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ABSTRACT

This paper describes an improvement on the analytic tableau method which
simulates SL-resolution.  It is implemented by a short and elegant Prolog
program which is relatively efficient.
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1. INTRODUCTION

A proof method for a system of logic is more powerful than another to the degree that it

simplifies the task of producing derivations for theorems.  One possible measure of the

relative complexity of proof systems for the propositional calculus is offered by the notion

polynomial simulation [Cook 1971].  Intuitively speaking, if any proof α of a tautology T

in proof system A can be transformed into a proof β of T in system B is such that the

length of β is a polynomial function of the length of α then system B p-simulates system

A.  Conversely, one can show that proof system A cannot p-simulate system B by

showing that there are tautologies that are hard-to-prove for A are but not hard-to-prove

for B, i.e. B is strictly more powerful than A.The polynomial simulation relation imposes

a partial ordering among proof systems, and, although many simulation relations are

known [Cook and Reckhow 1979], there are still a number of gaps in the literature.  It has

recently been shown [Vellino 1989] that tree resolution simulates a varient of the analytic

tableau tableau procedure [Smullyan 1968] and that both SL-resolution [Kowalski and

Kuehner 1971] and the connection method [Bibel 1982] are equivalent to restrictions of

this improved tableau method.

In this note we describe the improved analytic tableau method and present a short and

elegant Prolog program that implements it efficiently.  Applied to examples that are hard

for resolution such as the Pigeon Hole problem [Haken 1985, Urquhart 1987],

experimental results show that this program is superior to implementations of resolution

methods.

2. ANALYTIC TABLEAUX METHODS

An analytic tableau θ for a set of propositional formulae (in Disjunctive Normal Form) Σ,

is a tree such that all the nodes in θ other than the root node are labelled by literals

occurring in Σ and for each interior node k in the tree, the set of literals labelling the

children of k is a formula in Σ.  The root node of any analytic tableau for formulae will be

designated by the special symbol ϑ.
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A branch in a tableau is closed if it contains both a literal and its complement.  An analytic

tableau is closed if all its branches close but open if at least one branch is not closed and all

the formulae in Σ have been decomposed in that branch.

It is easy to see that if Σ is a consistent set of formulae, an assignment of truth values to

the literals which makes Σ true can be read off an open branch of its analytic tableau.

Conversely, all the branches of an analytic tableau for a set Σ of formulae are closed if and

only if Σ is inconsistent.

2.1 CLASH RESTRICTED ANALYTIC TABLEAU

The search for the smallest tableaux refutation (closed tableau), particularly for sets of

non-minimally inconsistent formulae (a set of formulae all of which are necessary to prove

inconsistency), can be quite inefficient if the tableau method has no built-in heuristic.  One

restriction of the general tableaux method that can reduce the search space is to impose

the rule that each formula decomposition closes a branch in the tableau.  This is equivalent

to the condition that the formula decomposed at each node k in the tableau contain at least

one literal that clashes with (i.e. is the complement of) a literal labelling k or an ancestor of

k.  We will call such a tableau an ancestor clash restricted (ACR) analytic tableau.

A more stringent clash restriction is to specify that some literal in every decomposed

formula clash with the literal labelling the parent node, i.e. that every non-leaf node k in

the tableau is labelled with a literal that clashes with a literal labelling a child of k.  We say

that such a tableau is parent clash restricted (PCR).  Both ACR and PCR analytic tableaux

methods are complete: a set Σ of formulae is inconsistent if and only if there exists both a

ACR and a PCR analytic tableau for Σ.

Contrast the following analytic tableaux for the refutation of the set

{ab, ~ab, ~b, ~ac, ef }.
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Tableau with no restrictions for {ab, ~ab, ~b, ~ac, ef }
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Figure 2.1.ii

Tableau with ancestor clash restriction for {ab, ~ab, ~b, ~ac, ef }



A Propositional Theorem Prover CRL: 89024

4

a

~a

b

~b
XX

ϑ

b

~b

X

Figure 2.1.iii

Tableau with parent clash restriction for{ab, ~ab, ~b, ~ac, ef }

These show that PCR and ACR tableaux can be shorter than unrestricted analytic tableaux.

Thus, as a heuristic for searching, this restriction appears to minimize the decomposition

of irrelevant formulae.

Whether or not PCR or ACR tableaux polynomially-simulate unrestricted analytic tableaux

is an open question.  However, we know that some minimal unrestricted tableau are

smaller than either PCR or ACR tableaux.  The examples that show this are constructed as

follows.

Consider a set S of 2(2n - 1) distinct positive literals from which the set C of 2n - 1

formulae containing exactly two distinct literals each, such that each literal in S occurs

only once in C.  Then construct an open analytic tableau containing only one

decomposition of each formula in C.  This tableau can be closed by the set of 2n formulae
each containing n negative occurrences of literals in S.  The resulting tableau Tn has (n +

2)2n - 2 nodes.

For instance, the tableau on figure 2.1.iv are minimal and all the PCR or ACR tableaux for

those sets of formulae are larger.
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Figure 2.1.iv

Minimal tableau for {ab, cd, ef, gh, ij, kl, mn, ~a~c~g, ~a~c~h, ~a~d~i, ~a~d~j, ~b~e~k,
~b~e~l, ~b~f~m, ~b~f~n}

Since each formula in these minimally inconsistent sets is decomposed exactly once, by
construction, the class of tableau Tn is minimal for n � 3.  If either the PCR or ACR

restriction is placed on the construction of such a tableau then the same formula must be

decomposed more than once because the symmetry of the literal clashes in the tree is
broken.  This is illustrated by observing the start of an ACR tableau for T3.
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Figure 2.1.v

Partial ACR tableaux for T3

Given the start formula ab, the next formula beneath a must be one of the four formulae

containing ~a, say ~a~c~g.  The branch containing ~c can be closed by cd in a parent

clash decomposition (right hand side of figure 2.1.v) or after some ancestor clash (left

hand side of the figure).  In either case there are still two more formulae containing ~c and

~d  which have yet to be decomposed (since the set is minimally inconsistent) and whose

branches must be closed by another decomposition of cd.

2.2 IMPROVED ANALYTIC TABLEAU

There is a simple extension to the analytic tableau method that increases its efficiency as a

method for proving theorems and produces a considerable improvement in the complexity

of its proofs.  A short and elegant Prolog program that implements this method is

described in section 3.
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We will say that an improved (I) analytic tableau for a set of formulae Σ if it is completed

or checked which we define simultaneously by induction as follows:

(i) A subtableau is completed if it is closed.

(ii) If a branch of a subtableau ends in a literal l and there is an ancestor of this node

that has a child also labelled with l which is at the top of a completed subtableau then the

branch ending in l is checked.

(iii) A subtableau is completed if all its branches are closed or completed.

For example, a completed I-analytic tableau for the formulae { ab, ~ab, ~b } is given in

figure 2.2.i.  Compare this with the tableau in figure 2.1.ii.

a

~a

b

~b

XX
b

ϑ

Figure 2.2.i

Completed I-analytic tableau for {ab, ~ab, ~b, ~ac, ef }

To show the soundness of this method it is sufficient to observe that any completed I-

analytic tableau can be transformed into a closed tableau by replacing every check mark by

a closed sub-tableau containing no check marks (check-marks cannot justify each other

cyclically).  Without loss of generality, we will assume that I-analytic tableau are

constructed so that the check marks occur to the left of the nodes by which they are

justified.  This is always possible since the literals in each formula are not order sensitive.

Notice that checking a branch that ends in a literal l simply has the effect of reporting (or

delaying) the justification for closing that branch to the decomposition of formulae on

another branch ending in l, provided that both occurrences of the literal have the same

ancestor.  The checking of a literal always reports its decomposition to a literal belonging

to an ancestor formula and effectively merges nodes in the tableau, allowing them to share

the closure of a sub-tableau.
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3. PROLOG IMPLEMENTATION

The following Prolog program is an short and elegant implementation of the improved

analytic tableau method.

We represent a conjunction of formulae in DNF as a list of lists: each disjunction of a

formula is a list of literals and the conjunction of formulae as a list of disjunctions. For

each disjunctive formula an attempt is made to provide a satisfying assignment to at least

one propositional variable in that formula.  If we represent each propositional variable by a

(first-order) logic variable in Prolog, this truth-value assignment is propagated to all the

occurrences of this propositional variable in every formula simply by unification.

A formula is disjunction (list) of literals of the form

              literal(NegOrPos,Variable)

where NegOrPos indicates the presence or absence of a negation sign in front of the

Variable.  For example the formula ((a v ~b) & (b v ~c) is represented as

[[literal(true,A),literal(false,B)],[literal(true,B),literal(false,C)]].

A formula is satisfied if a variable can be unified with its prefix (true or false).

The plain analytic tableau method is a simple program.  The predicate definition for

satisfiable/1 says that a conjunction (list) of formulae is satisfiable if each formula can

be satisfied and the predicate definition for satisfied/1 satisfies a formula by assigning

or verifying a satisfying truth value assignment for some literal.

satisfiable([]).
satisfiable([F|Formulae]) :- satisfied(F), satisfiable(Formulae).

satisfied([literal(T,T)|_]).         % the first disjunct is satisfied
satisfied([_|R]) :- satisfied(R).    % or one of the rest are

(This program, incidentally, is equivalent in complexity to L. Pereira's theorem prover in

"Prolog by Example" by Coelho and Cotta (1988).)

There are two major problems with this program:

(1) it will explore unnecessary truth-value assignments for clauses that are already true in

virtue of a previous truth-value assignment to another literal (i.e. it will decompose clauses

unnecessarily).
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(2) it does not take advantage of the fact that once it has shown that a truth-value

assignment for a literal in a clause cannot be used to satisfy the other clauses then only its

negation can (the checking rule described above).

The beauty of the improved tableau method is that both these optimizations are

implemented immediately by the following modifications:

satisfied([literal(T,T)|_]).
satisfied([literal(TV,V) | Literals]):-

negation(TV,V),satisfied(Literals).
negation(true,false).
negation(false,true).

If the attempt to satisfy a disjunctive formula (the first clause for satisfied/1) fails then

the literal is falsified (the truth-value reversed) and another literal in that formula must be

satisfied.  Thus, if the second clause to satisfied/1 is called with a variable already

bound to a satisfying assignment, then looking at the others is unnecessary, which is

guaranteed by the failure of the guard negation/2 (optimization 1).  And if satisfied/1

was originally called with an unbound variable and backtracking causes the second clause

for satisfied/1 to be called, then the literal can have its truth-value reversed by the call

to negation/2 (optimization 2).

Prolog systems with indexing may benefit further by folding in negation/2 into the head

of satisfied/1,

satisfied([literal(T,T)|_]).
satisfied([literal(true,false) | Literals]):- satisfied(Literals).
satisfied([literal(false,true) | Literals]):- satisfied(Literals).

making it a 5-line program.

CONCLUSION

The built-in depth-first search and first order unification mechanisms of Prolog are ideal

for searching and propagating satisfying truth-value assignments to literals in formulae.

The improved tableau rule (the checking rule) described in section 2.2 provides tableau

proofs whose minimal size is of the order of resolution proofs.  As with resolution proofs

minimal sized tableau proofs can be acheived only by chosing a stragic order in which to

decompose the formulae but these strategies are not discussed here.
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PROLOG PROGRAM

satisfiable( [] ).
satisfiable([F|Formulae]) :- satisfied(F), satisfiable(Formulae).

satisfied([literal(T,T)|_]).
satisfied([literal(TV,V) | Literals]):-

negation(TV,V),satisfied(Literals).

negation(true,false).
negation(false,true).
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%%%    5 objects can't fit into 4 holes !

formulae( [
  [literal(true,_a),literal(true,_b),literal(true,_c),literal(true,_d)],
  [literal(true,_e),literal(true,_f),literal(true,_g),literal(true,_h)],
  [literal(true,_i),literal(true,_j),literal(true,_k),literal(true,_l)],
  [literal(true,_m),literal(true,_n),literal(true,_o),literal(true,_p)],
  [literal(true,_q),literal(true,_r),literal(true,_s),literal(true,_t)],
  [literal(false, _a), literal(false, _e)],
  [literal(false, _a), literal(false, _i)],
  [literal(false, _a), literal(false, _m)],
  [literal(false, _a), literal(false, _q)],
  [literal(false, _b), literal(false, _f)],
  [literal(false, _b), literal(false, _j)],
  [literal(false, _b), literal(false, _n)],
  [literal(false, _b), literal(false, _r)],
  [literal(false, _c), literal(false, _g)],
  [literal(false, _c), literal(false, _k)],
  [literal(false, _c), literal(false, _o)],
  [literal(false, _c), literal(false, _s)],
  [literal(false, _d), literal(false, _h)],
  [literal(false, _d), literal(false, _l)],
  [literal(false, _d), literal(false, _p)],
  [literal(false, _d), literal(false, _t)],
  [literal(false, _e), literal(false, _i)],
  [literal(false, _e), literal(false, _m)],
  [literal(false, _e), literal(false, _q)],
  [literal(false, _f), literal(false, _j)],
  [literal(false, _f), literal(false, _n)],
  [literal(false, _f), literal(false, _r)],
  [literal(false, _g), literal(false, _k)],
  [literal(false, _g), literal(false, _o)],
  [literal(false, _g), literal(false, _s)],
  [literal(false, _h), literal(false, _l)],
  [literal(false, _h), literal(false, _p)],
  [literal(false, _h), literal(false, _t)],
  [literal(false, _i), literal(false, _m)],
  [literal(false, _i), literal(false, _q)],
  [literal(false, _j), literal(false, _n)],
  [literal(false, _j), literal(false, _r)],
  [literal(false, _k), literal(false, _o)],
  [literal(false, _k), literal(false, _s)],
  [literal(false, _l), literal(false, _p)],
  [literal(false, _l), literal(false, _t)],
  [literal(false, _m), literal(false, _q)],
  [literal(false, _n), literal(false, _r)],
  [literal(false, _o), literal(false, _s)],
  [literal(false, _p), literal(false, _t)]   ] ).


