
Prolog As A Theorem Prover
Talk in Automated Reasoning Systems

Jakob Praher

2011-06-07



Deductive Reasoning

Figure: General Picture ?



Formal Deductions

I Logic Calculus
I Set of axioms (A): Formulae assumed to be true

I Set of formulae (Γ)

I Rules of inference: Obtain new formuale from given ones

I Theorems of a Logic Calculus
I The set of formulae obtained by rules of inference from Γ
∪ A

I Formal: { φ | Γ `φ }

I Deduction: a set sequence of formlae recroding how φ
was obtained from Γ ∪ A

I Not unique
I Di�erent calculi exist (E.g. distinct sets of axioms and

rules of inference)



Deductive Reasoning in Prolog

Figure: Prolog



Example Problem: Reachable Vertices in a Graph

I Situation (facts about the problem domain):

Figure: Graph with vertices (a,b,c,d,e) and directed edges.

I Problem: Is there a path starting from c?



Abstract Solution in Predicate Logic

Knowledge (Formalized situation)

edge(a,b), edge(a,c), edge(b,d), edge(c,d), edge(d,e),

∀
S ,E edge(S ,E )⇒ path(S ,E )),

∀
S ,E ∃N (edge(S ,N) ∧ path(N,E ))⇒ path(S ,E ))

Goal (Problem)

∃
X
path(c ,X ).



Abstract Solution as Prolog Horn Clauses

Clausal Form

Description of situation

edge(a, b)← > (e1)
edge(a, c)← > (e2)
edge(b, d)← > (e3)
edge(c , d)← > (e4)
edge(d , e)← > (e5)
path(S ,E )← edge(S ,E ) (p1)
path(S ,E )← edge(S ,N), path(N,E ) (p2)

Problem
path(c ,X )



Derivation Tree with Fixed Atom Selection



Limitations of Prolog as general Prover

I Formal Language: Horn Logic

I Restricted form of �rst order predicate logic.
I At most one postive literal

I Negation as failure

I No distinction between failed derivation and something
being false.

I Depth �rst strategy:

I Clark's completion:



Classi�cation of Proof Methods

I Forward-reasoning (local, bottom-up)

Start from the assumptions (axioms) until the conjecture
is reached.

I Resolution method (Robinson 1965)
I Inverse method (Maslov, Nauk 1964)

I Goal-oriented (global, top-down)

Start from the conjecture until we reach the axioms.
Grows the tree prove tree upward.

I Linear resolution (SLD, Prolog)
I Model elimination method (Loveland 1968)
I Tableau method



Full FOPL Theorem Provers in Prolog

I Prolog-like (compilation to Lisp):

I PTTP: Prolog technology theroem prover: Uses model
elimination (Loveland) (forward-reasoning)

I Lean theorem provers (Running on top of Prolog):

I Satchmo: Tableau proof procedure (bottom-up,
forward-reasoning)

I leanTap: Lean semantic tableau theorem prover
(bottom-up, forward reasoning)

I leanCoP: Lean Connection-Based Theorem Prover
(top-down, goal-oriented)



Connection Method Concepts

Propositional Case, Formula:
(U ∧ V ∧ ¬W ) ∨ (U ∧ W ∧ ¬X ) ∨ ¬U ∨ X ∨ ¬V

Matrix

Path

, . . .



Connection Method Concepts (2)

Connection
A connection in a matrix is an unordered pair of occurences of
complementary literals.

Complementary Path
A connection in a matrix is an unordered pair of occurences of
complementary literals.

Spanning Set of Connections
A set of connections in a matrix if every path through the
matrix contains at least one of the connections belonging to
this set.

,



Connection Method

Theorem
A formula of propositional logic in disjunctive normal form
(DNF) is valid i� every path through its matrix representation
contains connections (is complementary).

= A formuala of propositional logic in DNF is valid i� the set
of all connections in its matrix is spanning.



Connection Method in First Order Logic

I Extension is done to a possible new variant of a clause
(variable renaming)

Example: (a) ∧ (forallxp(x)⇒ p(f (x))⇒ p(f (f (a))))
E.g. [p(a)], [−p(f (f (a)))], [−p(X ), p(f (X ))]

I Connections must be compatible (MGU of the set of
connections)

I Does not terminate on all inputs



Connection Calculus

Let (C ,M,P) be (DNF-clause, set of clauses in DNF, the path).

axiom
({},M,P)

for some positive C ∈ M:

start rule
(C ,M \ C , {})

M

for some L ∈ C ,¬L ∈ P with 〈L,¬L〉 complementary:

reduction rule
(C \ L,M,P)

C ,M,P

for some L ∈ C ,C1 ∈ M,¬L ∈ C1 with 〈L,¬L〉 complementary:

extension rule
(C \ L,M,P) (C1 \ ¬L,M \ C1,P ∪ {L})

C ,M,P



Representing the Connection Calculus in Prolog



LeanCoP: Connection Calculus as Prolog Program

I Syntax: First order syntax on top of prolog structures

I Calculus: Connection calculus



References


