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Formal Deductions

» Logic Calculus
» Set of axioms (A): Formulae assumed to be true
» Set of formulae (I)

» Rules of inference: Obtain new formuale from given ones

» Theorems of a Logic Calculus
» The set of formulae obtained by rules of inference from I
UA
» Formal: { ¢ | T Fo¢ }
» Deduction: a set sequence of formlae recroding how ¢
was obtained from ' U A
» Not unique

» Different calculi exist (E.g. distinct sets of axioms and
rules of inference)



Deductive Reasoning in Prolog

Formal Language: Horn logic (Restricted First-order logic)

Axioms: Program

Rule of Inference: Linear
Resolution

Provable Formulag

Figure: Prolog



Example Problem: Reachable Vertices in a Graph

» Situation (facts about the problem domain):

Figure: Graph with vertices (a,b,c,d,e) and directed edges.

» Problem: Is there a path starting from c?



Abstract Solution in Predicate Logic

Knowledge (Formalized situation)
edge(a,b), edge(a,c), edge(b,d), edge(c,d), edge(d,e),
vS,E edge(57 E) = path(57 E))>
Vs e Iy (edge(S,N) A path(N, E)) = path(S, E))
Goal (Problem)

3, path(c, X).



Abstract Solution as Prolog Horn Clauses

Clausal Form

Description of situation

edge(a,b) < T (el)
edge(a,c) « T (e2)
edge(b,d) <+ T (e3)
edge(c,d) « T (ed)
edge(d,e) < T (eb)
path(S, E) < edge(S, E) (p1)
path(S, E) < edge(S, N), path(N, E) (p2)

Problem
path(c, X)



Derivation Tree with Fixed Atom Selection

el: edgefab)<-T.
e2: edgefac) <- T.
G < pathieX).{} > e3: edge(b,c) <-T.
ed: edgefe,d) <-T.
e5: edge(d,e) < -T.
p1, {S_0/c, E_0/X} p2, {S_0/c, E_0/X} p1: path(S,E) <-
edge(S,E).
< edge(S_0,E_0), < edgelS_0, N_0) & path(N_0, E_0), o (S ) <
Gol ] s ok, E OG> ‘ G.p2 {S 0/c, E. 0/ > ‘ o g:ge‘(%ﬂ;
thiN,E).
od, {dew a4, {N_0/d} L pathiN.
<T, < path(N_0,E_0),
Gpled | ig o/cE ofdX/d) > Gp2ed | 15 o/c, E_O/X, N_0/d) >
1, (S_1/d, E_1/%) p2, {S_1/d, E_1/%)
< edge(S_1,E_1), <ed
ge(S_1,N_1) & path(N_1,E_1)
Gp2.edpt [S-WG,';E;&?(;S-W' {S.0/c, E_O/X, S_1/d, E.1Ky > | C-P2edp2
o5, (X/e} l ed, {N_1/e}
<T,
, th(N_2,E 2),
Grzetptes (.00, E Oie S 1/, o e S, | erzetpaes
e.njelz E_1/X, N_1/e} >

LS ¥e BN _—— —— p2{S e EIN

< edge(S_3,E_3), < edge(S_3,N_3) & path{N_3,E_3)
{wn8_3le,E_3X} > {5 3/e,E. 304 >

Y h 4
<F{I> <F{}>




Limitations of Prolog as general Prover

v

Formal Language: Horn Logic

» Restricted form of first order predicate logic.
» At most one postive literal

v

Negation as failure

» No distinction between failed derivation and something
being false.

v

Depth first strategy:

v

Clark’s completion:



Classification of Proof Methods

» Forward-reasoning (local, bottom-up)
Start from the assumptions (axioms) until the conjecture
is reached.

» Resolution method (Robinson 1965)
> Inverse method (Maslov, Nauk 1964)

» Goal-oriented (global, top-down)

Start from the conjecture until we reach the axioms.
Grows the tree prove tree upward.

» Linear resolution (SLD, Prolog)
» Model elimination method (Loveland 1968)
» Tableau method



Full FOPL Theorem Provers in Prolog

» Prolog-like (compilation to Lisp):

» PTTP: Prolog technology theroem prover: Uses model
elimination (Loveland) (forward-reasoning)

» Lean theorem provers (Running on top of Prolog):

» Satchmo: Tableau proof procedure (bottom-up,
forward-reasoning)

» leanTap: Lean semantic tableau theorem prover
(bottom-up, forward reasoning)

» leanCoP: Lean Connection-Based Theorem Prover
(top-down, goal-oriented)



Connection Method Concepts

Propositional Case, Formula:
(UANVA-W)V(UANWA=X)V-UV XV AV

Matrix

U
-U

% = C
-
L

A
-w
Path

u—-=u U u
—U/\.l’ W\X——V -U/V\W—X—-V

w X WX



Connection Method Concepts (2)

Connection
A connection in a matrix is an unordered pair of occurences of

complementary literals.

Complementary Path
A connection in a matrix is an unordered pair of occurences of
complementary literals.

Spanning Set of Connections

A set of connections in a matrix if every path through the
matrix contains at least one of the connections belonging to
this set.



Connection Method

Theorem

A formula of propositional logic in disjunctive normal form
(DNF) is valid iff every path through its matrix representation
contains connections (is complementary).

= A formuala of propositional logic in DNF is valid iff the set
of all connections in its matrix is spanning.



Connection Method in First Order Logic

» Extension is done to a possible new variant of a clause
(variable renaming)

Example: (a) A (forall,p(x) = p(f(x)) = p(f(f(a))))
E.g. [p(a)l, [-p(f(f(a)))], [-p(X), p(f(X))]

» Connections must be compatible (MGU of the set of
connections)

» Does not terminate on all inputs



Connection Calculus

Let (C, M, P) be (DNF-clause, set of clauses in DNF, the path).

axiom

({}, M, P)

for some positive C € M:

(€, M\ C.{})
tart rul
start rule W
for some L € C,—L € P with (L,—L) complementary:

(C\L M, P)
C,M,P

for some L € C,(; € M,—-L € C; with (L,—L) complementary:

(C\LaM”D) (Cl\_‘LaM\ClaPU{L})

reduction rule

extension rule
C,M, P



Representing the Connection Calculus in Prolog



LeanCoP: Connection Calculus as Prolog Program

» Syntax: First order syntax on top of prolog structures

» Calculus: Connection calculus
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