation of the real brush, thus
providing artists with a digital replica of their original creative environment,
but with lots of added convenience. The success of the e-brush, or any e-brush
for that matter, will represent an example of the positive impact technology
can have on the practice of art creation. We hope to see more examples in
the future of the computer and art being united in yet another innovative
way to do art.

Other than serving for a human artist (who is in command) in interactive
mode, the computer can produce meaningful artwork all by itself. We demon-
strate that possibility by a prototype system for the automatic creation of
beautiful calligraphy, and a system to turn Chinese paintings into anima-
tion. Taking advantage of some state-of-the-art algorithms and techniques
in the field of artificial intelligence, the calligraphy system is bestowed with
the ability to computationally appreciate and evaluate the quality of a piece
of Chinese calligraphy; the ability also enables the system to produce fac-
similes of artistic Chinese calligraphic art, or to synthesize new original ones
automatically. The animation system can generate Chinese painting-styled
animation of very high visual quality with a minimal amount of user involve-
ment. These systems and their generated samples demonstrate how machine
intelligence can be converted into “machine artistry”, the manifestation of
which may or may not need the participation of the human artist.

The more we engage ourselves in these projects, the more we realize that
there in fact exist unlimited opportunities for the computer to influence art
(and vice versa too). Unfortunately, relatively very little has been done so
far. We hope this little book can bring out the awareness and help set off
some keener interest among computer science researchers as well as art folks
on the topic of “computational art”.

Our work as you can see has a clear bent towards Chinese art forms. In
fact the very long Chinese history has nurtured an extremely rich culture and
system of Chinese traditional fine arts, which are increasingly becoming more
mainstream, or on a par with Western arts, around the globe. We believe
getting involved in the creation of Chinese fine arts with a computational
approach presents many unique challenges. Just like the interest Chinese
cuisine has enjoyed, we hope even more interest and effort will be accorded
to the furtherance of Chinese arts, including possibly new ones in digital form.
With the excitements of the 2008 Beijing Olympic Games still lingering on,
we wish not just the spirit of sports but also that of arts will prevail.

We welcome your suggestions, comments and criticisms from any angle,
and let’s together make this interdisciplinary area of research as popular as
the Louvre!
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Target Audiences

This is a technical book on an interesting area in computer science—computer
graphics and its application in fine arts. The book focuses on Oriental dig-
ital arts, in particular Chinese calligraphy and painting. It offers a multi-
disciplinary treatment, in particular from the angles of computer graphics,
interactive techniques and artificial intelligence. It discusses the unique diffi-
culties and challenges of using the computer to produce Oriental fine arts of
paintings and calligraphy. It then presents some successful research results by
the authors and the lessons and engineering experiences behind these efforts.
The book serves as a good reference for computer science and information en-
gineering researchers interested in this topic. For practicing artists the book
offers a fresh view on the emerging medium of e-art. It can also be used as
a reference text or supplementary reading material for a graduate course on
digital arts and design or related disciplines.

A Quick Tour of the Contents

Part I discusses the general relationship between computer science and fine
arts. It dwells on a few fundamental questions like whether the digital com-
puter is indeed a tool well suited for art creation purposes. It then makes
a brief survey of the popular forms of digital arts, and discusses why it is
technically challenging to pursue digital arts.

We probe into the state-of-the-art research in digital painting and drawing
in Part II. We delve into these existent research works and published works
because they form the larger context enfolding our computational approach
to Chinese painting and calligraphy. Since there is very limited research on
digital painting or calligraphy studies, we dedicate the whole part to surveying
digital painting work; we concentrate on those automatic approaches that rely
heavily on machine intelligence and interactive techniques which are also our
main tools in our expedition to explore computational Chinese painting and
calligraphy.

In the next three parts (Parts III, IV, V) we expound our first-hand re-
search and development in digital Chinese paintings and calligraphy. They
form the main technical bulk of this book. Their contents bear on two broad
areas in computer science respectively: computer graphics and interactive
techniques being one and artificial intelligence being the other. The organi-
zation of the three parts are as follows, from the viewpoint of the “techniques”
used:

(1) Part III discusses how to apply computer graphics and interactive tech-
niques to implement a software system to support interactive digital
painting and calligraphy;

(2) Part IV discusses how to deploy artificial intelligence algorithms and
methods to automatically generate artistic Chinese calligraphy;
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(3) Part V discusses how to use the combination of computer graphics and
interactive techniques and artificial intelligence to create animations of
Chinese paintings.

The three parts can also be considered from the angle of the digital art
form(s) being treated:

(1) Part III discusses how to interactively create Chinese paintings and cal-
ligraphy;

(2) Part IV focuses on the problem of the intelligent generation of Chinese
calligraphy;

(3) Part V is devoted to the intelligent animation of Chinese paintings.

The book concludes with a series of thoughts and perspectives on future
work. The book should not really just end there as the list can go on and on.
But space is at a premium.
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Part I

Introduction



1

Computer Science and Fine Arts

1.1 Why Use Computers for Arts?

“Why use computers for arts?” “What are the advantages of digital arts?”
These questions seem to assume computers are already applicable to arts.
But is the computer by its very nature a kind of art creation tool? Only if
this answer is affirmative can we go on to discuss what sorts of artistic results
would the computer be able to generate and the advantages. It turns out that
for many practicing artists, a large part of their artistic talent or training is
about how to make use of literally anything on earth that happens to fall
into their grip to do art creation. Of course, the computer is included. But
an artistic genius could still produce wonderful artwork even when the tool
is inferior. So the real question is whether the computer is really a good or
suitable tool for art creation for all.

1.1.1 Computer as an Art Tool

Whether the computer can be labeled as belonging to a certain class requires
a definition of the class. For our inquiry here, the class is the class of artistic
tools. We have a very challenging problem here since even the definition of
what is art and what is not has never been widely agreed upon and is likely
to remain so into the future. In the absence of a given definition, we venture
to suggest some criteria for what might be considered a suitable tool for art
creation.

An art tool is some kind of a metaphor which

(1) has certain material shape and is specially designed to serve a purpose;
(2) lends convenience to the creation of novel artwork;
(3) supports certain generality in its functionality so that when suitably ap-

plied, it could produce a range of different results reflecting the different
traits of the individual users.

By the first criterion, an art creation tool is either from nature or artifi-
cially designed and manufactured and it must be easy to hold on to physically.
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It must have a shape, volume and mass. This excludes anything that is not
at all tangible, which exists perhaps only in spiritual or psychological realms.
The second criterion postulates that an art creation tool is not just any tool
but one that can promote, encourage and facilitate the process of art cre-
ation, as well as the exploration of new interesting artistic effects. So an art
tool has a very clear functionality and it must be artistically useful. The third
criterion says an art creation tool must have a reasonably wide applicability.
It must be able to produce a multitude of results, including some new, pre-
viously unseen ones. Therefore a pre-programmed electronic device or digital
recorder which can only play recorded music cannot be called an art creation
tool since it does not permit variation of its end effects. But an electronic
piano is an art tool since it allows users to generate different music under
their control. Given these criteria, we can now try to answer the question of
whether the computer as a tool qualifies for art creation or not.

First and foremost, a computer is purposely designed and manufactured
to achieve certain human intellectual goals. It has its own unique form of ex-
istence and way of functioning. Its outputs, though in digital formats, always
have a certain clearly-defined representation and can be universally accessed
through that representation, without regard to the machine and people op-
erating it.

Second, modern computers have enabled many new ways of creating old
and new types of information which are artistically interesting, some of which
would be difficult to achieve otherwise. For instance, some sound effects gen-
erated by an electronic piano can never be produced by any acoustic instru-
ment. In movie production, computer-generated effects such as the massive
repetition of some patterns commonly found in recently-made hi-tech films
by Pixar and the like would be prohibitively expensive and labor intensive
to achieve, if at all feasible. At this juncture we feel we should touch on one
important feature of computers which has effectively facilitated the art cre-
ation process and yet is not as widely recognized and appreciated as it should
be—machine intelligence. Not many would oppose the point that even the
most creative people are under the influence of history, society, education
background, family, and so on, and no one can be completely original in the
absolute sense. In comparison, although a machine’s intelligence is also af-
fected by its input knowledge, simulated intelligence in a computer is very
different in nature from human intelligence. We do not imply that machines
are more intelligent than human beings, which as a matter of fact is far from
being possibly true in the foreseeable future. What we really want to say
is that because of the different ways of thinking leading to the two types
of intelligence, we should let them be mutually promoting and stimulating.
This is especially important for art creation activities where the artists are
constantly, sometimes desparately, in search of original ideas which really
would require intelligence in multiple dimensions. In this regard perhaps it
might be more beneficial to train a computer to be an imagining artist than a
disciplined and self-motivating engineer. And instead of the self-aggrandising
goal of attaining a powerful level of machine intelligence to completely replace
human intelligence in art creation, it makes more sense to gear computing
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intelligence to cooperate with biological intelligence. Like man-made organs
being transplanted onto human bodies in order to save or improve lives, the
human faculty of creativity may function to its fullest extent when comple-
mented by machine intelligence.

Lastly, for the third criterion, computers would never lack variational
possibilities. In fact the computer has too much variational space in which
to exercise its power. That can be easily seen for instance in the field of
computation complexities which deal with the extreme technical difficulties
caused by too large a problem space. There one important task is to try to
reduce substantially the variational possibilities in the problem space. Now in
the realm of computational art, as opposed to preferring a reduced space, the
huge space (of possible ideas satisfying an artistic requirement or ambition)
is wonderful news to the artists.

By the above analysis we can now safely conclude that the computer
should be an ideal and suitable tool to be used in art creation, despite the
fact that it was originally designed for scientific computing and information
management tasks.

1.1.2 Computer as an Exceptional Art Tool

Additionally, one may want to include a “skill” dimension in the set of criteria.
That is, the tool’s performance should reflect proportionately the skill level of

the user, and produce a result that is commensurate with the skill of the user.

But on the other hand, unlike other tools we all have seen and used so far,
the computer can sometimes produce a professional result for a novice user.
This is where machine intelligence comes in, and with machine intelligence
the computer is fundamentally different from all other (art) tools. It can be
intelligent and completely autonomous where the word “autonomous” means
that the computer can perform certain acts that may not be requested by the
user or attainable within the user’s skill set. Going for the extreme, we can
even have a computer generating a piece of art completely without a user.
Several chapters in this book actually discuss work done under this category,
in particular the chapters in Part IV.

In summary, the computer not only can qualify itself as a standard art
tool in the conventional sense, but also distinguish itself as an exceptional
art tool which can help people to accomplish art creation tasks not originally
reachable by their own skills as well as perform art creation autonomously
with or without guidance from a user.

1.1.3 Computers as Mind-talkers

We feel that in digital arts computers can play a special role between a
human artist and a tool—in “talking” with the human artist in the digital art
creation process. In this sense computers are like a mind talker accompanying
the artist throughout his journey of idea seeking, exploration, refinement and
development.
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Such a role for the computer has recently gained some noticeable recogni-
tion in some fields of computer science, in particular computer-aided design
and human computer interaction. Some interesting discussion has taken place
over the term CAD. Historically, it stands for computer-aided design. How-
ever, people now realize that in the past CAD [Sum74, TLM83] actually was
all about computer-aided documentation and expression [Dur02]. Upon such
a reflection, more people become motivated to study what they call the real
computer aided design systems, in which the systems are not to create de-
signs automatically or semi-automatically, but more to inspire the designers
to innovate. But when these intelligent suggestions or inspirations become
more substantial, human intelligence and machine intelligence crash into one
another, giving rise to a design which may be beyond the reach of either type
of intelligence.

For painting, sculpture, graphical design and some other forms of digital
arts, there are situations where the features or structure of the artwork may
not have been completely conceived before the artist sets out to create them.
Admittedly there could be many factors affecting how the artwork eventually
emerges, which include the tool factor. The artwork may be a cross product
of the artists’ skill set, creation motivation and the peculiar functioning of
the tool, where the versatility and variability of the tool may have a very
strong bearing on the art creation.

It is feasible to carefully design a computer system so that it can sug-
gest different “voices” based on machine intelligence when collaborating with
human artists in their search for innovative art creation ideas. In these scenar-
ios, the computers may appear to have its own mind, which actually descends
from the mind and talent of some human beings. This brings out the issue of
consciousness and unconsciousness and the display of human talents in both
states.

Traditionally computers as art tools are considered a means to deliver
artistic designs or concepts conceived by human artists, the entire process of
which is conducted strictly subject to the conscious mind of the artists. Now
people are increasingly interested in using the computer to push for more
exposure of the unconscious part of human intelligence. Though often unre-
alized, this part is still a part of human intelligence, which is hard to trigger,
and is not possible to measure qualitatively. If the computer can indeed stim-
ulate the unconscious thinking of a highly trained brain, it can facilitate and
encourage the displaying of the brain’s hidden design and creative talents.
Such stimulated intelligence or skills are only invocable when both comput-
ers and human artists are working together. It is similar to the real-world
phenomenon that when one intelligent mind talks with another, they would
see a third one appearing in the midst of them.

There is nothing fundamentally new about computers as tools assisting
in art creation or for other similar purposes. It has been a common practice
for centuries for architects to use a pencil to stimulate their creative thinking
during their design work, especially at the early stages of the design. Indeed
we are not talking about the chances for some novice to create a world mas-
terpiece, but rather a seasoned professional to get imbued with ideas which



1.2 Digital Arts 7

he normally would not think of. Thanks to the voices from the computer, the
artist now has a much wider scope in which to search for new ideas and design
motivations. Therefore computers as tools are no longer only for delivering
and presenting those ideas that are fed to them; they become collaborator of
the artist, and the situation becomes the conscious part of the artist’s men-
tal faculty talking with the unconscious part. The intelligence and artistry
achieved jointly by an artist and a computer can be greater than the sum of
the two, if operating separately.

In summary, there are two different design goals in making the computers
an art tool: one is to design a computer with the best artistic intelligence and
the other is to design a computer with the best capability to stimulate the
invisible skills and talents of the human artist. And the two, can happen at
the same time. In the ideal situation, a great piece of human artwork which
is computer-assisted can also be a great piece of computer artwork.

1.2 Digital Arts

1.2.1 What Are Digital Arts?

Literally, the term digital art could refer to any form of arts which has a cer-
tain deployment of digital means during the art creation process. However,
simply digitizing, storing, transmitting, or retrieving digitally a piece of art
does not count, which may be referred to, as just technology support for arts.
We should point out the boundary between digital art and digital support
for art is not always that clear-cut. For digital arts there can be two broad
categories: either it is a form of traditional art, but has been migrated onto
some digital medium; or it is a previously non-existent form of art now made
possible with the support of digital technologies. At present, digital arts pre-
dominantly belong to the first category while truly novel art forms which
only exist in the digital domain but do not have a real-world counterpart are
relatively still very rare.

1.2.2 Manual or Automatic Art Creation

There exist many dimensions by which different forms of digital arts can be
classified, e.g., the dimension of the input method, the kind of sensations
the art piece induces, the way to present or perform the piece, etc. Here we
concentrate on a particular dimension which can be seen as a key parameter
for organizing our research work presented in the book: the dimension of how
much work is done by the user (manually) versus that done by the computer
(automatically). Along this dimension, the art creation process can range
from completely manual to completely automatic, and hence correspond-
ingly, the contribution by the computer through machine intelligence to the
artistry of the result ranges from 0 to 100%, so to speak. We can say that if
the computer’s contribution is larger than a certain threshold, the result is
computer art or intelligent computer art . The 100% manual option requires
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a tool, electronic or not, which satisfies the “skill” criterion as mentioned in
Sect. 1.1.2. 100% automatic or something in that neighborhood requires a
tool that is intelligent (hence possibly violating the skill criterion). Results
from the lower part of the range may be called human art or more explic-
itly, human art assisted by the computer. Fig. 1.1 summarizes the different
possibilities.

Referring again to the scale just presented and Fig. 1.1, towards the upper
end of the spectrum, the computer can make up for what the user lacks in
skill. A trivial example is that an unskilled user who cannot draw a straight
line or a smooth curve can rely on the computer to (intelligently) complete
the straight line or curve for him. Generalizing, the computer will be more
than able to draw a beautiful looking stroke with rich texture for the user;
this is exactly the problem we study in Chapter 11 of this book.

Fig. 1.1. The range of art creation processes

1.2.3 Three Elements of Digital Arts

We propose three key elements or concepts involved in the process of art
creation: (1) the tool, (2) the materials, and (3) the created art and its pre-
sentation. As an example, Table 1.1 shows the instances of these key elements
in digital painting and computer music, respectively. Fig. 1.2 fits the elements
into a conceptual pipeline. If one so wishes, and if one or more of (1) to (3)
are in digital form, the result may be called digital or electronic art.

Table 1.1. Three key elements in digital painting and computer music

Elements In digital painting In computer music

Tool Paintbrush Music keyboard

Materials Paints or ink Different kinds of
sounds or notes

Art creation and its presentation Whole painting A music performance
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Fig. 1.2. The art creation “pipeline.”

1.2.4 Classification of the Book Chapters

By adopting the simple taxonomy proposed in Sect. 1.2.3 and considering the
spectrum discussed in Sect. 1.2.2, the contents of the technical core of this
book can be labelled as shown in Table 1.2.

Table 1.2. A view of the contents of the book. For Chapter 11, the stroke-based
Chinese painting animation system we developed is the tool; the key-frames and
the animated strokes are the materials, and the generated painting animation is
the art creation

Chapters Elements Mode

4 Tool, Material Manual

5 Tool Manual

6 Material Manual

7 Tool Manual

8–10 Art creation Automatic

11 Tool, material and art creation Semi-automatic, semi-manual

1.3 Examples of Digital Arts

Different kinds of digital arts span a wide spectrum, including digital music,
digital painting, digital sculpturing, digital dance, and digital movies, just to
name a few. We give a brief overview of some of the most popular ones in
this section.



10 1 Computer Science and Fine Arts

1.3.1 Digital Film

Digital film or cinema has become one of the most common experiences in
our everyday life in the 21st century, sometimes without us knowing it. Their
coming about and sophisticated demands have helped shift computer graphics
and virtual reality research into high gears. Today a significant portion of US
films have been produced with intensive employment of digital technologies to
achieve stunning visual impression but at much reduced cost. Filmmakers like
digital effects in fact, because they are absolutely safe on the set. Examples
of successful digital films include: Forrest Gump, Titanic, Toy Story, Harry
Potter, The Lord of the Rings and Spider-Man. Digital films and their special
effects are a popular topic for any popular magazine or TV/film guide today.
We suggest interested readers try a search for the keywords “digital film” or
“digital cinema” in Amazon (www.amazon.com). As of August 2007, a search
for the first keyword in Amazon returns over nine hundred book records and
a search for the latter keyword returns over three hundred book records.

1.3.2 Digital Painting

Talking about painting using the computer, Photoshop would probably be the
first one to spring to mind. Sue Chastain listed the top ten other art-oriented
software programs in November 2006 (http://graphicssoft.about.com), which
are: Corel Painter, ArtRage, Microsoft Expression Graphics Designer, Sketch-
Book Pro, Project Dogwaffle, Deleter CGillust, Pixarra TwistedBrush, Pho-
toArtMaster, Studio Artist.

Because this is exactly the topic of this book and there exist abundant
work in the area of digital painting, we dedicate an entire chapter (Chapter
2) to survey the work of computer science research on painterly rendering.

1.3.3 Computer Music

Digital music, also known as computer music, is probably the field that has at-
tracted the most attention from computer scientists and engineers, and is the
most established form of digital arts. There is a dedicated organization known
as International Computer Music Association (http://www.computermusic.org)

promoting computer music research. There is also a dedicated quarterly jour-
nal on the topic: Computer Music Journal. Another periodical which targets
the non-academic readers is the UK-based monthly magazine Computer Mu-
sic. Academic conferences relating to computer music include the Interna-
tional Computer Music Conference (ICMC), Computer Music Modeling and
Retrieval (CMMR) and the International Conference on New Interfaces for
Musical Expression (NIME). There are some computer science conferences
in other fields which have special tracks on computer music, e.g. the Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI) and theNational
Conference on Artificial Intelligence (AAAI). The whole scope of computer
music is very broad, which can only be sufficiently covered by many books,
e.g. [Roa92, Man94, Roa96, DJ97, Cop01, Nel05].
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The study of computer music covers but is not limited to the following
areas:

Algorithmic composition: It focuses on proposing algorithms to compose
new music pieces.

Computer-assisted composition: It aims at providing assistance in a
composition process by a human composer, rather than replacing com-
pletely the human composer.

Computer music programming languages: This is to design new spe-
cial purpose languages for computer music applications, including low-
level sound synthesis, high-level music production, etc. Some famous ones
include ABC, ChucK, CMix, CMusic, Common Lisp Music, CSound,
Haskore, HMSL, jMax, jMusic, Max/MSP, Music I, Music-N, Nsound,
Nyquist, OpenMusic, Q-Audio, Real-time CMix, SuperCollider SynthEdit,
etc.

Digital audio workstation: This is a hardware/software system providing
various functions in music promotion: recording, editing, music playback,
etc.

Digital signal processing and synthesizer: This approaches music pro-
cessing and production from a signal processing-point of view.

Human-computer interaction: This aims at new designs of human-com-
puter interaction via hardware or software to make computer music ap-
plications work in better ways.

Physical modeling: This is about using physically-based modeling and
simulation to synthesize new sound effects, usually through equations
or algorithms.

Music information retrieval: An important area as the amount of music
data increases at a phenomenal rate; many issues relating to intellectual
property, music representation and analysis, special purpose database
support, etc. need to be considered.

More information can be found in Wikipedia’s computer music webpage
(http://en.wikipedia.org/wiki/Computer music).

1.3.4 Digital Sculpture

Research on digital sculpture can be roughly classified into the category of
software solutions and the category of hardware solutions.

For the first category, algorithmic attempts have made dealing with
large scale sophisticated geometry models more efficient in terms of the ren-
dering and transmission, more user-friendly in terms of the digital sculp-
ture metaphors and model acquisition, and more flexible and accurate in
terms of the model representation. These studies are known to the gen-
eral graphics community as 3D graphics, and are covered in major graph-
ics conferences like ACM Siggraph (www.siggraph.org) and Eurographics
(www.eg.org). Two biennial specialized conferences are entirely dedicated
to these studies—the International Conference on 3D Digital Imaging and
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Modeling (www.3dimconference.org) and the International Symposium on 3D
Data Processing, Visualization and Transmission.

As to the latter category people are fascinated by new hardware and what
they can do. Collins [Col97] mentioned a comprehensive set of equipment es-
sential for digital sculpture practices, which are organized into three groups:
1) Those for the purpose of data acquisition, including scanning probe mi-
croscopes, confocal microscopes, 3D laster scanners, scanning electron micro-
scopes, MRI machines, CT scanners and 3D Ultrasound machines. 2) Those
for the purpose of data visualization, including Cave Automatic Virtual Envi-
ronment (CAVE), LCD stereo shutter glasses, Virtual Reality (VR) headsets.
3) Those for the purpose of form realization, including 3D printers, rapid pro-
totyping systems such as computer-aided cutter/plotter devices, laser sinter-
ing/fusing machines, thermoplastic extrusion systems, stereolithographic sys-
tems, computer-controlled plasma and laser cutters, Electro-Discharge Ma-
chining (EDM) systems, automated hi-pressure waterjet cutters, sand and
glass bead blasting equipment, stereolithographic systems and ballistic parti-
cle machines. Many of these hardware pieces were originally invented for other
applications in such areas as Computer-Aided Design (CAD), visualization,
virtual reality, Computer-Aided Manufacturing (CAM) and Computer-Aided
Geometry Design (CAGD). They now serve for digital sculpture research and
practice, by making the human-computer interaction component of digital
sculpture more friendly, natural, familiar and efficient.

1.3.5 Computer Dance

The team led by Paradiso in MIT Media Lab invented an expressive footwear
[PH97, PHB00]. They embedded in a pair of shoes a sensory system capa-
ble of acquiring 16 degrees of freedoms concerning the tactile, inertial and
positional conditions of the shoes. The sensors there communicate with a
controlling microprocessor wirelessly. The entire system achieves a greater
50 Hz response rate. Because of the large amount of sensory information be-
ing sampled in real time, they can measure the very detailed, versatile and
multimodal gestures of human feet. This system represents a significant step
forward from traditional foot motion sensory systems which could only cap-
ture tapping of toes and heels, or translational positions. The sampled minute
foot gestural information is then mapped to certain music patterns so that
the dancer can control the progression of the music through dancing. This
is the so called computer-augmented dance performance, which is the major
target application of their system. A wide range of users including gymnasts,
jugglers and dancers have tried their system, and improvising choreographers
seem to have found the system most useful.

Biehl et al. devised an arm wearable device called the mobile dynamic
music device based on a biaxial accelerometer to measure the absolute ac-
celeration force of an exerciser’s right biceps movement in real time for es-
timating the pace of the exercising person when he is running or walking.
Their system then relies on a derived model based on the exerciser’s pace to
dynamically adjust the music to be played to the exerciser [BAB06].
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Ip et al. [IHT02] proposed a novel digital performing art form based on
traditional dancing. In the interactive environment they constructed human
body motions are captured in real-time using motion capture devices. The
acquired motion data are then transformed into interesting 3D visual forms
and displayed on a large screen. From an angle, the human motions can be
viewed as a special kind of brush, a “body brush” manoeuvered by dancing
to paint visual patterns on a large canvas.

1.3.6 Computer Puppetry

The study of computer puppetry is interesting because it is concerned with
the motion transferring problem from a human performer to a virtual charac-
ter. One of the earliest pioneers in this field is Lee Harrison III, who won the
1972 National Academy of Television and Sciences Award for his early work
on acquiring a human performer’s body motion for controlling the movement
of a cartoon character, and for the resultant commercial system called Scan-
imate which was very popular for TV logo production in the 1960’s. The
review paper by Sturman on computer puppetry [Stu98] covers this early,
seminal system together with several commercially successful computer pup-
petry companies and systems such as DreamWorks Animation SKG, Inc.
(www.dreamworksanimation.com), Simgraphics (www.simg.com), Protozoa
(www.protozoa.com), Windlight (www.windwardmark.net), DreamTeam,
Digits ’n Art (http://www.dnasoft.com/). Sturman then draws upon experi-
ences in MIT Media Lab’s computer puppetry research and discusses three
key technical and performance challenges for making successful computer
puppetry systems, including body performance, facial animation and lip syn-
chronization.

Concentrating on natural and expressive body performance of computer
puppetry, Shin et al. [SLSG01] studied the problem of how to map the motion
of a human artist to an animated character whose size and proportion may be
very different from the actual performing artist’s. The key technical problem
their work had to deal with is how to dynamically and efficiently choose the
important aspects of the motion features to preserve, during motion mapping
in an on-line scenario. This decision on what to respect and what to tailor is
necessary because it is not possible to reproduce all aspects of the original mo-
tion for a target object having different sizes and proportions. This problem
is generally and technically known as motion retargetting in computer graph-
ics [RGBC96, Gle97, Gle98, LS99, BLCD02, PSS02, TK05, CBK+06, PL06].
Shin et al. argued that only through a dynamic online decision process could
what is important be suitably determined according to the context of the mo-
tion. Achieving this goal constitutes the most part of their work. In addition,
robustness is another goal in their pursuit since typical captured motion data
are very noisy due to the functioning mechanism of the motion capturing de-
vices. And coping with this noisy input in real time for computer puppetry
is a challenging algorithm design task. Their system was successfully used
to produce daily children’s TV programs and for news broadcasting on the
election of the Korea National Assembly on Korean national television.
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1.3.7 Computer Calligraphy

Artistic characters and font sets have been widely used in postcards, the
publishing industry, advertisements on posters as well as video production,
etc. If we consider them a type of digital arts, it is probably the most widely
deployed digital art form. Calligraphy is like computer fonts “on the loose”
because the same character of a calligraphic style may put on a different look
in different places, which makes calligraphy a much greater challenge for the
computer. In our work we confine the scope of computer calligraphy to be the
generation of aesthetic characters automatically. Since the character sets for
most of the Western languages, e.g. English, Latin, Cyrillic, and Greek, all
have a very small size, typically below 100, manual production of a character
set in any customized style is not so big a deal. This is probably one of
the reasons why current research efforts on computer calligraphy are almost
exclusively on Oriental languages, such as Chinese, Japanese and Korean.
The character sets of these languages have thousands or tens of thousands of
characters.

Computer calligraphy research on the above three languages tend to be
very similar in terms of techniques and algorithms since these character sets
share many common features. Dongjun’s book [Don07] gives a good intro-
duction to computer calligraphy studies, with a focus on Chinese calligraphy
research in particular. In the book they also presented their work on generat-
ing new styles of Chinese strokes based on some statistical models. Yamasaki
and Hattori [YH96] studied the problem of having a computer to form brush-
written Kanji characters based on some calligraphic knowledge. Wang and
Lee [WL01] appealed to anisotropic diffusion techniques to turn calligraphic
documents into binary forms. Despite the heavy noises usually present in
ancient calligraphy writing tablets, they have achieved very satisfactory ex-
perimental results. Wong et al. [WLI05] analyzed Chinese calligraphy images
to inversely determine the parameters of the paintbrushes used to create a
calligraphy writing. Okabe et al. [OSN05] proposed a new rendering method
for generating line renditions in paintbrush styles using the Hidden Markov
Models (HMMs). Yu and Peng have synthesized very realistically looking
Cao Shu styled Chinese calligraphy through texture mapping a parameter-
ized stroke contour [YP05]. Lo et al. [LKWY06] proposed and constructed a
robot for creating Chinese calligraphy and paintings. All in all this is still a
relatively new area having received far less attention than most other digital
art forms. Most of the existent work is still concentrating on the represention
issue of aesthetic Oriental characters and the provision of efficient and com-
pact font system support. Part IV of this book looks at some of our work on
the automatic generation of artistic Chinese calligraphy.

We have mentioned the font a few times. In fact, there is an intimate
relationship between computer calligraphy research and the development of
font systems. For the latter the most classical and influential work is Tex
and Metafont by Knuth in the seventies [Knu79]. Knuth’s work directly or
indirectly set off in the following decades a long series of efforts dedicated
to research and development of font systems, e.g. [Gli84, FK85, How87,
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HB91, YH96, BNFR98, ZWS00, TK01, Pac01, BLM01, BOB05, TSW06,
LS06, Lar06]. Also related is the study on automatic recognition of charac-
ters, more popularly known as Optical Character Recognition (OCR). There
is a large body of papers published in such journals as Pattern Recognition
Letters and IEEE Transactions on Pattern Analysis and Machine Intelligence
on OCR studies.

1.4 Why Digital Arts Are Computationally

Challenging?

In this section we examine a few major hurdles to digital art research. These
hurdles collectively make digital art a very challenging area for research.

1.4.1 Lack of Semantic Understanding

Traditionally it is the artist himself who has the deepest understanding of
the art pieces he created. What about when the artist is the computer? It
is well known that automatic semantics understanding is computationally
very difficult to achieve, and is recognized as one of the big road blocks in
artificial intelligence research. Little progress has been made over the past
several decades. So we have the awkward situation where the machine that
has generated a piece of digital artwork does not actually understand its
artistic value. That means even when the machine has succeeded in gener-
ating an acceptable piece artwork, it does not necessarily know that it has
succeeded. This is so because the machine has only blindly followed some pre-
programmed routine, or it has generated the result by some random choice.
The situation is analogous to that of a student, who never attends a class and
knows literally nothing about a course, successfully passing an exam through
blind guesses or reciting what is in an answer sheet. It is therefore unlikely
that the computer will be able to repeat its success in its future creations
systematically.

1.4.2 The Versatile Nature of Art

Having some uniqueness and being able to maintain it is a key to success
in artwork creation. Unlike in many industry applications where massive
copying happens a lot, copying is fatal in original artwork creation. Therefore
to achieve uniqueness or distinctiveness must be included as one of the goals
in art creation. To be able to meet such a goal by the computer, a large search
space of possible solutions is highly desirable, which could mean some changes
to the problem solving structure. But most computer programs are built
with fixed routines to address a fixed class of problems sharing a common
representation and formulation. Thus the ability to automatically vary the
problem solving structure to stretch to the utmost in search of a solution is
not always supported. In fact, during design time, the human architect may
not even be fully aware of the full spectrum of needs when the program is
put to use to create novel artworks.
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1.4.3 Aesthetic Evaluation and Feedback

In designing our systems we are constantly aware of the incompatibility, some-
times conflict, between exact and soft reasoning. Computers are designed to
operate on binary values and be precise in representation, reasoning and eval-
uation. In contrast, these functions in our brains do not seem to follow any
clear and strict mathematic principle. We commented in the previous section
on the hindrance to success caused by the computer’s blindfolding in evaluat-
ing a piece of artwork. To get around the problem, the presence of a feedback
loop might offer some help. This same idea is also commonly entertained in
many branches of computer sciences, e.g. the backward propagation mecha-
nism in training a neural network. Because the computer cannot quite tell
what is aesthetically pleasing, without the availability of such any feedback
signal, performance optimization through any automatic means is hard to
realize. The feedback loop helps make iterative improvement possible, which
in fact is a strategy used in many other kinds of algorithms. But overcoming
this hindrance requires not only ideas from computer science. After all, the
whole cognitive mechanism behind aesthetics evaluation in the human brain
is still a mystery and likely to remain so a long while. Before the working prin-
ciples governing the biological process of aesthetics evaluation can be clearly
revealed, expecting a functionally comparable or equivalent computational
simulation device is fantasy.

1.4.4 Inhomogeneity between the Two Types of Intelligence

As discussed in Sect. 1.1, human intelligence and machine intelligence come
from very different roots and are fundamentally very different. This is both
good and bad news. Good news because human beings and machines can
compensate for each other’s shortcomings; bad news because this implies
that knowledge is represented and processed differently in each model, mak-
ing it a barrier to the exchange of knowledge between the two. People and
machine perceive things differently, think differently, and consequently also
tend to create things differently. To fruitfully combine human intelligence and
machine intelligence by grafting one onto the other, we need to find a “cut”
by which the two forms of intelligence could be seamlessly integrated. This
cut is difficult to find, if one exists, and how the two forms of intelligence
may be brought together to meet and communicate is non-trivial.

Recently, a flurry of research efforts has taken place which tries to create
a kind of intelligent graphical user interface to put human intelligence into
collaboration with machine intelligence. The challenge behind this is how to
design the most natural way to carry out human computer interaction. Ill-
conceived interaction patterns could easily destroy the creative mood and
enthusiasm of the user.
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Computer Science in Paintings or Drawings

2.1 Introduction

What is digital painting? Wikipedia offers an easy definition [Wik07]: “Digital
painting is an emerging art form in which traditional painting techniques such
as watercolor, oils, impasto, etc. are applied using digital tools by means of
a computer, a digitizing tablet and stylus, and software.”

The studies of the generation or augmentation of digital paintings and
drawings are at the core of Non-Photorealistic Rendering (NPR) research. In
fact the early NPR endeavors were exclusively dedicated to this topic. The
skill set needed by digital painting research overlaps considerably with that
of NPR studies. Thus a tour of the general NPR field can also serve as a good
introduction to the field of digital painting research. There are two dedicated
books on the broad field of non-photorealistic rendering [GG01, SS02]. We by
no means want to repeat what is already in that literature, but rather to aim
at giving readers a more focused view of the possible algorithmic means and
the state-of-the-art achievements from these techniques. We avoid the gory
details in this chapter, but refer interested readers to the relevant papers.

Lansdown and Schofield gave a survey on early representative NPR algo-
rithms [LS95]. More recently, an in-depth survey was contributed by Hertz-
mann [Her03] on the so-called Stroke-Based Rendering (SBR) techniques; he
defined SBR to be “approaches to creating non-photorealistic imagery by
placing discrete elements such as paint strokes or stipples.”

2.2 Automatic Generation of Paintings and Drawings

from Photographs

This is a frequently visited, fruitful but classical problem in the field of NPR.

2.2.1 Early Pioneering Work

Saito and Takahashi engaged in the earliest pioneering work in generat-
ing non-photorealistic rendering images for enhancing visual communication,
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which is not always possible to achieve through photorealistic renditions
[ST90]. Probably they are the first ones in computer graphics research to
demonstrate how NPR-styled rendition could effectively enhance the visual
appreciation of complex 3D shapes, which promises rich application values
across a multitude of fields, including line drawing illustration, topographical
maps, bird’s eye maps, sumi-e paintings, medical imaging and surface anal-
ysis. In their seminal paper, it is argued that a faithful rendering of scenes
does not necessarily translate into a visual presentation that communicates
most effectively to the viewer, nor offers a visual content that is the easiest
to perceive and grasp. Even though this may sound like common sense to
many, their voice opened up the field of NPR at a time when the whole field
of computer graphics research was geared towards achieving a photorealistic
replication of real world sceneries. In the same paper they also showed how
non-photorealistic rendering and photorealistic rendering styles could be si-
multaneously adopted for even greater visual effects. The case example they
suggested was about edge enhancement, by which a line art drawing empha-
sizing object silhouettes is superimposed on top of a photorealistic rendering
of the scene.

To realize the expressive rendering effects they desired, which have often
been used as classical NPR examples in books, course materials and survey
articles, they proposed the concept of G-buffers to be used to store geometric
properties generated in the middle of the traditional photorealistic rendering
process. Each G-buffer is dedicated to storing one kind of geometric informa-
tion, e.g. the depth field or the normal vector field. It has been 17 years since
the publication of their original paper, and much of the algorithmic details
on how to operate G-buffers for achieving expressive rendering effects, e.g.
the methods for generating discontinuity lines, edge lines, contour lines, and
curved hatching, no longer represent the start-of-the-art methods for gener-
ating stylistic rendering. Nonetheless, the very idea of utilizing, manipulat-
ing, combining intermediate rendering results, generated in the photorealistic
process to achieve non-photorealistic effects, still stands as an inspiration for
current day research on automatic generation of painterly renditions.

Furthermore, the above paper also introduced the practice of caching in-
termediate results from a photorealistic rendering process. Users can benefit
from this when experimenting with different stylistic rendering effects—by
playing with these cached results that give instant visual feedback and with-
out having to recompute all the rendering steps. This is another motivation
to introduce G-buffers—to accelerate the rendering. Even though these days
computers are running at a speed that is orders of magnitude faster than
the computers at that time, some painterly rendering algorithms compute
very slowly due to the sophisticated calculations the algorithms have to go
through. So the idea of caching partial results is still very popular in the
design of contemporary painterly rendering algorithms, e.g. [Her01], as well
as in the design of advanced rendering algorithms, e.g. [XLJP06].

Haeberli [Hae90] pioneered the generation of painterly rendering images
through computing an ordered collection of brush strokes . He proposed “By
controlling the color, shape, size, and orientation of individual brush strokes,
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impressionistic paintings of computer generated or photographic images can
easily be created”, which later becomes almost a stereotype for painterly ren-
dering generation from photographs. His foundational insight came from an
observation of the working style of impressionists—“Impressionist painters
use brush strokes to control light to simulate objects without modelling ob-
ject detail explicitly. Only a few brush strokes are needed to represent a
standing figure, a person’s face at a distance, or a tree. By carefully selecting
tile location, color, size and direction of brush strokes, they control visual
information to communicate abstract images to the viewer.” His proposed
algorithmic technique approximating the impressionistic painting tradition is
to sample the input photograph at some chosen brush stroke locations and
then create the strokes with certain colors. The interactive painting program
he developed works in a remarkably simple fashion, which nevertheless can
achieve amazing quality of results. More concretely, his program allows the
end users to pick certain locations on the canvas for brush stroke placement.
For every one of these stroke locations, the color of the stroke is simply
assigned as the color of that location in the reference input photograph. A
slightly refined version is to pick a brush stroke location as a randomly picked
position in the surrounding area of where the user clicks his mouse. Besides
the stroke position and color, the user can also interactively control the stroke
size, direction and shape; the brush stroke size could be either determined
according to the speed at which the user moves his mouse or through key
pressing; the brush stroke orientation could be determined according to the
direction of the mouse moving trajectory or based on the user mouse click
patterns; the brush shapes are either picked from an offered set of prede-
termined geometry shapes or drawn by the user. As a result, visually very
differently styled painterly renderings could be produced from the same input
photograph.

Haeberli proposed another important idea in the same paper which is
also intensively referred to by later NPR researchers, i.e. to paint by relax-
ation. The idea is to start with a painterly rendering approximation to the
original photograph, which is in the form of a collection of brush strokes.
Then an iterative optimization process is executed to minimize a certain ob-
jective function measuring the difference in terms of the visual appearance
between the input photograph and the painterly rendering result. The opti-
mization method Haeberli adopted is through stochastically perturbing the
brush stroke attributes. He shows two abstract paintings successfully created
through this method, one using 100 rectangular brush strokes and the other
100 Dirichlet domains; both are artistically very impressive and with a quality
easily exceeding what is attainable by most amateurs.

2.2.2 Representative Recent Work

More recently, Hertzmann [Her98] introduced a method to render a photo-
graph in a painterly rendering style by progressively matching the original
source photograph with painterly styled strokes; the procedure yields a vi-
sual approximation to the photograph, which may appear artistically more
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attractive or visually more pleasing than the original photorealistic version.
Brush strokes are created in such a way as to ensure that their orientations
align well with the gradient directions in the original photograph. The stroke
placement also follows an order in which larger strokes are picked and placed
first and then the smaller strokes. Variations of painting style are possible by
tuning the parameters controlling the selection and placement of the brush
strokes, such as brush sizes, appearance approximation accuracy to the orig-
inal photograph, stroke blurring effect, stroke curvature, minimum and max-
imum stroke lengths, opacity of strokes and color jitteriness. All these have
an effect on the overall visual impression of the resultant painterly rendering.
Specifically, the algorithm achieves satisfactory visual results for the styles of
impressionists, expressionists, colorist wash and pointillists.

Hertzmann also introduced a lightweight algorithm for producing painterly
rendering results with a viscous oil painting look and a 3D feel [Her02]. The
key to generating the 3D styled effect is that, in addition to carrying a tex-
ture map, as is traditionally handled in digital painting, each stroke is also
associated with a height map and an opacity map. This way, the entire paint-
ing is assigned with a height field and an opacity field. Through rendering
the whole painting via bump-mapping using the Phong shading model, 3D
appearance of strokes under lighting can be successfully achieved. During the
computation of the lighting effect, the normal of each pixel on a stroke is
calculated according to the derivatives of the local stroke height field. This
leads to the result that boundaries between adjacent strokes appear like edges
after applying lighting, yielding a compelling 3D feel in the final rendition.
The height map and opacity map are acquired beforehand and assigned to
strokes randomly on the fly. Because of the simplicity of the data structure
and the algorithm scheme, his algorithm is amenable to efficient implemen-
tation. Hardware-based MIP-mapping strategy can be further employed to
achieve acceleration, which would automatically scale the textures of brush
strokes to fit the strokes’ sizes. His algorithm could very effectively generate
painterly rendering in embossed style under plausible lighting effect from an
input photograph.

A relaxation-based framework to automatically produce painterly ren-
dering according to an input photograph is later proposed by Hertzmann
[Her01]. The major advantage of this new framework for generating auto-
matic painting is that the user does not need to specify how brush strokes
are to be painted; rather, they only need to give an energy function describing
the visual preferences expected of the painting to be generated. This mode of
operation echos the ideal situation expected of computer artwork generation
people only need to tell the computer what they want, but not how to achieve
that. Given such an energy function, the search-based energy minimization
process literally plays the process of composing the painting result with a set
of ordered brush strokes. The search is essentially executed by a relaxation
algorithm, with the assistance of various search heuristics. Hence the name
paint by relaxation. Another merit of this energy function-guided framework
for automatic painting generation is that it is capable of producing a family
of painterly rendering styles. This feature is realized through allowing the
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overall energy function to be defined as a summation of several energy terms,
each specifying a desired sub-goal with respect to the resultant painting. Some
example energy terms include the visual approximation to the input photo-
graph, and the economy of paint usage and strokes and the stroke covering
area in the painting. The beauty of such a compositional structure is that
users can now express their different preferences by adjusting the parameters
associated with the energy terms. These two features together represent an
important advancement in the study of automatic painting generation as it
was novel then to provide a uniform framework and a high-level user inter-
face for creating a variety of painting styles using the same piece of code.
The software system built according to the algorithm also would not let the
energy minimization framework dominate the painting process and leave lit-
tle room for the end users to participate. As such, the interface also provides
for interactive changing of painting style, specifying a particular style over a
region of the painting, and adding or deleting strokes.

But no tools are without flaws. The above algorithm has two major prob-
lems stemming from its very structure of automatic painting and the process
of minimizing a uniformed energy function. The first problem is that it is very
hard to control or design by pure intuition an energy function to achieve a
certain painting style. The other problem is that the optimization of the over-
all energy function is a non-trivial process, requiring a number of advanced
computational steps and a long time to compute, making it an obstacle for
interactive painting.

The above method also touches upon the problem of generating painterly
rendering for videos by preferring a painting style that uses strokes in an
economic way. In [Lit97], an algorithm for automatic generation of impres-
sionistic effects is introduced with a focus on video applications. To generate
a single frame of image in the impressionistic style, brush strokes are initially
generated with their positions, lengths, radii and orientations determined
either uniformly or according to some simple standard image processing al-
gorithm. For example, brush strokes can be initially placed uniformly with
user specifiable spacing. The brush stroke orientation can be chosen to be
a constant direction, or follow the direction where the colors in the input
original image are constant or nearly constant. The latter brush stroke ori-
entation has the benefit of the resultant strokes always following the objects
in a scene, as if the strokes have been glued to the object in an animation
sequence. All these four parameters of a stroke element, i.e. position, length,
radius and orientation, will then undergo a random perturbation process to
give a richer visual appeal as if it is hand drawn. This algorithm also intro-
duced a stroke clipping step to trim those parts of the strokes going past the
edges in the reference image. This makes the resultant painting in observance
of the silhouette structure in the reference image. The brush strokes are then
rendered with textures having R, G, B values and an opacity channel.

Apart from the above algorithmic processing procedures to generate a
painterly rendered result in the impressionistic style from an input photo-
graph, temporal coherence is additionally enforced since the automatically-
generated images are to be compiled into a jiggle-free animation. The key to
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realizing this is to rely on automatically detected optical flow fields from an
input video sequence to define the motion for the generated brush strokes.
Special care is needed to avoid brush strokes being distributed too densely
or sparsely after stroke movement by adding or deleting strokes on the fly
during stroke movements. When introducing new strokes for this reason, a
Delaunay triangulation based method is used. The idea is very simple: a De-
launay triangulation is first applied based on the brush stroke centers, which
results in a mesh having the property that no triangle inside would have too
large an area. Then for each of those sparse areas which do not contain any
brush stroke centers, a new stroke center and consequently a brush stroke
will be introduced. Experiment results prove that satisfactory temporal co-
herence can be successfully achieved when compiling an animation sequence
based on the individual frames in the impressionistic style produced by the
algorithm.

Freeman et al. [FTP03] introduced a simple yet very effective algorithm
for translating styles of line art drawings. Although the paper is mostly con-
cerned with style translation, we feel it is closely related to the problem of
automatic generation of painterly rendering effects as the line art drawing
in the source style can be easily obtained through tracing a photograph, as
demonstrated by the authors themselves in the paper. Their algorithm con-
sists of two phases. In the first phase, the style of the line art drawing is
captured by a fitting process in which a subset of line samples are fitted into
the line art drawing in the source style using a least squares method. After
the fitting, the drawing in the source style is represented as a linear com-
bination of the line samples. The computed weighted coefficients associated
with these line samples become the encoding for the drawing. Given this en-
coding, in the second phase, to generate a different style for the same line
art drawing, the algorithm applies the weights to another set of line samples
which are drawn by artists in the target style. The set of line samples is es-
sentially an ordered set of primitive lines for the artists to use during their
drawing. To preserve the original content of the drawing, when picking the
line samples, particular care is taken to guarantee that the same line sample
drawn in different styles occurs always in the same position in the sample
sets. That is, if in a line sample set for a jaggy style, the 5th sample is a long,
loopy line, then for all other line sample sets the 5th sample must also be the
same long, loopy line, but in a different style. By this design, the styles of
lines can be separated from the line contents. Such a separation is the key to
successful style translation, which also explains why an encoding of weighted
parameters can carry the content of a line art drawing.

The paper also brings out the conflict between the goal of faithfully fitting
the drawing in the source style and the goal of successfully translating the
style of the drawing into a new one. The conflict can be understood as the
issue of overfitting from a machine learning’s perspective. To resolve this the
author introduced a K-nearest neighbour method in the fitting stage. Instead
of using all the lines in the sample set to fit the input source drawing, only K
most similar lines (in shape) to the lines in the source drawing are selected and
actually used. Empirical results show that when K equals six, the best balance
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between the quality of the fitting and style translation can be reached. The
reason behind the performance boost due to adopting this restricted set of
sample lines can be understood from the locally weighted regression method
[AMS97] in machine learning theory. With the deployment of the K-nearest
neighbour method in the fitting phase followed by a squares approximation,
a good-quality, content preserving style translation for line art drawings can
be realized with the assistance of carefully chosen line sample sets in multiple
styles.

The success of the learning-based drawing style translation algorithm
comes from its example-based design which overcomes many difficult prob-
lems that will otherwise be encountered in the conventional parametric ap-
proach; these problems include how to parameterize the shapes in the draw-
ing, and how to subsequently process the derived signals taking care of both
the frequency and phase components of the signals.

2.2.3 Generating Paintings via Human-computer Interaction

So far all the painterly rendition generation methods we have looked at are
based on algorithmic processing. Recently there is a trend to employ Human
Computer Interaction (HCI) approaches for extracting an abstract represen-
tation of the painting. Most of us would agree that information delivery could
be made more emphatic by the selective abstraction of certain visual infor-
mation. The abstraction could be a painting or a drawing. With the new
HCI technologies, we now have a better means to understand how the hu-
man visual system works, which can help us to decide A computer system
could carry out image content abstraction in a guided manner and in a close
resemblance to the functioning of the human brain, instead of the traditional
approaches based on numeric algorithms. The idea explored by DeCarlo and
Santella in their paper [DS02] is one example of this category.

The key innovative idea behind the construction of their new photograph
stylization and abstraction system is the use of an eye-tracker, which can
passively measure the eye movement of a viewer. The captured information
is a sequence of triplets where the first two entries in a triplet are the XY
coordinates of the fixation point of the eye ball and the third entry records
the period of time the viewer fixes his eye in the position. These fixation
points are very revealing about a user’s attention when he is watching a dis-
played image on the computer screen. The algorithmic part of their work lies
in establishing a hierarchical representation of the image and the subsequent
abstraction of the image based on the acquired user attention data. To ex-
ecute these tasks, first the target image is segmented into multiple regions,
from which a pyramid representation of the image is later constructed based
on the hierarchical structure suggested by the containment relationships of
regions. Such a containment relationship is justified by the scale-space the-
ory [Lin94] and computed through performing image segmentation on various
scales. Once the pyramid structure of the image is established, the algorithm
then tries to assign an eccentricity value to each region in the image hierarchy
based on the sampled user eye fixation data. These eccentricity values are key
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to the image content abstraction which is carried out in a later stage of the
algorithm. Before the determination of the eccentricity values, a collection
of fixation circles are first derived according to the sampled triplet sequence
of user attention data from the eye-tracker. These circles are centered at the
fixation points and have the size of the viewer’s fovea. Given the fixation
circles, eccentricity is assigned for each region according to their respective
overlapping with the fixation circles and the angular distance between the
closet point in the region and the fixation point. These derived eccentricity
values are then used to collapse regions which are estimated to receive very
low user attention. This leads to a pruning of the image representation pyra-
mid. During pruning, the size of the region, the length of the eye fixation
period, and color contrast between the region and those of its neighbouring
regions are all taken into account. After the pruning is finished, the algo-
rithm assigns a constant color to the remaining image regions, thus realizing
the image content abstraction. Finally, bold edge lines are drawn if they are
judged to be important according to a model of visual acuity, which works by
considering the eccentricity value, line length and length of the eye fixation
period for the borders across the regions. After all the processing, the input
image is converted into a stylized and abstract painting featuring regions of
constant color and bold edge lines according to the user attention distribution
captured by the eye-tracker device.

2.3 Automatic Generation of Painterly Rendering

Animation from Videos

Hertzmann and Perlin [HP00] introduced a painterly rendering algorithm
specifically designed for producing flicker-free videos in painting styles. The
algorithm suggested in [Her98] is employed to generate a painterly rendering
image for the first frame of a video segment. Then, to ensure the whole
video will be free of flickering, two methods are applied: 1) subsequent frames
are generated through something painting over ; 2) optical flow of the input
reference video is computed and used to warp the frames to realize flow-
based painting. The first method, painting over, helps realize an iterative
updating mechanism for generating non-heading frames in a video sequence.
The motivation behind this is that if each frame is generated individually,
the lack of temporal coherence would cause a serious problem in the result
animation. The idea to avoid that is to start with the painterly rendering
result of a previous frame when a new frame is to be generated, i.e. painterly
rendition generation through “painting over” the previous frame. This way
the frame-to-frame coherence can be much improved. To make the painting
over process robust against video noise which can cause flickering, a technique
called “difference masking” is further employed. The use of a difference mask
will make the algorithm update the painterly rendition in only those regions
with significant motions. Cumulative difference masking is traced to deal with
motions that happen gradually, such as the fade-in or fade-out effects.
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The second method of utilizing optical flow is to use the detected flow to
warp both the image frame in the input reference video and the correspond-
ing brush strokes. Doing this makes the strokes follow the motions of their
corresponding objects, to yield a resultant animation that is more natural
and vivid, and also to further reduce flickering. With this method the brush
strokes do not have to be repainted constantly and mechanically which could
result in those so-called paint-on-glass artifacts.

The above algorithm for generating painterly animation has an interest-
ing, interactive painting application, which the authors refer to as “living
painting”. This application uses an ordinary video camera to acquire a live
video of an exhibition area. The taken video is then processed into painterly
styled animation using their algorithm. The resultant animation is projected
onto a large projection screen inside the hall somewhere. Visitors can per-
form in front of the video camera and watch and play with the automatically
generated painterly animation on the screen. Another application of this al-
gorithm, which the authors also demonstrated, is to convert a footage of
a recorded jazz performance into some painterly rendering animation; the
converted result was actually made into a music video later on.

2.4 Interactive Generation of Painterly Rendering

Images

In addition to fully automatic conversion from photographs to rendered paint-
ings, there are interactive systems which make reference to input photographs
during an interactive stroke painting process in order to reduce the amount
of tedious individual stroke drawing work. Unlike those automatic painterly
rendering generation algorithms and systems, artists have to really work with
these systems interactively to develop a painterly rendering result. But in re-
turn, the artists now have more space to display their artistic talents and to
pursue their artwork creation interests.

The interactive pen-and-ink illustration system described in [SABS94] is
one such system. An input photograph to that system serves as a reference
for controlling various visual factors in producing a pen-and-ink illustration.
The photograph can serve as a tonal guidance for controlling the darkness
of the stroke texture; it can serve as a source image from which edges can
be detected to use as outlines or for stroke clipping; it can serve as a map
for the stroke drawing area according to the intensity values of the pixels
in the photograph; it can also be used to suggest the orientation of strokes
and the texture for best illustrating the shapes of curved surfaces. During
interactive painting, users are mostly concerned with the the choices of tex-
tures and tones; according to these inputs, the system would automatically
complete the individual strokes. That is, users concentrate on working with
high-level painting metaphors and leave the low-level stroke related work to
the computer. This liberates the illustrators from the otherwise labor inten-
sive drawing work of providing massive sketch strokes to achieve the desired
tone and texture. To supplement the high-level automation the system pro-
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vides in introducing and placing individual strokes, the user can also draw
single strokes to suggest certain particular shapes or to highlight specific
regions. Hence, the user has both the convenience of an intelligent stroke
drawing function and the freedom and flexibility to work as much as desired
on important selected areas. Some high-level stroke editing options are also
provides. It was shown that using the system, very nice pen-and-ink illus-
trations can be interactively produced in minutes or at most a few hours by
untrained users.

Salisbury et al. [SWHS97] extended the above system by taking into ac-
count the orientation of strokes when producing illustrations in pen-and-ink
style. Similar to the system introduced in [SABS94], this new system needs
a greyscale image as initial input to specify the tone of the expected pen-
and-ink illustration. The new features of the system include: 1) users can
provide a direction field to indicate the direction of strokes during the stroke
placement process; 2) users can provide a stroke example set for the algo-
rithm to pick from on the fly as the template for the strokes when generating
the illustration. These extra considerations relative to the algorithm intro-
duced in [SABS94] significantly enhanced the expressiveness of the computer-
generated pen-and-ink illustrations. This new system also incorporated an
interesting matching algorithm to measure at each execution of the algo-
rithm the difference between the produced pen-and-ink illustration and the
original input greyscale image. The matching algorithm computes the differ-
ence between the greyscale reference image with the (blurred) version of the
currently generated pen-and-ink illustration wherein the blurring filters have
variable sizes in proportion to the lightness in the input reference image. This
measurement of the degree of approximation to the given reference image is
needed to guide the introduction of new strokes and for the termination con-
dition of the whole algorithm. In a low level view of the algorithm, during its
execution, careful processing is carried out to orient, bend and clip each new
stroke upon its introduction.

2.5 Automatic Generation of Painterly Rendering from

3D Models

Many consider paintings and drawings to be a reflection of the 3D reality
in the artists’ mind. Computer scientists, in particular computer graphics
researchers, are therefore interested in trying to reproduce or mimic such a
subjective reflection using the computer. Especially during the past twenty
years, many research efforts have been dedicated to the problem of generating
painterly rendering drawings or paintings from 3D geometry models. Here we
briefly look at some of the representative works.

2.5.1 Automatic Generation of Illustrations and Line Drawings
from 3D Models

Dooley and Cohen started one of the earliest studies on automatic generation
of illustrations for 3D geometric models in an attempt to create informative il-
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lustrations but without dragging in a lot of confusing details [DC90a, DC90b].
In [DC90a], several categories of lines intended for conveying different geo-
metric meanings are first studied, which include boundary lines, silhouette
lines, discontinuity lines and contour or isoparametric lines. And then a set
of illustration rules are set up to be used for determining line drawing param-
eters based on user input and an inference function derived from illustration
principles that artists often employ. The inference algorithm carefully sug-
gests the line end conditions, line width and space for dash lines. A example
case is given which demonstrates how effectively structures and details of non-
trivial geometry models can better be illustrated by computer generated line
based drawings than a photorealistic rendering of the model. Especially in
regions where there exists intensive occlusion in the model itself, structures
and geometry details of the model can be clearly seen in the illustrations
which are not possible with photorealistic rendering from any viewing direc-
tion. Their second paper [DC90b] focuses on the same problem, except that
the emphasis is put on how to augment surface rendering rather than line
rendering.

Winkenbach and Salesin in [WS94] summarize the principles adhered to
by professionals in practice on how to make communicative pen-and-ink il-
lustrations. They point out the dual function of strokes in pen-and-ink il-
lustrations which is that strokes serve to deliver both the texture and tone
in drawings; and subsequently propose the concept of stroke texture, which
refers to a number of strokes being used collectively in computer-generated
pen-and-ink illustrations for achieving both the desired texture and tone.
They also propose a resolution-dependent stroke rendering strategy which
suggests that the stroke introduction process should take into account the res-
olution of the output media. Probably the most outstanding contribution of
the paper is that they successfully demonstrated, via the examples of quite a
few complex architecture models, how a number of the above well-established
principles for making pen-and-ink illustrations could be effectively supported
and realized in an automatic fashion based on information available inside
the traditional computer graphics pipeline.

One of the major limitations in the above system is that the algorithm
could only work with polyhedral models with flat-shaded surfaces. The same
authors fixed this limitation in a follow-up paper [WS96] so that models
described by parametric curved surfaces, such as B-splines, NURBS or rev-
olutionary surfaces, could all be automatically painterly rendered. This im-
proved algorithm relies on the surface parameterization to produce directions
for making hatches, which unfortunately do not always exist; or even when
they do exist, they may not be descriptive enough for the underlying shapes.
Hertzmann and Zorin propose yet another algorithm [HZ00] capable of pro-
ducing line-art illustrations for smooth surfaces. The new algorithm could
deal with models with piecewise-smooth free-form surfaces. One clever strat-
egy this paper employs is for the algorithm to take as input polygonal mesh
models and then to infer the smooth surface model from the meshes. This
way, the algorithm need not assume that the model for processing has to
have an explicit parameterization. The algorithm first detects object silhou-
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ettes according to geometric duality. Once detected, the silhouette curves are
segmented into smooth parts with constant visibility. To introduce hatches,
the algorithm relies on direction fields which could be defined either in the
image space or in the object space and then projected onto the image space.
The produced direction fields are ensured to be smooth ones, which guide
the hatching introduction process.

Gooch et al. [GGSC98] treated the problem of generating illustrations
under the same framework for creating traditional photorealistic renditions.
With this perspective they contributed a non-photorealistic lighting model
which is capable of producing technical illustrations using a standard graph-
ics pipeline. The design of such a lighting model is based on the observations
of characteristic conventions in technical illustrations in practice, including:
1) dark curves are always used for depicting edges; 2) matte objects are
shaded in a color with certain warmth or coolness to suggest surface nor-
mal, rather than in black or white; 3) no shadowing effects are presented;
4) metal objects are always rendered as if being anisotropic. According to
these four observations, the traditional photorealistic Phong lighting model
is tailored to automatically achieve a non-photorealistic lighting effect meet-
ing the expectations of the above. More concretely, points 1 and 3 above are
easy to satisfy. The key lighting model design work is thus given the task of
satisfying points 2 and 4. To achieve the effect expected in point 2, a tone-
based shading mechanism is introduced which changes the traditional diffuse
shading model to include two terms, one for the lighting contribution from a
cool color and the other for the lighting contribution from a warm color. The
weighting parameters balancing these two terms are determined according
to the cosine of the angle between light direction and surface normal. The
authors also made a design decision to always use blue and yellow tones to
“insure a cool to warm color transition regardless of the diffuse color of the
object.” With such a preset choice, the cool color is computed from a linear
combination of blue and black while the warm color is computed from yellow
and the object’s color. Such a linear blending essentially achieves a so-called
undertone effect which is often used by artists empirically to reach the goal
stated in point 2 above. Finally, to produce an anisotropic look for metal-
lic objects, twenty stripes in randomly set intensities are mapped onto the
object surface following the object’s parametric axis that demonstrates the
maximum curvature. Experiment results confirm this simple treatment could
very effectively communicate whether an object is made of metal or not, and
thus helps satisfy the requirement in point 4 above. We feel that the elegance
of this new method of automatically generating technical illustrations lies in
its seamless integration into the existing photorealistic rendering pipeline by
only customizing the lighting model while leaving the rest of the graphics
pipeline intact. This makes the implemented framework have a close resem-
blance to the standard graphics pipeline. Also, because technical illustration
generation in this algorithm is solely dependent upon the given geometry
model, temporal coherence naturally results, which makes the method per-
fect for animation or video production.
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There has been much interest in generating line art drawings according to
a given geometry model. The many proposals include contours, silhouettes
[NM00, IHS02], discontinuities in the depth buffer [ST90], creases [WS94,
MKG+97], ridges and valleys [IFP95, IZ95, Ste99], crest lines [LFM96], co-
herent stylized silhouettes [KDMF03], suggestive contours [DFRS03], tempo-
rally coherent suggestive contours [DFR04], formulated silhouettes [WV03],
and apparent ridges [JDA07]. In the proposal for using suggestive contours
to convey shapes [DFRS03], DeCarlo et al. defined suggestive contours as
the locations where the dot product of the surface normal and the viewing
vector reaches positive local minimum rather than being zero as in the defi-
nition for traditional contours. A more intuitive definition for suggestive con-
tours is also offered which refers to those points that are contours in nearby
viewpoints but yet do not have corresponding contours in any closer views,
where the distance metric uses the radial distance. The suggestive contours
always appear in the visible parts of a surface. The suggestive contours ei-
ther anticipate or extend traditional contours and can merge smoothly with
traditional contours if the latter appears. To compute suggestive contours,
an object-space algorithm and an image-space algorithm are introduced. In
comparison, the object-space algorithm works generally more efficiently and
can produce continuous stroke trajectories with better appearance approx-
imating that of hand-drawn illustrations. The image-space algorithm works
better in the presence of noises in the geometry.

Schumann et al. evaluated the effectiveness of line drawings as an output
means of CAD systems for architectural design [SSLR96]. Based on a poll
of 54 architects participating in the user study, a conclusion was made that
sketch drawings in CAD can help stimulate the design thinking of the archi-
tects. The same stimulation however is not always available with faithfully
rendered photorealistic images.

2.5.2 Generating Painterly Rendering Animations from 3D
Models

Meier introduced an algorithm which uses a 3D particle-based geometric
model representation coupled with a 2D brush stroke generation method for
producing painterly rendered animation [Mei96]. One feature of this algo-
rithm is that it works in 3D geometry space and 2D screen space simul-
taneously. Like other geometry based methods, this algorithm also needs a
geometric model of the scene to start with. A particle placer is first called to
generate a particle representation of the model to be rendered. Clearly, this
algorithm generally is also applicable to any point based model. Given the
particles, through the traditional camera transformation from the world space
to the screen space, the positions of these particles are transformed into posi-
tions on the screen space for placing 2D brush strokes onto the canvas. If the
users have associated some stroke properties with the particles, such as the
stroke colors, orientations, sizes, then brush strokes can be placed onto the 2D
screen space canvas immediately; otherwise, a set of brush stroke property
reference pictures will be needed, which can be generated through various
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shaders according to the input geometry model and taking into account the
geometry, surface attributes and the lighting conditions. Either way, an addi-
tional brush texture image is needed to control the texture of the 2D strokes,
which can be scanned from real world samples, manually drawn or produced
by image processing packages, or procedurally generated. During the actual
2D stroke generation process, the algorithm follows a descendent order of the
distances of the 2D strokes’ corresponding particles in the 3D space to the
viewpoint. In comparison, the latter method, i.e. to employ reference pictures
for controlling the brush stroke attributes, gives the user a wide design space
to tune the style of the generated painterly rendition in an intuitive and user
friendly fashion. The results of the experiment also demonstrate that very
different painting styles can be successfully achieved by using different brush
texture images and painting parameters. One important smart trick employed
in the generation process, capable of significantly enriching the handcrafted
look of the painterly rendering result, is to introduce randomness into the an-
imation parameters, in particular the brush stroke attributes. Special care is
taken to ensure that the introduced randomness changes smoothly between
frames so as not to destroy the temporal coherence of the resulting video.
Except for this last point, this algorithm would not explicitly spend any ef-
fort on ensuring temporal coherence. Rather, this coherence is automatically
taken care of by the very nature of the algorithm which is its structure for
converting 3D particles into 2D brush strokes. Because of this structure, dur-
ing the animation of the object the particles’ movements naturally follow the
motion of the geometry model, which leads to a corresponding motion of the
brush strokes in the 2D screen space. This way of manipulating brush strokes
not only makes the brush strokes appear to be always sticking to the objects
during animation but also leads automatically to frame-to-frame coherence.
Overall we consider this algorithm to be in essence a painterly rendering im-
age generation method; its design is well suited for producing animations in
painting styles.

2.5.3 Domain Specific Special-purpose Painterly Rendition
Generation

There are also some domain specific efforts to generate painterly renditions.
The algorithm for generating pen-and-ink illustration of trees introduced by
Deussen and Strothotte [DS00] is an example. The motivation behind this
algorithm comes from the wide application of tree illustration in architecture,
landscaping and animation, and also from the unique challenges in render-
ing trees—because of a great many geometry primitives in a typical tree
model, it is very hard for the traditional geometry-based illustration genera-
tion algorithms to handle this. During the pen-and-ink illustration generation
process, their algorithm carries out a distinctive treatment between render-
ing tree skeletons and foliages. This is because there are orders of magnitude
more geometric surfaces in representing foliages than in representing tree
skeletons. Also, the screen space occupied by tree skeletons is much larger
than that by foliages. Both factors suggest we should introduce a higher level
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of abstraction for illustrating foliages. The authors of [DS00] offer the fol-
lowing solution. For tree skeletons, they are rendered as silhouettes which
are superimposed with crosshatching to indicate the shaded dark regions on
the tree trunk and the main branches. Existent outline generation methods
are employed to achieve this. For foliages they are rendered according to the
depth differences. That is, first a depth-buffer is created by rendering all the
foliages without tree skeletons. And then according to the discontinuities in
the depth field, decisions can be made on whether a certain part of a foliage
should be rendered. Choosing different difference thresholds in this decision
step could lead to different levels of abstraction. The determination process
based on the difference in the depth field can also lead to a natural support for
level-of-abstraction if the depth values are used directly instead of being pro-
jected back to the eye coordinates. This is due to the well-known non-linear
characteristic of the depth- buffer, i.e. depth difference tends to be small for
far-away objects and larger for closer objects. Once it is decided to depict
foliage in a certain area, some abstract drawing primitives are drawn on the
canvas, which could be a disk, an ellipse or a polygon to represent the shape
of a leaf. Using these abstract drawing primitives could further help achieve
the abstract look of the resultant pen-and-ink illustration. The authors dis-
cussed an interesting failure during the design of their algorithm—“In our
first experiments, we placed special textures on the leaves of our realistic
tree models that looked like strokes. This is a fast and simple method, but
the generated images never appeared like drawings.” But once they switched
to using abstract drawing primitives for depicting foliage, very satisfactory
results were obtained. This suggests to us that there is a certain level of
abstraction that has to be satisfied in generating a pen-and-ink illustration;
otherwise the resulting image just will not work with the human perception
system. Finally, shadowing effects are also added, in the process of which
shadow regions are first detected using a software shadow detection method
applied to the geometric model of the tree, and then dark regions are drawn
or thicker lines are used for illustrating those regions in shadow.

The main advantage of this geometry-based tree illustration generation
algorithm over the other image-based methods is in its superior spatial and
temporal coherence, which makes the algorithm most suitable for the pur-
pose of animation production. The paper also demonstrates, by using a tight
difference threshold in generating abstract rendering of foliage, very faithful
illustration of a tree model can be automatically created. For applications
where such a high level of proximation to the real tree shapes is needed, the
algorithm offers a huge saving in effort and time for the artist. If a series of
such renderings is needed to tell a story, as needed for comic books or car-
toon strips, the temporal and spatial coherence of the algorithm guarantees
a possibility for automatic completion of the rendering task, which could be
outrageously laborious if done by the human illustrators. Finally, the follow-
ing properties of the algorithm are worth noting: 1) Because the pen-and-ink
illustration generated by the algorithm is according to the tree geometry
model, if a photorealistic rendition is needed, the difference between these
two styles of rendition will not be significant. 2) During the pen-and-ink il-
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lustration generation process, significant model simplification, especially on
the tree foliage part is carried out. 3) Photorealistic rendering by nature tends
to cost much more than non-photorealitic rendering; for example, the lighting
consumption calculation can be avoided in the latter. These three properties
suggest that the pen-and-ink tree illustration generation algorithm is an ideal
previewer for viewing tree models.

Kowalski et al.[KMN+99] introduced another special-purpose painterly
rendering algorithm , which is suited for rendering fur, grass and trees in
artistic style. This new algorithm can increase the visual complexity of the
rendered target without demanding a correspondingly complicated geometric
model. This offers a tremendous benefit for geometry-based painterly render-
ing for objects like fur, grass and trees whose geometric models could be
extremely complicated even when we are interested in only a very limited
precision. Also, visualizing in an artistic style can substantially speed up the
rendering process which otherwise would spend much time in dealing with
the complicated geometric models. In terms of rendering techniques, the key
means used for achieving the art-based rendition is through mapping proce-
dural stroke-based textures onto polyhedral models. That is, the geometric
models for fur, grass and trees are first divided into surface patches to which
procedural textures are interactively associated by the user. These procedural
textures could be as simple as smooth-shading effects or wireframe effects,
or as sophisticated as dithering or hatching. When placing the textures, a
similar algorithm to what is used in [SWHS97] is employed for determining
the position of the textures. This algorithm works by placing a procedural
texture element first in the region that requests the densest distribution of
textures. And then the expected distribution of texture elements is updated
and the next texture element is put in the place that needs it the most at
that moment. Through this greedy algorithm, a controlled screen-space den-
sity is achieved in placing textures. The texture elements can also scale their
geometry and volume to maintain an expected screen-space size and relative
density. What is interesting is that for the same texture element, it will be
drawn in different details depending on the angle between the viewing direc-
tion and the surface normal. The variation of details include a texture drawn
with outline edges, texture without outline, spine only, or nothing. Elements
in a more orthogonal view will be drawn with more details. Such a tasteful
idea improves considerably the visual charm of the resultant artistic render-
ing. Also, the authors paid attention to using different levels of details when
drawing objects at different distances. A three-level hierarchy is introduced
to realize this. When the camera is placed at a position near the objects,
all the levels are drawn. When the camera zooms out, less details will be
included, and so on. Doing this effectively gives a cleaner picture, especially
when the scene is observed from far away, but presents enough details to look
at when the scene is close by. Unfortunately the algorithm fails to achieve a
good temporal coherence mostly due to its greedy approach in introducing
and placing texture elements.
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2.5.4 Efficient Painterly Rendition Generation

People have also endeavored to pursue efficient line drawing for large scale
datasets for scientific and medical visualization applications. Markosian
et al. [MKG+97] contributed an early effort on achieving real-time non-
photorealistic rendering. They modified the traditional Appel’s hidden-line
algorithm to realize very fast visibility determination which is the most time-
consuming step hindering real-time non-photorealistic rendering for geometry
models or volume datasets. They also introduced a fast randomized algo-
rithm for finding silhouettes. The efficiency comes from the fact that once
a silhouette edge in the geometry model is detected, by tracing the edge
a complete silhouette curve could be easily and quickly derived. These two
points in Markosian et al.’s paper inspired a later, more improved efficient
non-photorealistic algorithm by Burns et al., which is capable of performing
interactive line drawing for large volume data [BKR+05]. The key observation
that stimulated the design of Burns et al.’s efficient line drawing algorithm
is that for a typical volume dataset of size O(n), its contour would only have
a length of O( 3

√
n). Thus by tracing the contour lines and updating them it-

eratively, an exhaustive visit to all the voxels in the volume dataset could be
avoided, thus significantly speeding up the overall algorithm. To implement
this thinking, a seed-and-traverse line extraction framework is proposed, in
which some seeds are first found and then traced to detect the entire lines
of interest. A large portion of the seeding points are collected from the con-
tour lines in the previous frame by exploiting the spatio-temporal coherence
naturally exhibited between contour lines of adjacent frames. This is because
despite the fact that the viewpoints for adjacent frames may change, which
will lead to changes to the contours since they are view-dependent, contours
of adjacent frames often intersect. By this observation, through visiting vox-
els on the contours of the previous frame, which is of time complexity O( 3

√
n),

it is likely that seeding points for the new contour in the new frame will be
encountered. Also, two additional procedures are executed as a supplement
to detect seeding points for those contours that do not observe temporal
coherence well. One of them is a deterministic approach using an iterative
gradient descent method and the other is a randomized approach essentially
implementing a random sampling procedure for collecting the seeding points.
In terms of stylistic rendering, a variety of types of lines are supported includ-
ing silhouettes, suggestive contours and intersections with cutting planes. The
exact appearance of a line is determined according to the type of the line, its
positioning with respect to the isosurface, its visibility, its lengths, etc. Also,
a lightweight visibility determination routine is introduced which works by
tracing a ray from a vertex to the camera position. If the ray intersects any
isosurface on its journey to the camera position, the vertex is marked as being
occluded. The continuity property of the contour lines is utilized to execute
visibility determination at a low resolution and only in regions where the
contour lines’ visibility changes, as detected in the low resolution calculation,
will a high resolution visibility test be carried out. Overall, by working with
sparse lines and avoiding enumerating all the voxels in the volume dataset, an
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efficient line drawing algorithm is made possible whose resultant rendition is
superior in emphasizing important features in the dataset without presenting
are overwhelming amount of visually straining information.

2.6 Special Support for Digital Painting

So far we are mostly concerned with the generation of paintings through
computational approaches. But digital paintings also call for special support
in their creation, representation and display.

2.6.1 Hardware Support for Digital Painting

Many of the virtual reality devices and technologies can be effectively utilized
to enrich digital painting viewing and creation experiences. Examples of de-
vices include haptic devices or resistive force feedback devices, six degrees-of-
freedom input devices, graphics tablets, stereoscopic glasses, head mounted
displays, virtual reality helmets providing 360-degree viewing scope, space
balls and space mice for navigation. Quite a few research labs and companies
have provided software and hardware prototypes and products which can
be directly deployed for building user-friendly digital painting creation and
viewing environments.

2.6.2 Multiresolutional Painting

The representation method of digital painting is a fundamental issue, which
unfortunately is often overlooked. Currently, bitmap representation is still
the dominant one in the industry. We notice however an important metaphor
has been proposed for a while for digital paintings so that digital paintings
would behave like real paintings in the physical world; it is the multiresolu-
tional painting representation scheme and its associated operations. With this
scheme, digital paintings no longer need to be confined to a specific resolu-
tion, which is one of the negative features of digital painting when compared
to physical paintings.

Berman et al. [BBS94] studied the problem of multiresolutional painting
representation and its associated operations. Most people wish to observe a
painting at the finest possible resolution if they are close up and interested
in a local region of the painting; meanwhile, they would not want to suffer
from the overheads caused by excessively high resolution, especially in sit-
uations when they are more interested in a global view of the painting. A
multi-resolution scheme therefore would best fit such variable expectations.
To address the problem, Berman et al. turned to a Haar wavelet-based im-
age decomposition method coupled with a sparse quadtree representation
structure. The merits of this particular wavelet-based schema include: 1) a
compact description of the target image at a high image compression rate, 2)
a natural support for direct editing of compressed images without having to
uncompress/compress, 3) a natural support for lazy evaluation in maintaining
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the consistency of the multiresolution image representation structure during
image editing, which is much simpler to implement than the traditional im-
age pyramid representation. Therefore, the algorithm they proposed achieves
efficiency in terms of both space and time. Last but not least, they also pro-
posed and implemented a feature called fractional-level zooming with which
a painting can be viewed or edited under any arbitrary resolution. Perlin and
Velho explored a similar idea of wavelet-based multiresolution painting at
approximately the same time [PV92]. However, their method seems to be not
as optimally tuned as Berman et al.’s algorithm.
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This part consists of five chapters: Chapter 3—Chapter 7. The main theme
is on how to construct a virtual brush system for digital artists to interactively
create paintings and calligraphic artwork.

Chapter 3 provides a general picture on the virtual paintbrush research
for interactive digital painting and calligraphy creation. It discusses the key
elements in a physically-based digital painting environment, briefly overviews
the state-of-the-art research in each subdiscipline, and brings out the objec-
tives for our studies with respect to each of the constituent components of
the virtual brush environment we intend to build.

Chapter 4 then presents the overall algorithmic framework of our virtual
hairy brush system. It reveals the architecture of our system construction
and introduces the basic simulation mechanisms we employ or develop for
modeling brush geometry, simulating brush dynamics, emulating virtual pig-
ment behaviors as well as acquiring user input into the system. This chapter
also probes into the cooperative functioning between multiple working com-
ponents in the virtual brush system. The chapter finishes with a comparison
of the basic algorithmic design ideas we adopt in developing our virtual paint-
brush system with other virtual brush models. Overall, this chapter lays down
the foundational framework of our algorithm design and system development
endeavors to bring forth an expressive and easy-to-use virtual paintbrush
environment.

Following the framework set down in Chapter 4, Chapter 5—Chapter 7
then delve into the three key components of our virtual paintbrush sys-
tem, with each chapter presenting some advanced algorithm design efforts
for strengthening one particular component of the system: Chapter 5 focuses
on how to improve the brush modeling realism and dynamics simulation per-
formance of the system; Chapter 6 focuses on enhancing the virtual pigment
behavior simulation in the system; Chapter 7 studies the way to provide a
realistic, efficient and lightweight visual feedback on the runtime shapes of
the virtual paintbrush’s head bundle, which can grow into potentially highly
sophisticated geometries. Various algorithm design strategies and engineering
methods have been utilized and incorporated in these chapters to achieve the
best attainable overall performance in our virtual paintbrush system design.
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Introduction to Interactive Digital Chinese

Painting and Calligraphy

3.1 Overview

In this part of the book, we propose a novel algorithmic framework for an
advanced virtual brush to be used in interactive digital painting. The frame-
work comprises the following components: a geometric model of the brush
using a hierarchical representation that leads to substantial savings in every
step of the painting process; fast online brush motion simulation assisted by
offline calibration that guarantees an accurate and stable simulation of the
brush’s dynamic behavior; a new pigment model based on a diffusion process
of random molecules that considers delicate and complex pigment behaviors
at dipping time as well as during painting; and a user-adaptation component
that enables the system to cater for the personal painting habits of different
users. A prototype system has been implemented based on this framework.
Compared with other virtual brushes, this new system is designed to present
a realistic brush in the sense that the system accurately and stably simulates
the complex painting functionality of a running brush, and therefore is ca-
pable of creating high-quality digital paintings with minute aesthetic details
that can rival the real artwork. The advanced features also give rise to a high
degree of expressiveness of the virtual brush that the user can comfortably
manipulate.

In this chapter, we describe the architecture of the various components
involved in a computational solution to digital Chinese painting and calligra-
phy. The four key elements constituting the digital painting and calligraphy
process are painter, brush, ink and paper. Their interaction is illustrated in
Fig. 3.1.

3.2 Background

Virtual brush is an important tool for interactive painting [Str86, HH90,
HLW93, HL94, SABS94, ABL95, SN99, Pix00, WI00, BSLM01, KMM+02,
XTLP02, CT02]. Smith has written a good survey on the early painting
systems [Smi01]. These early systems offered 2D brushes for painting. The
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Fig. 3.1. The interaction of the four key elements of digital painting simulation.

newer painting systems are more sophisticated, which can for example auto-
matically generate painterly rendering results based on some input reference
images [Her98]. To provide a virtual brush that can mimic the real 3D brush
for painting and calligraphy writing has become a popular area for research
in recent years [WI00, BSLM01, XTLP02, CT02]. The researchers are at-
tracted by the unique ability of a 3D virtual brush to generate expressive
and realistic results through techniques such as physically-based modeling.
Common to most existing 3D virtual brushes are three core components that
implement the most essential functionalities of a 3D virtual brush: a brush
geometry model, a brush motion simulator, and a pigment behavior model.
The following subsections give an overview of existing work with regard to
these three core components.

3.2.1 Previous Work

3.2.1.1 Virtual brush geometry models

One of the earliest models was by Strassmann [Str86], where brush strokes
are created by sweeping a 1D brush bristle over a skeleton. It is effectively
a 2D heuristic approach which is not natural to use for non-computer spe-
cialists. Wong and Ip’s virtual brush is modeled as an inverse cone and can
produce an elliptic drawing mark [WI00]. This represents a substantial im-
provement over Strassmann’s in terms of usability. However, because of the
need to manually specify an intricate set of parameters controlling the shape,
density and opacity of the current brush drawing mark, the interactivity of
Wong and Ip’s system is limited. In the DAB project [BSLM01], a subdi-
vision surface is wrapped around a spring-mass particle system skeleton to
represent the brush geometry. One disadvantage of using a subdivision sur-
face is that the splitting of the brush is very hard to model. To generate the
subdivision surface to model the brush head, either interpolation or some
approximating scheme is used. An interpolated brush head, however, often
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cannot deform smoothly because of the frequent occurrence of high curvature
in the brush head surface, while approximation has the problem of properly
placing control points to yield the desired surface. On top of all this, how
to suitably anchor the control points of the surface to the mass particles is
a non-trivial problem. In the work by Xu et al. [XTLP02], general sweeping
is employed to establish the solid geometry model of each hair cluster. The
problem however is that general sweeping is a time-consuming operation. At
different stages of painting, much computation is needed to apply general
sweeping operations to update the model. Also, the solid model requires a
fair amount of memory for its internal representation, and after the brush is
split many times, the demand for memory could become a bottleneck. In the
work by Chu and Tai [CT02], a single hair bundle is modeled by a geome-
try model that is mathematically equivalent to that by Xu et al. [XTLP02].
Unlike the latter which simulates the spreading and splitting of the brush
tip by a geometry approach, Chu and Tai used an alpha map to implement
cluster modeling for the split brush. This results in an over simplification
which limits the expressiveness and the amount of fine details that the brush
is able to produce.

It appears that none of the above is sufficient to model a physical brush
with a high degree of likeness to the brush’s real behavior. One frequently
occurring situation in reality, for example, is that of the brush splitting into
a large number of hair clusters. To model this rather “chaotic” situation is
out of reach for all the existing brush geometry models. According to many
practising artists, such a high degree of splitting is very much desirable. We
propose a hierarchical geometry model for a “realistic” brush; together with
a fast rendering procedure, our model enables efficient simulation of the most
complex effects of a real brush, such as brush splitting.

3.2.1.2 Virtual brush motion simulators

Simulating the motion and dynamic deformation of a real paintbrush is a
tough problem because of the complex static geometry and dynamics of the
modeled brush.

In DAB [BSLM01], the motion of the brush geometry is simulated by
Newtonian dynamics using a pair of first-order differential equations and
Aristotelian dynamics through a single first-order differential equation. Solv-
ing differential equations involves some tradeoff between system stability,
computation efficiency and simulation accuracy. In fact the brush is a heav-
ily damped system. When the penholder is motionless, the brush geometry
stops deforming. Unfortunately, such a large damping force in Newtonian dy-
namics is hard to estimate. The authors of DAB therefore apply constraint
satisfaction at the end of each step of motion simulation to ensure that the
resultant brush geometry is a plausible configuration. This gives rise to the
issue of simulation preciseness versus system stability. Unlike other classical
motion simulation approaches which care a lot about simulation accuracy, the
approach by Xu et al. [XTLP02] aims at providing a user with a customized
virtual hairy brush. Their brush motion and brush geometry deformation are
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controlled by a set of “quality parameters” which, through a machine train-
ing module, can be customized for different users. These quality parameters
affect the deformation process of a virtual hairy brush, and are not meant to
be directly set or adjusted by the user. Unless the user can provide enough
samples to train the system, he/she could only accept the default values for
these quality parameters. The performance of the machine training process
depends on the number of samples the user would input into the system.
For a satisfactory customization result, a large number of samples is often
needed. The dynamics of Chu and Tai’s brush [CT02] are modeled as springs
which are deformed through constrained energy minimization. This method
of modeling can simulate small-scale deformation of the brush geometry but
not large-scale bending or stretching due to the restriction of constrained
energy minimization.

The simulation of the motion and dynamic deformation of our hierarchical
virtual brush geometry model is performed through a collaboration between
online and offline computations. We minimize on the amount of online compu-
tation, and the result is calibrated by an error calibration mechanism using a
simulation error database that was constructed offline. Compared with other
virtual brush systems, we can simulate the brush motion with high precision
using just a small amount of computation on the fly.

3.2.1.3 Pigment behavior models

Pigment behavior simulation presents yet another challenge to virtual brush
system designers. One approach to simulating the ink’s behavior is through
a cellular automaton [ZST+99]. A classic work on the pigment model is the
computer-generated watercolor research contributed by Curtis et al. [CAS+97],

which studies the complex interaction behind pigment mixing based on a shal-
low water model. Their approach can synthesize very realistic water color
effects. During digital painting, the main loop of their algorithm iterates
through several sub-processes simulating pigment behavior in a sequential
manner. One sub-process will promote or restrain another sub-process. In
a real painting process, however, these four sub-processes have subtle in-
teraction, and therefore simulating the sub-processes separately would not
necessarily add up to accurately simulating the pigment behavior. Another
problem with their approach is that solving all the complex differential equa-
tions is too time-consuming for an interactive painting system. Other existing
pigment behavior models include Lee’s [Lee99] for black-white painting and
Kunii et al.’s [LNH95] for diffused ink painting.

In Strassmann’s hairy brushes [Str86], the color of brush strokes can be
varied along the stroke’s skeleton direction. In Wong’s virtual brush [WI00],
only monochrome calligraphic writing is supported. In DAB [BSLM01], a
bidirectional, two-layer paint model is employed. They use essentially an
additive compositive formula to mix the paint. In their paint representa-
tion, they assume that the paint surface contains two layers. One layer is
completely wet where paint would transfer out and another is completely
dry. This over-simplification of paint behavior makes the system incapable of
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achieving exquisite artistic effects demanded by the most seasoned painters.
In Xu’s virtual brush [XTLP02], a simple alpha blending strategy is employed
to perform the pigment mixing.

Pigment mixing is a very important factor that contributes to the final
results of painterly rendering and therefore deserves a very careful treatment.
An ideal pigment behavior model should lead to fast response time in system
implementation such as those described in [Str86, WI00, BSLM01, XTLP02],
and highly realistic results as demonstrated in [CAS+97]. In our work we
liken the complex pigment’s behavior in a painting process to that of heat
or moisture, and model the pigment’s behavior as a diffusion process. We
introduce a strategy to divide the overall computation into an offline and an
online part, therefore solving the complex differential equations modeling the
pigment’s behavior accurately and stably in real time.

There are many other fancy features that previous virtual brush systems
are capable of, such as the ability to do 3D painting [HH90, ABL95, Pix00].
The DAB system [BSLM01] has haptic feedback. The system by Wei et
al. [WLSL92] uses an intelligent model to beautify the output. Chan et al.
[CAC02] create 3D Chinese painting animation using existing commercial
software packages. Way and Shih’s system [WLS01] supports texture synthe-
sis, with which beautiful rock textures in Chinese landscape painting can be
created by a simple brush model based on some reference images.

3.2.2 Our Virtual Brush

The distinctive features of our design for a realistic virtual brush include:
(1) hierarchical modeling of the complex geometry of real paintbrushes; (2)
division of overall brush motion simulation into small online tasks and offline
calibration; (3) modeling of pigment behavior at dipping time and during
painting as a diffusion process subject to a certain physical condition, giving
rise to a new expressive pigment model; and a strategy of solving the diffusion
equations through a look-up table, which makes the numerical computation
fast and stable; (4) a user manipulability adaptation component.

Compared with existent digital painting systems of virtual brushes, our
newly designed virtual brush can accurately and stably simulate the mo-
tion of highly complex geometry of a running brush essential for generating
large quantities of delicate but minute details to create high quality digital
paintings comparable to real artworks. The advanced features of our system
make it capable of generating more expressive digital artworks in a more
user-friendly way.
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4

Basic Algorithmic Framework of a Virtual

Hairy Paintbrush System

4.1 Overview

We propose a novel “e-brush” for calligraphy and painting, which meets all
the criteria for a good e-brush. We use only four attributes to capture the es-
sential features of the brush, and a suitably powerful modeling metaphor for
its behavior. The e-brush’s geometry, dynamic motions and pigment changes
are all dealt with in a single model. A single model simplifies the synchro-
nization between the various system modules, thus giving rise to a more
stable system and lower costs. By a careful tradeoff between the complexity
of the model and computation efficiency, more elaborate simulation of the
e-brush’s deformation and its recovery for interactive painterly rendering is
made possible. We also propose a novel paper-ink model to complement the
brush’s model, and a machine intelligence module to empower the user to
easily create beautiful calligraphy and painting. Despite the complexity of
the modeling behind the scene, the high-level user interface has a simplistic
and friendly design. The final results created by our e-brush can rival the real
artwork.

4.2 Introduction

The problem of how to simulate Chinese calligraphy and paintings using the
computer has attracted many researchers. A good method could produce
calligraphic fonts or artwork that are useful in a wide variety of applications,
and hence has a good market value. Among the many devices used in art or
calligraphic creation, the hairy brush has for centuries been the most popular
because of its versatility and special aesthetic and expressive power. It is
therefore a meaningful pursuit for computer scientists to find a way to create
an “e-hairy brush” that can effectively emulate a real brush. The pursuit is
technically challenging because of the very complex structure and features of
the hairy brush, especially when the brush is in motion during a calligraphy
session. In fact the brush is not the only object that needs modeling and
simulation, but also the paper and the ink.
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A good e-brush system should meet the following criteria.

(1) Easy and natural to use: With a suitable input device, the user should be
able to mimic the way he/she uses a real brush to produce an artwork.
No user should be required to change his habits or to go through tedious
adaptation in order to be able to use the brush. The most ideal virtual
brush may even provide feedback to simulate a sense of touch resembling
that of the real brush.

(2) Expressive power and realistic results: The results that can be produced
by the system should be a close approximation to the equivalent real
artwork, and therefore would appear to be realistic. The power of the
brush lies in its ability to simulate a wide variety of effects and styles
renderable by the real brush. It is reasonable to imagine that an e-brush
can do more than what a real brush can do.

(3) Flexibility to fit the user and convenience: For the sophisticated user, the
system should provide delicate controls for adjusting the different features
and parameters of the e-brush. For others the system can provide a ready-
to-use e-brush that needs no further tuning by most users. The system
should also provide different brush types for the user to choose, as well
as different types of paper and ink.

(4) Real-time response: A real brush gives real-time responses. If an e-brush
is to rival a real one, it must respond instantaneously to the user’s ma-
nipulation.

(5) Intelligent computer-aided art creation: To mimic the basic actions and
features of a real brush requires certain intelligence on the part of the
machine. A more powerful system can rely on artificial intelligence to
implement features not present in any real brush, and thus could lead to
results that surpass that of a real brush.

An e-brush system as we conceive it consists of three major components:
an interactive input component to sample the user’s input, a core component
to simulate the dynamic behavior of the e-brush, and a component to render
the generated result. The proper execution of these components relies on
several models that are at the heart of the system, including a geometrical
model of the brush, a dynamic model for the simulation, a pigment model for
the continuous rendering of the ink mark at the brush tip, and a paper-ink
model. Note that the challenge to produce realistic e-artwork lies not only
in the modeling of the e-brush, but also the modeling of the paper and the
ink [Lee01]. We add a fourth component—a machine-intelligent component,
with which we offer easier and better manipulability for the user as well as
more optimized results.

4.2.1 Overview of E-brush and Related Research

Some previous work has used cubic Bezier curves [Chu90, NTN93], cubic
B-spline [Pha91] or skeletal strokes [HL94] to represent brush strokes, and
combined strokes for doing calligraphy or painting. Hobby considered the
problem of finding a discrete set of pixels that approximate the envelope of
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a convex brush shape with respect to a given trajectory [Hob85]. In his ap-
proach, a given brush shape is represented by a polygon. In [PF89], brush
stroke boundaries are represented by circles of different diameters along a
middle trajectory in the image space. A further step along this direction is
reported in [AKL93], where the general sweeping boundary of a 2D curved
object is used. Also, a brush touch function can be used to construct the
shape of strokes [SYST89]. A structural method of using brush strokes to
compose a character is discussed in [LK95]. Given the representation of a
character, the technique of rasterization can then be used to generate the
image of the character, to be used in applications such as desktop publishing
[SZ95]. Systematic creation of large sets of characters ascribing to a certain
style leads to typographic fonts. New font creation is indeed an interesting
and challenging problem [Cou81]. Pan et al. employed an algebra of geometric
shapes to generate new Chinese fonts. Shamir and Rappoport[SR97] have in-
troduced a parametric method to compactly represent existing outline-based
Oriental fonts [SR97]. Ip et al. discussed a method to encode Chinese calli-
graphic characters using automatic fractal shape coding [IWM94]. Models for
generating realistic calligraphy are developed by Guo in [Guo95b, Guo95a].

Many discussions and research results for the “virtual brush” and its ap-
plication and values can be found in [LW01a, YI90, YH84, YYI87, ZZST90,
HY98]. The paper by Strassmann [Str86] presents a detailed analysis of the
effects a virtual hairy brush can produce. Wong and Ip devised a virtual
brush model for synthesizing Chinese calligraphic writings [WI00], in which
the main working units are the cone and some ellipses. There exist many soft-
ware approaches to modeling the brush [LW01b, LGE+99, HYH00, MHN+99,
Lee97], of which most are physically based solutions. There are also hardware
approaches, such as the one by Greene [Gre85].

Besides research on the e-brush, some elaborate ink diffusion models have
been proposed to simulate different ink spreading effects [LNH95, ZST+99,
KNV01, GK91]. Artificial intelligence, fuzzy logic, and knowledge-based en-
gineering techniques have been found to be useful in equipping a virtual hairy
brush to produce beautiful calligraphic artwork [NISL93, WLSL92, YH97].

With a good e-hairy brush model and a good paper-ink model, beau-
tiful paintings can be generated in the same way as generating beautiful
calligraphic artwork [PZ91]. Way et al. [WLS01] used a simple brush model
to synthesize beautiful rock textures in Chinese landscape painting. With
their method, the contours of the rocks and the areas to which textures are
applied are manually supplied by the user using some existing image as refer-
ence. Many other papers have proposed similar e-brush approaches to tackle
the problem of painterly rendering [Lee99, BSLM01, CAS+97, Her98, SN99,
GEL00].

Simulating the hairy brush’s various rendering effects falls into the re-
search area of non-photorealistic rendering (NPR), of which a good survey
can be found in the paper by Lansdown and Schofield [LS95]. Creating Chi-
nese calligraphy or paintings by an e-hairy brush in real-time bears close
resemblance to real-time generation of pen-and-ink illustrations in terms of
both the goal and the problem-solving strategies [WS94, MKG+97]. The aes-
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thetic effects pen and ink can produce can be emulated by using a virtual
hairy brush with a fine brush tip; but the reverse is not that feasible. The
complexity of a virtual hairy brush is obviously much greater than that of
a pen or pencil, as the brush is much more powerful in artistic expression.
This paper describes a complex virtual hairy brush and its associated paper-
ink model and shows, despite the complexity, how the simulated brush can
operate efficiently in real-time.

4.2.2 Our Work and Contributions

We developed an algorithmic software framework that can simulate the
change of the physical conditions of a hairy brush, including the brush’s ge-
ometric shape and its ink-related properties during the Chinese calligraphic
writing process, where ink-related properties refer to the brush’s degree of
wetness and color. We have constructed an interactive software system im-
plementing these algorithms which can be used to create calligraphic artwork
fully electronically. Fig. 4.1 shows the overall architecture of our system.

Fig. 4.1. Architecture of our virtual brush system

Our virtual hairy brush is closer to the real brush than other similar
brushes because our e-brush can automatically determine both the geometric
contour and the texture of its current drawing mark on the virtual paper at
the same time. This process is done in real-time and no human intervention is



4.2 Introduction 63

necessary, which is not the case in other similar systems. The drawing mark
in our model can be varied and of irregular shape, which is generated from
any planar parametric curve instead of just an ellipse. This is a vital feature
for achieving quality in an artist’s work.

We introduce a useful concept called writing primitive, which is a hair
cluster, to serve as the basic working unit of the virtual hairy brush. The
cross section of each writing primitive as one indivisible entity intersecting the
virtual paper plane and its ink-related information are computed only once
during every time step. This makes real-time simulation of the hairy brush’s
writing and painting behavior possible in our system. We have implemented
a prototype system to demonstrate the effectiveness of our algorithms in
constructing a high-quality e-brush system.

By embedding ink-related information in the writing primitive’s control
axis, a single primitive can readily express reasonably complex, interesting
and even mysterious distribution of the ink, including its color and wetness.
In our proposed ink model, we use probabilities to create realistic effects to
be used in rendering the current ink-mark, thus enabling our virtual hairy
brush to simulate the drying and running effects of calligraphic artwork. Mul-
tiple gray levels, full-color paintings, dry brush writing effects and saturation
effects can all be produced using this new ink model. All these writing effects
contribute to the system’s expressive power needed by computer-aided art
creation.

We also introduce an inertia predictor to calculate the brush’s virtual po-
sition based on its sampled position during the writing process. This inertia
predictor simulates the acceleration of the virtual hairy brush, which gives
the user the feeling of a real physical brush and helps to produce output
that rivals real artwork. In addition to various ways that allow the user to
manually edit various quality parameters of the virtual hairy brush, special
optimization algorithms are built into the system to automatically customize
these parameters to achieve better manoeuvrability of the brush and im-
proved quality in the output.

According to the six Degrees of Freedom (DOF) of the hairy brush, which
are sampled periodically, the computer can simulate the whole Chinese cal-
ligraphy process with high accuracy. The process can be performed with
real-time response, as proven through experimentation. Since many of the
geometrical and dynamic parameters of the brush can be automatically de-
termined by the system, it is not necessary to store any bitmap image (for
the brush’s cross section) during the writing process. After completing the
writing process, it is also not necessary to store the generated artwork in
any standard format; a small file containing the changes of the virtual hairy
brush’s six degrees of freedom during the whole writing process is sufficient
to reconstruct the full final image. Hence, the storage requirement of our
approach is minimal.

Sect. 4.3 introduces and explains the concept of writing primitive. Sect.
4.4 presents the solid model of the virtual hairy brush. Sect. 4.5 discusses the
sampling and processing of the brush’s input. Sect. 4.6 discusses how the pa-
rameters in the parametric models of the e-brush are adjusted dynamically.
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Sect. 4.7 presents the rendering of the brush’s current ink mark at any time
instant, namely the brush writing and painting process. Sect. 4.8 discusses
how the brush and its quality parameters are configured by the system auto-
matically. Sect. 4.9 gives an overview of the implemented system and show-
cases some examples of artwork created using the system. Sect. 4.10 presents
the related work. Sect. 4.11.2 discusses some possible future extensions. Sect.
4.11.1 summarizes and concludes the paper.

4.3 Writing Primitives

We rely on the concept of writing primitive, which represents a hair cluster
(i.e. a small bundle of hair), to reduce the complexity of the modeling and thus
the computational requirement for the system. A virtual hairy brush consists
of one or more writing primitives. Each writing primitive is described by a
NURBS surface and is constructed through the general sweeping operation
in CAD. The behavior of the virtual hairy brush is an aggregation of the
behavior of all its writing primitives. This is in sharp contrast to with the
approach used by Wong and Ip [WI00], where every hair is operated on; it is
also different from the DAB system [BSLM01], where the whole brush head
is modeled as one subdivision surface. The use of writing primitives does not
diminish in any way the power of the virtual hairy brush in satisfactorily sim-
ulating all possible behavior of a real hairy brush including the branching out
behavior. This is because the clustering of hair is a natural phenomenon and
writing primitive appears to be a good model for capturing this phenomenon.
In the physical clustering of hair, hair in the same bundle shares similar ink-
related properties, which is also captured in our modeling. Our experimental
results have confirmed the correctness of this approach in modeling the real
brush, as well as the outstanding expressive power of our model. The artwork
created using our system can be seen as better than those in the paper by
Wong and Ip.

A writing primitive in the model is defined by its four attributes as shown
in Fig. 4.2. taking the Based on these four attributes, the model is constructed
through the general sweeping operation in CAD. This operation will construct

Fig. 4.2. A writing primitive and its four attributes
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a NURBS sweeping surface by defined by curve of the writing primitive’s mid-
dle control axis as its sweeping trajectory and the cross sections the user at
initialization as the given profiles. Note that at the start of the writing pro-
cess the brush consists of a single writing primitive. The general sweeping
operation is implemented according to the minimized rotation frame algo-
rithm by Maurer and Juttler [MJ99]. During the simulation, three of the four
attributes (not including the bottom control circle) of the writing primitive
will be dynamically adjusted according to the input data which describe the
brush’s current position in the 3D space. The bottom control circle never
changes during the writing process.

All the input data are preprocessed to take into account the inertia of
the hairy brush, which creates a realistic “feel” of the brush. We refer to the
cross section of the intersection between a writing primitive and the virtual
paper plane as the writing primitive’s current drawing mark. For every time
slice of the writing process, ink will be deposited according to the state of
the current drawing mark. The union of the current drawing marks of all
the writing primitives is the current mark made by the brush on the paper.
The final artwork is the accumulation of such marks over all the time slices.
Fig. 4.3 shows the state transitions of a writing primitive. The virtual hairy
brush’s working diagram is shown in Fig. 4.4. It will be explained in detail in
Sect. 4.5—Sect. 4.7.

Fig. 4.3. State transitions of a writing primitives

4.4 The Model and the States

4.4.1 The Parametric Model of the Virtual Hairy Brush

Our model of a virtual Hairy Brush (HB) is in terms of the collection of
writing primitives that the brush is composed of. Eq. (4.1) defines HB:
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Fig. 4.4. Virtual hairy brush’s working diagram
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HB � (CWP,Qp)

CWP � (WP1,WP2, · · · ,WPm)

Qp � (Qp1,Qp2)

Qp1 � (e, tre, ν, re, ie, sm)

Qp2 � (ren, η, ab, pw, dry)

(4.1)

The brush’s writing primitives are denoted as WP1,WP2,· · · ,WPm. Each
writing primitive WPi (i = 1, 2, · · · , m), described by a NURBS surface, is
constructed by the general sweeping operation in CAD. The number of HB’s
compositive writing primitives, m, will be dynamically adjusted by the sys-
tem. There are several parameters for controlling the artwork style generated
by the brush, the values of which are within [0, 1]. These parameters are called
the quality parameters Qp of HB, which are classified into two categories.
The first category, Qp1, affects the created brush strokes’ boundary. The
second category, Qp2, affects the texture of the created brush strokes. Table
4.1 contains a complete list of these parameters. The meaning and detailed
usage of these parameters and how they are configured will be explained later
in the paper.

Table 4.1. Virtual hairy brush system’s quality parameters

Virtual Hairy Brush System’s Quality Parameters

Name Concise Meaning Category Usage

e HB’s degree of elasticity Qp1 Eq. (4.12), Eq. (4.14)
tre HB’s threshold for splitting Qp1 Eq. (4.20)
ν HB’s relocation factor Qp1 Eq. (4.19)
re HB’s rotation coefficient Qp1 Eq. (4.18)
ie HB’s elongation coefficient Qp1 Eq. (4.18)
sm ψ’s degree of smoothness Qp1 Eq. (4.14)

ren HB’s color rendering control factor Qp2 Eq. (4.29)
η HB’s ink diffusion distance factor Qp2 Eq. (4.22)
ab ψ’s absorbing ability Qp2 Eq. (4.17), Eq. (4.26), Eq. (4.29)
pw ψ’s diffusion control factor Qp2 Eq. (4.22)
dry ψ’s drying factor Qp2 Eq. (4.26)

HB refers to the virtual hairy brush; ψ refers to the virtual paper.
Notes Qp1 are HB’s quality parameters for shape;

Qp2 are HB’s quality parameters for texture.

4.4.2 The Parametric Model of a Writing Primitive

The parametric model of a writing primitive WPi (i = 1, 2, · · · , m) is defined
as: WPi � (Ci,Ei,Li,Ai). To generate the parametric model of a writing
primitive WPi (i = 1, 2, · · · , m) through the general sweeping operation, a
circle Ci, an ellipse Ei, and a line Li are taken as the sweeping profiles,
and an axis Ai is used as the sweeping trajectory. Ci, Ei, Li, Ai are called
WPi’s bottom control circle, middle control ellipse, tip control line, and
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middle control axis, respectively (Fig. 4.2). Among these four attributes, Ci

is a static attribute of WPi, that is, once Ci is initialized at the beginning,
it remains unchanged during the whole process.

4.4.2.1 The bottom control circle of a writing primitive

The bottom control circle Ci of writing primitive WPi is defined as:⎧⎨⎩
Ci � (ceni, ri, corii)

ceni � (ccxi, ccyi, cczi)

corii � (coxi, coyi, cozi)

(4.2)

where ceni is the coordinates of Ci’s center, ri its radius, and corii, a 3-
dimensional unit vector representing Ci’s orientation. All the writing prim-
itives of a brush share the same bottom control circle, and so this circle is
also called the bottom control circle of the brush, denoted as HB.C.

4.4.2.2 The tip control line of a writing primitive

The tip control line Li of WPi is defined as:⎧⎨⎩
Li � (leni,midi, lorii)

midi � (mixi, miyi, mizi)

lorii � (loxi, loyi, lozi)

(4.3)

where leni is the current length of Li, midi is Li’s midpoint, and lorii a
3-dimensional unit vector representing Li’s orientation.

4.4.2.3 The middle control axis of a writing primitive

The middle control axis Ai is a cubic B-spline curve with interpolated key
points Pi,1,Pi,2, · · · ,Pi,ni

. Each of these points carries both geometric and
ink-related information, including Pi,j ’s color in RGB and its degree of wet-
ness. Pi,j is defined in Eq. (4.4):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pi,j � (cci,j , coli,j , weti,j ,wvi,j , cvi,j , wri,j , cri,j)

cci,j � (cxi,j , cyi,j , czi,j)

wvi,j � (wxi,j , wyi,j , wzi,j)

cvi,j � (cxi,j , cyi,j , czi,j)
i = 1, 2, · · · , m; j = 1, 2, · · · , ni

(4.4)

Here, cci,j is Pi,j ’s coordinates. coli,j is Pi,j ’s color in RGB format. With
this formulation, we can generate colorful calligraphic artwork and even create
watercolor paintings. weti,j is Pi,j ’s degree of wetness. For each Ai, its first
key point is always set at the center of the bottom control circle, and its last
key point at the midpoint of the tip control line; that is cci,1 � ceni, cci,ni

�
midi.
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Each key point has four fields for specifying the point’s ink-related in-
formation: vector mode wetness changing vector wvi,j , vector mode color
changing vector cvi,j , radiation mode wetness changing factor wri,j and ra-
diation mode color changing factor cri,j . Based on these fields we can compute
the ink-related information for any point Q on a plane perpendicular to the
middle control axis Ai passing through Pi,j . We allow two modes of ink distri-
bution in the virtual hairy brush: the vector mode, in which ink is distributed
according to the direction of a certain vector, and the radiation mode, in
which ink is distributed radically. There is an ink-related texture function as-
sociated with each key point, which produces some hybrid effect contributed
by these two distribution modes. Fig. 4.5 explains these two modes of ink
distribution.

Fig. 4.5. Radiation (left) and vector (right) ink distribution modes

The contribution made by Pi,j ’s vector mode ink distribution is:{
δvwetQ = wetPi,j

× ((ccQ − ccPi,j
) • wvi,j)

δvcolQ = colPi,j
× ((ccQ − ccPi,j

) • cvi,j)

where ccQ, wetQ and colQ are point Q’s current coordinates in the 3D
space, its degree of wetness, and its color, respectively; and ccPi,j

, wetPi,j

and colPi,j
are the corresponding values of point Pi,j . Similarly for the con-

tribution made by Pi,j ’s radiation mode ink distribution:{
δrwetQ = wetPi,j

× ‖ccQ − ccPi,j
‖ × wri,j

δrcolQ = colPi,j
× ‖ccQ − ccPi,j

‖ × cri,j

.
Thus, Pi,j ’s ink-related texture function, which computes the hybrid ef-

fect contributed by both the point’s vector mode and radiation mode ink
distribution patterns, is defined as:{

wetQ � wetPi,j
+ δrwetQ + δvwetQ

colQ � colPi,j
+ δrcolQ + δvcolQ

,

or{
wetQ = wetPi,j

× (1 + ‖ccQ − ccPi,j
‖ × wri,j + (ccQ − ccPi,j

) • wvi,j)
colQ = colPi,j

× (1 + ‖ccQ − ccPi,j
‖ × cri,j + (ccQ − ccPi,j

) • cvi,j)
.

(4.5)
Note that by vector mode ink distribution we mean that ink distribution

can be characterized by a certain vector. Vector mode contribution is not
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necessarily positive. If the vector
−−−−−−−−−→
ccPi,j

− ccQ is along the direction of the
vector, the contribution will be positive; otherwise it could be negative. Please
refer to Fig. 4.5 (right) for an illustration. Note also that only those Pi,js
touching or just below or above the paper need to be evaluated in the virtual
painting and writing process.

4.4.2.4 The middle control ellipse of a writing primitive

The middle control ellipse Ei of the writing primitive WPi is defined as:{
Ei � (ai, bi, loci, eorii)

eorii � (eoxi, eoyi, oezi)
(4.6)

where ai is the length of Ei’s major axis and bi the length of Ei’s minor axis.
loci is Ei’s location parameter, which indicates Ei’s relative position along
the middle control axis to which it belongs. eorii represents Ei’s minor axis’s
orientation.

4.4.3 The Three States of a Brush

A virtual Hairy Brush (HB) is assumed to have three possible states in its
life cycle: the initial state, the dipping state, and the working state (Fig. 4.3).

4.4.3.1 The initial state of a virtual hairy brush

The initial state of the virtual Hairy Brush (HB) is when all of its compos-
itive writing primitives are in their free states (Fig. 4.6).

Fig. 4.6. A writing primitive in its initial state

The three dynamic attributes of a writing primitive are simplest when
in this state: the tip control line, the middle control axis and the middle
control ellipse are reduced to a point, a straight line and a circle respectively.
Varying the radius of the circle and its position along the middle control axis
can result in a series of modeling effects, as shown in Fig. 4.7.
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Fig. 4.7. Writing primitives with the middle control ellipse at different locations
(left); writing primitives with different circle radii (right)

4.4.3.2 The dipping state of a virtual Hairy Brush

All the writing primitives of the virtual hairy brush shift to the dipping state
after the brush is dipped into the ink bottle and before touching the paper.
Through dipping, writing primitives acquire ink-related information which
includes color and degree of wetness and is according to how the brush is
dipped.

If Pi,k,Pi,k+1, · · · ,Pi,ni
are WPi’s key points that are soaked in ink,

their color is simply set to the ink color. For the other key points, Pi,l, l =
2, 3, · · · , k−1, which are not soaked in ink, linear interpolations are applied to
compute their individual colors colPi,l

with the assumption that colPi,1
≡ 0,

which is the color code for pure white. Here we assume the paper is white.
If that is not the case, we would substitute the color of the paper for pure
white. The color distribution after dipping is depicted as:⎧⎪⎪⎨⎪⎪⎩

coli,l = ink color (l = k, k + 1, · · · , ni)

coli,l =
‖cci,k−cci,l‖×coli,1+‖cci,l−cci,1‖×coli,k

‖cci,k−cci,1‖
(l = 2, 3, · · · , k − 1)
coli,1 = 0

. (4.7)

Similarly for each key point’s degree of wetness. We assume wetPi,1
≡ 0,

meaning that Pi,1 is all dry; thus:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
weti,l = the degree of wetness
(l = k, k + 1, · · · , ni)

weti,l =
‖cci,k−cci,l‖×weti,1+‖cci,l−cci,1‖×weti,k

‖cci,k−cci,1‖
(l = 2, 3, · · · , k − 1)
weti,1 = 0

. (4.8)

4.4.3.3 The working state of a virtual Hairy Brush

The working state of a virtual hairy brush is the “deformation” state of the
brush. The brush deforms due to touching or being pressed against the paper.
This varies the eccentricity of the middle control ellipse, the tip control line
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and the middle control axis, leading to a series of modeling effects, as shown
in Fig. 4.8. The pressure against the paper may build up to the point where
the brush hair will split, as shown in Fig. 4.9.

Fig. 4.8. Writing primitives with different ratios of major-to-minor axis length of
the middle control ellipse (top row); writing primitives with different tip control line
lengths (middle); writing primitives with different middle control axes (bottom)

Fig. 4.9. Virtual brushes with hair split into several writing primitives

4.5 Sampling of the Input Data

During the writing process the brush’s dynamic attributes are captured
by sampling. Sampled input data are used to adjust the virtual brush dy-
namically. All such adjustments will preserve the validity (with respect
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to a real brush) of the parametric model. We need to first obtain the
brush’s six degrees of freedom. Assume that the sampled datum at time t
is Samt � (xt, yt, zt, dt, qt, rt), where (xt, yt, zt) is the center of HB’s bot-
tom control circle HB.C in the 3D space; dt the degree of HB’s sideways
deflection; qt the degree of HB’s forward deflection; and rt the degree of
HB’s rotation (Fig. 4.10).

qt rt
dt East

Fig. 4.10. The six degrees of freedom of an input sample

There are many ways to input a solid object’s six degrees of freedom, such
as using some special device [BSLM01]. A three-dimensional mouse, or a data
glove or any other sensor that can take in the six degrees of freedom for a
rigid body can also be used as the input hardware for the virtual hairy brush.
Some other interesting methods have been introduced [ABL95, JIK+99].

To obtain the six degrees of freedom as input to our virtual brush system,
we offer two methods. One method is keyboard plus mouse, and the other
method is to use a tablet to obtain five out of six degrees and key pressing for
the sixth degree, namely the rotation degree of the brush. The sixth degree
is in fact the degree with the least changes, unless the artist is drawing very
cursive brush strokes. The keyboard-mouse method is designed to allow for
wide adaptability by ordinary home PC users. For the sampling of the six
degrees of freedom using this method, please refer to Table 4.2 which shows
the user actions and their corresponding effects.

Note that during the writing process not all of the virtual hairy brush’s
six degrees of freedom experience the same degree of changing. Under most
circumstances, (xt, yt, zt) will change much more frequently and sharply than
dt and qt; rt rarely changes. Our 3-button-mouse and keyboard hybrid input
strategy offers an easy but effective way for the user to input (xt, yt, zt);
using the mouse to input dt, qt, rt is a little more awkward but acceptable, as
can be demonstrated by our experimental results. Of course, more expensive
input devices such as the data glove or those with high dimensional sensors
can certainly enhance the usability of the system.

During the writing process, HB’s virtual position at time t, St � (sxt,
syt, szt, sdt, sqt, srt), is computed from the current sampled datum Samt

together with an inertia predictor Mt = (mxt, myt, mzt, mdt, mqt, mrt),
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Table 4.2. The 3-button-mouse and keyboard hybrid input method

User Action Corresponding Effect

Moving the mouse Generate the (xt, yt) coordinates
Scrolling the middle wheel of the mouse Generates the zt coordinate
Pressing key “q” with the little finger Reduces the value of dt

Pressing key “w” with the ring finger Increases the value of dt

Pressing key “e” with the middle finger Reduces the value of qt

Pressing key “r” with the index finger Increases the value of qt

Pressing key “c” with the thumb Reduces the value of rt

Pressing key “v” with the thumb Increases the value of rt

Pressing a key while the left button is pressed The key is pressed twice
Pressing a key while the right button is pressed The key is pressed four times

using the following formula.

St = weisam × Samt + (1 − weisam) × Mt (4.9)

Mt comes from HB’s displacements in its last few sampling intervals St−1,
St−2, · · · , St−n:

Mt = Velt × dT + St−1 (4.10)

Velt =
Pel

k=1(weik×S
t−k−S

t−k−1

dT
)P

el
k=1 weik

(4.11)

Here Velt is a weighted sum representing an estimate of HB’s velocity, dT
the length of a sampling interval and el the length of time over which our
estimate is computed. weisam and the weiks are the relative weights given
to the current sampled datum and the recent past velocities of the brush,
respectively. A heavy weisam for instance means that the brush has a small
inertia. This simple method to determine the position of HB turns out to
be reasonable since the speed of the brush in real life rarely changes too
abruptly, as can be easily observed when artists create Chinese calligraphic
artwork using real physical brushes. By introducing an inertia predictor to
influence the sampled position of the brush to yield its virtual position, the
user can move the virtual hairy brush more continually to emulate the effect
and enjoy the feeling of brush glidings and although it is a simple mouse that
is used to create electronic calligraphic artwork, the system could still give
the user the approximate feeling of a real physical brush in action. For the
above formulation, the default parameter configuration is: el = 4; wei1 = 4,
wei2 = 2, wei3 = 1, wei4 = 1; wei

sam
= 0.6. These default values were

obtained by experiments. Changing these values can yield different writing
styles and feelings.
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4.6 Dynamic Adjustments of the Brush

4.6.1 Estimating the Pysical Conditions of the Brush

Based on the sampled input data, the physical conditions of the virtual hairy
brush are estimated at every time step. These conditions include the writing
primitive WPi’s inner stress strt

i at time t and the pressure of the primitive
due to its interaction with the paper. The greater the inner stress, the more
likelihood there is for the brush hair to split, and the pressure is the force per
unit area as experienced by the virtual paper due to the inner stress of the
brush. The parametric model of the e-brush is updated dynamically based
on these estimates.

4.6.1.1 Estimating a writing primitive’s current inner stress

Intuitively, the rigidity of WPi’s hair, WPi’s historical deformation, the
wetness of WPi, and the size of the part of WPi that is against the virtual
paper plane ψ all have an effect on the value of strt

i. We devised accordingly
a formula to estimate strt

i based on these factors:

strt
i � (1 − e) × ni∑ni

k=1 wetti,k
× St

i × heiti
3

× hist
i ×

π × at
i × bt

i

4
(4.12)

The term e which has a value between 0 and 1 represents the elasticity of
HB’s hair, and hence (1 − e) indicates the rigidity of the hair. Since at

i and
bt
i are the lengths of WPi’s middle control ellipse Ei’s major axis and minor

axis at time t, respectively, the term (π×at
i×bt

i)/4 is the area of Ei. It is used
to approximate WPi’s number of hair threads. The term

∑ni

k=1 wetti,k/ni is
used to approximate WPi’s overall average degree of wetness, where ni is
the number of key points along the middle control axis Ai of the i-th writing
primitive WPi. The reciprocal is used in the formulation since a wet brush
will experience less force than a dry brush. St

i is the area of WPi’s cross
section against the virtual paper ψ at time t approximated by the area of
the section’s smallest bounding box. heiti is the distance between the cross
section and the middle point midi of WPi’s tip control line. We use a cone
to approximate the part of WPi that is under ψ, which has a volume of
(St

i × heiti)/3. The larger this volume is, the more it contributes to the inner
stress.

The deformation of the brush also has a bearing on the inner stress, which
can be viewed as the accumulated result of a series of per-time-step defor-
mations since the starting of the writing process. The factor hist

i represents
this deformation factor in the formulation. It is decomposed into two parts:
the displacement from the initial state, hddt

i, and shape deformation, hsdt
i.

And so hist
i is defined as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hist
i � hsdt

i + hddt
i

hsdt
i �

at
i

bt
i

× lent
i

hddt
i �

Pni
j=2 (‖cc0

i,j−cct
i,j−mct‖×‖cct

i,j−cct
i,j−1‖)Pni

j=2 ‖cct
i,j
−cct

i,j−1‖
mct � cc0

i,1 − cct
i,1

. (4.13)
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We use the ratio of middle control ellipse Ei’s major axis’ length to its minor

axis’ length,
at

i

bt
i

, and Li’s length, lent
i, to evaluate Ei’s shape deformation due

to past writing. hddt
i is a weighted sum of the displacement, ‖cc0

i,j − cct
i,j −

mct‖, of each key point Pi,j , where cc0
i,j is Pi,j ’s coordinates when WPi is

at its initial free state, cct
i,j is Pi,j ’s coordinates at time t during writing,

and mct is the accumulated displacement of WPi’s bottom control circle Ci.
Recall that WPi’s first key point (j = 1) is set as Ci’s center, ceni. Here the
weights are the difference of the relative positions of every pair of adjacent key
points along the control axis Ai. In our experiments we found this formula
to be a good approximation of the behavior of a real brush. In comparison
with the classical formulation in solid mechanics [LL86], this approximation
formulation is simpler, which is helpful in reducing the computation time.

In our current design we use the term “elasticity” (e) to refer to an inher-
ent physical property of the paintbrush, that is independent of the brush’s
wetness. During brush dynamics simulation we will then take into account
the factor contributed by the brush’s wetness. It is more or less a personal
preference whether or not to include the wetness factor early in the elasticity
equation or later in the dynamics simulation equation. Based on our study
of material science, we adopt the current strategy because it seems more rea-
sonable to model the elasticity as an essential material property of the brush
hair.

4.6.1.2 Estimating the pressure due to interaction with the
virtual paper

Given that we have a value for the inner stress, we can devise a formula to
estimate WPi’s pressure γt

i due to interaction between a writing primitive
and the virtual paper ψ. This pressure contributes directly to the degree
of deformation of the brush during writing. It can be easily seen that fast
movements of the virtual hairy brush, a high degree of inner stress of the
current writing primitive WPi, and a coarse virtual paper can all severely
deform HB (i.e. the middle control axes of the brush’s compositive writing
primitives). The formulation is as follows:

γt
i � ‖Velt‖ × strt

i × sm × e, (4.14)

where Velt is the virtual hairy brush’s velocity, strt
i its inner stress, sm the

virtual paper’s degree of smoothness and e the e-brush’s degree of elasticity.

4.6.2 Dynamic Adjustment of the Middle Control Axis

4.6.2.1 The current active point

During the writing process the intersection of the middle control axis Ai and
the virtual paper ψ is the current active point. The current active point is
inserted into Ai’s series of key points dynamically. The point’s ink-related
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information is computed from the neighboring points in Ai by linear inter-
polation Supposing at time t the active point being inserted into Ai’s set of
key points is Pt

i,j , and Pt
i,j+1 and Pt

i,j−1 are its neighboring key points, we
have: ⎧⎨⎩colti,j =

colti,j−1×‖cct
i,j+1−cct

i,j‖+colti,j+1×‖cct
i,j−cct

i,j−1‖
‖cct

i,j+1−cct
i,j−1‖

wetti,j =
wett

i,j−1×‖cct
i,j+1−cct

i,j‖+wett
i,j+1×‖cct

i,j−cct
i,j−1‖

‖cct
i,j+1−cct

i,j−1‖
(4.15)

where colti,j is Pt
i,j ’s color, cct

i,j is Pt
i,j ’s coordinates, and wetti,j is Pt

i,j ’s
degree of wetness at time t.

4.6.2.2 Deformation of the middle control axis Ai

The middle control axis Ai of WPi changes form when subject to forces
acting against the brush and the paper. A local reference frame is set up by
taking WPi’s bottom circle Ci as the X − Y plane, its center ceni as the
origin, and the brush shaft’s direction as the Z-axis (Fig. 4.11).

Fig. 4.11. A deformed writing primitive

If the current active point Pi,j travels a certain distance in the reference
frame during time slice t, then all the key points that are underneath the
virtual paper ψ will also travel the same distance, plus an additional dis-
placement dis in the local reference frame. We estimate this distance to be
proportional to the product of HB’s elasticity and WPi’s current pressure,
namely dis = e × γt

i . Note that by using a time slice which is reasonably
small, it is safe to assume that this active point remains to be the true active
point for the duration covered by the time slice.

4.6.2.3 Recovery of the middle control axis Ai

As an elastomer, a writing primitive WPi will recover in a certain fashion
once the outer force exerted on it is released, such as when the brush is
partially or completely lifted. Each time that the virtual hairy brush HB is
lifted, every key point on each of HB’s compositive writing primitives will
change its place in the 3D space, that is all the key points’ z components
will increase by a certain amount. The higher the virtual brush is lifted, the
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more intense the current writing primitive’s inner stress would be, and so
would be the recovery. That is, for every key point Pi,j (i = 1, 2, · · · , m; j =
1, 2, · · · , ni) along Ai which is deformed, an additional vertical displacement
will be exerted to recover its previous deformation:

γt
i × |szt+1 − szt| × tr(szt+1 − szt) (4.16)

where czt
i,j is Pi,j ’s coordinates’ z component, γt

i is WPi’s pressure against

the virtual paper ψ at time t, and the term |szt+1 − szt| is the amount by
which the virtual hairy brush HB is lifted between the time t and t + 1; tr()
is the truncation function, which is defined as

tr(x) �

{
0 (x < 0)
1 (x � 0)

.

We have made a simplification in our modeling, which combines the flex-
ibility and the “springiness” of the brush into the single concept of elasticity.
The decision was based on the observation that having the distinction be-
tween flexibility and springiness would make very minor differences in the
final output.

4.6.2.4 Dynamic djustment of the wetness

During the writing process, HB’s degree of wetness will be dynamically up-
dated. Suppose the intersecting point, between the middle control axis Ai

and the virtual paper plane ψ, namely the current active point, is inserted
into Ai’s key points’ sequence and denoted as Pi,j . The degree of wetness of
all the key points on Ai will decrease by a certain amount because of their
contact with or proximity to the paper, which is estimated to be proportional
to the product of ψ’s ink absorbing ability ab and WPi’s current pressure
γt

i against ψ:

wett+1
i,j±s = wetti,j±s − ab × γt

i ×
1

2s+d
(4.17)

where d =

{
2 (s ∈ N+)
1 (s = 0)

and (j ± s) ∈ [1, ni].

In our current design, the color of HB is assumed to be constant through-
out the virtual writing and painting process. We plan to add a mechanism to
dynamically vary the color of the brush in our future work.

4.6.3 Dynamic Adjustment of the Middle Control Ellipse

The deformed virtual hairy brush has an orientation which is determined by
the orientation of the middle control ellipse. Our formulation for the latter
is based on the phenomenon that if HB’s moving direction is the same as
the orientation of writing primitive WPi’s minor axis eoriti at time t, fur-
ther writing movements will rotate the ellipse by a certain angle rott

i. If the
moving direction does not coincide with the orientation of the minor axis,
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this movement will increase the length of WPi’s major axis at
i; the amount

of increase is denoted by inct
i. inct

i and rott
i are defined as:{

rott
i = re × γt

i × (Velt • eoriti)
inct

i = ie × γt
i × ‖Velt × eoriti‖

(4.18)

where re and ie are HB’s rotation and elongation coefficients respectively.
Since writing primitive WPi’s number of hair threads, approximated by Ei’s
area, (π × at

i × bt
i)/4, is a constant if WPi does not split during its writing

process, Ei’s minor axis’ length bt
i can be determined given a certain value

for its major axis’ length at
i.

The middle control ellipse Ei’s position loct
i within the middle control axis

Ai may also vary during the writing process. We assume from intuition that
the ideal position of the middle control ellipse should be such that it divides
the key points of the middle control axis into two equal groups, because at
this location the ellipse’s profile has the maximum capacity to control the
writing primitive’s geometric modeling characters. Since the speed at which
the ellipse can relocate is limited by the mechanical and flowage properties
of the virtual hairy brush, the actual position of the middle control axis is a
linear interpolation of its ideal position (based on the ellipse’s ideal location)
and its previous position. This is depicted as:

loct+1
i = ν × loct

i + (1 − ν) × 1

ni

ni−1∑
j=1

∑j
k=1 ‖cct+1

i,k+1 − cct+1
i,k ‖∑ni−1

k=1 ‖cct+1
i,k+1 − cct+1

i,k ‖ . (4.19)

Here ν is the relocation factor, its default value is ν = 0.75. And cct
i,k is

the coordinates of WPi’s key point Pi,k at time t. The complex summation
term is used to estimate the ideal position of the middle control ellipse. Here
we use the term ‖cct+1

i,k+1 − cct+1
i,k ‖ to approximate the distance between the

middle control axis Ai’s two neighboring key points Pi,k+1 and Pi,k at time

t + 1. Thus, the sum
∑j

k=1 ‖cct+1
i,k+1 − cct+1

i,k ‖ is the distance of key point
Pi,j+1 from the the center of the bottom control circle of the brush, HB.C.

The fraction
Pj

k=1 ‖cct+1
i,k+1−cc

t+1
i,k
‖

Pni−1

k=1 ‖cct+1
i,k+1−cc

t+1
i,k
‖ indicates key point Pi,j+1’s position along

Ai. According to the assumption about the ideal position of the middle con-
trol ellipse, this position actually is the arithmetic mean of all the key points’
positions along Ai. Notice that HB.C’s position along Ai is always zero.

4.6.4 Dynamic Adjustment of the Tip Control Line

The tip control line of a writing primitive WPi is assumed to be a single
point in its initial state. It changes into a real line during writing. The line’s
elongation and rotation are simulated by employing the same strategy as is
applied to the middle control ellipse Ei—that is, the tip control line Li will
increase in length by the amount of inct

i and be rotated by the same amount
of rott

i as for the major axis of the middle control ellipse Ei. The tip control
line does not have a direct effect on the current ink mark during writing in
our modeling, but it will define the shape of the end of a stroke, at the time
when the brush is about to leave the paper.
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4.6.5 Splitting of the Virtual Hairy Brush

There is a threshold tre which specifies the extent to which WPi can be
deformed before splitting of the hair occurs. When this threshold is reached or
exceeded, the current writing primitive will split into several smaller writing
primitives. This simulates the “branching out” behavior of the virtual hairy
brush during the writing process. Specifically, if writing primitive WPi’s
current inner stress strt

i becomes greater than tre, WPi will split into

k = �strt
i

tre
	 (4.20)

new writing primitives WP1
i ,WP2

i ,· · · ,WPk
i .

Each of the new writing primitives, WPj
i (j = 1, · · · , k), has a number of

hair threads which is equal to 1/k of WPi’s total number. Note that in the
virtual hairy brush, we use the area of the middle control ellipse (π×at

i×bt
i)/4

and the length of the tip control line lent
i to compute the number of hair

threads. Therefore the lengths of the middle control ellipse’s major axis at,j
i

and minor axis bt,j
i of each of the new writing primitives WPj

i are set to

1/
√

k of WPi’s original values (j = 1, 2, · · · , k) and the tip control line’s
length lent,j

i is set to 1/k of the original value. That is:⎧⎪⎪⎨⎪⎪⎩
at,j

i =
at

i√
k

bt,j
i =

bt
i√
k

lent,j
i =

lent
i

k

(j = 1, 2, · · · , k). (4.21)

At the beginning, the virtual hairy brush HB contains only one writing
primitive, and so m = 1. During the writing process the number of HB’s
compositive writing primitives may increase because of the split operation. A
brush with one writing primitive is probably good enough for official scripts,
but for cursive scripts the brush must split into at least a dozen of primitives
in order to achieve the necessary effects.

During the split operation every new writing primitive generated, WPj
i

(j = 1, · · · , k), has the same number of key points as the original one, WPi,
with coordinates at a certain distance from WPi’s. This distance is pro-
portional to the amount of WPi’s current inner stress exceeding the split
threshold tre, and the direction of this distance is assumed random. There-
fore for each key point Pi,l (l = 1, 2, · · · , ni) in WPi, there is a corresponding

key point Pj
i,l in WPj

i (j = 1, 2, · · · , k). The coordinates of Pi,l and Pj
i,l have

the following relationship: cc
P

j

i,l
= ccPi,l

+ S
P

j

i,l
, where S

P
j

i,l
is determined

by S
P

j

i,l
= rand × (strt

i − tre) × tr(strt
i − tre), and rand is a random unit

vector in the 3D space.

4.6.6 Ink Flowage between Writing Primitives

Although each primitive has full control over its behavior during the writing
process, due to reciprocity in mechanics and ink flowage there could be inter-
action between writing primitives that are close to each other. To simulate
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this interaction, we allow each key point’s degree of wetness to be affected by
its neighboring key points if the distance separating them is within the ink
diffusion distance factor η. Linear interpolation is used to compute one key
point’s current degree of wetness based on its previous value and the average
degree of wetness of those neighboring key points. That is formulated as:

wett+1
i,k = wetti,k × (1 − pw) +

∑m
j=1,j �=i

∑nj

l=1(wettj,l × tr(η − ‖cct
j,l − cct

i,k‖))∑m
j=1,j �=i

∑nj

l=1 tr(η − ‖cct
j,l − cct

i,k‖)
×pw, (i = 1, 2, · · · , m; k = 1, 2, · · · , ni). (4.22)

Here pw is the diffusion control factors of virtual hairy brush HB; wetti,k
is key point Pi,k’s degree of wetness and cct

i,k is its coordinates at time t; η
is the ink diffusion distance factor, and tr() is the truncation function.

4.7 The Writing Process

At time t, each of HB’s writing primitives will intersect with the virtual paper
plane to yield a cross section. The drawing operations are executed taking
into account the writing primitives’ ink-related information. The following
paragraphs outline the algorithm for this process—the virtual hairy brush’s
real-time writing/painting algorithm.

The algorithm begins with a given writing primitive WPu constructed by
the general sweeping operation. The generated sweeping surface is a NURBS
surface denoted by SSu(s, t); s and t are the parameters of this parameterized
surface, whose values are within [0, 1]. The direction of s is the same as that
of WPu’s middle control axis. The algorithm intersects SSu(s, t) with the
virtual paper plane ψ to get an intersecting curve curu that encloses an area
which is the current ink mark (Fig. 4.12). It can be easily seen that by our
intersection operation the contour of our drawing mark is not always (as a
matter of fact, it seldom is) an ellipse. The more deformation our brush tip
experiences, the more different our drawing mark would be from an ellipse.

Fig. 4.12. The virtual paper plane and its drawing mark

Each point Vu,v on curu is projected onto WPu’s middle control axis Au

to obtain the point V̂u,v. The ink-related information of the two nearest key
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points δ1
u,v, δ

2
u,v on Au to V̂u,v is then used to compute V̂u,v’s ink-related

information by linear interpolation, as follows:⎧⎪⎨⎪⎩
col

V̂u,v
=

col
δ2

u,v
×‖cc

δ1
u,v
−cc

V̂u,v
‖+col

δ1
u,v
×‖cc

V̂u,v
−cc

δ2
u,v
‖

‖cc
δ1

u,v
−cc

δ2
u,v
‖

wet
V̂u,v

=
wet

δ2
u,v
×‖cc

δ1
u,v
−cc

V̂u,v
‖+wet

δ1
u,v
×‖cc

V̂u,v
−cc

δ2
u,v
‖

‖cc
δ1

u,v
−cc

δ2
u,v
‖

(4.23)

Vu,v’s ink-related information is derived from V̂u,v’s by following V̂u,v’s tex-
ture function [Eq. (4.5)]:(

wetVu,v = wet
V̂u,v

× (1 + ‖ccVu,v − cc
V̂u,v

‖ × wru,v + (ccVu,v − cc
V̂u,v

) · wvu,v)

colVu,v = col
V̂u,v

× (1 + ‖ccVu,v − cc
V̂u,v

‖ × cru,v + (ccVu,v − cc
V̂u,v

) · cvu,v)

(4.24)

And for any pixel τ on the virtual paper plane enclosed by the curve curu,

it must lie uniquely on a certain line segment, Vu,vV̂u,v. Its ink-related in-

formation is computed based on Vu,v’s and V̂u,v’s ink-related information:⎧⎪⎨⎪⎩
colτ =

col
V̂u,v

×‖ccVu,v−ccτ‖+colVu,v×‖ccτ−cc
V̂u,v

‖
‖ccVu,v−cc

V̂u,v
‖

wetτ =
wet

V̂u,v
×‖ccVu,v−ccτ‖+wetVu,v×‖ccτ−cc

V̂u,v
‖

‖ccVu,v−cc
V̂u,v

‖
(4.25)

Denote the point inside the volume of the virtual hairy brush and that
coincides with the pixel λu,v on ψ as τu,v. λu,v’s new degree of wetness is
linear-interpolated from λu,v’s previous value with τ u,v’s degree of wetness
and by using ψ’s absorbing ability factor ab as the interpolation weight. A
drying factor dry is introduced to automatically reduce each pixel’s degree
of wetness periodically until it reaches 0. That is,

wett+1
λu,v

= (1 − ab) × wett
λu,v

+ ab × wett
τu,v

− dry. (4.26)

If the degree of wetness exceeds the upper bound of virtual paper ψ’s
degree of wetness, saturation takes place. We assume that saturation would
only affect λu,v’s eight neighboring pixels on ψ. The degree of wetness of a
pixel will increase if it is not saturated. The increased amount is proportional
to the unsaturated degree. That is, λi,j , which is one of λu,v’s eight neigh-
boring pixels on ψ, will have its degree of wetness increased according to the
following formulation.

wett+1
λi,j

= wett
λi,j

+
(1 − wett

λi,j
) × tr(1 − wett

λi,j
)

�t
u,v

× (wett
λu,v

− 1)

× tr(wett
λu,v

− 1) (4.27)

where wett
λ
, a real number between 0 and 1, is point λ’s degree of wetness

at time t, and �t
u,v =

∑u+1
g=u−1

∑v+1
h=v−1 (1 − wett

λg,h
) × tr(1 − wett

λg,h
), in-

dicates the total degree of unsaturation that λu,v’s eight neighboring pixels
have attained. Note that tr(1 − wett

λg,h
) is non-zero only when the point λg,h
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is not saturated. Note that it is possible that after one pass of simulated ink
diffusion, there could still be some points that are over-saturated. This sit-
uation would occur if the ink mark originally deposited on the paper is too
wet. Thus, in our simulation an iterative diffusion process is employed, which
stops only when all the points on the paper become unsaturated.

The rendering of the current ink-mark is based on a unique ink model
we propose. The current color of the pixel λu,v is the linear interpolation of
λu,v’s previous color and τu,v’s color, as follows.

colt+1
λu,v

= coltτ u,v
× Crt

u,v + coltλu,v
× (1 − Crt

u,v) (4.28)

where Crt
u,v, the interpolation weight, is a random number, which has the

value of either 0 or wett
λu,v

based on the following probabilities.{
P{Crt

u,v = 0} = 1 − min(ren × ab × γt
i , 1)

P{Crt
u,v = wett

λu,v
} = min(ren × ab × γt

i , 1)
(4.29)

where ren is HB’s color rendering control factor, ab is the virtual paper ψ’s
absorbing ability, and γt

i is the pressure due to the interaction between the
writing primitive and the virtual paper plane. We use this formulation to
simulate the dry brush drawing effect and the running style effect.

In the above discussions, for simplicity, to tackle the problem of mixing
pigments in full color painting, we adopt directly the RGB color model as
our active working color space. In some very rare circumstances, this might
not lead to the best results, for the simple reason that the R, G, B channels
in the physical world are not really independent of each other (see [ISO]
for more details). But this problem is easy to solve: we first convert RGB-
formatted ink color to HSV-formatted ink color; in the color space of HSV,
we separately process the H, S, V channels using the same procedures for
the R, G, B channels described above; we finally convert the synthesized
results from HSV-formatted ink color back to RGB-formatted ink color for
rendering.

4.8 Customizing the Brush

4.8.1 Quality Parameters

In real life, brushes having soft hair tend to branch out easily during writing.
Some brushes have a good deal of hair and tend to suck in more ink and
cause serious saturation during the writing process, while other brushes have
rather long hair and their tip tends to get deformed and rotated easily to
a great extent. For our virtual hairy brush, a number of quality parameters
can be set to simulate these different kinds of brush character. What comes
out as the final electronic artwork from using the virtual hairy brush can be
much affected by the values of these parameters. Similarly, the virtual paper
has a set of quality parameters to be assigned a value for simulating different
kinds of paper.
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All the quality parameters Qp are classified into two categories. The
first category, Qp1 = (e, tre, ν, re, ie, sm), can affect the brush strokes’
boundaries while the second category, Qp2 = (ren, η, ab, pw, dry), can affect
the brush strokes’ texture. Different combinations of possible values for these
quality parameters of the virtual hairy brush would result in an e-brush with
different qualities. Please refer to Fig. 4.1 for the concise meaning of each of
these parameters.

To ease the task of selecting the appropriate values to achieve the desired
quality, our implemented system offers a set of predefined quality configura-
tions in a library for the user to choose from. This is similar to what happens
in reality when a calligrapher chooses the most suitable real hairy brush from
many brushes in his collection or in a shop, some of which could have been
contributed by the users themselves. Others are prefabricated based on empir-
ical knowledge provided by real-life calligraphers and painters. After choosing
or creating a certain quality configuration, the end user can write/paint with
the chosen or created virtual hairy brush. He can change his decision later and
choose another new configuration until he is satisfied with the e-brush and
the created artwork. Although not implemented in the current prototype, it
is possible to allow an artwork to be automatically transformed using a new
configuration because all the inputs leading to the creation of the artwork
are already recorded in a file.

The implemented system provides a window in which the user can adjust
the above parameters visually. If he feels that the virtual hairy brush dries
too quickly and the final artwork should have more versatile color layers, he
can increase the value of the color rendering control parameter ren. If he feels
that the virtual hairy brush deforms too slowly, he can increase the values
of the parameters ν, re and ie which govern the deformability of the brush.
And if the virtual hairy brush recovers too quickly from deformation, he can
decrease the value of the elasticity parameter e. To increase the tendency of
brush splitting, he can assign a small value to tre, the splitting threshold.
If his strokes are fast so that the brush tends to brush out more easily, he
may need to adjust the parameters pw and ab which control the diffusion
and absorption abilities of the paper, since fast movements of the brush leave
little time for the paper to diffuse or absorb the ink, and hence the proper
setting of these parameters is important for any desired effect. Of course the
user can save all this trouble of assigning values to the parameters by simply
accepting an offered configuration.

4.8.2 Configuring the Brush with Machine Intelligence

In addition to user-created configurations, the system can configure a brush
automatically. To enable the computer to adjust the quality parameters of
the virtual hairy brush as well as those for the virtual paper automatically, a
special procedure needs to be carried out to train the computer. The training
samples consist of brush strokes being painted within boundaries specified by
the training module. The procedure is similar to a beginner starting to learn
how to use a hairy brush in real life, referred to as the “MiaoHong” process in
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Chinese calligraphy. The number of training samples can be set by the user.
Of course, the more samples used the better would be the resulting quality
of the brush. Simple artwork such as the one in Fig. 4.17 can be rendered
after a few minutes of training.

Let Si[len][wid] and Ci[len][wid] be two matrices where each of the ele-
ments is the RGB color code of a pixel of the virtual paper ψ. The first matrix
corresponds to the i-th sample of n training samples and the second matrix
the i-th user-generated result. Figs. 4.13 and 4.14 show some examples of real
training samples.

Fig. 4.13. Some selected training samples for the first category of quality param-
eters

We define a target function ϑ to indicate the difference between the sys-
tem’s specified training samples and the user-created images using the virtual
hairy brush:

ϑ �

n∑
i=1

ϑi �

n∑
i=1

len∑
p=1

wid∑
q=1

(Si[p][q]
⊗

Ci[p][q]), (4.30)

where the operator
⊗

is defined as (r1, g1, b1)
⊗

(r2, g2, b2) � |r1−r2|+ |g1−
g2|+ |b1−b2|. All the quality parameters of the virtual hairy brush contribute
to ϑ. Hence with a certain set of initial values for all the quality parameters,
a user can create a collection of facsimile images after the training sam-
ple images using our virtnal hairy brush, based on which the corresponding
ϑ can be computed. Thus, the problem of determing a good set of values
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Fig. 4.14. Some selected training samples for the second category of quality
parameters

to configure the virtual hairy brush is reduced to the problem of finding a
configuration which can minimize or nearly minimize ϑ, which is a typical
optimization problem. We devised and used an optimization algorithm based
on the Steepest Descent Algorithm [Lue03] in nonlinear programming to find
the needed solution, as described below.

We use ordered training procedures to compute the optimal configuration
of HB’s quality parameters Qp. Firstly, we need to train and determine all
the first-category quality parameters Qp1, followed by the second-category
parameters Qp2. Like the quality parameters, the training samples are di-
vided into two classes. The first class of samples are used to train the e-brush
to draw brush strokes with proper stroke boundaries, and so parameters that
have to do with the texture of the brush stroke are ignored, namely Qp2.
Hence, to determine Qp1, our virtual brush simulates neither drying brush
effect nor diffusion effect; that is, all the pixels on the virtual paper that are
covered by the ink mark at a certain simulated time are rendered completely
dark. After the algorithm yields the value for Qp1, the value for Qp2 are
computed, this time with Qp1 being assigned the value derived from the
previous computation.

Because the values of all the quality parameters of the virtual hairy brush
share the same range of [0, 1], we can view this problem as a minimization
problem with its feasible solution space being a unit cube in a 6-dimensional
space. We equally divide the edges of the cube to decompose the cube into
subcubes and take every resultant grid point (at a corner of a subcube) as a
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possible initial point; so each initial point’s coordinates in the 5-dimensional
space are in the form of X0 = (d1/d, d2/d, · · · , d6/d), where d ∈ N is the
number of parts an edge is divided into, and di = 0, 1, · · · , d (i = 1, 2, · · · , 6).
With X0 as the initial point, we use the Steepest Descent Algorithm [Lue03]
to find a satisfactory solution that minimizes ϑ(X0). That is,

(1) Set k = 0. Compute yk = −∇ϑ(Xk);
(2) If ‖yk‖ < ε, the algorithm stops, where ε is the error bound;
(3) Determine λk, such that ϑ(Xk + λk × yk) = min(Xk + λ× yk), λ � 0;
(4) Let Xk+1 = Xk + λk × yk; k = k + 1; go to Step 2.

The value of ∇ϑ(Xk) is approximated by ϑ’s differential at the point Xk.
That is, we disturb the position of Xk along the coordinate system’s axis
xi by a short distance �xi and run the algorithm for the virtual hairy
brush to yield ϑ(Xk + �xi). The differential of ϑ(Xk) can then be approxi-
mated by ϑ(Xk + �xi)/�xi. After taking several (d1/d, d2/d, · · · ,d6/d), di =
0, 1, · · · , d (i = 1, · · · , 6), as the initial point X0, we can determine an X
(= (di,1/d, di,2/d, · · · , di,6/d)) which yields the nearly minimum ϑ(X). We
then take [(di,1 −1)/d, (di,1 +1)/d]× [(di,2−1)/d, (di,2 +1)/d]×· · ·× [(di,6 −
1)/d, (di,6+1)/d] as a new cube, and re-run the above procedure to search for
a smaller ϑ, until meeting a solution that satisfies the user’s specified error
bound.

Of course the user can adjust the the parameters of the configuration if he
feels that the result from the above procedure still falls short of his demand.
Any of the preset configurations in the system’s library can be used as the
initial point for the optimization procedure so that a solution to the problem
can be obtained at much more quickly and accurately. In this sense, all the
above strategies to determine the quality parameters for the virtual hairy
brush can be combined to achieve better performance and results.

4.9 System Implementation and Experiment Results

Fig. 4.15 shows a screen shot of the implemented system in action, where
there is one Window responsible for displaying the current sampled input
and the history of all the sampled inputs (Window 8); one for the current
drawing mark (Window 3); one for the current writing mark imprinted on
the paper (Window 1). There are several additional windows for displaying
the 3D model of the virtual hairy brush in action including: one for the part
of the virtual brush penetrating the virtual paper (Window 2); one for the
complete solid model of the virtual brush in the 3D space (Window 4); one
for the 3D model of the virtual brush in silhouette form (Window 6); one
for the part of the virtual brush which is above the virtual paper (Window
5) and one for the part that is below (Window 7). There are several other
optional windows which can be displayed by the user’s choice. They include
a window to display the current control parameters derived from the input,
one for the parameter values automatically assigned to the writing primitives
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Fig. 4.15. The running system

by an internal algorithm, and one for the configuration of current quality
parameters.

Fig. 4.16—Fig. 4.18 show some real artwork digitized from calligraphy
samples together with the imitation artwork created by our virtual hairy
brush. We highlight using red circles a few spots that are the result of the
dry brush effect in our design; such an effect is difficult to achieve in other
e-brush projects. These samples prove that very realistic-looking calligraphic
artwork can be generated by our virtual hairy brush. If carefully tuned, the
simulation’s result can be nearly indistinguishable from the original one to a
human viewer. By fiddling with the quality parameters and the input data
for the brush’s six degrees of freedom, users can create interesting calligraphy
fully electronically. It is well known that to imitate an original calligraphic
artwork is a nontrivial task. With our electronic environment however, such
an imitation task becomes relatively easy. The system offers a friendly user
interface, which supports adjusting the quality parameters and the input data
dynamically to achieve whatever delicate effect the user desires. Fig. 4.19—
Fig. 4.22 show a series of computer artwork created using the virtual hairy
brush.

Although these figures show only imitation artwork generated by our vir-
tual brush, the real imitation that our design and implementation have set
out to achieve is to imitate the manipulability, aesthetic features and ex-
pressive power of traditional hairy brushes. A person who has mastered our
virtual brush should be able to create high-quality calligraphic artwork as
can be done by a real brush.
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(a) (b) (c)

(d) (e)

Fig. 4.16. Real artwork (a), (d) and imitations (b), (e). The brush’s trajectories
at (b) are highlighted at (c)

Fig. 4.17. Real artwork (left column) vs. imitation (middle column). And in the
right column, the rich and fine details of the dry brush effect produced by our
virtual brush are enclosed by red ellipses

4.10 Related Work

Pure hardware approaches such as Greene’s [Gre85] tend to be expensive and
not easily applicable in all environments. The method by Pan et al. [PMZS97]
can only generate new fonts from existing ones. The method by Way and Shih
[WLS01] requires the user to specify the contour and the parameters of the
object to be painted via a reference image or figure, which deviates from the
way traditional artists perform their painting tasks.

In the following we make a detailed comparison with two projects that in
many ways are closest among all related work to our work—the first one is
the DAB system by Baxter et al. [BSLM01], a painting system based on a
deformable 3D brush model and with an intuitive haptic interface; the second
work is the “virtual brush” by Wong and Ip [WI00], a model-based approach
to synthesizing realistic Chinese calligraphic writings. We also survey briefly
several other e-brush systems.
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Fig. 4.18. Two Chinese love poems: real artwork (left) vs. imitation (right)

Fig. 4.19. Pinasters (left) and stones (right)

4.10.1 DAB

Although DAB is a complex system [BSLM01], it cannot capture all the com-
plex physical properties and conditions of a hairy brush and its ink distri-
bution, which are necessary for simulating Chinese calligraphy and painting.
DAB relies on a special device with a 6-DOF input and a 3-DOF force output
that implements a haptic feedback. The device is expensive and therefore this
limits its wide application. In comparison, either a tablet or a keyboard-and-
mouse strategy would suffice as an input method for our e-brush prototype.
These simple methods, when coupled with the simulation of brush stroke
inertia and a machine intelligence component, provide a suitable level of
comfort and manipulatbility for the user. DAB’s complex algorithms require
the use of powerful hardware to give real-time response. Our e-brush system
can achieve interactive response on an ordinary PC due to a carefully picked
tradeoff between the quality of the final rendering and computation efficiency.

In DAB a layer carries only one color and blending of colors happens
when different layers interact. Our e-brush employs a more direct approach,
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Fig. 4.20. A running horse

Fig. 4.21. Orchid

with the pigment model being an integral part of the e-brush, which makes
it possible to simulate highly complex ink distribution patterns within the
e-brush volume. This enables the user to create more elaborate and complex
blends in a more natural manner than DAB.

DAB’s one-color-per-layer strategy limits the richness of the output tex-
ture. It seems not at all easy to improve on this, such as by adding ink-related
information to DAB’s simple particle-system model or its complex subdivi-
sion model. DAB needs to integrate a new, elaborate pigment model in order
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Fig. 4.22. Bamboos

to generate varied-texture output. In our model, ink-related information is
naturally and inherently embedded in the e-brush, which makes possible the
efficient and powerful rendering of ink marks with complex textures. We have
also designed a new pen-and-ink model to render the brush’s footprint, which
is probabilistic and considers the pressure on the virtual paper, the inner
stress of the e-brush, and the wetness of both the brush and the virtual pa-
per. This should be much better that DAB’s simple alpha blending. Besides,
our e-brush is tuned to optimal performance in handling paint representation,
paint mixing and the drying of the canvas.

DAB uses two separate models—a subdivision surface mesh wrapped
around a spring-mass particle system skeleton for the basic motion and be-
havior of the brush head, and a deformable mesh skinned around this skeleton
for the actual shape of the head—which leads to the synchronization prob-
lem of how to properly anchor the control points of the subdivision surface
relative to the mass particles. To have a tradeoff between the ease to place
the control points and the modeling ability makes DAB only capable of sup-
porting four styles of brushes used in oil-like painting. In comparison, we use
four compositive attributes and a suitably powerful modeling metaphor, the
general sweeping operation, to model our e-brush. Thus, our e-brush is much
simpler than DAB’s as we use only one model to cover the geometrical shape,
the dynamic behavior, and pigment changes. The result is a simulated brush
capable of expressing all kinds of brush tips, and better efficiency.

DAB likens the brush tip to a piece of cloth, and uses cloth simulation
to construct the brush surface. In order to solve the mesh at the brush tip,
DAB relies on an approximated implicit integration method. This poses two
problems: modeling with cloth is not the best choice as far as approximating
the reality is concerned, and solving for cloth can make the system unstable.
To maintain stability, modeling accuracy has to be sacrificed. In our model-
ing, by relying on the concept of writing primitives and choosing the general
sweeping operation as the modeling metaphor, our e-brush can readily simu-
late almost all kinds of brush heads and their deformation, including splitting
of the brush tip. The general sweeping operation also has an advantage in
terms of the running system’s stability. Hence, our e-brush is more stable,
efficient, and expressive than DAB’s.
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The simulation of our e-brush’s dynamics and its visual effects incurs less
cost than DAB. This is due to our combining the geometrical modeling, dy-
namic behavior and paint blending all into a single model which is evaluated
only once per time slice. Because of the reduced complexity of the e-brush
simulation, we could use the saved time and resources to perform a more del-
icate simulation of the brush’s dynamic deformation behavior. The simulated
deformation of our virtual brush can be simulated to deform in a variety of
ways and to a large extent, which is not the case with DAB.

4.10.2 Virtual Brush by Wong and Ip

The virtual brush model by Wong and Ip [WI00] also offers a feasible means
for artists to produce Chinese calligraphic characters electronically. Their
method, however, is inconvenient to use because of an intricate set of interre-
lated parameters for controlling the shape, density and opacity of the current
drawing mark. These parameters need to be specified manually by the user,
thus limiting the interactivity of the system. More specifically, the user needs
to specify the profiles for seven parameters to control the brush motion dy-
namic model, and another three parameters to control the ink deposition—a
total of ten profiles. Only two of these profiles, the stroke’s trajectory in the
X and Y directions, can be sampled by a mouse or a digitizing pen; so there
are eight profiles to be input manually. Whereas in our approach there are
many input devices that can take in the six degrees of freedom of a solid ob-
ject, and no profile needs to be supplied by the user. For instance, MacKenzie
[Mac95] discusses input devices that can capture six degrees of freedom for
brush/paint systems. Ware and Baxter [WB89] describe a model for convert-
ing hand position and orientation into six useful variables for computer input
and its application in an experimental computer paint program.

Other than the input parameters for the brush’s six degrees of freedom,
several parameters have been introduced in our design for controlling the
virtual brush’s quality, whose values can be automatically set via an opti-
mization algorithm. Although our e-brush model is more elaborate than that
of Wong and Ip, all the modeling details and quality parameters of the e-
brush can be hidden from the end user. The user can in fact use the e-brush
in the same way he/she uses the traditional hairy brush. We can therefore
say that our e-brush is simpler and easier to manipulate than the e-brush
by Wong and Ip. But because of the more complex model we use behind the
scenes and the automatically tunable quality parameters we introduce, we
can achieve better output results with our e-brush.

Referring to the examples in Figs. 4.17 and 4.18, it may be possible for an
experienced artist to produce a similar artistic calligraphy result using the
system described in [26]. But, as we have already explained, that will take
a much greater effort because of the need to adjust many parameters that
control the shape as well as the texture of the strokes. In comparison, our
brush is much more “usable”—it is easy to use yet sufficiently expressive.
Users can conveniently manipulate our e-brush by controlling its six DOFs,
using either a tablet pen or the keyboard plus a mouse.
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Although [WI00] provides an extensive library of pre-set stroke param-
eters through a convenient panel, during the digital painting process these
parameters are visible to, and need to be adjusted by the end users. Also,
some of those parameters are not quite intuitive. In comparison, our e-brush
hides all the complex parameters and only requires the six DOFs input from
the user. The quality parameters associated with our e-brush all have an
intuitive meaning and are therefore easy to adjust by the user. A machine
training module can further make the quality parameter tuning process in-
telligent and most convenient to the user.

4.10.3 Other Virtual Brush Models

The very recent work by Chu and Tai [CT02] proposes a virtual brush which
is very similar to ours. The geometrical aspects of their brush are essentially
the same as those in an early report of our work [XTLP02]. They however
use simple blending for paint mixing, which severely restricts the richness of
the resulting e-paintings. They model the dynamics of the e-brush as springs
which are deformed through constrained energy minimization. This way of
modeling can only simulate small-scale deformation of the e-brush but not
large-scale bending or stretching, due to the restriction of constrained energy
minimization. For the same reason, spreading and splitting of brush tips can-
not be simulated physically in their system. [CAC02] presents two methods
to create Chinese paintings. One of them creates 3D Chinese painting ani-
mation using existing commercial software packages. Their second method is
based on a simple strategy in which many bristles which are arranged ran-
domly within a circular area constitute the brush tip. As a result only a small
number of modeling effects are possible using this method. There is no formal
ink model being proposed for their system. The water in each brush bristle
is directly used as the transparency for the generated brush strokes, and so
both the shapes and the textures of the strokes produced by their system
appear stiff and artificial. Their results are far less expressive than the real
artwork.

4.11 Conclusion and Future Work

4.11.1 Summary and Conclusion

In this chapter, by modeling the hairy brush using a few writing primitives
which work independently, a real-time virtual hairy brush system has been
implemented for creating artwork by the computer. Measured against the
criteria presented at the beginning of this chapter, our e-brush is easy to use,
and people can more or less treat the e-brush like a traditional brush. With
the support of an input component and a machine intelligence component,
it is quite comfortable and easy to manipulate. The output samples show
that indeed our e-brush can generate more expressive and realistic render-
ing results than all the previous e-brush systems. The machine intelligence
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component allows different levels of automation in controlling the e-brush
to be enabled. Fast response time is guaranteed due to the use and effi-
cient implementation of writing primitives and our e-brush can offer more
functionalities than traditional brushes and other e-brushes via the machine
intelligence component.

Like the virtual hairy brush itself, the proposed ink model is also physically-
based, which blends wetness, ink color and the current inner stress of the
brush with rendering probabilities, and reduces all the complex interactions
to a set of simple equations. Compared to [CAS+97], where complex differen-
tial equations are used, our model is computationally efficient. The ink model
is integrated into the e-brush system so that much of the computation can
also be used in computing for the ink model.

With the ink-related information that is lodged in the writing primitive’s
control axis, a single primitive can readily express complex, interesting and
even mysterious distribution of the ink, color and wetness. Together with the
use of rendering probabilities, our brush can achieve the effects of multiple
gray levels, colorful painting, dry brush writing and saturation.

During the writing process the simulation takes into account the accel-
eration of the virtual hairy brush, producing an effect that emulates the
manipulation of a real physical brush.

Although the system provides methods to manually edit a collection of
parameters that can affect the rendering and the final result, it is not neces-
sary for the user to interactively input values for these parameters. All that
is needed from the user is the series of six degrees of freedom of the hairy
brush, based on which the computer can simulate the whole writing process.
This leads to an efficient system operable in real-time, and which is easy to
use for the user. Since most of the handwriting’s geometrical and dynamic
parameters can be automatically tuned by the system on the fly, little storage
space is required to keep track of state information.

4.11.2 Future Work

A real brush operates in a fashion that is orders of magnitude more complex
than which that can be modeled by a computer. Features that can be added
in future versions to further enhance the modeling include dynamic merg-
ing of writing primitives, repeated dipping effects and more user’s control of
the brush during writing. Other features requiring longer-term effort include
mapping of 2D calligraphic artwork to 3D and feature extraction of real art-
work. We explain some of these in the following.

(1) More delicate modeling. It includes making the elasticity of our brush
hair a variable rather than a constant in our system, and adopting a
more sophisticated model for hair splitting rather than the current ran-
dom splitting since the probability of hair strands on the outside splitting
should be larger than that of the inner ones.
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(2) Multiple dipping effects. In the current design dipping operations only
take place before the first time the virtual hairy brush touches the paper
plane. In real life, an artist may dip the brush either partially or com-
pletely multiple times. Partial dipping would cause local changes in the
brush’s wetness and color.

(3) More control. Another problem with the current prototype is that, once
the simulation is on its way, the number of key points on the middle con-
trol axis would keep increasing, which is not quite in line with the real case
where an artist may caress a deformed brush to restore its shape. A variety
of interfaces are required to allow the user to control and edit the writing
primitive’s geometry, as well as its color and its degree of wetness, as the
linear interpolation in the current design, is just one of many possibilities.

(4) Hair merging. In the current virtual hairy brush model, writing prim-
itives will split into several smaller ones, which simulates the branching
out of the hair in a real writing process. In real life, branched-out hair
bundles may merge together later. Such a feature is not in the current
implementation.

(5) 3D writing effects. Many famous Chinese calligraphic artwork creations
are chiseled in monuments. How to map 2D calligraphy work into 3D is
an interesting research problem. So is the problem of directly creating 3D
calligraphic artwork.

(6) Automatic imitation. Pattern recognition and machine learning mech-
anisms can equip the system with the ability to duplicate existing artwork
fully automatically, and in the process to extract useful components such
as the brush’s path and the thicknesses of the strokes. These compo-
nents will then be useful in automatic imitation of calligraphic artwork
or computer-assisted calligraphy.
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5

Performance Enhanced Virtual Hairy

Paintbrush System

5.1 Overview

This chapter presents a new approach to modeling a 3D physical paintbrush,
based on which an interactive painting system has been developed. Compared
with existent brush-based painting systems, our new system can accurately
and stably simulate the complex painting functionality of a running brush
using a modest amount of system resources. The detailed modeling empowers
the user to create high-quality digital paintings with delicate aesthetic details
that can rival real artwork. With the amount of details to be modeled, we
have to rely on a hierarchical modeling approach, dividing the modeling tasks
to on-line and off-line computations, and a powerful pigment model that
is fully integrated into the brush model. These optimizations and special
components make the system operable in real time, fully interactive, and
easy to manipulate.

5.2 Introduction

A long cherished dream of both scientists and artists since the birth of digital
computers is to be able to use the computer to produce beautiful art. With
the ever increasing power of modern computers, the computer as a serious
artistic tool is now within reach for many. The more powerful the computer
would becomes, the more that can be done in perfecting the artistic effects
achievable through advanced computing techniques. The recent hot pursuit
of Non-Photorealistic Rendering (NPR) is one major effort to capitalize on
the power and flexibility of today’s computers for art creation that can sur-
pass what is possible by human artists with conventional means. One major
research area in the NPR field is emulation by pen-and-ink [SABS94] which
has wide applicability and could lead to powerful expression in many situ-
ations. In the genre of Chinese art forms, the brush takes the place of the
pen, and the computerization of a paintbrush (and the ink) for interactive
painting or calligraphy is a very attractive goal. A brush is many times more
complex than a pen, and hence the problem presents a huge challenge for
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the interested computer scientists. We describe our solution to the problem
in this chapter.

Smith [Smi01] has written a good survey on the early painting systems.
More recently, several researchers have successfully implemented a virtual
brush (or “e-brush”) that can mimic a real 3D brush for painting and callig-
raphy through physically-based modeling [WI00, BSLM01, CT02]. Compared
with many existing 2D virtual brushes, which often require the user to specify
the contour’s control points and the texture of painted strokes (e.g. [Str86]),
these 3D brushes are more natural to use, especially for non-computer spe-
cialists. A guiding principle for the design of an e-brush is that it must present
itself as a familiar tool to the traditional human artist, because “presenting
a system that requires the designer to adapt, distract, or place attention out-
side of the actual task will hinder the creative process to which the designer
can come up with ideas” [HSS02]. With the e-brush we have implemented,
the user will not be required to specify any control point or to adjust any
parameter for the texture, but can operate the brush in more or less the same
way as a physical brush.

In a good virtual brush design, each step of the painting process should
be simulated in high realism. Here simulation refers to both the production of
strokes on the virtual canvas and the continuous visual display of the running
brush. The latter is necessary if the user is to be able to feel the presence of
a brush in order to have full control over it and to manipulate the brush as
in real life. An even more perfect virtual brush should also provide a haptic
interface, like what is done in [BSLM01]. Apart from research on virtual
brushes for 2D painting, designing e-brushes for 3D painting appears to be a
promising area [HH90, ABL95, Pix00, KMM+02].

In this chapter we describe a new e-painting system with improved system
design aiming at better performance. We particularly focus on the modeling
aspects—the geometry and the dynamics of the paintbrush. Our modeling of
the paintbrush stands out among existing approaches because of its unique
ability to capture the highly complex geometry of a physical brush as well
as its dynamic behavior during painting with great accuracy. Our modeling
approach pays special attention to many very fine details that are called for
by the creation of high quality digital paintings. Because of these very fine
details, the system presents a “realistic” simulation of the physical brush to
the user who would operate it like a real brush and expect the output to be
as good as a real one.

Compared with the brush based painting system design that we’ve stud-
ied in Chapter 4, this chapter delves further into the underlying detailed
modeling of various essential aspects of the realistic paintbrush. The level
of details being addressed here is useful not only to those who want to im-
plement a similar system, but also others who develop painting systems of
different kinds, as well as those working in the more general area of NPR
and physically-based modeling. Besides the low-level details, we also provide
in-depth analyses and discussion to justify several high-level design decisions,
and experimental results to demonstrate their effectiveness.
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The chapter is organized as follows. Sect. 5.3 and Sect. 5.4 present our
realistic modeling of the geometry and the dynamics of the brush respectively.
Sect. 5.5 gives an overview of the new e-painting system we developed based
on our modeling. Sect. 5.6 compares our system with other e-brush based
painting systems. Sect. 5.7 concludes the chapter and discusses possible future
tasks.

5.3 Modeling the Paintbrush’s Geometry

One of the earliest paintbrush models was by Strassmann [Str86], in which
brush strokes are created by sweeping a 1D brush bristle over a skeleton,
and the color, width and wetness of the brush can be varied. Wong and Ip’s
virtual brush [WI00] is modeled as an inverse cone which can produce an
elliptic drawing mark. In the DAB project [BSLM01], a subdivision surface
is wrapped around a spring-mass particle system skeleton to emulate the
brush surface. Most recently, Chu and Tai [CT02] use a geometrically-based
approach to model an un-split brush tip and an alpha map to model a split
brush tip. None of these models however is powerful enough to model a physi-
cal brush to a high degree of likeness to the physical brush’s real geometry. In
particular, the common situation in which a brush splits into a large number
of hair bundles appears to be out of the reach of all these existing models.
According to many practising artists, a feature for modeling such a high de-
gree of splitting is very desirable. The novel e-brush modeling method we
propose here can effectively deal with this and other difficult problems using
little memory and CPU resources.

To model a paintbrush with the granularity of a single hair strand which
is done in Wong and Ip’s system [WI00] is inefficient because a typical real
brush may consist of thousands,or even tens of thousands of individual hair
strands. To overcome this inefficiency, in Chapter 4 we have introduced our
first effort at increasing the brush system’s modeling capability with careful
consideration of the consumption of system resources by modeling a brush
as clusters of brush hair. This approach however can only handle the case of
a brush splitting into a small number of hair clusters but not one with heavy
splitting.

In this chapter we propose a hierarchical brush geometric model. At a
lower level of the hierarchy, hair strands whose position and geometry in 3D
space are close to each other are gathered together and modeled as one hair
macro. At the upper level, disjoint hair macros whose geometries are similar
are classified into the same cluster of hair macros. The motivation behind
having multiple levels is to eliminate as much as possible the redundancy
in representing and simulating the brush hair. In real actions, a brush can
easily split into thousands of disjoint clusters of hair threads. Cluster-based
modeling alone,as introduced in Chapter 4, is not sufficient to deal with the
highly chaotic geometry of the brush. It can be easily observed that even in
such a situation there exist only a few sharply distinctive geometries among
all the geometries of hair clusters. We call these distinct geometries primitive
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geometries. With these primitive geometries, the geometries of all the hair
clusters can be approximately derived via simple affine transformations. Fig.
5.1 shows some complex brush geometries of our virtual brush. Based on this
two-level hierarchical representation, our virtual brush model can efficiently
represent the complex geometry as well as simulate the dynamic behavior of
real paintbrushes having thousands of disjoint hair clusters.

Fig. 5.1. Some complex brush geometries of our virtual brush

5.3.1 Three-layer Hierarchical Modeling

Our realistic modeling of the paintbrush geometry is organized as a three
layered hierarchy: the lowest layer consists of hair macros, which are clusters
of hair threads; the intermediate layer consists of clusters of hair macros; the
highest layer is the whole brush tip bundle.

Hair strands whose positions in the 3D space are close to each other and
whose geometries are similar, are modeled together as one hair macro which
is a single, aggregative representation of both the geometry and dynamics of
these hair threads. A hair macro is the smallest granularity in our modeling.
Hence. the overall modeling capability of our virtual brush derives from the
modeling power of a hair macro. A formal definition for our geometric model
of a hair macro is given as Eq. (5.1). We construct the model of a hair macro
H through the general sweeping operation in CAD, GeneralSweeping(·),
by moving a variable ellipse E(t) along a 3D trajectory, K(t). We call the
trajectory “the skeleton of H”, which is represented as a 3D B-spline. The
generated skinning surface is the surface of H while the swept volume is
the interior volume of H. During the sweeping operation we ensure that
the sweeping ellipse E(t) always lies on the normal plane of the sweeping
trajectory K(t), i.e. E(t)|t=t0⊥K(t)|t=t0 . See Fig. 5.2 for the illustration of a
hair macro in its initial geometry, and a deformed hair macro.⎧⎪⎨⎪⎩

H � GeneralSweeping
(
E(t), K(t)

)
(0 � t � 1)

E(t) � {(x, y)|x = L(t)ν cos
(
w + θ(t)

)
y = S(t)ν sin

(
w + θ(t)

)
(0 � ν � 1, 0 � w < 2π)}

, (5.1)

H � Modeling
(
K(t), S(t), L(t), θ(t)

)
. (5.2)

E(t) is a variable ellipse in that the lengths of its major axis L(t), mi-
nor axis S(t) and its orientation θ(t) (on the normal plane of its sweeping
trajectory) can all be varied during sweeping. Thus, given three B-splines,
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S(t), L(t) and θ(t), we can uniquely determine an E(t) (0 � t � 1). We can
also rewrite Eq. (5.1) as Eq. (5.2), which means that by four B-splines,

(
K(t),

S(t), L(t), θ(t)
)
, the geometry of a hair macro, H, can be presented para-

metrically. This representation makes it easy and intuitive for end users to
tailor the geometry of a hair macro and further customize their virtual brush
if the users so choose. Fig. 5.2 (a) shows the graphical user interface to be
used for this purpose.

The general sweeping operation we adopted is a suitably powerful mod-
eling metaphor, which meets the demand for modeling long furry objects.
Our representation is simple to generate and capable of capturing all kinds
of geometries that a paintbrush may have, as is demonstrated in Fig. 5.2(a).
In comparison, although the subdivision surface mesh employed in [BSLM01]
is a more powerful modeling metaphor in general, unlike our general sweep-
ing operation, it is not specifically customized for the modeling of brush hair.
Therefore, in spite of its being more sophisticated than our method, it cannot
deal with some of the more extreme cases, such as heavily deformed brush
hair.

Fig. 5.2. (a to c)An initial hair macro: (a) when shaded; (b) as a wireframe with
the sweeping trajectory highlighted; (c) as a series of profiles of the sweeping ellipse,
which are in red. (d to f)A deformed hair macro: (d) when shaded; (e) wireframe;
(f) profiles of the sweeping ellipse

General sweeping, however, is a time-consuming operation. Moreover, the
internal solid models of all the hair macros together could take up a sub-
stantial amount of space, especially in situations when the brush is split into
many small hair bundles. Consideration of system response time and memory
resources calls for a strategy to eliminate as much as possible the redundancy
in representing and simulating the brush hair. We introduce the idea of hair
macro cluster to group disjoint hair macros,whose geometries are similar into
one single,modeling unit. This is a reasonable move because it can be eas-
ily observed in real life when a brush is split into numerous disjoint hair
strands or clusters, there will only be a limited number of sharply distinc-
tive geometries among the clusters. Note that the grouping considers only
the geometries but not the physical positions of the hair macros in the 3D
space. Given a macro hair cluster and the geometry of any individual hair
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macro in the cluster, the geometries of all the remaining hair macros of the
cluster can be easily derived via simple affine transformations. This design
gives rise to a brush geometry model that is compact in memory, and enables
fast simulation of the brush’s actions.

Fig. 5.3 shows two examples of complex brush geometry modeled using
our three-layer hierarchy. Fig. 5.4 shows the brush modeling when one, two,
or three layers in the hierarchy are in effect.

(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 5.3. (a1 to a3) A split virtual brush when shaded, in wireframes, and in terms
of profiles of the sweeping ellipses respectively; (b1 to b3) a brush that is heavily
splitting

5.3.2 Real-time Visual Display of the Brush

Visual feedback is important for any interactive system. In a painting session
the user needs to feel the physical presence of the brush in order to manipu-
late it at will. To provide a good visual feedback could require a huge amount
of computation because of the highly complex geometry of a realistic virtual
brush. Our hierarchical modeling provides a solution to efficiently tackle the
problem. As discussed previously, we only need to explicitly model the ge-
ometry of one hair macro for each hair macro cluster, from which all other
geometries belonging to the same cluster can be derived. Thus all the hair
macros in a cluster share the same data structure, and one tessellation process
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(a)

(b)

(c)

Fig. 5.4. Brush geometry modeling on three levels: (a) using only the top level—
the whole brush tip bundle; (b) using two levels—the top level and the “hair macro”
level; (c) using all three levels

being applied to the geometry of one hair macro is sufficient for tessellating
all the hair macros in the cluster (by applying the same affine transformation
as mentioned before).

We also make sure that modeling satisfies the preconditions necessary for
taking advantage of the hardware acceleration facility through the “Display
Lists” feature in OpenGL. The time-consuming commands for rendering the
geometries of the hair macros would therefore be optimized by the driver
as the affine transformations can be pre-computed. With the hierarchical
modeling approach and hardware acceleration, our virtual brush can achieve
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real-time visual feedback of the complex geometry of the brush using a rea-
sonably small amount of memory and CPU time.

5.4 Modeling the Paintbrush’s Dynamic Behavior

Simulating the dynamics of a real paintbrush, which includes the brush’s
deformation due to outer force, recovery from deformation when the force
vanishes, splitting due to inner stress, etc., is a non-trivial problem because
of the complexity of the brush’s geometry and the physical principles that
underlie the brush’s behavior. In the DAB project [BSLM01], the motion
of the brush geometry is simulated through a pair of first-order differential
equations. The dynamics of Chu and Tai’s brush [CT02] are modeled as
springs whose deformation is via constrained energy minimization. In spite of
all these efforts, what would be a good model of brush dynamics that supports
realistic, efficient, and stable brush motion simulation using a reasonable
amount of system resources remains not completely answered.

Our design of the virtual brush system offers a highly detailed dynamic
modeling of the behavior of a physical paintbrush. The modeling is divided
into two phases. The first phase consists of on-line computation of the compu-
tationally inexpensive and input-sensitive physical processes, such as brush
deformation due to brush pressing. We adopt the approach of using a “phe-
nomenal model” which simulates the dynamics of a changing object based
on observations, instead of by the highly complex underlying physical laws
that govern the changes. It proves to be a highly economical approach when
we have to model a large number of brush features. The result is fast simu-
lation of a sufficiently detailed model of the brush. With this observational
modeling approach, however, we compromise some degree of modeling ac-
curacy. And so in the second phase, off-line data are used to calibrate and
refine the on-line simulated results. These data come from a simulation error
calibration database constructed from off-line acquired ground truth about
simulation errors. Our design represents a balance between a complete on-line
based approach and one that is at the other extreme. The former demands a
huge amount of runtime resources in order to achieve real-time response; the
latter could result in a database which is too large to manage. This “observa-
tion model plus calibration database” approach achieves high realism for the
brush dynamics being simulated as well as interactivity with little incurred
computational cost. Fig. 5.5 shows the dynamic deformation of a primitive
geometry. Fig. 5.6 shows a series of simulated dynamic deformations of our
virtual brush.

During painting, the geometry of the paintbrush is deformed due to the
outer force arising from friction between the brush and the paper. Brush
deformation is modeled in the first phase of the two-phase modeling, in two
different parts: deforming of hair macro due to brush-paper collision and
deforming of hair macro due to the brush’s inner stress.
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(a) (b) (c) (d) (e)

Fig. 5.5. Dynamic deformation of a primitive geometry during painting

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5.6. (a) to (e)—Simple dynamic deformation of the virtual brush: (a) the
initial geometry, (b) pressed down, (c) rotated, (d) tilted, (e) further pressed down
and rotated. (f to o) A more sophisticated virtual brush deformation process: (f)
the initial brush; (g) pressed down before splitting is simulated; (h) after splitting
is simulated; (i) rotated and further pressed down; (j) lifted a bit with some split
brush strands merging; (k) tilted; (l) further rotated and pressed down; (m) further
lifted to the initial brush position; (n) pressed down again; (o) completely pressed
down to the virtual paper with some rotation
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5.4.1 Deformation due to Brush-paper Collision

5.4.1.1 Deformation of skeleton

The main constraint to observe here is that the brush’s skeleton cannot pen-
etrate the virtual paper. During brush painting or writing, if some part of a
skeleton K(t) penetrates the virtual paper ψ at an intersecting point Ko(tp)
between the original skeleton Ko(t) and the virtual paper ψ, we would deform
Ko(t) by replacing it with a new curve Kn(t) to satisfy the above constraint.
The deformation scheme is expressed mathematically as Eq. (5.3) and illus-
trated by Fig. 5.7.

Kn(t) � Kpro(t) × (1 − rfc) + Kro(t) × rfc, (5.3a)

Kpro(t) �

{
Pro

(
Ko(t), ψ

)
when Ko(t) is below ψ

Ko(t) otherwise
, (5.3b)

tp = max{t|Ko(t) is below ψ}, (5.3c)

Kro(t) �

{
Ko(t) tp � t < 1
Rot

(
Ko(t), Ko(tp), φmin

)
0 � t < tp

, (5.3d)

φmin � argminφ

(
∀P ∈ {Rot

(
Ko(t), Ko(tp), φ

)|
0 � t < tp} ⇒ P is above ψ

)
,

(5.3e)

Ko(t) ← Smooth(Kn(t)). (5.3f)

Kn(t) is the linear interpolation between Ko(t)’s projected version Kpro and
its rotated version Kro [Eq. (5.3a)]. The weight rfc used in the above interpo-
lation is essentially a coefficient representing the degree of rigidity-flexibility
of the material used for the brush hair [Cal99]. Kpro is computed by simply
projecting any point on Ko(t) that is below the virtual paper ψ onto the
plane of ψ [Eq. (5.3b)]. To compute Kro(t), we need to first detect the inter-
secting point Ko(tp) between Ko(t) and ψ. In Eq. (5.3c), we define this point
to be the closest point below the virtual paper ψ to Ko(1), if the point exists.
Here Ko(1) is the bottom of the skeleton, i.e. the tip of the penholder. Then
the rotated version Kro can be computed by rotating Ko(t)|0�t<tp around
Ko(tp) through a minimum angle φmin to make all the points on the skeleton
come on top of the virtual paper ψ [Eqs. (5.3d) and (5.3e)]. At last, before
replacing Ko(t) with the new skeleton Kn(t), we first smooth Kn(t) by ap-
plying a B-spline curve fitting to ensure a smooth transition of the curvature
of Kn(t) [Eq. (5.3f)].

We also model the kinking up of a hair macro due to large friction induced
by high stress which is according to classic Newton force. The larger the
friction, the slower the hair macro will move. This non-uniform displacement
will cause local prolongation and compression of the hair macro’s skeleton,
which when it becomes too severe will lead to kinking up of the skeleton, as
shown in Fig. 5.8. To simulate this, we introduce additional curvature to the
skeleton so that the arc length of the skeleton is the skeleton’s original length
and the chordal length is its squeezed length.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 5.7. Skeleton deformation of the virtual brush: (a) a hair macro penetrating
the virtual paper; (b) its corresponding skeleton; (c) the projected skeleton, (d) the
rotated skeleton; (e) the interpolated version of the skeleton; (f) the new skeleton
after smoothing, which is completely above the virtual paper; (g) the deformed hair
macro with the new skeleton

(a) (b)

Fig. 5.8. (a) A kinked-up hair macro; (b) its corresponding skeleton

5.4.1.2 Deformation of sweeping ellipse

Recall that the geometry model of a hair macro is constructed by sweeping a
variable ellipse along a trajectory. When the brush is deformed, the profiles
of the variable ellipse touching the paper will also be deformed. We apply
minimization to the areas of the parts of the deformed profiles that are under
the virtual paper plane, with the hard constraint that the profiles’ areas
cannot change. These areas could change at a later stage in the modeling
when we take into account the inner stress. We minimize the areas concerned
for the simple reason that the physical brush cannot go under the canvas;
minimizing gives us the best approximation to what would happen in reality.
Eq. (5.4) is a brief mathematic representation of this deformation.⎧⎪⎨⎪⎩

min
∑

i Area
(
UnderPaper(Profilei)

)
subject to :
∀ Profilei : Area(Profilei) ≡ Constant

. (5.4)
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Here Profilei is the i-th profile of the sweeping ellipse of a certain hair
macro. UnderPaper(Profilei) computes the part of the profile Profilei that
is under the virtual paper plane. Operator Area(·) computes the area of a
planar shape.

5.4.2 Deformation due to Inner Stress

Once the hair macro is deformed due to collision between the brush and the
paper, inner stress will develop inside the hair macro. Because we model the
geometry of a hair macro explicitly, its volume is computable. Based on the
volumes of the initial and the deformed geometry of a hair macro, we can
estimate the inner stress of the macro. This inner stress will then give rise to
further deformation of the geometry of the macro, in the form of distension
and splitting of the hair macro.

5.4.2.1 Estimating the inner stress

From Eq. (5.1) we notice any point in a certain profile E(t)|t=t0 of the variable
ellipse E(t) can be determined by the pair (ν, w) under a given L(t0), S(t0)
and θ(t0). Accordingly, we set up a local planar elliptical polar coordinate
system for E(t0) by taking the major and minor axes of E(t0) as two axes
of the coordinate system, and the center of E(t0) as its origin. We can then
establish a point to point correspondence between the un-deformed profile of
E(t0) and its deformed counterpart in the new local coordinate system. We
use the subscripts “u” and “d” to refer to the un-deformed and deformed
items respectively during the brush deformation. Then the correspondence
rule we adopted can be stated as: two points (νu, wu) in Eu(t0) and (νd, wd)
in Ed(t0) are correlated if and only if νu = νd and wu = wd + τ(t0), where τ
is a parameter to be determined later. By this correspondence, we can then
estimate the local inner stress ρ(νd, wd) around point (νd, wd) on Ed(t0) with
Eq. (5.5).

ρ(νd, wd, τ(t0)) �

⎧⎨⎩ tan
(

max
(
k1(1 − νu

νd
),−π

2

))
whenνd � νu;

tan
(

min
(
k2(1 − νu

νd
), π

2

))
otherwise.

(5.5)

Based on this point-wise stress estimation, we can derive the formulae to
evaluate the average inner stress ρ(Ed(t)) of the ellipse Ed(t) as Eq. (5.6).
Here by our design, τ(t) is supposed to be a number between [0, 2π) in order
to minimize the absolute value of ρ(Ed(t)).

ρ(Ed(t)) � min
τ(t)∈[0,2π)

(∫
Ed(t)

ρ(νd, wd, τ(t))dνd dwd∫
Ed(t)

dνd dwd

)
. (5.6)

Integrating the point-wise stress throughout the volume of the hair macro
can further lead to the estimated average inner stress ρ(Hd) of the deformed
hair macro Hd as given by Eq. (5.7).
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ρ(Hd) �

∫ 1

0

ρ(Ed(t))dt. (5.7)

A positive ρ suggests that the stress is inward, which will compress the
geometry of the hair macro; whereas the negative ρ suggests that the stress
is outward and will dilate the hair macro; zero ρ means the hair macro is in
its steady geometry. If only ρ �= 0, stress-driven brush deformation tends to
reduce the current inner stress of the virtual brush through brush geometry
deformation.

5.4.2.2 Distension of hair macro

Although the volume of a hair macro is determined mainly by the number
of hair strands in the macro, there is another factor, the phenomenal dis-
tensibility of the hair macro, which will affect the volume. A high degree of
phenomenal distensibility suggests that the hair strands are not very densely
packed inside the hair macro. Obviously, distensibility is a function of the
inner stress of a hair macro. For a hair macro, if its phenomenal distensibil-
ity increases (resp. reduces), all of the sweeping ellipse profiles of this hair
macro will increase (resp. reduce) in size. For simplicity we model the degree
of distensibility β as a function of the stress in the hair macro H as follows:

β(H) �
1

2
− 1

π
arctan(k3 × ρ(H)). (5.8)

Since ρ(H)’s range is the whole real number axis (−∞, +∞), the range of
β(H) is (0, 1). Here k3 is a positive coefficient controlling the sensitivity of the
distensibility to the inner stress. For each hair macro H = Modeling

(
K(t),

S(t), L(t), θ(t)
)
, if its phenomenal distensibility grows from β1(H) to β2(H),

H’s parametric representation will change to H′, as defined in Eq. (5.9).⎧⎨⎩
H′ � Modeling

(
K(t), S′(t), L′(t), θ(t)

)
S′(t) � (β2(H)/β1(H))S(t)

L′(t) � (β2(H)/β1(H))L(t)

. (5.9)

5.4.2.3 Splitting of hair macro

If there is a part inside the volume of a hair macro, whose stress is above
the threshold of a maximum tolerable inner stress, the hair macro will split.
Splitting of the hair macro takes place in a stress-descending order if multiple
parts of the virtual brush meet the splitting criterion simultaneously. Split
hair macros could merge again if their inner stress starts to come down. In
the current version of our modeling, merging however is controlled through
user interaction, mimicking the way the user caresses a physical brush to
merge some split hair. Fig. 5.9 shows some brush motion simulation results
with and without brush splitting.

More formally, if there exists a point in a hair macro, whose stress is above
the threshold of a maximum tolerable inner stress, the hair macro H will split.
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According to the way we compute the stress in H, discussed in Sect. 5.4.2.1,
the distribution of the stress within H is continuous. This means if there exists
one such point in H whose stress is greater than the splitting threshold, it
is likely that the neighbouring points are also above the threshold. Therefore
our splitting procedure works on groups of points. For one specific sweeping
ellipse we need first of all to separate those points, whose stress is above the
threshold, from the other points. If the number of connected points whose
stress is above the threshold is very small, there will be no splitting. This is
the effect of physical attraction between neighbouring hair threads. After the
small group elimination, real splitting operation comes into the picture. The
separated point groups will become two ellipses, the centers of which are the
centroids of each group. To determine the lengths of major and minor axes
of the ellipse, we impose two constraints: the area of the ellipse should be
equal to the area of the group before splitting, and the ratio of the major
axis to minor axis of the ellipse is equal to the ratio of the length to width
of the bounding box of the point group. The orientation of the major axis of
the new ellipse is determined by the principal axis of the group. Splitting the
hair macro takes place in a stress-descending order if multiple point groups
meet the splitting criterion. After splitting H at the largest average stress
point group, the stress inside H is recomputed. Splitting continues as long as
the splitting condition holds.

(a)

(b)

Fig. 5.9. A brush deforming when being pressed down continuously: (a) with no
splitting of hair; (b) with splitting
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5.4.2.4 Recovery from deformation

To simulate recovery from deformation, we model the material of the hair
macro as a kind of hybrid elastic-rigid material. According to studies in ma-
terial science [Cal99], the deformed hair macro will recover to a certain de-
gree, which ranges from full recovery in the case that the material is purely
flexible to no recovery at all if the material is completely rigid. In our compu-
tation model we determine the recovery extent based on the amount of inner
stress of the hair macro and the hair macro’s inherent threshold of elasticity
and threshold of rigidity. Using the estimated recovery extent as the weight,
we can then simulate the brush’s recovery by interpolating its original un-
deformed geometry and its current deformed geometry. The above process is
described in Eq. (5.10).

Hr ←
(
Hd × (1 − extent) + Hu × extent

)
,

extent =

⎧⎨⎩
1 Stress(Hd) < threela;
0 Stress(Hd) > threrig;
threrig−Stress(Hd)

threrig−threela otherwise.

(5.10)

Here Hr is the geometry that a hair macro will recover to; Hd is its de-
formed geometry before recovery; Hu is the hair macro’s initial (un-deformed)
geometry; extent is the recovery extent, which is determined by the current
inner stress, Stress(Hd), of Hd as well as the hair macro’s inherent thresholds
of elasticity, threela, and rigidity, threrig.

5.4.3 Calibrating the On-line Results

To ensure the accuracy of our simulation of the brush dynamics with respect
to a physical brush, we calibrate the fast on-line simulation results in the
second phase of the modeling. The procedure relies on data from a “simulation
error database”, whose records came from sampling using a real brush. Since
the deformation of our virtual brush’s geometry is according to the six degrees
of freedom (DOFs) of the input, the database is indexed by the differential of
the virtual brush’s six DOFs between two consecutive simulation time slices
and the current brush geometry. The content of each record in the database
is the corresponding transformation of the virtual brush’s current geometry.
Our brush deformation database operates at the level of a hair macro in our
three-level hierarchy. This reduces substantially the number of different cases
that need to be separately sampled and stored in the database. To further
reduce the size of the calibration database, we assume the effects that all the
six DOFs have on the brush geometry are independent. As a result, the whole
calibration database is divided into many small sections, each of which being
responsible for calibrating the part of the deformation caused by variation
of only one specific DOF. It turned out that a modest number of records
(40) is enough to perform a satisfactory calibration for improving the on-line
simulation results in our system.

Compared with traditional physically-based approaches to model the
brush dynamics through numerical computation, there are two important
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advantages of our on-line plus off-line modeling approach. First, we do not
have to model those extremely complicated physical processes of a brush’s
dynamics. Second, we can avoid the very time-consuming and probably un-
stable numerical computation for solving differential equations on the fly if
some truly powerful but complex equations can be established to model all
the underlying detailed dynamics governing the brush’s behavior.

More formally, since the deforming of a hair macro’s geometry is according
to the six DOFs of the input, the database is indexed by: 1) the differential
of the virtual brush system’s six DOFs between the current and the previous
simulated time slice, which is denoted as ∂D; 2) the current geometry of the
hair macro H � Modeling

(
K(t), S(t), L(t), θ(t)

)
[Eq. (5.2)]. The content of

each record in the database is the corresponding transformation T on H’s
current geometry, namely K(t), S(t), L(t), θ(t). When collecting records to
establish the calibration database, we choose the samples in such a way that
no two similar brush dynamic deformation processes are sampled and stored.

The above keywords to index the database have many dimensions. We
construct a manageable database by taking advantage of the inter-relationships
among the fields of the keywords. The product of L(t0) and S(t0) reflects the
area of the ellipse E(t0), and hence the number of hair strands in the hair
macro under a certain distensibility. If the hair macro will not split, S(t0) can
be computed from L(t0). Thus we can use four control points to represent
the geometry deformation on L(t) and four control points for K(t). We also
assume there is no inter-relationship between the dynamic deformations on
K(t) and L(t), i.e. changing either one of the two splines will not have any
direct effect on the other spline. This assumption comes from the observa-
tion that there is only a weak relationship between deformations on L(t) and
K(t) during a real brush’s deformation. As a result, the whole database can
be divided into two sub-databases: DL for calibrating the simulated dynamic
deformation on L(t), and DK for calibrating the simulated deformation on
K(t). For simplicity we ignore the possible but minute deformation on the
brush geometry introduced by the x, y displacement of the virtual brush.
So only four of the six DOFs will affect the brush’s geometry deformation
process. We also assume that the effects these four DOFs have on the brush
geometry are separable. Thus DL and DK are further divided into four sec-
tions, each of which is used to calibrate the error in the simulation of the
geometry’s dynamic deformation under the change of one DOF. For each of
the sections in DL and DK, the index words are of low dimensions: one
dimension for the varied DOF and the remaining dimensions for the control
points of L(t) in DL or K(t) in DK.

During database retrieval we find several records in the database whose
distances to the input index are within a certain threshold. The contents of
the retrieved records are interpolated using the distances between the indices
of the retrieved records and the input index as the weights. For database
retrieval, the distance between two splines is defined to be the sum of the
Euclidian distances of their corresponding four control points.

With the way we organize the database as described above, the database
in our prototype implementation contains a modest number of records (40).
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This number of records is already sufficient for performing a satisfactory
calibration to correct/improve the online simulation results.

5.5 E-painting System based on Realistic Virtual Brush

Modeling

We have built a complete working e-brush system based on the modeling
strategies just described. Compared with other virtual brushes, this new sys-
tem is designed to present a realistic brush in the sense that the system
accurately and stably simulates the complex painting functionality of a run-
ning brush, and therefore is capable of creating high-quality digital paintings
with minute aesthetic details that can rival the real artwork.

5.5.1 Additional Components of Our New Painting System

Other than brush modeling, the system has also incorporated a novel pig-
ment model and a user manipulability improving component. As these two
components are not the focus of this chapter, we will only give an overview
in the following.

5.5.1.1 A novel pigment model

During painting, the contour of the current ink mark left by virtual brush
on virtual paper can be computed by intersecting the geometrical models of
these two virtual objects. To produce a good texture for the ink mark, a
pigment model is required. A number of pigment models for digital painting
have been proposed [Sma91, Lee99, ZST+99, Coc91], but they are either
not well embedded into a 3D virtual paintbrush, or were developed earlier
and therefore could only produce some very coarse painting results. A recent
pigment model is contributed by [CAS+97]. It is however too slow to be
used in interactive painting because of the need to solve heavy differential
equations on the fly. Other pigment models that can be found in existent
virtual brush systems are too simplistic: they either simply transfer ink values
from the penetrating brush tip onto the ink mark area [CT02], or apply
alpha blending in the above ink transformation to simulate glazing effects
[BSLM01].

For our system, we devise a new pigment model that is best for expres-
sive Oriental painting. The prominent feature of this new pigment model is
that it is completely and seamlessly integrated into our realistic virtual brush
model: we store both the local ink color and the wetness at each control point
of the geometry model of our virtual brush. When generating the ink mark,
each point in the ink mark is painted using a color which is a linearly in-
terpolated result between the ink mark’s original color on the paper and the
color of the point on the brush surface contacting this ink mark. The inter-
polation weight is a random number, whose distribution is controlled by the
current inner stress of the hair macro, the local wetness around the painted
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pixel, as well as the quality parameters (explained in the next section) of the
virtual brush. This probability-based pigment model allows us to simulate
the dry brush effect, the running style effect and the ink saturation effect.
These are important aesthetic effects that can contribute significantly to the
expressiveness of the painting system.

5.5.1.2 User manipulability improving component

As with any real brush, it can happen that the user would feel unsatisfied
with their creations using the virtual brush. Instead of training the user, our
virtual brush system has the unique feature of training the brush. This is
done through an intelligent user manipulability improving component. This
component applies an additional transformation to the user’s input before
the system commits to the final painting result.

The idea behind the design of this component is as follows. Our virtual
brush carries with it a collection of beautiful strokes and the input for creating
these strokes. The user can choose among these “known” brush strokes not
for his/her own strokes, but use them as training samples. For each selected
sample, the user would then use our virtual brush to produce a stroke as
close to the sample as possible. The system then applies a numerical analysis
to compute a transformation from the user’s input to that of the sample
stroke. The derived transformation is the “personal habitual bias” of the
user. Later, when the user paints using our virtual brush, his/her input will
firstly go through the transformation of his personal habitual bias. Thus, it
is the transformed input rather than his original input that drives the virtual
brush to paint.

The system input used to paint one stroke by our virtual brush is essen-
tially a six-dimensional curve, where each dimension is the profile of one DOF
for the geometry of the virtual brush with respect to a certain time during
painting. This is denoted as D(t) = {D1(t), D2(t), D3(t), D4(t), D5(t), D6(t)}.
We also denote the standard input to create the brush stroke as I(t) =
{I1(t), I2(t), I3(t), I4(t), I5(t), I6(t)}. We then derive a third six-dimensional
curve to capture the user painting bias, i.e. B(t) = {B1(t), B2(t), · · · , B6(t)},
which comes from dividing the value of each point in I(t) against the corre-
sponding point in D(t), namely Bi(tj) � Ii(tj)/Di(tj) (i = 1, 2, · · · , 6) and tj
is one simulation time epoch. For Bi(t)’s we apply piecewise degree-3 Bézier
curve fitting. Suppose Bi(t) is fitted using n segments of a Bézier curve,
Fi(t) = {F 1

i (t), F 2
i (t), · · · , Fn

i (t)}. We also use the segmentation result to
segment the input profile of Di(t) into Di(t) = {D1

i (t), D
2
i (t), · · · , Dn

i (t)}.
A set of mapping relationships Mi can thus be collected, where Mi �
{(Dj

i (t), F
j
i (t))|j = 1, 2, · · · , n}, which is the extracted i-th component of

the user’s personal habitual bias.
Applying this extracted painting bias is simple. With a new user input

Dnew
i (t), we search the collected mapping relationships Mi to find the closest

matching record, say Dclose
i (t) with the complete mapping relationship pair

being (Dclose
i (t), F close

i (t)). Then, Dnew
i (t) is multiplied by F close

i (t) to achieve
the user painting bias correction. To better strengthen the functionality of
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this user manipulability improving component, we retrieve several closest
matching pairs and then use linear interpolation to derive the specific painting
correction pair by taking the discrete curve similarities of the first fields of
the retrieved pairs to Dnew

i (t) as the interpolation weights. The definition of
curve similarity is taken from [HOCS02].

5.5.2 The Running System

Figs. 5.10 (a to b) show two screen shots of the GUI of the running system. (a)
was taken when the user was customizing the geometry of the hair macro—
the skeleton as well as the profiles of the sweeping ellipse. (b) shows a painting
in the making, with some closeup views as (c to d).

Figs. 5.11 and 5.12 give two examples of e-paintings created using our
improved virtual brush system design, which are imitations of real paintings.
Although the simulation attends to many fine details, our virtual brush run-
ning on a PC with 256 M memory and an AMD Duron 1.2 GHz processor
can respond interactively to user commands. Currently, we use a WACOM
pen on a tablet to get the position, the pressure (used as the brush’s vertical
displacement), and the tilt of the virtual brush; and keyboard input to get
the remaining two DOFs. The rational behind using the vertical displacement
of the brush as the pressure term is because the more displacement a brush
experiences, the more inner pressure it will develop. A better input device in
the future should provide some degree of haptic feedback.

5.6 Related Work

5.6.1 Wong & Ip’s System

Wong and Ip’s system [WI00] simulates the painting functionality of a real
brush with granularity of a single hair thread. As a typical paintbrush can
have hundreds or thousands of hair strands, the responses of their system
tend to be too slow for interactive painting. Moreover, their system relies on
an intricate set of parameters to control the shape, density and opacity of
the brush’s ink mark, all of which need to be manually specified through user
interaction. Thus it is at best a semi-interactive system, and not natural to
use for the human artists. And the ink mark generated by their system is
always an elliptical blot.

In comparison, we use writing primitives instead of individual hair strands
to serve as the basic working units in the virtual hairy brush. In general, a
single primitive is probably enough for regular scripts, official scripts and
most running scripts and perhaps a dozen or so for cursive scripts. Hence
our software needs to handle only a small number of writing primitives most
of the time. As a result, our system operates comfortably in real-time mode
because of the hierarchical modeling of the paintbrush geometry and hard-
ware acceleration we employ. Our system is natural to use and is a genuine
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(a)

(b)

(c) (d)

Fig. 5.10. GUI of the running system: (a) the running system—user customizing
the virtual brush; (b) the running system—bamboos being painted; (c & d) closeup
views of (b)
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Fig. 5.11. “Spring garden” by the virtual brush

Fig. 5.12. “Summer water lily” by the virtual brush

interactive system in which the determination of both the painted stroke con-
tour and its texture is fully automatic. The ink mark rendered by our virtual
brush can be varied and of irregular shape, in order not to limit the creativity
of the artist.

5.6.2 The DAB System

The brush geometry model in the DAB system [BSLM01] can represent some
of the most common types of brushes typically used in oil painting, but not
all the possible types. Their system is weak in modeling the splitting of a
paintbrush. They use two separate models to model the brush geometry and
the brush dynamics: a particle system skeleton to simulate the basic brush
motion, and a deformable mesh to model the actual shape of the brush head
surface. Synchronizing the running of the two models is a non-trivial problem.
Their brush dynamics modeling is based on a pair of differential equations,
and to solve these equations involves some tradeoff between system stability,
computation efficiency and simulation accuracy.

In our system, the brush geometric model we use is very powerful, which
can capture literally almost all the possible brush geometries with little mem-
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ory consumption, and the rendering of the model is fast. Our brush’s geome-
try model dynamics model and the pigment model are designed to be closely
knitted together, and hence there is no synchronization problem between
these models. Because of the division of work into on-line and off-line com-
putations in modeling the brush’s dynamics, our system performs the simu-
lation accurately, operates stably, and requires a modest amount of system
resources.

5.6.3 Chu & Tai’s System

Chu and Tai [CT02] use an explicit geometrical modeling approach for the
un-split brush tip, which is mathematically equivalent to the clustered mod-
eling strategy as reported in one of our previous publications [XTLP02]. To
model the split brush, unlike our fully geometrically-based approach, they
use an alpha map. This results in an over-simplification which limits the ex-
pressiveness and the amount of fine details that the brush is able to produce.
For the brush dynamics, their modeling through brush energy minimization
can simulate small-scale deformation of the brush geometry but not large-
scale bending or stretching due to the restriction of constrained energy min-
imization. In fact, large-scale deformation of brush geometry is a frequent
phenomenon in watercolor painting and Oriental painting.

Chu and Tai’s system gives a somewhat awkward support for mimicking
the dry brush effect and simulating brush splitting. The alpha map is central
to their production of 2D expressive painting results. It is used to control
which parts of the brush tuft are dry, and to specify which parts of the brush
tip are split. Computing the alpha map automatically is challenging which
Chu and Tai did not attack. Loading a pre-stored alpha map from a texture
database will miss the power of user control on the texture of painted strokes.
The idea however was published more than ten years ago [HLW93, HL94] and
perfectly implemented in a commercial paint system [Cre]. The other possible
choice would be to rely on the user to control the alpha map for the desired
texture of the strokes to be painted. In any case, Chu and Tai’s system lacks
the needed support for the very important dry brush and brush splitting
effects that occur frequently in Oriental painting.

In comparison, our system offers an explicit modeling of the highly com-
plex paintbrush geometry to support creation of even the minutest details in
a generated e-painting. Our hybrid observational-model-calibration-database
modeling of the brush dynamics provides an accurate simulation of the paint-
brush in motion, which includes splitting, stretching, bending to any extent.
A variety of paintbrush effects are supported owing to the realistic modeling
of the virtual brush as well as the seamlessly embedded pigment model. As
a result no mandatory user interaction is required for generating aesthetic
textures for the painted strokes.
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5.7 Conclusion and Future Work

We have presented the design of a powerful painting system based on realistic
modeling of the paintbrush. The amount of details being modeled necessitates
the many time or space optimizations that we have introduced into the de-
sign. The result is a high degree of realism in every simulation step. Here is
a summary of the unique features of our modeling approach: 1) Clustered
and hierarchical modeling is used to minimize redundant representations and
computations, and together with hardware acceleration, the model is easily
renderable in real-time; 2) Division of the modeling into on-line tasks and
off-line calibration makes possible an accurate and stable simulation of the
brush’s motion using little computational resources; 3) Our virtual brush
can automatically determine both its geometric contour and the texture of
its ink mark on the virtual paper without any human intervention; 4) Other
features such as the pigment model and the user manipulability adaptation
component make the virtual brush system a powerful one and natural to use
for creating high-quality e-artwork.

There are still many interesting problems to be addressed on further en-
hancing the components in this virtual brush-based painting system design.
One of them is that of choosing the appropriate samples for the brush motion
calibration database that can enumerate all the possible motions a painting
brush could experience without repetitive sampling. For the currently em-
ployed pigment model, only water-soluble pigment is simulated. An obvious
future task would be to extend the model to cover oil painting and maybe
other kinds of painting by following Small’s [Sma91] and Cockshott’s [Coc91]
pioneering approaches. For the user manipulability improving component,
finding the features that distinguish good input leading to visually pleasing
brush strokes from bad input could help establish a mechanism to perform
auto-beautification.

Although we have gone after a detailed modeling of the paintbrush, a
real brush operates in a fashion that is orders of magnitude more complex
than what is currently simulated. Features that can be added in the future
versions include repeated dipping effects and more user’s control of the brush
during painting. Other features requiring longer-term effort include support
for 3D painting (such as oil painting), and vectorization of painting results.
The latter could lead to many interesting applications such as animation of
e-paintings.
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6

Pigment Component of an Advanced Virtual

Hairy Paintbrush System

6.1 Overview

In this chapter we propose a novel generic pigment model suitable for digital
painting in a wide range of genres including traditional Chinese painting and
water-based painting. The model embodies a simulation of the pigment-water
solution and its interaction with the brush and the paper at the level of pig-
ment particles; such a level of detail is needed for achieving highly intricate
effects by the artist. The simulation covers pigment diffusion and sorption
processes at the paper surface, and aspects of pigment particle deposition
on the paper. We follow rules and formulations from quantitative studies of
adsorption and diffusion processes in surface chemistry and the textile indus-
try. The result is a pigment model that spans a continuum from very wet to
very dry brush stroke effects. We also propose a new pigment mixing method
based on machine learning techniques to emulate pigment mixing in real life
as well as to support the creation of new artificial pigments. To experiment
with the proposed model, we embedded the model in a sophisticated digital
brush system. The combined system exhibits interactive speed on a modest
PC platform.

6.2 Introduction

A pigment model is a vitally important component of a digital painting sys-
tem. Traditional pigment models are mostly built on fluid dynamics or its
variations, which assume that pigment behavior is largely due to the au-
tonomous flow of the pigment-water solution. One can simulate such a model
based on the self-motion of water and pigment particles. Two representative
pieces of work in this category are the watercolor model in [CAS+97] and
the ink dispersion model in [CT05]. The former is based on the shallow wa-
ter model and the latter on the modified lattice Boltzmann equation. Both
consider the pigment-water solution’s flow being subjected to external forces,
resulting in very high-quality “wet brush” effects. For highly viscous pigment
solutions the model proposed in [BWL04], which traces pigment advection
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through 3D incompressible Stokes equations, can produce highly impressive
web brush effects. We find however that these existent models and other sim-
ilar ones have only limited ability to emulate the “dry brush stroke” which
is extremely important in both Western and Oriental painting. In this chap-
ter we propose a new physically-based pigment model which tries to capture
faithfully the behavior of the pigment-water solution over the continuum of
a very wet to a very dry state of a brush.

6.2.1 Main Ideas

Our new pigment behavior model can support both dry and wet painting ef-
fects or anything in between. One should note that pigment behavior consists
of much more than just the spontaneous flow of the solution. Our physically-
based simulation deals also with the adsorption and desorption processes of
the pigment-water solution as well as its diffusion process against the leaky
brush hair and the paper fibers. For simplicity, in this chapter we do not dif-
ferentiate between adsorption and desorption since one is the reverse process
of the other, and refer to either of them as a sorption process. This deviates
from traditional flow-based approaches [CAS+97, CT04, CT05] which focus
mainly on the pigment-water solution’s advection process. Our design makes
use of relevant results in surface chemistry engineering [AG97, McC01] and
the textile and petrochemical industries [McG74, Rut84]. According to sur-
face chemistry, unlike liquids, solid phase solutions cannot easily expand their
surface area to reduce free energy on the surface. Therefore, due to the high
surface tension, solid phase materials have a strong adsorption or desorption
tendency with any contacting external objects. So when the pigment-water
solution touches the paper surface, adsorption takes place and for any flow
that does happen the adsorption process is more significant than the flow-
ing/advection process. The variation in adsorption ability across different
areas of the paper caused by the non-uniform distribution of the paper fibers
is an important contributor to the character of the resultant painting. In a
nutshell, our approach is sorption and diffusion-based, which offers a closer
resemblance to the true physical state of a real brush than traditional flow-
based models over the continuum of wet to dry brush strokes.

To achieve greater realism, we carefully consider the coupling force and
mutual influence between different materials both within the pigment-water
solution and between the pigment-water solution and the paper fibers at
various stages of the simulation.

To achieve fast execution, we try to take advantage of known analytic
solutions applicable to our formulation. We are thus able to avoid much
discrete numerical simulation. Unlike many others who model the paper as a
number of layers, e.g. [BWL04], we classify all the particles in the pigment-
water solution as being in either the mobile state or the immobile state—that
is, only two layers (denoted by superscripts mo and im respectively). Thus
depending on the relative concentrations of pigment particles in the fixed
and mobile states respectively, a continuum from very wet to very dry layers
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can be concisely represented, as opposed to a fixed number of layers, during
algorithm design time.

Fig. 6.1 gives a high-level view of the overall pigment behavior simulation
procedure where, in step 1, transfer of the pigment-water solution occurs
between the brush and the paper’s contacting region during painting time,
and between the brush and palette’s contacting region during brush dipping
time. Table 6.1 lists the major symbols used in the technical discussion part
of this chapter.

proc MainLoop():
for each time step do:

1. Transfer pigment-water solution between contacting brush and paper
regions or palette region (Sect. 6.4)

2. Diffuse pigment-water solution on the paper surface (Sect. 6.5)
3. Diffuse pigment-water solution at the brush tip (Sect. 6.6)
4. Simulate water evaporation (Sect. 6.7)
5. Absorb pigment-water solution into paper fibers (Sect. 6.8)
6. Render current painting simulation result (Sect. 6.9)

end for
end proc

Fig. 6.1. Steps of pigment behavior simulation

6.2.2 Pigment Model and the Brush

Going hand in hand with the pigment behavior simulation is the brush model.
Strassmann [Str86] pioneered the research on the e-brush. A number of follow-
up models were later proposed—e.g. Wong and Ip’s model for Chinese callig-
raphy writing [WI00], Baxter et al.’s model for oil painting [BSLM01], and
Xu, et al.’s model [XLTP03] and Chu and Tai’s model [CT04] for Oriental
painting. Despite these efforts, the existent work offers only a loose coupling
between the brush model and the pigment model. In both [BSLM01, Bax04]
and [CT04]’s pigment models, the brush is used as a tool to deposit pigments
onto the paper. Other models are also quite simplistic on this particular issue.
We believe that the interaction between the pigment model and the brush is
highly intricate, and the intricacies should be carefully considered in order
to meet the demand for high expressiveness.

We adopt the brush model introduced in Chapter 5, which is physically-
based. To recap, in that model the geometry representation for a brush tip
bundle is created through the general sweeping operation in CAD by sweeping
a variable ellipse along the trajectory of the brush. The brush dynamics
are simulated through a two-staged process. In the first stage the skeleton
of the brush tip bundle is deformed according to both the external forces
exerted onto it and its collision with the canvas; in the second stage the
brush surface deforms following the deformation of the skeleton. The split of
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Table 6.1. Major symbols used in this chapter (ordered alphabetically)

(i) the i-th pigment, the 0-th and 1-st pigments are
reserved for pure water and glue respectively

(x, y) a position on the paper
(r, θ, z) a position on the brush tip bundle
t time

ρbru,t
r,θ,z (i) the i-th pigment concentration in the brush

ρmo,t
x,y (i) the concentration of the i-th pigment which is in

diffusing state on the paper surface
ρim,t

x,y (i) the concentration of the i-th pigment that
has been deposited into the paper fiber

vt
x,y the velocity of the brush

ηx,y density of the paper grid
P t

x,y current brush pressure
P t

max,x,y maximum brush pressure
T temperature, which is always set to be 300K
κd diffusion coefficient
κa adsorption coefficient
κl Langmuir coefficient
κo(i) opacity degree for the i-th pigment
κs,i self-diffusion coefficient for the i-th pigment
κc,i,j cross-diffusion coefficient

between the i-th and j-th pigments
C(i) RGB vector of the i-th pigment’s color
H(i) HSV vector of the i-th pigment’s color
αmo,t

x,y transparency degree of diffuse layer
αim,t

x,y transparency degree of deposit layer
Cwater,t

x,y RGB vector of water color
Cpaper,t

x,y RGB vector of paper color
Capp,t

x,y RGB vector of appearance color
ξ the number of pigments in reaction

the brush head is supported at the geometric model level and is caused by
an estimated internal tension force distribution inside the brush tip bundle.
This pressure term is very useful when integrating the brush model with
our pigment model as our proposed pigment behavior simulation needs to
carefully consider the pressure at the contact point between the brush and the
paper. Furthermore, having explicitly the geometry of the split brush bundle
(rather than some image-based shortcut) makes physically-based simulation
of the pigment behaviors on a split brush head possible and not too tricky
to implement.

6.2.3 Organization of the Chapter

Sect. 6.3 discusses related work. Sect. 6.4 explains the pigment-water solution
transfer between the brush and the paper surface. Sects. 6.5 and 6.6 discuss
pigment-water solution diffusion on the paper surface and at the brush tip
respectively. Sect. 6.7 explains how evaporation is handled. Sect. 6.8 covers
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how the pigment-water solution is deposited into the paper fibers. The ren-
dering process is presented in Sect. 6.9 which also presents a novel method for
pigment mixing. We present the experiment results in Sect. 6.11. Sect. 6.12
concludes the chapter and points out some directions for future work.

6.3 Previous Work

6.3.1 Pigment Behavior Models

Pham [Pha91] was the first to generate brush strokes having different shading,
scratchiness and spreading effects; it was done via a variable offset approxi-
mation of B-splines. Cockshott et al. [CPE92] suggested a “wet and sticky”
model for simulating textured shiny paint using bump mapping and illumina-
tion models. Both methods are not physically-based—they produce various
paintbrush effects without necessarily following the laws of physics. On the
other hand, Guo and Kunii [GK91] proposed a diffuse paint behavior model
based on analysis of the paper structure, which produces singularities in in-
tensity for the diffuse ink painting process. Since then appearance centric and
physically based methods represent two parallel threads in the development
of paint brush effects by computer. Kunii et al. [LNH95, KNV01] suggested
a phenomenological model for simulating the “initial zone–black border–gray
zone” distribution of intensities in diffuse ink painting. Their simulation is
based on highly simplified diffusion equations derived from observations of
the real painting process. Such a simplification was needed because of the
limited computing power available then. As a result, only blurry images can
be generated which lack any flow pattern. What is interesting is that their
method falls between purely physically-based and purely appearance centric
methods, which is still a useful reference today when designing efficient and
quality simulation models.

Benefitting from the abundance of computing power, recent research fa-
vored more physically-based simulation following first-principle physics laws.
On this track, Small [Sma91] pioneered computer simulation of watercolor
painting. Curtis et al. [CAS+97] then significantly advanced the watercolor
simulation technique using a shallow-water-based model; their method relies
on solving numerically shallow-water equations, which is too slow for inter-
active painting even with a powerful PC. Beside watercolor, Oriental ink-
based painting simulation also attracted much research. Lee’s [Lee01] was
the first paper where an ink model was used together with a brush model
[Lee97, Lee99] to mimic realistic black ink diffusion effects. Their extended
algorithm can produce very impressive effects [GK03] and can also be used
for calligraphy [Guo95]. Zhang et al. [ZST+99] proposed a simple cellular
automaton-based model for capturing black ink painting behavior in Sui-
bokuga painting, which they successfully applied to render painter-style 3D
trees. Yu et al. [YLLC03] expanded this approach to support more Oriental
painting styles using a local equilibrium model. Lin and Shih [LS04] simu-
lated Chinese color ink painting based on phenomenological rules for the ink
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diffusion process which they obtained by observation. Their painting can be
carried out on any simple device such as a tablet PC. Other than watercolor
and Oriental ink painting, oil painting simulation is another active field. A
representative work is that by Baxter et al. which produced impasto effects
for oil or acrylic painting [BWL04]. Other types of painting were simulated
include Rudolf et al.’s [RMN03] who studied the problem of wax crayon paint-
ing and obtained some very interesting results. But despite all that has been
done in the field, support for the dry brush stroke effect yet remains very
limited.

Along another line, Laerhoven et al. [LLR04, LR05] proposed a distributed
paper model where the paper is divided into a grid of subpapers for concur-
rent evaluation through remote parallel processes. In their model a procedural
texture creation technique based on the cellular texture basis function sug-
gested in [Wor96] was employed to enhance the realism of painting. They
also introduced textured tissues to remove pigments and water as a novel
interactive device for the artist [BLR06]. In general we feel applying par-
allel computing techniques in first principal physically-based simulation for
producing realistic paint effects is a promising area for more future work.
On the other hand it is also interesting to notice that Xu et al. [XXK+06]
proposed a single stroke appearance model for capturing stroke texture in
Chinese paintings using a parametric approach.

6.3.2 Comparison with Chu & Tai’s Work

Chu and Tai [CT05] proposed an ink dispersion model named Moxi for paint-
ing on absorbent paper based on modified Lattice Boltzmann Equations
(LBE). The model can produce realistic wet Oriental paintings. However,
LBE aren’t really well suited for simulating dry brush effects or brush paint-
ing effects generated by a rich variation of pigment and water concentration,
due to two of the method’s inherent theoretical limits: 1) A principal limi-
tation is “The LBE model was originally designed for situations where the
simulated fluid fills the whole domain, with small local deviation in velocity
and density (within 10 to 20 percent) from the mean. [CT05]” In Moxi the au-
thors understood the assumption “with small local deviation in velocity and
density (within 10 to 20 percent) from the mean”. They realized violating
such an assumption could lead to a negative density in certain positions and
made modifications to the original LBE accordingly. However, they paid no
attention to a characteristic of LBE for producing a motion field emphasiz-
ing too much in the mean behavior of the fluid, incurring a methodical basis
to generate an average motion lacking variations, which on many occasions,
aren’t wanted by artists in their painting practices, in particular when they
want to achieve brush painting effects demonstrating a strong contrast inside
the stroke region. 2) Another important limitation is that the LBE model
cannot be easily adopted to cope with free boundaries. A conventional situa-
tion would be to have a field fully permeated with fluid to start the simulation
(“...the simulated fluid fills the whole domain...”). Under that circumstance,
no effrot is needed to take care of the issue of free boundaries, which is of-
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ten not the case in reality. And it is realized that “devising a single-phase
free-boundary LBE model is, nevertheless, not straightforward. [CT05]” Un-
fortunately, when simulating dry brush painting we will constantly encounter
the free boundary where the wet and dry sites meet. We suspect this may be
a major reason why the results produced by Moxi don’t contain dry brush
effects.

To support dry brush painting, in a separate paper they published [CT04],
where they use an intensity image from real dry-brush prints and a dynamic
threshold to generate a dry map. Such a dry map directly controls the gener-
ation of dry brush stroke effects. Compared with Hsu and Lee’s pure image
based method [HL94], in which dry brush effects are produced by texture
mapping deformed predefined 2D strokes, Chu and Tai’s method is an im-
portant step forward on a physically-based approach for dry brush effects
simulation. Nevertheless, the quasi-physically-based nature of their method
brings them two sufferings that are common to non- or not-so-physically-
based approaches: 1) the impossibility to support any arbitrary dry brush
effect no matter how large the image library behind it is; 2) hence the dry
brush stroke thus produced may be different from what the user intends,
which leads to the unfaithful production of the brush stroke effects with re-
spect to the authentic user input, and a potential danger of violating the
user’s original art creation intention.

Finally, because there are separate mechanisms for dry brush strokes and
wet brush strokes, frequent switching between the two models is necessary
during painting and the generation of some in-between effects becomes diffi-
cult.

6.4 Pigment Sorption between the Brush and the Paper

Surface

When the brush touches the paper, transfer of the pigment-water solution
takes place, the direction of which depends on the pigment concentration on
either side, i.e. the brush surface in contact and the paper. This is a sorp-
tion process between the two media. We choose the Dubinin-Radushkevich
isotherm equation [Mis69] to model the process because it considers the in-
fluence of pressure:

Δρ = ρe−(
κGT

βE0
ln Pmax

P
)2 , (6.1)

where ρ is the pigment concentration in the source media; Δρ is the pig-
ment concentration to be sorbed in the process; κG is the gas constant, i.e.
8.314 J/(mol · K); T is the temperature, which is set to 300K, a typical room
temperature; β is the affinity coefficient characterizing the polarizability of
the adsorbate; E0 is the adsorption characteristic energy of the adsorbent,
which is mainly affected by the pore density in the adsorbent and assumed
to be proportional to the paper fiber density η; Pmax is a pressure response
coefficient for the pigment; and P is the local contacting pressure between
the brush and the paper. ln(Pmax/P ) is a term reflecting the impact of brush
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pressure on the pigment-water solution sorption process. Note that the equa-
tion describes an equilibrium state. Because such a sorption process usually
happens in a flash, for efficiency we adopt this equation but applied to it a
simple scaling (to be explained at the end of this section), rather than to
work out a series of intermediate results over some fine time steps.

Put Eq. (6.1) into the context of our simulation, we have:⎧⎨⎩Δρmo,t
x,y (i) = γt

x,y(i)ρbru,t
x,y (i)e

−(
κGT

β(i)E0
ln Pmax

P t
x,y

)2

if ρbru,t
x,y (i) > ρmo,t

x,y (i);

Δρbru,t
x,y (i) = γt

x,y(i)ρ
mo,t
x,y (i)e

−(
κGT

β(i)E0
ln Pmax

P t
x,y

)2

otherwise.
(6.2)

Here P t
x,y is the contacting pressure between the brush and the paper

surface at the location of the paper site (x, y) at time t; ρmo,t
x,y (i) is the con-

centration of the i-th pigment which is in mobile state at site (x, y) of the
paper at time t and ρbru,t

x,y (i) is the i-th pigment concentration on the brush
surface which contacts the paper site (x, y) at time t. γt

x,y(i) is a randomiza-
tion term which is defined as:{

Prob[γt
x,y(i) = 1] = min{1, κbru|ρbru,t

x,y (i) − ρmo,t
x,y (i)|ηx,y}

Prob[γt
x,y(i) = 0] = 1 − min{1, κbru|ρbru,t

x,y (i) − ρmo,t
x,y (i)|ηx,y} , (6.3)

in which ηx,y is the local paper fiber density and κbru is a scaling coefficient
to produce a suitable match between the magnitude of |ρbru,t

x,y (i) − ρmo,t
x,y (i)|

and ηx,y. The reason for introducing a randomization term in the above
equation is that such an equation is used to describe the macro behavior of
the sorption process; however, here we are doing per pixel location particle
behavior simulation on a micro scale; thus adding some random deviation
would make the simulation resemble more the real situation.

We also employ the following equation suggested in [Tie94] for the con-
servation of the pigment mass in the sorption process:

|vbru,t
x,y |Δρbru,t

x,y (i) + ηx,yΔρmo,t
x,y (i) = 0, (6.4)

where vbru,t
x,y denotes the local velocity of the brush at time t; this is an input

from the hosting e-brush system for the pigment model. Recall ηx,y is the
paper fiber density at the site (x, y).

To prevent oscillation during the simulated sorption process, we derive
the limit on the amount of pigment transferable in the process:

|Δρbru,t
x,y (i)| + |Δρmo,t

x,y (i)| = |ρbru,t
x,y (i) − ρmo,t

x,y (i)|. (6.5)

Without loss of generality, we assume ρbru,t
x,y (i) > ρmo,t

x,y (i). Solving the pair

of Eqs. (6.4) and (6.5) gives the upper bound for Δρmo,t
x,y (i):

|ρbru,t
x,y (i)−ρmo,t

x,y (i)|
ηx,y/|vbru,t

x,y |+1
.

Incorporating this bound, we can modify Eq. (6.2) to be:

Δ̃ρmo,t
x,y (i) = min{Δρmo,t

x,y (i),
|ρbru,t

x,y (i) − ρmo,t
x,y (i)|

ηx,y/|vbru,t
x,y | + 1

}. (6.6)
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We also consider the mutual influence between multiple pigments in the
sorption process, i.e.:

˜̃
Δρmo,t

x,y (i) = κmutualΔ̃ρmo,t
x,y (i) + (1 − κmutual)

Pξ

j=1,j �=i
eΔρmo,t

x,y (j)

ξ−1
. (6.7)

Here κmutual is a correlation coefficient depicting the mutual influence
between the sorption of different pigments in the pigment-water solution, and

ξ is the number of pigment species, including water and glue. Once
˜̃
Δρmo,t

x,y (i)

is known, we can also update ρbru,t+Δt
x,y (i) with the relationship revealed by

Eq. (6.4), i.e.:

ρbru,t+Δt
x,y (i) = ρbru,t

x,y (i) − ηx,y

|vbru,t
x,y |

˜̃
Δρmo,t

x,y (i).

For the case of ρbru,t
x,y (i) < ρmo,t

x,y (i), a similar treatment is applied. The

only difference is that we derive Δ̃ρbru,t
x,y (i),

˜̃
Δρbru,t

x,y (i) instead of Δ̃ρmo,t
x,y (i),˜̃

Δρmo,t
x,y (i) through a variant of Eqs. (6.6) and (6.7).

Finally, we apply a simplifying treatment to scale the amount of sorbed

concentration
˜̃
Δρ to account for the sorption time. We model the sorption

speed, vsorption(t), as an exponentially decreasing variable, which is true of
most natural sorption processes; i.e. vsorption(t) = κve

−t where κv is a sorp-
tion speed parameter. We also denote the period of time needed to reach

the equilibrium state as χ. That is, it is assumed
∫ χ

t=0 vsorption(t) dt =
˜̃
Δρ,

from which we can get the relationship
˜̃̃
Δρ(t) = min{ 1−e−t

1−e−χ , 1} ˜̃Δρ. Since
our simulation time step is Δt, substituting the corresponding variables into

the equation, we have ρmo,t+Δt
x,y (i) = ρmo,t

x,y (i) +
˜̃̃
Δρmo,t

x,y (i) where
˜̃̃
Δρmo,t

x,y (i) =

min{ 1−e−Δt

1−e−χ , 1} ˜̃Δρmo,t
x,y (i).

6.5 Pigment Diffusion on the Paper Surface

To simulate pigment behavior on the surface of a porous paper, we assume
a diffusion process. We choose the following advection diffusion equation
[SW04] since it considers pigment advection in the midst of diffusion, and
is thus capable of supporting both dry and wet brushing.

∂ρ

∂t
= κd∇2ρ − v · ∇ρ, (6.8)

where ρ is the pigment concentration in the adsorbate solution, κd is the
diffusion coefficient, and v is the external advection field in which the diffusion
takes place.

Inspired by Kallmes and Corte’s pioneering work on modeling the paper
as a random fiber network [KC60, Ran82], we carefully treat the underlying
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non-uniform paper fiber structure and introduce anisotropy in the diffusion
process. Eq. (6.8) is thus extended to be:⎧⎪⎨⎪⎩

∂ρ
∂t = κx

d,x,y
∂2ρ
∂x2 + κy

d,x,y
∂2ρ
∂y2 − v · ∇ρ (6.9.1),

κx
d,x,y =

∑nfiber(x,y)
i=1

(
κd,i cos(ϕx,y,i)

)
(6.9.2),

κy
d,x,y =

∑nfiber(x,y)
i=1

(
κd,i sin(ϕx,y,i)

)
(6.9.3),

(6.9)

where κx
d,x,y and κy

d,x,y are the x and y dimensional diffusion coefficients
respectively at paper position (x, y); ϕx,y,i is the i-th principal direction of
the local paper fiber at site (x, y), which is initialized at the beginning of
our simulation through the method suggested in [GK91, Lee01], and κd,i is
the associated diffusion coefficient for the direction. At each paper site (x, y),
there may be multiple principal diffusion angles, which are determined by
the number of fibers passing through the paper site, nfiber(x, y).

For high fidelity, we employ variable diffusion coefficients in our simula-
tion. In addition to the influence from the underlying fiber structure on the
diffusion coefficient, as is done via Eqs. (6.9.2) and (6.9.3), for i � 2, the i-th
pigment’s diffusion coefficient κt

d,i,x,y at paper site (x, y) also depends on the

concentration of water, ρmo,t
x,y (0), the concentration of glue, ρmo,t

x,y (1), as well
as the local paper fiber density ηx,y. The media of diffusion described here is
initialized according to the micro-structures of a real scanned paper at the
beginning of the simulation. Thus, we refine Eqs. (6.9.2) and (6.9.3) to be:⎧⎪⎪⎨⎪⎪⎩

Δκt
d,i,x,y = κd,water

ρmo,t
x,y (0)

ρmo,t
x,y (i)

− κd,glue
ρmo,t

x,y (1)

ρmo,t
x,y (i)

+ κd,denηx,y

κx
d,i,x,y = Δκt

d,i,x,y +
∑nfiber(x,y)

i=1

(
κd,i cos(ϕx,y,i)

)
κy

d,i,x,y = Δκt
d,i,x,y +

∑nfiber(x,y)
i=1

(
κd,i sin(ϕx,y,i)

) , (6.10)

where κd,water, κd,glue and κd,den are the diffusion influence coefficients of
water, glue and fiber density respectively.

We also notice in the diffusion process that multiple pigments compete
with one another, which is the so-called “cross diffusion phenomenon” in sur-
face chemistry. The Lotla-Volterra competition model [LMP06] is a standard
mathematical treatment for the cross diffusion process with two participat-
ing diffusing substances in a 1D domain. In our problem, however, the paper
is modeled as a 2D plane. We extend their model to the 2D domain with
multiple competing pigments:

∂ρ(i)
∂t = κs,i∇2ρ(i) +

∑ξ
j �=i κc,i,j∇2ρ(j) (i = 0, · · · , n), (6.11)

where ρ(i) is the concentration of the i-th pigment, κs,i � 0 is the self-
diffusivity of the i-th pigment, κc,i,j is the cross-diffusivity between the i-
th and the j-th pigment species, and n is the number of pigment species
participating in the process. In our design the 0-th pigment is water and the
1-st pigment is glue.

In our context ρ actually refers to ρmo,t
x,y (i). Combining the advection dif-

fusion Eq. (6.8) with the above extended cross-diffusion Eq. (6.11) gives the
final form of the equation to be used in our simulation:
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∂ρmo,t
x,y (i)

∂t = κd,i,x,y∇2ρmo,t
x,y (i) +

∑ξ
j �=i κc,i,j∇2ρmo,t

x,y (j)

−vt
x,y · ∇ρmo,t

x,y (i) (i = 0, · · · , n)
, (6.12)

where κd,i,x,y is the diffusion coefficient at paper position (x, y) for the i-th
pigment, vt

x,y denotes the velocity field imposed by the external conditions,
which here is estimated to be half of the velocity of the brush movement, as
suggested by [BWL04]. Notice that since κs,i and κd,i,x,y are acting on the
term ∇2ρ in Eq. (6.8) and Eq. (6.11) respectively, for simplicity we absorb κs,i

into κd,i,x,y during the above combined operation. Once
∂ρmo,t

x,y (i)

∂t is known,
ρmo,t+Δt

x,y (i) can be trivially updated as:

ρmo,t+Δt
x,y (i) = ρmo,t

x,y (i) +
∂ρmo,t

x,y (i)

∂t Δt.

6.6 Pigment Diffusion at the Brush Tip

Pigment diffusion at the brush tip includes the diffusion both inside the
brush tip’s volume and on its surface. When an exchange of pigment between
the brush and the paper as described in Sect. 6.4 happens, the new pigment
concentration needs to be propagated to other parts of the brush tip. This
is most necessary when the local brush tip runs out of pigment and needs
the supply from its surroundings during dry painting, and similarly when
the brush is dipped into the ink bottle or pigment palette. Simulation of
pigment diffusion inside the brush tip volume is discussed in a later part of
this section; simulation of pigment diffusion on the brush surface is given
the same treatment as explained in Sect. 6.5 except that 1) we first flatten
the brush surface to a 2D plane before the simulation; and 2) the advection
term in Eq. (6.12) is omitted as we assume there is no advection on the brush
surface because of the strong surface tension force.

The classical Fick’s second law of diffusion [Fic55] in terms of the cylin-
drical coordinates r, θ, z can be expressed as:

∂ρr,θ,z

∂t
=

1

r

( ∂

∂r
(rκd

∂ρr,θ,z

∂r
) +

∂

∂θ
(
κd

r

∂ρr,θ,z

∂θ
) +

∂

∂z
(rκd

∂ρr,θ,z

∂z
)
)
, (6.13)

where ρr,θ,z is the pigment concentration in position (r, θ, z) of the brush
tip and κd is the diffusion coefficient. The reason for expressing the diffusion
equation in the cylindrical coordinate system is two-fold: 1) for certain types
of diffusion for a cylinder or a sphere, people have derived analytic solutions
[Cra75], which can be used to improve the simulation efficiency and accuracy;
2) in the brush model we adopt [XLTP03], hair bundles are represented as
generalized cylinders, and so diffusion inside a cylinder is the closest form of
a sample problem to our simulation task, which has an analytic solution.

In the case where the diffusion takes place in a cylinder of radius R with
the diffusion conditions being ρ(r) = f(r), 0 < r < R, t = 0; ρ(r) = ρ0, r =
R, t � 0, its analytic solution can be found in [Cra75], as follows:
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ρ(r) = ρ0{1 − 2
R

∑∞
n=1

1
αn

J0(rαn)
J1(Rαn)e

−κdα2
nt}+

2
R2

∑∞
n=1 e−κdα2

nt J0(rαn)
J2
1(Rαn)

∫ R

0
rf(r)J0(rαn)dr,

(6.14)

where J0(x) is the Bessel function of the first kind of order zero; J1(x) is the
Bessel function of the first order; the αn’s are the positive roots of J0(Rαn) =
0; f(r) is the initial distribution, and ρ0 is a constant diffusion source. For
greater efficiency we pre-compute a range of αn’s and store them in a table.

Similar to Eq. (6.10) when we simulate pigment diffusion on the paper
surface we also adopt a variable diffusion coefficient κt

d,i,r,θ,z:

κt
d,i,r,θ,z = κ′d,i + κd, water

ρmo,t
x,y (0)

ρmo,t
x,y (i)

− κd, glue
ρmo,t

x,y (1)

ρmo,t
x,y (i)

+ κd, denηr,θ,z, ,(6.15)

where κ′d,i is the intrinsic diffusion coefficient of the i-th pigment, and ηr,θ,z

is the hair density at position (r, θ, z) inside the brush tip volume, the value
of which is provided by the e-brush model [XLTP03]. The higher the density
is, the more hair strands are concentrated at that location, which intensifies
the diffusion. The remaining parameters have the same meanings as in Eq.
(6.10).

Note that the three boundary conditions in the above sample problem
appear differently in our problem: 1) the shape of a brush cluster in our model
is a generalized cylinder, not a standard cylinder having constant radius R; 2)
during the diffusion process, the external concentration does not necessarily
remain at a constant level of ρ0; 3) the initial distribution could be different
for points with the same r coordinate. To account for these differences we
modify the solution form of Eq. (6.14) by performing several interpolation
and random sampling operations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρbru,t+Δt
r,θ,z (i) =

P
(er,eθ,ez)∈ball(r,θ,z)

(
eρbru,t+Δt

er,eθ,ez (i)ω(er,eθ,ez)
)

P
(er,eθ,ez)∈ball(r,θ,z)

ω(er,eθ,ez)
. (6.16.1)

ρ̃bru,t+Δt
r,θ,z (i) =

P7
y=0

(
ρbru,t

R(z), π
4

y+φ,z
(i)A(r,θ,z)ω(r,θ, π

4 y+φ,z)
)

P
7
y=0 ω(r,θ, π

4 y+φ,z)
. (6.16.2)

A(r, θ, z) =
(
1 − 2

R(z)

∑∞
n=1

1
αn

J0(rαn)
J1(R(z)αn)e

−κt
d,i,r,θ,zα2

nt
)
+

2
R2(z)

∑∞
n=1 e−κt

d,i,r,θ,zα2
nt J0(rαn)

J2
1(R(z)αn)

∫ R(z)

0 rρbru,t
r,θ,z (i)J0(rαn)dr.(6.16.3)

(6.16)
Here ball(r, θ, z) is the set of points inside the brush tip volume, which are
within a certain distance of (r, θ, z); φ is a randomly generated phase angle;
R(z) is the radius of the generalized cylinder at the height of z; ω(r, θ, m, z) is
a weight inversely proportional to the Cartesian distance between the points
(r, θ, z) and

(
R(z), m, z

)
; ρbru,t

r,θ,z (i) is the initial concentration of the i-th pig-
ment at site (r, θ, z) before the current step of diffusion.

To understand why Eq. (6.16) can be used to adapt the above three dif-
ferences from the standard problem, we note that Eq. (6.16.3) gives the rate
of ρ(r)/ρ0, which takes the same form as Eq. (6.14), except that Eq. (6.16.3)
additionally considers the varying diffusion coefficient κ, the varying radius
R(z) at different heights z of the clustered brush hair, as well as the differ-
ence in density between different positions in the cluster. These modifications
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are for the first and the third differences listed above. Based on Eq. (6.16.3),
Eq. (6.16.2) performs a random sampling followed by scaling to account for
the different external pigment density ρ0, the second difference above. Fi-
nally, Eq. (6.16.1) computes a weighted average to simulate the correlation
between adjacent points in the brush volume, which accounts for the second
and third differences above.

6.7 Evaporation

We consider evaporation at the brush tip and on the paper surface. For
simplicity and efficiency concerns, we only deal with the water (the 0-th
pigment) evaporation process.

6.7.1 At the Brush Tip Bundle

We adopt the diffusion-based evaporation equation suggested in [Cra75]
which considers both evaporation and the propagation of the evaporation
results to the surroundings:

−κe

∂ρbru,t
r,θ,z (0)

∂r
= εbru

(
ρequi(0) − ρbru,t

r,θ,z (0)
)
, (6.17)

where ρequi(0) is the current water concentration in the atmosphere, i.e. the

equilibrium vapor pressure; and ρbru,t
r,θ,z (0) is the actual water concentration;

κe is an evaporation coefficient; εbru is a user adjustable scaling constant.
Fortunately, [New31] gives the analytic solution for Eq. (6.17), which is:

ρbru,t+Δt

r,θ,z
(0)−ρbru,t

r,θ,z
(0)

ρequi(0)−ρbru,t

r,θ,z
(0)

= 1 −∑∞
n=1

2LJ0(rβn/εbru)
(β2

n+L2)J0(βn) e
−β2

nκet/ε2bru , (6.18)

where βn’s are the roots of βJ1(β)−LJ0(β) = 0 and L = εbru/κe. Again, for
speed, we store the pre-computed βn’s for a range of equations in the above
form in a table.

6.7.2 On the Paper Surface

We employ a slightly different diffusion-based evaporation Eq. (6.19) to han-
dle evaporation on the paper surface since pigment concentrations at different
depths of the paper differ insignificantly; we ignore these differences in our
simulation.

−κe

∂ρmo,t
x,y (0)

∂t
= εpaper

(
ρequi(0) − ρmo,t

x,y (0)
)
, (6.19)

where εpaper is a user adjustable scaling constant. Note that as mentioned
earlier, unlike in [BWL04] where the paper is modeled as a number of layers,
we only classify all the particles in the pigment-water solution as either in a
mobile state or in an immobile state. According to this equation, at the end
of each time step we update ρmo,t

x,y (0) numerically.
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6.8 Pigment Deposition on the Paper Fibers

During the process of pigment diffusion, pigment particles whose velocity is
relatively low tend to be captured by and thus fixed to those paper fibers
having a high surface free energy [Mas96]. In chemical engineering this is the
phenomenon of a typical adsorption process [Rut84, Suz90]. Similar to the
process described by the Dubinin-Radushkevich isotherm equation, see Eq.
(6.1), the intermediate adsorption process progresses towards the equilibrium
state rather rapidly [Tie94]. Thus we model the above rapid adsorption pro-
cess via the Langmuir isotherm equation [Lan08], an equation to describe the
equilibrium state of a system:

Δρ(i) =
κl,i ρ(i)

1+
Pξ

j=1 κl,j ρ(j)
, (6.20)

where ξ is the number of participating species of adsorbates; ρ(i) and Δρ(i)
are the concentration of the i-th adsorbate in the solution phase and that
of the adsorbed adsorbate in the adsorbent phase respectively; κl,i is the
Langmuir constant for the i-th adsorbate. As pointed out in [Yan03], κl,i can
be estimated as:

κl,i �
κbehavior,iκ

paper
behavior

2πρ(i)T
√

ηx,y
eκt/T ,

where κt is a thermodynamics coefficient, ηx,y is the local density of the
paper fiber, and κpaper

behavior, κbehavior,i are the adsorption behavior coefficients
of the paper and the i-th pigment respectively. κpaper

behavior is determined by
the smoothness of the paper surface, the size and distribution of the micro-
scale pores formed by neighboring paper fibers; κbehavior,i is affected by the
adsorption ability of the i-th pigment, e.g. its material polarity. Since the
factor 1

2πT eκt/T remains constant, we absorb the term into κpaper
behavior, giving

the simplified form of

κl,i �
κbehavior,iκ

paper
behavior

ρ(i)
√

ηx,y
.

Because the deposition process is caused by the random walk of diffusing
substance particles [Cra75, Rut84], we further modulate κl,i with a random
walk coefficient κranwk, which is a random number from a user adjustable
random distribution.

Similar to the treatment where we employ the Dubinin-Radushkevich
equation in Sect. 6.4, we perform the same simplifying scaling conversion
to derive the intermediate results of the sorption process. Substituting the
corresponding variables in our context into Eq. (6.20), we have the final form
of the equation for our simulation:

Δρim,t
x,y (i) = min(

1 − eΔt

1 − e−χ
, 1)

κranwkκbehavior,iκ
paper
behavior

ρim,t
x,y (i)

√
ηx,y

ρmo,t
x,y (i)

1 +
∑ξ

j=1

(κranwkκbehavior,jκpaper
behavior

ρim,t
x,y (j)

√
ηx,y

ρmo,t
x,y (j)

) .

(6.21)
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where ρim,t
x,y (i) is the concentration of the portion of the i-th pigment in an

immobile state at paper site (x, y) at time t; and χ is the time span to arrive
at the equilibrium state.

To ensure the conservation of pigment mass during the deposition process,
we additionally employ a mass transfer conservation formula [Tie94]:

|vt
x,y|Δρmo,t

x,y (i) + ηx,yΔρim,t
x,y (i) = 0, (6.22)

according to which we can update ρmo,t+Δt
x,y (i) as

ρmo,t+Δt
x,y (i) = ρmo,t

x,y (i) − (ηx,y/|vt
x,y|)Δρim,t

x,y (i).

.

6.9 Rendering the Simulation Results

The result of the simulation is a collection of pigment concentrations: ρim,t
x,y (i)

and ρmo,t
x,y (i) (i = 1, · · · , ξ) for each paper site (x, y). To render the painting,

we need to solve two problems: 1) to derive the overall appearance of the
mobile layer and that of the fixture (immobile) layer, each containing a num-
ber of pigment constituents; 2) to superimpose these two layers on top of the
background paper layer. To address the first problem and to achieve high fi-
delity we propose a new machine learning approach for pigment mixing, which
will be detailed shortly; the second problem is solved via the Kubelka-Munk
model (KM model) [Kub48] with inspiration from [CAS+97].

6.9.1 Pigment Mixing with High Fidelity

Among the popular models for pigment mixing, such as average mixing, ad-
ditive or subtractive mixing, and the KM model, the KM model is the most
superior from an accuracy standpoint, as suggested by Haase and Meyer
[HM92]. However, even with the KM model, simulation of pigment mixing
behavior still fails to agree completely with real behavior. Baxter et al. re-
ported in [BWL04] that using 101 samples, each corresponding to a wave-
length, pigment mixing through the KM model still deviated markedly from
reality. We propose a novel kernel method-assisted neural network approach
for pigment mixing.

6.9.1.1 Acquisition of training samples

In the preprocessing stage, we collect a number of pigment mixing samples
for training our pigment mixing prediction network. We rely on three ways to
collect training samples: one through physical measurement and the other two
based on interactive user inputs. In the physical measurement method we use
the desktop reflective spectrophotometer X-RiteColor� Digital Swatchbook�

[X-R06] to measure the reflectance of pigments. We measure the reflectance of
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both pure pigments before mixing and that of the resultant pigment mixture
for the training samples. For each measurement we put the sample against
a background material whose reflectance is known. We measure the overall
reflectance of the two superimposing layers. According to the layer compo-
sition Eq.(6.23), we have two unknowns, namely R and T of the pigment.
Thus two measurements are enough to solve R and T . For robustness we
carry out five measurements for five different background materials and use a
least squares approach to determine the optimal R and T . According to the
KM model, once R is known, we can compute K/S through a function of R,
i.e. K/S = (1 − R)2/(2R) [Kub48]. We then assume a value for S so that K
is also known.

Obtaining a comprehensive set of pigment mixing samples and the pig-
ments’ relative concentrations is not easy practically. These samples are im-
portant for our neural network in order to do pigment mixing predication.
Instead of turning to expensive physi-chemical equipment for the needed mea-
surements, we suggest a handy computational approach, which is based on
the KM model and the K, S, R values we estimated above.

One technical detail that is important for reproducing our experiment
results is how to determine the relative pigment concentration when mix-
ing multiple pigments. In our current experiments we only study the case of
mixing two pigments. The relative concentration data are also needed for in-
troducing the kernel functions into our neural network to boost the learning
capability: 1) For the first kernel function, ψ1, which is based on the KM
model, the relative pigment concentration is useful to compute the overall
pigment mixture’s K and S values; 2) for the second and third kernel func-
tions, ψ2 and ψ3, which essentially predict pigment mixing through additive
composition, the relative concentrations are useful to determine the interpo-
lation weights. To collect training samples, given the constituent pigments’
relative concentrations, one could paint a number of overlapping stroke pairs,
where each stroke is painted using one pigment. Even though it is feasible to
paint a single stroke with a constant concentration throughout, it is difficult
to paint both overlapping strokes in more or less the same concentration.
This makes the procedure impractical. To overcome the problem, we utilize
the K,S values of each pigment, which are acquired according to the methods
introduced in Sect. 6.9.1.1. According to the KM model, given the R, G, B
values of a pigment, its associated K, S values, and the thickness of the
pigment layer d, there exist the following relationships:

b =
√

(K/S)(K/S + 2), R = [1 + K/S + bcoth(bSd)]−1,

where R is the reflectance of the pigment, which can be estimated according
to the R, G, B values for a natural white incoming light. Notice there is one
free variable, d, and six constraining equations above as for each of the R, G, B
light, it is associated with certain K, S, R values. We find the optimal value
for d so that these equations are best satisfied in the least squared sense. For
each of the mixing pigments, we estimate their relative concentration to be
the ratio between their layer thicknesses.
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To support customizing new pigments by the user, we provide two inter-
active method for the user to specify the reflectance of a pure pigment species
and the reflectance after it is mixed with another pigment. This straightfor-
ward method is to allow the user to directly give the wavelength-dependent R
and T values of the pigment, and then the system for following the same rou-
tine above to determine K and S. Since reflectance is somehow non-intuitive
for normal users, our system also allows the user to interactively specify
the K and S coefficients using the method suggested in [CAS+97]. With K
and S known, the reflectance, R, of the pigment or pigment mixture and its
transmittance, T , can both be analytically computed [CAS+97].

6.9.1.2 Kernel functions

Kernel methods are popular in machine learning because they can increase
the learnability of many models [CS02]. To enhance the learning ability of
our pigment mixing prediction network, we employ three kernel functions:
ψ1, which is based on the KM model, and ψ2 and ψ3, which are based on
average mixing.

With the KM model and the K and S coefficients known for each pigment
constituent, the overall pigment mixture’s coefficients, Kmix and Smix, are
computed as the weighted average of each pigment component’s K and S
coefficients using the pigment’s relative concentration as the weight. With
Kmix and Smix, the overall reflectance Rmix and transmittance Tmix of the
layer can be computed [Kub48, CAS+97]. Rmix and Tmix will be used as the
input to our neural network and also for superimposing the layers.

For the kernel function of average mixing, the overall appearance of a
pigment mixture can be simply derived through weighted average, i.e.:

Cmix,t
x,y =

Pξ
i=1 ρt

x,y(i)Cx,y(i)Pξ
i=1 ρt

x,y(i)
.

Here Cx,y(i) is determined according to the input reflectance of the i-th
pigment whose acquisition has been discussed in Sect. 6.9.1.1.

We also conduct interpolation in the HSV color space since it captures
some non-linear relationship between colors and could give us a very different
prediction of pigment mixing than operations in a linear space; the prediction
could serve as a good clue for our neural network. We use H(·) to denote the
transformation from the RGB space to the HSV space and H−1(·) for the
inverse transformation. Thus, our interpolation can be expressed as:

Cmix,t
x,y = H−1(

Pξ
i=1 ρt

x,y(i)H
(
Cx,y(i)

)
Pξ

i=1 ρt
x,y(i)

).

.
In this work we always use a particular yellow-white light source, which

is widely used in Oriental art exhibitions and many museums. Under this
condition we perform the above pigment mixing in the color space, and given
the predicted color after pigment mixing, Cmix,t

x,y , we can inversely compute
the reflectance Rmix of the overall pigment mixture. Unfortunately we do not
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have a handy way to estimate Tmix for these two average mixing methods.
As can be seen in Fig. 6.2, only the first kernel function gives an intermediate
estimated T value to help the learning process of the neural network.

Fig. 6.2. Pigment mixing prediction neural network

6.9.1.3 Neural network for pigment mixing prediction

Our neural network takes as input the concentrations of the two pigment
components to be mixed, ρ1, ρ2, their absorption and scattering coefficients,
K1, K2, S1, S2, as well as their reflectances and transmittances R1, R2, T1, T2,
whose estimations have been discussed in Sect. 6.9.1.2. Strictly speaking,
these quantities are all wavelength-dependent. For simplicity we only consider
three typical wavelengths—those of pure red, green and blue light. Thus each
of K1, K2, S1, S2, R1, R2, T1, T2 is a vector carrying three scalar components.
For each pair of pigments to be mixed, we designate a dedicated neural net-
work for pigment mixing prediction. This is because some pigments made
from different chemical compounds may carry the same color yet behave dif-
ferently during pigment mixing. This also enables the user to freely customize
a pigment which may not be present in the physical world. We feed the out-
puts of the three kernel functions, ψ1, ψ2, ψ3, as the additional inputs to
the neural network. The output of the neural network is the reflectance of
the pigment mixture Rmix

o , T mix
o . In the prediction network, we introduce two
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hidden layers with full connections to all the intermediate, input and output
nodes.

The schema of our neural network approach for pigment mixing prediction
is shown in Fig. 6.2. We use the resilient back propagation technique [Hay01]
to train our multi-layer neural network at the preprocessing stage. Each neu-
ron in the network takes a linear function as its associated transfer function.
The performance function used when training the network is the mean square
error measure. The total sample space contains 1,377 two-component pigment
mixture instances over every pair of the 18 kinds of pure pigments, and each
pair has three different concentrations. To prevent overtraining the learning
network, we employ the early stopping technique [HK06]. In each run of the
early stopping, we randomly pick 90% of the samples for the training set,
and the remaining 10% go to the validation set. We then make the neural
network go through 350,000 iterations for training, which takes about 4.5
hours to complete on a desktop computer (Pentium IV with 3.0 GHz CPU).
During each run, the neural network converges very rapidly in the first 50,000
iterations. For now we use a fixed learning rate throughout the learning pro-
cess. We expect, when employing a new mechanism that supports an adaptive
learning rate, the total number of learning iterations could be significantly
reduced. Finishing the whole 10 runs of the early stopping training process
takes about two days.

Our neural network based approach can capture the possible chemical
reactions, the mutual influences between pigments and other factors not con-
sidered in the KM model or the average mixing method. This approach also
supports users in creating novel pigments. The assistance from kernel func-
tions largely improves the learning capability of our pigment mixing predic-
tion network and at the same time ensures the robustness of our learning
method—in the worst case where the training data are very sparse or ill
posed, our approach can still perform at least as well as the KM model or
the average mixing.

6.9.2 Superimposing the Layers

Following the approach in [CAS+97], we derive the overall reflectance Rover

and transmittance Tover of two merged adjacent layers according to the layers’
reflectances R1, R2 and transmittances T1, T2. By the KM model we have:{

Rover = R1 +
T 2
1 R2

1−R1R2

Tover = T1T2

1−R1R2

. (6.23)

The reflectance and transmittance of the background paper, Rbg, Tbg, are
interactively input. By default, Tbg = 0. For the mobile and fixture layers of
the pigment mixture, their Rmix, Tmix are in the output from the above neural
network. Since Eq. (6.23) can only be used to merge two layers at a time, we
first merge the mobile layer with the fixture layer and then the result with
the background paper layer. The final R after merging all the three layers is
used to render the pixel.
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6.10 Hardware-Accelerated Implementation

As mentioned in Sect. 6.2.1, during our algorithm design, we try to utilize
standard problem instances with analytic solutions as much as possible so
as to cut down on the amount of discrete numerical computations needed.
In addition, we also speed up the equation solving through tabulation in the
preprocessing stage. There is one outstanding equation, however, Eq. (6.12),
which does not have an analytic solution and cannot be efficiently solved.
Inspired by recent work in using GPUs to do general purpose computations,
in particular [HBSL03, KW03], we speed up the numerical process to resolve
the equation through a hardware-accelerated implementation. The idea is first
to approximate the second order partial derivatives, including the Laplacian
operator, through finite differences, and then represent each of the pigment
concentrations, ρ(i), and the velocity field, v, using a separate texture map.
After this we can numerically solve the differential equation by manipulating
the texture maps using the parallel computing power of the GPU.

6.11 Experiment Results

We implemented our method using Microsoft Visual C++ 6.0 and with the
support of Microsoft Direct3D V9.0 on a PC with a Pentium IV 3.0 GHz
processor, 1 GB main memory and an NVidia GeForce 6600 GT graph-
ics card. The paintbrush system came from our e-brush prototype system
[XTLP02, XLTP03, XTLP04] as discussed in the previous two chapters. Ta-
ble 6.2 reports the timing statistics of our implemented pigment model which
has been integrated in the e-brush prototype system. Figs. 6.3—6.10 show
some stroke effects produced by our new pigment model. Fig. 6.11 gives some
pigment mixing results using our proposed boosted neural network approach.
Fig. 6.12 shows one full scale painting generated using our system. More re-
sults are available on our project website. We also employ GPU hardware to

Table 6.2. Timing statistics. The column “Size” is the number of pixels in the
painted stroke; “Pigment #” is the number of pigment species in each of the stroke
painting experiments; “Pigment FPS”, “Mix & Render FPS”, and “Brush FPS” are
the numbers of frames per second when running in isolation the pigment behavior
simulation module, the pigment mixing and rendering module, as well as the brush
simulation module, respectively. “Overall FPS” is the FPS of the overall prototype
system when all the modules are running together

No. Size Pigment # Pigment FPS Mix & Render FPS Brush FPS Overall FPS

1 4198 3 62.25 32.25 32.25 16.12
2 13140 3 32.25 15.87 32.25 8.00
3 4463 4 31.25 21.27 32.25 10.75
4 13325 4 21.27 10.63 32.25 5.84
5 4663 5 21.27 12.82 32.25 8.00
6 13310 5 12.65 9.17 32.25 4.58
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perform general purpose computations to accelerate the equation solving pro-
cess [HBSL03, KW03], particularly when evaluating the Eq. (6.12). This is
done in a way similar to that suggested in [PF05] (Part IV: General-purpose
computation on GPUs: A Primer, Sect. 31.5, pp. 505–508).

Fig. 6.3. Some wet strokes (left), and a quick sketch of some flowers using mostly
wet strokes (right)

Fig. 6.4. Dry strokes

Fig. 6.5. Some strokes with mixed wet and dry effects
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Fig. 6.6. Feathering effects: strong feathering (left) and weak feathering (right).
To show the interplay between the feathering effects and the background paper
texture, we superimpose our results on top of a section of a scanned real paper. A
close view of a stroke with strong feathering is displayed at the bottom left

Fig. 6.7. Modest feathering effects with wet color strokes

Fig. 6.8. From dry strokes to semi-dry, semi-wet strokes
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Fig. 6.9. Different wet strokes in colors

Fig. 6.10. Some stroke overlapping simulation results
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Fig. 6.11. Pigment mixing using our neural network. Row (a) and row (b) are
the two source pigments before mixing. Row (c) is the pigment mixing results
sampled from real world experiment. Row (d) is the prediction of the pigment
mixing behavior using our proposed neural network, but without employing the
kernel functions. Row (e) is the prediction using our proposed neural network with
the kernel functions

Fig. 6.12. A simple painting with wet and dry strokes
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6.12 Conclusion and Future Work

In this chapter, we introduce a novel pigment model based on careful treat-
ment of many minute physical factors, which can achieve the best attainable
effects for Oriental and water-based painting. Experiment results have veri-
fied the success of the design and its implementation. Future work includes
further acceleration of our current algorithm, providing a more friendly graph-
ical user interface, and extending our algorithm to other forms of painting
such as oil painting and wax painting.
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7

Rendering Component of an Advanced Virtual

Hairy Paintbrush System

7.1 Motivation

In this chapter we introduce a new method for fast and high-quality rendering
of hair and its associated data structure support for hair modeling. The
method is capable of rendering sophisticated hair models in real time with
high quality, both of which are key properties for the satisfactory running of
a virtual hairy brush-based digital painting system. Why is hair rendering
and modeling relevant and important for such a system? In the following, we
try to answer this question from two major angles.

7.1.1 Necessity and Importance of Brush Hair Rendering

7.1.1.1 A friendly and familiar user interface

We believe the more realistic a virtual paintbrush would appear on the com-
puter screen, the more comfortable and interested an end user would feel
when operating it. Thus it is crucial that we provide a user friendly interface
that includes a faithful rendition of a virtual paintbrush, especially in view of
the aim of ultimately replacing the real physical paintbrush. We can better
appreciate this point if we take a broader view looking at the effect that a user
interface could have on the deployment of a computing system or machine.
Why is it necessary to have such a visual effect? On the one hand such a
system will encounter the least amount of natural resistance from users when
they migrate from their usual, brick-and-mortar painting environment to a
digital emulation. On the other hand the attractive interface itself would be
the best salesman for the system, who can also provide a tour of the latent
but powerful functionalities behind the scene available via the interface.

7.1.1.2 Accurate visual feedback

We envision that a most realistic rendering of a virtual paintbrush can provide
a reliable visual feedback to the user on the current state of the paintbrush
head to enable him to mentally predicate what the probable ink mark will be
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from his manipulation. This feedback must be absolutely accurate in order
not to mislead or confuse the artist who is so used to a real brush. The
need becomes even greater when the brush head is heavily split or deformed,
resulting in very sophisticated geometries. Any substitute for a real looking
head, e.g. a polygonal model with a very rough approximation, could easily
become a bottleneck to any serious digital painting pursuit. Like all virtual
reality systems, our virtual paintbrush system is also subject to the bucketing
principle—the water level in the bucket will be determined by the weakest
link in a chain. The visual display of the brush in action is this short piece.

7.1.2 Performance Requirements

Meeting the performance requirements for brush hair rendering is very chal-
lenging: it needs to be done both realistically and in real time. The two are
intimately related and should work together to strike a good balance. Real-
timeness probably should be given the priority because any slight delay in
the visual display of the brush would mean a sluggish, non-real brush, and no
serious artist can put up with that. Once we have the real-time requirement
settled, we can then push the realistic looking part to the limit, or to any
extent what is still distinguishable by the human eye. To achieve real-time
response, a naive brutal force approach can fail miserably—a typical brush
head bundle consists of hundreds if not thousands of individual hair strands.
Without a careful design and optimization strategy, the rendering component
alone will consume all the CPU resources. To us the very clear objective is
to have a real-time responsive rendering component that can deliver realistic
rendition of the latest geometry of the brush head throughout the painting
process with the least amount of CPU and other system resources.

7.1.3 Brush Hair versus Human Hair

Brush hair shares many commonalities with human hair. In terms of material
composition both are similar and tend to deform and split easily. The mod-
eling of human hair needs to deal with external forces such as that against
the human body (e.g. shoulder) and from wind or air flows. Similarly for the
brush, the pressure from the artist against the canvas needs to be properly
and accurately treated. For the paintbrush, the shape of brush hair matters a
lot since that will determine the corresponding ink mark on canvas. Indeed,
we can think of more similarities than we can think of differences. Hence
the studies and results reported in this chapter can be readily applied to the
modeling of a virtual paintbrush. Interestingly, there is an abundance of pre-
vious research efforts on human hair rendering, thus forming an important
area in computer graphics studies, whereas projects on brush hair rendering
are rare. It will be worthwhile in the future to apply human hair rendering
results to the optimal display of a virtual brush, in real-time and with high
realism. Both the human hair results and the brush results should be of good
potential reference value to both the non-photorealistic rendering community
and the digital painting community.
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7.2 Overview

To achieve high speed and quality, the method makes use of an offline-
generated database of reusable intermediate rendering results. The database
covers a range of sample geometries under different viewing and lighting
conditions. This database lookup step replaces what would otherwise be a
time-consuming process of rendering the basic appearance of a hair bundle
on the fly. This special database is a discretization of a new appearance mod-
eling function called a Semantics-Aware Texture Function (SATF), where
semantics refer to the particular distribution of hair in the section of hair
bundle being rendered. We model the hair on four levels, and use an efficient
disk-like structure to represent hair distributions inside a hair cluster. Since
the intermediate database carries opacity information, the method can use
an efficient self-shadow algorithm to enhance the realism during the online
phase. We give experiment results to show that our method can indeed pro-
duce high quality rendering results in real time for reasonably complex hair
samples.

7.3 Introduction

To design fast algorithms for high quality hair rendering, especially using
inexpensive hardware, is a grand challenge. Of the latest hair rendering al-
gorithms, the majority are either designed for high quality rendering with
non-interactive response or for fast/interactive rendering but with much low-
ered quality.

The difficulties of hair rendering are due to the following:

(1) There are on average tens of thousands of hair strands on a typical human
head. The sum of processing is a huge computational burden.

(2) Hair can be in many styles, sometimes completely chaotic, and a single
hair strand could represent a complex geometry.

(3) Real hair strands are semi-transparent and have a tiny volume, which
calls for an extremely careful and delicate treatment.

(4) Intricate interactions exist between hair strands, including self-shadowing,
inter-reflection and other subtle lighting effects, which are not easy to
simulate efficiently.

7.3.1 Ideas and Contributions

Our main idea is to split the task into an offline and an online phase. Most
of the time-consuming rendering steps are completed in the offline phase
which generates re-usable intermediate computation results in a specialized
database. During the online phase, appearance maps are synthesized from
records in the database selected according to index terms provided to the ap-
pearance modeling function. After that, lightweight hair lighting calculations
and fast self-shadow generation are applied to generate the final results.
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The hair is represented internally as a generalized disk structure. This
structure makes easy the generation of a density function to represent suc-
cinctly a cluster of hair strands in a statistic sense, which is used as the main
“semantic” information for indexing the database.

More specifically, for the database we compute a simplified reflectance
representation of hair clusters as a function of hair density and the viewing
and lighting directions. This precomputation step only considers appearance
changes due to changes in the lighting and viewing angles along the lateral
directions of the hair. The database is indexed based on hair density distribu-
tion and these two azimuthal angles. During the online phase, this simplified
precomputed representation containing reflectance and alpha values from the
database is used to compute the reflectance and opacity maps. The remain-
ing steps take into account self-shadowing and shading of each layer of a hair
cluster, using approximations to compute the final shading. Combining the
offline and the online steps, we have a real-time algorithm for rendering hair
in high quality.

7.3.2 Organization of the Chapter

The remainder of this chapter is organized as follows. Sect. 7.4 surveys the
most relevant work. Sect. 7.5 describes our hierarchical hair modeling ap-
proach and its associated data structure support. Sect. 7.6 discusses the rep-
resentation of our semantics-aware texture function in a hair rendering inter-
mediate result database. Sect. 7.7 discusses how to construct our rendering
database in the offline phase. Sect. 7.8 explains the online phase of our render-
ing algorithm. Sect. 7.9 presents our experiment results. Sect. 7.10 concludes
this chapter and points out directions for future work.

7.4 Related Work

7.4.1 Hair Rendering for Quality

Most of hair rendering work aimed at the visual quality of the output with lit-
tle or no concern for the algorithm’s running time. Perhaps the earliest work
on hair and fuzzy objects in computer graphics was the particle system by
Reeves [Ree83], in which rendering was done by projecting each particle onto
a frame buffer separately. Perlin and Hoffert [PH89] introduced hypertextures
for furry objects modeling. Blinn [Bli82] introduced the use of volume den-
sity for rendering. Kajiya and Von Herzen [KH84] applied volume densities
to rendering complex objects. Kajiya and Kay [KK89] proposed a 3D texture
primitive, called “texels”, which extends Blinn’s volume density method by
including a distributed lighting model in the volume density field. They suc-
cessfully used texels to realistically model and render the appearance of hair
with complex geometries.

In Goldman’s probabilistic algorithm for faked fur rendering [Gol97], em-
phasis was placed on rendering the visual characteristics of fur while the fine
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details of the fur geometry were invisible in the output. In Yang, et al.’s
work [YXYW00], ray tracing was employed to compute the appearance of
hair cluster boundaries, followed by volume rendering along the tracing rays
to capture the hair density distribution. Recently Marschner et al. [MJC+03]
measured and simulated the scattering effect from individual hair, which ex-
hibited visual effects not predicted by Kajiya-Kay’s model [KK89]. However,
executing these ray tracing based algorithms by software will be too slow for
interactive applications: the method described in [YXYW00] took 24 minutes
to render a single hair braid image and the algorithm presented in [MJC+03]
took 8 minutes to render a single frame of human hair, both on their machines
a few years ago.

7.4.2 Hair Rendering for Speed

Along another direction of hair rendering research, attention is focused on
bringing up fast algorithms at the possible cost of compromising the rendering
quality. Existent real-time/interactive hair rendering algorithms often cannot
produce satisfyingly realistic hair appearance in order to meet strict response
time constraints. Lengyel et al. [LPFH01] developed a real-time algorithm to
render a furry object through a series of concentric, semi-transparent textured
shells applied to hair volume samples. Koster et al. [KHS04] developed a real-
time rendering algorithm taking into account the hair’s anisotropic reflection
and self-shadowing. Scheuermann [Sch04] proposed a real-time human hair
rendering algorithm whose lighting model was essentially a mixture of Kajiya-
Kay’s model and Marschner et al.’s model discussed above. Both Koster
et al.’s and Scheuermann’s methods employed a polygonal hair model and
used textures to represent hair strands. However, due to the consideration of
rendering efficiency, they both always used the same, fixed texture, ignoring
the change of hair density in the hair model and the variation of lighting
conditions in the lateral direction of a hair strand. Such a problem of always
using a fixed texture source is addressed by our newly proposed algorithm
in this chapter. Our method dynamically generates semantics aware texture
maps, which can represent more faithfully the target object’s appearance.

For a complete survey on hair simulation before 2002, one can refer to
[MTHK02]. There is also a more recent survey dedicated to hair modeling,
rendering and animation [WBK+07]. Despite much wonderful work that has
been so far, we are still short of a practically feasible algorithm which can
render a hair model in both high speed (i.e. with real-time or quasi-real-time
response) and high quality.

7.4.3 Image-Based Rendering

Our newly proposed offline/online rendering algorithm is also related to
Image-Based Rendering (IBR) approaches. But unlike these approaches,
whose rendering capability comes exclusively from information entailed in
the underlying images, geometry models of the rendering targets are used in
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our lightweight online rendering phase to augment the rendering quality ini-
tially achieved through pure texture mapping. Second, for IBR approaches,
if a high rendering quality is to be reached, images need to be sampled not
too sparsely, which could easily result in a very large image database. In
comparison, our rendering algorithm produces a rendering database of mod-
est size by storing 1D records rather than 2D images in the database; these
1D records will then be used to dynamically generate the images needed for
texture mapping according to semantics-related features of rendering targets.
Our strategy to control the size of the database so that it can comfortably
fit in the memory is key for fast rendering. In fact so far there has been little
work done on using IBR for animated scenes. Our work can also be viewed
as an initial attempt in this direction, since the texture maps needed in the
online phase of our algorithm are dynamically generated according to the
current rendering sceneries.

7.4.4 Appearance Modeling

Our hair appearance modeling and rendering work also belongs to one of the
most fundamental problems in computer graphics—object appearance model-
ing in particular, surface reflectance modeling, which is critical to the accurate
rendering of surface geometry. Surface appearance is subject to viewing and
lighting conditions as well as the scale at which it is observed. On a coarse
scale, where local surface variations are sub-pixel and the local intensity is
uniform, appearance is characterized by BRDFs (Bidirectional Reflectance
Distribution Functions) [NRH+77]. BRDFs assume surface reflectance is not
affected by surface geometry details and thus only include viewing and illu-
mination directions at their appearance modeling functions. On a fine scale,
where surface variations give rise to local intensity variations, appearance can
be characterized by BTFs (Bidirectional Texture Functions) [DvGNK99]. A
BTF can be interpreted as a mapping from a 4D space of lighting and view-
ing directions to a space of 2D texture images. BTFs refine BRDF’s practice
by accounting for effects caused by geometry details through including sur-
face positions in their appearance modeling functions. A BTF dataset is a
collection of images indexed by both the viewing direction and the lighting
direction.

Conventional BTF is a 6D function in which 4 parameters are for viewing
and lighting directions and the remaining two parameters form a pair (x, y)
to locate a specific image position for texture retrieval. Hence, one BTF can
only be used to describe the reflectance field of a homogeneous material or
that of a particular instance of a non-homogeneous material and cannot at
the same time faithfully represent reflectance fields of all the instances of a
non-homogeneous material, whose texture can vary significantly over time or
spatially, e.g. cloud, smoke, hair, skin.

In this chapter, we propose yet another appearance modeling function
which uses also an offline-constructed database to render complex hair effi-
ciently and in high quality. In comparison with traditional BRDFs and BTFs,
our proposed SATF (Semantics-Aware Texture Function) uses a semantics
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characteristic term to compute the corresponding texture best correlated with
the local semantics. This offers the possibility to use one single SATF to cap-
ture a class of objects of the same non-homogeneous material and can also
be used for dynamically changing objects, i.e. animating hair. For simplicity,
our newly suggested SATF can be understood as a kind of parameterized
BTFs wherein the parameters hold physical meanings.

7.5 Hair Modeling and Representation

Our work focuses on the rendering of hair, and less on the modeling. But the
two cannot be easily separated, as it is obvious that the hair model affects
directly the quality and efficiency of the rendering results.

7.5.1 Modeling Hair as Virtual Material

In our SATF approach we introduce an appearance modeling function which
is semantics-aware. By “semantics-aware” we mean the function is supposed
to reflect the differences in visual appearance caused by changes in the se-
mantics of the rendering target. The specific rendering target in our design is
a section (on a normal plane) of a hair cluster (see Figs. 7.1(a) and (b)), and
its semantic property is represented by a vector measuring the hair density
distribution within the section. That is, our SATF includes a hair density
distribution feature vector, in addition to the lighting and viewing directions
(see Fig. 7.1(c)). With the hair density vector, we implicitly model the ag-
gregate appearance of a hair cluster as a kind of virtual aggregate material
which has a variable texture over the surface of an object.

7.5.2 Four-level Hierarchy of Hair Modeling

To model the hair and capture its appearance with high fidelity, we adopt
a four-level hierarchy. The four levels are the entire hair volume, the hair
macro-cluster level, the hair cluster level and the hair density level (hair
strand level) respectively, as listed in Table 7.1. In this hierarchy, a hair cluster
(the third level) serves as our modeling primitive, which helps cut down the
hair modeling cost as suffered by strand-based hair modeling approaches.
Similar to the approach in [XLTP03], macro-clusters (the second level) are
used to eliminate as much redundancy in hair modeling and simulation as
possible; a macro-cluster groups together hair clusters whose geometries are
similar but their physical positions may not be adjacent. In a hair macro-
cluster, geometries of all the hair clusters can be trivially derived from each
other via simple transformations. This is a reasonable strategy as there are
usually only a limited number of sharply distinctive geometries among hair
clusters in a hair volume. Hair macro-clusters thus make up the entire hair
volume (the first level) at the top of the hierarchy. At the very bottom we
keep track of the distribution of hair strands inside a hair cluster in the
form of a hair density field or an explicit representation of each hair strand’s
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Fig. 7.1. A hair cluster modeled as a layered solid object with an interior core and
multiple layers of volumetric shells

Table 7.1. Four-level hierarchy of our hair modeling method

No. Level Name Representing object

1st Entire hair volume Whole hair volume

2nd Hair macro-cluster Geometrically similar clusters

3rd Hair cluster Clustered hair strands

4th Hair strand Individual hair strands

position as used in many strand-based approaches. The hair density field can
be obtained from density-based hair modeling tools, e.g. [XY01], or density-
based hair dynamics simulations, e.g. [BCN03].

7.5.3 Generalized Disk Structure for Representing Hair Clusters

To support the four-level hierarchy we propose a generalized disk structure
to represent a hair cluster’s envelope shape as well as the distribution of its
constituent hair strands. It is called “generalized” because, unlike its analogy
the real hard disk, which is cylindric, the envelope of a hair cluster is a
generalized cylinder.
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We generate generalized cylinders through the general sweeping operation
in CAD by sweeping a 2D variable contour curve along a 3D spline curve.
Similarly to the concept of hair macro in Xu et al.’s work on the realistic
virtual brush [XLTP03], we sweep an ellipse along a 3D curve to generate a
generalized cylinder. During sweeping we make sure that the ellipse always
lies on the normal plane with respect to the 3D curve. The shape of the mov-
ing ellipse can be varied during sweeping. We denote the sweeping trajectory
as T (t)(0 � t � 1), which is a B-spline in 3D space, and the ellipse E(t0)
lying on the normal plane of T (t)|t=t0 as:

E(t0) � {(x, y)|x = A(t0)v cos
(
θ(t0) + u

)
, y = B(t0)v sin

(
θ(t0) + u

)
,

v ∈ [0, 1], u ∈ [0, 2π)}, (7.1)

where A(t0) and B(t0) are half of the lengths of the major and minor axes
of the ellipse E(t0) respectively, and θ(t0) is the corresponding self-twisting
phase of the ellipse E(t0). Here A(t), B(t) and θ(t) (0 � t � 1) are three
one-dimensional B-splines. The geometry modeling parameters needed for
constructing the hair cluster H can therefore be compactly stated as:

H � Modeling
(
T (t), A(t), B(t), θ(t)

)
(0 � t � 1). (7.2)

To represent the hair density field, we divide the hair cluster into two
components: a heterogeneous volumetric shell part with mesostructures and
a homogeneous transparent interior core (see Fig. 7.1). The appearance of
the cluster is principally determined by hair distributions in the volumetric
shells. For a hair cluster there are multiple layered shell surfaces, each of
which is logically further divided uniformly into several Hair Shell Volumes
(HSV). The division is done by connecting the neighboring points obtained
by sampling the parametric equation of the generalized cylinder uniformly in
the parametric domain {t, v, u}, where t (0 � t � 1) is the relative arc length
along the sweeping trajectory, with v (0 � v � 1) and u (0 � u < 2π) being
two parameters on the radius and phase of the sampling position as defined
in Eq. (7.1). Thus, each of the samples is in terms of (t, v, u), and the set of
all the sampling points S � {(ti, vj , uk)} is collected by:

S � {i/st|i = 0, 1, · · · , st} × {j/sv|j = 0, 1, · · · , sv}
×{2πk/su|k = 0, 1, · · · , su − 1} (7.3)

where 1/st, 1/sv and 2π/su are the sampling step sizes for the three param-
eters respectively. In the rendering algorithm, we consider the density field
within every HSV separately.

As illustrated in Fig. 7.1(b), the structure of a cross section of our hair
cluster model looks very much like that of a hard disk, hence the name
“generalized disk structure”. As shown in Fig. 7.1, each plate (cross section)
of the structure is made up of an interior core and some exterior shells.
Every cross section is divided into several “generalized tracks”, each of which
is further organized as multiple “generalized sectors”. Notice that each HSV
has two boundary generalized sectors.
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7.5.4 Hair Density Field for Sector

Hair strand distribution within a hair cluster is captured as a density field.
The density field can be directly obtained from either a density-based hair
modeling tool, e.g. the V-HairStudio [XY01], or density-based dynamic hair
simulations, e.g. [BCN03]. In case the hair model to be rendered is not given
in the form of hair density distribution, we need to first establish the density
field for a generalized sector. This is usually the case when only hair strand
positions are given. We assume the cross section of a hair strand is always
circular and the hair’s density due to the existence of a single hair strand
follows a Gaussian distribution. The overall density distribution can thus be
safely defined as the sum of all these Gaussian distributions due to individual
hair strands. In the following we use ρ to denote hair density.

More precisely, when establishing the micro-density field for a generalized
sector, β, we use a grid map with a 2D parametric coordinate system {s, t}
(see Fig. 7.1.(c)). This grid map is similar to the base density map used in
[YXYW00]. We first consider the case where the hair strand level is in the
form of explicit representation of hair strand positions. Suppose there are
n hair strands passing through β, and the centers of these hair strands are
ci (i = 0, · · · , n − 1). We assume the cross section of a hair strand is always
circular and the hair’s micro-density g due to the existence of a single hair
strand follows the Gaussian distribution, i.e.:

g(s, t, ci) �
1

σ
√

2π
e−|ci−(s,t)|2/(2σ2)

where |ci − (s, t)| is the distance from the position (s, t) on β to ci. And
the overall micro-density at a point (s, t) is the sum of all these Gaussian
distributions due to individual hair strands, i.e.:

ρ(s, t) �
n−1∑
i=0

g(s, t, ci).

We store values of this micro-density field discretely at each grid point in the
grid map for ease of processing later on. Now we consider the case where the
hair strand level is in the form of a hair density distribution. In that case
we generate the hair strands according to the given hair density distribution
in β and denote their center positions as ci (i = 0, · · · , n − 1). The rest of
the processing is the same as above. In the following we do not distinguish
between hair micro-density and hair density and use the same notation ρ to
denote them.

7.6 HRIR-DB and Semantics-Aware Texture Function

7.6.1 SATF and Our Offline/Online Two-phased Rendering
Algorithm

With the above modeling strategy, the aggregate appearance of the virtual
material is indexed by a semantics term in the SATF. By abstracting out
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such an appearance property, meaning the challenge of hair rendering, deal-
ing with the hair’s complex geometric details in tiny volumes and their pos-
sible dynamic deformations is reduced to applying an image-based rendering
method over a geometry with a much smoother and simplified surface. Tex-
ture mapping then suffices, wherein the map is generated through the SATF
in response to the underlying object semantics. This is where an offline phase
can be introduced.

To approach the possibility of real-time rendering of hair, we try to shift
as much computation as possible to an offline pre-processing phase. Past
good results are worth remembering and should be made available for future
re-use. Our strategy is to execute as much of the time-consuming rendering
tasks offline as possible to produce a collection of re-usable partial rendering
results that are stored in a special database. These partial results are referred
to as Hair Rendering Intermediate Results (HRIRs), and the database Hair
Rendering Intermediate Result DataBase (HRIR-DB). The HRIR-DB in fact
serves as the range of our newly-proposed appearance modeling function—
Semantics-Aware Texture Function (SATF)—which accepts as parameters
the key distinguishing features of the rendering target. In our present con-
text, the rendering target is a hair cluster, and its semantics are represented
compactly by a hair density distribution. Intuitively, our SATF is a database
lookup based on the input parameters of the hair density distribution of the
rendering target and the viewing and lighting directions. Thus, mathemati-
cally, SATF defines the following mapping relationship:

SATF(β, v, l) = HRIR
(
ρfeature(β), θv(β), θl(β)

)
, (7.4)

where θv(β) and θl(β) are the viewing and lighting directions respectively
and ρfeature(β) is a hair density distribution feature vector. The subscript
“feature” in the notation of ρfeature(β) indicates only selected features related
to density distribution are used in the process, resulting in a much reduced
number of dimensions for the database records.

The HRIR-DB is similar to a BTF database in that both of them contain
image samples produced under different viewing and lighting settings. The
important difference is that our method includes additionally an appearance-
related parameter based on the density distribution of the generalized sector
(ρfeature(β)). Therefore a record in the database is the salient appearance
map of the rendering object, and not merely a texture map for a certain
fixed geometric pattern.

Once HRIR-DB is set up at the online rendering phase, the appearance of
hair strands inside a hair cluster can be visualized by texture mapping a series
of alpha/reflectance maps of the cluster, which are dynamically constructed
based on reflectance and opacity information provided by the HRIR-DB and
according to the hair density distribution inside the cluster. After that, light-
weight hair lighting calculations are performed on the fly to arrive at the
final rendered results. By this collaboration between the online and the offline
phases, our algorithm achieves both efficiency and high quality of output.
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7.6.2 Minimizing the Size of HRIR-DB

To guarantee that our rendering algorithm will be fast and responsive, it is
crucial also to control the size of the HRIR-DB so that it can be loaded com-
pletely into memory. This is a non-trivial goal. In existing BTF approaches
they store 2D images sampled under different viewing and lighting directions,
both being 2D vectors in spherical coordinates, which could easily result in
the database having too huge a size for the memory. To overcome this size
problem, we observe that as an HSV is only used to stand for a small part of
hair volume, the lateral directions of the hair strands in an HSV are mostly
consistent. Therefore, variations of viewing and lighting conditions along the
lengthwise direction of the hair would only affect the global lengthwise ren-
dering result. By taking advantage of this locality of hair distribution, we
only attempt to model via the HRIR-DB different rendering effects brought
about by the changes of the illumination conditions along the lateral direction
of hair. Illumination conditions along the lengthwise direction of hair would
only affect the global lengthwise rendering result, which can be efficiently
calculated online. To be more specific, an HRIR represents the appearance
of a generalized sector, β, which is a boundary cross section of an HSV with
a certain density field defined inside. An HRIR represents the appearance
of a generalized sector, β, under a certain viewing direction θv and lighting
direction θl. We denote such an HRIR as HRIR(β, θv, θl). θv(β) and θl(β)
are respectively the 1D viewing and lighting direction in the current render-
ing, which are the azimuth angles on the plane that β lies on and obtained
through projecting the 3D viewing and lighting directions onto the plane (see
Fig. 7.1.(c)). By such restriction on the scope of hair appearances to be cap-
tured, the spectrum of samples the HRIR-DB is supposed to cover is greatly
reduced. Each HRIR(β, θv, θl) carries two kinds of information: reflectance
values and opacity (alpha) values, represented as two 1D arrays: (re-array,
α-array), which are offline partial results to be used in the online phase of
the rendering (Sect. 7.7).

To compute HRIR(β, θv, θl), we use a planar ray tracing procedure (Sect.
7.7.1). The difference between “planar ray tracing” and traditional ray tracing
is that for the former, the viewing and lighting directions are both confined
to the plane on which the planar rendering target, β, lies. Confining the
rendering result HRIR(β, θv, θl) to the 1D domain means that our HRIR-DB
needs only to carry 1D signals of re-arrays and α-arrays and rely on a texture
map synthesis algorithm to reconstruct the smooth-looking reflectance maps
(re-maps) and alpha maps (α-maps) on the fly. Compared with storing a 2D
reflectance map and an alpha map for a small volume of the hair shell, our 1D
HRIR record format for a cross section of an HSV contributes significantly
to miniaturization of the HRIR-DB. This downsizing is very important and
effective.

With all these space-saving techniques, we effectively control the size of
the HRIR-DB, making it feasible to load the HRIR-DB entirely into the main
memory for carrying out the fast online rendering process.
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7.7 Constructing the Database of Hair Rendering

Intermediate Results

To construct the HRIR-DB, we first obtain a collection of samples of gener-
alized sectors, {βi}, by initializing control parameters of a generalized sector
β using random values. For each of these generalized sector samples, two
major tasks are performed for establishing the HRIR-DB: 1) to compute the
HRIRs for β under a number of typical viewing and lighting directions (Sect.
7.7.1); these directions are all confined to the plane on which β lies; 2) to
compute the hair density distribution feature vector ρfeature(β) for β, which
is used as an index when storing these HRIRs arising from β in the database.
The top part of Fig. 7.2 summarizes the overall process of the HRIR-DB
establishment.

Fig. 7.2. HRIR-DB: In the offline rendering phase, generalized sectors of differ-
ent density distributions are ray-traced in various viewing and lighting directions
to generate HRIRs for establishing the HRIR-DB; in the online rendering phase,
HRIRs are retrieved according to the index vector

7.7.1 Deriving an HRIR Record

We introduce a “planar ray tracing” procedure to compute HRIR for the given
input generalized sector β with the viewing direction v and lighting direction
l. The difference between “planar ray tracing” and those normal ray tracing
procedures is that both the viewing and lighting directions are confined to
the plane that the rendering target β lies on; and the rendering result HRIR,
namely the hair appearance for β, is a 1D signal rather than a 2D image. We
modify the ray tracing procedure for a volume as suggested in [YXYW00]
into a planar version and carry out the procedure on β. After tracing all
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the rays and recording all the accumulated reflectance and opacity in their
corresponding locations, we obtain an array of reflectance and an array of
alpha values, which are denoted as re-array and α-array respectively. These
two arrays constitute one single Hair Rendering Intermediate Result (HRIR)
record.

More formally, when tracing a ray Rj , we denote the k-th grid point
in the grid map (through which the hair density field is discretely recorded
(Sect. 7.5.4)) met by Rj as ηj,k. We compute ηj,k’s opacity α(ηj,k) as a value
proportional to the local hair density ρ(ηj,k), and ηj,k’s reflectance re(ηj,k)
using the Phong illumination model with the normal direction of hair strand
surface approximated as the gradient of the local hair micro-density, i.e.
n(ηj,k) ≈ ∇ρ(ηj,k). During our planar ray tracing, after hitting Rj with ηj,k,
we update Rj ’s accumulated reflectance r̂e(Rj) and its accumulated opacity
α̂(Rj) by Eq. (7.5).{

r̂e(Rj) = r̂e(Rj) + α(ηj,k) × re(ηj,k) × (
1 − α̂(Rj)

)
α̂(Rj) = α̂(Rj) + α(ηj,k) × (

1 − α̂(Rj)
) . (7.5)

We also apply a visibility test with the accumulated opacity of a ray such
that our algorithm stops tracing Rj when either the ray’s accumulated opac-
ity α̂(Rj) becomes very close to 1, or it has penetrated the rendering target,
i.e. β. After tracing all the rays, we record all the penetrating rays’ accumu-
lated reflectances r̂e(Rj)’s and opacities α̂(Rj)’s at their corresponding pixel
locations to establish a 1D array of reflectance values and another 1D array
of alpha values. They form the HRIR.

Since it is normal for a hair strand to cover only a fraction of a pixel, severe
aliasing artifacts may arise. To overcome this, the above computed HRIR will
be smoothed using a 1D Gaussian kernel. The distribution feature parameter
needed by the Gaussian kernel is set according to the distribution feature
used when establishing the hair density field (Sect. 7.5.4). In our experiment
we empirically find that a ratio of 1.5 times between them would lead to
visually most satisfying results.

7.7.2 Indexing an HRIR Record

As outlined in Eq. (7.4), the complete index term for storing SATF(β, v, l) in
the HRIR-DB is

(
ρfeature(β), θv(β), θl(β)

)
. The schema is illustrated in the

bottom part of Fig. 7.2. The feature vector ρfeature(β) consists of three terms

in our design, i.e. ρfeature(β) �
(
ρst(β),ρs(β),ρt(β)

)
where ρst(β), ρs(β),

ρt(β) are β’s average hair density, s-dimensional and t-dimensional projected
average hair density respectively. The average hair density of β, ρst(β), can
be trivially computed since the hair density distribution within β is either
initially given or derived in the preprocessing step (Sect. 7.5.4). To compute
ρs(β) and ρt(β), assume {s, t} is the 2D parametric coordinate system defined
over β. We first derive the density distribution histogram curves versus the
s and t axes and then compute the average values of the derived histogram
curves to be ρs(β) and ρt(β) respectively.
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More mathematically, to derive the vector ρfeature(β), recall {s, t} is the
2D parametric coordinate system defined over β (Sect. 7.5.3). ρst(β), ρs(β)
and ρt(β) are computed through Eq. (7.6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρst(β) �

R
smax
smin

R tmax(s)
tmin(s)

ρ(s,t)dtds

R
smax
smin

R tmax(s)
tmin(s)

dtds
(7.6.1)

ρs(β) � 1R
smax
smin

ds

∫ smax

smin

R tmax(s)
tmin(s)

ρ(s,t)dt

R tmax(s)
tmin(s)

dt
ds (7.6.2)

ρt(β) � 1R
tmax
tmin

dt

∫ tmax

tmin

R smax(t)
smin(t)

ρ(s,t)ds
R smax(t)

smin(t)
ds

dt (7.6.3)

(7.6)

Here ρ(s, t) is the local hair density around the spacial location (s, t)
inside β.

Eq. (7.6.1) is approximated as:

ρst(β) ≈ ρ̃st(β) �
∑

i

ρ(si, ti)/
∑

i

,

where {(si, ti)} is a set of randomly chosen spacial locations within β and
ρ(si, ti) is the local density around the location (si, ti). In our experiment,
the cardinality of {(si, ti)} is set to be 10. Following the same practice, we
also derive the randomized version of Eq. (7.6.2) as:

ρs(β) ≈ ρ̃s(β) �
(∑

i

∑
j(i) ρ(si, tj(i))∑

j(i)

)
/
∑

i

,

where {si} is a set of randomly chosen s coordinates within β and {(si, tj(i))}
is a set of locations within β, whose s coordinate is an element, si, of the set
{si} and whose t coordinate enumerates several randomly chosen values tj(i)
for si. Similarly, we can derive the randomized version of Eq. (7.6.3) as:

ρt(β) ≈ ρ̃t(β) �
(∑

j

∑
i(j) ρ(si(j), tj)∑

i(j)

)
/
∑

j

.

Now we can approximate ρfeature(β) using
(
ρ̃st(β), ρ̃s(β), ρ̃t(β)

)
.

7.8 Fast and High Quality Online Hair Rendering

7.8.1 Main Steps of Online Hair Rendering

As mentioned in Sect. 7.5 that hair clusters are rendering primitives in our
algorithm. Given a hair cluster with a certain hair density field, we can render
its appearance under arbitrary viewing and illumination directions efficiently
and realistically with the support of the offline acquired HRIR-DB. Recall
in Sect. 7.5.3 that a hair cluster consists of a transparent interior core and
an exterior ring volume, the latter of which is divided into multiple layers.
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By tessellating the outer surface of each of these layers, we obtain the layer’s
associated mesh. In the following we use P(u,v),k to denote the point on
the mesh for the k-th layer of the hair cluster, whose coordinates in the
parameterized texture space of the mesh is (u, v) (see Fig. 7.1). By definition,
P(u,v),k and P(u,v),k+1 have the same texture coordinates in their respective
meshes.

The main steps of our online hair rendering are as follows, which are
illustrated in Fig. 7.3. For each layer of the mesh, we use the local hair density
distribution and the current viewing and lighting directions as input of the
SATF to construct a re-map and an α-map (Sect. 7.8.2). For each point
on a layer we compute a lighting term for it, with the anisotropy of hair
appearance taken into account (Sect. 7.8.3). And then we simulate the self-
shadowing effect by utilizing the computed α-maps and organize the resultant
shadow values as a shadow map (s-map) (Sect. 7.8.4). Finally we derive the
shading for each layer by modulating all the lighting terms belonging to the
layer using corresponding reflectance values and shadow values recorded at
the layer’s re-map and s-map respectively. The final overall shading for the
hair cluster can be generated by blending together individual shadings of the
layers according to their α-maps (Sect. 7.8.5). We also make use of hardware
acceleration (Sect. 7.8.6).

7.8.2 SATF and re- and α-map Construction

The first step of our online rendering is to construct the re-maps and α-
maps for each layer in the hair cluster via the SATF. We realize this by
first constructing local re-maps and α-maps for each HSV separately, and
then patching up all these maps associated with the different HSVs in the
same layer. There are two sub-tasks when constructing a local re-map and
a local α-map for a given HSV: 1) to compute the parameters for the HSV’s
two boundary generalized sectors to retrieve the best matched HRIR(s) from
the HRIR-DB; and 2) according to the extracted HRIR(s), to construct the
re-map and the α-map for the HSV.

7.8.2.1 Calculating SATF parameters for HSV

Each HSV is associated with two boundary generalized sectors, one at the
top, β�, and one at the bottom, β⊥ (see Fig. 7.2). For each of them, say
β, we calculate a hair density distribution feature vector ρfeature(β) (see
Sect. 7.7.2). The SATF parameters for β are completed by putting together
the current viewing and lighting directions w.r.t. β, namely Params(β) =(
ρfeature(β), θv(β), θl(β)

)
.

With both Params(β�) and Params(β⊥) calculated as described in the
above, we check whether the rendering context of the HSV—hair density
distribution inside the HSV as well as the lighting and viewing directions
across the HSV—is relatively uniform or not. It is considered uniform if Eq.
(7.7) holds:

||Params(β�) − Params(β⊥)|| < κthreshold. (7.7)
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(a) The online rendering procedure

(b) The online lighting sub-procedure

Fig. 7.3. Our online phase rendering algorithm: (a) Main steps. For each layer
of the generalized disk, first a re-map and an α-map are constructed procedurally
with the help of HRIR-DB and according to the hair density distribution within
the layer as well as the current viewing and illumination directions. And then
an s-map is computed by our fast self-shadowing algorithm. Having prepared all
the rendering maps, our algorithm performs shading for each layer of the mesh.
For each pixel in a certain layer of the mesh, lighting is simulated. The resultant
lighting term is modulated by the reflectance values sampled from the re-map and
the light transmittance sampled from the s-map to calculate the RGB value of the
pixel. Finally, all the layers of meshes are blended together according to the α-maps
to generate the final rendering image. (b) The sub-procedure of the online lighting
step, which computes a diffuse term, a primary and a secondary specular term. An
example showing intermediate results generated at various steps of our online phase
rendering algorithm is given at Fig. 7.4

.
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(a) re-map (b) α-map (c) s-map (d) Ψdif (e) ΨspeI

(f) ΨspeII (g) Ψlighting (h)Ψshading (i)Ψfinal

Fig. 7.4. An example showing intermediate results generated at various steps of
our online phase rendering algorithm

7.8.2.2 Constructing re-map and α-map for HSV

If the rendering context across the HSV is considered uniform, we simply use
Paramsave � (Params(β�) + Params(β⊥))/2 to retrieve the best matched
HRIR record, HRIR(Paramsave), from the HRIR-DB. Recall that an HRIR
carries two 1D arrays: a re-array and an α-array (Sect. 7.6 and Sect. 7.7.1).
In this situation we can construct the local re-map and α-map for the HSV
by simply sweeping the re-array and α-array along the lengthwise direction
of the HSV.

If by Eq. (7.7) the rendering condition across the HSV is non-uniform, we
would fetch two HRIR records, HRIR1 = SATF

(
Index(β�)

)
and HRIR2 =

SATF
(
Index(β⊥)

)
. The local re-map and α-map for the HSV can then be

generated by interpolating between HRIR1 and HRIR2. Assume HRIR1 �
{c1,1, c1,2, · · · , c1,n} and HRIR2 � {c2,1, c2,2, · · · , c2,n}, where ci,j is either
the j-th reflectance value or the j-th alpha value carried in HRIRi (i =
1, 2; 0 < j � n). Then the intermediate value can be derived through a linear
interpolation:

λ(i, γ) = c1,i × (1 − γ) + c2,i × γ, (7.8)

where γ is the interpolation parameter which indicates the relative position
of the intermediate value between HRIR1 and HRIR2. This simple linear
interpolation might not appear to be good enough to generate a smooth
looking texture transition. Our experiment results, however, show that this
simple method can indeed yield visually satisfying results. This could be due
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to the following two reasons: 1) local hair lighting conditions and density
distributions change continuously, and so the difference in reflectance and
alpha values between two adjacent HRIRs is limited; 2) as long as the surface
of a hair cluster is not too severely undersampled, the sufficient number of
sample points would reduce the texture difference between corresponding
sample points in the two HRIRs.

We construct re-maps and α-maps for all the layers in the generalized
disk, which are to be used for deriving shading for these meshes on the fly
(Sect. 7.8.5). In the following, we use re(u,v),k and α(u,v),k to denote the
reflectance and opacity of P(u,v),k recorded in the reflectance map and alpha
map of the k-th layer, namely re-mapk and α-mapk, respectively.

7.8.3 Online Hair Lighting

Similar to the practice in [Sch04], our hair rendering pays special attention
to the anisotropic characteristics of hair appearance.

For each P(u,v),k, we evaluate a diffusion term Ψdif
(u,v),k, a primary specular

term ΨspeI
(u,v),k, and a secondary specular term ΨspeII

(u,v),k. That is, in our system

the online hair lighting term Ψlighting
(u,v),k for P(u,v),k is the overall effect of the

above three terms:

Ψlighting
(u,v),k � Ψdif

(u,v),k + ΨspeI
(u,v),k + ΨspeII

(u,v),k. (7.9)

Like [KK89], we compute the diffusion terms of the lighting model as:

Ψdif
(u,v),k � κdif sin(t(u,v),k, l(u,v),k)φdif, (7.10)

where κdif is the diffusion coefficient; t(u,v),k and l(u,v),k are the tangent

direction and the lighting direction at the point P(u,v),k respectively; φdif =

(φdif.r, φdif.g, φdif.b)T is the diffusion color of the hair in the form of RGB
values. Notice: the operator sin(X,Y) here calculates the sine value of the
angle spanned by the two vectors X and Y.

Following Marschner et al.’s work [MJC+03], we simulate two highlight
regions at our online hair lighting stage: one is the primary region which is
shifted towards the tip part of the hair and the other is a secondary region
which is shifted towards the root part of the hair. To evaluate the specular
term for the primary highlight we employ Eq. (7.11), which is a modified
version of [KK89]’s specular equation.⎧⎪⎪⎨⎪⎪⎩

ΨspeI
(u,v),k � κspeI

(
(̃t(u,v),k · l(u,v),k)(̃t(u,v),k · v(u,v),k)+

sin(̃t(u,v),k, l(u,v),k) sin(̃t(u,v),k,v(u,v),k)
)κh

φspeI

t̃(u,v),k �
t(u,v),k+s(u,v),k×n(u,v),k

||t(u,v),k+s(u,v),k×n(u,v),k||

. (7.11)

Here κspeI is the primary specular coefficient. κh is the specular Phong
exponent specifying the sharpness of the highlight. l(u,v),k and v(u,v),k are the

lighting and viewing vectors at P(u,v),k respectively. φspeI = (φspeI.r, φspeI.g,
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φspeI.b)T is the primary specular color of the hair, which is same as the
color of the light source because the primary highlight is mainly due to the
light reflected off the hair surface. t̃(u,v),k is the perturbed version of t(u,v),k,
which is introduced here to shift the primary highlight region towards the
tip of the hair by adding a small portion of the normal vector of the cluster
surface, n(u,v),k, onto the true hair tangent direction, t(u,v),k. Such a primary
highlight region shift process is controlled by a positive parameter s(u,v),k.

The secondary specular term is computed through a very similar equation,
as follows:⎧⎪⎪⎨⎪⎪⎩

ΨspeII
(u,v),k � κspeII

(
(̃t(u,v),k · l(u,v),k)(̃t(u,v),k · v(u,v),k)+

sin(̃t(u,v),k, l(u,v),k) sin(̃t(u,v),k,v(u,v),k)
)κh

φspeII

t̃(u,v),k �
t(u,v),k−s(u,v),k×n(u,v),k

||t(u,v),k−s(u,v),k×n(u,v),k||

. (7.12)

Here φspeII = (φspeII.r, φspeII.g, φspeII.b)T is the secondary specular color
of the hair, which is the same as the color of the hair because the secondary
highlight is mainly caused by the light transmitted into the hair strands and
its reflection. κspeII is the secondary specular coefficient. This time t̃(u,v),k

serves as a perturbed version of the hair’s tangent direction to shift the sec-
ondary highlight region towards the root of the hair by deducting a small
portion of the normal vector of cluster surface, n(u,v),k, from the true hair
tangent direction, t(u,v),k. Such a highlight region shift process is also con-
trolled by a positive parameter s(u,v),k.

7.8.4 Online Hair Self-shadowing

During online hair rendering we compute two kinds of hair self-shadows: local
shadows within a hair cluster and global shadows among multiple hair clus-
ters. To simulate global shadows among hair clusters we employ the shadow
volume technique [Cro77]. In the following we explain how we simulate local
shadows within a hair cluster.

For local shadows within a hair cluster, complicated interactions between
light rays and hair volume need to be considered. Kajiya and Hersen [KK89]
first applied ray tracing to compute self-shadows during hair rendering. Later
researchers proposed methods based on shadow maps [LV00, KN01, AL04];
the same idea was recently exploited by [MKBR04, KHS04] to achieve fast
rendering with hair self-shadowing utilizing the power of the GPU.

Inspired by shadow map techniques, we use shadow maps (s-maps) to
record results of simulated self-shadowing effects, one for each layer. In s-
mapk, the s-map for the k-th layer, we store transmittance of light τ(u,v),k

at point P(u,v),k, which approximates the portion of external light penetrat-
ing the hair volume to reach P(u,v),k. To calculate τ(u,v),k precisely, all the
points that are passed through by the same light ray as P(u,v),k need to be
identified, which is computationally expensive. Current shadow map-based
approaches, e.g. “opacity shadow map” [KN01], avoid this expense through
a separate pass to render the scene from the light’s point of view to prepare
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the shadow maps. This separate pass, however, is in any case a non-zero com-
putation load, which is still undesirable for a fast rendering algorithm. Our
method completely does away with this additional separate pass by taking
advantage of the property of our layered generalized disk structure for hair
clusters: self-shadows are always cast from the outer layers onto the inner
layers. Since human eyes are not highly sensitive to the accuracy of shad-
owing, we introduce a simple and fast method to simulate the shadowing
effect which gets darker as we move from the outer layers to the inner layers.
Therefore, in our method, τ(u,v),k is estimated as:

τ(u,v),k � e−
P

m∈χ(k) κshadow×α(u,v),m ≈ 1 − κshadow ×
∑

m∈χ(k)

α(u,v),m, (7.13)

where χ(k) � {m | layer Lm covers layer Lk, namely Lm is an outer layer
w.r.t. Lk}. In the above equation, κshadow is a self-shadow intensity param-
eter controlling the darkness of self-shadowing, and α(u,v),m is the light at-
tenuation of P(u,v),m as recorded at α-mapm.

Compared with recent shadow map approaches, our shadow map gener-
ation method is very fast because it has a computationally trivial shadow
map preparation process in which we only need to sample α-maps to read
out alpha values with the same texture coordinates. Although our method is
not theoretically exact, in practice it can achieve visually satisfying results,
as can be seen in the examples shown in Figs. 7.5 and 7.6; this is due to the
fact that by design the HSVs in our generalized disk structure are not very
large, and hence the hair layers are not very thick.

7.8.5 Deriving Shading through Integrating All the Rendering
Effects Together

By integrating all the rendering effects obtained in the previous steps, we de-
rive the shading for each layer. For P(u,v),k, its overall shading result, Ψshading

(u,v),k ,

in terms of RGB value is the product of its lighting term, Ψlighting
(u,v),k , its re-

flectance term, re(u,v),k, as recorded in re-mapk, and the light transmittance
term, τ(u,v),k, as recorded in s-mapk:

Ψshading
(u,v),k � Ψlighting

(u,v),k × re(u,v),k × τ(u,v),k. (7.14)

With Ψshading
(u,v),k , the RGBA value for P(u,v),k can be extracted as: (Ψshading

(u,v),k .r,

Ψshading
(u,v),k .g, Ψshading

(u,v),k .b, α(u,v),k). Once the shading results for all the layers are

calculated, we can derive the final hair rendering image Ψfinal by blending the
shading results of all the layers through a standard alpha blending process:

Ψfinal
(u,v) � Ψbk

(u,v) ×
∏n−1

k=0

(
1 − α(u,v),k

)
+∑n−1

k=0

(
Ψshading

(u,v),k × α(u,v),k ×∏n−1
j=k+1

(
1 − α(u,v),j

))
.

(7.15)

Here Ψfinal
(u,v) = (Ψfinal

(u,v).r Ψfinal
(u,v).g Ψfinal

(u,v).b)
T is the RGB value in the fi-

nal hair rendering image that is in correspondence with the eye ray R(u,v).
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(a) (b) (c) (d)

(e) (f)

Fig. 7.5. Comparison of rendering results: (a) rendering result produced by
Scheuermann’s algorithm; (b) result produced by our algorithm with secondary
highlight effect disabled; (c) result produced by our algorithm with self-shadowing
effect disabled; (d) result produced by our algorithm with all the effects enabled. A
comparison between rendering results of a human hair model is shown at (e) and
(f). (e) rendering result produced by Scheuermann’s algorithm; (f) result of human
hair by our algorithm

Ψbk
(u,v) = (Ψbk

(u,v).r Ψbk
(u,v).g Ψbk

(u,v).b)
T is the RGB value of the penetrating

light from the interior core on R(u,v), which is taken from the background
color.

7.8.6 Hardware Acceleration

Our algorithm is carefully constructed and implemented to take advantage
of the computing power offered by current programmable graphics cards. For
each layer, the constructed re-map and α-map are organized as two channels
in a texture map to be passed simultaneously to the graphics card. To effi-
ciently eliminate texture aliasing when an object is at a distance, we enable
hardware MIP-mapping. The highest resolution MIP-map image is the orig-
inal texture map initially passed to the graphics card, as mentioned above.
Each successively lower resolution MIP-map image is computed by averaging
every four neighboring pixels in its immediately preceding higher resolution
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(I-a) (I-b)

(II-a) (II-b)

(III-a) (III-b)

Fig. 7.6. The effect of self-shadowing: results without self-shadowing (a) vs. results
with self-shadowing (b)

version. For the online phase of our rendering algorithm, except for construct-
ing the re- and α-maps and the above MIP-map source image preparation
process, all the other computing tasks are executed by the GPU. More ex-
actly, inside the GPU the vertex shader passes down all the necessary data
including viewing and lighting directions, surface normals, hair tangent direc-
tions, as well as texture coordinates to the pixel shader. The pixel shader is
responsible for computing the s-maps, performing lighting calculation, mod-
ulating all the lighting terms against the light transmittance terms stored in
the s-maps, and the reflectance terms stored in the re-maps. The derivation
of the final shading result is implemented using the alpha blending function-
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ality provided by the graphics card when we render the layers of meshes from
inside out.

7.9 Experiment Results

We implemented our algorithm using Microsoft Visual C++ 6.0 and Mi-
crosoft Direct3D V9.0 on a PC with an Intel Core 2 Duo 2.4GHz CPU,
1G main memory and a graphics card having an NVIDIA GeForce 7950GT
processor. In our implementation we take advantage of the graphics card’s
computing power by executing most of the online rendering tasks through
pixel shaders and vertex shaders.

In the offline phase we generate the HRIR-DB by sampling uniformly over
the viewing and lighting directions at an interval of 1 degree, and sampling
128 randomly generated hair density distributions inside an HSV under the
given viewing and lighting directions. This results in an HRIR-DB containing
around 180 × 180 × 128 = 4, 147, 200 HRIR records and having a total size
of about 500MB. The offline stage took 2 hours to complete.

We show the rendering results of six hair clusters with different geometries
and density distributions in Fig. 7.7, and twelve hair models on a human head

(a) (b) (c)

(d) (e) (f)

Fig. 7.7. Hair cluster rendering results

in Fig. 7.8. A partial sequence of hair animation results are shown in Fig. 7.9.
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We also render several hair styles in multiple views in Fig. 7.10 and Fig. 7.11.
Fig. 7.12 illustrates the performance statistics of all these examples and the
time needed to fulfill various stages of our online phase of the rendering algo-
rithm, which include estimating the hair density distribution parameter for
the SATF (index calculation); computing the SATF, i.e. HRIR-DB lookup,
and the re/α-map construction (map construction); texture mapping the
constructed re/α-maps onto the generalized disk structure; online hair light-
ing; and online hair shadowing. For the hair animation results (Fig. 7.9), the
statistics reported are for the average performance. Table 7.2 reports these
detailed data. The performance is clearly of real-time quality when rendering
a single hair cluster and of interactive quality when rendering a human hair
model.

Table 7.2. Statistics of hair rendering experiments shown in Fig. 7.7 to Fig. 7.11,
including the total number of hair clusters (Cluster#), layers (Layer#), hair strands
(Strand#) and HSVs (HSV#) in the hair model as well as rendered image resolution
and the overall Frames Per Second (FPS) rate achieved by our rendering algorithm

No. Experiment Cluster# Layer# Strand# HSV# Resolution FPS

1 Fig. 7.7.(a) 1 12 2,208 12,672 280×745 71

2 Fig. 7.7.(b) 1 15 2,812 15,840 500×600 49

3 Fig. 7.7.(c) 1 10 3,680 41,600 695×956 34

4 Fig. 7.7.(d) 1 15 2,895 15,840 366×600 54

5 Fig. 7.7.(e) 1 10 1,850 10,560 400×600 77

6 Fig. 7.7.(f) 1 15 2,760 15,840 400×600 47

7 Fig. 7.8.(a) 12 60 19,680 61,440 600×680 26

8 Fig. 7.8.(b) 4 36 12,024 74,880 783×837 22

9 Fig. 7.8.(c) 6 55 13,695 58,080 841×903 31

10 Fig. 7.8.(d) 6 42 21,252 87,360 735×796 19

11 Fig. 7.8.(e) 2 40 18,680 83,200 574×593 22

12 Fig. 7.8.(f) 2 20 8,120 83,200 823×893 21

13 Fig. 7.8.(g) 7 70 11,760 73,920 530×818 22

14 Fig. 7.8.(h) 6 54 18,684 112,320 659×792 16

15 Fig. 7.8.(i) 5 34 12,706 70,176 680×680 20

16 Fig. 7.8.(j) 2 34 15,817 140,352 696×705 13

17 Fig. 7.8.(k) 1 20 9,022 82,560 676×685 22

18 Fig. 7.8.(l) 8 52 19,432 108,160 680×680 15

19 Fig. 7.9 40 80 21,440 42,240 700×700 21

20 Fig. 7.10.(I) 6 60 9,120 63,360 728×721 30

21 Fig. 7.10.(II) 4 60 20,340 126,720 673×664 14

22 Fig. 7.10.(III) 2 28 23,044 115,584 636×636 14

23 Fig. 7.11.(I) 5 50 9,050 52,800 556×653 26

24 Fig. 7.11.(II) 7 49 10,965 51,744 590×614 29

25 Fig. 7.11.(III) 55 224 32,841 64,608 680×680 11

26 Fig. 7.11.(IV) 52 130 30,064 70,680 680×680 9
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7.8. Human hair rendering results

From these performance statistics, we can see that the number of clusters
and the number of HSVs are two principal factors affecting the overall FPS.
Interestingly, Fig. 7.10(III) and Fig. 7.11(III) have similar FPSs. However,
Fig. 7.11(III) has 27 times more clusters than Fig. 7.10(III), but yet the num-
ber of HSVs of Fig. 7.11(III) is half that of Fig. 7.10(III). These two factors
in fact cancel out and result in a similar overall FPS. We can also draw the
conclusion from this phenomenon that the performance of our algorithm is
more sensitive to the number of HSVs than the number of clusters. This sug-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7.9. Two sequences of hair animation results. (a to h) and (i to l) are two
sequences of hair animation, which happened to have similar timing performance.
The minimal and maximal FPSs of rendering either animation are 19 and 23 re-
spectively. The average FPS is 21. More average performance statistics are reported
in Table 7.2
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(I-a) (II-a) (III-a)

(I-b) (II-b) (III-b)

(I-c) (II-c) (III-c)

(I-d) (II-d) (III-d)

(I-e) (II-e) (III-e)

Fig. 7.10. Three hair models rendered in different views (a), (b) together with
their underlying generalized disk structure’s outmost layer (c), their two outmost
layers (d) and all the layers (e)
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(I-a) (I-b)

(II-a) (II-b)

(III-a) (III-b)

(IV-a) (IV-b)

Fig. 7.11. Four more hair models rendered in different views
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(a)

(b)

Fig. 7.12. Performance statistics. The numbers on the x-axis reflect the hair model
numbers in the leftmost column of Table 7.2. In (a), the performance statistics
include number of clusters (C#), number of layers (L#), number of hair strands
(S#) (in K, i.e. in 1,000), number of HSVs (H#) (in K) and the overall FPS for each
hair model. In (b), each table entry presents the computation time in milliseconds
consumed by each step

gests future research to adaptively optimize the number of HSVs according
to the screen resolution and the sophistication of the models.

Our approach in achieving high quality hair rendering effects can be seen
as similar to that of Kajiya-Kay for hair modeling and rendering via vol-
ume densities [KK89]. We add three features: (I) varying visual effects to
reflect changes in hair distributions as well as the viewing and lighting di-
rections; (II) shifted secondary highlight effect as proposed by Marschner,
et al. [MJC+03]; and (III) self-shadowing effect. We compare the rendering
results produced by our algorithm with those using Scheuermann’s algorithm
[Sch04]. We choose Scheuermann’s for comparison because among all the ex-
istent work, his algorithm is the closest to ours in that his algorithm is also
based on Kajiya-Kay’s; also both our own and Scheuermann’s algorithms
are designed for the purpose of efficient hair rendering. But Scheuermann’s
algorithm has incorporated only the effect (II) above. Fig. 7.5 shows the com-



7.9 Experiment Results 189

Table 7.3. The computation time in milliseconds consumed by each step of the
online phase of our rendering algorithm for the examples reported in Fig. 7.2, i.e.
index calculation (Index Cal.), map construction (Map Con.), texture mapping,
online lighting, shadowing

No. Experiment Index Cal. Map Con. Mapping Lighting Shadowing

1 Fig. 7.7.(a) 1.9/13.8% 11.3/79.9% 0.7/5.2% 0.1/0.6% 0.1/0.5%

2 Fig. 7.7.(b) 2.9/14.1% 15.9/77.8% 1.4/6.9% 0.1/0.7% 0.1/0.5%

3 Fig. 7.7.(c) 9.5/32.4% 17.1/58.3% 2.4/8.0% 0.2/0.7% 0.2/0.6%

4 Fig. 7.7.(d) 3.0/16.2% 14.5/78.1% 0.9/5.0% 0.1/0.4% 0.1/0.3%

5 Fig. 7.7.(e) 1.9/15.0% 10.2/78.2% 0.8/5.8% 0.1/0.5% 0.1/0.5%

6 Fig. 7.7.(f) 2.9/13.4% 17.1/80.6% 1.1/5.1% 0.1/0.5% 0.1/0.4%

7 Fig. 7.8.(a) 16.7/43.5% 18.1/47.0% 3.2/8.3% 0.2/0.6% 0.2/0.6%

8 Fig. 7.8.(b) 19.7/43.3% 22.5/49.6% 2.9/6.4% 0.2/0.4% 0.1/0.3%

9 Fig. 7.8.(c) 13.9/43.0% 15.7/48.6% 2.4/7.4% 0.2/0.5% 0.2/0.5%

10 Fig. 7.8.(d) 20.6/39.1% 26.9/51.2% 4.7/9.0% 0.2/0.4% 0.2/0.3%

11 Fig. 7.8.(e) 18.1/39.9% 25.7/56.6% 1.4/3.1% 0.1/0.2% 0.1/0.2%

12 Fig. 7.8.(f) 15.0/31.6% 28.7/60.2% 3.5/7.3% 0.2/0.5% 0.2/0.4%

13 Fig. 7.8.(g) 18.5/40.7% 22.9/50.3% 3.5/7.7% 0.4/0.8% 0.2/0.5%

14 Fig. 7.8.(h) 25.7/41.1% 33.3/53.3% 3.2/5.1% 0.2/0.3% 0.1/0.2%

15 Fig. 7.8.(i) 30.0/59.9% 17.4/34.8% 2.2/4.3% 0.3/0.6% 0.2/0.4%

16 Fig. 7.8.(j) 47.2/61.3% 26.3/34.2% 2.9/3.8% 0.3/0.4% 0.2/0.3%

17 Fig. 7.8.(k) 28.2/62.0% 14.5/31.9% 2.4/5.3% 0.2/0.4% 0.2/0.4%

18 Fig. 7.8.(l) 43.1/64.7% 19.9/29.8% 3.0/4.5% 0.3/0.5% 0.3/0.5%

19 Fig. 7.9 20.3/42.6% 24.3/51.1% 2.4/5.1% 0.3/0.7% 0.2/0.5%

20 Fig. 7.10.(I) 13.7/41.0% 16.7/50.1% 2.2/7.2% 0.3/1.0% 0.2/0.7%

21 Fig. 7.10.(II) 24.8/34.7% 43.7/61.2% 2.5/3.5% 0.2/0.3% 0.2/0.3%

22 Fig. 7.10.(III) 41.9/58.6% 26.3/36.8% 3.0/4.2% 0.2/0.2% 0.1/0.2%

23 Fig. 7.11.(I) 16.4/42.7% 34.3/48.0% 2.7/6.9% 0.5/1.3% 0.4/1.1%

24 Fig. 7.11.(II) 15.6/45.1% 15.4/44.6% 3.3/9.5% 0.1/0.4% 0.1/0.4%

25 Fig. 7.11.(III) 38.6/42.5% 47.8/52.6% 3.7/4.1% 0.5/0.5% 0.3/0.3%

26 Fig. 7.11.(IV) 49.8/44.8% 56.6/50.9% 4.0/3.6% 0.4/0.4% 0.3/0.3%

parative results where (a) is Scheuermann’s result and (d) is our result. In
comparison (a) looks flat and lacks the sense of stereo because his algorithm
does not simulate the effects (I) and (III) in the above. The Fig. 7.5((b) and
(c)) also shows how the effects (II) and (III) would enhance the realism of
the rendered result. Fig. 7.5. (e) and (f) compares the two algorithms with a
complete hair model.

Due to space limitations, more experiment results are put on our website,
together with our prototype system implementing the algorithm and the files
of hair styles used in our rendering experiments.
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7.10 Conclusion and Future Work

7.10.1 Conclusion

In this chapter we propose a new method for hair rendering which can achieve
both interactive speed and high quality on ordinary hardware. The following
five aspects of our work contribute to this feasibility. 1) Resting on the as-
sumption that retrieving a data record from a suitably constructed database
can be many times faster than computing the same on the fly, the method
employs an offline/online two-phase strategy. This strategy reduces a major,
time-consuming step of the rendering process to a quick and simple database
lookup, leaving only a few remaining lightweight tasks to the online phase.
2) The online phase features the new texture function SATF which interacts
with the static database to return an image for a given set of dynamically
computed parameters. The rendering target is a hair cluster, and its seman-
tics are represented compactly by a hair density distribution. This represen-
tation turns hair strands in a neighborhood into a kind of virtual aggregate
material with the appearance of a texture. This design can increase the ap-
pearance modeling ability of the method and greatly simplify the geometry
details that need to be considered during hair rendering. 3) Like BRDF and
BTF approaches, we represent our SATF for the target virtual aggregate ma-
terial via a database. The establishment of the database is the major task
of the offline part of the design. Special attention is needed when making
design decisions on the contents to be captured by the database, data rep-
resentation, and the choice of the database’s index structure. These efforts
effectively reduce the size of the resultant database and contribute signifi-
cantly to the fast lookup mechanism. 4) The modeling of the hair (as virtual
aggregate material) is via a four-level modeling hierarchy which captures the
highly complex geometry of the entire hair volume as well as the detailed
hair strand distribution inside. We also introduce a specific data structure
called “generalized disk” as a rather handy medium for representation. 5) By
utilizing intermediate results obtained during the online phase of the above
rendering algorithm, our method uses a shadow map based, fast self-shadow
generation algorithm to further enhance the rendering realism.

As an immediate next step we will integrate the efficient and high-quality
hair rendering algorithm proposed in this chapter into our virtual hairy brush
based digital painting platform to provide more realistic visual feedback of
the paintbrush for the end users during their electronic painting experiences.

7.10.2 Discussion and Future Work

Our proposed rendering algorithm is based on a database of precomputed
intermediate results, which can achieve interactive rates in hair rendering
without lowering the image quality. The mapping from input parameters to
the precomputed hair rendering intermediate results forms our Semantics-
Aware Texture Function (SATF), which is a form of parameterized BTF.
The dimensionality involved in the mapping is reduced by making some sim-
plification assumptions concerning visual aspects. These intermediate results



7.10 Conclusion and Future Work 191

are then used to compute for each hair strand a re-map and an α-map.
These maps are further used to compute images including different lighting
effects, which are then combined to form a single final rendering result. For a
volumetric model of a generalized cylinder, the rendering treats hair strand
meshes like shells, projecting them from the inner-most ring to the outer-most
one.

Compared with conventional appearance modeling approaches such as
BRDF and BTF, which only model the light transmission under certain view-
ing and lighting conditions for fixed material or a fixed geometry pattern, our
new approach can be interpreted as a way to model the aggregate appearance
of the target as a special kind of virtual “material appearance property”. By
such an aggregate virtual material appearance property, the challenge of ren-
dering the highly sophisticated geometry of the target object can be reduced
to applying an image-based rendering over a much smoother and simplified
surface geometry, followed by some computationally inexpensive online light-
ing and shadowing procedures.

Our offline/online rendering algorithm is also related to Image-Based Ren-
dering (IBR) [MB95, LH96, GGSC96]. But unlike IBR, whose rendering ca-
pability derives mainly from the information captured in the image database,
by including appearance-related semantics features in the modeling function
and the extension of a lightweight and effective online rendering phase, our
rendering algorithm can perform much more comprehensively in terms of its
support for dynamically changing rendering scenes. In fact, our work can be
viewed as a special image-based rendering algorithm capable of responding
to dynamic changes in the target.

In our design of the online/offline two-phase rendering algorithm, to cap-
ture the reflectance we split the computation task into two parts: in the offline
process we only consider appearance changes arising due to lighting and view-
ing changes along the lateral directions of the hair; in the online phase we
focus on reproducing appearance changes due to lighting conditions along the
lengthwise direction of the hair. The split is based on the following regarding
the effects caused by lighting conditions. To capture the effects caused by dif-
ferent lighting conditions in the lateral direction, we need to take into account
the delicate hair geometry and its tiny volume, distribution and positions,
which is the most time consuming part of the rendering work. In comparison,
the effects caused by different lengthwise direction lighting conditions are
much easier to compute, which only needs to be operated at the level of hair
cluster geometry. The split leads to much time saving in the online phase.
A secondary benefit is that this can narrow the spectrum of HRIR samples
that the HRIR-DB is supposed to capture, giving rise to a database that is
more compact in size.

Currently most of the hair we rendered are of straight styles. To support
curly hair rendering we will need to introduce additional semantics in our
current hair appearance modeling function. Developing a better user interface
for creating and customizing curly hair styles is a highly practical goal.

There are limitations to our approach: 1) Since we employ clustering in
the hair modeling hierarchy and assume the hair strands in one cluster are
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roughly aligned to the sweeping trajectory of the cluster during rendering,
we cannot handle highly chaotic hair styles at the moment. 2) Backlighting
is not simulated because we assume lights do not come from behind when
we apply ray-tracing to render the generalized sector samples and when we
simulate self-shadowing.

The following are some possible directions for further work. First, for hair
volumes whose density distribution is extremely non-uniform, their density
following our current formulation of the density terms may not be reliable
enough to identify the best matched HRIR records in the HRIR-DB. So
the issue is to investigate what might be a better compact set of expressive
and reliable features. Second, one could refine the current algorithm to
adaptively divide the whole hair volume into HSVs according to the density
distribution. For an HSV in which the density distribution varies greatly,
we can subdivide it into smaller HSVs until the density distribution in each
HSV becomes relatively uniform; on the other hand, for adjacent HSVs whose
density features are nearly identical, we can merge them into one larger HSV.
This adaptive division/merging may help improve both the efficiency and
realism of the algorithm significantly. Third, following [FKIS02], it might
be meaningful to use machine learning techniques to “compress” the HRIR-
DB so that memory space will only be used to store representative records.
Finally, right now our SATF for hair uses synthetic (as opposed to real) data,
but theoretically our new appearance modeling approach should be applicable
to real, camera-captured images. Capturing appearance measurement data
and extending our algorithm to handling dynamically changing real non-
homogeneous materials, e.g. fire and hair in motion, should be extremely
challenging.

The research work presented in this chapter is an initial attempt to build
semantics features directly into the appearance modeling function. These fea-
tures are density-related in the case of hair, and because of that we believe
the same methodology can be applied to the modeling and rendering of other
objects such as smoke, cloud, grass, fire and the like. Our success in design-
ing the fast offline/online hybrid algorithm has to do with the capturing of
appearance-related semantics. For hair as well as grass, cloud, smoke, etc.,
their appearance under certain viewing and lighting conditions is mostly de-
termined by their density distribution. Thus we can categorize density distri-
bution features for these targets as semantics-related information and build
them into the appearance model. An offline/online algorithm can then be
designed, just like what has been done in this chapter.
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Table 7.4. Symbols and abbreviations used in this chapter

Symbol Definition Description

SATF Sect. 7.2 Semantics-Aware Texture Function

(s, t) Sect. 7.5.4 Position in a generalized sector

(u, v) Sect. 7.8.1
The position of a certain point on a certain layer
of mesh, defined in texture space

α(u,v),k Sect. 7.8.2.2
The alpha value of a point at (u, v) on the k-th
layer of the mesh

α(ηj,k) Sect. 7.7.1 Opacity of ηj,k, proportional to ηj,k’s local density

α-array Sect. 7.6 Alpha array of HRIR

α-map Sect. 7.8.1 Alpha map

α-mapk Sect. 7.8.2.2 The α-map for the k-th meshbα(Rj) Sect. 7.7.1 Accumulated opacity along a certain tracing ray Rj

β Sect. 7.5.4 A generalized sector

β�, β⊥ Sect. 7.8.2.1 Upper and bottom boundary βs of an HSV

{βj} Sect. 7.7 A collection of samples of generalized sectors

ηj,k Sect. 7.7.1 The k-th point in the grid map met by Rj

θl(β), θv(β) Sect. 7.6 1D lighting and viewing directions w.r.t. β

κshadow Sect. 7.8.4
Local self-shadow darkness coefficient. Typical
value: 0.4

κthreshold Sect. 7.8.2.1
Uniform hair density distribution tolerance
threshold. Typical value: ||(0, π

180
, π

180
)||

ρ(ηj,k) Sect. 7.7.1 ηj,k’s local density

ρ(s, t) Sect. 7.5.4 Local density in the hair micro-density field at (s, t)

ρs(β), ρ
t
(β) Sect. 7.7.2 s- and t-dimensional projected average densities of β

ρ
st

(β) Sect. 7.7.2 Average density of β

ρ
feature

(β) Sect. 7.6 Hair density distribution feature of β

σ Sect. 7.5.4 Gaussian distribution parameter. Typical value: 0.5

τ(u,v),k Sect. 7.8.4 Transmittance of light to (u, v) on the k-th layer
of the mesh

χ(k) Sect. 7.8.4 The set of layers covering the k-th layer

Ψlighting
(u,v),k Sect. 7.8.3

The lighting term of (u, v) on the k-th layer of
the mesh

Ψdif
(u,v),k Sect. 7.8.3 Diffuse term of (u, v) on the k-th layer of the mesh

ΨspeI
(u,v),k,ΨspeII

(u,v),k Sect. 7.8.3
Primary and secondary specular terms of a point
at (u, v) on the k-th layer of the mesh

Ψshading
(u,v),k Sect. 7.8.5 Shading term of (u, v) on the k-th layer of the mesh

Ψfinal Sect. 7.8.5 The final rendering result of a hair cluster

To be continued
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ci Sect. 7.5.4 A hair center in a generalized sector

g(s, t, ci) Sect. 7.5.4
Gaussian distribution function.

g(s, t, ci) � 1

σ
√

2π
e−|ci−(s,t)|2/(2σ2)

HRIR Sect. 7.6 Hair Rendering Intermediate Result

HRIR-DB Sect. 7.6 Hair Rendering Intermediate Result DataBase

HSV Sect. 7.5.3 Hair Sector Volume

n(ηj,k) Sect. 7.7.1
Normal direction used in Phong illumination model
while ray-tracing. n(ηj,k) ≈ ∇ρ(ηj,k)

P(u,v),k Sect. 7.8.1
A point at the position of (u, v) on the k-th layer of
the mesh

Params(β) Sect. 7.8.2.1 The index of β

Paramsave Sect. 7.8.2.2
The average of the index of two boundary generalized

sectors, i.e. Paramave � (Param(β�) + Param(β⊥))/2

re(u,v),k Sect. 7.8.2.2
The reflectance value of a point at (u, v) on the k-th
layer of the mesh

re(ηj,k) Sect. 7.7.1 Reflectance value of ηj,k, computed with Phong model

re-array Sect. 7.6 Reflectance array of HRIR

re-mapk Sect. 7.8.2.2 The reflectance map for the k-th meshbre(Rj) Sect. 7.7.1 Accumulated reflectance along a certain tracing ray Rj

s-map Sect. 7.8.1 Shadow map
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Automatic Generation of Artistic Chinese
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This part consists of three chapters, Chapter 8—Chapter10, sharing one
common target which is the generation of artistic Chinese calligraphy auto-
matically through machine intelligence.

Chapter 8 introduces our own computing principles for generating artis-
tic Chinese calligraphy automatically. It discusses an algorithmic framework
simulating the human learning process of calligraphy skills which range from
copying existing calligraphy to synthesizing new calligraphic styles based on
learned examples. The chapter goes on to explain the way to enforce aesthetic
constraints for controlling the visual quality of the automatically generated
calligraphic artwork. This chapter aims at providing a high-level abstract
view of, and a quick introduction to, a computing system design for achiev-
ing the automatic artistic generation goal. Accompanying the framework are
some overall pictures and case examples on the behavior of the underlying
algorithmic components. We defer the discussion of the algorithmic details
and the mathematics behind this till Chapter 9. A set of experiments using
the prototype system are presented to give the readers a concrete impression
of the quality achievable by the automatic calligraphy generation system. At
the end of the chapter we suggest some interesting applications arising from
the automatic calligraphy generation system we have developed, including
practical and commercial ones outside the computer art domain.

Chapter 9 offers two perspectives on a better understanding of the auto-
matic artistic Chinese calligraphy generation work introduced in Chapter 8:
from a system engineering point of view and from an artificial intelligence
research point of view, respectively. For the first perspective we focus on how
to re-implement the prototype system we have at hand and reproduce the
experiment results shown in Chapter 8. Intensive algorithm constructs and
mathematical models employed in the low level of our algorithmic framework
supporting the system’s functioning are revealed and discussed. They provide
the reference materials for anyone needing to overcome potential problems
that will be encountered in trying to build an automatic Chinese calligra-
phy generation system similar to ours. For the second perspective we review
and discuss the design philosophy behind our attempt to explore the topic
of automatic calligraphy generation—the synthesis reasoning model and its
support for carrying out analogous reasoning for the purpose of simulating
creative thinking in an imaginary thinking domain, especially when human
beings are performing shape related tasks. This answers the basic question
of what makes us think it is possible and technically feasible to develop a
computing system that is capable of generating artistic Chinese calligraphy
automatically. Is it by pure luck or some random process, or are there any
general models, rules or mechanisms which we have followed? We present
the synthesis reasoning model and its related knowledge representation and
reasoning mechanisms for simulating analogous reasoning in the imaginary
thinking domain as a fundamental theory. This theory explains the algorithm
design work we studied in the first part of the chapter, offering a view from
the angle of artificial intelligence research to understand the steps we go
through in building the intelligent system. The success of the design and de-
velopment of our intelligent Chinese calligraphy generation system has come
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from our following the guidelines suggested by the synthesis reasoning model
and its associated theory. Towards the end of this chapter, we discuss why
our automatic calligraphy generation system can be viewed as a specialized
instance of an intelligent shape design system based on the synthesis rea-
soning model. We also look at how constraints can affect the behavior of
an intelligent system designed according to the synthesis reasoning model
and conclude the chapter by proposing a generic methodology for developing
synthesis reasoning based intelligent systems for computer aided design.

Chapter 10 looks at the issue of performance for our intelligent Chinese
calligraphy system. We particularly focus on two algorithmic components
which could significantly improve the system performance: 1) how to increase
the system’s calligraphy facsimile ability, which is reflected as the system’s
ability to parameterize existent calligraphy-writing samples for use as learn-
ing samples; 2) how to equip the intelligent calligraphy generation system
with the capability to tell the beautiful looking calligraphy examples from
the not so beautiful ones. By enhancing the first component, the amount of
knowledge learnable by the intelligent system can be expanded to give better
training to the intelligent system so that it will have the ability to explore
and generate new calligraphy styles. Augmenting the second component can
make the system better aware of the quality of its generated results, and ca-
pable of command visual scores approaching those conceived by humans. To
enhance the first component, we adopt an integrated intelligence approach
which uses and combines a multitude of existent algorithms. We further in-
troduce an intelligent graphical user interface for utilizing human intelligence
in the most economic fashion to increase the system’s decomposition ability
over cursive calligraphy writings. To strengthen the second component we
design a sophisticated learning paradigm based on neural networks to teach
the computer to grade calligraphy to best approximate the human grading.
We integrate both improved components into our automatic calligraphy gen-
eration system and obtain a very encouraging performance gain in terms of
the visual quality of the newly generated Chinese calligraphic artwork. We
include a collection of experiment results for the readers to verify this claim.
Finally, we give a sketch of an interactive calligraphy online tutoring system
based on our automatic calligraphy generation system.
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Principles of Automatic Generation of Artistic

Chinese Calligraphy

8.1 Overview

In this chapter we will introduce a novel intelligent system which can au-
tomatically generate new Chinese calligraphic artwork to meet visually aes-
thetic requirements. The system first extracts the hierarchical parametric rep-
resentations of Chinese characters from input images of existing calligraphic
style to form a compact set of training examples. Using a six-layer hierar-
chical representation, the extraction results are stored in a small structural
stroke database, which are then exploited to form a continuous calligraphy
knowledge space. The space is spanned by character examples of different
styles (knowledge sources) which are aggregated and aligned according to a
proposed constraint-based analogous reasoning process. By also incorporating
a set of simple and yet effective geometric constraints, the proposed system
can generate novel calligraphic styles that are aesthetically appealing. Sam-
ples of novel calligraphic artwork produced using the system are presented to
demonstrate the effectiveness of our approach. The combination of knowledge
from various input sources creates a huge space for the intelligent system to
explore and produce new styles of calligraphy. Possible applications of the
proposed system are also discussed.

Without ambiguity we will abbreviate the term “automatic generation of
artistic Chinese calligraphy” to “automatic calligraphy generation” from now
on.

8.2 Introduction

Chinese calligraphy is among the finest and most important of all Chinese art
forms, and an inseparable part of Chinese history. It can convey not just what
was explicitly put in a written message but also the emotion of the writer. The
very delicate aesthetic effects achievable by Chinese calligraphy are generally
considered to be unique among all calligraphic arts because the normal shape
and topological structure of the font in aesthetic Chinese calligraphy can be
largely distorted for its better perceptual impression. Chinese calligraphy is



204 8 Principles of Automatic Generation of Artistic Chinese Calligraphy

also an integral part of traditional Chinese painting, e.g. Fig. 8.1(a). The
calligraphy is there not just as an annotation, but also because it can affect
the overall visual and perhaps also emotional perception of the viewer to
the painting. As such, artistic Chinese calligraphy is often more preferred
than printed types in Asian societies for banners and signs, and headers of
newspapers, etc. (Fig. 8.1(b)). A latest example is the official logo of the 2008
Beijing Olympics Games (http://en.beijing-2008.org/).

(a) (b)

Fig. 8.1. Wide use of artistic Chinese calligraphy in Asian societies: (a) Chinese
painting with calligraphy; (b) top: the roof of a Kong Zi (Confucius) temple; bottom:
the header of the China Daily newspaper

Other than artists, it has also caught the attention of scientists who are in-
terested in computer-assisted art. Chinese calligraphy is predominantly done
using a brush. Computerizing Chinese calligraphy is challenging as the shapes
of brush strokes as well as the topology over multiple strokes can be very com-
plex. In comparison, Western calligraphy which is based on Latin alphabets
is much simpler and easier to computerize.

The most common use of calligraphic art in the digital world is to cre-
ate typographic or artistic fonts for display or printing, for which Knuth has
done some pioneering work [Knu79]. Chinese calligraphy is predominantly
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carried out using a soft hair brush. Generating artistically appealing Chinese
calligraphic artwork using the brush can be highly challenging. The large
character set (consisting of 3,000+ commonly used characters) of the Chi-
nese language itself presents a problem. Being able to master some of the
characters does not mean that one can also write the other characters as sat-
isfactorily. Similarly, one who is good in one or more styles is not necessarily
also good in other styles, let alone able to create new styles in calligraphy.
This is where the computer may step in and provide some help.

Calligraphic art is based on a font, which is a set of printer’s type of
the same size and face. Cubic Bézier curves and straight lines can be used to
describe font shapes [Chu90, NTN93]. For artistic rendering, researchers have
tried to model the brush used in calligraphy, such as [Str86] where the brush
is modeled as a collection of bristles which evolve over the course of the stroke.
In [XTLP02] a virtual brush based on solid modeling was demonstrated as
a feasible interactive tool for creating realistic Chinese calligraphic writings.
In [Blu67] the authors gave a detailed analysis of the writing effects that
hairy brushes could produce. There have also been attempts at automatic
generation of new fonts, such as [PMZS97] where the authors employed an
algebra of geometric shapes to generate fonts by mixing existing fonts. But
calligraphy can go beyond the boundaries of fonts; for example, it is possible
to mix different styles and sizes of characters in a calligraphic artwork.

There has not been any published work on automatic creation (not just
imitation) of beautiful calligraphic artwork using existing calligraphy as learn-
ing samples. This chapter proposes and describes such an intelligent system.
We discuss the underlying principles and theories, and present the calligraphic
results generated by a prototype we implemented. Our prototype system is
able to generate brand new Chinese calligraphic artwork fully automatically.
The number of input training samples used is very small.

In this chapter we propose an intelligent system which can automatically
generate novel and yet artistically appealing Chinese calligraphic artwork
based on a small number of training examples of existing calligraphic styles.
The essential idea is to learn (good existing styles) and synthesize (beautiful
new styles). The system first recovers the shapes of the training examples and
represents them using a hierarchical parameterization. Then an analogous
reasoning process is adopted to: 1) align the shape representations of the
training examples to create a flexible model; 2) to generate novel calligraphic
artwork; and 3) to remove aesthetically unacceptable candidates based on
some simple but effective aesthetic constraints.

To demonstrate the feasibility of the proposed methodology, we have im-
plemented a prototype system which can generate brand new Chinese calli-
graphic artwork fully automatically when given as input a small training set
(typically below 10 for each character). To the best of our knowledge, there
has not yet been any published work on the same approach. One remotely
related project is the simulation of creativity in jazz performance [RG94],
where artistic activities are also modeled using analogous reasoning.

The structure of the chapter is as follows. Sect. 8.3 formulates the prob-
lem and provides an overview of the system. Sect. 8.4 presents the hierar-
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chical parametric representation of Chinese characters. Sect. 8.5 discusses
how the training examples are analyzed and parameterized. Sect. 8.6 explains
the proposed analogous reasoning process for automatic generation of new
Chinese calligraphic characters. Sect. 8.7 discusses how aesthetic geometri-
cal constraints can be incorporated into the system to reject unacceptable
candidates from the output. Sect. 8.8 gives the experimental results. Sect. 8.9
discusses possible applications of our system in addition to generating Chi-
nese calligraphy. Sect. 8.10 concludes the chapter and suggests some possible
directions for future research.

8.3 Problem Formulation and Overall System

Architecture

Let P denote a model with a parameterization E that is flexible enough to
represent a class of highly deformable shapes (a Chinese character of dif-
ferent styles in our case). Normally, constructing a flexible model requires
significant effort. On the other hand, an arbitrary instantiation from a flexi-
ble model could easily result in unacceptable results. Thus, generating novel
and yet aesthetically appealing calligraphy using the model-based approach
is by no means straightforward. Our approach is to make use of a constraint-
based analogous reasoning process, which we apply to a set of given training
examples. The basic idea of analogous reasoning is to fuse knowledge from
multiple sources to support a restricted form of reasoning [Sim75]. In our
case the knowledge sources are the training examples (which are in the form
of images), and these two terms will be used interchangeably throughout this
chapter.

Our proposed analogous reasoning process consists of three major phases:
shape decomposition, calligraphic model generation from examples, and artis-
tic calligraphy generation.

Calligraphic shape decomposition. Shape decomposition (or recovery) of a
given training example is equivalent to the problem of extracting struc-
tural features for constructing a reference model P. The reference model
is an instance of the model P to best represent the input example. The
underlying mechanism is character stroke segmentation/extraction.

Calligraphic model generation from examples. Given n reference models {Pi}
constructed from a set of training examples, a family of novel shapes P(ω)
can be defined by blending the n reference models, {Pi}, where the blend-
ing steps include: 1) identifying the correspondence of structure features
among the reference models, and 2) combining the aligned models, by
interpolation/extrapolation of the parameterization {E}. Note that the
newly derived shape family can be perceived as “re-parameterization”
via the blending parameter, ω, which controls the contribution of each
training example.

Artistic calligraphy generation. Given P(ω) and a set of aesthetics-related
geometrical constraints, artistic calligraphic artwork can be obtained by
identifying some ω which satisfies the given constraints.
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Fig. 8.2 shows the overall architecture of the proposed intelligent calligra-
phy generation system. At the heart of the system is an analogous reasoning

Fig. 8.2. Architecture of our intelligent calligraphy generation system

component that creates new calligraphy based on training examples and sat-
isfying all the aesthetic constraints. In our experiments the training examples
come from printed “copybooks” that present multiple calligraphic styles.

Our simulated analogous reasoning process is essentially data prediction
(either interpolation or extrapolation) subject to the aesthetical constraints.
For convenience we abbreviate “analogous reasoning process” to ARP and
the current “simulated analogous reasoning process” to SARP.

The system has three main components. The first component learns and
produces facsimiles of the existent calligraphic artwork in a hierarchical and
parametric form; these facsimiles form a calligraphic knowledge base serving
as the knowledge source for the SARP. The second component generates new
calligraphic artwork automatically through the SARP. The third component
applies constraint satisfaction to admit only those generated results that are
aesthetically acceptable. The three components are referred to as the fac-
simile component, the creation component, and the appreciation component,
respectively. The examination results led us to conclude that our approach
is practical and the system is capable of generating acceptable outputs.
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8.4 Hierarchical and Parametric Representation

No reasoning is possible and efficient without suitable knowledge represen-
tation. Before we elaborate on our intelligent calligraphy generation system
based on analogous reasoning, we will first introduce our hierarchical and
parametric representation of calligraphic artwork, which contributes tangi-
bly to the overall system performance and reasoning capability.

In our system we treat Chinese characters and calligraphic artwork as
images that are in a parametric form. This facilitates automatic processing
of knowledge. Modern Chinese characters are derived from pictographs of
complex shapes (see Fig. 8.5 for an example). The earliest Chinese charac-
ters are pictographs, which project meanings through shapes and images in
an intuitive fashion. Over time these characters gradually became symbols
and many basic features in different Chinese characters occur recurrently. To
take advantage of this representation redundancy, we devise a hierarchical
representation for Chinese characters.

8.4.1 Hierarchical Representation

It can be easily observed that many local features recur in many different
Chinese characters frequently. To capitalize on this image information re-
dundancy, we introduce a hierarchical representation of Chinese calligraphy.
A piece of Chinese calligraphy as an image is decomposed into six layers (or
levels): the constructive ellipse layer, the primitive stroke layer, the compound
stroke layer, the radical layer, the single-character layer, and the complete art-
work layer (see Fig. 8.3(b)). This hierarchical representation can avoid much
redundancy when storing the characters, and its various granularity makes
SARP more effective and the input reasoning source as well as the output
reasoning results more reusable. These six layers represent the calligraphic
artwork parametrically. All the input parametric representations of the cal-
ligraphic artwork together form a reasoning space for the SARP to generate
new aesthetic calligraphic artwork automatically.

The parametric representations adopted at all levels (to be described in
the next subsection) together form the parameter space E for modeling Chi-
nese calligraphic artwork.

For the prototype we have implemented 5 typical and most frequently
occurring primitive strokes (point strokes, horizontal strokes, vertical strokes,
left slanting strokes and right slanting strokes), 24 typical and most frequently
occurring compound strokes, and 36 radicals are used, as shown in Fig. 8.4.
Fig. 8.3(a) shows the hierarchical representation of the Chinese character
“zhe”, as in “Zhejiang”, the beautiful coastal province well known for its
wealth of scenic spots.

8.4.2 Six Levels of Parametric Representation

At Level 0 of the hierarchical representation, an artwork is viewed as a col-
lection of ellipses. These ellipses are called the “constructive ellipses” of the
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(a)

(b)

Fig. 8.3. (a) Hierarchical representation of a Chinese character (only four levels
are shown); (b) Six-level hierarchical representation of calligraphy

(a) (b) (c)

Fig. 8.4. (a) Five primitive strokes; (b) 24 compound strokes; (c) 36 radicals
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artwork (Fig. 8.3(b)). The “image” of the artwork will be rendered as the
regions in the image space that are covered by the constructive ellipses. This
representation is inspired by the Blum model [Blu67], in which a zonary area
is defined through an ellipse moving along a predefined curve. Each construc-
tive ellipse is parameterized by a 4 × 1 matrix, in which two rows store the
coordinates of the constructive ellipse’s center and the other two rows store
the lengths of the major and minor axes of the ellipse. When we traverse
the hierarchy from bottom up, such constructive ellipses are first “lined” up
to form “primitive strokes” (Level 1). Then primitive strokes are combined
to form “compound strokes” (Level 2) and subsequently to radicals (Level
3). Shape grammar rules are used for the composition (see Sect. 8.5.2). By
grouping radicals based on their spatial proximity, characters are formed
(Level 4). The learned examples of the same character in different styles will
be blended together to establish a flexible model of that character in the
model creation step (see Sect. 8.6). Finally, at Level 5, there is the top-level
constructive element, a calligraphy artwork, which may consist of more than
one character.

8.4.3 Advantages of Our Representation

(1) Reasoning from a set of existent calligraphy styles to generate new writ-
ing styles belongs to the hard domain of qualitative reasoning. Our para-
metric representation offers a tool to attack the challenging qualitative
reasoning problem through quantitative means—analogous reasoning to-
gether with aesthetic constraint satisfaction—to be described in the se-
quel.

(2) With the hierarchical representation, our intelligent system allows effi-
cient local learning of constructive elements, and the huge global knowl-
edge representation space is reduced to one characterizing only local
shape variations. Besides, the hierarchical nature of our representation
supports efficient retrieval (and thus reuse) of past calligraphic artwork
reasoning results (to be described in the sequel) at different representa-
tion levels.

(3) With our hierarchical parametric representation, calligraphy in all styles,
including the very cursive ones which are heavily deformed and distorted,
can be represented in a uniform six-level hierarchy and processed using
the same reasoning pipeline. This increases our system’s capability to
learn and generate cursive calligraphy, which is a very important aspect
of aesthetic calligraphy and a hot area for calligraphy artists.

8.5 Calligraphic Shape Decomposition

This is the process in which the hierarchical and parametric representations
are extracted from training examples—images of calligraphic artwork.
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8.5.1 Extracting Levels 0–1 Elements

To extract primitive strokes and thus the corresponding constructive ellipses
from a training example, we first compute the skeleton of the input image,
that is to compute a close approximation to the actual trajectory of the
brush when the calligraphic artwork was created. Various approaches have
been proposed for skeletonizing binary images of characters. We employed the
algorithm proposed in [HY00], where the extracted skeleton is composed of
segmented primitive strokes. Fig. 8.5 gives a step-by-step illustration. Such a
stroke decomposition is by no means optimal, and our system can benefit from
any improved decomposition algorithm.1 Once the skeletons of the primitive
strokes are identified, all the constructive ellipses can be computed efficiently
using the Bresenham ellipse rasterization algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 8.5. Extracting Levels 0-1 elements of a character from its image: (a) The
input image of a character, (b) the raw skeleton computed using a thinning algo-
rithm, (c) the plausible short branches detected and color marked, (d) the short
branches identified and removed, (e) the skeleton segmented into different strokes
in the character and color coded, and (f) the reconstructed character using the ex-
tracted Levels 0-1 elements. Note that the reconstructed image (f) and the original
image (a) have some slight differences at the ends of some of the strokes, e.g. areas
indicated by the red rectangles

8.5.2 Extracting Levels 2–3 Elements

We identify compound strokes and radicals by analyzing the spatial relation
between the primitive and compound strokes, respectively, through carefully
designed shape grammar production rules. The syntactic description of any

1 To further enhance the robustness of the stroke identification step, several struc-
tural variants of the five primitive strokes (Fig. 8.4) were used.
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constructive element is represented using the syntax of the production system
and generated by rule deduction. As an example, the shape production rule
for the compound stroke in the upper leftmost corner of Fig. 8.4(b), denoted
as CS1, is as follows:

IF horizontal(a) AND vertical(b) AND ontop(a,b) AND onleft(a,b) AND
touch(a,b)
THEN CS1 := {a,b},

where horizontal(a), vertical(b), ontop(a,b), onleft(a,b) and touch(a,b) are
the predicates indicating the relationships of horizontal primitive stroke, ver-
tical primitive stroke, a on top of b, a on left side of b and {a,b} touching
each other, respectively.

To increase the reliability of the extraction process, we make use of fuzzy
set theory as in [LHS98] so that a confidence value will be associated with each
shape grammar production rule via the deduction process. The overall con-
fidence of the shape grammar production can be derived by the confidences
of all its statements. The rule that yields the highest overall confidence will
be applied for the corresponding stroke composition.

8.5.3 Extracting Level 4 Elements

To extract the constructive elements at Level 4, we need to determine the
radicals that can be grouped together to form a character. This is equiva-
lent to the well-known problem of “character segmentation” in the pattern
recognition field. In our system we use the standard projection analysis as in
[YS94] to segment the individual characters in a calligraphy artwork.

8.6 Calligraphic Model Creation from Examples

8.6.1 Principles of Calligraphic Model Creation

To generate new calligraphic artwork, we apply an Analogous Reasoning
Process (ARP) to a set of training examples of different calligraphic styles.
The notion of generation/synthesis in artistic design was discussed by Simon
[Sim75] in 1975. Keane [Kea88a] applied analogical mechanisms to problem
solving. In general one can understand ARP as a process that synthesizes
novel knowledge (shapes in our case) by fusing (blending in our case) together
certain knowledge sources (the training examples). To support the fusion,
establishing feature correspondence between the knowledge sources is needed.

In principle the ARP can be applied at different levels of the hierarchy,
resulting in different artistic effects. Assume that the ARP is applied to Pk,m,
the m-th constructive element at the k-th level of the hierarchical representa-
tion and there are n different versions of Pk,m: P1

k,m, · · · , Pn
k,m derived from

the n training examples, i.e., the independent knowledge sources in the ARP.
The result of the ARP is denoted as Pr

k,m. Then the general mathematical
principle in the adopted ARP can be stated as:
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Pr
k,m =

∑n
i=1 ωiPi

k,m, (8.1)

where ωi (i = 1, · · · , n) is defined as the analogous reasoning intensity for
Pi

k,m with the constraint that
∑n

i=1 ωi = 1. Obviously, Pi
k,m with a higher

value of ωi contributes more to the overall reasoning result.
The suggested ARP can be interpreted as either an interpolation or an

extrapolation process. Note that here we assume a one-to-one correspondence
among different versions of Pk,m. In reality, a constructive element (a con-
structive ellipse, a primitive stroke, etc.) derived from a training example
can correspond to one element in another training example in more than one
way. A feature correspondence step (to be described in the next subsection)
is therefore required before one can blend together features extracted from
the different examples. In our intelligent calligraphy generation system, all
the analogous reasoning intensities can be adjusted by the user manually
through a graphical interface; or they can be generated randomly and fed
to a subsequent phase that automatically filters out the ones violating some
aesthetics-related constraints.

8.6.2 Fusing Knowledge Sources in ARP

To establish the feature correspondence between training examples for knowl-
edge fusion, we first derive a discrete planar curve for each constructive ele-
ment Pi

k,m using the centers of all the constructive ellipses associated with
it. The curve forms the skeleton of the element, and critical points on the
planar curves are detected using the algorithm in [ZC95] as the key points
for setting up the correspondence.

In our application we first assume the shape of a constructive element
in the font style “Kai” (GB2312) as used in the recent version of Microsoft
Word to be the standard reference, which we denote as Pstd

k,m. Note that
because the shape of the element Pk,m has already been extracted in the
shape decomposition phase, we can easily compute the deviation Fi

k,m by

which the shape of the i-th source Pi
k,m differs from that of Pstd

k,m through
applying the shape difference operator �. The exact definition of this operator
will be provided and explained in detail in the next chapter.

Fi
k,m � Pi

k,m � Pstd
k,m (8.2)

With all the deviations of the reasoning sources F1
k,m, · · · ,Fn

k,m com-
puted, we can then derive the overall deviation Fr

k,m, as follows:

Fr
k,m = �(F1

k,m, · · · ,Fn
k,m, ω), (8.3)

where � is defined as the analogous reasoning mechanism simulation opera-
tor, which is currently implemented as an interpolation/extrapolation process
in our prototype system. ω is the aesthetic viewpoint sequence dictating the
weights and order of the contributions from different sources. The ordered set
of the intensities forms what is called the “viewpoint sequence” of the ARP.
So not only will different reasoning intensities affect the final output, but
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different orders of presenting the training examples will also lead to different
calligraphy results.

Finally, by adding back the shape of Pstd
k,m, the standard constructive

element associated with the reasoning result Pr
k,m in the ARP, we obtain:

Pr
k,m = Fr

k,m ⊕ Pstd
k,m, (8.4)

where the operator ⊕ is a reverse function of the operator �.
Note that the ARP can be applied not only to the constructive elements

from all the reasoning sources, but also to some topological constructors (in
the form of geometric transformation matrices for the corresponding con-
structive elements) in order to further increase the reasoning power. Some
simple ARP simulation operators for the topological constructors include
arithmetic mean, geometric mean and harmonic mean.

8.6.3 A Computational Psychology Perspective

If all the intensities of the knowledge sources fall within (0, 1), the ARP is in
fact simulated using an interpolation process; otherwise it is simulated using
an extrapolation process. From a psychological point of view, the existence
of negative values for the reasoning intensities reflects the inverse reasoning
of brain activities with certain input source knowledge being treated as neg-
ative examples. On the contrary, positive values correspond to exaggeration
of brain activities where the larger an input example’s reasoning intensity
is, the more heavily the generated result will follow the style of that input
source knowledge. When the number of knowledge sources is greater than
two, the ARP mimics combined thinking activity, which will make use of
several knowledge reference cases during the reasoning process.

8.7 Generating Artistic Calligraphy

With the mechanisms we describe above in place, candidates of novel cal-
ligraphic artwork can easily be generated by random perturbations of the
reasoning intensities. As the analogous reasoning steps can be applied to
something as fine as one single parameter of a constructive ellipse or some-
thing as coarse as all the parameters of a character, we have a highly flexible
system to vary the shapes and generate many possible candidates. We de-
scribe next a filtering step to make sure that only the candidates which meet
some aesthetic requirements would be output. The requirements would come
from the training examples.

8.7.1 Extracting Aesthetic Constraints from Training Examples

Aesthetic constraints are criteria by which the aesthetic quality of a candi-
date or its parts is to be quantified and measured. They are categorized as:
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1) constraints for visual appearance of a constructive element, and 2) con-
straints for spatial relationship between neighboring constructive elements.
Fortunately the proposed ARP can automatically guarantee the satisfaction
of the former one (at least under most circumstances) due to the parametric
nature of the constructive elements. Therefore we only need to focus on deriv-
ing and applying constraints of the second type to guarantee the generation
of visually pleasant novel calligraphy.

An important consideration for a quantifiable constraint on aesthetics is
the degree of overlapping between two constructive elements. Three types of
overlapping between a pair of elements, a and b, are used in our system: the
x dimensional overlapping ϑx(a,b), the y dimensional overlapping ϑy(a,b),
and the area overlapping ϑs(a,b). All three measures are computed based
on the bounding boxes of the constructive elements. After the overlapping
measures are computed for all the element pairs of the training examples,
their upper and lower bounds are recorded. The upper bound is used to
avoid two neighboring elements within a newly generated calligraphy artwork
being squeezed together while the lower bound is to avoid the neighboring
elements being too far apart. These overlapping measures are then used to
direct the process of generating the upper-level constructive elements from
the lower-level ones. The overall effect is to constrain the ARP so that it will
not perturb too much the spatial relationships of the sub-components of each
constructive element as they are found in the training examples. Thus, for
example, if a newly generated calligraphy candidate from the ARP, contains
some sub-constructive elements whose x dimensional overlapping is smaller
than the derived lower bound, the calligraphy candidates will be rejected.

If needed, the upper and lower bound constraints of the ARP can be
relaxed in order to allow for results of new styles that cannot be easily imag-
ined. In our system the end user can interactively adjust these two bounds
according to his/her preferences. Thus, choosing the best values for the two
bounds becomes a matter of the reviewer’s personal aesthetic taste. Accord-
ing to the experience of using the proposed system, relaxing or ignoring the
constraints in our analogous reasoning process seems to correspond to the
creation of a more cursive and running style writing. Further study on the
psychological analogy of the above computational simulation should be an
interesting future research direction (see Sect. 8.10.1).

8.7.2 Past Results Reuse for Efficient Reasoning

While the ARP can be simulated by a random process which could be com-
putationally intensive, reuse of similar past reasoning results (as experience)
can be incorporated to make the reasoning process more efficient. In addition,
the hierarchical representation allows a whole or partial “experience” to be
reused. Our proposed system therefore proposes a high degree of reusability
of past reasoning results.
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8.8 Experiment Results

Fig. 8.6 shows the results obtained by our prototype system based on six
training examples as the input knowledge sources and linear interpolation
is used to simulate the generation step of the proposed analogous reasoning
process. Fig. 8.7 shows the results of using five training examples and a non-
linear interpolation process. Fig. 8.8 shows another set of results. It can be

Fig. 8.6. A single character in many styles; the first row is the training examples,
and the other rows are automatically generated by our system

easily observed that there is consistency in style among characters within the
same newly-generated calligraphic piece.

The results we obtained demonstrate that our approach can yield novel
calligraphy styles given some existing ones. To verify that the system was in-
deed able to generate quality outputs, we asked practicing artists, art school
professors and amateurs to examine the outputs; most of them considered
our generated calligraphy to be acceptable. In addition, we have also an-
alyzed the sensitivity in terms of the “creativity” of the system when the
number of training examples is varied. The experiment was done using train-
ing examples with a varying number of styles which include “Kai”, “Li”,
“Xingshu”, “Weibei”, “Xingkai”, “Xingchao”, and “Kuangchao”. We invited
six calligraphic fans with at least more than 2 years’ writing experience and
four professional calligraphists to form a review committee. They cast votes
on the calligraphic artwork generated by the system. If an artwork received
more than seven votes, it was considered a new calligraphic work. With more
training examples of different styles, the chance of generating a creative and
yet aesthetically acceptable calligraphy pieces increases. Also, between linear
and non-linear APR, the latter is found to be able to generate more creative
calligraphy pieces. Using 6 or 7 training examples, the linear ARP generated
about 30 acceptable pieces of calligraphy, and the non-linear ARP generated
more than 50.

We also analyzed the sensitivity in terms of the increase in creativity of
the system when the number of learned samples was varied. Fig. 8.9 reports
the results, where the sample styles learned are the shapes of the “Kai”,
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8.7. A “couple” in many styles. (a) Training examples; (b)—(k) Some selected
computer generated results

“Li”, “Xingshu”, “Weibei”, “Xingkai”, “Xingchao”, and “Kuangchao” styles.
We invited six calligraphic fans with at least more than 2 years’ writing
experience and four professional calligraphists to form a review committee,
including a professor major in calligraphy in an art school. They cast votes
on the calligraphic artwork generated by the system. If an artwork received
more than seven votes, it was considered a new calligraphic work. Fig. 8.9
clearly shows that with more learned samples, the chance of generating an
acceptable calligraphic piece increases.

Fig. 8.10 presents an interesting example. The calligraphy (the character
“forever” in Chinese) in the top of the picture was generated fully automat-
ically using our prototype system. The horse was generated through human
manipulation using paint-brush software [XTLP04]. The character is in a
rapid-running style that is in the same spirit as that of the running horse.
Without the use of the proposed intelligent system, generating a piece of
calligraphy that would match perfectly the painting is almost impossible.
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(a)

(b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Fig. 8.8. (a) Learned samples in seven styles. (b to o) Some selected samples of
newly-generated calligraphy
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(a) (b)

Fig. 8.9. System’s creativity (vertical axis—number of acceptable results) against
number of learned samples (horizontal axis) (a) Single-character level using linear
reasoning (b) Single-character level using non-linear reasoning

Fig. 8.10. “Forever running”
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8.9 Possible Applications

The system described in this chapter is an innovative and yet practical system
for generating novel Chinese calligraphy. Its effectiveness has been rigorously
tested with satisfactory results. Computer-generated novel artistic calligra-
phy has the following potential applications.

(1) Personalized font generation. By importing the fonts installed in a
computer, our proposed system can first compute each character of a
flexible model by aligning all the corresponding characters of the differ-
ent fonts. Then the system can ask for a small set of characters written
by the users as additional knowledge. Based on these knowledge sources,
the proposed ARP is simulated but now with the additional criterion to
best match the user inputs. Because of the uniformity of the chosen hi-
erarchical representation, the resulting set of intensities can be directly
applied to the full character set of all the existing fonts, resulting in a font
customized to the user’s handwriting. We performed a simple test—the
results are shown in Fig. 8.11. The top row shows the user’s handwritten
input characters and the ones below are generated by mimicking the writ-
ing style of the input. The results are surprisingly impressive. Of course,
if the user’s handwriting is so peculiar and unique that it lies outside the
feasible space composed from all the existing fonts, the proposed system
may still fail.

Fig. 8.11. Results of automatic handwriting style mimicking and calligraphy
generation using the learned writing style from a single character: the first row of
bigger characters are single characters written by different users in their respective
handwriting styles, and the other rows are the automatically mimicked characters
using the corresponding captured handwriting style

(2) Handwriting beautification. Handwriting is considered an important
factor affecting people’s impression of the writer. In many places, espe-
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cially in Asia, handwriting is looked on as something that reflects the
quality of a person. It is something like a speaking tone and accent in
western society. To improve on one’s handwriting could take a long time,
which many VIPs often suffer by taking long hours of intensive and expen-
sive personal coaching on handwriting during their own limited free-time.
In situations where personal handwriting is preferred, our system can pro-
vide beautification of a person’s handwriting. Our system can be applied
to beautify people’s handwriting. For instance, the user first writes his
own handwriting, which is input as one source for the ARP. He then
specifies some existing aesthetically appealing writing styles as the other
sources. By manually setting the reasoning intensities, he can choose the
extent to which his personal handwriting would be rectified, while at the
same time preserving some degree of his original personal handwriting
style. The computer can remember the setting, and so in the future he
can always generate his beautiful handwriting with the same consistent
style. A preliminary market survey has revealed a strong welcome for
handwriting software with such a functionality.

(3) Handwriting recognition. Artistic calligraphy tends to contain many
distorted characters. Normal Optical Character Recognition (OCR) tech-
niques cannot effectively deal with them because they are mostly based
on templates of styles that are commonly used.

However, each person is likely to have his own personal handwriting
style. Thus there are countless different styles in the world. With our
system, a relationship between the shapes of the same character written
in different styles can be established. Such a relationship between even a
small number of typical handwriting styles would allow the shapes of the
character in a wide range of styles to be predicted by the system. This
mechanism can be used in a calligraphy recognition system.

The proposed system is essentially a specific version of a deformable
model for modeling Chinese characters of different calligraphic styles.
The representation power and yet visually appealing properties of the
adopted model makes it suitable for deformable model based handwriting
recognition [CYC98]. In addition, the modeling approach based on the
unified ARP is an excellent candidate for writer adaptation in related
handwriting recognition systems.

(4) A Chinese CAPTCHA agent. The CAPTCHA project at Carnegie
Mellon University (http://www.captcha.net) presents a good case for pos-
sible adoption of our approach. A Chinese CAPTCHA agent can be de-
veloped to avoid web sites crawling with software robots. The agent would
generate heavily distorted Chinese writings which are readable by humans
but not by any machine-computable algorithm.
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8.10 Conclusion and Future Work

8.10.1 Conclusion

In this chapter our thesis has been that with the parametric hierarchical
knowledge representation of Chinese calligraphy, the computer is able to cre-
ate new Chinese calligraphic artwork in a variety of styles fully automatically
and in real time based on a compact set of printed calligraphic inputs. The
creativity capability of the proposed intelligent calligraphy generation system
is mainly due to the huge feasible space available for the simulated analogous
reasoning process. The experiment results show that our approach can indeed
generate calligraphic artwork that can stand among existing ones, regardless
of whether they appear to be realistic or completely inventive.

8.10.2 Future Work

There are a number of possible extensions to our proposed system. Some
immediate future extensions to our proposed system include: 1) extending
our approach to cover other languages; 2) adding a feedback component to
be used to fine tune the aesthetic constraints through reinforcement learning;
3) capturing and translating the “psychological” states of other media so that
they can be linked to the corresponding states in calligraphy, and therefore
letting one use music to direct the generation of calligraphy.

Although we focus on automatic generation of Chinese calligraphy in this
chapter, the lure and challenge of automatic generation of artistic calligraphy
should not be limited to the Chinese language. See Fig. 8.1 (b), where artistic
English and Arabic numerals are also used. So an immediate future work item
would be to extend our algorithm to cover calligraphy in more languages. An-
other future direction is to add a feedback component behind the constraint
satisfaction component to automatically tune for the best thresholds to be
used in the constraint satisfaction. The tuning can be based on the evaluation
marks given by human reviewers on the visual quality of the automatically
generated calligraphy. This backward reinforcement mechanism can make our
system more able to cater to the personal aesthetic taste of the reviewers.
Further improvement of the constraint types, and different tolerances for dif-
ferent parts acquired either via training examples , or prior knowledge about
Chinese characters, may also improve our system’s performance.

There is a tradeoff between the creativity and the practical acceptability of
interpolation results. Too strict a set of constraints could limit the creativity,
while too loose a set of constraints could harm the overall acceptability of
the results. How to find the best tradeoff point should be a worthwhile future
pursuit.

Another interesting extension of this project is to explore the relationship
between the “psychological” state and the “creativity” as possessed by the
different simulated analogous reasoning processes. We can call this “quanti-
tative aesthetics”. If such a relationship can be established for not only cal-
ligraphy but also other computer synthesized creative works, e.g. computer
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music, then there could emerge the possibility of an intelligent multimedia
application that couples the “psychological” states of the two media; that is,
the style of the aesthetic fonts generated by our system can be dynamically
changed according to music being played and the mood of human beings. In
such an application, the rhythm and the spiritual content of a piece of music
are expected to be automatically associated with artistic fonts carrying the
same spiritual interpretations. Such a bridge between audio and visual ex-
pressions based on their psychological contents could in turn contribute to a
better understanding of the artistic thinking of human beings.

The input calligraphic artwork samples we used are in different well-
disciplined styles in the Chinese calligraphy world, based on which our system
can produce a large number of new writing styles. How to create a new writing
style with a pre-specified constraint on its style (as opposed to a character) is
a much harder and more challenging research issue. In order to solve the prob-
lem, we need to extract the relationships between the parameters driving the
analogy; these parameters include the analogous reasoning’s source intensities
and quantitative definitions for the visual features of different writing styles.
The degree of automation to which our system can learn the sample source
knowledge from copybooks can be further improved, which is a non-trivial
pattern recognition problem for characters in cursive writing style.

Another exciting direction is “quantitative aesthetics”. Every piece of
newly created calligraphic artwork has a set of source intensities associated
with the reasoning. Some generated results are more beautiful than oth-
ers. The task is to find out the relationships among these source intensities
and how they translate into aesthetic values. This may develop into a very
fundamental topic in computational cognition. We will present some of our
preliminary attempts to quantitative aesthetics research in Chapter 10.
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9

Two Perspectives on Automatic Generation of

Artistic Chinese Calligraphy

9.1 Overview

In this chapter we offer two perspectives on the understanding of the system
design and development practices we have gone through during the construc-
tion of our prototype system for automatic generation of artistic Chinese
calligraphy: from a system engineering perspective (Sect. 9.2—Sect. 9.6) and
from an artificial intelligence perspective (Sect. 9.7—Sect. 9.10). In the first
part of the chapter we focus on the mathematical modeling of the cognitive
process of calligraphy writing learning and novel style generation, aiming at
providing sufficient technical details for the redevelopment of a similar pro-
totype system; in the latter part of the chapter we concentrate on the study
and experiments on a human being’s creative thinking and the computational
simulation of the intelligence involved in the process.

9.2 A System Engineering Perspective on Automatic

Generation of Artistic Chinese Calligraphy

In this part of the chapter (Sect. 9.2—Sect. 9.6) we study in depth the sys-
tem design and implementation issues of our automatic Chinese calligraphy
generation system from a system engineering perspective. We hope this will
not only shed light on understanding the working principles of our automatic
Chinese calligraphy generation algorithm, but also provide some useful in-
formation for system engineers to develop a system equipped with similar
functionalities.

The structure of this part is organized as follows. Sect. 9.3 provides the
mathematical modeling and implementation details for Sect. 8.4. Similarly,
Sect. 9.4 concretizes the technical details for Sect. 8.5; Sect. 9.5 supplements
Sect. 8.6 and finally Sect. 9.6 details Sect. 8.7.
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9.3 Hierarchical and Parametric Representation

9.3.1 Hierarchical Representation

We can give a definition over the hierarchic representation of calligraphic
artwork based on the concept of equivalent relationship. If R is the equiva-
lent relationship defined over the field of P = {p1, p2, · · · , pn}, i.e. R is (1)
self-reflective, (2) symmetrical, (3) transitive, field P can be divided into a
collection of sub-sets P1, P2, · · · , Pm under R. We call pi equivalent to pj

if (pi, pj) ∈ R, 1 � i, j � n. Using the concept of equivalent relationships,
we can now introduce the formal definition for the multi-layer calligraphic
artwork representation.

In an image of a piece of calligraphic artwork, we adopt the following five
kinds of equivalent relationships to establish our six-level hierarchic repre-
sentation for one piece of calligraphy: R1: all the constructive ellipses that
compose to the same primitive strokes are equivalent to each other; R2: all
the primitive strokes that compose to the same compound strokes are equiv-
alent to each other; R3: all the compound strokes that compose the same
radical are equivalent to each other; R4: all the radicals that compose the
same Chinese character are equivalent to each other; R5: all the characters
in the same piece of calligraphic artwork are equivalent to each other.

Suppose in the parametric representation of a calligraphic artwork C,
there are num0 constructive ellipses, denoted as F0 � {P0,1, · · · ,P0,num0},
where each P0,i is a constructive ellipse. And F0 is divided into num1 equiv-
alent classes (of primitive strokes) under the equivalent relationship of R1,
and denote these classes as F1 � {P1,1,P1,2, · · · , P1,num1}, where each P1,i

is a primitive stroke. These num1 primitive strokes are further divided into
num2 equivalent classes (of compound strokes) under the equivalent rela-
tionship of R2, and denoted as F2 � {P2,1,P2,2, · · · ,P2,num2}, where each
P2,i is a compound stroke. All the compound strokes are divided into num3

equivalent classes (of radicals) under the equivalent relationship of R3, and
denoted as F3 � {P3,1,P3,2, · · · ,P3,num3}, where each P3,i is a radical.
Finally, all the radicals are divided into num4 equivalent classes (of single
Chinese characters) under the equivalent relationship of R4, and denoted as
F4 � {P4,1,P4,2, · · · , P4,num4}, where each P4,i is a single Chinese charac-
ter. That is, in a certain calligraphic artwork of Chinese handwriting C, there
are num0 constructive ellipses P0,i, i ∈ {1, 2, · · · , num0}. Or we can view C
as being composed by num1 primitive strokes P1,i, i ∈ {1, 2, · · · , num1}.
Namely, C contains num2 compound strokes P2,i, i ∈ {1, 2, · · · , num2}.
Or we can say that C contains num3 radicals P3,i, i ∈ {1, 2, · · · , num3}.
We can also say that C contains num4 single Chinese characters P4,i,
i ∈ {1, 2, · · · , num4}. From the point of view of level 5 in the hierarchical
representation, C is actually P5,1 with num5 = 1.

The hierarchical structural knowledge representation of calligraphic art-
work can be stated formally as Eq. (9.1):

Pk,l �

{ {Pk−1,i|(Pk−1,i,Pk−1,1) ∈ Rk} (l = 1) (9.1.1)
{Pk−1,i|(Pk−1,i,Pk−1,qk,l

) ∈ Rk} (l �= 1) (9.1.2)
, (9.1)
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where in Eq. (9.1.2), qk,l = min{t|Pk−1,t ∈ ⋃l−1
s=1 Pk,s,Pk−1,t ∈ Fk−1}; and

throughout Eq. (9.1), Pk−1,i ∈ Fk−1, k = 1, · · · , 5. We denote the number
of elements in set M as |M|, then the relationship Eq. (9.2) holds within the
hierarchy of Chinese calligraphic artwork representation:

|Fk−1| =

|Fk|∑
i=1

|Pk,i| = numk−1 (k = 1, · · · , 5). (9.2)

The hierarchical representation describes how an artwork is composed
from constructive ellipses at the lowest level. Each higher level describes how
to generate one level of representation from the information at one level down.
It is essentially a tree-like knowledge representation.

Note that since the number of compound strokes and radicals imple-
mented in the system is limited because of resource limitations, it is possible
that some lower-layer element cannot be combined with other elements on
the same level. In this case, that lower-layer element promotes itself to the
next level. An example is the primitive stroke P1,1 on Fig. 8.3(a), which be-
comes the compound stroke P2,1 on the next level. Similarly, it is possible for
a radical to degrade to a compound stroke, and then to a primitive stroke.

9.3.2 Six Levels of Parametric Representation

We denote the i-th constructive element on the k-th level as Pk,i, and its ma-
trix form parametric representation as Ek,i. If k � 1, Pk,i must be composed
of one or more constructive elements on one level down; we call the latter
sub-constructive elements. All the information needed for the composition of
Pk,i is stored in Tk,i, the topological constructor of Pk,i.

To derive Ek,i, we need first to define several operators for calligraphic
knowledge representation and operations to simulate the ARP. A quick in-
dex of these operators is in Table 9.1, which is a list over all the operators
defined for knowledge representation and simulating ARP with constraint
that satisfy the requirements of our system for generating artistic calligraphy
automatically.

Table 9.1. Operators defined

Operators Definition Operators Definition

� Eq. (9.18) � Eq. (9.21)

⊕ Eq. (9.25) � Eq. (9.27)

ϑx(), ϑy(), ϑs() Eq. (9.28) θx(), θy(), θs() Eq. (9.29)

∇b
m,n() Eq. (9.7) ∇c

n() Eq. (9.9)

∇o
n() Eq. (9.10) ∇d

n() Eq. (9.11)

∇e
n,m() Eq. (9.12) ∇g

t Eq. (9.16), Eq. (9.17)

∇f
n() Eq. (9.19) ⊗ Eq. (9.24)

We use Pk,i to represent the bounding box of the image space that the

element Pk,i occupies, that is, Pk,i � {Pk,i.h,Pk,i.w,Pk,i.x,Pk,i.y}, where
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Pk,i.h is the box’s height, Pk,i.w the box’s width, and (Pk,i.x,Pk,i.y) the
box’s center. All the coordinates are in the world coordinate system.

On the 0-th level, the calligraphy is viewed as a set of ellipses, denoted
as F0. These ellipses are called the “constructive ellipses” of the calligraphic
artwork (Fig. 8.3(b)). For each constructive ellipse, P0,i, let (xi, yi) be the
center and ai and bi the lengths of its major and minor axis respectively.
Then the “image” of the calligraphic artwork C can be represented as the
image area covered by all its constructive ellipses, defined as Eq. (9.3).

Img(C) � {(x, y) ∈ R2|∃P0,i ∈ F0,
(x − xi)

2

ai
2

+
(y − yi)

2

bi
2 � 1}. (9.3)

This representation is inspired by the Blum model [Blu67], in which a zonary
area is defined through an ellipse moving along a predefined curve. The ranges
for the horizontal and vertical coordinates xi, yi and the horizontal and ver-
tical distances ai, bi are normalized with respect to the bounding box of the
constructive ellipse P0,i, as defined in Eq. (9.4). The resultant respective val-
ues for xi, yi, ai, bi are denoted as x′i, y

′
i, a

′
i, b
′
i and recorded in the matrix form

representation of P0,i, such that E0,i � (x′i, y
′
i, a

′
i, b
′
i)

T.
Suppose that the element Pk+1,1 is composed of n elements on the next

lower level, Pk,l1 , · · · ,Pk,ln . Then Ek+1,1 can be derived by concatenating the
matrices Ek,l1 , · · · ,Ek,ln column by column in sequence. Since the parametric
representation of a constructive ellipse is a 4×1 matrix, concatenation at the
higher levels will produce matrices having exactly four rows. Each row of
the matrix forming parametric representation of a constructive element is
called a field of the element’s parametric representation. Different fields of
an element can be separately reasoned out.

The parametric representation of each constructive element only records
the relative coordinates. The use of relative coordinates makes the represen-
tation independent of other elements’ representations, and hence reusable in
different SARPs. Also, because of the use of relative coordinates, coordinate
transformation is necessary to convert the relative coordinates between dif-
ferent relative coordinate systems. We include the coordinate transformation
associated with Ek,li in Pk,li ’s topological constructor, Tk,li .

9.3.3 Deriving Parametric Representations for Constructive
Elements

9.3.3.1 Level 0 of the parametric representation

For each constructive element on level 0, i.e. constructive ellipses P0,i in
our hierarchy, we use a procedure introduced at Sect. 9.4.1 to compute the
ellipse’s four parameters (xi, yi, ai, bi). We then employ Eq. (9.4) to convert
the absolute coordinates (xi, yi, ai, bi) into relative coordinates (x′i, y

′
i, a

′
i, b
′
i),

which are actually recorded by E0,i.
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⎛⎜⎜⎝
x′i
y′i
a′i
b′i

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
xi−P0,j .x

P0,j .w
+ 1

2

yi−P0,j .y

P0,j .h
+ 1

2
ai

P0,j .w
bi

P0,j .h

⎞⎟⎟⎟⎟⎟⎠ . (9.4)

9.3.3.2 Levels 1–5 of the parametric representation

To depict the order by which several constructive elements compose one piece
of calligraphic artwork in a level-by-level method, we also introduce the topo-
logical constructor in our hierarchic representation. Each of the five levels
(1-st level to 5-th level) in the representation has its individual topological
constructor. All the topological constructors in one complete piece of calli-
graphic artwork are also managed on five levels, namely the primitive stroke
level, the compound stroke level, the radical level, the single character level
and the whole calligraphy level. All these form a topological tree.

Recall in Sect. 9.3.1, the i-th element on the k-th level in the hierar-
chy is denoted as Pk,i, and Tk,i is the topological constructor associated
with Pk,i. Tk,i carries the topological constructive relationship to compose
element Pk,i based on Pk−1,1+lk,i

, Pk−1,2+lk,i
, · · · , Pk−1,|Pk,i|+lk,i

, where

lk,i =
∑i−1

s=1 |Pk,s|. And we can derive the topological constructor Tk,i using
matrix Eq. (9.5).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tk,i � (TCRk,i,TCSk,i)

TCRk,i �

⎛⎜⎜⎜⎝
TRk,1+lk,i

TRk,2+lk,i

...
TRk,|Pk,i|+lk,i

⎞⎟⎟⎟⎠
TCSk,i �

(
TSk,1+lk,i

,TSk,2+lk,i
, · · · ,TSk,|Pk,i|+lk,i

)
(9.5)

In Eq. (9.5), lk,i �
∑i−1

s=1 |Pk,s|; Pk,s ∈ Fk; k = 1, · · · , 5 and TCRk,i,TCSk,i

are the scale and transition transformation components of the topological
constructor Tk,i. The definitions for matrices TRk,z ,TSk,z , which are the
elements of TCRk,i,TCSk,i are as Eq. (9.6),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TRk,z �

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ Pk,i.w

Pk−1,z .w
0

0
Pk,i.h

Pk−1,z .h

⎞⎠ (k = 2, 3, 4)

I2×2 (k = 1)

TSk,z �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝ Pk−1,z .x−Pk−1,z .w

2 −Pk,i.x

Pk,i.w
+ 1

2

Pk−1,z .y−Pk−1,z .h

2 −Pk,i.y

Pk,i.h
+ 1

2

⎞⎟⎠ (k = 2, 3, 4)

02×1 (k = 1)

, (9.6)

where z = 1 + lk,i, 2 + lk,i, · · · , |Pk,i| + lk,i, I is a unit matrix and 0 is a full
zero matrix.
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With topological constructors of the calligraphic artwork, a one-to-one
mapping between points at different levels in its hierarchical representation
can be established. That is any point [xk,i, yk,i] in the image space taken
up by Pk,i is uniquely mapped to the point [xl,t, yl,t] in the image space
taken up by Pl,t. Without loss of generality, we assume l > k. According
to our hierarchical representation, for any [xk,i, yk,i] there must exist such a
chain: Pk,i ∈ Pk+1,m1 ∈ · · · ∈ Pk+(l−k−1),ml−k−1

∈ Pl,t, where Pk+j,mj
∈

Fk+j (j = 1, 2, · · · , l − k − 1).
For any point [xm,n, ym,n] on the m-th level in the hierarchy, which falls

within the image space taken up by Pm,n, we can use the matrix operator
∇b

m,n to find its correspondent point ∇b
m,n([xm,n, ym,n]) on the (m + 1)-th

level in the hierarchy:

∇b
m,n([xm,n, ym,n]) � (TRm+1,n[xm,n, ym,n]T + TSm+1,n)T. (9.7)

We can also find the correspondent point [xl,t, yl,t] on the l-th level in
the hierarchical representation for any point [xk,s, yk,s], which is on the k-th
level in the hierarchy and falls within the image space taken up by Pk,s by
applying the above relationship iteratively as Eq. (9.8).

[xl,t, yl,t] = ∇b
l−1,ml−k−1

(
· · ·

(
∇b

k+1,m1

(∇b
k,s([xk,s, yk,s])

)))
(9.8)

We introduce the matrix operator ∇c
n which can generate an f ×∑n

l=1 dl

dimensional matrix M = (mi,j)f×P
n
l=1 dl

by concatenating n input matrices
Ml = (ml,i,j)f×dl

, which is individually an m × dl (l = 1, 2, · · · , n) dimen-

sional matrix. That is, we can denote M � ∇c
n(M1,M2, · · · ,Mn) if, and

only if, Eq. (9.9) holds.

mi,j =

{
mz+1,i,j−P

z
l=1 dl

(9.9.1)
m1,i,j (9.9.2)

. (9.9)

In Eq. (9.9.1),
∑z

l=1 dl < j �
∑z+1

l=1 dl, z = 1, 2, · · · , n − 1. In Eq. (9.9.2),
j � d1.

A slight variation of ∇c
n leads to a new operator ∇o

n defined in Eq. (9.10).
∇o

n concatenates some matrices and transposes the resultant matrix. Based
on the definition of ∇c

n, we further define the matrix operator ∇d
n as Eq.

(9.11), which concatenates n copies of the input matrices.

∇o
n(M1,M2, · · · ,Mn) �

(
∇c

n(M1,M2, · · · ,Mn)
)T

, (9.10)

∇d
n(A) � ∇c

n(A,A, · · · ,A︸ ︷︷ ︸
n matrices As

). (9.11)

Once again, based on ∇d
n a new matrix operator ∇e

n,m is defined as Eq.
(9.12),
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∇e
n,m(En,m) � ∇c

2

(
∇o

2(TRn,m,02×2),∇o
2(02×2,TRn,m)

)
En,m+

∇d
col(En,m)

(
∇o

2(TST
n,m,01×2)

)
,

(9.12)

where col(En,m) is the number of columns in matrix En,m and 02×2 is a
2×2 dimensional full zero matrix. ∇e

n,m converts the matrix form parametric
representation En,m for the constructive element Pn,m into its correspondent
part in the matrix form parametric representation En+1,l for the constructive
element Pn+1,l, in which Pn,m ∈ Pn+1,l.

Now we can derive the formal definition for the hierarchical and paramet-
ric representation for calligraphic artwork as Eq. (9.13),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ek,i = (x′i, y
′
i, a

′
i, b
′
i)

T (P0,i ∈ F0) (k = 0),

Ek,i = ∇c
|Pk,i|

(
∇e

k−1,1+lk,i
(Ek−1,1+lk,i

),

∇e
k−1,2+lk,i

(Ek−1,2+lk,i
), . . . ,

∇e
k−1,|Pk,i|+lk,i

(Ek−1,|Pk,i|+lk,i
)
)

(k = 1, · · · , 5),

(9.13)

where lk,i =
∑i−1

s=1 |Pk,s|.

9.4 Facsimiling Existent Calligraphy

This is the process in which the hierarchical parametric representations are
extracted from input images of existent calligraphic artwork. The reason why
we choose to process this kind of input rather than using tablet input devices
is that many famous calligraphists in history only left their handwriting as
static images. Obviously it is very easy to tailor our system to process para-
metric calligraphy directly sampled by tablet pen as input data.

9.4.1 Extracting Levels 0–1 Elements

To extract the ellipses from the input image, we first compute the skeleton of
the calligraphy. This is the “character skeletonization” problem. The target
is to extract a skeleton that is a close approximation to the actual trajec-
tory of the brush when the calligraphy was created. Several existing papers
discussed various approaches to automatic skeletonizing binary images of
characters [Xia89, DSS98, KK02]. For the specific problem of handwritten
Chinese character skeletonization, many approaches have also been proposed
[HL90, LC95, CT99, ZY99, L’H00, SYTH01].

In our approach we employ the algorithm in [HY00] to extract skeletons
of strokes from input images of Chinese characters. The strokes of a char-
acter are extracted first and then the isolated strokes are skeletonized. The
algorithm can work effectively on characters written in most styles. How-
ever, for those largely distorted calligraphic styles, it will tend to commit
mistakes. These mistakes occur during stroke segmentation, where multiple
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strokes could be mistaken as being of the same stroke or a single stroke seg-
mented into multiple strokes. This is a difficult problem to tackle, and an
important area for future research.

Once the skeleton of a primitive stroke is identified, each pixel on this
discrete curve is taken as the center of an ellipse, and the maximum ellipse
within the stroke area is computed. It is easy to compute all the constructive
ellipses using the Bresenham ellipse rasterization algorithm. In our approach
all the constructive ellipses do not have rotational freedom, i.e. their major
axes must be either horizontal or vertical.

We then determine the syntax of the identified stroke. This is through
comparing the shape of the stroke to the shapes of the five standard prim-
itive strokes (Fig. 8.4(a)). The identified primitive stroke’s syntax is rec-
ognized as one of the five standard primitive strokes with which the mu-
tual shape similarity is maximum. The similarity between two 2D shapes
a and b is defined to be the maximum overlapping between a and b, i.e,
Similarity(a,b) � max{Over(a,b)} with the condition that shape a can be
arbitrarily rotated and scaled. The overlapping between a and b is defined
to be Over(a,b) � (a∩b)/(a∪b), where a∩b and a∪b are respectively the
intersection and union of the image spaces taken up by a and b separately.

9.4.2 Extracting Levels 2–3 Elements

Based on the identified primitive strokes, we can use the spatial relation be-
tween them to compose constructive elements at higher levels through shape
grammar productions. We can therefore extract constructive elements on lev-
els 2–3. The syntax of any constructive element produced this way can be
easily determined since each shape grammar production is associated with a
certain syntax. Inspired by [LHS98], the idea of a fuzzy set is used to increase
the reliability of the extraction process.

The shape grammar production for the compound stroke CS1 in the first
column and first row of Fig. 8.4(b) is:

IF {a is a horizontal primitive stroke} AND {b is a vertical primitive
stroke} AND {a is on top of b} AND {a is on left side of b} AND {a
touches b}
THEN {a,b should be combined to form the compound stroke CS1.}

And the shape grammar production for the radical R36 in the last column
and last row of Fig. 8.4(c) is:

IF {a is a degraded compound stroke, which resembles a vertical primitive
stroke} AND {b is a degraded compound stroke, which resembles a vertical
primitive stroke} AND {c is a compound stroke of the kind S2} AND {a
is on the left side of c} AND {a is on left side of b} AND {b crosses c}
AND {a touches c}
THEN {a,b,c should be combined to form the radical R36.}

S2 refers to the compound stroke in the first row and the second column of
Fig. 8.4(b). Speaking of “a degraded compound stroke resembling a vertical
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typed primitive stroke” is explained through a case example in the last para-
graph of Sect. 9.3.1. Following [LHS98], during shape grammar production
deduction, each statement in the production is associated with a confidence
value. The overall confidence of the shape grammar production can be derived
by the confidence of all its statements. Only the shape grammar production
that yields the highest confidence will be applied.

The above processes of extracting compound strokes and radicals through
shape grammar productions are not always correct when the calligraphy is
cursive. Thus, during extraction of constructive elements on levels 2—3, direct
user interaction is allowed through a friendly GUI. Due to space limitations,
we omit the discussion about this GUI.

9.4.3 Extracting Level 4 Elements

To extract constructive elements on level 4, we need to determine which
radicals belong to the same character, and whether the radicals are degraded
or not. This is the well-known problem of “character segmentation” in pattern
recognition research. In our system we use projection analysis to account
for possible slanting of characters in order to segment the characters in a
calligraphy piece, like what is done in [YS94]. More accurate and sophisticated
character segmentation methods are introduced in [CL96], which could be
incorporated into future versions of our system.

9.5 Generating New Calligraphy

9.5.1 Principle of New Calligraphy Generation

As early as 1968, Evan [Eva68] proposed a paradigm for solving geometric
analogy intelligence test questions. In 1975 Simon [Sim75] pointed out that
design and creation is a class of problems featured by their synthesis nature.
In early 1980s Winston [Win80, Win82] published his pioneering results on
the relationship between learning, reasoning and analogy. Other fundamen-
tal work on learning by analogy include [Car83, GH80, Kea88b]. Holyoak
[Hol84] concluded that analogical thinking is an important feature of human
intelligence. Keane [Kea85, Kea88a] applied analogical mechanisms to prob-
lem solving. Our approach is also based on analogical reasoning. We devised a
calligraphy creation component by simulating the ARP using a computational
approach.

Suppose that the SARP is applied to the k-th level in the hierarchical rep-
resentation of calligraphic artwork. In the reasoning, there are n constructive
elements Pk,l1 , · · · , Pk,ln already learned by the computer, which are orga-
nized and stored in a small structural stroke database and activated as source
knowledge for the SARP. Recall each element has four fields (Sect. 9.3.2). We
denote the analogous reasoning intensity used against the s-th field of the i-th
source knowledge (Pk,li) during the SARP as ωs

li
, where s’s range is 1, · · · , 4.

All the analogous reasoning intensities, ωs
li

(s = 1, · · · , 4), together form the
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“viewpoint sequence” of the SARP: ω = {ωs
li
|i = 1, · · · , n; s = 1, · · · , 4}. We

denote the result of the SARP as Pk,r with its matrix form parametric rep-
resentation being Ek,r. Then the general mathematic principle we adopted
in the SARP can be stated as Eq. (9.14),

Ek,r =

n∑
i=1

4∑
s=1

ωs
liEk,li , (9.14)

where Ek,li is the matrix form parametric representation of the constructive
element Pk,li . With Eq. (9.14) we can generate a new constructive element
Pk,r based on all the machine-learned samples, Pk,li (i = 1, · · · , n), and the
viewpoint sequence ω through our SARP. Note that Eq. (9.14) is not a strict
mathematical equation. It is only a sketch showing the principle we adopted
to generate new calligraphy through the SARP. Sect. 9.5.2 discusses in more
details the principle.

Our SARP is essentially either an interpolation or an extrapolation pro-
cess. That is,

∑n
i=1 ωs

li
= 1 (i = 1, · · · , n; s = 1, · · · , 4). In our intelligent

calligraphy generation system, all the analogous reasoning intensities can be
inputed and adjusted by the user manually through a graphical interface; the
computer would perform auto-normalization to scale the sum of all the input
reasoning intensities to 1. Our system is also equipped with a component to
generate random numbers to be used as reasoning intensities, and to filter
out those “ugly looking” calligraphic outputs via a constraint satisfaction
procedure. Sect. 8.7 has more details on this component.

9.5.2 New Calligraphy Generation System

9.5.2.1 Generating new constructive elements

To carry out the SARP, we need to equalize the dimensions of the reasoning
sources. That is, if Pk,s and Pk,t are reasoning sources of SARP, their matrix
representations (Ek,s)4×n1 and (Ek,t)4×n2 must be such that n1 = n2. To
make the SARP also possible even when the dimensions of Pk,s and Pk,t

are different, we introduce an equalization operator, ∇g
t , to convert a matrix

with any number of columns into a new matrix with t columns based on “key
columns” in the original matrix.

Assume that Pk,li is a reasoning source in the SARP. We first derive a
discrete planar curve composed of the centers of all the constructive ellipses
that Pk,li contains by Eq. (9.15), denoted Ck,li .

Ck,ls = ∇o
2

(
(eT

4,1 × Ek,ls)
T, (eT

4,2 × Ek,ls)
T
)

=

(
x1 x2 · · · xco

y1 y2 · · · yco

)
.

(9.15)

In Eq. (9.15), (en,i)n×1 � (σ(i, 1), · · · , σ(i, n))T, where σ(i, j) = 1 if i = j,
otherwise σ(i, j) = 0 and co = col(Ek,ls).
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If the curve has v + 1 key points, with their occurrences in the curve
being the sequence u0, u1, · · · , uv, the “key columns” in the matrix Ek,li are
selected as the u0, u1, · · · , uv-th columns. That is, if the curve Ck,ls has v+1
key points, with their individual coordinates as Ck,lseco,u0 , Ck,lseco,u1 , · · · ,
Ck,lseco,uv

, the key columns in the matrix Ek,ls are selected as Ek,lseco,u0 ,
Ek,lseco,u1 , · · · , Ek,lseco,uv

. We use the algorithm in [ZC95] to extract key
points on the planar curve. With the key columns of the matrices for all the
reasoning sources, a correspondence between related pieces of knowledge can
be set up.

Suppose Ek,ls is the matrix representation of a certain analogy source
Pk,ls with v + 1 key columns extracted. These key columns are the u0-
th, u1-th, · · · , uv-th columns in the matrix (1 = u0 < u1 < · · · < uv =
col(Ek,ls), s = 1, 2, · · · , n). Then a matrix operator ∇g

t can be defined as Eq.
(9.16), which converts one matrix into a matrix having t columns:(∇g

t (Ek,ls)
)
et,i � Ek,lsecol(Ek,ls ),θ (i = 1, 2, · · · , t). (9.16)

In the above, θ = �uj +
uj+1−uj


 t×(j+1)
v

�−
 t×j
v
� × (i−� t×j

v �)� ; � t×j
v < i � � t×(j+1)

v �;
j ∈ {0, 1, · · · , v − 1}; s = 1, 2, · · · , n; �·� is a floor function. In particular, if
each column in matrix Ek,ls is selected as the key column, operator ∇g

t can
be simplified into Eq. (9.17):(∇g

t (Ek,ls)
)
et,i � Ek,lsecol(Ek,ls ),
 i×col(Ek,ls

)

t
�(i = 1, 2, · · · , t). (9.17)

In the SARP, we assume the shape of a constructive element written in
the font style “Kai” (GB2312) as used in recent versions of Microsoft Word
to be the standard shape of the element. For each reasoning source Pk,li in

the SARP, we denote its associated standard constructive element as Pstd
k,li

and its matrix form parametric representation as Estd
k,li . We then compute

the distance Ef
k,li by which the shape of Pk,li differs from that of Pstd

k,li , as
expressed in Eq. (9.18).

Ef
k,li � Ek,li � Estd

k,li . (9.18)

Ef
k,li is used as the feature of Pk,li in the SARP.

Based on the operator of ∇g
t , we can define an active analogy source

reaction operator ∇f
n as:

∇f
n(M1,M2, · · · ,Mn) � ∇c

n

(∇g
h(M1),∇g

h(M2), · · · ,∇g
h(Mn)

)
, (9.19)

where h = max{col(Mi)|i = 1, 2, · · · , n}.
Applying the operator ∇f

n can derive a feature matrix Ef
k,src relating to

all the activated analogous reasoning sources as Eq. (9.20):

Ef
k,src = Ek,src � Ek,std � Ek,src −∇f

n(Estd
k,l1 , · · · ,Estd

k,ln). (9.20)

Eq. (9.20) is a detailed version of Eq. (9.18), which gives the implementation
of the operator �. To evaluate ∇f

n, we follow Eq. (9.19) in which h is derived
as h = max{col(Ek,li)|i = 1, 2, · · · , n}.
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Recall that all the reasoning intensities in SARP are organized into
the viewpoint sequence ω (Sect. 9.5.1). We simulate ARP as an interpola-
tion/extrapolation process. To derive Pf

k,r, the feature of the reasoning re-
sult from the SARP, we take the reasoning intensity ωs

li
against the s-th

field of the i-th reasoning source Pk,li as the weight for the s-th row of

the feature matrix Ef
k,li of Pk,li in an interpolation/extrapolation process

(s = 1, · · · , 4; i = 1, · · · , n). This means that Ef
k,lis are the entities that are

actually interpolated/extrapolated. The interpolation/extrapolation process
we employ to simulate ARP is in the form of Eq. (9.21).

Ef
k,r = �(Ef

k,l1 , · · · ,Ef
k,ln , ω), (9.21)

where Ef
k,r is the matrix form parametric representation of Pf

k,r; � is the
analogous reasoning mechanism simulation operator, which is currently im-
plemented as an interpolation/extrapolation process in our prototype sys-
tem. Eq. (9.24) depicts the specific interpolation/extrapolation strategy we
employed, to be explained later.

According to user specified reasoning intensities ωs
li

for each reasoning
source in the hierarchy, we can derive an analogous reasoning viewpoint ma-
trix Ws acting on the s-th fields of all the activated analogous reasoning
sources in SARP as:

Ws � ∇o
n(ωs

l1 × Ih×h, ωs
l2 × Ih×h, · · · , ωs

ln × Ih×h), (9.22)

where h = max{col(Ek,li)|i = 1, 2, · · · , n} and Ih×h is a h × h dimensional
unit matrix, s = 1, · · · , 4.

Now we can get the reasoning feature result Ef
k,r from SARP as:

Ef
k,r = �(Ef

k,l1 , · · · ,Ef
k,ln , ω)

�

(
∇c

4

(
(Ef

k,src ⊗ W1)Te4,1, · · · , (Ef
k,src ⊗ W4)Te4,4

))T . (9.23)

Eq. (9.23) is a detailed version of Eq. (9.21), which gives the implementation
of the operator ⊗.

In Eq. (9.23), ⊗ is the analogous reasoning mechanism simulation opera-
tor, defined at Eq. (9.24).

Cp×r = Ap×q ⊗ Bq×r �

⎧⎨⎩
Ap×q • Bq×r (9.24.1)

ci,j = z
√∑q

k=1(ai,k × bk,j)z (9.24.2)

ci,j = q
√∏q

k=1(ai,k × bk,j) (9.24.3)

. (9.24)

In Eq. (9.24), ci,j is the element in the i-th row and j-th column of the
matrix Cp×r. If the SARP is linear, ⊗ is defined as Eq. (9.24.1). In Eq.
(9.24.1), • is the ordinary matrix multiplication operator. If the reasoning
process is z-degree polynomial, ⊗ is defined as Eq. (9.24.2). If the process is
non-polynomial, ⊗ can be defined as Eq. (9.24.3).
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If all the intensities of reasoning sources fall within (0, 1), namely 0 �
ωs

li
� 1 (s = 1, · · · , 4; i = 1, · · · , n), the ARP is simulated using an inter-

polation process; otherwise it is simulated using an extrapolation process.
From a psychological point of view, if ∃ωs

li
< 0, the SARP reflects the inverse

reasoning of brain activity; if ∃ωs
li

> 1, the SARP represents positive exag-
geration of brain activity; and if n � 3, SARP mimics combined thinking
activity.

Finally, by adding back the shape of Pstd
k,r, the standard constructive el-

ement associated with the feature Pf
k,r of the reasoning result Pk,r in the

SARP, we obtain the parametric representation Ek,r of Pk,r as indicated by
Eq. (9.25),

Ek,r = Ef
k,r ⊕ Estd

k,r, (9.25)

where Estd
k,r is the matrix form parametric representation of the shape of Pstd

k,r .
Eq. (9.26) is a detailed version of Eq. (9.25).

Ek,r = Ef
k,r ⊕ Estd

k,r � Ef
k,r + ∇g

hE
std
k,r, (9.26)

which gives the implementation of the operator ⊕. With ⊕, the resultant
knowledge (constructive elements in calligraphy) from the SARP can be de-
rived. In Eq. (9.26), h = max{col(Ek,li)|i = 1, 2, · · · , n}.

9.5.2.2 Generating new topological constructor

Note that the SARP can be applied not only to the matrix representations,
Ek,l1 , · · · , Ek,ln , of all the reasoning sources, Pk,l1 , · · · , Pk,ln , by evaluating
a series of matrix operations simulating the ARP, but can also be applied
to the topological constructors of all the reasoning sources, Tk,l1 , · · · , Tk,ln .
If the corresponding intensities of Tk,l1 , · · · , Tk,ln are ωl1 , · · · , ωln , where∑n

i=1 ωli = 1, the newly generated topological constructor Tk,r can be given

as: Tk,r � �(Tk,l1 , · · · ,Tk,ln , ωl1 , · · · , ωln). Here � is the ARP simulation
operator for topological constructors. Similarly, we can overload the definition
of the operator � to simulate different types of creative thinking activities;
some simple ones are: arithmetic mean, geometric mean and harmonic mean.
The strict definition of the analogous reasoning simulation operator for topo-
logical constructors � is as:

Tk,r � �(Tk,l1 , · · · ,Tk,ln , ωl1 , · · · , ωln)

�

⎧⎪⎨⎪⎩
∑n

i=1(Tk,li × ωli) ArithmeticMean∏n
i=1(T

ωli

k,li
) GeometricMean(∑n

i=1(ωli/Tk,li)
)−1

HarmonicMean

. (9.27)
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9.6 Generating Artistic Calligraphy

9.6.1 Constraints on the Process

There are four constraints that are useful: Con1 is a rigid constraint, and
Con2, Con3, and Con4 are soft constraints.

Con1 says that the source knowledge that is being reasoned must be ho-
mogeneous in terms of its compositive constructive elements; that is, they
must be composed of the same number of sub-constructive elements from
one level down. Con2 and Con3 suggest that all the reasoning sources in
the SARP, namely parameterized constructive elements from existent callig-
raphy, must have similar syntax. Con2 requires all the constructive elements
used in the reasoning process must be on the same level; specifically, when we
apply reasoning on Pm,s and Pn,t, we must guarantee m = n. Con3 dictates
that the constructive elements being reasoned at should have similar prop-
erties. For instance, if we are reasoning at the level of “primitive strokes”,
the elements involved must be of the same type, which is one of the five
possible types on level 1: a horizontal stroke, a vertical stroke, a left slanting
stroke, a right slanting stroke or a point stroke, which are illustrated at Fig.
8.4(a). Con4 demands that the structure of the newly-generated calligraphy
should not go beyond the maximum or minimum tolerable constraint ex-
tracted from all the samples learned. The details of maximum and minimum
tolerable constraints will be discussed in Sect. 9.6.3.

9.6.2 Extracting Aesthetic Constraints from Existent Artwork

9.6.2.1 Interference between constructive elements

The need for a quantifiable constraint on aesthetics is the concept of the
degree of interference between two constructive elements, which indicates the
spatial inter-relationship between the elements. These degrees of interference
supervise the process of generating an upper-level constructive element from
several lower-level ones.

We denote the bounding boxes of two constructive elements a and b as a
and b. There are three kinds of degrees of interference possible between a and
b, as given in Eq. (9.28). ϑx(a,b) is the x dimensional degree of interference;
ϑy(a,b) the y dimensional degree of interference; and ϑs(a,b) the shaping
degree of interference.⎧⎨⎩

ϑx(a,b) � (a.x − b.x)/(a.w + b.w) (9.28.1)

ϑy(a,b) � (a.y − b.y)/(a.h + b.h) (9.28.2)

ϑs(a,b) � (I(a) ∩ I(b))/(I(a) ∪ I(b)) (9.28.3)

. (9.28)

In Eq. (9.28.3), I(a) and I(b) are the image spaces that the constructive el-
ements a and b take up; I(a) ∩ I(b) and I(a) ∪ I(b) are the intersection
and union of these two image spaces respectively. With Eq. (9.28), the x, y
directional spatial relativity between a and b can be compactly represented,
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and the shaping degree of interference ϑs(a,b) can depict the degree of over-
lapping of the two constructive elements a and b.

Introducing these three kinds of degrees of interference not only provides
much convenience in describing the spatial relativity between the two con-
structive elements concerned quantitatively, but also helps express the spatial
relativity qualitatively. Take ϑx(a,b) for example, if ϑx(a,b) < − 1

2 , a is on

the left side of b, not overlapping; if ϑx(a,b) = − 1
2 , a is on the left side of b,

just overlapping; if ϑx(a,b) ∈ [− 1
2 , 1

2 ], a overlaps b; if ϑx(a,b) = 1
2 , a is on

the right side of b, just overlapping; if ϑx(a,b) > 1
2 , a is on the right side of

b, not overlapping. In the same manner, with ϑy(a,b), the spatial relativity
between a and b along the y dimension can be conveniently derived. ϑs(a,b)
also reveals whether the two constructive elements overlap: if ϑs(a,b) > 0,
the two constructive elements overlap.

9.6.2.2 Structure matrix of a constructive element

Based on the degrees of interference between two constructive elements just
defined, we introduce the structure matrix of a constructive element. Let
Pk+1,1 be the bounding box of a constructive element Pk+1,1, which is com-
posed of m constructive elements Pk,l1 , · · · , Pk,lm on the next lower level.
We use three matrices, θx(Pk+1,1), θy(Pk+1,1), and θs(Pk+1,1), to represent
the structure of Pk+1,1, as given in Eq. (9.29).⎧⎪⎪⎪⎨⎪⎪⎪⎩

θx(Pk+1,1) � (θi,j
k,x)m×m; θi,j

k,x = ϑx(Pk,li ,Pk,lj )

θy(Pk+1,1) � (θi,j
k,y)m×m; θi,j

k,y = ϑy(Pk,li ,Pk,lj )

θs(Pk+1,1) � (θi,j
k,s)m×m; θi,j

k,s = ϑs(Pk,li ,Pk,lj )

(i = 1, · · · , m; j = 1, · · · , m)

. (9.29)

The three matrices are essentially made up of the x, y dimensional and shap-
ing degrees of interference between every pair of Pk,li and Pk,lj .

9.6.3 Constraint Satisfaction for Calligraphy Generation

In Sect. 9.5.1, we assumed there are n knowledge sources, Pk,l1 , · · · , Pk,ln , in
the SARP. With the structure matrices of these n samples computed accord-
ing to Eq. (9.29), we can derive constraint matrices for the SARP needed for
the generation of artistic calligraphy. Without loss of generality, we discuss
how to derive two x-dimensional constraint matrices based on θx(Pk,l1), · · · ,
θx(Pk,ln). Among the two constraint matrices, one is the matrix of the max-
imum tolerable structure θmax

x and the other is the matrix of the minimum
tolerable structure θmin

x . Assume each of Pk,l1 , · · · , Pk,ln is composed of m
constructive elements of the next lower level; then θmax

x and θmin
x are both

m × m dimensional matrices. In θmax
x , the element in the i-th row and the

j-th column (θmax
x (i, j)) is the maximum value of all the n elements in the i-

th row and the j-th column of θx(Pk,l1), · · · , θx(Pk,ln). Similarly, θmin
x (i, j),

the element in the i-th row and the j-th column of θmin
x , is the minimum
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value of all the elements in the i-th row and the j-th column of θx(Pk,l1),
· · · , θx(Pk,ln). The use of the two constraint matrices in the SARP is simple:
during the SARP, each time the system automatically generates a new con-
structive element Pk,r, the x-dimensional structure matrix of this element
is computed as θx(Pk,r). The system will output this newly generated con-
structive element only if θx(Pk,r) is no smaller than θmin

x under the tolerance
τmin and no larger than θmax

x under the tolerance τmax. We say a matrix is
larger (resp. smaller) than another matrix under a certain tolerance τ only
if all of its elements are at least (resp. at most) τ times that of the corre-
sponding elements in another matrix and these other elements are non-zero.
In our experiments, we set τmax = 0.8 and τmin = 1.2. Similarly, we also
derive θmin

y , θmax
y , θmin

s , θmax
s to constrain the randomly generated intensities

of the SARP to forbid the system to output a calligraphy that violates the
aesthetic constraints extracted from existent calligraphy.

9.6.4 Relaxing the Aesthetic Constraints

The constraints of the SARP can be relaxed in order to allow for results with
new styles that are not so imaginable. To relax Con1, constructive elements
that are heterogeneous can be turned into homogeneous ones by combining
some sub-constructive elements together. [CC92] gives an optimized strategy
to do the combining using fuzzy-attribute graphs. To relax Con2, we ap-
ply the SARP simultaneously to constructive elements belonging to different
layers. To relax Con3, we apply the SARP to constructive elements with
different syntaxes, such as reasoning between a point and a vertical stroke.
To relax Con4, we can adjust the thresholds τmin and τmax when comparing
the structure matrix of the newly-generated constructive element against the
maximum and minimum tolerance matrices.

From a computational psychology perspective, relaxing or ignoring the
constraints in our analogous reasoning process corresponds to creative brain
activity of the calligraphists such as when performing cursive and running
style writing. Such a loose SARP could well be the reflection of the thinking
process of a calligraphist while creating an artwork of running style, a style
which is considered to be the freest of all forms. Without the constraints or
with them relaxed, there is a huge space in which reasoning could lead to
plenty of fancy results. Going to the extreme with the relaxation, however,
might give rise to ugly handwriting results. When such a situation arises,
some human intervention to filter out the unacceptable might be necessary.

9.7 An Artificial Intelligence’s Perspective on

Automatic Generation of Artistic Chinese Calligraphy

In the second part of this chapter (Sect. 9.7—Sect. 9.10) we will analyze the
system design and developing practices from an artificial intelligence point
of view. Following that angle, we will use our system development experi-
ences as a case study to address the demanding task of developing intelligent
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systems equipped with machine creativity that can perform design tasks au-
tomatically. The main challenge we concentrate on in this latter part of the
chapter is how to model human beings’ creativity mathematically and mimic
such creativity computationally. We adopt the “synthesis reasoning model”
as the underlying mechanism to simulate human beings’ creative thinking
when they are handling design tasks.

The structure of this part is organized as follows: We will first briefly look
at some background research on simulating machine creativity through anal-
ogous reasoning (Sect. 9.8). And then we present the theory of the synthesis
reasoning model (Sect. 9.9).At last, based on implementation experiences of
the calligraphy generation system as well as a few other systems for solv-
ing real-world problems, we suggest a generic methodology for constructing
intelligent systems using the synthesis reasoning model (Sect. 9.10).

9.8 Background

What is creative thinking? What is the mechanism that underlines human
beings’ creative thinking? How can one experiment with the purportedly bi-
ological creative thinking process through a computational approach? These
questions pose challenges for researchers in the fields of AI and cognitive sci-
ence. Researchers in intelligent CAD (ICAD) systems in particular have a
strong interest in these problems. This chapter can be considered a step to-
wards understanding the human creative process. We use a computer-based
automatic reasoning system to mimic artistic creativity. Such a task for the
computer is highly demanding as the implemented system has to satisfy both
the theoretical soundness of machine intelligence and performance bench-
marks.

There is a large body of existent work on simulating creative thinking for
solving real-world problems. In 1975 Simon [Sim75] pointed out that design
and creation is a class of problems based on the synthesis of existing ideas.
Qian [Qia86] argued that the synthesis process (using qualitative or quan-
titative approaches) is an important aspect of brain activities. Hall [Hal89]
comprehensively surveyed the computational efforts to simulate analogous
reasoning. Kapur [KM88] explored the application of artificial intelligence in
geometrical reasoning. Pan et al. [Pan93, XP95, LPJ96, PG96, GP96, ZP97]
has researched modeling visual information for intelligent computer-aided
design.

9.9 The Synthesis Reasoning Model

The synthesis reasoning model [XP95], or simply synthesis reasoning, is a
model we propose to simulate human beings’ creative thinking activities
when performing design tasks involving images of one kind or another. In
the following we briefly survey the basic theory and concepts of the synthesis
reasoning model.
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9.9.1 Features of the Model

Synthesis reasoning is a generation oriented reasoning mechanism for sim-
ulating human creative thinking. Concepts essential to synthesis reasoning
include: synthesis reasoning source, reasoning source intensity field, synthe-
sis reasoning space, synthesis reasoning viewpoint and synthesis reasoning
process. It is an attempt to relax the constraints of traditional reasoning
mechanisms in artificial intelligence to solve problems by using a more flex-
ible reasoning method. Because of the flexibility, synthesis reasoning is par-
ticularly suitable for reasoning tasks on shape design as in an Intelligent
Computer-Aided Design system (ICAD system). Essentially, synthesis rea-
soning searches the feasible synthesis reasoning space to identify satisfying
viewpoints in the space. A core step in applying the synthesis reasoning model
therefore is to establish a synthesis reasoning space, usually by superimposing
several input synthesis reasoning sources.

9.9.2 Key Concepts of the Model

In the following we briefly overview some key concepts employed in the syn-
thesis reasoning model. Synthesis reasoning source: A synthesis reasoning
source S is a structure of the form: S = {P,m,F}. P is a collection of n
components P = {P1,P2, · · · ,Pn}. m is a structure which describes how
the above n components can be combined together into a reasoning source.
And F is a reasoning source intensity field.

Reasoning source intensity field: A reasoning source intensity field F de-
scribes the intensity distribution of different reasoning sources during a syn-
thesis reasoning process. F is composed of two parts: F = {FP,Fm}. FP is a
collection of reasoning intensities, each of which is associated with one compo-
nent of the reasoning source, i.e. FP = {FP1, · · · ,FPn}. Fm is a structure,
which records how multiple components can be combined together. The in-
tensity field F can be classified into two broad types: discrete intensity field
where any reasoning intensity is either 0 or 1, and continuous intensity field
where intensity can be an arbitrary real number, possibly negative or big-
ger than 1. With a discrete intensity field, a reasoning source will be either
adopted (intensity=1) or ignored (intensity=0).

Synthesis reasoning space: The synthesis reasoning space SS is the result
of superimposing multiple reasoning sources. Each position selected in a syn-
thesis reasoning process is a potential synthesis reasoning result, denoted as
SS(x, y, z). A synthesis reasoning space, which is composed of m reasoning
sources, can thus be defined as:

SS(x, y, z) =
m∑

j=1

n∑
i=1

(FPij(x, y, z) ·Pij ,Fmj ·mj). (9.30)

Synthesis reasoning process: In general we need to carry out two steps to
set up a synthesis reasoning model. First we need to construct a synthesis
reasoning space using multiple synthesis reasoning sources. And then we need
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to identify a certain viewpoint/viewpoints in the synthesis reasoning space.
There are two inputs to the synthesis reasoning model: one is the multiple
reasoning sources and another is requirements for the synthesis reasoning
process, if any. Specifically, a two-valued synthesis reasoning process is a
process that reasons simply by component replacement. For example, for
a language being the experiment target, the word selection and sentence
touchup process by rhymists forms a two-valued synthesis reasoning process.
Two-valued synthesis reasoning is a degenerate case of the more general and
sophisticated continuous valued synthesis reasoning process.

9.9.3 The Computational Model of Synthesis Reasoning

Definition. If there is a correspondence between T and B, then T is similar
to B (in a broad sense), which can be denoted as T ∼ B.

Let B1, · · · ,BN be N pieces of synthesis reasoning source knowledge and
T be the reasoning result, where each of Bi and T is composed of M com-
ponents (parts). We can then represent the synthesis reasoning process and
its result using the form:{

Bi = {bij |j = 1, · · · , M}
T = {tj|j = 1, · · · , M} (i = 1, · · · , N).

If the synthesis reasoning process is of one source, i.e. N = 1, the reasoning
equation is simplified to be:⎧⎪⎪⎨⎪⎪⎩

t1 = f1(b11)
...

tM = fM (b1M )

.

If there are multiple pieces of synthesis reasoning source knowledge, the
reasoning process can be defined mathematically as follows:

A =

⎛⎜⎜⎜⎝
a11 · · · a1M

a21 · · · a2M

...
...

aN1 · · · aNM

⎞⎟⎟⎟⎠
N×M

=

⎛⎜⎜⎜⎝
a1

a2

...
aN

⎞⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎝
b11 · · · bN1

b12 · · · bN2

...
...

b1M · · · bNM

⎞⎟⎟⎟⎠
M×N

= (B1,B2, · · · ,BN),

where ai is the similarity metric vector of T to the i-th reasoning source. Then
the general form of synthesis reasoning equation T = F(B1,B2, · · · ,BN ) can
be instantiated as:
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T = {t1, t2, · · · , tM} =
n∑

i=1

AiBi,

Ai =

⎛⎜⎜⎜⎜⎜⎝
ai1 0 · · · 0

0 ai2
. . .

...
...

. . .
. . . 0

0 · · · 0 aiM

⎞⎟⎟⎟⎟⎟⎠
M×M

(9.31.1)

n∑
i=1

Ai = IM×M (9.31.2)⎧⎪⎨⎪⎩
aij ∈ {0F , 1F } ⊂ F

or

aij ∈ [0F , 1F ] ⊂ F

(9.31.3)

. (9.31)

This equation can be expanded for ease of interpretation as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = BA = (B1,B2, · · · ,BN )

⎛⎜⎜⎜⎜⎝
a11 · · · a1M

a21 · · · a2M

...
...

aN1 · · · aNM

⎞⎟⎟⎟⎟⎠
N×M⎧⎪⎨⎪⎩

aij ∈ {0F , 1F} ⊂ F

or

aij ∈ [0F , 1F ] ⊂ F

. (9.32)

In the above, Eq. (9.31.1) defines the degree of similarity between T and Bi.
Eq. (9.31.2) guarantees that the scale of T is synchronized with that of Bi.
And Eq. (9.31.3) ensures that T is more or less similar to Bi (similarity in a
narrow sense).

If Bi,T ∈ V , ⊕ is closed in V , then (V,⊕) is an algebraic structure
and an exchangeable group, where the involved addition operation is realized
through the continuous operator ⊕ that satisfies the following properties:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1) t1 ⊕ (t2 ⊕ t3) = (t1 ⊕ t2) ⊕ t3

2) ∃0 ∈ V, ∃x ∈ V ⇒ 0 ⊕ x = x ⊕ 0 = x

3) ∀x ∈ V, ∃y ∈ V, s.t. x ⊕ y = y ⊕ x = 0

4) ∀t1, t2 ∈ V, t1 ⊕ t2 = t2 ⊕ t1

.

Here V is a vector space on field F , i.e.:
a) (V,⊕) is an exchangeable group;

b) ∀a, b ∈ F ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a ⊕ b)x = ax ⊕ bx

a(x ⊕ y) = ax ⊕ ay

(ab)x = a(bx)

1F x = x

.

For simplicity we will first study situations where there are only two
reasoning sources B1 and B2, each of which has only one component, i.e. the
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synthesis reasoning process when M = 1 and N = 2. Under this circumstance
the form is: ⎧⎪⎨⎪⎩

T = A1B1 ⊕ A2B2

A1 ⊕ A2 = IM

aij ∈ F ; i = 1, 2; j = 1, · · · , M

. (9.33)

To verify that such an equation satisfies the properties mentioned above,
we assume B1 is unknown while T and B2 are both known. Then the synthesis
reasoning process takes the form:⎧⎪⎨⎪⎩

a−1
11 a11B1 = a−1

11 T− a21a
−1
11 B2

a11 ⊕ a21 = 1F

a11, a21 ∈ [0F , 1F ]

.

Letting k1 = a−1
11 , k2 = −a21a

−1
11 , we will then have:⎧⎪⎪⎪⎨⎪⎪⎪⎩

B1 = k1T ⊕ k2B2

a−1
11 a11 = 1F , 1F x = x

k1 ⊕ k2 = a−1
11 (1F ⊕ (−a21)) = a−1

11 (a11 ⊕ (a21 ⊕ (−a21))) = a−1
11 a11 = 1F

k1, k2 ∈ F (k2 < 0F )

.

Therefore the synthesis reasoning process with two one-component reasoning
sources is of the form: ⎧⎪⎨⎪⎩

T = a11B1 ⊕ a21B2

a11 ⊕ a21 = 1F

a11, a21 ∈ F

,

which shows that the synthesis reasoning process we defined does satisfy all
the properties as described above.

To take this a step further, suppose there are N reasoning sources, each
of which has M components; the synthesis reasoning process is then of the
form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T = A1B1 ⊕ A2B2 ⊕ · · · ⊕ ANBN =

N∑
i=1

AiBi (9.34.1)

N∑
i=1

Ai = IM (9.34.2) ,

aij ∈ F (9.34.3)

(9.34)

where Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ai1 0 · · · · · · 0

0 ai2 0 · · · ...
... 0

. . . 0
...

...
. . . 0

. . . 0
0 · · · · · · 0 aiM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
M×M

.
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In the above equations, aij is the coefficient of T′s similarity metric matrix
to the j-th component of the i-th reasoning source. Ai is the similarity metric
matrix of T to the i-th reasoning source. Eq. (9.34.1) defines the similarity
of Ai to each Bi. So T is analogically generated by all the B′is. Eq. (9.34.2)
aligns the scale of T with each Bi. Eq. (9.34.3) shows that the similarity
metric can be either similar (positive) or dissimilar (negative), i.e. similarity
in a broad sense.

9.10 A Generic Methodology to Developing Synthesis

Reasoning-based Intelligent Systems

Now we will generalize the experiences gained from the system development
to propose a generic methodology for designing synthesis reasoning based
intelligent CAD systems for solving real-world problems.

The synthesis reasoning model we have proposed is capable of solving a
class of shape reasoning problems. We have successfully applied the model to
resolve many real world design problems. The automatic Chinese calligraphy
generation system introduced in previous sections is one of these systems.
Other successful problem solving systems developed, based on the synthesis
reasoning model ,include an intelligent advertisement design system [XP95],
an intelligent decoration design system [LPJ96] and an intelligent chair design
system [PG96]. Although each of these systems has its own problem solving
semantics and background knowledge, the synthesis reasoning approaches
they employed are very similar. Based on the practices and experiences we
accumulated through designing and developing those systems, we propose a
generic methodology for developing a synthesis reasoning-based intelligent
system for solving any particular type of design problem in the real world,
as follows.

(1) According to the specific application domain, choose the synthesis rea-
soning sources and its properties. By superimposing all the synthesis rea-
soning sources together, we can construct the synthesis reasoning space.

(2) Introduce a hierarchy of knowledge representation by picking a suitable
granularity of knowledge for the different levels in the hierarchy so that
the reusability of the reasoning sources and the reasoning results, as well
as the reasoning efficiency, can all be improved.

(3) Derive the operators to convert between knowledge representations at
different levels in the hierarchy.

(4) Based on the work done in steps 1–3, a full parametric and hierarchical
knowledge representation of the complete synthesis reasoning space can
be derived.

(5) According to the semantics of the specific application problem to be
solved, construct operators to instantiate the synthesis reasoning model
as a concrete computable algorithmic framework, based on which the
overall system architecture can be deduced. These operators include the
synthesis reasoning source superimposing operator, the reasoning source
equalization operator, the synthesis reasoning evaluation operator, etc.
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10

A Preliminary Attempt at Evaluating the

Beauty of Chinese Calligraphy

10.1 Overview

This chapter presents our preliminary efforts at automatic appreciation of
the aesthetics of Chinese traditional calligraphy using artificial intelligence.
This work is motivated by our wish to equip a computer with the ability
to judge the aesthetic quality of calligraphic characters and then to create
innovative calligraphic writing styles autonomously.

In terms of knowledge representation for calligraphic characters, we adopt
the hierarchical ellipse-based parametric model as examined in the previous
two chapters, which approximates how a paintbrush is moved and pressed
during the calligraphic writing process. In order to derive characters in this
model from copybooks, a two-phased semi-automatic mechanism is intro-
duced for decomposing strokes from existent calligraphy images. For most
regular styled calligraphy samples, a fully automatic extraction is possible
using only the first phase where heuristic search is applied to derive an op-
timal stroke-to-stroke matching with the corresponding standard font; for
those highly cursive and deformed styles of calligraphic writing, the second
phase offers an intelligent user interface to allow the computer to extract
strokes based on minimum user input.

Having derived parametric representations for calligraphic characters, we
then apply a collection of machine learning techniques to train the computer
to be able to numerically evaluate the aesthetics of calligraphic characters
based on human labeled sample characters, each carrying a visual quality
score. Features considered in the numerical aesthetics evaluation process in-
clude the shape of individual strokes, the spatial relationship between strokes,
as well as the style consistency among all the strokes in a character. After
training the underlying neural networks, the computer is able to evaluate
visual qualities of calligraphic characters automatically. The visual quality
evaluation has as output three probabilistic values for a character, denoting
the likelihood of the character to be attractive, ordinary or ugly. Also, the
system optionally offers to synthesize these three scores into a single num-
ber for ease of human reading or further algorithmic processing. This work
represents our first step towards understanding the human process of appre-
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ciating beauty through modeling the process with an integration of available
AI techniques.

Once the automatic calligraphy aesthetic quality grading function is de-
veloped, we integrate it into the automatic Chinese calligraphy generation
prototype system which we have introduced in the previous two chapters.
This integration is expected to significantly improve the visual quality of the
generated calligraphy. Experiments show that our automatic calligraphy aes-
thetics evaluating algorithm can yield visual quality scores very similar to
those given by the human experts.

10.2 Introduction

10.2.1 Motivation

In this increasingly digitalized society, more and more people choose to stay
away from traditional writing tools such as pen, pencil, eraser and brush in
their everyday work and life. Instead, they rely on such gadgets as keyboards
and mice. This results in a significant improvement in working efficiency.
However, up till now the practice of the creation of traditional art forms
remains very conservative and distant from digital technologies.

The motivation of our work stems from our dream to computerize the art
and process of Chinese traditional calligraphy, which includes the support
for an artist to produce new artwork on the computer fully electronically, as
discussed in the previous part of this book on interactive painting and callig-
raphy creation, as well as the goal for a computer to perform art creation au-
tonomously after some learning process. This chapter presents a preliminary
attempt to bridge the art of Chinese traditional calligraphy with computer
science through an integrated intelligence approach.

Our dream is not only to preserve the ancient calligraphic art in this
information era with assistance from computing technologies, but more am-
bitiously to try to propose novel forms of practising Chinese calligraphy art
with active involvement of the computer. Our basic strategy is to develop a
novel computer calligraphy creation ability based on applying the machine
learning process to hundreds or thousands of calligraphic samples in different
styles. This created ability can not only write calligraphic characters with
visually acceptable quality, but also could be very innovative in styles. Given
that we have already introduced an algorithmic framework capable of auto-
matically generating calligraphy in the previous two chapters, in this chapter
we focus our effects on how to evaluate the visual quality of calligraphy writ-
ing from an aesthetics point of view. Once this new goal is attained, we can
then integrate the numerical grading component into the existent calligraphy
generation system to achieve greater performance.

Aside from adding values to computer art, our study in this chapter also
provides a good reference for general artificial intelligence research. The field
of computer vision is predominantly concerned with recognizing shapes and
meanings of objects by their images. But there is more than just knowing what
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things are. In everyday life, our visual perception also leads to a sense of how
beautiful things are. Recently there has been an increased interest in affective
computing [Pic00]. To the best of our knowledge, however, there has not been
a solution to beauty appreciation by numerical means. Turing once said in his
innovative paper [Tur50] that “We do not wish to penalize the machine for its
inability to shine in beauty competitions, ...” But witnessing the advancement
of photo-realistic techniques in computer graphics nowadays, we feel that if
computers can tell the beautiful from what is not, beauty contests could
certainly be open to them as well. Such contests will probably not feature a
cat-walking computer, but rather computer-generated images of beauty, or
such images versus real, human-generated ones. This might sound like going
overboard, but to imbue the computer with the ability to recognize beauty
will likely win general support. Furthermore, the ultimate intelligent machine
in people’s mind is one that can create results of beauty on its own, which
certainly represents a nice challenge for artificial intelligence researchers.

We feel entailing the computer to understand or even produce outputs of
beauty that are visible, such as painting, calligraphy and sculpture, may be
a reasonable first step in the long journey to arrive at the ultimate intelligent
machine which can deal with beauty in any form. This chapter presents such a
“first step” of ours—an approach to the problem of understanding the beauty
of Chinese calligraphy and its facsimile by the computer. We picked Chinese
calligraphy because of its great importance in Chinese art and history and
the many interesting challenges it presents to the computer. Our solution
demonstrates the power of integrated intelligence.

Overall, our work in this chapter attempts to simulate a series of human
psychological processes in learning, creation and appreciation. In our algorith-
mic design work, we are especially interested in exploring the potential styles
that would contribute to the beauty of calligraphy. These potential rules may
reflect also the writer’s personality and his emotion at the time of writing.
Our system has wide applications, for example to tutor a calligraphy begin-
ner to write beautiful characters, to automatically imitate a person’s writing
styles, or to discover the possible relationship between people’s handwriting
and their gender, career, personality, health condition, etc.

10.2.2 Chapter Organization

This chapter features our work in three parts: 1) a two-phased decomposition
method for deriving the parametric representation of Chinese calligraphy; 2)
an integration of machine learning techniques to learn the ability to evalu-
ate aesthetics of calligraphic characters; 3) automatic generation of aesthetic
artistic calligraphy with the assistance of the proposed evaluation function.
Fig. 10.1 shows an overview of the contents and their flow in this chapter.

First of all, we review the related work in Sect. 10.3. We then briefly
discuss the calligraphic representation we use in Sect.10.4. After that a two-
phase semi-automatic stroke decomposition algorithm for extracting hierar-
chically parametric representation is presented in Sect.10.5. With a large
amount of parameterized calligraphy samples being accumulated, we asked
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Fig. 10.1. An overview of the work in this chapter

several calligraphy experts and a few others to grade their aesthetic quality.
All those samples are fed into the machine learning structures for training
the computer’s aesthetic ability; both the shape of each individual stroke
and the spatial structure of the whole character are considered, plus the style
consistency among all of its strokes. We introduce our calligraphy grading
approach in Sect. 10.6. It is the core part of this chapter. Once the evalua-
tion functionality is made available, we integrate it into an automatic artistic
calligraphy generation system which can produce significantly higher quality
new fonts given the scoring feedbacks from the grading module. This is in-
troduced in Sect. 10.7. Relevant experiment results and statistics are given
in their corresponding sections. A preliminary calligraphy tutoring system is
also introduced, which is made possible by the calligraphy aesthetics evalua-
tion function (Sect. 10.8). Finally, we conclude the chapter and discuss some
future extension work (Sect. 10.9).

10.3 Previous Work

The closest related work to our own is the automatic artistic Chinese cal-
ligraphy generation system in [XLP03, XLCP04, XLCP05], which we have
already looked at in the previous two chapters. That work, however, is con-
cerned mainly with using constraint-based reasoning to generate stylistic cal-
ligraphic characters, but paid very little attention to the aesthetic aspects
of the generated results; the latter is a major issue to be addressed in this
chapter. Avizzano, et al. [ASB02] proposed a calligraphy tutoring system
using a haptic interface. Lai et al. [LYP95] studied the problem of numer-
ically evaluating the beauty of calligraphic characters through a heuristical
approach. They identified four rules in Chinese calligraphy writing, based on
which they implemented a rule-based beauty grading function. The function
simply computes the weighted sum of the scores corresponding to these four
rules. People have also tried fuzzy methods, e.g. [OAI93]. They devised mem-
bership functions for the calligraphists, but the design of these membership
functions are fully manual and are fixed all the way through.

In contrast with the above, our calligraphy evaluation is realized through
learning the underlying numerical relationships behind the training set. It
is known to many who work with expert systems that the high-level expert
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rules do not always work, are not always known by the experts themselves and
even impossible to be summarized sometimes. We feel that our data driven
approach based on the learning techniques could thus provide a machine
evaluation capability more similar to the actual brain functioning of real
human experts.

In the field of computer graphics, there has been some work on automatic
painting creation which however is mostly done with reference to a given
photograph [Her03]. Others have explored using a combination of artificial
intelligence and interactive techniques to produce painting-style animation
[XXK+06]. The book [McC90] provides a comprehensive treatment of arti-
ficial intelligence art. Outside the domain of visual arts, computer music is
probably the single most successful research area in which AI techniques have
been employed to do or assist music composition [Roa85]. In IJCAI 2007 there
was an independent track called MUSIC-AI 2007 devoted to the topic. It is
important to notice that existent research on computer music includes both
automatic music composition and music evaluation, which serves as a good
inspiration for our work on calligraphy. Their problems in some respects are
easier than ours because there are well-established music theories for judging
music; that is not the case for visual arts including calligraphy. There is also
an abundant collection of work on story generation, believable agents [Bat94],
the interactive story, and the like, which aim at capturing aesthetics compu-
tationally. Finally, our work is also remotely related to Knuth’s pioneering
work on Metafont [Knu86]. Knuth’s work focuses on the definition and inter-
pretation of fonts, but leaves font creation to the end users; in contrast, our
work emphasizes the generation of fonts.

10.4 Calligraphy Representation

Choosing a suitable form of knowledge representation is key to the success of
an intelligent system design. Following the practice in computer vision, having
a parametric curve-based representation may provide an efficient and effec-
tive support for solving our domain specific problem. Such a representation
has two immediate benefits: 1) The representation is not per-pixel based, and
thus is robust in the face of local noises; and it has more descriptive power
on the overall shape and tends to better reflect high-level visual features;
2) The automatically-generated shapes would look more elegant because a
parametric representation naturally can overcome the shape aliasing prob-
lem. We adopt the hierarchical representation method which we proposed in
[XLP03, XLCP04, XLCP05], which iteratively constructs the representation
of a character from individual strokes level after level.

Fig. 10.2 shows an example of our ellipse-based parametric representation
for a calligraphic character. The idea comes from observations on the brush
movements and experiences during human calligraphy production. From an-
other viewpoint, the ellipses can be regarded as a moving ellipse along the
skeleton trajectory of the character, which strictly simulates the brush move-
ments during calligraphy.
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(a) (b) (c) (d) (e)

Fig. 10.2. An example of ellipse-based calligraphic character representation. (a)
The original character, (b) the stroke trajectories, (c to e) characters with covering
ellipses every 50, 20, 5 pixels respectively, where (e) is almost actually the presented
shape of the character

10.5 Extracting Calligraphy Representation through a

Two-phased Method

To derive the above representation, we introduce a two-phase, semi-automatic
processing routine. In the first phase we combine several decomposition al-
gorithms which are based on various AI techniques to perform a best-effort
automatic stroke extraction. In the second phase, through an intelligent user
interface we provide to the user, some remedial user interaction would convert
the best-effort result to the desired hierarchical parametric representation.

10.5.1 Best-effort Automatic Stroke Extraction

Stroke decomposition for a Chinese character is a more difficult problem
than its recognition. Researchers have proposed various methods, and several
algorithms run well for most cases including regular and irregular characters.
However, these mature algorithms still cannot achieve satisfying results for
Chinese calligraphy whose complexity is exponentially higher, especially those
highly random, cursive, or distorted styles. In this section we combine and
improve several existent works for stroke extraction of Chinese characters,
and propose a complete framework to automatically apply them to Chinese
calligraphy. Our method is built on structural matching, so first of all we
explain how to extract the structural features of each single font from the
calligraphic piece. Since no thinning method is without loss when applied
to brush writings such as calligraphy, this problem seems not easy, which
we discuss in Sect. 10.5.1.1. After the structure analysis, in Sect. 10.5.1.2,
we compare this with the standard font and seek a best-effort stroke match
through an heuristic search (based on a probabilistic definition).

10.5.1.1 Structure extraction

All the input calligraphic images are split into single characters and then
normalized into a binary image with a standard size, in our experiments a
resolution of 300×300 pixels. Like any other image processing approaches for
a handwritten character, the first thing to do is thinning for skeletonization.
We apply a non-iterative thinning algorithm suggested in [NO94] to get its
skeleton, which is faster than the other iteration-based thinning algorithm.
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It first of all calculates the distance-to-edge function value for each black
point, and then extracts a few points with the local maximal values, namely
“pre-skeleton”. Finally the pre-skeleton is connected into a complete skeleton
with increasing paths.

After thinning, several points with small scales of distance-to-edge values
are deleted from the skeleton. The scale threshold is determined by the aver-
age width of the whole character, where the width can be estimated through
the distance-to-edge values of all the pixels on the skeleton. All pixels whose
distance-to-edge values are less than the threshold are removed. This step
hopes to remove the noisy signals in the character image, which are usually
caused by the ink spreading effect during handwriting or the weathering and
erosion of old stones for carved calligraphy. A few thinning results are given
in Fig. 10.3(b).

(a)

(b)

(c)

(d)

Fig. 10.3. Examples of extracting the structures of calligraphic characters. (a)
the input calligraphic characters; (b) the skeleton images after applying a non-
iterative thinning algorithm; (c) the geometric graph of characters after the feature
point detection and line segments approximation, where lots of noisy and spuri-
ous branches are left behind; (d) the pruned graph by deleting noisy and merging
spurious branches

The skeleton is still just a series of pixels. Borrowing the definition of the
feature point in [LHS99], we divide the entire skeleton into several discrete
curves through these feature points. Having derived several feature points,
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we trace the discrete curves from each feature point via a depth-first search,
until all the curves have been traversed.

In succession, we employ a modified Hough transform to approximate each
individual discrete curve with a few line segments. This process converts the
pixel-based signals into geometric objects, effectively extracting the spatial
structures of the character. Thus for each character we can construct a graph
G from these line segments, where

G =< V, E >, E = {(v1, v2)|v1, v2 ∈ V }. (10.1)

Here E is the set of line segments derived from the Hough transform and
V consists of all the ending points on those line segments. This is more
than a topological graph in normal graph theory, where each vertex has its
coordinates on a 2D plane. This kind of graph is called a “geometric graph”
for which the definition is adapted as:

Ĝ =< V̂ , E >, V̂ = {< vi, xi, yi > |vi ∈ V }, (10.2)

where (xi, yi) are the coordinates of vertex vi. By comparing Fig. 10.3(b)
and (c), we can see the result of feature points detection and line segments
approximation.

However, the thinning and line approximation process brings in many
fragments of short segments on the skeleton and the geometric graph. Another
problem is a spurious branch: for example a crossing of two perpendicular
strokes might be split into two feature points in the skeleton image. These
problems are illustrated in Fig. 10.3(c), which motivate us to prune and revise
the graph.

The first pruning plan is to merge successive collinear segments into one.
Any pair of adjacent segments, connected by a 2-degree vertex, is merged
into one segment if the angle between them is nearly 180 degrees or one of
them is much shorter than the other. Once such a condition is met, these two
segments and their common vertex are removed from the graph while the
new merged segment is added, except for any part of the new segment which
lies outside the black area of the original character trajectory. This merging
step repeats until no pair meets the condition.

For the other “spurious branch” problem, we apply the “maximal circle
criterion” [LHS99] on each pair of adjacent feature points. The two adjacent
vertices are merged into one if, and only if, the “maximal circle criterion” is
satisfied. As shown in Fig. 10.3(c to d), we can see that the pruning techniques
improve the accuracy of the geometric graph significantly.

Fig. 10.3 illustrates the complete process of structure extraction step by
step. Finally we get a geometric graph for each calligraphic character. In
order to extract each stroke from this graph, we apply a structural matching
method based on an heuristic search by making a comparison with the graph
of its standard font, which we introduce next.

10.5.1.2 Best-effort stroke matching

After the geometric graph is extracted from the character, for every char-
acter in its standard font we employ the knowledge-based rules suggested
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in [LHS97] to extract its primitive strokes from the graph. During the ex-
periment this method works well for almost all the characters of standard
fonts whose skeletons are completely normal but not satisfactorily for the
other fonts. As we already have the strokes of standard fonts, we can apply
a structural matching algorithm to each new character to seek a stroke-to-
stroke match in the graph of its corresponding standard font. Our structural
matching algorithm is implemented with a heuristic search, based on the
definitions of several probabilistic variables.

Borrowing from [YLL97], we define three groups of probabilistic values,
i.e. STROKE LENGTH, STROKE TYPE, STROKE LOCATION, to de-
scribe a primitive stroke, and two other groups, i.e. CROSSING RELATION,
POSITIONAL RELATION, to describe the relation between a pair of strokes.
Table 10.1 gives a list of these groups.

Table 10.1. Feature groups

Group Feature Name

STROKE LENGTH short, normal, long

STROKE TYPE vertical(Shu), horizontal(Heng), slanting(Pie),
anti-slanting(Na), dots(Dian)

STROKE LOCATION left-up, up, right-up, left, middle, right,
left-down, down, right-down

CROSSING RELATION isolated, end-to-end, middle-to-end, end-to-middle,
middle-to-middle(crossing), overlapped

POSITIONAL RELATION left, right, up, down, parallel

STROKE LENGTH. In this group, three features recording the degree
of the length of stroke are of concern. By comparing the specified stroke with
the length of the character, the features concerning the length can be obtained
by using the membership functions shown in Fig. 10.4, where the length of a
character stands for the diagonal length of its bounding box.

Fig. 10.4. Membership functions for STROKE LENGTH feature group

STROKE TYPE. In this group there are five features concerning the
slope of the strokes. As shown in Fig. 10.5, the four features, vertical (V),
horizontal (H), slanting (S), and anti-slanting (AS), are determined by the
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obliquity of the stroke. The fifth type is the dots (D) which are determined
by the length of the stroke but not influenced by the obliquity, as also shown
in Fig. 10.5. For example, a stroke with the angle of 22.5 degrees has the
feature vector (0.5/H, 0.5/S, 0/V, 0/AS). But if it is a short one with the
1/12 diagonal length, it has a probability of 0.5 to be a dot. After all, it has
a feature vector (0.25/H, 0.25/S, 0/V, 0/AS, 0.5/D).

(a) (b)

Fig. 10.5. Membership functions of STROKE TYPE: (a) the probabilities for hor-
izontal (H), vertical (V), slanting (S), anti-slanting (AS); t (b) the dot’s probability

STROKE LOCATION. The features in this group represent the lo-
cation of the center of the specified stroke. In both x- and y-direction, we
divide the projective line segment of the character into three parts, left (up),
middle and right (down), as shown in Fig. 10.6. Then using a Descartes’
multiplication, the whole image is split into 9 zones.

Fig. 10.6. Probabilistic membership functions of the nine zones, inspired by
[YLL97]

The three membership groups described above represent the attributes of
a single stroke. In most handwritten character images, a stroke is distorted in
its length, location or obliquity. In fact in a character the inter-stroke relations
are far more important than the individual strokes. In order to describe them
exactly, two more functions are brought in, introduced below.

CROSSING RELATION. This feature is used to represent the inter-
section relations between a pair of strokes. Under the assumption that the
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length of each stroke is one, the distance from the two ends to the intersec-
tion point (if it exists) for each stroke can be measured. With its help, we
can divide the stroke into two parts, ending and middle, which are shown
with probabilistic values in Fig. 10.7. So far the relationship could be clas-
sified six classes: not touched, end-to-end touched, end-to-middle touched,
middle-to-end touched, crossing (middle-to-middle touching) and overlapped
(intersecting not only at a point). Each stroke owns such a specific proba-
bilistic vector which contains six probabilistic scales for the six types.

Fig. 10.7. Membership functions used for CROSSING RELATION

POSITIONAL RELATION. This procedure is similar to CROSS-
ING RELATION, except that the measure is not about the intersections but
rather the relative positions. The probabilistic functions are shown in Fig.
10.8. Similar to STROKE LOCATION, the projective segment in both x-
and y-direction is divided into three parts, according to the relative locations
between a pair of strokes.

Fig. 10.8. Membership functions used for POSITIONAL RELATION

10.5.1.3 Structural matching with heuristic search

With the probabilistic representation of the stroke’s attributes and the rela-
tions between strokes, we can find a matching for each respective stroke from
its standard font. Liu et al. [LKK01] have done some work on stroke matching
for handwritten Chinese character recognition. Here we borrow their idea to
extract the strokes in a calligraphic character. The matching consists of two
phases. At first the probabilistic attributes of every combination of consecu-
tive line segments in the structure graph are computed and compared with
every stroke in the graph of the standard font. Limited combinations of sim-
ilar attributes with a stroke in the standard font are added in its candidates
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set. This is a coarse classification to reject all the obviously incorrect stroke
matching combinations. Secondly, an heuristic search is employed to select
one stroke from the candidates set for each stroke in the standard font. The
searching target is to find a best-effort matching based on the probabilistic
definitions. In this phase, both the individual attributes and the relations
between strokes are considered.

CANDIDATE STROKE EXTRACTION. Any stroke in the graph
is an edge (line segment) or a path (poly-line) in the graph. All the candidate
strokes for matching a stroke in the standard graph are stored in a list, where
only these candidate strokes will be considered in the STROKE MATCHING
phase. All the combinations of edges in the graph are enumerated as a stroke,
which can be traversed through a depth-first search on the graph. For each
enumerated stroke, we calculate its distance from every stroke in the standard
graph, defined as follows:

D(s, s′) = a|len− len′| + b|loc− loc′| + c|type − type′|, (10.3)

where len, loc, and type are the probabilistic vectors of a stroke (referred to
in Sect. 10.5.1.2), and a, b and c are coefficients. With the definition for each
stroke needed for matching, only enumerated strokes whose distances from
the standard one are smaller than a tolerance threshold will be added in the
candidates set. There are also three threshold values for the single distances
between len, loc and type. The restriction due to these thresholds is quite
loose, so that it just cuts off the strokes which do not match the standard one.
(During experiments, every candidate set of a standard stroke has a limited
capacity.)

STROKE MATCHING. In stroke matching, each standard stroke is
matched with a stroke in its candidate set. Moreover, the matched stroke in
its graph must be consistent with the inter-stroke relations in the standard
graph. We define the distance between two relations for two pairs of strokes
as:

D′((s, s′), (t, t′)) = d|cro(s, s′)− cro(t, t′)|+ e|pos(s, s′)−pos(t, t′)| (10.4)

where cro(s, s′) represents the crossing relation vector between stroke s and
s′, and pos(s, s′) represents the positional relation between s and s′ (and d,
e are coefficients). Since in most Chinese characters the inter-stroke relations
are more crucial, the coefficients d and e here are quantitatively much larger
than the coefficients a, b and c. So far we can achieve the definition of distance
between two geometric graphs which comes from two character images, as
follows:

Dis(Ĝ, Ĝ′) =

n∑
i=1

(D(si, s
′
i) +

n∑
j=1

D′((si, sj), (s
′
i, s

′
j))), (10.5)

where n is the number of strokes in both Ĝ and Ĝ′, s is a stroke in Ĝ and s′

is a stroke in Ĝ′.
Now the matching problem comes to an optimization problem: to seek a

mapping so that the distance between all the matched strokes and the graph
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of the standard character are minimized. A naive way is to enumerate all the
possible matches, but for most Chinese characters this would be too slow. In
order to reduce the computation complexity, we employ a heuristic search of
the A* algorithm, instead of a complete enumeration.

In an A* search, the sum of distances under the current partial search is
estimated as (assuming (s, s′) is the current searching pair):

f(s, s′) = c(s, s′) + h(s, s′), (10.6)

where c(s, s′) is the summed up distance from the beginning to the current
matching pair and h(s, s′) is the heuristic function to estimate the summed up
distance in all the remaining pairs. To ensure the final result will be optimal,
h(s, s′) � H(s, s′) must be guaranteed according to, the constraints of A*,
where H(s, s′) is the actual summed up distance on the remaining path which
is unknown currently. Here we assign the heuristic function h(s, s′) to be:

h(si, s
′
i) =

n∑
j=i+1

mins′
j
{D(sj , s

′
j) +

i∑
k=1

D′((sj , sk), (s′j , s
′
k))}. (10.7)

Obviously the h here satisfies the optimal restriction h � H , which means
we can get the best-effort matching through such a heuristic search. During
implementation we have to consider the lost strokes in a character, since
the situation appears commonly in Chinese calligraphy. We input a special
stroke, “null stroke”, which is a candidate for any standard stroke and always
consistent with any crossing and positional relations, but with a large scale
in distance from anyone else.

After the minimal summed up distance is found, there might still be a
few line segments left which do not match any standard strokes. However,
all the segments in the graph should be matched with the standard graph if
the matching is actually perfect. For those remaining collected segments, we
simply classify them into their nearest matched strokes.

So far we are able to arrive at a series of segments resembling the skeleton
of the strokes. The last step is to construct the ellipse parametric representa-
tion for each stroke from these segments (skeleton). A pixel on the skeleton is
regarded as the center of an ellipse and we draw the maximal ellipse within
the black area of the original trajectory centered on each pixel. All the pa-
rameters of these maximal ellipses are recorded for representing the strokes.
During practical operation there is another “spur” problem occurring in the
intersection area of two or more strokes, where we use a B-spline curve to
smooth both the skeleton and the stroke contour. Due to time and space
limitations, we will not give the details of this problem here. An example to
illustrate the structural matching process is shown in Fig. 10.9.

10.5.2 Intelligent User Interface for the Difficult Cases

We could not rely on a fully automatic processing routine because aesthetic
calligraphy tends to be highly cursive and severely distorted, which renders
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(a) (b) (c) (d)

Fig. 10.9. An example of structural matching based on heuristic search: (a) the
input character; (b) the geometric graph of the character after structure extraction;
(c) comparing with the graph of standard font; (d) the matched strokes on the graph
via the heuristic search; (e) the final stroke decomposition results

an automatic decomposition process based on available pattern recognition
techniques practically impossible. Fig. 10.10 shows some difficult cases that
are highly distorted and have almost completely lost original features.

(a) (b) (c) (d) (e) (f)

Fig. 10.10. Difficult cases: (b) (d) (f) are the standard fonts of the three characters
(a) (c) (e) respectively, where (a) (c) (e) are severely distorted which cannot be
successfully decomposed by our automatic stroke matching algorithm

Our intelligent user interface allows the user to optionally correct or refine
the automatic stroke decomposition results, especially the difficult cases. The
“intelligence” of this UI component lies in its ability to solve the last bits of
the puzzle based on the user’s very sketchy hints. We show one example, in
Fig. 10.11, to explain this process step by step.

We ask the user to draw just a few suggestive sketches to help the com-
puter. We have developed an intelligent user interface for this purpose. The
interface does not expect strokes to be drawn to high accuracy, as can be
seen in Fig. 10.11(e). Given the user’s sketches, we adopt the heuristic A*
search to look for an optimal stroke matching between the user input and the
remainder of the sub-stroke graph in Fig. 10.11(f). During this search pro-
cess we also assign probabilistic values to stroke attributes and their spatial
relationships in a fashion similar to our automatic approach. With this algo-
rithmic processing in the background, our intelligent user interface gets all
the strokes decomposed, as in Fig. 10.11(g to h). The decomposition results
for the other two difficult cases referred to in Fig. 10.10 are shown in Fig.
10.12, with the help of skeleton stretches drawn through the user interface.
Fig. 10.13 shows a few more examples of decomposition results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10.11. An example of decomposing a calligraphic character by our two-phase
decomposition method which utilizes an automatic analysis mechanism and an
intelligent user interface. The input calligraphic character (a), its geometric graph
(b), the shape of the character written in the standard style (c), the automatic
stroke segmentation result by stroke topology analysis and matching, which only
extracts three strokes (d). The remaining strokes are too difficult to be extracted
by any automatic algorithm due to their great deviation from the standard way
of writing. We turn to the intelligent interface, with which the user only sketches
several simple strokes (e), according to which we can have all the strokes in the
geometric graph identified (f); the corresponding stroke trajectories (g), and shapes
(h), can thus be all extracted

(a) (b) (c) (d)

Fig. 10.12. The examples of stroke decomposition with the intelligent user inter-
face. (a) and (c) show the sketches drawn by user; (b) and (d) show the decompo-
sition results for (a) and (c) respectively

10.6 Calligraphy Aesthetics Evaluation

In this section we discuss how to rate the aesthetic quality of a calligraphic
character, according to both the shapes of its constituent strokes in Sect.
10.6.1 and the spatial relationship between its strokes in Sect. 10.6.2, plus its
style analysis compared with the existent well-known styles in Sect. 10.6.3.

First of all, we acquire a number of calligraphic character writing samples
from both calligraphy copybooks and student practice books to compose the
training set for our learning algorithm. After the sample collection, we invited
five calligraphists to play experts to label each of the sample characters by
their visual quality. To keep it simple, only three labels, “good”, “so-so” and
“bad” are used. For each labeled character, three values in the range of 0%
to 100% for the three label types are computed following a Bayesian estima-
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Fig. 10.13. A few more examples of decomposition results

tion method [WK01]. Each value indicates the probability of a calligraphic
character being considered “good”, “so-so” or “bad”.

Based on discussion with practising calligraphists, we take into account
three aspects when designing our calligraphy aesthetics evaluation algorithm:
1) the shape of single strokes, 2) the topological relationship between strokes,
and 3) the correlation among the strokes’ styles. After the calligraphic sam-
ples are decomposed, represented parametrically and labeled, a collection of
machine learning algorithms are employed to capture the underlying rules
governing the impression of beauty or ugliness of the characters. With such
learned criteria, we can then evaluate new calligraphic writings. We demon-
strate the practical value of the automatic aesthetics evaluation algorithm by
integrating it into an existent automatic calligraphy generation system that
we introduced in the previous two chapters. Better visual quality and more
controlled output in high quality can be achieved after the integration.

10.6.1 Evaluating Shapes of Individual Strokes

In the first step we grade individual strokes. This agrees with the general
learning process where one of the basic learning objectives for calligraphy
beginners is to learn to write decent looking single strokes. The reason is
simply that a single ugly stroke is enough to destroy the overall beauty of a
character. So when grading a character we first estimate a visual appearance
score for each of the individual strokes.

In our ellipse-based representation of a stroke, each stroke contains a se-
ries of points on its skeleton, and each point has a corresponding covering
ellipse. We thus have a 2D curve, K, for the skeleton of the stroke and another
two 1D curves, Ma and Mi, for the major and minor radii of the covering



10.6 Calligraphy Aesthetics Evaluation 269

ellipse. We compute a minimum distance from a point on the skeleton to a
point on the stroke contour for each pixel on the skeleton, which results in
an offset distance curve D. Before extracting any features for these curves,
we apply a Fourier transformation to discard the low frequency components
from the curve of K to get the curve S which only indicates the local shape of
the skeleton. This can discard much of the semantics of the particular stroke
and thus yield a more compact representation for shape feature comparison
across different strokes; this effectively increases the generality of our training
samples. For Chinese characters in particular there can be easily hundreds
of distinct shapes for a single stroke. Without such a content invariant rep-
resentation, we would have labored intensively to collect a large number of
training samples.

Fig. 10.14. The stroke signals used for shape grading: ω = {Sx, Sy , Ma, Mi, D}

Now we have a set of curves ω = (Sx, Sy, Ma, Mi, D), where Sx and Sy

are the x, y components of the 2D curve S, as shown in Fig. 10.14. We then
compute the associated derivative curves for each of them, getting another set
of curves ω′ = (S′x, S′y, Ma′, Mi′, D′). With both ω and ω′, we can compute
the shape features of the curves for use in both the learning and the grading
process. For each curve C above, which is a 1D signal, we obtain its largest
element Cmax, the average value Cave and its median value Cmed. The set of
features for inputting into the neural network is derived as:

F � {Cmax|C ∈ Θ} ∪ {Cave|C ∈ Θ} ∪ {Cmed|C ∈ Θ} ∪ θ, (10.8)

where Θ � ω ∪ ω′, and θ is defined below in Eq. 10.9. In our experiments we
find those feature terms in θave work most discriminatively.⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ � θave ∪ θmax ∪ θmed

θave � {C′max

Cave
,

C′ave
Cave

,
C′med

Cave
|C ∈ ω}

θmax � {C′max

Cmax
,

C′ave
Cmax

,
C′med

Cmax
|C ∈ ω}

θmed � {C′max

Cmed
,

C′ave
Cmed

,
C′med

Cmed
|C ∈ ω}

. (10.9)

To provide labels for the training examples we ask our experts to mark
each individual stroke with a label, “good”, “so-so” or “bad”. After the prob-
abilistic grades are computed from these manual labels, we feed a training
set containing a total of 2,500 such labeled single stroke examples, collected
from around 500 single characters, into the back-propagation neural network
and train it iteratively. As well as the labeled samples, three probabilistic val-
ues in the range of [0%, 100%] are in the output, corresponding to whether
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the single strokes are “good”, “so-so” or “bad”. Several grading results of
individual strokes are shown in Fig. 10.15 and 10.16.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(f’) (g’) (h’) (i’) (j’)

Fig. 10.15. Single stroke grading. (a to e) are five example characters among a set
of ten sample characters, from which fifty single strokes are extracted to form the
training set for single stroke grading. The red ones are aesthetically unacceptable
strokes and the black ones are acceptable strokes. (f to j) are five new characters
unknown to the training set. They are colored according to the grading results
produced by our algorithm. (f’ to j’) are the corresponding human expert graded
results. Our algorithm only makes one mistake for a stroke, in (j), where the stroke
is rejected because it is not connected; the human expert feels in this situation the
stroke still looks beautiful even though it is against some general rule of calligraphy

(a)

(b)

Fig. 10.16. Examples of individual strokes evaluation where the bottom one
comes from human experts evaluation and the upper one is given by our algorithm.
For visualization convenience, the evaluating results are represented with colorful
strokes. A completely black stroke indicates it is “good” while a completely red
one means “bad”. As can be seen in this comparison, in general, our algorithmic
grading results are very similar to those given by the human experts

An alternative way is to split a single stroke into pieces before the learning.
This is inspired by our knowledge in Chinese calligraphy that a stroke in each
style has abundant features around its two tips, which might be helpful for
producing more convincing results. Normally we can divide the entire stroke
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into three pieces, its two tips and its central part. For each part we can do
the same things as stated above.

10.6.2 Evaluating Spatial Layout of Strokes

As important as the appearance of single strokes is the way the strokes are
spatially arranged to compose a character. The visual qualities of these indi-
vidual strokes interact with one another to form the overall visual impression
of the whole character, in much the same way as the looks of our facial
parts mutually interact to form the overall appearance of a human face. For
Chinese characters, these spatial arrangements not only affect the aesthetic
appearance but can also lead to different readings as to what the characters
are. Sometimes a minute change of the spatial relationship between strokes
can result in an entirely different character being perceived, and not merely
the same character written in a different style. This poses a great challenge
to our algorithmic design. This will be easy to understand: a pair of charming
eyes, a pretty nose, and perfect red lips together do not necessarily make a
good-looking face if these various features are not in the right proportions
and layout. Another issue is whether the styles of different strokes cooperate
harmoniously, i.e. a pretty face probably will not result if mixing a pair of
European eyes with an Indian nose, Japanese lips and black skin. We discuss
the style coherence aspect in Sect. 10.6.3.

For every pair of strokes, x, y, we compute the maximum, minimum and
mean distances, lmax(x, y), lmin(x.y), lmean(x, y) from a point on one curve
to a point on the other curve. These values can describe both the topological
and the spatial relationships between the strokes. For example, we can easily
determine by these values whether the two strokes intersect or how much
they overlap if intersecting. However, these three values may not tell us the
strokes’ relative position precisely, which is important for the overall visual
appearance or for determining the identity of the character. To capture that,
we draw a bounding box for each stroke (a bounding box is the minimum
rectangle that includes all the parts of the stroke), and then compute the
horizontal, vertical, and planar overlaps of the pair of bounding boxes. We
denote the computed values as Bh(x, y), Bv(x, y), Bp(x, y). This is similar to
the measurement of the degree of overlap between shapes in [XLCP05]. The
difference is that our bounding box is free in orientation, and is not confined
to being parallel to the X−Y axes. For a long and cursive stroke in particular,
where its bounding box contains much blank area, we compute these values
according to its original trajectory without the bounding box. In addition,
we also consider the crossing relationship between a pair of strokes, which
is another key factor for the whole visual effect. As referred to in Table 10.1
of Sect. 10.5.1.2, we use the CROSSING RELATION value to represent the
crossing relationship between a pair of strokes but directly use the numerically
real numbers on the X-axis in Fig. 10.7 instead of the probabilistic features,
denoted as Bc(x, y). Assume a character has n strokes, doing the above gives
us seven n × n matrices Mmax, Mmin, Mmean, Mh, Mv, Mp, Mc where the
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element in the i-th row and j-th column of M is taken from a corresponding
value computed for the stroke pair of the i-th stroke and the j-th stroke.

In the experiments we discover that a majority of the strokes have little
contribution to the architecture of a character while one or two strokes out
of the character mostly determine its literal sense and its aesthetics. For a
character with n strokes, we set up a series of weight values V = {vi|i =
1, 2, . . . , n} to indicate the structural contribution of the each stroke, where
vi equals the space ratio of the i-th stroke’s bounding box to the sum of the
area of all the strokes’ bounding boxes. On the other hand, inspired by the
“radical” layer in the hierarchical representation in [XLCP05], we establish
a weight matrix W for all the six matrices above, where the element in the
i-th row and j-th column indicates the weight of the corresponding elements
in all the six matrices. The elements of matrix W come from the radical
structures from the character hierarchy. If a pair of strokes are in the same
radical, the corresponding element in matrix W is assigned are 1, otherwise
0.5. With these weight definitions, we compute six new matrices Pmax, Pmin,
Pmean, Ph, Pv, Pp. For each element pi,j in each matrix P,

pi,j = min(vi, vj) · wi,j · mi,j (i, j = 1, 2, ..., n), (10.10)

where wi,j and mi,j are respectively the corresponding elements in W and
each matrix M out of the six matrices referred to in the previous paragraph.

The next step is to compute the features of these matrices. For a character
α we can find its corresponding character α̃ written in the Kai style. We then
compute the above six matrices for each of them, and then do a matrix deduc-
tion between the corresponding pair of matrices. The results are denoted as
Qmax, Qmin, Qmean, Qh, Qv, Qp, Qc. Such a deduction operation attempts
to derive a more or less content invariant version of the spatial relationships
between the composing strokes in a character; the benefit is similar to the
gain from removing the low frequency components when grading shapes of in-
dividual strokes. For each of the resultant matrices, we compute its maximum
element value ϕmax, minimum element value ϕmin, maximum absolute value
ϕmaxa, mean element value ϕmean, median element value ϕmed, and its first
three eigenvalues, λ1, λ2, λ3. In total we have 8× 7 = 56 features for a char-
acter. Again we use a back-propagation neural network and train it through
10,000 iterations. We feed the network with over 500 character samples for
50 most frequently used characters, all of which come from different people
with different experience levels in calligraphy; the samples include also a few
ugly or naively written ones. Like what we do in individual stroke grading,
only three levels, “good”, “so-so” and “bad” are actually assigned according
to people’s opinion. Figs. 10.17 and 10.18 show a few experiment results for
spatial-layout grading.

We should point out that the scores so produced depend on which font
is used as the standard font to supply the standard shape of the character α̃
as needed in the above processing. At present we always use the Kai style.
We noticed for the same character written in other styles, it could appear
very differently from that of the Kai style. To solve this problem we employ a
topology matching algorithm to get a one-to-one stroke matching between the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 10.17. Stroke spatial relationship grading example. (a to e) are five training
characters used in this experiment. (a to c) are positive examples and (d) and (e) are
negative examples. (f to j) are the characters graded as aesthetically unacceptable
by the spatial relationship analysis. Their respective scores are: 44.7, 12.7, 7.3, 64.7,
5.4. (k to o) are aesthetically acceptable results as judged by our grading algorithm.
Their respective scores are: 80.1, 99.0, 99.6, 88.5, 99.8

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 10.18. Spatial layout evaluation examples. The statistics in Table 10.2 show
the evaluating details. Each percentage scale represents the probability that the
sample is “good”, “so-so” or “bad”. For comparison, two probabilistic grades are
listed in each unit where the bottom one comes from human experts and the upper
one is given by our algorithm. As can be seen in this experiment, for the majority
of the cases, the algorithmic grading results agree well with those given by human
experts
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Table 10.2. Statistics of spatial layout evaluation results for characters in Fig.
10.18

Figure Good So-so Bad Figure Good So-so Bad

100% 0% 0% 100% 0% 0%
(a) 100% 0% 0% (k) 60% 40% 0%

61.6% 38.4% 0% 50.3% 49.7% 0%
(b) 70% 30% 0% (l) 70% 30% 0%

86.8% 13.2% 0% 94.0% 6.0% 0%
(c) 100% 0% 0% (m) 80% 20% 0%

35.5% 60.0% 4.5% 57.6% 42.4% 0%
(d) 40% 60% 0% (n) 70% 30% 0%

31.3% 60.0% 8.7% 90.2% 9.8% 0%
(e) 70% 30% 0% (o) 80% 20% 0%

55.0% 45.0% 0% 48.1% 51.9% 0%
(f) 90% 10% 0% (p) 50% 50% 0%

0% 54.3% 45.7% 0% 0% 100%
(g) 50% 50% 0% (q) 0% 40% 60%

0% 54.3% 45.7% 0% 0% 100%
(h) 20% 60% 20% (r) 0% 0% 100%

0% 50.7% 49.3% 0% 0% 100%
(i) 20% 60% 20% (s) 0% 0% 100%

98.4% 1.6% 0% 0% 5.9% 94.1%
(j) 100% 0% 0% (t) 0% 0% 100%

character and its standard style before going through the shape comparison
and deduction process as discussed in the above paragraph. An alternative is
to classify all the samples into different styles and use different standard fonts
for reference purposes during feature extraction rather than always sticking
to the Kai style. One way to execute this classification process automatically
is to compare the shape of the character with its counterparts in different
sample writing styles and choose the one yielding the highest score.

10.6.3 Evaluating Coherence of Stroke Styles

During our experiments we found that an ugly character could be composed
of good-looking strokes. From a numerical point of view several high-score
strokes with high-score spatial layout could still form an ugly character, since
some of the strokes might be in different styles. Fig. 10.19 shows some samples
on this issue.

Normally strokes in the same style would lead to a good-looking character
in that style (if the strokes and their spatial layout are both “good”). And
in some cases, where the styles of strokes are different, but “consistent”, the
strokes could still form a good-looking character. We need to consider and
evaluate the style correlation among strokes, which is also important for the
overall quality of the character.

For simplicity, assume there are always m well recognized writing styles
available, which could come from multiple copybooks by different calligraphists.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. Good So-so Bad Fig. Good So-so Bad

100% 0% 0% 0% 0% 100%
(a) 100% 0% 0% (e) 0% 20% 80%

3.9% 61.2% 34.9% 0% 9.3% 90.7%
(b) 20% 60% 20% (f) 0% 40% 60%

91.0% 9.0% 0% 0% 12.0% 88.0%
(c) 70% 30% 0% (g) 0% 50% 50%

62.7% 37.3% 0% 58.6% 41.4% 0%
(d) 100% 0% 0% (h) 40% 60% 0%

Fig. 10.19. The evaluation results of stroke styles correlation. As similar as in Fig.
10.18, both probabilistic grades from computer and human are given for comparison
where the bottom one comes from human experts and the upper one is given by
our algorithm

For each stroke in each writing sample, we calculate the probability for it to
be written in a certain sample style. We thus get an m-dimensional vector
measuring the probability for an individual stroke to be in the sample writ-
ing styles, i.e. G = {gi|i = 1, 2, ..., m}. For a character with n strokes, an
n × m matrix R is established, where the element in the i-th row and j-th
column is the value of gj for the i-th stroke. In our experiments we select
six most frequent styles for each type of stroke and use all the 6n elements
in R as the input to a Bayesian network. The outputs of the network are
three real numbers between 0 and 1, denoting the probabilities of the stroke
correlation as “good”, “so-so” or “bad”. To collect the training set, we first
developed a program which could generate new characters in “novel” styles
based on some given sample writing styles following an interpolation based
method. We then asked several human experts to rate each training sample
using one of three labels—good, so-so and bad. These novel and yet not nec-
essarily beautiful fonts with their labels are fed into the network for training.
Fig. 10.19 shows some training samples and evaluation results for stroke style
coherence grading.

10.6.4 The Overall Evaluation

Finally, the overall evaluation of a character is obtained through a rule-based
method. The training examples are also labeled by a human expert while
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the input to the system is just the topological score of the character, the
style correlation grade and the single stroke shape grades for all its composite
strokes. We employ a decision tree to produce rules for synthesizing the overall
grades of characters with a certain number of strokes.

We also offer the option to give a single numeric number to indicate
the overall aesthetics recommendation for a calligraphy piece. If that option
is chosen, then we need to go through an additional algorithmic stage in
which the overall score of a character is obtained through yet another neural
network. Similarly, the training examples are labeled by a human expert
while the input to the network is just the topological score of the character
and all the shape scores for its composite strokes. We use a dedicated neural
network for producing the overall scores of characters having a certain number
of strokes. The examples used for training each of these neural networks are
50 characters, of which each character is written in six different styles.

For comparison convenience, we merge the three probabilities into an
overall score which denotes the probability of whether the whole character
is “good”. These single probabilistic values are compared with the human
labeling results. The overall grading results and the comparison results are
shown in Fig. 10.20. Over 500 fonts for 50 different characters are employed
in conducting this experiment.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 10.20. Synthesizing an overall aesthetics score for calligraphic characters,
where the scoring statistics are listed in Table 10.3. Due to space limitations, we
didn’t list scores for individual single strokes in this experiment. The scores in
columns “Spatial G.”, “Spatial S.”, “Spatial B.” denote the possibility that the
spatial layout is “good”, “so-so” and “bad” respectively. Similarly, columns entitled
“Style” and “Overall” are for the scores on stroke style coherence and the overall
score of the character where the postfixes G, S and B stand for the category of
“good”, “so-so” and “bad” respectively. For comparison, the overall scores given
by the user are listed in the columns starting with “User”. The postfixes hold the
same meaning. Overall scores for these characters 5 are shown in Table 10.3

10.7 Automatic Generation of Aesthetic Calligraphy

In the previous two chapters, we introduced a system which is able to generate
a variety of stylistic calligraphic characters following an analogous reasoning-
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Table 10.3. Overall scores for the characters shown in Fig. 10.20

Fig. Spatial G. Spatial S. Spatial B. Style G. Style S. Style S.

(a) 100% 0% 0% 100% 0% 0%

(b) 74.7% 25.3% 0% 56.3% 43.7% 0%

(c) 34.3% 65.7% 0% 49.4% 50.6% 0%

(d) 83.5% 16.5% 0% 93.5% 6.5% 0%

(e) 75.7% 24.2% 0% 62.1% 37.9% 0%

(f) 0% 10.7% 89.3% 26.7% 55.5% 17.8%

(g) 100% 0% 0% 100% 0% 0%

(h) 66.2% 33.8% 0% 87.0% 13.0% 0%

(i) 40.7% 58.4% 0.9% 78.3% 21.7% 0%

(j) 92.5% 7.5% 0% 29.6% 56.0% 14.4%

(k) 63.5% 36.5% 0% 8.8% 53.8% 37.4%

(l) 9.6% 60.2% 30.2% 14.9% 46.2% 38.9%

(m) 0% 26.5% 73.5% 28.6% 66.4% 5.0%

(n) 100% 0% 0% 100% 0% 0%

(o) 29.8% 64.0% 6.2% 66.4% 33.6% 0%

(p) 93.2% 6.8% 0% 81.3% 18.7% 0%

Fig. Overall G. Overall S. Overall B. User G. User S. User B.

(a) 100% 0% 0% 100% 0% 0%

(b) 64.5% 35.5% 0% 60% 40% 0%

(c) 55.7% 44.3% 0% 60% 40% 0%

(d) 67.8% 32.2% 0% 70% 30% 0%

(e) 71.1% 28.9% 0% 80% 20% 0%

(f) 0% 16.4% 83.6% 0% 0% 100%

(g) 100% 0% 0% 100% 0% 0%

(h) 34.7% 58.9% 6.4% 20% 80% 0%

(i) 43.8% 56.2% 0% 20% 80% 0%

(j) 53.7% 46.3% 0% 10% 90% 0%

(k) 24.4% 67.3% 8.3% 30% 70% 0%

(l) 14.2% 57.5% 28.3% 20% 60% 20%

(m) 0% 57.0% 43.0% 0% 10% 90%

(n) 100% 0% 0% 100% 0% 0%

(o) 44.2% 55.8% 0% 30% 60% 10%

(p) 85.6% 14.4% 0% 100% 0% 0%

based approach. However, only a subset of the generated results are truly
aesthetically pleasing. This is due to the lack of a powerful built-in judg-
ing mechanism. Given our proposed calligraphy aesthetics grading method,
we can add an elaborate and practical visual quality control module to that
system. We have integrated these algorithms into our experimental system.
For each font produced by their generation system, we evaluate it with our
grading algorithm. According to the overall visual quality score, the involved
generation parameters are varied from their original settings to yield a new
font with a higher aesthetics score. Such a process functions as a typical opti-
mization problem. Assume there are n generation parameters in a character
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C, thus an n-dimensional function f(C) is given, whose value is the overall
score of the character. The task of calligraphy beautification is namely to
find a maximal point in the n-dimensional space, which is reasonably close
to the initial given generation point that corresponds to the original font. We
employ a gradient descendent method that iteratively optimizes the target
function to search for the best possible quality improvement for the given
initial calligraphic writing.

Integrating our calligraphy aesthetics evaluation algorithm into their sys-
tem results in a significant performance improvement in terms of the quality
of the calligraphy being generated and output. We thus call our system an
“aesthetic calligraphy generation system”. Figs. 10.21, 10.22, 10.24 and 10.25
show several automatically-generated calligraphy characters.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10.21. Automatically-generated calligraphy using our system with the pro-
posed grading method serving as visual quality control

10.8 Intelligent Calligraphy Tutoring System

We have also developed a very preliminary calligraphy tutoring system to
support interactive calligraphy learning and writing. The major functional-
ity of our tutoring system is to alert a novice to visually unpleasing strokes
and to suggest improvements. Although our tutoring system cannot at this
stage create calligraphy in the conventional sense (just like a human calligra-
pher), it provides prompt feedback and useful exemplifications to assist the
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(I-a) (I-b) (I-c) (I-d)

(II-a) (II-b) (II-c) (II-d)

(III-a) (III-b) (III-c) (III-d)

(IV-a) (IV-b) (IV-c) (IV-d)

Fig. 10.22. The evaluating algorithm helps improve the aesthetic quality of au-
tomatic calligraphy generation. For every four consecutive figures (I to IV), the
evaluating grades increase from left to right (a to d), corresponding to incremental
improvements on the appearance

human learning process. A screen shot of the running system is shown in Fig.
10.26(a). With the system the end user manipulates a tablet pen correspond-
ing to a hairy brush to do calligraphy writing. Signals from the tablet pen
carrying 5 degrees of freedom are processed in the system in real time to con-
trol the position, orientation and elevation of the virtual brush. Fig. 10.26(b)
shows some “e-calligraphy” written using our system. The intelligence of this
tutoring system can be easily seen during the online interactive user writing
process, when the score for the current writing stroke is fed back to the user
in real time. This suggests an opportunity for them to make corrections to
the strokes on the spot. The feedback includes suggestions for the appear-
ance of both the individual strokes and the spatial relationships between the
strokes. Fig. 10.26(c to f) show an example of the tutoring functionality. The
system would identify strokes that are potentially unpleasing, and supply a
candidate set of automatic correction plans for the user to choose from or for
the user’s reference. Such an interactive feedback is enormously helpful for
calligraphy beginners.
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Fig. 10.23. Source examples input into our automatic Chinese calligraphy gener-
ation system. Some generation results are shown in Fig. 10.24 and Fig. 10.25

10.9 Conclusion and Future Work

10.9.1 Conclusion

Our work links Chinese calligraphy to computer science through an integrated
intelligence approach. We first extract strokes of existent calligraphy using
a semi-automatic, two-phase mechanism: the first phase tries to do the best
possible extraction using a combination of algorithmic techniques; the second
phase presents an intelligent user interface to allow the user to provide input
to the extraction process for the difficult cases such as those in highly ran-
dom, cursive, or distorted styles. Having derived a parametric representation
of calligraphy, we employ a supervised learning-based method to explore the
space of visually pleasing calligraphy. A numeric grading method for judging
the beauty of calligraphy is then applied to the space. We integrate such a
grading unit into an existent constraint-based reasoning system for calligra-
phy generation, which results in a significant enhancement in terms of visual
quality in the automatically generated calligraphic characters. Finally, we
construct an intelligent calligraphy tutoring system making use of the above.
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Fig. 10.24. Automatically generated calligraphy of an ancient poem in Tang
Dynasty of China (8th century), based on the learning sources in Fig. 10.23

This work represents our first step towards understanding the human process
of appreciating beauty through modeling the process with an integration of
available AI techniques.

10.9.2 Discussion and Future Work

We have described a learning based approach for evaluating the aesthetics of
Chinese calligraphy. The study of this topic could both lead to many practical
applications, like automatic generation of aesthetic Chinese calligraphy, as
demonstrated in this chapter, and could also shed light on the intriguing
issue of numerical beauty appreciation. We have obtained very encouraging
results from the experiments on the quantitative accuracy of our algorithmic
attempts at automatic aesthetics evaluation of calligraphic objects.

In this chapter we are mainly concerned with evaluating the visual appeal
of single calligraphic characters. In a complete piece of calligraphic artwork,
the spatial relationship between adjacent characters in the entire artwork
could affect the overall visual appearance in a profound manner. Thus, ex-
tending our current aesthetics appreciation work to account for the layout of
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Fig. 10.25. (Continued from Fig. 10.24) Some more automatically generated cal-
ligraphy of the poem based on the learning sources in Fig. 10.23

characters in a complete piece of calligraphic writing is a major item in our
future work.

Currently, when providing the sample set of calligraphy, human experts
are asked to pick from three values indicating the visual quality of a certain
calligraphic character. This is by no means a natural way for human experts.
From time to time we noticed there were wrongly labeled training samples. In
reality people are probably more accustomed to ranking characters in terms
of their aesthetics, rather than assigning a numerical value for their relative
visual quality. We feel that relational grading, instead of the absolute grades
as in our current algorithm design, could significantly increase the reliability
of the labeling over the training set itself. Revising the learning algorithms
introduced in this chapter, to utilize the relational scores in the training sam-
ples, calls for some non-trivial algorithmic efforts. However, this represents a
worthwhile step forward for improving the overall system performance.

Right now, the acquisition of the training set consumes a major portion
of our experiment time. This is mostly because stroke extraction from input
images of Chinese calligraphic characters is not fully automatic. As a result
we are only able to establish a training set for those most frequently used
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.26. Intelligent calligraphy writing tutoring system: a screen-shot (a), and
some calligraphy created interactively using the system (b). (c to f) show a series of
screen shots of how the tutoring function works. The user can write a calligraphic
character with the virtual brush provided by the system (c). At first the character
is decomposed into individual strokes (d). The grading result is given by both the
shapes of individual strokes and spatial features of the character (e). According to
the scoring, the system can suggest how to improve the writing (f)
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characters. The limited size of the training set might also reduce the learning
capability of automatic calligraphy aesthetics evaluation. Of course, enlarging
the size of the calligraphic character training set is absolutely necessary for
developing a commercially valuable system based on our algorithm. We thus
plan to explore the problem of automatic calligraphic character recognition
and stroke segmentation.

At present, when determining whether different strokes in a character
follow the same writing style, we rely heavily on the predefined styles from
existent copybooks and font libraries. In the future it would be interesting
and meaningful to look at the problem of how to define writing styles from
a numerical point of view and, moreover, how to imitate the writing style of
a person after seeing a limited portion of characters in his writing. Once a
person’s writing style could be defined quantitatively, we could even try to
tackle the more challenging problem of discovering a potential relationship
between people’s handwriting and their gender, career, personality, health
condition, etc.
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Part V

Animating Chinese Paintings



11

Animating Chinese Paintings through

Stroke-based Decomposition

11.1 Overview

This chapter proposes a technique to animate a “Chinese style” painting
given its image. We first extract descriptions of the brush strokes that hypo-
thetically produced it. The key to the extraction process is the use of a brush
stroke library, which is obtained by digitizing single brush strokes drawn by
an experienced artist. The steps in our extraction technique are to first seg-
ment the input image, to then find the best set of brush strokes that fit the
regions, and finally to refine these strokes to account for local appearance. We
model a single brush stroke using its skeleton and contour, and we character-
ize texture variation within each stroke by sampling perpendicularly along its
skeleton. Once these brush descriptions have been obtained, the painting can
be animated at the brush stroke level. In this chapter we focus on Chinese
paintings with relatively sparse strokes. The animation is produced using a
graphical application we developed. We present several animations of real
paintings using our technique.

11.2 Introduction

What if paintings could move? In this chapter we propose a way of animat-
ing Chinese paintings by automatically decomposing an image of a painting
into its hypothetical brush stroke constituents. Most Chinese paintings are
typically sparse, with each brush stroke drawn very purposefully [SL97]. Our
method is specifically geared for handling paintings that employ brush strokes
economically; in addition to most Chinese paintings, other suitable styles in-
clude Sumi-e and certain watercolor and oil paintings, such as those of van
Gogh.

In Chinese paintings each stroke is often introduced to depict something
specific in the real world. Thus the output of our stroke-based decomposition
of these paintings is a set of graphical objects that are meaningful with regard
to the set of real objects the paintings depict. As a result, animators would
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likely feel comfortable manipulating these graphical objects. In addition, the
number of strokes in each painting is usually small, and hence manageable.

Our approach uses segmentation techniques and a library of brush strokes
for fitting. The recovered brush strokes are basically vectorized elements,
which are easy to animate (Fig. 11.1). In addition to animation, the set of
recovered brush strokes can be used for synthesis of paintings or for manip-
ulating images of paintings.

(a) (b)

(c) (d)

(e) (f)

Fig. 11.1. Animating a flower painting. A painting is animated by decomposing
it into a set of vectorized brush strokes. The brush strokes are produced by taking
the input image (a) and over-segmenting it initially (b). These segments are then
merged into coherent strokes (c), which are chosen to match strokes in a “brush
stroke library.” These strokes are then textured (d) using the input image as a
texture source. Finally, the strokes are individually animated as vectorized elements
(e), (f)
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Our automatic stroke decomposition technique has other potential uses.
For example, a system utilizing a camera or scanner along with the tradi-
tional media of paper, brush and paint can be thought of as a kind of “natural
tablet” (as opposed to a digital tablet). Another application is compression—
an animation sequence of a painting can be more efficiently represented and
transmitted across a network. This is a direct consequence of the decompo-
sition process producing a set of vectorized stroke elements. The resulting
compressed representation could be used, for instance, to augment a textual
chat system with little additional required bandwidth. Finally, the recovered
representation could be analyzed to identify artistic style and identity.

To our knowledge there has been little or no work on automatically de-
composing images of paintings into brush strokes. However, several related
topics have been explored. One such example is that of “optical character
recognition” (OCR) systems, where stroke analysis techniques are used for
segmenting handwriting purely on the basis of shape (e.g. [WJ93]). Another
related line of research is diagram recognition, which includes recognizing en-
gineering drawings [JP92], mail pieces [WS88], sketch maps [MMH88], maths
expressions [ZBC02], and music symbols [BH99]. However, the targets in di-
agram recognition are usually limited to symbols or objects drawn using thin
lines, which are not nearly as visually rich as brush strokes in paintings.

In computer graphics, electronic virtual brushes have been developed to
simulate the effects of brush painting on a computer. One of the earliest
works in this area is that of Strassman [Str86], where paint brushes are mod-
eled as a collection of bristles that evolve over the course of a stroke. Hsu
and Lee [HL94] introduced the concept of the “skeletal stroke,” which allows
strokes to be textured. This idea was later used in a 2D stroke-based ani-
mation system called LivingCels [HLLS99]. The Deep Canvas system [Dan99]
allows brush strokes to be digitally created on 3D surfaces and then animated.
The virtual brush for oil painting was proposed by Baxter, et al. [BSLM01].
The virtual hairy brush for Oriental painting was suggested by Xu, et al.
[XTLP04]. Kalnins, et al. [KMM+02] presented a system that supports the
drawing of strokes over a 3D model.

Our stroke decomposition work is related to the extensively researched
problem of image segmentation in computer vision (see [Jai89] and [FP02]).
One particularly relevant approach is that of Neumann [Neu03]. He proposed
an image segmentation technique that uses predefined graphical shape mod-
els. However, the technique requires manual selection of corresponding key
points, which is non-trivial for large-scale data sets. Wang and Siskind [WS03]
proposed the cut ratio method (a graph-based method) for segmenting im-
ages, which supports efficient iterated region-based segmentation and pixel-
based segmentation. Marroquin et al. [MSB03] proposed a Bayesian formula-
tion for modeling image partitioning and local variation within each region.
All these methods either require manual input or assume non-overlapping
regions.

Our brush stroke extraction approach involves over-segmenting the image
and incrementally merging parts. This technique is common in computer
vision and has been used in computer graphics as well. For instance, DeCarlo



292 11 Animating Chinese Paintings through Stroke-based Decomposition

and Santella [DS02] progressively group regions based on similarity of color
modulated by region size. Liu and Sclaroff [LS01] used a deformable, model-
guided, split-and-merge approach to segment image regions. We used a similar
approach, except that we consider the similarity with brush strokes from a
library as well as color distributions on region boundaries.

There are other object-based editing systems that do not involve brush
strokes. In Litwinowicz and Williams’s image editing system [LW94], users
can align features such as points, lines and curves to the image and dis-
tort the image by moving these features. Salisbury et al. [SABS94] developed
an interactive image-based non-photorealistic rendering system that creates
pen-and-ink illustrations using a photograph as the reference for outline and
tone. In Horry et al.’s “Tour-into-the-picture” system [HAA97], the user can
interactively create 2.5 D layers, after which flythrough animations can be
generated. Barrett and Cheney [BC02] developed an image editing system
that allows the user to interactively segment out objects in the image and
manipulate them to generate animations.

The closest work to ours is probably that of Gooch et al. [GCS02] because
of some similarity with two important parts of our algorithms — image seg-
mentation and medial axis extraction — and the shared goal of generating
brush strokes. However, Gooch et al. addressed a very different problem: they
wish to convert one image — photographs or views of synthetic 3D scenes
— to another — a non-photorealistic rendering — without preserving the
image’s exact appearance. Moreover, their system’s output is a static image.
As such it is not important for them whether or not the extracted strokes
are amenable to animation. Also, correct recovery of overlapping strokes is
not an issue for them because they are not trying to replicate exactly the
appearance of the input image. By comparison, we wish to decompose an
image of a painting to separate vectorized elements, or strokes, such that
rendering those strokes reproduces the original image’s appearance. In addi-
tion, in order to facilitate more “natural-looking” animation, the extracted
strokes have to be plausible strokes that the artist may have made. Figs. 11.2
and 11.3 show the results of applying Gooch et al.’s [GCS02] algorithm to
two images of paintings. As can be seen, the extracted strokes do not depict
anything that corresponds to the real world. This makes “proper” animation
of the painting significantly more labor-intensive than if the correct original
strokes were extracted. In addition, the original appearance of the painting
is not preserved.

11.3 Painting Decomposition Approach

Before we animate a painting, we first decompose its image into a plausible
set of brush strokes. A graphical overview of our decomposition approach is
depicted in Fig. 11.4, which also shows an example image, the intermediate
results and the final output. The basic idea is simple: we segment the image,
use a brush library to find the best fit for each region and refine the brush
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(a)

(b)

(c)

Test Segmentation level (maximum 255) Number of strokes

a 255 1,769

b 120 1,255

c 25 403

Fig. 11.2. Stroke extraction results of the fish painting using Gooch et al.’s al-
gorithm. The original painting is Fig. 11.15(a). Three typical segmentation levels
are tested: fine (a); medium (b) and coarse (c). The contours of extracted strokes
for each test are shown on the top, while their corresponding rendered results are
shown on the bottom. The statistics for these results are listed in the table below
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(a)

(b)

(c)

(d)

Test Segmentation level (maximum 255) Number of strokes

a 255 2,982

b 120 2,345

c 30 942

d 15 496

Fig. 11.3. Stroke extraction results of the flower painting using Gooch et al.’s algo-
rithm. The original painting is Fig. 11.4. Four typical segmentation levels are tested:
(a to d). The left row shows the contours of extracted strokes, while their corre-
sponding rendered results are shown in the right row. The segmentation parameter
and number of strokes extracted are listed in the table below
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Fig. 11.4. Steps involved in our painting analysis and reconstruction approach

strokes found directly from the input image. The brush library used was
created with the help of a painter who specializes in Chinese paintings.

11.3.1 Image Segmentation

Given an image of a painting, we first segment the image into regions of simi-
lar color intensities. This segmentation is done to speed up the processing for
brush decomposition. We tune the mean-shift algorithm [CM02] to produce
an over-segmented image because similarity of color intensity is a necessary
but not sufficient condition for brush stroke segmentation. The overly con-
servative segmentation ensures that each region does not straddle multiple
brush strokes unless they overlap.

11.3.2 Stroke Extraction by Region Merging

After over-segmentation is done, we merge contiguous regions that likely be-
long to the same brush strokes. Our merging process is inspired by domain-
dependent image segmentation techniques proposed by Feldman and Yaki-
movsky [FY74] and Tenenbaum and Barrow [TB77] (and more recently, Ku-
mar and Desai [KD99] and Sclaroff and Liu [SL01]). In these techniques the
image is initially partitioned without the use of domain knowledge. Subse-
quently, pairs of adjacent regions are iteratively merged based on the likeli-
hood of being single world objects.
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In our approach the domain knowledge is derived from two sources: the
intuition that color gradients are low along brush strokes (the directional
smoothness assumption), and a stroke library containing the range of valid
stroke shapes (the shape priors). The directional smoothness assumption is
implemented using average gradients and the difference between the average
color intensities along mutual boundaries. The stroke library is obtained by
digitizing single strokes drawn by an expert artist, and the resulting shape
priors are used to avoid implausible shapes. The shape priors also handle
brush stroke overlap and, as such, our technique goes beyond conventional
segmentation.

Before merging takes place, the region merging criterion ε (explained
shortly) is computed for each pair of adjacent regions. Pairs of adjacent re-
gions are then merged in ascending order of ε. In addition, we merge (or
“steal”) neighboring regions if the best-fit brush stroke straddles them.

We now define the region merging criterion ε. Suppose we have two adja-
cent regions γi and γj . The boundary region of γi with respect to γj , denoted
as ∂(γi, γj), is the set of pixels in γi that are close to some pixel in γj . In our
work “close” is defined as within 3 to 5 pixels of the neighboring regions and
adjacency is defined in the 4-connected sense—a pixel p is adjacent to q if p
and q are horizontal or vertical neighbors. Neighboring regions are merged if
the following region merging criterion ε, defined as the sum of five terms, is
negative:

ε � κgεg + κcεc + κwεw + κmεm + κo. (11.1)

The first two terms, εg and εc, measure differences in the color distributions of
the two regions (gradient and intensity-based measures, respectively), while
the next two terms, εw and εm, measure the shape similarities to those of
library brush strokes (the names stand for “weighted shape similarity” and
“maximum shape similarity,” respectively). Fig. 11.5 illustrates why the terms
εg, εc, εw, and εm are necessary. The first four constants, κg, κc, κw, and κm,
are all positive, while κo, a threshold offset, is negative. The values of these
coefficients used for decomposing the Chinese painting shown in Fig. 11.4 are
given in Table 11.1. Similar values are used for the other results.

Table 11.1. The coefficients used in Eq. (11.1) to decompose the painting shown
in Fig. 11.4. The values used for the other experiments are similar

Coefficient κg κc κw κm κo

Value 0.083 0.05 16 5 4.5

Dividing both sides of Eq. (11.1) by κo yields only 4 independent param-
eters. Although the ratio between κg and κc and the ratio between κw and
κm have some effect on the decomposition result, the most significant factor
is the ratio between κgκc and κwκm. For paintings with strong edges in the
stroke contours, better results are obtained using relatively high values of κw

and κm. In our experiments we test the thresholds on a small representative
portion of the painting before using them on the whole image.
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(a) (b)

(c) (d)

Fig. 11.5. Representative cases in the region merging process to illustrate the need
for εg, εc, εw and εm. (a) εg: Regions i and j have the same color values in the
boundary pixels, but they should not be merged because of the sharp difference
between the gradients. (b) εc: Regions i and j have the same gradients along their
common boundary, but they should not be merged due to the significant difference
between the color values along the common boundary. (c) εw: Here the combined
shape similarity is good enough to overcome the color difference. (d) εm: Here both
the component strokes, i and j, and the combined stroke are all good fits with the
strokes in the library. In this case εm cancels out εw, causing the merging decision
to be made based on the boundary color and gradient distributions instead

11.3.2.1 Comparing boundary color distributions

To compare two boundary color distributions, we first extract two sets of
gradients Gi and Gj , and two sets of color values Ci and Cj (ranging from 0
to 255 in each color channel) for the pixels in the boundary regions ∂(γi, γj)
and ∂(γj , γi) respectively. Fig. 11.6 shows the boundary regions considered
during the region merging process.

The color distribution criteria in Eq. (11.1) are defined as:

εg �
∑
r,g,b

(∣∣Gi − Gj

∣∣ arctan

(
λg

( ||Gi||
σ2(Gi)

+
||Gj ||

σ2(Gj)

)))
, (11.2)

εc �
∑
r,g,b

(∣∣Ci − Cj

∣∣ arctan

(
λc

( ||Ci||
σ2(Ci)

+
||Cj ||

σ2(Cj)

)))
, (11.3)

where λg and λc are constants and X, ||X || and σ2(X) are the mean cardi-
nality and variance of X respectively. In the above equations, by

∑
r,g,b we

mean the two features are computed for the r, g, and b channels separately
and then added together. Note that ||Gi|| = ||Ci||, since both of them refer to
the number of pixels in the same boundary region. Similarly, ||Gj || = ||Cj ||.
In all our experiments, λg and λc were set to 0.05 and 0.75 respectively.

The gradient term εg measures the distance between the average local
gradients along the two boundaries modulated by their combined certain-
ties. Each measure of certainty increases with longer mutual boundaries and
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Fig. 11.6. Boundary region processing. Here, regions i and j are being considered
for merging. ∂(γi, γj) and ∂(γj , γi) are the boundary regions used to partially decide
if these regions should be merged. The red curve is one pixel thick, and consists of
pixels common to both regions i and j. The yellow region is inside region i, adjacent
to the red common boundary curve and 3 to 5 pixels thick. The green region is simi-
larly defined for region j. ∂(γi, γj) consists of yellow and red regions, while ∂(γj , γi)
consists of green and red regions. Ci is the set of colors in the yellow region and
Cj , the set of colors in the green region. Gradients Gi and Gj are computed using
pixels in ∂(γi, γj) and ∂(γj , γi) respectively. Note that here we use only the bound-
ary regions, rather than the entire image region. The local computation strategy is
necessary to handle strokes with significant texture variation, e.g. strokes created
by dragging a semi-wet brush along a long trajectory

smaller variances. The positive coefficient λg and function arctan() are used
to bracket the confidence value to [0, π/2). The color term εc functions ex-
actly the same way as εg, except that color intensities are compared instead
of local gradients. Both εg and εc measure the homogeneity of the texture
variation within each stroke region; we assume the texture variation within
a stroke region to be homogeneous.

While there are alternatives to comparing boundary color distributions,
our design decisions are governed by simplicity and symmetry of measure-
ment. Estimation of εg and εc is a computational bottleneck because they
are estimated for each adjacent region pair. The Kullback-Leibler divergence
(or relative entropy), for example, may be used, but it is asymmetric with
respect to the two probability distributions. The Chernoff distance, which
is another information-theoretic distance measure, may also be used, but it
requires computation of maxima (a non-trivial optimization problem).

11.3.2.2 Using the brush stroke library

The key to our decomposition approach is the use of a brush stroke library.
The image of a painting can be segmented in a variety of ways, but the most
natural approach would be to segment the image into hypothetical brush
strokes that originally generated the painting. Each brush stroke depicts part
of the scene; as such, the output of our segmentation allows the animation of
the painting to look more natural.

We generated our brush library by digitizing single brush strokes drawn
by an artist with ten years of experience in Chinese painting. This brush
library is by no means exhaustive (future work is planned in this area); in
our case the artist drew 62 different brush strokes that he thought were well
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representative of all the possible ones used in Chinese paintings. Each brush
stroke was then binarized and its skeleton computed. Sample brush strokes
from this library are shown in Fig. 11.7.

Fig. 11.7. Sample library brush shapes. Only 9 out of 62 shown here. The bottom
row displays the modeled brush shapes in the library with their skeletons shown as
red curves. The top row shows respective counterparts collected from real paintings

The brush stroke library acts as shape priors to guide the segmentation
so as to avoid irregularly-shaped segments. The library also allows us to
hypothesize overlaps between brush strokes, which facilitates their separation.
Without the brush stroke library, we can extract strokes using only the color
distribution in the original input image. The decomposition results would
likely be irregularly-shaped segments; such segments would be unintuitive
from the painter’s perspective and thus difficult to animate. (Note that only
regions that are relatively thick are processed using the brush library. Strokes
that are thin are processed differently; see Sect. 11.3.4.)

Fig. 11.8 shows the effect of not using our stroke library, i.e. the stroke
decomposition is performed purely based on color distribution without using
any shape priors. Stroke decomposition results at different granularities are
shown. (The different granularities refer to the different levels of coarseness
controlled by segmentation parameter settings.) Regardless of the granularity,
the decomposition results are not satisfactory. Ensuring proper brush stroke
extraction without an explicit library is highly non-trivial. One could, for
example, favor smoothness of the medial axis as well as the radius function
along the axis. However, using such a heuristic would produce mostly sym-
metric, straight blobs, which would appear unnatural for Chinese paintings
in general. In addition to producing false negatives, the smoothness prefer-
ence may also result in strokes that practising artists would find inappropriate
from an aesthetic point of view. Such strokes could very likely cause incorrect
style or artist identification if they were to be analyzed.

11.3.2.3 Comparing shapes

We compare each region to the model strokes in our brush stroke library
and find the model brush stroke with the highest shape similarity. Since the
scale, orientation and shift of the observed brush stroke can be arbitrary, we
find the best transform to optimize similarity to each library brush stroke.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 11.8. Stroke decomposition without our stroke library. (a to h) show stroke
decomposition results at different granularities (progressively coarser). Without the
stroke library to guide the decomposition, stroke decomposition is uneven, resulting
in irregular shapes
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To compute the best transform, we first initialize the shift by aligning the
centroids, the orientation by aligning the major axis directions, and the scale
by comparing areas. The transform is then refined through gradient descent
to maximize shape similarity. The appropriately transformed library brush
stroke with the highest similarity with the observed brush stroke is then
chosen.

There is extensive work on 2D shape matching; a good survey of tech-
niques is given by Veltkamp [VH99]. We choose a simple (but effective) ap-
proach to shape similarity in order to keep the computation cost manageable.
Specifically, we define a similarity measure ϕ(γi), which describes how well a
given region γi fits some stroke in the library:

ϕ(γi) = max
k

A(γi ∩ Tkiβk)

A(γi ∪ Tkiβk)

where A(X) is the area of region X , βk is the k-th stroke in the brush
stroke library and Tki is the optimal transform (shift, rotation, and scale)
used to align βk with γi. The functional ϕ() ranges between 0 and 1—it is 1
when the two shapes are identical. Unlike many shape comparison approaches
that compare contours, our shape-based criterion directly makes use of areas.
Using areas is more reliable because there is high variability in the detail of
the contours of brush strokes. (Pre-smoothing the contour may result in the
loss of critical information.)

The shape-based criteria in Eq. (11.1) can be defined as:

εw �
ϕ(γi)A(γi) + ϕ(γj)A(γj)

A(γi ∪ γj)
− ϕ(γi ∪ γj), (11.4)

εm � max{ϕ(γi), ϕ(γj)} − ϕ(γi ∪ γj). (11.5)

Thus, εw compares the area-weighted sum of similarity measures associated
with fitting two brush strokes against the area-weighted similarity measure
for a single brush stroke for the combined regions. A large positive value of εw

means that it is better to fit the two regions with two brush strokes instead
of one. The second measure, εm, compares the similarities of the two strokes
versus the combined stroke directly; a large value signifies that it is better not
to merge the regions. Both εw and εm are used in objective function Eq. (11.1)
because we need to balance two conflicting biases: the bias towards fitting
a single brush stroke on the merged regions (εw) versus the bias towards
preserving current regions that have a very good fit with the library (εm).

11.3.3 Stroke Refinement and Appearance Capture

Note that the extracted brush shapes are not the final shapes; the brush
strokes in the library are used merely to guide the segmentation process.
After the brush strokes have been identified, their shapes are refined using
the final segmented regions in the image. The shape of each identified brush
stroke is first scaled, shifted and rotated so as to maximize shape similarity
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with the corresponding stroke region. The modified shape is then dilated to
assume the shape of the brush stroke as much as possible.

Once each shape has been refined, an optimization algorithm is used to
produce a maximal-length skeleton within the region. This is accomplished
by searching the positions of the two ends of the skeleton along the boundary.
The search is done in the vicinity of the skeleton of the best-fit library brush
stroke. A piecewise 3-degree Bézier curve is used to fit the skeleton.

The appearance of the brush stroke is then captured by directly sampling
texture from the image. This is necessary in order to reproduce the appear-
ance of the original painting. Sect. 11.4 describes how texture sampling is
done.

11.3.4 Thin Brush Strokes

Because thin brush strokes are very difficult to model as part of a library, we
treat them separately. Each region is categorized either as a regular brush
stroke or as a thin brush stroke based on a simple aspect-ratio analysis of
the regions. We label a stroke as being thin if the arc length of its skeleton is
at least 10 times longer than its average stroke width. Adjacent thin strokes
will also be merged if the difference between their average intensities is less
than 10 levels and the gradients at their mutual boundaries differ by less than
10%.

Skeletons for thin brush strokes are extracted by using a thinning al-
gorithm [ZQN95]. Interval piecewise Bézier splines [SF92, SXSC02] are then
used to represent the thin strokes. A piecewise Bézier curve is used to fit
the skeleton of the stroke, with local widths (corresponding to local brush
thickness) and intensities recorded at the spline knots. We adapt Schneider’s
algorithm [Sch90] for this purpose. In addition to placing spline knots uni-
formly along the skeleton, we place additional spline knots at locations of
high variation of local width or intensity. We resample the width and inten-
sity until their local variations are within acceptable limits.

At this point let us discuss two important issues associated with our
decomposition algorithm. First, what happens when the artist draws strokes
that are not in the database? Our algorithm will try to force-fit the best brush
stroke shape from the library. If the drawn stroke is only a little different
from one of the library strokes and the drawn stroke is close to being a solid
stroke (strong boundary edges with little contrast inside), it is likely that only
one stroke will be extracted. However, if the drawn stroke is dramatically
different from any stroke shape from the library, oversegmentation will likely
happen (with possible overlap) because there is no single brush stroke that
can fit it well. The second issue relates to the background of the painting. The
background need not be white or some other constant color for our algorithm
to work; it will work with any uniformly (finely) textured background. If the
background is cluttered, it will be treated the same as the foreground objects
and decomposed in exactly the same way. Our algorithm will work as long
as there is enough contrast between strokes for separation.
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11.4 Appearance Capture and Synthesis of Single Brush

Strokes

11.4.1 Single-stroke Appearance Model

Fig. 11.9 shows an overview of how single brush strokes are refined and syn-
thesized (if necessary).

Fig. 11.9. Steps in analyzing and synthesizing a single brush stroke (The thin and
regular strokes are handled differently.)

In the case of thin brush strokes, their skeletons are represented by interval
B-splines, with local brush widths and intensities recorded at the spline knots.
They can be directly rendered using this information.

For regular brush strokes (i.e. those that are not considered thin), we
devised a single-stroke appearance model (Fig. 11.10). With the single-stroke
model, each brush stroke undergoes a more complicated iterative process,
which consists of four steps:

(1) Color distribution sampling. Given the shape of the brush stroke (i.e.
skeleton and contour), normal lines are computed at regular sample points
along its skeleton (Fig. 11.10(c)). The color distribution in RGB space of
the brush stroke is sampled along each normal line, and is represented
using a piecewise 3-degree Bézier curve. We use Schneider’s algorithm
[Sch90] to automatically segment the samples. We assume that the error
in fitting the color distribution is Gaussian noise. The modeled Gaussian
noise is then added to the fit color distribution to prevent the synthesized
appearance from appearing too smooth.

(2) Bézier curve resampling. The number of Bézier segments may differ
for a pair of adjacent normal lines. To simplify the next step of appearance
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(a) (b) (c) (d)

Fig. 11.10. Appearance capture of a single brush stroke. Given an input stroke (a),
its contour and skeleton are initially extracted (b). The skeleton is then smoothed,
and lines perpendicular to it are sampled from the input image (c). The stroke’s
appearance can then be generated (d)

prediction, we resample the number of segments of adjacent normal lines
so that they contain the smallest common multiple of the number of
samples in the originals. We refer to this process simply as Bézier curve
resampling. Note that each sample line has two sets of representative
Bézier segments, one to match the previous neighbor and the other to
match the next neighbor. The exceptions are the first and last sample
lines, which have only one set of Bézier segments.

(3) Color distribution prediction. Given the Bézier approximation of
color and noise distributions, we can then synthesize the appearance of
the brush stroke. Every pixel in the brush stroke is filled by linearly in-
terpolating the nearest two normal lines. This can be easily done because
the number of segments per normal line pair is the same (enforced by
Step 11.4.1).

(4) Refinement of sampling location. The synthesized brush stroke is
used to refine the locations of the sampling lines along the brush skeleton.
We start off with a sufficiently high sampling density along the skeleton
(sampling every pixel is the safest starting point). Sampling lines are
chosen at random and tested to see if the degradation is significant when
they are removed. If so, they stay; otherwise, they are permanently re-
moved. This process (which is a form of analysis by synthesis) is repeated
until either the error between the reconstructed and actual brush strokes
is above a threshold, or the number of iterations exceeds a limit.

11.4.2 Why Direct Texture Mapping is Inadequate

A straightforward method to capture and reproduce the appearance of a
brush stroke would be to triangulate it, followed by texture mapping. One
possible tessellation strategy for dividing the brush stroke area into triangular
strips is proposed by Hertzmann [Her99]. There are two main problems with
this approach. First, the shape may be significantly distorted in the process
of animation, causing non-uniform warping of texture. Although the texture
deformation within one triangle is uniform, the discontinuity of deformed
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texture would become obvious across the edges of adjacent triangles. In con-
trast, our stroke appearance model ensures texture smoothness throughout
the deformed stroke area because deformation is continuously distributed
according to the skeleton of the stroke. Fig. 11.11 compares the results of
significant shape distortion.

(a) (b) (c) (d) (e) (f) (g)

Fig. 11.11. Comparison of distortion effects on texture mapped brush stroke and
our appearance model. Given the original stroke (a) and triangulation for texture
mapping (b), significant deformation may result during animation (c). Compare
the distorted strokes using texture mapping (d) and our appearance model (e).
The close-up views of the two respective approaches, (f) and (g), demonstrate that
the texture mapped version cannot handle this type of significant distortion as well
as our appearance model

The second problem with direct texture mapping is that separate tes-
sellation of the source and destination brush stroke shapes would introduce
the non-trivial problem of establishing a one-to-one correspondence between
the two tessellation results to map the texture. It is possible to handle this
problem using a dynamic tessellation algorithm that generates consistent
tessellation results, e.g. [ACOL00]. However, that would introduce signifi-
cant additional complexity at the expense of speed. In addition, ensuring
minimum distortion in the brush texture is not obvious. As a result it is also
very hard to guarantee temporal coherence during animation if direct texture
mapping is used. Our appearance model does not suffer from these problems.

Our appearance model also naturally supports Level-of-Detail (LOD) for
strokes, and has the capability of predicting the appearance of areas that
may be partially occluded. This predictive power is used for producing good
initial appearances in the process of separating overlapping brush strokes
(Sect. 11.5).

Although our appearance model outperforms texture mapping in terms of
rendering quality, rendering through direct texture mapping is much faster,
typically at interactive speeds. Also, when the brush shape deformation is not
too significant, establishing the one-to-one correspondence between tessella-
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tion results for the initial and deformed brush shapes is not very challenging.
Thus, we provide two rendering modes in generating an animation clip from
a collection of brush strokes extracted from paintings. During the on-line au-
thoring process, texture mapping is used for rendering. This is to enable the
animator to manipulate the brush strokes and preview the results in real-
time. Once the on-line authoring stage is accomplished, the actual animation
clip is generated using our brush appearance model.

11.5 Separating Overlapping Brush Strokes

Brush strokes typically overlap in paintings (see, for example, Fig. 11.12(a)).
In order to extract the brush strokes and animate them in a visually plausible
way, we have to provide a mechanism to separate the recovered brush strokes
at the overlap regions. Techniques for separation of transparent layers exist
in the computer vision literature. For example, Farid and Adelson [FA99]
showed how to separate reflections off a planar glass surface placed in front
of a scene. Their method can restore the image of the scene behind the glass
by removing the reflections. Unfortunately their algorithm does not handle
the more general problem of image separation, i.e. under arbitrary motion
and using only one image (as in our work). Another two-layer separation
technique is that of Szeliski, et al. [SAA00]. However, they use multiple input
images, assume planar motion for the two layers, and apply an additive model
with no alpha.

(a) (b)

(c) (d) (e)

Fig. 11.12. Separation of overlapping brush strokes. Given the original image of
three overlapping strokes (a), we obtain the separate strokes (b), with close-up
views (c). These strokes can then be easily animated (d), (e)

Levin and Weiss [LW04] and Levin et al. [LZW04] also studied the problem
of separating transparent layers from a single image. In the first approach
gradients are precomputed, following which users are required to interactively
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label gradients as belonging to one of the layers. Statistics of images of natural
scenes are then used to separate two linearly superimposed images. It is not
clear if such an approach would work for typical Chinese paintings (which are
not photoreal), even with the benefit of manual labeling. The second approach
uses a similar framework, except that it minimizes the total number of edges
and corners in the decomposed image layers. However, the minimal edge and
corner assumptions are not valid for typical Chinese paintings due to the
sharp edges of brush strokes. By comparison, our assumption of minimum
variation on the texture of brush strokes along the stroke direction is more
appropriate for our domain, and turns out to be effective for automatically
separating overlapping brush strokes.

The overlap regions can be easily identified once we have performed the
fitting process described in Sect. 11.3.3. Once the library brush strokes have
been identified, their contours are refined using a similarity transform (scal-
ing, shifting, and rotating) to maximize shape similarity with their corre-
sponding stroke regions. The transformed brush strokes are further dilated
enough to just cover the observed strokes in the image, after which the over-
lapping areas are identified.

We then apply an iterative algorithm to separate the colors at the overlap
region. To initialize the separate color distributions, we use the same strategy
described in Step 11.4.1 of Sect. 11.4 to interpolate the colors in the overlap
regions using neighboring Bézier functions with known color distributions.

In real paintings, the color distribution in the overlap region is the re-
sult of mixing those from the separate brushes. We adapt the mixture model
proposed by Porter and Duff [PD84] to model overlapping strokes as matted
objects because the combination color in the overlapping brush region is gen-
erally the result of mixing and optical superimposition of different pigment
layers. We did not use more sophisticated models such as the Kubelka-Munk
model ([JW75], pages 420—438), because the problem of extracting all the
unknowns from only one image is ill-posed. While the problem is similar to
matting (e.g. [Chu01]), matting does not explicitly account for brush stroke
texture and orientation. Currently we separate only pairs of brushes that over-
lap. Extending our method to handle multiple overlapping strokes is possible
at higher computational cost.

Let ψi(p) and ψj(p) be the colors of two overlapping brush strokes at a
given pixel location p, with brush stroke i over brush stroke j; let αi(p) be
the transparency of brush stroke i at p; and let ψr(p) be the resulting color at
that pixel. We model the appearance of these overlapping strokes using the
(“unpremultiplied”) compositing equation [PD84]:

ψr(p) = αi(p)ψi(p) +
(
1 − αi(p)

)
ψj(p). (11.6)

In our case ψr(p) is observed, and so our goal will be to solve for αi(p),
ψi(p), and ψj(p) at each pixel p for which the strokes overlap. This problem
is, of course, underconstrained by this single equation. Thus we will solve
for the values of these three variables that minimize a certain expression
encoding some additional assumptions about the appearance of the strokes.
In particular, we will assume that the colors ψi and ψj vary minimally along
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the lengths of their strokes, and that the transparency αi varies minimally
along both the length and breadth of the upper stroke.

Our objective function, which we will minimize using gradient descent
subject to Eq. 11.6, is as follows:∑

p∈γi∩γj

(Vi(p) + Vj(p) + λtTi(p)) . (11.7)

Here, Vi can be thought of as the “excess variation” of the color of stroke i
along its length, while Ti is the variation of the transparency of stroke i along
both its length and breadth.

To evaluate the excess variation, we will refer to the “average variation”
Vi(p) of the color ψi(p) in the parts of the stroke that do not overlap j in
which that same color appears. We will call this “exposed” region γi\j(ψi(p)).
Let � be the direction that is parallel to the length of the stroke at p. Then
the average variation of the color ψi is given by

Vi(p) =
1

A(γi\j(ψi(p)))

∑
p∈γi\j(ψi(p))

‖∂ψi(p)/∂�‖ . (11.8)

The excess variation Vi(p) is then given by the amount to which the
derivative of the color of stroke i at p along its length exceeds the average
variation of that color in other parts of the stroke:

Vi(p) = max
{
0, ‖∂ψi(p)/∂�‖ − Vi(p)

}
. (11.9)

Finally, the variation of the transparency is given by the sum of the deriva-
tives of the transparency both along and across the stroke:

Ti(p) = ‖∂αi(p)/∂�‖ + ‖∂αi(p)/∂b‖ , (11.10)

where b is the direction perpendicular to �.
We generally set λt to a small number, around 0.05, since minimizing

color variation appears to be more important than transparency variation
in most cases. An example of brush separation is shown in Fig. 11.12. The
original brush strokes are shown in (a), and the separated brush strokes are
shown in (b).

Our compositing model is related to the Kubelka-Munk model [JW75],
which assumes that additivity is valid for the absorption and scattering co-
efficients in the overlapping pigment layers. In other words, Kr = ciKi +
(1 − ci)Kj and Sr = ciSi + (1 − ci)Sj , where Kr, Ki, Kj are the absorption
coefficients in the overlapping area, brush stroke i and brush stroke j, re-
spectively. Sr, Si, Sj are the respective scattering coefficients. ci, (1 − ci) are
the percentages of the amounts of pigment carried by the brush strokes i and
j respectively. It is easy to see that our additive compositing equation is a
highly simplified version of the Kubelka-Munk model.

The stroke decomposition and animation results show that the simple
additive compositing model Eq. (11.6) is rather effective. Our compositing



11.6 Decomposition and Reconstruction Results 309

model is significantly less complex than the Kubelka-Munk model. In addi-
tion, it is not clear how the Kubelka-Munk model can be reliably used, as it
requires the simultaneous recovery of multiple transparent layers from only
one image.

A straightforward method for separating overlapping strokes would be
to simply discard color information at the region of overlap and reconstruct
via smooth interpolation from neighboring regions. However, when an artist
paints a single stroke, the color distribution within that stroke is typically not
uniform and not smooth. Reconstructing the missing overlap regions by just
smoothly interpolating from neighboring regions will not only result in an
overly smooth appearance, but also a visually incorrect one. By comparison,
our technique accounts for the non-uniformity in color distribution.

11.6 Decomposition and Reconstruction Results

Fig. 11.13 shows step by step the process of our stroke decomposition ap-
proach on a flower painting. Here, for ease of illustration, we focus on only
three extracted brush strokes. Another illustrative example is given in Fig.
11.14(a to i); here, both successful and failed stroke decomposition cases are
shown. These cases are discussed in Sect. 11.8. Decomposition results for en-
tire paintings are shown in Figs. 11.4 (a different flower painting) and 11.15
(fish painting). As can be seen in all these examples, the appearance of these
paintings has been very well captured using our brush stroke library and ap-
pearance model. In the stroke decomposition result shown in Fig. 11.15(e),
most parts of the fish body that animators would like to manipulate have
been extracted as separate strokes. This decomposition is more convenient
for animation than the results obtained without using our stroke library (Fig.
11.8). Without using the stroke library, regions are either over-segmented
(Fig. 11.8(a to c)), under-segmented (Fig. 11.8(g to h)) or inconveniently seg-
mented (recovered strokes straddling multiple actual strokes, Fig. 11.8(d to
f)).

There are three reasons why stroke decomposition using only a simple
shape smoothness assumption instead of our stroke library (Sect. 11.3.2.3)
produces less desirable results. First, strokes with large variations in width
and skeleton shape tend to be segmented incorrectly due to the violation
of the smoothness assumption. Second, irregular contours of brush strokes
(which occur rather often) would be similarly penalized, especially when over-
lapping occurs. Third, the smoothness assumption is intolerant of noisy or
incomplete skeletons. Unfortunately, skeletons are noisy or incomplete in the
initial stages of stroke decomposition, especially in the vicinity of overlaps.
By comparison, our stroke-library-based approach is more robust because it
incorporates more accurate domain-specific knowledge in the form of com-
monly used stroke shapes.

In the example of reconstructing strokes from a Chinese fish painting (Fig.
11.15), it may seem surprising to observe that the eye of the fish is captured
in our brush stroke decomposition even though it has not been segmented
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11.13. The stroke decomposition process. We illustrate the decomposition
process for input (a) by focusing on three brush strokes delineated in red (b). After
over-segmentation (c), candidate stroke regions are extracted (d), followed by fitting
the best library strokes (e). However, the best fit strokes typically do not completely
cover the observed strokes (f), with blue contours representing the fit strokes and
red contours representing the observed strokes. To correct the problem, we search
(through gradient descent) the scaled rigid transform necessary for each fit stroke
to minimally cover the observed stroke (g,h)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 11.14. Stroke decomposition example for shrimp painting. Given the input
(a), we limit our analysis to three segments of the shrimp’s body, delineated in
red (b). From (c) to (f), respectively: close-up of original, after over-segmentation,
after extracting candidate strokes and after fitting library strokes. As expected,
the best-fit library strokes (in blue) do not completely cover the observed strokes
(in red) (g). The refined best-fit library strokes that minimally cover the observed
stroke region are shown in (h) and (i). These results are a little different from the
manual decomposition results (j) done by the original painter. By superimposing
both results (k), we see that the large brush strokes have been correctly extracted
(in green); those that were incorrect were caused by oversegmentation (in purple).
The enlarged views of the overly-segmented regions are shown in (l)
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correctly. (It is difficult to segment correctly here because the size of the eye is
very small.) The reason this “works” is that everything within the boundary
of the refined brush stroke is considered its texture, and is thus sampled.
Note that if overlapping brush strokes are detected, the algorithm described
in Sect. 11.5 will automatically recover the appearances of the separated brush
strokes. It is possible for a refined brush stroke shape to be bigger than it
should be, and thus cover a little of the background or other brush strokes (as
is in the case of the fish’s eye in Fig. 11.15). While an imperfect segmentation
will usually not affect the synthesized appearance of a still image, it will
however introduce more sampling artifacts during animation.

We have also compared the results of our automatic stroke decomposition
with those manually extracted by experts. Fig. 11.17 shows such an example.
Typically, while our results are not identical to their manually extracted
counterparts, the differences are minor in places where the brush strokes
are obvious to the eye. Most of the differences are in locations of significant
ambiguity, where even experts have trouble separating brush strokes.

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Fig. 11.15. Chinese painting of a fish. The input image (a) is first over-segmented
(b). Candidate stroke regions are extracted (c) and fitted with library strokes
(d). Note that the thin strokes are represented by their skeletons to distinguish
them from regular brush strokes. The fitted regular library strokes are then refined
through dilation (e). The dilation effect can be seen by superimposing the strokes
(f). The painting can then be synthesized (g). Close-up views of the original (h) and
synthesized (i) show the slight blurring effects. Selected keyframes of the animated
fish painting are shown in Fig. 11.16
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(a) (b)

(c) (d)

Fig. 11.16. Animated fish painting. Out of 150 frames in the animation clip, we
show (a) the 1st frame, (b) the 20th frame, (c) the 60th frame, and (d) the 90th
frame

(a) (b) (c)

Fig. 11.17. A comparison between our decomposition result with manual stroke
decomposition. (a) The flower portion of Fig. 11.1. (b) The decomposition result
(candidate stroke regions). (c) The result of manual decomposition by an experi-
enced Chinese painter who did not create the painting. The blue lines are the edges
of strokes extracted with high confidence while lines in yellow are extracted with
much less confidence (i.e. deemed ambiguous). Although (b) is different from (c)
in a number of places, the major differences are mostly on the yellow lines, where
multiple interpretations exist. Our recovered brush strokes agree well in areas where
the brush strokes are distinguishable by the naked eye

11.7 Animating Paintings

Fig. 11.18 shows a screen shot of the user interface of our application pro-
gram designed for animation. The animator can select and move any control
point of either the skeleton or the contour of the stroke to be animated. The
appearance of the modified stroke is automatically generated by rendering
our single-stroke appearance model. The key-frames for the animation can
thus be produced through very simple user manipulation.

The in-betweens are generated through interpolation. Note that our ani-
mation is done at the brush-stroke level. Our brush appearance and mixture
models allow the animated painting to be visually acceptable.

Our animation system has the following important features that make it
fast and easy to use:
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(1) Addition and removal of brush strokes. Brush strokes from other paintings
can be imported and used.

(2) Grouping of brush strokes for simultaneous manipulation or editing.
(3) Ability to edit shape and location of the common boundary between two

adjacent strokes or to manually decompose a stroke into multiple separate
strokes. The latter feature is useful if parts of the decomposition results
are not considered fine enough.

(4) Preservation of stroke connectivity, so that changes to any brush stroke
will be appropriately propagated.

(5) Shape interpolation using critical points (points with locally maximal cur-
vature) on the stroke boundary to better preserve the local shape charac-
teristics during animation.

(6) Timeline support for editing motion trajectories (e.g. changes in speed
or phase). The motion trajectory for each brush stroke can be modified
independently.

(7) The shapes of the brush contour and its skeleton are directly linked; if
one of them is manipulated, the other is automatically updated.

(8) The user can operate directly on either the candidate strokes (Fig.
11.15(c)) or the refined strokes (Fig. 11.15(e)). Note that in Fig. 11.18,
groups of candidate strokes are manipulated.

Snapshots of animations can be seen in Figs. 11.1 and 11.20.
It is possible for our stroke decomposition algorithm to make mistakes.

It may over-segment (requiring more work to animate), under-segment (re-
sulting in inadequate degrees of freedom for animation), or even produce
segments straddling multiple actual strokes. Some of the features in our au-
thoring tool are designed specifically to allow users to manually touch up the
decomposition results or correct mistakes.

11.8 Discussion

There are other possible methods for extracting brush strokes. The simplest
is to have the artist draw directly using an interface with the computer,
e.g. a haptic interface [BSLM01]. Another method would be to record the
painting process and infer the brush strokes. The idea would be to digitize
the intermediate results of the painting after every stroke or group of strokes.
This may be accomplished by using an overhead camera that sees the entire
painting. To avoid the problem of occlusion, the artist could leave the field of
view of the camera after each stroke or a small number of strokes. However,
the painting process is no longer natural. The artist has to adapt to the change
in the conditions for painting, be it using the haptic interface or (worse) with
the stop-and-paint approach. Furthermore, existing paintings could not be
handled.

Another straightforward (but more manually intensive) alternative is to
design an authoring tool that allows users to merge small stroke segments into
meaningful ones or have users roughly delineate the boundaries of strokes.
This solution would provide a higher degree of control but comes at the cost
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Fig. 11.18. Graphical user interface for animation. This interface uses as input
the vectorized strokes generated by our decomposition algorithm. The blue dots
are the control points of Bézier curves associated with the groups of brush strokes
representing the fish’s tail. There are four groups shown here. Note that each group
is represented by a different line color, and each group’s contour is that of the union
of its constituent brush strokes. The shape of each group is manipulated by moving
the control points. The top and bottom fish images are generated before and after
manipulation-respectively

Fig. 11.19. The original lotus pond painting

of extensive manual effort. Automatic color separation such as ours would
have to be incorporated in such a tool (common image editing tools such as
PhotoshopTM do not have such a feature).

For the animation example shown in Figs. 11.19 and 11.20, it took a
single animator 40 hours to use our authoring system to produce a 40-second
clip. While there is no record of the exact cost of making the famous 18-
minute 1988 video, “Shan Shui Qing” (“Love for Mountains and Rivers”),
descriptions of the work involved (e.g. [Che94, CZ95]) suggest that it required
dozens of people working for about a year.

What happens if we were to use only a subset of the brush stroke li-
brary for the decomposition process? Fig. 11.21 shows that the effect is over-
segmentation, which worsens as the size of the library is decreased. This is not



11.8 Discussion 315

(a)

(b)

(c)

Fig. 11.20. Animated lotus pond painting. Out of the 580 frames in the animation
clip, we show the 196th frame (a), the 254th frame (b), and the 448th frame (c).
The 1st frame corresponds to the original painting, which is shown at Fig. 11.19

surprising, as the impoverished versions of the brush stroke library are unable
to adequately account for the rich variety of stroke shapes in the painting.

Our algorithm can fail even for some Chinese paintings; more specifically,
it is unable to decompose paintings drawn in a realistic style. Fig. 11.23 shows
such a failure case. In such paintings both the shapes and the color of brush
strokes are deposited strictly according to the actual appearance and geome-
try of real-world objects. This makes our brush appearance model no longer
a good fit since there can be large color variations along the stroke skele-
tons. In addition, our stroke library would no longer be adequate because the
shapes of brush strokes are drawn more arbitrarily to resemble the shapes
of real-world objects. To make the painting as realistic as possible, many
tiny strokes (which may significantly overlap each other) are often drawn.
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(a) (b)

(c) (d)

Fig. 11.21. The effect of different library sizes on decomposition. The example in
Fig. 11.17 is used for comparison. (a) is the result using the full library (62 brush
strokes), (b) is the result using 31 brush strokes, (c) with 16 brush strokes and (d)
with 8 brush strokes. The brush stroke shapes in the libraries used for (b to d) are
randomly chosen from the full library

This style of painting violates the mainstream principle of “economical use
of brush strokes” for Chinese paintings.

Unfortunately, even a reasonable decomposition may not always be
amenable to animation. This is especially true if the painting involves many
small objects clustered closely together and if the animation requires complex
interacting motions. A good example of such a case is shown in Fig. 11.24.
While the decomposition of the grape painting looks reasonable, animating
each grape and leaf relative to other objects would be challenging. For such
complicated paintings, it is not clear what a good solution would be.

Our current implementation is unoptimized. For the flower example shown
in Figs. 11.1 and 11.4 (with resolution 560 × 1, 080), the times taken for
each step on a Pentium III 1.2 GHz computer are: image segmentation (10
secs), region merging (5 hrs), regular stroke refinement (40 mins), regular
stroke appearance capture (35 mins), thin stroke detection (10 mins) and
interval spline fitting (1 min). We plan to optimize our code to speed up the
performance. Note that these steps are done off-line and executed only once.
During the actual on-line editing process, rendering of manipulated brush
strokes is at interactive rates (30 FPS when simple texture-mapping is used
for previewing).

Once the brush strokes have been identified, it is entirely possible to ana-
lyze the painting by analyzing the brush strokes themselves. By looking at the
distribution of directions, stroke thickness, variation of thickness along each
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(a) (b)

(c) (d)

Fig. 11.22. A failure example. One painting that our algorithm failed to decompose
properly is The Seine at La Grande by Georges Seurat in 1888 (a). The stroke
decomposition algorithm resulted in a very large number of small brush strokes. (b)
is the close-up view of the area enclosed by the red box in (a). Its corresponding
decomposition result is shown in (c), with the final refined brush strokes shown
in (d) (Here we do not include the stroke skeletons in the stroke regions for ease
of visualization). Obviously, animating paintings of this kind using our current
algorithm would be very labor-intensive. Secondly, our brush appearance model is
also no longer a good fit since there is large color variation along the brush strokes.
This makes our stroke extraction less accurate

stroke, and the color distribution along each stroke and within the painting,
the task of identifying the painting style and even the artist may be easier.

Decomposition results with arbitrarily shaped segments complicate the
process of animation, and would very likely adversely affect the final visual
output quality. Overly small segments increase the amount of effort involved
in specifying their motion trajectories. (This effort can be reduced by group-
ing the small segments, but the grouping operation can be laborious and
tedious as well.) On the other hand, overly large segments straddle multiple
brush strokes (wholly or partially), which severely limits the degree of free-
dom in animating. In addition, in cases where the large segments straddle
partial brush strokes, it is very difficult to ensure a correct appearance if the
large segments are manipulated independently because the separated brush
strokes are distorted differently.

Our current rendering implementation uses a simplistic approach to han-
dle overlapping normal lines (which occur when the user puts a sharp kink
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(a) (b)

Fig. 11.23. A failure case for Chinese painting. Our decomposition algorithm usu-
ally fails for realistic Chinese paintings such as this one (a). The right side of the
figure (b) shows a close-up of the painting, the decomposition result (candidate
stroke regions), and the result of superimposing the decomposition result onto the
original painting. Note the over-segmentation effect due to the original’s arbitrarily-
shaped brush strokes and significant color variation

(a) (b) (c)

Fig. 11.24. A decomposition result unsuitable for animation. The input image of
a grape painting (a), the initial segmented image regions (b) and the extracted
candidate strokes with skeletons (c)
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into the edited stroke, for example). The renderer merely averages the color
distributions of the overlapping normal lines. It is not clear what the right
solution to this situation is, but the technique used by Hsu and Lee [HL94]
may be better. Another failure mode occurs when the brush stroke is too
distorted, causing severe deformation of the local appearance. Fortunately
these problems do not occur very often.

11.9 Conclusion and Future Work

11.9.1 Conclusion

We have shown a new technique for animating paintings from images. What
is particularly interesting is that the animation is done at the brush-stroke
level.

In order to decompose the image of a painting into hypothesized strokes,
we proposed an approach that uses a library of brush stroke shapes to aid re-
gion segmentation. Our brush stroke model plays a critical role in allowing the
painting’s appearance to be captured and subsequently rendered with good
fidelity. Finally, our overlap separation algorithm allows the full appearance
of strokes to be extracted despite the presence of overlaps.

A key contribution of our work is the automatic recovery of separate, vec-
torized brush strokes . This is a tremendous time saver compared to manual
segmentation, especially when the painting has hundreds of brush strokes. In
addition, proper automatic color separation in the overlap regions is not triv-
ial and is not a feature in common image editing tools such as PhotoshopTM.
The animation is significantly easier once the segmentation is done.

Experiment results show that our method of decomposition is capable of
producing high-quality reconstructions of paintings. The quality of the sample
animations also serves to illustrate the effectiveness of our decomposition
approach.

11.9.2 Future Work

As shown in Sect. 11.6, the reconstructed images look very similar to the orig-
inal ones (e.g. Fig. 11.15). On closer examination however, we can see artifacts
introduced by our brush stroke representation (Fig. 11.15 (h) and (i)). In all
our examples we see that the reconstructed paintings appear fuzzier and the
boundaries of the brush strokes are more irregular. This is due to the discrete
sampling of the appearance along the brush skeleton (with intermediate areas
merely interpolated). In addition, the sampling along the brush skeleton is
done independently, i.e. there is no spatial coherence between samples. We
plan to investigate sampling techniques that better handle spatial continuity
along the brush stroke skeleton.

While many brush strokes appear to be correctly extracted, our algo-
rithm did make mistakes, especially in areas where brush strokes overlap
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significantly and where the strokes are thick and short. One way of improv-
ing this is to extract the brush strokes globally, e.g. ensuring better continuity
in the brush stroke direction. In addition, our overlap separation algorithm
is currently applicable to overlaps between two brush strokes only. It is not
clear how robust our current algorithm is to overlaps of an arbitrary number
of brush strokes, but this is a topic we intend to investigate further.

Another limitation of our algorithm lies in the stroke separation and tex-
ture modeling steps being independent. As Fig. 11.14(k to l) shows, our al-
gorithm resulted in over-segmentation. This is caused by significant texture
changes within the failed regions. Our current stroke decomposition algorithm
is designed under the assumption that texture variation within a stroke re-
gion is approximately homogeneous. Unfortunately, for paintings whose pig-
ment/ink diffusion effect is significant, the uniform texture variation assump-
tion no longer holds, leading to the failure cases in Fig. 11.14. To handle such a
problem, we would have to incorporate texture modeling in the stroke decom-
position process and replace the uniform texture variation assumption with
the step of directly fitting a texture model. This would obviously increase the
computational cost of the decomposition process.

Currently, our stroke model extracts transparency only at overlapping
regions. The proper procedure would be to calculate transparency throughout
the overlapping stroke region. Unfortunately, the separation of colors using a
single image is ill-posed. We handle this by specifying relative transparency
at the overlap regions with spatial regularization. One possible solution is to
allow users to manually (locally or globally) specify the natural transparency
of a stroke. In our current implementation, Eq. 11.6 assumes an additive
color model, while ink tends to be subtractive. We would like to explore
more sophisticated pigment mixing models in the future.

We currently use Chinese-style and watercolor paintings for our work.
There are instances where our algorithm did not work well, e.g. Fig. 11.22,
where there are extensive overlaps between many short brush strokes. Our
brush appearance model is also no longer a good fit when there is large
color variation along the brush strokes. Because the decomposition for such
a painting would result in a large number of small brush strokes, the process
of animating the painting would be very labor-intensive. We have plans to
work on images of paintings with significantly different styles (e.g. Renais-
sance oil paintings). It is likely that we will need to expand our brush stroke
library to handle the different brush stroke styles available in different types
of paintings.

Our current decomposition algorithm does not handle very closely drawn
brush strokes very well. In such cases it may create overly large refined strokes.
It is possible to improve the decomposition process by looking at boundary
concavities and hypothesizing those to be boundaries of at least two strokes.
This is a difficult problem that we intend to investigate further.
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Final Fantasies for Digital Painting and

Calligraphy

No Dream Too Big, No Dreamer Too Small.

Kate Bredimus, Richmond.com

12.1 Perspectives on Digital Paintbrush Research

It is not unreasonable to suggest that an ideal digital paintbrush system
should not only perform as expressively as, or mimic, any arbitrary paint-
brush in the real world, but should also be able to achieve certain effects that
are not possible with any physical paintbrush. We examine both the realistic
and the surreal goals in this section.

12.1.1 An Ideal Digital Paintbrush System

First and foremost, an easily agreeable goal for the design and development
of a digital paintbrush system is for the resulting e-brush to be functionally
equivalent to a physical paintbrush, thus rendering the latter completely re-
placeable by an e-brush. That is, the ideal system should support the creation
of serious artwork in an entirely digital fashion, the quality of which could
rival that of paintings done by physical brushes. The following elaborates on
the functionalities of such an e-brush.

12.1.1.1 Types of paintings

A wide variety of different kinds of paintings should be simulated including,
but not limited to, woodwork painting, watercolor painting, acrylics painting,
oil painting, egg tempera painting, mixed-media painting, encaustic painting,
pastel painting, fabric painting, etc. Since the types of paper and pigments
are usually dictated by the kind or style of paintings, this also means the
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ideal digital paintbrush should be able to emulate the features of all sorts of
papers and pigment species existing in the real world.

It is worth noting at this juncture the very recent introduction by Brooks
of “mixed-media painting” in the field of painterly rendering [Bro07]. He
successfully demonstrated by some hybrid deployment of multiple traditional
painting styles, e.g. paint daubs, watercolor, colored pencil, photocopy, that
some impressive and effective painting effects could be achieved. An ideal
digital painting environment should surely be able to support the flexible
mix-and-match of various painting styles without imposing any burden on
the end user.

12.1.1.2 Paintings effects

For each painting method, an ideal digital paintbrush should support the
generation of all the effects that are in the repertoire, for example from very
wet ink to the very dry, from intensive pressing of the brush against the paper
surface to mere touching and sliding of the brush over the paper surface.
Especially in the practice of Oriental painting, the way a painter fluently
and skillfully manoeuvers his brush is a key to mastery, which is a major
learning component of any standard Oriental painting training and education
program. An ideal e-brush should therefore be sensitive enough to observe
and track the painter’s manoeuvering of the brush and then accurate enough
in simulating the corresponding effects from the manoeuver.

12.1.1.3 Real-time response

Regardless of the type of paintings the user is doing and the specific painting
effects going on, the system should operate and interact with the user in real
time. We can expect it takes no less than a reasonable amount of computing
power to realize that goal, but meanwhile are mindful that this is not the
place where super-computing support should be demanded. If an e-brush is
by any means to be popular and easily accessible, an ordinary PC platform
is what should be expected. In the age of pervasive computing however, even
this might be too luxurious. To be able to substitute for the real physical
brush which is handy and portable anywhere (call that pervasive painting),
an ideal digital paintbrush should also be able to function on even very power
limited computing platforms, say PDAs or cell phones. In view of the current
advances in small-device computing, it might take a while to actually reach
this status.

12.1.1.4 The issue of resolution

An ideal digital paintbrush should support digital painting at arbitrary lev-
els of resolution when so desired without excessively straining the system
resources. Currently, as far as we could observe, all the digital paintbrush
simulations only support the creation of painting effects at a certain pre-
chosen resolution. For vector-based painting, like those done using Adobe
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Illustrator, this is not an issue. However, there are many painting effects
which are feasible in vector mode. The practice today is that the user has
to first choose or commit to a certain resolution before he/she starts paint-
ing and enjoys these effects. Once the painting is done, trying to change or
improve the resolution is either not allowed or non-trivial. Many on-going
research efforts are actively trying to solve this problem

[CB97, BS98, EF99, Cha01, RC02, FJP02, BK02, Cap04, NY05, CM05,
WTS05, SC05, BF06, TTT06, JCC07, BACM+07, NLT07], but still there
are a lot of challenges ahead. Interestingly, the situation resembles the reso-
lution issue of digital cameras versus conventional analogue (optical) cameras.
An ideal digital camera will ultimately be expected to produce digital pho-
tographs at any resolution imaginable, making it completely indistinguishable
from an optical camera. Before that happens, digital cameras will still be the
underdog in the resolution race.

12.1.1.5 Realistic brush dynamics

Brush dynamics are crucial to the faithful simulated reproduction of real
brush behavior, and are keys to the successful production of many realistic
as well as unrealistic painting effects. Unfortunately, a typical head bundle
of a paintbrush comprises hundreds if not thousands of hair strands. Com-
puting the motion of so many objects in real time is non-trivial. In addition,
the motion of condensed glue, which is commonly used to model pigment
materials, presents another great difficulty in computational dynamics. On
top of these, there are these apparently conflicting real-time and accuracy
requirements the simulation has to meet. All this calls for the most careful
and optimal algorithm design and software implementation. But things could
be even more complicated than this. Once the brush head is dipped into the
ink bottle and loaded with some pigment glue or pounder, the synergism of
pigment materials and the hair volume at the brush tip is a complex body
of motions, making the overall situation even more challenging. Despite the
formidable technical obstacles, we believe it is necessary and worthwhile in
the long run to tackle these computational challenges anyway, due to two
reasons: 1) A high accuracy in the simulation is important for producing a
facsimile of many artistic features, such as the splitting of the brush tip in
delicate dry brush effects, or the random piling up of dense pigment mate-
rials during oil painting, or impasto in particular; 2) The user ought to feel
the brush being manoeuvered, which critically depends on the faithful and
accurate simulation of brush dynamics. If the virtual paintbrush deviates in
any way in its behavior from that of a physical paintbrush, a likely immediate
consequence would be an inaccurate calculation of the resultant footprint of
the brush head on the paper. If there is to be a compromise, either the artist
has to re-learn the use of the (virtual) brush, or the computer system has to
labor to fine-tune its behavior to meet the user expectation and habit. The
latter may be called human-centric software design, which is easier said than
done. In the case of the digital paintbrush simulation as is done today, the
designer tends to succumb to the technical implementation difficulties and
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consequently overlooks the real needs of the end users. We advocate making a
digital paintbrush system capable of resolving brush dynamics as realistically
as possible, so that the user can concentrate on the artwork creation process
without being bothered or distracted by having to learn or adapt to a new
or different tool.

12.1.1.6 Haptic feedback

Feedback is one of the most helpful aids for a person seeking to behave
properly and profitably when trying to achieve certain goals in real life. The
brush-based painting experience in reality or in the virtual world is no excep-
tion, where haptic feedback can help the artist develop an adept control over
the movement of the brush. Therefore, as important as achieving accuracy
in brush dynamics simulation is the need for the ideal paintbrush system to
provide a realistic haptic feedback. This calls for a special input device that
is haptic, and corresponding to more complex brush dynamics simulation
methods, algorithms and implementations.

12.1.1.7 Sensitivity to external conditions

There are many external conditions which could affect the visual impression
given by a painting. Consider for instance these two conditions: viewing and
aging of the painting. By viewing conditions, we refer to the situation where
a painting may have a different appearance when given different lighting
conditions, as is the case for virtually any physical object in the world. To
allow the user to experience delicate and realistic visual experiences with
the painting, it is essential for the system to implement a correct or close
approximation to the real situation in the physical world. In terms of aging,
any physical painting will undergo an aging process, due possibly to the
aging of the pigment materials as well as the canvas. Although it is arguable
whether the support of aging is desirable for paintbrush systems in general,
this is a very interesting process or effect to simulate, which might lead to
some interesting research results, if not a practical tool.

12.1.1.8 Authenticity of digital paintings

A real painting is unique by definition (under a magnifying glass). The chance
that a second painting looks exactly the same as this one is practically zero.
This however becomes an issue for digital paintings, which must be carefully
addressed and resolved if any digital painting system is to be adopted by
serious artists to do serious work. With some advanced computer science
techniques, we believe it is possible to render automatic protection to an
original digital painting to guarantee its authenticity. On the other hand, if
there are valid reasons for legally copying a part, or the entirety, of a painting,
which is such a unique function in the digital world, some mechanism should
be there to preserve the authorship or ownership information. This prevents
plagiarism, and provides an assurance for the integrity of intellectual property
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rights on the Internet, which is very much a requirement for web browsing,
downloading, and more generally any digital library services. The feasibility of
legally copying an art piece leads to the very interesting area of “collaborative
art creation” where cut-and-paste will be seen as a part of the process.

12.1.1.9 Choices of display

Instead of limiting display to the commonplace computer screen or projection
screen, an ideal digital paintbrush system could be equipped with a special-
ized display so that both the painter and the audience could examine and
appreciate the painting in a most favorable setting as if in a real world exhi-
bition center where the optimal design of the environment and lighting makes
a huge difference. Indeed, many environmental factors could affect the overall
painting viewing experience, as revealed by many psychological studies. For
the best and most realistic approximation to the visual experience in real
exhibition halls, a natural display medium and setup are desired. It is no
secret that most of todays monitors are unable to display accurately certain
real-life colors, which a real physical painting would certainly contain. We
not want to see an art idea or creation being unable to reveal its full glory
because of the limitation of the display hardware.

12.1.2 A Surreal Digital Paintbrush System

Just now we looked the various issues and requirements of a realistic paint-
brush simulation system. If one ever enjoys playing with electronic music or
producing film feature effects using software studios, the desire for a sur-
real digital paintbrush system would loom large. This actually served as our
drive when we started our digital paintbrush research many years ago. Hav-
ing achieved the functionalities of the physical paintbrush in the electronic
system, many opportunities to enhance the simulated brush and its reper-
toire of functions became apparent. Taking advantage of these opportunities
then led to a digital mimic which was superior to its original counterpart
in reality. We feel this is a common bottleneck for many serious digital sim-
ulation projects: an artificially duplicated tool or process would at best be
as good as its real world counterpart. So despite faithful reproduction, such
simulated computer models or tools stand no chance of beating the original
ones in reality on account of output quality. Thus, before launching a non-
trivial digital simulation effort, some surreal functionalities should be made
outwardly desirable. In the following, we discuss some of these functionalities
as they pertain to an ideal digital paintbrush system.

12.1.2.1 Revisable painting

When anyone is asked to suggest the leading feature of a digital word pro-
cessing software over traditional pen and paper, ease of editing would likely
be the answer. Similarly, the traditional brush and canvas in painting or cal-
ligraphy creation lack that wonderful advantage of easy editing. We are not
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at all excited by the unprecedented convenience offered by the copy, paste,
redo and undo functionalities in a painting system. But how this convenience
would profoundly change the paradigm of painting as practiced or upheld
by professional artists brings the real excitement. with editing in the artist’s
toolbox, we have a new painting paradigm in which re-do and touchup be-
come a part of the techniques. Indeed, in many critical epochs during the
evolution of human civilization, the invention of a new tool would profoundly
change and refine peoples way of working, which was never intended by the
inventor of the tool. “We shape our tools first and then they shape us.” The
Internet is such an example: the way it is shaping every person on earth and
every functioning unit of the society has probably amazed its inventors. The
modern computer is another example. It is now every writer’s habit to im-
prove, correct or polish his composition through many rounds of revision. Yet
the same kind of conduct is very foreign to painters as it is still largely a tech-
nical impossibility to delete and redraw parts of a painting. This is very much
the case in Oriental painting where “no redrawing and correction” has been
for thousands of years a standard methodological advice and golden rule. In
comparison, revision is possible to a limited extent in oil painting, although
not an easy thing to do. We cannot argue that more revision made to a piece
of artwork will surely lead to greater artistic success and a higher aesthetic
value. But we do envisage an important opportunity to redefine the tradi-
tional painting process—a new set of painting skills specially geared towards
“painting revision” may be invented by talented digital artists. Emerging
from all this may be a new breed of painters whose paintings, after rounds of
correction and revision, would become “optimized”.

12.1.2.2 Surreal pigment and paper

Equally important to the simulation of paintbrush behavior is the simulation
of the behavior of the virtual pigments and the paper/canvas. As discussed
in Chapter 6, there are certain pigment materials in the physical world that
are very rare and expensive to acquire, and only well-to-do painting profes-
sionals could afford them. In the realm of digital painting there is no such
budget constraint and the sky is the limit as far as how much variety there
is in the “materials”. Developing new digital pigment and paper materials
that cater to special user needs could be at no additional financial cost. If we
temporarily forget about the limits of computer display hardware, which we
believe will be overcome given more time, digital painters can enjoy a much
wider space for their creativity. The possibilities are unlimited. For exam-
ple, some pigment materials may emit very strong light, similar to sunshine;
some pigment could appear differently when viewed from different angles,
leading to some interesting creations not all that feasible in real paintings.
Some pigment may even have odor, adding an olfactory sensation to the view-
ing experience. How wonderful it would be, for instance, when observing a
countryside landscape painting, if the viewer could smell the grass. All in all,
virtual pigments could be made a stimulus of different sensations, in addition
to their usual visual effects. Similarly, virtual paper or canvas may also pos-
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sess physically impossible or impractical properties to enrich the possibilities
and stretch the limits of virtual painting.

12.1.2.3 Multi-resolutional painting

In computer science, there has been much effect to address the levels-of-
details issue [Cla76]. The key finding is that multi-resolutional strategy and
treatment can aid the viewer’s perception and benefit the computer systems
performance. For digital painting, we see that this promises some improve-
ment opportunities. It is often heard that some paintings do not appear
meaningful or attractive when viewed closely, but would shine and unleash
their full glory when observed at a certain distance. This phenomenon can
be taken into account by a museum curator when he prepares and sets up an
exhibition. What is behind this phenomenon is the existence of an optimal
resolution at which a painting would project its best image. Technically it will
not be difficult to detect the distance of the viewer from the painting. At this
distance, and with the actual screen size and maybe even the viewer’s vision
condition as parameters, the system can automatically adjust the image to
its optimal resolution with respect to those parameters.

12.1.2.4 Cooperative painting

With the Internet constantly improving in speed and bandwidth, multiple
people could collaborate in one common painting process. We envision a po-
tentially new style of painting and its practice. Collaboration is common or
the norm in some art forms, such as music performance, where the overall
audio effect comes from the collective labor of multiple performing musicians.
The aggregation of their individual artistries results in a wonderful rendition
of a music piece that is never possible with a single musician. Painting on the
other hand is mostly individual. The possibility of collaboration is automat-
ically ruled out by the limited physical space that is involved in a painting
process. This is true even of very large paintings. Now with a digital can-
vas and the infinite space provided by the Internet, a computer-supported
Internet based cooperative painting environment can be made available to
geographically scattered human artists so that they can collaborate on the
creation of a single painting. It is interesting to imagine when multiple artists
are painting on a common, single canvas simultaneously, how they may mu-
tually inspire and influence each other. Through such a collaborative creation
process, the final resultant artwork represents the “product” of multiple cre-
ative motives and ideas of the contributing artists, which because of the mu-
tual inspiration will likely be much greater than the mere sum of those ideas.
In music performance, collaboration brings us the most beautiful sounds of
the greatest symphonies ever heard on earth. Maybe it is time for other art
forms, including painting, do the same.



334 12 Final Fantasies for Digital Painting and Calligraphy

12.1.2.5 3D painting

When painters perform impasto, often a kind of 3D structure can be observed.
This is like those cream flowers on a birthday cake. This is an example of how
a little bit of 3D structure of a much simpler complexity than a sculpture
added to painting could be artistically and practically interesting. Here 3D
painting means applying any brush like tool to create a 3D structure. People
in 3D graphics have done much exploration of 3D practically, e.g. [Wil90,
HH90], but the field practically is still in its infant stage. Much work has
yet to be done for improving user friendliness and ways to create visually
interesting 3D components and effects as well as overall impressions.

12.1.2.6 Automatic rectification of imperfections

The computer can play a smart and faithful assistant who is never tired of cor-
recting the many small mistakes and imperfections that we tend to make all
the time in our creation. Although simulating human level intelligence is still
largely an unrealized goal at present, for many practical applications some
small corrections here and there by the computer already mean a lot. When
it comes to painting, “small” intelligence could go a long way in benefiting
art creation. Take for example senior citizens or individuals with a disability
who have difficulties controlling their body movements; expecting them to
command the brush fluently to create decent painting is too demanding. In
this situation, machine intelligence can help implement an online rectification
process to correct wrong movements or turn imperfect ones into perfect ones
on the fly.

12.1.2.7 Temporal painting

As opposed to animation, painting is still and static. In the virtual world
this does not have to be so. Paintings in digital form can change with time,
which is definitely feasible technically. This can add a brand new dimension
to painting as an art form, giving all of a sudden a breath of life to paintings.
Some standard animation packages are already equipped with such an ani-
mated painting capability, e.g. Maya. Currently there is already some real-life
deployment of temporal painting, which is often achieved through specialized
image processing or animation packages. One of the most notable examples
is a digital greeting card that features a painting. When a fountain or a creek
or a butterfly is needed in the painting, this special element would be pre-
sented in motion. But the temporal painting function we envisage is more
than simple animation of a painted butterfly. The function should be offered
as part of the digital painting program, and sufficiently versatile to support
a range of possible ideas. For instance, the artist may paint some scene with
a morning view and then he could adjust the colors or some of the strokes
to vary the scene to match its sunset view. Given these two “frames”, the
system can generate a progression of the scene over a full day. Technically,
to realize this feature requires a good integration of a digital painting system
and an animation package.
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12.1.2.8 Smart duplication

In both Western and Oriental paintings we often see scenarios that have
been painted to be like the real thing. Producing these scenes is usually very
labor intensive and time consuming. To achieve a faithful and consistent
reproduction of the real scene, it often takes a large amount of repetitive
painting work, which is largely mechanical and very tedious. We think there
is much space here for the computer to offer some help. For the images in
question to be painted, the system could offer a high-level primitive for in-
serting those repeatedly painted patterns at the artist’s discretion. Compared
with the brush stamp painting function in Photoshop where a high-level pat-
tern (brush stamp) must be defined in advance, the painting pattern in the
smart duplication feature we conceive is dynamic, adaptive and user-specific.
Another important difference is that pattern multiplication in smart dupli-
cation does not have to be based on the same exact pattern for every copy.
The duplication can be location aware, for instance, which means automat-
ically adjusting the image pattern by taking into account the surrounding
elements in the painting and the overall painting layout. This in fact mimics
the mental and creative process of the human painter who would adjust the
repetitive patterns to satisfy a more global view of the scene being created.

12.1.2.9 Brushless painting

We are accustomed to writing with a pen and painting with a brush. But are
these still the most desirable metaphors when the actual functionalities of the
pen and brush can be fully replaced by a set of invisible computer algorithms?
Long before the emergence of the digital replacement of the pen and brush,
people probed the idea of alternative painting devices, such as finger painting
in Oriental painting. This dawns on us that in the digital system at least we
should support finger painting as an alternative to the conventional brush
based painting. Indeed, the finger’s orientation and pressure can be captured
through either sensory hardware or a vision-based software approach. From
a human-computer interaction’s point of view, the use of fingers belongs
to research on gestural interfaces. Here the gestures posed by the fingers
are interpreted and carefully mapped onto certain brush motions on which
the virtual painting simulation relies. Stretching our imagination more, one
may also use five or ten fingers to control the movement of, and pigment
distribution at, the virtual brush head; this way painting becomes like playing
the piano. Going further, one could use the whole body to do painting, and
painting then becomes a form of dancing. The idea may sound rather weird—
why should we move our whole body in order to paint just one small stroke?
The argument is that to many, professional and amateur painters alike, the
joy of painting does not necessarily come only at the end when seeing the
result, but also throughout the process. This is analogous to amateur fishing,
in which people may enjoy the process more than they enjoy the catch. The
combined form of painting and dancing could turn into a new kind of art
performance, and performance calls for practising, but offers wider room than



336 12 Final Fantasies for Digital Painting and Calligraphy

pure painting to display one’s artistic talents and also higher entertainment
values.

12.1.2.10 Verbal touchup

Recently, research and development on audio interfaces has become a heated
area, involving experts from many disciplines both in and out of the field of
computer science. There are at least two areas where the technology can be
applied to enrich the digital painting experiences. First is the verbal painting
touchup feature, for either individual strokes or a collection of strokes. This
is very useful for painting beginners or naive amateur painters who would
like to enjoy the fun of painting with the least amount of time and energy
commitment. They usually know intuitively what effects they want to have
in the painting but due to their skill level, these people just cannot command
the brush to achieve the desired effects. This coincides with the case men-
tioned earlier about certain people who cannot control the brush because of
physical ineptness or disability. Under such circumstances they could rely on
the computer to make the correction or to complete the stroke. It is up to
the digital painting system, after processing the verbal command, to try to
automatically set a corresponding computational goal to optimize the shapes
and appearance of the painted strokes. That way, no more extensive training
and practice needs to be invested, and no endless repainting of a stroke over
and over again is necessary any more. Similar operations can also be intro-
duced to touch up a collection of strokes in a digital painting, e.g. to tell the
system to make the colors a bit more blueish, which can save a lot manual
work and time.

12.1.2.11 Painting by verbal commands or gestures

Extending the above idea of verbal painting touchup a bit, we have a more
powerful feature: verbal painting creation. For a handicapped individual who
does not have an arm, to create a painting on their own is literally impossible.
Occasionally, in newspapers and magazines, we hear impressive reports on
handicapped people creating excellent paintings using their mouth, head or
foot (see the real-life stories provided on the website of “Handicapped Artist
Painting Productions and You” at http://asclepius.com/happy/). Now via
machine intelligence and powerful digital media technologies, it is possible to
allow artistically talented yet physically handicapped people to realize their
dream to paint through oral and gesture commands. One implementation
strategy may be to start with a template of frequently used stroke samples.
Navigating the sample stroke library can also be under verbal or gestural
control. The rest is very much the same as in the case of verbal painting
touchup, as discussed above.

12.1.2.12 Painting by thinking

What if the handicapped person cannot even talk? In fact they are not alone,
as perfectly normal individuals could also run into the situation in which they
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simply could not think of a verbal or gestural expression for an idea. We no-
tice that it is not very hard for an ordinary person to develop and retain a
clear mental picture of a certain object. This is supported by our dreams. We
“see” things in our dreams which are fairly recognizable, thus proving that
our brain could develop clear imagery over the reality. But not all mental
images can be easily expressed verbally or by gesture. This is where wearable
devices could come in—devices that could track the brain activities. Although
this might sound fanciful the possibility is there, given the advances in brain
and neural research. Controlled experiments can be designed and carried out
to establish a correlation between certain mental images and brain wave pat-
terns. Once the relationship is reliably set up, the computer system might be
able to draw images on the screen according to best-effort reconstruction of
the detected brain wave patterns. Realizing a system with such a capability
is not only meaningful for computer art research, but probably also impor-
tant for demonstrating the idea of a brain-computer interface, a field which
has recently become very popular spanning cognitive sciences, neuroscience,
psychology and computer science [MK00, MKMM01, JT02, dRM03, MB04,
BK04, SE06, LG06, dRM06, Ort07, KBCM07, NT07].

12.1.2.13 Robotic painting

In an ideal digital painting process, the computer captures not just the final
painting but also the process. One possible use of this recorded painting in-
formation is to make robots that can paint. Since detailed information on the
position, orientation, pressure and speed of the penholder of the paintbrush
during a painting session has all been accurately recorded, we can certainly
work on the robotic control to reproduce the entire painting process. To the
robot, this is teaching by example. The example is the human painter. Note
that although many researchers from time to time have suggested the idea
of robotic painting, to teach a robot to paint by example is far more difficult
than anyone can imagine. This is because even a tiny difference in manoeu-
vering the paintbrush could lead to a significant deviation in the final painted
results. Such a precision demand in capturing this is largely beyond the ca-
pability of current sensory hardware or computer vision algorithms. Even if
such hardware is indeed available, setting it up might result in too much of
an intrusion or distraction for the artist.

The excitement over robotic painting in the robotics field aside, robotic
painting does have many practical applications. An example is mammoth-size
painted-on advertisements that can be seen in places like airports, streets,
plazas, sight-seeing spots and hillsides. Such advertisements are best done
by crawling robots that have been taught to paint because of human safety
as well for as for other reasons. Furthermore, the robot can achieve better
precision in the painting than the human painter because of the sheer size
of the painting. Also, the robotic painting process can be conducted at any
time, regardless of the weather conditions. With robotic painting becoming
a possibility, in the future talented artists only need to sit in their cozy
work studio and do their painting task on whatever scale they feel most
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comfortable with. It is the robot’s responsibility to scale up to the desired
size and to perform the actual outdoor painting. Since robots can do large-
scale painting very efficiently, this can also lead to some opportunities in
tourism. For example, people could rent a temporary space in which to paint
a picture or message.

One can also do remote painting with the assistance of painting robots.
The artist does his painting with a computer, say in a scenic area in Hawaii;
meanwhile, the painting commands are sent to a diligently working robot
in the desert of the Sahara whose only mission in life is to always reproduce
exactly what the artist does. If painting robot had existed way back in history,
Michelangelo would not have had to struggle so hard to paint his ideas on
the Sistine Chapel ceiling, which is one of the most documented art history
stories. Similarly, in China those distinguished artists of Dunhuang would
not have had to go through so much torture in order to complete the frescos
in the famous cave of Dunhuang.

12.1.2.14 Animal painting

Can an animal paint? To approach this problem seriously we need to answer
these three related questions: 1) Can an animal appreciate painting? 2) Can
an animal create paintings? 3) Is animal painting the same as human painting,
i.e. whether those visual signals making most sense to animals are the same
as those for humans?

For the first question, we can interpret it more generically as “Can an
animal respond to paintings discriminatively?” i.e. would an animal react
differently to paintings and non-paintings? The latter can be understood
to be arbitrary, randomly collected or generated visual signals. Although it
might be difficult to draw a line between painting and non-painting, it is
not difficult to identify some commonly agreed upon examples of painting
and pure noise by the visual sensation they raise. So at least we could use
these extreme examples to test whether animals would react to these different
visual stimuli differently.

For the second question, there have been cases reported in real life of
monkeys having been trained to do a few things with the paintbrush and some
paints. Other than for the sake of entertaining the audience, the monkeys
failed to generate a painting in any serious sense. Animals do not seem to
have been bestowed with the motory skills to manipulate the paintbrush with
their body parts. But does one really have to hold and actually control the
paintbrush in order to qualify as a painter? Or rather we should judge him by
his mental capacity—whether he can think like a painter? Even if animals can
paint with the brain, they cannot show it in actions. For these animals there
is a gap between being able to paint in the head and being capable to paint
physically through arm and finger control. With information technology it
might be possible to bridge this gap. One possibility would be for the animal
to wear some MRI (Magnetic Resonance Imaging) sensory equipment. The
equipment would capture and record the brain activities of the animal in real-
time. A mapping is then artificially established for the different brain wave
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patterns to correspond to different movements of the arm for controlling the
paintbrush. That way, animals are liberated from their physical inability to
command a paintbrush and they may then start to paint at will.

For the third question the answer is difficult as the authors all came from
a purely computer science background. But the issue should be most interest-
ing to psychologists and cognitive scientists. We human beings believe that
although we are not as strong as a lion, as forceful as a bear, as flexible as
a squirrel, as prompt as a gibbon, and we cannot sing like a bird swim like
a dolphin, we are the most intelligent of all creatures in terms of brain func-
tions. Note however the difference between general intelligence and specific
intelligence. From time to time we hear reports about some mentally disabled
individual displaying remarkable talent in music performance or painting or
other art areas. This suggests that intelligence specific to art might not have
a positive correlation with the general intelligence one may possess. If we
consider bird singing and the like as a kind of art talent, then there are rea-
sons to suspect that animals might have more talents of certain types than
humans. The answer to whether this can be true or not may come from the
hard work of both cognitive scientists and computer scientists in the future.
If indeed we can invent a digital device to help animals to paint, we can then
study and conclude whether animals also have art talents, and whether one
species may possess a type of talent in a specific art area more than humans
do.

12.1.2.15 A study of brain activities

Painting can be thought of as a mapping process, from a real-world imagery to
a visual representation which is largely subjective. This is especially true for
impressionism which emphasizes expressing the emotional sensation aroused
by a scene rather than the scene’s image. With an ideal digital painting sys-
tem, we can record even the most minute control commands applied to the
paintbrush by an artist. Then there should be a way to study the potential
relationship between the brain activities and the actual painted strokes as
well as the relationship between an object as it appears in reality and its
painterly depiction. The brain activities can be traced and recorded through
some magnetic resonance imaging equipment. This procedure and the anal-
ysis results can help uncover the mystery surrounding our thought process
in mentally forming a painting, which could add to our understanding of the
functioning of the human brain and human intelligence.

12.1.2.16 Using painting for psychotherapy

Ip et al. [IHT02] recently developed an innovative interactive environment
called “body brush”, which can capture the human body motion for gener-
ating artistically interesting patterns on a large visual display. They applied
such a system for psychotherapy, e.g. for helping students with learning dif-
ficulties [IK06]. Their novel treatment approach receives encouraging results.
Inspired by this work and many existent successful cases in applying music
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for psychotherapy, we see a possibility to construct an intelligent painting
system with which people can create very rich and interesting patterns using
a minimum amount of effort. The patterns shall also correspond well with the
user input so that the users feel their intent being respected and reflected in
the visual output. Seeing the intriguing and highly aesthetic patterns being
painted by or generated under their guidance with ease, it may help them
develop a positive mental condition.

12.2 Perspectives on Intelligent Calligraphy Research

12.2.1 An Ideal Intelligent Calligraphy System

12.2.1.1 Faithful imitation of handwriting

Among all the functions people would expect of an ideal intelligent calligraphy
system, probably the most desired and practical feature would be for the
system to be able to imitate the style of a famous calligraphist, or more
generally any arbitrary style. In our system, although this was precisely one
of our initial goals, as discussed in Chapter 10, we still have a long way to go
before the system has the ability to be on a par with real human experts. One
difficult issue is that a calligraphist may write the same character in different
ways. To simplify our task, we assume this variation is largely due to the
influence of adjacent characters, and exclude the possibility of mood or other
personal factors. Properly catching such a contextual variation needs some
careful tactic during the learning phase. The aim is for the system to be able
to reproduce such variation during automatic calligraphy generation. These
variations are important for the generated artwork so as to stay away from
monotones in style. This is what is unique about calligraphic art as opposed
to printed or computer fonts. In a font system, the same character will always
look the same which gives the overall document a consistency in style. But
for a computer calligraphy generation system, being able to reproduce the
variations in the writing style is strongly desired, which can add substantially
to the overall aesthetic value of the generated artwork.

12.2.1.2 Style awareness

When judging a calligraphic character, the intelligent calligraphy system we
built would not distinguish between styles; in fact the current system is not so
much aware of writing styles. Right now, as long as the computer-generated
calligraphic characters appear visually pleasing, our algorithm would assign
a high score to them. However, there are situations where a particular writ-
ing style or class of styles is more desirable. For example, a love letter and
a rhyme to extol a great warrior would call for a different styles of writing.
We believe therefore that enhancing the calligraphic character beauty evalua-
tion algorithm to be style aware can benefit many applications. On the other
hand, we realize that evaluating calligraphic writing is a highly subjective
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task. Beauty is in the eyes of the beholder. A beautiful piece of calligraphy in
the eyes of one person may be judged to be absolutely disdainful by another
person. So instead of a grading algorithm that would work for the general au-
dience, designing a numeric grading method which recognizes a certain style
or class of styles as embraced or appreciated by a particular group of viewers
would be much more feasible and practical. Also, such style specific grading
ability can help improve the accuracy of the handwriting style mimicking
algorithm, by incorporating a feedback component.

12.2.1.3 Automation in the facsimile and learning phases

An ideal intelligent calligraphy system is expected to be fully automatic. Al-
though the majority of the algorithmic steps of our intelligent calligraphy
system have been made automatic, the pattern recognition component in
the facsimile and learning phase needs further enhancement. The challenging
technical problems include: 1) The segmentation and recognition of individ-
ual calligraphic characters in a piece of cursive calligraphic artwork where
the characters tend to be intimately connected; and 2) the segmentation
and parameterization of individual strokes in a cursive calligraphic character
which represents a heavy distortion from its standard counterpart. Success-
fully solving both of these problems would mean a kind of breakthrough in
artificial intelligence research because both problems require neithes simple
intelligence nor domain expertise. We believe these problems will eventually
be solvable. The way to go is probably to allow the computer to learn more:
the larger the learning example set, the more capable the overall system
would become.

12.2.1.4 Anonymous learning capability

An ideal intelligent calligraphy system should be able to perform anonymous
learning. This can be done automatically so that the system is equipped to
surf the Internet to look for calligraphic images to serve as learning exam-
ples. The captions associated with the found images can help the system to
obtain the style and other meta-information such as the authors of the cal-
ligraphic artwork. If there are multiple characters in the image, automatic
character segmentation will be performed before passing the characters to
the recognition and machine learning stage. This way, the world wide web
becomes the system’s infinite source of knowledge and best tutor. Given suf-
ficient learning time, we expect the intelligent calligraphy system to evolve
into an expert that could rival if not surpass real human calligraphists, since
no human being can afford as much learning time and memory.

12.2.1.5 Handwriting evolution

Evolution is one of the most powerful laws of nature. We feel that the ca-
pability to self-improve or evolve for the better is the most wonderful thing
to add to an intelligent calligraphy system. The idea can be quite simple: we
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have the intelligent calligraphy generation system automatically create new
calligraphy in the first place; meanwhile, an evaluation score is assigned to
the generated calligraphy on the fly; based on these scores, the intelligent
calligraphy system adapts its aesthetic constraints for calligraphy generation
to either embrace or avoid a certain calligraphy style. This process is in line
with the typical learning scenario for reinforcement learning.

We see at least three possible ways to realize such reinforcement learning:
1) A human could suggest the numeric score to the system, which is the easiest
way and yet most user unfriendly. 2) Evaluation by facial expression, where
the system applies real-time detection of human facial gestures as the feed-
back signal; a happy face suggests endorsement and a sad face rejection. There
exist many facial expression recognition algorithms which can be made use of
here, e.g. [BY97, CQB+02, DCPA02, PHL+05, KIW06, WFC+06, CCCC07].
3) Natural language understanding. With this method the user not only can
comment on the overall visual quality of an automatically generated charac-
ter, but also can point out more concretely which strokes in the character are
problematic and why, or even any structural problem of stroke combination.
This method presents some non-trivial technical challenges for implemen-
tation: how to interpret the verbal comments from the user, and how to
translate these comments into concrete numerical goals for the optimization
of the generated calligraphy.

12.2.1.6 A lightweight design

Since our intelligent calligraphy system can beautify human handwriting, it
has good market value if the system can be embedded in a range of devices,
including PDAs and cell phones. This asks for much optimization work in
the algorithm design and its implementation, including optimizing the math-
ematical model for the analogous reasoning process. Also, much work needs
to be done on reducing the system’s memory consumption. Once the system’s
overheads can be significantly reduced, we can then make the system perva-
sively available, as a web application or an applet on portable devices. Since
any educated individual would deal with characters almost all the time, an
intelligent calligraphy and handwriting enhancement system will be an indis-
pensable tool.

12.2.2 Intelligent Calligraphy System for Font Applications

There is a close relationship between our research on intelligent calligraphy
generation and font systems. This relationship can be clearly seen during the
calligraphy generation process when the system relies on commercially avail-
able font systems to extract feature vectors for carrying out the constraint-
based analogous reasoning process. In the reverse direction, we feel there are
plenty of opportunities for our intelligent calligraphy system to do the font
systems a favor.
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12.2.2.1 Personalized font systems

At present only a few famous calligraphic writing styles have been made into
commercially available font systems. It means absolute prestige to be chosen
as the contributing calligraphists. Occasionally some rich and famous people
would create their own personal fonts. The barrier to widespread produc-
tion of individual font systems is the highly expensive process for producing
individual character encodings for the Chinese character set. Even the small-
est set, of the most frequently used Chinese characters, contains as many as
6,000 or so characters. Any such character set would easily take three to five
man years to create using the traditional method, and engaging professional
people. The high cost is due to the fact that at the beginning a calligraphist
must write out each character meticulously at least once; this is followed by
an equally burdensome process to manually digitize every character. A pow-
erful intelligent calligraphy system may render all this tedium unnecessary.
Anyone who is interested in creating his own personal font needs only to
write a few dozen representative characters. Then, based on intelligence aris-
ing from these samples, the system will try to figure out the writings of all the
remaining characters in the set. Additionally, the newly generated characters
would automatically be in a parametric representation as that is the default
representation of our system’s reasoning mechanism. This does away with a
major step in the character symbol encoding process, which otherwise would
have to be done at the back end through a rather tedious and error-prone
manual process.

12.2.2.2 Font system support with minimum memory
consumption

Since the ideal intelligent calligraphy system aims at minimum memory con-
sumption and CPU overhead, we can assume an optimized implementation
of the system can be run as a background process. With this active process
on the alert, the need for keeping font files online, which translates to a large
memory requirement, can be much reduced. Basically, we identify and com-
pute a few most representative fonts as the generation “kernel” and then
rely upon the system to generate any runtime requested font on the fly. This
may not make practical sense for desktop computers but, for portable devices
whose memory is at a premium, this would offer an attractive alternative for
system designers. This means that even for a highly constrained device, it
is possible to support the display of a multitude of font styles. When per-
sonalized fonts become the fashion, the number of different fonts per device
(the desktop computer included) may increase significantly, which may then
necessitate the idea of on-demand dynamic font generation.

The idea can be extended to calligraphic images: Instead of storing the
images as pixel arrays we can, via the set of kernel fonts as well as the syn-
thesizing power of the intelligent calligraphy system, represent all the calli-
graphic images parametrically, i.e. as synthesized results of these kernel fonts
through the analogous reasoning mechanism of the intelligent calligraphy sys-
tem. This leads to much bandwidth and storage saving when dealing with a
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large quantity of calligraphic artwork images, and adds convenience to the
high-level calligraphy processing and retrieving services.

12.2.2.3 Personalized publishing and rich font support

We examine the two dominant types of publishing: web publishing and paper-
based publishing.

Consider web publishing. One of desirable features is comprehensive font
support in every web browser. This means web browsers will be able to display
webpages in any user selected font(s). For many companies as well as personal
websites, projecting a unique look could be very important, and fonts are
definitely one of the crucial design elements.

Intelligent font support has a place in paper-based publishing too. A new
functionality for “automatic calligraphic design and layout” can be intro-
duced whereby a book can be published in the author’s own handwriting
and with an optimal text layout. This can alleviate the burden on the au-
thor to manually and painstakingly write out all the characters in the final
manuscript. A “handwritten” autobiography will likely be more attractive to
more readers. Likewise, a handwritten letter has a much stronger personal
touch than a conventional printed one. Since the ideal intelligent calligraphy
system can capture the spatial relationship between characters, the same can
be applied to the design and layout of texts. For publishing using regular
fonts, this might not be that useful. But if handwriting characters are used
instead, how to layout the texts is indeed a new problem. Historically, printers
opened up their hardware facilities for many people to realize their dreams
to do personal printing or self-publishing. We envisage the same—the intro-
duction of intelligent support for personal handwriting and automatic layout
can make it possible for people to do fancy and personalized publishing on
their own.

12.2.2.4 Automatic graphical layout design

Taking the previous discussion on automatic text layout further, we think of
automatic graphical layout. In China and may Eastern cultures, painting and
calligraphy go hand in hand. Indeed, all the famous painters excel in calligra-
phy and very rarely would we see a painting without a calligraphic caption.
Many paintings are decorated by beautiful calligraphy of poetic verses or
background information about the painting. It takes skills to optimally place
these characters in a painting. The coming together of the two art forms—
painting and calligraphy—presents a new research problem in layout design
for achieving the best artistic effect. It is interesting to compare this with
the work of TeX by Knuth, where the problem is to insert images optimally
in a corpus of texts. Whereas in our case the problem is to embed charac-
ters in a painting. Unlike laying out blocks of texts which are approximately
rectangular in shape, painting and calligraphy pieces do not adhere to any
particular shape, which makes the problem more difficult. We can think of
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context-sensitive shape grammar as a potentially useful tool for solving the
problem.

We can apply the same kind of problem-solving strategy for painting-
calligraphy layout to graphical layout design in general. An example of an
application of this is automatic poster design. In some professions, people at
various levels need to frequently make posters and brochures. Beside having to
cook up catchy slogans and phrases and striking graphics to be included in the
poster, blending the graphical and text elements sensibly so that the message
is clearly conveyed can be a huge challenge. Why not learn by example?
The Internet is replete with successful cases of layout. Some kind of mining
technique can unearth the keys to success and arrive at the guiding rules for
creating impressive posters.

12.2.3 Intelligent Calligraphy Study for Other Applications

12.2.3.1 Evolution of handwriting styles

A person’s handwriting may change from time to time, and these changes are
not random. It is interesting to be able to model the pattern of such changes.
There are many possible factors underlying these changes, including aging,
change of physical condition, change of life style, etc. It is not a trivial task
to trace the changes in the handwriting to these factors. But at least for
some of the important figures in history, we have abundant data to establish
a theory behind the changes in their handwriting. From a cognitive science
point of view, this modeling work might offer a new window for a better
understanding of how the human brain works and evolves. We also can see
that a few important applications may come out of such a study:

(1) Such modeling may lead to some medical applications. This is inspired
by the fact that gait analysis has become quite popular in many medical
diagnosis and rehabilitation applications [Whi96, LG05, DL05, CD05].
Modern medical and psychology research has revealed how much in-
sight we can gain about one’s health condition by examining one’s recent
dreams. Like dreams, handwriting is a type of expression of the inner
person, which is both more accessible and easier to parse due to its rel-
atively low dimensionality. If a traced handwriting pattern matches the
sample patterns of a certain group of patients, it raises a medical alert.
Most people know less about what is happening to their own body than
many other things in the world. Looking at the myriads of medical cases,
we would be amazed at how many early warnings about a person’s health
condition had unfortunately been ignored or overlooked. Whether hand-
writing can indeed link to a person’s health condition is worth probing.

(2) We may also be interested in the potential relationship between person’s
handwriting and their gender, career, personality, temper, physical condi-
tion, etc. It is a belief of many calligraphy experts in Asian that a person’s
handwriting can tell a lot about the person. The statement remains em-
pirical. Using data mining algorithms, we can certainly find support for
or against the argument. If the assertion is indeed valid, then on the one
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hand we can infer some very valuable facts about a person based on his
handwriting. Such discovered information could serve as a reference for
human resources departments on the suitability of a certain person, and
his potential. Police departments might also rely on the information for
their detective work. On the other hand, it could mean that by changing
a person’s handwriting we try to change the actual person.

(3) More accurate identification of human handwriting. Right now, the design
of identification algorithms ignores the issue of handwriting style. As
discussed before, a piece which was created by a young calligraphist may
not look the same if the piece is re-done in his elderly years. Taking into
account the variation in the handwriting style can reduce false positives
and false negatives during identification time.

12.2.3.2 Decoding ancient character symbols

Many civilizations of the past no longer exist today, but they left behind
manuscripts and documents that are gems for archeologists and historians.
But archeological research to rediscover these cultures continues to progress
sluggishly. One of the hindrances is the difficulty in translating their charac-
ter symbols. Take Chinese oracle bone script for example; over one million
characters have so far been discovered, but only around 1,500 characters have
been successfully deciphered and translated into Chinese characters. Such an-
cient character decoding work has traditionally been carried out in a purely
manual fashion where the experts analyze, compare and make a guess at the
ancient character symbols based entirely on their memory of known mappings
between modern and ancient characters. Although, in general, human intel-
ligence is more superior than machine intelligence, pattern matching against
a large quantity of memorized facts is certainly an area where machine in-
telligence surpasses the intelligence of the human brain. We think combining
pattern matching, digital morphology analysis, searching and data mining
techniques, etc. to attack this problem might lead to some breakthrough in
archeological research. An approach that is worth considering is to treat the
character symbol evolving process as a general handwriting style evolving
process. Thus the learning examples for the algorithm are the pair of char-
acter shapes in ancient and modern typefaces. After feeding all the currently
known characters to the algorithm, the algorithm would discover a new map-
ping relationship between shapes of the same character in ancient and modern
typefaces. This problem scenario can be seen as a classical case of analogous
reasoning. A more refined treatment is to set up the matching between the
shape of the unknown ancient character and the shape of the most ancient
character which is still legible. Since the actual character writing evolving
process is a gradual process, the shorter the time gap between the unknown
and known character systems, the greater is the likelihood of discovering the
ancient symbolic system.
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12.3 An Ideal Painting Animation System

An ideal painting animation system should be able to animate its graphical
elements in some automatic fashion, hence alleviating some of the onuses on
the human animators. Such an autonomy could be provided by either a data-
driven approach or a dynamics or kinematics-based simulation approach. For
the data-driven approach, we can rely on motion-capture data or videos of
a similar object that is in motion. When working with the motion-capture
data, a 3D graphical model of the target object is needed for conversion of the
motions in the 3D object space to the 2D screen space. When working with
captured video, the challenge is how to identify and map similar motions
in the video onto the 2D object in the painting, which may also need a
morphing process. In this approach, properly handling occlusions is one of the
big technical challenges. For the simulation-based approaches, some suitable
dynamics or kinematics model of the target object needs to be established
first and then tacked onto the object. Then in the same way as virtual objects
are animated in a realistic simulation scenario, the painting elements will be
animated similarly.

We feel one of the keys to success for an ideal painting animation system
lies in the human computer interface. The computer is to serve and satisfy the
human animator. Thus communication between the human artists and the
computer animation system is absolutely critical. The more friendly and nat-
ural the interface is, the more productive will be the animation system when
deployed in reality. Gestural interface is potentially a very good candidate.
People can convey the motions of the animated object by hand gestures. The
rationale is that human hands are probably the most natural, convenient and
fluent control one could use to express a certain motion. Gestural interfacing
occurs a lot in real life. For instance, in animation or film studios, when study-
ing a script, people often use hand gestures to demonstrate the motion of a
small object. When it comes to animating human characters, people would
use their whole body instead of just hands to act out the animation, which is
where motion capture technology is most useful. There is another kind of in-
terface which has received a lot of attention lately: sketching based interface.
Essentially, one would sketch out (with a pen) the animation trajectory and
rough contour of the character. The painting animation system would then
try to match the painting object onto the trajectory and contour expected
of the object. Compared with data sampling-based methods, such a method
takes advantage of the convenience and fluency of pen-based drawing. In fact,
sketching-based authoring is widely practised in film production centers and
animation studios, although at present it is still done predominantly by hand
and without the support of the computer.
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Dubinin-Radushkevich equation, 142
Dubinin-Radushkevich isotherm

equation, 135
Dynamic font generation, 343
Dynamic tessellation, 305

E-brush, 59, 61, 63–65, 70, 72, 73, 87,
88, 94, 103, 104, 108, 110, 140,
148

E-brush acceleration, 63
E-brush architecture, 62
E-brush configuration via machine

intelligence, 84
E-brush control, 96
E-brush criteria, 59, 60
E-brush deformation, 59, 75, 111, 116,

118
E-brush dynamics simulator, 104
E-brush geometric models, 104
E-brush GUI, 87, 122
E-brush inner stress, 75, 76
E-brush input, 60, 72
E-brush interaction with virtual paper,

76, 112
E-brush intersection operation, 81
E-brush modeling, 95
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E-brush models, 94
E-brush physical conditions, 75
E-brush quality parameters, 67, 86
E-brush split, 80
E-brush working diagram, 65
E-brush’s 6 DoFs, 63, 73, 94, 118
E-brush’s local velocity, 136
E-brush’s quality parameters, 67, 83
E-brush’s three states, 70
E-brush-based painting system, 119
Early painting systems, 51
Economical use of strokes, 27, 289, 316
Edge enhancement, 24
Edge line, 24
Efficient hair rendering, 163
Efficient line drawing, 40
Efficient painterly rendering, 39
Efficient reasoning, 215
Elasticity, 76, 78
Electronic virtual brushes, 291
Elements of digital arts, 8
Ellipse-based parametric model, 253
Ellipse-based parametric representa-

tion, 257
Emotional sensation, 339
Energy minimization process, 26
Equilibrium state, 136, 137, 142
Equilibrium vapor pressure, 141
Error calibration, 54
Evaluating stroke style coherence, 274
Evaporation, 141
Example-based, 29
Excess variation, 308
Expressive footwear, 12
External advection field, 137
External condition sensitivity, 330
Eye fixation data, 29
Eye fixation period, 30
Eye-tracker, 29

Facial animation, 13
Facial expression, 342
Faithful handwriting imitation, 340
Fast and high-quality hair rendering,

159
Fick’s second law of diffusion, 139
Field, 230
Field of view, 313
Finite difference, 148
Fixation point, 29
Fluid dynamics, 129

Foliage, 36
Font applications, 342
Font creation, 61
Font system support, 343
Font systems, 14
Form realization for digital sculpture,

12
Formulated silhouette, 35
Fractal shape coding, 61
Friendly user interface, 159
Fusing knowledge sources, 213
Fuzzy set, 234

G-buffers, 24
Gait analysis, 345
Gaussian noise, 303
General purpose computation on GPU,

149
General sweeping operation, 53, 64, 67,

107
Generalized cylinder, 139, 140
Generalized disk structure, 166
Generating artistic calligraphy, 214
Generating impressionist’s effect, 27
Generating line art drawings, 34
Generating new calligraphy, 235
Generation constraints, 240
Generic pigment model, 129
Geometric duality, 34
Geometric graph, 260
Geometric properties, 24
Geometry-based tree illustration, 37
Gestural interface, 335
Gestural interfacing, 347
Gradient descendent, 278
Gradient descent, 301, 308
Gradient direction, 26
Granularity, 299
Graphical objects, 289
Graphics pipeline, 34
Group membership, 262

Hair cluster, 63, 64
Hair density, 140
Hair density field, 168
Hair macro, 105, 106
Hair macro distension, 115
Hair macro kinking up, 112
Hair macro split, 115
Hair Rendering Intermediate Result

Database, 169
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Hair Rendering Intermediate Results,
169

Hair self-shadowing, 178

Hair strands, 329

Hairy brushes, 54, 59, 61, 205

Handicapped artist painting, 336

Handwriting beautification, 220

Handwriting evolution, 341

Handwriting recognition, 221
Handwriting styles evolution, 345

Haptic feedback, 55, 330

Haptic interface, 104, 313

Hardware-based acceleration, 148, 180

Hardware-based MIP-mapping, 26

Health condition, 345

Heavily damped system, 53
Height field, 26

Height map, 26

Heuristic function, 265

Heuristic search, 263

Hierarchic e-brush modeling, 103

Hierarchic hair modeling, 165

Hierarchical character representation,
203, 205–210, 212, 215, 220, 222,
228, 229, 232, 233, 235

Hierarchical e-brush modeling, 55, 106,
109

Hierarchical representation, 51

Hierarchical structure, 29

High resolution, 328

High-level painting metaphor, 31

Hough transform, 260

HSV color space, 145
HSV space, 83

Human art, 8

Human artwork, 7

Human computer Interaction, 29

Human computer interaction, 11, 335

Human computer interface, 347

Human intelligence, 4, 6, 16
Hypothetical brush strokes, 298, 319

Ideal digital paintbrush, 327, 328, 330,
331

Ideal digital paintbrush system, 327

Ideal intelligent calligraphy system, 340
Ideal painting animation system, 347

Ill-posed, 320

Image based rendering, 163

Image content abstraction, 30

Image segmentation, 29, 289–292, 295,
299, 301, 319

Impressionistic painting, 25
Individual stroke evaluation, 268
Inertia predictor, 63
Initial distribution, 140
Initial state, 70, 75
Ink drawing mark, 63
Ink flow between writing primitives, 80
ink model, 95
Ink spreading effect, 61
Ink-related information, 62–64, 68, 69,

71, 77, 81, 82, 92, 95
Inner stress estimation, 114
Instant visual feedback, 24
Intelligent calligraphy tutoring, 278
Intelligent computer art, 7
Intelligent computer-aided art creation,

60
Intelligent graphical user interface, 16
Intelligent system, 203, 205, 210, 217
Intelligent user interface, 265, 266
Interactive digital painting, 51
Interactive methods, 145
Interactive painterly rendering, 59
Interactive painting program, 25
Interactive painting system, 54, 103
Interactive pen-and-ink illustration, 31
Intermediate adsorption process, 142
Interval B-spline, 303
Interval piecewise Bezier splines, 302
Intrinsic diffusion coefficient, 140
Isoparametric line, 33
Isosurface, 39
Iterative algorithm, 307
Iterative diffusion process, 83
Iterative merging, 295
Iterative optimization, 25
Iterative process, 303
Iterative updating mechanism, 30

Jiggle-free animation, 27

K-nearest neighbour, 29
Kernel function, 145
Keyboard-mouse input method, 73
Kinematics-based simulation, 347
Knowledge representation, 228, 229,

248
Knowledge source, 212–214, 216, 220,

221, 223
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Knowledge-based rule, 260
Kubelka-Munk model, 143–145, 147,

307–309
Kullback-Leibler divergence, 298

Laplacian operator, 148
Large projection screen, 31
Large-scale painting, 338
Lattice Boltzmann Equations, 129, 134
Layer composition equation, 144
Lazy evaluation, 40
Learnability, 145
Learning difficulties, 339
Learning scenario, 342
Learning-based style translation, 29
Least squares method, 28
Level-of-abstraction, 37
Level-of-Detail, 305
Level-of-detail, 333
Levels of parametric representation,

208
Library brush strokes, 296, 299, 302,

307
Lighting conditions, 330
Lighting effect, 26
Lightweight design, 342
Limit of Lattice Boltzmann Equations,

134
Line approximation process, 260
Line contents, 28
Line drawing, 24
Line end condition, 33
Line sample, 28
Line segment graph, 260
Line-art illustration, 33
Linear combination, 28, 34
Linear interpolation, 71, 81, 96, 112,

304
Linear interpolation., 77
Linearly superimposed images, 307
Lip synchronization, 13
Living painting, 31
Local density of paper fiber, 142
Local paper fiber density, 136
Local shadow, 178
Local variatioin, 302
Locally weighted regression method, 29
Look-up table, 55
Lotla-Volterra competition model, 138

Machine creativity simulation, 243

Machine intelligence, 4–7, 16, 59, 95
Magnetic resonance imaging, 338
Major axis direction, 301
Matted object, 307
Maximal circle criterion, 260
Maximal-length skeleton, 302
Maximum shape similarity, 296
Mean, 297
Mean-shift algorithm, 295
Medial axis extraction, 292
Medical application, 345
Medical diagnosis, 345
Membership function, 261
Mental capacity, 338
Mental image, 337
Meta-information, 341
Metafont, 14
MiaoHong process, 84
Micro-scale pore, 142
Micro-structures of paper, 138
Middle control axis, 65, 68–70, 72,

75–79, 81, 96
Middle control ellipse, 67, 70, 71, 75,

76, 78–80
Mind talker, 5
Minimum memory consumption, 343
Minimum variation, 307
Mixed-media painting, 328
Mobile dynamic music device, 12
Model-based approach, 206
Morphing, 347
Motion retargeting, 13
Motion trajectory, 313, 317
Motion-capture data, 347
Mouse moving trajectory, 25
Multi-layer neural network, 147
Multi-resolutional painting, 40, 333
Music information retrieval, 11
Music video, 31
Mutual boundary, 297, 302
Mutual stroke boundaries, 296

Natural language understanding, 342
Natural tablet, 291
Neural network, 143, 144, 146, 147, 269
Newtonian dynamics, 53
Noise distribution, 304
Non-photorealistic imagery, 23
Non-photorealistic lighting model, 34
Non-photorealistic rendering, 23, 61
Non-uniform texture warping, 304
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Non-uniformity, 309
Normal line, 303
Normal vector field, 24
Novel calligraphy style, 216
Null stroke, 265
Numerical computation, 55
NURBS surface, 64, 67, 81

Object silhouette, 24
Object-based editing systems, 292
Objective function, 25, 301, 308
Offline calibration, 51, 55
On-line animation authoring, 306
On-line simulation, 110
One-to-one correspondence, 305
Online decision process, 13
Online hair lighting, 177
Opacity channel, 27
Opacity field, 26
Opacity map, 26
Optical Character Recognition, 15, 221,

291
Optical flow, 28, 30
Optimal resolution, 333
Oracle bone script, 346
Ordered brush strokes, 24, 26
Oscillation prevention, 136
Outdoor painting, 338
Outline-based fonts, 61
Over-segmentation, 291, 295, 302, 309,

313, 314, 320
Overfitting, 28
Overlapping brush strokes, 305–307,

311
Overlapping pigment layers, 308

Paint by relaxation, 25, 26
Painterly rendered animation, 35
Painterly rendering animation, 30, 31
Painterly rendering approximation, 25
Painterly rendering generation, 25
Painting by gestures, 336
Painting by thinking, 336
Painting by verbal commands, 336
Painting energy function, 26
Painting energy minimization, 27
Painting for psychotherapy, 339
Painting over, 30
Painting parameters, 36
Painting reconstruction, 319
Painting resolution, 328

Painting revision, 332
Paintings effects, 328
Paper fiber structure, 138
Parametric character representation,

203, 206–208, 210, 222, 228–230,
233, 236–239

Parametric model, 65, 67, 73
Parametric model of a writing

primitive, 67
Particle-based geometry model, 35
Pattern multiplication, 335
PDA, 342
Pen-and-ink illustration, 31, 33, 36–38,

61, 292
Personal aesthetic taste, 215
Personalized font generation, 220
Personalized font systems, 343
Personalized publishing, 344
Pervasive painting, 328
Phenomenological model, 133
Phong shading model, 26
Photograph stylization & abstraction,

29
Photorealistic rendition, 24
Physical modeling, 11
Physical paintbrush, 327, 329
Physically based simulation, 130
Physically-based modeling, 104
Piecewise 3rd-degree Bezier curve, 302,

303
Pigment deposition, 129
Pigment advection, 129
Pigment behavior model, 51, 52, 54, 55,

59, 60, 130, 133
Pigment behavior simulation steps, 131
Pigment concentration, 132, 134–137,

139, 141, 143, 144, 148
Pigment customization, 145
Pigment deposition, 142
Pigment diffusion, 140
Pigment diffusion on brush, 139
Pigment diffusion on paper, 137
Pigment diffusion process, 129
Pigment layer superimposition, 147
Pigment mass conservation, 143
Pigment mixing, 55, 129, 143, 144, 147
Pigment mixing prediction network,

143, 145
Pigment particle, 129, 130, 142
Pigment rendering, 143
Pigment sorption process, 129, 135, 137
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Pigment-water solution, 129, 130, 135,
137

Pigment-water solution sorption
process, 136

Pixel-based segmentation, 291
Planar ray tracing, 170
Plausible lighting effect, 26
Porous paper, 137
Practice of impressionists, 25
Pre-skeleton, 259
Predefined e-brush quality configura-

tion, 84
Predefined shape models, 291
Pressure and diffusion, 135
Primitive stroke, 208–213
Principal diffusion angle, 138
Probability distribution, 298
Procedural texture, 38
Progressive stroke matching, 26
Pruning, 260
Psychotherapy, 339
Pyramid representation of image, 29

Quality configuration library, 84
Quality hair rendering, 162
Quantitative aesthetics, 222, 223

Radiation mode distribution, 69
Random distribution, 142
Random fiber network, 137
Random sampling, 140
Randomization term, 136, 142
Real-time non-photorealistic rendering,

39
Real-time response, 60–63, 81, 90, 94,

95, 328
Realistic goals, 327
Reasoning intensity, 213, 214, 221
Reasoning source intensity field, 244
Recovery from deformation, 59, 117
Recovery of control axis, 77
Reference character, 213
Reference image, 27, 32, 36, 52, 55, 89
Reference model, 206
Reference photograph, 25, 31, 292
Reference video, 30
Reflectance, 145–147
Reflective spectrophotometer, 143
Region merging criterion, 296
Region merging process, 297
Region-based segmentation, 291

Rehabilitation, 345
Reinforcement learning, 342
Relative density, 38
Relative entropy, 298
Relative pigment concentration, 130
Relaxation based framework, 26
Rendering acceleration, 24
Rendering animated hair, 186
Rendering of ink mark, 83
Rendering quality, 305
Resilient back propagation , 147
Resolution, 328
Resolution-dependent rendering, 33
Revisable painting, 331
RGB space, 68, 83
Rich font support, 344
Ridge, 35
Robotic control, 337
Robotic painting, 337

Sample location, 304
Sampling density, 304
Sampling location refinement, 304
Scale-space theory, 29
Scattering coefficient, 308
Score of digital arts, 9
Screen-space size, 38
Seed-and-traverse line extraction, 39
Self-diffusivity, 138
Self-publishing, 344
Semantic understanding, 15
Semantic-aware, 165
Semantics-Aware Texture Function,

169
Semantics-aware Texture Function, 161
Semi-automatic method, 253, 255, 258,

280
Sensory hardware, 335, 337
Separating overlapping strokes, 306
Shaders, 36
Shadow map, 178
Shallow water model, 54
Shape comparison, 299, 301
Shape distortion, 305
Shape feature, 269
Shape grammar production, 212, 234,

235
Shape matching, 301
Shape prior, 296, 299
Shape reasoning, 248
Shape similarity, 296, 299, 301
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Shape smoothness assumption, 309
Shape-based criteria, 301
Silhouette detection, 33
Silhouette line, 33
Silhouettes generation, 35
Sill criterion, 8
Similarity measure, 301
Simulated analogous reasoning process,

207, 208
Simulation accuracy, 53
Simulation error database, 54, 117
Simulation realism, 104
Single stroke appearance model, 303,

305, 309, 312, 320
Skeletal stroke, 60, 291
Skeletonization, 258
Skeletonize binary image, 211
Skill criterion, 8
Smart duplication, 335
Smooth interpolation, 309
Smoothness preference, 299
Solid model of e-brush, 82
Solution phase, 142
Sorption process, 136
Sorption speed, 137
Source knowledge, 235, 240, 245
Source photograph, 25
Spati, 39
Spatial coherence, 319
Spatial layout, 274
Spatial regularization, 320
Spatial relation, 234
Spatio-temporal coherence, 39
Special purpose painterly rendition, 36,

38
Species of adsorbates, 142
Spline knot, 302, 303
Split-and-merge approach, 292
Spring-mass particle system, 52
Spurious branch problem, 260
State transition, 65
Steepest descent algorithm, 86
Steepest descent optimization, 86
Stochastic perturbation, 25
Stokes equation, 130
Stroke clipping, 27
Stroke connectivity, 313
Stroke example set, 32
Stroke extraction, 295
Stroke group, 261
Stroke layout evaluation, 271

Stroke level animation authoring, 312
Stroke properties, 35
Stroke reconstruction, 309
Stroke refinement, 301
Stroke region, 298, 302
Stroke segmentation, 206, 267, 284
Stroke texture variation, 289
Stroke-based animation, 291
Stroke-based decomposition, 289
Stroke-based rendering, 23
Stroke-to-stroke match, 261
Structural matching algorithm, 261
Structural matching process, 263, 265
Structural stroke database, 235
Structure extraction, 258
Structure matrix, 241
Style awareness, 340
Stylistic rendering, 24, 39
Stylus, 23
Subdivision surface, 52, 64, 92
Subtractive mixing, 143
Suggestive contour, 35
Sumi-e painting, 24
Super-computing support, 328
Surreal digital paintbrush, 331
Surreal goals, 327
Surreal paintbrush system, 331
Surreal paper, 332
Surreal pigment, 332
Sweeping profile, 67
Sweeping trajectory, 67
Synchronization, 59
Synthesis reasoning model, 243, 248
Synthesis reasoning process, 244
Synthesis reasoning source, 244, 248
Synthesis reasoning space, 244
Synthesized brush stroke, 304
System building methodology, 248
System Engineering’s Perspective, 227
System stability, 53
System’s creativity, 219

Tablet, 23
Target function, 85
Teaching by example, 337
Technical illustration, 34
Technical illustration conventions, 34
Temporal coherence, 27, 30, 34, 36, 305
Temporal painting, 334
Temporally coherent suggestive

contour, 35
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Tessellation process, 109
Tessellation result, 305, 306
Tessellation strategy, 304
Tex, 14
Texture deformation, 304
Texture mapping, 304, 305
Texture sampling, 302
Texture smoothness, 305
Texture synthesis, 55
Texture variation, 298
Thermodynamics coefficient, 142
Thin brush stroke, 302
Thinning, 258
Thinning algorithm, 211, 302
Timeline, 313
Tip control line, 67, 68, 70, 72, 75, 79,

80
Tip of penholder, 112
Tone of pen-and-ink illustration, 32
Tone-based shading mechanism, 34
Topographical map, 24
Topological constructor, 239
Training example, 203, 205–207,

210–217, 222
Training procedure, 86
Training samples, 85, 269, 275, 276, 282
Training samples acquisition, 143
Training set, 256, 267, 269, 270, 275,

282
Training set acquisition, 282
Transmittance, 145–147
Transparency, 308
Transparency extraction, 320
Transparent layer separation, 306
Transparent layers, 309
Tree, 36
Triangle strip, 304
Two-phase method, 253, 255, 258, 267,

280
Types of paintings, 327

Unconsciousness, 6
Under-segmentation, 309, 313
Undertone effect, 34
User manipulability improving

component, 120
User attention data, 30
User-created e-brush configuration, 84

Valley, 35
Variable diffusion coefficient, 138, 140
Variance, 297
Varying painting styles, 26
Vector mode distribution, 69
Vector-based painting, 328
Vectorized stroke, 291, 292, 319
Verbal command, 336
Verbal painting creation, 336
Verbal painting touchup, 336
Versatile nature of art, 15
Video applications, 27
Viewer’s perception, 333
Viewing conditions, 330
Virtual paper, 62, 63, 65, 75–78, 81–87,

92
Virtual paper plane, 75, 112
Virtual pigments, 332
Virtual reality devices, 40
Virtual writing process, 62, 63, 65, 70,

72, 73, 75, 76, 78–81, 83, 95, 96
Viscous oil painting, 26
Viscous pigment solution, 129
Visibility determination, 39
Visibility test, 172
Visual appreciation, 24
Visual approximation to photograph,

25, 27
Visual communication enhancement, 23
Visual complexity, 38
Visual feedback, 108, 159
Visual preference, 26
Visual presentation, 24
Visual signal, 338
Visual stimuli, 338
Visualizing large dataset using NPR, 39

Warm color, 34
Water-based painting, 129
Wavelength, 146
Weighted shape similarity, 296
Wetness adjustment, 78
Working state, 70, 71
Writing primitive, 63–65, 67, 68, 70, 71,

75, 76, 78–81, 83, 88, 92, 95, 96,
121

Zonary area, 230
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