
CSE-391
1

Modeling Games with

Prolog Expert Systems

" Outline:

� Modeling Games with Expert Systems

� Hearts

" Domain Model

" Encoding Rules

" Encoding Player Strategies

� Adventure Game

" Domain Model

" Encoding World Knowledge

" Encoding Monster AI Strategies

CSE-391
2

Games as Expert Systems

Types of Game-Playing Systems

" Search Based

� Use an evaluation function to evaluate moves

� Use minimax to search for the best possible move

� Assumes that both players are identical

" Expert System Based

� Encode "expert" knowledge about what moves to

make.

� Can respond to different opponent strategies

CSE-391
3

Goals for Expert System Games

" Two different tasks:

� Encode expert knowledge about a complex domain
" Deduce complex information about objects in the world

� Encode expert knowledge about strategies
" Deduce the best move

" Four examples:

� Hearts
" Encode the rules of hearts

" Encode player strategies

� Adventure game
" Encode knowledge about the adventure game world.

" Encode monster AI strategies

CSE-391
4

Hearts: Abridged Rules

� 4-player card game. Each player draws 13 cards.

� Each player plays a card, in clockwise order.
" First card played by the player who took the previous trick

" Each player must follow suit if possible.

" If a player is out of cards in the suit, they may play any

card.

� The highest ranked card in the initially lead suit

takes the trick.

� Play continues until all card have been played.

� Scoring (lower scores are better)
" Each player gets 1 point for each heart they took

" The player that took the queen of spades gets an

additional 13 points

CSE-391
5

Modeling the Hearts Domain

" Objects:

� Cards: e.g., card(queen, spades)

� Players: e.g., player2

� Tricks taken by a player: e.g., player2tricks

� The undealt cards: deck

� The cards on the table: pile
" Categories:

spade diamond club heart

card

2 3 queen king ace. . .

card(ace,hearts) player deck pile tricks

cardholder

player1 player4 player1tricks. . .

Purple: category
Black: object

. . .

CSE-391
6

Aside: Propositions vs Structures

" We must decide how to represent knowledge:

� directly, using propositions

deck([card(3,hearts), card(2,spades), ...])

� indirectly, using structures

prop(deck, has, [card(3,hearts), card(2,spades), ...])

� Direct representation is simpler

� Indirect representation is more flexible

" We can keep track of multiple decks.

" Decks can inherit properties (e.g., size)

" For this example, we will represent all

knowledge indirectly.

CSE-391
7

Modeling the Hearts Domain (2)

" Properties:

� prop(Player, turn, Bool).
" Is it the player's turn to play?

� prop(Cardholder, has, [Card1, Card2, ...]).
" The cards held by a player, deck, or pile.

� prop(Player, tricks, PlayerTricks).
" The tricks taken by a player.

� prop(Card, points, N).
" Number of points associated with a card

(1 for hearts, 13 for Queen of spades)

� prop(Card, rankval, N).
" Rank value of a card, used to decide highest card (2-14).

CSE-391
8

Modeling the Hearts Domain (3)

" We can use inheritence to define points:
prop(card, points, 0).
prop(heart, points, 1).
prop(Card(queen,spades), points, 13).

" We can use inheritence to define rankval:
prop(N, rankval, N) :− number(N).
prop(jack, rankval, 11).
prop(queen, rankval, 12).
prop(king, rankval, 13).
prop(ace, rankval, 14).

spade diamond club heart

card

2 3 queen king ace. . .

card(ace,hearts)

CSE-391
9

Using the Hearts Domain Model

Two uses for the hearts domain model:

1) Encode knowledge about the rules of the game

2) Encode knowledge about strategies for

playing the game

CSE-391
10

Encoding Hearts Rules

" Now that we have a basic domain model, we

can start encoding expert knowledge.

" Define two top-level predicates:
� start.

� play(card).

| ?− start.
Move: player3
Pile:
 (empty)
Cards:
 Card(3, hearts)
 Card(7, spades)
...
 Card(2, clubs)
yes

| ?− play(Card(2,clubs)).
Move: player4
Pile:
 Card(2,clubs)
Cards:
 Card(5, diamonds)
 Card(ace, clubs)
...
 Card(10, hearts)
yes

| ?− ...

Sample Game

CSE-391
11

Non-Monotonic Logic (Review)

" "assert(...) " adds a fact or rule.

" "retract(...) " removes a fact or rule.

" Assert and retract be included in rules:
go(north) :− at(X), path(X,Y,north),
 retract(at(X)), assert(at(Y)).

" ":− dynamic ..." declares what facts can change.

� If we plan to modify prop and at :

:− dynamic prop/3, at/1.

� Put "dynamic " statements at the top of your Prolog

source file.

CSE-391
12

Hearts: Starting the Game

" Starting the game:

start :− reset, shuffle, deal.

" Dealing cards to players:

deal :− prop(deck, has, [C1,C2,C3,C4|Cards]),
 give(player1, C1), give(player2, C2),
 give(player3, C3), give(player4, C4),
 retract(prop(deck,has,[C1,C2,C3,C4|Cards]),
 assert(prop(deck,has,Cards)),
 deal.
deal :− prop(deck, has, []).

" Giving cards to cardholders:

give(X, Card) :− prop(X, has, Cards),
 retract(prop(X, has, Cards)),
 assert(prop(X, has, [Card|Cards])).

"

CSE-391
13

Hearts: Resetting the Game

" Reset the game in two steps:

reset :− clear, setup.

� First, clear all temporary assertions:

clear :− retract(prop(_, has, _)), clear.
clear :− retract(prop(_, turn, _)), clear.
clear.

� Then, set up initial conditions:

setup :− assert(prop(deck, has, [])),
 assert(prop(pile, has, [])),
 assert(prop(player1, has, [])),
 assert(prop(player2, has, [])),
 assert(prop(player3, has, [])),
 assert(prop(player4, has, [])).

CSE-391
14

Nondeterminism

" shuffle is nondeterministic.

" Implement it using the random library, which

provides a basic random number generator.

� Loading the random library:
:− use_module(library(random)).

� random(Lower, Upper, N) binds N to a random

number in the interval [Lower , Upper)

" Use random to implement permute ; and use

permute to implement shuffle :
shuffle :− prop(deck, has, Cards),
 permute(Cards, ShuffledCards),
 retract(prop(deck, has, Cards)),
 assert(prop(deck, has, ShuffledCards)).

CSE-391
15

Choose and Permute

" Two useful nondeterministic functions:

� Choose a random element from a list:

choose(List, Elt) :− length(List, Len),
 Bound is Len+1,
 random(1, Bound, Index),
 nth(Index, List, Elt).

� Permute a list:

permute(L1, [Elt| L3]) :− choose(L1, Elt),
 delete(L1, Elt, L2),
 permute(L2, L3).

CSE-391
16

Aside: Libraries

" Libraries extend the set of built-in functions.

" ":− use_module(...). " loads libraries

:− use_module(library(lists)).

:− use_module(library(random)).

" Some useful libraries:

� lists: provides basic list operations

� random: provides a random number generator

� queues: defines operations on queues

� tcltk: Tcl/Tk graphical interfaces

� timeout: run goals with execution time limits

CSE-391
17

Hearts: Playing the Game

" Basic algorithm for play(Card) :

� Check who the current player is

� Check that the play is valid

� Remove the card from the current player's hand

� Add the card to the pile

� If the pile contains 4 cards:
" Decide who won the round

" Add the pile to the winner's tricks
" Clear the pile

" Set the next player to the winner

� Otherwise:

" Set the next player (rotate clockwise).

CSE-391
18

Hearts: Playing the Game (2)

play(C) :− prop(P, turn, 1), validmove(P, C),
 prop(pile, has, PileCards),
 give(pile, C), take(P, C),
 finishplay, printstatus.

finishplay :− prop(pile, has, [C1,C2,C3,C4]),
 winner([C1,C2,C3,C4], Winner),
 prop(Winner, tricks, Tricks),
 give(Tricks, C1), ..., give(Tricks, C4),
 clear(deck), prop(P, turn, 1),
 retract(prop(P,turn,1)),
 asssert(prop(Winner,turn,1)), !.

finishplay :− prop(P, turn, 1),
 clockwise(P, P2),
 retract(prop(P,turn,1)),
 asssert(prop(P2,turn,1)).

CSE-391
19

Hearts: Playing the Game (3)

" play is based on functions that encode

information about the rules of Hearts:

� winner([C1,C2,C3,C4], P): Player P wins the given round.

� validmove(P,C): Player P may play card C at this time.

� hearts_broken: At least one heart has been played.

� void(P, S): Player P is void in suit S.

� highcard([C1, C2, ...], C): Card C has the highest rankval.

� score(Tricks, S): The total score for the given tricks is S.

� suit_lead(S): S was the suit lead.

CSE-391
20

Encoding Strategies for Hearts

" Use the same domain model that we used for

rules to encode knowledge about strategies.

� Define pick(P,C)
" True if player P chooses to play card C.

� Strategies need new types of information:
" Has the queen of spades been played yet?
" who has the queen of spades?
" is someone trying to shoot the moon?
" what strategy is each player currently using?
" what strategies does each player tend to use?

� Define a new predicate thinks(Player,(X,Prop,Y))
" True if Player thinks that X's property prop has value Y.

" Example:
thinks(player1,(player2,has,[card(queen,spades)])).

CSE-391
21

Encoding Strategies for Hearts (2)

" Some inferences depend on transient

information:

� Once a round is complete...
" There is no record of who played which card.
" There is no record of who led the round.

� Once a game is complete...
" There is no evidence of who played what.

" Make inferences when the information is

available, and store the results.

� Define a new predicate, examine_play(P) , that is

called for each player after each move.

CSE-391
22

Encoding Strategies for Hearts (3)

" examine_play(P) consists of a set of clauses

that are executed for side effect.

� All clauses except the last one will always fail.

� This ensures that every clause gets evaluated.

examine_play(P) :− (conditions),
 assert(thinks(P, (P2, has, card(queen, spades)))),
 fail.

examine_play(P) :− (conditions),
 assert(thinks(P, (P2, strategy, shoot_the_moon))),
 fail.
. . .
examine_play(P).

CSE-391
23

Encoding Strategies for Hearts (4)

" pick uses think and information about the

current game state to choose which card to

play.

� Pick is implemented with an ordered list of

conditions.

pick(P, card(R,heart)) :−
 validmove(P, Card(R,heart)),
 think(P, (P2, strategy, shoot_the_moon),
 P \== P2, +\hearts_broken.

pick(P, card(R,S)) :−
 validmove(P, Card(R,S)),
 ...
...

CSE-391
24

A Simple Adventure Game

" The player controls a character that can:

� Move around a map.

� Pick up and drop objects.

� Fight monsters.

� Open and close doors.

� Look at rooms and objects.

� etc.

" For examples and detailed descriptions, see:
" http://www.csc.vill.edu/~dmatusze/resources/prolog/spider.html
" http://www.csc.vill.edu/~dmatusze/resources/prolog/sleepy.html
" http://www.csc.vill.edu/~dmatusze/resources/prolog/prolog.ppt
" http://www.csc.vill.edu/~dmatusze/resources/prolog/prolog1.ppt
" http://www.csc.vill.edu/~dmatusze/resources/prolog/prolog2.ppt
" http://www.csc.vill.edu/~dmatusze/resources/prolog/prolog3.ppt

CSE-391
25

Modeling the Adventure Game

thing

character

monster player sword axe room3 room8

undead goblin

zombie skeleton goblin(3)

weapon

container

backpack room

skeleton(3) skeleton(8)

key door

Purple: category
Black: object

CSE-391
26

Modeling the Adventure Game (2)

" Properties:

� prop(Thing, in, Container).

� prop(Character, health, Number).

� prop(Monster, attack, Number).

� prop(Room, description, String).

� prop(Thing, description, String).

� prop(Character, has, Backpack).

� prop(Door, locked, Boolean).

� prop(Key, unlocks, Door).

� prop(Door, connects, (Room1, Room2)).

� prop(Room, has_door, (Door, Direction).

� etc.

CSE-391
27

Inheritance and Defaults

" Every thing has a location:
� prop(thing, in, container).

� prop(character, in, room).

" Use defaults to specify "normal" attributes for

different kinds of characters:
� prop(character, health, 10).

� prop(character, attack, 5).

� prop(undead, health, 6).

� prop(skeleton, attack, 8).

" Doors are usually unlocked:
� prop(door, locked, 0).

" Give default descriptions of objects:
� prop(thing, description, "It's nondescript") CSE-391

28

Using the Adventure Game

Domain Model

" We will consider two uses for the adventure

game domain model:

2) Encode knowledge about the how the world

works.
� What are the effects of various actions?

� What can we deduce about the state of the world?

3) Encode knowledge about strategies for

monsters.
� What should a monster do in a given situation?

CSE-391
29

Game Commands

� n: go through the door to the north
� s : go through the door to the south
� e: go through the door to the east
� w: go through the door to the west
� look : look at the current room
� look_at(Thing) : look at a given object
� take(Thing) : Put Thing in your backpack
� drop(Thing) : Remove Thing from your backpack.
� use(Key, Door) : Use a key to open a door
� attack(Character) : Attack a character
� inv : Display the contents of the your backpack.
� restart : Reset the game to its initial state
� etc.

"

CSE-391
30

Generalized Game Commands

" Define basic commands as special cases of

more general commands, that take a

Character as their first argument:

" n :− go(n, player). s :− go(s, player).
e :− go(e, player). w :− go(w, player).

" look :− look(player).

" take(Think) :− take(player, Thing).
" use(Key, Door) :− use(player, Key, Door)

" This will allow our monster AI strategies to

use these commands.

CSE-391
31

Giving Feedback: Prolog I/O

" Adventure game commands produce output

for the player to read.

� Use write to display strings:

look(C) :− prop(C, in, R), prop(R, description, S),

 write(S), nl.

� write can also display numbers and symbols:

health(C) :− prop(C, health, H), write("You have "),

 write(H), write(" hit points."), nl.

� nl prints a newline.

CSE-391
32

Inventory Listing: findall

" Use findall to list all values that satisfy a

given predicate.

� Example uses:

| ?− findall(X,(member(X,[5,-2,4,1]), X >= 2),L).
L = [5,4]

| ?− findall((N,V), nth(N,[7,5,3],V), L).
L = [(1,7),(2,5),(3,3)] ?

" We can use findall to define inv:

inv(C) :− prop(C, has, BP),
 findall(X, prop(X, in, BP), Items),
 write("You are carrying: "),
 write(Items), nl.

CSE-391
33

More Adventure Game Commands

" Movement:
go(C,Dir) :− prop(C,in,R),
 prop(Room,has_door,(Dir,Door)),
 prop(Door,connects,(R,R2)),
 retract(prop(C,in,R)),
 assert(prop(C,in,R2)), look(C), !.
go(_,_) :− write("You can’t go that way"), nl.

" Getting and dropping objects:
get(C, Obj) :− prop(C,in,R), prop(Obj,in,R),
 prop(C,has,BP),
 assert(prop(Obj,in,BP)),
 retract(prop(Obj,in,R)),
 write("You pick up the",
 write(Obj), nl, !.
get(_, _) :− write("You can’t get that"), nl.

CSE-391
34

Reasoning About the World

" Define predicates that derive information

about the world:

� connected(R1, R2) is true if rooms R1 and R2 are

connected by some path.

� shortest_path(R1, R2, P) is true if P is the

shortest path from R1 to r2.

� sees(C, Thing, D) is true if character C can see

Thing in direction D.

� smells(C, Thing, D) is true if character C can

smell Thing in direction D.

CSE-391
35

Monster Strategies

" We can also use the domain model to encode

strategies for monsters.

� Define a predicate go(C) that performs a single

action for character C.

� Use the world model and world knowledge to

decide what the mosnster should do.

CSE-391
36

Monster Strategies (2)

" A simple monster strategy:
� Attack the player if you think you can win:

go(C) :− prop(C,in, R), prop(player,in,R),
 prop(C,health,CH), prop(player,health,PH),
 CH > PH, attack(C,player), !.

� Otherwise, run away:
go(C) :− prop(C,in,R), prop(player,in,R),
 prop(R,has_door, (Dir,_)),
 go(C,Dir), !.

� Go towards the player if you can smell her:
go(C) :− smell(C,player,Dir), go(C,Dir), !.

� Otherwise, do nothing:
go(C).

" Note the use of cut (!) to ensure that the

monster only performs one action.

