
BREL - A Prolog Knowledge-Based
System Shell for VLSI CAD

Marwan A. Jabri

Systems Engineering and Design Automation Laboratory (SEDAL)
S y d n e y University Electrical Engineering

NSW 2006 Australia

I. INTRODUCTION

VLSI design automation is an activity that has a combina-
torial nature, a large solution space (it is a design problem),
i t is complex (the number of interacting devices is an exam-
ple of complexity), i t is of a multi-constraint optimisation
nature; several design constraints such as speed, power and
area are competing at the same time and each represent-
ing a dimension of an NP complete problem. As a result,
Artificial Intelligence (AI) programming techniques are be-
coming widely used in the automation of VLSI design tasks.
Most notable amongst these techniques is what is commonly
known as Knowledge-Based Systems (KBS). The implemen-
tation of a KBS that deals with a VLSI CAD domain re-
quires consideration to key issues including complexity, the
nature of information processing, and automation require-
ments. These issues influence considerably the structure of
the KBS.
Solving a problem corresponds to the transformation of an
original statement of the problem to a final statement r e p
resenting a solution. Each transformation leads to a new
statement that describes a partial (incomplete) or complete
solution. We use the briefer terms state and context
interchangeably in place of the term statement-of-the-
problem. The current context (or current state) is held in
the Current Context Memory (CCM) or simply the context.
Transformation is carried out by the application of rules to
the current context. Rules are held in the knowledge base.
The inference engine is the procedure which selects and a p
plies the rules.
In a KBS where rules are used to represent knowledge, it is
important to devise a solution search strategy. Two strate-
gies are commonly used: solution improvement (we produce
a solution and then improve on i t) and backtracking (we
produce a solution and if i t is not satisfactory we backtrack
in order t o find a better one). The former search strat-
egy involves the design of complex transformation rules that
are going to improve the quality of the solution. The lat-
ter search strategy is more computationally demanding and
may produce search states that will not always necessarily
improve the solution. The acquisition of knowledge in this
case, however, is much simpler than the solution improve-
ment strategy. On the other hand, backtracking control is
more complex to implement as it involves the recovery of
a previous search state and readjusting the context accord-
ingly.
The prototyping of a KBS requires special attention to the

choice of a programming language. Key elements in the
choice include flexibility, support of various knowledge r e p
resentation schemes and interface to other programming en-
vironments. These reasons make LISP and PROLOG the
most popular languages for KBS development. We have
chosen PROLOG for the following reasons:

1. Built-in support for predicate calculus and first order
logic,

2. built-in search mechanism, and

3. built-in Backtracking.

In addition, the results of investigations of the performance
of declarative and procedural languages in optimisation [4]
supported PROLOG. PROLOG’s built-in predicates may be
used as primitives in the representation of knowledge. The
search mechanism offered by PROLOG is also an important
asset in the fast prototyping of various solving procedures
that use depth-first search. PROLOG’s built-in backtrack-
ing facilitates the generation of an alternative solution on
request.
These advantages, however, come at the cost of the following
well known disadvantages of PROLOG:

1. Complex program control, and

2. poor da ta representation for algorithms.

An additional limitation of PROLOG (at least in its de-
facto standard) is the lack of recovery of prior state of the
knowledge base during backtracking. As the description of
the problem and of the current context is held in the data-
base of PROLOG and not as arguments to its predicate, a
mechanism that is able to keep track of changes performed
during the search process is needed. This mechanism will
enable the system, when backtracking, to “forget” informa-
tion learned during the depth-first search. Furthermore, we
may wish that the system does not “forget” all the infor-
mation it learnt as some of i t may still be valid even after
backtracking and may be computationally expensive to re-
produce. Therefore, the “memorisation” mechanism has to
tag this information so it is not “forgotten” during back-
tracking.
A KBS shell is a computer program that includes an in-
ference engine, support for knowledge representation and
manipulation, a user interface and an explanation system.
To build a VLSI CAD application, the “knowledge engineer”
needs to extract knowledge (rules) from experts and from the

Paper 16.2
272

27th ACMllEEE Design Automation Conference@

1990 IEEE 0738-1 00X/90/0006/0272 $1 .OO

literature, express this knowledge using the KBS shell syn-
tax and then “tune” the rules in order to produce good so-
lutions. Most available shells are severly limited in terms of
search mechanisms, knowledge representation and interface
to other programming environments. Furthermore, avail-
able shells are not equipped with mechanisms t o implement
backtracking with “memorisation” and ”forgetting”, and do
not offer the variety of knowledge representation schemes
(e.g. frames, procedures, rules, predicates, etc) essential to
KBS based VLSI CAD applications.
This paper presents Brel, a KBS shell especially equipped
for VLSI CAD systems. Brel has a context recovery sys-
tem that implements “memorisation” and “forgetting” and
supports a wide range of knowledge representation (frames,
rules, procedures, first-order logic, etc). Brel has been de-
veloped using PROLOG, and has successfully been used to
implement PIAF, a topdown floorplanning system [7,8,6],
T E M P O a formal verification system for asynchronous cir-
cuits based upon Temporal Logic and in the development of
an Automatic Layout Generation tool.

11. KEY FEATURES O F BREL

Considering the VLSI CAD characteristics presented above,
we find that two important design issues particularly govern
an efficient KBS for VLSI CAD: multiple knowledge repre-
sentation and backtracking.

A. Knowledge Representation Schemes
The nature of the VLSI CAD domain requires multiple
knowledge representation schemes. As objects in IC design
domain might have a large number of details, it is impor-
tant t o have a structure that regroups this data. Such a
structure is also useful t o home a predefined set of da ta that
characterise an object. An example is a sub-circuit with
the different attributes that i t might possess, such as: its
children (its own sub-circuits), the other sub-circuits with
whom i t has interconnections, its operation type, a proce-
dure t o evaluate its transparency t o foreign signals. This
knowledge is well suited to a frame representation. On the
other hand, there are areas where knowledge is better ex-
pressed and formulated with if then rules. For example, i t
is much easier to extract from a designer a piece of knowl-
edge by asking him/her: What would you do if the situation
is such and such? Human experts find i t easier to answer
such a question instead of enumerating the states of the rea-
soning chain behind any of their decisions.
Other forms of knowledge representation such as procedural
and declarative are also important in VLSI CAD knowledge
representation.

B. Backtracking and Context Adjustment
Context adjustment represents an important issue in the
design of KBSs where backtracking can take place and a
mechanism is needed t o put the system in a previously de-
fined state. T h e nature of the domain makes impractical the
consideration of “undoing rules” and a more efficient mem-
ory context structure is crucial. In addition, as VLSI CAD
involves intense computation, i t is appropriate to devise a
new context structure that would properly “memorise” and

“forget” calculation results, and enhance the system per-
formance. The structure of the current context memory
adopted in Brel is based on a dynamic frame system dis-
cussed in the next section, which permits an efficient, simple
and portable context recovery system.

111. THE STRUCTURE A N D
I M P L E M E N T A T I O N O F BREL

The design issues discussed in the previous section motivated
the investigation of a KBS shell structure that would match
the needs of our application domain. The system structure
adopted in Brel (see Figure 1) satisfies these needs.

Knowledge

cr”mrcrvcmd

systun KoDwlcdgc 1 Explanation

Figure 1: The structure of the Brel system.

In the remainder of this paper, we discuss the structure of
Brel and the basic issues that affected its implementation.
We will introduce the idea of a quality factor that charac-
terises statements, descriptions and attributes of objects in
integrated circuit design. Then we will describe the knowl-
edge representation schemes. We will also discuss the im-
plementation of the inference engine and the current context
memory. Due t o lack of space the description of the user in-
terface and the explanation system have been omitted and
may be found in [SI.

A. Quality Factors
It is often necessary to classify object attribute values in
VLSI CAD. To do so, Quality Factors (QFs) which are used
t o model the degree t o which an attribute’s value applies to
an object. The modelling of the QFs is based mainly on the
MYCIN [2] model of Certainty Factors.

B. Know ledge Repres entataon
As stated earlier, Brel uses several knowledge representation
schemes including predicates, procedures, rules, frames, pro-
duction rules. A predicate in Brel is a standard PROLOG
predicate with a functor and arguments and represents the
primitive representation. Procedures in Brel are represented
as PROLOG rules. Brel’s frames and production rules are
more complicated, and we present them in the following
paragraphs.

Paper 16.2

273

i. Sta t i c and D y n a m i c Frames

Two types of frames are used by Brel: Static and dynamic.
Static frames are used to represent the objects of the do-
main knowledge that have invariable attributes. Dynamic
frames are used to represent objects with attribute values
changing during the problem solving process. As mentioned
eadier, the introduction of dynamic frames was necessary to
implement an efficient memory context structure. The basic
difference between the two frames is that the static one is
not modified during system operation, while the second is
updated every time the value of an object attribute changes.
A frame, static or dynamic, has the following information
associated with i t and stored in the knowledge-base:

Object Class: This states the class t o which an object

Object Identifier: This gives the identifier of the object.

Slots: There is one slot for each attribute, with the form:

belongs.

Attribute: an attribute name,

Value Type: the class of the attribute value type,

A Value: the corresponding attribute value.

A frame is implemented as a collection of predicates. These
hold five arguments corresponding t o the descriptions shown
above. This implementation proved the most efficient on a
range of PROLOG systems [9,1,10], especially in the case
of dynamic frames where alteration of attribute values and
consequent update of the database are performed.

and

i i . Frame Access

The access to an attribute and its value in a frame is ac-
complished through different types of functions depending
on the object type and the access context. These functions
are developed around a “core” which is designed for the cor-
responding PROLOG implementation. This permits us t o
exploit any database management procedures that may be
offered, in addition to the defacto PROLOG standard as de-
scribed by Clocksin and Mellish [3]. As two types of frames
are available, we will concentrate on the functions that ac-
cess static frames, those corresponding t o dynamic frames
are similar and will be discussed later in the paper.
General Access to Static Frames: In this type of access,
a PROLOG procedure present effectuates a blind search for
a match in the knowledge base. present succeeds and returns
the value if the attribute exists and fails otherwise. Figure 2
shows the PROLOG code of the procedure present together
with an English explanation.
The placement of attribute values in the object frames is
performed by the procedure place that we show the PRO-
LOG code in Figure 3. Note, again, that this procedure only
handles the case of static frames.
Similar procedure are available for deleting attribute values
from the frames.
Directed Access to Frames: Another frame access type
is a level higher than the one presented above and is based
around the procedure fetch. This procedure will use present
first, and if i t fails then i t generally uses a procedure to
guide the system in evaluating the attribute value either
with internal calculations or by interrogating the user. This

present(S,Id,Fieldatt,Vt.VdLne):-
nonrar(S),
=. . (9, [fact ,S,Id.Fieldatt ,Vt .Valuelist]),
(P I ,
nember(Va1ne ,Valuelist).

In the goal above the arguments are:
S: the object class
Id: the object identification
Field-att: the attribute name
Value: either a variable to receive a value O T a an actual value
V t : The type of attribute value

The goal may be used to either:
1 - Check if an object has an attribute value as inatantiated in
Value
2- To retrieve the attribute value of an object
3- To retrieve the identification of an object with instantiated
attribute name, value type and attribute value (the Class, S, needs
always to be instantiated in this goal which faila otherwise)
4- To retrieve the attribute name O T value type, given the other
argum ents.
The goal works as follows:
First the sub-goal “nonvar(S)” is called and will only succeed if
S is instantiated to a value (not a variable). The following goal
(starting with ‘k.. ”) builds a goal predicate (Q) from the object
descriptions. Then the built goal is called, and if it succeeds, the
arguments passed to this procedure and which are not instanti-
ated will become instantiated (That is, the Value-list variable will
receive a value which is a list). Finally the sub-goal “member”
will either check that “Value” is member of the list (if Value is
inatantiated) 07 instantiate “Value” to a member of the list (the
f irs t member if it 1s the f irs t call to “present” and the following
member on backtracking).

Figure 2: The present f rame access procedure.

is accomplished by asserting a t the end of the knowledge-
base a PROLOG rule that evaluates the attribute. When
interrogating the user, the goal fetch will succeed if the user
supplies a valid answer and fail otherwise.
Inheritance of attributes (based on is-a) is implemented as
a directed access with a specialised fetch procedure which
performs the inheritance mechanism.
Accessing Attributes of Relationships: The access to
relationships is done via procedures similar t o the two we de-
scribed above. There are two of them: presen t2 and f e t c h 2

i i i . Brel Product ion Rules

PROLOG rules, frame functions and facts make the body of
a Brel Production Rule (PR) which has the form:

If Old context : W, and A,
then New context : W f and A f

where W,, A, and Wf, A f are the resultant Quality Fac-
tor (QF, see above) for and against the rule in the old and
new context respectively. The resultant Q F of a rule is evalu-
ated by taking the minimum of all the individual QFs as only
conjunctions are used in the rule expressions. Weighting is
also used to permit a priority scheme for conflict resolution.

Paper 16.2

274

~lace(S ,Id .Fie ldatt .Vt,Valne):-
nonrar(Vt), nonvar(Vdne), nonvar(S),
=. . (Q,[fact ,S.Id,Fieldatt ,Vt . V a l n e l i s t l) ,
i f thenelse((Q) ,

{retract lq) ,
I. . (ql,[fact,S,Id,Fieldatt.Vt,Vt,

asserta(p1)

{=. . (Ql,[fact,S,Id,Fieldatt,Vt,Vt,

asserta(q1)

[Vane I V a l n e l i s t l l) ,

1 ,
Cvdnel l) ,

1
) .

The goal above places an attribute value Value of the object iden-
ified Id of class S to the database. The procedure checks firs1
f the predicate (sub-goal) Q, formed using S, I d , Field-att, V1
End a new variable Valuelist , succeeds. If it does, then a list
>f attribute value associated with the object ezists already in the
latabase, and the procedure removes the predicate Q f rom the
latabase and adds a new predicate formed b y inserting Value to
!he begining of the list Valuelist . Else, the procedure creates a

zew predicate using the arguments and adds it to the database.

Figure 3: The place procedure f o r attribute value place-
ment .

C. The Inference Engine

The inference engine is a simple procedure (see Figure 4)
which carries out the transformation of the context descr ib
ing a VLSI CAD problem description s ta te towards a solu-
tion.
The procedure find-all-rules may succeed twice. In the first
time, all rules that match the context and satisfy a unity
Q F are selected. In the second time, all remaining rules
that match the context are collected and sorted according
to their decreasing degree of quality using their QFs.

i . Inference Backtracking

As Figure 5 shows, three levels of backtracking may occur.
In the first, the system backtracks t o the previous inference
call to pick the next rule in the list of matching rules, ad-
justing the context accordingly. In the second backtracking
level, the system will backtrack in find-all-rules taking the
second path in the procedure and finding matching rules
with non-unity Q F paths. In the third backtracking level,
the system will unwind the last recursive call to the proce-
dure itself with a failure which forces a backtracking a t the
previous call.
Backtracking affects only dynamic attribute values. At each
inference, the system carries in the current context memory
all information necessary t o track its path. The sorting of
the rules is based on the arithmetic difference between the
“for” Q F and “against” QF. The History Tree holds the
list of applied rules, and the Search Tree holds the list of
matching rules and applied rules.

This PROLOG rule has two input and two output arguments rep-
resenting respectively the initial and final TO" and “con” QFs
of the rule inference. The rule ezecutes as follow:

get task informations from stack
find all rules that match current contezt
select a rule
switch to new context index
update history tree
update search tree
apply the rule
if stop-goal succeeds

then stop
else recurse

Figure 4 : The inference procedure as wr i t ten in PRO-
LOG. Note that the sub-goal find-allrules always suc-
ceeds twice, once finding the unity p a t h matching rules
(wi th a upron= 1) and the o ther finding all o ther match-
ing rules.

ii. Inference Stop-Goal

Another important feature of the inference mechanism is
the stop-goal marked Q in Figure 4. This goal contains the
desired specifications and constraints that the current de-
scription of the problem in the context has t o meet in order
to represent a solution. T h e s topgoal may also be used to
access and modify the current specifications themselves.

D. Current Context Memory Structure
The rule firing procedure shown in Figure 4 shows a call to
a goal toggle-contezt. T h e definition of this goal is shown in
Figure 6. The unification mechanism of PROLOG permits
this rule to operate in the following way:

1 . Increment context index,

2. Any further call t o access an object attribute value
will push on a stack, of the corresponding current con-
text index, a predicate that states the previous version
of the slot describing the attribute,

3. On backtracking, the procedure will treat the stack as
a LIFO and will “pop” an element a t a time and use
it to replace the current value of the object attribute
in the context.

Figure 7 shows the path (in thick line) taken by Brel during
a context recovery process. We assumed in this figure that

Paper 16.2

275

6 Find all M.tching

Adjun Cantext

Apply Rule Rule e
“4

Figure 5: The inference engine procedure a n d i ts three
backtracking levels.

the fire-rules procedure has failed and backtracking is taking
place.

i. Context Access Funct ions

The functions used t o access the frames in the CCM are
similar t o those used for the knowledge base except that
they update the context “modif” stack each time they are
called. The context access functions are built around c_pl
shown in Figure 8.

E. ‘LMemorisation77 and ‘%orgetting”
To describe how “memorisation” and “forgetting” are im-
plemented in Brel we will use Figure 7. Suppose that a
problem solving task has been run by calling the procedure
firerules. This procedure will get the task name from a
stack. I t then calls the procedure find-all-rules which was
described above. Then a rule is selected using the proce-
dure selectrule. The updatelhtory procedure saves some
information for the explanation system (list of rules which
have been applied). Then the procedure togglesontest cre-
ates a new context list t o save a copy of any objects at-
tribute values that may change during the application of
the rule performed by the procedure applyrule. Once a
rule has been applied, transformation of the context would
have taken place by the means of changes to attribute val-
ues. This transformation corresponds to a “memorisation”
phase. Now suppose that at some stage, the system has
failed t o satisfy a constraint imposed on the design and has
started a backtracking process. T h e first stop on the back-
tracking path is a “recall” t o the togglexontezt procedure
which will perform the “forgetting” mechanism. The ex-
act actions of this procedure were described in Section D.
above. In few words, what this procedure carries out is a
discriminate recovery of previous attribute values. I t is dis-
criminate because some of the attribute values may be com-

togglesontext :-
newid(rodif ,I),
iessage(JContext id : J and I),
pnsh(modif,l).

togglerontext : -
pop(rodif ,I),
ressage(’Context backtracking: ’

and I).
t oggleront ext 3 (1) ,
!, fail.

togglerontext D(Idc) : -
removeh(modif.Idc.(Idc,S,Id,Att.

doall(reroreh(S,Id.(Id,Att,Vt,~)),
ifthen((Val - Cl) ,recordh(S.Id,

(Id,Att,Vt.Val))),

Vt.Va1)).

fail.

toggleront ext D (3 .

The above PROLOG rule ezecutes as follow:
The first predicate toggle-context se t s up a new context modifica-
t ion index (“mod if” stack). O n backtracking, the second defini-
t ion ‘paps’ the last content indez and calls a sub-goal that replaces
the old values of object attributes contained i n the “modif” stack
identified by the ‘popped’ indez.

Figure 6: The context ”toggling” procedure.

putationally expensive t o recalculate (like a shortest path in
a graph for example) and the rule which has performed the
transformation would have used a tag to inform the context
toggling procedure about it. After the discriminate recov-
ery of the attribute values, backtracking will continue up to
the selectrule procedure which will return another rule that
matches the readjusted context. Having a new rule, the pro-
cess restart by updating the rules history list, toggling the
context again, applying the new rule and so on. ..

IV. RESULTS

As mentioned previously, Brel has been used t o implement
three systems: a floorplanner PIAF [8], T E M P O a formal
verification system based upon Temporal Logic and an au-
tomatic layout generation system. Among these systems,
PIAF is the most mature and is currently being used by cir-
cuit designers and students within our department. Its rule
based is evolving continuously. T h e design of PIAF involved
the development of rules (over 300) which make intensive use
of graph processing algorithms written in Pascal and C. Data
access from and to the algorithms is implemented through
ASCII files as no standard argument passing mechanism be-
tween PROLOG and other high level languages exist.
The use of Brel in the implementation of PIAF has shown
considerable advantage in the overall efficiency of the sys-
tem, as intensive graph processing and optimisation algo-
rithms are used and the availability of the “forgetting” and
“memorisation” mechanism minimises the need for recalcu-
lation during backtracking.
The production of a prototype KBS CAD tool using Brel
involves weeks of programming. The programmer or the

Paper 16.2

276

4
gu infaure context

4
fad aU rules

4
select a rule

toggle-mtext

m v e z old .teibute values applymle
(those before apply-rule was applied)

t i
Suppose than we have a failure hac

t l
fail

Figure 7: In thick lane the path taken b y Brel during a
context recovery process.

knowledge engineer needs only to focus on the development
of rules knowing that available to him/her are a wide range
of knowledge representation schemes, an efficient backtrack-
ing mechanism, a user interface and an explanation s y s
tem that simplify considerably the amount of programming
needed for program control.

V. CONCLUSION

This paper has presented the concepts behind the design
and implementation of Brel. We have also presented its dif-
ferent subsystems, and in particular, the memory context,
the inference engine, the explanation system, and the multi-
representation access of the knowledge base including the
dynamic and static frames. The structure of these systems
appears crucial, and the techniques we have described in this
paper enable the design of efficient CAD systems for VLSI
development.

REFERENCES

[l] Arity PROLOG. A compiler/interpreter PROLOG s y s
tem, Arity Corporation, 358 Baker AV. Ma. 01742,
USA. Runs on an IBM PC/XT/AT type machine.

:41(S, Id ,Fieldat t ,Vt ,Value) : -
nonrar(Vt), nonrar(Va1ue). nonrar(S),
ifthenelse(retriereh(S,Id,(Id,FieldAtt,

Vt,Valuelist)),
ifthenelse (memberlValue ,Valuelist 1,

true,
{list (modif, [Idc I J 1,
remoreh(S.Id,(Id.Field~tt,Vt,

npdatemodif(Idc.S.Id,FieldAtt,Vt.

recordh(S ,Id, (Id,FieldAt t ,Vt , [Value I

Valuelist 1) .

Valuelist),

Value list] 1)
1

1.
{ list (modif, [Idc I J) ,
updatemodif(Idc,S,Id,Field~tt,Vt, cl),
recordh(S,Id,(Id,Fieldatt,Vt. [Value]))

) .

The above PROLOG rule assigns a value “Value” of type “Vt”
!o the attribute “Field-aft” of an object of a class “S” defined
by a frame, within the current contezt.

Figure 8: A P R O L O G rule to assign a value t o an at-
tribute.

[2] B.G. Buchanan and E. Shortliffe.
Systems. Addison-Wesley Reading, Mass., 1984.

[3] W.F. Clocksin and C.S Mellish. Programming in Pro-
log. Springer-Verlag, Berlin Heidelberg, 1981.

[4] J.S. Gero and M. Balanchandran. A comparison of pro-
cedural and declarative programming languages for the
computation of pareto optimal solutions. Eng. Opt. ,

[5] M.A. Jabri. A Knowledge-Based/Algorithmic Approach
to IC Floorplanning. PhD thesis, Sydney University
Electrical Engineering, 1988.

[6] M.A. Jabri. Knowledge-based system design using Pro-
log: the PIAF experience. Knowledge-based systems,
2(1):72-79, March 1989.

A mixed knowledge-
based/algorithmic approach to custom integrated cir-
cuit floorplanning. In Proc. IEEE Custom Integrated
Circuits Conference, pages 289-292, 1986.

PIAF: A Knowledge-
Based/Algorithmic togdown floorplanning system. In
Proceeding of the 26th ACM/IEEE Design Automation
Conference, pages 582-585, Las Vegas,USA, 1989.

[9] K. Morris and A. Taylor. Basser Prolog User’s Man-
ual. Technical Report, Basser Department of Computer
Science, University of Sydney, Australia, 1984.

[lo] Quintus Prolog. A compiler/interpreter PROLOG sys-
tem, Quintus Computer Systems, inc. Mountain View,
California, USA. Runs on VAXs and SUN stations.

Rule-Based Ezpert

9~131-142, 1985.

[7] M.A. Jabri and D.J. Skellern.

[8] M.A. Jabri and D.J. Skellern.

Paper 16.2
277

