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ABSTRACT

The first part of the thesis provides an
introduction to the logic programming language
Prolog and some areas of current research. The
use of compilation to make Prolog faster and more
efficient is studied and a modified representation
for complex structures is presented. Two program-
ming tools are also presented. The second part of
the thesis focuses on one problem which arises
when implementing an Expert System using Prolog.
A practical three-valued Prolog implementation is
described. An interpreter accepts three-valued
formulae and converts these into a Prolog
representation. Formulae are in clausal form
which allows disjunctive conclusions to rules.
True and false formulae are stated explicitly and
therefore the interpreter is able to perform use-
ful consistency checks when information is added
to the data base.
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Prolog and Expert Systems

1. Introduction.

This thesis is based on the logic programming language
Prolog and the implementation of Expert Systems. The thesis
is split into two parts. The first part will provide an
introduction to Prolog, its syntax, semantic and its imple-
mentation. This includes some new ideas on the implementa-
tion of Prolog through an experimental compiler and the
design of two programming tools. The second part focuses on
a particular part of Prolog relevant to the implementation
of Expeft Systems. The prﬁblems are presented first and a
three-valued implementation proposed. The first section in
the second part gives an introduction to Expert Systems and
outlines some previous work on three-valued logic. The next
section puts forward the proposed three-valued system and
how it is to be used with Prolog. The next section is the
implementation details and presents several demonstration
examples and expert systems using the three-valued Prolog
implementation. The last section is the conclusion and

further work.
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2. Introduction to Prolog.

The logic programming language Prolog was developed
around 1972 at Marseille by Alan Colmerauer as a system that
incorporated Robinson’s Resolution principle [Robinsonl965]
and a fixed backtracking strategy. It was originally
designed for Natural Language processing but has now been
used for symbolic integration, plan formation, computer
aided building design, compiler construction, data base
description and query, mechanics problems and drug analysis.
( See [Kowalskil982] for details and references ). There
are now many research implementations of Prolog, for exam-
ple,

micro-Prolog, [Clark1984]

IC-Prolog, [Clarkl1981]

C-Prolog, [Pereiral984a]

Waterloo Prolog, [Robertsl977]

York Prolog, [Spiveyl982]

MProlog, [Domolkil983]

and DEC 10 Prolog, [Warrenl979,Bowenl982a].

There are also many commercial implementations, such as,

Turbo Prolog, Arity Prolog, Prolog 1, Prolog 2, Quintus

Prolog, UNSW Prolog and Prolog-86.

A reasonably complete list of implementations can be found
in [Smithl1986] and an introduction to Prolog can be found in

several texts [Clocksinl981,Kluzniakl1985,Colmerauerl985].
2.1. Syntax.

The syntax presented here is the DEC 10 syntax which is
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used in [Clocksinl981,Kluzniakl1985], and many implementa-
tions. The basic objects in Prolog are called terms. A
term can be defined from a constant, a variable or a com-
pound term. The definition of a constant includes integers
such as 0, 1, 1000, -10 and atoms. Atoms are defined as a
sequence of alphanumeric characters starting with a lower
case letter or a sequence of characters delimited by single

quotes. For example,

atom, void, a, 'A String’, a987,

are all atoms.

A variable in Prolog as a sequence of alphanumeric
characters starting with an upper case letter. A variable
can also start with " " and the special case of " " by

itself is called the anonymous variable. For example,

X, Type, A2, , Num,
are all variables. The anonymous variable is used to match
anything where the valued returned is not required by the

programmer.

A compound term in Prolog represents a structured
object and is made up of a functor and its arguments. A
functor comprises its name, which is an atom, and its arity,

which is the number of arguments for the functor. So

tablelookup(entry(Item), Item).
is a functor ’tablelookup’ of arity 2 that has arguments

'entry(Item)’ and 'Item’. The first argument is another
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functor, ’'entry’, of arity 1 and argument ’'Item’ that 1is a
variable. The second argument is a variable 'Item’. Gen-

erally, compound terms can be pictured as trees.

tablelookup
/ \
entry Item
|
Item
or more precisely as a directed graph since 'Item’

corresponds to the same object.

tablelookup
/ |

If a compound term contains no variables it is referred to

as a ground compound term.

To add to the readability of Prolog functors can be
declared to be operators so that they can be written in pre-
fix, infix or postfix form. This merely provides a more
convenient and readable form. Standard operators such as

r41, '%r 1”1 can then be written as,

X+Y, P*Q, "N

instead of the bracketed form,
r+1(X, ¥), '*' (P, Q), 'T'(N).
A Prolog program is made up of one or more sentences.

A sentence is either a clause or a directive where a clause
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can be with or without a body, such as,
head :- body.
head.
The 'head’ is a term but excluding a variable or an integer

and 'body’ 1is a comma separated list of terms ( where term

is not an integer ). Some examples are,
descendant(X, Y) :- offspring(X, Y).
descendant(X, Z) :- offspring(X, Y), descendant(Y, 2Z).

offspring(abraham, isaac).

A directive is a headless clause, such as,
?- body.
:— body.

Since lists are frequently used in Prolog an alterna-
tive syntax for a 1list has been developed. The original
Prolog implementations used '.’ as the constructor of a list
and 'nil’ to represent an empty list. The list a,b,c would

be represented by,

r.'(a,’".’"(b,’."(c,nil).

or in infix form by,

a.b.c.nil
The DEC 10 Prolog introduced an alternative syntax which
used square brackets and ’'[]’ for the empty list. The above

list would be written as,

[ a, b, ¢ }.

Also for constructing lists the form '{A|B]’ was introduced,
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where A is the head of the list and B is the tail. This can
give rise to strange expressions such as fa,b|c,d}’. Work
on a new standard is in progress. [Mossl1986]. The DEC 10
Prolog also introduced the form "abc", ( including the dou-
ble quotes ), to represent the list of ASCII characters, [
97,98,99 1. The exact syntax of certain implementations
should be found in the appropriate user’s manual. The syn-
tax of micro-Prolog, [Clarkl1984], is significantly different

since it is not based on the DEC 10 syntax, [Bowenl982a].
2.2. Semantics.

There are two ways of considering a Prolog program:
declaratively and procedurally. The most appropriate way
depends on the application. The simplest sentence to con-

sider first is a clause that has no body, such as,

P.
( Here, uppercase is used to indicate any term ). This 1is
read declaratively as 'P is true’ and procedurally as 'Goal

P is satisfied’. Clauses with several goals, such as,

P :-— Q, R, S.

can be read declaratively as

P is true if Q and R and S are true.

or procedurally as

To satisfy goal P, satisfy goals Q, R and S.

The declarative interpretation of the directive
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?2- P, Q.

is

Are P and Q true ?

and procedurally as

Satisfy goals P and Q.
The form ':- P,Q’ is executed in the same way as '?- P,Q’

except an answer is not expected.

The procedural interpretation of Prolog views tﬁe
language as a program whereas the declarative interpretation
treats it as a database. There 1is, therefore, a duality
between program and database. A program can be seen as data
and be manipulated by other Prolog programs. Likewise, a
database can be executed where the query provides the execu-
tion entry point. The ability to manipulate a program as
data to another program makes it extremely easy to define a
meta language and write control programs for executing Pro-
log. A Prolog interpreter can be written in Prolog in as

little as four lines. ( Page 86, [Bowenl982a]. )

2.2.1. Unification.

2.2.1.1. Resolution.

The resolution principle was put forward by [Robin-
sonl965], as a new single inference process to prove sets of
logical statements. He also developed the unification algo-

rithm that generates the most general unifier between two
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formulae. Using these two techniques a machine oriented
logic was developed. The starting point of the inference is
to deny the alleged conclusion and then prove that this 1is
inconsistent with the initial statements. If S is the set of
clauses that includes the denied conclusion, then S is unsa-
tisfiable if and only if Rn(S) contains {}, for some n >= 0
where R(S) is the result of applying resolution to the set

S.

Unification in Prolog is based on this work and pro-

vides a single mechanism for :-

1. passing parameters into and out of procedures,
2. constructing and accessing compound terms,

3. comparing and assigning variables.

The unification process finds the most general unifier
between two terms i.e. the most general substitution for two
terms to make them the same. For example, if the following

was given,

?- goal(X, Y).

goal(A, 20) :- newgoal(a).

newgoal(15).
then Prolog would try to unify ’goal(X, YY)’ with rgoal (A,
20)7 and find a substitution where 'A’ and 'X' are
equivalent and 'Y’ is the integer 20. This unification pro-

vides a connection between 'X’ and 'A’ so if ’'newgoal’ uni-
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fies 'A’' with the integer 15 then the values of 'X’ and 'Y’
are 15 and 20. 1In terms of a PASCAL type language, [Jen-
senl975], after unification ’X’ and ’'A’ can be considered as

names of pointers pointing to the same object.

Unification does not just deal with variables but any

compound term. For example,

?- goal(structure(A, Rest)).

goal(structure(atom, substructure(aA, B))) :-
newgoal(item(B)).

newgoal(item(book)).
In this example, ’structure(A, Rest)’ will be unified with
the head of ’'goal’ matching ’'A’ with ’'atom’ and ’'Rest’ with
"substructure(a, B)’. Here, a new structure has been
created. that is referred to by 'Rest’. ( The two
occurrences of 'A’ refer to different items since the scope
of a variable is local to a clause and unification provides
automatic renaming to avoid name <clashes when wunifying a
goal with a head ). The call on 'newgoal’ unifies ’'B’ with
"book’ after creating a new structure ‘item’ and then
accessing the structure to unify it with "book’. The result
after both unifications is that ’'A’ is unified with ‘atom’
and 'Rest’ is unified with 'substructure(X, book)’. ( Where

X' is a new unique variable name ).

Variables in Prolog provide a powerful mechanism to
refer to any object and therefore removes the need for low

level concepts such as pointers. Effectively, wunification
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provides one mechanism for referencing, constructing, com-
paring and assigning objects. The assignment 1is non-
destructive in that a variable is either unassigned or it
has a value that cannot be overwritten. The assignment can
be wundone if required. ( See backtracking ). When a vari-
able first occurs in a program it 1is wuninstantiated, that
is, it has no value or instance attached to it. When it is
unified against another object it 1is said to be instan-

tiated.

2.2.1.2. Occur check.

Robinson’s definition of unification includes an occur
check so that a term unified with another term that has a

reference to itself, will fail. For example,

?- goal(X, func(X)).

goal(A, A).
should fail since a circular term will result. Most Prolog
systems do not include an occur check so the unification
creates a circular term. Once the circular term has been
created great care must be taken not to cause an infinite
loop. Writing out the circular term will cause an infinite

loop.

The omission of the occur check in most Prolog systems
was done deliberately. This is because unification with the
occur check is linear on the sum of the sizes of the terms,

whereas without, it is linear on the size of the smallest
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term. This means that unification against a variable can
only be made constant if the occur check is ignored. Since
unification against a variable is common the occur check has
to be ignored to make Prolog a practical programming
language. Unfortunately, this does mean that Prolog has
limited applications in theorem proving and can not solve

some examples given in [Robinsonl979b].

2.2.2. Backtracking.

During the unification of two terms it is possible that
the wunification fails, this requires the concept of back-
tracking. Also, Prolog procedures can be non-deterministic,
that is, a procedure can return a result that is later
rejected. The system must then backtrack to the procedure

so it can return a different result.

When Prolog executes a goal, the search strategy is to
search the 1list of clauses from the top, for a head that
unifies with the goal. This could involve several unsuc-
cessful attempts to wunify with clause heads. When a suc-
cessful head match is found the point of the match is noted
so that if future computations fail the search can continue

from this point,

The goals in the body of the successfully matched head
are then executed from left to right. Each goal could
introduce its own backtrack points so generally there is a

stack of backtrack points. Wwhen a unification fails the
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latest backtrack point is found and all the wunifications

done since this point are undone. ( i.e. set the variables
back to uninstantiated ). For example,

?- goal(X).

goal(Y) :- a(Y), b(Y).

goal(Z) :- b(Z), c(Z).

a(l).

b(2).

b(3).

c(3).

The initial goal ’'goal(X)’ is matched against the <clauses
and matches 'goal(Y) :-..'. If this fails matching will
start at ’‘goal(z) :-..". The leftmost goal for ’'goal(Y)’ is
then executed and ’'a(Y)’ is matched with the clauses. The
first clause that matches is 'a(l)’ so 'Y’ is wunified with
r1r. The next goal for the clause ’'goal(Y) :—.."is then
executed. This is the goal ’'b(Y)’ but 'Y’ is already
instantiated to '1l’ so the goal is 'b(1l)’. The goal ’'b(1l)’
does not match anything so the system backtracks to where
ra(l)’ was matched. There are no other matches for this so
the system backtracks to where 'goal(Y)’ was matched. This
backtracking has wundone the unification of 'Y’ with 1’ so

'Y’ is now uninstantiated.

The next clause to match 'goal(X)’ is 'goal(Z)’. This
then executes ’'b(Z)’ that matches ’'b(2)’. The next goal is
rc(2)' that fails to match so the system backtracks to where
'b(Z)' matched, undoing the wunification of ’'Z’ with '2’.

The next clause to match 'b(z)’ is 'b(3)’' so this is
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returned and the goal 'c(3)’ 1is executed. This matches
'¢(3)' and there are no more goals left to execute so '7?-

goal(X)' returns with 'X’ unified with r3’.

The backtracking used in Prolog is naive in that it
always returns to the most recent backtracking point first.
This can cause a considerable amount of unnecessary work in
finding a solution. 1In the following, the computation for

"b(Y)’ is repeated five times which is totally unnecessary.

?— back(X, Y).

back (X, Y) :- a(X), b(Y), c(X).
a(l)

a(2)

a(3)

a(4)

a(5).

b(Y) :- complex calculation.
c(5) N

This type of unnecessary repetition of calculations can be
avoided by careful ordering of the goals. The work of [War-
renl981] shows how goals can be ordered in Prolog queries so
that the goal which will reduce the size of the search space
most, is executed first. In the above example, a solution
can be found immediately with no extra calculations if the

goals of ’'back’ are ordered,

back(X, Y) :- b(Y), c(X), a(X).

Backtracking can also re-calculate goals that have
backtracking points but which have nothing to do with the

reason for the failure. A good example 1is taken from
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[Bruynooghel984b].

?- p(X), q(Y).

- (U, U).
W) Hi S(V)r t(W)'

et 0 TT
QLOTY CUTO

This example will fail but only after evaluating the goal
'g(Y)’ twice. This type of behaviour is inefficient and has
prompted work on intelligent backtracking. The work by
[Bruynooghel984b] attempts to find the culprit of the
failure and then backtracks to that point. Thié involves
finding minimally inconsistent deduction trees from the
whole deduction tree. The work by [Cox1984] presents a
method for finding alternative maximally consistent trees
which then provides the information about an appropriate

backtrack point.

2.2.3. Extra features.

Prolog provides the programmer with many built-in pro-
cedures or evaluable predicate. These can be grouped into
input/output, arithmetic, comparisons, program manipulation,
sets, debugging, meta-logical, extra control and definite
clause grammars. The two areas that will be considered in
more depth are the ’cut’ which provides extra control infor-
mation and definite clause grammars. The other areas are

not considered relevant to this thesis.
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The ’'cut’ is used by Prolog to provide purely control
information and therefore has no declarative interpretation.
When a 'cut’ is executed as a goal it always succeeds but if
backtracking returns to the 'cut’ it causes the parent goal
to fail. It effectively ’'cuts’ out other solutions for the
parent goal. For example, ( The 'cut’ is written as "!’' ),

a :— b, c, !, d.

a :— e, f.
If the first clause matches, and 'b’ and 'c’ produce a
‘result, then the ’cut’ removes any other alternatives for
'b’, 'c’ and ’'a’' ( the parent goal ). Therefore, after the
rcut’, if 'd’ fails then ’a’ will fail. 1If, on the other
hand, either of ’'b’ or 'c’ had failed then the 'cut’ would
not have been reached and 'e’ and ’'f’ could generate solu-

tions.

The use of ’'cut’ can cause a program to have no suit-

able declarative reading. For example,

not(X) :- call(x), !, fail.

not(X).
In this example the ordering of the clauses is important and
the second clause does not have a declarative reading of
'not(X) is true’ because it depends on whether ’call(X)’ 1is
true or not. As far as an implementation is concerned it
provides a useful way of removing unwanted alternatives for

a goal. If a goal is found to have no other alternatives
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then an implementation can make good use of this fact to
recover storage used in the goal since it is known that this

goal will never be reactivated.

2.2.3.2. Definite Clause Grammars.

This type of grammar was proposed by [Colmerauerl978]
for wuse with a Prolog system. The grammar is formed from a
5 tuple relation of the form { F, Vt, Vn, Vs, --> } where F
is a set of functional symbols containing "." and "nil", Vt
is the set of terminal symbols, vn is the set of non-
terminal symbols satisfying vn intersection Vt = 0, Vs is
the set of starting non-terminals such that Vs subset-of Vn
and --> is a rewriting relation on V*. This grammar can be
expressed in different forms depending on the syntax of the
Prolog in use and also the grammar can be provided as an in
built part of Prolog or a routine can be written 1in Prolog
to translate the grammar into Prolog clauses. ( See [Clock-
sinl981] ). As shown in [Colmerauerl978] and [Clocksinl981]
this form of grammar provides more than a context free gram-
mar and can be very useful in writing grammars for compilers
and naturai language processors. Three separate grammars
are used in the compiler to perform the lexical analysis,
the syntax analysis and then the synthesis of the machine
code. The extensions of definite clause grammars from

context-free grammars are :-

1. Any terminal or non-terminal symbol can be any Prolog

term,
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2. True Prolog goals can be interspersed in the grammar
rule body,
3. The left hand side of the grammar rule can contain a

non-terminal followed by a sequence of terminals.

The syntax of a grammar rule is similar to Prolog

clauses except ’':-’ is replaced by '-->'. For example,

head --> body.

or
variable(Table, Info, Id) --»
space, uppercase(C), reststr(Rest),
{ tablelookup(Table, string(C, Rest), Info, 1d) }.
reststr(string(C, Rest)) -->
alphanumeric(C), reststr(Rest, !.
reststr(eos) --> [].
uppercase(’'A’) --> "A",
uppercase('B’) --> "B".
etc
The second example is taken from the Prolog compiler, ( See

next section ), and is the definition of a variable. The
goal between ’{}’ is an extension of type 2 and is not part
of the grammar but a call on a normal Prolog clause. Termi-

nals are written in list form, such as "terminal" or [a].

The grammar rule notation is a syntactic extension of
Prolog clauses and can be translated directly into Prolog
clauses. A grammar rule implicitly takes two extra argu-
ments which are the input string and the output string.
Terminals match items on the input string to leave the out-

put string. Translating the grammar rules involves adding
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the extra arguments. For example,

p(X, Y¥) ——> q(X), (X, Y).

becomes

p(xX, v, s0, 8) :- g(X, s0, s1), r(X, Y, 81, s).

Terminals make use of a clause defined as

rcr((X|s], X, S).
that takes item X’ from list '[X|S]’ to leave ’S’. So, for

example,

uppercase('A") --> "A".

becomes

uppercase(’'A’, S0, S) :- 'C'(s80, 65, S).

Any goal that appears between '{}’ is just left untouched.
2.3. Modularity.

Many Prologs lack any form of modularity so programs
are considered as one large flat program with all names
visible. Work has been done to introduce modularity into
Proleg, [Domolkil983]. The version of Proloé presented in
this paper allows modules to be created with import and
export lists. It also allows data names to be either sym-
bolic or not. If a data name is symbolic then the sequence
of characters that make up the name is significant, other-
wise the name has no character representation. A more
theoretical approach to providing modules and generics is

given in [Goguenl984]. Micro-Prolog, [Clarkl1984], also
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provides a module facility. Turbo Prolog, [Borlandl986],
provides a mechanism for declaring predicates as global, all
others being 1local to the module being compiled. This
allows a program to be split up into several modules which

are compiled separately.

2.4. Typing in Prolog.

Another feature of Turbo Prolog 1is that it requires
programs to be explicitly typed. These types are call
domains. Turbo Prolog provides six basic domains: integer,
real, character, string, symbolic and file. All other
domains are built up from these and declared in a 'domains’
declaration section. The declarations are similar to the
'type’ declarations in PASCAL, [Jensenl975]. To declare a
list of integers Turbo Prolog would require

domains
integerlist = integer*
where '*’' represents zero or more of the preceding domain.
Turbo Prolog then has a ’'predicates’ declaration section
where each predicate is declared to use arguments from a

given domain. For example,

predicates :
append(integerlist, integerlist, integerlist),

declares the predicate 'append’ to take three arguments

which are lists of integers.

From the programming point of view this typing enforces

a more strict design of predicates and more information is
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present in the source code, aiding readability. From the
implementation point of view parameters can be passed
directly and space saved by compacting the representation.
Speed can be improved by direct manipulation of the data
instead of always consulting the type of data first. Since
the types are stated explicitly it simplifies the interface
to other languages. If a predicate is declared to have two
arguments of type integer then the external routine can

expect to receive two integers on the stack.

Also from the implementation point of view, a predicate
can be. declared to have alternative types. ( append could
be declared to work on lists of integers and lists of sym-
bols ). In this case the compiler can generate specific
code for each alternative type and compile in the calls to

the appropriately typed predicate.

2.5. Parallelism.

There is much interest in the execution of Prolog on
parallel architectures and as a concurrent language. Paral-
lel execution can be divided into two sections: ’‘and’ paral-
lelism and 'or’ parallelism. 'And’ parallelism executes
processes that will produce results relevant for one solu-
tion. ’Or’ parallelism executes processes that will produce
results for alternative solutions. [Coneryl981]. The work
by [Clarkl1985,Gregoryl986], provides an implementation of a
language called PARLOG. This language features both ’and’

and 'or’ parallelism and differs from Prolog in three
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respects :-
1. Don’t care non-determinism.
2. "and’ parallel evaluation.
3. Mode declarations for shared variables.

There 1is also work on Flat Concurrent Prolog

[Shapirol986].

2.6. Definition of Horn and Clausal form.

Prolog is based on Horn clause logic where rules and
facts are expressed by a set of Horn clauses. Horn clauses
- are a subset of clausal form which will be defined first

since it is used later in the thesis.

Z-é-l- Clausal form.

Clauses in clausal form are expressions of the follow-

ing form

Al or A2 or ... or Am if Bl and B2 and ... and Bn.
Al ... Am’ are the head of the clause and 'Bl ... Bn’ the
body of the clause where 'Al ... Am, Bl ... Bn’ are atomic

formulae and m >= 0, n >= 0. An atomic formula is defined

by

p(tl, ... , tq)
where 'p’ is a g-ary predicate, g >= 0 and 'tl1, ... , tq’

are terms. A term is defined by
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f(tl, ... , tr)
where 'f’ is a r-ary function symbol, r >= 0 and 't1, ... ,
tr’ are terms. When m = 0 the clause is a headless clause

and can be read as

attempt to satisfy Bl and B2 and B3

2.6.2. Horn Clauses.

Horn Clauses are defined as clausal form where 'm’ can
only have values 0 and 1. ( Horn Clauses will be written
using a different syntax, which is like Prolog, to distin-
guish between the two forms. 'if’ = ":-', 'and' = ',’' ). A
Horn Clause is an expression of the form

A :-B1l, ... , Bn
or
:t— Bl1l, ... , Bn.

ra, Bl, ... , Bn' are atomic formulae as defined above.

Considering the form 'A :- Bl, ... , Bn’. Wwhen 'n
0’, the clause reduces to ’A’ and is called a fact. When ’'n
> 0’ the clause is a rule which has a body that must be
satisfied before the head is satisfied. The headless clause
r+— Bl, ... , Bn’ is a request to satisfy the body immedi-

ately. This form is used to query the set of clauses.

2.7. Converting Standard to Clausal Form

The book by [Clocksinl981] presents an algorithm to

convert standard first order logic into clausal form which
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can then Be used by a Prolog interpreter. The first stage
is to remove the implications using the equivalences
A -> B equivalent to ("A) or B
A <-> B equivalent to (A and B) or ("A and "B)
The next stage is to move all negations inwards so that
negation only appears in front of a literal.
~exists(A, B) becomes all(A, "B)
~all(a, B) becomes exists(A, "B)
~“(A and B) becomes "A or "B
~“(A or B) becomes "A and "B
The next stage is to remove existential qualifiers by intro-
ducing Skolem constants
exists(X, A(X) and B(X, C)) becomes
A(gl) and B(gl, C) where gl is a unique constant.
Now the universal quantifiers are moved outwards so that
every variable 1is universally quantified and therefore the
quantifiers can be removed and all variables are assumed to
be quantified. The next stage is to distribute "and" over
"or" so that the clauses are in conjunctive normal form and
the last stage is to put the formula into clausal form by
putting all the literals into cl(A, B) where A is the list
of 1literals that are not negated and B is the list of

negated literals but without their negation. Then using the

equivalence :-

A <- B equivalent to A or "B
this puts the formulae in clausal form. Provided the list A
contains either one element or no elements then the clause

can be converted into Prolog by writing the 1list A first,
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followed by a ":-" and then the B list separated by ",".

2.7.1. Quantifiers

When the standard form of logic 1is converted into
clausal form then at some point the existential quantifiers
have to be removed and replaced by Skolem constants or func-
tions. Sometimes valuable information 1is 1lost when
skolemising occurs and so some systems use logic stored in
an existentially quantified form. ([Shapirol979] takes this
one step further and introduces numerical quantifiers as
well. The first quantifier introduced is the maximal quan-
tifier which is used to represent statements like "every one
has a maximum of one mother". The minimal gquantifier is
then introduced but to be of use the world size must be
known otherwise the situation where every condition except
the minimum number is known, and therefore other objects
must satisfy the formula, would not be detected. These two
forms are then incorporated into a general numerical quan-
tifier which also includes the special case of the existen-

tial quantifier.
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3. Implementation issues.

The following sections present methods for representing
complex terms, variable classification, indexing, tail

recursion, compilation, garbage collection and speed tests.

3.1. Structure representation.

When implementing a Prolog interpreter or compiler a
suitable representation of complex terms has to be chosen.
The basic requirement is that multiple instances of a term
appearing in the source text can be created and undone
rapidly. For example, if the following clause was called
several times there would be several instances of the struc-

ture but with possibly different variable values.

fact(structure(X, str(yY, 2))).
There seem to be two different approaches to this problem.
One 1is structure sharing, [Warrenl977], and the other makes

use of concrete copying, [Mellishl980].

3.1.1. Structure sharing.

The structure sharing approach represents a structure

as a pair

< source term, frame >
where ’'source term’ is a pointer to a representation of the
source term that has relative offsets for the values of
variables. The variables are stored in an area pointed to

by 'frame’. For example, the above structure in ’fact’
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would be represented by the source term

ptrl: structure/2
X1
ptr2: str/2
X2
X3
where Xn is an offset for variable ’'n’. An instance of this
structure would be represented as

< ptrl, . >

|
v

X, < ptr2, . >
y
Y, 2

where X, Y and Z are storage for instances of X, Y and Z.
The main advantage of a structure sharing method is the con-
cise representation of complex structures and the single
occurrence of constant data for multiple occurrences of the
structure. The cost of constructing new instances of a
structure is proportional to the number of distinct vari-
ables in the soufce terms. The disadvantage is that refer-
ences to the variables of a structure must go through an
extra level of indirection whereas a direct representation

would not.

3.1.2. Non structure sharing.

An alternative to structure sharing for Prolog inter-
preters has been suggested by [Mellish1980}. This method
involves taking a concrete copy of the structure, when a new

one 1is created, with the appropriate variables set. For
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example, the above structure would have storage for all the
variables allocated together. When one variable was instan-
tiated, the matching structure would be copied to a new
storage area with the variables linked. Using the example
above and unifying it with ’?- fact(A).’ the structure shar-
ing approach would produce a structure such as,
/% fact(structure(X, str(Y, Z))). */
/* 2— fact(A). */
Local Global Heap
A F* K > structure/2
| source term 0
X str/2
frame Y 1
z 2
Whereas the alternative would produce

/% fact(structure(X, str(Y, 2))). */
/* 2—- fact(a). */

Local Global
A Koo ——— > structure/2
X *mmmrm—————— > nil
str/2
Y Ammmm e > nil
Z *——— - > nil

The main reason for using this alternative approach is that
the storage of a <source term,frame> pair requires space for
two addresses. On an address wide machine where only one
pointer will fit in a word, this is wasteful. The alterna-
tive method only needs one address per word so the basic
variable can be stored more efficiently. The advantages of
this alternative method are that structures are not created
unless it is necessary. With the structure sharing approach

it can not be determined whether an operation will access an
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existing structure or construct a new one. Therefore,
structure sharing always allocates space for a new structure
even if one is not created. Also, because the structure is
directly represented then the speed of access should be
improved. The disadvantages are that there needs to be a
rlocal’ variable for every variable in the structure includ-
ing multiple copies of the same variable. Also, there can
be multiple copies of the functor name and other constant
information when multiple copies of the structure are
created. A more complete analysis of the two approaches is

given in, [Mellishl1980].

3.2. Variable Classification.

If a Prolog clause exits deterministically then the
local storage used in the clause can be reclaimed. If, how-
ever, the clause is non-deterministic then the storage can
not be recovered because computation may return to this
clause and the variables should still be accessible. This
means that it is important to know when a clause is deter-
ministic so space can be recovered. This 1is part of the

power of the 'cut’.

' If a structure is created in a clause and this 1is
passed out of the clause then the variables that appear
inside the struéture can not be <considered local because
they are still accessible from the rest of the program.
These variables are usually allocated space on a different

stack called the global stack. The other variables are
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allocated on a local stack. Space used by a clause on the
global stack can not be recovered when the clause exits
deterministically, but space is recovered on both stacks
when backtracking occurs. This means it is very important
to classify as many variables as possible as local. The
structure sharing approach needs to classify variables as
either local or global at compile time since the offsets to
the wvariables in the source term are calculated at compile
time. Generally, any variable that appears inside a struc-
ture must be made global. Although, using mode declara-
tions, this can be reduced to variables that appear inside
the 1literals for constructed source terms. The alternative
approach can classify variables at run time since all the
variables have fixed locations on the local stack. This is
an improvement, although variables are still made global in
a constructed structure even if it is not passed out of the

clause.

To allow backtracking to be implemented, variables that
have been assigned values should be noted so that backtrack-
ing can reset these variables to uninstantiated. The area
of storage usea for this purpose 1is referred to as the
trail. It is normally a stack structure since backtracking
removes one execution frame at a time and therefore the
corresponding trail frame is popped off. If wvariables are
classified as local and global then some simple tests on the
variables can be used to reduce the amount of trailing

necessary. If it is known that the variable just assigned
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will be removed on backtracking anyway, there is no need to
trail the assignment. This occurs if a value is assign to a
local variable in a deterministic clause because when the
clause fails the storage for the variable will be removed
anyway. Also, to reduce thé amount of trailing a seniority
is assigned to variables. The most senior variable is the
one that will be removed last on backtracking. This is nor-
mally determined by the relative position on the stack.
Since local variables could be removed on deterministic exit
they are always more junior than global variables. When two
variables are unified it is important to assign the junior
to the senior and not the reverse. This minimises the
amount of trailing and stops long chains of references to a

single variable.
i.é. Indexing.

To increase the performance of some Prolog systems
indexing has been introduced so that large databases can be
searched efficiently. This facility is transparent to the
user since it appears that the database is search sequen-
tially. The Prolog system by [Warrenl977], indexes on the
predicate name and the first argument. Therefore, if there
is a large database of names and telephone numbers with a
query to find the telephone number of a given name, then the
Prolog system can index on the predicate name and the name
of the person. This will probably only give a few matches

and should be found in a time independent of the name. A
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non indexing search would be dependent on whether the name
was at the top or the bottom of the database. As a side
effect of the indexing it is easier to detect when the last
match has occurred so the procedure can return deterministi-
cally recovering its local storage. The Prolog interpreter
written by [Clark1979], has indexing on the predicate name

and all of the arguments.

3.4. Tail Recursion.

Prolog relies heavily on recursion so the overheads due
to this must be kept to a minimﬁm. When a procedure exits
deterministically the local stack frame can be recovered on
exit. The technique of tail recursion optimisation makes
use of the fact that the space can actually be recovered
before the last call on the procedure provided the previous
goals have no backtracking points left. This means that a
recursive procedure such as concatenate,

L,L)

concatenate([],
[X|L1]1,L2,[X|L3]) :- concatenate(L1l,L2,L3).

concatenate(
can recover storage before the recursive call on concaten-
ate, instead of waiting until the procedure returns.
Although only the local stack frame is recovered it does
means that any references to global variables that would
disappear when the procedure exited, will disappear before
the last call. Therefore garbage collection will be able to
recover the unreferenced storage earlier. The tail recur-

sion optimisation provides not only a decrease in the
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storage required but it can also provide some speed improve-
ments. This is because some of the stack frame information
for the current goal can be left in place when the tail pro-
cedure overwrites the frame. Some work in creating a new
frame can therefore be avoided. The paper by [Warrenl980],
explains how tail recursion optimisation is built into the

DEC 10 Prolog system. [Bowenl982a].

As [Warrenl980] points out, this technique effectively
transforms recursive procedures into an iterative implemen-
tation. The programmer can therefore write recursive pro-
cedures without bothering about the overheads introduced by

recursion.

3.5. Compilation.

The idea behind compilation is that the full power of
unification may not be needed to match a goal against a
given head of a clause. The general algorithm for wunifica-
tion can therefore be specialised for a particular head.
This specialised code can then be made more efficient. For
example, when matching any goal against the first occurrence
of a variable all that is necessary is to assign the match-
ing term to the variable. For compound terms there are two
cases. The first 1is accessing an already instantiated
structure and the second is building a new structure. If
information is provided about how the clause will be called,
( in particular which arguments are guaranteed to be instan-

tiated and which are guaranteed to be uninstantiated ), then
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the compiler can specialise the structure

accessing/constructing code.

3.6. Mode Declarations

When writing a compiler, [Warrenl977], found it wuseful
to add mode declaration information to a program so the com-
piler could determine whether an argument to a predicate was
always instantiated or always wuninstantiated. He wused

information such as,

:— mode pred(+,+,-,?).
to declare a predicate called ‘pred’ of arity four with the
first and second arguments as input ( always instantiated ),
the third argument as output ( always uninstantiated ) and
the last as either input or output. Without this informa-
tion a compiler must create code which can access an exist-
ing structure or create a new structure. The information
allows the compiler to generate only one alternative and
also avoid code which tests the state of the argument. An
added advantage of the mode information is that less global
variables are needed. This is because a variable occurring
inside a structure which would normally be global can be
made local 1if the structure 1is known to be instantiated

insuring a new structure will not be created.

In his paper, [Mellishl1981] arqgues that providing this
information by hand can be difficult, involve considerable

work if the code is modified and error prone. To allow the
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compiler to still have access to this information he pro-
poses an -automatic generator of mode declarations. The gen-
eration of modes is a two stage process. The first analyses
the clauses and builds up a dependency graph for all the
argument positions. The second stage uses this dependency
graph to propagate constraints about argument positions
through the graph. When the graph reaches equilibrium the
constraints at each argument position are converted into

mode declarations.

To create the dependency graph for one clause a com-
plete history of each variable is generated and the argument
positions analyses before and after the call on the predi-
cate. This is so information is available about variables
appearing in predicates after the call on that predicate.
The mode information will be derived from the information

about argument states before the call.

Once the dependency graph has been generated for each
clause the state of each argument is unknown ( corresponds
to mode ’'?' ). Starting from one particular constraint,
such as argument X is an integer, this information is pro-
pagated through the graph using a set of rules for combining
the constraints. This continues until the graph stabilises.
Once all the constraint information has been processed the
information at each argument position is mapped into the

three modes useful for the compiler.
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3.7. Garbage Collection.

The life time of storage on the local stack is either
until determinate exit or until backtracking. On the global
stack, storage is only recovered on backtracking, so it is
sometimes useful to perform some kind of garbage collection.
Global storage can become inaccessible if all the references
to it are removed due to local storage being recovered on
exit. For example, the following will produce an inaccessi-

ble global structure.

create :- struc(X).

struc(func(X,name)).
Methods for recovering global storage are discussed in
[Bruynooghel984a] and [Warrenl977]. The basic idea is to
trace and mark all the accessible locations and then compact
the storage by moving the accessible locations to the bottom
part of the stack. All the references to the global loca-

tions have to be remapped to point to the new locations.

Some implementations do not include garbage collection,
[Pereiral984a,Spiveyl982] but rely on the user using pro-

gramming tricks such as,

not(not(X)).
to check a call on 'X’. ’'not’ is implemented by failure so
all the storage 1is recovered after goal 'X' returns. See

[Kluzniak1985] for other techniques.
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To test the speed of Prolog implementations a benchmark
has been developed which attempts to measure the number of
logical inferences per second an implementation can achieve.
This is commonly called LIPS. Some rough estimates of speed
for some implementations are :- ( The tests run using UNIX¢
were when the operating system was not being used by other

users )

micro-Prolog on Z80 CP/M 300 LIPS.

C-Prolog on VAX UNIX 800 LIPS.
Own Test using LIPS program

C-Prolog on SUN UNIX 2000 LIPS.
Own Test using LIPS program

Quintus Prolog on SUN UNIX 22000 LIPS.
["Ted¥nmsu.csnet@CSNET-RELAY .ARPA"1986]

Turbo Prolog on IBM PC/AT 9000 LIPS.
Own Test using LIPS program

UNSW Prolog on IBM PC/AT 500 LIPS.

[Fischerl986]
Test were run using the LIPS program given in [Meierl986].

( See appendix ).

Apart from the raw speed of an implementation, once a
program has been written critical areas can be improved by
paying attention to the structures used. The following
demonstrates how a list reverse program can be dramatically
improved.

/* Reverse program for lists taken from
"Prolog for programmers"

by Kluzniak and Szpakowicz chapter 4 ppl32
Represent lists as ’'nil’ and list(Head,Tail).

*/

F UNIX is a trademark of Bell Laboratories.
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/* Naive reverse program */
reverse(nil, nil).
reverse(list(A,Tail), TA) :-
reverse(Tail, T), attach(T, A, TA).

attach(nil, A, list(A,nil)).
attach(list(B,Tail), A, list(B,TA)) :-
attach(Tail, A, TA).

/* Reverse using a stack structure */
reverse2(L, LReversed) :-
reverse2a(lL, nil, LReversed).

reverse2a(nil, Stack2, Stack2).
reverse2a(list(A,Tail), Stack2, Final) :-
reverse2a(Tail, list(A,Stack2), Final).

/* Reverse using difference lists */
reverse d(d list(nil,nil), 4 list(Y,Y)).
reverse d(d list(L,nil), 4 list(list(An , X), Y)) :-
“reverse d(d_list(L,list(An,nil)), d_list(X,Y)).
reverse d(d 1ist(z,z), d list(Y,Y)).
reverse d(d list(L,Z), d list(list(An , X), ¥)) :-
revErse_d(d_list(L,list(An,Z)), d list(X,Y)).

Some example test figures for a 60 element list

reverse reverse2 reverse d
trail 496 16 264 bytes
global 37072 1672 2156 bytes
local 68072 2232 1952 bytes
time 2.75 0.14 0.54 seconds

2.62 0.15 0.55 seconds

From these figures it can be seen that reverse2 is consider-

ably better than the naive reverse for both time and space.
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4. Implementation of a Z80 Prolog compiler.

This section describes the implementation details of a
Prolog compiler written for a Z80 based microprocessor sys-
tem, [ZILOG1980]. It was written to provide in-depth
knowledge of a Prolog implementation so that work on possi-
ble language extensions were feasible. The Z80 is powerful
8-bit machine and is a very widely used microprocessor. An
idle 780 machine was available with 10M bytes of hard disc
and a suitable assembler and loader. It was decided that
the compiler should be able to bootstrap itself so the
development could be carried out on another machine and then
downloaded. The code must therefore be fast so that the
compiler can be bootstrapped and library programs can be
developed in Prolog which would usually need to be written
in a lower level language. The space requirement is criti-
cal since most Prolog programs require over the 64K bytes of

space provided by the Z80 address range.

4.1. Structure Sharing.

Two possible ways of representing complex terms created
in a Prolog program will be considered. These are the

approaches outlined in the previous section on structure

representation.

The paper by [Mellishl980] provides a comparison
between the two methods for a small word machine. The

result is that the two methods are reasonably similar in
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space requirements with a slight bias towards direct
representation. A more compact method of structure sharing
than the method used by [Mellish1980] was developed so
structure sharing was used. No comparison of the finished
code was made with the direct representation method. Also
the work by [Warrenl977] on Prolog compilers used a struc-
ture sharing approach so the design of a new compiler would

be easier with this method.

The Z80 is an address wide machine in that one address
will fit into a machine word. This causes some problems in
representing complex terms as described in [Mellishl980].

The structure sharing approach that he uses is as follows :-

Local Global Source Terms
|- | | X I<==| |==>| fn |
—————— e 1 I
Ed |1 1AL
______ 2| —————
I |1 a2 |
1 = molecule pointer
2 = source pointer
3 = frame pointer
fn includes the functor type,

number and arg count

This uses two global stack locations to hold the frame
and source pointers. The new method only puts one item on
the global stack for each molecule and stores an offset in
the source term. The offset gives the position of the
beginning of the frame relative to the molecule pointer.

This monopolises on the fact that the relative position of
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the start of the frame is always the same for a given source

term.

Local Global Source Terms
| - | | x| |-->| fn |
—————— 1 —_————— 2] —————
e it || Off]
| Al |
| A2 |

Off is the offset from 1 to give
the frame pointer

For example,

:— goal(A, B).

goal (X, struct(X, Y)) :- next(X).
The frame for the call on ’goal’ would just contain space
for two local wvariables. The frame for the clause with
rgoal’ at its head would have space for three global vari-
ables, the second being the source pointer, and a source
term with offset of one. Every time ’'goal’ is called the
positions of X and Y in the frame are always fixed hence the
offset of one from the molecule pointer. The following is

the stack frame after unification.

Local Global Source
~goal(A,B)
A-———m |
Bo—m————-— - |
goal(X,struct(X,Y}) | |
| X |-->struct/2
| -->Source ptr--| offset 1
Y global 0 (X)
global 2 (Y)

If the offset requires the same amount of storage as
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the frame pointer in the previous method and only one
molecule is generated from each source term then the .space
required by each method would be the same. In practise
there are usually several molecules created from each source
term so the saving 1is one global stack location for each
molecule minus one. As [Mellishl1980] points out in his
paper, for the examples he tested the number of variables
allocated at any one time is generally greater than twice
the number of molecules. It therefore takes more space to
make a variable’s space large enough to hold two addresses
than to allocate two extra locations on the global stack for
molecules and have one address per variable. The offset
approach 1is more efficient than the two addresses per vari-
able if the number of variables allocated 1is greater than
twicé the number of source terms. For the ’'goal’ example
above, [Warrenl977) would require four variables at two
addresses each i.e. eight, the structure sharing by [Mell-
ish1980] would require four variables plus two extra for the
molecule i.e. six and the offset approach would require
four variables plus one for the molecule and one for the
offset i.e. six. 1If there were two active calls on ’'goal’
the Warren approach would require (4*2)*2, Mellish approach
would require (4+2)*2, and the offset approach would require
(4+41)*2+1. This space efficiency is for the representation
of complex terms and it may be the case that the representa-
tion of atoms and integers requires two address size vari-

ables. 1In which case, the analysis is more complex.
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On the 780 implementation, the offset is stored in an
8-bit 1location whereas the frame pointer would have to be a
16-bit location. This means each frame must be only 255
bytes but this has not proved a limitation with practical
programs. These two factors together should provide a space
improvement for some programs over the direct representation

method used by [Mellish1980].

The choice of representation for atoms and integers was
made so that each item would fit in 16-bits. Since it must
be possible to distinguish between a reference and a basic
type the top bit in a 16-bit word was used to represent a
reference. This therefore limited the data areas (global
and local stack) to 32K bytes with the program code, trail

and literals in the other 32K bytes.

4.2. Compiler Description.

To keep the space requirements down for the executable
code it was decided that the code produced by the compiler
should be basic Prolog machine code instructions not in-line
Zz80 code. This could then be interpreted by a small (71K
bytes) interpreter written in assembler. This approach
would also make it possible to produce code for a different
machine and run it using a different backend interpreter.
The basic code chosen was the PLM instructions defined by
[Warrenl977] since this defined a working system in reason-
able detail. The implementation of the PLM instructions in

assembler was found to be reasonably easy and the whole

June 1, 1987



- 43 -

interpreter is under 1500 bytes. This is the only part that

will need to be in memory to execute a compiled program.

A full description of the PLM instructions are given in
[Warrenl977) but a brief outline will be given here. A
group of clauses such as :-

a :- , C.
a :— d.
would be compiled to the following code.
enter
try(label(al))
trylast(label(a2))

label(al):
neck

The ’'enter’ routine is responsible for setting up part of
the new environment and the ’'neck’ instruction completes the
environment. ‘enter’ only creates the parts of the environ-
ment that are necessary for the unification of the head.
The rest of the environment necessary for the body is post-
poned until the head is unified in the hope that it will be
unnecessary if the wunification of the head fails. The
rfoot’ instruction discards the current environment if it is
no longer needed ( i.e. the clause is deterministic ) and
continues at the ‘continuation point’ which is set by a

rcall()’. The ’try’ instruction creates a 'backtracking
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point’ so if the call fails the next instruction after the
"try’' is executed. The ’trylast’ is an optimisation of
"try’ for the 1last clause. If the last clause fails the
"trylast’ instruction has arranged for the previous back-
track point to be the one that is used. The unification
instructions are placed between the ’label()’ and the ’neck’

instructions. For example,

equals(X,X).
would be
enter
trylast(label(enterl))
label(enterl):
uvar(0,local,0)
uref(1l,local,0)
neck(1,0)
foot(2)
The arguments to ‘uvar’ and ‘’uref’ ( wunify variable and
unify reference ) are the argument number, the type of vari-
able ( local or global ) and the variable number. Here the
variable 'X' is number zero and of type ’'local’. The
'uvar’ instruction is a special case of ’'uref’ that is wused
when the wvariable 1is unified for the first time. 1In this
case it is known that the variable is undefined and there-
fore some initialisation and testing can be avoided. Other

unification instructions are ’uvatom(), uint(), and uskel()’.

These unify an atom, an integer and a skeleton.

The compiler itself was written 1in Prolog so that
bootstrapping would be possible. It would also provide a

useful test for the compiler if it could compile itself and
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run correctly. The compiler structure is built around the
grammar of Prolog expressed in definite clause grammar nota-

tion. The code is produced by a three stage process,

[1] The source code is translated to PLM code in a single
pass. This means that the code has no optimisation for

the last call in a group of clauses.

[2] The second stage scans the PLM code and converts the
last call for a clause. The PLM instruction

rtry(label)’ is converted to 'trylast(label)’.

[3] The third stage is the backend which either outputs the
code as PLM instructions or converts the instructions
to 280 code and calls on the zZ80 PLM interpreter sub-

routines.

The code is built up in an internal list that is then output
by a machine dependent backend. The machine dependent code

is therefore collected into one section.

Although the first stage of the compiler produces code
in a single pass, a considerable amount of code is generated
after the clause has been parsed. For example, when the

clause,

clause(X, ....) :-
is parsed, at the point when the variable "X’ is processed
the compiler does not know whether to produce code for a

local, global, temporary, or void variable. This 1is only
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known when the end of the clause has been reached. A simi-
lar problem occurs when generating the 'neck’ instruction
since this must know how many variables are in the clause,
including the body that has not been parsed yet. The symbol
table therefore has an information field for each variable
which indicates its type. The code for a variable 1is then
generated using this type. At the end of a clause the vari-
able symbol table is scanned and the types determined. For
the 'neck’ instruction markers are inserted into the symbol
table which have references to the maximum number of local
and global variables. When the table is scanned at the end
of a clause the number of each type can be determined. This
method is relatively easy using Prolog variables but would

be complex in a language that used explicit pointers.

Once the grammar had been defined it was transformed to
make the parsing more efficient. The improvements are
achieved by moving multiple calls that would fail later into
one call. For exampie,

term --> constant.
term —--> predicate.
term --> variable.
predicate --> constant, arguments.

arguments --> argument, restofarguments.

restofarguments --> [].
restofarguments —--> andop, argument, restofarguments.

In this syntax the two calls on ’constant’ are not needed.
If a predicate term was to be matched, 'term’ would ini-

tially find the constant but then fail later because there
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were some arguments. ‘term’ would then have to match 'con-
stant’ again before matching the arguments. A better syntax
would allow ’constant’ to be matched and then match zero or
more arguments.

term —--> predicate.

term --> variable.

predicate --> constant, arguments.

arguments --> [].
arguments --> argument, restofarguments.

restofarguments --> [].
restofarguments --> andop, argument, restofarguments.

The library routines for the compiler were written in

780 but kept as small as possible. The routines included
only basic operations like character input/output,
addition/subtraction and var/nonvar. These were found suf-
ficient to bootstrap the compiler and more complex routines
written in Prolog could bé built from these. For example,
writing out integers can be written in terms of single char-

acter output.

When the compiler produced code, the names of atoms and
predicates were defined as local to the compilation. This
meant that to interface to the library routines an explicit
interface description had to be provided. For predicates it
was decided that the names of the external routines would be

provided in an external declaration of the form,

external(plc, get, put, add, var, nonvar, ... ).

The syntax could have been written in any form but a
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description that was also a valid Prolog fact was considered
an advantage. The program could then be ’consulted’ by any
other Prolog implementation without removing the interface
description. The interface was kept as simple as possible
since no other information about the predicate was provided.
( such as arity, mode of argquments, argument types, etc ).
The only information provided by the external declaration is
the relation between the predicate name and the internal

value given to the predicate.

To write out atoms and complex terms the external rou-
tines must be able to find the source name that corresponds
to the internal value. To overcome this problem the com-
piler builds a symbol table at the end of the code so exter-
nal routines can find the source name. Because the compiler
does not know which atoms and functors are needed exter-
nally, the symbol table contains all the strings used in the
source code. This is wasteful and with hindsight it would
have been better to include the atoms and functors expli-
citly in the external declarations so only those that are
required are put in the symbol table. This new external

declaration would take the form,

external(plc( , ), get(_), put(_), atoml, ... ).
This now also includes the arity of the predicates which
should help in error checking between routines. It should

~be possible to extend this form to allow separate compila-

tion of different modules.
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4.3. Testing and Evaluation of the Compiler.

The compiler that ran under C-Prolog on a VAX 11,750
was tested with a suite of 24 test programs. These tried to
test most aspects of the implementation. The code produced
by the VAX compiler was down loaded onto the 280 machine
which then assembled, loaded and ran the code. After test-
ing and correcting with all these programs the compiler
itself ( with slight modifications for file handling ) was
compiled and this down loaded onto the z80. When this was
running successfully the same suite of test programs were
compiled on the z80 and run. This provided a double test in
that it was testing the compiler implementation and the code
it produced. Nine of the test programs ran correctly but

15 of the test programs were too big to compile on the 280.

The space required by the implementation seems to be
reasonably efficient although the space required by the com-
piler when running on the 280 is disappointingly high. This
" might be reduced by re-writing the way the compiler produces
code, for example, compile the code clause-at-a-time instead
of reading all the source, then compiling all the code, then

outputting all the code.

To give some indication of the implementation’s perfor-
mance the tests run on Micro-Prolog by [Liardet] were used.

The first test program does list reversal using a 30 element

list.
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Space requirements in bytes
7280 Prolog Micro-Prolog C-Prolog

global stack 4652 9424
local stack 5664 16896
trail 1830 1768
total data 12146 19K 28088
code 712 1K 796
literals 272

library 1410 57560
interpreter 1418 29K 68676
total code 3812 30K 127032

The second test program also comes from [Liardet] and per-

forms a quick sort on a 50 element list.

7280 Prolog Micro-Prolog C-Prolog

global stack 2892 5984
local stack 3683 10316
trail 734 852
total data 8309 12K 17152
code 1062 1K 1316
literals 432

library 1410 57560
interpreter 1418 29K 68676
total code 4332 30K 127552

The library and interpreter sizes are not very useful for
comparison because the Z80 compiler only provides simple I/0
and arithmetic where as C-Prolog provides numerous built in

predicates.

The speed tests use the same two programs as used for
the space test. The Micro-Prolog tests were run using a 2
MHz 280 cpu and the 780 Prolog compiler tests were run with
a 2.4 MHz 280 cpu.
7280 Prolog Micro-Prolog C-Prolog
reverse 1.5 sec 3.5 sec 1 sec

guick sort 2 sec 5 sec 2 sec

Since the times for the %80 compiler and C-Prolog are small

June 1, 1987



- 51 -

and therefore inaccurate when timed by hand another test was
run comparing the times to compile one of the test programs
Z80 Prolog C-Prolog
compile program
"struct.pl’ 18 seconds 10 seconds (*)

(*) This is with a vAX 11/750 running UNIX 4.1 in
multiuser mode but with no other jobs running.

This therefore puts the speed of the Z80 Prolog compiler at

approximately 450 LIPS.
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5. Programmer’s Tools.

This section will describe two tools developed for wuse
with Prolog. Both tools can be used when developing Expert
Systems and also for general Prolog programming. The first
tool aids diagnosing a program and the second provides some

code improvements.

5.1. Connectivity.

The complete set of clauses in a database can be con-
sidered as a connected graph with the connections between
clauses representing possible unifications. ( See [Kowal-
skil979] ). If such as a graph is constructed, clauses with
no connections can be detected. These isolated clauses can
usefully be wused in generating information about possible
errors in the set of clauses ( or program ). A Prolog pro-
gram was written that generated a list of every clause head
and a list of every goal. It then scans through these lists
in two passes. The first pass detects any goals that have
no head to match and the second pass detects any clause
heads that are never called. As a side effect of pass one,
a list of all the system calls used by the program 1is gen-
erated. When considering whether a Prolog program is port-
able between one implementation and another this list should

be useful.

This information can be used to detect several types of

errors.

June 1, 1987



(1]

(2]

(3]

- 53 -

goals or heads where there 1is a difference in the
number of arguments. For example,

:— checkswitch(0ldPos, NewPos).

checkswitch(on) :-

checkswitch(off) :-
Since the program has definitions of all the system

calls it can find where system calls are called with

the wrong number of arguments. For example,
:—~ write(’Debug level ', Level).

goals or heads that contain non unifiable arquments due
to incorrect types. For example,
:— enter(item(Info), Table).
enter(entry(Info,Ident), Table).
it can be used to detect rules in the three-valued
implementation, ( defined in the second part of this
thesis ), that have been specified as three-valued but
are actually being used in a two-valued way. For exam-
ple,
true((rulel if partl and part2(T)
and writetext(T))).
true(writetext(T)) :- write(T).
transforms to
true(rulel) :- true(partl),
true(part2(T)), true{writetext(T)).
false(partl) :- false(rulel),
true(part2(T)), true(writetext(T)).
false(part2(T)) :- false(rulel),
true(partl), true(writetext(T)).
false(writetext(T)) :- false(rulel),

true(partl), true(part2(T)). (*)
true(writetext(T)) :- write(T).
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After the transformation the fourth rule (*) is redun-
dant and not connected to any other rule because 'wri-

tetext’ is a two-valued rule.

The list of clauses that are never called can indicate
a grdup that is not called because of an error or that the
clause is to be used at the top level only. If the clauses
are not to be called at the top level and the program is
error free then these clauses are superfluous and can be

removed. This is used to good effect by the next program.

§.l.l. Example.

Test code used

test :- write(hello,world),
systemcall([X,Y,Z2]),
test2(clause(func,X)).

test2(clause(func2,X)).

Sample output when processing the above code.

Script started on Tue Jul 8 11:03:46 1986
% prolog
C-Prolog version 1.5
?- [’connect.full’].
bagofall consulted 896 bytes 0.383334 sec.
connect.full consulted 7328 bytes 3.66667 sec.

yes
| ?- listing(test).

test :-
write(hello,world),
systemcall([_7,_8,_91),
test2(clause(func, 7)).

yes

| 2- listing(test2).

test2(clause(func2,_10)).
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yes
| ?- connect.

System calls used :-
1/0

erase/1

fail/0

functor/3

nl/0

read/1

recorda/3

recorded/3

retract/1

setof/3

sort/2

true/0

write/1

No clause found for goal write(hello,world)

No clause found for goal systemcall([ 3658, 3659, 3660})

No clause found for goal test2(clause(func, 3658))

No calls found for clause connect

Retract connect ?no.

No calls found for clause test

Retract test ?yes.

test:-write(hello,world), systemcall([ 37937, 37938, 37939]),
test2(clause(func, 37937)) retracted

No calls found for clause test2(clause(func2, 3761))

Retract test2(clause(func2, 3761)) ?yes.

test2(clause(func2, 3761)):-true retracted.

yes
| ?- connect.

System calls used :-

1/0

call/l
erase/1
fail/0
functor/3
nl/0
read/1
recorda/3
recorded/3
retract/1
setof/3
sort/2
true/0
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write/1
No calls found for clause connect
Retract connect ?no.

yes
| ?2- halt.

[ Prolog execution halted ]

%

script done on Tue Jul 8 11:06:26 1986

5.2. Middle-Out Processing.

In a similar way to the connectivity program this pro-
cessing can be understood by considering the set of clauses
as a connected graph. ( See [Kowalskil979] ). In his book,
Kowalski describes top-down, bottom-up and middle-out pro-
cessing as a method for solving problems. 1In this section a
program is described that performs a defined subset of the
middle-out processing before execution of any query or pro-
gram takes place. It can therefore be viewed as pre-
execution code improvement. Initially, the program was
written to perform macro-processing so that uniquely defined

facts could be preprocessed. So, for example,

maxlines(20).

input(Data,Lines) :-
maxlines(Max), Lines < Max, readline(Data).

would be transformed into,
maxlines(20).
input(Data,Lines) :-

Lines < 20, readline(Data).

The criterion used to define the transformations 1is

that the fact only appears once in the database so during
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execution it would be matched deterministically. Note that
'maxline(20)’ has now become superfluous and this will be
detected by the connectivity program which can then remove

it.

The macro processor was then extended to expand any
rules where the head of the clause is matched deterministi-
cally. The call is then expanded to the list of goals in
the deterministic clause. For example,

a :-— b, c, d.
c :- £, g, h.

would be expanded to

After this expansion the clause for ’'c’ could become discon-
nected and could be removed by the connectivity program.
When variables are involved in the clauses then the expan-
sion is more difficult but unification takes care of most of
the details. The program makes sure that the clause it is
working on is a copy of the clause in the data base and has
not been modified by any previous unifications. Otherwise,
the program would be trying to solve a clause rather than
just match two isolated clauses. An example of clauses with

variables follows,
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body(Ctbl,Vartbl,Neck,[],HiLoc,HiGlb,L,L) -->
emptyifop(Neck,HiLoc,HiGlb,Vartbl).

emptyifop([init(Gstart,Gend)|[localinit(Lstart,Lend)|
neck (HilLoc,HiGlb)]],HiLoc,HiGlb,Table) -->
{ tablelookup(Table,marker(neck),
info(Gstart,Gend,Lstart,Lend), ) }

is transformed to

body(Ctbl,Vartbl,[init(Gstart,Gend),localinit(Lstart,

Lend),neck(HiLoc,HiGlb)],[],HiLoc,HiGlb,L,L) -=>
{ tablelookup(Vartbl,marker(neck),
info(Gstart,Gend,Lstart,Lend), ) }

Prolog includes as part of the language several "non
logical" features such as cut, var, assert etc. These
features are very difficult to handle properly in the above
programs. For _the middle-out processor the ’‘cut’ causes
problems because its effect is local to the clause it is in,
so altering the goals in a clause alters the scope of the
'cut’. For example,

a :- b, c, d.
c :- £, g, !, h.

is not equivalent to,

a - b, f, g, !, h, do

because the ’'cut’ now effects the solutions returned by ’'b’.

Another example of incorrect processing is the ‘'var’
predicate when it is used for manipulating open lists. ( See
[Kluzniakl1985] ). If the code for entering an item into the

last free location in a list is defined as,
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lookup(Item,Entry) :- var(Entry), equals(Item,Entry).
equals(X,X).

Then this will be processed to produce

lookup(Item,Item) :- var(Item).
which attempts to unify argument one with argument two
before there is any test to see if argument two is a vari-
able. The initial clause will succeed if argument two is
variable and argument one is anything, whereas the pro-
cessed clause will only succeed if argument one and argument
two are variables. A solution to this problem is to check
if the clause about to be moved contains any "non logical"

goals and if it does, abandon the current clause.

5.2.1. Performance.

To test the performance of the middle-out program a
large Prolog program was selected which was written before
the middle-out program. If the program was written before
the middle-out program then the style will not have been
influenced by any thought of how the program might be
improved by an automatic process. The program that was
selected was the Z80 Prolog compiler written to produce
intermediate code as defined in [Warrenl977]. This program
is split into two sections. The first produces the inter-
mediate code and the second converts this to Z80 micropro-
cessor machine code, [ZILOG1980]). Code improvements concen-
trated on the 420 lines of code that comprised the first

section. The compiler was run compiling the quick sort
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program written by [Warrenl977]. The original compiler and
the modified compiler produced exactly the same output code

so there was no functional change in the compiler.

5.2.1.1. Original Compiler.

Clause space ( Heap + Atom )
= 22624+6184 = 28808 bytes

Stack space ( Global+Local+Trail )
41594+14308+1612
57514 bytes

Runtime ( Three interleaved runs )
19.55, 20.31, 19.65 sec

%3]
loo
=
oo

Modified Compiler.

Clause space ( Heap + Atom )
= 22212+5180 = 27392 bytes

Stack space ( Global+Local+Trail )
: 43640+14308+492
58440 bytes

Runtime ( Three interleaved runs )
= 16.97, 16.85, 17.00 sec

For the runtimes there is a constant time for the

second pass which was timed at

7.10, 7.05, 7.74 seconds
Therefore the average time for the original first pass is
12.54 seconds and for the modified first pass 9.64 seconds.
This represents approximately a 25% improvement in speed.
The space required to store the clauses has been slightly
reduced but the runtime storage is slightly increased. The

total storage requirement for the modified compiler is actu-
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ally slightly less ( 86322 vs 85832 ).

Some interesting features are that the amount of trail
storage has been cut by a third which is presumably due to
fewer clauses being called. The amount of global storage
has increased which is probably due to the interpreter clas-
sifying more of the variables in the larger clause bodies as
global. Generally, the space differenées between modified
and unmodified program will be dependent on the type of pro-
gram but a speed improvement should be achieved. A class of
programs which will cause the middle-out program to signifi-
cantly increase the size of the program are the ones which
are deterministic and have many subroutines used from many
places. For example,

a :— b, ¢, d.

a :-c, d.

b :- g, h, i.

c - Jj, k, 1.

d :- g, h, j, k.
g :- m, n, o, p.

h :-—m, n, p.

i = p, n, m.
j := m, n,
k :-= o, p.

Since every clause except 'a’ is deterministic this will Dbe

expanded to
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a :(-m, n, o, p, M\, n, p, p, n, m, m, n, o,

. p, 1, m, n, o, p, m, n, p, m, n, 0, p.
a :-m, n, o, p, {, my n, o, p, m, n, p, m, n, 0, p.
The real run time for the middle-out program to modify
the compiler was 1 hour 19 minutes and then the connect pro-
gram was run to remove disconnected clauses. This requires
the operator to know which clauses are to be executed from
the top level and takes approximately ten minutes of opera-
tor time. Since the middle-out program is run by the C-
Prolog interpreter, [Pereiral984a}, which has a speed of
700-1000 LIPS and there are Prolog compilers with speeds of
at least 10000 LIPS then the execution time for processing
the compiler could be cut by a factor of ten to 8 minutes.

This makes the processing time much more acceptable.

5.3. Bagofall.

In [Warrenl982b], he suggests an extension to Prolog so
that all solutions to a predicate can be collected in a
list. This has been implemented in C-Prolog as two built-in
predicates, ‘’setof’ and 'bagof’. The ’'setof’ predicate,
rsetof(X,P,S)’, is read as "'S’ is the set of all instances
of 'X’' such that 'P’ is provable". 1In this case any vari-
ables which are not specified in ’'X’ are assumed to be free
and therefore ’'setof’ can produce several solutions on back-
tracking. The ’'bagof’ predicate is similar to 'setof’
except it is unordered and can have duplicates. During the

writing of the above utilities it was found that an exten-
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sion to ’setof’ and ’'bagof’ would be very useful. This is
the ability to generate the set or bag of all the solutions
to a query without knowing the variables contained in the

query.

The utilities required the program to find a head of a
clause and then find all the clauses that match that head.
i.e. all the solutions of ’clause(X,Y)’. To be able to use
rsetof’ or 'bagof’ the variables appearing in the head of
any clause would have to be known in advance which is impos-
sible. The new variant of ’setof’/’bagof’ that was defined
using similar low level code was 'bagofall(P,S)’ where 'S’
is the set of solutions to ’'P’ assuming all variables in 'P’
are bound. Taking the example of 'setof’ from

[Pereiral984a] to demonstrate ’‘bagofall’.

Example of Setof

:—~ setof(X, X likes Y, S)

gives
Y = beer, S = [dick, harry, tom]
Y = cider, S = [bill, jan, tom]

whereas the bagofall predicate gives

:— bagofall(X likes Y, S)
S = [dick likes beer, harry likes beer,
tom likes beer, bill likes cider,
jan likes cider, tom likes cider]
Since there is no way of connecting items in the resulting

bag with any variables in the gquery, ’'bagofall’ returns the

set of whole clauses with any variables instantiated.
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6. Introduction to Expert Systems.

This second part of the thesis moves on from the imple-
mentation of Prolog to using Prolog. The area studied is
Expert Systems. This section gives some background to
Expert Systems and gives some indications where Logic Pro-
gramming, and in particular Prolog, fit in to the Expert
System area. There are eight subsections : Current Expert
systems, Requirements for an Expert systems, Knowledge
Representation, The Knowledge Base, Inference techniques,
Inference with Uncertainty, Searching Techniques, and Learn-

ing Techniques.

6.1. Current Expert systems.

Examples of Expert systems are many and varied but as
explained in [Buchananl982] the present systems are quite
limited. His report on the subject gives a list of current
Expert systems together with his views on the current state
of the art and areas for future research. The article by
[Gevarterl1982] gives a list of 17 Expert systems and the
purpose and methods used by each. From this list it can be
seen that Expert systems are used for a very wide range of
diverse applications. He also gives examples of Expert sys-
tem tools which can be used in the construction and mainte-
nance of an Expert system and gives a list of the research

he thinks is required in the area.
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6.1.1. Knowledge Transfer from an expert.

This is commonly recognised as the bottleneck in the
development of an Expert system, taking around 5 to 10 man-
years, and several approaches have evolved. The first is to
develop a program that interactively extracts the knowledge
from the domain expert and fits it into the knowledge ( or
data ) Dbase. An example 1is the TEIRESIAS system. ( See
[Suwal982] ). Another approach is to acquire the knowledge
through self learning or discovery. ( See Learning Tech-
niques ). When transferring knowledge from the domain
expert to a knowledge base the expert must provide expli-
citly the context that the data is to be used in.
[Spiersl983] explains that what is explicit today for one
person might be totally incomprehensible tomorrow because
the conceptual framework which was implicitly assumed before
has now been lost. A system which could construct and adapt

its own conceptual framework would obviously be advanta-

geous.
6.2. Requirements for an Expert system.
6.2.1 Explanatory powers.

A key feature of Expert systems is their ability to
explain their reasoning. This feature is of great impor-

tance since in making decisions the operator must have con-
fidence in the results that the system produces. This con-

fidence will be gained if the system can explain how it
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arrived at the decisions. Being able to explain its reason-
ing requires a control structure that is sufficiently com-
plex to solve the problem satisfactorily but also not too
complex for the explanation mechanism to explain or for the
domain expert to understand. The domain expert must be able
to understand how the system will perform to be able to
integrate his knowledge into the system successfully. The
work of [Wallisl982] is concerned with providing satisfac-
tory explanation powers for MYCIN, [Shortliffel976], which
could previously only cite the appropriate rule. He argues

that explanation powers are necessary for four reasons:-

(1) to be able to examine the system if errors arise,
(ii) to assure the user that reasoning is logical,
(iii) to persuade the wuser that -unexpected advice 1is

appropfiate and
(iv) to educate the user.

To be able to provide reasonable explanation the system must
have some concept of the users ability so that the explana-
tion can be geared to the users expertise. This includes
the users goals and social role. The extra information that
was found to be necessary includes the systems ability to
judge a rules complexity and importance. This is so rules
that are complex but unimportant need not be explained and
rules which are important but not complex should be

explained first. The areas the author suggests for further
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work include the systems ability to determine the reason for
the users enquiry and reasoning with the context of the

dialogue.

6.2.2. Transparency.

This implies the user can have access to the knowledge
base and see what knowledge is being used. The transparency
of a knowledge base is linked to the explanatory power in
that it 1is an aid to user confidence and understanding of

the system.

6.2.

|w

Structure.

6.2.3

w
f=

Separate Knowledge base and Problem Solver.

One of the first lessons learned from the study of
Expert systems was that the domain specific knowledge should
be separated from the problem solving mechanism ( or Infer-
ence Engine. ). The introduction to the work by [Leithl983]

expands on this idea and puts forward the reasons.

6.2.3.2. ‘Knowledge sources.

This is a possible structure where several cooperating
Experts work together. [Drazovichl982] uses this structure
in his Expert for object identification. The hypothesis for
the current object is represented in a hierarchical struc-
ture and for each 1level in the hierarchy there 1is a
cooperating Expert. For each Expert to function correctly

it must be able to access knowledge wused and created by
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other Experts. This gives rise to the blackboard structure
for knowledge representation where global knowledge 1is put
on a "blackboard" where every Expert can access it. This
system uses data driven inference to build conclusions from
arriving data but it can also use goal driven inference by
placing the goal on a data-based call-back list. If the
data arrives the goal is activated, if not the goal is never

activated.

6.3. Knowledge Representation.

6.3.1. First order Predicate Logic.

Knowledge in the knowledge base can be represented by
lst order predicate logic. The usefulness of this form is
explored in [Kowalskil979], where many arguments are put
forward in favour of logic. Hayes, Deliyanni and Kowalski (
Referenced in [Kowalskil982] ) have argued that natural
language representation schemes based on such structures as
semantic networks, frames and scripts can usefully be refor-

mulated in symbolic logic.

6.3.2. Semantic Nets.

This is a general structure where the knowledge is
organised around objects. These objects are represented by
the nodes in the semantic net and the arcs between the nodes
represent the relation between the objects. 1In his book,
[Kowalskil979] points out that semantic nets can be

represented in logic by an N-ary relation representing the
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arc with the nodes as arguments to the relation. This has a
disadvantage in that the information about one object is
spread about the data base but all the relations can be kept
together. [Del982] use semantic nets to represent knowledge
for an office environment. The semantic net structure is
expanded by the wuse of views, activities and hierarchies.
These additions help in the retrieval in that similar con-
cepts are grouped together. The authors propose a semantic
net represented by a 5 tuple relation, ( C, F, V, A, H Y. C
is a finite set of nodes or concepts, F-.is a finite set of
arcs or modeling functions, V is a finite set of views, A is
a finite set of activities and H is a finite set of hierar-
chies. To access the semantic net the operator will be
involved with certain activities at a certain level in the
managerial hierarchy and from there he will have a certain
viewpoint. The semantic net 1is therefore structured to
group together the information that 1is relevant to each

operator.

6.3.2.1. Viewpoints.

In his paper, [Barberl982] describes the viewpoint
mechanism, which he considers as similar to situational cal-
culus and contexts but with the advantage of being objects
within the system that can be reasoned about. Information
is only ever added to viewpoints so to change a viewpoint a
new one 1is created with the changed information. The

changed information is then recorded in a data structure (
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E.g. property lists - LISP or records - PASCAL ). When an
inconsistency occurs in the system the inconsistency is
quarantined to one viewpoint by explicitly keeping track of

what is believed to be true.

6.3.3. Production Rules.

The structure of a production rule is most easily
likened to an "IF condition THEN action" structure. This is
the form that is used in MYCIN. The whole knowledge base
consists of these production rules which are then invoked by
pattern matching. Pattern matching is the invocation of the
action part of the rule when the condition part can be
satisfied. [Leith1983] proposes that the production rules
should be hierarchically structured so that some form of
context for the invocation can be achieved. This is impor-
tant for explanation mechanisms since the context is
presented explicitly. Also the interpreter can search the
rules as if they were 1in a tree and therefore have less
rules to consider at one time. The advantages of production
rules are that the whole system is very modular with
knowledge represented in a consistent manner. Also each
rule represents a single chunk of knowledge and therefore

helps in maintenance and changing. The disadvantages are,

(1) the rules are not called explicitly and therefore

there may be unexpected side effects,

(ii) knowledge cannot always be easily expressed as a
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production rule and therefore the simplicity sacri-

fices the easy of expression and

(iii) the desired sequence of consultation can not always
be easily mapped into production rules because of

backward searching.

6.3.4. Frames - deficiencies of Production Rules.

Frames were developed in response to the concept that
thinking is driven by expected structures. The frame holds
the expected values and the rule it 1is associated with.
Frames are similar to scripts developed by [Lehnertl980].
As stated in [Naul983], Nilsson has pointed out that frames
can be translated into 1lst order logic. Explicit represen-
tation of knowledge has become an important part of Expert
systems and [Aikensl1983] found that the production rules
used in MYCIN were not explicit enough so developed a system
that uses frames and production rules. The system, called
CENTAUR, is a pulmonary physiology Expert designed to demon-
strate the structures. The frame system is able to provide
the context and function of the production rule and also
provide a control structure which is sensitive to the ini-
tial data. This results in a more focused consultation. It
was found in an earlier system, called PUFF, which only used

production rules that

(1) it was difficult to represent prototypical

knowledge,
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(ii) adding and modifying rules was difficult,

(iii) altering the order of the requested information dur-

ing a consultation was problematic and

(iv) the system could not explain its reasoning satisfac-
torily.
The control structure for the consultation is also

expressed in frames and can therefore be used to direct the
consultation. The explanation mechanism can also explain

the control structure, if necessary, since it is explicit.

6.3.5. Data Pools.

This concept is explained in [McDermottl983] and is
similar in many respects to the Frame representation. The
data pools hold information that can be copied into new data
pools but changes to the original data pool are also inher-
ited by the copy. This structure helps in maintaining the

_consistency and completeness of the knowledge base.

6.3.6. Blackboard scheme.

This is the framework used in HEARSAY II ( See
[Naul983] ) and the system developed by [Drazovichl1982]. A

possible structure is given in the diagram on the next page.

6.3.7. Fuzzy sets.

zadeh, referenced in [Efstathioul979], suggests that

humans think in fuzzy sets, for example a "set of chairs" or

June 1, 1987



- 73 -
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a "set of small chairs". The operator on the set, ( small
in this <case ), is called a hedge. These hedges can be of
two types which are operators such as very, more, less, etc
or descriptors such as technically, strictly, etc. Using
these sets truth functions can be worked out and the system
used to represent knowledge. At present there are several
problems in this area of which the method used to combine
sets 1is one. When the fuzzy sets are large the storage
requirements for calculating the fuzzy result set 1is mas-
sive. [Koprival983] proposes an algorithm that does the
calculation more efficiently, using similarities between the
calculation and tree pruning. The evaluation tree becomes a
minimax tree which can then be pruned using alpha - beta

pruning. ( See Searching Techniques ).

6.4. The Knowledge Base.

This is the collection of information that the problem
solver will wuse in the course of its inference. Using one
of the representations described above knowledge 1is col-
lected together and structured. One of the main features of
Expert systems is that they work with many different types
of knowledge and the degree of structure required is low.
The types of knowledge that can be used are, for example,
facts, theorems, heuristics, equations, rules of thumb,
assumptions, strategies, tactics, probabilities, advice and
causal laws. This is in contrast to conventional program-

ming method that rely on more concrete facts.
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6.4.1. Completeness and Consistency.

As a knowledge base increases in size it becomes
increasingly important to have a structured approach to the
completeness and consistency of that knowledge base. For
large knowledge bases it might be considerable time before
the errors are noted by day to day use so a formal approach
is required. The article by [Suwal982] is an attempt to
clarify some of the issues and suggest relevant directions.
The area covered only considers the completeness of the
information and not that the program interprets the data
correctly so the correct interpretation must still be

checked carefully. The checks that are suggested are

(1) logical conflict, where two rules succeed with dif-

ferent results,

(ii) redundancy, where two rules succeed with the same

result and

(iii) subsumption, where two rules succeed but one has

additional restrictions on its use.

For completeness missing rules have to be checked for. The
program TEIRESIAS by Davis, R. is used to check the rules
used by MYCIN, [Shortliffel976]. An added aid in this area
is the explanatory power of the Expert system ( See Explana-

tory powers ).
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6.4.2. Truth Maintenance under dynamic change.

When a knowledge base is changed dynamically then the
problem of truth maintenance must be considered. 1If, for
example, a section of knowledge is changed and many other
sections are dependent on the changed knowledge then there
will be a finite time when the propagation of this change is
not completed and the knowledge base is therefore incon-
sistent. Work on truth maintenance is considered in Doyle,
~J. which is cited in [McDermottl1983) under his work on Data

Pools ( See above ).

6.5. Inference techniques.

Inference describes the process whereby the input data
is wused in conjunction with the knowledge base to produce
the Expert system’s conclusions. In conventional program-
ming the inference process is the sequentiél execution of
the instruction statements with loops and calls. For Expert
systems a new approach is used whereby inference is carried
" out by a search and a pattern matching routine. The search
is wused to find the part of the program that matches a cer-
tain pattern and when a match is found that part 1is exe-
cuted. [Naul983] gives several examples of programming
languages that use pattern driven invocation of programs.
These are Planner, Conniver, Prolog and ARS. The inference
can be seen as the chaining of rules to form a line of rea-
soning. This chaining can be forward from the set of condi-

tions to the conclusions, called forward chaining, or it can
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be from the conclusion back to the conditions, called back-

ward chaining. ( See Searching Techniques ).

6.5.1. Goal driven.

This is basically a top down inferencing approach where
the starting point 1is an initial goal. This 1is then
hierarchically subdivided down until a match with the input
data is found. This goal ( or model ) driven approach is
termed as a backward search ( See Searching Techniques ).
An example of an Expert system that uses this approach is
MYCIN. The HEARSAY II system referenced in [Naul983) uses
both goal and data driven inference. It achieves this by
using multiple knowledge sources which each act as a problem
solver. The knowledge sources communicate with each other

via a blackboard scheme. ( See Blackboard scheme. )

6.5.2. Data driven.

This is basically a bottom up inferencing approach
where the starting point is the input data. This data ( or
antecedent ) approach is a forward search producing new con-
cepts from the old ones. This 1is then hierarchicaliy
abstracted to produce higher level concepts. An example of
a program that uses this approach is BACON by [Langleyl982].
It also uses expectation driven inference to decided what
sort of structure it is expecting in the data. The program
is used to discover empirical laws for summarising data such

as the ideal gas law from data relating pressure, tempera-

June 1, 1987



- 78 -

ture and volume. 1Initially, the program finds relations
between two variables.then recurses to a higher level. To
keep the system as general as possible the expectation
heuristics are derived from previous discoveries the system
has made and not domain dependent knowledge. The author
hopes to extend the program to discover qualitative laws as
well as quantitative laws. The DENDRAL system referenced in
[Naul983] 1is another example of a system that uses data
driven ( forward search ) inference. The system creates
plans which are wused to generate possible solutions which
are then tested for validity. ( See Generate and Test. )
It also wuses problem reduction to reduce the search space.

( See State space versus Problem reduction. )

6.5.3. Expectation driven.

This term is explained in [Gevarterl1982] and refers to
the inference technique where the inference moves from an
abstract concept to a less abstract concept and is therefore

generating an expectation of the hierarchy of the concept.

6.5.4. Event driven.

When the choice for the next step in the inference
depends on the new data or the last problem solving step
then the inference is called event driven. This is similar
in some respects to forward chaining except the data or
situation is evolving over time and therefore must take

account of data as it arrives. This is used for real time
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operations.

6.5.5. Generate and Test.

This is a principle by which the solutions to the prob-
lem are created. 1In abstract terms there are two communi-
cating processes one of which generates a candidate solution
to the problem and the other which tests the validity of the
suggestion. If the suggestion 1is not appropriate then
another candidate solution 1is generated. This method is
very easy to implement in Prolog since the backtracking
method used to get the next candidate solution is built into

the system as the control strategy.
6.5.6. Inference as a Search.

Since most problem solvers use non-deterministic
methods the process of finding the correct solution can be
considered as a search for the solution. This therefore
draws together the methods of problem solving and tree
searching. The methods used to search the tree can be
expressed in the knowledge base and therefore vague rules of
thumb can be used by the problem solver to reduce the search

space. This is called a heuristic search.

6.6. Inference with Uncertainty.

There can be several sources of wuncertainty in a
knowledge base which should be taken care of by the problem

solver. Firstly, the actual knowledge base can have errone-
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ous rules or some necessary rules could be missing. This
should be overcome once the knowledge base is well tried and
tested. Secondly, the input data to the problem solver can
be erroneous to a certain degree or the data could be una-
vailable. This type of wuncertainty 1is quite common and
methods of treating it are put forward in several Expert
systems ( MYCIN [Shortliffel976}, PROSPECTOR [Gaschnigl982]

and INFERNO [Quinlanl1983] ).

6.6.1. Subjective Bayesian reasoning.

The Bayesian reasoning is based on Bayes Theorem which

is:-
P(Ej|D) = .
( P(Ej).P(D|EJ) )
( Sum j=1 to m (P(Ej).P(D|Ej)) )
where
Ej 1is a state
P(Ej) denote the prior probability
P(D|Ej) probability of D occurring if the
state is Ej
P(Ej|D) the posterior probability after
receiving the information D
6.6.2 Belief / Disbelief measures.
6.6.2.1. Certainty Factors (CF).

This is the method used in MYCIN [Shortliffel976] to
keep track of the validity of the data that the problem
solver is working with. The CF is a single value in a given
range ( e.g. -1 to 1 ) which represents the validity. The

CF of a conjunction of several facts is the minimum of the
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individual facts. For the conclusion, it is the CF of the
premise multiplied by the CF for the rule. The CF of a fact
produced from more than one rule is the maximum of the rules

yielding that conclusion.
6.6.3. INFERNO.

This is a probabilistic system developed by [Quin-
1an1983] and tries to overcome the deficiences of the
methods used in the Expert systems MYCIN and PROSPECTOR. In
his article he points out that, with the certainty factors
used in MYCIN, there is a problem with the accuracy of the
numbers: a certainty value of 0.5 could mean 0.5 +0.001 or
+0.3. Other deficiences that he points out are the combin-
ing of probabilities that are not shown to be independent
and, in most cases, are usually not independent. The system
he proposes is based purely on probabilities, so that accu-
racy is taken care of implicitly, and well-founded infer-
ences so that all probabilities are assumed to be dependent
unless explicitly stated. This approach can be thought of
as cautious but all results are mathematically sound. The
system uses well-founded inferences so it 1is possible to
show when inconsistences arisé in the data. This gives rise

to a system which deals with propagating constraints.

6.6.3.1. Propagation constraints.

The INFERNO system uses two values to represent the

certainty of a value and these values are propagated to the
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other associated relations. This then propagates through
the system and inconsistency is detected if the true and
false values add up to be greater than one. The system can
then work back to suggest where the inconsistency came from

and what is necessary to rectify it.

6.6.4. Truth maintenance.

Wwhen a contradiction occurs in a knowledge base there
must be some way of undoing the inferences made from the
knowledge involved so that when the contradiction is solved
the knowledge base can be corrected. One method is to keep
a record of the beliefs made from lines of reasoning so that
the Dbeliefs can be backed up and removed if a contradiction

occurs.

6.7. Searching Techniques.

When a problem has a small search space then an exhaus-
tive search of the whole tree can be used to find the solu-
tion but when the problem has a larger search space an effi-
cient searching technique is necessary to overcome the com-
binatorial explosion which is found in most real applica-
tions. There are two basic methods which either involve an
efficient way of searching the state space or a way of
transforming the state space into smaller manageable chunks

which can be searched efficiently.

6.7.1. Trees.
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Two types of search strategies for game playing trees
have been proposed. The first method (A) is to establish
the whole game tree to a certain depth, evaluate the bottom
nodes and then use a minimax algorithm. The second method
(B) is to evaluate each successor node and establish sub-
trees starting with the n best successors. Then perform
minimax on the subtrees. Method B is often referred to as
Ni best forward pruning which chooses at level i the best Ni
branches. The advantages and disadvantages of each, that
are put forward in [Merol983], are:- method B offers the
only possible way to diminish the combinatorial explosion,
method A can be modified by alpha - beta pruning and method
B is spoiled to a greater extent than A by unreliable

evaluation functions.
6.7.1.1. SSs*.

The paper by [Roizenl983] proposes a new minimax algo-

rithm called SSS* which is compared with the alpha - beta
algorithm. The SSS* algorithm is a non-directional algo-
rithm which traverse the nodes in best first fashion similar
to A* and never evaluates a node skipped by alpha - beta.
The paper basically shows that SSS* and alpha - beta have
the same growth rate and can therefore be regarded as asymp-
totically equivalent. Because of the only meager improve-
ment in pruning power and the substantial bookkeeping
required the author speculates that alpha - beta will still

monopolise applications of minimax search.
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6.7.1.2. Bidirectional.

Bidirectional search is a technique for searching a
graph where the search direction 1is not limited to one
direction. It basically involves methods for Backward and
Forward chaining, so that improved efficiency can be
achieved. The search heuristics for one such method are

explained in [Champeaux1983].

6.7.2. Forward chaining.

This technique is used when the starting point is
either a basic concept or data. This is then hierarchically
abstracted to the conclusion. The search tree therefore has
the 1initial data or basic concept at the root of the tree
and the possible conclusions are at the leaves. The search
involves finding a path from the root to a leaf which fits

the constraints of the problem.

6.7.3. Backward chaining.

When the starting point is a goal or a hypothesis then
the technique that 4is wused is backward chaining which
involves breaking down the concept into more basic parts
until a match with the input data is found. Using a tree to
represent the search, the goal or hypothesis is the root of
the tree and the possible input data values are at the

leaves. The search then finds the path from the root to the

leaf which matches the input data.
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6.7.4. State space versus Problem reduction.

The methods of state space séarching are described
above but an alternative approach is to reduce the problem
by methods including divide-and-conquer. Systems that use
this approach include GPS and STRIPS ( Stanford Research
Institute Problem Solver ). When a problem is reduced into
sub problems, the interactions between the sub problems must
be catered for. Using constraint propagation introduces a
method of moving the information between the sub problens
and can therefore help the problem solver in deciding where
to search next by following a line of least commitment. The
least commitment policy is to move the focus of the problem
solver between sub problems as the data becomes available.
When there is insufficient information then an heuristic
must be used to continue the search and if that line of rea-
soning is inappropriate then dependency directed backtrack-
ing, 1i.e. backtracking to where the decision was made, is

used to follow other lines of reasoning.

6.7.5. Depth first versus breadth first.

Wwhen a tree is searched, nodes can be selected in
either a depth first or breadth first manner . The depth
first search picks one node at the level below the root and
follows that to the next level down and repeats until it
reaches a leaf or a specified depth. That node 1is then
evaluated. In breadth first search, nodes at the level

below the root are evaluated before nodes of a lower level.
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The two methods can be interspersed if a depth is specified
for the depth first search and when that is reached then
nodes at that level are searched in breadth first manner. A
special form of this kind of search is the depth first
iterative deepening search. This form does a depth first
search at maximum depth of one first. It then starts again
with a depth first search at depth two. Then depth three
and so on. This could seem inefficient but [Korfl985] has
proved that it is asymptotically optimal in terms of time,
space and cost of solution path for exponential tree

searches.

6.7.6. Best first search.

This method relies on the presence of some measure of
merit for each of the nodes in the tree. The search stra-
tegy is to search the node which has the highest merit
first. This can cause problems if the measure of merit is
inaccurate which is often the case in real applications.
Combinations of this method and depth and breadth first
methods are possible such as finding the best node at the
ievel below the root and performing a depth first search on

that subtree.

6.8. Learning Techniques.

In his paper, [Arayal982)] puts forward the idea that an
intelligent system must have two fundamental capabilities:

problem solving and learning. He proposes that the system
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must have separate problem solving and learning components
called PSC and LC. There is also the external source, ES.
The basic system can therefore be repfesented by the diagram
on the following page where lines 1 to 6 represent data
channels. The distinction between the LC and the PSC is
theoretical and could in practice be one unit. The learning
process could then make changes to both the PSC and the LC
and therefore make it possible to have a system that
improves its learning. The end of the article contains a
" brief description of 10 learning systems and the modes that

they use.
6.8.1. by Examples.

Systems that learn by example accept data for the LC
via channel 1. The PSC works with the example and output is
sent via channel 6. With this method the important mechan-
isms are generalisation and discrimination although over
generalisation can be a problem. The geﬁeralisation process
can be single or multi step and can involve the use of
domain knowledge or not. Most of the work on learning has

been done in this area.

6.8.2. by Instruction.

The input instructions are accepted via channel 1 and
then the PSC and LC communicate with each other via channels
3 and 4. This is different from learning by example in that

the system is given the concept and the problem then is to

June 1, 1987



- 88 -

Intelligent System

External Source ES <
> Learning Component LC
) | 4
| 3 v

>| Problem Solving Component
PSC




- 89 -

integrate it into the rest of the knowledge base. A special
form of learning by instruction is analogy where the desired
property is extracted by finding similarities and differen-

cies.

6.8.2.1. Analogy.

The article by [Winstonl982] is a study of the mechan-
ics behind learning by analogy. The basic method used is to
have a precedent and an exercise then extract the rule from
the matching of the casual structure in the precedent to a
corresponding structure in the exercise. The extracted rule

is of a production rule type which is grouped by context.
6.8.3. by Practice.

For this learning mode the input is sent via channel 5
to the PSC which tries to solve the problem while the LC
observes via channel 3. Any modifications are sent via
channel 4 and a trained observer can watch via channel 6.
The main problem with learning systems is obtaining the
valuable information needed. This mode reduces the problem
slightly by only requiring a problem which it can learn
from. Once a path to the solution is found the system can
keep relevant information so that similar problems can bene-

fit from past experience.

6.8.4. by Exploration.

In this mode the LC and the PSC communicate via chan-
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nels 3 and 4 with little external intervention. The lack of
dominating external intervention makes this mode different
from the rest. The system must be intelligent to create its
own observations, examples and problems. One of the main
problems with this mode is how to make the system create
"interesting" information. One possible criteria is that a
concept can be considered interesting if it is closely
related to other interesting concepts. AM by [Lenatl977] is
an example of this mode which explored the domain of elemen-
tary number theory. After a certain amount of success the
system was unable to develop new heuristics to keep the
search space small. The successor to AM, EURISKO, can dev-
ise new heuristics to associate with new concepts as it dis-
covers them. This solves the problem of AM searching too
large a search space. To discover new concepts the search
must be forward since the goals are very vague. The search

is conducted in a highly selective best first manner.
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7. Prolog for an Expert System.

The idea of using Prolog to develop expert systems 1is
not new. Two examples are, [Clarkl1982] and [Sergotl982].
As a language for implementing an expert system Prolog pro-
vides a knowledge base and an inference technique. The two
are separate and since Prolog can also be used as a program-
ming language, the implementation of an explanation mechan-
ism is relatively easy. The inference technique wused by
Prolog is resolution with a depth first search strategy.
Although depth first search has drawbacks, meta level Prolog
programs can be written which implement other search stra-
tegies. The single method of representing the database and
the program is an added advantage when manipulating any part

of the expert system. ( e.g. explanation ).

The rest of this section will outline a particular
problem with Prolog when trying to create an Expert System.
The problem considered is distinguishing between true, false
and unknown facts. Also considered are the deductions that

can be drawn for true, false and unknown facts.

-

Consider the domain of simple positional information.

on(book, table).

on(pen, book).

under(X, Y) :- on{Yy, X).
:— under(book, pen).

The first two lines are facts that can be read as

"the book is on the table"

June 1, 1987



- 92 -
and

"the pen is on the book".

The third line is the rule

"X is under Y if Y is on X".
The last line is a query to find whether the book is under
the pen. Using this data base it is possible to prove that
the book is on the table,
the pen is on the book,
the book is under the pen,
the table is under the book.
All other queries are given as false since the data base 1is

assumed to be a complete closed world. The query to find

whether the cup is on the table is therefore false.

A more flexible approach to this query would respond
with the answer "don’t know" to show that it is either true
or false that the cup is on the table, but it is unknown

which.

One partial solution is to keep a list of objects and
relations that are known in the given domain. Then, use
this list to find if the query references any unknown
objects or relations. In this example, the domain concerns
"book", "table" and "pen" so a reference to a "cup" would be
unknown. This solution provides an improvement but does not

cope with a query like

"Is the pen on the table 2"

which is trying to find out whether the pen is half on the
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book and half on the table. Here, ‘on’ is describing the
relationship of objects being directly on top of each other.
The objects and the relations are within the given domain

but the information is still unknown.

Another alternative is suggested by [Forsyth1984]. His
approach is to add the facts to the database by splitting
them into true and false facts. So, for example, the above
database would be :-

yes(on(book, table)).
yes(on(pen, book)).

under(X, Y) :- yes(on(Y, X)).
:— under(book, pen).

This could then be extended to include false facts, for

example,

no(on(cup, table)).
The limitation of this solution is that the rules manipulat-
ing these facts are two-valued. This means that if the fact
'no(under(pen, table))’ was added, it would not be possible
to conclude that the table was not on the pen. This should

be possible since the original database had the rule

under (X, Y) :- on(Y, X).
and if 'under(X,Y)’ is false then ’on(Y,X)’ must also be
false otherwise the rule does not hold. Therefore, this
approach does not handle the connection between three-valued
facts and rules correctly. This requires a three-valued
implementation for rules and facts where queries that cannot

be proved to be true or false are assumed to be ’'Not Known’.
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If disjunctive clauses are required in a data base then
using two-valued rules and negation by failure can cause
contradictions. For example, if the only clause in a data

base is

switch(on) or switch(off)
then both the queries "switch(on) ?" and "switch(off) 2" are
neither true nor false. In a Prolog data base the disjunc-
tive clause could be represented by using the ’'not’ operator
which 1is defined by failure. ( See [Clark1978] ). The

clause could then be represented by either

switch(on) :- not switch(off).

or

switch(off) :- not switch(on).
But, the first incorrectly concludes that the switch is on.
The second incorrectly concludes that the switch is off.
Prolog does not allow disjunctive conclusions to rules and
transforming the rule to use 'not’ in the body can only be
used if there is a closed world. The constraint that is
being violated above 1is the closed world assumption where

all facts not present in the data base are assumed false.

7.1. Previous Work on three-valued logic.

In the paper about Natural logic, [Colmerauerl98lal,
the authors recognise the need to have three-valued logic to
formulate Natural Language queries. This is to allow the

correct interpretation of presuppositions. Their three
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logic values are true, false and undefined or meaningless.
Their basic operators are defined so that when any part of a
clause is evaluated to meaningless, the whole clause becomes

meaningless. For example

John sells or eats cars
is meaningless, regardless of whether John sells cars or
not, since in Colmerauer’s data base ’'to eat cars’ is mean-
ingless. The implementation proposed in the next section
uses a different interpretation. Instead, if it is true
that John sells cars then the whole clause is true, but if
it is false, and John eats cars is not referred to in the
data base, then the whole clause is unknown. The use of a
three-valued system for natural language processes is also
investigated in [Dahl1979]. The subject of her paper |is
mainly concerned with quantification for representing
natural language statements but to represent presupposition

a three-valued system similar to [Colmerauerl98la] is used.

The work by [Bossul985], provides a mathematical rea-
soning process to deal with implicit negative information in
a data base. They define a special type of implication
which théy call sub-implication which is used on two-valued
clauses to evaluate a query. The evaluation of a query
results 1in one of three possible values { 0, 1/2, 1 } which
are interpreted as 'No’, 'Indefinite’, and ’'Yes'. The use
of sub-implication requires extra ’‘characteristic’ clauses

to be added to the data base which are then used in the sub-

June 1, 1987



- 96 -

sequent query evaluation. This mathematical model seems to

have no practical implementation yet.

In his paper, [Shimural979], proposes a new form of
modal logic <called manner logic. This logic has four
values: true, true*, false* and false. The "*" is taken to
mean "in the sense of ... ". The author gives a basic truth
table and then the standard laws and some new laws that the
logic obeys. From these the author introduces some extra
conditions that are needed for Robinson’s refutation process
using the new logic. The result of the refutation is that
the formulae are satisfiable, semi satisfiable, semi wunsa-
tisfiable or unsatisfiable. This system requires modifica-
tions to the refutation process whereas the system proposed
in this thesis does not. The proposed system can be imple-
mented as a separate module that runs on top of standard

Prolog.
7.2. An Evaluator.

To aid in the verification of the equivalences used in
the next section, Prolog can be used as an automatic theorem
prover. The method used is to evaluate one side of the
equivalence for every possible value of variables contained
in the expression and compare this with the set of values
produced by the other side of the equivalence. So, for

example, to prove

false(A) = true(not(A)).
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there is a function to evaluate 'false(A)’ which gives one
set of results for A = 0,w,l and then the evaluation of
"true(not(A))’ gives the same set for A = 0,w,l. The
evaluation function can be written easily in Prolog by using

clauses such as

eval{not(0),1).
eval(not(w),w).
eval(not(1),0).
eval(not(X),A) :- eval(X,Al), eval(not(al),a).

The first three clauses define ’'not’ and the last shows
how to decompose a complex equation involving 'not’ to a
simple one. For the last clause to work correctly the vari-
able X must be instantiated to some ground formula otherwise
"eval(X,Al)’ would match any ’eval’ clause in the database.
This 1is insured by giving the variables in a formula one of
the three basic values before 'eval’ is called. For exam-

ple,

simple(X), eval(not(X),Aa).
The clause ’'simple’ is defined as,
simple(0

simple(w
simple(1).

).
).

This can then be used to generate all the values for vari-
ables in the formula. The clauses must behave correctly
under backtracking because this is how all the possible

solutions to an equation are generated.

Example Proof for
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unknown(P) = not(or(true(P),false(P))).

right :- simple(P), eval(not(or(true(P),false(P))),z),
write(P), write(Z), nl, fail.

left :- simple(P), eval(unknown(P),Z),
write(P), write(Z), nl, fail.

This gives

00
wl
10
and
00
wl
10

The basic evaluator was extended to include dynanmic
definitions of an operator and then to test certain rules
with this definition. This was used for the definition of
implication. The evaluator has a list which contains the
truth values for the dynamic definition and this is scanned

when an evaluation involving this operator is performed.

For example,

/% The correct defn for X and Y is found */
eval([eval(imp(X,Y),2)|Taill),imp(X,Y¥),2) :- !.

/* This is not correct defn - recurse */
eval([Head|Tail],imp(X,Y),Z) :-

eval(Tail,imp(X,Y),2), !.

/* not in list so eval. sub expressions and

try again */
eval(L,imp(X,Y),A) :-

simple(Y), eval(L,X,Al),

eval(L,imp(Al,Y),A), !.
eval(L,imp(X,Y),A) :-

simple(X), eval(L,Y,A2),

eval(L,imp(X,A2),Aa), !.
eval(L,imp(X,Y),A) :-

eval(L,X,Al), eval(L,Y,A2),

eval (L,imp(Al,A2),A), !.

June 1, 1987



- 99 -

| oo

A Three-valued System - Theoretical Basis.

| co

.1. Proposed Definitions.

This section outlines the basic values, operators and
equivalences used to express three-valued formulae in a
two-valued system. The definitions are not meant as a for-
mal system of logic but a justification for the implementa-
tion of a three-valued Prolog interpreter. For clearer
presentation and to avoid confusion, three-valued formulae
will be written in upper case and two-valued formulae will

be written in lower case.

The three-valued system that is proposed has three
basic wvalues { 1, 0, w } representing true, false and unk-

nown respectively. There are also three basic operators

{ AND, NOT, TRUE },

defined as follows

NOT(1l) = 0 NOT(0) = 1 NOT(w) = w
AND(P, Q) = MIN{P, Q} where 0 < w <1
TRUE(1) = 1 TRUE(0) = 0 TRUE(w) = 0

Using these three basic operators the following operators

can be built

OR(P, Q) = NOT(AND(NOT(P), NOT(Q))) { = MAX{P, Q} '}
FALSE(P) = TRUE(NOT(P))
UNKNOWN(P) = not(TRUE(NOT(AND(P, NOT(P)))))

This collection of operators can be used to express any

n-ary three-valued function 'F(Pl,..,Pn)’ as shown.
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If n=0 then F is one of 1, 0, w otherwise

F(Pl,..,Pn) = CASE(Pn, F(Pl,..,Pn-1, w),
F(Pl,..,Pn-1, 0),
F(p1l,..,Pn-1, 1)).

where
CASE(w, P, Q, R) = P
CASE(O0, P, Q, R) = Q
CASE(1l, P, Q, R) = R

as defined by
'CASE(A, X, Y, Z) = OR(AND(UNKNOWN(A), X),
OR(AND( FALSE(A), Y))
AND( TRUE(A), 2))

[4
)
This means that any n-ary three-valued function where n

> 0 can be expressed using the three truth-values and the

three basic operators.

The difference between the proposed definitions and

Colmerauer’s is the way the ’'AND’ and 'OR’ operators are

defined.

Colmerauer’s definition where 'w’ represents meaningless
AND(P,Q) MIN{P,Q} where w < 0 < 1
OR(P,Q) MAX{P,Q} where 0 < 1 < w

Proposed definition where 'w’ represents unknown
AND(P,Q) MIN{P,Q} where 0 < w < 1
OR(P,Q) MAX{P,Q} where 0 < w < 1

This difference allows the alternative behaviour explained

in the section on Prolog for an Expert system.

At this point we diverge from Colmerauer’s work in that
we consider three-valued relations instead of two. Col-
merauer takes the value of ’'DEFINED(R0)’ to be true, where

'DEFINED’ is equivalent to ’'not(UNKNOWN(R0))' and 'RO’ is a
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relation. 1In the proposed system facts that are true and
facts that are false are stated explicitly in the data base
and those facts that are unknown are omitted. This means

that ’'UNKNOWN(RO)’ will be defined by
UNKNOWN(P) = not(or(TRUE(P), FALSE(P)))

The two-valued implication ’'a :- b’ 1is -equivalent to
ror(a,not(b))’ but when this is extended to the three-valued
implication 'TRUE(A IF B)’, there are several different
interpretations, some of which are

OR(A,not (TRUE(B)))

OR(A,NOT(B))

OR(A,TRUE(NOT(B}))
These simple forms are inadequate at expressing the case
‘'when both 'A’ and ’B’ are unknown. To arrive at the

interpretation used in this thesis two approaches will be

taken.
8.1.1. Method One.

The first approach builds up a truth table from several

statements. For the definition of 'TRUE(A IF B)'

(1) If 'A’ is true ’'B’ can take any value and ’'TRUE(A IF

B)’ will be true.

(2) If 'B’ is false 'A’ can take any value and 'TRUE(A IF

B)’ will be true.

(3) If 'B’ is true and 'A’ is not true then 'TRUE(A IF B)’
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is false.

(4) 1If both 'A’ and 'B’ are unknown the implication holds

so 'TRUE(A IF B)’' is true.

(5) 1If 'a’ is false 'B’ must be false to make 'TRUE(A IF

B)' true.

These can be used to define the complete truth table.

A B TRUE(A IF B) from

0 0 1 (2),(5)
0 w 0 (5)

0 1 0 (3),(5)
w 0 1 (2)

w w 1 (4)

W 1 0 (3)

1 0 1 (1),(2)
1 w 1 (1)

1 1 1 (1)

8.1.2. Method Two.

The second approach to the interpretation of the
three-valued implication will use the basic rules of Modus
Ponens, Modus Tolens and the Law of Syllogism. Before these
can be used the appropriate three-valued representation of
these rules must be found. Taking Modus Ponens for example.

The two-valued rule is

( aand ( a=>b ) ) -=> b

When this is extended to three values it could be

( TRUE(A) AND ( A->B ) ) -> TRUE(B),

( TRUE(A) AND TRUE( A->B ) ) -> TRUE(B)
or

( AAND ( A->B ) ) -> B

June 1, 1987



- 103 -

but the first two forms can be discounted since we are try-
ing to find an interpretation of implication in a three-
valued environment where there is a representation of 'A’
not 'TRUE(A)’. In other words, if 'A’ is represented by

"TRUE(A)’ then the rule would be

({ TRUE(A) AND ( TRUE(A)->TRUE(B) ) -> TRUE(B).
This is only a two-valued formula and therefore is not what
is required. Also, the first two forms allow strange

behaviour for the interpretation of implication, such as

A B A->B
0 0 1
0 w 0
0 1 1

The forms used for Modus Ponens, Modus Tolens and the

Law of Syllogism are

( AAND ( A->B ) )} -> B
( NOT(B) AND ( A->B ) ) —-> NOT(A)
( A->B ) AND ( B->C ) -> ( A->C )

8.1.2.1. Possible interpretations for A->B.

The three-valued definition must be compatible with the

two-valued form.

This gives four of the values for three-valued A->B
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A B A->B
0 0 1

0 W

0 1 1

\ 0

w w

w 1

1 0 0

1 "

1 1 1

The rest of the values will be defined by considering

the two conditions Modus Ponens and Modus Tolens.

Modus Ponens (A AND (A -> B)) -> B
Modus Tolens ("B AND (A -> B)) -> A

Considering Modus Ponens for A=0 and B=w

(0 AND (0 -> w)) -> w =1
but 0 AND X = 0 so
0 >w=1

Similarly, considering Modus Tolens for A=w and B=l

(0 AND (w -=> 1)) -> w-=1
but 0 AND X = 0 so
0 > w=1

Considering Modus Tolens for A=0 and B=w

I
| at

(w AND (0 -> w)) -> 1
but 0 -> w = 1 so

(w AND 1) -> 1 =1
sow ->1=1

This gives
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When A=w and B=w then (w AND (w => w)) => w

Therefore w —> w <> w
When A=w and B=0 then (w AND (w -> 0)) ->
Therefore w —=> 0 <> w
Wwhen A=1 and B=w then (w AND (1 -> w)) ->
If 1 -> w=w thenw -> 0 =1

0
0

but when A=w and B=0 then (1 AND (w -> 0)) ->

with w =>0 = 1 gives 1 -> w =1
Therefore 1 -> w <> w

This gives 8 possible interpretations

A B 1 2 3 4 5 6 7 8
0 0 1 1 1 1 1 1 1 1
0 w 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
w 0 0 1 0 1 0 1 0 1
w w 0 0 1 1 0 0 1 1
w 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
1 w 0 0 0 0 1 1 1 1
1 1 11 1 1 1 1 1 1

2 and 4 can be ruled out because
when A=w and B=0 then

(1 AND (w =-> 0)) -> w .
so if w->0=1¢thenl -> w=1
5 and 7 can be ruled out because
when A=1 and B=w then

(w AND (1 -> w)) -> 0
so if 1 ->w=1+thenw->0-=1

This leaves four possible interpretations.

introduce the Law of Syllogism.
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( (A -> B) AND (B -> C) ) =-> (A -> C)
8 can be ruled out because
when A=1 , B=w and C=0 then

(1AND 1) ->0-=20
Similarly for 6, when A=l , B=w and C=0 then
(1 aAaND1 ) -—>0=20

This now leaves two possible interpretations; 1 and 3.

A B 1 3
0 0 1 1
0 4 1 1
0 1 1 1
W 0 0 0
W W 0 1
w 1 1 1
1 0 0 0
1 w 0 0
1 1 1 1

To decide between these two possibilities a new rule

will be used and that is self implication
A ->A

This holds for two-valued implication and for the case
when A=w it seems logical that when A is unknown that

implies A is unknown. The interpretation used is therefore

three.
A B A->B
0 0 1
0 w 1
0 1 1
A 0 0
W w 1
\ 1 1
1 0 0
1 w 0
1 1 1

This interpretation has been verified using the Prolog
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theorem prover with the four rules ( Ponens, Tolens, Law of
Syllogism and Self implication ) to show that only one pos-
sible interpretation satisfies these rules out of the 19683
( i.e. 3~ 3 " 2 ) combinations. This table can be re-

written to give the same table as before using,
TRUE(A IF B) = B -> A,

The truth table is similar to the one produced by
"TRUE(OR(A,NOT(B)))’ except for the case when both 'A’ and
'B’ are unknown. Although this truth table seems to produce
a result which is difficult to express in a simple three-
valued statement it can be expressed using the ordering of
the truth values. This definition of implication can be

defined as

TRUE(A IF B) = A >= B
where ’>=' is the greater-than-or-equal operator when the
truth values are ordered 0 < w < 1. From this it can be
seen that the order of truth values is important since, not
only is it wused to define implication, but also 'AND'’ and
'OR’. ( AND(P,Q) = MIN{P,Q} ). The work by [Bossul985]
also depends on the ordering of interpretations. Their
definition of sub-implication depénds on minimal models

which are defined from the ordering relation ’'<'.

A three-valued logic system has been proposed by

[Lukasiewicz1970] which has the following truth table for

implication.
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A B A IMPLIES B
0 0 1

0 1/2 1

0 1 1

1/2 0 1/2

1,2 1/2 1

1/2 1 1

1 0 0

1 1/2 1,2

1 1 1

In his definition the value of 1/2 is taken to mean "possi-
bility" or "doubtful". This truth table translates directly
into the definition derived above for TRUE(A IF B). He also

gives a definition of the principles of identity.

The system that he proposes obeys most of the classical
two-valued logic statements but he notes that some laws such

as

( A = NOT(A) ) =0
do not hold. [Lukasiewicz1970] also defines a general
definition for a n-valued logic system where the values are

in the interval (0,1) as

1 for P less than or equal Q
1-P+Q for P greater than Q

P IMPLIES Q
P IMPLIES Q

and a definition of 'NOT’ as
NOT P = 1-P

The work of [Lukasiewicz1970] 1is commented on in
[Lewis1959] where a list of elementary laws which hold in
Lukasiewicz’s three-valued 1logic 1is shown. The list

includes the self implication rule 'P IMPLIES P'.
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[Lewisl1959] also provides definitions for AND and OR as

PORQ = ( P IMPLIES Q ) IMPLIES Q

P AND Q = NOT( NOT(P) OR NOT(Q))
These two definitions are the same as the definitions in
terms of MIN and MAX. Since ’'AND’ and 'OR’ can be defined
from 'IMPLIES’ and 'NOT’ the definitions that were presented
at the beginning of this section could have been defined
from the two operators ’'IMPLIES’ and 'NOT’ instead of 'NOT',

'AND’ and 'TRUE’.

The three-valued logic defined in [Kleenel962] wuses a
different form of implication and equivalence where implica-
tion has the value 'w’ when 'P = w' -and Q = w'. This
definition has been tried with the transformations that

appear in the next section but results in the system being

unusable because of unknown variables.

In summary, the definition of three-valued implication
is difficult and several approaches have been adopted. If
self implication ( A -> A ) is considered valid the defini-

tion should be

TRUE(A IF B) = A >= B,

This is the definition used in the next section.
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8.2. Transformations.

We now look at how these three-valued definitions can
be used with Prolog. Clauses will be split into sections

dealing with facts and rules.

8.2.1. Facts.

The fact A’ will have one of the three truth values
which can be represented by using the two-valued property of
TRUE, FALSE and UNKNOWN. 'A’ is therefore represented by

When A has truth value 1 i.e. TRUE(A) =1
the presence of 'true(a)’ in the data base
When A has truth value 0 i.e. FALSE(A) =1
the presence of ’'false(a)’ in the data base
When A has truth value w i.e. UNKNOWN(A) =1
the absence of both the above forms
N.B. When clauses are expressed in Prolog they are in lower

case since the Prolog system used requires clauses to be in

lower case and variables to be in upper case.

8.2.2. Rules.

This section will develop a representation for three-

valued clausal form rules with the following syntax

TRUE( X1 OR X2 OR ... OR Xn IF Yl AND Y2 AND ... AND ¥m

provided n > 0 and m >= 0.

or

FALSE( Y1l AND Y2 AND ... AND Yq )
provided g > 0.

The first version is clausal form defined in the intro-
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duction and the second is an extended form which allows

clauses to be added to the data base when ’'n’ above is zero.

Considering 'TRUE(A IF B)’ first, it can be shown ( See
Appendix ) that the following equivalence holds.
TRUE(A IF B) =
and(or( TRUE(A),not( TRUE(B))),
or (FALSE(B),not(FALSE(A)))
)
Since the operators TRUE and FALSE can only take two values
the statement can be directly represented. Thus, using
ror(a,not(b)) = a :- b’ we get the following clauses
TRUE(A) :- TRUE(B) and
FALSE(B) :— FALSE(A).
The ’and’ operator is represented by both rules being added
to the data base. The data base for the three-valued rule
'"TRUE( A IF B )’ is therefore
true(a) :- true(b).
false(b) :- false(a).
This can now be extended to the three-valued rule
'TRUE(A IF B AND C’) as follows.
TRUE(A IF B AND C) =
TRUE(A IF (B AND C)) =
and(or(TRUE(A),not (TRUE(B AND C))),
or (FALSE(B AND C),not(FALSE(A)))

)

Using the following eguivalences
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TRUE(B AND C) = and(TRUE(B),TRUE(C)).
FALSE(B AND C) =
and(or(not(TRUE(B)),FALSE(C)),
or(not(TRUE(C)),FALSE(B)), -
or(not (UNKNOWN(B) ) ,not (UNKNOWN(C)))
)
X or (Y and Z) = (X or Y¥) and (X or 2).

gives

TRUE(A IF B AND C) =
and(or(TRUE(A),not(and(TRUE(B),TRUE(C)))
and(or(FALSE(B) ,not(and(FALSE(A),TRUE(C
and(or(FALSE(C),not{and(FALSE(A), TRUE(
or(not(FALSE(A)),
not(and (UNKNOWN(B) , UNKNOWN(C))))
)))

If it can be assured that

)y
)))),
B)))),

or(not(FALSE(A)),not(and(UNKNOWN(B),UNKNOWN(C))))
is always true ( See next section on consistency and limita-

tions ) then the equivalence reduces to

TRUE(A IF B AND C) =
and(or(TRUE(A),not(and(TRUE(B),TRUE(C)))),
and(or(FALSE(B),not(and(FALSE(A),TRUE(C))))
and(or (FALSE(C),not{(and(FALSE(A),TRUE(B)))
)))

)

In a similar way to the treatment of 'TRUE(A IF B)’,

the equivalence can be pﬁt into a similar form.

TRUE(A IF B AND C) therefore becomes

true(a) :- true(b), true(c).
false(b) :- false(a), true(c).
false(c) :— false(a), true(b).

We now consider another form of rule with disjunctive con-
clusions, TRUE(A OR B IF C). This can also be converted in

a similar manner.
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TRUE(A OR B IF C) =
TRUE((A OR B) IF C) =
and(or(TRUE(A OR B),not(TRUE(C)))

or (FALSE(C) ,not (FALSE(A OR B)))
)

Using the following equivalences

4

TRUE(A OR B) =
and(or (TRUE(A),not(FALSE(B)) ),
or (TRUE(B),not(FALSE(A))),

or(not (UNKNOWN(A),not (UNKNOWN(B)}))
)

FALSE(A OR B) = not(and(FALSE(A),FALSE(B))).
X or (Y and 2) = (X or ¥) and (X or 2)

gives

TRUE(A OR B IF C) =
and(or (TRUE(A),not(and(FALSE(B),TRUE(C)))),
and(or(TRUE(B),not(and(FALSE(A),TRUE(C))))
and(or(FALSE(C),not(and(FALSE(A),FALSE(B)
or(not(TRUE(C)),

not (and (UNKNOWN(A) ,UNKNOWN(B) ) ))
)))

Again, if it can be assured that

1)),

or (not(TRUE(C)),not(and(UNKNOWN(A),UNKNOWN(B))))

is always true ( See next section ) then the equivalence

reduces to

TRUE(A OR B IF C) =
and(or (TRUE(A) ,not(and(FALSE(B),TRUE(C)))),
and(or (TRUE(B) ,not(and(FALSE(A),TRUE(C))))
(B))

or (FALSE(C),not (and(FALSE(A) , FALSE VY,
))

This can then be expressed as the Prolog rules

true(a) :- false(b), true(c).
true(b) :- false(a), true(c).
false(c) :- false(a), false(b).
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8.2.2.1. General Rules.

The above gives representations for the three forms
TRUE{A IF B), TRUE(A IF B AND C) and TRUE(A OR B IF C). We

will now consider the general case of

TRUE( X1 OR X2 OR ... OR Xn IF Yl AND Y2 AND ... AND ¥m)

Provided the appropriate clauses are not Unknown the
pattern which has emerged is to put each Xi at the head of
the clause in turn and the rest of the Xi s inverted in the
body and then each Yi inverted at the head and the rest in

the body. For example, the rule

TRUE(A OR B OR C IF D AND E AND F)

would be represented in Prolog by

true(a) :- false(b), false(c),
true(d), true(e), true(f).
true(b) :- false(a), false(c),
true(d), true(e), true(f).
true(c) :- false(a), false(b),
true(d), true(e), true(f).
false(d) :- false(a), false(b},
false(c), true(e), true(f).
false(e) :- false(a), false(b),
false(c), true(d), true(f).
false(f) :- false(a), false(b),
false(c), true(d), true(e).

with the corresponding extra conditions outlined in the sec-

tion on consistency.

Since there is no constraint on putting ‘false(X)' at

the head of the <clause it 1is possible to represent the

three-valued rule
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FALSE(Yl AND Y2 AND ... AND Yn)
by using the equivalence for FALSE(A AND B) used above.

This can be combined with the above pattern. For example

FALSE(A AND B AND C)
would give
and(or(FALSE(A),not(and(TRUE(B),TRUE(C)))),
and(or(FALSE(B),not(and(TRUE(A),TRUE(C))))
and(or(FALSE(C),not(and(TRUE(A),TRUE(B)))
)))

which would be represented by

)

false(a) :- true(b), true(c).
false(b) :- true(a), true(c).
false(c) :- true(a), true(b).

8.2.3. Queries.

The form ’:- A’ can be implemented by attempting to
satisfy ‘’true(a)’ and then if that is unsatisfiable attempt
to satisfy ’'false(a)’. 1If that is also unsatisfiable then
'A’ is unknown. However, if 'A’ starts with a basic opera-

tor then the following should be used

true(TRUE(P)) = TRUE(P)
TRUE(NOT(P)) = FALSE(P)
TRUE(AND(A,B)) = and(TRUE(A),TRUE(B))

)) not (TRUE(P))
) = TRUE(P)
B)) = or(FALSE(A),FALSE(B))

i

FALSE(NOT(P

false(TRUE(P
)
FALSE(AND(A,

To enable the use of a goal or query of the form

runknown(A)’ it is necessary to add the following new rules

to the data base.
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unknown(X) :- not(true(X); false(X)).
true(unknown(X)) :- unknown(X).
~false(unknown(X)) :- true(X); false(X).

Note that the ’or’ operator ’;’ is defined in Prolog for
convenience. The basic form can now be easily extended to
any form ':- Bl1, ... ,Bn’' by using

and(TRUE(A), TRUE(B))

= and(true(a), true(b))

or (FALSE(A),FALSE(B))
= or(false(a), false(b))

TRUE(AND(A,B))

FALSE(AND(A,B))

For example the query ’':- A,B,C’ would be transformed

into the query

:— true(a), true(b), true(c).
that would give the three-valued query the value true if it

is satisfiable. If it is unsatisfiable the query

:— false(a); false(b); false(c).
would be executed. This would give the three-valued query
the wvalue false if it is satisfiable or unknown if it is

not.
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8.3. Consistency and Limitations.

Considering the statements that must be false when a
rule or fact is added to a data base, leads to the condi-
tions that must be satisfied for the three-valued
equivalences used in the previous section to be true. For
example

false(or(FALSE(A), UNKNOWN(A)))
and(false(FALSE(A)),false(UNKNOWN(A)))

TRUE(A)

Since by virtue of adding 'TRUE(A)’ to the data base
'UNKNOWN(A)’ will be false, it is only necessary to prove
'FALSE(A)’ is false to prove the data base is consistent
with 'TRUE(A)’'. Moving on to the example of 'TRUE( A IF B

)'. This is equivalent to

false(or(
[1] and(FALSE(A),UNKNOWN(B)),
or(
[2] and(FALSE(A),TRUE(B)),
[3] and (UNKNOWN(A), TRUE(B))

) ) )
Statement [1] must be false, when the rule rfalse(b) :-
false(a)’ 1is added, since ’false(a)’ is implying 'false(b)’
and therefore ’'UNKNOWN(B)’' is false. Statement [3] must be
false when the rule ‘'true(a) :- true(b)’ is added for a
similar reason. Statement [2] can be tested when the rule

is added by executing the query

:— false(a), true(b).
This must be false and 1is a consistency check. It 1is

assumed by executing the query when the rule is added that
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the data base will remain consistent using some form of con-
sistency maintenance. To perform this check correctly the
rules must be added to the data base before the check 1is
made. This is because the rules themselves might be neces-
sary for the contradiction to be found. For example, con-
sidering the definition of integers where the integer 3 is
defined erroneously to be not an integer.

true(integer(0)).

false(integer(s(s(s(0))))).
If the rule ’'true(integer(s(X)) if integer(X))’ 1is to be
added, the consistency check ':- false(integer(s(X))),
true(integer(X))’ is correct wuntil the definition of
integers themselves 1is added. The inconsistency is then
detected showing the rule for integers is inconsistent with
3 not being an integer. Adding the rule first makes
recovery after a contradiction has arisen much more diffi-

cult but, as in the case above, this added complexity is

necessary.
Now considering the statement

TRUE( A IF B AND C )

which is equivalent to all the following being false.

:— false(a), unknown(b), unknown(c).
:— false(a), unknown(b), true(c).

.- false(a), true(b), unknown(c).

.- false(a), true(b), true(c).

:— unknown(a), true(b), true(c).

—_— ———

s Wb

[
1

Condition [2)] must be false because of 'false(b) :-
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false(a), true(c)’ ; condition [3) must be false because of
rfalse(c) :- false(a), true(b)’ and condition [5] must be
false because of ’true(a) :- true(b), true(c)’. Condition
[4] is a consistency check and condition [1] is the unknown
check. The conditions that are tested to be false are
therefore

:— false(a), true(b), true(c).

:— false(a), unknown(b), unknown(c).
This is the condition that is required so that the
equivalence above can be used. The unknown check is only

partially checked by trying to execute

:— false(a), unknown(b), unknown(c).
which will work when 'a’, 'b’ and ’'c’ are clauses which do
not have variables. -When they do have variables the unknown
check will try to find a case when the clause is known but

does not guarantee that for every case the clause is unk-

nown. For example,
false(b(m)).
false(c(m)).
false(a(m)).
true(a(x) if b(X) and c(X)).

The test above is correct at this point because there are no
values of X for which a(X) is false and b(X) and c(X) are

unknown. If the fact

false(a(n)).
is now added there is a value of X ( i.e. when X = n ) where

the wunknown check is now invalid. This means that the rule
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will not be able to give the correct answer to a query such
as ':— false(b(n) and c(n)).' The answer will be ’'DONT KNOW'
instead of 'YES'. This limitation arises because

runknown(a)’ is defined as

not(true(a); false(a))
which can not be executed correctly by Prolog when the argu-
ment to ’not’ contains variables. See [Clarkl978] for an
explanation of how 'not’ is implemented in Prolog. The user
must be aware of this limitation which is caused by the way

the proposed definitions are implemented in Prolog.
Now considering

TRUE(A OR B IF C)

the following must be false

.~ false(a), false(b), unknown(c).
.- false(a), false(b), true(c).

:— false(a), unknown(b), true(c).
:— unknown(a), false(b), true(c).
:—- unknown(a), unknown(b),.true(c).

—_—_———

[S2 ISRV SN

et et e et
|

" [1], (3] and [4] are assured to be false when the rules

true(a) :- false(b), true(c).

true(b) :- false(a), true(c).

false(c) :- false(a), false(b).
are added to the data base. [2] is the consistency check
and [5] the unknown check. Again, a limitation of this sys-

tem is that it can not be guaranteed that [5] will always be

false.

Following the pattern that has developed in these exam-
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ples the checks that are made for a rule of the form

TRUE(A OR B OR C IF D AND E AND F)

would be :-

[1] Consistency check with all formulae to the right of

"=’ i.e. invert operator

:~ false(a), false(b), false(c),
true(d), true(e), true(f).

[2] Group of checks for unknown goals with pattern, "false

conclusions and two or more unknown conditions, others

true"

false(a), false(b), false(c),
unknown(d), unknown(e), unknown(f).
false(a), false(b), false(c),
unknown(d), true(e), unknown(f).
false(a), false(b), false(c),
true(d), unknown(e), unknown(f).
false(a), false(b), false(c),
unknown(d), unknown(e), true(f).

[3] True conditions and two or more unknown conclusions,

others false

:— false(a), unknown(b), unknown(c),
true(d), true(e), true(f).

:— unknown(a), false(b), unknown(c),
true(d), true(e), true(f).

:— unknown(a), unknown(b), false(c),
true(d), true({e), true(f).

:— unknown(a), unknown(b), unknown(c),
true(d), true(e), true(f).

To put this into a simpler form it can be summarised
as: if there 1is more than one unknown in a rule, the rule

must be examined more carefully to see if information will
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be lost.

8.3.1. Query Variables.

The proof strategy of Prolog executes a query in a
top-down left to right fashion which has serious drawbacks
when it is used with this three-valued implementation. The
main problem is that the query itself can not be used in the
construction of the proof. Considering the example given in
[Kowalskil979] for his Connection Graph Proof Procedure.

true(happy(X) if playing(X))

true(happy(X) if working(X))
true(playing(bob) or working(bob))

These rules are translated to

true(happy(X)) :- true(playing(X))
false(playing(X)) :- false(happy(X)).

true(happy(X)) :- true(working(X)).
false(working(X)) :- false(happy(X)).
true(playing(bob)) :- false(working(bob)).
true(working(bob)) :- false(playing(bob)).

From these rules it should be possible to conclude
rtrue (happy(bob))’ but this is only possible if the negated
query is included in the set of clauses. This allows the
proof strategy to use the query in the proof. This can be
partially overcome by adding ’false(happy(bob))’ to the data
base while the query ’true(happy(bob))’ is being evaluated.
This method of resolution stems from the work by [Robin-
sonl965] where the negated query is added to the set of

clauses and resolution tries to find a contradiction.
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Unfortunately, adding the negated clause to the data base
does not work for all cases since the connection between any
variables in the query and the clause added to the data base

is lost. For example, the rule

true(man(lesley) or man(leslie)).

with the query
:— man(X).

When executing ’'true(man(X))’, ’'false(man(X))’ is added
to the data base so the rule 'true(man(lesley)) :-
false(man(leslie)).’ will succeed with the variable X in the
data base equal to 'leslie’ and the variable X in the query
equal to ’'lesley’. This therefore incorrectly concludes

that ’lesley’ is a man.

One solution to this problem is to add the negated
query to the data base, execute the query and then after the
variables have been instantiated the old query is removed,
the new one added and the query evaluated again. The second
execution insures that any variables that are instantiated
are consistent with the clause put in the database. This
method must be used carefully when more than one query is on
the command line and when backtracking is involved. For

example

- a(Xx,¥Y), b(Y,2).
Initially, the clause ’'false(a(X,Y))’ would be added to the

database and say, the query returned 'a(l,2)’. This would
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rfalse(a(l,2))’
was correct and
fails, Prolog
rfalse(a(X,Y))’

not present.
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checked by removing ’'false(a(X,Y))’, adding
and executing the query again. Assume this
execution continued with ’'b(2,z)’. If this
must be able to backtrack to the point where
is in the database and 'false(a(l,2))’ |is

To achieve this the clauses that assert and

retract the query clauses must be backtrackable. This could

be written as follows

assertquery(X) :- assert(X).
assertquery(X) :- retract(X), fail.

On backtracking remove the clause and fail.

retractquery(X) :- retract(X).
retractquery(X) :- assert(X), fail.

on backtracking add clause that was
removed and fail.

This extension to Prolog’s proof strategy can therefore

only be used when the query does not include any variables.

Otherwise only proofs which do not need the query can be

solved.
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o

A Three-valued System - Practical System.

[

.1. Implementation.

The experimental implementation that was developed to
test the three-valued system is based on C-Prolog as
developed by Fernando Pereira at Edinburgh Computer Aided
Architectural Design, University of Edinburgh,
[Pereiral984a). The main code is written in the language
rcr, [Kernighanl978], but the top level interpreter is writ-
ten in Prolog. The three-valued system can be implemented
by modifications at the top level only, the inferencing
steps of Prolog remain unaltered. Hence, most of the modif-
jcations were made to the Prolog code to create a new top
level. The C-Prolog predicate ’$dogoal’(X, Q) tries to
satisfy the goal 'Q’ at the top level. Another rule is
therefore added after this one to try to satisfy the goal
rfalse(Q)’ and change the original to look for "true(Q)’ or
rQ’. This can be visualised as a three-valued evaluator

called at the top level.

The Prolog system developed by [Spiveyl982] wuses a
similar structure except the main code is written in Pascal
therefore the Prolog modifications made to C-Prolog should
be easily adaptable to York Prolog. The C-Prolog messages
written out when a goal 1is satisfied and variables are
instantiated were also changed. The three-valued implemen-
tation was designed to run on top of standard Prolog but

also provide an environment where the two and three-valued
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systems exist together. See diagram on the next page.

The three-valued assert provides a transparent mechan-
ism to add three-valued rules to the data base. If the rule
is in three-value syntax then it is automatically converted
to two-valued rules and added to the database. This also

provides the consistency and unknown checks automatically.

The three-valued execute provided an evaluator for
three-valued qgueries and provided a suitable control mechan-

ism.
9.1.1. Control.

There are many cases in standard Prolog where rules can
be added which cause the evaluation algorithm to go into an
infinite loop. Using the three-valued system also causes
this to happen. For example,

true(switch(on) or switch(off)).
false(switch(on) and switch(off)).
is translated into
true(switch(on)) :- false(switch(off)).
true(switch(off)) :- false(switch(on)).
false(switch(on)) :- true(switch(off))
false(switch(off)) :- true(switch(on))
Prolog’s control strategy searches for a goal in a top down
manner i.e. searches from the requested goal until a fact is
found instead of searching from the given facts to generate

'the goal. The current goal is matched against the data base

from top to bottom and when the goal is matched the new goal

June 1, 1987



- 127 -

Two and Three valued systems

Input Commands

v v
2V  execute 3V execute
v v
Prolog DB 3vS DB
A A
2V assert 3V assert
A i)

Consult Mode




- 128 -

is the 1left most formula. This approach causes infinite
loops to occur when clauses such as :-

true(a) :- false(b). [

false(b) :- true(a). [
appear in the data base. If the goal is 'true(a)' the first
clause to be matched is [1] and the new current goal is
rfalse(b)’. The data base is then searched from top to bot-
tom and [2] is the first to match. The new current goal is
therefore ’true(a)’. We are now back in the same state as
the beginning and the search will continue indefinitely (
until stack space runs out ). One solution to the problem
is to keep a list of the goals that are currently being
solved. When a new goal is tried it 1is first checked
against all the previous goal to see if there is a match.

If there is the search is looping and the new goal fails.

Robinson’s resolution principle has a subsumption check
where any clause that is subsumed by another clause is
removed from the set of clauses. The subsumption is checked
by trying to unify the clause with any other clause in the
data base. This can not be wused in our system because
although it does not alter the satisfiability of the set of
clauses it does stop some solutions from being generated.
For example :-

even(0).

even(s(s(X))) :- even(X).
?- even(X).
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even(X)
/ \
even(0) even(s(s(X))) :—- even(X) *[1]
/ \
even(0) even(s(s(X))) :- even(X)

At point *[1] the new goal is unifiable with the origi-
nal goal and the new goal would fail. This stops the gen-
eration of more solutions. In Robinson’s resolution princi-
ple wunification failed if a variable was unified against a
term that also contained the same variable. This is called
the 'occur’ check which is not implemented in most Prolog
systems. Since this is the case, to check whether a goal
has occurred before, the list is compared with the current
goal using the '==' operator that tests to see if the two
items are 1literally the same. ( X ==Y fails , X == X

succeeds ).

This strategy can still cause looping but only when the

programmer requires it. For example,

:— append(X,Y,Z).

append([A|R], X, [A|Rl]) :- append(R,X,R1l).
append([],A,A).

This is creating an infinite 1list and goals are never

literally equal so an infinite loop will occur.

To cope with certain aspects of problem solving when
there are many paths in the search space to explore but the
solution is not at a great depth, the evaluator includes a

depth count which will cause the search to fail at a given
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depth of the tree. This can cause the search to continue at
a higher 1level and hopefully find a solution. This search
is similar to the hybrid depth first / breadth first search
described in the introduction to expert systems. The
evaluator can also cause failure when a stack is full rather
than aborting the program. This can be useful in limiting

the depth of a search.

9.1.2. Efficiency considerations.

This section will analyse the efficiency of the three-
valued system. Efficiency will be considered in terms of
execution time, space taken for clauses and dynamic stack

space.
9.1.2.1. Speed.

When a three-valued clause is added to the data base it
is transformed in to several two-valued rules each with a
different head. Therefore, when a two-valued goal is exe-
cuted it can only possibly match one of the rules provided

by the three-valued system. For example,

TRUE(on{(X,Y) :- under(Y,X)).

becomes
true(on(X,Y)) :- true(under(Y,X)).
false(under(Y,X)) :- false(on(X,Y)).

so with a two-valued query such as,

?- true(on(book, table)).
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only one clause can possibly match. Since the internal
structure of the clauses remain unaltered the speed of unif-
ication is the same as for standard Prolog. The ability to
find the matching clause in a similar time will be dependent
on the use of indexing so all clauses with ‘true(...)' are

not tried.

When a three-valued query is executed at the top 1level
it is gplit up into two two-valued queries to search for the
true and false queries. 1If the two queries are of roughly
equal complexity solutions which are found to be true will
be found in a time comparable with standard Prolog, solu-
tions which are false will take up to twice as long ( due to
two searches from the top level ) and unknown solutions will

take approximately twice as long.

If Prolog was run on dual parallel processors then the
top level query could easily be split between the two pro-
cessors since there are no shared variables. The true and
false solutions would then be found in easiest-to-prove

order and with virtually no speed penalty.

This analysis has ignored any use of a loop detection
mechanism. In the developed system a meta level Prolog pro-
gram was written to keep a list of the goals executed so far
and tested to see if goals were being repeated. This
three-valued interpreter was significantly slower because it
involved a Prolog program interpreting another Prolog pro-

gram. If the loop detection was built into the object level
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Prolog interpreter it should have a better performance than

the method used.
9.1.2.2. Space.

9.1.2.2.1, Static.

The static space required to store the clauses 1in the
three-valued system is obviously greater than that required
for two-valued clauses. The space required is dependent on
the number of goals in the body of a clause. This will be
represented by NG. The number of clauses required in the

database will be called NC.

For facts, when NG = 0, only one clause is added to the
database depending on whether the fact is true or false.
Therefore NC = 1. For a rule with one goal in its body, NG
= 1, clauses are added with each possible goal or head at
the head of the clause. Therefore NC = 2. Similarly, when

NG = 2, the number of clauses added is 3. Therefore
NC = NG + 1.

If the number of goals in a clause is averaged over the
whole database the average increase in static space require-
ments can be calculated. So, for example, if the average
number of goals was 1 the expected increase in static space

would be twice that required for two-valued clauses.

9.1.2.2.2. Dynamic.
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At the top level the true and false goals are executed
sequentially and so the proof tree for the false goal is not
constructed until the true goal has failed. Since all
dynamic space is recovered on backtracking only space for
one proof tree will exist at once. From the argument for
speed, the number of clauses used in the proof is not
increased by the three-valued system so therefore there will
be no significant increase in the dynamic space requirements

for this system.
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[
[ o

Demonstration Systems

[

.2.1. Example.

The following is an example of the three-valued imple-
mentation running. In C-Prolog the syntax of the headless
clause uses a '| ?-’ instead of ’:-’. The text to the right
within ’{}’ are comments added later to explain the example.
The text typed by the user appears after a '| 2-', '| ' or
r%' prompt and in reply to ‘Enter list of ...’. The first
example shows the debugging mode which prints the query exe-
cuted to find contradictions and the clauses asserted. The
example also shows what happens when a contradiction is

found and when a rule has more than one unknown.

% prolog2 {Start Prolog version 2}

C-Prolog version 2.0

| 2- [user]. {Add new 2 or 3V rules }

| debug3vs. {Switches debugging on }

| true{on(book,table)). { the book is on table }

Execute false(on(book,table)) {Query executed to find}
{ contradiction }

true(on(book,table)) Asserted

| true(on(pen,book)). {the pen is on the book}

Execute false(on(pen,book))

true(on(pen,book)) Asserted

| true((under(X,Y) if on(Y,X))). { Rule that if X is on }
{ Y then Y is under X }

Execute false(under( 22, 23)) and true(on( 23, 22))

Execute false(under( 22, 23)) { execution for contra-}
I { diction fails at this}
{ goal }
true(under( 22, 23)):-true(on( 23, 22)) Asserted
false(on( 23, 22)):-false(under( 22, 23)) Asserted
- ~ {"Two rules added as }
{ required }
| false(on(X,table)). { Nothing is on the }
{ table }
Execute true(on( 22,table))
! Contradiction found { But this is not true }
true(on(book, table)) { the book is on the }
{ table. }
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| true((above(X,Y) if below(Y,X))).

{ Try to add a rule }
{ which will fail the }
{ unknown tests. }

Execute false(above( 22, 23)) and true(below( 23, 22))
Execute false(above( 22, 23)) -7
! Rule has more than one unknown fact
| false((under(X,Y) and on(X,Y))).
{ If X is on Y then it }
{ cannot also be under }
Execute true(under( 22, 23)) and true(on( 22, 23))
Execute true(under( 22, 23)) B
Execute true(on( 23, 22))
Execute true(on(table,book))
Execute true(on(book,pen))
false(under( 22, 23)):-true(on(_22, 23)) Asserted
false(on(_22,_23)):—true(under(:zz,_ZB)) Asserted
T exit consult mode }
| "Duser consulted 640 bytes 1.03333 sec.

YES

| ?- abolish(debug3vs,0). { Switch off debugging }
Execute true(abolish(debug3vs,0))

Execute2v abolish(debug3vs,0)

YES

| ?- abolish(true,l). Clear database to }

remove clauses added }
}

by rules which failed

e et

YES
| ?2- abolish(false,l).

YES

The second example shows a small database added and

then the execution of several types of queries.

?— [-user]. { reconsult the user }
true(on(book, table)). { Add correct rules and}
true(on(pen,book)). { tacts }

false((under(X,Y) and on(X,Y)}).

I

|

| true((under(X,Y) if on(Y,X))).

|

| “Duser reconsulted 344 bytes 0.366668 sec.

| ?- on(cup,table). { unknown query }
DONT KNOW

| ?- under(pen,book). { known to be false }
NO

| ?- under(X,Y). { Find all the under }
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{ relations. }
X = table { These are the true }
Y = book ; { facts }
X = book
Y = pen ;
X \= book { These are the facts }
Y \= table ; { that are proved to be}
{ false }
X \= pen
Y \= book ;
DONT KNOW - { Dont know any other }
{ facts }

The last example uses a utility called 'questions’
written to find all the unknown relations given a list of

predicates and a list of atoms.

| 2= ["3vs’]. {Load some three-valued}
3vs consulted 4872 bytes 2.31667 sec.

{ utilities }
YES .
| ?2- questions. { Print out all the

{ relations that are
{ unknown
Enter list of predicate names..{on(X,Y),under(A,B)].
Enter list of atoms..[table,book,pen].
Dont know about on(table,table)
Dont know about on(table,pen)
Dont know about on(book,book)
Dont know about on(pen,table)
Dont know about on(pen,pen)
Dont know about under(table, table)
Dont know about under(table,pen)
Dont know about under(book,book)
Dont know about under(pen,table)
Dont know about under(pen,pen)

data base does not

contain rules about
things being on or

under themselves

YES
| ?2- [user].
false(on(X,X)). { Add required rules }

|

| false(under(X,X)).

| "Duser consulted 88 bytes 0.15 sec.

YES

| ?- questions.

Enter list of predicate names..[on(X,Y),under(A,B)].
Enter list of atoms..[table,book,pen].

June 1, 1987



- 137 -

Dont know about on(table,pen)
Dont know about on(pen,table)
Dont know about under(table,pen)
bont know about under(pen,table)

Now only wants to
know about the table
and the pen.

Points out that it
doesn’t know what is
on the pen or under
the table.

\-.-4\—.—‘\—.—4\—.—4\-.—4\-.-4‘ R

YES
| ?- halt.

Prolog execution halted ]

%

9.2.2. An Expert System Shell.

In order to provide a consistent interface between the
user and the three-valued Prolog implementation an Expert
System Shell was written. This provides several features
such as explanation, reasoning and mode of operation. The
shell also helped in the development of two experimental
systems providing consultations for VAX 11/750 booting and a

law database.

The modes of operation provided by the shell are either
consultation or search mode. The consultation mode displays
an introduction to the expert system and then starts asking
the user questions wuntil the goal has been reached or the
consultation fails. During the consultation the system will
acquire facts from the result of questions and these can be
displayed in search mode. In this mode the shell will run
up a Prolog interface so that any Prolog queries can be
entered. It is then possible to list all the facts that
were acquired previously or list the rules that make up the

expert system. This can be useful in, for example, the law
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database to find all offences that carry a maximum fine of
greater than 50 pounds. It can also be used to find all the
possible devices that can be used to boot the VAX. This
provides transparency and limited explanations which were

detailed in the introduction to expert systems.

9.2.3. Booting Expert.

This section describes an expert system developed using
the three-valued Prolog implementation. The expert system
was first developed using standard Prolog but had several
drawbacks. It was then rewritten using the three-valued

system which greatly enhanced its performance.

The expert system contains 20 three-valued rules and 56
two-valued rules about the boot procedure on a VAX 11/750

running UNIX 4.1BSD. This was chosen because :-
(1] there was little help available,

[2] the procedure was non standard because of the non stan-

dard devices attached to the VAX,
[3] there are many’alternative ways to boot,
[4] the possibility of different people rebooting the VAX

[5] and the transfer of knowledge from the domain expert to
the knowledge engineer was avoided since the author was

familiar with the booting procedure.

The original expert system ran into problems when facts
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were added to the database after questions were asked. Ori-
ginally, when a question was answered ‘'yes’ the fact was
asserted. When a question was answered ’'no’ the database
remained unaltered. The problem with this representation is
that there is no distinction between unknown facts and facts
that are known to be false. 1In the expert system this 1is
shown by the repeated asking of the same questiod that was
originally answered 'no’. The expert system therefore needs
a representation of negative facts and must use some form of
three-valued reasoning. In his book, [Forsythl984] recog-
nises the need to add negative facts but does not extend

this idea to incorporate three-valued rules.

The query form of the three-valued system tries to
solve the true query first and then if that fails tries to
solve the false query. This order is acceptable if the
database does not change between the two evaluations. When
used in the expert system, before a query 1is asked both
evaluations must be done before new information is added.
This is achieved by calling the three-valued evaluator (
reval’ ) as a goal of the current clause instead of just for
the top level query. For example

true(poweronaction(P)) :-

eval(fact(poweronaction(P)),State),

check (poweronaction(P),State).
check(poweronaction(P),true) :-

/* the switch is already correct */
check(poweronaction(P),false) :-

/% find old position and request change */

check(poweronaction(P),unknown) :-
/* request switch put in position P */
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The best example of three-valued rules in the booting
expert system 1is the representation of the power-on-action
switch. This switch can be in either the 'boot’ position or
the 'halt’ position. 1Initially the position of the switch
is unknown but when it is needed a question is asked and the
position added to the database. Also in the database is the
three-valued rule

false((fact(poweronaction(halt)) and
fact(poweronaction(boot))}))

This rule allows the system to know the switch is not in the
other position without explicitly asserting the fact. When
the switch is changed the rule can be used to find what must
be retracted before the new switch position can be asserted.
To insure that the data base always remains consisted only
facts are added based on input data. This means that the

retraction of a fact represents a change in the input data

not a change in the rules of the data base.

This type of alteration to the database can be viewed
as learning by instruction. The learning component is given
the required data which is integrated into the database.
The problem solver then uses this new information like any

other information in the database.

The diagram on the next page shows the basic paths that
could be taken by the booting expert to get UNIX running.
Each of the connections between the boxes also carries flag

values which will influence the choices taken later. For
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Boot Path for UNIX

Boot/Halt Local Reset
I I
v v
Boot device Console
— ]
v v v v v
tub8 S.I. up tm tape
1 | |
v v v
tub8 EPROM up EPROM tm toggle
I I |
v v v
tub8 block0 up block 0 tm block 0
| !
v v \Y v
up level 2 tm level 2
I
| |
- I |
v v v v v v

UNIX multi

UNIX single

Other Utils
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example, if the Boot/Halt switch is in the boot position
then when the level two boot is reached it will try to bring
up UNIX in multi user mode. The following is an example
consultation with the ’'boot’ expert system. The consulta-
tion proceeds positively until the level one boot fails from
the TUS58 tape drive. It then starts again trying to auto
boot from the disc drives. This fails to load UNIX properly
so the expert system tries to boot manually. It then suc-
cessfully boots from the TU58 tape. Lines starting ’':' are
reasoning messages.

Example consultation.
Comment added later are between '{}’'.

% prolog2

C-Prolog version 2.0

| 2= [bootl].

bootdevice consulted 11912 bytes 19.5 sec.
bootloader consulted 84 bytes 0.200012 sec.
leveloneboot consulted 292 bytes 0.350008 sec.
leveltwoboot consulted 704 bytes 0.483336 sec.
unix consulted 168 bytes 0.100011 sec.

This demonstration Expert will try to perform the boot
procedure on a VAX 11/750 running UNIX 4.1bsd.

The questions asked should be answered with "yes." or "no."
including the full-stop. When the consultation is finished
the facts acquired during the consultation can be found
using the search mode and the guery "facts".

Do you want to use the expert system for a consultation

or do you want to search for rules.

( consult/search ) ? consult.

Do you want reasoning to be printed ? yes.

: Booting is performed using a boot loader and a two level
process. The boot loader is small program that can read
the first block on the selected device. This program is
either in ROM or typed in by hand.

The first level boot is a program that

is at block zero which can search the root directory on
the device and find a program called "boot". The second
level is this program called boot which can scan the root
directory and load in the UNIX operating system.

Selecting the boot device
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First try to boot automatically
: Set up to auto boot from tu58
Check that the VAX bootstrap tape is loaded in the tu58 tape
drive. Done ? yes.
Check that the power-on-action switch is turned to
boot. Done ? yes.
Check that the Boot Device switch is turned to A. Done ? yes.
Turn Key Switch to local position. Done ? yes.
Reset the VAX using the Reset button. Done ? yes.
Trying to execute a boot loader
Boot loader has succeeded. Now trying to execute a level
one boot program
Check that System Industries controller and drives are
powered up and online. A reset using the reset switch on
the controller will ensure the drives are on line. Done ? yes.
Level one boot has succeeded. Now trying level two boot
Has the following been output: "Boot". Done ? no.
{ The tub8 tape is corrupted 2? }
tub58 auto boot has failed so set up to auto boot
from System Industries drives
The System Industries controller and drives have
already been checked
The power on action switch is correct
Change the Boot Device switch from A to D. Done ? yes.
{ Note that the expert knew the previous switch position }
{ Also switch in position A has been removed }
Key Switch is already in local position
Reset the VAX using the Reset button. Done ? yes.
Trying to execute a boot loader
Boot loader has succeeded. Now trying to execute a level
one boot program
Level one boot has succeeded. Now trying level two boot
Has the following been output: "Boot". Done ? yes.
Has the following been output: ": up(0,0)vmunix". Done ? yes.
Checking that UNIX has been loaded properly by the
level two boot
Has the following been output:
"integer+integer+integer start hexadecimal". Done ? no.
{ UNIX hasn’t loaded properly }
: Auto boot has failed so now try manually
Change the power-on-action switch from boot to halt. Done ? yes.
Key Switch is already in local position
Reset the VAX using the Reset button. Done ? yes.
The console emulator should now be running
First try the tub8
The tu58 tape is already loaded
Set up so that UNIX comes up single user
Type 'B/2 DDAQ' on the console. Done ? yes.
Trying to execute a boot loader
Boot loader has succeeded. Now trying to execute a level
one boot program
The System Industries controller and drives have
already been checked
Level one boot has succeeded. Now trying level two boot
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Has the following been output: "Boot". Done ? yes.
Has the following been output: ": up(0,0)vmunix". Done ? yes.
Checking that UNIX has been loaded properly by the
level two boot
Has the following been output:
"integer+integer+integer start hexadecimal". Done ? yes.
Level two boot has succeeded. Now trying to run UNIX
Is UNIX (single) up and running ? yes.
Do you want to continue. ( yes/no ) ? yes.
Do you want to use the expert system for a consultation
or do you want to search for rules.
( consult/search ) ? search.
[ Break (level 1) ]
| ?- facts.
{ These are the facts learned during the consultation }
true(fact(tub8loaded))
true(fact(keyswitch(local)))
true(fact(uponline))
true(fact(bootdevice(D)))
true(fact(poweronaction(halt)))

—

[1] YES
| 2- “D[ End break (level 1) ]
Do you want to continue. ( yes/no ) ? no.

Prolog execution halted ]

[
B

o

.2.4. Law Expert.

This section contains a description of a law expert
system written to wuse the three-valued Prolog implementa-
tion. [Sergotl982] has explored the prospects of using Pro-
log to represent the law. His initial work is‘to represent
the bare facts but then this is extended to represent norms
of conduct. He presents a system that implements library
regulations which is extended to provide a way of keeping a

consistent data base of facts.

The Expert System was written to investigate the appli-

cability of three-valued Prolog for developing a law expert.
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The raw data was provided in the form of several thousand
statements of law which were created for a data base pro-
gram. A small area from these statement was selected which
dealt with lamps on vehicles and sale of liquor. The two
areas were deliberately chosen to be unconnected. The raw
statements are indexed by several fields containing the type
of the offence, the year of the statute, the maximum fine
etc. The statements also contain text describing the
offence. To illustrate the way these statements were
translated into rules for the expert system an example will
be used. The example is six statements concerning the posi-
tion of lamps on a horse drawn vehicle. The raw data is
972020020500 1050 9731006004012
BY ANY PERSON USING
a horse drawn vehicle whereon the obligatory front lamp
is so fixed that where the vehicle has only one axle
which is behind the axle.
972020020500 1050 9731006004013
BY ANY PERSON CAUSING TO BE USED
a horse drawn vehicle whereon the obligatory front lamp
is so fixed that where the vehicle has only one axle
which is behind the axle.
972020020500 1050 9731006004014
BY ANY PERSON PERMITTING TO BE USED
a horse drawn vehicle whereon the obligatory front lamp

is so fixed that where the vehicle has only one axle
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which is behind the axle.

972020020500 1050 9731006004015
BY ANY PERSON USING
a horse drawn vehicle having more than one axle whereon
the obligatory front lamp is more than 1 ft 6 inches
behind the front axle
972020020500 1050 9731006004016
BY ANY PERSON CAUSING TO BE USED
a horse drawn vehicle having more than one axle whereon
the obligatory front lamp is more than 1 ft 6 inches
behind the front axle
972020020500 1050 9731006004017
BY ANY PERSON PERMITTING TO BE USED
a horse drawn vehicle having more than one axle whereon

the obligatory front lamp is more than 1 ft 6 inches

behind the front axle

Since the statements are already split into three categories

this will form the first set of rules.
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T,F,P,C) if

true((offence(index(N,using),S,I

offenceusing(N,s,I1,T,F,P,C))
true((offence(index(N,permitting
F

)

) T,F,P,C) if
offencepermitting(Nn,s,I1,7,F,P

!

)

,P,C) if

"y —~

true((offence(index(N,causing),S

S
C
4
offencecausing(N,Ss,I,T,F,P,C)))

14
[
I
)).
true((offenceusing(N,S,I,T,F,P,C) if

offenceupc(N,s,I,T,F,P,C) and

query('any person using the vehicle’))).
true((offencepermitting(Nn,s,1,T,F,P,C) if

offenceupc(N,s,I1,T,F,P,C) and

query('any person permitting the vehicle to be used’)

true((offencecausing(N,s,I,T,F,P,C) if
offenceupc(N,s,I,T,F,P,C) and
query(’any person causing the vehicle to be used’}))).

The text of the statements are analysed and split wup into
groups of conditions. This converts the statements into the
following rules.
true((offenceupc(N,s,I1,T,F,P,Ty) if
query(’vehicle horse drawn’) and
wronglampposition(N,s,I,T,F,P,Ty))).
true((wronglampposition(25867,statute(1972,20,205,0),
instrument(1973,1006,4,12), summary,50,none,
['Protection of public safety’,
ravoidance of non-economic injury to offender or others’]) if
query(’'vehicle one axled’) and
query('front lamp behind axle’))).
true( (wronglampposition(25879,statute(1972,20,205,0),
instrument(1973,1006,4,15), summary,50,none,
[’Protection of public safety’,

ravoidance of non-economic injury to offender or others’]) if
query(’'front lamp greater than 1 ft 6 behind front axle’))).

false((fact(’vehicle one axled’) and
fact('more than one axle on vehicle’))).

Note that some constrains are added which will stop the
experf system from asking questions where a mutually

exclusive guestion is true.

Using the shell allows two modes of operations. The

first 1is consultation mode where the user is asked a series
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of question to ascertain whether an offence is being commit-
ted. The second mode of operation is search mode where the
description of offences satisfying several criteria are

printed out.

9.2.4.1. Consultation Mode.

The program starts by printing a menu of the areas that
are available. Execution 1is then continued from the pro-
cedure dealing with the selected area. The procedure scans
all the offences asking questions - wusually 2 or 3 per
offence. It would be totally unacceptable to ask this many
questions in a consultation so the three-valued Prolog

implementation is used. This allows general rules such as

false((fact(’two front lamps’) and
fact(’one front lamp’))).

so that offences involving two front lamps are not con-
sidered if the user has indicated that the car considered in

the consultation has only one front lamp.

9.2.4.2. Search Mode.

In this mode no questions are asked about unknown
information so that all offences can be selected. The
queries are formed using the Prolog syntax with a few user

friendly extensions. An offence has seven fields which are

June 1, 1987



- 149 -

Index, Statute, Instrument, Type,
Fine, Permission and Category

with form
Index - index(Number,Indextype).

Statute - statute(Year,Section,Chapter,Part).
Instrument - instrument(Year,Section,Chapter,Part).

Type - mode of prosecution - summary or crown

Fine - value e.g. 50

Permission - permission for prosecution - none or dpp
Category - category of law - [ Typel, Type2 ... ]

The offence is printed using the routine ’print_text(Index)’

and for relations the following are provided :-

equal, not equal, less_ than, greater than,
less_than or_equal, greater_than_or_equal.

9.2.4.3. Examples.

To find and print all the offences which carry a max-

imum fine of over 50 pounds execute

?- offence(Index,_,_,_,Fine,_,_) and
Fine greater_than 50 and
print text(Index).

As another example find all the offences created in

1972 and print the category associated with each

- offence(_,statue(1972,_,_,‘), , ,_,_,Category).

The following text is output from a consultation to

show the system in operation.

% prolog2
C-Prolog version 2.0
| ?— [consultlaw].
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../shell consulted 2164 bytes 1.15 sec.
law consulted 6660 bytes 3.6 sec.
index consulted 14244 bytes 1.56667 sec.

**x% LAW demonstration program *#*%

Do you want to use the expert system for a consultation
or do you want to search for rules.
( consult/search ) ? consult.
Do you want reasoning to be printed ? yes.
Which area of law is required
frontlamps
liquor
others
Enter option.. frontlamps.
Is front lamp higher than 5 ft ? no.
Is vehicle horse drawn ? no.
Is lamp position not on opposite sides of vehicle ? yes.
Is lamps at different heights ? yes.
Is any person using the vehicle ? no.
Is one front lamp ? no. :
front lamp higher than 5 ft is false
vehicle horse drawn is false
lamp position not on opposite sides of vehicle is true
lamps at different heights is true
Is any person permitting the vehicle to be used ? yes.

It is an offence for any person to permit the use of

a vehicle carrying two obligatory front lamps where they
are not fixed on opposite sides of the vehicle and at the
same height from the ground

Do you want to continue. ( yes/no ) ? yes.

Do you want to use the expert system for a consultation
or do you want to search for rules.

( consult/search ) ? search.

[ Break (level 1) ]

| ?- offence(Index, , , ,Fine, , ) and

| Fine greater than 50 and

| print text(Index).

It is an offence for

a person by himself or by his servant or agent to sell
intoxicating liquor to any person in a licenced canteen
outside the permitted hours

Index = index(14445,statute)
Fine = 100 ;

It is an offence for
a person to consume intoxicating liquor in a licenced
canteen outside the permitted hours

Index = index(14448,statute)
Fine = 100 ;

June 1, 1987



- 151 -

[1] DONT KNOW
| ?- halt.

Prolog execution halted ]

[)
K
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10. Conclusion.

The first part of the thesis presented an implementa-
tion of a 280 Prolog compiler. The Z80 implementation is
both reasonably fast and space efficient. The main advan-
tage over an interpreter is the speed and space improvements
for the resultant code but the disadvantage 1is the time
required to compile the code. If a program has been
developed and tested and will therefore only be compiled
once the overhead is not significant but for development it

would be painful.

The implementation is far from optimum in that it

does not include the following features :-
[1] 1Indexing of clauses

[2] Tail recursive optimisation

[3] Garbage collection

[4] Mode declarations

These improvements are described in

[Warrenl977,Warren1980,Mellishl98l,Bruynooghe1984a].

The new structure sharing method for address wide
machines does not incur excessive time penalties but obvi-
ously a comparative test is necessary to evaluate the rela-

tive time/space trade offs.

One possible improvement for this implementation is the
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incorporation of a global stack reclamation algorithm that
does not use garbage collection. The global stack would be
kept as a doubly linked list of global frames which also
included a link count for each frame. When ever a variable
was unified with an item on the global stack the link count
for the frame used would be increased. This operation would
need to be trailed on a new global trail so it could be
undone on backtrack. When a local frame is discarded by the
determinate exit of the procedure the frame contents would
be scanned to see if any references to global variables are
being discarded. If so the global frame link count would be
decremented. If the count reaches zero the global frame can
be unlinked and returned to the free space list. The dis-
carded global frame would also be scanned to find any glébal
references and the process repeated for any link count

reaching zero.

One problem with this method is the ordering on the
global stack is removed so the test for seniority in unifi-
cation between two global variables is impossible. The link
count guarantees that no dangling references to the dis-
carded frame are left but there is no indication which frame
might be discarded first. One possible solution is ;Hé look
at the link count and assume the frame with the lower 1link
count is more likely to be discarded first. This cannot be

gﬁaranteed so the unification must always be trailed.

The second part of the thesis has presented a three-
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valued Prolog implementation. The modifications necessary
to Prolog are not difficult to implement and the transforma-
tion of rules and fact straightforward. The addition of
false facts to the data base enables the representation of
an open world. This could be used even when relations are
mathematically defined as either true or false such as
raddition’. The values true or false would be given when it
was possible to prove the relation either way and the value
unknown would be given when practical limitations, such as
integer overflow or wunderflow, restrict the calculation.
The system 1is therefore aware of its own limitations and
could try the calculation another way. The wuse of rules
that include either true or false goals overcome some of the
problems of negation by failure when uninstantiated vari-
ables are involved. In IC-Prolog, micro-Prolog, C-Prolog
and York Prolog it is not possible to have a rule of the

form

under(X,Y) :- not on(X,Y).
if either of the variables X and Y are uninstantiated.
Using the three-valued implementation it is possible to have

a rule

true((under(X,Y) or on(X,Y))).
which translates to

true(under(X,Y)) :- false(on(X,Y)).

true(on(X,Y)) :- false(under(X,Y)).

with no restrictions. The two forms are not identical how-
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ever, since the second form is for an open world data base.

The three-valued implementation has also enabled the
use of disjunctive conclusions ( as above ) which makes it
possible to express integrity constraints concisely. Also

the ’'false’ form makes it possible to add clause like

false(switch(on) and switch(off)).

which were previously impossible.

10.1. Further Work.

Based on the two parts of this thesis the further work
falls into two categories both centred around the language
Prolog. The first area is the continued development of the
Prolog compiler by adding more features such as tail recur-
sion and mode declarations. This would be a prerequisite
for developing é non structure sharing compiler to compare
with the offset structure sharing. It would be wuseful to
compare the space-time trade offs for each implementation.
A third compiler could then be developed that required type
declarations so that structures could be treated in a simi-
lar manner to other block structured language ( e.g. PASCAL
). This seems to be where Turbo Prolog gains its good speed
and space performance. It would also be interesting to see
if a hybrid can be developed which will wuse the best
representation possible given a certain type of program with
certain extra information such as types or modes. The

development of an automatic mode declaration program based
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on the work by Mellish could provide a good starting point
for development of an automatic type declaration program.
This would be able to deduce types from limited information
given in the program. This could be augmented by informa-

tion given by the programmer.

From the implementations seen it appears that a useful
standard for module information is necessary. The work by
[Goguenl984] provides useful information about modules and
also indicates that generics could be incorporated. The
standardisation of module interfaces and the provision of
types should ease the interface between Prolog and other

languages.

Further investigation and development is needed on the
automatic global stack reclamation method. This might be
useful for some types of programs but if good mode declara-
tions are provided the amount of stack eligible for reclama-
tion is reduced. The use of this method might be adversely
affected by the use of types in a program and therefore the

method of representing complex structures.

The second area of further work concerns the three-
valued implementation. A full rigorous analysis is needed
for the rule of self-implication. This has been wused suc-
cessfully in the three-valued interpreter but might have
unseen effects in other areas. It is necessary to provided
the distinction between the two possible interpretations but

other methods of deriving a representation of three-valued
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implication might be possible.

The limitations of the system should be investigated
further and analysis of whether these limitations have seri-
ous effects on large expert systems. The two expert systems
developed show that the three-valued implementation can be
used successfully on small projects but usefulness on large
systems has still to be investigated. It might be that the
limitations become unwieldy in large systems and interact in
such a complex way that the knowledge engineer fails to take

the limitations into account.

To aid in the analysis and wusefulness of the three-
valued interpreter it should be made more portable. It

could then be tested with other Prolog implementations.
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Appendix A - Proofs

Proof of
TRUE(A IF B) =
and(or (TRUE(A),not(TRUE(B})),
or (FALSE(B),not(FALSE(A)))
)

{ T = TRUE, F = FALSE U = UNKNOWN }

A B T(A IF B) or(T(Aa), or(F(B), (1) and
not(T(B))) not(F(A))) (2)
(1) (2)
0 0 1 1 1 1
0 w t] 1 0 0
0 1 0 0 0 0
w 0 1 1 1 1
\ % 1 1 1 1
w 1 0 0 1 0
1 0 1 1 1 1
1 w 1 1 1 1
1 1 1 1 1 1
Proof of

FALSE(A AND B) =
and(or(not(TRUE(A)),FALSE(B)),
or(not(TRUE(B)),FALSE(A)),
or(not (UNKNOWN(A)),not (UNKNOWN(B)))

)

‘A B F(A or(¥F(B), or(F{a) or(not(U(A)

[4
AND B) not(T(A))) not(T(B))) not(U(B)))
(1) (2)
0 0 1 1 1 1
0 \ 1 1 1 1
0 1 1 1 1 1
\' 0 1 1 1 1
w \ 0 1 1 0
\ 1 0 1 0 1
1 0 1 1 1 1
1 w 0 0 1 1
1 1 0 0 0 1
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Appendix B - An Evaluator

simple(0)
simple(w).
simple(1l)

eval(not(0),1)
eval(not(w),w).
eval(not(1),0).
eval(not(X),A)

eval (X,Al), eval(not(Al),A).

eval(and(1l,1
eval(and(X,Y),
51mple
eval(and(X,Y),A
simple(x), eval(Y,A2), eval(and(X,A2),A).
eval(and(X,Y),A) :-
eval(X,Al), eval(Y,A2), eval(and(al,n2),A).

(

(
eval(and(l,w

(

(

eval(true(0),0).
eval(true(w),0).
eval(true(l),1l).
eval(true(X),A)
eval(X,Al), eval(true{(Al),A)

eval(and(0,0),0
eval(and(0,w),0
eval(and(0,1),0
eval(and(w,0),0
eval(and(w,w),w
eval(and(w,1),w
eval(and(1,0),0
) W

), 1

A

(

), eval(X,Al), eval(and(Aal,Y),A).

eval(if(0,0) /% 1f defined as A >= B */
eval (i£(0,w)
eval(if(0,1)
eval (if(w,0)
eval(lf(w w)
eval(if(w,1)
eval(lf(l 0)
eval(if(1l,w)
eval (if(1,1)
eval (1f(X,Y),

simple(Y), eval(X,Al), eval(if(al,Y),A).
eval(if(X,Y),a) :-

simple(X), eval(Y,A2), eval(if(X,A2),A).
eval(if(X,Y),A) :-

eval(X,Al), eval(Y,A2), eval(if(Al,A2),An).

/1)
1 0)
0)
1)
1.
,0).
1)
1)
1)
A)
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(PIQ) IA) H
eval(not(and(not(P),not(Q))), A).

eval(false(P),A) :-

eval(true(not(P)),A).

eval (unknown(P) ,a) :-

oner :

twor :

threer :

fourr :

eval(not(or(true(P),false(P))),A).

simple(P), simple(Q),
eval(not(and(not(P),not(Q))), 2),
write(P),

write(Q),

write(2),

nl, fail.

simple(P),
eval(true(not(P)),z),
write(P),
write(2),
nl, fail.

simple(P), simple(Q),
eval{not(or(true(P),false(Q))),Z2),
write(P),

write(Q),

write(2),

nl, fail.

simple(A), simple(B),
eval(and(true(or{true(A),not(true(B)))),
and(true(or(false(B),not(false(a)))),
false(and(unknown(A),unknown(B)))
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fourl :-

simple(A), simple(B),

eval(true(or(A,not(B))),
z),

write(A),

write(B),

write(Z),

nl,

fail.

fiver :-
simple(A), simple(B), simple(C),
eval(and(true(or(true(a),
not{and(true(B),true(C))))),
and(true(or(false(B),
not(and(false(A),true(C))}))),
and(true(or(false(C),
not{and(false(A),true(B))))),
and(false(and(unknown(a),
and(unknown(B) ,not(false(C))))),
and(false(and(unknown(Aa),
and{unknown(C),not(false(B))))),
false(and(unknown(B),
and(unknown(C),not(true(a)))))
)
)

[4

- N e e

write(A
write(B
write(C
write(2
nl,
fail.

Z
)
)
)
)

)
!
’
’
1

fivel :-

simple(A), simple(B), simple(

eval(true(or(A,not(and(B,C)))
Z),

write(A),

write(B),

write(C),

write(2),

nl,

fail.

C),
),

June 1, 1987



- 171 -

sixr :-

simple(A), simple(B),

eval(and(or(true(a), not(false(B))),
and(or(false(A), not(true(B))),
and(or(false(A), not(false(B))),
and(or(true(B), not(true(A)))
and(or(true(B), not(false(d))
and(or{false(B), not(true(A))
false(and(unknown(A) ,unknown(

)
)
),
),

B)))

Z),
write(A),
write(B),
write(2),
nl,
fail.

sixl :-

simple(A), simple(B),

eval(false(or(A,not(B))),
z),

write(A),

write(B),

write(Z),

nl,

fail.

sixe :-
simple(A), simple(B),
eval(false(or(A,false(B))),2),
write(a),
write(B),
write(2),
nl, fail.

sevenr :-
simple(A),
eval(and(false(false(A)),false(unknown(A))),Z),
write(ad),
write(2),
nl, fail.
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eightr :-
simple(A), simple(B),
eval(false(or(and(false(A),unknown(B)),
or(and(false(A),true(B)),
or (and{unknown(A),unknown(B)),
and(unknown(A),true(B))

write(A
write(B
write(Z
nl, fai

(=

niner :-
simple(A), simple(B),
eval(and(or(false(A),not(true(B)}),
and(or{true(A),not(false(B))}),
and(or(false(A),not(false(B))),
not(unknown(B))

)

)y
Z

),
write(A),
write(B),
write(2Z),
nl,
fail.

unknowns :-

simple(A), simple(B), simple(C),
simple(D), simple(E), simple(F),
eval(if(or(or(a,B),C),and(and(D,E),F)),G),
write(d),
write(B),
write(C),
write(D),
write(E),

 write(F),
write(G),
nl, fail.

Evaluator with Dynamic Definition of Implication

simple(0).
simple(w).
simple(1l).
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eval(L,true(0),0)
eval(L,true(w),0)
eval(L,true(l),1)
eval(L,true(X),A)

eval(L,X,

’

eval (L, false(0)
eval(L,false(w)
eval(L, false(1l)

' 1)
,0)
/0)
eval(L,false(X),bA)
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A2), eval(L,true(A2),r), !.

e !
- . .
[
. LI
[
. LY

eval(L,X,A2), eval(L,false(A2),4), !.

eval{(L,not(0
eval(L,not(w
eval(L,not(1l
eval(L,not(X

eval

eval(L,and(0
eval(L,and(0
eval(L,and(0
eval(L,and(w
eval(L,and(w
eval(L,and(w
eval(L,and(1,
eval(L,and(1l,w
eval(L,and(1,1
eval(L,and(X,Y

simple(
eval(L,and(X,Y),A

simple(X),
eval(L,and(X,Y),A)

’
’
14
14
[4
’

)
)
)
)
)
)
)
)
)
)

,A2), eval(L,not(A2),A), !.

!
!
!
!
HE T
!
!
!
!

eval(L,X,Al), eval(L,and(Al,Y),A),

eval(L,Y,A2), eval(L,and(X,A2},4),

eval(L,X,Al), eval(L,Y,A2),
eval(L,and(Al,A2) ,A).

eval([eval(imp(X,Y),Z)|Tail],imp(X,Y),2) := !.
eval([Head|Tail],imp(X,Y),Z) :-
eval(Tail,imp(X,Y),2), !.

eval(L,imp(X,Y),A)
simple(Y),
eval(L,imp(X,Y),A)
simple(X),
eval(L,imp(X,Y),A)

eval(L,X,Al), eval(L,imp(Al,Y),A),

eval(L,Y,A2), eval(L,imp(X,A2),4),

eval(L,X,Al), eval(L,Y,A2),
eval(L,imp(Al,A2),A), !.
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/* implist(A,B,C,D,E,F,G,H,I,
[eval(imp(0,0),4),
eval(imp(0,w),B),
eval(imp(0,1),C),
eval(imp(w,0),D),
eval(imp(w,w) ,E)
eval(imp(w,l),F)
eval(imp(1,0),G)
eval(lmp(l w) H)
eval(imp(1,1),I)

implist(B,D,E,F,H,
/* Defined to be compatible with two-valued imp */
[eval{imp(0,0),1),
eval(imp(O w) B),
eval(imp(0,1)
eval(lmp(w 0)
eval(imp(w,w)
eval(imp(w,1)
eval(imp(1,0)
eval(imp(l,w),
eval(imp(1,1),

1),
ID)’
IE)I
'F)y
' 0),
H),
1)]

).

find implication(Num) :-
ponens(Num,R1,X1,Y1),
tolens(Num,R2,X2,Y2),
syllogism(Num,R3,X3,Y3,23),
selfimp(Num,R4,X4),
write('Defn ), write(R1l), nl,
write(R2), nl, write(R3), nl, write(R4), nl, nl,
simple(A), simple(B), simple(C),
simple(D), simple(E), /* simple(F),
simple(G), simple(H), simple(I),
implist(a,B,C,D,E,F,G,H,I,List), */
implist(a,B,C,D,E,List),
nl, write(List),
check(List,R1,X1,Y1l),
nl, write(’Holds for Modus Ponens’},
check(List,R2,X2,Y2),
write(’, Modus Tolens'),
check(List,R3,X3,Y3,23),
write(’ Sylloglsm )
check(Llst R4,X4),
write(’, Imps’),
fail.

find_implication(Num). /* Finished all possibilities */
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check(List,Rule,X) :-
simple(X),
eval(List,Rule,Z2),
Z ==1, !, fail.

check(List,Rule,X).

check(List,Rule,X,Y) :-
simple(X), simple(Y),
eval(List,Rule,z),
/* write(X), write(Y), write(2), nl, */
Z2 ==1, !, fail.

check(List,Rule,X,Y).

check(List,Rule,Ar,B,C) :-
simple(A), simple(B), simple(C),
/* Law of syllogism */
eval(List,Rule,Z),
z ==1, !, fail.
check(List,Rule,A,B,C).

ponens(l,imp(and(X,imp(X,Y)),Y),X,Y).
ponens(2,imp(and(true(X),true(imp(X,Y))),true(Y)),X,Y).
ponens(3,imp(and(true(X),true(imp(X,Y)}),true(Y)),X,Y).

tolens(l,imp(and(not(Y),imp(X,Y)),
not(X)),X,Y).

tolens(2,imp(and(false(Y),true(imp(X,Y))),
false(X)),X,Y).

tolens(3,imp(and(not(true(Y)),true(imp(X,Y))),
not(true(X))),X,Y).

syllogism(1l,imp(and(imp(A,B),imp(B,C)),
imp(A,C)),A,B,C).

syllogism(2,imp(and(true(imp(A,B)) ,true(imp(B,C))),
true(imp(A,C))),A,B,C).

syllogism(3,imp(and(true(imp(A,B)),true(imp(B,C))),
true(imp(A,C))),A,B,C).

selfimp(l,imp(X,X),X).
selfimp(2,imp(X,X),X).
selfimp(3,imp(X,X),X).

one :- system("date > startl"),
tell(outputl), find implication(1l), told,
system("date >> startl").
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two :- system("date > start2"),
tell(output2), find_implication(Z), told,
system("date >> start2").

three :- system("date > start3"),
tell(output3), find implication(3), told,
system("date >> start3").
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Appendix C - Compiler Output

Source Code

external(sort,get,put,less,var,nonvar,add,userl,user2,user3).
sort(Lo,L) if gsort(Lo,L,nil).

gsort(cons(X,L),R,Ro) if
partition(L,X,Li,Lt) and
gsort(Lt,Ri,Ro) and
gsort(Li,R,cons(X,Ri)).

gsort(nil,R,R).

partition(cons(X,L),Y,cons(X,Li),Lt) if
less(X,Y) and ! and partition(L,Y,Li,Lt).

partition(cons(X,L),Y,Li,cons(X,Lt)) if
partition(L,Y,Li,Lt).

partition(nil,X,nil,nil).

PLM OQutput Code

label(0)

L T e T Y

uatom(
uatom(8,9)
uvatom(9,10)
init(0,0)
localinit(0,0)
neck(0,0)
foot(10)
label(1)
uvar(0,local,0)
uvar(l,local,l)
init(0,0)
localinit(2,2)
neck(2,0)
call(1l1l)
type(0,local,0)
type(l,local,l)
atom(2,12)
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foot(2)
label(3)
uskel(0,4,0)
init(1l,3)
ifdone(5)

uvarl(0,global,l)
uvarl(l,global,2)

label(5)
uvar(l,local,0)
uvar(2,local,l)
init(3,5)
localinit(2,4)
neck(4,5)
call(1l4)
type(0,global,2)
type(l,global,l)
type(2,local,2)
type(3,local, 3)
call(ll)
type(0,local,3)
type(l,global,3)
type(2,local,l)
setupmol(6,4)
call(1ll)
type(0,local,2)
type(1l,local,0)
type(2,global,4)
foot(3)

label(7)
vatom(0,12)
uvar(l,local,0)
uref(2,local,0)
init(0,0)
localinit(1,1)
neck(1,0)
foot(3)

label(8)
uskel(0,9,0)
init(1,3)
ifdone(10)
uvarl(0,global,l)
uvarl(l,global,2)

label(10)
uvar(l,local,0)
uskel(2,11,3)
init(4,5)
ifdone(12)
urefl(0,global,l)
uvarl(l,global, 4)

label(12)
uvar(3,local,l)
init(5,5)
localinit(2,2)
neck(2,5)
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call(4)
type(0,global,l)
type(l,local,0)
cut(2)
call(l4)
type(0,global,2)
type(l,local,0)
type(2,global,d)
type(3,local,l)
foot(4)
label(13)
uskel(0,14,0)
init(1,3)
ifdone(15)
uvarl(0,global,l)
uvarl(l,global,2)
label(15)
uvar(l,local,0)
uvar(2,local,l)
uskel(3,16,3)
init(4,5)
ifdone(17)
urefl(0,global,l)
uvarl(l,global,4)
label(17)
init(5,5)
localinit(2,2)
neck(2,5)
call(1l4)
type(0,global,2)
type(l,local,0)
type(2,local,l)
type(3,global,d)
foot(4)
label(18)
vatom(0,12)
uvar(l,void,0)
uatom(2,12)
uvatom(3,12)
init(0,0)
localinit(0,0)
neck(0,0)
foot(4)
labelc(0)
enter
trylast(0)
labelc(1l)
enter
trylast(1l)
labelc(11)
enter
try(3)
trylast(7)
labelc(14)
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enter
try(8)
try(13)
trylast(18)

label(4)
fn(2,0,13)
var(0,1)
var(l,2)
label(6) :
fn(2,4,13)
var(0,1)
var(1l,3)
label(9)
fn(2,0,13)
var(0,1)
var(1l,2)
label(11)
fn(2,3,13)
var(0,1)
var(l,4)
label(14)
fn(2,0,13)
var{0,1)
var(l,2)
label(16)
fn(2,3,13)
var(0,1)
var(l,4)

Symbol table
external
sort

get

put

less

var

nonvar
add

userl

user?2
user3
gsort
nil
cons
partition

WO-JOoOUMdWNDEFLO

Y el
B WN PO

z80 Output Code

org 02A00H
call start

- 180 -
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jp lbcO
1b0:
1d e,2*0
1d hl,(Lreg)
1d c,savebytes+2%0
call uvarsub
1d e,2*1
1d hl, (Lregq)
1d c,savebytes+2*1
call uvarsub
1d b,savebytes+2%*2
call neck2
call 1bcl0
defb savebytes+2*0
defb VCLreg
defb savebytes+2*1
defb VCLreg
defb 11
defb vatom
1d b,2*2
jp foot
1b2:
1d e,2%0
1d a,2*0
1d bc,1b3
call uskelsub
1d bc,(3-1)*080H*04H+2*1
call initsub
1d hl,(Yregqg)
1d a,h
or 1
jr z,1b4
1d e, 4+42%0
1d hl, (Greg)
1d c,2*1
call uvarlsub
1d e, 4+2*1
1d hl,(Greqg)
1d c,2%*2
call uvarlsub
1b4:
1d e,2*1
1d hl,(Lreg)
1d c,savebytes+2*0
call uvarsub
1d e, 2%2
1d hl,(Lreg)
1d c,savebytes+2*1
call uvarsub
1d bc,(5-3)*080H*04H+2%*3
call initsub
1d bc,(4-2)*080H*04H+savebytes+2*2
call localinitsub
1d b,savebytes+2*4
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1b6:

1b7:
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1d c,2*5

call neck

call 1bcl3

defb 2*2

defb VCGreg

defb 2*1

defb VCGreg

defb savebytes+2*2
defb VCLreg

defb savebytes+2#*3
defb VCLreg

call 1bcl0

defb savebytes+2#*3
defb VCLreg

defb 2#*3

defb VCGreg

defb savebytes+2*1
defb VCLreg

1d e, 2*4

1d bc,1b5

call setupsub

call 1bcl0

defb savebytes+2#*2
defb VCLreg

defb savebytes+2*0
defb VCLreg

defb 2%4

defb VCGreg

1d b,2*3

jp foot

1d e,2%0

1d bc,Vatom*0FFH+Vatom+11l
call uatomsub

1d e,2*1

1d hl,(Lregq)

1d c,savebytes+2*0
call uvarsub

1d hl,(Lreg)

1d e,savebytes+2*0
1d b,2*2

call urefsub

1d b,savebytes+2*1
call neck2

1d b,2%3

jp foot

1d e,2%0

1d a,2*0

1d bc,1b8

call uskelsub

1d bc,(3-1)*080H*04H+2*1
call initsub

1d hl,(Yreqg)
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1d a,h

or 1

jr z,1b9

1d e,4+2%0

1d hl,(Greq)

1d c,2*1

call uvarlsub

1d e, 4+2*1

1d hl,(Gregqg)

1d c,2*2

call uvarlsub
1b9:

1d e,2%*1

1d hl,(Lreg)

1d c,savebytes+2*0

call uvarsub

1d e,2*3

1d a,2*2

1d bc,1blo0

call uskelsub

1d bc,(5~4)*080H*04H+2*4

call initsub

1d hl,(Yregqg)

1d a,h

or 1

jr z,1lbll

1d hl, (Greg)

1d e,2*1

1d b,4+2*0

call ureflsub

ld e,4+2*1

1d hl,(Greg)

1d c,2*4

call uvarlsub
1blli:

1d e,2*3

1d hl,(Lreg)

1d c,savebytes+2*1

call uvarsub

1d b,savebytes+2*2

1d c,2*5

call neck

call 1lbc3

defb 2*1

defb VCGreg

defb savebytes+2*0

defb VCLreg

1ld e,savebytes+2*2

call cut

call 1lbcl3

defb 2*2

defb VCGreg

defb savebytes+2*0

defb VCLreg
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defb 2%*4

defb VCGreg

defb savebytes+2*1

defb VCLreg

1d b,2*4

jp foot
1bl2:

1d e,2*0

1d a,2*0

1d bc,1bl3

call uskelsub

1d bc,(3-1)*080H*04H+2*1

call initsub

1d hl, (Yregq)

1d a,h

or 1

jr z,1bl4

1d e,4+2*0

1d hl, (Greg)

l1d c,2*1

call uvarlsub

1d e, 4+2*1

1d hl, (Gregqg)

1d c,2%2

call uvarlsub
1bl4:

1d e,2*1

1d hl,(Lreqg)

1d c¢,savebytes+2*0

call uvarsub

1d e,2%2

1d hl,(Lregqg)

1d c¢,savebytes+2*1

call uvarsub

1d e,2%3

1d a,2*3

1d bc,1bl5s

call uskelsub

14 bc, (5-4)*080H*04H+2*4

call initsub

1d hl,(¥Yreq)

1d a,h

or 1

jr z,1blé

1d hl,(Greg)

1d e,2*1

1d b,4+2%0

call ureflsub

1d e, 4+2*1

1d hl,{(Greg)

1d c,2*4

call uvarlsub
1blé6:

1d b,savebytes+2*2
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1d c¢,2#*5
call neck
call lbcl3
defb 2*2
defb VCGreg
defb savebytes+2*0
defb VCLreg
defb savebytes+2*1
defb VCLreg
defb 2*4
defb VCGreg
id b,2*4
jp foot
1bl7:
1d e,2%0
1d bc,vatom*0FFH+Vatom+11
call uatomsub
1d e,2%2
1d bc,vVatom*0FFH+Vatom+11
call uatomsub
1d e,2*3
1d bc,vVatom*0FFH+Vatom+11
call uatomsub
1d b,savebytes+2*0
call neck2
1d b,2%4
jp foot
1bcO:
pop hl
1d (CPreg),hl
call enter
call trylastsub
jp 1b0
1bclO:
pop hl
14 (CpPreq),hl
call enter
call 1lb2
call trylastsub
jp lbé
1lbcl3:
pop hl
1d (CPreg),hl
call enter
call 1b7
call 1bl2
call trylastsub
jp 1lbl7
symtbl:
defw 1b18
defw 1bl9
defw 1b20
defw 1b21
defw 1b22
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1b18:
1b19:
1b20:
1b21:
1b22:
1b23:
1b24:
1b25:
1b26:
1b27:
1b28:
1b29:
1b30:
1b31:

1b3:

1b5:

defw
defw
defw
defw
defw
defw
defw
defw
defw
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb
defm
defb

1b23
1b24
1b25
1b26
1b27
1b28
1b29
1b30
1b31
"sort’
00H
Igetl
00H
Iputl
00H
"less’
00H
'var’
00H
"nonvar'’
00oH
radd’
00H
'userl’
00H
"user2’
00H
"user3’
00H
"gsort’
00H
'nil’
00H
"cons’
00H
'partition’
00H

org 08000H

defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb

12
Vskel
2*0

2

2*1
V¥reg
2%2
VY¥reg

12
Vskel
2*%4

2

2%1
VYreg
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1b8:

1b10:

1b13:

1bl5:

defb
defb

defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
defb
defb

2%3
VY¥reg

12
Vskel
2*%0

2%1
V¥reg
2*%2
VY¥reg

12
vskel
2%3

2%

VY¥reg
2%4
VYreg

12
Vskel
2*%0

2%1
VY¥reg
2%2
V¥reg

12
Vskel
2%3

2%1
VY¥reg
2%4
VY¥reg
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Appendix D - LIPS test program

Date: Wed, 5 Mar 86 14:23:09 -0100
From: Micha Meier <unidolecrcvax!Micha@seismo.CSS.GOV>
Subject: LIPS again

The speed of the current Prolog systems is still meas-
ured using the naive reverse example with a list of 30 ele-
ments. I guess that anybody who has tried this with a system
that runs over 10 kLIPS has seen the inconvenience - the
time spent in executing this example is too short to be
measured correctly. The other drawback is that many imple-
mentors concentrate on optimising this very example and the
like, i.e. deterministic procedures processing lists and the
results for other types of programs may be totally different
(e.g. there is a Prolog system running 'quicksort’ 20 times
slower than ’'nreverse’).

Below, I include the listing of a test program which
tries to solve these problems: first, it includes a pro-
cedure which measures LIPS on naive reverse of an arbitrary
list. Second, a procedure that measures LIPS on quicksort
of a list in descending order; third, measuring of LIPS by

quicksort of an ordered list. I suppose that indexing
prevents choices in concatenate and in partition([], _, _.
_).

The first case is purely deterministic - no choice

points and no failures.

In the second case, the number of inferences |is
o(n*n/2) and the same for choice points created. In the last
example, the number of inferences is o(n*n}), for choices
and failures it is o(n*n/2).

The quicksort example better reflects the speed of a
Prolog system: it creates some choice points, uses the cut
and calls an evaluable predicate. When the implementors try
to optimise the first clause for ’'partition/4’ to yield
something like
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partition([{X|L], Y, [X|L1l], L2) :-
X <Y, !, partition(L, Y, L1, L2).

get list Al

unify variable X5
unify variable X1
get list A3

unify value X5
unify variable A3
put value X5, Al
escape </2

neckcut

execute partition/4

then the whole system is likely to run fast even on
deterministic examples with some arithmetic.

non-

—— Micha

% File LIPS.PL

% Author : Micha Meier

% Purpose Testing the speed of naive reverse and quicksort
% of an arbitrary long list.

% On systems without reals it is necessary to

% multiply I (inferences no.) by the time unit,

% e.g. 1000 if cputime is in milliseconds.

test :— write(’list length : "),

read(X),

conslist(X, List}),

Tl is cputime,
nreverse(List, ),

T2 is cputime,

T is T2 - T1,

I is (X*(X+3))/2 + 1,
LIPS is I/T,

write(’ LIPS of naive reverse: "y,
write(LIPS),

nl, :

T3 is cputime,
gsort(List, , L),

T4 is cputime,

TT is T4 - T3,

IT is (X*(X+5))/2 + 1,
LIPSl is II/TT,

write(’ LIPS of quicksort (reverse order): '),
write(LIPS1),
nl,

T5 is cputime,
gsortl(List, , [1]),
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T6 is cputime,

TTT is T6 - Th,

ITI is (X+1)*(X+1),

LIPS2 is III/TTT,

write(’ LIPS of quicksort (ordered):
write(LIPS2),

nl.

nreverse([1, []1).
nreverse([X|LO],L) :- nreverse(LO, L1),
concatenate(L1l, [X], L).

concatenate([], L, L).
concatenate([X|L1], L2, [X|L3)) :- concatenate(Ll,
conslist(0, []) :- !
conslist(N, [N|L]) :-
Nl is N-1,
conslist(N1l, L)

gsort([X|L], R, RO) :-
partition(L, X, L1, L2},
gsort(L2, R1, RO),
gsort(Ll, R, [X]|R1l]).
gsort([], R, R).

partition({x|L], Y, [X]|Ll], L2) :-
X <Y,
]
partition(L, Y, L1, L2).
partition([X]|L], Y, L1, [X|L2]) :-
partition(L, Y, L1, L2).
partition((], _, [1, []).

gsortl([X|L], R, RO) :-
partitionl(L, X, L1, L2),
gsortl(L2, R1l, RO),
gsortl(Ll, R, [X|R1l]).
gsortl(l1, R, R).

partitioni([X|L], Y, [X|L1l], L2) :-
X >Y,
1
partition(L, ¥, L1, L2).
partitionl([X|L], Y, L1, [X|L2]) :-
partitionl(L, Y, L1, L2).
partitionl([1, _, [1, [1).
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