
A decision support systems shell in Prolog

van Hee, K.M.; Nuijten, W.P.M.

Published: 01/01/1990

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Hee, van, K. M., & Nuijten, W. P. M. (1990). A decision support systems shell in Prolog. (Designing decision
support systems notes; Vol. 9001). Eindhoven: Technische Universiteit Eindhoven.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Jan. 2018

https://pure.tue.nl/en/publications/a-decision-support-systems-shell-in-prolog(821cffea-60a0-4e00-89d7-139cffe5fe43).html

Editors: proLdr. K.M. van Hee
prof.dr. H.G. Sol

A DECISION SUPPORT SYSTEMS
SHELL IN PROLOG

by

K.M. van Hee
W.P.M. Nuijten

NFl 11.90/01

f':INDHOVEN UNIVERSITY OF TECHNOLOGY
F. du Buisson
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN

.Il1li 1990

K.M. van He£'
Eindhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

W.P.M. Nuijten
Eindhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

A Decision Support Systems Shell In Prolog

ABSTRACT

K.M. van Hee and W.P.M. Nuijten
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Many operational planning problems can be considered as searching for an element in a
finite set. Classical approaches lead to sophisticated combinatorial optimization
algorithms that exploit a lot of the structure of the decision situation. Often these
systems are not easy to adapt to new constraints on solutions imposed by the decision
makers.
Our approach is to use general search methods that are easy to adapt in case of new
constraints. In general they give less good solutions but are more robust for new
constraints. A general-purpose search shell based on these search methods is sketched
using Prolog. As an illustration two examples are given: the travelling salesman
problem and precedence constrained scheduling.

1. Introduction

We use a well-known paradigm of systems theory cf. Checkland (1981) where
there are two communicating systems, one to be controlled, called target or object
system, and a control system, often called the information system. The target system
sends status information to the information system and the information system sends
decisions to the target system. The term 'decision' is used for a unit of information. A
decision might be a simple control action that influences the target system for a short
period of time, or a set or sequence of such actions that controls the target system for a
longer period of time. An example of the last case is a production schedule or a route
plan. There are at least two protocols for the communication between target and
information system: one where the information system sends periodically new decisions
to the target system and one where the information system only sends new decisions if
the observed state of the target system satisfies some condition. It is clear that in

general two successive decisions are dependent. For instance if the decision is a
production schedule the next decision might be an adaptation of the foregoing Olll·.

Although decision making is a process, we consider only the production or one
decision.
A decision support system (DSS) is an automated part of an information system that
assists users in making decisions by:

performing data management functions,
evaluating the effects of user proposed decisions,

- generating decisions that satisfy some user defined conditions.
The evaluation function can be divided into two parts: verification whether the user
proposed decision is allowed and a computation of quality measures for allowable
decisions.
The generation function may also be split into several parts varying from stepwise
development of a decision, where the user may choose in each step from a finite set or
computed alternatives, to a fully automatically computed decision.
Our definition of a DSS is more restrictive than others, cf. for instance Keen and Scott
Morton (1978). As advocated in Eiben and van Hee (1990) a DSS should be developed
in the evolutionary style. This means that first the data management functions are
developed, then the verification function, then the other evaluation functions, then the
stepwise generation support and finally the automatic generation of decisions. In this
approach the users experience with the system evolves simultaneously with the
functionality of the system.
Many DSS's for opemtional planning are based on sophisticated algorithms that rely on
specific properties of the decision situation. For instance the simplex algorithm requires
the object function and all constraints to be linear, algorithms for job shop scheduling
may require that for each task there is only one possible machine available etc .. In
many practical situations however the requirements of these algorithms are often not
satisfied. Even if they are satisfied at the time the DSS was developed, they may be
unsatisfied later due to changes in the decision situation. For DSS's for tactical or
strategic decision making this phenomenon is not so severe. In these cases a DSS often
considers a simplification of the real situation and the proposed decisions are of a rather
global nature such as the capacity of storage space or the number of vehicles. In
operational decision making however it is unacceptable that a DSS suggests an
unexecutable decision or a decision that does not exploit all possibilities the decision
maker has.
Although specialized algorithms may find optimal solutions in case all requirements are
fulfilled we advocate to use a more robust approach that sometimes gives less good
decisions but that guarantees the proposed decisions to be executable. In Van Hee and
Lapinski (1989) an abstract machine for decision making that could easily be adapted to
new restrictions in the decision situation is presented. In Eiben and van Hee (1990) a
method for obtaining robust DSS's based on graph search methods is introduced. The
method was described for resource constrained project scheduling. Here we generalize
the method a bit and describe how it can be implemented in Prolog to obtain a DSS
shell. The shell can be used to create specific DSS's for specific situations. If the
situation changes one can easily generate a modified DSS.
In the shell there is generic knowledge: this knowledge or code will be part of all
systems composed with the shell. This part has to be defined by the designer of the
sheIL Then there is a part of the knowledge that is fixed for a problem type, this is
called domain knowledge. This part has to be defined by the DSS -expert. The third

2

part of knowledge is dependable on the instance of the decision situation and can be
defined by the user or decision maker (instance knowledge). This part is not restricted
to factual knowledge as usually is the case but it also concerns rules such as restrictions
on decisions and goals to be met.
The paper is organized as follows. In section 2 a method for the construction of DSS's
is sketched. In section 3 a Prolog implementation of the generic knowledge of the shell
is given. In section 4 we consider two problem types to illustrate how the domain
knowledge can be defined. Finally in section 5 we sketch the architecture of the shell.

2. Method for the construction of DSS

In this section a method for the construction of DSS's is sketched.
The first step to be made by a DSS -expert is defining what the set of candidate
solutions is, i.e. the set C in which a solution is searched. Observe that 'candidate' is a
wider definition than 'solution': a solution is a candidate satisfying certain conditions.
Searching is performed on the basis of a row of candidates. This list is called the search
state of the search process. The next step is the definition of a binary relation N on the
candidates. This relation is called the neighbourhood relation. Only candidates that are
neighbours of candidates already in the search state are considered. So our search
methods are local search methods (cf. Papadimitriou and Steiglitz (1982».
Requirements for a neighbourhood could be:
- a neighbourhood should not be too large,
- a neighbourhood should be easy to generate,
- from a starting point every candidate should be reachable through the neighbourhood

relation.
Next a goal is defined, i.e. a predicate on the candidates defining which candidates an;
solutions. Also some additional constraints on candidates can be defined. Formally these
additional constraints are represented by a predicate feasible on the candidates (a
candidate satisfying the constraints is called feasible). These goal and feasibility
predicates should be definable by the user (instance knowledge). The feasibility
predicate is used to filter the neighbours and eliminating all non - feasible neighbours.
So in effect by using the feasibility predicate search can be restricted to any subset of
the set of candidates. We remark that the use of a feasibility predicate often is
recommended as in general the set of candidates is far too large. As the feasibility
predicate is easily redefined it gives our search methods a great deal of flexibility.
A search step is a transition of the current search state to a new search state. This is
done by:

selecting a candidate p from the current search state,
- generating all neighbours of p,
- eliminating all non -feasible neighbours,
- updating the search state from the old search state and the feasible neighbours, Le.

determining which candidates are to be maintained in the new search state and in
what order.

The first step is standardized: always select the first candidate.
A search method is an iteration process of search steps. The search process continues
until a solution is found. Formally this can be described as follows.

3

* Let S = C (the set of all finite rows from C) be the search state space and T : S S
the transition function (defining the search steps). We remark that for the sake of
convenience we sometimes treat elements of S (rows) as sets. With s E S it holds that
T(s) is a permutation of a subset of s u {c Eel 3 dEs: (d,c) E N A feasible(c) },
i.e. T(s) is a permutation of a subset of all candidates in search state s joined with all
feasible neighbours of all candidates in s. A search method can be described by a search
function F : S --l S which is defined as follows, with s E S:

F(s) = F(T(s»
F(s) = s

if 'V pes: ..., solution(p),
if 3 pES: solution(p).

Let A be defined by A = (S E S I :3 pes: solution(p) }, let Tn(s) be defined by

Tn(s) = T(Tn-\s» and TO(s) = s for n e IN, and let So be some starting search state in S.

In case for all n E IN, Tn(so) ~ A holds, F(so) is undefined. In that case, since S is finite,

the sequence Tn(so) has to be periodically, i.e. for some p e IN and all n E IN:

Tn+P(so) = ~(so)·
However if F is defined for So then F(so) is totally specified by T.

3. A Prolog implementation of the generic knowledge

In this section a Prolog implementation of the generic part is given. A background
knowledge of Prolog is therefore presumed (cf. Schnupp and Bernhard (1986». As
stated in section 1 we are developing DSS's based on graph search methods. A
component of a graph search method is the search strategy. At the end of this section
some examples of search strategies are given. By treating the generic knowledge
components of the domain knowledge and the instance knowledge will be encountered.
We state that in general a search method consists of an initialization step followed by
zero or more search steps. We define the state of a graph search method to be a list of
candidates that could be used for further searching (see section 2). The foregoing is
reflected by the Prolog - rule:

solve:
initialize(State!),
search_Ioop(S tate ?).

The? (input) and! (output) notation is borrowed from the specification language Z (cf.
Spivey (1989». Suffixing a variable with? means that the variable needs to have a
value when the predicate is invoked. Suffixing a variable with ! means that if all input
variables have a value a new value for this output variable is calculated. The notation
has no further meaning: State? and State! both address the same variable.

4

The predicate initialize produces an initial list of candidates and is to be defined by the
user (instance knowledge).
The predicate search_loop performs zero or more search steps. Searching is stopped if
at least one solution is encountered in the present search state. If so all solutions in the
search state are displayed. If no solution is encountered a search step is performed
yielding a new search state and the search process continues with that new search state.

search_loop(State?) :­
goal(State?),
display _solutions(State?).

search_Ioop(State?) :­
search_step(State?, NewState!),
search_Ioop(NewState?).

Notice that:
- goal checks whether there is a solution in State,
- display_solutions displays all solutions in State.

The predicates goal and display _solutions use the predicates solution and display. The
predicate solution defines which candidates are solutions by checking whether the value
of some evaluation function on the candidates is below a certain boundary. Without loss
of generality we assume the better a candidate is the less its value is. Observe that a
special form of the goal predicate is used here. We state the general format for solution
to be:

solution(Candidate?) : -
eval(Candidate?, Value!),
Value <= boundary.

where
- eval is an user defined evaluation function on the candidates,
- boundary is a user defined constant.
The predicate display displays a candidate and is to be defined by the DSS -expert
(domain knowledge).

goal([Cand I Cands]?) :­
solution(Cand?).

goal([Cand I Cands]?) : -
not(solution(Cand?)),
goal(Cands?).

display _solutions([]).

display_solutions([Cand I Candsj?) :­
not(solution(Cand?)),
display _solutions(Cands?).

5

display_solutions([Cand I Cands]?) :­
solution(Cand?),
display(Cand?),
display _solutions(Cands?).

We remark that the goal predicate can be expanded with a parameter valued with the
current time. Herewith we enable the user to control the computation time of the search
process. We suppose that after the search process is stopped because the time limit was
exceeded the user decides whether to continue the search process and if so may update
the current search state (e.g. delete, change or produce new candidates). In that wayan
interactive DSS is yielded. For the sake of convenience we omit the elaboration of this
idea.

The predicate search_step calculates a new search state form the old one by
- selecting the first candidate in the present search state for further search,
- generating all neighbours of the selected candidate by means of the predicate

generate to be defined by the DSS -expert (domain knowledge),
- removing all non -feasible neighbours by means of the predicate filter,.
- finally calculating a new search state from the feasible neighbours and the old search

state by means of the predicate update.

search_step([Cand I State]?, NewState!) :­
generate (Cand?, Neighbours!),
filter (Neighbours?, FeasibleNeighbours!),
update (FeasibleNeighbours?, [Cand I State]?, NewState!).

Note that both generate and filter may produce an empty list of candidates.

The predicate filter uses the user defined predicate feasible which defines the feasible
candidates (instance knowledge). This gives the problem solving method its flexibility
(see section 2).

filter([],[J).

filter([X I Y]?, [X I Z]!) :­
feasible(X?),
filter(Y?, Z!).

filter([X I Y]?, Z!) :-
not(feasible(X?»,
filter(Y?, Z!).

The predicate update defines the search strategy. There is a library of
'update -predicates' all defining a search strategy of which the user may choose one (see
end of this section).

6

In conclusion the following components are to be defined by the DSS -expert (domain
knowledge):
- a neighbourhood relation of candidates: generate.
- a procedure for presenting a solution: display.
The user has the following components to control the search process:
- a procedure for making an initial set of candidates: initialize,
- a predicate defining the feasible candidates: feasible,
- an evaluation function eval on candidates together with a boundary,
- a search strategy (an update predicate).

Above made partitioning is arbitrary. By shifting more components to be defined by the
DSS -expert the level of abstraction is enhanced. By shifting more components to be
defined by the user flexibility is gained, but the user has to have more domain
knowledge.
A so far untreated aspect of instance knowledge is background data. This data is used in
the other predicates. We here state that the DSS -expert should define a format for all
data and possibly provide a tool for data manipulation.

Next we define five 'update -predicates' each describing a search strategy (cf. Pearl
(1971) for the first four strategies). An update predicate determines which candidates
from the current search state and the feasible neighbours are to be maintained in the
next search state and in what order.

Depth - first search

By appending all feasible neighbours to the front end of the old search state after
deleting the first candidate and taking the result as the new search state depth - first
search is yielded. The predicate append is a system predicate putting its first argument
in front of its second argument obtaining its last argument.

update(FeasibleNeighbours?, lCand I Statej?, NewState!) :­
append(FeasibleNeighbours?, State?, NewState!).

Observe that as the list of feasible neighbours can be empty backtracking is enabled.

Breadth - first search

By appending all feasible neighbours to the end of the old search state after deleting the
first candidate and taking the result as the new search state breadth -first search is
yielded.

update(FeasibleNeighbours?, [Cand I State]?, NewState!) :­
append(State?, FeasibleNeighbours?, NewState!).

Best - first search

By first appending all feasible neighbours to the old search state after deleting the first
candidate and then sorting all candidates in the resulting search state best - first search is
yielded. Sorting is done according to the eval predicate: candidates with the lowest

7

'eva/-values' (the best candidates) are placed at the beginning of the search state.

update(FeasibleNeighbours?, [Cand I State]?, NewState!) :­
append(FeasibleNeighbours?, State?, TempState!),
sort(TempState?, NewState!).

Hill climbing

By first sorting all feasible neighbours and then appending the sorted neighbours to the
front end of the old search state after deleting the first candidate hill climbing is
yielded. Here sorting is also done according to the eval predicate (see best - first search).

update(FeasibleNeighbours?, [Cand I State]?, NewState!) :­
sort(FeasibleNeighbours?, SortedNeighbours!),
append(SortedNeighbours?, State?, NewState!).

Simulated Annealing

The following definition of update yields simulated annealing cf. Aarts and Korst
(1989). Simulated annealing is a randomized search strategy where the search state
always contains exactly one candidate. Randomly a neighbour is generated. Let vain be
the value of this neighbour and vale the value of the original candidate. Whenever the
neighbour is not worse (vain::; vale) it is accepted as the next candidate with which the
search is continued. If the neighbour is worse (vain> vale) it is accepted with chance

(vale - vaIn)
exp c

where c E IR+ is a constant. If the neighbour is not accepted the process continues by
again randomly generating a neighbour etc.

Here the update predicate is an invokement of the predicate sima.

update(FeasibleNeighbours?, [Cand]?, [NewCand]!) :­
sima(FeasibleNeighbours?, Cand?, seed?, NewCand!).

where seed is a randomly obtained integer (we assume the availability of a random
number generator) used for the randomization of simulated annealing.
The predicate sima uses the predicates:

length(A,L) where L becomes the length of list A (a system predicate),
take(P,L,E) where E becomes the element in list L on place P.

Observe that the in sima used functions exp and I are yet to be defined (as predicates !).
This assumes the availability of real arithmetic. There are Prolog versions with real
arithmetic. If one does not have such a version, real arithmetic can be simulated by
integers. We remark that a, b, c en m are constants.

8

sima(FeasibleNeighbours?, Cand?, Seed?, New!) :­
length(FeasibleNeighbours?, U),
Place is «a '" Seed + b) mod L) + I,
take(Place, FeasibleNeighbours?, New!),
eval(New?, Rn!),
eval(Cand?, Rc!),
Seedl is (a'" Seed + b) mod m,
exp«Rc - Rn) / c) >= Seedl / m.

sima(FeasibleNeighbours?, Cand?, Seed?, NewCand!) :­
length(FeasibleNeighbours?, U),
Place is «a * Seed + b) mod L) + 1,
take(Place, FeasibleNeighbours?, NewTry!),
eval(NewTry?, Rn!),
eval(Cand?, Rc!),
Seedl is (a * Seed + b) mod m,
exp«Rc - Rn) / c) < Seedl / m,
NewSeed is (a * Seed1 + b) mod m,
sima(FeasibIeNeighbours?, Cand?, NewSeed?, NewCand!).

take(1, [Cand I Cands]?, Cand!).

take(Place?, [Cand I Cands]?, CandRes!) :­
Place> 1,
PlaceMin 1 is Place - l,
take(PlaceMinl?, Cands?, CandRes!).

4. Examples of domain and instance knowledge

In this section the predicates that (in section 3) were left to be defined by the
DSS -expert and the user are defined for the Travelling Salesman Problem (TSP) cf.
Lawler, Lenstra, Rinnooy Kan and Shmoys (1985) and Precedence Constrained
Scheduling (PCS) cf. Garey and Johnson (1978).

4.1 The Travelling Salesman Problem

We start with a mathematical description of the problem type. Let
- C be a finite set of cities and N = 1 C I.

- dist: C x C ---) lR~ be a function denoting the distance between cities.

A route is a bijection r : (l, .. ,N} ---) C : a permutation of all cities. Let R be the set of
all routes.

9

The function length : R ---+ IR is defined for every r E R:
N-I

Iength(r) = 2. dist(r(l),r(i+l» + dist(r(N),r(l)
i == 1

denoting the length of a route.

A route with its length below a certain boundary is what we are looking for.

In Prolog the function dist is represented by a set of facts dist(cJ ,e2 ,d) where d is the
distance from cJ to e2.
The next question is the representation of routes in Prolog. We decide to represent a
route by a list.
The neighbourhood of a route is chosen to be all routes generated by switching two
adjacent cities (with exception of switching the first and the last city). Remark that we
assume a route to be given. This implies that initially at least one route must be present
in the search state. The predicate generate uses the predicate hgenerate. The latter has
two input arguments:
- the first is a begin part of the original route,
- the second is a end part of the original route.
h holds that by appending the begin part at the front end of the end part the original
route is yielded. A neighbour is produced by switChing the first two cities of the end
part and then appending the begin part at the front end of the thus generated list.
Furthermore the first city of the end part is appended at the end of the begin part
yielding the new begin part. The same city is then deleted from the end part.

generate(Route?, Neighbours!) :
hgenerate(Route?,[],Neighbours!).

hgenerateL, [City] ?,U).

hgenerate(BeginPart?, [City}, City2 I EndPart]?, [Neighbour I Res]!) :­
append(BeginPart?, [City2, Cityl I EndPart]?, Neighbour!),
append(BeginPart?, [Cityl]?, BeginPartNew!),
hgenerate(BeginPartNew?, [City2 I EndPart]?, Res!).

We remark that this is not the only possible neighbourhood or even the best possible.
Another example of a TSP neighbourhood is one containing all 2 -changes of cities and
not just the 2 -changes of adjacent cities.

After this 'expert part' (domain knowledge) the components to be defined by the user
are treated. We evaluate a route by its length (the predicate last picks the last element
of a list):

eval([First I Tail]?, Value!) :­
last(Tail?, Last!),
dist(Last?, First?, X!),
heval([First I Tail]?, Dist),
Value is Dist + X.

10

heval([City]?,OI).

heval([Cityl, City2 I Tail]?, Dist!) :­
heval([City2 I Tail]?, DistRest!).
dist(Cityl?, Chy2?, Xl),
Dist is DistRest + X,

Any initialize predicate yielding a route will do.
The user can state that all routes are feasible. This would result in the following
definition of feasible:

feasible(Route?).

Of course any of the treated search strategies can be chosen.

4.2 Precedence Constnlined Scheduling

Again we start with a mathematical description. Let
- M be a finite set of machines,
- J be a finite set of jobs,
- able ~ M x J such that (m,j) E able means machine m can perform job j,

pre ~ J x J such that U',j) E pre denotes that j' should be completed before j is started
U' is a predecessor of j),

- dur: able -l IR~ such that dur(m,j) denotes the amount of time needed by machine m

to perform job j.

In a schedule jobs are attributed by machines and beginning times, that is a schedule is
a pair (m,b) of partial functions, where

dom(b) = dom(m),
- m: J -H M is such that v j E dom(m) : (mU),j) E able,

- b: J -H IR~ is such that

all jobs have their predecessors ready:
V j E dom(b) V j' E J : U',j) E pre ~ j' E dom(b) AbU') + dur(mU'),j') ~ bU),

- the processing of two jobs on the same machine can not overlap:
V j,j' E dom(b) :

mU) = mU') A j :f. j' ~ bU) ;;:: bU') + dur(mU'),j') V bU') ;;:: b(j) + dur(m(j),j)

Let S be the set of all schedules.

The function c : S -l IR~ is defined for every (m,b) E S:

c«m,b» = max { bU) + dur(mU),j) I j E dom(m) },

denoting the completion time of a schedule.

11

A complete schedule is a schedule (m, b) E S where all jobs are scheduled, i.e. dom(m)
= dom(b) = J. A complete schedule with its completion time under a certain boundary is
what we are looking for.

In Prolog the set of jobs is represented by the fact jobs(joblist) where joblist is a list of
all jobs. The set of machines is represented by the fact machines(machinelist) where
machinelist is a list of all machines. The set able is represented by a set of facts
able(job, machinelist) where machine list is a list of all machines on which job can be
performed. The set pre is represented by a set of facts pre (job , preds) where preds is a
list of all predecessors of job. The function dur is represented by a set of facts
dur(mach, job, d) where d is the duration of job on machine mach. All this is
background knowledge.
We represent schedules by a list of operations. An operation is a term
operation(job, mach, bt, ct) where mach is the machine on which job is performed, bt is
the beginning time and ct the completion time of job.
We state a job on a machine only to be added to a schedule with its beginning time
equal to the maximum of:
- the maximum completion time of any job on the same machine,
- the maximum completion time of any predecessor of the job.
The neighbourhood of a schedule is chosen to be those schedules generated by
extending the schedule with one job on a machine that has the earliest possible
beginning time among the beginning times of all job-machine combinations. Norl: that
if more jobs can be started at the same time more neighbours will be generated. To
generate all neighbours we first determine which unscheduled jobs have all predecessors
scheduled. Next we determine which operations have the earliest beginning time. After
that we construct the neighbours by appending all found operations to the original
schedule each yielding a new schedule. All this is reflected by the following definition
of generate:

generate(Schedule?, Neighbours!) :­
all_preds_sched(Schedule?, Jobs!),
earliescoperations(Schedule?, Jobs?, OperList!),
make_neigh(Schedule?, OperList?, Neighbours!).

where
1) ailyreds_sched determines which unscheduled jobs have all predecessors

scheduled,
2) earliescoperations determines operations for all above found jobs who have the

earliest possible beginning time,
3) make_neigh constructs the neighbours by appending all found operations to the

original schedule each yielding a new schedule.

ad 1)

The predicate allyreds_sched uses the predicate hallyreds_sched(S,J,N) where N
becomes a list of unscheduled jobs from job list J that have all predecessors scheduled

12

in schedule S (see Appendix for the definition of hall--4Jreds_sched).

all_preds_sched(Schedule?, NoPreds!) :-
jobs(AllJobs),
hall_preds_sched(Schedule?, AllJobs?, NoPredsl).

ad 2)

The predicate earliescoperations uses the predicates
- earliescmachs(S,J,M,O) where 0 becomes a list of operations denoting on which

machines from machine list M job J can be started as early as possible given
schedule S.

- new_operationlist(OI ,02,03) where 03 becomes a list of the earliest possible
operations in 01 and 02 (all operations in 01 have the same beginning time and so
do all operations in 02) (see Appendix for the definition of new _operationlist).

earliescoperations(Schedule?, [Job]?, OperList!) ;-
able(Job?, Machs!),
earliescmachs(Schedule?, Job?, Machs?, OperList!).

earliescoperations(Schedule?, [Job I Jobs]?, OperList!) ;­
earliescoperations(Schedule?, Jobs?, OperListl!),
earliescoperations(Schedule?, [Job]?, OperList21),
new _operationlist(OperListl?, OperList2?, OperList!).

The predicate earliesCmachs uses the predicate make_operation(S,J,M,O) where 0
becomes a list of one operation (J,M,BT,CT) with

- BT the earliest possible beginning time after the last job on machine M and after
the last predecessor of job J,
CT is the completion time of job J (CT = BT + dur(M ,1».

earliescmachs(Schedule?, Job?, [], []).

earliescmachs(Schedule?, Job?, [Mach I Machs]?, OperListl) :
earliescmachs(Schedule?, Job?, Machs?, OperListl!),
make_operation(Schedule?, Job?, Mach?, OperList2!),
new _ operationlist(OperList I?, OperList2?, OperList!).

The predicate make_operation uses the predicates
- comptime_mach(S,M,T) where T becomes the maximum completion time of any job

on machine M in schedule S (see Appendix for the definition of comptime_mach),
- comptime--4Jreds(S,1,T) where T becomes the maximum completion time of any

predecessor of job J in schedule S (see Appendix for the definition of
comptime--4Jreds) ,

- max(A.B,C) where C becomes the maximum of A and B (not elaborated).

13

ad 3)

make_operation(Schedu)e?, Job?, Mach?, Oper!) :­
comptime_mach(Scheoulc?, Mach?, Time I!),
comptime_preds(Schedule?, Job?, Time2!),
max (Time 1 ?, Time2?, Begintime!),
dur(Mach?, Job?, Dur!),
Comptime is Begintime + Dur,
Oper = [operation (Job, Mach, Begintime, Comptime)].

The predicate make_neigh is rather straightforward.

make_neigh(Schedule?, [], []).

make_neigh(Schedule?, [Oper I OperList]?, [[Oper I Schedule] I Neighbours]!) :­
make_neigh(Schedule?, OperList?, Neighbours!).

As mentioned before a complete schedule with its completion time under a certain
boundary is what we are looking for. We evaluate a schedule by its completion time
plus a penalty. The penalty of a schedule is the sum of the maximum duration of all
unscheduled jobs. Observe the penalty for a complete schedule to be equal to zero, so
complete schedules are evaluated strictly by their completion time.

eval(Schedule?, Value!) :­
penalty(Schedule?, Pen!),
comptime(Schedule?, CT!),
Value is Pen + CT.

The predicate comptime(S,T) calculates the completion time T of a schedule S (i.e. the
maximum completion time of any scheduled job).

comptimen]' 0).

comptime(l operationC,_,_, Time 1) I OperLisr J?, Value!) :­
comptime(OperList?, Time2!),
max(Time17, Time2?, Value!).

The penalty of a schedule is calculated by first determining which jobs are unscheduled.
This is done by deleting the scheduled jobs from a list of all jobs. From the
unscheduled jobs the sum of all maximum durations is calculated obtaining the penalty.
The predicate penalty(S,P) uses the predicates
- schjobs(S,SJ) where SJ becomes a list of all scheduled jobs in schedule S.
- unschjobs(AJ,SJ,UJ) where UJ becomes a list of all jobs in job list AJ that are not in

job list SJ.
- totaldur(UJ,P) where P becomes the sum of all the maximum durations of the jobs

in UJ.
(see Appendix for the definition of sehjobs, unsehjobs and totaldur)

14

penaity(Schedule?, Pen!) :­
schjobs(Schedule?, SchedJ obs!),
jobs(Alljobs I),
unschjobs(Alljobs?, SchedJobs?, UnSchedJobs!),
totaldur(UnSchedJobs?, Pen!).

We choose the following definition of the initialize predicate yielding a list containing
just the empty schedule:

initialize([[]]).

Of course any of the treated search strategies can be chosen.

5. The Shell

The shell is in fact a tool box to construct domain specific DSS·s. Up to now we
sketched only a small part of the tool kit. For instance we did not pay attention to the
user interface of a DSS, which might take a lot of lines of code. The tool kit has the
following components, besides a Prolog interpreter:
- generic knowledge base: containing the predicate definitions of section 3.
- domain knowledge definition facility: to define predicates like generate, display, eval

and feasible. Furthermore this facility enables the expert to define the predicate
names of the facts of the instance knowledge to be defined by the user. In addition to
these predicate names the expert should define the arity of these predicates, the types
of the parameters and possibly some predicates checking the consistency of the facts.

- instance data entry facility: to enter facts, using the above mentioned names, arities,
types and consistency checks.

- control facility: to compose a specific search method by selection of a search
strategy, an evaluation predicate and a feasibility predicate. Furthermore this facility
should allow the user to change parameters during the search process. It depends on
the expertise of the user if he is able to define evaluation or feasibility predicates. An
unexperienced user should only select these predicates from the domain knowledge
base. The predicate names of facts are considered as domain knowledge here. In case
of the TSP only dist was such a predicate. In the case of pes jobs, machines, able,
pre and dur were such predicates. It is clear that only facts of the form
able(j, lml ,m2]) are allowed if j is a job and ml and m2 are machines. Hence here a
consistency check to guarantee referential integrity is required. In fact the shell
should have all standard database management functions.

15

Appendix

In this appendix some in section 4 used predicates are elaborated.

The predicate haLtpreds_sched(S,J,N) calculates a list N of unscheduled jobs from job
list J that have all predecessors scheduled in schedule S. In the definition of
hallyreds_sched the following predicates are used:
- member(X,Y) a system predicate checking whether X is an element of Y,
- alimember(X,Y) checking whether X is a subset of Y.

hall_preds_sched(Schedule?, n, []).
hall_preds_sched(Schedule?, [Job I Jobs]?, NoPredsl) :­

member(operation(Job,_,_,_), Schedule?),
haILpreds_sched(Schedule?, Jobs?, NoPreds!).

haILpreds_sched(Schedule?, [Job I Jobs]?, [Job I NoPreds]!) :
not (member(operation(Job,_,_,_), Schedule?»,
pre(Job?, Preds!),
allmember(Preds?, Schedule?),
hall_preds_sched(Schedule?, Jobs?, NoPreds!).

hall_preds_sched(Schedule?, [Job I Jobs]?, NoPreds!) :
not (member(operation(Job,_._,_), Schedule?»,
pre(Job?, Preds!),
not (allmember(Preds?, Schedule?»,
hall_preds_sched(Schedule?, Jobs?, NoPreds!).

allmember(tJ, Schedule?),

allmember([Pred I Preds], Schedule?) :­
member(operation(Pred,_,_,_), Schedule?),
allmember(Preds?, Schedule?).

The predicate new_operationlist(01,02,03) calculates which operations in operation
lists 01 and 02 have the earliest beginning times resulting in 03 and uses the predicate
time(O,T) where T becomes the beginning time of the first operation in ° (0 not
empty).

new_operationlist([], OperList?, OperList!).

new_operationlist(OperList?, n, OperList!).

new_operationlist(OperListl'1, OperList2?, OperListl!) :-
time(OperListl'1, Time I!),
time(OperList2?, Time2!),
Time I < Time2.

16

new_operationlist(OpetListl?, OperList2?, OperList2!) :­
time(OperList I?, Time 1 I),
time(OperList2?, Time2!),
Time 1 > Time2.

new_operationlist(OperListl?, OperList2?, OperList!) :­
time(OperListl?, Time1!),
time(OperList2?, Time2!),
Time 1 == Time2,
append(OperListl ?, OperList2?, OperList!).

time([operationC,_,T,_) I OperList], T).

The predicate comprime_mach(S,M,T) calculates the maximum completion time T of
any job on machine M in schedule S.

comptime_mach([], Mach?, 0).

comptime_mach([operationC,Machl,_,_) I OperList]?, Mach2?, Time!) :­
not (Mach 1 = Mach2),
comptime_mach(OperList?, Mach?, Time!).

comptime_mach([operationC,Mach,_,Timel) I OperList]?, Mach?, Time!) :-
comptime_mach(OperList?, Mach?, Time2!),
max(Timel?, Time2?, Time!).

The predicate comptime-preds(S,J,T) calculates the maximum completion time T of any
predecessor of job J in schedule S.

comptime_preds(Schedule'J, Job?, Time!) :­
pre(Job?, Preds!),
hcomptime_preds(Schedule?, Preds?, Time!).

hcomptime_preds(Schedule'J, [Pred]?, Time!) :­
member(operation(Pred,_,_, Time), Schedule?).

hcomptime_preds(Schedule?, [Pred I Preds]?, Time!) :­
hcomptime_preds(Schedule?, Preds?, Time!!),
member(operation(Pred,_,_, Time2), Schedule?),
max (Time 1 ?, Time2?, Time!).

The predicate schjobs(S,J) calculates a list J of all scheduled jobs in schedule S.

schjobs([] ,[D.

schjobs(loperation(Job,_,_,_) I Y]?, [Job? I X!]) :­
schjobs(Y?, X!).

17

The predicate unschjobs(AJ,SJ,UJ) calculates a list UJ of unscheduled jobs from the list
AJ of all jobs and a list of SJ of scheduled jobs.

unschjobs([], Schjobs?, [])

unschjobs([X I Y]?, Schjobs?, UnSchedJobs!) :­
member(X?, Schjobs?),
unschjobs(Y?, Schjobs?, UnSchedJobs!).

unschjobs([X I Y]?, Schjobs?, [X I UnSchedJobs]!) :­
not(member(X?, Schjobs?)),
unschjobs(Y?, Schjobs?, UnSchedJobs!).

The predicate totaldur(JL,P) calculates the sum P of all maximum durations of all jobs
in job list J and uses the predicate maxdur(J,T) where T becomes the maximum
duration of job J on any machine.

totaldur([], 0).

totaldur([Job I Jobs]?, Pen!) :­
maxdur(Job?, M!),
totaldur(Jobs?, Penl !),
Pen is M + Penl.

The predicate maxdur(J,M) calculates the maximum duration M of job J and uses the
predicates
- durlist(J,ML,DL) where DL becomes a list of the durations of job J on all machines

in machinelist M,
- maxlist(DL,M) where M becomes the maximum in list DL.

maxdur(Job?, M!) :-
able(Job? ,MachList!),
durlist(Job? ,MachList? ,DurList!),
maxlist(DurLi st?, M!).

durlist(Job?, [1. l]).

durlist(Job?, [Mach I MachListJ?, [Dur I DurListj!) :­
dur(Mach?, Job?, Dur!),
durlist(Job?, MachList?, DurList!).

maxlist([], 0).

maxlist([X I YJ?, Z!) :­
maxlist(Y?, R!),
max(X?, R?, Z!).

18

References

Aarts, E.H.L. and Korst, J., Simulated annealing and Boltzmann machines: a stochastic
approach to combinatorial optimization and neural computing, Wiley, 1989.

Checkland, P., Systems Thinking and Systems Practice, Wiley, 1981.

Eiben, A.E. and van Hee, K.M.: Knowledge Representation and Search Methods for
Decision Support Systems, in: Gaul, W. and Schader, M., Ed., Data, Expert Knowledge
and Decisions, Springer - Verlag, 1990.

Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of
NP-completeness, Freeman and Co, 1978.

van Hee, K.M. and Lapinski, A., OR and AI approaches to decision support, Decision
Support Systems 4 (1989), pp 447 -459.

Keen, P.G.W. and Scott Morton, M.S., Decision support systems: an organized
perspective, Addison - Wesley, 1978.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.B.G. and Shmoys, D.H., The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, 1985.

Papadimitriou, C.H. and Stieglitz, K., Combinatorial optimization: algorithms and
complexity, Prentice -Hall, 1982.

Pearl, J.R., Artificial intelligence: the heuristic programming approach, McGraw - Hill,
1971.

Schnupp, P. and Bernhard L.W., Productive Prolog Programming, Prentice Hall, 1986.

Spivey, M., The Z notation, Prentice Hall, 1989.

19

