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I. INTRODUCTION 

VLSI design automation is an activity that has a combina- 
torial nature, a large solution space (it is a design problem), 
i t  is complex (the number of interacting devices is an exam- 
ple of complexity), i t  is of a multi-constraint optimisation 
nature; several design constraints such as speed, power and 
area are competing at  the same time and each represent- 
ing a dimension of an NP complete problem. As a result, 
Artificial Intelligence (AI) programming techniques are be- 
coming widely used in the automation of VLSI design tasks. 
Most notable amongst these techniques is what is commonly 
known as Knowledge-Based Systems (KBS). The implemen- 
tation of a KBS that deals with a VLSI CAD domain re- 
quires consideration to  key issues including complexity, the 
nature of information processing, and automation require- 
ments. These issues influence considerably the structure of 
the KBS. 
Solving a problem corresponds to the transformation of an 
original statement of the problem to a final statement r e p  
resenting a solution. Each transformation leads to  a new 
statement that  describes a partial (incomplete) or complete 
solution. We use the briefer terms state and context 
interchangeably in place of the term statement-of-the- 
problem. The  current context (or current state) is held in 
the Current Context Memory (CCM) or simply the context. 
Transformation is carried out by the application of rules to 
the current context. Rules are held in the knowledge base. 
The  inference engine is the procedure which selects and a p  
plies the rules. 
In a KBS where rules are used to  represent knowledge, it is 
important to devise a solution search strategy. Two strate- 
gies are commonly used: solution improvement (we produce 
a solution and then improve on i t)  and backtracking (we 
produce a solution and if i t  is not satisfactory we backtrack 
in order t o  find a better one). The  former search strat- 
egy involves the design of complex transformation rules that 
are going to improve the quality of the solution. The  lat- 
ter search strategy is more computationally demanding and 
may produce search states that  will not always necessarily 
improve the solution. The  acquisition of knowledge in this 
case, however, is much simpler than the solution improve- 
ment strategy. On the other hand, backtracking control is 
more complex to  implement as it involves the recovery of 
a previous search state and readjusting the context accord- 
ingly. 
The  prototyping of a KBS requires special attention to the 

choice of a programming language. Key elements in the 
choice include flexibility, support of various knowledge r e p  
resentation schemes and interface to  other programming en- 
vironments. These reasons make LISP and PROLOG the 
most popular languages for KBS development. We have 
chosen PROLOG for the following reasons: 

1. Built-in support for predicate calculus and first order 
logic, 

2. built-in search mechanism, and 

3. built-in Backtracking. 

In addition, the results of investigations of the performance 
of declarative and procedural languages in optimisation [4] 
supported PROLOG. PROLOG’s built-in predicates may be 
used as primitives in the representation of knowledge. The 
search mechanism offered by PROLOG is also an important 
asset in the fast prototyping of various solving procedures 
that use depth-first search. PROLOG’s built-in backtrack- 
ing facilitates the generation of an alternative solution on 
request. 
These advantages, however, come at  the cost of the following 
well known disadvantages of PROLOG: 

1. Complex program control, and 

2. poor da ta  representation for algorithms. 

An additional limitation of PROLOG (at least in its de- 
facto standard) is the lack of recovery of prior state of the 
knowledge base during backtracking. As the description of 
the problem and of the current context is held in the data- 
base of PROLOG and not as arguments to its predicate, a 
mechanism that is able to  keep track of changes performed 
during the search process is needed. This mechanism will 
enable the system, when backtracking, to “forget” informa- 
tion learned during the depth-first search. Furthermore, we 
may wish that the system does not “forget” all the infor- 
mation it learnt as some of i t  may still be valid even after 
backtracking and may be computationally expensive to re- 
produce. Therefore, the “memorisation” mechanism has to 
tag this information so it is not “forgotten” during back- 
tracking. 
A KBS shell is a computer program that includes an in- 
ference engine, support for knowledge representation and 
manipulation, a user interface and an explanation system. 
To build a VLSI CAD application, the “knowledge engineer” 
needs to extract knowledge (rules) from experts and from the 
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literature, express this knowledge using the KBS shell syn- 
tax and then “tune” the rules in order to  produce good so- 
lutions. Most available shells are severly limited in terms of 
search mechanisms, knowledge representation and interface 
to  other programming environments. Furthermore, avail- 
able shells are not equipped with mechanisms t o  implement 
backtracking with “memorisation” and ”forgetting”, and do 
not offer the variety of knowledge representation schemes 
(e.g. frames, procedures, rules, predicates, etc) essential to  
KBS based VLSI CAD applications. 
This paper presents Brel, a KBS shell especially equipped 
for VLSI CAD systems. Brel has a context recovery sys- 
tem that  implements “memorisation” and “forgetting” and 
supports a wide range of knowledge representation (frames, 
rules, procedures, first-order logic, etc). Brel has been de- 
veloped using PROLOG, and has successfully been used to  
implement PIAF, a topdown floorplanning system [7,8,6], 
T E M P O  a formal verification system for asynchronous cir- 
cuits based upon Temporal Logic and in the development of 
an Automatic Layout Generation tool. 

11. KEY FEATURES O F  BREL 

Considering the VLSI CAD characteristics presented above, 
we find that  two important design issues particularly govern 
an efficient KBS for VLSI CAD: multiple knowledge repre- 
sentation and backtracking. 

A. Knowledge Representation Schemes 
The nature of the VLSI CAD domain requires multiple 
knowledge representation schemes. As objects in IC design 
domain might have a large number of details, it is impor- 
tant t o  have a structure that  regroups this data. Such a 
structure is also useful t o  home a predefined set of da ta  that 
characterise an object. An example is a sub-circuit with 
the different attributes that  i t  might possess, such as: its 
children (its own sub-circuits), the other sub-circuits with 
whom i t  has interconnections, its operation type, a proce- 
dure t o  evaluate its transparency t o  foreign signals. This 
knowledge is well suited to  a frame representation. On the 
other hand, there are areas where knowledge is better ex- 
pressed and formulated with if then rules. For example, i t  
is much easier to  extract from a designer a piece of knowl- 
edge by asking him/her: What  would you do if the situation 
is such and such? Human experts find i t  easier to  answer 
such a question instead of enumerating the states of the rea- 
soning chain behind any of their decisions. 
Other forms of knowledge representation such as procedural 
and declarative are also important in VLSI CAD knowledge 
representation. 

B. Backtracking and Context Adjustment 
Context adjustment represents an important issue in the 
design of KBSs where backtracking can take place and a 
mechanism is needed t o  put the system in a previously de- 
fined state. T h e  nature of the domain makes impractical the 
consideration of “undoing rules” and a more efficient mem- 
ory context structure is crucial. In addition, as VLSI CAD 
involves intense computation, i t  is appropriate to  devise a 
new context structure that  would properly “memorise” and 

“forget” calculation results, and enhance the system per- 
formance. The  structure of the current context memory 
adopted in Brel is based on a dynamic frame system dis- 
cussed in the next section, which permits an efficient, simple 
and portable context recovery system. 

111. THE STRUCTURE A N D  
I M P L E M E N T A T I O N  O F  BREL 

The design issues discussed in the previous section motivated 
the investigation of a KBS shell structure that  would match 
the needs of our application domain. The  system structure 
adopted in Brel (see Figure 1) satisfies these needs. 

Knowledge 

cr”mrcrvcmd 

systun KoDwlcdgc 1 Explanation 

Figure 1: The structure of the Brel system. 

In the remainder of this paper, we discuss the structure of 
Brel and the basic issues that  affected its implementation. 
We will introduce the idea of a quality factor that  charac- 
terises statements, descriptions and attributes of objects in 
integrated circuit design. Then we will describe the knowl- 
edge representation schemes. We will also discuss the im- 
plementation of the inference engine and the current context 
memory. Due t o  lack of space the description of the user in- 
terface and the explanation system have been omitted and 
may be found in [SI. 

A. Quality Factors 
It is often necessary to  classify object attribute values in 
VLSI CAD. To do so, Quality Factors (QFs) which are used 
t o  model the degree t o  which an attribute’s value applies to  
an object. The  modelling of the QFs  is based mainly on the 
MYCIN [2] model of Certainty Factors. 

B. Know ledge Repres entataon 
As stated earlier, Brel uses several knowledge representation 
schemes including predicates, procedures, rules, frames, pro- 
duction rules. A predicate in Brel is a standard PROLOG 
predicate with a functor and arguments and represents the 
primitive representation. Procedures in Brel are represented 
as PROLOG rules. Brel’s frames and production rules are 
more complicated, and we present them in the following 
paragraphs. 
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i. Sta t i c  and D y n a m i c  Frames 

Two types of frames are used by Brel: Static and dynamic. 
Static frames are used to  represent the objects of the do- 
main knowledge that  have invariable attributes. Dynamic 
frames are used to  represent objects with attribute values 
changing during the problem solving process. As mentioned 
eadier, the introduction of dynamic frames was necessary to  
implement an efficient memory context structure. The  basic 
difference between the two frames is that  the static one is 
not modified during system operation, while the second is 
updated every time the value of an object attribute changes. 
A frame, static or dynamic, has the following information 
associated with i t  and stored in the knowledge-base: 

Object Class: This states the class t o  which an object 

Object Identifier: This gives the identifier of the object. 

Slots: There is one slot for each attribute, with the form: 

belongs. 

Attribute: an attribute name, 

Value Type: the  class of the attribute value type, 

A Value: the corresponding attribute value. 

A frame is implemented as a collection of predicates. These 
hold five arguments corresponding t o  the descriptions shown 
above. This implementation proved the most efficient on a 
range of PROLOG systems [9,1,10], especially in the case 
of dynamic frames where alteration of attribute values and 
consequent update of the database are performed. 

and 

i i .  Frame Access 

The access to  an attribute and its value in a frame is ac- 
complished through different types of functions depending 
on the object type and the access context. These functions 
are developed around a “core” which is designed for the cor- 
responding PROLOG implementation. This permits us t o  
exploit any database management procedures that  may be 
offered, in addition to  the defacto PROLOG standard as de- 
scribed by Clocksin and Mellish [3]. As two types of frames 
are available, we will concentrate on the functions that  ac- 
cess static frames, those corresponding t o  dynamic frames 
are similar and will be discussed later in the paper. 
General Access to Static Frames: In this type of access, 
a PROLOG procedure present effectuates a blind search for 
a match in the knowledge base. present succeeds and returns 
the value if the attribute exists and fails otherwise. Figure 2 
shows the PROLOG code of the procedure present together 
with an English explanation. 
The  placement of attribute values in the object frames is 
performed by the procedure place that  we show the PRO- 
LOG code in Figure 3. Note, again, that  this procedure only 
handles the case of static frames. 
Similar procedure are available for deleting attribute values 
from the frames. 
Directed Access to Frames: Another frame access type 
is a level higher than the one presented above and is based 
around the procedure fetch. This procedure will use present 
first, and if i t  fails then i t  generally uses a procedure to  
guide the system in evaluating the attribute value either 
with internal calculations or by interrogating the user. This 

present(S,Id,Fieldatt,Vt.VdLne):- 
nonrar(S), 
=. . (9,  [fact ,S,Id.Fieldatt ,Vt .Valuelist]), 
( P I ,  
nember(Va1ne ,Valuelist). 

In the goal above the arguments are: 
S: the object class 
Id: the object identification 
Field-att: the attribute name 
Value: either a variable to receive a value O T  a an actual value 
V t :  The type of attribute value 

The goal may be used to  either: 
1 -  Check if an object has an attribute value as inatantiated in 
Value 
2- To retrieve the attribute value of an object 
3- To retrieve the identification of an object with instantiated 
attribute name, value type and attribute value (the Class, S, needs 
always to  be instantiated in this goal which faila otherwise) 
4- To retrieve the attribute name O T  value type, given the other 
argum ents. 
The goal works as follows: 
First the sub-goal “nonvar(S)” is called and will only succeed if 
S is instantiated to  a value (not a variable). The following goal 
(starting with ‘k.. ”) builds a goal predicate ( Q )  from the object 
descriptions. Then the built goal is called, and if it succeeds, the 
arguments passed to  this procedure and which are not instanti- 
ated will become instantiated (That  is, the Value-list variable will 
receive a value which is  a list). Finally the sub-goal “member” 
will either check that “Value” is member of the list (if Value is 
inatantiated) 07 instantiate “Value” to a member of the list (the 
f irs t  member if it 1s the f irs t  call to “present” and the following 
member on backtracking). 

Figure 2: The  present f rame  access procedure. 

is accomplished by asserting a t  the end of the knowledge- 
base a PROLOG rule that  evaluates the attribute. When 
interrogating the user, the goal fetch will succeed if the user 
supplies a valid answer and fail otherwise. 
Inheritance of attributes (based on is-a) is implemented as 
a directed access with a specialised fetch procedure which 
performs the inheritance mechanism. 
Accessing Attributes of Relationships: The access to 
relationships is done via procedures similar t o  the two we de- 
scribed above. There are two of them: presen t2  and f e t c h 2  

i i i .  Brel Product ion Rules 

PROLOG rules, frame functions and facts make the body of 
a Brel Production Rule (PR)  which has the form: 

If Old context : W, and A,  
then New context : W f  and A f  

where W,, A, and Wf, A f  are the resultant Quality Fac- 
tor (QF, see above) for and against the rule in the old and 
new context respectively. The  resultant Q F  of a rule is evalu- 
ated by taking the minimum of all the  individual QFs as only 
conjunctions are used in the rule expressions. Weighting is 
also used to  permit a priority scheme for conflict resolution. 
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~lace(S ,Id .Fie ldatt  .Vt,Valne):- 
nonrar(Vt), nonvar(Vdne), nonvar(S), 
=. . (Q,[fact ,S.Id,Fieldatt  ,Vt . V a l n e l i s t l ) ,  
i f thenelse( (Q) ,  

{retract lq)  , 
I. . (ql,[fact,S,Id,Fieldatt.Vt,Vt,  

asserta(p1) 

{=. . (Ql,[fact,S,Id,Fieldatt,Vt,Vt,  

asserta(q1) 

[Vane I V a l n e l i s t l l ) ,  

1 ,  
Cvdnel l ) ,  

1 
) .  

The goal above places an attribute value Value of the object iden- 
ified Id of class S to  the database. The procedure checks firs1 
f the predicate (sub-goal) Q, formed using S, I d ,  Field-att, V1 
End a new variable Valuelist ,  succeeds. If it does,  then a list 
>f attribute value associated with the object ezists already in the 
latabase, and the procedure removes the predicate Q f rom the 
latabase and adds a new predicate formed b y  inserting Value to 
!he begining of the list Valuelist .  Else, the procedure creates a 

zew predicate using the arguments and adds it to the database. 

Figure 3: The  place procedure f o r  attribute value place- 
ment .  

C. The Inference Engine 

The inference engine is a simple procedure (see Figure 4) 
which carries out the transformation of the context descr ib  
ing a VLSI CAD problem description s ta te  towards a solu- 
tion. 
The  procedure find-all-rules may succeed twice. In the first 
time, all rules that  match the context and satisfy a unity 
Q F  are selected. In the second time, all remaining rules 
that match the context are collected and sorted according 
to  their decreasing degree of quality using their QFs. 

i .  Inference Backtracking 

As Figure 5 shows, three levels of backtracking may occur. 
In the first, the system backtracks t o  the previous inference 
call to  pick the next rule in the list of matching rules, ad- 
justing the context accordingly. In the second backtracking 
level, the  system will backtrack in find-all-rules taking the 
second path in the procedure and finding matching rules 
with non-unity Q F  paths. In the third backtracking level, 
the system will unwind the last recursive call to  the proce- 
dure itself with a failure which forces a backtracking a t  the 
previous call. 
Backtracking affects only dynamic attribute values. At each 
inference, the system carries in the current context memory 
all information necessary t o  track its path. The sorting of 
the rules is based on the arithmetic difference between the 
“for” Q F  and “against” QF.  The  History Tree holds the 
list of applied rules, and the Search Tree holds the list of 
matching rules and applied rules. 

This PROLOG rule has two input and two output arguments rep- 
resenting respectively the initial and final  TO" and “con” QFs 
of the rule inference. The rule ezecutes as follow: 

get task informations from stack 
find all rules that match current contezt 
select a rule 
switch to new context index 
update history tree 
update search tree 
apply the rule 
if stop-goal succeeds 

then stop 
else recurse 

Figure 4 :  The  inference procedure as  wr i t ten  in  PRO- 
LOG. Note  that the sub-goal find-allrules always suc- 
ceeds twice,  once finding the unity p a t h  matching rules 
(wi th  a upron= 1 )  and the o ther  finding all o ther  match- 
ing rules.  

ii. Inference Stop-Goal 

Another important feature of the inference mechanism is 
the stop-goal marked Q in Figure 4. This goal contains the 
desired specifications and constraints that  the current de- 
scription of the problem in the context has t o  meet in order 
to  represent a solution. T h e  s topgoal  may also be used to 
access and modify the current specifications themselves. 

D. Current Context Memory Structure 
The rule firing procedure shown in Figure 4 shows a call to  
a goal toggle-contezt. T h e  definition of this goal is shown in 
Figure 6. The  unification mechanism of PROLOG permits 
this rule to  operate in the following way: 

1 .  Increment context index, 

2. Any further call t o  access an object attribute value 
will push on a stack, of the corresponding current con- 
text index, a predicate that  states the previous version 
of the slot describing the attribute, 

3. On backtracking, the procedure will treat the stack as 
a LIFO and will “pop” an element a t  a time and use 
it to  replace the current value of the object attribute 
in the context. 

Figure 7 shows the path (in thick line) taken by Brel during 
a context recovery process. We assumed in this figure that 
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Figure 5: The inference engine procedure a n d  i ts  three 
backtracking levels. 

the fire-rules procedure has failed and backtracking is taking 
place. 

i. Context Access Funct ions 

The  functions used t o  access the frames in the CCM are 
similar t o  those used for the knowledge base except that  
they update the context “modif” stack each time they are 
called. The context access functions are built around c_pl 
shown in Figure 8. 

E.  ‘LMemorisation77 and ‘%orgetting” 
To describe how “memorisation” and “forgetting” are im- 
plemented in Brel we will use Figure 7. Suppose that  a 
problem solving task has been run by calling the procedure 
firerules. This procedure will get the task name from a 
stack. I t  then calls the procedure find-all-rules which was 
described above. Then a rule is selected using the proce- 
dure selectrule. The  updatelhtory procedure saves some 
information for the explanation system (list of rules which 
have been applied). Then the procedure togglesontest cre- 
ates a new context list t o  save a copy of any objects at- 
tribute values that  may change during the application of 
the rule performed by the procedure applyrule. Once a 
rule has been applied, transformation of the context would 
have taken place by the means of changes to  attribute val- 
ues. This transformation corresponds to  a “memorisation” 
phase. Now suppose that  at some stage, the system has 
failed t o  satisfy a constraint imposed on the design and has 
started a backtracking process. T h e  first stop on the back- 
tracking path is a “recall” t o  the togglexontezt procedure 
which will perform the “forgetting” mechanism. The  ex- 
act actions of this procedure were described in Section D. 
above. In few words, what this procedure carries out is a 
discriminate recovery of previous attribute values. I t  is dis- 
criminate because some of the attribute values may be com- 

togglesontext :- 
newid(rodif ,I), 
iessage(JContext id : J and I), 
pnsh(modif,l). 

togglerontext : - 
pop(rodif ,I), 
ressage(’Context backtracking: ’ 

and I). 
t oggleront ext 3 (1) , 
!, fail. 

togglerontext D(Idc) : - 
removeh(modif.Idc.(Idc,S,Id,Att. 

doall(reroreh(S,Id.(Id,Att,Vt,~)), 
ifthen((Val - Cl) ,recordh(S.Id, 

(Id,Att,Vt.Val))), 

Vt.Va1)). 

fail. 

toggleront ext D ( 3  . 

The above PROLOG rule ezecutes as follow: 
The first  predicate toggle-context se t s  up a new context modifica- 
t ion  index (“mod  if” stack).  O n  backtracking, the second defini- 
t ion ‘paps’ the last content indez and calls a sub-goal that replaces 
the old values of object attributes contained i n  the “modif” stack 
identified by the ‘popped’ indez.  

Figure 6: The context ”toggling” procedure. 

putationally expensive t o  recalculate (like a shortest path in 
a graph for example) and the rule which has performed the 
transformation would have used a tag to  inform the context 
toggling procedure about it. After the discriminate recov- 
ery of the attribute values, backtracking will continue up to 
the selectrule procedure which will return another rule that  
matches the readjusted context. Having a new rule, the pro- 
cess restart by updating the rules history list, toggling the 
context again, applying the new rule and so on. .. 

IV. RESULTS 

As mentioned previously, Brel has been used t o  implement 
three systems: a floorplanner PIAF [8], T E M P O  a formal 
verification system based upon Temporal Logic and an au- 
tomatic layout generation system. Among these systems, 
PIAF is the most mature and is currently being used by cir- 
cuit designers and students within our department. Its rule 
based is evolving continuously. T h e  design of PIAF involved 
the development of rules (over 300) which make intensive use 
of graph processing algorithms written in Pascal and C. Data 
access from and to  the algorithms is implemented through 
ASCII files as no standard argument passing mechanism be- 
tween PROLOG and other high level languages exist. 
The  use of Brel in the implementation of PIAF has shown 
considerable advantage in the overall efficiency of the sys- 
tem, as intensive graph processing and optimisation algo- 
rithms are used and the availability of the “forgetting” and 
“memorisation” mechanism minimises the need for recalcu- 
lation during backtracking. 
The  production of a prototype KBS CAD tool using Brel 
involves weeks of programming. The  programmer or the 
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fad  aU rules 
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Suppose than we have a failure hac 

t l  
fail 

Figure 7: In  thick lane the path taken b y  Brel during a 
context recovery process.  

knowledge engineer needs only to  focus on the development 
of rules knowing that available to  him/her are a wide range 
of knowledge representation schemes, an efficient backtrack- 
ing mechanism, a user interface and an explanation s y s  
tem that simplify considerably the amount of programming 
needed for program control. 

V. CONCLUSION 

This paper has presented the concepts behind the design 
and implementation of Brel. We have also presented its dif- 
ferent subsystems, and in particular, the memory context, 
the inference engine, the explanation system, and the multi- 
representation access of the knowledge base including the 
dynamic and static frames. The  structure of these systems 
appears crucial, and the techniques we have described in this 
paper enable the  design of efficient CAD systems for VLSI 
development. 
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