

Luke VanderHart and Ryan Neufeld

Clojure Cookbook

Clojure Cookbook

by Luke VanderHart and Ryan Neufeld

Copyright © 2014 Cognitect, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette

Production Editor: Kristen Brown

Copyeditor: Amanda Kersey

Proofreader: Rachel Head

Indexer: Judith McConville

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

March 2014: First Edition

Revision History for the First Edition:

2014-03-04: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449366179 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Clojure Cookbook, the image of an aardwolf, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36617-9

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449366179

Table of Contents

Preface. ix

1. Primitive Data. 1
1.1. Changing the Capitalization of a String 3
1.2. Cleaning Up Whitespace in a String 4
1.3. Building a String from Parts 5
1.4. Treating a String as a Sequence of Characters 7
1.5. Converting Between Characters and Integers 8
1.6. Formatting Strings 10
1.7. Searching a String by Pattern 12
1.8. Pulling Values Out of a String Using Regular Expressions 13
1.9. Performing Find and Replace on Strings 15
1.10. Splitting a String into Parts 17
1.11. Pluralizing Strings Based on a Quantity 18
1.12. Converting Between Strings, Symbols, and Keywords 20
1.13. Maintaining Accuracy with Extremely Large/Small Numbers 22
1.14. Working with Rational Numbers 24
1.15. Parsing Numbers 25
1.16. Truncating and Rounding Numbers 26
1.17. Performing Fuzzy Comparison 28
1.18. Performing Trigonometry 30
1.19. Inputting and Outputting Integers with Different Bases 31
1.20. Calculating Statistics on Collections of Numbers 32
1.21. Performing Bitwise Operations 36
1.22. Generating Random Numbers 37
1.23. Working with Currency 39
1.24. Generating Unique IDs 41
1.25. Obtaining the Current Date and Time 43
1.26. Representing Dates as Literals 44

iii

1.27. Parsing Dates and Times Using clj-time 46
1.28. Formatting Dates Using clj-time 47
1.29. Comparing Dates 49
1.30. Calculating the Length of a Time Interval 50
1.31. Generating Ranges of Dates and Times 52
1.32. Generating Ranges of Dates and Times Using Native Java Types 53
1.33. Retrieving Dates Relative to One Another 56
1.34. Working with Time Zones 58
1.35. Converting a Unix Timestamp to a Date 59
1.36. Converting a Date to a Unix Timestamp 61

2. Composite Data. 63
2.1. Creating a List 65
2.2. Creating a List from an Existing Data Structure 66
2.3. “Adding” an Item to a List 68
2.4. “Removing” an Item from a List 69
2.5. Testing for a List 70
2.6. Creating a Vector 71
2.7. “Adding” an Item to a Vector 72
2.8. “Removing” an Item from a Vector 73
2.9. Getting the Value at an Index 74
2.10. Setting the Value at an Index 76
2.11. Creating a Set 77
2.12. Adding and Removing Items from Sets 79
2.13. Testing Set Membership 80
2.14. Using Set Operations 82
2.15. Creating a Map 84
2.16. Retrieving Values from a Map 86
2.17. Retrieving Multiple Keys from a Map Simultaneously 89
2.18. Setting Keys in a Map 90
2.19. Using Composite Values as Map Keys 94
2.20. Treating Maps as Sequences (and Vice Versa) 96
2.21. Applying Functions to Maps 98
2.22. Keeping Multiple Values for a Key 100
2.23. Combining Maps 103
2.24. Comparing and Sorting Values 105
2.25. Removing Duplicate Elements from a Collection 109
2.26. Determining if a Collection Holds One of Several Values 111
2.27. Implementing Custom Data Structures: Red-Black Trees—Part I 112
2.28. Implementing Custom Data Structures: Red-Black Trees—Part II 115

3. General Computing. 121

iv | Table of Contents

3.1. Running a Minimal Clojure REPL 121
3.2. Interactive Documentation 123
3.3. Exploring Namespaces 125
3.4. Trying a Library Without Explicit Dependencies 126
3.5. Running Clojure Programs 127
3.6. Running Programs from the Command Line 130
3.7. Parsing Command-Line Arguments 132
3.8. Creating Custom Project Templates 135
3.9. Building Functions with Polymorphic Behavior 139
3.10. Extending a Built-In Type 145
3.11. Decoupling Consumers and Producers with core.async 146
3.12. Making a Parser for Clojure Expressions Using core.match 150
3.13. Querying Hierarchical Graphs with core.logic 153
3.14. Playing a Nursery Rhyme 159

4. Local I/O. 165
4.1. Writing to STDOUT and STDERR 165
4.2. Reading a Single Keystroke from the Console 167
4.3. Executing System Commands 168
4.4. Accessing Resource Files 171
4.5. Copying Files 173
4.6. Deleting Files or Directories 175
4.7. Listing Files in a Directory 176
4.8. Memory Mapping a File 178
4.9. Reading and Writing Text Files 179
4.10. Using Temporary Files 181
4.11. Reading and Writing Files at Arbitrary Positions 182
4.12. Parallelizing File Processing 183
4.13. Parallelizing File Processing with Reducers 185
4.14. Reading and Writing Clojure Data 188
4.15. Using edn for Configuration Files 190
4.16. Emitting Records as edn Values 194
4.17. Handling Unknown Tagged Literals When Reading Clojure Data 196
4.18. Reading Properties from a File 199
4.19. Reading and Writing Binary Files 201
4.20. Reading and Writing CSV Data 203
4.21. Reading and Writing Compressed Files 204
4.22. Working with XML Data 206
4.23. Reading and Writing JSON Data 207
4.24. Generating PDF Files 209

Table of Contents | v

4.25. Making a GUI Window with Scrollable Text 213

5. Network I/O and Web Services. 219
5.1. Making HTTP Requests 219
5.2. Performing Asynchronous HTTP Requests 221
5.3. Sending a Ping Request 223
5.4. Retrieving and Parsing RSS Data 224
5.5. Sending Email 226
5.6. Communicating over Queues Using RabbitMQ 229
5.7. Communicating with Embedded Devices via MQTT 236
5.8. Using ZeroMQ Concurrently 240
5.9. Creating a TCP Client 243
5.10. Creating a TCP Server 245
5.11. Sending and Receiving UDP Packets 248

6. Databases. 253
6.1. Connecting to an SQL Database 254
6.2. Connecting to an SQL Database with a Connection Pool 257
6.3. Manipulating an SQL Database 260
6.4. Simplifying SQL with Korma 266
6.5. Performing Full-Text Search with Lucene 270
6.6. Indexing Data with ElasticSearch 272
6.7. Working with Cassandra 277
6.8. Working with MongoDB 280
6.9. Working with Redis 284
6.10. Connecting to a Datomic Database 286
6.11. Defining a Schema for a Datomic Database 289
6.12. Writing Data to Datomic 293
6.13. Removing Data from a Datomic Database 296
6.14. Trying Datomic Transactions Without Committing Them 298
6.15. Traversing Datomic Indexes 300

7. Web Applications. 305
7.1. Introduction to Ring 305
7.2. Using Ring Middleware 307
7.3. Serving Static Files with Ring 309
7.4. Handling Form Data with Ring 311
7.5. Handling Cookies with Ring 312
7.6. Storing Sessions with Ring 314
7.7. Reading and Writing Request and Response Headers in Ring 316
7.8. Routing Requests with Compojure 318
7.9. Performing HTTP Redirects with Ring 320

vi | Table of Contents

7.10. Building a RESTful Application with Liberator 321
7.11. Templating HTML with Enlive 323
7.12. Templating with Selmer 330
7.13. Templating with Hiccup 334
7.14. Rendering Markdown Documents 337
7.15. Building Applications with Luminus 339

8. Performance and Production. 343
8.1. AOT Compilation 343
8.2. Packaging a Project into a JAR File 345
8.3. Creating a WAR File 348
8.4. Running an Application as a Daemon 352
8.5. Alleviating Performance Problems with Type Hinting 358
8.6. Fast Math with Primitive Java Arrays 360
8.7. Simple Profiling with Timbre 363
8.8. Logging with Timbre 365
8.9. Releasing a Library to Clojars 367
8.10. Using Macros to Simplify API Deprecations 369

9. Distributed Computation. 375
9.1. Building an Activity Feed System with Storm 376
9.2. Processing Data with an Extract Transform Load (ETL) Pipeline 385
9.3. Aggregating Large Files 389
9.4. Testing Cascalog Workflows 394
9.5. Checkpointing Cascalog Jobs 396
9.6. Explaining a Cascalog Query 398
9.7. Running a Cascalog Job on Elastic MapReduce 400

10. Testing. 403
10.1. Unit Testing 404
10.2. Testing with Midje 408
10.3. Thoroughly Testing by Randomizing Inputs 411
10.4. Finding Values That Cause Failure 415
10.5. Running Browser-Based Tests 418
10.6. Tracing Code Execution 424
10.7. Avoiding Null-Pointer Exceptions with core.typed 427
10.8. Verifying Java Interop Using core.typed 429
10.9. Type Checking Higher-Order Functions with core.typed 433

Index. 437

Table of Contents | vii

Preface

The primary goal of this book is to provide mid-length examples of Clojure code that
go beyond the basics, with a focus on real-world, everyday applications (as opposed to
more conceptual or academic issues).

Unlike many of the other books on Clojure written to date, the organizing theme of this
book is not the language itself, or its features and capabilities. Instead, it focuses on
specific tasks that developers face (regardless of what language they’re using) and shows
an example of how to use Clojure to solve each of those specific problems.

As such, this book is not and cannot be truly comprehensive; there are infinite possible
example problems. However, we do hope we’ve documented some of the more common
ones that most programmers encounter frequently, and that by induction readers will
be able to learn some common patterns, approaches, and techniques that will serve them
well as they design solutions for their own unique problems.

How This Book Was Written
An important thing you should understand about this book is that it is, first and fore‐
most, a group effort. It is not authored by one or two people. It isn’t even the work of a
single, well-defined group. Instead, it is the collaborative product of more than 60 of
the best Clojurists from all over the world, from all backgrounds. These authors use
Clojure every day on real applications, ranging from aerospace to social media, banking
to robotics, AI research to e-commerce.

As such, you will see a lot of diversity in the recipes presented. Some are quick and to
the point. Others are more deliberate, presenting digestible yet penetrating insights into
the philosophy and implementation of certain aspects of Clojure.

We hope that there is something in this book for readers of diverse interests. We believe
that it will be useful not only as a reference for looking up solutions to specific problems,
but also as a worthwhile survey of the variety and expressivity that Clojure is capable

ix

of. As we edited submissions, we were astonished by the number of concepts and tech‐
niques that were new to us, and will hopefully be new to our readers as well.

Something else that we discovered while writing and editing was how difficult it was to
draw a circumference around what we wanted to cover. Every single recipe is a beautiful,
endless fractal, touching multiple topics, each of which deserves a recipe, a chapter, or
a book of its own. But each recipe also needs to stand on its own. Each one should
provide some useful nugget of information that readers can understand and take away
with them.

We sincerely hope that we have balanced these goals appropriately, and that you find
this book useful without being tedious, and insightful without being pedantic.

Audience
Anyone who uses Clojure will, we hope, be able to get something out of this book. There
are a lot of recipes on truly basic things that beginners will find useful, but there are also
many recipes on more specialized topics that advanced users should find useful for
getting a head start on implementation.

That said, if you’re completely new to Clojure, this probably isn’t the book to start with
—at least, not by itself. It covers a great many useful topics, but not as methodically or
as thoroughly as a good introductory text. See the following section for a list of general
Clojure books you may find useful as prior or supplemental texts.

Other Resources
One thing that this book is not, and could never be, is complete. There is too much to
cover, and by presenting information in a task-oriented recipe format we have inherently
precluded ourselves from methodical, narrative explanation of the features and capa‐
bilities of the whole language.

For a more linear, thorough explanation of Clojure and its features, we recommend one
of the following books:

• Clojure Programming (O’Reilly, 2012), by Chas Emerick, Brian Carper, and Chris‐
tophe Grand. A good, comprehensive, general-purpose Clojure book focusing on
the language and common tasks, oriented toward beginner Clojure programmers.

• Programming Clojure, 2nd ed. (Pragmatic Bookshelf, 2012), by Stuart Halloway and
Aaron Bedra. The first book on Clojure, this is a clear, comprehensive introductory
tutorial on the Clojure language.

• Practical Clojure (Apress, 2010), by Luke VanderHart and Stuart Sierra. This is a
terse, no-nonsense explanation of what Clojure is and what its features do.

x | Preface

http://shop.oreilly.com/product/0636920013754.do

• The Joy of Clojure (Manning, 2011), by Michael Fogus and Chris Houser. This is a
slightly more advanced text that really digs into the themes and philosophies of
Clojure.

• ClojureScript: Up and Running (O’Reilly, 2012), by Stuart Sierra and Luke Vander‐
Hart. While Clojure Cookbook and the other Clojure books listed here focus mainly
or entirely on Clojure itself, ClojureScript (a dialect of Clojure that compiles to
JavaScript) has gained considerable uptake. This book introduces ClojureScript and
how to get started with it, and covers the similarities and differences between Clo‐
jureScript and Clojure.

Finally, you should look at the source code for this book itself, which is freely available
on GitHub. The selection of recipes available online is larger than that in the print
version, and we are still accepting pull requests for new recipes that might someday
make it into a future edition of this book.

Structure
The chapters in this book are for the most part groupings of recipes by theme, rather
than strictly categorical. It is entirely possible for a recipe to be applicable to more than
one chapter—in these cases, we have simply tried to place it where we think the majority
of readers will likely look first.

A recipe consists of three primary parts and one secondary: problem, solution, discus‐
sion, and “see also.” A recipe’s problem statement lays out a task or obstacle to be over‐
come. Its solution tackles the problem head-on, illustrating a particular technique or
library that effectively accomplishes the task. The discussion rounds everything out,
exploring the solution and any caveats that may come with it. Finally, we tie off each
recipe with a “see also” section, pointing you, the reader, to any additional resources or
recipes that will assist you in enacting the described solution.

Chapter Listing
The book is composed of the following chapters:

• Chapter 1, Primitive Data, and Chapter 2, Composite Data, cover Clojure’s built-in
primitive and composite data structures, and explain many common (and less
common) ways one might want to use them.

• Chapter 3, General Computing, is a grab bag of useful topics that are generally
applicable in many different application areas and project domains, from Clojure
features such as Protocols to alternate programming paradigms such as logic pro‐

gramming with core.logic or asynchronous coordination with core.async.

Preface | xi

http://shop.oreilly.com/product/0636920025139.do
http://bit.ly/clj-ckbk

• Chapter 4, Local I/O, deals with all the ways in which your program can interact
with the local computer upon which it is running. This includes reading fromand
writing to standard input and output streams, creating and manipulating files, se‐
rializing and deserializing files, etc.

• Chapter 5, Network I/O and Web Services, contains recipes with similar themes to
Chapter 4, Local I/O, but instead deals with remote communication over a network.
It includes recipes on a variety of network communication protocols and libraries.

• Chapter 6, Databases, demonstrates techniques and tools for connecting to and
using a variety of databases. Special attention is given to Datomic, a datastore that
shares and extends much of Clojure’s underlying philosophy of value, state, and
identity to persistent storage.

• Chapter 7, Web Applications, dives in-depth into one of the most common appli‐
cations for Clojure: building and maintaining dynamic websites. It provides com‐
prehensive treatment of Ring (the most popular HTTP server library for Clojure),
as well as tools for HTML templating and rendering.

• Chapter 8, Performance and Production, explains what to do with a Clojure program
once you have one, going over common patterns for packaging, distributing, profil‐
ing, logging, and associated ongoing tasks over the lifetime of an application.

• Chapter 9, Distributed Computation, focuses on cloud computing and using Clojure
for heavyweight distributed data crunching. Special attention is given to Cascalog,
a declarative Clojure interface to the Hadoop MapReduce framework.

• Last but not least, Chapter 10, Testing, covers a variety of techniques for ensuring
the integrity and correctness of your code and data, ranging from traditional unit
and integration tests to more comprehensive generative and simulation testing, and

even optional compile-time validations using static typing with core.typed.

Software Prerequisites
To follow along with the recipes in this book you will need valid installations of the Java
Development Kit (JDK) and Clojure’s de facto build tool, Leiningen. We recommend
version 7 of the JDK, but a minimum of 6 will do. For Leiningen, you should have at
least version 2.2.

If you don’t have Java installed (or would like to upgrade), visit the Java Download
Page for instructions on downloading and installing the Java JDK.

To install Leiningen, follow the installation instructions on Leiningen’s website. If you

already have Leiningen installed, get the latest version by executing the command lein

upgrade. If you aren’t familiar with Leiningen, visit the tutorial to learn more.

xii | Preface

http://bit.ly/java-download
http://bit.ly/java-download
http://leiningen.org/
http://bit.ly/lein-tutorial

The one thing you won’t need to manually install is Clojure itself; Leiningen will do this

for you on an ad hoc basis. To verify your installation, run lein repl and check your
Clojure version:

$ lein repl
...
user=> *clojure-version*
{:major 1, :minor 5, :incremental 1, :qualifier nil}

Some recipes have accompanying online materials available on Git‐
Hub. If you do not have Git installed on your system, follow the setup
instructions to enable you to check out a GitHub repository locally.

Some recipes—such as the database recipes—require further software installations.
Where this is the case, recipes will include additional information on installing those
tools.

Conventions Used in This Book
Being a book full of solutions, you’ll find no shortage of Clojure source code in this
book. Clojure source code appears in a monospace font, like this:

(defn add
 [x y]
 (+ x y))

When a Clojure expression is evaluated for a return value, that value is denoted with a
comment followed by an arrow, much like it would appear on the command line:

(add 1 2)
;; -> 3

Where appropriate, code samples may omit or ellipsize return value comments. The
two most common places you’ll see this are when defining a function/var or shortening
lengthy output:

;; This would return #'user/one, but do you really care?
(def one 1)

(into [] (range 1 20))
;; -> [1 2 ... 20]

When an expression produces output to STDOUT or STDERR, it is denoted by a comment

(*out* or *error*, respectively), followed by a comment with each line of output:

(do (println "Hello!")
 (println "Goodbye!"))
;; -> nil

Preface | xiii

https://help.github.com/articles/set-up-git
https://help.github.com/articles/set-up-git

;; *out*
;; Hello!
;; Goodbye!

REPL Sessions
Seeing that REPL-driven development is in vogue at present, it follows that this be a
REPL-driven book. REPLs (read-eval-print loops) are interactive prompts that evaluate

expressions and print their results. The Bash prompt, irb, and the python prompt are
examples of REPLs. Nearly every recipe in this book is designed to be run at a Clojure
REPL.

While Clojure REPLs are traditionally displayed as user=> ..., this book aims for
readers to be able to copy and paste all of the examples in a recipe and see the indicated

results. As such, samples omit user=> and comment out any output to make things
easier. This is especially helpful if you’re following along on a computer: you can blindly
copy and paste code samples without worrying about trying to run noncode.

When an example is only relevant in the context of a REPL, we will retain the traditional

REPL style (with user=>). What follows is an example of each, a REPL-only sample and
its simplified version.

REPL-only:

user=> (+ 1 2)
3
user=> (println "Hello!")
Hello!
nil

Simplified:

(+ 1 2)
;; -> 3

(println "Hello!")
;; *out*
;; Hello!

Console/Terminal Sessions
Console sessions (e.g., shell commands) are denoted by monospace font, with lines

beginning with a dollar sign ($) indicating a shell prompt. Output is printed without a

leading $:

$ lein version
Leiningen 2.0.0-preview10 on Java 1.6.0_29 Java HotSpot(TM) 64-Bit Server VM

A backslash (\) at the end of a command indicates to the console that the command
continues on the next line.

xiv | Preface

Our Golden Boy, lein-try
Clojure is not known for its extensive standard library. Unlike languages like Perl or
Ruby, Clojure’s standard library is comparatively small; Clojure chose simplicity and
power instead. As such, Clojure is a language full of libraries, not built-ins (well, except
for Java).

Since so many of the solutions in this book rely on third-party libraries, we developed

lein-try. lein-try is a small plug-in for Leiningen, Clojure’s de facto project tool, that
lets you quickly and easily try out various Clojure libraries.

To use lein-try, ensure you have Leiningen installed, then edit your user profile
(~/.lein/profiles.clj) as follows:

{:user {:plugins [[lein-try "0.4.1"]]}}

Now, inside of a project or out, you can use the lein try command to launch a REPL
with access to whichever library you please:

$ lein try clj-time
#...
user=>

Long story short: where possible, you’ll see instructions on which lein-try command
to execute above recipes that use third-party libraries. You’ll find an example of trying

recipes with lein-try in Recipe 3.4, “Trying a Library Without Explicit Dependen‐
cies” on page 126.

If a recipe cannot be run via lein-try, we have made efforts to include adequate in‐
structions on how to run that recipe on your local machine.

Typesetting Conventions
The following typographic conventions are used in this book:

Italic
Used for URLs, filenames, pathnames, and file extensions. New terms are also ita‐
licized when they first appear in the text, and italics are used for emphasis.

Constant width

Used for function and method names and their arguments; for data types, classes,
and namespaces; in examples to show both input and output; and in regular text
to show literal code.

Constant width bold

Used to indicate commands that you should enter literally at the command line.

Preface | xv

https://github.com/rkneufeld/lein-try
http://leiningen.org/

<replaceable-value>
Elements of pathnames, commands, function names, etc. that should be replaced
with user-supplied values are shown in angle brackets.

The names of libraries follow one of two conventions: libraries with proper names are
displayed in plain text (e.g., “Hiccup” or “Swing”), while libraries with names meant to

mimic code symbols are displayed in constant-width text (e.g., core.async or clj-

commons-exec).

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/clj-ckbk.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Clojure Cookbook by Luke VanderHart and
Ryan Neufeld (O’Reilly). Copyright 2014 Cognitect, Inc., 978-1-449-36617-9.”

xvi | Preface

http://bit.ly/clj-ckbk

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/clojure-ckbk.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/clojure-ckbk
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia or https://twitter.com/clojurecook
book

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the selfless contributions of many
within the Clojure community. Over 65 Clojurists rose to the occasion, submitting
recipes, proofreading, and offering their input on the direction of the book. Ultimately,
this is the community’s book—we’re just honored to have been able to help put it to‐
gether. Those contributors are:

• Adam Bard, adambard on GitHub

• Alan Busby, thebusby on GitHub

• Alex Miller, puredanger on GitHub

• Alex Petrov, ifesdjeen on GitHub

• Alex Robbins, alexrobbins on GitHub

• Alex Vzorov, 0rca on GitHub

• Ambrose Bonnaire-Sergeant, frenchy64 on GitHub

• arosequist

• Chris Allen, bitemyapp on GitHub

• Chris Ford, ctford on GitHub

• Chris Frisz, cjfrisz on GitHub

• Clinton Begin, cbegin on GitHub

• Clinton Dreisbach, cndreisbach on GitHub

• Colin Jones, trptcolin on GitHub

• Craig McDaniel, cpmcdaniel on GitHub

• Daemian Mack, daemianmack on GitHub

• Dan Allen, mojavelinux on GitHub

• Daniel Gregoire, semperos on GitHub

• Dmitri Sotnikov, yogthos on GitHub

• Edmund Jackson, ejackson on GitHub

• Eric Normand, ericnormand on GitHub

• Federico Ramirez, gosukiwi on GitHub

• Filippo Diotalevi, fdiotalevi on GitHub

xviii | Preface

http://twitter.com/oreillymedia
https://twitter.com/clojurecookbook
https://twitter.com/clojurecookbook
http://www.youtube.com/oreillymedia
https://github.com/adambard
https://github.com/thebusby
https://github.com/puredanger
https://github.com/ifesdjeen
https://github.com/alexrobbins
https://github.com/0rca
https://github.com/frenchy64
https://github.com/arosequist
https://github.com/bitemyapp
https://github.com/ctford
https://github.com/cjfrisz
https://github.com/cbegin
https://github.com/cndreisbach
https://github.com/trptcolin
https://github.com/cpmcdaniel
https://github.com/daemianmack
https://github.com/mojavelinux
https://github.com/semperos
https://github.com/yogthos
https://github.com/ejackson
https://github.com/ericnormand
https://github.com/gosukiwi
https://github.com/fdiotalevi

• fredericksgary

• Gabriel Horner, cldwalker on GitHub

• Gerrit, gerritjvv on GitHub

• Guewen Baconnier, guewen on GitHub

• Hoàng Minh Thắng, myguidingstar on GitHub

• Jason Webb, bigjason on GitHub

• Jason Wolfe, w01fe on GitHub

• Jean Niklas L’orange, hyPiRion on GitHub

• Joey Yang, joeyyang on GitHub

• John Cromartie, jcromartie on GitHub

• John Jacobsen, eigenhombre on GitHub

• John Touron, jwtouron on GitHub

• Joseph Wilk, josephwilk on GitHub

• jungziege

• jwhitlark

• Kevin Burnett, burnettk on GitHub

• Kevin Lynagh, lynaghk on GitHub

• Lake Denman, ldenman on GitHub

• Leonardo Borges, leonardoborges on GitHub

• Mark Whelan, mrwhelan on GitHub

• Martin Janiczek, Janiczek on GitHub

• Matthew Maravillas, maravillas on GitHub

• Michael Fogus, fogus on GitHub

• Michael Klishin, michaelklishin on GitHub

• Michael Mullis, mmullis on GitHub

• Michael O’Church, michaelochurch on GitHub

• Mosciatti S., siscia on GitHub

• nbessi

• Neil Laurance, toolkit on GitHub

• Nurullah Akkaya, nakkaya on GitHub

• Osbert Feng, osbert on GitHub

• Prathamesh Sonpatki, prathamesh-sonpatki on GitHub

Preface | xix

https://github.com/fredericksgary
https://github.com/cldwalker
https://github.com/gerritjvv
https://github.com/guewen
https://github.com/myguidingstar
https://github.com/bigjason
https://github.com/w01fe
https://github.com/hyPiRion
https://github.com/joeyyang
https://github.com/jcromartie
https://github.com/eigenhombre
https://github.com/jwtouron
https://github.com/josephwilk
https://github.com/jungziege
https://github.com/jwhitlark
https://github.com/burnettk
https://github.com/lynaghk
https://github.com/ldenman
https://github.com/leonardoborges
https://github.com/mrwhelan
https://github.com/Janiczek
https://github.com/maravillas
https://github.com/fogus
https://github.com/michaelklishin
https://github.com/mmullis
https://github.com/michaelochurch
https://github.com/siscia
https://github.com/nbessi
https://github.com/toolkit
https://github.com/nakkaya
https://github.com/osbert
https://github.com/prathamesh

• R.T. Lechow, rtlechow on GitHub

• Ravindra R. Jaju, jaju on GitHub

• Robert Stuttaford, robert-stuttaford on GitHub

• Russ Olsen, russolsen on GitHub

• Ryan Senior, senior on GitHub

• Sam Umbach, sumbach on GitHub

• Sandeep Nangia, nangia on GitHub

• Steve Miner, miner on GitHub

• Steven Proctor, stevenproctor on GitHub

• temacube

• Tobias Bayer, codebrickie on GitHub

• Tom White, dribnet on GitHub

• Travis Vachon, travis on GitHub

• Stefan Karlsson, zclj on GitHub

Our biggest contributors also deserve special thanks: Adam Bard, Alan Busby, Alex
Robbins, Ambrose Bonnaire-Sergeant, Dmitri Sotnikov, John Cromartie, John Jacob‐
sen, Robert Stuttaford, Stefan Karlsson, and Tom Hicks. All together, these outstanding
individuals contributed almost a third of the book’s recipes.

Thanks also to our technical reviewers, Alex Robbins, Travis Vachon, and Thomas
Hicks. These fine gentlemen scoured the book for technical errors in record time, in
the 11th hour no less. Where a regular technical reviewer would merely submit textual
descriptions of problems, these folks went above and beyond, often submitting pull
requests fixing the very errors they were reporting. All in all, they were a pleasure to
work with and the book is much better because of their involvement.

Finally, thanks to our employer, Cognitect, for giving us time to work on the book, and
to all of our colleagues who offered advice, feedback, and best of all, more recipes!

Ryan Neufeld
First, a huge thanks to Luke. It was Luke who originally pitched the idea for the book,
and I’m very grateful that he extended an invitation for me to join him in authoring it.
They say the best way to learn something is to write a book on it—this couldn’t be any
closer to the truth. Working on the book has really rounded out my Clojure skills and
taken them to the next level.

And, most importantly, I have to thank my family for putting up with me through the
process of writing the book. Getting this thing off the ground has been a Herculean task

xx | Preface

https://github.com/rtlechow
https://github.com/jaju
https://github.com/robert-stuttaford
https://github.com/russolsen
https://github.com/senior
https://github.com/sumbach
https://github.com/nangia
https://github.com/miner
https://github.com/stevenproctor
https://github.com/temacube
https://github.com/codebrickie
https://github.com/dribnet
https://github.com/travis
https://github.com/zclj

and I couldn’t have done it without the love and support of my wife Jackie and daughter
Elody. If it hadn’t been for the hundreds upon hundreds of hours of evenings, weekends,
and vacation time I usurped from them, I wouldn’t have been able to write this book.

Luke VanderHart
Most of all, I’d like to thank my coauthor Ryan, who worked incredibly hard to make
the book happen.

Also, all of my coworkers at Cognitect provided lots of thoughts and ideas, and most
importantly were a sounding board for the many questions that arose during the writing
and editing process. Many thanks for that, as well as for providing the opportunity to
write code in Clojure all day, every day.

Preface | xxi

1. The JVM is where Java bytecode is executed. The Clojure compiler targets the JVM by emitting bytecode to
be run there; thus, you have all of the native Java types at your disposal.

CHAPTER 1

Primitive Data

1.0. Introduction
Clojure is a fantastic language for tackling hard problems. Its simple tools let us software
developers build up layer upon layer of abstractions until we’ve tackled some of the
world’s most difficult problems with ease. Like chemistry, every great Clojure program
boils down to simple atoms—these are our primitives.

Standing on the shoulders of the Java giants from days of yore, Clojure leverages a
fantastic array of battle-hardened types present in the Java Virtual Machine (JVM):1

strings, numeric types, dates, Universally Unique Identifiers (UUIDs)—you name it,
Clojure has it all. This chapter dives into the primitives of Clojure and how to accomplish
common tasks.

Strings
Almost every programming language knows how to work with and deal in strings.
Clojure is no exception, and despite a few differences, Clojure provides the same general
capabilities as most other languages. Here are a few key differences we think you should
know about.

First, Clojure strings are backed by Java’s UTF-16 strings. You don’t need to add com‐
ments to files to indicate string encoding or worry about losing characters in translation.
Your Clojure programs are ready to communicate in the world beyond A–Z.

Second, unlike languages like Perl or Ruby that have extensive string libraries, Clojure
has a rather Spartan built-in string manipulation library. This may seem odd at first,
but Clojure prefers simple and composable tools; all of the plethora of collection-

1

2. By using use, you introduce numerous new symbols into your project’s namespaces without leaving any clues
as to where they came from. This is often confusing and frustrating for maintainers of the code base. We

highly suggest you avoid use.

modifying functions in Clojure are perfectly capable of accepting strings—they’re col‐
lections too! For this reason, Clojure’s string library is unexpectedly small. You’ll find

that small set of very string-specific functions in the clojure.string namespace.

Clojure also embraces its host platform (the JVM) and does not duplicate functionality

already adequately performed by Java’s java.lang.String class. Using Java interop in
Clojure is not a failure—the language is designed to make it straightforward, and using
the built-in string methods is usually just as easy as invoking a Clojure function.

We suggest you “require as” the clojure.string namespace when you need it.

Blindly :use-ing a namespace is always annoying,2 and often results in collisions/

confusion. Prefixing everything with clojure.string is kind of odd, so we prefer to

alias it to str or s:

(require '[clojure.string :as str])

(str/blank? "")
;; -> true

Numeric Types
The veneer between Clojure and Java is a little thicker over the numeric types. This isn’t
necessarily a bad thing, though. While Java’s numeric types can be extremely fast or
arbitrarily precise, numerics overall don’t have the prettiest set of interfaces to work
with. Clojure unifies the various numeric types of Java into one coherent package, with
clear escape hatches at every turn.

The recipes on numeric types in this chapter will show you how to work with these
hatches, showing you how to be as fast or precise or expressive as you desire.

Dates
Dates and times have a long and varied history in the Java ecosystem. Do you want a

Date, Time, DateTime, or Calendar? Who knows. And why are these APIs all so wonky?
The recipes in this chapter should hopefully illuminate how and when to use the ap‐
propriate built-in types and when to look to an external library when built-ins aren’t
sufficient (or are just too darned difficult to use).

2 | Chapter 1: Primitive Data

1.1. Changing the Capitalization of a String
by Ryan Neufeld

Problem
You need to change the capitalization of a string.

Solution
Use clojure.string/capitalize to capitalize the first character in a string:

(clojure.string/capitalize "this is a proper sentence.")
;; -> "This is a proper sentence."

When you need to change the case of all characters in a string, use clojure.string/

lower-case or clojure.string/upper-case:

(clojure.string/upper-case "loud noises!")
;; -> "LOUD NOISES!"

(clojure.string/lower-case "COLUMN_HEADER_ONE")
;; -> "column_header_one"

Discussion
Capitalization functions only affect letters. While the functions capitalize, lower-

case, and upper-case may modify letters, characters like punctuation marks or digits
will remain untouched:

(clojure.string/lower-case "!&$#@#%^[]")
;; -> "!&$#@#%^[]"

Clojure uses UTF-16 for all strings, and as such its definition of what a letter is is liberal
enough to include accented characters. Take the phrase “Hurry up, computer!” which
includes the letter e with both acute (é) and circumflex (ê) accents when translated to
French. Since these special characters are considered letters, it is possible for capitali‐
zation functions to change case appropriately:

(clojure.string/upper-case "Dépêchez-vous, l'ordinateur!")
;; -> "DÉPÊCHEZ-VOUS, L'ORDINATEUR!"

See Also

• The clojure.string namespace API documentation

• The java.lang.String API documentation

1.1. Changing the Capitalization of a String | 3

http://bit.ly/clj-string-api
http://bit.ly/javadoc-string

1.2. Cleaning Up Whitespace in a String
by Ryan Neufeld

Problem
You need to clean up the whitespace in a string.

Solution
Use the clojure.string/trim function to remove all of the whitespace at the beginning
and end of a string:

(clojure.string/trim " \tBacon ipsum dolor sit.\n")
;; -> "Bacon ipsum dolor sit."

To manage whitespace inside a string, you need to get more creative. Use

clojure.string/replace to fix whitespace inside a string:

;; Collapse whitespace into a single space
(clojure.string/replace "Who\t\nput all this\fwhitespace here?" #"\s+" " ")
;; -> "Who put all this whitespace here?"

;; Replace Windows-style line endings with Unix-style newlines
(clojure.string/replace "Line 1\r\nLine 2" "\r\n" "\n")
;; -> "Line 1\nLine 2"

Discussion
What constitutes whitespace in Clojure? The answer depends on the function: some are

more liberal than others, but you can safely assume that a space (), tab (\t), newline

(\n), carriage return (\r), line feed (\f), and vertical tab (\x0B) will be treated as white‐

space. This set of characters is the set matched by \s in Java’s regular expression imple‐
mentation.

Unlike Ruby and other languages that include string manipulation functions in the core

namespace, Clojure excludes its clojure.string namespace from clojure.core, mak‐

ing it unavailable for naked use. A common technique is to require clojure.string as

a shorthand like str or string to make code more terse:

(require '[clojure.string :as str])
(str/replace "Look Ma, no hands" "hands" "long namespace prefixes")
;; -> "Look Ma, no long namespace prefixes"

You might not always want to remove whitespace from both ends of a string. For cases
where you want to remove whitespace from just the left- or righthand side of a string,

use clojure.string/triml or clojure.string/trimr, respectively:

4 | Chapter 1: Primitive Data

(clojure.string/triml " Column Header\t")
;; -> "Column Header\t"

(clojure.string/trimr "\t\t* Second-level bullet.\n")
;; -> "\t\t* Second-level bullet."

See Also

• Recipe 1.3, “Building a String from Parts” on page 5

1.3. Building a String from Parts
by Ryan Neufeld

Problem
You have multiple strings, values, or collections that you need to combine into one
string.

Solution
Use the str function to concatenate strings and/or values:

(str "John" " " "Doe")
;; -> "John Doe"

;; str also works with vars, or any other values
(def first-name "John")
(def last-name "Doe")
(def age 42)

(str last-name ", " first-name " - age: " age)
;; -> "Doe, John - age: 42"

Use apply with str to concatenate a collection of values into a single string:

;; To collapse a sequence of characters back into a string
(apply str "ROT13: " [\W \h \y \v \h \f \ \P \n \r \f \n \e])
;; -> "ROT13: Whyvhf Pnrfne"

;; Or, to reconstitute a file from lines (if they already have newlines...)
(def lines ["#! /bin/bash\n", "du -a ./ | sort -n -r\n"])
(apply str lines)
;; -> "#! /bin/bash\ndu -a ./ | sort -n -r\n"

1.3. Building a String from Parts | 5

Discussion
Clojure’s str is like a good Unix tool: it has one job, and it does it well. When provided

with one or more arguments, str invokes Java’s .toString() method on its argument,

tacking each result onto the next. When provided nil or invoked without arguments,

str will return the identity value for strings, the empty string.

When it comes to string concatenation, Clojure takes a fairly hands-off approach. There

is nothing string-specific about (apply str ...). It is merely the higher-order function

apply being used to emulate calling str with a variable number of arguments.

This apply:

(apply str ["a" "b" "c"])

is functionally equivalent to:

(str "a" "b" "c")

Since Clojure injects little opinion into joining strings, you’re free to inject your own
with the plethora of manipulating functions Clojure provides. For example, take con‐
structing a comma-separated value (CSV) from a header and a number of rows. This

example is particularly well suited for apply, as you can prefix the header without having

to insert it onto the front of your rows collection:

;; Constructing a CSV from a header string and vector of rows
(def header "first_name,last_name,employee_number\n")
(def rows ["luke,vanderhart,1","ryan,neufeld,2"])

(apply str header (interpose "\n" rows))
;; -> "first_name,last_name,employee_number\nluke,vanderhart,1\nryan,neufeld,2"

apply and interpose can be a lot of ceremony when you’re not doing anything too

fancy. It is often easier to use the clojure.string/join function for simple string joins.

The join function takes a collection and an optional separator. With a separator, join
returns a string with each item of the collection separated by the provided separator.

Without, it returns each item squashed together, similar to what (apply str coll)
would return:

(def food-items ["milk" "butter" "flour" "eggs"])
(clojure.string/join ", " food-items)
;; -> "milk, butter, flour, eggs"

(clojure.string/join [1 2 3 4])
;; -> "1234"

See Also

• Recipe 1.6, “Formatting Strings” on page 10

6 | Chapter 1: Primitive Data

• The clojure.string namespace API documentation

• The java.lang.String API documentation

1.4. Treating a String as a Sequence of Characters
by Ryan Neufeld

Problem
You need to work with the individual characters in a string.

Solution
Use seq on a string to expose the sequence of characters representing it:

(seq "Hello, world!")
;; -> (\H \e \l \l \o \, \space \w \o \r \l \d \!)

You don’t need to call seq every time you want to get at a string’s characters, though.
Any function taking a sequence will naturally coerce a string into a sequence of char‐
acters:

;; Count the occurrences of each character in a string.
(frequencies (clojure.string/lower-case "An adult all about A's"))
;; -> {\space 4, \a 5, \b 1, \d 1, \' 1, \l 3, \n 1, \o 1, \s 1, \t 2, \u 2}

;; Is every letter in a string capitalized?
(defn yelling? [s]
 (every? #(or (not (Character/isLetter %))
 (Character/isUpperCase %))
 s))

(yelling? "LOUD NOISES!")
;; -> true

(yelling? "Take a DEEP breath.")
;; -> false

Discussion
In computer science, “string” means “sequence of characters,” and Clojure treats strings
exactly as such. Because Clojure strings are sequences under the covers, you may sub‐
stitute a string anywhere a collection is expected. When you do so, the string will be

interpreted as a collection of characters. There’s nothing special about (seq string).

The seq function is merely returning a seq of the collection of characters that make up
the string.

1.4. Treating a String as a Sequence of Characters | 7

http://bit.ly/clj-string-api
http://bit.ly/javadoc-string

More often than not, after you’ve done some work on the characters within a string,

you’ll want to transform that collection back into a string. Use apply with str on a
collection of characters to collapse them into a string:

(apply str [\H \e \l \l \o \, \space \w \o \r \l \d \!])
;; -> "Hello, world!"

See Also

• Recipe 1.3, “Building a String from Parts” on page 5

• Recipe 1.5, “Converting Between Characters and Integers” on page 8

1.5. Converting Between Characters and Integers
by Ryan Neufeld

Problem
You need to convert characters to their respective Unicode code points (as integer val‐
ues), or vice versa.

Solution
Use the int function to convert a character to its integer value:

(int \a)
;; -> 97

(int \ø)
;; -> 248

(int \α) ; Greek letter alpha
;; -> 945

(int \u03B1) ; Greek letter alpha (by code point)
;; -> 945

(map int "Hello, world!")
;; -> (72 101 108 108 111 44 32 119 111 114 108 100 33)

Use the char function to return a character corresponding to the code point specified
by the integer:

(char 97)
;; -> \a

(char 125)
;; -> \}

8 | Chapter 1: Primitive Data

(char 945)
;; -> \α

(reduce #(str %1 (char %2))
 ""
 [115 101 99 114 101 116 32 109 101 115 115 97 103 101 115])
;; -> "secret messages"

Discussion
Clojure inherits the JVM’s robust Unicode support. All strings are UTF-16 strings, and
all characters are Unicode characters. Conveniently, the first 256 Unicode code points
are identical to ASCII, which makes standard ASCII text easy to work with. However,
Clojure (like Java) does not actually privilege ASCII in any way; the 1:1 correspondence
between characters and integers indicating code points continues all the way up through
the Unicode space.

For example, the expression (map char (range 0x0410 0x042F)) prints out all the
Cyrillic capital letters, which happen to lie on that range on the Unicode spectrum:

(\А \Б \В \Г \Д \Е \Ж \З \И \Й \К \Л \М \Н \О \П \Р \С \Т \У \Ф
\Х \Ц \Ч \Ш \Щ \Ъ \Ы \Ь \Э \Ю)

The char and int functions are useful primarily for coercing a number into an instance

of either java.lang.Integer or java.lang.Character. Both Integers and Charac

ters are, ultimately, encoded as numbers, although Characters support additional text-
related methods and cannot be used in mathematic expressions without first being
converted to a true numeric type.

See Also

• Unicode Explained, by Jukka K. Korpela (O’Reilly), for truly comprehensive cov‐
erage of how Unicode and internationalization works

• Recipe 1.4, “Treating a String as a Sequence of Characters” on page 7, for details on
working with the characters that constitute a string

• Recipe 1.15, “Parsing Numbers” on page 25

1.5. Converting Between Characters and Integers | 9

http://oreil.ly/unicode-explained

1.6. Formatting Strings
by Ryan Neufeld

Problem
You need to insert values into a string, formatting how those values appear in the string.

Solution
The quickest method for formatting values into a string is the str function:

(def me {:first-name "Ryan", :favorite-language "Clojure"})
(str "My name is " (:first-name me)
 ", and I really like to program in " (:favorite-language me))
;; -> "My name is Ryan, and I really like to program in Clojure"

(apply str (interpose " " [1 2.000 (/ 3 1) (/ 4 9)]))
;; -> "1 2.0 3 4/9"

With str, however, values are inserted blindly, appearing in their default .to

String() appearance. Not only that, but it can sometimes be difficult to look at a str
form and interpret what the intended output is.

For greater control over how values are printed, use the format function:

;; Produce a filename with a zero-padded sortable index
(defn filename [name i]
 (format "%03d-%s" i name)) ;

(filename "my-awesome-file.txt" 42)
;; -> "042-my-awesome-file.txt"

;; Create a table using justification
(defn tableify [row]
 (apply format "%-20s | %-20s | %-20s" row)) ;

(def header ["First Name", "Last Name", "Employee ID"])
(def employees [["Ryan", "Neufeld", 2]
 ["Luke", "Vanderhart", 1]])

(->> (concat [header] employees)
 (map tableify)
 (mapv println))
;; *out*
;; First Name | Last Name | Employee ID
;; Ryan | Neufeld | 2
;; Luke | Vanderhart | 1

10 | Chapter 1: Primitive Data

The 0 flag indicates to pad a digit (d) with zeros (three, in this case).

The - flag indicates to left justify the string (s), giving it a total minimum width
of 20 characters.

Discussion
When it comes to inserting values into a string, you have two very different options.

You can use str, which is great for a quick fix but lacks control over how values are

presented. Or you can use format, which exposes fine-grained control over how values
are displayed but requires knowledge of C and Java-style formatting strings. Ultimately,
you should use only as much tooling/complexity as is necessary for the task at hand:

stick to str when the default formatting for a value will suffice, and use format when
you need more control over how values display.

Format Strings

The first argument passed to format is what is called a format string. The syntax for
these strings isn’t new or unique to Clojure or even Java, but in fact comes from C’s

printf function. Clojure’s format function uses Java’s String/format, which imple‐

ments printf-style value substitution.

A format string is a normal string with any number of embedded format specifiers. A
format specifier is a placeholder to be replaced by a value later. In its simplest form, this

is a % followed by a type specifier character; for example, %d for an integer (d is for digit)

or %f for a float. Beyond specifiers for strings, integers, and floats, there are specifiers
for characters, dates, and numbers of different bases (octal and hexadecimal), to name
a few.

What makes these format specifiers special is that you may indicate any number of flags

and options between the percent sign and the specifier character. For instance, "%-10s"

indicates the provided string (s) should be left justified (-) with a total minimum width

of 10. "%07.3f" would turn a number into a zero-padded number that was seven char‐
acters wide and included three decimal places (just like the numbers used in the Dewey
Decimal system):

(format "%07.3f" 0.005)
;; -> "000.005" ;; The Dewey Decimal subclass for books on "Computer
;; ;; programming, programs & data"

Visit the API documentation for java.util.Formatter to learn more about formatting
strings.

1.6. Formatting Strings | 11

http://bit.ly/javadoc-formatter

See Also

• Recipe 1.3, “Building a String from Parts” on page 5

• Recipe 1.28, “Formatting Dates Using clj-time” on page 47

1.7. Searching a String by Pattern
by Ryan Neufeld

Problem
You need to test a string to see if parts of it match a pattern.

Solution
To check for the presence of a pattern inside a string, invoke re-find with a desired
pattern and the string to test. Express the desired pattern using a regular expression

literal (like "foo" or "\d+"):

;; Any contiguous groups of numbers
(re-find #"\d+" "I've just finished reading Fahrenheit 451")
;; -> "451"

(re-find #"Bees" "Beads aren't cheap.")
;; -> nil

Discussion
re-find is quite handy for quickly testing a string for the presence of a pattern. It takes
a regular expression pattern and a string, then returns either the first match of that

pattern or nil.

If your criterion is more stringent and you require that the entire string match a pattern,

use re-matches. Unlike re-find, which matches any portion of a string, re-matches
matches if and only if the entire string matches the pattern:

;; In find, #"\w+" is any contiguous word characters
(re-find #"\w+" "my-param")
;; -> "my"

;; But in matches, #"\w+" means "all word characters"
(re-matches #"\w+" "my-param")
;; -> nil

(re-matches #"\w+" "justLetters")
;; -> "justLetters"

12 | Chapter 1: Primitive Data

See Also

• The API documentation for java.lang.Pattern, which defines the exact regex
syntax supported by Java (and Clojure’s regular expression literals)

• Recipe 1.8, “Pulling Values Out of a String Using Regular Expressions” on page 13,
for information on extracting values from a string using regular expressions

• Recipe 1.9, “Performing Find and Replace on Strings” on page 15

1.8. Pulling Values Out of a String Using Regular
Expressions
by Ryan Neufeld

Problem
You need to extract portions of a string matching a given pattern.

Solution
Use re-seq with a regular expression pattern and a string to retrieve a sequence of
successive matches:

;; Extract simple words from a sentence
(re-seq #"\w+" "My Favorite Things")
;; -> ("My" "Favorite" "Things")

;; Extract simple 7-digit phone numbers
(re-seq #"\d{3}-\d{4}" "My phone number is 555-1234.")
;; -> ("555-1234")

Regular expressions with matching groups (parentheses) will return a vector for each
total match:

;; Extract all of the Twitter usernames and hashtags in a tweet
(defn mentions [tweet]
 (re-seq #"(@|#)(\w+)" tweet))

(mentions "So long, @earth, and thanks for all the #fish. #goodbyes")
;; -> (["@earth" "@" "earth"] ["#fish" "#" "fish"] ["#goodbyes" "#" "goodbyes"])

Discussion
Provided a simple pattern (one without matching groups), re-seq will return a flat
sequence of matches. Fully expressing the power of Clojure, this is a lazy sequence.

Calling re-seq on a gigantic string will not scan the entire string right away; you’re free

1.8. Pulling Values Out of a String Using Regular Expressions | 13

http://bit.ly/javadoc-pattern

to consume those values incrementally, or defer evaluation to some other constituent
part of your application further down the road.

When given a regular expression containing matching groups, re-seq will do some‐
thing a little different. Don’t worry, the resulting sequence is still lazy—but instead of
flat strings, its values will be vectors. The first value of the vector will always be the whole
match, grouped or not; subsequent values will be the strings captured by matching group
parentheses. These captured values will appear in the order in which their opening
parentheses appeared, despite any nesting. Take a look at this example:

;; Using re to capture and decompose a phone number and its title
(def re-phone-number #"(\w+): \((\d{3})\) (\d{3}-\d{4})")

(re-seq re-phone-number "Home: (919) 555-1234, Work: (191) 555-1234")
;; -> (["Home: (919) 555-1234" "Home" "919" "555-1234"]
;; ["Work: (191) 555-1234" "Work" "191" "555-1234"])

If all you’re looking for is a single match from a string, then use re-find. It behaves

almost identically to re-seq, but returns only the first match as a singular value, instead
of a sequence of match values.

Apart from re-seq, there is another way to iterate over the matches in a string. You

could do this by repeatedly calling re-find on a re-matcher, but we don’t suggest this

approach. Why? Because it isn’t very idiomatic Clojure. Mutating a re-matcher object

with repeated calls to re-find is just wrong; it completely violates the principle of pure

functions. We highly suggest you prefer re-seq over re-matcher and re-find unless
you have a really good reason not to.

See Also

• Recipe 1.7, “Searching a String by Pattern” on page 12, for testing a string for the
presence of a pattern

• Recipe 1.9, “Performing Find and Replace on Strings” on page 15, for information
on using regular expressions to find and replace portions of a string

• The API documentation for java.lang.Pattern, which defines the exact regex
syntax supported by Java (and Clojure’s regular expression literals)

14 | Chapter 1: Primitive Data

http://bit.ly/javadoc-pattern

1.9. Performing Find and Replace on Strings
by Ryan Neufeld

Problem
You need to modify portions of a string that match some well-defined pattern.

Solution
The versatile clojure.string/replace is the function you should reach for when you
need to selectively replace portions of a string.

For simple patterns, use replace with a normal string as its matcher:

(def about-me "My favorite color is green!")
(clojure.string/replace about-me "green" "red")
;; -> "My favorite color is red!"

(defn de-canadianize [s]
 (clojure.string/replace s "ou" "o"))
(de-canadianize (str "Those Canadian neighbours have coloured behaviour"
 " when it comes to word endings"))
;; -> "Those Canadian neighbors have colored behavior when it comes to word
;; endings"

Plain string replacement will only get you so far. When you need to replace a pattern
with some variability to it, you’ll need to reach for the big guns: regular expressions.

Use Clojure’s regular expression literals (#"...") to specify a pattern as a regular ex‐
pression:

(defn linkify-comment
 "Add Markdown-style links for any GitHub issue numbers present in comment"
 [repo comment]
 (clojure.string/replace comment
 #"#(\d+)"
 (str "[#$1](https://github.com/" repo "/issues/$1)")))

(linkify-comment "next/big-thing" "As soon as we fix #42 and #1337 we
should be set to release!")
;; -> "As soon as we fix
;; [#42](https://github.com/next/big-thing/issues/42) and
;; [#1337](https://github.com/next/big-thing/issues/1337) we
;; should be set to release!"

1.9. Performing Find and Replace on Strings | 15

Discussion
As far as string functions go, replace is one of the more powerful and most complex

ones. The majority of this complexity arises from the varying match and replacement
types it can operate with.

When passed a string match, replace expects a string replacement. Any occurrences

of match in the supplied string will be replaced directly with replacement.

When passed a character match (such as \c or \n), replace expects a character re

placement. Like string/string, the character/character mode of replace replaces items
directly.

When passed a regular expression for a match, replace gets much more interesting.

One possible replacement for a regex match is a string, like in the linkify-comment

example; this string interprets special character combinations like $1 or $2 as variables

to be replaced by matching groups in the match. In the linkify-comment example, any

contiguous digits (\d+) following a number sign (#) are captured in parentheses and

are available as $1 in the replacement.

When passing a regex match, you can also provide a function for replacement instead
of a string. In Clojure, the world is your oyster when you can pass a function as an
argument. You can capture your replacement in a reusable (and testable) function, pass
in different functions depending on the circumstances, or even pass a map that dictates
replacements:

;; linkify-comment rewritten with linkification as a separate function
(defn linkify [repo [full-match id]]
 (str "[" full-match "](https://github.com/" repo "/issues/" id ")"))

(defn linkify-comment [repo comment]
 (clojure.string/replace comment #"#(\d+)" (partial linkify repo)))

If you’ve not used regular expressions before, then you’re in for a treat. Regexes are a
powerful tool for modifying strings with unbounded flexibility. As with any powerful
new tool, it’s easy to overdo it. Because of their terse and compact syntax, it’s very easy
to produce regexes that are both difficult to interpret and at a high risk of being incorrect.
You should use regular expressions sparingly and only if you fully understand their
syntax.

Jeffrey Friedl’s Mastering Regular Expressions, 3rd ed. (O’Reilly) is a fantastic book for
learning and mastering regular expression syntax.

See Also

• Recipe 1.7, “Searching a String by Pattern” on page 12

16 | Chapter 1: Primitive Data

http://oreil.ly/Mastering_RegEx

• clojure.string/replace-first, a function that operates nearly identically to

clojure.string/replace but only replaces the first occurrence of match

• The API documentation for java.lang.Pattern, which defines the exact regex
syntax supported by Java (and Clojure’s regular-expression literals)

1.10. Splitting a String into Parts
by Ryan Neufeld

Problem
You need to split a string into a number of parts.

Solution
Use clojure.string/split to tokenize a string into a vector of tokens. split takes two
arguments, a string to tokenize and a regular expression to split on:

(clojure.string/split "HEADER1,HEADER2,HEADER3" #",")
;; -> ["HEADER1" "HEADER2" "HEADER3"]

(clojure.string/split "Spaces Newlines\n\n" #"\s+")
;; -> ["Spaces" "Newlines"]

Discussion
In addition to just naively splitting on a regular expression, split allows you to control
how many (or how few) times to split the provided string. You can control this with the

optional limit argument. The most obvious effect of limit is to limit the number of

values returned in the resulting collection. That said, limit doesn’t always work like
you would expect, and even the absence of this argument carries a meaning.

Without limit, the split function will return every possible delimitation but exclude
any trailing empty matches:

;; Splitting on whitespace without an explicit limit performs an implicit trim
(clojure.string/split "field1 field2 field3 " #"\s+")
;; -> ["field1" "field2" "field3"]

If you want absolutely every match, including trailing empty ones, then you can specify

-1 as the limit:

;; In CSV parsing an empty match at the end of a line is still a meaningful one
(clojure.string/split "ryan,neufeld," #"," -1)
;; -> ["ryan" "neufeld" ""]

1.10. Splitting a String into Parts | 17

http://bit.ly/javadoc-pattern

3. If you haven’t already installed lein-try, follow the instructions in “Our Golden Boy, lein-try” on page xv.

Specifying some other positive number as a limit will cause split to return at maxi‐

mum limit substrings:

(def data-delimiters #"[:-]")

;; No-limit split on any delimiter
(clojure.string/split "2013-04-05 14:39" data-delimiters)
;; -> ["2013" "04" "05" "14" "39"]

;; Limit of 1 - functionally: return this string in a collection
(clojure.string/split "2013-04-05 14:39" data-delimiters 1)
;; -> ["2013-04-05 14:39"]

;; Limit of 2
(clojure.string/split "2013-04-05 14:39" data-delimiters 2)
;; -> ["2013" "04-05 14:39"]

;; Limit of 100
(clojure.string/split "2013-04-05 14:39" data-delimiters 100)
;; -> ["2013" "04" "05" "14" "39"]

See Also

• The clojure.string namespace API documentation

• Recipe 1.7, “Searching a String by Pattern” on page 12

• Recipe 1.8, “Pulling Values Out of a String Using Regular Expressions” on page 13

1.11. Pluralizing Strings Based on a Quantity
by Ryan Neufeld

Problem
You need to pluralize a word given some quantity, such as “0 eggs” or “1 chicken.”

Solution
When you need to perform Ruby on Rails–style pluralization, use Roman Scherer’s

inflections library.

To follow along with this recipe, start a REPL using lein-try:3

$ lein try inflections

18 | Chapter 1: Primitive Data

http://bit.ly/clj-string-api
https://github.com/r0man/inflections-clj

Use inflections.core/pluralize with a count to attempt to pluralize that word if the
count is not one:

(require '[inflections.core :as inf])

(inf/pluralize 1 "monkey")
;; -> "1 monkey"

(inf/pluralize 12 "monkey")
;; -> "12 monkeys"

If you have a special or nonstandard pluralization, you can provide your own plurali‐

zation as an optional third argument to pluralize:

(inf/pluralize 1 "box" "boxen")
;; -> "1 box"

(inf/pluralize 3 "box" "boxen")
;; -> "3 boxen"

Discussion
When it comes to user-facing text, inflection is key. Humanizing the output of your
programs or websites goes a long way to building a trustworthy and professional image.

Ruby on Rails set the gold standard for friendly and humanized text with its Active

Support::Inflections class. Inflections#pluralize is one such inflection, but In

flections is chock-full of cutesy-sounding methods ending in “ize” that change the

inflection of strings. inflections provides nearly all of these capabilities in a Clojure
context.

Two interesting functions in the inflections library are plural and singular. These

functions work a bit like the upper-case and lower-case of pluralization; plural

transforms words into their plural form, and singular coerces words to their singular

form. These transformations are based on a number of rules in inflections.plural.

You can add your own rules for pluralization with inflections.core/plural!:

(inf/plural "box")
;; -> "boxes"

;; Words ending in 'ox' pluralize with 'en' (and not 'es')
(inf/plural! #"(ox)(?i)$" "$1en")

(inf/plural "box")
;; -> "boxen"

;; plural is also the basis for pluralize...
(inf/pluralize 2 "box")
;; -> "2 boxen"

1.11. Pluralizing Strings Based on a Quantity | 19

http://rubyonrails.org

The library also has support for inflections like camelize, parameterize, and ordinal

ize:

;; Convert "snake_case" to "CamelCase"
(inf/camelize "my_object")
;; -> "MyObject"

;; Clean strings for usage as URL parameters
(inf/parameterize "My most favorite URL!")
;; -> "my-most-favorite-url"

;; Turn numbers into ordinal numbers
(inf/ordinalize 42)
;; -> "42nd"

See Also

• The inflections-clj GitHub repository for the most up-to-date listing of inflec‐
tions available

1.12. Converting Between Strings, Symbols, and
Keywords
by Colin Jones

Problem
You have a string, a symbol, or a keyword and you’d like to convert it into a different
one of these string-like data types.

Solution
To convert from a string to a symbol, use the symbol function:

(symbol "valid?")
;; -> valid?

To convert from a symbol to a string, use str:

(str 'valid?)
;; -> "valid?"

When you have a keyword and want a string, you can use name, or str if you want the
leading colon:

(name :triumph)
;; -> "triumph"

20 | Chapter 1: Primitive Data

https://github.com/r0man/inflections-clj/

;; Or, to include the leading colon:
(str :triumph)
;; -> ":triumph"

To convert from a symbol or string to a keyword, use keyword:

(keyword "fantastic")
;; -> :fantastic

(keyword 'fantastic)
;; -> :fantastic

You’ll need an intermediate step, through name, to go from keyword to symbol:

(symbol (name :wonderful))
;; -> wonderful

Discussion
The primary conversion functions here are str, keyword, and symbol—each named for

the data type it returns. One of these, symbol, is a bit more strict in terms of the input
it allows: it must take a string, which is why you need the extra step in the keyword-to-
symbol conversion.

There is another class of differences among these types: namely, that keywords and
symbols may be namespaced, signified by a slash (/) in the middle. For these kinds of

keywords and symbols, the name function may or may not be sufficient to convert to a
string, depending on your use case:

;; If you only want the name part of a keyword
(name :user/valid?)
;; -> "valid?"

;; If you only want the namespace
(namespace :user/valid?)
;; -> "user"

Very often, you actually want both parts. You could collect them separately and con‐

catenate the strings with a / in the middle, but there’s an easier way. Java has a rich set
of performant methods for dealing with immutable strings. You can take the leading-

colon string and lop off the first character with java.lang.String.substring(int):

(str :user/valid?)
;; -> ":user/valid?"

(.substring (str :user/valid?) 1)
;; -> "user/valid?"

See the java.lang.String API documentation for more string methods.

1.12. Converting Between Strings, Symbols, and Keywords | 21

http://bit.ly/javadoc-string

You can convert namespaced symbols to keywords just as easily as their non-
namespaced counterparts, but again, converting in the other direction (keyword to
symbol) takes an extra step:

(keyword 'produce/onions)
;; -> :produce/onions

(symbol (.substring (str :produce/onions) 1))
;; -> produce/onions

And finally, both the keyword and symbol functions have two-argument versions that
allow you to pass in the namespace and name separately. Sometimes this is nicer—for

example, when you already have one or both of the values bound in a def, let, or other
binding:

(def shopping-area "bakery")

(keyword shopping-area "bagels")
;; -> :bakery/bagels

(symbol shopping-area "cakes")
;; -> bakery/cakes

These three string-like data types are all great for different situations, and how to choose
among them is another topic. But it’s quite common to need to convert among them,

so keyword, symbol, str, namespace, and name are handy to have in your tool belt.

See Also

• Recipe 1.5, “Converting Between Characters and Integers” on page 8

1.13. Maintaining Accuracy with Extremely Large/Small
Numbers
by Ryan Neufeld

Problem
You need to work precisely with numbers, especially those that are very large or very
small, without the imprecision implied by using floating-point representations such as

double values.

Solution
First, know that Clojure supports exponents as literal numbers, allowing you to suc‐
cinctly express large/small numbers:

22 | Chapter 1: Primitive Data

;; Avogadro's number
6.0221413e23
;; -> 6.0221413E23

;; 1 Angstrom in meters
1e-10
;; -> 1.0E-10

Integer values passing the upper bound of a size-bounded type (like long) will raise an

integer overflow error. Use the “quote” versions of numeric operations like - or * to

allow promotion to Big types:

(* 9999 9999 9999 9999 9999)
;; ArithmeticException integer overflow clojure.lang.Numbers.throwIntOverflow

(*' 9999 9999 9999 9999 9999)
;; -> 99950009999000049999N

Discussion
Clojure has a number of numeric types: integer and long, double, and BigInteger and

BigDecimal. The bounded types (int, long, and double) all seamlessly transition as
needed while inside the total bounds of those types. Exceeding those bounds causes one
of two things to happen. For integers, an integer overflow error is raised. For floating-

point numbers, the result will become Infinity. With integers, you can avoid this error

by using quote versions of +, -, *, and /. These operations support arbitrary precision

and will promote integers to BigInteger if necessary.

Floating-point values are a little more tricky. The quote versions of numeric operations

won’t help here; you’ll need to infect your operations with the BigDecimal type. In

Clojure, the BigInteger and BigDecimal types are what you would call “contagious.”
Once a “big” number is introduced to an operation, it infects all of the follow-on results.

You could do something like multiplying a number by a BigDecimal 1, but it’s much

easier to use the bigdec or bigint functions to promote a value manually:

(* 2 Double/MAX_VALUE)
;; -> Double/POSITIVE_INFINITY

(* 2 (bigdec Double/MAX_VALUE))
;; -> 3.5953862697246314E+308M

Contagion doesn’t only occur with Big types; it also pops up in the integer-to–floating-
point boundary. Floating-point numbers are contagious to integers. Arithmetic involv‐
ing any floating-point values will always return a floating-point value.

1.13. Maintaining Accuracy with Extremely Large/Small Numbers | 23

See Also

• Recipe 1.14, “Working with Rational Numbers” on page 24, for information on
maintaining accuracy when using rational numbers

1.14. Working with Rational Numbers
by Ryan Neufeld

Problem
You need to manipulate fractional numbers with absolute precision.

Solution
When manipulating integers (or other rationals), you can expect to maintain precision,
including recurring fractions like 1/3 (0.333…):

(/ 1 3)
;; -> 1/3

(type (/ 1 3))
;; -> clojure.lang.Ratio

(* 3 (/ 1 3))
;; -> 1N

Use rationalize on doubles to coerce them to rationals to avoid losing precision:

(+ (/ 1 3) 0.3)
;; -> 0.6333333333333333

(rationalize 0.3)
;; -> 3/10

(+ (/ 1 3) (rationalize 0.3))
;; -> 19/30

Discussion
Clojure does its best to help you retain accuracy when working with numbers, especially
integers. When dividing integers, Clojure maintains accuracy by expressing the quotient

as an accurate ratio of integers instead of a lossy double. This accuracy isn’t without a
cost, though; operations on rational numbers are much slower than operations on sim‐
pler types. As is discussed in Recipe 1.13, “Maintaining Accuracy with Extremely Large/
Small Numbers” on page 22, accuracy is always a trade-off for performance, and is
something you need to consider given the problem at hand.

24 | Chapter 1: Primitive Data

When operating on both doubles and rationals at the same time, care is advised; on
account of the way type contagion works in Clojure, performing an operation over both

types will cause the rational number to be coerced to a double. This transition isn’t
necessarily inaccurate for a single operation, but the change in type introduces the pos‐
sibility for inaccuracy to creep in.

To maintain accuracy when working with doubles, use the rationalize function. This

function returns the rational value of any number. Calling rationalize on any values

that might possibly be doubles will allow you to maintain absolute accuracy (at the cost
of performance).

See Also

• Recipe 1.13, “Maintaining Accuracy with Extremely Large/Small Numbers” on page
22

1.15. Parsing Numbers
by Ryan Neufeld

Problem
You need to parse numbers out of strings.

Solution
For “normal”-sized large or precise numbers, use Integer/parseInt or Double/

parseDouble to parse them:

(Integer/parseInt "-42")
;; -> -42

(Double/parseDouble "3.14")
;; -> 3.14

Discussion
What is a “normal”-sized number? For Integer/parseInt, normal is anything below

Integer/MAX_VALUE (2147483647); and for Double/parseDouble, it’s anything below

Double/MAX_VALUE (around 1.79 × 10^308).functions

When the numbers you are parsing are either abnormally large or abnormally precise,

you’ll need to parse them with BigInteger or BigDecimal to avoid losing precision.

1.15. Parsing Numbers | 25

The versatile bigint and bigdec functions can coerce strings (or any other numerical
types, for that matter) into infinite-precision containers:

(bigdec "3.141592653589793238462643383279502884197")
;; -> 3.141592653589793238462643383279502884197M

(bigint "122333444455555666666777777788888888999999999")
;; -> 122333444455555666666777777788888888999999999N

See Also

• The API documentation for Integer/parseInt and Double/parseDouble

1.16. Truncating and Rounding Numbers
by Ryan Neufeld

Problem
You need to truncate or round a decimal number to a lower-precision number.

Solution
If the integer portion of a number is all you are concerned with, use int to coerce the
number to an integer. Of course, this completely discards any decimal places without
performing any rounding:

(int 2.0001)
;; -> 2

(int 2.999999999)
;; -> 2

If you still value some level of precision, then rounding is probably what you’re after.

You can use Math/round to perform simple rounding:

(Math/round 2.0001)
;; -> 2

(Math/round 2.999)
;; -> 3

;; This is equivalent to:
(int (+ 2.99 0.5))
;; -> 3

If you want to perform an unbalanced rounding, such as unconditionally “rounding

up” or “rounding down,” then you should use Math/ceil or Math/floor, respectively:

26 | Chapter 1: Primitive Data

http://bit.ly/javadoc-parseInt
http://bit.ly/javadoc-parseDouble

(Math/ceil 2.0001)
;; -> 3.0

(Math/floor 2.999)
;; -> 2.0

You’ll notice these functions return decimal numbers. Wrap calls to ceil or floor in

int to return an integer.

Discussion
One of the simplest ways to “round” numbers is truncation. int will do this for you,
coercing floating-point numbers to integers by simply chopping off any trailing decimal
places. This isn’t necessarily mathematically correct, but it is certainly convenient if it
is accurate enough for the problem at hand.

Math/round is the next step up in rounding technology. As with many other primitive

manipulation functions in Clojure, the language prefers not to reinvent the wheel. Math/

round is a Java function that rounds by adding 1/2 to a number before dropping decimal

places similarly to int.

For more advanced rounding, such as controlling the number of decimal places or

complex rounding modes, you may need to resort to using the with-precision func‐

tion. You likely already know BigDecimal numbers are backed by Java classes, but you

might not have known that Java exposes a number of knobs for tweaking BigDecimal

calculations; with-precision exposes these knobs.

with-precision is a macro that accepts a BigDecimal precision mode and any number

of expressions, executing those expressions in a BigDecimal context tuned to that pre‐
cision. So what does precision look like? Well, it’s a little strange. The most basic pre‐
cision is simply a positive integer “scale” value. This value specifies the number of dec‐

imal places to work with. More complex precisions involve a :rounding value, specified

as a key/value pair like :rounding FLOOR (this is a macro of course, so why not?). When

not specified, the default rounding mode is HALF_UP, but any of the values CEILING,

FLOOR, HALF_UP, HALF_DOWN, HALF_EVEN, UP, DOWN, or UNNECESSARY are allowed (see the

RoundingMode documentation for more detailed descriptions of each mode):

(with-precision 3 (/ 7M 9))
;; -> 0.778M

(with-precision 1 (/ 7M 9))
;; -> 0.8M

(with-precision 1 :rounding FLOOR (/ 7M 9))
;; -> 0.7M

1.16. Truncating and Rounding Numbers | 27

http://bit.ly/javadoc-rounding-mode

One notable “gotcha” with with-precision is that it only changes the behavior of

BigDecimal arithmetic, leaving regular arithmetic unchanged. You’ll have to introduce

BigDecimal values into your expressions with literal values (3M), or by means of the

bigdec function:

(with-precision 3 (/ 1 3))
;; -> 1/3

(with-precision 3 (/ (bigdec 1) 3))
;; -> 0.333M

See Also

• Recipe 1.13, “Maintaining Accuracy with Extremely Large/Small Numbers” on page

22, for more information on BigDecimal, specifically type contagion

• Recipe 1.17, “Performing Fuzzy Comparison” on page 28

1.17. Performing Fuzzy Comparison
by Ryan Neufeld

Problem
You need to test for equality with some tolerance for minute differences. This is espe‐
cially a problem when comparing floating-point numbers, which are susceptible to
“drift” through repeated operations.

Solution
Clojure has no built-in functions for fault-tolerant equality, or “fuzzy comparison,” as

it is often called. It’s trivial to implement your own fuzzy= function:

(defn fuzzy= [tolerance x y]
 (let [diff (Math/abs (- x y))]
 (< diff tolerance)))

(fuzzy= 0.01 10 10.000000000001)
;; -> true

(fuzzy= 0.01 10 10.1)
;; -> false

Discussion
fuzzy= works like most other fuzzy comparison algorithms do: first it finds the absolute
difference between the two operands; and second, it tests whether that difference falls

28 | Chapter 1: Primitive Data

beneath the given tolerance. Of course, there’s nothing dictating that the tolerance needs
to be some minute fractional number. If you were comparing large numbers and wanted

to ignore variations under a thousand, you could set the tolerance to 1000.

Even with fuzzy=, you still need to take care when comparing floating-point values,
especially for values differing by numbers very close to your tolerance. At differences
bordering the supplied tolerance, you may find the results a bit strange:

(- 0.22 0.23)
;; -> -0.010000000000000009

(- 0.23 0.24)
;; -> -0.009999999999999981

As odd as this is, this isn’t unexpected. The IEEE 754 specification for floating-point
values is a purposefully limited format, a trade-off between accuracy and performance.

If absolute precision is what you’re after, then you should be using BigDecimal or

BigInt. See Recipe 1.13, “Maintaining Accuracy with Extremely Large/Small Num‐
bers” on page 22, for more information on those two types.

The fuzzy= function, as written, has a number of interesting side effects. First and

foremost, having tolerance as the first argument makes it use partial to produce par‐
tially applied equals functions tuned to a specific tolerance:

(def equal-within-ten? (partial fuzzy= 10))

(equal-within-ten? 100 109)
;; -> true

(equal-within-ten? 100 110)
;; -> false

What if you wanted to sort using fuzzy comparison? The sort function takes as an

optional argument a predicate or comparator. Let’s write a function fuzzy-

comparator that returns a comparator with a given tolerance:

(defn fuzzy-comparator [tolerance]
 (fn [x y]
 (if (fuzzy= tolerance x y) ;
 0
 (compare x y)))) ;

(sort (fuzzy-comparator 10) [100 11 150 10 9])
;; -> (11 10 9 100 150) ; 100 and 150 have moved, but not 11, 10, and 9

If the two values being compared are within tolerance of each other, return 0
to indicate they are equal.

Otherwise, fall back to normal compare.

1.17. Performing Fuzzy Comparison | 29

See Also

• The Wikipedia article on IEEE floating point

• Recipe 1.13, “Maintaining Accuracy with Extremely Large/Small Numbers” on page
22

• Recipe 1.16, “Truncating and Rounding Numbers” on page 26

1.18. Performing Trigonometry
by Ryan Neufeld

Problem
You need to implement mathematical functions that require trigonometry.

Solution
All of the trigonometric functions are accessible via java.lang.Math, which is available

as Math. Use them like you would any other namespaced function:

;; Calculating sin(a + b). The formula for this is
;; sin(a + b) = sin a * cos b + sin b cos a
(defn sin-plus [a b]
 (+ (* (Math/sin a) (Math/cos b))
 (* (Math/sin b) (Math/cos a))))

(sin-plus 0.1 0.3)
;; -> 0.38941834230865047

Trigonometric functions operate on values measured in radians. If you have values
measured in degrees, such as latitude or longitude, then you’ll need to convert them to

radians first. Use Math/toRadians to convert degrees to radians:

;; Calculating the distance in kilometers between two points on Earth
(def earth-radius 6371.009)

(defn degrees->radians [point]
 (mapv #(Math/toRadians %) point))

(defn distance-between
 "Calculate the distance in km between two points on Earth. Each
 point is a pair of degrees latitude and longitude, in that order."
 ([p1 p2] (distance-between p1 p2 earth-radius))
 ([p1 p2 radius]
 (let [[lat1 long1] (degrees->radians p1)
 [lat2 long2] (degrees->radians p2)]
 (* radius

30 | Chapter 1: Primitive Data

http://bit.ly/ieee-floating-point
http://bit.ly/javadoc-math

 (Math/acos (+ (* (Math/sin lat1) (Math/sin lat2))
 (* (Math/cos lat1)
 (Math/cos lat2)
 (Math/cos (- long1 long2)))))))))

(distance-between [49.2000 -98.1000] [35.9939, -78.8989])
;; -> 2139.42827188432

Discussion
It may be surprising to some that Clojure doesn’t have its own internal math namespace,
but why reinvent the wheel? Despite its tainted reputation, Java can perform, especially
when it comes to math. Clojure’s Java interop forms and typing sugar make doing math

using java.lang.Math almost pleasant.

java.lang.Math isn’t only for trigonometry. It also contains a number of functions
useful for dealing with exponentiation, logarithms, and roots. A full list of methods is

available in the java.lang.Math javadoc.

See Also

• Recipe 8.5, “Alleviating Performance Problems with Type Hinting” on page 358, for
tips on improving performance

1.19. Inputting and Outputting Integers with Different
Bases
by Ryan Neufeld

Problem
You need to enter numbers into a Clojure REPL or code in a different base (such as
hexadecimal or binary).

Solution
Specify the base or radix of a literal number by prefixing it with the radix number (e.g.,

2, 16, etc.) and the letter r. Any base from 2 to 36 is valid (there are, of course, 10 digits
and 26 letters available):

2r101010
;; -> 42

3r1120
;; -> 42

1.19. Inputting and Outputting Integers with Different Bases | 31

http://bit.ly/javadoc-math

16r2A
;; -> 42

36rABUNCH
;; -> 624567473

To output integers, use the Java method Integer/toString:

(Integer/toString 13 2)
;; -> "1101"

(Integer/toString 42 16)
;; -> "2a"

(Integer/toString 35 36)
;; -> "z"

Discussion
Unlike the ordering of most Clojure functions, this method takes an integer first and
the optional base second, making it hard to partially apply without wrapping it in an‐

other function. You can write a small wrapper around Integer/toString to accomplish
this:

(defn to-base [radix n]
 (Integer/toString n radix))

(def base-two (partial to-base 2))

(base-two 9001)
;; -> "10001100101001"

See Also

• Recipe 1.6, “Formatting Strings” on page 10, for information on format (the o and

x specifiers print integers in octal and hexadecimal, respectively)

• Recipe 1.15, “Parsing Numbers” on page 25

1.20. Calculating Statistics on Collections of Numbers
by Ryan Neufeld and Jean Niklas L' orange

Problem
You need to calculate simple statistics like mean, median, mode, and standard deviation
on a collection of numbers.

32 | Chapter 1: Primitive Data

Solution
Find the mean (average) of a collection by dividing its total by the count of the collection:

(defn mean [coll]
 (let [sum (apply + coll)
 count (count coll)]
 (if (pos? count)
 (/ sum count)
 0)))

(mean [1 2 3 4])
;; -> 5/2

(mean [1 1.6 7.4 10])
;; -> 5.0

(mean [])
;; -> 0

Find the median (middle value) of a collection by sorting its values and getting its middle
value. There are, of course, special considerations for collections of even length. In these
cases, the median is considering the mean of the two middle values:

(defn median [coll]
 (let [sorted (sort coll)
 cnt (count sorted)
 halfway (int (/ cnt 2))]
 (if (odd? cnt)
 (nth sorted halfway) ;
 (let [bottom (dec halfway)
 bottom-val (nth sorted bottom)
 top-val (nth sorted halfway)]
 (mean [bottom-val top-val]))))) ;

(median [5 2 4 1 3])
;; -> 3

(median [7 0 2 3])
;; -> 5/2 ; The average of 2 and 3.

In the case that coll has an odd number of items, simply retrieve that item with

nth.

When coll has an even number of items, find the index for the other central

value (bottom), and take the mean of the top and bottom values.

Find the mode (most frequently occurring value) of a collection by using frequen

cies to tally occurrences. Then massage that tally to retrieve the discrete list of modes:

(defn mode [coll]
 (let [freqs (frequencies coll)

1.20. Calculating Statistics on Collections of Numbers | 33

 occurrences (group-by second freqs)
 modes (last (sort occurrences))
 modes (->> modes
 second
 (map first))]
 modes))

(mode [:alan :bob :alan :greg])
;; -> (:alan)

(mode [:smith :carpenter :doe :smith :doe])
;; -> (:smith :doe)

Standard deviation

Find the sample standard deviation by completing the following steps:

1. For each value in the collection, subtract the mean from the value and multiply that
result by itself.

2. Then, sum up all those values.

3. Divide the result by the number of values minus one.

4. Finally, take the square root of the previous result:

(defn standard-deviation [coll]
 (let [avg (mean coll)
 squares (for [x coll]
 (let [x-avg (- x avg)]
 (* x-avg x-avg)))
 total (count coll)]
 (-> (/ (apply + squares)
 (- total 1))
 (Math/sqrt))))

(standard-deviation [4 5 2 9 5 7 4 5 4])
;; -> 2.0

(standard-deviation [4 5 5 4 4 2 2 6])
;; -> 1.4142135623730951

Discussion
Both mean and median are fairly easy to reproduce in Clojure, but mode requires a bit

more effort. mode is a little different than mean or median in that it generally only makes
sense for nonnumeric data. Calculating the modes of a collection is a little more involved
and ultimately requires a good deal of processing compared to its numeric cousins.

Here is a breakdown of how mode works:

34 | Chapter 1: Primitive Data

(defn mode [coll]
 (let [freqs (frequencies coll) ;
 occurrences (group-by second freqs) ;
 modes (last (sort occurrences)) ;
 modes (->> modes ;
 second
 (map first))]
 modes))

frequencies returns a map that tallies the number of times each value in coll

occurs. This would be something like {:a 1 :b 2}.

group-by with second inverts the freqs map, turning keys into values and

merging duplicates into groups. This would turn {:a 1 :b 1} into {1 [[:a 1]

[:b 1]]}.

The list of occurrences is now sortable. The last pair in the sorted list will be the
modes, or most frequently occurring values.

The final step is processing the raw mode pairs into discrete values. Taking

second turns [2 [[:alan 2]]] into [[:alan 2]], and (map first) turns that

into (:alan).

The standard deviation measures how much, on average, the individual values in a
population deviate from the mean: the higher the standard deviation is, the farther away

the individual values will be (on average). standard-deviation is a bit more mathe‐

matical than mean, median, and mode. Follow along the execution of this function step
by step:

(defn standard-deviation [coll]
 (let [avg (mean coll) ;
 squares (for [x coll] ;
 (let [x-avg (- x avg)]
 (* x-avg x-avg)))
 total (count coll)]
 (-> (/ (apply + squares) ;
 (- total 1))
 (Math/sqrt))))

Calculate the mean of the collection.

For each value, calculate the square of the difference between the value and the
mean.

Finally, calculate the sample standard deviation by taking the square root of the
sum of squares over population size minus one.

1.20. Calculating Statistics on Collections of Numbers | 35

If you have the complete population, you can compute the popula‐

tion standard deviation by dividing by total instead of (- total 1).

See Also

• The Wikipedia article on standard deviation for more information on standard
deviation and what it can be used for

1.21. Performing Bitwise Operations
by Ryan Neufeld

Problem
You need to perform bitwise operations on numbers.

Solution
Bitwise operations aren’t quite as commonly used in high-level languages (like Clojure)
as they are in systems languages like C or C++, but the techniques learned in those
systems languages can still be useful. Clojure exposes a number of bitwise operations

in its core namespace, all prefixed with bit-. One place bitwise operations really shine
is in compressing a large number of binary flags into a single value:

;; Modeling a subset of Unix filesystem flags in a single integer
(def fs-flags [:owner-read :owner-write
 :group-read :group-write
 :global-read :global-write])

;; Fold flags into a map of flag->bit
(def bitmap (zipmap fs-flags
 (map (partial bit-shift-left 1) (range))))
;; -> {:owner-read 1, :owner-write 2, :group-read 4, ...}

(defn permissions-int [& flags]
 (reduce bit-or 0 (map bitmap flags)))

(def owner-only (permissions-int :owner-read :owner-write))
(Integer/toBinaryString owner-only)
;; -> "11"

(def read-only (permissions-int :owner-read :group-read :global-read))
(Integer/toBinaryString read-only)
;; -> "10101"

36 | Chapter 1: Primitive Data

http://bit.ly/wiki-std-dev

(defn able-to? [permissions flag]
 (not= 0 (bit-and permissions (bitmap flag))))

(able-to? read-only :global-read) ;; -> true
(able-to? read-only :global-write) ;; -> false

Discussion
Clojure provides a full complement of bitwise operations in its core library. This includes
the logic operations and and or, their negations, and shifts, to name a few. When working
with bitwise operations, it can often be necessary to view the binary representation of

an integer. Java’s Integer/toBinaryString can conveniently print out a binary repre‐
sentation of a number.

Interestingly enough, core also includes a bit-set and a bit-test. These two opera‐
tions set or test an individual bit position in an integer. Instead of working in multiples

of two, as is necessary for operations like bit-and, you can operate by the index of the
flag you’re interested in. This drastically simplifies the preceding example:

;; Modeling a subset of Unix filesystem flags in a single integer
(def fs-flags [:owner-read :owner-write
 :group-read :group-write
 :global-read :global-write])

(def bitmap (zipmap fs-flags
 (map #(.indexOf fs-flags %) fs-flags)))

(def no-permissions 0)
(def owner-read (bit-set no-permissions (:owner-read bitmap)))

(Integer/toBinaryString owner-read)
;; -> "1"

;; Granting global permissions...
(def anything (reduce #(bit-set %1 (bitmap %2)) no-permissions fs-flags))
(Integer/toBinaryString anything)
;; -> "111111"

See Also

• Recipe 8.6, “Fast Math with Primitive Java Arrays” on page 360

1.22. Generating Random Numbers
by Ryan Neufeld

1.22. Generating Random Numbers | 37

Problem
You need to generate a random number.

Solution
Clojure makes available a number of pseudorandom number generating functions for
your disposal.

For generating random floating-point numbers from 0.0 up to (but not including)

1.0, use rand:

(rand)
;; -> 0.0249306187447903

(rand)
;; -> 0.9242089829055088

For generating random integers, use rand-int:

;; Emulating a six-sided die
(defn roll-d6 []
 (inc (rand-int 6)))

(roll-d6)
;; -> 1

(roll-d6)
;; -> 3

Discussion
In addition to generating a number from 0.0 to 1.0, rand also accepts an optional

argument that specifies the exclusive maximum value. For example, (rand 5) would

return a floating-point number ranging from 0.0 (inclusive) to 5.0 (exclusive).

(rand-int 5), on the other hand, would return a random integer between 0 (inclusive)

and 5 (exclusive). At first blush, rand-int might seem like an ideal way to select a

random element from a vector or list. This is a lot of ceremony, though. Use rand-nth
instead to get a random element from any sequential collection (i.e., the collection re‐

sponds to nth):

(rand-nth [1 2 3])
;; -> 1

(rand-nth '(:a :b :c))
;; -> :c

38 | Chapter 1: Primitive Data

This won’t work for sets or hash maps, however. If you want to retrieve a random element

from a nonsequential collection like a set, use seq to transform that collection into a

sequence before calling rand-nth on it:

(rand-nth (seq #{:heads :tails}))
;; -> :heads

If you’re trying to randomly sort a collection, use shuffle to receive a random permu‐
tation of your collection:

(shuffle [1 2 3 4 5 6])
;; -> [3 1 4 5 2 6]

See Also

• The API documentation for java.util.Random

• Recipe 10.3, “Thoroughly Testing by Randomizing Inputs” on page 411

1.23. Working with Currency
by Ryan Neufeld

Problem
You need to manipulate values that represent currency.

Solution
Use the Money library for representing, manipulating, and storing values in monetary
units.

To follow along with this recipe, add [clojurewerkz/money "1.4.0"] to your project’s

dependencies, or start a REPL using lein-try:

$ lein try clojurewerkz/money

The clojurewerkz.money.amounts namespace contains functions for creating, modi‐
fying, and comparing units of currency:

(require '[clojurewerkz.money.amounts :as ma])
(require '[clojurewerkz.money.currencies :as mc])

;; $2.00 in USD
(def two (ma/amount-of mc/USD 2))
two
;; -> #<Money USD 2.00>

1.23. Working with Currency | 39

http://bit.ly/javadoc-random
https://github.com/clojurewerkz/money

(ma/plus two two)
;; -> #<Money USD 4.00>

(ma/minus two two)
;; -> #<Money USD 0.00>

(ma/< two (ma/amount-of mc/USD 2.01))
;; -> true

(ma/total [two two two two])
;; -> #<Money USD 8.00>

Discussion
Working with currency is serious business. Never trust built-in numerical types with
handling currency, especially floating-point values. These types are simply not meant
to capture and manipulate currency with the semantics and precision required. In par‐
ticular, floating-point values of the IEEE 754 standard carry a certain imprecision by
design:

(- 0.23 0.24)
;; -> -0.009999999999999981

You should always use a library custom-tailored for dealing with money. The Money
library wraps the trusted and battle-tested Java library Joda-Money. Money provides a
large amount of functionality beyond arithmetic, including rounding and currency
conversion:

(ma/round (ma/amount-of mc/USD 3.14) 0 :down)
;; -> #<Money USD 3.00>

(ma/convert-to (ma/amount-of mc/CAD 152.34) mc/USD 1.01696 :down)
;; -> #<Money USD 154.92>

The round function takes four arguments. The first three are an amount of currency,
a scale factor, and a rounding mode. The scaling factor is a somewhat peculiar argument.

It might be familiar to you if you’ve ever done scaling with BigDecimal, which shares

identical factors. A scale of -1 scales to the tens place, 0 scales to the ones place, and so

on and so forth. Further details can be found in the javadoc for the rounded method of

Joda-Money’s Money class. The final argument is a rounding mode, of which there are

quite a few. :ceiling and :floor round toward positive or negative infinity. :up

and :down round toward or away from zero. Finally :half-up, :half-down, and :half-

even round toward the nearest neighbor, preferring up, down, or the most even neigh‐
bor.

clojurewerkz.money.amounts/convert-to is a much less complicated function.

convert-to takes an amount of currency, a target currency, a conversion factor, and a
rounding mode. Money doesn’t provide its own conversion factor, since conversion

40 | Chapter 1: Primitive Data

http://bit.ly/joda-money-rounded-src

rates change so often, so you’ll need to seek out a reputable source for them. Unfortu‐
nately, we can’t help you with this one.

Money also provides support for a number of different persistence and serialization
mediums, including Cheshire for converting to/from JSON and Monger for persisting
currency values to MongoDB.

See Also

• Recipe 1.13, “Maintaining Accuracy with Extremely Large/Small Numbers” on page
22, and Recipe 1.16, “Truncating and Rounding Numbers” on page 26

1.24. Generating Unique IDs
by Ryan Neufeld

Problem
You need to generate a unique ID.

Solution
Use Java’s java.util.UUID/randomUUID to generate a universally unique ID (UUID):

(java.util.UUID/randomUUID)
;; -> #uuid "5358e6e3-7f81-40f0-84e5-750e29e6ee05"

(java.util.UUID/randomUUID)
;; -> #uuid "a6f92a6f-f736-468f-9e26-f392852825f4"

Discussion
Oftentimes when building systems, you want to assign unique IDs to objects and re‐
cords. IDs are usually simple integers that monotonically increase with time. This isn’t
without its problems, though.

You can’t mingle IDs of objects from different origins; and worse, they reveal informa‐
tion about the amount and input volume of your data.

This is where UUIDs come in. UUIDs, or universally unique identifiers, are 128-bit
random numbers almost certainly unique across the entire universe. A bold claim, of
course—see RFC 4122 for more detailed information on UUIDs, how they’re generated,
and the math behind them.

You may have noticed Clojure prints UUIDs with a #uuid in front of them. This is a
reader literal tag. It acts as a shortcut for the Clojure reader to read and initialize UUID

1.24. Generating Unique IDs | 41

https://github.com/dakrone/cheshire
http://clojuremongodb.info/
http://bit.ly/rfc4122

objects. Reader literals are a lot like string or number literals like "Hi" or 42, but they
can capture more complex data types.

This makes it possible for formats like edn (extensible data notation) to communicate
in a common lingo about things like UUIDs without resorting to string interning and
accompanying custom parsing logic.

Sequential IDs
One thing you will lose with the move from sequential IDs to UUIDs is the implicit
sortability of a chronologically increasing number. What if you could generate UUIDs

that were both unique and sortable? Datomic does something similar with its datom

ic.api/squuid function.

This approximation of Datomic’s squuid splits and reassembles a random UUID, using

bit-or to merge the current time with the most significant 32 bits of the UUID. The

two halves of the UUID are then reassembled using the java.util.UUID. constructor,
yielding UUIDs that increase sequentially over time:

(def first (squuid))
first
;; -> #uuid "527bf210-dfae-4c73-8b7a-302d3b511f41"

(def second (squuid))
second
;; -> #uuid "527bf219-65f0-4241-a165-c5c541cb98ea"

(def third (squuid))
third
;; -> #uuid "527bf232-42b2-44bc-8dd7-ddae2abfcb87"

(sort [first second third])
;; -> (#uuid "527bf210-dfae-4c73-8b7a-302d3b511f41"
;; #uuid "527bf219-65f0-4241-a165-c5c541cb98ea"
;; #uuid "527bf232-42b2-44bc-8dd7-ddae2abfcb87")

See Also

• Recipe 1.21, “Performing Bitwise Operations” on page 36

• Recipe 1.26, “Representing Dates as Literals” on page 44, for information on #inst,
another example of a reader literal, for dates

• The java.util.UUID API documentation

42 | Chapter 1: Primitive Data

https://github.com/edn-format/edn
http://bit.ly/javadoc-uuid

1.25. Obtaining the Current Date and Time
by Ryan Neufeld

Problem
You need to obtain the current date or time.

Solution
Use Java’s java.util.Date constructor to create a Date instance representing the
present time and date:

(defn now []
 (java.util.Date.))

(now)
;; -> #inst "2013-04-06T14:33:45.740-00:00"

;; A few seconds later...
(now)
;; -> #inst "2013-04-06T14:33:51.234-00:00"

If you’re more interested in the current Unix timestamp, use System/currentTimeMil

lis:

(System/currentTimeMillis)
;; -> 1365260110635

(System/currentTimeMillis)
;; -> 1365260157013

Discussion
It doesn’t make much sense for Clojure to reimplement or wrap the JVM’s backing time
and date functionality. As such, the norm is to use Clojure’s Java interop forms to in‐

stantiate a Date object representing “now.”

#inst "2013-04-06T14:33:51.234-00:00" doesn’t look very much like Java, does it?

That’s because Clojure’s “instant” reader literal uses java.util.Date as its backing im‐

plementation. You can learn more about the #inst reader literal in Recipe 1.26, “Rep‐
resenting Dates as Literals” on page 44.

Using System/currentTimeMillis can be useful for performing a one-off benchmark,

but given the high-quality tools out there that do this already, currentTimeMillis is of
limited utility; you may want to try Hugo Duncan’s Criterium library if benchmarking

is what you’re after. Additionally, you shouldn’t try to use currentTimeMillis as some
sort of unique value—UUIDs do a much better job of this.

1.25. Obtaining the Current Date and Time | 43

http://bit.ly/javadoc-date
https://github.com/hugoduncan/criterium

If you decide you would rather use clj-time to work with dates, it provides the function

clj-time.core/now to get the current DateTime:

(require '[clj-time.core :as timec])

(timec/now)
;; -> #<DateTime 2013-04-06T14:35:15.453Z>

Use clj-time.local/local-now to retrieve a DateTime instance for the present scoped
to your machine’s local time zone:

(require '[clj-time.local :as timel])

(timel/local-now)
;; -> #<DateTime 2013-04-06T09:35:20.141-05:00>

See Also

• Recipe 1.24, “Generating Unique IDs” on page 41, to learn how to generate uni‐
versally unique IDs

• Recipe 1.26, “Representing Dates as Literals” on page 44, for more information on

the #inst reader literal

1.26. Representing Dates as Literals
by Ryan Neufeld

Problem
You need to represent instances of time in a readable and serializable form.

Solution
Use Clojure’s #inst literals in source to represent fixed points in time:

(def ryans-birthday #inst "1987-02-18T18:00:00.000-00:00")

(println ryans-birthday)
;; *out*
;; #inst "1987-02-18T18:00:00.000-00:00"

When communicating with other Clojure processes (or anything else that speaks edn),

use clojure.edn/read to reify instant literal strings into Date objects:

;; A faux communication channel that "receives" edn strings
(require 'clojure.edn)
(import '[java.io PushbackReader StringReader])

44 | Chapter 1: Primitive Data

https://github.com/clj-time/clj-time
https://github.com/edn-format/edn

(defn remote-server-receive-date []
 (-> "#inst \"1987-02-18T18:00:00.000-00:00\""
 (StringReader.)
 (PushbackReader.)))

(clojure.edn/read (remote-server-receive-date))
;; -> #inst "1987-02-18T18:00:00.000-00:00"

In the preceding example, remote-server-receive-date emulates a communication
channel upon which you may receive edn data.

Discussion
Since Clojure 1.4, instants in time have been represented via the #inst reader literal.
This means dates are no longer represented by code that must be evaluated, but instead
have a textual representation that is both consistent and serializable. This standard al‐
lows any process capable of communicating in extensible data notation to speak clearly
about instants of time. See the edn implementations list for a list of languages that speak
edn; the list includes Clojure, Ruby, and JavaScript so far, with many more implemen‐
tations in the works.

clojure.core/read Versus clojure.edn/read

While it may seem convenient to read strings using Clojure’s built-in reader (clo

jure.core/read), it is never safe to parse input from an untrusted source using this
reader. If you need to receive simple Clojure data from an external source, it is best to

use the edn reader (clojure.edn/read).

clojure.core/read isn’t safe because it was only designed for reading Clojure data and

strings from trusted sources (such as the source files you write). clojure.edn/read is
designed specifically for use as part of a communication channel, and as such is built
with security in mind.

It’s also possible to vary how the reader evaluates #inst literals by changing the binding

of *data-readers*. By varying the binding of *data-readers*, it is possible to read

#inst literals as java.util.Calendar or java.sql.Timestamp, if you so desire:

(def instant "#inst \"1987-02-18T18:00:00.000-00:00\"")

(binding [*data-readers* {'inst clojure.instant/read-instant-calendar}]
 (class (read-string instant)))
;; -> java.util.GregorianCalendar

(binding [*data-readers* {'inst clojure.instant/read-instant-timestamp}]
 (class (read-string instant)))
;; -> java.sql.Timestamp

1.26. Representing Dates as Literals | 45

http://bit.ly/edn-impls
http://bit.ly/javadoc-calendar
http://bit.ly/javadoc-timestamp

See Also

• Recipe 1.24, “Generating Unique IDs” on page 41, for another example of a reader
literal included with Clojure

1.27. Parsing Dates and Times Using clj-time
by Ryan Neufeld

Problem
You need to parse dates from a string.

Solution
Working directly with Java’s date and time classes is like pulling teeth. We suggest using

clj-time, a Clojure wrapper over the excellent Joda-Time library.

Before starting, add [clj-time "0.6.0"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-time

Use clj-time.format/formatter to create custom date/time representations capable

of parsing candidate strings. Use the clj-time.format/parse function with those for‐

matters to parse strings into DateTime objects:

(require '[clj-time.format :as tf])

;; To parse dates like "02/18/87"
(def government-forms-date (tf/formatter "MM/dd/yy"))

(tf/parse government-forms-date "02/18/87")
;; -> #<DateTime 1987-02-18T00:00:00.000Z>

(def wonky-format (tf/formatter "HH:mm:ss:SS' on 'yyyy-MM-dd"))
;; -> #'user/wonky-format

(tf/parse wonky-format "16:13:49:06 on 2013-04-06")
;; -> #<DateTime 2013-04-06T16:13:49.060Z>

Discussion
The formatter function is a powerful little function that takes a date/time format string
and returns an object capable of parsing date/time strings in that format. This format
string can include any number of symbols representing portions of a time or date. Some
example symbols include year (“yy” or “yyyy”), day (“dd”), or even a literal string like

46 | Chapter 1: Primitive Data

https://github.com/clj-time/clj-time
http://bit.ly/joda-time

"on". The full list of these symbols is available in the Joda-Time DateTimeFormat java‐
doc.

More often than not, the dates and times you’re parsing may be strange, but not so

strange that no one has seen them before. For this, clj-time includes a large number

of built-in formatters. Use clj-time.format/show-formatters to print out a list of
built-in formats and a sample date/time in each format. Once you’ve picked a suitable

format, use clj-time.format/formatters with its keyword to receive the appropriate

DateTimeFormatter.

By default, formatter always parses strings into DateTime objects with a UTC time

zone. formatter optionally takes a time zone as its second argument. You can use clj-

time.core/time-zone-for-offset or clj-time.core/time-zone-for-id to receive

a DateTimeZone object to pass to formatter.

See Also

• Recipe 1.28, “Formatting Dates Using clj-time” on page 47, for information on how
to use formatters to unparse strings

• The official API documentation for Java’s simple date formatter

1.28. Formatting Dates Using clj-time
by Ryan Neufeld

Problem
You need to print dates or times in a particular format.

Solution
While it is possible to format Java date–like instances (Date, Calendar, and Time

stamp) with clojure.core/format, you should use clj-time to format dates.

Before starting, add [clj-time "0.6.0"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-time

To output a date/time as a string, use clj-time.format/unparse with a DateTimeFor

matter. There are a number of built-in formatters available via clj-time.format/

formatters, or you can build your own with clj-time.format/formatter:

(require '[clj-time.format :as tf])
(require '[clj-time.core :as t])

1.28. Formatting Dates Using clj-time | 47

http://bit.ly/joda-time-dtf-doc
http://bit.ly/javadoc-simple-date-format
https://github.com/clj-time/clj-time

(tf/unparse (tf/formatters :date) (t/now))
;; -> "2013-04-06"

(def my-format (tf/formatter "MMM d, yyyy 'at' hh:mm"))
(tf/unparse my-format (t/now))
;; -> "Apr 6, 2013 at 04:54"

Discussion
It is certainly possible to format pure Java dates and times; however, in our experience,

it isn’t worth the hassle—the syntax is ugly, and the workflow is verbose. clj-time and
its backing library Joda-Time have a track record for making it easy to work with dates
and times on the JVM.

The formatter function is quite the gem. Not only does it produce a “format” capable

of printing or unparseing a date, but it is also capable of parsing strings back into dates.

In other words, DateTimeFormatter is capable of round-tripping from string to Date

and back again. Much of how formatter and formatters work is covered in Recipe 1.27,
“Parsing Dates and Times Using clj-time” on page 46.

One format symbol used less frequently in parsing is the textual day of the week (i.e.,

“Tuesday” or “Tue”). Use "E" in your format string to output the abbreviated day of the

week, and "EEEE" for the full-length day of the week:

(def abbr-day (tf/formatter "E"))
(def full-day (tf/formatter "EEEE"))

(tf/unparse abbr-day (t/now))
;; -> "Mon"
(tf/unparse full-day (t/now))
;; -> "Monday"

If you need to format native Java date/time instances, you can use the functions in the

clj-time.coerce namespace to coerce any number of Java date/time instances into
Joda-Time instances:

(require '[clj-time.coerce :as tc])

(tc/from-date (java.util.Date.))
;; -> #<DateTime 2013-04-06T17:03:16.872Z>

Similarly, you can use clj-time.coerce to coerce instances from Joda-Time instances
into other formats:

(tc/to-date (t/now))
;; -> #inst "2013-04-06T17:03:57.239-00:00"

(tc/to-long (t/now))
;; -> 1365267761585

48 | Chapter 1: Primitive Data

See Also

• The clj-time project page on GitHub

• Recipe 1.27, “Parsing Dates and Times Using clj-time” on page 46, for more detailed

information on formatter and formatters

• The official API documentation for Java’s simple date formatter

1.29. Comparing Dates
by Ryan Neufeld

Problem
You need to compare one date to another, or you need to sort a sequence of dates.

Solution
You can compare Java Dates using the compare function:

(defn now [] (java.util.Date.))
(def one-second-ago (now))
(Thread/sleep 1000)

;; Now is greater than (1) one second ago.
(compare (now) one-second-ago)
;; -> 1

;; One second ago is less than (-1) now.
(compare one-second-ago (now))
;; -> -1

;; "Equal" manifests as 0.
(compare one-second-ago one-second-ago)
;; -> 0

Discussion
Why not just compare dates using Clojure’s built-in comparison operators (<=, >, etc.)?

The problem with these operators is that they utilize clojure.lang.Numbers and at‐
tempt to coerce their arguments to numerical types.

Since regular comparison won’t work, it’s necessary to use the compare function. The

compare function takes two arguments and returns a number indicating that the first
argument was either less than (-1), equal to (0), or greater than (+1) the second argu‐
ment.

1.29. Comparing Dates | 49

https://github.com/clj-time/clj-time
http://bit.ly/javadoc-simple-date-format

Clojure’s sort functions use compare under the hood, so no extra work is required to
sort a collection of dates:

(def occurrences
 [#inst "2013-04-06T17:40:57.688-00:00"
 #inst "2002-12-25T00:40:57.688-00:00"
 #inst "2025-12-25T11:23:31.123-00:00"])

(sort occurrences)
;; -> (#inst "2002-12-25T00:40:57.688-00:00"
;; #inst "2013-04-06T17:40:57.688-00:00"
;; #inst "2025-12-25T11:23:31.123-00:00")

If you’ve been doing more complex work with dates and times and have Joda-Time
objects in hand, then all of this still applies. If you wish to compare Joda-Time objects
to Java time objects, however, you will have to coerce them to one uniform type using

the functions in clj-time.coerce.

See Also

• Recipe 2.24, “Comparing and Sorting Values” on page 105

1.30. Calculating the Length of a Time Interval
by Ryan Neufeld

Problem
You need to calculate the difference between two points in time.

Solution
Since Java date and time classes have poor support for time zones and leap years, use

the clj-time library for calculating the length of a time interval.

Before starting, add [clj-time "0.6.0"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-time

Use interval along with the numerous in-<unit> helper functions in the clj-

time.core namespace to calculate the difference between times:

(require '[clj-time.core :as t])

;; The first step is to capture two dates as an interval
(def since-april-first
 (t/interval (t/date-time 2013 04 01) (t/now)))

50 | Chapter 1: Primitive Data

https://github.com/clj-time/clj-time

;; dt is the interval between April Fools Day, 2013 and today
since-april-first
;; -> #<Interval 2013-04-01T00:00:00.000Z/2013-04-06T20:06:30.507Z>

(t/in-days since-april-first)
;; -> 5

;; Years since the Moon landing
(t/in-years (t/interval (t/date-time 1969 07 20) (t/now)))
;; -> 43

;; Days from Feb. 28 to March 1 in 2012 (a leap year)
(t/in-days (t/interval (t/date-time 2012 02 28)
 (t/date-time 2012 03 01)))
;; -> 2

;; And in a non-leap year
(t/in-days (t/interval (t/date-time 2013 02 28)
 (t/date-time 2013 03 01)))
;; -> 1

Discussion
Calculating the length of an interval is one of the more complex operations you can
perform with times. Time on Earth is a complex beast, complicated by constructs like

leap time and time zones; clj-time is the only library we’re aware of that is capable of
wrangling this complexity.

The clj-time.core/interval function takes two dates and returns a representation of

that discrete interval of time. From there, the clj-time.core namespace includes a

myriad of in-<unit> functions that can present that time interval in different units.

These helpers run the gamut in scale from in-msecs to in-years, covering nearly every
scale useful for nonspecialized applications.

One area clj-time lacks support is for leap seconds. Joda-Time’s official FAQ explains
why the feature is missing. We’re not aware of any Clojure library that can reason about
time at this granularity. If this concerns you, then you’re likely one of few people even
capable of doing it right. Good luck to you.

See Also

• Recipe 1.29, “Comparing Dates” on page 49

• Recipe 1.31, “Generating Ranges of Dates and Times” on page 52

• Recipe 1.33, “Retrieving Dates Relative to One Another” on page 56

1.30. Calculating the Length of a Time Interval | 51

https://github.com/clj-time/clj-time
http://bit.ly/joda-time-faq

1.31. Generating Ranges of Dates and Times
by Ryan Neufeld

Problem
You need to generate a lazy sequence covering a range of dates and/or times.

Solution
This problem has no easy solution in Java, nor does it have one in Clojure—third-party

libraries included. It is possible to use clj-time to get close, though. By composing

clj-time’s Interval and periodic-seq functionality, you can create a function time-

range that mimics range’s capabilities, but for DateTimes:

(require '[clj-time.core :as time])
(require '[clj-time.periodic :as time-period])

(defn time-range
 "Return a lazy sequence of DateTimes from start to end, incremented
 by 'step' units of time."
 [start end step]
 (let [inf-range (time-period/periodic-seq start step)
 below-end? (fn [t] (time/within? (time/interval start end)
 t))]
 (take-while below-end? inf-range)))

This is how you can use the time-range function:

(def months-of-the-year (time-range (time/date-time 2012 01)
 (time/date-time 2013 01)
 (time/months 1)))

;; months-of-the-year is an unrealized lazy sequence
(realized? months-of-the-year)
;; -> false

(count months-of-the-year)
;; -> 12

;; now realized
(realized? months-of-the-year)
;; -> true

Discussion
While there is no ready-made, out-of-the-box time-range solution in Clojure, it is
trivial to construct such a function with purely lazy semantics. The basis for our lazy

time-range function is an infinite sequence of values with a fixed starting time:

52 | Chapter 1: Primitive Data

https://github.com/clj-time/clj-time

(defn time-range
 "Return a lazy sequence of DateTimes from start to end, incremented
 by 'step' units of time."
 [start end step]
 (let [inf-range (time-period/periodic-seq start step) ;
 below-end? (fn [t] (time/within? (time/interval start end) ;
 t))]
 (take-while below-end? inf-range))) ;

Acquire a lazy infinite sequence.

Create a predicate to terminate the sequence.

Modify the infinite sequence to terminate when below-end? fails (lazily, of
course).

Invoking periodic-seq with start and step returns an infinite lazy sequence of values

beginning at start, each subsequent value one step later than the last.

Having a lazy infinite sequence is one thing, but we need a lazy way to stop acquiring

values when end is reached. The below-end? function created in let uses clj-

time.core/interval to construct an interval from start to end and clj-time.core/

within? to test if a time t falls within that interval. This function is passed as the pred‐

icate to take-while, which will lazily consume values until below-end? fails.

All together, time-range returns a lazy sequence of DateTime objects that stretches from

a start time to an end time, stepped appropriately by the provided step value.

Imagine trying to build something similar in a language without first-class laziness.

See Also

• Recipe 1.29, “Comparing Dates” on page 49

• Recipe 1.30, “Calculating the Length of a Time Interval” on page 50

• Recipe 1.32, “Generating Ranges of Dates and Times Using Native Java Types” on
page 53, for an alternative that uses only native types

• Recipe 1.33, “Retrieving Dates Relative to One Another” on page 56

1.32. Generating Ranges of Dates and Times Using Native
Java Types
by Tom Hicks

1.32. Generating Ranges of Dates and Times Using Native Java Types | 53

4. “Gregorian” is the formal name for the style of calendar we all know and love. Read more on Wikipedia.

Problem
You would like to generate a lazy sequence of dates (or times) beginning with a specific
date and time. Further, unlike in Recipe 1.31, “Generating Ranges of Dates and
Times” on page 52, you would like to do this using only built-in types.

Solution
You can use Java’s java.util.GregorianCalendar class coupled with Clojure’s repeat

edly function to generate a lazy sequence of Gregorian calendar dates. You can then

use java.text.SimpleDateFormat to format the dates, with a huge variety of output
formats available.

This example creates an infinite lazy sequence of Gregorian calendar dates,4 beginning

on January 1, 1970 and each spanning a single day. The core take and drop functions
are then used to select the last two days of February (be careful not to evaluate the infinite
sequence itself in the REPL):

(def daily-from-epoch
 (let [start-date (java.util.GregorianCalendar. 1970 0 0 0 0)]
 (repeatedly
 (fn []
 (.add start-date java.util.Calendar/DAY_OF_YEAR 1)
 (.clone start-date)))))

(take 2 (drop 57 daily-from-epoch))
;; -> (#inst "1970-02-27T00:00:00.000-07:00"
;; #inst "1970-02-28T00:00:00.000-07:00")

Discussion
Clojure has no date type of its own; by default, it relies on its ability to easily interoperate

with Java (but see the clj-time library for alternatives to Java’s date, time, and calendar
classes).

This solution is based on the core repeatedly function, which creates a lazy sequence
by repeatedly calling the argument function it is given and returning a sequence of the

function’s results. Because you do not provide the optional, limiting argument to re

peatedly, the result sequences produced are infinite. Consequently, in the REPL envi‐
ronment, you must be careful to evaluate your result sequences in contexts (such as

take and drop) that limit the values produced.

Since the function given to repeatedly is a function of no arguments, it is presumed
to achieve its goals by side effects (making it an impure function). Here, the impurity

54 | Chapter 1: Primitive Data

http://bit.ly/gregorian-calendar
http://bit.ly/javadoc-gregorian
http://bit.ly/javadoc-simple-date-format

occurs as the argument function creates a Gregorian calendar date and repeatedly in‐

crements it by a single java.util.Calendar day unit. For each call of the function, it
returns a copy of the Gregorian calendar object (to avoid mysterious and unintended
side effects, it is advisable to avoid returning the mutated object directly).

The date values in the result sequence are of type java.util.GregorianCalendar, but

the print function of the REPL displays them as an #inst reader literal. You can verify

that the sequence elements are Gregorian calendar objects by mapping the class (or

type) function onto the sequence:

(def end-of-feb (take 2 (drop 57 daily-from-epoch)))
(map class end-of-feb)
;; -> (java.util.GregorianCalendar java.util.GregorianCalendar)

You can generalize the solution to a function that takes a starting year argument but
defaults to some convenient year if the argument is not provided:

(defn daily-from-year [& [start-year]]
 (let [start-date (java.util.GregorianCalendar. (or start-year 1970)
 0 0 0 0)]
 (repeatedly
 (fn []
 (.add start-date java.util.Calendar/DAY_OF_YEAR 1)
 (.clone start-date)))))

(take 3 (daily-from-year 1999))
;; -> (#inst "1999-01-01T00:00:00.000-07:00"
;; #inst "1999-01-02T00:00:00.000-07:00"
;; #inst "1999-01-03T00:00:00.000-07:00")

(take 2 (daily-from-year))
;; -> (#inst "1970-01-01T00:00:00.000-07:00"
;; #inst "1970-01-02T00:00:00.000-07:00")

Using the java.text.SimpleDateFormat class, you can then format the dates in a wide
variety of different formats:

(def end-of-days (take 3 (drop 353 (daily-from-year 2012))))
(def cal-format (java.text.SimpleDateFormat. "EEE M/d/yyyy"))
(def iso8601-format (java.text.SimpleDateFormat. "yyyy-MM-dd'T'HH:mm:ss'Z'"))

(map #(.format cal-format (.getTime %)) end-of-days)
;; -> ("Wed 12/19/2012" "Thu 12/20/2012" "Fri 12/21/2012")

(map #(.format iso8601-format (.getTime %)) end-of-days)
;; -> ("2012-12-19T00:00:00Z" "2012-12-20T00:00:00Z" "2012-12-21T00:00:00Z")

To put it all together, create a function that generates an infinite lazy sequence of for‐
matted Gregorian date strings. For convenience, the function takes optional starting
year and date format string arguments:

1.32. Generating Ranges of Dates and Times Using Native Java Types | 55

http://bit.ly/javadoc-calendar

(defn gregorian-day-seq
 "Return an infinite sequence of formatted Gregorian day strings
 starting on January 1st of the given year (default 1970)"
 [& [start-year date-format]]
 (let [gd-format (java.text.SimpleDateFormat. (or date-format "EEE M/d/yyyy"))
 start-date (java.util.GregorianCalendar. (or start-year 1970) 0 0 0 0)]
 (repeatedly
 (fn []
 (.add start-date java.util.Calendar/DAY_OF_YEAR 1)
 (.format gd-format (.getTime start-date))))))

To test the function, select the last Sunday of the year by finding all of the Sundays in a
year:

(def y2k (take 366 (gregorian-day-seq 2000)))
(last (filter #(.startsWith % "Sun") y2k))
;; -> "Sun 12/31/2000"

See Also

• Recipe 1.25, “Obtaining the Current Date and Time” on page 43, for information

on using java.util.Date from Clojure

• Recipe 1.26, “Representing Dates as Literals” on page 44, to learn about Clojure’s

#inst reader literal for date/times

• Recipe 1.31, “Generating Ranges of Dates and Times” on page 52, for an alternative

that utilizes clj-time/Joda-Time

1.33. Retrieving Dates Relative to One Another
by Ryan Neufeld

Problem
You need to calculate a time relative to some other time, à la Ruby on Rails’

2.days.from_now.

Solution
Because relative time is such a complex beast, we suggest using clj-time for calculating
relative dates and times.

Before starting, add [clj-time "0.6.0"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-time

56 | Chapter 1: Primitive Data

http://rubyonrails.org/
https://github.com/clj-time/clj-time

If you’ve used the Ruby on Rails framework, then you’re likely accustomed to statements

like 1.day.from_now, 3.days.ago, or some_date - 2.years. You’ll be pleased to know

that clj-time exposes similar functionality:

(require '[clj-time.core :as t])

;; 1.day.from_now (it's April 6 at the time of this writing)
(-> 1
 t/days
 t/from-now)
;; -> #<DateTime 2013-04-07T20:36:52.012Z>

;; 3.days.ago
(-> 3
 t/days
 t/ago)
;; -> #<DateTime 2013-04-03T20:37:06.844Z>

The clj-time.core functions from-now and ago are just syntactic sugar over plus and

minus:

;; 1.day.from_now
(t/plus (t/now) (t/years 1))
;; -> #<DateTime 2014-04-06T20:41:43.638Z>

;; some_date - 2.years
(def some-date (t/date-time 2053 12 25))
(t/minus some-date (t/years 2))
;; -> #<DateTime 2051-12-25T00:00:00.000Z>

Discussion
Despite how difficult dates and times can sometimes be in Java, clj-time manages to
expose a joyful syntax for adding to and subtracting from dates.

The functions plus, minus, from-now, and ago all take a period of time and adjust a

DateTime by that amount (be that time “now,” as in from-now or ago, or some provided
time).

clj-time.core includes a number of useful period helpers ranging from millis to

years that produce a time period at a given scale.

Depending on your use case, it’s even possible to arrange operation, time period, and
time in such a manner that they almost read like a sentence.

Take (-> 1 t/years t/from-now), for example. In this case, the threading macro ->

threads each value as an argument to the next, producing (t/from-now (t/years 1)).

It’s up to you to arrange your function calls as you see fit, but know that it is quite possible
to produce readable deep-nested calls like this.

1.33. Retrieving Dates Relative to One Another | 57

See Also

• Recipe 1.29, “Comparing Dates” on page 49

• Recipe 1.31, “Generating Ranges of Dates and Times” on page 52

1.34. Working with Time Zones
by Ryan Neufeld

Problem
You need to gracefully handle times and dates in a number of time zones.

Solution
The JVM’s built-in time and date classes don’t work well with the notion of time zones.

For one, Date treats every value as UTC, and Calendar is cumbersome to work with in

Clojure (or Java, for that matter). Use clj-time to properly deal with time zones.

Before starting, add [clj-time "0.6.0"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-time

(require '[clj-time.core :as t])

;; My birth-time, in the correct time zone
(def bday (t/from-time-zone (t/date-time 2012 02 18 18)
 (t/time-zone-for-offset -6)))

bday
;; -> #<DateTime 2012-02-18T18:00:00.000-06:00>

;; What time was it in Brisbane when I was born?
(def australia-bday
 (t/to-time-zone bday (t/time-zone-for-id "Australia/Brisbane")))

australia-bday
;; -> #<DateTime 2012-02-19T10:00:00.000+10:00>

;; Yet they are the same instant in time.
(compare bday australia-bday)
;; -> 0

58 | Chapter 1: Primitive Data

https://github.com/clj-time/clj-time

Discussion
Unlike Java built-ins, clj-time knows a lot about time zones. Joda-Time, the library

clj-time wraps, bundles the internationally recognized tz database. This database
captures the IDs and time offsets for nearly every location on the planet.

The tz database also captures information about daylight saving time. For example, Los
Angeles is UTC-08:00 in the winter and UTC-07:00 during the summer. This is accu‐

rately reflected when using clj-time:

(def la-tz (t/time-zone-for-id "America/Los_Angeles"))

;; LA is UTC-08:00 in winter
(t/from-time-zone (t/date-time 2012 01 01) la-tz)
;; -> #<DateTime 2012-01-01T00:00:00.000-08:00>

;; ... and UTC-07:00 in summer
(t/from-time-zone (t/date-time 2012 06 01) la-tz)
;; -> #<DateTime 2012-06-01T00:00:00.000-07:00>

The clj-time.core/from-time-zone function takes any DateTime and modifies its
time zone to the desired time zone. This is useful in cases where you receive a date, time,

and time zone separately and want to combine them into an accurate DateTime instance.

The clj-time.core/to-time-zone function has the same signature as from-time-

zone; it returns a DateTime for the exact same point in time, but from the perspective
of another time zone. This is useful for presenting time and date information from
disparate sources to a user in her preferred time zone.

Sometimes you may only want to deal with machine-local time. The clj-time.local

namespace provides a number of functions to that end, including local-now, for getting

a time in the local time zone, and to-local-date-time, which shifts the perspective of
a time to the local time zone.

See Also

• Recipe 1.30, “Calculating the Length of a Time Interval” on page 50, and Recipe 1.33,
“Retrieving Dates Relative to One Another” on page 56

1.35. Converting a Unix Timestamp to a Date
by Steven Proctor

Problem
You need to get a Date object from a Unix timestamp.

1.35. Converting a Unix Timestamp to a Date | 59

http://bit.ly/joda-time
http://bit.ly/tz-info

Solution
When dealing with data from outside systems, you’ll find that many systems express
timestamps in Unix time format. You may encounter this when dealing with certain
datastores, parsing out data from timestamps in log files, or working with any number
of other systems that have to deal with dates and times across multiple different time
zones and cultures.

Fortunately, with Clojure’s ability for nice interoperability with Java, you have an easy
solution at hand:

(defn from-unix-time
 "Return a Java Date object from a Unix time representation expressed
 in whole seconds."
 [unix-time]
 (java.util.Date. unix-time))

This is how you can use the from-unix-time function:

(from-unix-time 1366127520000)
;; -> #inst "2013-04-16T15:52:00.000-00:00"

Discussion
To get a Java Date object from a Unix time object, all you need to do is construct a new

java.util.Date object using Clojure’s Java interop functionality.

If you are already using or wish to use the clj-time library, you can use clj-time to

obtain a DateTime object from a Unix timestamp:

(require '[clj-time.coerce :as timec])

(defn datetime-from-unix-time
 "Return a DateTime object from a Unix time representation expressed
 in whole seconds."
 [unix-time]
 (timec/from-long unix-time))

And using the datetime-from-unix-time function, you can see you get a DateTime
object back with the correct time:

(datetime-from-unix-time 1366127520000)
;; -> #<DateTime 2013-04-16T15:52:00.000Z>

You may not need to worry about dates and times being expressed as seconds very often,
but when you do, isn’t it nice to know how easy it can be to get those timestamps into
a date format used by the rest of the system?

60 | Chapter 1: Primitive Data

http://bit.ly/javadoc-date
https://github.com/clj-time/clj-time

See Also

• Recipe 1.25, “Obtaining the Current Date and Time” on page 43

• Recipe 1.36, “Converting a Date to a Unix Timestamp” on page 61

1.36. Converting a Date to a Unix Timestamp
by Steven Proctor

Problem
You need to get a Unix timestamp representation for a Date object.

Solution
Many systems express timestamps in Unix time format, and when you have to interact
with these systems, you have to give them date and time information in the format they
desire.

Fortunately, with Clojure’s ability for nice interoperability with Java, you have an easy
solution at hand:

(defn to-unix-time
 "Returns a Unix time representation expressed in whole seconds
 given a java.util.Date."
 [date]
 (.getTime date))

This is how you can use the to-unix-time function:

(def date (read-string "#inst \"2013-04-16T15:52:00.000-00:00\""))
;; -> #'user/date

(to-unix-time date)
;; -> 1366127520000

Discussion
When you have a java.util.Date object, you can use the Java interop provided by

Clojure as an easy way to get the time represented as a Unix time. Java’s Date objects

have a method called getTime that returns the date as a Unix time.

If you are already using or wish to use the clj-time library, you can use clj-time to

obtain a Unix time–formatted DateTime object if you have a DateTime object:

(require '[clj-time.coerce :as timec])

1.36. Converting a Date to a Unix Timestamp | 61

http://bit.ly/javadoc-date
https://github.com/clj-time/clj-time

(defn datetime-to-unix-time
 "Returns a Unix time representation expressed in whole seconds
 given a DateTime."
 [datetime]
 (timec/to-long datetime))

And using the datetime-to-unix-time function, you can see you get a Unix time for‐

mat for a DateTime object:

(def datetime (clj-time.core/date-time 2013 04 16 15 52))
;; #'user/datetime

(datetime-to-unix-time datetime)
;; 1366127520000

Thanks to clj-time.coerce, all that is needed is to use the function to-long to get a

Joda-Time DateTime object into a Unix time format.

Your system may never need to interact with other systems that expect timestamps
expressed in Unix time, but if you are designing a system that does, Clojure makes it

very easy to express a Date or DateTime in Unix time format.

See Also

• Recipe 1.25, “Obtaining the Current Date and Time” on page 43

• Recipe 1.35, “Converting a Unix Timestamp to a Date” on page 59

62 | Chapter 1: Primitive Data

CHAPTER 2

Composite Data

2.0. Introduction
Now that we’ve got primitives out of the way, we need to start doing something with
them. Single atomic values are great and all, but things get much more interesting when
we start globbing them all together. As you’ll see soon enough, data manipulation is one
of Clojure’s strong suits.

What makes Clojure so good at manipulating collections? It comes down to three things:
immutability, persistence, and the sequence abstraction. Every one of Clojure’s built-in
collection types has these properties and is thus unified in its API’s appearance and
behavior.

As the great Alan J. Perlis (an early computer science pioneer) put it:

It is better to have 100 functions operate on one data structure than to have 10 functions
operate on 10 data structures.

This chapter introduces Clojure collections and where/how to use them. Finally, we
wrap things up by showing you how to build your own feature-complete types that look
and behave just like the rest of Clojure’s collections by leveraging Clojure’s capacity for
interface polymorphism.

Immutability
Immutability means that a Clojure data structure, once created, can never change. You
can only “modify” an immutable data structure by creating a new data structure that is
a copy of the old, with the desired changes in place.

Immutability also means that Clojure data structures, however deeply nested, are simple

values, just like the number 3 or the character \z. It doesn’t make sense to speak of

“changing” the value of 3— it just is. If you “change” it by, say, incrementing it, you don’t

63

modify 3 itself. Instead, you end up with an entirely new and different value, 4. Clojure
extends this notion of value to all data structures. In Clojure, any action that in another
language would perform any kind of update on a data structure will instead return an
entirely new one. You can continue to pass around and use both the old and the new
versions with confidence, knowing that nothing you can do will cause any unintended
changes elsewhere in your program.

This feature is extremely important in concurrent and parallel programming, where
unexpected mutation is the source of a large class of bugs. With immutable data, any
number of threads can read from the same data without any worrying about locks or
race conditions—it’s always safe to read something that can’t change. “Clone” operations
are not only free, but unnecessary.

Persistence
But, you may ask, how can that possibly be efficient? Surely it is impractical to do a full
copy of an object every time you need to add something?

Yes, it would be, except for the feature of persistence. Persistence means that Clojure’s
data structures, although logically immutable, can still share pieces of their internal
structure for efficiency in both time and space. Essentially, updated versions of immut‐
able data only need to store the deltas from pervious versions, rather than doing a full
deep copy.

To make it performant, all of this uses some extremely clever algorithms, of course. See
the book Purely Functional Data Structures by Chris Okasaki (Cambridge University
Press) for a detailed description of how they work.

The Sequence Abstraction
From vectors, maps, sets, and lists to strings and streams, every last one of Clojure’s
collections behaves in a similar, predictable fashion. They are simple tools for a more
civilized age. This is on account of Clojure’s sequence abstraction.

The array of collection-manipulating functions in Clojure are all implemented in terms
of one simple abstraction: every collection can be treated as a sequence of values. By

implementing first, rest, and cons, any data structure—even ones you build yourself

—can participate in the ISeq interface.

Then, you can use Clojure’s huge library of functions that can operate on sequences,
with any of the data structures. All of functional programming’s most beloved functions

(map, reduce, filter, etc.) will work interchangeably on any data structure. In essence,
the sequence abstraction allows all the expressiveness of traditional list-based LISP
programming without forcing you to actually use lists. Instead, use whatever type is

64 | Chapter 2: Composite Data

most efficient for the task, knowing that you can consume them all in the same way
when it makes sense to do so.

2.1. Creating a List
by Luke VanderHart

Problem
You want to create a list data structure in your source code.

Solution
There are two basic ways to specifically construct a list (a clojure.lang.Persistent

List).

You can use parentheses in combination with a single quote to indicate that the list
should only be read as a data structure, not immediately evaluated:

'(1 :2 "3")
;; -> (1 :2 "3")

Or, more commonly, you can use the list function, which takes a variadic number of
arguments and constructs a list from them:

(list 1 :2 "3")
;; -> (1 :2 "3")

Discussion
Typically, between these two approaches, using the list function is the better choice.
The problem with constructing quoted lists is that the quote also prevents evaluation
of everything inside the list, which means that symbols will be returned as literal sym‐

bols, instead of resolving variables or calling functions. list, however, will evaluate its
arguments in the normal way before constructing the list and is usually what is desired
for nonmacro code:

(def x 2)

'(1 x)
;; -> (1 x)

(list 1 x)
;; -> (1 2)

2.1. Creating a List | 65

That said, '() is the idiomatic way to create an empty list—it is more terse, and the
concern about evaluating its contents is irrelevant when it’s empty.

Lists Versus Vectors
Clojure includes both list and vector types. Both are sequential data structures. However,
for most purposes, vectors are a better fit and are more commonly used in idiomatic
Clojure.

There are a couple of reasons for this. Vectors have a cleaner literal syntax than lists and
are just as space-efficient and performant. In addition, vectors support near-constant
lookup time by index (O(log32 n)), as opposed to lists, which require linear time (O(n)).

In general, the only reason to explicitly choose a list over a vector is if you need a data
structure that supports efficient insertions at the beginning, which lists do; vectors are
most efficient when appending items to the end.

See Also

• Recipe 2.2, “Creating a List from an Existing Data Structure” on page 66

• Recipe 2.6, “Creating a Vector” on page 71

2.2. Creating a List from an Existing Data Structure
by Luke VanderHart

Problem
You have an existing sequential data structure that you would like to convert into a list
as its concrete data type.

Solution
The easiest solution is: don’t. Having a concrete list provides little or no advantage over
simply using the sequence abstraction directly on your existing data, and for large data
structures, conversion can be expensive.

If you do know that you need an explicit conversion of the concrete data structure, there
are two ways to do it.

First, you could use the apply function to call the list function, passing it your existing
data structure as its arguments:

66 | Chapter 2: Composite Data

(apply list [1 2 3 4 5])
;; -> (1 2 3 4 5)

Alternatively, you could use the into function to repeatedly conjoin elements from your
original data onto a list. Note, however, that this approach has the effect of reversing the
order of the original collection:

(into '() [1 2 3 4 5])
;; -> (5 4 3 2 1)

Discussion
These two approaches are both viable choices. However, what actually happens in each
case is very different.

When using apply, you are actually invoking the list function with however many
arguments are in the data structure. This may sound strange, particularly if the data
structure contains millions of items. What does it mean to invoke a function with a
million arguments? How does that even work, given that the JVM limits methods to
255 arguments (see the JVM class file specification)?

As it turns out, functions with variadic arguments (such as list) are handled in a

somewhat special way: the argument list is passed in as a sequence. apply knows this
and passes this sequence view of the original structure directly through to the receiving
function. This is why it works; there is never actually a JVM method invocation with a
million arguments.

into works quite differently: it takes two arguments, the first being a data structure and
the second being a sequence. It then repeatedly conjoins items from the sequence onto

the data structure provided using the conj function (discussed in greater detail else‐
where). This is why the sequence is reversed; items are always pulled from the front of

the sequence, but conj on a list prepends the element being added. Therefore, the first
element in the input sequence will end up being the last item in the list, and so on.

So why ever choose into over apply, given that it reverses the order? Speed. into utilizes
Clojure transients, which provide a considerable performance improvement. On the

author’s machine, converting a million-item vector to a list using apply took an average

of 750 milliseconds, while using into took about half that time, for an average of 350
milliseconds. Of course, the list was in reverse order, and reversing either the input or

the output negates the speed advantage. In the end, into is only advantageous in sit‐
uations where a reversed order is acceptable.

See Also

• Recipe 2.1, “Creating a List” on page 65

2.2. Creating a List from an Existing Data Structure | 67

http://bit.ly/jvm-class-file-format

2.3. “Adding” an Item to a List
by Luke VanderHart

Problem
You want to add an item to a list; or, putting it in functional terms, you want to derive
from an existing list a new list that contains an additional item.

Solution
Use the conj function. conj is used to add an item or items to a logical collection and
is polymorphic, meaning it works on multiple concrete data types, including lists:

(conj (list 1 2 3) 4)
;; -> (4 1 2 3)

You can also add multiple items at once:

(conj (list 1 2 3) 4 5)
;; -> (5 4 1 2 3)

Discussion
The behavior of conj may vary slightly depending on the concrete type. It always “adds”
an item to an immutable collection by returning a new collection containing the new
item, but may add the item to different places in the collection depending on what is
most efficient for the particular type.

In the case of lists, conj will always add the item at the beginning of the list, since a linked
list data structure supports constant-time insertion only at the beginning.

conj Versus cons
If you are familiar with Common Lisp or Scheme, you were probably expecting to see

the cons function used, instead of conj. Clojure does have a cons function, but it has a
slightly different purpose.

While conj will return a new concrete clojure.lang.PersistentList (when used on

a list), cons will always construct a new sequence, where the item added is the first and
the collection is the rest.

This distinction is subtle, especially since a clojure.lang.PersistentList and a se‐

quence constructed using cons are both types of persistent linked lists, algorithmically
speaking.

68 | Chapter 2: Composite Data

The best way to think about it is that conj is a concrete data structure operation, which

will not change the concrete type of the data structure it is applied to, while cons is a
sequence operation and only guarantees that it will return a sequence: in fact, it returns

a cons cell (clojure.lang.Cons) that implements the sequence interface, no matter
what type of seq-able collection you gave it to start with.

Unlike conj, cons is also guaranteed to return a sequence with the item prepended to
the beginning no matter what the collection type is.

See Also

• Recipe 2.7, ““Adding” an Item to a Vector” on page 72

2.4. “Removing” an Item from a List
by Luke VanderHart

Problem
You want to obtain a list without a particular item in it, removing an item from the
original list.

Solution
Removing the first item from a list is easily accomplished using one of two functions,

rest or pop. Both work identically when used on a nonempty list:

(pop '(1 2 3))
;; -> (2 3)

(rest '(1 2 3))
;; -> (2 3)

Discussion
rest is actually a sequence function, used to obtain the tail of a sequence. Since Clojure

lists implement the sequence interface directly, using rest on a list will always return
another (possibly empty) list.

pop is similar to conj in that it operates on concrete data structures rather than the

sequence interface. Like conj, it is polymorphic; also like conj, the position it removes
the item from depends on what’s most efficient for the concrete type.

2.4. “Removing” an Item from a List | 69

When used on an empty list, the behavior does differ; pop will throw an exception, while

rest will return an empty list:

(pop '())
;; -> IllegalStateException Can't pop empty list ...

(rest '())
;; -> ()

Lists do not support removing items except at the first position. If you need to remove
an item in the middle or at the end of a list, you’ll have to do so using the sequence
manipulation functions, then convert the result back into a concrete list (if you abso‐
lutely need it to be a list, for some reason).

See Also

• Recipe 2.8, ““Removing” an Item from a Vector” on page 73

2.5. Testing for a List
by Steve Miner

Problem
You want to test if a value is a list.

Solution
The list? function may seem like the obvious choice, but in most cases, it’s better to

use the more general seq? function as your test.

Discussion
The list? function specifically tests if the argument implements clojure.lang.IPer

sistentList, but in most cases, you really want to know if the value is a seq (implements

clojure.lang.ISeq), which is a more general abstraction than a list.

Not everything that prints as a list (in parentheses) actually satisfies the list? test. In

practice, you’ll often receive Cons and LazySeq values when manipulating lists. By fo‐
cusing on the fundamental seq abstraction, you don’t need to worry about the details of
those concrete implementations:

;; A list constructed via list satisfies both list? and seq?
(list? (list 1 2 3))
;; -> true
(seq? (list 1 2 3))

70 | Chapter 2: Composite Data

;; -> true

;; cons, however *looks* like a list, but is actually a Cons
(list? (cons 1 '(2 3)))
;; -> false
(type (cons 1 '(2 3)))
;; -> clojure.lang.Cons
(seq? (cons 1 '(2 3)))
;; -> true

;; range's lazy return value is a seq, but not a list
(list? (range 3))
;; -> false
(seq? (range 3))
;; -> true
(type (range 3))
;; -> clojure.lang.LazySeq

It’s almost always better to use seq? instead of list?.

See Also

• Recipe 2.1, “Creating a List” on page 65

• Recipe 2.3, ““Adding” an Item to a List” on page 68

• Recipe 2.26, “Determining if a Collection Holds One of Several Values” on page 111

2.6. Creating a Vector
by Luke VanderHart

Problem
You want to create a vector data structure, either as a literal or from an existing data
structure.

Solution
By far, the easiest way to create a vector is using the literal vector notation of square

brackets. However, it is also possible to use the vector function, which creates a vector
of its arguments:

[1 :2 "3"]
;; -> [1 :2 "3"]

(vector 1 :2 "3")
;; -> [1 :2 "3"]

2.6. Creating a Vector | 71

To construct a vector from an existing data structure, you can use the vec function,
which takes any collection and returns a vector containing the same items:

(vec '(1 :2 "3"))
;; -> [1 :2 "3"]

Alternatively, you can use the into function, which takes two collections and repeatedly

invokes conj on the first with items from the second:

(into [] '(1 :2 "3"))
;; -> [1 :2 "3"]

Discussion
There is rarely any reason to use the vector function over the literal vector syntax.
Unlike lists, vectors are not evaluated as function calls (or anything else) in Clojure, so
quoting is not a concern as it is with list literals.

Oddly enough, when constructing a vector from an existing collection, using the into

approach is currently about 30% more performant on large collections compared to vec
due to its use of transients to speed things up. If you’re converting large collections and

speed matters, consider using into. Otherwise, vec is usually more readable.

See Also

• Recipe 2.1, “Creating a List” on page 65

• Recipe 2.2, “Creating a List from an Existing Data Structure” on page 66

2.7. “Adding” an Item to a Vector
by Luke VanderHart

Problem
You want to add an item to a vector, yielding a new vector containing the item.

Solution
When used on a vector, the conj function returns a vector with one or more items
appended to the end:

(conj [1 2 3] 4)
;; -> [1 2 3 4]

(conj [1 2 3] 4 5)
;; -> [1 2 3 4 5]

72 | Chapter 2: Composite Data

Discussion
Vectors do not support adding new items anywhere aside from the end. If you need to
insert an item in the middle, you will have to use a sequence manipulation function and
convert back to a vector (if necessary) when you’re done.

Since vectors are associative (mapping integer indexes to values), you can also use the

assoc function with an index equal to the current length of the vector (one greater than
the maximum index) to append an item:

(assoc [:a :b :c] 3 :x)
;; -> [:a :b :c :x]

However, this approach is somewhat more fragile than conj. If the index you provide
is too small, you might simply “overwrite” an earlier value in the vector; and if it’s greater

than the vector’s current length, it will throw an IndexOutOfBoundsException.

Still, this technique is worth remembering. If you have code that is assoc-ing to a vector
already, you can use this technique to produce new vectors with updated values.

See Also

• Recipe 2.3, ““Adding” an Item to a List” on page 68

• Recipe 2.6, “Creating a Vector” on page 71

2.8. “Removing” an Item from a Vector
by Luke VanderHart

Problem
You want to remove an item from a vector, obtaining a new vector without the item.

Solution
To efficiently remove an item from the end of a vector, use the pop function, which takes
a vector and returns a new vector without the last item:

(pop [1 2 3 4])
;; -> [1 2 3]

Discussion
Although there is no operation designed specifically to remove items from the beginning

of a vector, as pop does from the end, there is a function, subvec, that can be used to
efficiently remove any number of items from the beginning or end of a vector. Given a

2.8. “Removing” an Item from a Vector | 73

vector, a start index, and an (optional) end index, it will return a vector from the start
(inclusive) to end (exclusive) indexes.

The following example drops a single item from the beginning of a vector. You can use

subvec like so:

(subvec [:a :b :c :d] 1)
;; -> [:b :c :d]

Or, to remove items from the beginning and the end of a vector, pass an end index to

subvec as well:

(subvec [:a :b :c :d] 1 3)
;; -> [:b :c]

Because subvec exploits the internal representation of a vector to create a subvector that
shares the internal structure of the original, it is extremely efficient and runs in constant
time. It is the only way to efficiently remove items from the beginning of a vector.

While it is certainly also possible to use a function like rest or drop on a vector, these
are technically sequence operations, not vector operations. The value they return is only
guaranteed to be a sequence, not a concrete vector, and as such will not support the
same features or performance guarantees that vectors do.

Of course, you can convert any sequence back into a concrete vector using vec or into

[], but this can be an expensive operation for large vectors.

See Also

• Recipe 2.4, ““Removing” an Item from a List” on page 69

• Recipe 2.6, “Creating a Vector” on page 71

2.9. Getting the Value at an Index
by Luke VanderHart

Problem
You have a vector, and you want to retrieve the value the vector contains at a particular
location (index).

Solution
There are several ways to do this.

74 | Chapter 2: Composite Data

Using nth

The nth function, which works on all sequences, is special-cased to provide constant-
time performance when used with indexed collections such as vectors:

(nth [:a :b :c :d] 2)
;; -> :c

If given an index greater than the size of the vector, nth will throw an exception unless
you pass it an optional third argument, which will be returned if the provided index is
out of bounds:

(nth [:a :b :c] 4)
;; -> IndexOutOfBoundsException

(nth [:a :b :c] 4 :not-found)
;; -> :not-found

Using vectors as functions of their indexes

Vectors are themselves functions that when called with an integer argument, will return
the value at that index:

(def v [:a :b :c])
(v 2)
;; -> :c

Using an out-of-range index when invoking a vector as a function will result in an

IndexOutOfBoundsException.

Using get

Because vectors support the associative interface with integer indexes as keys, you can

also use the get function to retrieve values by index:

(get [:a :b :c] 2)
;; -> :c

Unlike nth, when you pass an out-of-range index to get it will return nil, not throw
an exception—unless, that is, you provide a default value to be returned if the key (the
index, in this case) is not found:

(get [:a :b :c] 5)
;; -> :nil

(get [:a :b :c] 5 :not-found)
;; -> :not-found

Discussion
Which technique should you use? All work equally well, but the choice does emphasize

the way in which you’re looking at your vector. nth focuses on its sequential nature,

2.9. Getting the Value at an Index | 75

whereas get emphasizes its indexed, associative quality. Using the vector as a function
is also consistent with the way all associative collections in Clojure act as functions of
their keys.

Ultimately, when making a choice like this, you should consider:

• What would make the code most evident?

• What is the nature of the data in this case? For example, is it most fundamentally a

sequence and only coincidentally a vector (implying nth), or fundamentally a cor‐

relation of values to indexes (implying get)?

• What is the failure mode of the proposed technique? For example, would a nil
return value or an exception be preferable?

See Also

• Recipe 2.16, “Retrieving Values from a Map” on page 86

2.10. Setting the Value at an Index
by Luke VanderHart

Problem
Given a vector, you would like to obtain a new vector with a different value at a particular
index.

Solution
Use assoc to set the value at a particular index:

(assoc [:a :b :c] 1 :x)
;; -> [:a :x :c]

assoc can also be used to set multiple indexes at the same time, by providing additional
index/value pairs:

(assoc [:a :b :c] 1 :x 2 :y)
;; -> [:a :x :y]

Discussion
As you may have noticed, assoc is the same function used to set the values of keys in a
map. This is because vectors, like maps, are associative and implement the same interface

(clojure.lang.Associative), which is what assoc uses under the hood.

76 | Chapter 2: Composite Data

Unlike with maps, however, the keys used when using assoc on a vector must be integer
indexes within the range of the vector. Attempting to use a noninteger key will cause an

IllegalArgumentException, and attempting to assoc an index greater than the size of

the vector will throw an IndexOutOfBoundsException.

Note that it is possible to assoc to an index equal to the current size of the vector (one
greater than the maximum index). This will have the result of appending the item to
the end.

See Also

• Recipe 2.7, ““Adding” an Item to a Vector” on page 72

• Recipe 2.18, “Setting Keys in a Map” on page 90

2.11. Creating a Set
by Luke VanderHart

Problem
You want to create an unordered collection of distinct objects, which can be tested for
membership quickly.

Solution
Use a set literal to create a set of objects:

#{:a :b :c}
;; -> #{:a :c :b}

;; Duplicate elements in set literals are an error
#{:x :y :z :z :z}
;; -> IllegalArgumentException Duplicate key: :y :z ...

Use hash-set to create a set from arguments:

(hash-set :a :b :c)
;; -> #{:a :c :b}

(apply hash-set :a [:b :c])
;; -> #{:a :c :b}

Use set to create a set from another collection:

(set "hello")
;; -> #{\e \h \l \o}

Alternatively, use into with a set to create a new set:

2.11. Creating a Set | 77

(into #{} [:a :b :c :a])
;; -> #{:a :b :c}

(into #{:a :b} [:b :c :d])
;; -> #{:a :b :c :d}

Set construction performance
At the time of writing, the into technique is about three times fast‐

er than set for large collections of objects. Use it whenever you’re
working with large sets where performance is a concern:

(def largeseq (doall (range 1e5)))

(time (dotimes [_ 100] (set largeseq)))
;; *out*
;; "Elapsed time: 5594.961 msecs"

(time (dotimes [_ 100] (into #{} largeseq)))
;; *out*
;; "Elapsed time: 1329.66 msecs"

Create a sorted set with sorted-set:

(sorted-set 99 4 32 7)
;; -> #{4 7 32 99}

(into (sorted-set) "the quick brown fox jumps over the lazy dog")
;; -> #{\space \a \b \c \d \e \f \g \h \i \j \k \l \m \n \o \p
;; \q \r \s \t \u \v \w \x \y \z}

Discussion
Sets are very useful data structures. They are commonly used when you have a collection
of values but you are only concerned with the distinct values. Lookup of an element in
a set is typically O(1).

The techniques just shown all construct hash sets—sets that are unordered and use a
hash table as their internal representation.

Clojure also supports creating sorted sets, which maintain the order of their elements.

Sets created with sorted-set keep their elements in ascending order using compare.
This is useful when treating the set as a seq:

(def alphabet (into (sorted-set) "qwertyuiopasdfghjklzxcvbnm"))
(last alphabet)
;; -> \z
(second (disj alphabet \b))
;; -> \c

78 | Chapter 2: Composite Data

All of the elements in a sorted set must be comparable against one
another (e.g., you cannot have a sorted set that contains both strings
and numbers). Attempting to add an uncomparable value will re‐
sult in a runtime error.

Adding or removing objects in a sorted set will always return another sorted set.

If the values you want to store don’t have a natural sort order (or you don’t want to use

their natural ordering), you can specify a custom comparator using sorted-set-by.
The comparator used to create the set is preserved when adding or removing objects:

(def descending-set (sorted-set-by > 1 2 3))

(into descending-set [-1 4])
;; -> #{4 3 2 1 -1}

There are some performance trade-offs to consider when choosing between hash sets
and sorted sets. Hash sets are based on hash tables, which offer constant time insert and
lookup in most cases. However, they do require some degree of memory overhead.
Sorted sets, based on a balanced red-black binary tree, are more memory-efficient but
slower for lookup and insertion.

See Also

• Recipe 2.6, “Creating a Vector” on page 71

• Recipe 2.12, “Adding and Removing Items from Sets” on page 79

2.12. Adding and Removing Items from Sets
by Luke VanderHart

Problem
You want to obtain a new set with items added or removed.

Solution
The conj function supports sets, just as it does lists, vectors, and maps. Use it to add an
item or items to a set: just pass it the set and any number of items to add:

(conj #{:a :b :c} :d)
;; -> #{:a :c :b :d}

(conj #{:a :b :c} :d :e)
;; -> #{:a :c :b :d :e}

2.12. Adding and Removing Items from Sets | 79

To remove one or more items, use the disj function, which is specific to sets. It takes a
set and one or more keys to remove:

(disj #{:a :b :c} :b)
;; -> #{:a :c}

(disj #{:a :b :c} :b :c)
;; -> #{:a}

Discussion
Since sets are unordered, there is no concept of “where” items are added or removed;
either a set contains an item, or it doesn’t.

Note that both conj and disj return a set of the same concrete type as the original. A
hash set will remain a hash set, and a sorted set will remain a sorted set.

Also worth noting is that these operations are simply no-ops if the set already does or

does not contain the item being added or removed. conj returns the same set if it already

contains the item, just as disj does if the specified item was already absent.

If you’re adding or removing large numbers of items to or from sets, you should also

consider using the dedicated set manipulation functions from the clojure.set name‐

space: particularly clojure.set/union, which can be used to add the items of multiple

sets together, and clojure.set/difference, which can be used to obtain a set of items
not contained in another set. These are typically a far more natural expression of set

operations than issuing many calls to conj or disj, or invoking them with large numbers
of arguments.

See Also

• Recipe 2.3, ““Adding” an Item to a List” on page 68

• Recipe 2.7, ““Adding” an Item to a Vector” on page 72

• Recipe 2.14, “Using Set Operations” on page 82

2.13. Testing Set Membership
by Luke VanderHart

Problem
You want to check if an item is a member of a set.

80 | Chapter 2: Composite Data

Solution
The easiest way to check a single item is with the contains? function, which takes a set

and an item and returns true if the item is a member of the set:

(contains? #{:red :white :green} :blue)
;; -> false

(contains? #{:red :white :green} :green)
;; -> true

The get function also works with sets and does basically the same thing, except instead

of returning true or false, it returns the value itself if it is a member, or nil if it is not:

(get #{:red :white :green} :blue)
;; -> nil

(get #{:red :white :green} :green)
;; -> :green

Finally, sets are also functions. When you invoke them with a single argument, they

work just like get, returning the argument if it is a member, and nil otherwise:

(def my-set #{:red :white :green})

(my-set :blue)
;; -> nil

(my-set :green)
;; -> :green

Note as well that keywords behave in the same manner for sets as they do with maps.

Thus, the following is equivalent to having used get:

(:blue #{:red :white :green})
;; -> nil

(:green #{:red :white :green})
;; -> :green

Discussion
The choice between contains? and get is mainly an aesthetic one. However, if your set

might contain nil as an actual value you care about, you’ll definitely need to use con

tains?, since a nil return from get wouldn’t tell you anything in that case.

The ability to use a set as a function is interesting, but it’s especially useful when you
want to use it as a predicate function on a sequence operation. For example, it’s fairly
common to want to filter a sequence to only contain items in a set. In this case, using
the set itself is both easy and idiomatic:

2.13. Testing Set Membership | 81

(take 10
 (filter #{1 2 3}
 (repeatedly #(rand-int 10))))
;; -> (2 1 2 3 2 2 1 2 2 1)

This snippet first creates an infinite lazy sequence consisting of random numbers be‐

tween 1 and 10, using repeatedly to call rand-int (wrapped in an anonymous function)
over and over. Then it feeds this sequence through a filter, with a set of the numbers 1–
3 as the filter predicate.

The result is another infinite lazy sequence, but containing only members of the pred‐
icate set.

This example is contrived. However, using sets as predicate functions is an extremely
useful technique that that pops up quite frequently in Clojure projects.

See Also

• Recipe 2.14, “Using Set Operations” on page 82

• Recipe 2.16, “Retrieving Values from a Map” on page 86

2.14. Using Set Operations
by Luke VanderHart

Problem
You want to perform common operations on sets, such as taking the union, intersection,
or difference of two sets, or you want to test if one set is a subset or superset of another.

Solution
All these functions are available in the clojure.set namespace, which is built into
Clojure.

union takes any number of sets as arguments and returns a set containing their union
(i.e., a set containing all the elements from all the sets):

(clojure.set/union #{:red :white} #{:white :blue} #{:blue :green})
;; -> #{:white :red :blue :green}

intersection also takes any number of sets as args and returns their intersection (a set
consisting only of the items shared by all the argument sets):

82 | Chapter 2: Composite Data

(clojure.set/intersection #{:red :white :blue}
 #{:red :blue :green}
 #{:yellow :blue :red})
;; -> #{:red :blue}

difference takes a set as its first argument and returns it without elements from the
sets given in the additional arguments:

(clojure.set/difference #{:red :white :blue :yellow}
 #{:red :blue}
 #{:white})
;; -> #{:yellow}

subset? returns true if and only if the first argument is a subset of the second (that is,
if every member of the first set is also a member of the second):

(clojure.set/subset? #{:blue :white}
 #{:red :white :blue})
;; -> true

(clojure.set/subset? #{:blue :black}
 #{:red :white :blue})
;; -> false

superset? works the same way, except it returns true only if the first set is a superset
of the second.

As you may have noticed, superset? is actually identical to subset?, only with the order
of the arguments reversed.

Discussion
In general, you should try to use these set manipulation functions wherever they are
applicable. Sets represent a sizable portion of the data most developers work with day
to day, whether they are recognized and explicitly modeled as sets or not.

There are a large number of bugs that can be caused by assumptions regarding the
behaviors of collections. In programming, the type of data structure used for a given
purpose is actually a communication, from the initial writer of the code to future pro‐
grammers, that tells a number of things about the nature of the collection. Sets are
unordered, unique collections—they emphasize that the important fact is whether an
item is a member of the set, not the order or number of occurrences.

If your data does represent a logical set, then model it using set data structures, and try
to think about manipulating it in terms of set operations. In many cases, you will find
that this makes your program substantially easier to reason about, and makes it more
self-documenting regarding the source and intended use of the data it contains.

2.14. Using Set Operations | 83

See Also

• Recipe 2.13, “Testing Set Membership” on page 80

• Recipe 2.26, “Determining if a Collection Holds One of Several Values” on page 111

2.15. Creating a Map
by Luke VanderHart

Problem
You want to create an association that maps keys to values. You possibly want to maintain
a specific ordering of keys.

Solution
Use map literals (curly braces) with alternating keys and values to create simple maps:

{:name ""
 :class :barbarian
 :race :half-orc
 :level 20
 :skills [:bashing :hacking :smashing]}

Keys and values can be any type. Commas may be used to delimit key/value pairs where
the structure would be hard to discern at a glance:

{1 1, 8 64, 2 4, 9 81}

In Clojure, commas are whitespace, which means that they can be
used anywhere in a form with no effect on the value; it is just one way
to make your code easier to read.

Create an empty, unsorted map with a pair of braces: {}.

Create specific types of maps with map constructor functions. array-map, hash-map,

and sorted-map each return a map of the corresponding type:

(array-map)
;; -> {}

(sorted-map :key1 "val1" :key2 "val2")
;; -> {:key1 "val1" :key2 "val2"}

84 | Chapter 2: Composite Data

If a key occurs multiple times in the argument list, the last value will be that used in the
final return map.

Use sorted-map-by to create a sorted map using a custom comparator:

(sorted-map-by #(< (count %1) (count %2))
 "pigs" 14
 "horses" 2
 "elephants" 1
 "manatees" 3)
;; -> {"pigs" 14, "horses" 2, "manatees" 3, "elephants" 1}

Discussion
Clojure maps can have one of three distinct concrete implementations:

Array maps, clojure.lang.PersistentArrayMap
These are backed by a simple array. They are efficient for very small maps, but not
for larger sizes.

Hash maps, clojure.lang.PersistentHashMap
These are backed by a hash table data structure. Hash tables support near constant-
time lookup and insertion, but also require a certain amount of overhead space,
using up slightly more heap space.

Sorted maps, clojure.lang.PersistentTreeMap
These are backed by a balanced red-black binary tree. They are more space-efficient
than hash maps, but have slower insertion and access times.

Array maps are the default implementation for small maps (under 10 entries at the time
of writing), and hash maps are the default for larger ones. Sorted maps can only be

created by explicitly invoking the sorted-map or sorted-map-by functions.

Using assoc or conj on a sorted map will always yield another sorted map. However,

assoc-ing onto an array map will yield a hash map once it reaches a certain size. The

inverse is not true; using dissoc on a hash map will not yield an array map, even if it
becomes very small.

See Also

• Recipe 1.29, “Comparing Dates” on page 49, and Recipe 1.17, “Performing Fuzzy

Comparison” on page 28, to see more uses for compare

• Recipe 2.11, “Creating a Set” on page 77

• Recipe 2.18, “Setting Keys in a Map” on page 90

• Recipe 2.24, “Comparing and Sorting Values” on page 105

2.15. Creating a Map | 85

2.16. Retrieving Values from a Map
by Luke VanderHart

Problem
You want to retrieve the value stored at a particular key in a map.

Solution
As with sets, there are several ways to retrieve the value of a key.

The most straightforward way is to use the get function, which, given a map and a key,

returns the value stored at the key or nil if the map does not contain the key:

(get {:name "Kvothe" :class "Bard"} :name)
;; -> "Kvothe"

(get {:name "Kvothe" :class "Bard"} :race)
;; -> nil

If desired, you can also pass a third argument to be used as the default return value

instead of nil if a map doesn’t contain the key:

(get {:name "Kvothe" :class "Bard"} :race "Human")
;; -> "Human"

If your map uses keywords as keys, you can use the keyword itself as a function. Key‐

words implement the IFn interface, and when invoked with a map as an argument, they

will look themselves up in the map, returning the value if it is present or nil if not. You
can also pass a second argument that will be used as a default return value in the case

of a missing key, just as you can with get:

(:name {:name "Marcus" :class "Paladin"})
;; -> "Marcus"

(:race {:name "Marcus" :class "Paladin"} "Human")
;; -> "Human"

Finally, the third basic way to look up a value in a map is to use the map itself as a

function, passing the key to be retrieved as the argument. As with get and keyword
functions, it is also possible to pass a second argument for use as a default value if the

key is not found; otherwise, nil is returned:

(def character {:name "Brock" :class "Barbarian"})

(character :name)
;; -> "Brock"

86 | Chapter 2: Composite Data

(character :race)
;; -> nil

(character :race "Human")
;; -> "Human"

There is a convenience function for looking up items in nested maps: get-in. Instead
of passing a single key, you can pass a sequence of keys, and they will be successively

looked up in a nested structure, as if repeatedly calling get on each level of the nested

data structure. nil is returned if any key is missing:

(get-in {:name "Marcus" :weapon {:type :greatsword :damage "2d6"}}
 [:weapon :damage])
;; -> "2d6"

(get-in {:name "Marcus"}
 [:weapon :damage])
;; -> nil

get-in also takes an optional default value, which will be returned if any key in the
nested hierarchy is missing:

(get-in {:name "Marcus"}
 [:weapon :damage]
 "1d2 (fists)")
;; -> "1d2 (fists)"

Note that get-in works with any associative data structure, not just maps. This means
that it can be combined to work with, for example, indexes of vectors:

(get-in [{:name "Marcus" :class "Paladin"}
 {:name "Kvothe" :class "Bard"}
 {:name "Felter" :class "Druid"}]
 [1 :class])
;; -> "Bard"

Discussion
Which technique of the three discussed is the best to use? All have identical semantics,
but in idiomatic Clojure, they convey different implications about the scenario in which
they are used.

Typically, keyword-as-a-function lookup is used when maps are being used as “objects”
and the keys as “fields”; where the map contains a relatively small, well-known set of
keys; and when there is a reasonable expectation that the key will actually be present.

The get function and map-as-a-function lookup techniques, on the other hand, are
more frequently used with large maps where the set of possible keys is more open-ended.
There is less motivation for choosing between these two; the only difference to be aware

2.16. Retrieving Values from a Map | 87

of is that when the map provided is nil for some reason, using it in function position

will throw an exception, while applying get to nil will simply return nil.

It is interesting to note, as well, that the ability to use a map itself as a function is not
just an arbitrary convenience. In the technical sense of the word “function,” maps are
functions of keys to values. Consider the following function definition and map:

(defn square [x] (* x x))

(def square {1 1, 2 4, 3 9, 4 16, 5 25})

Using an invocation of the form (square 3), the caller can actually be agnostic as to

whether square is a “real” function or a map. Of course, the normally defined function
has a number of advantages in this case. For one, it has an unlimited domain instead of
just the keys enumerated. And the multiplication function is fairly fast, so precomputing
results is not a win. But in some cases, for functions that do have a more naturally
constrained domain and are more expensive to compute, being able to use a map im‐
plementation of a function can be a real boon to performance.

Because all of the different techniques for retrieving values from a map return nil if the
key is not present, special handling is required if you need to differentiate the case in

which a key does exist in a map with a value of nil from the case in which the key does
not exist at all.

The easiest way to do this is to always provide a default value to be returned in the case
of a missing key. To be absolutely sure that you can differentiate the default value from
any possible value the map might contain, you can use a namespace-qualified keyword

(e.g., ::not-found).

It is also possible to use the contains? function, which takes a collection and a key, and

returns true if and only if the collection has a specific entry for that key (even if the

value is nil).

The Meaning of contains?

The exact behavior of the contains? function often causes confusion, especially since
many other languages have a function with a similar name that does something different.

In Clojure, contains? is not a search function—it does not inspect a collection to see if
the item is present. Rather, it is a lookup function, and only works on associative or

indexed collections. In other languages, it is often named containsKey or similar.

This means it works as one would expect on maps and sets, returning true if the specified

key is a valid key or member in the collection. But for vectors, it will return true only
if passed an integer between zero and the maximum index of the vector. And it will
throw an exception if used at all with a list or a sequence.

88 | Chapter 2: Composite Data

See Also

• Recipe 2.17, “Retrieving Multiple Keys from a Map Simultaneously” on page 89

• Recipe 2.18, “Setting Keys in a Map” on page 90

• Recipe 2.20, “Treating Maps as Sequences (and Vice Versa)” on page 96

2.17. Retrieving Multiple Keys from a Map Simultaneously
by Leonardo Borges

Problem
You want to retrieve multiple values from a map at one time.

Solution
Use vals and select-keys when the order of returned values is not important:

;; How many red and green beans are there?
(def beans {:red 10
 :blue 3
 :green 1})

(reduce + (vals (select-keys beans [:red :green])))
;; -> 11

Use juxt when order matters:

;; What are the red and green bean totals?
((juxt :red :green) beans)
;; -> [10 1]

Discussion
juxt and the combination of vals and select-keys are both apt tools for retrieving
multiple keys from a map. There are subtleties to their behavior that are important to
understand, though.

At first glance, the juxt approach seems to be the clear winner of the two. However, it
only goes so far: the approach falls apart when any of the keys you wish to retrieve is

not a keyword (more specifically, not a function). This is because juxt merely juxtapo‐
ses the return values of multiple functions. Since keywords are functions, it’s possible

to juxt them and retrieve a strongly ordered list of values.

If the keys in the beans map were strings, it would not be possible to retrieve their values

with juxt:

2.17. Retrieving Multiple Keys from a Map Simultaneously | 89

((juxt "a" "b") beans)
;; -> ClassCastException java.lang.String cannot be cast to clojure.lang.IFn ...

select-keys, on the other hand, is capable of pulling values for any number of arbitrary

keys. The select-keys function takes a map and a sequence of keys and returns a new
map populated with only those keys:

(def weird-map {"a" 1, {:foo :bar} :baz, 13 31})

(select-keys weird-map
 ["a" {:foo :bar}])
;; -> {{:foo :bar} :baz, "a" 1}

(vals {{:foo :bar} :baz, "a" 1})
;; -> (1 :baz)

Since maps are not ordered, it is not safe to assume that the ordering of keys and values
is identical (even if you stumble upon an example where it is). In cases where you’re
pulling multiple values from nonkeyword maps, it is probably easiest to wrap that in‐

teraction up via juxt:

(def a-str-then-foo-bar-map
 (juxt #(get % "a")
 #(get % {:foo :bar})))

(a-str-then-foo-bar-map weird-map)
;; -> [1 :baz]

You’ll avoid weird maps now, won’t you?

See Also

• Recipe 2.16, “Retrieving Values from a Map” on page 86

• Recipe 2.19, “Using Composite Values as Map Keys” on page 94

2.18. Setting Keys in a Map
by Luke VanderHart

Problem
You want to “change” a map by adding, setting, or removing keys.

90 | Chapter 2: Composite Data

Solution
The most basic way to change a map is using the assoc function. Given a map and any
number of additional key/value pairs as arguments, it will return an updated map con‐
taining the respective keys and values:

(def villain {:honorific "Dr." :name "Mayhem"})
(assoc villain :occupation "Mad Scientist" :status :at-large)
;; -> {:honorific "Dr.", :name "Mayhem",
;; :occupation "Mad Scientist", :status :at-large}

If used on a map that already contains a key, the assoc function will return an updated
map with the newly specified value for the key:

(def villain {:honorific "Dr.", :name "Mayhem",
 :occupation "Mad Scientist", :status :at-large})
(assoc villain :status :deceased)
;; -> {:honorific "Dr.", :name "Mayhem",
;; :occupation "Mad Scientist", :status :deceased}

To remove keys, use the dissoc function. Given a map and any number of keys, it returns
a map minus those keys:

(def villain {:honorific "Dr.", :name "Mayhem",
 :occupation "Mad Scientist", :status :deceased})
(dissoc villain :occupation :honorific)
;; -> {:name "Mayhem", :status :deceased}

Discussion
It’s fairly common to have maps contained in other maps. If it is necessary to update a

deeply nested value, nested calls to assoc quickly become inconvenient, especially since
they need to be “inside-out.” Consider the following data structure:

(def book {:title "Clojure Cookbook"
 :author {:name "Ryan Neufeld"
 :residence {:country "USA"}}})

If Ryan were to move back to his native land of Canada, fully updating the map repre‐

senting this book using only assoc would look something like the following:

(assoc book :author
 (assoc (:author book) :residence
 (assoc (:residence (:author book)) :country "Canada")))

Obviously, this is inconvenient and difficult to read.

The assoc-in function removes this inconvenience, allowing you to specify a key
path instead of a sole key. Instead of changing a value one key deep, a key path lists a
sequence of keys, applied recursively to change a deeply nested value:

2.18. Setting Keys in a Map | 91

(assoc-in book
 [:author :residence :country]
 "Canada")
;; -> {:author {:name "Ryan Neufeld"
;; :residence {:country "Canada"}}
;; :title "Clojure Cookbook"}

The preceding sample first looks up the map associated with the :residence key in the

nested data structure, then associates "Canada" with the :country key. Finally, the entire
data structure is returned.

What if you needed to update a value based on its previous value, instead of just changing
it?

Fortunately, Clojure provides update-in expressly for this purpose. Instead of taking a

new value, update-in takes an update function. This function is invoked with the value

retrieved at key path and any trailing arguments passed to update-in. It’s a peculiar
function to wrap your head around at first. Perhaps it is best to illustrate with an example:

(def website {:clojure-cookbook {:hits 1236}})

;; Register 101 new hits to the Cookbook website
(update-in website ;
 [:clojure-cookbook :hits] ;
 + ;
 101) ;
;; -> {:clojure-cookbook {:hits 1337}}

The map

The key path

The update function, +

Additional arguments to +

update-in will also actually create maps for any of the keys in the vector that don’t exist.
This means it can be used to create structure as well as to update values:

(update-in {} [:author :residence] assoc :country "USA")
;; -> {:author {:residence {:country "USA"}}}

Even though the starting map is empty, two empty maps are created for the values of

the :author and :residence keys, meaning the assoc will be applied to a new, empty
map.

92 | Chapter 2: Composite Data

Treating Clojure’s State Constructs Like Maps
One other common use case for maps is as the values of one of Clojure’s state constructs:
atoms, refs, or agents. Clojure maps themselves are immutable values. In a very literal
sense, if you “add” a key to a map, it is no longer the same value any more. But sometimes,
it is necessary to preserve a logical identity for different values across time. That’s when
to use one of the state management tools.

To update the value of a piece of state (ref, atom, or agent), you invoke its specific state

transition function (alter, swap!, or send, respectively). State transition functions share
a common form: they take the reference as the first argument, the function to apply to
the value as the second argument, and any arguments to the function as additional
arguments.

So, for example, to deeply update an item contained in a map referenced by an atom,

you can invoke the swap! function (the state transition function for atoms), passing it

your atom and the update-in function, along with the list of keys and the function to
use to update the value:

(def retail-data (atom {:customers [{:id 123 :name "Luke"}
 {:id 321 :name "Ryan"}]
 :orders [{:sku "Q2M9" :customer 123 :qty 4}
 {:sku "43XP" :customer 321 :qty 1}]}))

(swap! retail-data update-in [:orders] conj
 {:sku "9QED" :customer 321 :qty 2})

This will add a new order map to the list of orders contained in the map contained in

the retail-data atom.

Although such triple combos are not terribly common, they illustrate the general con‐
sistency of functions that take other functions and arguments, and how they can be

combined arbitrarily deeply. In this case, what starts with a single call to swap! ends up
also updating a map and conjoining to a vector in the same form.

See Also

• Recipe 2.20, “Treating Maps as Sequences (and Vice Versa)” on page 96

• Recipe 2.22, “Keeping Multiple Values for a Key” on page 100

• Recipe 2.23, “Combining Maps” on page 103

2.18. Setting Keys in a Map | 93

2.19. Using Composite Values as Map Keys
by Luke VanderHart

Problem
You’d like to use a value that isn’t a simple primitive type as a lookup key in a map. For
example:

• You’d like to use geographic or Cartesian coordinates as map keys.

• You’d like to associate values with functions.

Solution
Because of its robust identity semantics on composite values, Clojure fully supports
using any immutable value as a map key. More importantly, doing so is reasonably
efficient.

For example, consider the data structure to represent a chessboard, an 8 × 8 grid where
each position can have one of six possible types of piece. Rows are represented by the
numbers 1–8, and columns by the letters a–h.

In Clojure, you can represent this directly as a map:

(def chessboard {[:a 5] [:white :king]
 [:a 4] [:white :pawn]
 [:d 4] [:black :king]})

Moving a piece then requires two operations, dissoc-ing the old position for a piece

and assoc-ing the new position:

(defn move
 "Given a map representing a chessboard, move the piece at src
 to dest"
 [board source dest]
 (-> board
 (dissoc source)
 (assoc dest (board source))))

(move chessboard [:a 5] [:a 4])
;; -> {[:d 4] [:black :king]
;; [:a 4] [:white :king]}

As another example of nontraditional map keys, consider the situation where you have
a set of functions, and you want to be able to assign them each a “weighting” and multiply
the return value by the corresponding weight whenever the function is called.

94 | Chapter 2: Composite Data

An easy way to do this is to store the functions and weights in a map, with the functions
as keys:

(def plus-two (partial + 2))
(def plus-three (partial + 3))
(def weight-map {plus-two 1.0
 plus-three 0.8})

Then you can use a simple wrapper function to apply the functions with the weights
applied:

(defn apply-weighted
 "Given a weight map, a function, and args, applies the function
 to the args, multiplying the result by the weighting for the
 function. If the weight map does not specify a weight for the
 function, a default of 1.0 is used."
 [weight-map f & args]
 (* (get weight-map f 1.0)
 (apply f args)))

(apply-weighted weight-map plus-two 2)
;; -> 4.0

(apply-weighted weight-map plus-three 1)
;; -> 3.2

Discussion
A more traditional way to model the chess game would be with a two-dimensional array,
or, in Clojure’s case, with a vector of vectors.

This is certainly a reasonable thing to do, and is (possibly) slightly more performant.
However, it is a less clean model of the actual problem domain. It requires a translation,
for example, from chess’s row/column numbers and letters to zero-indexed indexes.
Using a map lets you store the positions directly, in native chess terminology.

Similarly, there are alternative implementations for the function-weighting example. It

could be implemented using a cond statement with all the functions and weights enu‐
merated, or by replacing the functions altogether with a protocol method that could
then have varying implementations with different weights.

However, storing the functions and weights in a map has the benefit of making it obvious
at a glance what the weightings for particular functions are. More importantly, it is
possible to store multiple different sets of weights, and switch between different weight
schemes dynamically at runtime.

2.19. Using Composite Values as Map Keys | 95

See Also

• Recipe 2.16, “Retrieving Values from a Map” on page 86, and Recipe 2.18, “Setting
Keys in a Map” on page 90

2.20. Treating Maps as Sequences (and Vice Versa)
by Luke VanderHart

Problem
You want to treat the contents of a map as a sequence of entries. Alternatively, you want
to convert a sequence of entries back into a map.

Solution
To obtain a sequence view of a map, simply call seq on it. Note that most sequence-

processing functions call seq on their arguments themselves, so it’s usually not necessary
to do this explicitly:

(seq {:a 1, :b 2, :c 3, :d 4})
;; -> ([:a 1] [:c 3] [:b 2] [:d 4])

This creates a sequence of key/value pairs, which you can then process as you would
any sequence.

To create a map from a sequence, you can exploit the fact that conj, when applied to a
map, can take a two-element vector as a key/value pair and use it to add the respective
key and value on to the map:

(def m {:a 1, :b 2})
(conj m [:c 3])
;; -> {:a 1, :b 2, :c 3}

Because the into function uses repeated applications of conj to add items from one
sequence onto a collection, this means it can be used to transform a sequence of pairs
into a single map:

(into {} [[:a 1] [:b 2] [:c 3]])
;; -> {:a 1, :b 2, :c 3}

It is also possible to construct a map from two sequences: one containing keys and one

containing values. This is the purpose of the zipmap function. Given two sequences, it
will return a single map with keys from the first argument sequence and values from
the second:

(zipmap [:a :b :c] [1 2 3])
;; -> {:c 3, :b 2, :a 1}

96 | Chapter 2: Composite Data

If one of the sequences passed to zipmap is shorter than the other, the extra values will
be ignored, and the output map will only contain entries up to the length of the shortest
sequence.

Discussion
When obtaining a sequence view of a hash map, the map entries will be returned in an
arbitrary or undefined order. Conveniently, this order (although arbitrary) is guaranteed
to be consistent if the same map is turned into a sequence multiple times.

When using a sorted map, the entries will be returned according to their sort order in
the map. For example:

(seq (hash-map :a 1, :b 2, :c 3, :d 4))
;; -> ([:a 1] [:c 3] [:b 2] [:d 4])

(seq (sorted-map :a 1, :b 2, :c 3, :d 4))
;; -> ([:a 1] [:b 2] [:c 3] [:d 4])

There is another interesting fact about the entry values in this sequence. They are printed
as vectors, and they are vectors insofar as they implement the full vector interface.

However, their concrete type is not actually clojure.lang.PersistentVector; rather,
they are a different kind of vector called a map entry, which not only is a vector but also

supports the clojure.lang.MapEntry interface.

The MapEntry interface provides key and val functions that can be used to retrieve the
key and value of an entry:

(def entry (first {:a 1 :b 2}))

(class entry)
;; -> clojure.lang.MapEntry

(key entry)
;; -> :a

(val entry)
;; -> :1

These functions should be preferred to using the first and second functions on map
entries when processing maps as sequences, since they preserve the semantic of key/
value pairs, making the code easier to read.

See Also

• Recipe 2.21, “Applying Functions to Maps” on page 98

2.20. Treating Maps as Sequences (and Vice Versa) | 97

2.21. Applying Functions to Maps
by Luke VanderHart

Problem
You’d like to apply a transformation function to the keys or the values of a map.

Solution
Use one of these simple general-purpose functions, modified to suit any needs you have:

(defn map-keys
 "Given a map and a function, returns the map resulting from applying
 the function to each key."
 [m f]
 (zipmap (map f (keys m)) (vals m)))

(map-keys {"a" 1 "b" 2} keyword)
;; -> {:b 2, :a 1}

(defn map-vals
 "Given a map and a function, returns the map resulting from applying
 the function to each value."
 [m f]
 (zipmap (keys m) (map f (vals m))))

(map-vals {:a 1, :b 1} inc)
;; -> {:b 2, :a 2}

(defn map-kv
 "Given a map and a function of two arguments, returns the map
 resulting from applying the function to each of its entries. The
 provided function must return a pair (a two-element sequence.)"
 [m f]
 (into {} (map (fn [[k v]] (f k v)) m)))

(map-kv {"a" 1 "b" 1} (fn [k v] [(keyword k) (inc v)]))
;; -> {:a 2, :b 2}

Discussion
map-keys and map-vals are extremely straightforward. They each start by breaking the

map, m, down into a sequence of keys and a sequence of values using the keys and vals
functions, which return a sequence of the keys or values of a map, respectively. Then,

they use the map function to transform either the sequence of keys or the sequence of

vals. Finally, the zipmap function is used to recombine the key and value sequences into
a single map, with the updates in place.

98 | Chapter 2: Composite Data

map-kv works a bit differently. It starts by converting the map into a sequence of map

entries, then uses map to apply them to an anonymous function that destructures the
key and value, and then passes the key and value to the caller-provided function. Finally,

it uses into to repeatedly conjoin the resulting pairs onto an empty map, returning a
new map consisting of the transformed keys and values.

The following example is identical, but does not use destructuring, so the high-level
structure is a bit more clear:

(defn map-kv
 [m f]
 (into {} (map (fn [entry]
 (f (key entry) (val entry)))
 m)))

It is easy to see that these three functions are all riffs on the standard map function,
applied to map data structures. What about the other staple of functional programming,

reduce?

Clojure already has a reduce-kv function built in, which was added in version 1.4.

reduce-kv takes three arguments: a function, an initial value, and an associative col‐

lection. The provided function must also take three arguments. reduce-kv reduces the
provided collection by first applying the function to the initial value, the first key, and
its corresponding value from the map. The resulting value is then reapplied along with
the second key and value, the resulting value with the third key and value, and so on.

The following example uses reduce-kv to obtain the sum of all the values in a map:

(reduce-kv (fn [agg _ val]
 (+ agg val))
 0
 {:a 1 :b 2 :c 3})
;; -> 6

Note that an underscore (_) is used instead of key in the function argument declaration.
This is idiomatic in Clojure to name any argument that isn’t actually used in the body.

It’s also possible to define map-kv using reduce-kv:

(defn map-kv
 [m f]
 (reduce-kv (fn [agg k v] (conj agg (f k v))) {} m))

which could be used in this example:

(map-kv {:one 1 :two 2 :three 3}
 #(vector (-> %1 str (subs 1)) (inc %2)))
;; -> {"one" 2, "three" 4, "two" 3}

2.21. Applying Functions to Maps | 99

See Also

• Recipe 2.20, “Treating Maps as Sequences (and Vice Versa)” on page 96

2.22. Keeping Multiple Values for a Key
by Luke VanderHart

Problem
Normally, maps are strictly one value per key: if you assoc an existing key, the old value
is replaced. However, sometimes it would be useful to have a map-like interface (a
“multimap”) capable of storing multiple values for the same key.

You would like to create a map-like data structure that implements a multimap-like
interface in Clojure.

Solution
To introduce such a capability on top of normal maps, create and extend a protocol

MultiAssociative that defines this behavior:

(defprotocol MultiAssociative
 "An associative structure that can contain multiple values for a key"
 (insert [m key value] "Insert a value into a MultiAssociative")
 (delete [m key value] "Remove a value from a MultiAssociative")
 (get-all [m key] "Returns a set of all values stored at key in a
 MultiAssociative. Returns the empty set if there
 are no values."))

(defn- value-set?
 "Helper predicate that returns true if the value is a set that
 represents multiple values in a MultiAssociative"
 [v]
 (and (set? v) (::multi-value (meta v))))

(defn value-set
 "Given any number of items as arguments, returns a set representing
 multiple values in a MultiAssociative. If there is only one item,
 simply returns the item."
 [& items]
 (if (= 1 (count items))
 (first items)
 (with-meta (set items) {::multi-value true})))

(extend-protocol MultiAssociative
 clojure.lang.Associative
 (insert [this key value]

100 | Chapter 2: Composite Data

 (let [v (get this key)]
 (assoc this key (cond
 (nil? v) value
 (value-set? v) (conj v value)
 :else (value-set v value)))))
 (delete [this key value]
 (let [v (get this key)]
 (if (value-set? v)
 (assoc this key (apply value-set (disj v value)))
 (if (= v value)
 (dissoc this key)
 this))))
 (get-all [this key]
 (let [v (get this key)]
 (cond
 (value-set? v) v
 (nil? v) #{}
 :else #{v}))))

and, of course, corresponding unit tests (using clojure.test):

(require '[clojure.test :refer :all])

(deftest test-insert
 (testing "inserting to a new key"
 (is (= {:k :v} (insert {} :k :v))))
 (testing "inserting to an existing key (single existing item)"
 (let [m (insert {} :k :v1)]
 (is (= {:k #{:v1 :v2}}
 (insert m :k :v2)))))
 (testing "inserting to an existing key (multiple existing items)"
 (let [m (insert (insert {} :k :v1) :k :v2)]
 (is (= {:k #{:v1 :v2 :v3}}
 (insert m :k :v3))))))

(deftest test-delete
 (testing "deleting a non-present key"
 (is (= {:k :v} (delete {:k :v} :nosuch :nada))))
 (testing "deleting a non-present value"
 (is (= {:k :v} (delete {:k :v} :k :nada))))
 (testing "deleting a single value"
 (is (= {} (delete {:k :v} :k :v))))
 (testing "deleting one of two values"
 (let [m (insert (insert {} :k :v1) :k :v2)]
 (is (= {:k :v1} (delete m :k :v2)))))
 (testing "deleting one of several values"
 (let [m (insert (insert (insert {} :k :v1) :k :v2) :k :v3)]
 (is (= {:k #{:v1 :v2}} (delete m :k :v3))))))

(deftest test-get-all
 (testing "get a non-present key"
 (is (= #{} (get-all {} :nosuch))))
 (testing "get a single value"

2.22. Keeping Multiple Values for a Key | 101

 (is (= #{:v} (get-all {:k :v} :k))))
 (testing "get multiple values"
 (is (= #{:v1 :v2} (get-all (insert (insert {} :k :v1) :k :v2) :k)))))

(run-tests)
;; -> {:type :summary, :pass 11, :test 3, :error 0, :fail 0}

Discussion
First, this code defines a protocol to implement the set of functions that comprises the
multimap behavior. A protocol is a great choice in this situation: it ties together several
methods that perform related operations on the same object, and it allows for multiple
concrete implementations.

In this case, there are three methods required to implement the desired functionality.
Note that the protocol implementation does not override or reimplement any of the

core map methods (assoc, dissoc, etc.). It is only the semantics of the new behavior
that differ from those of regular maps. Clojure defines very strong semantics around
core functions. Breaking or overriding these expectations is always a bad idea, especially
when using a distinct set of functions makes it clear when multimap functionality is
being used.

The concrete implementation of MultiAssociative extends the protocol to the clo

jure.lang.Associative interface. It would certainly be possible to implement it on

something more targeted, such as IPersistentSet, but since it only requires something

associative for the implementation, it’s best not to be too specific. Coding against clo

jure.lang.Associative also gives several additional capabilities for free. For example,
there is now automatically a “multivector” that can store multiple values at each index

(provided they are added using insert).

Reading the code, you’ll notice that a good deal of the actual logic is devoted to making
sure that single values are stored plainly, while multiple values are wrapped in a set. This
is maintained both when inserting and when deleting items, requiring the functions to

run a check on what type the value is and wrap or unwrap accordingly. Similarly, get-

all needs to wrap single values in a set before returning, since it specifies that it must
return a set.

This is a design decision that has several benefits and trade-offs. The alternative would
be to always wrap the values in a set, even single values. This would make the code a bit
simpler and would eliminate most of the type checking as well as the wrapping and
unwrapping of forms.

However, the simplicity would come with a price. If values (even single values) were
always wrapped in a set, the map being used as a multimap would not be easily usable
via the normal map functions. It would contain a lot of odd-looking single-item sets,

102 | Chapter 2: Composite Data

and if anything were added to it using assoc, it would be incompatible with future uses

of insert on that key.

In essence, the wrapping and unwrapping is to allow any map to be usable via both the

standard Associative and the MultiAssociative interfaces, without requiring the user

to keep track of which “kind” of a map it is. Values inserted using assoc can be read

with get-all, and values inserted using insert can be removed with dissoc. All ex‐

pectations regarding normal maps should hold. In the case of a normal get on a key
with multiple values, a set containing multiple items will be returned. This is probably
what the user would expect upon inspecting the data.

There is one more feature of this code that deserves commentary: the use of ::multi-

value metadata on the sets used to store multiple values, applied and tested using the

value-set and value-set? functions.

This is to handle the edge case where the intended value for a key is itself a set. The code
needs a way to disambiguate between sets it creates in order to manage multiple keys
for a value and sets that are simply values provided by users.

This is accomplished by placing metadata on sets created to contain values. A
namespace-scoped keyword is used to ensure that it will not collide with any possible
existing metadata on values provided by the user. Then, all the code has to do is check

if a set has the ::multi-value metadata to know whether it’s a set containing values, or
is itself a value.

See Also

• Recipe 3.10, “Extending a Built-In Type” on page 145

2.23. Combining Maps
by Tom Hicks

Problem
You have two or more maps you wish to combine to produce a single map.

Solution
Use merge to combine two or more maps with no keys in common:

(def arizona-bird-counts {:cactus-wren 8})
(def florida-bird-counts {:gull 20 :pelican 14})

2.23. Combining Maps | 103

(merge florida-bird-counts arizona-bird-counts)
;; -> {:pelican 14, :cactus-wren 8, :gull 20}

Use merge-with when you want more explicit control of the merge strategy for keys
that exist in more than one map:

(def florida-bird-counts {:gull 20 :pelican 1 :egret 4})
(def california-bird-counts {:gull 12 :pelican 4 :jay 3})

;; Merge values with + to get their totals
(merge-with + california-bird-counts florida-bird-counts)
;; -> {:pelican 5, :egret 4, :gull 32, :jay 3}

Discussion
In both merge and merge-with, maps are combined from left to right, returning a new

immutable map as a result. This functions much like a “left fold.” merge is the simpler
function of the pair, always returning the last value it sees for every key.

When mappings for the same key exist in more than one map, the latter mapping is
used in the result. This can be useful, for example, when you receive new totals through‐
out the day, but only for values that have changed:

;; Favorite ice cream flavor votes throughout the day
(def votes-am {:vanilla 3 :chocolate 5})
(def votes-pm {:vanilla 4 :neapoliton 2})
(merge votes-am votes-pm)
;; -> {:vanilla 4, :chocolate 5, :neapoliton 2}

merge-with facilitates powerful recipes for map combination by allowing you to control

how values are merged. You can imagine merge-with as reduce for maps with common

keys. The first argument to merge-with is a merge function that will be invoked for each
pair of duplicated values.

With careful choice of map value types, merge-with provides some concise solutions

to common problems. For example, by merging with clojure.set/intersection, you
can find the intersection of “like” and “dislike” sets in a team of programmers:

(def Alice {:loves #{:clojure :lisp :scheme} :hates #{:fortran :c :c++}})
(def Bob {:loves #{:clojure :scheme} :hates #{:c :c++ :algol}})
(def Ted {:loves #{:clojure :lisp :scheme} :hates #{:algol :basic :c
 :c++ :fortran}})

(merge-with clojure.set/intersection Alice Bob Ted)
;; -> {:loves #{:scheme :clojure}, :hates #{:c :c++}}

It is also possible to merge nested maps by creating a recursive merge function:

(defn deep-merge
 [& maps]
 (apply merge-with deep-merge maps))

104 | Chapter 2: Composite Data

(deep-merge {:foo {:bar {:baz 1}}}
 {:foo {:bar {:qux 42}}})
;; -> {:foo {:bar {:qux 42, :baz 1}}}

As you saw in the previous examples, merge-with is a versatile tool: we used + to add

values of the same key, clojure.set/intersection to find shared values of multiple

sets, and a recursive function deep-merge to recursively merge nested maps. merge-

with is a very powerful function, indeed.

See Also

• Recipe 2.18, “Setting Keys in a Map” on page 90

• Recipe 2.22, “Keeping Multiple Values for a Key” on page 100

2.24. Comparing and Sorting Values
by Luke VanderHart

Problem
You want to compare two values according to some comparison function, or you want
to sort a collection by comparing all the items in it.

Solution
Use the clojure.core/compare function to compare two items. They must be compa‐

rable with respect to each other. For example, a double can be compared to a ratio
because they’re both numbers, but a string can’t be compared to a vector.

compare returns a negative number if the first argument is less than the second, zero if
it is logically equal, and a positive number if it is greater:

(compare 5 2)
;; -> 1

(compare 0.5 1)
;; -> -1

(compare (/ 1 4) 0.25)
;; -> 0

(compare "brewer" "aardvark")
;; -> 1

2.24. Comparing and Sorting Values | 105

To sort an entire collection, pass it to the clojure.core/sort function. sort applies

compare as needed and returns a sorted sequence.

For example, the following code breaks down a string into a sequence of characters

(sort calls seq on its argument), then sorts them. The result is concatenated back to a
string, for better readability:

(apply str (sort "The quick brown fox jumped over the lazy dog"))
;; -> " Tabcddeeeefghhijklmnoooopqrrtuuvwxyz"

As seen previously, many of Clojure’s data types have a natural comparison order, which

is what compare uses. For example, numbers, dates, and strings all sort as one would
expect, from low to high, based on the well-understood and accepted inherent ordering
between them.

If you want to sort a data type that does not have a natural ordering, or if you want to
override the natural sort (such as sorting a set from high to low), you are not limited to

using the built-in comparator function. sort allows you to specify a custom comparison
function that can perform any operation you like to determine the relative ordering
between two items. This function must take two arguments. It can return values like

compare does (that is, a positive integer, a negative integer, or zero). Alternatively, it can
return a Boolean value (i.e., a predicate function). The predicate function should return

true if and only if the first argument should be sorted before the second argument.

This means that you can pass regular Clojure predicates to sort:

(sort > [1 4 3 2])
;; -> (4 3 2 1)

(sort > [1 4 3 2])
;; -> (1 2 3 4)

Or, you can write your own arbitrary comparator. For example, the custom comparator
used in the next example cares only about the length of a string, not the contents of it;
strings will be sorted as equal if they have the same number of characters, whatever
those characters are:

(sort #(< (count %1) (count %2)) ["z" "yy" "zzz" "a" "bb" "ccc"])
;; -> ("z" "a" "yy" "bb" "zzz" "ccc")

Discussion
Under the hood, Clojure uses Java’s built-in sort mechanism. Java uses a slightly modified
merge sort algorithm that is highly performant for the vast majority of cases. It requires
n log(n) comparisons in the worst case and performs at near O(n) when the input is
largely sorted already.

The sort is also stable, meaning that if two items are equal in terms of the comparator
function being used, their relative ordering will remain unchanged after sorting.

106 | Chapter 2: Composite Data

Although you can use any predicate as a comparison function or write your own com‐
parison function that returns a positive/negative/zero integer, the actual function must
behave properly in order to work. Specifically, it must:

Have a consistent total order for all the members being sorted

If x is sorted before y, and y is sorted before z, then x must always be sorted before

z. In other words, there must always be a single fully deterministic sort order for a
given collection and comparator, without any contradictions or inconsistencies
caused by the comparison function.

Be consistent with the .equals method and Clojure’s = function
If two items are logically equal, then that must be reflected in the comparison func‐

tion. When using the integer return values, the function ought to return 0. When

using a predicate function, (pred x y) and (pred y x) should return the same

thing in the case where x and y are equal.

Have no side effects
The comparison function may be called an arbitrary number of times as the sort is
evaluated.

Comparators and the JVM

Clojure fully participates in Java’s comparison and sorting mechanisms. All Clojure

objects that have a natural order implement java.lang.Comparable and implement the

compareTo method.

More importantly, every Clojure function actually implements the java.util.Compa

rator interface. This means that you can pass a Clojure function to any Java method

that requires an instance of java.util.Comparator, and it will invoke the function with
two arguments. This is what allows you to pass arbitrary Clojure functions as the com‐

parator to sort. The function object itself is actually being used as a Java comparator,

and invoking the Java .compare method on a Clojure function will actually call it, pass‐
ing it the two values being compared as two arguments.

Because predicate functions (those returning a Boolean value) do not map exactly to

the positive/negative/zero integer return values expected from a java.util.Compara

tor, Clojure itself handles the logical mapping between them. If a function used as a

comparator (that is, (pred x y)) returns true, the implementation will return -1, in‐

dicating that x is less than y in the given sort. If not, it will invoke the function again

with the arguments reversed. If (pred x y) and (pred y x) are both false, it is assumed

that the objects are equal, and the implementation returns 0. Otherwise, it presumes x

is greater than y and returns 1.

2.24. Comparing and Sorting Values | 107

http://bit.ly/javadoc-comparable
http://bit.ly/javadoc-comparator
http://bit.ly/javadoc-comparator

sort-by

Sometimes, you want to sort a collection not by the values themselves, but by some
derivative function of the values. For example, say you have the following data, and
you’d like to sort alphabetically by name. Unfortunately, maps don’t have a natural sort,
so you’ll need to tell Clojure how to sort the data:

(def people [{:name "Luke" :role :author}
 {:name "Ryan" :role :author}
 {:name "John" :role :reviewer}
 {:name "Travis" :role :reviewer}
 {:name "Tom" :role :reviewer}
 {:name "Meghan" :role :editor}])

One option would be to use a custom comparator, which extracts the :name key and

then invokes compare on it:

(sort #(compare (:name %1) (:name %2)) people)
;; -> ({:name "John", :role :reviewer}
;; {:name "Luke", :role :author}
;; {:name "Meghan", :role :editor}
;; {:name "Ryan", :role :author}
;; {:name "Tom", :role :reviewer}
;; {:name "Travis", :role :reviewer})

However, there’s an easier way. The sort-by function works the same as sort, but takes

an additional function keyfn as an argument to apply to the elements before sorting

them. Instead of sorting on the elements themselves, it sorts the result of applying keyfn
to the elements.

So, passing in :name as the keyfn (as discussed in Recipe 2.16, “Retrieving Values from
a Map” on page 86, keywords are functions that look themselves up in a map), you can
call:

(sort-by :name people)
;;-> ({:name "John", :role :reviewer}
;; {:name "Luke", :role :author}
;; {:name "Meghan", :role :editor}
;; {:name "Ryan", :role :author}
;; {:name "Tom", :role :reviewer}
;; {:name "Travis", :role :reviewer})

Like sort, sort-by also takes an optional comparator function that it will use to compare

the values extracted by the keyfn.

For another example, the following expression uses the str function as a keyfn to sort
the numbers from 1 to 20 not on their numeric value, but lexographically as strings
(meaning that “2” is greater than “10,” etc.). It also demonstrates using a custom com‐
parator to specify the results in descending order:

108 | Chapter 2: Composite Data

;; Descending lexographic order
(sort-by str #(* -1 (compare %1 %2)) (range 1 20))
;; -> (9 8 7 6 5 4 3 2 19 18 17 16 15 14 13 12 11 10 1)

Natural sort of data structures

Some compositive data structures can also be compared if they implement Compara

ble, are of the same type, and contain comparable values. The comparison order is
implementation dependent. For example, by default, vectors are compared first by their

length, then by the result of applying compare to their first value, then to their second
value if the first is equal, etc.:

(sort [[2 1] [1] [1 2] [1 1 1] [2]])
;; -> ([1] [2] [1 2] [2 1] [1 1 1])

Some data structures are not comparable. For example, the fact that a set is defined to
be unordered means that a meaningful greater-than/less-than comparison is not pos‐
sible in the general case, so no comparison is provided.

See Also

• The API documentation for java.lang.Comparable

• The API documentation for java.util.Comparator

• Recipe 1.17, “Performing Fuzzy Comparison” on page 28

• Recipe 1.29, “Comparing Dates” on page 49

2.25. Removing Duplicate Elements from a Collection
by John Cromartie

Problem
You have a sequence of elements and you want to remove any duplicates, while possibly
preserving the order of elements.

Solution
When the sequence of elements you’re working with is of a bounded, reasonable size,

use set to coerce the collection into a hash set containing only distinct values:

(set [:a :a :g :a :b :g])
;; -> #{:a :b :g}

When the sequence is infinite, or you wish to maintain ordering, use distinct to return
a lazy sequence of unique values in a collection in the order they appear:

2.25. Removing Duplicate Elements from a Collection | 109

http://bit.ly/javadoc-comparable
http://bit.ly/javadoc-comparator

(distinct [:a :a :g :a :b :g])
;; -> (:a :g :b)

Discussion
There are a number of trade-offs between these two approaches. For starters, set con‐

sumes the entire sequence to produce a new set collection. Because of this, set cannot

be used to filter an infinite sequence. distinct, on the other hand, is designed for

consuming lazy sequences. The value of distinct is a lazy view or projection over
another sequence, yielding new values the first time they appear:

(defn rand-int-seq
 "Returns an infinite sequence of ints from [0, n)"
 [n]
 (repeatedly #(rand-int n)))

;; Taking the set of an infinite sequence will *never* return:
;; (set (rand-int-seq 10)) ; don't do it!

;; However, if you limit the seq, set will work
(set (take 10 (rand-int-seq 10)))
;; -> #{0 1 2 3 4 7 8 9}

;; distinct works no matter what
(take 10 (distinct (rand-int-seq 10)))
;; -> (8 3 4 6 0 5 9 7 1 2)

Since distinct produces new values as it sees them, it does maintain ordering. set, on
the other hand, returns an unordered set.

If distinct is both ordered and lazy over sequences of any length, what is the advantage

of set? Speed. Using distinct is by far the slowest option; simply calling set is about
two times faster.

See Also

• Recipe 2.11, “Creating a Set” on page 77

110 | Chapter 2: Composite Data

2.26. Determining if a Collection Holds One of Several
Values
by John Touron

Problem
You have a collection and you want to determine if it holds one of several possible values.

Solution
Use some, along with a set:

(some #{1 2} (range 10))
;; -> 1

(some #{10} (range 10))
;; -> nil

Discussion
Since sets can act like functions, they can be used as predicates to test whether the
argument is a member of the set. This idiom will test each item in a collection, returning

either the first match or nil if a match couldn’t be found. However, a problem arises

when nil or false is a member of the set you’re using to test a collection with. Consider
the following:

(if (some #{nil} [1 2 nil 3])
 ::found
 ::not-found)
;; -> :user/not-found

(if (some #{false} [1 2 false 3])
 ::found
 ::not-found)
;; -> :user/not-found

Because the some function returns the value returned from the predicate function, not

just true or false, using it with sets that contain nil or false probably isn’t what you

want—it will return nil or false if the item actually is in the set. The simplest solution

is to test for nil or false separately, using the nil? or false? predicate functions built
into Clojure:

(if (some nil? [nil false])
 ::found
 ::not-found)
;; -> :user/found

2.26. Determining if a Collection Holds One of Several Values | 111

(if (some false? [nil false])
 ::found
 ::not-found)
;; -> :user/found

Or, to test both at once:

(if (some #(or (false? %)
 (nil? %))
 [nil false])
 ::found
 ::not-found)
;; -> :user/found

See Also

• Recipe 2.13, “Testing Set Membership” on page 80

• Recipe 2.16, “Retrieving Values from a Map” on page 86

2.27. Implementing Custom Data Structures: Red-Black
Trees—Part I
by Leonardo Borges

Problem
You want to implement a data structure in Clojure with very specific performance
characteristics.

For example, you need fast, efficient in-memory searches across a large, random, and
ever-changing dataset.

Solution
After identifying that Clojure’s core data structures are not appropriate for your domain,
your first step is to determine what data structure is appropriate.

For the purpose of this recipe, assume you are trying to choose and implement a data
structure appropriate for fast in-memory search of a large, random, and ever-changing
dataset. At first, a binary search tree (BST) seems like a good solution. A BST is most
efficient over a sorted dataset, however. Adding and removing large amounts of data
may unbalance a BST and degenerate its performance to that of a linked list.

Red-black trees (RBTs) are similar to BSTs, but are self-balancing. This would be an
appropriate data structure for the dataset in question.

112 | Chapter 2: Composite Data

The next step is to implement the data structure itself. The implementation of RBTs

relies on pattern matching. Use core.match to simplify the implementation of an RBT.

Add [org.clojure/core.match "0.2.0"] to your project’s dependencies, or start a

REPL with lein-try:

$ lein try org.clojure/core.match

First, implement the core of an RBT, the balance and insert-val functions. By using

core.match, it is possible to succinctly express the required behaviors based on the
shape of the tree:

(require '[clojure.core.match :refer [match]])

(defn balance
 "Ensures the given subtree stays balanced by rearranging black nodes
 that have at least one red child and one red grandchild"
 [tree]
 (match [tree]
 [(:or ;; Left child red with left red grandchild
 [:black [:red [:red a x b] y c] z d]
 ;; Left child red with right red grandchild
 [:black [:red a x [:red b y c]] z d]
 ;; Right child red with left red grandchild
 [:black a x [:red [:red b y c] z d]]
 ;; Right child red with right red grandchild
 [:black a x [:red b y [:red c z d]]])] [:red [:black a x b]
 y
 [:black c z d]]
 :else tree))

(defn insert-val
 "Inserts x in tree.
 Returns a node with x and no children if tree is nil.

 Returned tree is balanced. See also `balance`"
 [tree x]
 (let [ins (fn ins [tree]
 (match tree
 nil [:red nil x nil]
 [color a y b] (cond
 (< x y) (balance [color (ins a) y b])
 (> x y) (balance [color a y (ins b)])
 :else tree)))
 [_ a y b] (ins tree)]
 [:black a y b]))

With insertion and balance out of the way, the only remaining function to implement

is a find-val function for testing if a value is present in an RBT. The easiest way to do

this is by breaking down individual tree nodes with match and recursively scanning for
the desired value:

2.27. Implementing Custom Data Structures: Red-Black Trees—Part I | 113

https://github.com/clojure/core.match

(defn find-val
 "Finds value x in tree"
 [tree x]
 (match tree
 nil nil
 [_ a y b] (cond
 (< x y) (recur a x)
 (> x y) (recur b x)
 :else x)))

With all of this in place, it is now possible to create and query an RBT:

(def rb-tree (reduce insert-val nil (range 4)))

rb-tree
;; -> [:black [:black nil 0 nil] 1 [:black nil 2 [:red nil 3 nil]]]

(find-val rb-tree 2)
;; -> 2

(find-val rb-tree 100)
;; -> nil

Discussion
For anyone who has ever had to implement a red-black tree—or at least attended a class

in computer science where the algorithm was taught—the implementation of balance
might seem extremely short. The reason for this is threefold:

• Our red-black tree is persistent: operations on it, such as insert and balance, are not
destructive.

• balance and find-val use core.match to codify logic as patterns to match.

• Nodes are represented as vectors.

The two latter points are related, as you’ll see shortly.

Conveniently enough, core.match allows us to match on the shape and values of a data
structure and perform structural binding at the same time. For example, the following

tries to match a-vector against two clauses:

(def a-vector [1 2 3])

(match a-vector
 [_ y] (str "Got y: " y)
 [_ _ z] (str "Got z: " z))
;; -> "Got z: 3"

The first clause matches a two-element vector, whereas the second matches a three-

element vector. Given that a-vector has exactly three elements, it matches the second

114 | Chapter 2: Composite Data

clause. In the expression that follows, named values (such as z) are bound to the posi‐
tions they match.

This is why it was convenient to represent nodes as vectors—it makes pattern matching
against them a breeze:

(def rb-node [:red nil 3 [:black nil 4 nil]])

(match rb-node
 [:red left value right] (str "Red node with value: " value)
 [:black left value right] (str "Black node with value: " value))
;; -> "Red node with value: 3"

Assuming this new custom data structure meets your performance criteria, what is left?
(You are benchmarking all of your custom data structures, right?) Unlike built-in data

structures, this custom data structure doesn’t work with core functions such as map and

filter.

In the second part of this recipe, Recipe 2.28, “Implementing Custom Data Structures:
Red-Black Trees—Part II” on page 115, we’ll rectify this situation by participating in the
core sequence abstraction.

See Also

• The second part of this recipe, Recipe 2.28, “Implementing Custom Data Structures:
Red-Black Trees—Part II” on page 115, where we add sequence functionality to our
RBT.

• Red-black trees on Wikipedia for a more traditional take on this interesting data
structure.

• For the functional approach used in this recipe, the book Purely Functional Data
Structures by Chris Okasaki (Cambridge University Press) is an excellent source. It
deals with how to efficiently implement data structures in a functional setting. The
author chose to use ML and Haskell, but the concepts are transferable to Clojure,
as demonstrated previously.

2.28. Implementing Custom Data Structures: Red-Black
Trees—Part II
by Ryan Neufeld; originally submitted by Leonardo Borges

Problem
You want to use Clojure’s core sequence functions (conj, map, filter, etc.) with your
custom data structure.

2.28. Implementing Custom Data Structures: Red-Black Trees—Part II | 115

http://bit.ly/wiki-rbt
http://bit.ly/pure-fds
http://bit.ly/pure-fds

Solution
In part one of this recipe (Recipe 2.27, “Implementing Custom Data Structures: Red-
Black Trees—Part I” on page 112), you implemented all the functions necessary for
creating an efficient red-black tree. What’s missing is participation in Clojure’s sequence
abstraction.

The most important part of participating in sequence abstraction is the ability to expose

values of a data structure sequentially. The built-in tree-seq is well suited for this task.

One extra step is needed, however; tree-seq returns a sequence of nodes, not values.

Here’s the final rb-tree->seq function:

(defn- rb-tree->tree-seq
 "Return a seq of all nodes in an red-black tree."
 [rb-tree]
 (tree-seq sequential? (fn [[_ left _ right]]
 (remove nil? [left right]))
 rb-tree))

(defn rb-tree->seq
 "Convert a red-black tree to a seq of its values."
 [rb-tree]
 (map (fn [[_ _ val _]] val) (rb-tree->tree-seq rb-tree)))

(rb-tree->seq (-> nil
 (insert-val 5)
 (insert-val 2)))
;; -> (5 2)

Since RBTs most closely resemble sets, they should adhere well to the IPersistent

Set interface. Extend the IPersistentSet and IFn protocols to a new RedBlackTree
type, implementing all of the necessary functions. It’s also wise to implement the mul‐

timethod print-method for RedBlackTree, as the default implementation will fail for

RedBlackTree as implemented:

(deftype RedBlackTree [tree]
 clojure.lang.IPersistentSet
 (cons [self v] (RedBlackTree. (insert-val tree v)))
 (empty [self] (RedBlackTree. nil))
 (equiv [self o] (if (instance? RedBlackTree o)
 (= tree (.tree o))
 false))
 (seq [this] (if tree (rb-tree->seq tree)))
 (get [this n] (find-val tree n))
 (contains [this n] (boolean (get this n)))
 ;; (disjoin [this n] ...) ;; Omitted due to complexity
 clojure.lang.IFn
 (invoke [this n] (get this n))
 Object
 (toString [this] (pr-str this)))

116 | Chapter 2: Composite Data

(defmethod print-method RedBlackTree [o ^java.io.Writer w]
 (.write w (str "#rbt " (pr-str (.tree o)))))

disjoin and the corresponding remove-val functions are left as ex‐
ercises for the reader.

It is now possible to use a RedBlackTree instance like any other collection—in particular,
instances act like sets:

(into (->RedBlackTree nil) (range 2))
;; -> #rbt [:black nil 0 [:red nil 1 nil]]

(def to-ten (into (->RedBlackTree nil) (range 10)))

(seq to-ten)
;; -> (3 1 0 2 5 4 7 6 8 9)

(get to-ten 9)
;; -> 9

(contains? to-ten 9)
;; -> true

(to-ten 9)
;; -> 9

(map inc to-ten)
;; -> (4 2 1 3 6 5 8 7 9 10)

Discussion
In the end, it doesn’t take a lot to participate in the sequence abstraction. By imple‐
menting a small handful of interface functions, the red-black tree implementation from
Recipe 2.27, “Implementing Custom Data Structures: Red-Black Trees—Part I” on page

112, can participate in an array of sequence-oriented functions: map, filter, reduce,
you name it.

At its essence, clojure.lang.IPersistentSet is an abstraction of what it means to
represent a mathematical set structure; this matches a tree data structure well. A set isn’t

a list or sequence, though. So how is RedBlackTree then said to be participating in the
sequence abstraction?

In Clojure, types extending the clojure.lang.ISeq interface are true sequences, rep‐

resented as a logical list of head and tail. While IPersistentSet does not inherit from

2.28. Implementing Custom Data Structures: Red-Black Trees—Part II | 117

1. Actually, as design would have it.

ISeq, it does share a common ancestry with it. Both interfaces extend clo

jure.lang.IPersistentCollection and its parent clojure.lang.Seqable. As luck

would have it,1 sequence functions rely on collections being Seqable, not ISeq. Since

RedBlackTree can be read as a sequence, it is Seqable and can be operated on by all of
the sequence functions you know and love.

Most of the functions in the IPersistentSet interface are self-explanatory, but some

deserve further explanation. The function cons is a historical name for constructing a

new list by appending a value to an existing list. seq is intended to produce a sequence

from a collection, or nil if empty:

IPersistentSet.java:

public interface IPersistentSet extends IPersistentCollection, Counted {
 public IPersistentSet disjoin(Object key);
 public boolean contains(Object key);
 public Object get(Object key);
}

IPersistentCollection.java:

public interface IPersistentCollection extends Seqable {
 int count();
 IPersistentCollection cons(Object o);
 IPersistentCollection empty();
 boolean equiv(Object o);
}

Seqable.java:

public interface Seqable {
 ISeq seq();
}

The most challenging part of any Seqable implementation is actually making a sequence
out of the underlying data structure. This would be particularly challenging if you
needed to write your own lazy tree-traversal algorithms, but luckily Clojure has a built-

in function, tree-seq, that does precisely this. By leveraging tree-seq to produce a

sequence of nodes, it is trivial to write an rb-tree->seq conversion function that lazily

traverses a RedBlackTree, yielding node values as it goes.

tree-seq accepts three arguments:

branch?

A conditional that returns true if a node is a branch (not a leaf node). For Red

BlackTree, sequential? is an adequate check, as every node is a vector.

118 | Chapter 2: Composite Data

children

A function that returns all of the children for a given node.

root

The node to begin traversal on.

tree-seq performs a depth-first traversal of trees. Given how red-
black trees are represented, this will not be an ordered traversal.

With a sequence conversion function in hand, it is easy enough to write the seq function.

Similarly, cons and empty are a breeze—simply utilize the existing tree functions.
Equality testing can be a bit more difficult, however.

For the sake of simplicity, we chose to implement equality (equiv) between only Red

BlackTree instances. Further, the implementation compares a sorted sequence of their

elements. In this case, equiv is answering the question, “Do these trees have the same
values?” and not the question, “Are these the same trees?” It’s an important distinction,
one you’ll need to consider carefully when implementing your own data structures.

As discussed in Recipe 2.26, “Determining if a Collection Holds One of Several Val‐
ues” on page 111, one of the big bonuses of sets is their ability to be invoked just like

any other function. It’s easy enough to provide this ability to RedBlackTrees too. By

implementing the single-arity invoke function of the clojure.lang.IFn interface, Red

BlackTrees can be invoked like any other function (or set, for that matter):

(some (rbt [2 3 5 7]) [6])
;; -> nil

((rbt (range 10)) 3)
;; -> 3

Even with the full IPersistentSet interface implemented, there are still a number of

conveniences RedBlackTree is lacking. For one, you need to use the kludgy /→Red

BlackTree or RedBlackTree. functions to create a new RedBlackTree and add values
to it manually. By convention, many built-in collections provide convenience functions

for populating them (aside from literal tags like [] or {}, of course).

It’s easy enough to mirror vec and vector for RedBlackTrees:

(defn rbt
 "Create a new RedBlackTree with the contents of coll."
 [coll]
 (into (->RedBlackTree nil) coll))

(defn red-black-tree

2.28. Implementing Custom Data Structures: Red-Black Trees—Part II | 119

 "Creates a new RedBlackTree containing the args."
 [& args]
 (rbt args))

(rbt (range 3))
;; -> #rbt [:black [:black nil 0 nil] 1 [:black nil 2 nil]]

(red-black-tree 7 42)
;; -> #rbt [:black nil 7 [:red nil 42 nil]]

You may also have noticed printing is not a concern of the sequence abstraction, al‐
though it is certainly an important consideration to make for developing developer-

and machine-friendly data structures. There are two types of printing in Clojure: to

String and pr-based printing. The toString function is intended for printing human-

readable values at the REPL, while the pr family of functions are meant (more or less)
to be readable by the Clojure reader.

To provide our own readable representation of RBT, we must implement print-

method (the heart of pr) for the RedBlackTree type. By writing in a “tagged literal”

format (e.g., #rbt), it is possible to configure the reader to ingest and hydrate written
values as first-class objects:

(require '[clojure.edn :as edn])

;; Recall ...
(defmethod print-method RedBlackTree [o ^java.io.Writer w]
 (.write w (str "#rbt " (pr-str (.tree o)))))

(def rbt-string (pr-str (rbt [1 4 2])))
rbt-string
;; -> "#rbt [:black [:black nil 1 nil] 2 [:black nil 4 nil]]"

(edn/read-string rbt-string)
;; -> RuntimeException No reader function for tag rbt ...

(edn/read-string {:readers {'rbt ->RedBlackTree}}
 rbt-string)
;; -> #rbt [:black [:black nil 1 nil] 2 [:black nil 4 nil]]

See Also

• The first part of this recipe, Recipe 2.27, “Implementing Custom Data Structures:
Red-Black Trees—Part I” on page 112, where we define the initial red-black tree
implementation

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188, and Recipe 4.17, “Han‐
dling Unknown Tagged Literals When Reading Clojure Data” on page 196, for more
information on reading Clojure data

120 | Chapter 2: Composite Data

CHAPTER 3

General Computing

3.0. Introduction
There’s a saying in business that no organization operates in a vacuum. The same applies
to Clojure. For all the cool tools and techniques Clojure offers, there are still a number
of activities and techniques that for whatever reason aren’t always on the direct path to
shipping software. Some might call them academic, or incidental complexity, but for
the time being, we call them life.

This chapter covers some of the topics about Clojure development that don’t quite fill
chapters on their own. Topics like:

• How do I use Clojure’s development ecosystem?

• How do abstract concepts (such as polymorphism) apply to Clojure?

• What is logic programming, and when might I want to use it?

3.1. Running a Minimal Clojure REPL
by John Cromartie

Problem
You want to play with a Clojure REPL but you don’t want to install additional tools.

Solution
Obtain the Clojure Java archive (JAR) file by downloading and unzipping a release from
http://clojure.org/downloads. Using a terminal, navigate to where you extracted the JAR,
and start a Clojure REPL:

121

http://clojure.org/downloads

$ java -cp "clojure-1.5.1.jar" clojure.main

You are now running an interactive Clojure REPL (read-eval-print loop). Type an ex‐
pression and hit Enter to evaluate it. Press Ctrl-D to exit.

Discussion
The fact that Clojure on the JVM is encapsulated in a simple JAR file has some great
benefits. For one, it means that Clojure is never really installed. It’s just a dependency,
like any other Java library. You can easily swap out one version of Clojure for another
by replacing a single file.

Let’s dissect the java invocation here a bit. First, we set the Java classpath to include
Clojure (and only Clojure, in this example):

-cp "clojure-1.5.1.jar"

A full explanation of the classpath is beyond the scope of this recipe, but suffice it to say
thatit is a list of places where Java should look to load classes. A full discussion of class‐
paths on the JVM can be found at http://bit.ly/docs-classpaths. In the final part of the

invocation, we specify the class that Java should load and execute the main method:

clojure.main

Yes, clojure.main is really a Java class. The reason this doesn’t look like a typical Java
invocation is because Clojure namespaces, which are compiled to classes, do not con‐
ventionally use capitalized names like Java classes do.

This is the absolute bare-minimum Clojure environment and is all you need to run
Clojure code on any system with Java installed. Of course, for regular use and develop‐
ment, you will most certainly want a more feature-rich solution like Leiningen.

In some cases, however, hand-tuning a Java invocation may be the best way to integrate
Clojure into your environment. This is particularly useful on servers where deploying
a simple JAR file is trivial compared to installing more complex packages.

See Also

• The Leiningen website

• Recipe 3.6, “Running Programs from the Command Line” on page 130

122 | Chapter 3: General Computing

http://bit.ly/docs-classpaths
http://leiningen.org/

3.2. Interactive Documentation
by John Cromartie

Problem
From a REPL, you want to read documentation for a function.

Solution
Print the documentation for a function at the REPL with the doc macro:

user=> (doc conj)

clojure.core/conj
([coll x] [coll x & xs])
 conj[oin]. Returns a new collection with the xs
 'added'. (conj nil item) returns (item). The 'addition' may
 happen at different 'places' depending on the concrete type.

Print the source code for a function at the REPL with the source macro:

user=> (source reverse)
(defn reverse
 "Returns a seq of the items in coll in reverse order. Not lazy."
 {:added "1.0"
 :static true}
 [coll]
 (reduce1 conj () coll))

Find functions with documentation matching a given regular expression using find-

doc:

user=> (find-doc #"defmacro")

clojure.core/definline
([name & decl])
Macro
 Experimental - like defmacro, except defines a named function whose
 body is the expansion, calls to which may be expanded inline as if
 it were a macro. Cannot be used with variadic (&) args.

clojure.core/defmacro
([name doc-string? attr-map? [params*] body]
 [name doc-string? attr-map? ([params*] body) + attr-map?])
Macro
 Like defn, but the resulting function name is declared as a
 macro and will be used as a macro by the compiler when it is
 called.

3.2. Interactive Documentation | 123

Discussion
Clojure supports inline documentation of functions (more about that later), along with
other metadata, which allows you to introspect things like documentation any time you

want. The doc and source macros are just convenience functions for the REPL.

You can peek under the hood at almost everything in Clojure at any time. The next
example may be a bit mind-expanding if you’re not used to this level of introspection
at runtime:

user=> (source source)
(defmacro source
 "Prints the source code for the given symbol, if it can find it.
 This requires that the symbol resolve to a Var defined in a
 namespace for which the .clj is in the classpath.

 Example: (source filter)"
 [n]
 `(println (or (source-fn '~n) (str "Source not found"))))

Keeping in mind that source was defined in the clojure.repl namespace, we can peek

at how exactly it retrieves the source by evaluating (source clojure.repl/source-fn).

In most REPL implementations, clojure.repl macros like source and doc are only

referred into the user namespace. This means as soon as you switch into another

namespace, the unqualified clojure.repl macros will no longer be available. You can

get around this by namespacing the macros (clojure.repl/doc instead of doc,) or, for

extended use, by use-ing the namespace:

user=> (ns foo)
foo=> (doc +)
CompilerException java.lang.RuntimeException: Unable to resolve symbol: doc
in this context, compiling:(NO_SOURCE_PATH:1:1)

foo=> (use 'clojure.repl)
nil

foo=> (doc +)

clojure.core/+
([] [x] [x y] [x y & more])
 Returns the sum of nums. (+) returns 0. Does not auto-promote
 longs, will throw on overflow. See also: +'

Exploring Clojure in this way is a great way to learn about core functions and advanced

Clojure programming techniques. The clojure.core namespace is chock-full of high-
quality and high-performance code at your fingertips.

124 | Chapter 3: General Computing

See Also

• The clojure.repl API documentation

• Recipe 3.3, “Exploring Namespaces” on page 125

3.3. Exploring Namespaces
by John Cromartie

Problem
You want to know what namespaces are loaded and what public vars are available inside
them.

Solution
Use loaded-libs to obtain the set of currently loaded namespaces. For example, from
a REPL:

user=> (pprint (loaded-libs))
#{clojure.core.protocols clojure.instant clojure.java.browse
 clojure.java.io clojure.java.javadoc clojure.java.shell clojure.main
 clojure.pprint clojure.repl clojure.string clojure.uuid clojure.walk}

Use dir from a REPL to print the public vars in a namespace:

user=> (dir clojure.instant)
parse-timestamp
read-instant-calendar
read-instant-date
read-instant-timestamp
validated

Use ns-publics to obtain a mapping of symbols to public vars in a namespace:

(ns-publics 'clojure.instant)
;; -> {read-instant-calendar #'clojure.instant/read-instant-calendar,
;; read-instant-timestamp #'clojure.instant/read-instant-timestamp,
;; validated #'clojure.instant/validated,
;; read-instant-date #'clojure.instant/read-instant-date,
;; parse-timestamp #'clojure.instant/parse-timestamp}

Discussion
Namespaces in Clojure are dynamic mappings of symbols to vars. A namespace is not
available until it is required by something else; for example, when starting a REPL or as

a dependency in an ns declaration. Nothing is known about available Clojure libraries

3.3. Exploring Namespaces | 125

http://bit.ly/clj-repl-doc

and namespaces until runtime, which is in contrast to typical Java development (where
most everything about a package is known at compile time).

The downside of this dynamic nature is that you need to at least know which namespaces
to load in order to explore them.

See Also

• The clojure.repl API documentation

• Recipe 3.2, “Interactive Documentation” on page 123

3.4. Trying a Library Without Explicit Dependencies
by Mark Whelan

Problem
You want to try a library in the REPL without having to modify your project’s depen‐
dencies or create a new project.

Solution
Use Ryan Neufeld’s lein-try to launch the REPL. Library dependencies will be met
automatically.

To gain this capability, first make sure you are using Leiningen 2.1.3 or later. Then edit

your ~/.lein/profiles.clj file, adding [lein-try "0.4.1"] to the :plugins vector of

the :user profile:

{:user {:plugins [[lein-try "0.4.1"]]}}

Now you can experience nearly instant gratification with the library of your choice:

$ lein try clj-time
Retrieving clj-time/clj-time/0.6.0/clj-time-0.6.0.pom from clojars
Retrieving clj-time/clj-time/0.6.0/clj-time-0.6.0.jar from clojars
nREPL server started on port 58981 on host 127.0.0.1
REPL-y 0.2.1
Clojure 1.5.1
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)

user=>

126 | Chapter 3: General Computing

http://bit.ly/clj-repl-doc

Discussion
Notice that we did not have to give a version number for the library in the example.

lein-try will automatically grab the most recent released version.

Of course, you can specify a library version if you like. Just add the version number after
the library name:

$ lein try clj-time 0.5.1
#...
user=>

For a quick view of usage options, invoke lein help try:

$ lein help try
Launch REPL with specified dependencies available.

 Usage:

 lein try [io.rkn/conformity "0.2.1"] [com.datomic/datomic-free "0.8.4020.26"]
 lein try io.rkn/conformity 0.2.1
 lein try io.rkn/conformity # This uses the most recent version

 NOTE: lein-try does not require []

Arguments: ([& args])

As befits a Clojure tool, lein-try is an elegant way to make a task less laborious. Use it
to summon powerful libraries from the Net at your whim, without having to set them
up, and enjoy a wizardly satisfaction from the sudden confluence of new abilities.

See Also

• The official list of Leiningen plug-ins

• “Our Golden Boy, lein-try” on page xv

3.5. Running Clojure Programs
by John Cromartie

Problem
You want to run a program with a single entry point from Clojure source code.

3.5. Running Clojure Programs | 127

http://bit.ly/lein-plugins

Solution
Run a file full of Clojure expressions by passing the filename as an argument to clo

jure.main.

To follow along with this recipe, you can download a version of clo‐
jure.jar at http://clojure.org/downloads.

For example, given a file my_clojure_program.clj with the contents:

(println "Hi.")

invoke the java command with my_clojure_program.clj as the final argument:

$ java -cp clojure.jar clojure.main my_clojure_program.clj
Hi.

In a more structured project, you’ll probably have files organized in a src/ folder. For
example, given a file src/com/example/my_program.clj:

(ns com.example.my-program)

(defn -main [& args]
 (println "Hey!"))

to load and run the -main function, specify the desired namespace with the -m/--

main option and add src to the classpath list (via -cp):

$ java -cp clojure.jar:src clojure.main --main com.example.my-program
Hey!

Discussion
Although you will spend most of your time evaluating Clojure code in a REPL, it is
sometimes useful to be able to either run a simple “script” full of Clojure expressions or

run a more structured Clojure application with a -main entry point.

In either case, you have access to any extra command-line arguments passed after the
script name or the main namespace name.

For example, let’s say you have written the following program, in a file called hello.clj:

(defn greet
 [name]
 (str "Hello, " name "!"))

(doseq [name *command-line-args*]
 (println (greet name)))

128 | Chapter 3: General Computing

http://clojure.org/downloads

Invoking this Clojure program directly will yield predictable output:

$ java -cp clojure.jar clojure.main hello.clj Alice Bob
Hello, Alice!
Hello, Bob!

This simple script has the side effect of printing output when it is loaded. Most Clojure
code is not organized this way.

As you will typically want to keep your code in well-organized namespaces, you can

provide an entry point through a namespace with a -main function. This allows you to

avoid side effects while loading, and you can even tweak and invoke your -main function
from the REPL just like any other function during interactive development.

Let’s say you’ve moved your greet function into a foo.util namespace, and your
project is structured something like this:

./src/foo/util.clj

./src/foo.clj

Your foo namespace requires the foo.util namespace and provides a -main function,
like so:

(ns foo
 (:require foo.util))

(defn -main
 [& args]
 (doseq [name args]
 (println (foo.util/greet name))))

When you invoke Clojure with foo.core as the “main” namespace, it calls the -main
function with the provided command-line arguments:

$ java -cp clojure.jar:src clojure.main --main foo Alice Bob
Hello, Alice!
Hello, Bob!

You’ll also note the addition of :src to the -cp option. This indicates to Java that the
classpath for execution not only includes clojure.jar, but also the contents of the src/
directory on disk.

See Also

• Recipe 3.6, “Running Programs from the Command Line” on page 130, to learn how
to run Leiningen projects from the command line

• Recipe 3.7, “Parsing Command-Line Arguments” on page 132, to learn how to cleanly
expose multiple options and flags in your command-line applications

3.5. Running Clojure Programs | 129

3.6. Running Programs from the Command Line
by Ryan Neufeld

Problem
You want to invoke your Clojure application from the command line.

Solution
In any Leiningen project, use the lein run command to invoke your application from
the command line. To follow along with this recipe, create a new Leiningen project:

$ lein new my-cli

Configure which namespace will be the entry point to your application by adding

a :main key to the project’s project.clj file:

(defproject my-cli "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]]
 :main my-cli.core)

Finally, add a -main function to the namespace configured in project.clj:

(ns my-cli.core)

(defn -main [& args]
 (println "My CLI received arguments:" args))

Now, invoke lein run to run your application:

$ lein run
My CLI received arguments: nil

$ lein run 1 :foo "bar"
My CLI received arguments: (1 :foo bar)

Discussion
As it turns out, invoking your application from the command line couldn’t be easier.

Leiningen’s run command quickly and easily connects your application to the command

line with little fuss. In its base form, lein run will invoke the -main function of whatever

namespace you have specified as :main in your project’s project.clj file. For example,

setting :main my-cli.core will invoke my-cli.core/-main. Alternatively, you may

130 | Chapter 3: General Computing

omit implementing -main and provide :main with the fully qualified name of a function

(e.g., my.cli.core/alt-main); this function will be invoked instead of -main.

While the printed arguments in the preceding solution look like Clojure data, they are
in fact regular strings. For simple arguments, you may choose to parse these strings

yourself; otherwise, we suggest using the tools.cli library. See Recipe 3.7, “Parsing

Command-Line Arguments” on page 132, for more information on tools.cli.

Although a project can only have one default :main entry point, you can invoke other

functions from the command line by setting the -m option to a namespace or function.

If you set -m to a namespace (e.g., my-cli.core), the -main function of that namespace

will be invoked. If you provide -m with the fully qualified name of a function (e.g., my-

cli.core/alt-main), that function will be invoked. There’s no requirement that this

function be prefixed with a - (indicating it is a Java method); it simply must accept a

variable number of arguments (as -main normally does).

For example, you can add a function add-main to my.cli/core:

(ns my-cli.core)

(defn -main [& args]
 (println "My CLI received arguments:" args))

(defn add-main [& args]
 (->> (map #(Integer/parseInt %) args)
 (reduce + 0)
 (println "The sum is:")))

then invoke it from the command line with the command lein run -m my-cli.core/

add-main:

$ lein run -m my-cli.core/add-main 1 2 3
The sum is: 6

See Also

• Recipe 3.5, “Running Clojure Programs” on page 127, to learn how to run plain

Clojure files with java

• Recipe 3.7, “Parsing Command-Line Arguments” on page 132, to learn how to parse

command-line arguments using tools.cli

• Recipe 8.2, “Packaging a Project into a JAR File” on page 345, to learn how to package
an application as an executable JAR

• Recipe 8.4, “Running an Application as a Daemon” on page 352, to learn how to
daemonize applications

3.6. Running Programs from the Command Line | 131

https://github.com/clojure/tools.cli

1. Since tools.cli is so cool, this example can run entirely at the REPL.

3.7. Parsing Command-Line Arguments
by Ryan Neufeld; originally submitted by Nicolas Bessi

Problem
You want to write command-line tools in Clojure that can parse input arguments.

Solution
Use the tools.cli library.

Before starting, add [org.clojure/tools.cli "0.2.4"] to your project’s dependen‐

cies, or start a REPL using lein-try:

$ lein try org.clojure/tools.cli

Use the clojure.tools.cli/cli function in your project’s -main function entry point
to parse command-line arguments:1

(require '[clojure.tools.cli :refer [cli]])

(defn -main [& args]
 (let [[opts args banner] (cli args
 ["-h" "--help" "Print this help"
 :default false :flag true])]
 (when (:help opts)
 (println banner))))

;; Simulate entry into -main at the command line
(-main "-h")
;; *out*
;; Usage:
;;
;; Switches Default Desc
;; -------- ------- ----
;; -h, --no-help, --help false Print this help

Discussion
Clojure’s tools.cli is a simple library, with only one function, cli, and a slim data-
oriented API for specifying how arguments should be parsed. Handily enough, there
isn’t much special about this function: an arguments vector and specifications go in, and
a map of parsed options, variadic arguments, and a help banner come out. It’s really the
epitome of good, composable functional programming.

132 | Chapter 3: General Computing

https://github.com/clojure/tools.cli

To configure how options are parsed, pass any number of spec vectors after the args

list. To specify a :port parameter, for example, you would provide the spec ["-p" "--

port"]. The "-p" isn’t strictly necessary, but it is customary to provide a single-letter

shortcut for command-line options (especially long ones). In the returned opts map,

the text of the last option name will be interned to a keyword (less the --). For example,

"--port" would become :port, and "--super-long-option" would become :super-

long-option.

If you’re a polite command-line application developer, you’ll also include a description
for each of your options. Specify this as an optional string following the final argument
name:

["-p" "--port" "The incoming port the application will listen on."]

Everything after the argument name and description will be interpreted as options in

key/value pairs. tools.cli provides the following options:

:default

The default value returned in the absence of user input. Without specifying, the

default of :default is nil.

:flag

If truthy (not false or nil), indicates an argument behaves like a flag or switch.
This argument will not take any value as its input.

:parse-fn

The function used to parse an argument’s value. This can be used to turn string
values into integers, floats, or other data types.

:assoc-fn

The function used to combine multiple values for a single argument.

Here’s a complete example:

(def app-specs [["-n" "--count" :default 5
 :parse-fn #(Integer. %)
 :assoc-fn max]
 ["-v" "--verbose" :flag true
 :default true]])

(first (apply cli ["-n" "2" "-n" "50"] app-specs))
;; -> {:count 50, :verbose true}

(first (apply cli ["--no-verbose"] app-specs))
;; -> {:count 5, :verbose false}

When writing flag options, a useful shortcut is to omit the :flag option and add a

"[no-]" prefix to the argument’s name. cli will interpret this argument spec as includ‐

ing :flag true without you having to specify it as such:

3.7. Parsing Command-Line Arguments | 133

["-v" "--[no-]verbose" :default true]

One thing the tools.cli library doesn’t provide is a hook into the application con‐

tainer’s launch life cycle. It is your responsibility to add a cli call to your -main function
and know when to print the help banner. A general pattern for use is to capture the

results of cli in a let block and determine if help needs to be printed. This is also useful

for ensuring the validity of arguments (especially since there is no :required option):

(def required-opts #{:port})

(defn missing-required?
 "Returns true if opts is missing any of the required-opts"
 [opts]
 (not-every? opts required-opts))

(defn -main [& args]
 (let [[opts args banner] (cli args
 ["-h" "--help" "Print this help"
 :default false :flag true]
 ["-p" "--port" :parse-fn #(Integer. %)])]
 (when (or (:help opts)
 (missing-required? opts))
 (println banner))))

As with many applications, you may want to accept a variable number of arguments;
for example, a list of filenames. In most cases, you don’t need to do anything special to
capture these arguments—just supply them after any other options. These variadic ar‐

guments will be returned as the second item in cli’s returned vector:

(second (apply cli ["-n" "5" "foo.txt" "bar.txt"] app-specs))
;; -> ["foo.txt" "bar.txt"]

If your variadic arguments look like flags, however, you’ll need another trick. Use -- as

an argument to indicate to cli that everything that follows is a variadic argument. This
is useful if you’re invoking another program with the options originally passed to your
program:

(second (apply cli ["-n" "5" "--port" "80"] app-specs))
;; -> Exception '--port' is not a valid argument ...

(second (apply cli ["-n" "5" "--" "--port" "80"] app-specs))
;; -> ["--port" "80"]

Once you’ve finished toying with your application’s option parsing at the REPL, you’ll

probably want to try invoking options via lein run. Just like your application needs to

use -- to indicate arguments to pass on to subsequent programs, so too must you use

-- to indicate to lein run which arguments are for your program and which are for it:

If app-specs were rigged up to a project...
$ lein run -- -n 5 --no-verbose

134 | Chapter 3: General Computing

See Also

• Recipe 3.6, “Running Programs from the Command Line” on page 130, to learn
more about invoking applications from the command line

• Recipe 4.1, “Writing to STDOUT and STDERR” on page 165, to learn about input
and output streams

• Recipe 8.2, “Packaging a Project into a JAR File” on page 345, to learn how to package
an application as an executable JAR file

• For building ncurses-style applications, see clojure-lanterna, a wrapper around
the Lanterna terminal output library

3.8. Creating Custom Project Templates
by Travis Vachon

Problem
You regularly create new, similar projects and want an easy way to generate customized
boilerplate. Or, you work on an open source project and want to give users an easy way
to get started with your software.

Solution
Leiningen templates give Clojure programmers an easy way to automatically generate
customized project boilerplate with a single shell command. We’ll explore them by
creating a template for a simple web service.

First, generate a new template with lein new template cookbook-sample-template-

<github_user>. Replace <github_user> with your own GitHub username—you’ll be
publishing this template to Clojars, and it will need a unique name. In the examples,

we’ll use clojure-cookbook as our GitHub username:

$ lein new template cookbook-sample-template-clojure-cookbook
Generating fresh 'lein new' template project.

$ cd cookbook-sample-template-clojure-cookbook

Create a new project file template with the following contents in src/leiningen/new/
<project-name>/project.clj.

(defproject {{ns-name}} "0.1.0"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"

3.8. Creating Custom Project Templates | 135

http://bit.ly/clj-lanterna

 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]])

Since you are creating a template for a web service and you’ll want Clojure’s ring and

ring-jetty-adapter to be available by default, add them to the :dependencies section:

 :dependencies [[org.clojure/clojure "1.5.1"]
 [ring "1.1.8"]
 [ring/ring-jetty-adapter "1.2.0"]]

Next, open the template definition (src/leiningen/new/<project-name>.clj) and add

project.clj to the list of files to be generated. Add sanitize-ns to the name‐

space’s :require directive to expose a sanitized namespace string:

(ns leiningen.new.cookbook-sample-template-clojure-cookbook
 (:require [leiningen.new.templates :refer [renderer
 name-to-path
 ->files
 sanitize-ns]]
 [leiningen.core.main :as main])) ;

(def render (renderer "cookbook-sample-template-clojure-cookbook"))

(defn cookbook-sample-template-clojure-cookbook
 "FIXME: write documentation"
 [name]
 (let [data {:name name
 :ns-name (sanitize-ns name) ;
 :sanitized (name-to-path name)}]
 (->files data
 ["project.clj" (render "project.clj" data)] ;
 ["src/{{sanitized}}/foo.clj" (render "foo.clj" data)])))

Add sanitize-ns to the :require declaration.

Expose :ns-name as the sanitized name.

Add project.clj to the list of files in the template.

A good template gives users a basic skeleton on which to build. Create a new file at src/
leiningen/new/<project-name>/site.clj with some bare-bones web server logic:

(ns {{ns-name}}.site
 "My website! It will rock!"
 (:require [ring.adapter.jetty :refer [run-jetty]]))

(defn handler [request]
 {:status 200
 :headers {"Content-Type" "text/html"}
 :body "Hello World"})

(defn -main []
 (run-jetty handler {:port 3000}))

136 | Chapter 3: General Computing

Back in the template’s project.clj file, add a key/value for the :main option to indicate

my-website.site is the core runnable namespace for the project:

 :main {{ns-name}}.site

Go back to your template definition (<project-name>.clj) and change both foo.clj

references to site.clj. Delete the src/leiningen/new/<project-name>/foo.clj file as well:

;; ...
["src/{{sanitized}}/site.clj" (render "site.clj" data)])))

To test the template locally, change directories to the root of your template project and
run:

$ lein install
$ lein new cookbook-sample-template-clojure-cookbook my-first-website --snapshot
$ cd my-first-website
$ lein run
... Leiningen noisily fetching dependencies ...
2013-08-22 16:41:43.337:INFO:oejs.Server:jetty-7.6.8.v20121106
2013-08-22 16:41:43.379:
 INFO:oejs.AbstractConnector:Started SelectChannelConnector@0.0.0.0:3000

If lein prints an error about not being able to find your template, you should make sure

you’re using the latest version with lein upgrade.

To make the template available to other users, you’ll need to publish it to Clojars. First,
open up the template project’s project.clj and change the version to a release version—

by default lein will only use non-SNAPSHOT templates:

(defproject cookbook-sample-template-clojure-cookbook/lein-template "0.1.0"
;; ...

Next, visit clojars.org to create a Clojars account and then deploy from the template
project root:

$ lein deploy clojars

Other users can now create projects using your template name as the first argument to

lein new. Leiningen will automatically fetch your project template from Clojars:

$ lein new cookbook-sample-template-clojure-cookbook my-second-website

Discussion
Leiningen uses Clojars as a well-known source of templates. When you pass a template

name to lein new, it first looks for that template by name in the local Maven repository.
If it doesn’t find it there, it will look for an appropriately named template on http://
clojars.org. If it finds one, it will download the template and use it to create the new
project. The result is an almost magic-seeming project creation interface that lends itself
extremely well to getting Clojure programmers going with new technology very quickly.

3.8. Creating Custom Project Templates | 137

http://clojars.org
http://clojars.org
http://clojars.org

Once a project template has been downloaded, Leiningen will use src/leiningen/new/
<project-name>.clj to create a new project. This file can be customized extensively to
create sophisticated templates that match your needs. We’ll review this file and talk about
some of the tools available to the template developer.

We first declare a namespace that matches the template name and require some useful

functions provided by Leiningen for template development: leiningen.new.tem

plates contains a variety of other functions you may find useful and is worth reviewing
before you develop your own templates—problems you encounter during development

may already be solved by the library. In this case, name-to-path and sanitize-ns will
help us create strings that we’ll substitute into file templates in a number of places:

(ns leiningen.new.cookbook-sample-template-clojure-cookbook
 (:require [leiningen.new.templates :refer [renderer
 name-to-path
 ->files
 sanitize-ns]]))

A new project is generated by loading a set of mustache template files and rendering

them in the context of a named set of strings. The renderer function creates a function
that looks for mustache templates in a place determined by the name of your template.
In this case it will look for templates in src/leiningen/new/cook‐
book_sample_template_clojure_cookbook/:

(def render (renderer "cookbook-sample-template-clojure-cookbook"))

Continuing the spirit of convention over configuration, Leiningen will search this
namespace for a function with the same name as your template. You may execute ar‐
bitrary Clojure code in this function, which means you can make project generation
arbitrarily sophisticated:

(defn cookbook-sample-template-clojure-cookbook
 "FIXME: write documentation"
 [name]

This is the data our renderer will use to create your new project files from the templates
your provide. In this case, we give our templates access to the project name, the name‐
space that will result from that name, and a sanitized path based on that name:

 (let [data {:name name
 :ns-name (sanitize-ns name)
 :sanitized (name-to-path name)}]

Finally, we pass the ->files (pronounced “to files”) function a list of filename/content
tuples. The filename determines where in the new project a file will end up. Content is

generated using the render function we defined earlier. render accepts a relative path
to the template file and the key/value map we created:

138 | Chapter 3: General Computing

http://mustache.github.io/

 (->files data
 ["project.clj" (render "project.clj" data)]
 ["src/{{sanitized}}/site.clj" (render "site.clj" data)])))

Mustache templates are very simple, implementing nothing more than simple key sub‐

stitution. For example, the following snippet is used to generate the ns statement for
our new project’s main file, site.clj:

(ns {{ns-name}}.site
 "My website! It will rock!"
 (:require [ring.adapter.jetty :refer [run-jetty]]))

Leiningen templates are a powerful tool for saving Clojure developers from the drudgery
of project setup. More importantly, they are an invaluable tool for open source devel‐
opers to showcase their projects and make it incredibly easy for potential users to get
started with an unfamiliar piece of software. If you’ve been developing Clojure for a
while, or even if you’ve just started, it’s well worth your time to take templates for a spin
today!”

See Also

• The Leiningen template documentation

• The source of the leiningen.new.templates namespace

• mustache templates

3.9. Building Functions with Polymorphic Behavior
by Ryan Neufeld; originally submitted by David McNeil

Problem
You want to create functions whose behavior varies based upon the arguments passed
to them. For example, you want to develop a set of flexible geometry functions.

Solution
The easiest way to implement runtime polymorphism is via hand-rolled, map-based

dispatch using functions like cond or condp:

(defn area
 "Calculate the area of a shape"
 [shape]
 (condp = (:type shape)
 :triangle (* (:base shape) (:height shape) (/ 1 2))
 :rectangle (* (:length shape) (:width shape))))

3.9. Building Functions with Polymorphic Behavior | 139

http://bit.ly/lein-templates
http://bit.ly/lein-templates-clj
http://mustache.github.io/

(area {:type :triangle :base 2 :height 4})
;; -> 4N

(area {:type :rectangle :length 2 :width 4})
;; -> 8

This approach is a little raw, though: area ties together dispatch and multiple shapes’

area implementations, all under one function. Use the defmulti and defmethod macros
to define a multimethod, which will separate dispatch from implementation and intro‐
duce a measure of extensibility:

(defmulti area
 "Calculate the area of a shape"
 :type)

(defmethod area :rectangle [shape]
 (* (:length shape) (:width shape)))

(area {:type :rectangle :length 2 :width 4})
;; -> 8

;; Trying to get the area of a new shape...
(area {:type :circle :radius 1})
;; -> IllegalArgumentException No method in multimethod 'area' for
;; dispatch value: :circle ...

(defmethod area :circle [shape]
 (* (. Math PI) (:radius shape) (:radius shape)))

(area {:type :circle :radius 1})
;; -> 3.141592653589793

Better, but things start to fall apart if you want to add new geometric functions like

perimeter. With multimethods you’ll need to repeat dispatch logic for each function
and write a combinatorial explosion of implementations to suit. It would be better if
these functions and their implementations could be grouped and written together.

Use Clojure’s protocol facilities to define a protocol interface and extend it with concrete
implementations:

;; Define the "shape" of a Shape object
(defprotocol Shape
 (area [s] "Calculate the area of a shape")
 (perimeter [s] "Calculate the perimeter of a shape"))

;; Define a concrete Shape, the Rectangle
(defrecord Rectangle [length width]
 Shape
 (area [this] (* length width))
 (perimeter [this] (+ (* 2 length)
 (* 2 width))))

140 | Chapter 3: General Computing

(->Rectangle 2 4)
;; -> #user.Rectangle{:length 2, :width 4}

(area (->Rectangle 2 4))
;; -> 8

Discussion
As you’ve seen in this recipe, there are a multitude of different ways to implement poly‐
morphism in Clojure. While the preceding example settled on protocols as a method
for implementing polymorphism, there are no hard and fast rules about which techni‐
que to use. Each approach has its own unique set of trade-offs that need to be considered
when introducing polymorphism.

The first approach considered was simple map-based polymorphism using condp. In
retrospect, it’s not the right choice for building a geometry library in Clojure, but that
is not to say it is without its uses. This approach is best used in the small: you could use

cond to prototype early iterations of a protocol at the REPL, or in places where you aren’t
defining new types.

It’s important to note that there are techniques beyond cond for implementing map-
based dispatch. One such technique is a dispatch map, generally implemented as a map
of keys to functions.

Next up are multimethods. Unlike cond-based polymorphism, multimethods separate
dispatch from implementation. On account of this, they can be extended after their

creation. Multimethods are defined using the defmulti macro, which behaves similarly

to defn but specifies a dispatch function instead of an implementation.

Let’s break down the defmulti declaration for a rather simple multimethod, the area
function:

(defmulti area ;
 "Calculate the area of a shape" ;
 :type) ;

The function name for this multimethod

A docstring describing the function

The dispatch function

Using the keyword :type as a dispatch function doesn’t do justice to the flexibility of
multimethods: they’re capable of much more. Multimethods allow you to perform ar‐
bitrarily complex introspection of the arguments they are invoked with.

When choosing a map lookup like :type for a dispatch function, you also imply the
arity of the function (the number of arguments it accepts). Since keywords act as a

function on one argument (a map), area is a single-arity function. Other functions will

3.9. Building Functions with Polymorphic Behavior | 141

http://bit.ly/wiki-its

imply different arities. A common pattern with multimethods is to use an anonymous
function to make the intended arity of a multimethod more explicit:

(defmulti ingest-message
 "Ingest a message into an application"
 (fn [app message] ;
 (:priority message)) ;
 :default :low) ;

ingest-messages accepts two arguments, an app and a message.

message will be processed differently depending on its priority.

In the absence of a :priority key on message, the default priority will be :low.

Without specifying, the default dispatch value is :default.

(defmethod ingest-message :low [app message]
 (println (str "Ingesting message " message ", eventually...")))

(defmethod ingest-message :high [app message]
 (println (str "Ingesting message " message ", now.")))

(ingest-message {} {:type :stats :value [1 2 3]})
;; *out*
;; Ingesting message {:type :stats :value [1 2 3]}, eventually...

(ingest-message {} {:type :heartbeat :priority :high})
;; *out*
;; Ingesting message {:type :heartbeat, :priority :high}, now.

In all of the examples so far, we’ve always dispatched on a single value. Multimethods
also support something called multiple dispatch, whereby a function can be dispatched
upon any number of factors.

By returning a vector rather than a single value in our dispatch, we can make more
dynamic decisions:

(defmulti convert
 "Convert a thing from one type to another"
 (fn [request thing]
 [(:input-format request) (:output-format request)])) ;

(require 'clojure.edn)
(defmethod convert [:edn-string :clojure] ;
 [_ str]
 (clojure.edn/read-string str))

(require 'clojure.data.json)
(defmethod convert [:clojure :json] ;
 [_ thing]
 (clojure.data.json/write-str thing))

(convert {:input-format :edn-string

142 | Chapter 3: General Computing

2. That is to say, you cannot force a multimethod to implement all of the required methods when extending
behavior to its own type.

 :output-format :clojure}
 "{:foo :bar}")
;; -> {:foo :bar}

(convert {:input-format :clojure
 :output-format :json}
 {:foo [:bar :baz]})
;; -> "{\"foo\":[\"bar\",\"baz\"]}"

The convert multimethod dispatches on input and output format.

An implementation of convert that converts from edn strings to Clojure data.

Similarly, an implementation that converts from Clojure data to JSON.

All this power comes at a cost, however; because multimethods are so dynamic, they
can be quite slow. Further, there is no good way to group sets of related multimethods
into an all-or-nothing package.2 If speed or implementing a complete interface is among
your chief concerns, then you will likely be better served by protocols.

Clojure’s protocol feature provides extensible polymorphism with fast dispatch akin to
Java’s interfaces, with one notable difference from multimethods: protocols can only
perform single dispatch (based on type).

Protocols are defined using the defprotocol macro, which accepts a name, an optional
docstring, and any number of named method signatures. A method signature is made
up of a few parts: the name, at least one type signature, and an optional docstring. The
first argument of any type signature is always the object itself—Clojure dispatches on
the type of this argument. Perhaps an example would be the easiest way to dig into

defprotocol’s syntax:

(defprotocol Frobnozzle
 "Basic methods for any Frobnozzle"
 (blint [this x] "Blint the frobnozzle with x") ;
 (crand [this f] [this f x] (str "Crand a frobnozzle with another " ;
 "optionally incorporating x")))

A function, blint, with a single additional argument, x

A multi-arity function, crand, that takes an optional x argument

Once a protocol is defined, there are numerous ways to provide an implementation for

it. deftype, defrecord, and reify all define a protocol implementation while creating

an object. The deftype and defrecord forms create new named types, while reify
creates an anonymous type. Each form is used by indicating the protocol being extended,
followed by concrete implementations of each of that protocol’s methods:

3.9. Building Functions with Polymorphic Behavior | 143

;; deftype has a similar syntax, but is not really applicable for an
;; immutable shape
(defrecord Square [length]
 Shape ;
 (area [this] (* length length)) ;
 (perimeter [this] (* 4 length))
 ;
)

(perimeter (->Square 1))
;; -> 4

;; Calculate the area of a parallelogram without defining a record
(area
 (let [b 2
 h 3]
 (reify Shape
 (area [this] (* b h))
 (perimeter [this] (* 2 (+ b h))))))
;; -> 6

Indicate the protocol being implemented.

Implement all of its methods.

Repeat steps one and two for any remaining protocols you wish to implement.

The Difference Between a Type and a Record
Types and records share a very similar syntax, so it can be hard to understand how each
should be used.

Chas Emerick explained it best in an appendix to Clojure Programming (O’Reilly):

Is your class modeling a domain value—thus benefiting from hash map–like function‐
ality and semantics? Use defrecord.

Do you need to define mutable fields? Use deftype.

There you have it.

For implementing protocols on existing types, you will want to use the extend family

of built-in functions (extend, extend-type, and extend-protocol). Instead of creating
a new type, these functions define implementations for existing types.

144 | Chapter 3: General Computing

http://www.clojurebook.com/

See Also

• The official documentation for multimethods and hierarchies, which covers mul‐
timethods in depth. This document also covers hierarchies as they relate to multi‐
methods, a feature not covered in this recipe.

• The official documentation for protocols, which covers protocols in depth, includ‐
ing information on how protocols relate to interfaces.

• Recipe 2.28, “Implementing Custom Data Structures: Red-Black Trees—Part II” on
page 115, for a concrete example of implementing a protocol.

• Recipe 3.10, “Extending a Built-In Type” on page 145, for examples of using extend

and its convenience macros extend-type and extend-protocol.

3.10. Extending a Built-In Type
by David McNeil

Problem
You need to extend one of the built-in types with your own functions.

Solution
Suppose you would like to add domain-specific functions to the core java.lang.String

type. In this example, you will add a first-name and a last-name function to String.

Define a protocol with the functions you need. The protocol declares the signature of
the functions:

(defprotocol Person
 "Represents the name of a person."
 (first-name [person])
 (last-name [person]))

Extend the type to the java.lang.String class:

(extend-type String
 Person
 (first-name [s] (first (clojure.string/split s #" ")))
 (last-name [s] (second (clojure.string/split s #" "))))

Now you can invoke your functions on strings:

(first-name "john")
;; -> "john"

3.10. Extending a Built-In Type | 145

http://clojure.org/multimethods
http://clojure.org/protocols

(last-name "john smith")
;; -> "smith"

Discussion
Why use protocols when multimethods already exist? For one, speed: protocols dispatch
only on the type of their first parameter. Further, protocols allow you to group and name
an extension. This makes it much easier to reason about what a group of functions
confer about a type and ensures a proper, full implementation.

It is good practice to only extend a protocol to a type if you are the author of either the
protocol or the type. This will avoid cases where you violate the assumptions of the
original author(s).

If you already had functions to use, then it would make sense to use extend instead of

the extend-type form:

(defn first-word [s]
 (first (clojure.string/split s #" ")))

(defn second-word [s]
 (second (clojure.string/split s #" ")))

(extend String
 Person
 {:first-name first-word
 :last-name second-word})

See Also

• An excellent explanation of why protocols exist as it relates to the “Expression
Problem” by Jörg W Mittag on StackOverflow

3.11. Decoupling Consumers and Producers with
core.async
by Daemian Mack

Problem
You want to decouple your program’s consumers and producers by introducing explicit
queues between them.

For example, if you are building a web dashboard that fetches Twitter messages, this
application must both persist these events to a database and publish them via server-
sent events (SSE) to a browser.

146 | Chapter 3: General Computing

http://bit.ly/protocols-explanation

Solution
Introducing explicit queues between components allows them to communicate asyn‐
chronously, making them simpler to manage independently and freeing up computa‐
tional resources.

Use the core.async library to introduce and coordinate asynchronous channels.

To follow along with this recipe, start a REPL using lein-try:

$ lein try org.clojure/core.async

Consider the following passage illustrating a synchronous approach:

(defn database-consumer
 "Accept messages and persist them to a database."
 [msg]
 (println (format "database-consumer received message %s" msg)))

(defn sse-consumer
 "Accept messages and pass them to web browsers via SSE."
 [msg]
 (println (format "sse-consumer received message %s" msg)))

(defn messages
 "Fetch messages from Twitter."
 []
 (range 4))

(defn message-producer
 "Produce messages and deliver them to consumers."
 [& consumers]
 (doseq [msg (messages)
 consumer consumers]
 (consumer msg)))

(message-producer database-consumer sse-consumer)
;; *out*
;; database-consumer received message 0
;; sse-consumer received message 0
;; database-consumer received message 1
;; sse-consumer received message 1
;; database-consumer received message 2
;; sse-consumer received message 2
;; database-consumer received message 3
;; sse-consumer received message 3

Each message received is passed directly to each consumer of message-producer. As
implemented, this approach is rather brittle; any slow consumer could cause the entire
pipeline to grind to a halt.

3.11. Decoupling Consumers and Producers with core.async | 147

https://github.com/clojure/core.async

To make processing asynchronous, introduce explicit queues with clo

jure.core.async/chan. Perform work asynchronously by wrapping it in one of

core.async’s clojure.core.async/go forms:

(require '[clojure.core.async :refer [chan sliding-buffer go
 go-loop timeout >! <!]])

(defn database-consumer
 "Accept messages and persist them to a database."
 []
 (let [in (chan (sliding-buffer 64))]
 (go-loop [data (<! in)]
 (when data
 (println (format "database-consumer received data %s" data))
 (recur (<! in))))
 in))

(defn sse-consumer
 "Accept messages and pass them to web browsers via SSE."
 []
 (let [in (chan (sliding-buffer 64))]
 (go-loop [data (<! in)]
 (when data
 (println (format "sse-consumer received data %s" data))
 (recur (<! in))))
 in))

(defn messages
 "Fetch messages from Twitter."
 []
 (range 4))

(defn producer
 "Produce messages and deliver them to consumers."
 [& channels]
 (go
 (doseq [msg (messages)
 out channels]
 (<! (timeout 100))
 (>! out msg))))

(producer (database-consumer) (sse-consumer))
;; *out*
;; database-consumer received data 0
;; sse-consumer received data 0
;; database-consumer received data 1
;; sse-consumer received data 1
;; database-consumer received data 2
;; sse-consumer received data 2
;; database-consumer received data 3
;; sse-consumer received data 3

148 | Chapter 3: General Computing

Discussion
There comes a time in all good programs when components or subsystems must stop
communicating directly with one another.

— Rich Hickey
 Clojure core.async Channels

This code is larger than the original implementation. What has this afforded us?

The original approach was rigid. It offered no control over consumer latency and was
therefore extremely vulnerable to lag. By buffering communication over channels and
doing work asynchronously, we’ve created service boundaries around producers and
consumers, allowing them to operate as independently as possible.

Let’s examine one of the new consumers in depth to understand how it has changed.

Instead of receiving messages via function invocation, consumers now draw messages

from a buffered channel. Where a consumer (e.g., database-consumer) used to con‐

sume a single message at a time, it now uses a go-loop to continuously consume mes‐
sages from its producer.

In traditional callback-oriented code, accomplishing something like this would require
splitting logic out across numerous functions, introducing “callback hell.” One of the

benefits of core.async is that it lets you write code inline, in a more straightforward
style:

(defn database-consumer
 "Accept messages and persist them to a database."
 []
 (let [in (chan (sliding-buffer 64))] ;
 (go-loop [data (<! in)] ;
 (when data ;
 (println (format "database-consumer received data %s" data))
 (recur (<! in)))) ;
 in))

Here the channel is given a buffer of size 64. The sliding-buffer variant dictates
that if this channel accumulates more than 64 unread values, older values will
start “falling off” the end, trading off historical completeness in favor of recency.

Using dropping-buffer instead would optimize in the opposite direction.

go-loop is the core.async equivalent to looping via something like while true.

This go-loop reads its initial value by “taking” (<!) from the input channel (in).

Because channels return nil when closed, as long as we can read data from
them, we know we have work to do.

To recur the go-loop to the beginning, take the next value from the channel

and invoke recur with it.

3.11. Decoupling Consumers and Producers with core.async | 149

Because the go-loop block is asynchronous, the take call (<!) parks until a value is placed

on the channel. The remainder of the go-loop block—here, the println call—is pend‐

ing. Since the channel is returned as the database-consumer function’s value, other
parts of the system—namely, the producer—are free to write to the channel while the
take waits. The first value written to the channel will satisfy that read call, allowing the

rest of the go-loop block to continue.

This consumer is now asynchronous, reading values until the channel closes. Since the
channel is buffered, we now have some measure of control over the system’s resiliency.
For example, buffers allow a consumer to lag behind a producer by a specified amount.

Fewer changes are required to make producer asynchronous:

(defn producer
 [& channels]
 (go
 (doseq [msg (messages)
 out channels] ;
 (<! (timeout 100)) ;
 (>! out item)))) ;

For each message and channel…

Take from a timeout channel to simulate a short pause for effect…

And put a message onto the channel with >!.

Although the operations are asynchronous, they still occur serially. Using unbuffered
consumer channels would mean that if one of the consumers took from the channel too
slowly, the pipeline would stall; the producer would not be able to put further values
onto the channels.

See Also

• core.async has more advanced facilities for layout and coordination of channels.

For more details, see the core.async overview.

• Recipe 5.8, “Using ZeroMQ Concurrently” on page 240, to see how to use core.async
to communicate over ZeroMQ.

3.12. Making a Parser for Clojure Expressions Using
core.match
by Chris Frisz

150 | Chapter 3: General Computing

http://bit.ly/core-async-doc

Problem
You want to parse Clojure expressions, say, from the input to a macro, into a different
representation (like maps).

For this example, consider a heavily simplified version of Clojure that consists of the
following expression types:

• A variable represented by a valid Clojure symbol

• An fn expression that accepts a single argument and whose body is also a valid
expression

• An application of a valid expression in the language to another valid expression

You can represent this language by the following grammar:

Expr = var
 | (fn [var] Expr)
 | (Expr Expr)

Solution
Use core.match to pattern match over the input and return the expression represented
as maps of maps.

Before starting, add [org.clojure/core.match "0.2.0"] to your project’s dependen‐

cies, or start a REPL using lein-try:

$ lein try org.clojure/core.match

Now, codify the language’s grammar using clojure.core.match/match:

(require '[clojure.core.match :refer (match)])

(defn simple-clojure-parser
 [expr]
 (match [expr]
 [(var :guard symbol?)] {:variable var}
 [(['fn [arg] body] :seq)] {:closure
 {:arg arg
 :body (simple-clojure-parser body)}}
 [([operator operand] :seq)] {:application
 {:operator (simple-clojure-parser operator)
 :operand (simple-clojure-parser operand)}}
 :else (throw (Exception. (str "invalid expression: " expr)))))

(simple-clojure-parser 'a)
;; -> {:variable a}

(simple-clojure-parser '(fn [x] x))
;; -> {:closure {:arg x, :body {:variable x}}}

3.12. Making a Parser for Clojure Expressions Using core.match | 151

3. The match pattern for fn could (and should) include a guard on the arg to ensure that it’s a symbol, but that’s
elided here for brevity.

(simple-clojure-parser '((fn [x] x) a))
;; -> {:application
;; {:operator {:closure {:arg x, :body {:variable x}}}
;; :operand {:variable a}}}

;; fn expression can only have one argument!
(simple-clojure-parser '(fn [x y] x))
;; -> Exception invalid expression: (fn [x y] x) ...

Discussion
A match statement in core.match is made up of two basic parts. The first part is a vector

of vars to be matched. In our example, this is [expr]. This vector isn’t limited to a single
entry—it can contain as many items to match as you would like. The next part is a
variable list of question/answer pairs. A question is a vector representing the shape the

vars vector must take. As with cond, an answer is what will be returned should a var
satisfy a question.

Questions take a variety of forms in core.match. Here are explanations of the preceding
samples:

• The first match pattern, [(var :guard symbol?)], matches the variable case of our

syntax, binding the matched expression to var. The special :guard form applies the

predicate symbol? to var, only returning the answer if symbol? returns true.

• The second pattern, [(['fn [arg] body] :seq)], matches the fn case.3 Note the

special ([...] :seq) syntax for matching over lists, used here to represent an fn

expression. Also notice that to match on the literal fn, it had to be quoted in the

match pattern. Interestingly, since the body expression should also be accepted by

this parser, it makes a self-recursive call, (simple-clojure-parser body), in the
righthand side of the match pattern.

• For the third :application pattern, the parser again matches on a list using the

([...] :seq) syntax. As in the body of the fn expression, both the operator and

operand expressions should be accepted by the parser, so it makes a recursive call
for each one.

Finally, the parser throws an exception if the given expression doesn’t match any of
the three accepted patterns. This gives a somewhat more helpful error message if
you accidentally hand the parser a malformed expression.

152 | Chapter 3: General Computing

Writing your parser this way gives you succinct code that closely resembles the target

input. Alternatively, you could write it using conditional expressions (if or cond) and
explicitly destructure the input. To illustrate the difference in length and clarity of the

code, consider this function that only parses the fn expressions of the Clojure subset:

(defn parse-fn
 [expr]
 (if (and (list? expr)
 (= (count expr) 3)
 (= (nth expr 0) 'fn)
 (vector? (nth expr 1))
 (= (count (nth expr 1)) 1))
 {:closure {:arg (nth (nth expr 1) 0)
 :body (simple-clojure-parser (nth expr 2))}}
 (throw (Exception. (str "unexpected non-fn expression: " expr)))))

Notice how much more code this version needed in order to express the same properties

about an fn expression? Not only did the non-match version require more code, but the

if test doesn’t resemble the structure of the expression the way the match pattern does.

Further, match binds the matched input to the variable names in the match pattern

automatically, saving you from having to let-bind them yourself or repeatedly write

the same list access code (as shown with (nth expr) in parse-fn above). Needless to

say, the match is much easier to read and maintain.

See Also

• The core.match wiki’s Overview page for a broader view over all of the library’s
capabilities

3.13. Querying Hierarchical Graphs with core.logic
by Ryan Senior

Problem
You have a graph-like hierarchical data structure, serialized as a flat list of nodes, that
you want to query. For example, you have a graph of movie metadata represented as

entity-attribute-value triples. Writing this code with the standard seq functions has
proven to be too tedious and error prone.

Solution
The core.logic library is a Clojure implementation of the miniKanren domain-specific
language (DSL) for logic programming. Its declarative style is well suited for querying
flattened hierarchical data.

3.13. Querying Hierarchical Graphs with core.logic | 153

http://bit.ly/clj-core-match

4. Oh my!

To follow along with this recipe, start a REPL using lein-try:

$ lein try org.clojure/core.logic

The first thing you need is a dataset to query. Consider, for example, that you have
represented a graph of movie metadata as a list of tuples:

(def movie-graph
 [;; The "Newmarket Films" studio
 [:a1 :type :FilmStudio]
 [:a1 :name "Newmarket Films"]
 [:a1 :filmsCollection :a2]

 ;; Collection of films made by Newmarket Films
 [:a2 :type :FilmCollection]
 [:a2 :film :a3]
 [:a2 :film :a6]

 ;; The movie "Memento"
 [:a3 :type :Film]
 [:a3 :name "Memento"]
 [:a3 :cast :a4]

 ;; Connects the film to its cast (actors/director/producer etc.)
 [:a4 :type :FilmCast]
 [:a4 :director :a5]

 ;; The director of "Memento"
 [:a5 :type :Person]
 [:a5 :name "Christopher Nolan"]

 ;; The movie "The Usual Suspects"
 [:a6 :type :Film]
 [:a6 :filmName "The Usual Suspects"]
 [:a6 :cast :a7]

 ;; Connects the film to its cast (actors/director/producer etc.)
 [:a7 :type :FilmCast]
 [:a7 :director :a8]

 ;; The director of "The Usual Suspects"
 [:a8 :type :Person]
 [:a8 :name "Bryan Singer"]])

With all of this data in hand, how would you go about querying it? In an imperative
model, you would likely arduously “connect the dots” from node to node using filters,

maps, and conditionals.4 With core.logic, however, it is possible to connect these dots
using declarative logic statements.

154 | Chapter 3: General Computing

For example, to answer the question, “Which directors have made movies at a given

studio?” create a number of dots (logic variables) using clojure.core.logic/fresh

and connect (ground) them using clojure.core.logic/membero. Finally, invoke clo

jure.core.logic/run* to obtain all of the possible solutions:

(require '[clojure.core.logic :as cl])

(defn directors-at
 "Find all of the directors that have directed at a given studio"
 [graph studio-name]
 (cl/run* [director-name]
 (cl/fresh [studio film-coll film cast director]
 ;; Relate the original studio-name to a film collection
 (cl/membero [studio :name studio-name] graph)
 (cl/membero [studio :type :FilmStudio] graph)
 (cl/membero [studio :filmsCollection film-coll] graph)

 ;; Relate any film collections to their individual films
 (cl/membero [film-coll :type :FilmCollection] graph)
 (cl/membero [film-coll :film film] graph)

 ;; Then from film to cast members
 (cl/membero [film :type :Film] graph)
 (cl/membero [film :cast cast] graph)

 ;; Grounding to cast members of type :director
 (cl/membero [cast :type :FilmCast] graph)
 (cl/membero [cast :director director] graph)

 ;; Finally, attach to the director-name
 (cl/membero [director :type :Person] graph)
 (cl/membero [director :name director-name] graph))))

(directors-at movie-graph "Newmarket Films")
;; -> ("Christopher Nolan" "Bryan Singer")

Discussion
miniKanren is a domain-specific language written in Scheme, intended to give many
of the benefits of a logic programming language (such as Prolog) from within Scheme.
David Nolen created an implementation of miniKanren for Clojure, with a focus on
performance. One of the benefits of logic programming languages is their very declar‐

ative style. By using core.logic, we are able to say what we are looking for in the graph

without saying how core.logic should go about finding it.

In general, all core.logic queries begin with one of the library’s run macros, with

clojure.core.logic/run returning a finite number of solutions and clo

jure.core.logic/run* returning all of the solutions.

3.13. Querying Hierarchical Graphs with core.logic | 155

The first argument to the run macro is the goal, a variable used to store the result of the

query. In the preceding solution, this was the director-name variable. The rest is the

body of the core.logic program. A program is made up of logic variables (created using

clojure.core.logic/fresh) grounded to values or constrained by logic statements.

run is a clue that our programming paradigm is changing to logic programming. In a

core.logic program, unification is used rather than traditional variable assignment
and seqential expression evaluation. Unification uses substitution of values for variables

in an attempt to make two expressions syntactically identical. Statements in a core.log

ic program can appear in any order. For example, you can use clojure.core.logic/==

to unify 1 and q:

(cl/run 1 [q]
 (cl/== 1 q))
;; -> (1)

(cl/run 1 [q]
 (cl/== q 1))
;; -> (1)

core.logic is also able to unify the contents of lists and vectors, finding the right sub‐
stitution to make both expressions the same:

(cl/run 1 [q]
 (cl/== [1 2 3]
 [1 2 q]))
;; -> (3)

(cl/run 1 [q]
 (cl/== ["foo" "bar" "baz"]
 [q "bar" "baz"]))
;; -> ("foo")

Technically speaking, unification is a relation, relating the first form with the second

form. This is a kind of puzzle for core.logic to solve. In the previous example, q is a

logic variable, and core.logic is charged with binding a value to q such that the left

and the right sides of the unification (the clojure.core.logic/== relation) are syn‐
tactically identical. When there is no binding that satisfies the puzzle, no solution exists:

;; There is no way a single value is both 1 AND 2
(cl/run 1 [q]
 (cl/== 1 q)
 (cl/== 2 q))
;; -> ()

fresh is one way to create more logic variables:

(cl/run 1 [q]
 (cl/fresh [x y z]
 (cl/== x 1)
 (cl/== y 2)

156 | Chapter 3: General Computing

 (cl/== z 3)
 (cl/== q [x y z])))
;; -> ([1 2 3])

Just as clojure.core.logic/== is a relation between two forms, clojure.core.logic/

membero is a relation between an element in a list and the list itself:

(cl/run 1 [q]
 (cl/membero q [1]))
;; -> (1)

(cl/run 1 [q]
 (cl/membero 1 q))
;; -> ((1 . _0))

The first example is asking for any member of the list [1], which happens to only be 1.

The second example is the opposite, asking for any list where 1 is a member. The dot

notation indicates an improper tail with _0 in it. This means 1 could be in a list by itself,

or it could be followed by any other sequence of numbers, strings, lists, etc. _0 is an

unbound variable, since there was no further restriction on the list other than 1 being
an element.

clojure.core.logic/run* is a macro that asks for all possible sol‐

utions. Asking for all of the lists that contain a 1 will not terminate.

Unification can peek inside structures with clojure.core.logic/membero as well:

(cl/run 1 [q]
 (cl/membero [1 q 3] [[1 2 3] [4 5 6] [7 8 9]]))
;; -> (2)

Logic variables live for the duration of the program, making it possible to use the same
logic variable in multiple statements:

(let [seq-a [["foo" 1 2] ["bar" 3 4] ["baz" 5 6]]
 seq-b [["foo" 9 8] ["bar" 7 6] ["baz" 5 4]]]
 (cl/run 1 [q]
 (cl/fresh [first-item middle-item last-a last-b]
 (cl/membero [first-item middle-item last-a] seq-a)
 (cl/membero [first-item middle-item last-b] seq-b)
 (cl/== q [last-a last-b]))))
;; -> ([6 4])

The previous example does not specify first-item, only that it should be the same for

seq-a and seq-b. core.logic uses the data provided to bind values to the variable that

satisfy the constraints. The same is true with middle-item.

Building up from this, we can traverse the graph described in the solution:

3.13. Querying Hierarchical Graphs with core.logic | 157

(cl/run 1 [director-name]
 (cl/fresh [studio film-coll film cast director]
 (cl/membero [studio :name "Newmarket Films"] graph)
 (cl/membero [studio :type :FilmStudio] graph)
 (cl/membero [studio :filmsCollection film-coll] graph)

 (cl/membero [film-coll :type :FilmCollection] graph)
 (cl/membero [film-coll :film film] graph)

 (cl/membero [film :type :Film] graph)
 (cl/membero [film :cast cast] graph)

 (cl/membero [cast :type :FilmCast] graph)
 (cl/membero [cast :director director] graph)

 (cl/membero [director :type :Person] graph)
 (cl/membero [director :name director-name] graph)))
;; -> ("Christopher Nolan")

There is one minor difference between the preceding code and the original solution:

rather than using clojure.core.logic/run*, asking for all solutions, clo

jure.core.logic/run 1 was used. The program has multiple answers to the query for
a director at Newmarket Films. Asking for more answers will return more with no other
code change.

Slight modifications to the preceding query can significantly change

the results. Swapping "Newmarket Films" for a new fresh variable will
return all directors, for all studios. A macro could also be created to
reduce some of the code duplication if desired.

One benefit of the relational solution to this problem is being able to generate a graph
from the values:

(first
 (cl/run 1 [graph]
 (cl/fresh [studio film-coll film cast director]
 (cl/membero [studio :name "Newmarket Films"] graph)
 (cl/membero [studio :type :FilmStudio] graph)
 (cl/membero [studio :filmsCollection film-coll] graph)

 (cl/membero [film-coll :type :FilmCollection] graph)
 (cl/membero [film-coll :film film] graph)

 (cl/membero [film :type :Film] graph)
 (cl/membero [film :cast cast] graph)

 (cl/membero [cast :type :FilmCast] graph)
 (cl/membero [cast :director director] graph)

158 | Chapter 3: General Computing

5. There are some additional installation concerns if you are running Overtone on Linux. See the Overtone
wiki for more detailed installation instructions.

 (cl/membero [director :type :Person] graph)
 (cl/membero [director :name "Baz"] graph))))
;; -> ([_0 :name "Newmarket Films"]
;; [_0 :type :FilmStudio]
;; [_0 :filmsCollection _1]
;; ...)

For small graphs, membero is fast enough. Larger graphs will experience performance

problems as core.logic will traverse the list many times to find the elements. Using

clojure.core.logic/to-stream with some basic indexing can greatly improve the
query performance.

See Also

• The Reasoned Schemer, by Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov
(MIT Press)

• The core.logic wiki

• The miniKanren website

• The core.logic repository for examples of using clojure.core.logic/to-stream

• core.match, a (nonunification) matching library with some similar ideas, described
briefly in Recipe 3.12, “Making a Parser for Clojure Expressions Using
core.match” on page 150

3.14. Playing a Nursery Rhyme
by Chris Ford

Problem
You want to code a nursery rhyme to inspire your children to take up programming.

Solution
Use Overtone to bring the song to life.

Before starting, add [overtone "0.8.1"] to your project’s dependencies or start a REPL

using lein-try:5

$ lein try overtone

3.14. Playing a Nursery Rhyme | 159

http://bit.ly/overtone-install
http://bit.ly/overtone-install
http://bit.ly/core-logic-wiki
http://minikanren.org/
https://github.com/clojure/core.logic
https://github.com/clojure/core.match
https://github.com/overtone/overtone

To start, define the melody for an old children’s song:

(require '[overtone.live :as overtone])

(defn note [timing pitch] {:time timing :pitch pitch})

(def melody
 (let [pitches
 [0 0 0 1 2
 ; Row, row, row your boat,
 2 1 2 3 4
 ; Gently down the stream,
 7 7 7 4 4 4 2 2 2 0 0 0
 ; (take 4 (repeat "merrily"))
 4 3 2 1 0]
 ; Life is but a dream!
 durations
 [1 1 2/3 1/3 1
 2/3 1/3 2/3 1/3 2
 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
 2/3 1/3 2/3 1/3 2]
 times (reductions + 0 durations)]
 (map note times pitches)))

melody
;; -> ({:time 0, :pitch 0} ; Row,
;; {:time 1, :pitch 0} ; row,
;; {:time 2, :pitch 0} ; row
;; {:time 8/3, :pitch 1} ; your
;; {:time 3N, :pitch 2} ; boat
;; ...)

Convert the piece into a specific key by transforming each note’s pitch using a function
that represents the key:

(defn where [k f notes] (map #(update-in % [k] f) notes))

(defn scale [intervals] (fn [degree] (apply + (take degree intervals))))
(def major (scale [2 2 1 2 2 2 1]))

(defn from [n] (partial + n))
(def A (from 69))

(->> melody
 (where :pitch (comp A major)))
;; -> ({:time 0, :pitch 69} ; Row,
;; {:time 1, :pitch 69} ; row,
;; ...)

Convert the piece into a specific tempo by transforming each note’s time using a function
that represents the tempo:

160 | Chapter 3: General Computing

(defn bpm [beats] (fn [beat] (/ (* beat 60 1000) beats)))

(->> melody
 (where :time (comp (from (overtone/now)) (bpm 90))))
;; -> ({:time 1383316072169, :pitch 0}
;; {:time 4149948218507/3, :pitch 0}
;; ...)

Now, define an instrument and use it to play the melody. The following example syn‐
thesized instrument is a simple sine wave, whose amplitude and duration are controlled
by an envelope:

(require '[overtone.live :refer [definst line sin-osc FREE midi->hz at]])

(definst beep [freq 440]
 (let [envelope (line 1 0 0.5 :action FREE)]
 (* envelope (sin-osc freq))))

(defn play [notes]
 (doseq [{ms :time midi :pitch} notes]
 (at ms (beep (midi->hz midi)))))

;; Make sure your speakers are on...
(->> melody
 (where :pitch (comp A major))
 (where :time (comp (from (overtone/now)) (bpm 90)))
 play)
;; -> <music playing on your speakers>

If your nursery rhyme is a round, like “Row, Row, Row Your Boat,” you can use it to
accompany itself:

(defn round [beats notes]
 (concat notes (->> notes (where :time (from beats)))))

(->> melody
 (round 4)
 (where :pitch (comp A major))
 (where :time (comp (from (overtone/now)) (bpm 90)))
 play)

Discussion
A note is a sound of a particular pitch that occurs at a particular time. A song is a series
of notes. We can therefore simply represent music in Clojure as a sequence of time/pitch
pairs.

This representation is structurally very similar to Western music notation, where each
dot on a stave has a time and a pitch determined by its horizontal and vertical position.
But unlike traditional music notation, the Clojure representation can be manipulated
by functional programming techniques.

3.14. Playing a Nursery Rhyme | 161

Pieces of Western music, like “Row, Row, Row Your Boat,” aren’t composed of arbitrary
pitches. Within a given melody, the notes are typically confined to a subset of all possible
pitches called a scale.

The approach taken here is to express the pitches by integers denoting where they appear

in the scale, called degrees. So, for example, degree 0 signifies the first pitch of the scale,

and degree 4 signifies the fifth pitch of the scale.

This simplifies the description of the melody, because we don’t have to worry about
inadvertently specifying pitches that are outside our chosen scale. It also allows us to
vary our chosen scale without having to rewrite the melody.

To work with degrees, we need a function that translates a degree into the actual pitch.
Since “Row, Row, Row Your Boat” is in a major scale, we need a function that represents
such a scale.

We use the observation that in a major scale, there is a regular pattern of double and
single spaces between adjacent pitches (known to musicians as tones and semitones).

We define a function called major that accepts a degree and outputs the number of
semitones it represents.

Our pitches still aren’t quite right, because they’re relative to the lowest note of the piece.
We need to establish a musical reference point that we will use to interpret our degrees.

Concert A is conventionally used as a reference point by orchestras, so we’ll use it as
our musical zero. In other words, we will put “Row, Row, Row Your Boat” into A major.

Now a degree of 0 means A.

Note that we can simply compose together our functions for major and for A to arrive
at a composite A major function.

We need to do a similar transformation for time. Each note’s time is expressed in
beats, but we need it to be in milliseconds. We use the current system time as our tem‐
poral reference point, meaning that the piece will start from now (and not the start of
the Unix epoch).

“Row, Row, Row Your Boat” is a round, meaning it harmonizes if sung as an accompa‐
niment to itself, offset by a particular number of beats. As an extra flourish, we produce
a second version of the melody that starts four beats after the first.

We encourage you to experiment with the tune, perhaps by varying the speed or using
a different key (as a hint, a minor key has the following pattern of tones and semitones:

[2 1 2 2 1 2 2]).

We also encourage you to think about how this approach to modeling a series of events
can be applied to other domains. The idea of expressing a time series as a sequence and
then applying transformations across that series is a simple, flexible, and composable
way of describing a problem.

162 | Chapter 3: General Computing

Music is a wonderful and moving thing. It’s also incredibly well suited to being modeled
in a functional programming language. We hope your children agree.

See Also

• Overtone, a music environment for Clojure

3.14. Playing a Nursery Rhyme | 163

https://github.com/overtone/overtone

CHAPTER 4

Local I/O

4.0. Introduction
We’ve done a lot of work in the last few chapters, but clearly, the rubber has to meet the
road somewhere. How did we get all of this data into our Clojure programs, and more
importantly, how do we get it out? This chapter is all about input and output to a local
computer—the primary place where most applications’ data hits the road, so to speak.

There are a variety of modes and mediums for communicating with a local machine.
What do we communicate with, in what way, and in what format? It’s a little like the
classic board game Clue: was it plain text, in the console, with command-line arguments;
or Clojure data, in a file, as configuration data? In this chapter we’ll explore files, formats,
and applications of both GUI and console flavors, to name a few topics.

While it isn’t possible for us to enumerate every possible combination, it is our hope
that this chapter will give you a strong idea of what is possible. Handily enough, most
good solutions in Clojure compose; you should have little trouble sticking together any
number of recipes in this chapter to suit your needs.

4.1. Writing to STDOUT and STDERR
by Alan Busby

Problem
You want to write to STDOUT and STDERR.

Solution
By default, the print and println functions will print content passed to them to STDOUT:

165

(println "This text will be printed to STDOUT.")
;; *out*
;; This text will be printed to STDOUT.

(do
 (print "a")
 (print "b"))
;; *out*
;; ab

Change the binding of *out* to *err* to print to STDERR instead of STDOUT:

(binding [*out* *err*]
 (println "Blew up!"))
;; *err*
;; Blew up!\n

Discussion
In Clojure, the dynamic binding vars *out* and *err* are bound to your application

environment’s built-in STDOUT and STDERR streams, respectively.

All of the printing functions in Clojure, such as print and println, utilize the *out*

binding as the destination to write to. Consequently, you can rebind that var to *err*

(using binding) to change the destination of print messages from STDOUT to STDERR.

Other printing functions include pr, prn, printf, and a handful of others.

The bound value of *out* is not restricted to operating system streams; *out* can be
any stream-like object. This makes print functions powerful tools. They can be used to

write to files, sockets, or any other pipes you desire. The built-in function clo

jure.java.io/writer is a versatile constructor for output streams:

;; Create a writer to file foo.txt and print to it.
(def foo-file (clojure.java.io/writer "foo.txt"))
(binding [*out* foo-file]
 (println "Foo, bar."))

;; Nothing is printed to *out*.

;; And of course, close the file.
(.close foo-file)

See Also

• pr’s documentation and source to get a better idea of how *out*-based printing
works

• clojure.java.io/writer’s documentation for more information on creating writ‐
ers

166 | Chapter 4: Local I/O

http://bit.ly/clojure-pr
http://bit.ly/clojure-pr-source
http://bit.ly/java-io-writer

4.2. Reading a Single Keystroke from the Console
by John Jacobsen

Problem
Console input via stdin is normally buffered by lines; you want to read a single, un‐
buffered keystroke from the console.

Solution
Use ConsoleReader from the JLine library, a Java library for handling console input.

JLine is similar to BSD editline and GNU readline. To follow along with this recipe,

create a new library using the command lein new keystroke. Inside project.clj, add

[jline "2.11"] to the :dependencies vector.

Inside the src/keystroke/core.clj file, use ConsoleReader to read characters from the
terminal:

(ns keystroke.core
 (:import [jline.console ConsoleReader]))

(defn show-keystroke []
 (print "Enter a keystroke: ")
 (flush)
 (let [cr (ConsoleReader.)
 keyint (.readCharacter cr)]
 (println (format "Got %d ('%c')!" keyint (char keyint)))))

Discussion
As in most languages, console I/O in Java is buffered; flush writes the initial prompt
to the standard output stream. However, input is buffered as well by default. The JLine

library provides a ConsoleReader object whose readCharacter method lets you avoid

the input buffering. Beware, however, of testing show-keystroke at the REPL:

$ lein repl
user=> (require '[keystroke.core :refer [show-keystroke]])
user=> (show-keystroke)
Enter a keystroke:
;; HANGS!

In order to connect the console’s input correctly to the REPL, use lein trampoline

repl (the <r> here means the user types the letter r):

$ lein trampoline repl
user=> (require '[keystroke.core :refer [show-keystroke]])
user=> (show-keystroke)

4.2. Reading a Single Keystroke from the Console | 167

https://github.com/jline/jline2

Enter a keystroke: <r>Got 114 ('r')!
nil
user=>

lein trampoline is necessary because, by default, a Leiningen REPL actually runs the
REPL and its associated console I/O in a separate JVM process from your application

code. Using the trampoline option forces Leiningen to run your code in the same
process as the REPL, “trampolining” control back and forth. Normally this is invisible,
but it is a problem when running code that itself is attempting to use the console directly.

When running your program outside the REPL (as you typically would be, with a
command-line application written in Clojure), this is not an issue.

See Also

• If you want a richer terminal-based interface similar to what the C curses library

provides, the clojure-lanterna library may be a good place to start.

4.3. Executing System Commands
by Mark Whelan and Ryan Neufeld

Problem
You want to send a command to the underlying operating system and get its output.

Solution
Use the clj-commons-exec library to run shell commands on your local system.

To follow along, start a REPL using lein-try:

$ lein try org.clojars.hozumi/clj-commons-exec "1.0.6"

Invoking the clj-commons-exec/exec function with a command will return a promise,
eventually delivering a map of the command’s output, exit status, and any errors that

occurred (available via the :out, :exit, and :err keys, respectively):

(require '[clj-commons-exec :as exec])

(def p (exec/sh ["date"]))

(deref p)
;; -> {:exit 0, :out "Sun Dec 1 19:43:49 EST 2013\n", :err nil}

If your command requires options or arguments, simply append them to the command
vector as strings:

168 | Chapter 4: Local I/O

http://bit.ly/clj-lanterna

@(exec/sh ["ls" "-l" "/etc/passwd"])
;; -> {:exit 0
;; :out "-rw-r--r-- 1 root wheel 4962 May 27 07:54 /etc/passwd\n"
;; :err nil}

@(exec/sh ["ls" "-l" "nosuchfile"])
;; -> {:exit 1
;; :out nil
;; :err "ls: nosuchfile: No such file or directory\n"
;; :exception #<ExecuteException ... Process exited with an error: 1 ...)>}

Discussion
Up until this point, we’ve neglected to mention that functionality equivalent to exec/sh

already exists in Clojure proper (as clojure.java.shell/sh). Now that the cat is out

of the bag, it must be asked: why use a library over a built-in? Simple: clj-commons-

exec is a functional veneer over the excellent Apache Commons Exec library, providing

capabilities like piping not available in clojure.java.sh.

To pipe data through multiple commands, use the clj-commons-exec/sh-pipe func‐

tion. Just as with regular Unix pipes, pairs of commands will have their STDOUT and

STDIN streams bound to each other. The API of sh-pipe is nearly identically to that of

sh, the only notable exception being that you will pass more than one command to sh-

pipe. The return value of sh-pipe is a list of promises that fulfill as each subcommand
completes execution:

(def results (exec/sh-pipe ["cat"] ["wc" "-w"] {:in "Hello, world!"}))

results
;; -> (#<core$promise$reify__6310@71eed8d: {:exit 0, :out nil, :err nil}>
;; #<core$promise$reify__6310@7f7dc7a1: {:exit 0,
;; :out " 2\n",
;; :err nil}>)

@(last results)
;; -> {:exit 0, :out " 2\n", :err nil}

Like any reasonable shell-process library, clj-commons-exec allows you to configure
the environment in which your commands execute. To control the execution environ‐

ment of either sh or sh-pipe, specify options in a map as the final argument to either

function. The :dir option controls the path on which a command executes:

(println (:out @(exec/sh ["ls"] {:dir "/"})))
;; *out*
Applications
Library
...
usr
var

4.3. Executing System Commands | 169

http://bit.ly/commons-exec

The :env and :add-env options control the environment variables available to the ex‐

ecuting command. :add-env appends variables to the existing set of environment vari‐

ables, while :env replaces the existing set with a completely new one. Each option is a

map of variable names to values, like {"USER" "jeff"}:

@(exec/sh ["printenv" "HOME"])
;; -> {:exit 0, :out "/Users/ryan\n", :err nil}

@(exec/sh ["printenv" "HOME"] {:env {}})
;; -> {:exit 1, :out nil, :err nil, :exception #<ExecuteException ..)>}

@(exec/sh ["printenv" "HOME"] {:env {"HOME" "/Users/jeff"}})
;; -> {:exit 0, :out "/Users/jeff\n", :err nil}

There are a number of other options available in sh and sh-pipe:

:watchdog

The time in number of seconds to wait for a command to finish executing before
terminating it

:shutdown

A flag indicating that subprocesses should be destroyed when the VM exits

:as-success and :as-successes
An integer or sequence of integers that will be considered successful exit codes,
respectively

:result-handler-fn

A custom function to be used to handle results

If you initiate long-running subprocesses inside of a -main func‐
tion, your application will hang until those processes complete. If
this isn’t desirable, forcibly terminate your application by invoking

(System/exit) directly at the end of your -main function. Addi‐

tionally, set the option :shutdown to true for any subprocesses to
ensure you leave your system tidy and free of rogue processes.

To check if a subprocess has returned without waiting for it to finish, invoke the real

ized? function on the promise returned by sh (this is especially useful for monitoring

the progress of the sequence of promises returned by sh-pipe):

;; Any old long-running command
(def p (exec/sh ["sleep" "5"]))

(realized? p)
;; -> false

;; A few seconds later...

170 | Chapter 4: Local I/O

(realized? p)
;; -> true

See Also

• If you don’t need piping or clj-common-execs advanced features, consider using

clojure.java.shell

4.4. Accessing Resource Files
by John Jacobsen, with help from John Cromartie and Alex Petrov

Problem
You want to include a resource file from the classpath in your Clojure project.

Solution
Place resource files in the resources/ directory at the top level of your Leiningen project.

To follow along with this recipe, create a new project with the command lein new

people.

For example, suppose you have a file resources/people.edn with the following contents:

[{:first-name "John", :last-name "McCarthy", :language "Lisp"}
 {:first-name "Guido", :last-name "Van Rossum", :language "Python"}
 {:first-name "Rich", :last-name "Hickey", :language "Clojure"}]

Pass the name of the file (relative to the resources directory) to the clojure.java.io/

resource function to obtain an instance of java.io.File, which you can then read as

you please (for example, using the slurp function):

(require '[clojure.java.io :as io]
 '[clojure.edn :as edn])

(->> "people.edn"
 io/resource
 slurp
 edn/read-string
 (map :language))
;; -> ("Lisp" "Python" "Clojure")

Discussion
Resources are commonly used to store any kind of file that is logically a part of your
application, but is not code.

4.4. Accessing Resource Files | 171

http://bit.ly/clj-java-shell-api

Resources are loaded via the Java classpath, just like Clojure code is. Leiningen puts the
resources/ directory on the classpath automatically whenever it starts a Java process, and
when packaged, the contents of resources/ are copied to the root of any emitted JAR
files.

You can also specify an alternative (or additional) resource directory using

the :resources-paths key in your project.clj:

:resource-paths ["my-resources" "src/other-resources"]

Using classpath-based resources is very convenient, but it does have its drawbacks.

Be aware that in the context of a web application, any change to resources is likely to
require a full redeployment, because they are included wholesale in the JAR or WAR
file that will be deployed. Typically, this means it’s best to use resources only for items
that really are completely static. For example, though it’s possible to place your appli‐
cation’s configuration files in the resources/ directory and load them from there, to do
so is really to make them part of your application’s source code, which rather defeats the
purpose. You may wish to load that kind of (relatively) frequently changing resource in
a known filesystem location and load from there instead, rather than using the classpath.

Also, there are sometimes additional reasons to not serve from the classpath. For ex‐
ample, consider static images on a website. If you place them in your web application’s
classpath, then they will be served by your application server container (Jetty, Tomcat,
JBoss, etc.). Typically, these applications are optimized for serving dynamic HTML re‐
sources, not larger binary blobs. Serving larger static files is often more suited to the
HTTP server level of your architecture than the application server level, and should be
delegated to Apache, Nginx, or whatever other HTTP server you’re using. Or, you might
even want to split them off and serve them via a separate mechanism entirely, such as
a content delivery network (CDN). In either case, it is difficult to set up the HTTP server
or CDN to introspect resources inside of your application’s JAR file—it’s usually better
to store them elsewhere, from the start.

See Also

• The Leiningen sample.project.clj, which includes a more detailed description

of how the :resource-paths option works

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188

172 | Chapter 4: Local I/O

http://bit.ly/lein-sample

4.5. Copying Files
by Stefan Karlsson

Problem
You need to copy a file on your local filesystem.

Solution
Invoke clojure.java.io/copy, passing it the source and destination files:

(clojure.java.io/copy
 (clojure.java.io/file "./file-to-copy.txt")
 (clojure.java.io/file "./my-new-copy.txt"))
;; -> nil

If the input file is not found, a java.io.FileNotFoundException will be thrown:

(clojure.java.io/copy
 (clojure.java.io/file "./file-do-not-exist.txt")
 (clojure.java.io/file "./my-new-copy.txt"))
;; -> java.io.FileNotFoundException

The input argument to copy doesn’t have to be a file; it can be an InputStream, a

Reader, a byte array, or a string. This makes it easier to copy the data you are working
with directly to the output file:

(clojure.java.io/copy "some text" (clojure.java.io/file "./str-test.txt"))
;; -> nil

If required, an encoding can be specified by the :encoding option:

(clojure.java.io/copy "some text"
 (clojure.java.io/file "./str-test.txt")
 :encoding "UTF-8")

Discussion
Note that if the file already exists, it will be overwritten. If that is not what you want,
you can put together a “safe” copy function that will catch any exceptions and optionally
overwrite:

(defn safe-copy [source-path destination-path & opts]
 (let [source (clojure.java.io/file source-path)
 destination (clojure.java.io/file destination-path)
 options (merge {:overwrite false} (apply hash-map opts))] ;
 (if (and (.exists source) ;
 (or (:overwrite options)
 (= false (.exists destination))))

4.5. Copying Files | 173

 (try
 (= nil (clojure.java.io/copy source destination)) ;
 (catch Exception e (str "exception: " (.getMessage e))))
 false)))

(safe-copy "./file-to-copy.txt" "./my-new-copy.txt")
;; -> true
(safe-copy "./file-to-copy.txt" "./my-new-copy.txt")
;; -> false
(safe-copy "./file-to-copy.txt" "./my-new-copy.txt" :overwrite true)
;; -> true

The safe-copy function takes the source and destination file paths to copy from and
to. It also takes a number of key/value pairs as options.

These options are then merged with the default values. In this example, there is

only one option, :overwrite, but with this structure for optional arguments,

you can easily add your own (such as :encoding if needed).

After the options have been processed, the function checks whether the
destination file exists, and if so, if it should be overwritten. If all is OK, it will

then perform the copy inside a try-catch body.

Note the equality check against nil for when the file is copied. If you add this,
you will always get a Boolean value from the function. This makes the function
more convenient to use, since you can then conditionally check whether the
operation succeed or not.

You can also use clojure.java.io/copy with a java.io.Reader and a java.io.Writ

er, as well as with streams:

(with-open [reader (clojure.java.io/reader "file-to-copy.txt")
 writer (clojure.java.io/writer "my-new-copy.txt")]
 (clojure.java.io/copy reader writer))

The same efficiency considerations that apply to reading and writing to a file in regard

to selecting input and output sources from File, Reader, Writer, or streams should be

applied to copy. See Recipe 4.9, “Reading and Writing Text Files” on page 179, for more
information.

By default, a buffer size of 1,024 bytes is used when calling copy. That is the amount of
data that will be read from the source and written to the destination in one pass. This
is done until the complete source has been copied. The buffer size used can be changed

with the :buffer-size option. Keeping this number low would cause more file access
operations but would keep less data in memory. On the other hand, increasing the buffer
size will lower the number of file accesses but will require more data to be loaded into
memory.

174 | Chapter 4: Local I/O

See Also

• clojure.java.io’s API documentation

4.6. Deleting Files or Directories
by Stefan Karlsson

Problem
You need to delete a file from your local filesystem.

Solution
Use clojure.java.io/delete-file to delete the file:

(clojure.java.io/delete-file "./file-to-delete.txt")
;; -> true

If you’re trying to delete a file that does not exist, a java.io.IOException will be thrown:

(clojure.java.io/delete-file "./file-that-does-not-exist.txt")
;; -> java.io.IOException: Couldn't delete

If you do not want delete-file to throw exceptions when the given file could not be

deleted for whatever reason, you can add the silently flag set to true to the arguments:

(clojure.java.io/delete-file "./file-that-does-not-exist.txt" true)
;; -> true

Discussion
For times when you want to do some custom handling of the eventual exceptions

thrown, you should put the call to delete-file inside a try-catch body:

(try
 (clojure.java.io/delete-file "./file-that-does-not-exist.txt")
 (catch Exception e (str "exception: " (.getMessage e))))
;; -> "exception: Couldn't delete ./file-that-does-not-exist.txt"

java.io.File has an .exists property that simply gives you a Boolean answer as to

whether a file exists or not. You can put this property together with a try-catch body
to get a “safe” delete utility function. This function will first check to see if the file with
the path from the argument exists before trying to delete it:

(defn safe-delete [file-path]
 (if (.exists (clojure.java.io/file file-path))
 (try
 (clojure.java.io/delete-file file-path)

4.6. Deleting Files or Directories | 175

http://bit.ly/clj-java-io-api

 (catch Exception e (str "exception: " (.getMessage e))))
 false))

(safe-delete "./file-that-does-not-exist.txt")
;; -> false
(safe-delete "./file-to-delete.txt")
;; -> true

The clojure.java.io/delete-file function can also be used to delete directories.
Directories must be empty for the deletion to be successful, so any utility function you
make to delete a directory must first delete all files in the given directory:

(clojure.java.io/delete-file "./dir-to-delete")
;; -> false

(defn delete-directory [directory-path]
 (let [directory-contents (file-seq (clojure.java.io/file directory-path))
 files-to-delete (filter #(.isFile %) directory-contents)]
 (doseq [file files-to-delete]
 (safe-delete (.getPath file)))
 (safe-delete directory-path)))

(delete-directory "./dir-to-delete")
;; -> true

The delete-directory function will get a file-seq with the contents of the given path.
It will then filter to only get the files of that directory. The next step is to delete all the

files, and then finish up by deleting the directory itself. Note the call to doall. If you do

not call doall, the deletion of the files would be lazy and then the files would still exist
when the call to delete the actual directory was made, so that call would fail.

See Also

• clojure.java.io’s API documentation

• Recipe 4.7, “Listing Files in a Directory” on page 176, for more details on using a

file-seq to get the files from a directory

4.7. Listing Files in a Directory
by Ryan Neufeld and Stefan Karlsson

Problem
Given a directory, you want to access the files inside.

176 | Chapter 4: Local I/O

http://bit.ly/clj-java-io-api

Solution
Call the built-in file-seq function.

To follow along with this recipe, create some sample files and folders
using these commands (on Linux or Mac):

$ mkdir -p next-gen
$ touch next-gen/picard.jpg next-gen/locutus.bmp next-gen/data.txt

file-seq returns a lazy sequence of java.io.File objects:

(def tng-dir (file-seq (clojure.java.io/file "./next-gen")))

tng-dir
;; -> (#<File ./next-gen>
;; #<File ./next-gen/picard.jpg>
;; #<File ./next-gen/locutus.bmp>
;; #<File ./next-gen/data.txt>)

Discussion
Sequences are one of Clojure’s more powerful abstractions; treating a directory hierar‐

chy as a sequence allows you to leverage functions like map and filter to manipulate
files and directories.

Consider, for example, the case where you would like to select only files in a directory
hierarchy (and not directories). You can define such a function by taking a sequence of

files and directories and filtering them by the .isFile property of java.io.File ob‐
jects:

(defn only-files
 "Filter a sequence of files/directories by the .isFile property of
 java.io.File"
 [file-s]
 (filter #(.isFile %) file-s))

(only-files tng-dir)
;; -> (#<File ./next-gen/data.txt>
;; #<File ./next-gen/locutus.bmp>
;; #<File ./next-gen/picard.jpg>)

What if you want to display the string names of all those files? Define a names function

to map the .getName property over a sequence of files, combining only-files and

names to get a list of filenames in a directory:

(defn names
 "Return the .getName property of a sequence of files"
 [file-s]
 (map #(.getName %) file-s))

4.7. Listing Files in a Directory | 177

(-> tng-dir
 only-files
 names)
;; -> ("data.txt" "locutus.bmp" "picard.jpg")

See Also

• The documentation for the File class for a complete list of properties and methods

available on File objects.

• Combine these techniques with utility libraries like Google Guava’s Files class or

Apache Commons FilenameUtils class to exert even greater leverage over the file
sequence abstraction.

4.8. Memory Mapping a File
by Alan Busby

Problem
You want to use memory mapping to access a large file as though it were fully loaded
into memory, without actually loading the whole thing.

Solution
Use the clj-mmap library, which wraps the memory-mapping functionality provided by
Java’s NIO (New I/O) library.

Before starting, add [clj-mmap "1.1.2"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-mmap

To read the first and last N bytes of UTF-8 encoded text file, use the get-bytes function:

(require '[clj-mmap :as mmap])

(with-open [file (mmap/get-mmap "/path/to/file/file.txt")]
 (let [n-bytes 10
 file-size (.size file)
 first-n-bytes (mmap/get-bytes file 0 n-bytes)
 last-n-bytes (mmap/get-bytes file (- file-size n-bytes) n-bytes)]
 [(String. first-n-bytes "UTF-8")
 (String. last-n-bytes "UTF-8")]))

To overwrite the first N bytes of a text file, call put-bytes:

178 | Chapter 4: Local I/O

http://bit.ly/javadoc-file
http://bit.ly/guava-files
http://bit.ly/commons-io-filename-utils
https://github.com/thebusby/clj-mmap

(with-open [file (mmap/get-mmap "/path/to/file/file.txt")]
 (let [bytes-to-write (.getBytes "New text goes here" "UTF-8")
 file-size (.size file)]
 (if (> file-size
 (alength bytes-to-write))
 (mmap/put-bytes file bytes-to-write 0))))

Discussion
Memory mapping, or mmap per the POSIX standard, is a method of leveraging the
operating system’s virtual memory to perform file I/O. By mapping the file into the
applications memory space, copying between buffers is reduced, and I/O performance
is increased.

Memory-mapped files are especially useful when working with large files, structured

binary data, or text files where Java’s String overhead may be unwelcome.

While Clojure makes it simple to work with Java’s NIO primitives directly, NIO makes

working with files larger than 2 GB especially difficult. clj-mmap wraps this complexity,
but it doesn’t expose all the features that NIO does. The NIO Java API is still available
via interop, should it be needed.

See Also

• The mmap Wikipedia article

• The clj-mmap GitHub repository

4.9. Reading and Writing Text Files
by Stefan Karlsson

Problem
You need to read or write a text file to the local filesystem.

Solution
Write a string to a file with the built-in spit function:

(spit "stuff.txt" "my stuff")

Read the contents of a file with the built-in slurp function:

(slurp "stuff.txt")
;; -> "all my stuff"

If required, an encoding can be specified with the :encoding option:

4.9. Reading and Writing Text Files | 179

http://bit.ly/wiki-mmap
https://github.com/thebusby/clj-mmap

(slurp "stuff.txt" :encoding "UTF-8")
;; -> "all my stuff"

Append data to an existing file using the :append true option to spit:

(spit "stuff.txt" "even more stuff" :append true)

To read a file line by line, instead of loading the entire contents into memory at once,

use a java.io.Reader together with the line-seq function:

(with-open [r (clojure.java.io/reader "stuff.txt")]
 (doseq [line (line-seq r)]
 (println line)))

To write a large amount of data to a file without realizing it all as a string, use a

java.io.Writer:

(with-open [w (clojure.java.io/writer "stuff.txt")]
 (doseq [line some-large-seq-of-strings]
 (.write w line)
 (.newLine w)))

Discussion
When using :append, text will be appended to the end of the file. Use newlines at the

end of each line by appending "\n" to the string to be printed. All lines in a text file
should end with a newline, including the last one:

(defn spitn
 "Append to file with newline"
 [path text]
 (spit path (str text "\n") :append true)

When used with strings, spit and slurp deal with the entire contents of a file at a time
and close the file after reading or writing. If you need to read or write a lot of data, it is
more efficient (in terms of both memory and time) to use a streaming API such as

java.io.Reader or java.io.Writer, since they do not require realizing the contents
of the file in memory.

When using writers and streams, however, it is important to flush any writes to the
underlying stream in order to ensure your data is actually written and resources are

cleaned up. The with-open macro flushes and closes the stream specified in its binding
after executing its body.

Be especially aware that any lazy sequences based on a stream will
throw an error if the underlying stream is closed before the se‐

quence is realized. Even when using with-open, it is possible to

return an unrealized lazy sequence; the with-open macro has no way
of knowing that the stream is still needed and so will close it any‐
way, leaving a sequence that cannot be realized.

180 | Chapter 4: Local I/O

Generally, it is best to not let lazy sequences based on streams escape the scope in which
the stream is open. If you do, you must be extremely careful to ensure that the resources
required for the realization of a lazy sequence are still open as long as the sequence has
any readers. Typically, the latter approach involves manually tracking which streams

are still open rather than relying on a try/finally or with-open block.

See Also

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188

• The documentation for java.io.Reader and java.io.Writer

4.10. Using Temporary Files
by Alan Busby

Problem
You want to use a temporary file on the local filesystem.

Solution
Use the static method createTempFile of Java’s built-in java.io.File class to create a
temporary file in the default temporary-file directory of the JVM, with the provided
prefix and suffix:

(def my-temp-file (java.io.File/createTempFile "filename" ".txt"))

You can then write to the temporary file like you would to any other instance of

java.io.File:

(with-open [file (clojure.java.io/writer my-temp-file)]
 (binding [*out* file]
 (println "Example output.")))

Discussion
Temporary files are often quite useful to interact with other programs that prefer a file-

based API. Using createTempFile is important to ensure that temporary files are placed
in an appropriate location on the filesystem, which can differ based on the operating
system being used.

To get the full path and filename for the created temporary file:

(.getAbsolutePath my-temp-file)

4.10. Using Temporary Files | 181

http://bit.ly/javadoc-reader
http://bit.ly/javadoc-writer

You can use the File.deleteOnExit method to mark the temporary file to be deleted
automatically when the JVM exits:

(.deleteOnExit my-temp-file)

Note that the file is not actually deleted until the JVM terminates and may not be deleted
if the process crashes or exits abnormally. It is good practice to delete temporary files
immediately when they are no longer being used:

(.delete my-temp-file)

See Also

• The java.io.File API documentation

4.11. Reading and Writing Files at Arbitrary Positions
by John Jacobsen

Problem
You want to read data from a file, or write data to it, at various locations rather than
sequentially.

Solution
To open a (potentially very large) file for random access, use Java’s RandomAccessFile.

seek to the location you desire, then use the various write methods to write data at that
location.

For example, to make a 1 GB file filled with zeros except the integer 1,234 at the end:

(import '[java.io RandomAccessFile])

(doto (RandomAccessFile. "/tmp/longfile" "rw")
 (.seek (* 1000 1000 1000))
 (.writeInt 1234)
 (.close))

Getting the length of a “normal” Java file object shows that the file is the correct size:

(require '[clojure.java.io :refer [file]])
(.length (file "/tmp/longfile"))

;; -> 1000000004

(You can also call length on a RandomAccessFile directly.)

182 | Chapter 4: Local I/O

http://bit.ly/javadoc-file

Reading a value back from the proper location in Clojure is quite similar to writing.

Again, seek a RandomAccessFile. Then use the appropriate read method:

(let [raf (RandomAccessFile. "/tmp/longfile" "r")
 _ (.seek raf (* 1000 1000 1000))
 result (.readInt raf)]
 (.close raf)
 result)

;; -> 1234

Discussion
Files written in this way are populated by zeros by default and may be treated as “sparse
files” by the JVM implementation and the underlying operating system, leading to extra
efficiency in reading and writing.

Examining the file we created using the Unix od program to do a hex dump from the

command line shows that the file consists of zeros with our 1234 at the end:

$ od -Ad -tx4 /tmp/longfile
0000000 00000000 00000000 00000000 00000000
*
1000000000 d2040000
1000000004

At byte offset 1000000000 can be seen the value d2040000, which is the hex represen‐
tation of a big-endian integer with the value 1,234. (Java integers are big-endian by
default. This means that the highest-order bytes are stored at the lowest addresses.)

See Also

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188, for information on
reading entire files

• The java.io.RandomAccessFile API documentation

• The Unix od command

4.12. Parallelizing File Processing
by Edmund Jackson

Problem
You want to transform a text file line by line, but using all cores and without loading it
into memory.

4.12. Parallelizing File Processing | 183

http://bit.ly/javadoc-raf
http://bit.ly/wiki-od

Solution
A quick win using pmap over a sequence returned by line-seq:

(require ['clojure.java.io :as 'jio])

(defn pmap-file
 "Process input-file in parallel, applying processing-fn to each row
 outputting into output-file"
 [processing-fn input-file output-file]
 (with-open [rdr (jio/reader input-file)
 wtr (jio/writer output-file)]
 (let [lines (line-seq rdr)]
 (dorun
 (map #(.write wtr %)
 (pmap processing-fn lines))))))

;; Example of calling this
(def accumulator (atom 0))

(defn- example-row-fn
 "Trivial example"
 [row-string]
 (str row-string "," (swap! accumulator inc) "\n"))

;; Call it
(pmap-file example-row-fn "input.txt" "output.txt")

Discussion
The key functions used in this example (beyond basic Clojure constructs like map or

dorun) are line-seq and pmap.

line-seq, given an instance of java.io.BufferedReader (which clojure.java.io/

reader returns), will return a lazy sequence of strings. Each string is a line in the input
file. What constitutes a newline for the purposes of line splitting is determined by the

line.separator JVM option, which will be set in a platform-specific way. Specifically,
it will be a carriage return character followed by a line feed character in Windows, and
a single newline character in Unix-derived systems such as Linux or Mac OS X.

pmap functions identically to map and applies a function to each item in a sequence,
returning a lazy sequence of return values. The difference is that as it applies the mapping
function, it does so in a separate thread for each item in the collection (up to a certain
fixed number of threads related to the number of CPUs on your system). Threads re‐
alizing the sequence will block if the values are not ready yet.

pmap can yield substantial performance improvements by distributing work across
multiple CPU cores and performing it concurrently, but it isn’t a magic bullet. Specifi‐
cally, it incurs a certain amount of coordination overhead to schedule the multithreaded

184 | Chapter 4: Local I/O

operations. Typically, it gives the most benefit when performing very heavyweight op‐
erations, where the mapping function is so computationally expensive that it makes the
coordination overhead worth it. For simple functions that complete very quickly (such
as basic operations on primitives), the coordination overhead is likely to be much larger

than any performance gains, and pmap will actually be much slower than map in that
case.

The idea is to use pmap to map over the sequence of file rows in parallel. However, you

then need to pass each processed row through (map #(.write wtr %) ...) in order

to ensure the rows are written one at a time (put the write in the processing function
to see what happens otherwise). Finally, as these are lazy sequences, you need to realize

their side effects before exiting the with-open block or the file will be closed by the time

you wish to evaluate them. This is accomplished by calling dorun.

There are a couple of caveats here. Firstly, although the row ordering of the output file
will match that of the input, the execution order is not guaranteed. Secondly, the process
will become I/O-bound quite quickly as all the writes happen on one thread, so you may
not get the speedup you expect unless the processing function is substantial. Finally,

pmap is not perfectly efficient at allocating work, so the degree of speedup you see might
not correspond exactly to the number of processors on your system, as you might expect.

Another drawback to the pmap approach is that the actual reading of the file is serialized,

using a single java.io.Reader. Considerable gains can still be realized if the processing
task is expensive compared to reading, but in lightweight tasks the bottleneck is likely
to be reading the file itself, in which case parallelizing the processing work will give little
to no gains in terms of total runtime (or even make it worse).

See Also

• Recipe 4.13, “Parallelizing File Processing with Reducers” on page 185, for a similar
approach that parallelizes reading the file itself using memory mapping (as well as
using Clojure reducers for greater efficiency)

4.13. Parallelizing File Processing with Reducers
by Edmund Jackson

Problem
You want to use Clojure’s reducers on a file to realize parallel processing without loading
the file into memory.

4.13. Parallelizing File Processing with Reducers | 185

1. For more information, see the Java tutorial on Fork/Join and work stealing.

Solution
Use the Iota library in conjunction with the filter, map, and fold functions from the

Clojure Reducers library in the clojure.core.reducers namespace. To follow along

with this recipe, add [iota "1.1.1"] to your project’s dependencies, or start a REPL

with lein-try:

$ lein try iota

To count the words in a very large file, for example:

(require '[iota :as io]
 '[clojure.core.reducers :as r]
 '[clojure.string :as str])

;; Word-counting functions
(defn count-map
 "Returns a map of words to occurence count in the given string"
 [s]
 (reduce (fn [m w] (update-in m [w] (fnil (partial inc) 0)))
 {}
 (str/split s #" ")))

(defn add-maps
 "Returns a map where each key is the sum of vals of that key in m1 and m2."
 ([] {}) ;; Necessary base case for use as combiner in fold
 ([m1 m2]
 (reduce (fn [m [k v]] (update-in m [k] (fnil (partial + v) 0))) m1 m2)))

;; Main file processing
(defn keyword-count
 "Returns a map of the word counts"
 [filename]
 (->> (iota/seq filename)
 (r/filter identity)
 (r/map count-map)
 (r/fold add-maps)))

Discussion
The Iota library creates sequences from files on the local filesystem. Unlike the purely

sequential lazy sequences produced from something like file-seq, the sequences re‐
turned by Iota are optimized for use with Clojure’s Reducers library, which uses the Java
Fork/Join work-stealing framework1 under the hood to provide efficient parallel pro‐
cessing.

186 | Chapter 4: Local I/O

http://bit.ly/forkjoin-tut
https://github.com/thebusby/iota

The keyword-count function first creates a reducible sequence of lines in the file and

filters out blank lines (using the identity function to eliminate nil values from the

sequence). Then it applies the count-map function in parallel, and finally aggregates the

results by folding with the add-maps function.

r/filter and r/map function exactly the same as their non-Reducer counterparts; the
only difference is one of performance, and how the Reducers library is able to break
down and combine operations. They also return reducible sequences that can be utilized
efficiently by other operations from the Reducers library.

r/fold is the core function of the Reducers library, and in its basic form it is functionally

very similar to the built-in reduce function. Given a function and a reducible collection,
it returns a value that is the result of applying the folding function to each item in the
collection and an accumulator value.

Unlike with normal reduce, however, there is no guaranteed execution order, which is

why fold doesn’t take a single starting value as an argument. It wouldn’t make sense,
given that the computation can “start” in several places at once, concurrently. This means

that the function passed to fold (when passed a single function) must also be capable
of taking zero arguments—the result of the no-arg invocation of the provided function
will be used as the seed value for each branch of the computation.

If you need more flexibility than this provides, fold allows you to specify both a re

duce function and a combine function, as separate arguments. Exactly what these do is
inextricably tied to how Reducers themselves work, so a full explanation is beyond the

scope of this recipe. See the API documentation for the fold function and the links on
the Reducers page on Clojure’s website for more information.

About Reducers

Reducers is a parallel execution framework for extremely efficient parallel processing.
A full explanation of how reducers work is beyond the scope of this recipe (see the blog
post introducing reducers on the Clojure website for a comprehensive treatment).

In short, however, reducers provide performance by two means:

1. They can compose operations. Wherever logically possible, the reducers framework
will collapse composable operations into a single operation. For example, the

preceding code performs a filter and then a map. Clojure’s standard filter and

map would realize an intermediate sequence: filter would produce a sequence that

would then be fed to map. The reducer versions, however, can compose themselves

(if possible) to produce a single map+filter operation that can be applied in one
shot.

2. They exploit the internal tree-like data structures of the data being reduced. Regular
sequences are inherently sequential (no surprise), and because their performant

4.13. Parallelizing File Processing with Reducers | 187

http://bit.ly/reducers-fold-doc
http://clojure.org/reducers
http://bit.ly/reducers-post
http://bit.ly/reducers-post

operation is to pull items from the beginning one at a time, it’s difficult to efficiently
distribute work across their members. However, Reducers is aware of the internal
structure of Clojure’s persistent data structures and can leverage that to efficiently
distribute worker processes across the data.

Under the hood, Iota uses the Java NIO libraries to provide a memory-mapped view of
the file being processed that provides efficient random access. Iota is also aware of the
Reducers framework, and Iota sequences are structured in such a way that Reducers
can effectively distribute worker processes across them.

See Also

• The Iota GitHub repository

• NIO’s documentation

4.14. Reading and Writing Clojure Data
by John Cromartie

Problem
You need to store and retrieve Clojure data structures on disk.

Solution
Use pr-str and spit to serialize small amounts of data:

(spit "data.clj" (pr-str [:a :b :c]))

Use read-string and slurp to read small amounts of data:

(read-string (slurp "data.clj"))
;; -> [:a :b :c]

Use pr to efficiently write large data structures to a stream:

(with-open [w (clojure.java.io/writer "data.clj")]
 (binding [*out* w]
 (pr large-data-structure)))

Use read to efficiently read large data structures from a stream:

(with-open [r (java.io.PushbackReader. (clojure.java.io/reader "data.clj"))]
 (binding [*read-eval* false]
 (read r)))

188 | Chapter 4: Local I/O

https://github.com/thebusby/iota
http://bit.ly/javadoc-nio

2. See Recipe 4.9, “Reading and Writing Text Files” on page 179, for notes on managing streams.

Discussion
The fact that code is data in Clojure and that you have runtime access to the same reader
the language uses to load source code from files makes this a relatively simple task.
However, while this is often a good way to persist data to disk, you should be aware of
a few issues.

Reading, Security, and edn

The read function is only appropriate for reading data from trusted sources. This is
because the Clojure reader is neither designed nor guaranteed to be safe or free from

side effects. Binding *read-eval* to false is just a small safeguard. If you need to read
Clojure data structures from untrusted sources (i.e., anything you did not write your‐

self), then see the clojure.edn library.

edn (extensible data notation) is a specification of Clojure’s data structure serialization
format with multiple implementations, so it can be used as a transport and persistence
format and consumed from programs written in any language, much like XML or JSON.

The clojure.edn library is edn’s implementation for Clojure.

It works much the same as the Clojure reader and writer; however, it provides additional
security guarantees that the Clojure reader does not, and should always be used for any
external or untrusted input.

The simple case of slurp and spit becomes unusable when the data is very large, because
it creates a very large string in memory all at once. For instance, serializing one million

random numbers (created with rand) results in an 18 MB file and consumes much more
memory than that while reading or writing:

(spit "data.clj" (pr-str (repeatedly 1e6 rand)))
;; -> OutOfMemoryError Java heap space ...

But, if you know you are only dealing with a small amount of data, this approach is
perfectly suitable. It is a good way to load configuration data and other types of simple
structures.

Reading and writing from streams is far more efficient because it buffers input and
output, dealing with data a few bytes at a time.2

In addition to reading and writing a single data structure in a file, you can also append
additional data structures to the same file and read them back as a sequence later:

4.14. Reading and Writing Clojure Data | 189

(spit "data.clj" (prn-str [1 2 3]))
(spit "data.clj" (prn-str [:a :b :c]) :append true)
;; data.clj now contains two serialized structures

This is useful for appending small amounts of data to a file over time, such as for an
event or transaction log.

However read-string will not suffice for reading multiple objects from a single string.

To read a series of objects from a stream, you must continue to call read until it has
reached the end:

(defn- read-one
 [r]
 (try
 (read r)
 (catch java.lang.RuntimeException e
 (if (= "EOF while reading" (.getMessage e))
 ::EOF
 (throw e)))))

(defn read-seq-from-file
 "Reads a sequence of top-level objects in file at path."
 [path]
 (with-open [r (java.io.PushbackReader. (clojure.java.io/reader path))]
 (binding [*read-eval* false]
 (doall (take-while #(not= ::EOF %) (repeatedly #(read-one r)))))))

See Also

• Recipe 4.4, “Accessing Resource Files” on page 171

• Recipe 4.15, “Using edn for Configuration Files” on page 190

• Recipe 4.17, “Handling Unknown Tagged Literals When Reading Clojure Data” on
page 196

4.15. Using edn for Configuration Files
by Luke VanderHart

Problem
You want to configure your application using Clojure-like data literals.

Solution
Use Clojure data structures stored in edn files to define a map that contains configura‐
tion items you care about.

190 | Chapter 4: Local I/O

For example, the edn configuration of an application that needs to know its own host‐
name and connection info for a relational database might look something like this:

{:hostname "localhost"
 :database {:host "my.db.server"
 :port 5432
 :name "my-app"
 :user "root"
 :password "s00p3rs3cr3t"}}

The basic function to read this data into a Clojure map is trivial using the edn reader:

(require '[clojure.edn :as edn])

(defn load-config
 "Given a filename, load & return a config file"
 [filename]
 (edn/read-string (slurp filename)))

Invoking the newly defined load-config function will now return a configuration map
that you can pass around and use in your application as you would any other map.

Discussion
As can be seen from the preceding code, the basic process for obtaining a map containing
configuration data is extremely trivial. A more interesting question is what to do with
the config map once you have it, and there are two general schools of thought regarding
the answer.

The first option prioritizes ease of development by making the configuration map am‐
biently available throughout the entire application. Usually this involves setting a global
var to contain the configuration.

However, this is problematic for a number of reasons. First, it becomes more difficult
to override the default configuration file in alternate contexts, such as tests, or when
running two differently configured systems in the same JVM. (This can be worked
around by using thread-local bindings, but this can lead to messy code fairly rapidly.)

More importantly, using a global configuration means that any function that reads the
config (most functions, in a sizable application) cannot be pure. In Clojure, that is a lot
to give up. One of the main benefits of pure Clojure code is its local transparency; the
behavior of a function can be determined solely by looking at its arguments and its code.
If every function reads a global variable, however, this becomes much more difficult.

The alternative is to explicitly pass around the config everywhere it is needed, like you
would every other argument. Since a config file is usually supplied at application start,

the config is usually established in the -main function and passed wherever else it is
needed.

4.15. Using edn for Configuration Files | 191

This sounds painful, and indeed it can be somewhat annoying to pass an extra argument
to every function. Doing so, however, lends the code a large degree of self-
documentation; it becomes extremely evident what parts of the application rely on the
config and what parts do not. It also makes it more straightforward to modify the config
at runtime or supply an alternative config in testing scenarios.

Using multiple config files

A common pattern when configuring an application is to have a number of different
classes of configuration items. Some config fields are more or less constants, and don’t
vary between instances of the application in the same environment. These are often
committed to source control along with the application’s source code.

Other config items are fairly constant, but can’t be checked into source control due to
security concerns. Examples of this include database passwords or secure API tokens,
and ideally these are put into a separate config file. Still other configuration fields (such
as IP addresses) will often be completely different for every instance of a deployed
application, and the desire is to specify those separately from the more constant config
fields.

A useful technique to handle this heterogeneity is to use multiple configuration files,
each handling a different type of concern, and then merge them into a single configu‐

ration map before passing it on to the application. This typically uses a simple deep-

merge function:

(defn deep-merge
 "Deep merge two maps"
 [& values]
 (if (every? map? values)
 (apply merge-with deep-merge values)
 (last values)))

This will merge two maps, merging values as well if they are all maps. If the values are
not all maps, the second one “wins” and is used in the resulting map.

Then, you can rewrite the config loader to accept multiple config files, and merge them
together:

(defn load-config
 [& filenames]
 (reduce deep-merge (map (comp edn/read-string slurp)
 filenames)))

Using this approach on two separate edn config files, config-public.edn and config-
private.edn, yields a merged map.

192 | Chapter 4: Local I/O

3. To follow along, create your own project with lein new my-great-app.

config-public.edn:

{:hostname "localhost"
 :database {:host "my.db.server"
 :port 5432
 :name "my-app"
 :user "root"}}

config-private.edn:

{:database {:password "s3cr3t"}}

(load-config "config-public.edn" "config-private.edn")
;; -> {:hostname "localhost", :database {:password "s3cr3t",
;; :host "my.db.server", :port 5432, :name "my-app", :user "root"}}

Be aware that any values present in both configuration files will be overridden by the

“rightmost” file passed to load-config.

Different configurations for different environments

If your system runs in multiple environments, you may want to vary your configuration
based on the current running environment. For example, you may want to connect to
a local database while developing your system, but a production database when running
your system in production.

You can use Leiningen’s profiles feature to achieve this end. By providing

different :resource-paths options for each profile in your project’s configuration, you
can vary which configuration file is read per environment:3

(defproject my-great-app "0.1.0-SNAPSHOT"
 {;; ...
 :profiles {:dev {:resource-paths ["resources/dev"]}
 :prod {:resource-paths ["resources/prod"]}}})

With a project configuration similar to the previous one, you can then create two dif‐
ferent configurations with the same base filename, resources/dev/config.edn and resour‐
ces/prod/config.edn:

resource/dev/config.edn:

{:database-host "localhost"}

resources/prod/config.edn:

{:database-host "production.example.com"}

If you’re following along on your own, add the load-config function to one of your
project’s namespaces:

4.15. Using edn for Configuration Files | 193

(ns my-great-app.core
 (:require [clojure.edn :as edn]))

(defn load-config
 "Given a filename, load & return a config file"
 [filename]
 (edn/read-string (slurp filename)))

Now, the configuration your application loads will depend on which profile your project
is running in:

"dev" is one of Leiningen's default profiles
$ lein repl
user=> (require '[my-great-app.core :refer [load-config]])
user=> (load-config (clojure.java.io/resource "config.edn"))
{:database-host "localhost"}
user=> (exit)

$ lein trampoline with-profile prod repl
user=> (require '[my-great-app.core :refer [load-config]])
user=> (load-config (clojure.java.io/resource "config.edn"))
{:database-host "production.example.com"}

See Also

• Recipe 4.4, “Accessing Resource Files” on page 171

• Recipe 4.16, “Emitting Records as edn Values” on page 194

• Recipe 4.17, “Handling Unknown Tagged Literals When Reading Clojure Data” on
page 196

• The Leiningen profiles tutorial

4.16. Emitting Records as edn Values
by Steve Miner

Problem
You want to use Clojure records as edn values, but the edn format doesn’t support
records.

Solution
You can use the tagged library to read and print records as edn tagged literal values.

Before starting, add [com.velisco/tagged "0.3.0"] to your project’s dependencies

or start a REPL using lein-try:

194 | Chapter 4: Local I/O

http://bit.ly/lein-profiles-tut

$ lein try com.velisco/tagged

To extend Clojure’s built-in print-method multimethod to print a record in a “tagged”

format, extend print-method for that record with the miner.tagged/pr-tagged-

record-on helper function:

(require '[miner.tagged :as tag])

(defrecord SimpleRecord [a])

(def forty-two (->SimpleRecord 42))

(pr-str forty-two)
;; -> "#user.SimpleRecord{:a 42}" ;; Sadly, not a proper edn value

(defmethod print-method user.SimpleRecord [this w]
 (tag/pr-tagged-record-on this w))

(pr-str forty-two)
;; -> "#user/SimpleRecord {:a 42}"

At this point, you can round-trip your records between pr-str and miner.tagged/

read-string using the edn tagged literal format:

(tag/read-string (pr-str forty-two))
;; -> #user/SimpleRecord {:a 42}

(= forty-two
 (tag/read-string (pr-str forty-two)))
;; -> true

The edn reader still doesn’t understand how to parse these tagged values, though. To

enable this behavior, use miner.tagged/tagged-default-reader as the :default op‐

tion when reading values with edn:

(require '[clojure.edn :as edn])

(edn/read-string {:default tag/tagged-default-reader}
 (pr-str {:my-record forty-two}))
;; -> {:my-record #user/SimpleRecord {:a 42}}

Discussion
The edn format is great—it covers a useful subset of the Clojure data types and makes
high-fidelity data transfer a breeze. Unfortunately, it doesn’t support records. This is
easy enough to rectify, however; edn is an extensible format by name. We just need to

provide tag-style printing (#tag <value>) and an appropriate reader. The tagged li‐
brary makes both of these tasks quite easy.

As seen in the preceding samples, Clojure’s default printed value for records is close to,
but not quite the tagged format edn expects.

4.16. Emitting Records as edn Values | 195

Where Clojure prints "#user.SimpleRecord{:a 42}" for a SimpleRecord, what is

really needed for edn is a tag-style string like ""#user/SimpleRecord {:a 42}". The

miner.tagged/pr-tagged-record-on function understands how to write records in

this format (to a java.io.Writer). By extending Clojure’s print-method multimethod
with this function, you ensure Clojure always prints a record in a tagged format.

For reading these values back in, you need to tell the edn reader how to parse your new

record tags. By design, the tagged library provides a miner.tagged/tagged-default-

reader function that can be used to extend edn to read your record tags. When the edn

reader can’t parse a tag, it attempts to use a function specified by its :default option to

rehydrate tags. By providing tagged-default-reader as this :default option, you al‐
low the edn reader to properly interpret your tagged record values.

See Also

• Recipe 4.17, “Handling Unknown Tagged Literals When Reading Clojure Data” on

page 196, for more information on the :default option

• edn: extensible data notation on GitHub

4.17. Handling Unknown Tagged Literals When Reading
Clojure Data
by Steve Miner

Problem
You want to read Clojure data (in an edn format) that may contain unknown tagged
literals.

Solution
Use the :default option of either clojure.edn/read or clojure.edn/read-string:

(require 'clojure.edn)

(defrecord TaggedValue [tag value])

(defn read-preserving-unknown-tags [s]
 (clojure.edn/read-string {:default ->TaggedValue} s))

(read-preserving-unknown-tags "#my.example/unknown 42")
;; -> #user.TaggedValue{:tag my.example/unknown, :value 42}

196 | Chapter 4: Local I/O

https://github.com/edn-format/edn

Discussion
The edn format defines a print representation for a significant subset of Clojure data
types and offers extensibility through tagged literals. The best way to read edn data is

to use clojure.edn/read or clojure.edn/read-string. These functions consume
edn-formatted data from a stream or string, respectively, and return hydrated Clojure
data.

Both functions take an opts map, which allows you to control several options when
reading. For tags you know about ahead of time, you can define custom readers by

supplying a :readers map. This map can also be used to override the behavior of built-

in types as defined by clojure.core/default-data-readers:

;; Creating a custom reader
(clojure.edn/read-string {:readers {'inc-this inc}}
 "#inc-this 1")
;; -> 2

;; Overriding a built-in reader
;; Before..
(clojure.edn/read-string "#inst \"2013-06-08T01:00:00Z\"")
;; -> #inst "2013-06-08T01:00:00.000-00:00"

;; And after...
(clojure.edn/read-string {:readers {'inst str}}
 "#inst \"2013-06-08T01:00:00Z\"")
;; -> "2013-06-08T01:00:00Z"

The :default option, as explored in the solution, is ideal for handling unknown tags.
Whenever an unknown tag and value are encountered, the function you provide will
be called with two arguments, the tag and its value.

When a :default is not provided to read, reading an unknown tag will throw a Runti

meException:

(clojure.edn/read-string "#blow-up boom")
;; -> RuntimeException No reader function for tag blow-up ...

For most applications, reading an unknown tag is an error, so an exception would be
appropriate. However, it may sometimes be useful to preserve the “unknowns,” perhaps
for another stage of processing.

It’s trivial to leverage the factory function defined by defrecord to capture the unknown

reader literal. The order of the arguments for the factory of TaggedValue conveniently

matches the specification of the :default data reader.

The TaggedValue record preserves the essential information for later use. Since all of
the inbound information has been preserved, you can even print the value again in the
original tagged literal format:

4.17. Handling Unknown Tagged Literals When Reading Clojure Data | 197

4. This is actually a feature—they’re functions used by the language to, well, execute code.

5. The Clojure mailing list thread “ANN: NEVER use clojure.core/read or read-string for reading untrusted

data” talks more about the vulnerabilities with clojure.core readers.

(defmethod print-method TaggedValue [this ^java.io.Writer w]
 (.write w "#")
 (print-method (:tag this) w)
 (.write w " ")
 (print-method (:value this) w))

;; Now, the TaggedValue will `pr` as the original tagged literal
(read-preserving-unknown-tags "#my.example/unknown 42")
;; -> #my.example/unknown 42

clojure.core/read
The edn reader hasn’t always existed, you know. It used to be that if you wanted to read

Clojure data, you would use one of the two built-in reader functions, clojure.core/

read and clojure.core/read-string. The purpose of these two functions is to read
code or data from trusted sources.

Because these functions can execute code,4 you should never (ever) use the clo

jure.core readers to read from untrusted sources. This means user data, remote servers
(even your own), or pretty much anywhere else for that matter. (We’re being a little
extreme, of course, but we want you to be safe.)

In the event that you do have a safe environment and absolutely need to evaluate some

code, then by all means use the clojure.core readers. These readers do have a different

interface for setting options than clojure.edn readers, though; instead of passing an

opts, you’ll need to change various dynamic bindings to adjust the reader’s behavior.

For example, the *default-data-reader-fn* determines how the core functions deal

with unknown tags. See also *data-readers* and *read-eval* for more information.
That said, for reading data, it’s generally better to use the edn variants.5

See Also

• edn: extensible data notation on GitHub

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188, and Recipe 4.16,
“Emitting Records as edn Values” on page 194

198 | Chapter 4: Local I/O

http://bit.ly/read-unsafe
http://bit.ly/read-unsafe
http://clojure.github.io/tools.reader/
https://github.com/edn-format/edn

4.18. Reading Properties from a File
by Tobias Bayer

Problem
You need to read a property file and access its key/value pairs.

Solution
The most straightforward way is to use the built-in java.util.Properties class via

Java interop. java.util.Properties implements java.util.Map, which can be easily
consumed from Clojure, just like any other map.

Here is an example property file to load, fruitcolors.properties:

banana=yellow
grannysmith=green

Populating an instance of Properties from a file is straightforward, using its load

method and passing in an instance of java.io.Reader obtained using the clo

jure.java.io namespace:

(require '[clojure.java.io :refer (reader)])

(def props (java.util.Properties.))

(.load props (reader "fruitcolors.properties"))
;; -> nil

props
;; -> {"banana" "yellow", "grannysmith" "green"}

Instead of using the built-in Properties API via interop, you could also use the prop

ertea library for simpler, more idiomatic Clojure access to property files.

Include the [propertea "1.2.3"] dependency in your project.clj file, or start a REPL

using lein-try:

$ lein try propertea 1.2.3

Then read the property file and access its key/value pairs:

(require '[propertea.core :refer (read-properties)])

(def props (read-properties "fruitcolors.properties"))

props
;; -> {:grannysmith "green", :banana "yellow"}

4.18. Reading Properties from a File | 199

http://bit.ly/javadoc-properties

(props :banana)
;; -> "yellow"

Discussion
Although using java.util.Properties directly is more straightforward and doesn’t

require the addition of a dependency, propertea does provide some convenience. It

returns an actual immutable Clojure map, instead of just a java.util.Map. Although
both are perfectly usable from Clojure, an immutable map is probably preferable if you
intend to do any further manipulation or updates on it.

More importantly, propertea converts all string keys into keywords, which are more
commonly used than strings as the keys of maps in Clojure.

Additionally, propertea has several other features, such as the capability to parse values
into numbers or Booleans, and providing default values.

By default, propertea’s read-properties function treats all property values as strings.
Consider the following property file with an integer and Boolean key:

intkey=42
booleankey=true

You can force these properties to be parsed into their respective types by supplying lists

for the :parse-int and :parse-boolean options:

(def props (read-properties "other.properties"
 :parse-int [:intkey]
 :parse-boolean [:booleankey]))

(props :intkey)
;; -> 42

(class (props :intkey))
;; -> java.lang.Integer

(props :booleankey)
;; -> true

(class (props :booleankey))
;; -> java.lang.Boolean

Sometimes the property file might not contain a key/value pair, and you might want to
set a reasonable default value in this case:

(def props (read-properties "other.properties" :default [:otherkey "awesome"]))

(props :otherkey)
;; -> "awesome"

200 | Chapter 4: Local I/O

You can also be strict on required properties. If an expected property is missing in your
property file, you can throw an exception:

(def props (read-properties "other.properties" :required [:otherkey]))
;; -> java.lang.RuntimeException: (:otherkey) are required ...

See Also

• The propertea GitHub repository

• The Properties API documentation

4.19. Reading and Writing Binary Files
by John Jacobsen

Problem
You need to read or write some binary data.

Solution
Use Java’s BufferedInputStream, BufferedOutputStream, and ByteBuffer classes to
work directly with binary data.

Discussion
While reading and writing text files (e.g., via slurp and spit) is easy in pure Clojure,
writing binary data requires a little more Java interop.

Clojure’s output-stream wraps the BufferedOutputStream Java object. BufferedOut

putStream has a write method that accepts Java byte arrays. The following writes 1,000
zeros (bytes) to /tmp/zeros:

(require '[clojure.java.io :refer [file output-stream input-stream]])

(with-open [out (output-stream (file "/tmp/zeros"))]
 (.write out (byte-array 1000)))

To read the bytes in again, use the corresponding input-stream function, which wraps

BufferedInputStream:

(with-open [in (input-stream (file "/tmp/zeros"))]
 (let [buf (byte-array 1000)
 n (.read in buf)]
 (println "Read" n "bytes.")))

;;=> Read 1000 bytes.

4.19. Reading and Writing Binary Files | 201

https://github.com/jaycfields/propertea
http://bit.ly/javadoc-properties

Writing zeros and reading in fixed-length blocks is obviously not very interesting. We
want to prepare our byte array with some actual content. A common way to prepare

byte arrays is to use a ByteBuffer, filling it with data from various types. Let’s assume
we want to write “strings” in the following format:

1. A version number (byte; 66 in our example)

2. A string length (big-endian int)

3. The bytes for the string (in this case, “hello world”)

The following function will “pack” the bytes into an array using an intermediate Byte

Buffer:

(import '[java.nio ByteBuffer])

(defn prepare-string [strdata]
 (let [strlen (count strdata)
 version 66
 buflen (+ 1 4 (count strdata))
 bb (ByteBuffer/allocate buflen)
 buf (byte-array buflen)]
 (doto bb
 (.put (.byteValue version))
 (.putInt (.intValue strlen))
 (.put (.getBytes strdata))
 (.flip) ;; Prepare bb for reading
 (.get buf))
 buf))

(prepare-string "hello world")
;;=> #<byte[] [B@5ccab0e8>
(into [] (prepare-string "hello world"))
;;=> [66 0 0 0 11 104 101 108 108 111 32 119 111 114 108 100]

Writing data in this format is then as simple as:

(with-open [out (output-stream "/tmp/mystring")]
 (.write out (prepare-string "hello world")))

To get the data back, ByteBuffer provides a way of unpacking multiple types out of a
stream (array) of bytes:

(defn unpack-buf [n buf]
 (let [bb (ByteBuffer/allocate n)]
 (.put bb buf 0 n) ;; Fill ByteBuffer with array contents
 (.flip bb) ;; Prepare for reading
 (let [version (.get bb 0)]
 (.position bb 1) ;; Skip version byte
 (let [buflen (.getInt bb)
 strbytes (byte-array buflen)] ;; Prepare buffer to hold string
 ;; data...

202 | Chapter 4: Local I/O

 (.get bb strbytes) ;; ... and read it.
 [version buflen (apply str (map char strbytes))]))))

(with-open [in (input-stream "/tmp/mystring")]
 (let [buf (byte-array 1024)
 n (.read in buf)]
 (unpack-buf n buf)))

;=> [66 11 "hello world"]

Note that for both writing and reading, the flip operation on the ByteBuffer resets
the position to the beginning of the buffer to prepare it for reading and writing, re‐
spectively.

See Also

• For more details on ByteBuffer, which plays a key role in Java’s NIO library, see
the Java NIO documentation or Java NIO by Ron Hitchens (O’Reilly).

• The Clojure library bytebuffer provides a thin, more idiomatic wrapper for Byte

Buffer operations.

• The more recent Buffy library provides a wrapper over the related Netty ByteBuff

ers.

• Finally, the Gloss library provides a DSL for reading and writing binary streams of
data (whether file-based or network-based).

4.20. Reading and Writing CSV Data
by Jason Whitlark

Problem
You need to read or write CSV data.

Solution
Use clojure.data.csv/read-csv to lazily read CSV data from a String or

java.io.Reader:

(clojure.data.csv/read-csv "this,is\na,test")
;; -> (["this" "is"] ["a" "test"])

(with-open [in-file (clojure.java.io/reader "in-file.csv")]
 (doall

4.20. Reading and Writing CSV Data | 203

http://bit.ly/javadoc-nio
http://shop.oreilly.com/product/9780596002886.do
https://github.com/geoffsalmon/bytebuffer
https://github.com/clojurewerkz/buffy
https://github.com/ztellman/gloss

 (clojure.data.csv/read-csv in-file)))
;; -> (["this" "is"] ["a" "test"])

Use clojure.data.csv/write-csv to write CSV data to a java.io.Writer:

(with-open [out-file (clojure.java.io/writer "out.csv")]
 (clojure.data.csv/write-csv out-file [["this" "is"] ["a" "test"]]))
;; -> nil

Discussion
The clojure.data.csv library makes it easy to work with CSV. You need to remember

that read-csv is lazy; if you want to force it to read data immediately, you’ll need to

wrap the call to read-csv in doall.

When reading, you can change the separator and quote delimiters, which default to \

and \", respectively. You must specify the delimiters using chars, not strings, though:

(csv/read-csv "this$-is $-\na$test" :separator \$:quote \-)
;; -> (["this" "is $"] ["a" "test"])

When writing, as with read-csv, you can configure the separator, quote, and newline

(between :lf (default) and :cr+lf), as well as the quote? predicate function, which

takes a collection and returns true or false to indicate if the string representation needs
to be quoted:

(with-open [out-file (clojure.java.io/writer "out.csv")]
 (clojure.data.csv/write-csv out-file [["this" "is"] ["a" "test"]]
 :separator \$:quote \-))
;; -> nil

To capture CSV output as a string, use with-out-str and write to *out*:

(with-out-str (csv/write-csv *out* [["this" "is"] ["a" "test"]]))
;; -> "this,is\na,test\n"

See Also

• The clojure.data.csv GitHub repository

4.21. Reading and Writing Compressed Files
by John Cromartie

Problem
You want to read or write a file compressed with gzip (i.e., a .gz file).

204 | Chapter 4: Local I/O

https://github.com/clojure/data.csv

Solution
Wrap a normal input stream with java.util.zip.GZIPInputStream to get uncom‐
pressed data:

(with-open [in (java.util.zip.GZIPInputStream.
 (clojure.java.io/input-stream
 "file.txt.gz"))]
 (slurp in))

Wrap a normal output stream with java.util.zip.GZIPOutputStream to compress
data as it is written:

(with-open [w (-> "output.gz"
 clojure.java.io/output-stream
 java.util.zip.GZIPOutputStream.
 clojure.java.io/writer)]
 (binding [*out* w]
 (println "This will be compressed on disk.")))

Discussion
gzip, based on the DEFLATE algorithm, is a common compression format on Unix-like
systems and is used extensively for compression on the Web. It is a good choice for
compressing text in particular and can result in huge reductions for source code, or
Clojure or JSON data.

Many of Clojure’s I/O functions will accept any type of Java stream. The GZIPInput

Stream simply wraps any other input stream and attempts to decompress the original
stream. The output variant behaves similarly.

By wrapping a normal input stream, as returned by clojure.java.io/input-stream,

you can pass it to slurp or line-seq (or any other function that takes an input stream)
and easily read the entire decompressed contents.

You can also leverage this technique to read a large compressed file line by line, or to

read back Clojure forms written with pr or pr-str. You can also decompress data in a
similar way from any other kind of stream; for example, one backed by a network socket
or a byte array.

By binding an output stream to *out*, we can use println, pr, etc. to output small
amounts of data at a time to the stream, which will be compressed on disk when the
stream is closed.

A nearly identical approach can be used for writing data in the ZIP compression format,

using the java.util.zip.ZipInputStream and java.util.zip.ZipOutputStream
classes.

4.21. Reading and Writing Compressed Files | 205

http://bit.ly/javadoc-gzip-input
http://bit.ly/javadoc-gzip-output
http://bit.ly/javadoc-zip-input
http://bit.ly/javadoc-zip-output

See Also

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188, for information on
reading Clojure data from files on disk

• The GZIPInputStream API documentation

4.22. Working with XML Data
by Stefan Karlsson

Problem
You need to read or write XML data.

Solution
Pass a file to clojure.xml/parse to get a Clojure map representing the structure of an
XML file.

For example, to read the following file:

<simple>

 <item id="1">First</item>
 <item id="2">Second</item>
</simple>

use clojure.xml/parse:

(require '[clojure.xml :as xml])
(clojure.xml/parse (clojure.java.io/file "simple.xml"))
;; -> {:tag :simple, :attrs nil, :content [
;; {:tag :item, :attrs {:id "1"}, :content ["First"]}
;; {:tag :item, :attrs {:id "2"}, :content ["Second"]}]}

If you want to read an XML file as a sequence of nodes, pass the XML map to the xml-

seq function from the clojure.core namespace:

(xml/xml-seq (clojure.xml/parse (clojure.java.io/file "simple.xml")))

xml-seq returns a tree sequence of nodes; that is, a sequence of each node, starting at
the root and then doing a depth-first walk of the rest of the document.

To write an XML file, pass an XML structure map to clojure.xml/emit. emit spits

the XML to the currently bound output stream (*out*), so to write to a file, either bind

out to the file’s output stream or capture the output stream to a string with the with-

out-str macro, which you can then spit to a file:

(spit "test.xml" (with-out-str (clojure.xml/emit simple-xml-map)))

206 | Chapter 4: Local I/O

http://bit.ly/javadoc-gzip-input

Discussion
You can work with your XML data just as you would with any other map. Here is an

example of a function that, given an id and a file, will parse the file for nodes with an

attribute id that is equal to the argument:

(defn get-with-id [id xml-file]
 (for [node (xml-seq (clojure.xml/parse xml-file))
 :when (= (get-in node [:attrs :id]) id)]
 (:content node)))

(get-with-id "2" simple-xml)

;; -> (["Second"])

To modify XML, just use the normal map manipulation functions on the Clojure data
representation.

If you are going to work a lot with your XML structure, you might consider using a
zipper. A zipper is a purely functional data structure useful for navigating and modifying
tree-like structures (such as XML) in a convenient and efficient way.

Zippers are a deep topic, and a full discussion is beyond the scope of this recipe, but see

the documentation for the clojure.data.zip library for explanation and examples of
how to use them effectively with XML.

See Also

• Recipe 4.9, “Reading and Writing Text Files” on page 179

• The clojure.zip namespace API documentation

4.23. Reading and Writing JSON Data
by Stefan Karlsson

Problem
You need to read or write JSON data.

Solution
Use the clojure.data.json/read-str function to read a string of JSON as Clojure
data:

(require '[clojure.data.json :as json])

4.23. Reading and Writing JSON Data | 207

http://clojure.github.io/data.zip/
http://bit.ly/clj-zip-api

(json/read-str "[{\"name\":\"Stefan\",\"age\":32}]")
;; -> [{"name" "Stefan", "age" 32}]

To write data back to JSON, use the clojure.data.json/write-str function with the
original Clojure data:

(json/write-str [{"name" "Stefan", "age" 32}])
;; -> "[{\"name\":\"Stefan\",\"age\":32}]"

Discussion
Beyond reading and writing strings, clojure.data.json also provides the read and

write functions to work with java.io.Reader and java.io.Writer objects, respec‐

tively. With the exception of their reader/writer parameters, these two functions share
the same parameters and options as their string brethren:

(with-open [writer (clojure.java.io/writer "foo.json")]
 (json/write [{:foo "bar"}] writer))

(with-open [reader (clojure.java.io/reader "foo.json")]
 (json/read reader))
;; -> [{"foo" "bar"}]

By virtue of JavaScript’s simpler types, JSON notation has a much lower fidelity than
Clojure data. As such, you may find you want to tweak the way keys or values are
interpreted.

One common example of this is converting JSON’s string-only keys to proper Clojure

keywords. You can apply a function to each processed key by using the :key-fn option:

;; Modifying keys on read

(json/read-str "{\"name\": \"Stefan\"}")
;; -> {"name" "Stefan"}

(json/read-str "{\"name\": \"Stefan\"}" :key-fn keyword)
;; -> {:name "Stefan"}

;; Modifying keys on write

(json/write-str {:name "Stefan"})
;; -> "{\"name\":\"Stefan\"}"

(json/write-str {:name "Stefan"} :key-fn str)
;; -> "{\":name\":\"Stefan\"}" ; Note the extra \:

You may also want to control how values are interpreted. Use the :value-fn option to
specify how values are read/written. The function you provide will be invoked with two
arguments, a key and its value:

208 | Chapter 4: Local I/O

;; Properly read UUID values
(defn str->uuid [key value]
 (if (= key :uuid)
 (java.util.UUID/fromString value)
 value))

(clojure.data.json/read-str
 "{\"name\": \"Stefan\", \"uuid\": \"51674ca0-eadc-4a5b-b9fb-67b05d5a71b7\"}"
 :key-fn keyword
 :value-fn str->uuid)
;; -> {:name "Stefan", :uuid #uuid "51674ca0-eadc-4a5b-b9fb-67b05d5a71b7"}

;; And similarly, write UUID values
(defn uuid->str [key value]
 (if (= key :uuid)
 (str value)
 value))

(clojure.data.json/write-str
 {:name "Stefan", :uuid #uuid "51674ca0-eadc-4a5b-b9fb-67b05d5a71b7"}
 :value-fn uuid->str)
;; -> "{\"name\":\"Stefan\",\"uuid\":\"51674ca0-eadc-4a5b-b9fb-67b05d5a71b7\"}"

As you may have inferred, when you provide both a :key-fn and a :value-fn, the value
function will always be called after the key function.

It might go without saying, but the :key-fn and :value-fn options can also be used

with the write and read functions.

See Also

• Recipe 4.14, “Reading and Writing Clojure Data” on page 188, for information on
reading/writing edn (Clojure) data.

• The API documentation for clojure.data.json for more information on reads/

writes. Options not covered in this recipe include :eof-error?, :eof-value,

and :bigdec on read, and :escape-unicode and :escape-slash on write.

4.24. Generating PDF Files
by Dmitri Sotnikov

Problem
You need to generate a PDF from some data.

For example, you have a sequence of maps, such as those returned by a clo

jure.java.jdbc query, and you need to generate a PDF report.

4.24. Generating PDF Files | 209

http://bit.ly/data-json-doc

Solution
Use the clj-pdf library to create the report.

Before starting, add [clj-pdf "1.11.6"] to your project’s dependencies or start a REPL

using lein-try:

$ lein try clj-pdf

For the purpose of illustration, imagine we want to render a vector containing the fol‐
lowing employee records:

(def employees
 [{:country "Germany",
 :place "Nuremberg",
 :occupation "Engineer",
 :name "Neil Chetty"}
 {:country "Germany",
 :place "Ulm",
 :occupation "Engineer",
 :name "Vera Ellison"}])

Create a template for rendering each record using the clj-pdf.core/template macro:

(require '[clj-pdf.core :as pdf])

(def employee-template
 (pdf/template
 [:paragraph
 [:heading (.toUpperCase $name)]
 [:chunk {:style :bold} "occupation: "] $occupation "\n"
 [:chunk {:style :bold} "place: "] $place "\n"
 [:chunk {:style :bold} "country: "] $country
 [:spacer]]))

(employee-template employees)
;; -> ([:paragraph [:heading "NEIL CHETTY"]
;; [:chunk {:style :bold} "occupation: "] "Engineer" "\n"
;; [:chunk {:style :bold} "place: "] "Nuremberg" "\n"
;; [:chunk {:style :bold} "country: "] "Germany" [:spacer]]
;; [:paragraph [:heading "VERA ELLISON"]
;; [:chunk {:style :bold} "occupation: "] "Engineer" "\n"
;; [:chunk {:style :bold} "place: "] "Ulm" "\n"
;; [:chunk {:style :bold} "country: "] "Germany"
;; [:spacer]])

Use clj-pdf.core/pdf to create the PDF using the template and data from above:

(pdf/pdf [{:title "Employee Table"}
 (employee-template employees)]
 "employees.pdf")

You’ll find an employees.pdf file in the directory where you ran your project/REPL—it
looks something like Figure 4-1.

210 | Chapter 4: Local I/O

Figure 4-1. employees.pdf

Discussion
The clj-pdf library is built on top of the iText and JFreeChart libraries. The templating
syntax is inspired by the popular Hiccup HTML templating engine.

In a template, $ is used to indicate places where dynamic content will be substituted.

When populating a template from a map, each substitution anchor ($name) is populated

with the value of the corresponding keyword key in the map (the value of the :name
key).

Beyond substituting simple values, it is also possible to perform further processing on

those values. The :heading portion of the employee-template does precisely this by

calling (.toUpperCase $name). In clj-pdf, a document is represented by a vector
containing a map of metadata followed by the content. The content can in turn consist
of strings, vectors, or collections of vectors.

4.24. Generating PDF Files | 211

A very simple PDF:

(pdf/pdf [{:title "Hello World"} "Hello, World."] "hello-world.pdf")

Under the hood, collections of content are automatically expanded:

;; This *collection* of paragraphs...
(pdf [{} [[:paragraph "foo"] [:paragraph "bar"]]] "document.pdf")

;; is equivalent to these *individual* paragraphs
(pdf [{} [:paragraph "foo"] [:paragraph "bar"]] "document.pdf")

Apart from plain strings, each content element is represented as a vector. The first ele‐
ment of this vector is a keyword type, and everything that follows is the content itself.

Some types clj-pdf includes are :paragraph, :phrase, :list, and :table:

[:heading "Lorem Ipsum"]
[:line]
[:list "first item"
 "second item"
 "third item"]
[:paragraph "I'm a paragraph"]
[:phrase "some text here"]
[:table
 ["foo" "bar" "baz"]
 ["foo1" "bar1" "baz1"]
 ["foo2" "bar2" "baz2"]]

Some elements accept optional styling metadata. You can provide this style information
as a map immediately following the type parameter (the second item in the vector):

[:paragraph {:style :bold} "this text is bold"]

[:chunk {:style :bold
 :size 18
 :family :helvetica
 :color [0 234 123]}
 "some large green text"]

The contents of an element can consist of other elements (like an HTML document),
and any style applied to a parent element will be inherited by the child elements:

[:paragraph "some content"]

[:paragraph {:style :bold}
 "Some bold text"
 [:phrase [:chunk "even more"] "bold text"]]

As with Cascading Style Sheets (CSS), child elements can augment or override their
parents’ styles by specifying their own styles:

[:paragraph
 {:style :bold}

212 | Chapter 4: Local I/O

 "Bold words"
 [:phrase {:color [0 255 221]} "Bold AND teal!"]]

Images can be embedded in the document using the :image element. Image content

can be one of java.net.URL, java.awt.Image, a byte array, a Base64 string, or a string
representing a URL or a file:

[:image "my-image.jpg"]
[:image "http://clojure.org/space/showimage/clojure-icon.gif"]

Images larger than the page margins will automatically be scaled to fit.

See Also

• For more information on using clj-pdf, including a complete list of element types

and charting capabilities, see the clj-pdf GitHub repository

4.25. Making a GUI Window with Scrollable Text
by John Jacobsen; originally submitted by John Walker

Problem
You want to create and display a GUI window.

Solution
Though Java’s Swing library is the most common way to make Java GUIs (at least on
the desktop), the Seesaw library, which wraps Swing and provides a more idiomatic and
functional interface, is the best tool for creating GUIs with Clojure.

To follow along with this recipe, start a REPL using lein-try:

$ lein try seesaw

Swing implements a “programmable look and feel”: the appearance of various widgets
and their behavior can be modified, though it is common to set this to match the plat‐
form one is on, for the sake of maximum usability. Setting the native look and feel is

accomplished in Seesaw with the native! function:

(require '[seesaw.core :refer [native! frame show! config!
 pack! text scrollable]])

(native!)
;; -> nil

To create your window object, use frame (which, under the covers, makes a JFrame
Swing object):

4.25. Making a GUI Window with Scrollable Text | 213

https://github.com/yogthos/clj-pdf

(frame :title "Lyrical Clojure" :content "Hello World")
;; -> #<JFrameTaga79ba523 seesaw.core.proxy$javax.swing.JFrame$Tag$a79ba523
;; [frame0,0,22,0x0,invalid,hidden,layout=java.awt.BorderLayout,
;; title=Lyrical Clojure,resizable,normal,
;; defaultCloseOperation=HIDE_ON_CLOSE,
;; rootPane=javax.swing.JRootPane[,0,0,0x0,invalid,
;; layout=javax.swing.JRootPane$RootLayout,
;; alignmentX=0.0,alignmentY=0.0,border=,flags=16777673,maximumSize=,
;; minimumSize=,preferredSize=],rootPaneCheckingEnabled=true]>

Although a frame has been created, nothing appears. In order to actually display the

frame (as seen in Figure 4-2), use show!:

(def f (frame :title "Lyrical Clojure"))

(show! f)
;; -> #<JFrameTaga79ba523 [...]>

Figure 4-2. A simple window

Discussion
Having created the window, you can set its size, add content, and add scroll bars, as
follows.

Adding content

You can change properties of the frame using config!:

(config! f :content "Actual content!")
;; -> #<JFrameTaga79ba523 [...]>

The result is shown in Figure 4-3.

Figure 4-3. A window with basic content

Sizing the window

You can specify the size of the window at the time of creation:

214 | Chapter 4: Local I/O

(def f (frame :title "Lyrical Clojure" :width 300 :height 150))
;; -> #<JFrameTaga79ba523 [...]>

However, it is common to instead call pack! on the resulting frame object; this assigns
width and height properties according to its content:

(-> f pack! show!)
;; -> #<JFrameTaga79ba523 [...]>

Adding scrollable content

Now add some text, in the form of an excerpt from the sonnets of Shakespeare, to your
window:

(def sonnet-text (->> "http://www.gutenberg.org/cache/epub/1041/pg1041.txt"
 slurp
 (drop 20000)
 (take 4000)
 (apply str)))

This content is too big to fit in the current window (see Figure 4-4):

(config! f :content sonnet-text)
;; -> #<JFrameTaga79ba523 [...]>

Figure 4-4. A window with more text than space

Normally, one would call pack! again to adjust the window size to the new content.
However, the content will not fit comfortably on most screens, so set the size explicitly
and add scroll bars, as seen in Figure 4-5:

(.setSize f 400 400)
(config! f :content (scrollable (text :multi-line? true
 :text sonnet-text
 :editable? false)))

4.25. Making a GUI Window with Scrollable Text | 215

Figure 4-5. A larger window with a scroll bar

The :multi-line? option to the text function selects JTextArea as the underlying

object, rather than JTextField (JTextArea is used for multiline text; JTextField is for

single-line text fields). :editable? specifies that you don’t want to allow users to edit
the text (since it is, perhaps, doubtful that they would improve upon Shakespeare’s
original).

Like most of the Seesaw functions that create widgets, there are several more options to

text, which are best learned about by studying the API documentation.

216 | Chapter 4: Local I/O

http://bit.ly/cc-seesaw

As is always the case in Clojure, the Seesaw library functions return Java objects, which

can be operated upon directly using Java methods; for example, our use of the .set

Size method of the JFrame object returned by frame. This interoperability provides
great power but comes at the cost of a somewhat higher burden on programmers, who
must navigate not only the Seesaw API but, frequently, some aspects of the underlying
Swing API as well.

Seesaw supports a wide variety of GUI tasks—creation of menus, display of text and
images, scroll bars, radio buttons, checkboxes, multipaned windows, drag-and-drop,
and much more. In addition to the dozen or so books that have been written about
Swing, one could easily write an entire book on Seesaw. This recipe merely serves as a
starting point for further investigation of the Seesaw library.

See Also

• The Seesaw GitHub repository

• Java Swing, 2nd ed. (O’Reilly), by Marc Loy et al.

4.25. Making a GUI Window with Scrollable Text | 217

https://github.com/daveray/seesaw
http://shop.oreilly.com/product/9780596004088.do

1. In fact, “There’s Just No Getting around It: You’re Building a Distributed System”.

2. As Australian songwriter Peter Allen so aptly put it: “Everything old is new again.”

CHAPTER 5

Network I/O and Web Services

5.0. Introduction
More and more these days, it seems like every system we build has to talk to something,
somewhere.1 We’d hardly be doing anything if we didn’t actually talk with some other
computers over some kind of network.

This chapter covers all of the normal remote communication modes you would expect
—HTTP, TCP, UDP, and the like—as well as some relative newcomers2 like message-
oriented architectures.

5.1. Making HTTP Requests
by John Cromartie

Problem
You want to make a simple HTTP GET or POST request.

Solution
Use slurp to make simple HTTP GET requests:

(slurp "http://example.com")
;; -> "<!doctype html>\n<html>\n<head>\n <title>Example Domain</title> ...

219

http://bit.ly/no-getting-around

Use the clj-http library to make GET, POST, and other requests with specific param‐
eters or headers, to handle redirects and other special circumstances, or to get specific
details about the response.

To follow along, add [clj-http "0.7.7"] to your project’s dependencies, or use lein-

try to start a REPL:

$ lein try clj-http

Use clj-http.client/get to make GET requests:

(require '[clj-http.client :as http])

(:status (http/get "http://clojure.org"))
;; -> 200

(-> (http/get "http://clojure.org")
 :headers
 (get "server"))
;; -> "nginx"

(-> (http/get "http://www.amazon.com/")
 :cookies
 keys)
;; -> ("session-id" "session-id-time" "x-wl-uid" "skin")

Parameters can be included in both GET and POST requests. Use clj-http.client/

post to make POST requests:

(http/get "http://google.com/" {:query-params {:q "clojure"}})
;; -> {:status 200 ...}

(http/post "http://example.com" {:form-params {:username "joecoder"
 :password "il0v3clojure"}})
;; -> {:status 200 ...}

You can even use the :multipart option to upload files, as from an HTML form via a
web browser.

Discussion
slurp works to make HTTP GET requests because its arguments are passed to clo

jure.java.io/reader, which in turn correctly handles opening URL strings. This is
totally sufficient for issuing a quick HTTP GET to a well-behaved URL. Unfortunately,

this is where slurp’s usefulness ends. Among other limitations, it will not behave cor‐
rectly for responses with HTTP redirects.

clj-http is an extremely flexible Clojure wrapper around the very robust Apache
HttpComponents library. Its features include convenient functions for other HTTP
verbs like PUT and DELETE; for reading and sending cookies, headers, and other re‐

220 | Chapter 5: Network I/O and Web Services

https://hc.apache.org/

quest metadata; for reading and writing data using streams, files, or byte arrays; and lots
more. Refer to the GitHub repository to learn about the huge variety of options available
and to see many more examples.

If you’re building production systems that rely on external services, you may want to
consider wrapping HTTP calls in Netflix’s Hystrix library to make your application
more fault-tolerant and resilient. Hystrix provides Clojure bindings that you can use to
wrap network calls and more easily manage complex failure scenarios involving external
services.

See Also

• clj-http’s GitHub repository.

• For information on making asynchronous HTTP calls, see Recipe 5.2, “Performing
Asynchronous HTTP Requests” on page 221.

• When building production systems that interact with external services, consider
Hystrix and its Clojure bindings to wrangle complex failure scenarios.

5.2. Performing Asynchronous HTTP Requests
by Alan Busby and Ryan Neufeld

Problem
You want to perform asynchronous HTTP requests.

Solution
Use HTTP Kit, a highly performant, event-driven HTTP client/server library.

Before starting, add [http-kit "2.1.12"] to your project’s dependencies, or follow

along in a REPL using lein-try:

$ lein try http-kit

Use any of org.httpkit.client’s HTTP verb functions to perform asynchronous
HTTP requests. In their base form, these functions return a promise that you can await

with deref or the @ reader shorthand:

(require '[org.httpkit.client :as http])

(def response (http/get "http://example.com"))

;; Some time later...

5.2. Performing Asynchronous HTTP Requests | 221

https://github.com/dakrone/clj-http
https://github.com/Netflix/Hystrix
http://bit.ly/hystrix-clj
https://github.com/dakrone/clj-http
https://github.com/Netflix/Hystrix
http://bit.ly/hystrix-clj
http://http-kit.org/

(:status @response)
;; -> 200

;; Or, using deref to specify a timeout length in milliseconds and
;; a value
(deref response 2000 nil)
;; -> {:opts {:url "http://example.com", :method :get}
;; :body "..."
;; :headers {:content-type "text/html", :content-length "1270" ...}
;; :status 200}

Discussion
The bulk of time spent performing HTTP requests is establishing the connection and
awaiting the server’s response. Asynchronous requests enable your application to con‐
tinue working while awaiting the delivery of data.

In this vein, HTTP Kit provides both a highly concurrent web server and a powerful
HTTP client. It offers both callbacks and promises for asynchronous requests, as well
as persistent connections and alternate SSL engines for dealing with unsigned SSL cer‐
tificates.

The org.httpkit.client namespace defines asynchronous versions of numerous

HTTP methods, including get, delete, head, post, put, options, and patch. Each of

these verbs derives from org.httpkit.client/request, which defines a common in‐
terface. An asynchronous request of a given method is made, and a promise is returned.
Upon completion of the request, the promise will be fulfilled with the results/response.

All request functions accept an optional map of options where you can specify keys

like :query-params, :post-params, or :headers. Functions also allow specifying a
callback function to be called upon request completion:

(http/get "http://example.com"
 {:timeout 1000 ;; ms
 :query-params {:search "value"}}
 (fn [{:keys [status headers body error]}]
 (if error
 (binding [*out* *err*]
 (println "Failed with, " error))
 (println body))))
;; -> #<core$promise$reify__6310@582e6c93: :pending>
;; *out*
;; <html>
;; <head>
;; <title>Example Domain</title>
;; ...

222 | Chapter 5: Network I/O and Web Services

See Also

• See Recipe 5.1, “Making HTTP Requests” on page 219, for details on making nor‐
mal, nonasynchronous HTTP requests.

• HTTP Kit is heavily inspired by the API of clj-http; see Recipe 5.1, “Making HTTP
Requests” on page 219, for more information on the library.

5.3. Sending a Ping Request
by Jason Webb

Problem
You want to ping an IP address to check availability.

Solution
Use the java.net.InetAddress class to test if the address isReachable:

(.isReachable (java.net.InetAddress/getByName "oreilly.com") 5000)
;; -> true

Discussion
Using isReachable works great if the correct permissions can be obtained. On a typical

Unix-like implementation, you will need to start your Clojure instance with sudo to get
an actual ICMP ping sent. Otherwise, a standard connection will be attempted on port
7, which in most cases will be blocked by a firewall. More information can be found in
the javadoc.

A common need when pinging another machine is to time the ping. You can wrap

an .isReachable invocation in a function timed-ping to return timing values with
every ping:

(defn timed-ping
 "Time an .isReachable ping to a given domain"
 [domain timeout]
 (let [addr (java.net.InetAddress/getByName domain)
 start (. System (nanoTime))
 result (.isReachable addr timeout)
 total (/ (double (- (. System (nanoTime)) start)) 1000000.0)]
 {:time total
 :result result}))

(timed-ping "oreilly.com" 5000)
;; -> {:time 88.07, :result true}

5.3. Sending a Ping Request | 223

https://github.com/dakrone/clj-http
http://bit.ly/javadoc-isReachable

See Also

• InetAddress/isReachable documentation

5.4. Retrieving and Parsing RSS Data
by Osbert Feng

Problem
You need to parse RSS data.

Solution
Use the feedparser-clj library to parse RSS data.

Before starting, add [org.clojars.scsibug/feedparser-clj "0.4.0"] to your

project’s dependencies, or follow along in a REPL using lein-try:

$ lein try org.clojars.scsibug/feedparser-clj

Invoke feedparser-clj.core/parse-feed with the URI of an RSS feed to retrieve that
feed and parse it into Clojure data:

(require '[feedparser-clj.core :as rss])

(rss/parse-feed (str "https://github.com/clojure-cookbook/clojure-cookbook/"
 "commits/master.atom"))
;; -> {:authors [...]
;; :entries [{:link "LINK" :title "TITLE" :contents "CONTENT"} ...]
;; ...}

You can also invoke parse-feed with a java.io.InputStream to read from a file or
other location:

(with-open [writer (clojure.java.io/writer "master.atom")]
 (spit writer
 (slurp (str "https://github.com/clojure-cookbook/clojure-cookbook/"
 "commits/master.atom"))))

(with-open [stream (clojure.java.io/input-stream "master.atom")]
 (rss/parse-feed stream))
;; -> {:authors [...]
;; :entries [{:link "LINK" :title "TITLE" :contents "CONTENT"} ...]
;; ...}

224 | Chapter 5: Network I/O and Web Services

http://bit.ly/javadoc-isReachable

Discussion
feedparser-clj is a wrapper around the Java ROME library that is capable of process‐

ing a variety formats of RSS and Atom feeds. feedparser-clj.core/parse-feed re‐
turns a Clojure map that closely mimics the underlying XML feed.

Most of the time, what you care about will be under the :entries key, which contains
an array of maps corresponding to each RSS entry.

Some RSS feeds will have <link rel="next"> elements that indicate that the returned
list is incomplete and more entries can be retrieved by following the link. A lazy list of
these RSS entries can be generated:

(defn next-uri
 "Return the rel=next href in a feed."
 [feed]
 (-> feed
 :entry-links
 (->> (filter #(= (:rel %) "next")))
 first
 :href))

(defn lazy-stream
 "Return a lazy stream of RSS entries."
 [uri]
 (let [raw-response (rss/parse-feed uri)]
 (lazy-cat (:entries raw-response)
 (if-let [nxt (next-uri raw-response)]
 (lazy-stream nxt)))))

To verify that lazy loading is happening, logging or tracing can be added to lazy-

stream, but it is also easy to confirm that you can retrieve more entries than are present
in a single fetch:

(def youtube-feed "http://gdata.youtube.com/feeds/api/videos")

(count (rss/parse-feed youtube-feed))
;; -> 15

(count (take 50 (lazy-stream youtube-feed)))
;; -> 50

Be careful when evaluating a lazy sequence in a REPL, since it will

attempt to print the entire sequence. Use take to only realize part of
the sequence.

5.4. Retrieving and Parsing RSS Data | 225

See Also

• Recipe 4.22, “Working with XML Data” on page 206, for more information on
reading and writing XML data like RSS feeds

• Recipe 5.1, “Making HTTP Requests” on page 219

5.5. Sending Email
by Ryan Neufeld

Problem
You need to send emails from inside a Clojure application.

Solution
Use postal, a thin wrapper over the JavaMail package, to send email messages.

To follow along with this recipe, start a REPL using lein-try:

$ lein try com.draines/postal

Send a message by invoking the postal.core/send-message function with two maps,
the first containing connection details and the second containing message details. For
example, to send an email message to yourself via a Gmail account:

(require '[postal.core :refer [send-message]])

;; Replace the following with your own credentials
(def email "<<your gmail address>")
(def pass "<your gmail password>")

(def conn {:host "smtp.gmail.com"
 :ssl true
 :user email
 :pass pass})

(send-message conn {:from email
 :to email
 :subject "A message, from the past"
 :body "Hi there, me!"})
;; -> {:error :SUCCESS, :code 0, :message "messages sent"}

If all is well, you should receive an email from yourself shortly thereafter.

226 | Chapter 5: Network I/O and Web Services

Discussion
With the venerable JavaMail at its core, there isn’t much postal leaves for you to worry
about. Even Gmail’s oft-maligned authentication setup can be tackled with a sin‐

gle :ssl key. While we might normally suggest giving the native Java API a try for simple

email delivery, we prefer postal because it presents an API oriented around data rather
than objects.

One of the places data orientation really shines is in specifying connection details. The

first argument to the send-message function is a (versatile) map of connection details.
Valid connection details are:

:host

Hostname of the desired SMTP server. Optional if running locally.

:port

Port of SMTP server. Numerous contextual defaults exist, including 465 when :ssl

is set or 25 when :tls is set.

:user

Username to authenticate with (if authenticating).

:pass

Password to authenticate with (if authenticating).

:ssl

Enables SSL encryption if value is truthy.

:tls

Enables TLS encryption if value is truthy.

When provided no connection details—either by omitting the first argument or passing

nil—postal will attempt to route email through a local sendmail instance.

Since Amazon’s Simple Email Service (SES) can operate over SMTP,

it is possible to use postal to send email via Amazon’s infrastructure.

Similar to connection details, messages themselves are represented as simple maps of
data. The full complement of standard headers are supported as message keys:

• Sender options

— :from

— :reply-to

5.5. Sending Email | 227

http://bit.ly/wiki-sendmail

• Recipient options

— :to

— :cc

— :bcc

• Content options

— :subject

— :body

• Metadata options

— :date

— :message-id

— :user-agent

Options specified beyond these will be attached to the message as ancillary headers.

When specifying recipients on the :to, :cc, or :bcc keys, values may be either a single
address or a sequence of addresses:

{:to "joe@example.com"
 :cc ["joe@example.com", "jim@example.com", "jeff@example.com"]
 :bcc "archive@example.com"}

A message’s body can be specified as either a string or a sequence of part maps. While
the former delivers a simple plain-text email, the latter will deliver a multipart MIME
message. MIME (Multipurpose Internet Mail Extensions) is the standard that allows
email messages to contain attachments or other rich content, such as HTML.

A part map is made up of two values: :type and :content. For message body

parts, :type is the MIME type of the content, and :content is the textual representation
of said content. For example, to create a message with both plain text and HTML rep‐
resentations of the content:

:body [:alternative
 {:type "text/plain"
 :content "You just won the lottery!"}
 {:type "text/html"
 :content "<html>
 <body>
 <p>You just won the lottery!</p>
 </body>
 </html>"}]

You’ll notice the first “part” in the preceding body was not, in fact, a part map, but the

keyword :alternative. Messages are normally sent in “mixed” mode, indicating to an
email client that each part constitutes a piece of the whole message. Messages of

228 | Chapter 5: Network I/O and Web Services

the :alternative type, however, inform a client that each part represents the entire
message, albeit in differing formats.

If you need to send complicated multipart messages and require a
high level of control over message creation, you should use the raw
JavaMail API to construct messages.

For attachments, the :type parameter behaves a little differently, controlling whether

the attachment resides inline (:inline) or as an attachment (:attachment). The con‐

tents of an attachment are specified by providing a File object for the :content key.

An attachment’s content type and name are generally inferred from the File object, but

they may be overridden via the :content-type and :file-name keys, respectively.

For example, forwarding all of your closest friends a picture of your cat might look
something like this:

:body [{:type "text/plain"
 :content "Hey folks,\n\nCheck out these pictures of my cat!"}
 {:type :inline
 :content (File. "/tmp/lester-flying-photoshop")
 :content-type "image/jpeg"
 :file-name "lester-flying.jpeg"}
 {:type :attachment
 :content (File. "/tmp/lester-upside-down.jpeg")}]

See Also

• postal’s GitHub repository

• JavaMail’s API documentation

5.6. Communicating over Queues Using RabbitMQ
by Ryan Neufeld; originally submitted by Michael Klishin

Problem
You want to communicate between a number of applications using a queueing broker
such as RabbitMQ.

Solution
Use Langohr, a small RabbitMQ client, to communicate with RabbitMQ.

5.6. Communicating over Queues Using RabbitMQ | 229

https://github.com/drewr/postal
http://bit.ly/javamail-api-doc
http://rabbitmq.com
http://clojurerabbitmq.info

Before starting, add [com.novemberain/langohr "1.6.0"] to your project’s depen‐

dencies, or follow along in a REPL using lein-try:

$ lein try com.novemberain/langohr

In order to follow along with this recipe, you need to have RabbitMQ installed and
running.

Once installed, start a standalone RabbitMQ server with the command rabbitmq-

server:

$ rabbitmq-server

Prior to performing any operations against RabbitMQ, you must connect to a server
and open a communication channel. A channel is the medium over which you can
produce and consume messages:

(require 'langohr.core
 'langohr.channel)

;; Connect to local RabbitMQ cluster node on localhost:5672
(def conn (langohr.core/connect {:hostname "localhost"}))

;; Open a channel against the connection
(def ch (langohr.channel/open conn))

In RabbitMQ, messages are published to exchanges, routed to queues via a binding, then
finally consumed by consumers. There are a number of different exchange types that
vary the semantics of delivery; the most basic exchange type is direct, which routes
messages based on their routing key.

To construct a pipeline between producer and consumer, start by invoking lan

gohr.queue/declare to create a queue with the desired name:

(require '[langohr.queue :as lq])

(def resize-queue "imaging.resize")

(lq/declare ch resize-queue)
;; -> {:queue "imaging.resize",
;; :consumer-count 0,
;; :message_count 0,
;; :consumer_count 0,
;; :message-count 0}

By default, RabbitMQ creates a binding between the empty exchange (an empty string)

and each queue. You can now publish a message to the "imaging.resize" queue by

invoking langohr.basic/publish with the channel, direct exchange, routing key (your
queue name), and a message:

(lb/publish ch "" resize-queue "hello.jpg")

230 | Chapter 5: Network I/O and Web Services

http://bit.ly/rmq-download
http://bit.ly/rmq-download

To consume messages from a queue synchronously, invoke langohr.basic/get with
the channel and queue name:

(def hello-msg (lb/get ch resize-queue))

hello-msg
;; -> [{:routing-key "imaging.resize", :headers nil ...} #<byte[] [B@2b195c88>]

(String. (last hello-msg) "UTF-8")
;; -> "hello.jpg"

To consume messages asynchronously as they appear, use langohr.consumers/

subscribe to subscribe to a queue. The handler function you provide to subscribe will
be called for each message published to the queue:

(require '[langohr.consumers :as lc])

(defn resize-image-handler
 "Spawn a resize process for each resize message received"
 [ch metadata ^bytes payload]
 (let [filename (String. payload "UTF-8")]
 (println (format "Resizing file %s" filename))))

;; Subscribe to the queue with the handler function
(def tag (lc/subscribe ch resize-queue resize-image-handler))

;; The return value of subscribe is a subscription tag
tag
;; -> "amq.ctag-7hsNsSqLDEEoES5AkIC6XQ"

(lb/publish ch "" resize-queue "hello-again.jpg")
;; *out*
;; Resizing file hello-again.jpg

;; Unsubscribe resize-image-handler via the tag value
(lb/cancel ch tag)

Discussion
At this point, you’ve round-tripped a few messages to RabbitMQ, but you’ve barely
scratched the surface of what Langohr and RabbitMQ are capable of. Langohr is a small
RabbitMQ client wrapping the Java RabbitMQ library that supports AMQP 0-9-1 and
RabbitMQ extensions of AMQP, and provides an HTTP API client.

AMQP 0-9-1, and by extension, Langohr, centers around a few main concepts: ex‐
changes, queues, and bindings.

Exchanges

An exchange is very much like a post office: when a message is published to an exchange,
the exchange will route the message to one or more queues. How those messages are

5.6. Communicating over Queues Using RabbitMQ | 231

routed to queues is dependent on both the exchange type and the bindings between the
exchange/queues.

There are multiple exchange types, each with its own routing semantics—see
Table 5-1. Custom exchange types can be created to deal with sophisticated routing
scenarios (e.g., routing based on content or geolocation data) or just for convenience.

Table 5-1. Built-in exchange types

Name Behavior Predeclared exchange

Direct 1:1, routed based on routing key ""

Fanout 1:N, ignoring routing key "amq.fanout"

Topic 1:N, taking routing key into consideration "amq.topic"

Headers 1:1, taking into consideration any number of headers "amq.match"

To declare one of the built-in exchanges, use one of langohr.exchange/fanout, lan

gohr.exchange/topic, langohr.exchange/direct, or langohr.exchange/headers.
Each of these functions exposes the relevant options for that exchange type, ultimately

invoking langohr.exchange/declare:

(require '[langohr.exchange :as le])

;; Create a fanout exchange for image processing completion
(le/fanout ch "imaging.complete")

Exchanges have several attributes associated with them:

• Name

• Type (direct, fanout, topic, headers, or some custom type)

• Durability (should it survive broker restarts?)

• Whether the exchange is autodeleted when no longer used

• Custom metadata (sometimes known as x-arguments)

Using langohr.exchange/declare directly, you can customize these attributes to create
your own types of exchanges.

Queues

A queue is like a mailbox in a post office. The langohr.queue/declare function creates
named queues. Apart from the name, this function accepts a number of keyword ar‐

guments that vary the characteristics of the queue, including whether it is :dura

ble, :exclusive, or :auto-delete. Other arguments can be specified in an :argu

ments value:

232 | Chapter 5: Network I/O and Web Services

(lq/declare ch "imaging.transcode" :durable true)
;; -> {:queue "imaging.transcode", ...}

Queues with unique names can be generated using the langohr.queue/declare-

server-named function. This functions similarly to langohr.queue/declare, but
without a name argument:

(lq/declare-server-named ch)
;; -> "amq.gen-FcFv8JD9K8-4NuT8kC3jKA"

Unlike exchanges, queues in RabbitMQ are all of the same type.

Bindings

As you saw in the solution, a direct exchange has an implicit binding between the default
exchange and every queue, by name. In the wild, however, queues are usually bound to

exchanges explicitly. You can create your own bindings by invoking langohr.queue/

bind with a channel, queue name, and exchange name:

;; Create a unique completion queue...
(def completion-queue (lq/declare-server-named ch))

;; and bind it to the imaging.complete fanout
(lq/bind ch completion-queue "imaging.complete")

Publishing

Messages are published to an exchange using the langohr.basic/publish function.
This function takes three primary arguments (beyond channel):

The name of an exchange

Either a user-made exchange such as "imaging.complete", or a built-in like

"amq.fanout" or ""

A routing key
Used by the exchange to perform type-specific routing of messages to queue(s)

A message
A string body for the message to be delivered to the queue

As optional arguments, publish allows users to specify a plethora of message headers

as keyword arguments. For the full list, see the docstring for the publish function.

Consuming

Having declared a number of queues, there are two ways to consume messages from
them:

• Pull, using langohr.basic/get

5.6. Communicating over Queues Using RabbitMQ | 233

• Push, using langohr.consumers/subscribe

In the Push API, you make a synchronous invocation of the get function to retrieve a

single message from a queue. The return value of get is a tuple of metadata map and a
body. The body payload, as returned, is an array of bytes—for plain-text messages you

can use the string constructor (String.) to intern those bytes to a string. Since String

byte arrays are encoded using UTF-8, it is important to invoke the String constructor

with an encoding option of "UTF-8":

(lb/publish ch "" resize-queue "hello.jpg")
(let [[_ body] (lb/get ch resize-queue)]
 (String. body "UTF-8"))
;; -> "hello.jpg"

When no messages are present on a queue, get will return nil.

In the Pull API, you subscribe to a queue using langohr.consumers/subscribe, pro‐
viding a message handler function that will be invoked for each message the queue
receives. This function will be invoked with three arguments: a channel, metadata, and
the body bytes:

;; A run-of-the-mill handler function
(defn resize-image-handler
 "Spawn a resize process for each resize message received"
 [ch metadata ^bytes payload]
 (let [filename (String. payload "UTF-8")]
 (println (format "Resizing file %s" filename))))

subscribe is a nonblocking call, and upon completion will return a tag string that can

be used to later cancel the subscription using langohr.consumers/cancel.

The subscribe function also allows you to specify a large number of queue life cycle

functions, documented at length in the langohr.consumers/create-default doc‐
string.

Acknowledgment

Consumed messages need to be acknowledged. That can happen automatically (Rab‐
bitMQ will consider a message acknowledged as soon as it sends it to a consumer) or
manually.

When a message is acknowledged, it is removed from the queue. If a channel closes
unexpectedly before a delivery is acknowledged, it will be automatically requeued by
RabbitMQ. Note that these acknowledgments have application-specific semantics and
help ensure that messages are processed properly.

With manual acknowledgment, it is application’s responsibility to either acknowledge

or reject a delivery. This is done with langohr.basic/ack and langohr.basic/nack,

respectively, each of which takes a metadata attribute called delivery-tag (the delivery

234 | Chapter 5: Network I/O and Web Services

ID). To enable manual acknowledgments, pass :auto-ack false to langohr.consum

ers/subscribe:

(defn manual-ack-handler
 "Spawn a resize process for each resize message received"
 [ch {:keys [delivery-tag]} ^bytes payload]
 (try
 (String. payload "UTF-8")
 ;; Do some work, then acknowledge the message
 (lb/ack ch delivery-tag)
 (catch Throwable t
 ;; Reject message
 (lb/nack ch delivery-tag))))

(lc/subscribe ch resize-queue manual-ack-handler :auto-ack false)

Note that if you requeue a message with just one consumer on it, it will be redelivered
immediately.

It is also possible to control how many messages will be pushed to the client before it
must receive an ack for at least one of them. This is known as the prefetch setting and is

set using langohr.basic/qos. This setting applies across an entire channel:

;; Prefetch a dozen messages
(lb/qos ch 12)

RabbitMQ queues can also be mirrored between cluster nodes for high availability, have
a bounded length or expiration period for messages, and more. To learn more, see
RabbitMQ and Langohr documentation sites.

See Also

• The Langohr documentation

• Langohr’s API reference

• The RabbitMQ tutorials

• If you need low-level access to RabbitMQ, you may want to investigate using Clo‐
jure’s Java interop to interact with the RabbitMQ Java client, the library upon which
Langohr is based.

5.6. Communicating over Queues Using RabbitMQ | 235

http://clojurerabbitmq.info
http://bit.ly/langohr-docs
http://bit.ly/rmq-getting-started
http://bit.ly/rmq-java-client

5.7. Communicating with Embedded Devices via MQTT
By Sandeep Nangia

Problem
You want to communicate with embedded devices (think “Internet of things”) using a
publish/subscribe model.

Solution
Use Machine Head, a Clojure library that enables machine-to-machine (M2M) com‐
munication via the MQTT protocol. The protocol requires an existing MQTT broker
with which all devices (or machines) will communicate by publishing messages or sub‐
scribing to messages on specific topics. You can use the Mosquitto broker with its test
installation at tcp://test.mosquitto.org:1883 (of course, you need a functional Internet
connection on your machine).

To follow along with this recipe, launch a REPL using lein-try:

$ lein try clojurewerkz/machine_head

To start, create a simple connect-and-subscribe function that listens to a topic and
prints messages it receives:

(require '[clojurewerkz.machine-head.client :as mh])

(defn message-handler [topic meta payload]
 (let [p (apply str (map char payload))]
 (println "received " p "on topic " topic)))

(defn connect-and-subscribe [broker-addr topics subscriberid]
 (let [qos-levels (vec (repeat (count topics) 2)) ;; All at qos 2
 conn-sub (mh/connect broker-addr subscriberid)]
 (if (mh/connected? conn-sub)
 (do
 (mh/subscribe conn-sub topics message-handler {:qos qos-levels})
 conn-sub)))) ;; Return conn-sub for later mh/disconnect...

(def subscriberid (mh/generate-id))
;; or use a unique id
;; (def subscriberid "SNSubscriber01")

(connect-and-subscribe "tcp://test.mosquitto.org:1883"
 ["SNControlNetwork/Florida/device1"] subscriberid)

236 | Chapter 5: Network I/O and Web Services

https://github.com/clojurewerkz/machine_head
http://mqtt.org/
http://mosquitto.org/

Open another terminal window and start a second lein-try REPL session. Use the
following code to publish messages to the broker. Note that subscriber must be con‐
nected already so as not to lose incoming messages:

(require '[clojurewerkz.machine-head.client :as mh])

(defn connect-and-publish [broker-addr client-id topic]
 (let [qos 2
 retained false
 conn (mh/connect broker-addr client-id)]
 (if (mh/connected? conn)
 (do (dotimes [n 5]
 (let [payload (str "msg" n)]
 (mh/publish conn topic payload qos retained)
 (println "published " payload)))
 (mh/disconnect conn)))))

(def pubclientid (mh/generate-id))
pubclientid
;; -> "ryan.1384135173618"

(connect-and-publish "tcp://test.mosquitto.org:1883" pubclientid
 "SNControlNetwork/Florida/device1")
;; *out* of publish REPL
;; published msg0
;; published msg1
;; published msg2
;; published msg3
;; published msg4
;; *out* of client REPL
;; received msg0 on topic SNControlNetwork/Florida/device1
;; received msg1 on topic SNControlNetwork/Florida/device1
;; received msg2 on topic SNControlNetwork/Florida/device1
;; received msg3 on topic SNControlNetwork/Florida/device1
;; received msg4 on topic SNControlNetwork/Florida/device1

Discussion
MQTT is an open, lightweight publish/subscribe messaging protocol. It is useful for
connections where bandwidth is at a premium and/or connections are unreliable. While
the AMQP protocol excels at various scenarios for business messaging, MQTT is usually
the choice for smaller payloads and last-mile connectivity because it is simple to im‐
plement in hardware. The MQTT protocol has the following properties that make it
good for constrained networks:

• Designed for devices with limited resources, like battery-operated 8-bit controllers.

• Internally compresses into bitwise headers and variable-length fields. The smallest
possible packet size is a mere two bytes.

5.7. Communicating with Embedded Devices via MQTT | 237

http://mqtt.org

• No polling required. Implements asynchronous bidirectional push delivery of mes‐
sages.

• Supports always-connected and sometimes-connected models.

• Tested with low-bandwidth networks like VSAT and GPRS.

The protocol defines three possible Quality of Service (QoS) values: 0, 1, and 2, corre‐
sponding to fire-and-forget, at-least-once, and exactly-once qualities of service. QoS

parameters 1 and 2 require persistent storage on the client so as to save the message
until an acknowledgment arrives. In the preceding recipe, the default persistence im‐
plementation provided by the library is used.

MQTT also has a concept of retention of messages. If you were to set retained to true

in the connect-and-publish function, the broker would remember the last known
retained message on the topic. When the subscriber connects, it is given the last message

(for which retained was true) by the broker and does not have to wait to receive the
first message.

WebSphere and RabbitMQ also implement MQTT and can be used
instead of Mosquitto. While the preceding code used the Mosquitto
test broker (tcp://test.mosquitto.org:1883), you can install your own
Mosquitto broker using the MQTT installation instructions.

The topics are usually defined with the separator / defining hierarchies. As an example,

the sensor devices of a particular domain, SNControl, might be publishing their values

to SNControl/Florida/device1, SNControl/Florida/device2, and so on. Meanwhile,

the devices in domain RKNControl might publish their values to RKNControl/Washing

ton/device1, for example. Naming the topics in this way helps in subscribing to mul‐
tiple topics based on wildcards.

This is how wildcards are used:

/

Used as a separator.

+

The single-level wildcard and can appear anywhere in the string.

#

A multilevel wildcard and needs to appear at the end of the string.

For example, these subscriptions are possible:

238 | Chapter 5: Network I/O and Web Services

http://bit.ly/rmq-mqtt
http://bit.ly/mosquitto-broker

SNControl/#

Any device under SNControl/Florida (e.g., SNControl/Florida/device1/

sensor1 and SNControl/Florida/device1/sensor2) and SNControl/Califor

nia/device1 will match.

SNControl/+/device1

Any device1 in states under domain SNControl will match(e.g., SNControl/Flor

ida/device1 and SNControl/California/device1).

SNControl/+/+/sensor1

Any sensor1 in states under domain SNControl will match (e.g., SNControl/Flor

ida/device1/sensor1 and SNControl/Florida/device2/sensor1).

In the preceding code, the connect-and-subscribe method uses the callback handler

message-handler to process incoming messages arriving from the broker. In the

connect-and-subscribe method, the connect method from the Machine Head library

is invoked by providing it the broker address and client ID (generated using generate-

id, or some other unique ID). Then it checks that the connection has been established

using the connected? method. The subscribe method is invoked with the connection,

a vector of topics to subscribe to, a message handler, and a :qos option. The subscriber

then waits for some time and disconnects using the disconnect method.

The connect-and-publish method calls the method connect, which accepts the broker

address and client ID and returns the connection conn. Then it checks if the connection

is successful with the connected? method and invokes the publish method to publish

messages (a few times) to the broker. The publish method accepts as parameters the

connection, topic string, payload, QoS value, and retained. The QoS value of 2 corre‐

sponds to exactly-once delivery. The retained value of false instructs the broker not

to retain messages. Finally, the disconnect method disconnects from the broker.

While the preceding code fragment just prints the incoming messages, you could po‐
tentially use the messages in some other way (e.g., triggering some actions based on an
alarm that the code has received).

See Also

• The MQTT protocol website

• The documentation of the Machine Head library

• The Eclipse Paho library, the Java library that Machine Head uses under the hood
to communicate using MQTT

• Mosquitto, an open source message broker that implements the MQTT protocol

5.7. Communicating with Embedded Devices via MQTT | 239

http://mqtt.org/
http://clojuremqtt.info/
https://github.com/clojurewerkz/machine_head
http://www.eclipse.org/paho/
http://mosquitto.org/

• Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Teleme‐
try (IBM Redbooks), by Valerie Lampkin et al., for a more detailed explanation of
MQTT

• The TED talk by Andy Stanford-Clark, one of the inventors of MQTT—a humorous
and informative session on how MQTT can be used

5.8. Using ZeroMQ Concurrently
by Kevin J. Lynagh

Problem
You want to use ZeroMQ concurrently, but ZeroMQ sockets are not thread-safe. You
could manually set up mutual exclusion via locks or other Java concurrency primitives,
but you’d rather use a simpler method.

Solution
Use the zmq-async library to simplify concurrent usage of ZeroMQ via core.async.

In order to follow along with this recipe, your system should have ZeroMQ 3.2 installed.

If you’re on a Mac and have the Homebrew package manager installed, use this com‐
mand to install it:

$ brew install zeromq

Or, if you are on Ubuntu:

$ apt-get install libzmq3

Otherwise, visit ØMQ’s downloads page.

Before starting, add [com.keminglabs/zmq-async "0.1.0"] to your project’s depen‐

dencies, or follow along in a REPL using lein-try:

$ lein try com.keminglabs/zmq-async

Here’s a simple ping-pong between two asynchronous go blocks in core.async, com‐
municating via a ZeroMQ in-process socket:

(require '[com.keminglabs.zmq-async.core :refer [register-socket!]]
 '[clojure.core.async :refer [>! <! go chan sliding-buffer close!]])

(def addr "inproc://ping-pong")

(def server-in (chan (sliding-buffer 64)))
(def server-out (chan (sliding-buffer 64)))
(def client-in (chan (sliding-buffer 64)))

240 | Chapter 5: Network I/O and Web Services

http://bit.ly/mqtt-paper
http://bit.ly/mqtt-paper
http://bit.ly/inno-begins-at-home
https://github.com/lynaghk/zmq-async
http://brew.sh
http://bit.ly/zmq-intro

(def client-out (chan (sliding-buffer 64)))

(register-socket! {:in server-in
 :out server-out
 :socket-type :rep
 :configurator (fn [socket] (.bind socket addr))})

(register-socket! {:in client-in
 :out client-out
 :socket-type :req
 :configurator (fn [socket] (.connect socket addr))})

(do
 ;; A simple server worker that waits for incoming requests and
 ;; responds with "pong"
 (go
 (dotimes [_ 3]
 (println (String. (<! server-out)))
 (>! server-in "pong"))
 (close! server-in))

 ;; A simple client worker that sends a "ping" request and awaits
 ;; a response
 (go
 (dotimes [_ 3]
 (>! client-in "ping")
 (println (String. (<! client-out))))
 (close! client-in)))
;; *out*
;; ping
;; pong
;; ping
;; pong
;; ping
;; pong

Discussion
ZeroMQ is a message-oriented socket system that supports many communication styles
(request/reply, pub/sub, etc.) on top of many transport layers (intra-process, inter-
process, inter-machine via TCP, etc.) with bindings to many languages. ZeroMQ sockets
are a great substrate upon which to build service-oriented architectures. ZeroMQ sock‐
ets have less overhead than HTTP and are architecturally more flexible, supporting
publish/subscribe, fanout, and other topologies in addition to request/reply.

However, ZeroMQ sockets are not thread-safe—concurrent usage typically requires

explicit locking or dedicated threads and queues. The zmq-async library handles all of
that for you, creating ZeroMQ sockets on your behalf and giving you access to them via

thread-safe core.async channels.

5.8. Using ZeroMQ Concurrently | 241

The zmq-async library provides one function, com.keminglabs.zmq-async.core/

register-socket!, which associates a ZeroMQ socket with either one or two

core.async channels: :in (to which you can write strings or byte arrays) and :out (from
which you can read byte arrays). Writing a Clojure collection of strings and/or byte

arrays to a channel using >! sends a multipart message. Received multipart messages

are placed on core.async channels. Reading these messages with <! will yield a vector
of byte arrays.

To simulate two asynchronous processes interacting over ZeroMQ, the preceding sam‐

ple uses two go blocks that read from and write to the registered channels. Each go block
will begin executing immediately in background threads. The “server” block will wait

for and reply to three requests (<! blocks until it receives a value), replying with “pong”
each time. Concurrently, the “client” block will make three “ping” requests, awaiting a
reply before moving on to the next request. Finally, after both blocks are done working,

they each close their channels using close!.

The register-socket! function can be given an already-created ZeroMQ socket, but

typically you would have the library create a socket for you by passing the :socket-

type and a :configurator. The configurator is a function that is passed the raw Zer‐
oMQ socket object. This function is run on the socket after it is created in order to
connect/bind addresses, set pub/sub subscriptions, and otherwise configure the socket.

The implicit context supporting register-socket! can only han‐
dle one incoming/outgoing message at a time. If you need sockets to
work in parallel (i.e., you don’t want to miss a small control mes‐
sage just because you’re slurping in a 10 GB message on another

socket), then you’ll need multiple zmq-async contexts.

See Also

• Rich Hickey’s “Language of the System” talk, wherein he outlines the benefits of
queues

• The ZeroMQ guide for architectural patterns and advice

• Recipe 3.11, “Decoupling Consumers and Producers with core.async” on page 146

• The introductory blog post for core.async, which provides a good overview

242 | Chapter 5: Network I/O and Web Services

http://bit.ly/lang-of-system
http://bit.ly/zmq-guide
http://bit.ly/core-async-post

5.9. Creating a TCP Client
by Luke VanderHart

Problem
You want to open a TCP connection to a remote host, on a particular port.

Solution
Use Java interop to create an instance of java.net.Socket and connect to a remote
host.

For example, the following code uses a Socket to create a TCP connection and send an
HTTP GET request, returning the result as a string:

(require '[clojure.java.io :as io])
(import '[java.io StringWriter]
 '[java.net Socket])

(defn send-request
 "Sends an HTTP GET request to the specified host, port, and path"
 [host port path]
 (with-open [sock (Socket. host port)
 writer (io/writer sock)
 reader (io/reader sock)
 response (StringWriter.)]
 (.append writer (str "GET " path "\n"))
 (.flush writer)
 (io/copy reader response)
 (str response)))

This function obtains instances of java.io.Writer and java.io.Reader to send and
receive data to and from the remote server. By appending strings that conform to the
HTTP specification to the writer, it forms a rudimentary HTTP client and executes a
GET request to the specified endpoint. The results are then copied into an instance of

java.io.StringWriter using the clojure.java.io/copy utility function, and re‐
turned as a string.

Invoking (send-request "google.com" 80 "/") at the REPL should return a very
long string, consisting of the entire HTTP response that is the Google home page.

Discussion
This example uses the clojure.java.io namespace to obtain instances of

java.io.Writer and java.io.Reader to read and write textual data to/from the net‐

work socket. In point of fact, Socket instances are not actually limited to textual data,

5.9. Creating a TCP Client | 243

and it would be possible to obtain raw binary input and output streams just as easily

using clojure.java.io/input-stream and clojure.java.io/output-stream, re‐
spectively. Since HTTP is a textual protocol, however, it makes more sense to use the

higher-level features of Reader and Writer.

This example uses HTTP because it’s a protocol that many readers
are familiar with. In the real world, using a raw TCP socket for HTTP
requests is almost certainly a terrible idea. There are a plethora of
libraries that provide a much higher-level interface to HTTP re‐
quests and responses, and encapsulate a lot of pesky details such as
escaping, encoding, and formatting.

Also note that the reader, the writer, and the socket itself are bound within the context

of a with-open macro. This guarantees that the close method is called when they are
finished, which releases the TCP connection. If the connection is not released, it will
continue to consume resources on both the client and the server and may be subject to
termination on the remote side.

When returning lazy sequences from a with-open context, it is important to fully realize

those sequences using doall. This is because resources opened by with-open are only

available inside the with-open block. The doall function fully realizes a collection,
retaining its entire contents in memory:

(realized? (range 100))
;; -> false

(realized? (doall (range 100)))
;; -> true

Depending on your application, you may prefer to use the doseq macro. Instead of

retaining the entire sequence, doseq executes its body for each element of the sequence.
This is useful if you need to cause side effects for each element of a sequence, but need
to hang on to the entire thing:

(doseq [n (range 3)]
 (println n))
;; *out*
;; 0
;; 1
;; 2

See Also

• Recipe 5.10, “Creating a TCP Server” on page 245

• Wikipedia on the TCP protocol

244 | Chapter 5: Network I/O and Web Services

http://bit.ly/wiki-tcp

5.10. Creating a TCP Server
by Luke VanderHart

Problem
You want to open up a socket on a port to use as a low-level TCP server.

Solution
Use Java interop on the java.net.ServerSocket class to create a TCP listener. Use the

functions in clojure.java.io to obtain input and output streams (or readers and
writers) to read and write data to the socket:

(require '[clojure.java.io :as io])
(import '[java.net ServerSocket])

(defn receive
 "Read a line of textual data from the given socket"
 [socket]
 (.readLine (io/reader socket)))

(defn send
 "Send the given string message out over the given socket"
 [socket msg]
 (let [writer (io/writer socket)]
 (.write writer msg)
 (.flush writer)))

(defn serve [port handler]
 (with-open [server-sock (ServerSocket. port)
 sock (.accept server-sock)]
 (let [msg-in (receive sock)
 msg-out (handler msg-in)]
 (send sock msg-out))))

This code defines three functions. receive and send deal with reading and writing string

data from and to a socket, using the clojure.java.io/reader and clojure.java.io/

writer functions. Both of these accept a java.net.Socket as an argument and will

return a java.io.Reader or java.io.Writer built from the socket’s input and output
streams.

server handles actually creating an instance of ServerSocket on a particular port. It
also takes a handler function, which will be used to process the incoming request and
determine a response message.

After creating an instance of ServerSocket, server immediately calls its accept meth‐
od, which blocks until a TCP connection is established. When a client connects, it re‐

turns the session as an instance of java.net.Socket.

5.10. Creating a TCP Server | 245

It then passes the socket to the receive function, which opens up a reader on it and

blocks until it receives a full line of input, terminated by a newline character (\n). When

it receives one, it calls the handler function with the resulting value, and calls send to

send the response using a writer opened on the same socket. send also calls the flush
method on the writer to ensure that all the data is actually sent back to the client, instead

of being buffered in the Writer instance.

After sending the response, the serve method returns. Because it used the with-open
macro when creating the server socket and the TCP session socket, it will invoke the

close method on each before returning, which disconnects the client and ends the
session.

To try it out, invoke the serve function in the REPL. For a simple example, use (serve

8888 #(.toUpperCase %)). Note that it won’t return right away; it blocks, waiting for
a client to connect.

To connect to the server you can use a telnet client, which is installed by default on nearly
every operating system. To use it, open up a command-line window:

$ telnet localhost 8888
Trying ::1...
Connected to localhost.
Escape character is '^]'.

At this point you can type anything you like (in the following example, the input is
“Hello, World!”). When you finish, make sure you type Enter or Return to send a newline
character:

$ telnet localhost 8888
Trying ::1...
Connected to localhost.
Escape character is '^]'.
Hello, World!
HELLO, WORLD!Connection closed by foreign host

As you can see, as soon as you type a newline, the server responds with the uppercase
version of your input (as per the handler function) and then immediately terminates

the connection. In the REPL, you will find that the serve function has finally returned.

Discussion
This example uses readers and writers, which deal solely in textual data, to make the
concepts of working with sockets easier to demonstrate. Of course, an actual socket is
not limited to strings and can send and receive any kind of binary data.

246 | Chapter 5: Network I/O and Web Services

To do this, simply use the clojure.java.io/input-stream and clojure.java.io/

output-stream functions instead of the clojure.java.io/reader and clo

jure.java.io/writer functions, respectively, which return java.io.InputStream and

java.io.OutputStream objects. These provide APIs for reading and writing raw bytes,
rather than just strings and characters.

One thing you may have noticed about the example is that, unlike a traditional server,

it doesn’t actually continue to accept incoming connections after the serve function
returns. For ongoing use, typically you’d like to be able to serve multiple incoming
connections.

Fortunately, this is relatively straightforward to do given the concurrency tools that

Clojure provides. Modifying the serve function to work as a persistent server requires
three changes:

• Run the server on a separate thread so it doesn’t block the REPL.

• Don’t close the server socket after handling the first request.

• After handling a request, loop back to immediately handle another.

Also, because the server will be running on a non-REPL thread, it would be good to
provide a mechanism for terminating the server other than killing the whole JVM.

The modified code looks like this:

(defn serve-persistent [port handler]
 (let [running (atom true)]
 (future
 (with-open [server-sock (ServerSocket. port)]
 (while @running
 (with-open [sock (.accept server-sock)]
 (let [msg-in (receive sock)
 msg-out (handler msg-in)]
 (send sock msg-out))))))
 running))

The key feature of this code is that it launches the server socket asynchronously inside

a future and calls the accept method inside of a loop. It also creates an atom called

running and returns it, checking it each time it loops. To stop the server, reset the atom

to false, and the loop will break:

(def a (serve-persistent 8888 #(.toUpperCase %)))
;; -> #'my-server/a

;; Server is running, will respond to multiple requests

(reset! a false)
;; -> false
;; Server is stopped, will stop serving requests after the next one

5.10. Creating a TCP Server | 247

When to Use Sockets
As you can see from these examples, raw server sockets are a fairly low-level networking
construct. Using them effectively means either creating your own data protocol or re-
implementing an existing one, and handling all the fiddly bits of connecting, flushing,
and disconnecting input and outputs streams yourself.

If your communication needs can be met by some existing protocol or communication
technique (such as HTTP, SSH, or a message queue), you should almost certainly use
that instead. There are widely available servers and libraries for these protocols that
allow programming at a much higher level of abstraction, with much better performance
and resiliency.

Still, understanding how all these different techniques work on a low level is valuable.
At least as far as the JVM is concerned, most networking code ultimately bottoms out
in calls to the raw socket mechanisms described in this recipe. Understanding how they
work is key to understanding how higher-level networking tools (such as HTTP requests
or JMS queues) actually work.

See Also

• The API documentation for ServerSocket and Socket objects in Java

• The API documentation for the clojure.java.io namespace

• Recipe 5.9, “Creating a TCP Client” on page 243

• Wikipedia on the TCP protocol

5.11. Sending and Receiving UDP Packets
by Luke VanderHart

Problem
You want to send asynchronous UDP packets from your application, or receive them.

Solution
Use Java interop with the java.net.DatagramSocket and java.net.DatagramPacket
classes to send and receive UDP messages.

The following example demonstrates functions that send and receive short strings en‐
coded into UDP packets:

248 | Chapter 5: Network I/O and Web Services

http://bit.ly/javadoc-server-socket
http://bit.ly/clj-java-io-api
http://bit.ly/wiki-tcp

(import '[java.net DatagramSocket
 DatagramPacket
 InetSocketAddress])

(defn send
 "Send a short textual message over a DatagramSocket to the specified
 host and port. If the string is over 512 bytes long, it will be
 truncated."
 [^DatagramSocket socket msg host port]
 (let [payload (.getBytes msg)
 length (min (alength payload) 512)
 address (InetSocketAddress. host port)
 packet (DatagramPacket. payload length address)]
 (.send socket packet)))

(defn receive
 "Block until a UDP message is received on the given DatagramSocket, and
 return the payload message as a string."
 [^DatagramSocket socket]
 (let [buffer (byte-array 512)
 packet (DatagramPacket. buffer 512)]
 (.receive socket packet)
 (String. (.getData packet)
 0 (.getLength packet))))

(defn receive-loop
 "Given a function and DatagramSocket, will (in another thread) wait
 for the socket to receive a message, and whenever it does, will call
 the provided function on the incoming message."
 [socket f]
 (future (while true (f (receive socket)))))

The send function is fairly straightforward—most of its content is devoted to con‐

structing a byte array as a payload for the DatagramPacket and invoking constructor
forms. The most interesting thing is its limitation of the payload size to 512 bytes, using

the length argument to the DatagramPacket constructor. This is because it generally
isn’t safe to attempt to send over 512 bytes of payload in a single UDP packet; although
some network infrastructures may support it, others do not.

The receive function creates an incoming byte array, adds it to a mutable empty Data

gramPacket instance, and invokes the DatagramSocket.receive method on the socket.

When incoming data is received, the receive method will return after populating the

instance of DatagramPacket. The Clojure code then constructs and returns a new

String using the populated range of the byte array (that is, between 0 and the value

reported by the DatagramPacket.getLength method).

Because the receive function blocks and only returns a single value, it isn’t particularly

useful for accepting multiple messages or using from the REPL. receive-loop wraps

5.11. Sending and Receiving UDP Packets | 249

the receive function, calling it repeatedly on a separate thread. Whenever it returns a
value, it invokes the supplied function, then loops back to wait for more input.

To execute this code, you’ll first need to create an instance of DatagramSocket. At the
REPL:

(def socket (DatagramSocket. 8888))
;; -> #'udp/socket

This creates a UDP socket on the specified port (in this case, 8888).

Next, start up a listener using the receive-loop function. For this example, simply pass

it the println function so it will print out all received values:

(receive-loop socket println)
;; -> #<core$future_call$reify__6267@2783890e: :pending>

Then you can send a message! If you started the listener thread with receive-loop
properly, you should see it print out the incoming message immediately:

(send socket "hello, world!" "localhost" 8888)
;; *out*
;; hello, world!
;;
;; -> nil

In this case, sending to localhost, the message transmission happens so quickly that the

message is actually received before the send function even returns.

Discussion

Unlike TCP, UDP (the User Datagram Protocol) is an asynchronous protocol that makes
no guarantees regarding the order in which messages arrive, whether their contents are
correct, or even if they arrive at all. In exchange, UDP typically has a lower per-packet
latency than protocols like TCP, since it does not need to perform error checking or
recovery.

Before you decide to use UDP, make sure your application is designed to continue
working even if packets are dropped or corrupted.

Because UDP uses asynchronous messages as its model, it is fairly easy to use

core.async to wrap the raw DatagramSocket instances. core.async provides a very
nice channel abstraction that lets you consume and produce inherently asynchronous
events (such as UDP messages) in a clean, managed way.

Multicast UDP

UDP is also capable of sending the same datagram packet to multiple destinations using

a technique called UDP multicast. To use multicast, create an instance of java.net.Mul

ticastSocket instead of java.net.DatagramSocket.

250 | Chapter 5: Network I/O and Web Services

A full explanation of how to use MulticastSocket is very well documented on Oracle’s
website and would be redundant to reproduce here, since it is straightforward Java

interop. After reading the preceding example, extending it to MulticastSocket should
be relatively self-explanatory.

See Also

• Recipe 3.11, “Decoupling Consumers and Producers with core.async” on page 146

• Recipe 5.9, “Creating a TCP Client” on page 243

• Recipe 5.10, “Creating a TCP Server” on page 245

• The java.net.MulticastSocket API documentation

5.11. Sending and Receiving UDP Packets | 251

http://bit.ly/javadoc-multicast-socket
http://bit.ly/javadoc-multicast-socket
http://bit.ly/javadoc-multicast-socket

CHAPTER 6

Databases

6.0. Introduction
Storing data in a database is not an uncommon task for developers—in this day and
age, it’s practically a given. As with nearly every language under the sun, there is a bevy
of drivers and clients to interact with databases from Clojure. What sets Clojure apart,
however, is its ability to compose.

As we’ve said before in this book: in Clojure, data is king. You’ll find many of the database
client libraries do a little legwork to connect you to the datastore, then promptly get out
of your way. Such libraries don’t do so out of laziness (at least, we hope), but rather out
of the principle of separation of concerns: I’ll handle connecting to the database; you
handle the domain (your data). In fact, the best APIs are built out of data, providing
only one or two functions and letting you manipulate queries and data to be inserted
directly as Clojure data structures.

In this chapter, we’ll visit a wide number of databases and techniques, including the
SQLs, full-text search, Mongo, Redis, and Datomic.

Datomic is one of the more interesting recent developments in the database landscape.
Invented and maintained by Rich Hickey (who you will probably recognize as the same
person who wrote Clojure itself), it is a scalable, transactional, value-oriented, time-
aware database built around the same principles and philosophies as Clojure. If you like
Clojure, you should definitely give Datomic a try, both as your application’s datastore
and also as a learning tool to further explore functional, data-oriented programming.

253

http://www.datomic.com/

1. Mac users: visit http://postgresapp.com/ to download an easy-to-install DMG. Everyone else: you’ll find a
guide for your operating system on the PostgreSQL wiki.

6.1. Connecting to an SQL Database
by Tom Hicks; originally submitted by Simone Mosciatti

Problem
You want to connect your program to an SQL database.

Solution
Use the clojure.java.jdbc library for JDBC-based access to SQL databases.

To follow along with this recipe, you’ll need a running SQL database and an existing
table to connect to. We suggest PostgreSQL.1

After you have PostgreSQL running (presumably on localhost:5432), run the following
command to create a database for this recipe:

On Mac:
$ /Applications/Postgres93.app/Contents/MacOS/bin/createdb cookbook_experiments

Everyone else:
$ createdb cookbook_experiments

Before starting, add [org.clojure/java.jdbc "0.3.0"] to your project’s dependen‐
cies. You’ll also need a JDBC driver for the RDBMS of your choice. If you’re following

along with this sample, use [org.postgresql/postgresql "9.2-1003-jdbc4"]. To

start a REPL using lein-try, enter the following Leiningen command:

$ lein try org.clojure/java.jdbc "0.3.0" \
 java-jdbc/dsl "0.1.0" \
 org.postgresql/postgresql "9.2-1003-jdbc4"

To interact with a database using clojure.java.jdbc, all you need is a connection
specification. This specification takes the form of a plain Clojure map with values in‐
dicating the database driver type, location, and authentication credentials:

(def db-spec {:classname "org.postgresql.Driver"
 :subprotocol "postgresql"
 :subname "//localhost:5432/cookbook_experiments"
 ;; Not needed for a non-secure local database...
 ;; :user "bilbo"
 ;; :password "secret"
 })

254 | Chapter 6: Databases

http://postgresapp.com/
http://bit.ly/postgres-install

Create a relation in the specified database by invoking the clojure.java.jdbc/create-

table function with the specification and any number of column specifications:

(require '[clojure.java.jdbc :as jdbc]
 '[java-jdbc.ddl :as ddl])

(jdbc/db-do-commands db-spec false
 (ddl/create-table
 :tags
 [:id :serial "PRIMARY KEY"]
 [:name :varchar "NOT NULL"]))
;; -> (0)

Many other functions that query and manipulate a database, such as clo

jure.java.jdbc/insert!, take a database specification directly as their first argument:

(require '[java-jdbc.sql :as sql])

(jdbc/insert! db-spec :tags
 {:name "Clojure"}
 {:name "Java"})
;; -> ({:name "Clojure", :id 1} {:name "Java", :id 2})

(jdbc/query db-spec (sql/select * :tags (sql/where {:name "Clojure"})))
;; -> ({:name "Clojure", :id 1})

Discussion
The clojure.java.jdbc library provides functions that wrap the basic capabilities of

the Java JDBC specification. The additional java-jdbc.sql and java-jdbc.ddl name‐

spaces from the java-jdbc/dsl project implement small DSLs to generate basic SQL
DML and DDL statements.

Because it relies upon Java JDBC, the clojure.java.jdbc library is usable with many
of the most popular SQL databases, including Apache Derby, HSQLDB, Microsoft SQL
Server, MySQL, PostgreSQL, and SQLite.

The parameters necessary to set up and access a data source are called the database
specification (often abbreviated “db-spec”) and are provided in a simple Clojure map.
The specification usually includes such parameters as the driver class name, the sub‐
protocol for a particular RDBMS type, the hostname, the port number, the database
name, and the username and password.

The clojure.java.jdbc library also permits several other forms of data source speci‐
fication, including Java URIs, already-open connections, JNDI connections, and plain

strings. For example, a complete URI string may be provided under the :connection-

uri key:

6.1. Connecting to an SQL Database | 255

;; As a spec string
(def db-spec
 "jdbc:postgresql://bilbo:secret@localhost:5432/cookbook_experiment")

;; As a connection URI map...
;; with a username and password...
(def db-spec
 {:connection-uri (str "jdbc:postgresql://localhost:5432/cookbook_experiments?"
 "user=bilbo&password=secret")})

;; or without
(def db-spec
 {:connection-uri "jdbc:postgresql://localhost:5432/cookbook_experiments"})

Database records are represented as Clojure maps, with the table’s column names used
as keys. Retrieval of a set of database records produces a sequence of maps that can then
be processed with all the normal Clojure functions:

(jdbc/query db-spec (sql/select * :tags))
;; -> ({:name "Clojure", :id 1}
; {:name "Java", :id 2})

(filter #(not (.endsWith (:name %) "ure"))
 (jdbc/query db-spec (sql/select * :tags)))
;; -> ({:name "Java", :id 2})

There are other Clojure libraries to access relational databases, and each provides a
different abstraction and DSL for the manipulation of SQL data and expressions, such

as Korma. The clojure.java.jdbc library, however, covers a large portion of everyday
database access needs.

See Also

• See Recipe 6.2, “Connecting to an SQL Database with a Connection Pool” on page

257, to learn about pooling connections to an SQL database with c3p0 and clo

jure.java.jdbc.

• See Recipe 6.3, “Manipulating an SQL Database” on page 260, to learn about using

clojure.java.jdbc to interact with an SQL database.

• Visit the clojure.java.jdbc GitHub repository for more detailed information on
the library.

• Visit the java-jdbc/dsl GitHub repository for more information on the SQL query
generation capabilities it provides. Alternatively, investigate the Honey SQL,
SQLingvo, or Korma libraries for SQL query generation. Korma is covered in
Recipe 6.4, “Simplifying SQL with Korma” on page 266.

256 | Chapter 6: Databases

https://github.com/clojure/java.jdbc
https://github.com/seancorfield/jsql
https://github.com/jkk/honeysql
https://github.com/r0man/sqlingvo
http://sqlkorma.com/

2. Mac users: visit http://postgresapp.com/ to download an easy-to-install DMG. Everyone else: you’ll find a
guide for your operating system on the PostgreSQL wiki.

6.2. Connecting to an SQL Database with a Connection
Pool
by Tom Hicks and Filippo Diotalevi

Problem
You would like to connect to an SQL database efficiently using a connection pool.

Solution
Use the BoneCP connection and statement pooling library to wrap your JDBC-based
drivers, creating a pooled data source. The pooled data source is then usable by the

clojure.java.jdbc library, as described in Recipe 6.1, “Connecting to an SQL Data‐
base” on page 254.

To follow along with this recipe, you’ll need a running SQL database and an existing
table to connect to. We suggest PostgreSQL.2

After you have PostgreSQL running (presumably on localhost:5432), run the following
command to create a database for this recipe:

On Mac:
$ /Applications/Postgres93.app/Contents/MacOS/bin/createdb cookbook_experiments

Everyone else:
$ createdb cookbook_experiments

Before starting, add the BoneCP dependency ([com.jolbox/bonecp "0.8.0.RE

LEASE"]), as well as the appropriate JDBC libraries for your RDBMS, to your project’s
dependencies. You’ll also need a valid SLF4J logger. Alternatively, you can follow along

in a REPL using lein-try:

$ lein try com.jolbox/bonecp "0.8.0.RELEASE" \
 org.clojure/java.jdbc "0.3.0" \
 java-jdbc/dsl "0.1.0" \
 org.postgresql/postgresql "9.2-1003-jdbc4" \
 org.slf4j/slf4j-nop # Just do not log anything

First, create a database specification containing the parameters for accessing the data‐
base. This includes keys for the initial and maximum pool sizes, as well as the number
of partitions:

(def db-spec {:classname "org.postgresql.Driver"
 :subprotocol "postgresql"

6.2. Connecting to an SQL Database with a Connection Pool | 257

http://postgresapp.com/
http://bit.ly/postgres-install

 :subname "//localhost:5432/cookbook_experiments"
 :init-pool-size 4
 :max-pool-size 20
 :partitions 2})

To create a pooled BoneCPDataSource object, define a function (for convenience) that
uses the parameters in the database specification map:

(import 'com.jolbox.bonecp.BoneCPDataSource)

(defn pooled-datasource [db-spec]
 (let [{:keys [classname subprotocol subname user password
 init-pool-size max-pool-size idle-time partitions]} db-spec
 min-connections (inc (int (/ init-pool-size partitions)))
 max-connections (inc (int (/ max-pool-size partitions)))
 cpds (doto (BoneCPDataSource.)
 (.setDriverClass classname)
 (.setJdbcUrl (str "jdbc:" subprotocol ":" subname))
 (.setUsername user)
 (.setPassword password)
 (.setMinConnectionsPerPartition min-connections)
 (.setMaxConnectionsPerPartition max-connections)
 (.setPartitionCount partitions)
 (.setStatisticsEnabled true)
 (.setIdleMaxAgeInMinutes (or idle-time 60)))]
 {:datasource cpds}))

Use the convenience function to define a pooled data source for connecting to your
database:

(def pooled-db-spec (pooled-datasource db-spec))

pooled-db-spec
;; -> {:datasource #<BoneCPDataSource ...>}

Pass the database specification as the first argument to any clojure.java.jdbc func‐
tions that query or manipulate your database:

(require '[clojure.java.jdbc :as jdbc]
 '[java-jdbc.ddl :as ddl]
 '[java-jdbc.sql :as sql])

(jdbc/db-do-commands pooled-db-spec false
 (ddl/create-table
 :blog_posts
 [:id :serial "PRIMARY KEY"]
 [:title "varchar(255)" "NOT NULL"]
 [:body :text]))
;; -> (0)

(jdbc/insert! pooled-db-spec
 :blog_posts
 {:title "My first post!" :body "This is going to be good!"})

258 | Chapter 6: Databases

;; -> ({:body "This is going to be good!", :title "My first post!", :id 1})

(jdbc/query pooled-db-spec
 (sql/select * :blog_posts (sql/where{:title "My first post!"})))
;; -> ({:body "This is going to be good!", :title "My first post!", :id 1})

Discussion
As shown in the solution, the clojure.java.jdbc library can create database connec‐
tions from JDBC data sources, which allows connections to be easily pooled by the
BoneCP or other pooling libraries.

The BoneCP library wraps existing JDBC classes to allow the creation of efficient data
sources. It can adapt traditional unpooled drivers and data sources by augmenting them

with transparent pooling of Connection and PreparedStatement instances.

While the library offers several ways to create data sources, most users will find the
examples provided here to be the easiest.

BoneCP offers several dozen configuration parameters that control the operation of the
data source and its connections. Luckily, most of these configuration parameters have
built-in defaults. Parameters may be specified to control such facets as the min, max,
and initial pool size; the number of idle connections; the age of connections; transaction

handling; the use of PreparedStatement pooling; and if, when, and how pooled con‐
nections are tested.

Pooled data resources (threads and database connections) may be released by calling

the close method on the BoneCPDataSource class of the library. Attempting to reuse
the pooled data source after it is closed will result in an SQL exception:

(.close (:datasource pooled-db-spec))
;; -> nil

See Also

• Recipe 6.1, “Connecting to an SQL Database” on page 254, to learn about basic

database connections with clojure.java.jdbc

• Recipe 6.3, “Manipulating an SQL Database” on page 260, to learn about using clo

jure.java.jdbc to interact with an SQL database

• The BoneCP documentation and GitHub repository

• The clojure.java.jdbc GitHub repository for more detailed information on the
library

6.2. Connecting to an SQL Database with a Connection Pool | 259

http://bit.ly/bonecp-doc
https://github.com/wwadge/bonecp
https://github.com/clojure/java.jdbc

3. Mac users: visit http://postgresapp.com/ to download an easy-to-install DMG. Everyone else: you’ll find a
guide for your operating system on the PostgreSQL wiki.

6.3. Manipulating an SQL Database
by Tom Hicks

Problem
You want your Clojure program to manipulate tables and records in an SQL database.

Solution
Use the clojure.java.jdbc library for JDBC-based access to SQL databases.

To follow along with this recipe, you’ll need a running SQL database and an existing
table to connect to. We suggest PostgreSQL.3

After you have PostgreSQL running (presumably on localhost:5432), run the following
command to create a database for this recipe:

On Mac:
$ /Applications/Postgres93.app/Contents/MacOS/bin/createdb cookbook_experiments

Everyone else:
$ createdb cookbook_experiments

Before starting, add [org.clojure/java.jdbc "0.3.0"] and [java-jdbc/dsl

"0.1.0"] to your project’s dependencies. You’ll also need a JDBC driver for the RDBMS

of your choice. If you’re following along with this sample, use [org.postgresql/post

gresql "9.2-1003-jdbc4"]. To start a REPL using lein-try, enter the following Lei‐
ningen command:

$ lein try org.clojure/java.jdbc "0.3.0" \
 java-jdbc/dsl "0.1.0" \
 org.postgresql/postgresql "9.2-1003-jdbc4"

Then, define how the database should be accessed:

(def db-spec {:classname "org.postgresql.Driver"
 :subprotocol "postgresql"
 :subname "//localhost:5432/cookbook_experiments"})

To create a new table, use the java-jdbc.ddl/create-table function to generate the

necessary DDL statement, and then pass the statement to the jdbc/db-do-commands
function to execute it:

260 | Chapter 6: Databases

http://postgresapp.com/
http://bit.ly/postgres-install

(require '[clojure.java.jdbc :as jdbc]
 '[java-jdbc.ddl :as ddl])

(jdbc/db-do-commands db-spec
 (ddl/create-table :fruit
 [:name "varchar(16)" "PRIMARY KEY"]
 [:appearance "varchar(32)"]
 [:cost :int "NOT NULL"]
 [:unit "varchar(16)"]
 [:grade :real]))
;; -> (0)

Insert complete records into a table using the clojure.java.jdbc/insert! function,
invoking it with a vector of the column values for each row. Be sure to provide the
column values in the order in which the columns were declared in the table:

(jdbc/insert! db-spec :fruit
 nil ; column names omitted
 ["Red Delicious" "dark red" 20 "bushel" 8.2]
 ["Plantain" "mild spotting" 48 "stalk" 7.4]
 ["Kiwifruit" "fresh" 35 "crate" 9.1]
 ["Plum" "ripe" 12 "carton" 8.4])
;; -> (1 1 1 1)

To query the database, generate the SQL for the query with the java-jdbc.sql/

select function, then invoke clojure.java.jdbc/query with the result:

(require '[java-jdbc.sql :as sql])

(jdbc/query db-spec
 (sql/select * :fruit (sql/where {:appearance "ripe"})))
;; -> ({:grade 8.4, :unit "carton", :cost 12, :appearance "ripe", :name "Plum"})

If you no longer need a particular table, invoke clojure.java.dbc/jdb-do-commands

with the appropriate DDL statements generated by java-jdbc.ddl/drop-table:

(jdbc/db-do-commands db-spec
 (ddl/create-table :delete_me
 [:name "varchar(16)" "PRIMARY KEY"]))

(jdbc/db-do-commands db-spec (ddl/drop-table :delete_me))
;; -> (0)

Discussion
The clojure.java.jdbc library provides functions that wrap the basic capabilities of

the Java JDBC specification. The java-jdbc/dsl project’s java-jdbc.sql and java-

jdbc.ddl namespaces implement small DSLs to generate basic SQL DML and DDL
statements.

6.3. Manipulating an SQL Database | 261

java-jdbc/dsl used to be a part of clojure.java.jdbc, but was
removed to keep the API of the core library as small as possible.

The java-dbc.ddl/create-table function generates the DDL needed to create a table.
The arguments are a table name and a vector for each column specification. At the time
of this writing, table-level specifications are not yet supported.

Inserting and updating records

Records may be inserted into a table in a variety of ways. In addition to the vector method

illustrated, the clojure.java.jdbc/insert! function can accept one or more maps
with column names as keys:

(jdbc/insert! db-spec :fruit
 {:name "Banana" :appearance "spotting" :cost 35}
 {:name "Tomato" :appearance "rotten" :cost 10 :grade 1.4}
 {:name "Peach" :appearance "fresh" :cost 37 :unit "pallet"})
;; -> ({:grade nil, :unit nil, :cost 35, :appearance "spotting", :name "Banana"}
;; {:grade 1.4, :unit nil, :cost 10, :appearance "rotten", :name "Tomato"}
;; {:grade nil, :unit "pallet", :cost 37, :appearance "fresh",
;; :name "Peach"})

If you want to insert rows but only specify some columns’ values, you can invoke

clojure.java.jdbc/insert! with a vector of column names followed by one or more
vectors containing values for those columns:

(jdbc/insert! db-spec :fruit
 [:name :cost]
 ["Mango" 84]
 ["Kumquat" 77])
;; -> (1 1)

To update existing records, invoke clojure.java.jdbc/update! with a map of column

names to new values. The optional java-jdbc.sql/where clause controls which rows
will be updated:

(jdbc/update! db-spec :fruit
 {:grade 7.0 :appearance "spotting" :cost 75}
 (sql/where {:name "Mango"}))
;; -> (1)

Transactions

Database transactions are available to ensure that multiple operations are performed

atomically (i.e., all or none). The clojure.java.jdbc/with-db-transaction macro

262 | Chapter 6: Databases

creates a transaction-aware connection from the database specification. Use the
transaction-aware connection for the duration of the transaction:

;; Insert two new fruits atomically
(jdbc/with-db-transaction [trans-conn db-spec]
 (jdbc/insert! trans-conn :fruit {:name "Fig" :cost 12})
 (jdbc/insert! trans-conn :fruit {:name "Date" :cost 14}))
;; -> ({:grade nil, :unit nil, :cost 14, :appearance nil, :name "Date"})

If an exception is thrown, the transaction is rolled back:

;; Query how many items the table has now
(defn fruit-count
 "Query how many items are in the fruit table."
 [db-spec]
 (let [result (jdbc/query db-spec (sql/select "count(*)" :fruit))]
 (:count (first result))))

(fruit-count db-spec)
;; -> 11

(jdbc/with-db-transaction [trans-conn db-spec]
 (jdbc/insert! trans-conn :fruit
 [:name :cost]
 ["Grape" 86]
 ["Pear" 86])
 ;; At this point the insert! call is complete, but the transaction
 ;; is not. An exception will cause the transaction to roll back,
 ;; leaving the database unchanged.
 (throw (Exception. "sql-test-exception")))
;; -> Exception sql-test-exception ...

;; The table still has the same number of items
(fruit-count db-spec)
;; -> 11

Transactions can be explicitly set to roll back with the clojure.java.jdbc/db-set-

rollback-only! function. This setting can be unset with the clojure.java.jdbc/db-

unset-rollback-only! function and tested with the clojure.java.jdbc/is-

rollback-only function:

(fruit-count db-spec)
;; -> 11

(jdbc/with-db-transaction [trans-conn db-spec]
 (jdbc/db-set-rollback-only! trans-conn)
 (jdbc/insert! trans-conn :fruit {:name "Pear" :cost 69}))
;; -> ({:grade nil, :unit nil, :cost 69, :appearance nil, :name "Pear"})

;; The table still has the same number of items
(fruit-count db-spec)
;; -> 11

6.3. Manipulating an SQL Database | 263

Reading and processing records

Database records are returned from queries as Clojure maps, with the table’s column
names used as keys. Retrieval of a set of database records produces a sequence of maps
that can then be processed with all the normal Clojure functions. Here, we query all the
records in the fruit table, gathering the name and grade of any low-quality fruit:

(->> (jdbc/query db-spec (sql/select "name, grade" :fruit))
 ;; Filter all fruits by fruits with grade < 3.0
 (filter (fn [{:keys [grade]}] (and grade (< grade 3.0))))
 (map (juxt :name :grade)))
;; -> (["Tomato" 1.4])

The preceding example uses the SQL DSL provided by the java-jdbc.sql namespace.
The DSL implements a simple abstraction over the generation of SQL statements. At

present, it provides some basic mechanisms for selects, joins, where clauses, and order-

by clauses:

(defn fresh-fruit []
 (jdbc/query db-spec
 (sql/select [:f.name] {:fruit :f}
 (sql/where {:f.appearance "fresh"})
 (sql/order-by :f.name))))

(fresh-fruit)
;; -> ({:name "Kiwifruit"} {:name "Peach"})

The use of the SQL DSL is entirely optional. For more direct control, a vector containing

an SQL query string and arguments can be passed to the query function. The following
function also finds low-quality fruit but does it by passing a quality threshold value
directly to the SQL statement:

(defn find-low-quality [acceptable]
 (jdbc/query db-spec
 ["select name, grade from fruit where grade < ?" acceptable]))

(find-low-quality 3.0)
;; -> ({:grade 1.4, :name "Tomato"})

The jdbc/query function has several optional keyword parameters that control how it

constructs the returned result set. The :result-set-fn parameter specifies a function
that is applied to the entire result set (a lazy sequence) before it is returned. The default

argument is the doall function:

(defn hi-lo [rs] [(first rs) (last rs)])

;; Find the highest- and lowest-cost fruits
(jdbc/query db-spec
 ["select * from fruit order by cost desc"]
 :result-set-fn hi-lo)

264 | Chapter 6: Databases

;; -> [{:grade nil, :unit nil, :cost 77, :appearance nil, :name "Kumquat"}
;; {:grade 1.4, :unit nil, :cost 10, :appearance "rotten", :name "Tomato"}]

The :row-fn parameter specifies a function that is applied to each result row as the

result is constructed. The default argument is the identity function:

(defn add-tax [row] (assoc row :tax (* 0.08 (row :cost))))

(jdbc/query db-spec
 ["select name,cost from fruit where cost = 12"]
 :row-fn add-tax)
;; -> ({:tax 0.96, :cost 12, :name "Plum"} {:tax 0.96, :cost 12, :name "Fig"})

The Boolean :as-arrays? parameter indicates whether to return the results as a set of

vectors or not. The default argument value is false:

(jdbc/query db-spec
 ["select name,cost,grade from fruit where appearance = 'spotting'"]
 :as-arrays? true)
;; -> ([:name :cost :grade] ["Banana" 35 nil] ["Mango" 75 7.0])

Finally, the :identifiers parameter takes a function that is applied to each column

name in the result set. The default argument is the clojure.string/lower-case func‐
tion, which lowercases the table’s column names before they are converted to keywords.
If your application needs to perform some different conversion of column names, pro‐
vide an alternate function using this keyword parameter.

The clojure.java.jdbc library is a good choice for quick and easy access to most
popular relational databases. Its use of Clojure’s vectors and maps to represent records
blends well with Clojure’s emphasis on data-oriented programming. Novice users of
SQL can conveniently utilize the provided DSLs while expert users can more directly
construct and execute complex SQL statements.

See Also

• See Recipe 6.1, “Connecting to an SQL Database” on page 254, to learn about basic

database connections with clojure.java.jdbc.

• See Recipe 6.2, “Connecting to an SQL Database with a Connection Pool” on page
257, to learn about pooling connections to an SQL database with BoneCP and

clojure.java.jdbc.

• Visit the clojure.java.jdbc GitHub repository for more detailed information on
the library.

• Visit the java-jdbc/dsl GitHub repository for more information on the SQL query
generation capabilities it provides. Alternatively, investigate the Honey SQL,

6.3. Manipulating an SQL Database | 265

https://github.com/clojure/java.jdbc
https://github.com/seancorfield/jsql
https://github.com/jkk/honeysql

4. Mac users: visit http://postgresapp.com/ to download an easy-to-install DMG. Everyone else: you’ll find a
guide for your operating system on the PostgreSQL wiki.

SQLingvo, or Korma libraries for SQL query generation. Korma is covered in
Recipe 6.4, “Simplifying SQL with Korma” on page 266.

6.4. Simplifying SQL with Korma
by Dmitri Sotnikov and Chris Allen

Problem
You want to work with data stored in a relational database without writing SQL by hand.

Solution
Use Korma as a DSL for generating SQL queries and traversing relationships.

Before starting, add [korma "0.3.0-RC6"] and [org.postgresql/postgresql

"9.2-1002-jdbc4"] to your project’s dependencies or start a REPL using lein-try:

$ lein try korma org.postgresql/postgresql

To follow along with this recipe, you’ll need a running SQL database and an existing
table to connect to. We suggest PostgreSQL.4

After you have PostgreSQL running (presumably on localhost:5432), run the following
command to create a database for this recipe:

On Mac:
$ /Applications/Postgres.app/Contents/MacOS/bin/createdb learn_korma

Everyone else:
$ createdb learn_korma

To connect to the learn_korma database, use defdb with the postgres helper. Because

Korma is a rather large DSL, it is acceptable to :refer :all its contents into model
namespaces:

(require '[korma.db :refer :all])

(defdb db
 (postgres {:db "learn_korma"}))

To interact with a table in your database, define and create what Korma calls entities.
Here you’ll define an entity for blog posts:

266 | Chapter 6: Databases

http://postgresapp.com/
http://bit.ly/postgres-install
https://github.com/r0man/sqlingvo
http://sqlkorma.com/

(defentity posts
 (pk :id)
 (table :posts) ; Table name
 (entity-fields :title :content)) ; Default fields to SELECT

Normally you’d use a proper migration library for your schema, but for the sake of

simplicity, we’ll create a table manually. Use the exec-raw function to execute raw SQL
statements against the database. You should only do this where strictly necessary:

(def create-posts (str "CREATE TABLE posts "
 "(id serial, title text, content text,"
 "created_on timestamp default current_timestamp);"))

(exec-raw create-posts)

Now that the posts table exists, you can invoke insert against posts with a map’s

values to add records to the database. Each record is represented by a map. The names
of the keys in the map must match the names of the columns in the database:

(insert posts
 (values nil {:title "First post" :content "blah blah blah"}))

To retrieve values from the database, query using select. Successful queries will return
a sequence of maps, each containing keys representing the column names:

(select posts (limit 1))
;; -> [{:created_on #inst "2013-11-01T19:21:10.652920000-00:00",
;; :content "blah blah blah",
;; :title "First post",
;; :id 1}]

To correct or change existing records, use the update macro. Invoke update against

posts, providing a set-fields declaration to specify what should change and a where
declaration narrowing what records to make those changes to:

(update posts
 (set-fields {:title "Best Post"})
 (where {:title "First post"}))
;; -> {:title "Best Post", :id 1 ...}

The delete macro works similarly to update, but doesn’t take a set-fields declaration:

(delete posts
 (where {:title "Best Post"}))

(select posts)
;; -> []

6.4. Simplifying SQL with Korma | 267

Discussion
Korma provides a simple and intuitive way to construct SQL queries from Clojure. The
advantage of using Korma is that the queries are written as regular code instead of SQL
strings. You can easily compose queries and abstract common operations.

Korma exposes these abilities through its entity system. Entities are an abstraction over
traditional SQL tables that mask the complexity of SQL’s crufty and complicated DDL

(data definition language). Via the defentity macro, you have access to all of the power
of traditional SQL, packaged in a readable, Clojure-based DSL.

When defining entities with defentity, you can pass in a number of options. Some

common options include table to specify a table name, pk to specify the default ID field

(primary key), entity-fields to specify the default fields for SELECT statements, or

even db to specify which database the entity belongs in.

Entities also simplify defining relations between tables. Entity declaration statements

such as has-one, has-many, belongs-to, and many-to-many define relationships to
other entities. Consider adding an author to each of our blog posts:

;; Create authors, assuming posts has an author_id
(defentity authors
 ;; By default, foreign-key will be :authors_id, but that is a little
 ;; awkward
 (has-many posts {:fk :author_id}))

;; Redefine posts such that it assumes it has an author_id
(defentity posts
 (belongs-to authors {:fk :author_id}))

;; Create the authors table
(exec-raw "CREATE TABLE authors (id serial, name text);")

;; Add the authors_id field to posts
(exec-raw "ALTER TABLE posts ADD COLUMN author_id int;")

(def ryan (insert authors (values {:name "Ryan"})))
ryan
;; -> {:name "Ryan", :id 1}

(insert posts (values [{:title "My first post!", :author_id (:id ryan)}
 {:title "My second post.", :author_id (:id ryan)}]))
(select posts
 (where {:author_id (:id ryan)}))
;; -> [{:author_id 1,
;; ...
;; :title "My first post!",
;; :id 4}
;; {:author_id 1,
;; ...

268 | Chapter 6: Databases

;; :title "My second post.",
;; :id 5}]

Stemming from its entity system, Korma provides DSL versions of common SQL state‐

ments such as select, update, insert, and delete. One of the most interesting query

types is select, which provides support for most every SELECT statement option, in‐
clude simplified table joins (via its relation helpers). Some notable helpers include

aggregate, join, order, group, and having. Chances are, if it is an SQL statement
feature, Korma has a helper for it.

Korma’s DSL isn’t only convenient, it’s also composable. Using select* instead of se

lect returns a query as a value, instead of an evaluated result. You can pipeline query

values through regular select helpers to build up or store partial queries. Finally, invoke

select on a query value to execute it and receive its result:

(defn authors-posts
 "Retrieve all posts for a person with a given name"
 [name]
 (-> (select* posts)
 (with authors)
 (where {:authors.name name})))

;; Find the title of all posts by the author named "Ryan"
(-> (authors-posts "Ryan")
 (where (like :title "%second%"))
 (fields :title)
 select)
;; -> [{:title "My second post."}]

Another convenience Korma provides is default connections. You may have noticed in

the examples that we never referred to the db we defined. When only a single connection
is defined, it will be used by default and you don’t have to pass it explicitly. If you like,

you can define multiple connections and wrap series of statements in a with-db call:

(with-db db
 (select (authors-posts "Ryan")))

See Also

• The official Korma project page

6.4. Simplifying SQL with Korma | 269

http://sqlkorma.com/docs

5. We would normally suggest using lein-try, but the plug-in is currently incompatible with Clucy.

6.5. Performing Full-Text Search with Lucene
by Osbert Feng

Problem
You want to support flexible full-text search over an unstructured or semistructured
dataset using Lucene. For example, you want to return all people in the United States
that have “Clojure” anywhere in their job descriptions.

Solution
Use Clucy, a Clojure wrapper for Lucene. Clucy provides the tools to build and query
indexes from within a Clojure process.

To follow along with this recipe, create a new project (lein new text-search), add

[clucy "0.4.0"] to its dependencies, and start a REPL using lein repl.5

The following code creates and queries a simple in-memory index:

(require '[clucy.core :as clucy])

(def index (clucy/memory-index))
;; -> #'user/index

(clucy/add index
 {:name "Alice" :description "Clojure expert"
 :location "North Carolina, United States"}
 {:name "Bob" :description "Clojure novice"
 :location "Berlin, Germany"}
 {:name "Eve" :description "Eavesdropper"
 :location "Maryland, United States"})
;; -> nil

(clucy/search index "description:clojure AND location:\"united states\"" 10)
;; -> ({:name "Alice",
;; :location "North Carolina, United States",
;; :description "Clojure expert"})

Discussion
Lucene is a Java library for information retrieval. To use Lucene, you generate documents
and index them for later retrieval. Documents consist of fields and terms. In this ex‐

270 | Chapter 6: Databases

https://github.com/weavejester/clucy

ample, the documents are quite small, but Lucene is capable of efficiently indexing large
numbers of very large documents as well.

Clucy wraps Lucene in a convenient manner for use in Clojure and is capable of gen‐
erating Lucene documents directly from simple Clojure maps, where keys map to fields
and values map to textual data to be indexed.

clucy.core/search takes an index, a query string, and the number of results to return
as parameters. Lucene is able to efficiently query in part because it is not necessary to

return all matching documents, just the top n best matches.

Clucy does not work as well out of the box with nested values in your
maps. Be sure to flatten out values into simple strings for proper
indexing and retrieval.

This example uses a memory-index, which stores the index in system memory. In most
real applications, you’ll want to persist the index to disk, which allows it to grow larger
than the available memory and allows you to restart your process without re-indexing.

Clucy lets you construct a Lucene disk index via the disk-index function:

(def index (clucy.core/disk-index "/tmp/index"))

As part of the process for generating documents, Lucene calls an analyzer on your strings

to generate tokens for indexing. The default StandardAnalyzer is sufficient for most
purposes and can be customized with a list of “stop words” to be ignored during token
generation:

(import 'org.apache.lucene.analysis.standard.StandardAnalyzer)
;; -> org.apache.lucene.analysis.standard.StandardAnalyzer

(import 'org.apache.lucene.analysis.util.CharArraySet)
;; -> org.apache.lucene.analysis.util.CharArraySet

(def stop-words
 (doto (CharArray. clucy.core/*version* 3 true)
 (.add "do")
 (.add "not")
 (.add "index")))

(binding [clucy.core/*analyzer* (StandardAnalyzer.
 clucy.core/*version*
 stop-words)]
 ;; Invoke index add and search forms here, within the binding
)

6.5. Performing Full-Text Search with Lucene | 271

However, in other situations you may need to use a different analyzer or write your own.

For example, the EnglishAnalyzer uses Porter stemming and other techniques better
suited to taking into account pluralization or possessives:

(import org.apache.lucene.analysis.en.EnglishAnalyzer)
;; -> org.apache.lucene.analysis.en.EnglishAnalyzer

(binding [clucy.core/*analyzer* (EnglishAnalyzer. clucy.core/*version*)]
 ;; Invoke index add and search forms here, within the binding
)

The basic search query syntax is field:term. By default, multiple clauses will perform

an OR search, so an explicit AND is required if both clauses must be true.

If no field is specified, there is an implicit field _content that indexes all map values.
Documents returned are ordered by Lucene’s default relevance algorithm, which takes
into account term frequency, distance, and document length:

(clucy.core/search index "clojure united states" 10)
;; -> ({:name "Alice",
;; :location "North Carolina, United States",
;; :description "Clojure expert"}
;; {:name "Eve",
;; :location "Maryland, United States",
;; :description "Eavesdropper"}
;; {:name "Bob",
;; :location "Berlin, Germany",
;; :description "Clojure novice"})

See Also

• The Lucene project home page

• The Clucy GitHub repository

6.6. Indexing Data with ElasticSearch
by Michael Klishin

Problem
You want to index data using the ElasticSearch indexing and search engine.

Solution
Use Elastisch, a minimalistic Clojure wrapper around the ElasticSearch Java APIs.

272 | Chapter 6: Databases

http://lucene.apache.org/
https://github.com/weavejester/clucy
http://elasticsearch.org
http://bit.ly/clj-elastisch

In order to successfully work through the examples in this recipe, you should have
ElasticSearch installed and running on your local system. You can find details on how
to install it on the ElasticSearch website.

ElasticSearch supports multiple transports (e.g., HTTP, native Netty-based transport,
and Memcached). Elastisch supports HTTP and native transports. This recipe will use
an HTTP transport client for the examples and explain how to switch to the native
transport in the discussion section.

To follow along with this recipe, add [clojurewerkz/elastisch "1.2.0"] to your

project’s dependencies, or start a REPL using lein-try:

$ lein try clojurewerkz/elastisch

Before you can index and search with Elastisch, it is necessary to tell Elastisch what

ElasticSearch node to use. To use the HTTP transport, you use the clojurewerkz.elas

tisch.rest/connect! function that takes an endpoint as its sole argument:

(require '[clojurewerkz.elastisch.rest :as esr])

(esr/connect! "http://127.0.0.1:9200")

Indexing

Before data can be searched over, it needs to be indexed. Indexing is the process of
scanning the text and building a list of search terms and data structures called a search
index. Search indexes allow search engines such as ElasticSearch to efficiently retrieve
relevant documents for a query.

The process of indexing involves a few steps:

1. Create an index.

2. [Optional] Define mappings (how documents should be indexed).

3. Submit documents for indexing via HTTP or other APIs.

To create an index, use the clojurewerkz.elastisch.rest.index/create function:

(require '[clojurewerkz.elastisch.rest.index :as esi])

(esr/connect! "http://127.0.0.1:9200")

;; Create an index with the given settings and no custom mapping types
(esi/create "test1")

;; Create an index with custom settings
(esi/create "test2" :settings {"number_of_shards" 1}))

A full explanation of the available indexing settings is outside the scope of this recipe.
Please refer to the Elastisch documentation on indexing for full details.

6.6. Indexing Data with ElasticSearch | 273

http://bit.ly/cc-es-setup
http://bit.ly/clj-es-indexing

Creating mappings

Mappings define the fields in a document and what the indexing characteristics are for

each field. Mapping types are specified when an index is created using the :mapping
option:

(esr/connect! "http://127.0.0.1:9200")

;; Mapping types map structure is the same as in the ElasticSearch API reference
(def mapping-types {"person"
 {:properties {:username {:type "string" :store "yes"}
 :first-name {:type "string" :store "yes"}
 :last-name {:type "string"}
 :age {:type "integer"}
 :title {:type "string"
 :analyzer "snowball"}
 :planet {:type "string"}
 :biography {:type "string"
 :analyzer "snowball"
 :term_vector
 "with_positions_offsets"}}}})

(esi/create "test3" :mappings mapping-types)))

Indexing documents

To add a document to an index, use the clojurewerkz.elastisch.rest.document/

create function. This will cause a document ID to be generated automatically:

(require '[clojurewerkz.elastisch.rest.document :as esd])

(esr/connect! "http://127.0.0.1:9200")

(def mapping-types {"person"
 {:properties {:username {:type "string" :store "yes"}
 :first-name {:type "string" :store "yes"}
 :last-name {:type "string"}
 :age {:type "integer"}
 :title {:type "string" :analyzer "snowball"}
 :planet {:type "string"}
 :biography {:type "string"
 :analyzer "snowball"
 :term_vector
 "with_positions_offsets"}}}})

(esi/create "test4" :mappings mapping-types)

(def doc {:username "happyjoe"
 :first-name "Joe"
 :last-name "Smith"
 :age 30
 :title "The Boss"

274 | Chapter 6: Databases

 :planet "Earth"
 :biography "N/A"})

(esd/create "test4" "person" doc)
;; => {:ok true, :_index people, :_type person,
;; :_id "2vr8sP-LTRWhSKOxyWOi_Q", :_version 1}

clojurewerkz.elastisch.rest.document/put will add a document to the index but
expects a document ID to be provided:

(esr/put "test4" "person" "happyjoe" doc)

Discussion
Whenever a document is added to the ElasticSearch index, it is first analyzed.

Analysis is a process of several stages:

• Tokenization (breaking field values into tokens)

• Filtering or modifying tokens

• Combining tokens with field names to produce terms

How exactly a document was analyzed defines what search queries will match (find) it.
ElasticSearch is based on Apache Lucene and offers several analyzers developers can
use to achieve the kind of search quality and performance they need. For example,
different languages require different analyzers: English, Mandarin Chinese, Arabic, and
Russian cannot be analyzed the same way.

It is possible to skip performing analysis for fields and specify whether field values are
stored in the index or not. Fields that are not stored still can be searched over but will
not be included into search results.

ElasticSearch allows users to define exactly how different kinds of documents are in‐
dexed, analyzed, and stored.

ElasticSearch has excellent support for multitenancy: an ElasticSearch cluster can have
a virtually unlimited number of indexes and mapping types. For example, you can use
a separate index per user account or organization in a SaaS (Software as a Service)
product.

There are two ways to index a document with ElasticSearch: you can submit a document
for indexing without an ID or update a document with a provided ID, in which case if
the document already exists, it will be updated (a new version will be created).

While it is fine and common to use automatically created indexes early in development,
manually creating indexes lets you configure a lot about how ElasticSearch will index
your data and, in turn, what kinds of queries it will be possible to execute against it.

6.6. Indexing Data with ElasticSearch | 275

http://lucene.apache.org

How your data is indexed is primarily controlled by mappings. They define which fields
in documents are indexed, if/how they are analyzed, and if they are stored. Each index
in ElasticSearch may have one or more mapping types. Mapping types can be thought
of as tables in a database (although this analogy does not always stand). Mapping types
are the heart of indexing in ElasticSearch and provide access to a lot of ElasticSearch
functionality.

For example, a blogging application may have types such as article, comment, and
person. Each has distinct mapping settings that define a set of fields documents of the
type have, how they are supposed to be indexed (and, in turn, what kinds of queries will
be possible over them), what language each field is in, and so on. Getting mapping types
right for your application is the key to a good search experience. It also takes time and
experimentation.

Mapping types define document fields and their core types (e.g., string, integer, or date/
time). Settings are provided to ElasticSearch as a JSON document, and this is how they
are documented on the ElasticSearch site.

With Elastisch, mapping settings are specified as Clojure maps with the same structure
(schema). A very minimalistic example:

{"tweet" {:properties {:username {:type "string" :index "not_analyzed"}}}}

Here is a brief and very incomplete list of things that you can define via mapping settings:

• Document fields, their types, and whether they are analyzed

• Document time to live (TTL)

• Whether a document type is indexed

• Special fields ("_all", default field, etc.)

• Document-level boosting

• Timestamp field

When an index is created using the clojurewerkz.elastisch.rest.index/create

function, mapping settings are passed with the :mappings option, as seen previously.

When it is necessary to update mapping for an index, you can use the clojure

werkz.elastisch.rest.index/update-mapping function:

(esi/update-mapping "myapp_development" "person"
 :mapping {:properties
 {:first-name {:type "string" :store "no"}}})

In a mapping configuration, settings are passed as maps where keys are names (strings
or keywords) and values are maps of the actual settings. In this example, the only setting

is :properties, which defines a single field—a string that is not analyzed:

276 | Chapter 6: Databases

http://bit.ly/cc-es-mapping
http://bit.ly/cc-es-boost-field
http://bit.ly/cc-es-timestamp-field

{"tweet" {:properties {:username {:type "string" :index "not_analyzed"}}}}

There is much more to the indexing and mapping options, but that’s outside the scope
of a single recipe. See the Elastisch indexing documentation for an exhaustive list of the
capabilities provided.

See Also

• The official ElasticSearch guide

• The Elastisch home page

6.7. Working with Cassandra
by Alex Petrov

Problem
You want to work with data stored in Cassandra.

Solution
Use the Cassaforte library to connect to a Cassandra cluster and work with the records
in the database.

In order to successfully work through the examples in this recipe, you should have
Cassandra installed. You can find details on how to install Cassandra on the Getting‐
Started page of the wiki.

To follow along with this recipe, add [clojurewerkz/cassaforte "1.1.0"] to your

project’s dependencies, or start a REPL using lein-try:

$ lein try clojurewerkz/cassaforte

In order to connect to your Cassandra cluster and create and use your first keyspace,

you will need the clojurewerkz.cassaforte.client, clojurewerkz.cassa

forte.cql, and clojurewerkz.cassaforte.query namespaces.

clojurewerkz.cassaforte.client is responsible for connection—the other two pro‐
vide an easy interface to execute queries:

(require '[clojurewerkz.cassaforte.client :as client]
 '[clojurewerkz.cassaforte.cql :as cql]
 '[clojurewerkz.cassaforte.query :as q])

;; Connect to 2 nodes in a cluster
(client/connect! ["localhost" "another.node.local"])

6.7. Working with Cassandra | 277

http://bit.ly/clj-es-indexing
http://bit.ly/cc-es-guide
http://bit.ly/clj-elastisch
http://clojurecassandra.info/
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted

;; Create a keyspace named `cassaforte_keyspace`, using
;; the Simple Replication Strategy and a replication factor of 2
(cql/create-keyspace "cassaforte_keyspace"
 (q/with {:replication
 {:class "SimpleStrategy"
 :replication_factor 2 }}))

;; Switch to the keyspace
(cql/use-keyspace "cassaforte_keyspace")

Now, you can create tables and start inserting data into them. For that, invoke the

create-table and insert functions of the clojurewerkz.cassaforte.cql name‐
space:

(cql/create-table "users"
 (q/column-definitions {:name :varchar
 :city :varchar
 :age :int
 :primary-key [:name]}))

Now, insert several users into the table:

(cql/insert "users" {:name "Alex" :city "Munich" :age (int 26)})
(cql/insert "users" {:name "Robert" :city "Brussels" :age (int 30)})

You can access these records using a select query. For example, if you want to retrieve

all the users from the table or use limit in your query, you can run:

;; Will retrieve all users
(cql/select "users")

;; Will retrieve top 10 users
(cql/select "users" (q/limit 10))

Alternatively, if you want to retrieve information about a single person by a given

name, you can add a where clause to it:

(cql/select "users" (q/where :name "Alex"))

Discussion
Cassandra is an open source implementation of many of the ideas in Amazon’s landmark
Dynamo Paper. It’s a key/value datastore, and it’s not aware of any relationships between
tables and data points. Cassandra is a distributed datastore and is designed to be highly
available. For that, it replicates data within the cluster. The data is stored redundantly
on multiple nodes. If one node fails, data is still available for retrieval from a different
node or multiple nodes.

Cassandra starts making sense when your data is rather big. Because it was built for
distribution, you can scale your reads and writes, and fine-tune and manage your da‐
tabase’s consistency and availability. Cassandra handles network partitions well, so even

278 | Chapter 6: Databases

http://bit.ly/dynamo-pdf

if several of your nodes are unavailable for some time, you will still be able to read and
write data until the network partition heals. If your dataset is rather small, you don’t
expect it to grow significantly anytime soon, and you need to run many ad hoc queries
against the dataset, then Cassandra may not make sense.

Consistency and availability are tunable values. You can get better availability by sacri‐
ficing data consistency: due to network partitions, not all the nodes will hold the latest
snapshot of data at all times, but you’ll be still able to respond to writes and receive reads.
If you choose to have strong consistency, conversely, the latency will increase, since more
nodes should respond successfully for reads and writes. Eventual consistency guarantees
that, if no conflicting writes are made for the data point, eventually all nodes will hold
the latest value.

Like most datastores, Cassandra has concepts of separate databases (keyspaces in Cas‐
sandra terminology). Every keyspace holds tables (sometimes called column families).
Tables hold rows, and rows consist of columns. Each column has a key (column name),
value, write timestamp, and time to live.

Cassandra uses two different communication protocols: an older binary protocol called
Thrift, and CQL (Cassandra Query Language). All query operators in Cassaforte gen‐
erate CQL code under the hood. Here are a couple of examples of how these operations
translate to CQL internally:

(cql/select "users" (q/where :name "Alex"))
;; SELECT * FROM users WHERE name='Alex';

(cql/insert "users" {:name "Alex" :city "Munich" :age (int 26)})
;; INSERT INTO users (name, city) VALUES ('Munich', 26);

There’s much more to Cassandra than just creating tables and inserting values. If you

want to update records in your database, you can call the update function:

(cql/update "users"
 {:city "Berlin"}
 (q/where :name "Alex"))

Deleting records from the database is just as easy:

;; Will delete just one user
(cql/delete :users (q/where :name "Alex"))

;; Will delete all users whose names match within IN clause
(cql/delete :users (q/where :name [:in ["Alex" "Robert"]]))

If you’d like to execute some arbitrary CQL statements, outside of Cassaforte’s macro-

based DSL, you can pass a string to the client/execute function:

(client/execute
 "INSERT INTO users (name, city, age) VALUES ('Alex', 'Munich', 19);")

6.7. Working with Cassandra | 279

For each issued write, you can specify an optional time to live to expire the data after a
certain period of time. This is useful for caching and for data that you only want to hold
for a certain period of time (like user sessions). For example, if you want the record to
live for just 60 seconds, you can run:

(cql/insert "users" {:name "Alex" :city "Munich" :age (int 26)}
 (q/using :ttl 60))

Another concept that people like about Cassandra is distributed counters. Counter col‐
umns provide an efficient way to count or sum anything you need. This is achieved by
using atomic increment/decrement operations on values. In order to create a table with

a counter from Cassaforte, you can use the :counter column type:

(cql/create-table :scores
 (q/column-definitions {:username :varchar
 :score :counter
 :primary-key [:username]}))

You can increment and decrement counters by using the increment-by and decrement-

by queries:

(cql/update :scores
 {:score (q/increment-by 50)}
 (q/where :name "Alex"))

(cql/update :scores
 {:score (q/decrement-by 5)}
 (q/where :name "Robert"))

See Also

• The Cassaforte documentation

6.8. Working with MongoDB
by Clinton Dreisbach

Problem
You want to work with data stored in MongoDB.

Solution
Use Monger to connect to MongoDB and search or manipulate the data. Monger is a
Clojure wrapper around the Java MongoDB driver.

280 | Chapter 6: Databases

http://clojurecassandra.info
http://clojuremongodb.info/

Before using Mongo from your Clojure code, you must have a running instance of
MongoDB to connect to. See MongoDB’s installation guide for instructions on how to
install MongoDB on your local system.

When you’re ready to write a Clojure MongoDB client, start a REPL using lein-try:

$ lein try com.novemberain/monger

To connect to MongoDB, use the monger.core/connect! function. This will store your

connection in the *mongodb-connection* dynamic var. If you want to get a connection

to use without storing it in a dynamic var, you can use monger.core/connect with the
same options:

(require '[monger.core :as mongo])

;; Connect to localhost
(mongo/connect! {:host "127.0.0.1" :port 27017})

;; Disconnect when you are done
(mongo/disconnect!)

Once you are connected, you can insert and query documents easily:

(require '[monger.core :as mongo]
 '[monger.collection :as coll])
(import '[org.bson.types ObjectId])

;; Set the database in the *mongodb-database* var
(mongo/use-db! "mongo-time")

;; Insert one document
(coll/insert "users" {:name "Jeremiah Forthright" :state "TX"})

;; Insert a batch of documents
(coll/insert-batch "users" [{:name "Pete Killibrew" :state "KY"}
 {:name "Wendy Perkins" :state "OK"}
 {:name "Steel Whitaker" :state "OK"}
 {:name "Sarah LaRue" :state "WY"}])

;; Find all documents and return a com.mongodb.DBCursor
(coll/find "users")

;; Find all documents matching a query and return a DBCursor
(coll/find "users" {:state "OK"})

;; Find documents and return them as Clojure maps
(coll/find-maps "users" {:state "OK"})
;; -> ({:_id #<ObjectId 520...>, :state "OK", :name "Wendy Perkins"}
;; {:_id #<ObjectId 520...>, :state "OK", :name "Steel Whitaker"})

;; Find one document and return a com.mongodb.DBObject
(coll/find-one "users" {:name "Pete Killibrew"})

6.8. Working with MongoDB | 281

http://bit.ly/mongodb-install

;; Find one document and return it as a Clojure map
(coll/find-one-as-map "users" {:name "Sarah LaRue"})
;; -> {:_id #<ObjectId 520...>, :state "WY", :name "Sarah LaRue"}

Discussion
MongoDB, especially with Monger, can be a natural choice for storing Clojure data. It
stores data as BSON (binary JSON), which maps well to Clojure’s own vectors and maps.

There are several ways to connect to Mongo, depending on how much you need to
customize your connection and whether you have a map of options or a URI:

;; Connect to localhost, port 27017 by default
(mongo/connect!)

;; Connect to another machine
(mongo/connect! {:host "192.168.1.100" :port 27017})

;; Connect using more complex options
(let [options (mongo/mongo-options :auto-connect-retry true
 :connect-timeout 15
 :socket-timeout 15)
 server (mongo/server-address "192.168.1.100" 27017)]
 (mongo/connect! server options))

;; Connect via a URI
(mongo/connect-via-uri! (System/genenv "MONGOHQ_URL"))

When inserting data, giving each document an _id is optional. One will be created for
you if you do not have one in your document. It often makes sense to add it yourself,
however, if you need to reference the document afterward:

(require '[monger.collection :as coll])
(import '[org.bson.types ObjectId])

(let [id (ObjectId.)
 user {:name "Lola Morales"}]
 (coll/insert "users" (assoc user :_id id))
 ;; Later, look up your user by id
 (coll/find-map-by-id "users" id))
;; -> {:_id #<ObjectId 521...>, :name "Lola Morales"}

In its idiomatic usage, Monger is set up to work with one connection and one database,

as monger.core/connect! and monger.core/use-db! set dynamic vars to hold their
information.

It is easy to work around this, though. You can use binding to set these explicitly around

code. In addition, you can use the monger.multi.collection namespace instead of

monger.collection. All functions in the monger.multi.collection namespace take
a database as their first argument:

282 | Chapter 6: Databases

(require '[monger.core :as mongo]
 '[monger.multi.collection :as multi])

(mongo/connect!)

;; use-db! takes a string for the database, as it is a convenience function,
;; but for monger.multi.collection and other functions, we need to use
;; get-db to get the database
(let [stats-server (mongo/connect "stats.example.org")
 app-db (mongo/get-db "mongo-time")
 geo-db (mongo/get-db "geography")]

 ;; Record data in our stats server
 (binding [mongo/*mongodb-connection* stats-server]
 (multi/insert (mongo/get-db "stats") "access"
 {:ip "127.0.0.1" :time (java.util.Date.)}))

 ;; Find users in our application DB
 (multi/find-maps app-db "users" {:state "WY"})

 ;; Insert a square in our geography DB
 (multi/insert geo-db "shapes"
 {:name "square" :sides 4
 :parallel true :equal true}))

The basic find functions in monger.collection will work for simple queries, but you

will soon find yourself needing to make more complex queries, which is where mon

ger.query comes in. This is a domain-specific language for MongoDB queries:

(require '[monger.query :as q])

;; Find users, skipping the first two and getting the next three.
(q/with-collection "users"
 (q/find {})
 (q/skip 2)
 (q/limit 3))

;; Get all the users from Oklahoma, sorted by name.
;; You must use array-map with sort so you can keep keys in order.
(q/with-collection "users"
 (q/find {:state "OK"})
 (q/sort (array-map :name 1)))

;; Get all users not from Oklahoma or with names that start with "S".
(q/with-collection "users"
 (q/find {"$or" [{:state {"$ne" "OK"}}
 {:name #"^S"}]}))

See Also

• The Monger documentation

6.8. Working with MongoDB | 283

http://clojuremongodb.info/

• CongoMongo, another Clojure library for working with MongoDB that you might
consider

6.9. Working with Redis
by Jason Webb

Problem
You want to work with data in Redis.

Solution
Use Carmine to connect to and interact with Redis.

To use this recipe, you should first install Redis and have it running
locally. You can find details on how to install Redis at the official Redis
download page. If you are on Windows, you will want to look at the
Microsoft Open Tech GitHub Redis project.

To follow along with this recipe, add [com.taoensso/carmine "2.2.0"] to your

project’s dependencies, or start a REPL using lein-try:

$ lein try com.taoensso/carmine

To use Carmine, you must first define a connection spec:

(def server-connection {:pool {:max-active 8}
 :spec {:host "localhost"
 :port 6379
 ;;:password ""
 :timeout 4000}})

Carmine supports all of the Redis commands, and the names (for the most part) match

the Redis documentation. Use the wcar function and the connection specification

server-connection to send all the Redis commands you already know and love:

(require `[taoensso.carmine :as car :refer (wcar)])

(wcar server-connection (car/set "Nick" "Nack"))
;; -> "OK"
(wcar server-connection (car/get "Nick"))
;; -> "Nack"
(wcar server-connection (car/hset "founder" "name" "Tim"))
;; -> 0
(wcar server-connection (car/hset "founder" "age" 59))
;; -> 0

284 | Chapter 6: Databases

https://github.com/aboekhoff/congomongo
https://github.com/ptaoussanis/carmine
http://redis.io/download
http://redis.io/download
https://github.com/MSOpenTech/redis
https://github.com/MSOpenTech/redis

(wcar server-connection (car/hgetall "founder"))
;; -> [name Tim age 59]

Passing in multiple commands will pipeline them and return the results together as a
vector:

(wcar server-connection (car/set "paddywhacks" 0)
 (car/incr "paddywhacks")
 (car/get "paddywhacks"))
;; -> ["OK" 1 "1"]

Discussion
Redis describes itself as a data structure server. With data structures similar to the core
data structures in Clojure, they make a natural pairing for a wide range of problems.
Redis’s speed and key/value storage make it especially useful for caching and memoi‐
zation applications (more on that later).

You can remove some boilerplate by wrapping the call to wcar in a macro that passes
the connection specification for you:

(defmacro wcar* [& body] `(car/wcar server-connection ~@body))

(wcar* (car/set "Nick" "Nack"))
;; -> "OK"
(wcar* (car/get "Nick"))
;; -> "Nack"

Serialization is handled automatically and for most cases just works. Simply pass in the
data you want to store, and Carmine will automatically serialize/deserialize it for you:

(wcar* (car/set "some-key" {:event "An Event", :timestamp (new java.util.Date)})
 (car/get "some-key"))
;; -> [OK {:event An Event, :timestamp #inst "2013-08-18T21:31:33.993-00:00"}]

This works great as long as you stick to core Clojure data types. However, if you need
to support storing custom data types, you will need to deal with the underlying serial‐
ization library, called Nippy. For more information, see the Nippy GitHub project.

Redis is great to use as a memoization storage backend. Obviously, there are some se‐
rious trade-offs to consider when weighing against an in-memory solution, such as the

core.cache library. But for the right situation, it can be an incredible boost. Consider,
for example, memoizing a function that hits an external web service to fetch the current
weather. With minimal effort, multiple servers can share the latest data and even have
stale data automatically expire and refresh. The following is an example for just such a
situation:

(defn redis-memoize
 "Convert a function to one that is memoized using Redis as storage."
 [key-prefix ttl-seconds connection-spec f]
 (fn [& args]

6.9. Working with Redis | 285

https://github.com/ptaoussanis/nippy

 (let [key-name [key-prefix args]]
 (if-let [found-result (wcar connection-spec (car/get key-name))]
 found-result
 (let [new-result (apply f args)]
 (wcar connection-spec (car/set key-name new-result)
 (car/expire key-name ttl-seconds))
 new-result)))))

This makes a couple of assumptions worth noting. First, it assumes that the arguments
for the function being memoized are supported by Nippy (see the earlier serialization
example). Second, it assumes that the memoized data should be expired after a specified

number of seconds. To use redis-memoize, simply pass in a function. The following is

a highly contrived example that uses the server-connection defined previously:

(defn square [x]
 (printf "Ran square for: %s\n" x)
 (* x x))

(def redis-squared
 (redis-memoize "squared" 10 server-connection square))

(redis-squared 99)
;; -> Ran square for: 99
;; -> 9801
(redis-squared 99)
;; -> 9801

In addition to the features showcased earlier, Carmine includes (among other things)
a message queue, distributed locks, a Ring session store, and even an implementation
of DynamoDB (which is in alpha at the time of writing). These features are outside the
scope of this recipe, but they’re well documented and straightforward to use. Consult
the Carmine GitHub project for more information.

See Also

• The Carmine GitHub project for more information about Carmine

• The official Redis documentation for a complete list of Redis commands

• The Nippy GitHub project for information about serialization

• The Clojure core documentation for documentation of the memoize function

6.10. Connecting to a Datomic Database
by Robert Stuttaford

286 | Chapter 6: Databases

https://github.com/ptaoussanis/carmine
https://github.com/ptaoussanis/carmine
http://redis.io/commands
https://github.com/ptaoussanis/nippy
http://bit.ly/clj-memoize-doc

Problem
You need to connect to a Datomic database.

Solution
Before starting, add [com.datomic/datomic-free "0.8.4218"] to your project’s de‐

pendencies or start a REPL using lein-try:

$ lein try com.datomic/datomic-free

To create and connect to an in-memory database, use database.api/create-

database and datomic.api/connect:

(require '[datomic.api :as d])

(def uri "datomic:mem://sample-database")

(d/create-database uri)
;; -> true

(def conn (d/connect uri))

conn
;; -> #<LocalConnection datomic.peer.LocalConnection@49384d99>

Once you have a connection, you can use it to get a database value with datomic.api/

db. This value is used to query a database:

(def db (d/db (d/connect uri)))

db
;; -> datomic.db.Db@7b7fea26

You can also use the connection to transact data using datomic.api/transact:

;; Transact the schema for your Next Big Thing
(def my-great-schema []) ; This vector intentionally left blank
(d/transact (d/connect uri) my-great-schema)

Discussion
You’ll notice in the solution that we not only connected to a database, but we created it
too. This pattern is common when using in-memory databases, as no in-memory da‐

tabases exist in a fresh JVM. It is not strictly necessary to call create-database if the

database already exists, but it is safe to do so—create-database is idempotent and will

return false if one already exists. When connecting to a database that isn’t in memory,
it is necessary for the relevant transactor and storage service to be running.

The return value of d/connect is used when querying a database value or when trans‐
acting data. It is also used when reading the transaction log, when consuming the trans‐

6.10. Connecting to a Datomic Database | 287

action report queue, or when performing administrative tasks such as requesting an
indexing job, garbage collecting storage, and disposing of resources associated with the
connection.

Connections are thread-safe and are cached by URI internally, so there is no need to
pool connections yourself. There is no performance overhead for creating many con‐
nections to the same URI.

Storage services

Datomic transactor processes have a limit on the number of concurrently connected
peer processes. Datomic Free has a limit of two peers per transactor. For nondistributed
applications, this may well be sufficient. If you’re building a larger service, then you may
need a Datomic Pro license for more peers.

There are several options for storage services that back Datomic. Three are built-in, and
the rest use external services. Datomic Free includes access to the in-memory

and :free storage backends. Datomic Pro and Pro Starter Edition include access to all
services.

Built-in storage options

The built-in storage options are:

• In local memory: "datomic:mem://[db-name]"

• Free, for use with Datomic Free, subject to a two-peer limit: "datomic:free://

host[:port]/[db-name]"

• Dev, for use with Datomic Pro, subject to the licensed peer limit: "datomic:dev://

host[:port]/[db-name]"

Free and Dev can also be configured to use alternate ports for storage: "datom

ic:free://host[:port]/[db-name]?h2-port=[port]&h2-web-port=[port]".

By default, these ports will be one and two more than the transactor port, respectively.

External storage service options

Several external storage options also exist. These include:

• DynamoDB: "datomic:ddb://[aws-region]/[dynamodb-table]/[db-name]?

aws_access_key_id=[XXX]&aws_secret_key=[YYY]"

• Riak: "datomic:riak://host[:port]/bucket/dbname[?interface=http|proto

buf]" (default is protobuf)

• Couchbase: "datomic:couchbase://host/bucket/dbname[?password=xxx]"

288 | Chapter 6: Databases

• Infinispan: "datomic:inf://[cluster-member-host:port]/[db-name]"

• SQL: "datomic:sql://[db-name][?jdbc-url]"

For SQL storage services, the map format can be used instead of the string format. This

is useful when specifying objects that can’t be embedded in URI strings, like Data

Sources. The format for the SQL map is:

{:protocol :sql ;; keyword or string
 :db-name "[db-name]" ;; keyword or string
 :data-source aDataSourceObject
 ;; OR
 :factory aCallableReturningConnection}

See Also

• Recipe 6.11, “Defining a Schema for a Datomic Database” on page 289

• Recipe 6.12, “Writing Data to Datomic” on page 293

• Datomic Pro Starter Edition, for free access to all service storages and the Datomic
Console

6.11. Defining a Schema for a Datomic Database
by Robert Stuttaford

Problem
You need to define how your data will be modeled in Datomic. For example, you need
to model users and their user groups, relating the two in some way.

Solution
Datomic schemas are defined in terms of attributes. It’s probably easiest to jump straight
to an example.

To follow along with this recipe, complete the steps in the solution in Recipe 6.10,
“Connecting to a Datomic Database” on page 286. After doing this, you should have an

in-memory database and connection, conn, to work with.

Consider the attributes a user might have:

• One email address, which must be unique to the database

• One name, which we index for fast search

6.11. Defining a Schema for a Datomic Database | 289

http://bit.ly/datatomic-starter

• Any number of roles (guest, author, and editor)

To define this schema, create a vector with attribute maps for email, name, and role, as
well as insertions of the three static roles:

(def user-schema
 [{:db/doc "User email address"
 :db/ident :user/email
 :db/valueType :db.type/string
 :db/cardinality :db.cardinality/one
 :db/unique :db.unique/identity
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}

 {:db/doc "User name"
 :db/ident :user/name
 :db/valueType :db.type/string
 :db/cardinality :db.cardinality/one
 :db/index true
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}

 {:db/doc "User roles"
 :db/ident :user/roles
 :db/valueType :db.type/ref
 :db/cardinality :db.cardinality/many
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}

 [:db/add #db/id[:db.part/user] :db/ident :user.roles/guest]
 [:db/add #db/id[:db.part/user] :db/ident :user.roles/author]
 [:db/add #db/id[:db.part/user] :db/ident :user.roles/editor]])

We define a group as having:

• One UUID, which must be unique to the database

• One name, which we index for fast search

• Any number of related users

290 | Chapter 6: Databases

Define the group as follows:

(def group-schema
 [{:db/doc "Group UUID"
 :db/ident :group/uuid
 :db/valueType :db.type/uuid
 :db/cardinality :db.cardinality/one
 :db/unique :db.unique/value
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}

 {:db/doc "Group name"
 :db/ident :group/name
 :db/valueType :db.type/string
 :db/cardinality :db.cardinality/one
 :db/index true
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}

 {:db/doc "Group users"
 :db/ident :group/users
 :db/valueType :db.type/ref
 :db/cardinality :db.cardinality/many
 :db/id #db/id[:db.part/db]
 :db.install/_attribute :db.part/db}])

Finally, transact both schema definitions into a database via a connection:

(require '[datomic.api :as d])

@(d/transact (d/connect "datomic:mem://sample-database")
 (concat user-schema group-schema))
;; -> {:db-before datomic.db.Db@25b48c7b,
;; :db-after datomic.db.Db@5d81650c,
;; :tx-data [#Datum{:e ... :a ... :v ... :tx :added true}, ...],
;; :tempids {-... ..., ...}}

Discussion
A Datomic schema is represented as Clojure data and is added to the database in a

transaction, just like any other data we would store. The :db.install/_at

tribute :db.part/db key/value pair is used by the transactor to make the schema
available to the rest of the system.

The schema is placed in the :db.part/db database partition, a partition reserved for

schemas. All user data is placed in user partition(s)—either the default of :db.part/

user or a custom partition. Partitions are useful for optimizing how indexes sort data,

which is useful for optimizing a query. Schema entities require that at least :db/

ident, :db/valueType, and :db/cardinality values are present.

6.11. Defining a Schema for a Datomic Database | 291

Aside from the schema, Datomic does not enforce how attributes are combined for any
given entity. Datomic only requires that a schema be defined up front, enforcing type
and uniqueness constraints at runtime.

Use namespaces in schema :db/ident values to help classify entities (such as user

in :user/email). Datomic doesn’t do anything specific with namespaces, so using them

is optional. There are several options for :db/valueType, listed in Table 6-1.

Table 6-1. :db/valueType options

:db.type/keyword :db.type/string :db.type/long

:db.type/boolean :db.type/bigint :db.type/float

:db.type/double :db.type/bigdec :db.type/instant

:db.type/ref :db.type/uuid :db.type/uri

:db.type/bytes

See the Datatomic schema documentation for an exhaustive listing of their semantics.

Attributes with :db/valueType :db.type/ref can only have other entities as their val‐
ue(s). You use this type to model relationships between entities. Datomic does not en‐

force which entities are related to on a given :db/valueType :db.type/ref attribute.
Any other entity can be related to—this means that entities can relate to themselves!

You also use :db/valueType :db.type/ref and lone :db/ident values to model enu‐
merations, such as the user roles that you defined. These enumerations are not actually

schemas; they are normal entities with a single attribute, :db/ident. An entity’s :db/

ident value serves as a shorthand for that entity; you may use this value in lieu of the

entity’s :db/id value in transactions and queries.

Attributes with :db/valueType :db.type/ref and :db/unique values are implicitly

indexed as though you had added :db/index true to their definitions.

It is also possible to use Lucene full-text indexing on string attributes, using :db/full

text true and the system-defined fulltext function in Datalog.

There are two options for specifying a uniqueness constraint at :db/unique:

:db.unique/value

Disallows attempts to insert a duplicate value for a different entity ID.

:db.unique/identity

Designates that the attribute value is unique to each entity and enables “upserts”;
any attempts to insert a duplicate value for a temporary entity ID will cause all
attributes associated with that temporary ID to be merged with the entity already
in the database.

292 | Chapter 6: Databases

http://docs.datomic.com/schema.html

In the case where you are modeling entities with subentities that only exist in the context
of those entities, such as order items on an order or variants for a product, you can

use :db/isComponent to simplify working with such subentities. It can only be used on

attributes of type :db.type/ref.

When you use the :db.fn/retractEntity function in a transaction, any entities on the
value side of such attributes for the retracted entity will also be retracted. Also, when

you use d/touch to realize all the lazy keys in an entity map, component entities will be
realized too. Both the retraction and realization behaviors are recursive.

By default, Datomic stores all past values of attributes. If you do not wish to keep past

values for a particular attribute, use :db/noHistory true to have Datomic discard pre‐
vious values. Using this attribute is much like using a traditional update-in-place data‐
base.

See Also

• Recipe 6.12, “Writing Data to Datomic” on page 293, for more information on trans‐
acting datoms (schemas!)

6.12. Writing Data to Datomic
by Robert Stuttaford

Problem
You need to add data to your Datomic database.

Solution
Use a Datomic connection to transact data.

To follow along with this recipe, complete the steps in the solutions to Recipe 6.10,
“Connecting to a Datomic Database” on page 286, and Recipe 6.11, “Defining a Schema
for a Datomic Database” on page 289.

After doing this, you will have a connection, conn, and a schema installed against which
you can insert data:

(require '[datomic.api :as d :refer [q db]])

(def tx-data [{:db/id (d/tempid :db.part/user)
 :user/email "fowler@acm.org"
 :user/name "Martin Fowler"
 :user/roles [:user.roles/author :user.roles/editor]}])

6.12. Writing Data to Datomic | 293

@(d/transact conn tx-data)

(q '[:find ?name
 :where [?e :user/name ?name]]
 (:db-after tx-result))
;; -> #{["Martin Fowler"]}

Discussion
This map-based syntax for representing the data expands to a series of :db/add state‐
ments. This transaction is identical to the previous one:

(def new-id (d/tempid :db.part/user))
new-id
;; -> #db/id[:db.part/user -1000013]

(def tx-data2 [[:db/add new-id :user/email "ryan@cognitect.com"]
 [:db/add new-id :user/name "Ryan Neufeld"]
 [:db/add new-id :user/roles [:user.roles/author
 :user.roles/editor]]])

(def tx-result @(d/transact conn tx-data2)) ;; Keep this for later...

(q '[:find ?name
 :where [?e :user/name ?name]]
 (db conn))
;; -> #{["Ryan Neufeld"] ["Martin Fowler"]}

Of course, you can use statements like these yourself, or you can use the map syntax
shown in the solution. You can also mix the two. This is how you would transact multiple

entries (e.g., (d/transact conn [person1-map person2-map])).

One difference you’ll note between the map and the expanded form is the lack of a :db/

add statement for the :db/id key. In the expanded form, this value comes immediately

after the action (:db/add) and must be identical between all statements to correlate
attributes to a single entity. When specifying an entity as a map, you provide a single
ID, which the transactor transparently affixes to each attribute.

What is an appropriate ID? Any new entities are assigned temporary, negative ID values,
which can be used to model relationships within the transaction. Upon successfully
completing a transaction, all the temporary IDs are assigned in-storage positive ID

values. When working with code, the correct approach is to use the datomic.api/

tempid function to obtain a temporary ID. The datomic.api/tempid function takes a
partition keyword and an optional ID number as its arguments; for most purpos‐

es, :db.part/user will suffice.

When working with nonexecutable data, you’ll need to use the data-literal form for

temporary IDs. The literal #db/id [:db.part/user] is equivalent to (d/

tempid :db.part/user). This form is most useful when you store transaction data in

294 | Chapter 6: Databases

an .edn file, which is most often the case with schema definitions. Again, you should

use d/tempid in your code—the #db/id literal will evaluate once at compile time, which
means that any code that expects the ID value to change from one execution to the next
will fail, because it’ll only ever have one value.

Consider our example file, user-bootstrap.edn:

[{:db/id #db/id [:db.part/user]
 :user/email "fowler@acm.org"
 :user/name "Martin Fowler"
 :user/roles [:user.roles/author :user.roles/editor]}]

When a transaction completes, you’ll receive a completed future. If you prefer to transact

asynchronously, you can use d/transact-async instead, which will return its future
immediately. In this case, as with all futures, when you dereference it, it will block until
the transaction completes. Either way, dereferencing the future returns a map, with four
keys:

:db-before

The value of the database just before the transaction was committed

:db-after

The value of the database just after the transaction was committed

:tx-data

A vector of all the datoms that were transacted

:tempids

A mapping of the temporary IDs to the in-storage IDs, one per temporary ID in
the transaction

You can use the :db-after database to query the database directly after the transaction:

(def db-after-tx (:db-after tx-result))

(q '[:find ?name :in $?email :where
 [?entity :user/email ?email]
 [?entity :user/name ?name]]
 db-after-tx
 "fowler@acm.org")
;; -> #{["Martin Fowler"]}

You can use the :tempids map to find the in-storage IDs for any new entities you care
about, much like you would when retrieving the last insert ID in SQL databases. Invoke

datomic.api/resolve-tempid with the :db-after value, the :tempids value, and the
original temporary ID to retrieve the realized ID:

(d/resolve-tempid db-after-tx (:tempids tx-result) new-id)
;; -> 17592186045421

6.12. Writing Data to Datomic | 295

See Also

• Recipe 6.11, “Defining a Schema for a Datomic Database” on page 289

• Recipe 6.13, “Removing Data from a Datomic Database” on page 296

• Recipe 6.14, “Trying Datomic Transactions Without Committing Them” on page
298

6.13. Removing Data from a Datomic Database
by Robert Stuttaford

Problem
You need to remove data from your Datomic database.

Solution
To remove a value for an attribute, you should use the :db/retract operation in trans‐
actions.

To follow along with this recipe, complete the steps in the solutions to Recipe 6.10,
“Connecting to a Datomic Database” on page 286, and Recipe 6.11, “Defining a Schema
for a Datomic Database” on page 289. After doing this, you will have a connection,

conn, and a schema installed against which you can insert data.

To start things off, add a user, Barney Rubble, and verify that he has an email address:

(def new-id (d/tempid :db.part/user))

(def tx-result @(d/transact conn
 [{:db/id new-id
 :user/name "Barney Rubble"
 :user/email "barney@example.com"}]))

(def after-tx-db (:db-after tx-result))

(def barney-id (d/resolve-tempid after-tx-db
 (:tempids tx-result)
 new-id))

barney-id
;; -> 17592186045429

(d/q '[:find ?email :in $?entity-id :where
 [?entity-id :user/email ?email]]
 after-tx-db

296 | Chapter 6: Databases

 barney-id)
;; -> #{["barney@rubble.me"]}

To retract Barney’s email, transact a transaction with the :db/retract operation:

(def retract-tx-result @(d/transact conn [[:db/retract barney-id
 :user/email "barney@example.com"]]))

(def after-retract-db (:db-after retract-tx-result))

(d/q '[:find ?email :in $?entity-id :where
 [?entity-id :user/email ?email]]
 after-retract-db
 barney-id)
;; -> #{}

To retract entire entities, use the :db.fn/retractEntity built-in transactor function:

(def retract-entity-tx-result
 @(d/transact conn [[:db.fn/retractEntity barney-id]]))

(def after-retract-entity-db (:db-after retract-entity-tx-result))

(d/q '[:find ?entity-id :in $?name :where
 [?entity-id :user/name ?name]]
 after-retract-entity-db
 "Barney Rubble")
;; -> #{}

Discussion
When using :db/retract, you provide the value to retract so that in the case of
cardinality-many attributes, it’s clear which value to retract from the set of values for
that attribute. Regardless of the cardinality, if you provide a value that isn’t in storage,
nothing will be retracted. This means that you have to know what value you want to
retract; you can’t simply retract everything for an attribute by only providing the entity
ID and the attribute.

If you retract values for an attribute that does not use :db/noHistory, you will be able
to query past database values to find past values for the attribute.

If you retract values for an attribute that uses :db/noHistory, that data will be perma‐
nently deleted.

When using :db.fn/retractEntity, all attribute values for all the attributes on that

entity will be retracted, as will all :db/ref attributes that have the entity as a value. Any
component entities of the entity being retracted will themselves be recursively retracted.

You’ll find that the actual entity ID itself is not retracted, but that it will have no attributes
associated with it. This is because once an entity is created, it cannot be retracted. Re‐

6.13. Removing Data from a Datomic Database | 297

moving all the attributes and references to the entity has the same effect as if it had been
permanently removed, though!

If you need to permanently remove data due to legal concerns or because the data in
question falls outside of your domain-specified retention period, use excision to remove
the data permanently.

See Also

• The Datomic blog post covering the excision feature

6.14. Trying Datomic Transactions Without Committing
Them
by Robert Stuttaford

Problem
You want to test a transaction prior to committing it using Datalog or the entity API.

Solution
Build your transaction as usual, but instead of calling d/transact or d/transact-

async, use d/with to produce an in-memory database that includes the changes your
transaction provides.

To follow along with this recipe, complete the steps in the solutions to Recipe 6.10,
“Connecting to a Datomic Database” on page 286, and Recipe 6.11, “Defining a Schema
for a Datomic Database” on page 289. After doing this, you will have a connection,

conn, and a schema installed against which you can insert data.

First, add some data to the database about Fred Flintstone. As of about 4000 BCE, Fred
didn’t have an email, but we at least know his name:

(require '[datomic.api :as d])

(def new-id (d/tempid :db.part/user))

(def tx-result @(d/transact conn
 [{:db/id new-id
 :user/name "Fred Flintstone"}]))

Fast-forward to today: Fred is thawed, after having been frozen in ice for 6,000 years,
and he gets his first email address. Prepare a transaction to add an email to the Fred
entity:

298 | Chapter 6: Databases

http://bit.ly/datomic-excision
http://bit.ly/datomic-excision

;; Grab Fred's ID from the original transaction
(def fred-id (d/resolve-tempid (:db-after tx-result)
 (:tempids tx-result)
 new-id))

fred-id
;; -> 17592186045421

(def add-freds-email-tx [[:db/add fred-id
 :user/email "twinkletoes@example.com"]])

Now, prepare an in-memory database with this new transaction applied. First, get the
current database value to use as a basis, then create an in-memory database. Finally,

grab the :db-after value so that you can test that the email was properly added:

(defn db-with
 "Return a new database with tx applied"
 [db tx]
 (-> (d/with db tx)
 :db-after))

(def db-after (db-with (d/db conn) add-freds-email-tx))

Compare the value of Fred’s email in the current database with that of Fred’s email in
the in-memory database:

(defn users-email
 "Retrieve a user's email given the user's name."
 [db name]
 (-> (d/q '[:find ?email
 :in $?name
 :where
 [?entity :user/name ?name]
 [?entity :user/email ?email]]
 db
 name)
 ffirst))

(users-email db-after "Fred Flintstone")
;; -> "twinkletoes@example.com"

(users-email (d/db conn) "Fred Flintstone")
;; -> nil

As you can see, the current database remains unaffected by this transaction, but the

database at db-after now displays the new value.

6.14. Trying Datomic Transactions Without Committing Them | 299

Discussion
Databases produced by d/with can be used with any of the other API functions that

accept a database, including d/with itself. This means that you can layer multiple trans‐
actions on top of one another without first having to commit them to the transactor!

One of the things that makes Datomic so powerful is its ability to treat a database as a
value. For this reason, the helper functions we’ve written take a database as an argument,
not a connection. Now it is not only possible to query the current database, but other
values of the database as well.

See Also

• Recipe 6.12, “Writing Data to Datomic” on page 293, for more general information
on transacting data

6.15. Traversing Datomic Indexes
by Alan Busby and Ryan Neufeld

Problem
You want to execute simple Datomic queries with high performance.

Solution
Use the datomic.api/datoms function to directly access the core Datomic indexes in
your database.

To follow along with this recipe, complete the steps in the solutions to Recipe 6.10,
“Connecting to a Datomic Database” on page 286, and Recipe 6.11, “Defining a Schema
for a Datomic Database” on page 289. After doing this, you will have a connection,

conn, and a schema installed against which you can insert data.

For example, to quickly find the entities that have the provided attribute and value set,

invoke datomic.api/datoms, specifying the :avet index (attribute, value, entity, trans‐
action) and the desired attribute and value:

(require '[datomic.api :as d])

(d/transact conn [{:db/id (d/tempid :db.part/user)
 :user/name "Barney Rubble"
 :user/email "barney@example.com"}])

(defn entities-with-attr-val
 "Return entities with a given attribute and value."

300 | Chapter 6: Databases

 [db attr val]
 (->> (d/datoms db :avet attr val)
 (map :e)
 (map (partial d/entity db))))

(def barney (first (entities-with-attr-val (d/db conn)
 :user/email
 "barney@example.com")))

(:user/email barney)
;; -> "barney@example.com"

This will only work for attributes where :db/index is true or :db/

unique is not nil.

To quickly determine all of the attributes an entity has, use the :eavt-ordered index:

(defn entities-attrs
 "Return attrs of an entity"
 [db entity]
 (->> (d/datoms db :eavt (:db/id entity))
 (map :a)
 (map (partial d/entity db))
 (map :db/ident)))

(entities-attrs (d/db conn) barney)
;; -> (:user/email :user/name)

To quickly find entities that refer, via :db.type/ref, to a provided entity, use the :vaet-
ordered index:

;; Add a person that refers to a :user.roles/author role
(d/transact conn [{:db/id (d/tempid :db.part/user)
 :user/name "Ryan Neufeld"
 :user/email "ryan@rkn.io"
 :user/roles [:user.roles/author :user.roles/editor]}])

(defn referring-to
 "Find all entities referring to an entity as a certain attribute."
 [db entity]
 (->> (d/datoms db :vaet (:db/id entity))
 (map :e)
 (map (partial d/entity db))))

(def author-entity (d/entity (d/db conn) :user.roles/author))

;; The names of all users with a :user.roles/author role

6.15. Traversing Datomic Indexes | 301

(map :user/name (referring-to (d/db conn) author-entity))
;; -> ("Ryan Neufeld")

Discussion
For simple lookup queries, like “find by attribute” or “find by value”, nothing beats

Datomic’s raw indexes in terms of performance. The datomic.api/datoms interface
provides access to all of Datomic’s indexes and conveniently lets you dive in any number
of levels, “biting off ” only the data you need.

As with most Datomic functions, datoms takes a db as its first argument. You’ll note that
in our examples, and elsewhere in the book, we too accept a database as a value, and not
a connection—this idiom allows API users to perform varying numbers of operations
on the same database value. You should always try to do this yourself.

The second argument to datoms indicates the particular index you want to access. Each

value is a permutation of the letters e (entity), a (attribute), v (value), and t (transaction).

The order of the letters in an index indicates how it is indexed. For example, :eavt
should be traversed by entity, then attribute, and so on and so forth. The four indexes
and what they include are as follows:

:eavt

An entity-first index that includes all datoms. This index provides a view over your
database very much like a traditional relational database.

:aevt

An attribute-then-entity index that includes all datoms. This index provides col‐
umnar access to your database, much like a data warehouse.

:avet

An attribute-value index that only includes attributes where :db/index is true.
Incredibly useful as a lookup index (e.g., “I need the entity with an email of foo@ex‐
ample.com”).

:vaet

A value-first index that only includes :db.type/ref values. This is a very interesting
index that can be used to treat your data a bit like a graph database.

After specifying an index ordering, you can optionally provide any number of compo‐
nents to pre-traverse the index. This serves to reduce the number of elements returned.
For example, specifying just an attribute component for AVET traversal will return any
entity with that attribute. Specifying an attribute and a value component, on the other
hand, will return only entities with that specific attribute and value pair.

What is returned by datoms is a stream of Datum objects. Each datum responds to :a, :e,

t, :v, and :added as functions.

302 | Chapter 6: Databases

See Also

• Recipe 6.12, “Writing Data to Datomic” on page 293

6.15. Traversing Datomic Indexes | 303

CHAPTER 7

Web Applications

7.0. Introduction
Web application development is the breadwinner for many languages nowadays; Clo‐
jure is no exception. In the annual 2013 State of Clojure Survey, web development
ranked first for the question, “In which domains are you applying Clojure and/or Clo‐
jureScript?”

Much of the Clojure web development community today centers around Ring, an HTTP
server library very much akin to Ruby’s Rack. Starting with the introduction to Ring in
Recipe 7.1, “Introduction to Ring” on page 305, you’ll find a full complement of recipes
here that will get you up to speed in no time.

Following Ring, the chapter takes a tour of the other Clojure web development ecosys‐
tems available at the time of writing, covering a few templating and HTML-
manipulation libraries and a number of alternative web frameworks.

7.1. Introduction to Ring
by Adam Bard

Problem
You need to write an HTTP service with Clojure.

Solution
Clojure has no built-in HTTP server, but the de facto standard for serving basic, syn‐
chronous HTTP requests is the Ring library.

305

http://bit.ly/clojure-survey-2013
https://github.com/ring-clojure/ring
http://rack.github.io/

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 clojure.pprint))

;; Echo (with pretty-print) the request received
(defn handler [request]
 {:status 200
 :headers {"content-type" "text/clojure"}
 :body (with-out-str (clojure.pprint/pprint request))})

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty handler {:port 3000}))

Discussion
Ring is the basis for most web applications in Clojure. It provides a low-level and
straightforward request/response API, where requests and responses are plain old Clo‐
jure maps.

Ring applications are architected around handlers: functions that accept requests and
return responses. The preceding example defines a single handler that just echoes the
response it receives.

A basic response map consists of three keys: :status, the status code of the re‐

sponse; :headers, an optional string-string map of the response headers you want;

and :body, the string you want as your response body. Here, :status is 200 and :body
is a pretty-printed string of the request. Therefore, the following sample response from
hitting the URL http://localhost:3000/test/path/?qs=1 on the author’s machine demon‐
strates the structure of a request:

{:ssl-client-cert nil,
 :remote-addr "0:0:0:0:0:0:0:1",
 :scheme :http,
 :request-method :get,
 :query-string "qs=1",
 :content-type nil,
 :uri "/test/path/",
 :server-name "localhost",
 :headers
 {"accept-encoding" "gzip,deflate,sdch",
 "connection" "keep-alive",
 "user-agent"
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_4) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/28.0.1500.71 Safari/537.36",
 "accept-language" "en-US,en;q=0.8",

306 | Chapter 7: Web Applications

https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest
https://github.com/ring-clojure/ring

 "accept"
 "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "host" "localhost:3000",
 "cookie" ""},
 :content-length nil,
 :server-port 3000,
 :character-encoding nil,
 :body #<HttpInput org.eclipse.jetty.server.HttpInput@43efe432>}

You can see that this is comprehensive, but low level, with the salient features of the
request parsed into Clojure data structures without additional abstraction. Typically,
additional code or libraries are used to extract meaningful information from this data
structure.

The jetty adapter is used to run an embedded Jetty server. Ring also comes with adapt‐
ers to run as a servlet in any Java servlet container.

Note that the call to run-jetty is synchronous and will not return as long as the server
is running. If you call it from the REPL, you should wrap it in a future (or use some
other concurrency mechanism) so the server runs on another thread and your REPL
does not become unresponsive.

See Also

• Ring’s GitHub repository

7.2. Using Ring Middleware
by Adam Bard

Problem
You’d like to build a transformation to be automatically applied to Ring requests or
responses. For example, Ring gives you query strings, but you’d really rather work with
a parsed map.

Solution
Since Ring works with regular Clojure data and functions, you can easily define mid‐
dlewares as functions returning functions. In this case, define a middleware that modi‐
fies the request by adding a parsed version of the query string to the request before
passing it on to the handler.

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

7.2. Using Ring Middleware | 307

https://github.com/ring-clojure/ring
https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 [clojure.string :as str]
 clojure.pprint))

(defn parse-query-string
 "Parse a query string to a hash-map"
 [qs]
 (if (> (count qs) 0) ; Don't operate on nils or empty strings
 (apply hash-map (str/split qs #"[&=]"))))

(defn wrap-query
 "Add a :query parameter to incoming requests that contains a parsed
 version of the query string as a hash-map"
 [handler]
 (fn [req]
 (let [parsed-qs (parse-query-string (:query-string req))
 new-req (assoc req :query parsed-qs)]
 (handler new-req))))

(defn handler [req]
 (let [name (get (:query req) "name")]
 {:status 200
 :body (str "Hello, " (or name "World"))}))

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty (wrap-query handler) {:port 3000}))

Discussion
Since Ring handlers operate on regular Clojure maps, it’s very easy to write a middleware
that wraps a handler. Here, we write a middleware that modifies the request before
passing it to the handler. If the original request looked like this:

{:query-string "x=1&y=2"
 ; ... and the rest
 }

then the request received by the handler becomes:

{:query-string "x=1&y=2"
 :query {"x" "1" "y" "2"}
 ; ... and the rest
 }

However, you don’t need to write your own middleware for this. Ring provides a number

of middlewares to add to your apps, including one called wrap-params that does the
same as the middleware we just wrote, but better. From the Ring documentation:

308 | Chapter 7: Web Applications

http://bit.ly/clj-wrap-params

wrap-params

Middleware to parse urlencoded parameters from the query string and form body (if the
request is a urlencoded form). Adds the following keys to the request map:

:query-params - a map of parameters from the query string

:form-params - a map of parameters from the body

:params - a merged map of all types of parameter

Takes an optional configuration map. Recognized keys are:

:encoding - encoding to use for url-decoding. If not specified, uses the request character
encoding, or “UTF-8” if no request character encoding is set.

You are in no way limited to using one middleware. Usually, you’ll at least want to use
the cookie, session, and parameter middleware. One concise way to wrap your handler

with several middlewares is to use the -> macro:

(require '[ring.middleware.session :refer [wrap-session]])
(require '[ring.middleware.cookies :refer [wrap-cookies]])
(require '[ring.middleware.params :refer [wrap-params]])
(def wrapped-handler
 (-> handler
 wrap-cookies
 wrap-params
 wrap-session))

See Also

• Ring’s middleware concepts documentation

7.3. Serving Static Files with Ring
by Clinton Dreisbach

Problem
You want to serve static files through your Ring application.

Solution
Use ring.middleware.file/wrap-file:

(require '[ring.middleware.file :refer [wrap-file]])

;; Serve all files from your public directory
(def app
 (wrap-file handler "/var/webapps/public"))

7.3. Serving Static Files with Ring | 309

http://bit.ly/ring-middleware

Discussion
wrap-file wraps another web request handler so that you will serve a static file if one
exists in the specified directory, and call the handler if the requested file does not exist.

wrap-file is only one way to serve static files. If you only want to serve up a particular

file, ring.util.response/file-response will return a handler that serves up that file:

(require '[ring.util.response :refer [file-response]])

;; Serve README.html
(file-response "README.html")

;; Serve README.html from the public/ directory
(file-response "README.html" {:root "public"})

;; Serve README.html through a symlink
(file-response "README.html" {:allow-symlinks? true})

Often, you will want to bundle your static files with your application. In that case, it
makes more sense to serve files from your classpath rather than from a specific directory.

For this, use ring.middleware.resource/wrap-resource:

(require '[ring.middleware.resource :refer [wrap-resource]])

(def app
 (wrap-resource handler "static"))

This will serve all files under a directory called static in your classpath. You can put the
static directory under resources/ in a Leiningen project and have your static files pack‐
aged with JAR files you generate from that project.

You may want to wrap any file responses with ring.middleware.file-info/wrap-

file-info. This Ring middleware checks the modification date and the type of the file,

setting the Content-Type and Last-Modified headers. wrap-file-info needs to wrap

around wrap-file or wrap-resource.

See Also

• Recipe 4.4, “Accessing Resource Files” on page 171

• Recipe 7.8, “Routing Requests with Compojure” on page 318

310 | Chapter 7: Web Applications

7.4. Handling Form Data with Ring
by Adam Bard

Problem
You want your app to accept user input using an HTML form.

Solution
Use ring.middleware.params/wrap-params to add incoming HTTP form parameters
to incoming request maps.

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 [ring.middleware.params :refer [wrap-params]]))

(def greeting-form
 (str
 "<html>"
 " <form action='' method='post'>"
 " Enter your name: <input type='text' name='name'>
"
 " <input type='submit' value='Say Hello'>"
 " </form>"
 "</html>"))

(defn show-form []
 {:body greeting-form
 :status 200 })

(defn show-name
 "A response showing that we know the user's name"
 [name]
 {:body (str "Hello, " name)
 :status 200})

(defn handler
 "Show a form requesting the user's name, or greet them if they
 submitted the form"
 [req]
 (let [name (get-in req [:params "name"])]
 (if name
 (show-name name)
 (show-form))))

7.4. Handling Form Data with Ring | 311

https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty (wrap-params handler) {:port 3000}))

Discussion
wrap-params is a Ring middleware that handles the retrieval of query string and form
parameters from raw requests. It adds three keys to the request:

:query-params

Contains a map of the parsed query string parameters

:form-params

Contains a map of form body parameters

:params

Contains the contents of both :query-params and :form-params merged together

In the preceding example we used :form-params, so our handler will only respond with
a greeting on POST requests containing form-encoded parameters. If we had

used :params, we would have had the option of also passing a URL query string with a

"name" parameter. :params works with any kind of parameter (form- or URL-

encoded). :form-params only works for form parameters.

Note that the form keys are passed in as strings, not keywords.

See Also

• Recipe 7.2, “Using Ring Middleware” on page 307

• Ring’s parameters documentation

7.5. Handling Cookies with Ring
by Adam Bard

Problem
Your web application needs to read or set cookies on the user’s browser (for example,
to remember a user’s name).

Solution
Use the ring.middleware.cookies/wrap-cookies middleware to add cookies to your
requests.

312 | Chapter 7: Web Applications

http://bit.ly/ring-parameters

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 [ring.middleware.cookies :refer [wrap-cookies]]
 [ring.middleware.params :refer [wrap-params]]))

(defn set-name-form
 "A response showing a form for the user to enter their name."
 []
 {:body "<html>
 <form action=''>
 Name: <input type='text' name='name'>
 <input type='submit'>
 </form>
 </html>"
 :status 200
 :content-type "text/html"})

(defn show-name
 "A response showing that we know the user's name"
 [name]
 {:body (str "Hello, " name)
 :cookies {"name" {:value name}} ; Preserve the cookies
 :status 200 })

(defn handler
 "If we know the user's name, show it; else, show a form to get it."
 [req]
 (let [name (or
 (get-in req [:cookies "name" :value])
 (get-in req [:params "name"]))]
 (if name
 (show-name name)
 (set-name-form))))

(def wrapped-handler
 (-> handler
 wrap-cookies
 wrap-params))

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty wrapped-handler {:port 3000}))

Discussion
This example uses the wrap-cookies and wrap-params middlewares included with

ring-core. The first time users visit a page, it shows them a form to enter their names.

7.5. Handling Cookies with Ring | 313

https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

Once entered, it stores the user’s name in a cookie and displays it instead, until the cookie
is removed.

The example uses wrap-cookies to retrieve the user’s stored name from the cookie map,

or, if it’s not there, wrap-params to retrieve the user’s name from the request parameters.

Ring’s cookie middleware simply adds an extra parameter, :cookies, onto the incoming

request map, and sets any cookies you pass out as the :cookies parameter on the re‐

sponse. The :cookies parameter is a map that looks something like this:

{"name" {:value "Some Guy"}}

You can add other optional parameters to each cookie, along with :value. From the
Ring cookie documentation:

As well as setting the value of the cookie, you can also set additional attributes:

• :domain—restrict the cookie to a specific domain

• :path—restrict the cookie to a specific path

• :secure—restrict the cookie to HTTPS URLs if true

• :http-only—restrict the cookie to HTTP if true (not accessible via e.g. JavaScript)

• :max-age—the number of seconds until the cookie expires

• :expires—a specific date and time the cookie expires

See Also

• Recipe 7.2, “Using Ring Middleware” on page 307

• Ring’s cookies documentation

7.6. Storing Sessions with Ring
by Adam Bard

Problem
You need to store secure data about a logged-in user as state on the server.

Solution
Use ring.middleware.session/wrap-session to add sessions to your Ring applica‐
tion.

314 | Chapter 7: Web Applications

http://bit.ly/ring-cookies
http://bit.ly/ring-cookies

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 [ring.middleware.session :refer [wrap-session]]
 [ring.middleware.params :refer [wrap-params]]))

(def login-form
 (str
 "<html>"
 " <form action='' method='post'>"
 " Username: <input type='text' name='username'>
"
 " Password: <input type='text' name='password'>
"
 " <input type='submit' value='Log In'>"
 " </form>"
 "</html>"))

(defn show-form []
 {:body login-form
 :status 200 })

(defn show-name
 "A response showing that we know the user's name"
 [name session]
 {:body (str "Hello, " name)
 :status 200
 :session session })

(defn do-login
 "Check the submitted form data and update the session if necessary"
 [params session]
 (if (and (= (params "username") "jim")
 (= (params "password") "password"))
 (assoc session :user "jim")
 session))

(defn handler
 "Log a user in, or not"
 [{session :session params :form-params :as req}]
 (let [session (do-login params session)
 username (:user session)]

 (if username
 (show-name username session)
 (show-form))))

(def wrapped-handler
 (-> handler
 wrap-session

7.6. Storing Sessions with Ring | 315

https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

 wrap-params))

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty wrapped-handler {:port 3000}))

Discussion
Ring’s session middleware has an API similar to the cookies API. You get session data

from the :session request map, and set it by including a :session key in the response

map. Whatever you pass to :session is up to you, but usually you’ll want to use a map
to store keys and values.

Behind the scenes, Ring sets a cookie called ring-session, which contains a unique ID
identifying the session. When a request comes in, the session middleware gets the ses‐
sion ID from the request, then reads the value of the session from some session store.

Which session store the middleware uses is configurable. The default is to use an in-
memory session store, which is useful for development but has the side effect of losing
sessions whenever you restart the app. Ring includes an encrypted cookie store as well,
which is persistent, and you can get third-party libraries for many popular storages,
including Memcached and Redis. You can write your own, too, to store your sessions
in any database.

You can set your store by passing an options map with a :store parameter to wrap-

session:

(wrap-session handler {:store (my-store)}))

To set the value of :session, just pass it along with your response. If you don’t need the

session changed, leave :session out of your response. If you want to actually clear the

session, pass nil as the value of the :session key.

See Also

• Recipe 7.2, “Using Ring Middleware” on page 307

• Ring’s sessions documentation

7.7. Reading and Writing Request and Response Headers
in Ring
by Luke VanderHart and Adam Bard

316 | Chapter 7: Web Applications

http://bit.ly/ring-sessions
http://bit.ly/ring-session-memcached
https://github.com/wuzhe/clj-redis-session
http://bit.ly/ring-sessions

Problem
You need to read or write HTTP request or response headers.

Solution
Read from the :headers key in a Ring request map, or assoc values onto the response
map before returning from a Ring handler function.

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]))

(defn user-agent-as-json
 "A handler that returns the User-Agent header as a JSON
 response with an appropriate Content-Type"
 [req]
 {:body (str "{\"user-agent\": \"" (get-in req [:headers "user-agent"]) "\"}")
 :headers {"Content-Type" "application/json"}
 :status 200})

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty user-agent-as-json {:port 3000}))

Discussion
This example defines a Ring handler that returns the incoming User-Agent header as

a JSON response. It gets the User-Agent from the request header map, and uses a

Content-Type header in the response to indicate to the client that it should be parsed
as JSON.

Ring passes request headers as a :headers parameter in the request map, and accepts

a :headers parameter in response maps as well. The keys and values of the headers map
should both be strings. Clojure keywords are not supported.

You can use Ring to set any header that is valid in HTTP.

According to RFC-2616, header names are not case sensitive. To make it easier to con‐

sistently get values from the request map, no matter what their case, Ring passes in all
header values as lowercase, regardless of what the client sent. You may wish to send
headers using the actual capitalization used in the specification, though, just in case the
client you’re communicating with is not compliant (following the classic robustness
principle: “Be conservative in what you send; be liberal in what you accept”).

7.7. Reading and Writing Request and Response Headers in Ring | 317

https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest
http://bit.ly/http-header-fields
http://bit.ly/rfc2616

See Also

• Ring’s concepts documentation

7.8. Routing Requests with Compojure
by Adam Bard

Problem
You want an easy way to route URLs to specific Ring handler functions.

Solution
Use the Compojure library to add routing to your app.

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [compojure.core :refer [defroutes GET]]
 [ring.adapter.jetty :as jetty]))

;; View functions
(defn view [x]
 (str "<h1>" x "</h1>"))

(defn index []
 (view "Hello"))

(defn index-fr []
 (view "Bonjour"))

;; Routing
(defroutes main-routes
 (GET "/" [] (index))
 (GET "/en/" [] (index))
 (GET "/fr/" [] (index-fr))
 (GET "/:greeting/" [greeting] (view greeting)))

;; Server
(defn -main []
 (jetty/run-jetty main-routes {:port 3000}))

318 | Chapter 7: Web Applications

http://bit.ly/ring-concepts
https://github.com/weavejester/compojure
https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

1. If you’re not familiar with Clojure’s destructuring syntax, we suggest reading Jay Fields’s “Clojure: Destruc‐
turing” blog post. For a more extensive resource, pick up a copy of Clojure Programming (O’Reilly) by Chas
Emerick, Brian Carper, and Christophe Grand, which covers destructuring in depth.

Discussion
Compojure is a routing library that lets you define routes for your app. It does this via

the defroutes macro, which produces a Ring handler function.

Here, we define four routes:

/

Displays “Hello”

/en/

Also displays “Hello”

/fr/

Displays “Bonjour”

/:greeting/

Echoes the greeting passed by the user

The last view is an example of Compojure’s URL parameter syntax. The section of the

URL identified by :greeting is passed along to the view, which displays it for the user.
So, visiting http://localhost:3000/Buenos%20Dias/ displays “Buenos Dias” in response.

One caveat to be aware of is that Compojure routes are sensitive to a trailing slash: a

route defined as /users/:user/blog/ will not match the URL http://mysite.com/users/
fred/blog, but it will match http://mysite.com/users/fred/blog/.

The [] in each route is actually syntactic sugar for intercepting these parameters. You

can also use req or any other symbol to get the whole request:

(defroutes main-routes-2
 (GET "/" req (some-view req)))

You can even use Clojure’s destructuring syntax1 to extract parts of the request. For

example, if you’re using the wrap-params middleware, you can grab the parameters and
pass them to a function:

(defroutes main-routes-2
 (GET "/" {params :params} (some-other-view params)))

It is important to realize that Compojure works on top of Ring. Your views should still
return Ring response maps (although Compojure will wrap strings you return with a
basic 200 response).

7.8. Routing Requests with Compojure | 319

http://bit.ly/destructuring
http://bit.ly/destructuring
http://www.clojurebook.com/

You can also define routes for other types of HTTP requests by specifying the route

using the relevant Compojure directive: compojure.core/POST and

compojure.core/PUT are most commonly used, in addition to compojure.core/GET.

Compojure provides a few other helpful tools, such as compojure.route, which pro‐

vides helpers for serving resources, files, and 404 responses; and compojure.handler,
which bundles a number of Ring middlewares into one convenient wrapper.

See Also

• The Compojure website

7.9. Performing HTTP Redirects with Ring
by Craig McDaniel

Problem
In a Ring application, you need to return an HTTP response code that will redirect the
browser to another URL.

Solution
To redirect a Ring request, use the redirect function in the ring.util.response
namespace.

To follow along with this recipe, clone the https://github.com/clojure-cookbook/ringt
est repository and overwrite src/ringtest.clj:

(ns ringtest
 (:require
 [ring.adapter.jetty :as jetty]
 [ring.util.response :as response]))

(defn redirect-to-github
 "A handler that redirects all requests"
 [req]
 (response/redirect "http://github.com/"))

(defn -main []
 ;; Run the server on port 3000
 (jetty/run-jetty redirect-to-github {:port 3000}))

320 | Chapter 7: Web Applications

http://bit.ly/compojure-route
http://bit.ly/compojure-handler
http://compojure.org
https://github.com/clojure-cookbook/ringtest
https://github.com/clojure-cookbook/ringtest

Discussion
The ring.util.response namespace contains a function for redirecting to a URL. This

URL can be generated dynamically from the request map (using parameters from wrap-

params, headers, etc.). Underneath, this function simply creates a response map with a

302 :status value and a location header containing the URL to redirect to.

According to the HTTP specification, if the response method is a POST, PUT, or DE‐
LETE, it should be assumed that the server received the request, and the client should
issue a GET request to the URL in the location header. This is an important caveat when
writing REST services. Fortunately, the specification provides a 307 status code, which
should signal to clients that the request should be redirected to the new location using
the original method and body. To do this, simply return a response map in the handler
function like so:

(defn redirect-to-github
 [req]
 {:status 307
 :headers {"Location" "http://github.com"}
 :body ""})

See Also

• Ring’s concepts documentation

7.10. Building a RESTful Application with Liberator
by Eric Normand

Problem
You want to build a RESTful (RFC 2616–compliant) web application on top of Ring and
Compojure at a higher level of abstraction, by defining resources.

Solution
Use Liberator to create HTTP-compliant, RESTful web apps.

To follow along with this recipe, create a new project using the command lein new

liberator-test.

Inside your project.clj, add the following dependencies to your :dependencies key:

[compojure "1.0.2"]
[ring/ring-jetty-adapter "1.1.0"]
[liberator "0.9.0"]

7.10. Building a RESTful Application with Liberator | 321

http://bit.ly/ring-concepts
https://github.com/clojure-liberator/liberator

Then, modify src/liberator_test/core.clj to match the following contents:

(ns liberator-test.core
 (:require [compojure.core :refer [defroutes ANY]]
 [ring.adapter.jetty :as jetty]
 [liberator.core :refer [defresource]]))

;; Resources

(defresource root
 :available-media-types #{"text/plain"})

;; Routing
(defroutes main-routes
 (ANY "/" [] root))

;; Server
(defn -main []
 (jetty/run-jetty main-routes {:port 3000}))

Discussion
Liberator is a library for developing HTTP-compliant web servers. It handles content
negotiation, status codes, and standard request methods on RESTful resources. It de‐
cides what status to respond with using a decision tree, which follows the HTTP spec.

Liberator does not handle routing, so another library needs to be used. In this recipe,
Compojure was used. Since Liberator does a better job of handling the request method

(GET, PUT, POST, etc.), you should use ANY in your Compojure routes. You could also
use a different routing library, such as Clout, Moustache, or the playnice router.

The defresource form defines a web resource, which is modeled as a Ring handler. You
can therefore pass the resource as the last argument to Compojure routes.

Liberator resources are set up with sensible defaults. The default for the available media
types is the empty set, so it needs to be set to something; otherwise, Liberator will return

a 406 “Not Acceptable” response. In this recipe it is set to respond with text/plain as
the MIME type. The default response is “OK,” which you will see if you run the recipe
and point a browser at http://localhost:3000.

See Also

• Recipe 7.1, “Introduction to Ring” on page 305, for information on setting up Ring

• Recipe 7.8, “Routing Requests with Compojure” on page 318, for more information
on Compojure routes

• Liberator’s home page

322 | Chapter 7: Web Applications

https://github.com/clojure-liberator/liberator
https://github.com/weavejester/clout
https://github.com/cgrand/moustache
https://github.com/ericnormand/playnice
http://bit.ly/clj-liberator

7.11. Templating HTML with Enlive
by Luke VanderHart

Problem
You want to create HTML dynamically based on a template, without using traditional
mixed code or DSL-style templating.

Solution
Use Enlive, a Clojure library that takes a selector-based approach to templating HTML.
Unlike other template frameworks like PHP, ERB, and JSP, it doesn’t mix code and text.
And unlike systems like Haml or Hiccup, it doesn’t use specialized DSLs. Instead, tem‐
plates are plain old HTML files, and Enlive uses Clojure code to target specific areas for
replacement or duplication based on incoming data.

To follow along with this recipe, start a REPL using lein-try:

$ lein try enlive

To begin, create a file post.html to serve as an Enlive template:

<html>

 <head><title>Page Title</title></head>
 <body>
 <h1>Page Title</h1>
 <h3>By Mickey Mouse</h3>
 <div class="post-body">
 Lorem ipsum etc...
 </div>
 </body>
</html>

Place this file in the resources/ directory, if you’re using Enlive in the
context of a project.

The following Clojure code defines an Enlive template based on the contents of
post.html:

(require '[net.cgrand.enlive-html :as html])

;; Define the template
(html/deftemplate post-page "post.html"
 [post]
 [:title] (html/content (:title post))

7.11. Templating HTML with Enlive | 323

https://github.com/cgrand/enlive

 [:h1] (html/content (:title post))
 [:span.author] (html/content (:author post))
 [:div.post-body] (html/content (:body post)))

;; Some sample data
(def sample-post {:author "Luke VanderHart"
 :title "Why Clojure Rocks"
 :body "Functional programming!"})

To apply the template to the data, invoke the function defined by deftemplate. Since it
returns a sequence of strings, in most applications you’ll probably want to concatenate
the results into a single string:

(reduce str (post-page sample-post))

Here’s the formatted output:

<html>

 <head><title>Why Clojure Rocks</title></head>
 <body>
 <h1>Why Clojure Rocks</h1>
 <h3>By Luke VanderHart</h3>
 </h3><div class="post-body">Functional programming!</div>
 </body>
</html>

See the following discussion section for a detailed explanation of the deftemplate
macro and what is actually happening in this code.

Repeating elements

The preceding code simply replaces the values of certain nodes in the emitted HTML.
In real scenarios, another common task is to repeat certain items from input HTML,
one repetition for each item in the input data. For this task, Enlive provides snippets,
which are selections from an input HTML that can then be repeated as many times as
desired in the output of another template:

(def sample-post-list
 [{:author "Luke VanderHart"
 :title "Why Clojure Rocks"
 :body "Functional programming!"}
 {:author "Ryan Neufeld"
 :title "Clojure Community Management"
 :body "Programmers are like..."}
 {:author "Rich Hickey"
 :title "Programming"
 :body "You're doing it completely wrong."}])

(html/defsnippet post-snippet "post.html"
 {[:h1] [[:div.post-body (html/nth-of-type 1)]]}
 [post]
 [:h1] (html/content (:title post))

324 | Chapter 7: Web Applications

 [:span.author] (html/content (:author post))
 [:div.post-body] (html/content (:body post)))

(html/deftemplate all-posts-page "post.html"
 [post-list]
 [:title] (html/content "All Posts")
 [:body] (html/content (map post-snippet post-list)))

Invoking the defined all-posts-page function now returns an HTML page populated
with all three sample posts:

(reduce str (all-posts-page sample-post-list))

Here’s the formatted output:

<html>

 <head><title>All Posts</title></head>
 <body>
 <h1>Why Clojure Rocks</h1>
 <h3>By Luke VanderHart</h3>
 <div class="post-body">Functional programming!</div>
 <h1>Clojure Community Management</h1>
 <h3>By Ryan Neufeld</h3>
 <div class="post-body">Programmers are like...</div>
 <h1>Programming</h1>
 <h3>By Rich Hickey</h3>
 <div class="post-body">You're doing it completely wrong.</div>
 </body>
</html>

In this example, the defsnippet macro defines a snippet over a range of elements in

the input HTML, from the <h1> element to the <div class="post-body">.

Then, the deftemplate for all-posts-page uses the result of mapping post-snippet

over the content of the body element. Since there are three posts in the sample input
data, the snippet is evaluated three times, and there are three posts output in the resulting
HTML.

Discussion
Enlive can be slightly difficult to get the hang of, compared to some other libraries.
There are several contributing factors to this:

• It has a more novel conceptual approach than other templating systems (although
it bears a lot of similarity to some other non-Clojure templating techniques, such
as XSLT).

• It utilizes functional programming techniques to the fullest, including liberal use
of higher-order functions.

7.11. Templating HTML with Enlive | 325

• It’s a large library, capable of many things. The subset of features required to ac‐
complish a particular task is not always evident.

In general, the best way to get past these issues and experience the power and flexibility
that Enlive can provide is to understand all the different parts individually, and what
they do. Then, composing them into useful templating systems becomes more man‐
ageable.

Enlive and the DOM

First of all, it is important to understand that Enlive does not operate on HTML text
directly. Instead, it first parses the HTML into a Clojure data structure representing the
DOM (Document Object Model). For example, the HTML fragment:

<div id="foo">
 Hello!
</div>

would be parsed into the Clojure data:

{:tag :html,
 :attrs nil,
 :content
 ({:tag :body,
 :attrs nil,
 :content
 ({:tag :div,
 :attrs {:id "foo"},
 :content
 ({:tag :span, :attrs {:class "bar"}, :content ("Hello!")})})})}

This is more verbose, but it is easier to manipulate from Clojure. You won’t necessarily
have to deal with these data structures directly, but be aware that anywhere Enlive says
it operates on an element or a node, it means the Clojure data structure for the element,
not the HTML string.

Templates

The most important element of these examples is the deftemplate macro. deftem

plate takes a symbol as a name, a classpath-relative path to an HTML file, an argument
list, and a series of selector and transform function pairs. It emits a function, bound to
the same name and of the specified arguments, which, when called, will return the
resulting HTML as a sequence of strings.

An Enlive selector is a Clojure data structure that identifies a specific node in the input
HTML file. They are similar to CSS selectors in operation, although somewhat more

capable. In the example in the solution, [:title] selects each <title> element,

[:span.author] each with class="author", etc. More selector forms are de‐
scribed in the following subsection.

326 | Chapter 7: Web Applications

A template transform function takes an Enlive node and returns a modified node. Our

example uses Enlive’s content utility function, which returns a function that swaps the
contents of a node with the value given as its argument.

The return value is not itself a string, but a sequence of strings, each one a small fragment
of HTML code. This allows the underlying data structure to be transformed to a string
representation lazily. For simplicity, our example just reduces the string concatenation

function str across the results, but this is actually not optimally performant. To build

a string most efficiently, use the Java StringBuilder class, which uses mutable state to

build up a String object with the best possible performance. Alternatively, forego the
use of strings altogether and pipe the result seq of the template function directly into

an output Writer, which most web application libraries (including Ring) can use as the
body of an HTTP response (the most common destination for templated HTML).

Selectors

Enlive selectors are data structures that identify one or more HTML nodes. They de‐
scribe a pattern of data—if the pattern matches any nodes in the HTML data structure,
the selector will select those nodes. A selector may select one, many, or zero nodes from
a given HTML document, depending on how many matches the pattern has.

The full reference for valid selector forms is quite complex, and beyond the scope of
this recipe. See the formal selector specification for complete documentation.

The following selector patterns should be sufficient to get you started:

[:div]

Selects all <div> element nodes.

[:div.sidebar]

Selects all <div> element nodes with a CSS class of "sidebar".

[:div#summary]

Selects the <div> element with an HTML ID of "summary".

[:p :span]

Selects all elements that are descendants of <p> elements.

[:div.menu :ul :li :span]

Selects only elements inside an element inside a element inside

a <div> element with a CSS style of "menu".

[[:div (nth-child 2)]]

Selects all <div> elements that are the second children of their parent elements. The
double square brackets are not a typo—the inner vector is used to denote a logical

and condition. In this case, the matched element must be a <div>, and the nth-

child predicate must hold true.

7.11. Templating HTML with Enlive | 327

http://bit.ly/enlive-syntax

Other predicates besides nth-child are available, as well as the ability to define custom
predicates. See the Enlive documentation for more details.

Finally, there is a special type of selector called a range selector that is not specified by
a vector, but rather by a map literal (in curly braces). The range selector contains two
other selectors and inclusively matches all the nodes between the two matched nodes,
in document order. The starting node is in key position in the map literal and the ending

node is in value position, so the selector {[:.foo] [:.bar]} will match all nodes be‐
tween nodes with an ID of “foo” and an ID of “bar”.

The example in the solution uses a range selector in the defsnippet form to select all
the nodes that are part of the same logical blog post, even though they aren’t wrapped
in a common parent element.

Snippets

A snippet is similar to a template, in that it produces a function based on a base HTML
file. However, snippets have two major differences from templates:

1. Rather than always rendering the entire HTML file like a template does, snippets
render only a portion of the input HTML. The portion to be rendered is specified

by an Enlive selector passed as the third argument to the defsnippet macro, right
after the name and the path to the HTML file.

2. The return values of the emitted functions are Enlive data structures rather than
HTML strings. This means that the results of rendering a snippet can be returned
directly from the transform function of a template or another snippet. This is where
Enlive starts to show its power; snippets can be recycled and reused extensively and
in different combinations.

Other than these differences, the defsnippet form is identical to deftemplate, and after
the selector, the rest of the arguments are the same—an argument vector and a series of
selector and transform function pairs.

Using Enlive for scraping

Because of its emphasis on selectors and use of plain, unannotated HTML files, Enlive
is extremely useful not just for templating and producing HTML, but also for parsing
and scraping data from HTML from any source.

To use Enlive to extract data from HTML, you must first parse the HTML file into an

Enlive data structure. To do this, invoke the net.cgrand.enlive-html/html-

resource function on the HTML file. You may specify the file as a java.net.URL, a

java.io.File, or a string indicating a classpath-relative path. The function will return
the parsed Enlive data structure representing the HTML DOM.

328 | Chapter 7: Web Applications

Then, you can use the net.cgrand.enlive-html/select function to apply a selector

to the DOM and extract specific data. Given a node and a selector, select will return

only the matched nodes. You can then use the net.cgrand.enlive-html/text function
to retrieve the text content of a node.

For example, the following function will return a sequence of the most recent n comic
titles in the XKCD archives:

(defn comic-titles
 [n]
 (let [dom (html/html-resource
 (java.net.URL. "http://xkcd.com/archive"))
 title-nodes (html/select dom [:#middleContainer :a])
 titles (map html/text title-nodes)]
 (take n titles)))

(comic-titles 5)
;; -> ("Oort Cloud" "Git Commit" "New Study"
 "Telescope Names" "Job Interview")

When to use Enlive

As an HTML templating system, Enlive has two primary value propositions over its
alternatives in the Clojure ecosystem.

First, the templates are pure HTML. This makes it much easier to work with HTML
designers: they can hand their HTML mockups directly to a developer without having
to deal with inline markup code, and developers can use them directly without manually
slicing them (outside of code, that is). Furthermore, the templates themselves can be
viewed in a browser statically, meaning they can serve as their own wireframes. This
eliminates the burden of keeping a web project’s visual prototypes in sync with the code.

Secondly, because it uses real Clojure functions and data structures instead of a custom
DSL, Enlive exposes the full power of the Clojure language. There are very few situations
where you should feel limited by Enlive’s capabilities, since it is always possible to extend
it using only standard Clojure functions and macros, operating on familiar persistent,
immutable data structures.

See Also

• The Enlive documentation

• David Nolen’s Enlive tutorial

• The Enlive mailing list

• Alternative templating libraries Selmer (Recipe 7.12, “Templating with Selmer” on
page 330) and Hiccup (Recipe 7.13, “Templating with Hiccup” on page 334)

7.11. Templating HTML with Enlive | 329

http://bit.ly/enlive-wiki
https://github.com/swannodette/enlive-tutorial
http://bit.ly/enlive-group

7.12. Templating with Selmer
by Dmitri Sotnikov

Problem
You want to create server-side page templates using syntax similar to that of Django and
Jinja. You want to be able to insert dynamic content and use template inheritance to
structure the templates.

Solution
Use the Selmer library to create your template and call it with a context map containing
the dynamic content.

To follow along with this recipe, start a REPL using lein-try:

$ lein try selmer

A Selmer template is an HTML file with special tags that is populated with dynamic
content at runtime. A simple template (base.html) might look like the following:

<!DOCTYPE html>
<html lang="en">
 <body>
 <header>

 <h1>{{header}}</h1>

 <ul id="navigation">

 {% for item in nav-items %}

 {{item.name}}

 {% endfor %}

 </header>
 </body>
</html>

The template can then be rendered by calling the selmer.parser/render-file func‐
tion:

(require '[selmer.parser :refer [render-file]])

(println
 (render-file "base.html"
 {:header "Hello Selmer"

330 | Chapter 7: Web Applications

https://github.com/yogthos/Selmer

 :nav-items [{:name "Home" :link "/"}
 {:name "About" :link "/about"}]}))

When render-file runs, it will populate the tags with the content provided. The value
will be returned as a string, suitable for use as the response body in a Ring application
(for example). Here the result is simply printed to standard output, for easy inspection.

We can apply filters to variables for additional post-processing at runtime. Here, we use

the upper filter to convert our heading to uppercase:

<h1>{{header|upper}}</h1>

We can extract parts of the template into individual snippets using the include tag. For
example, if we wanted to define the header in a separate file header.html:

<header>

 <h1>{{header}}</h1>

 <ul id="navigation">

 {% for item in nav-items %}

 {{item.name}}

 {% endfor %}

</header>

we could then include it as follows:

<!DOCTYPE html>
<html lang="en">
 <body>

 {% include "header.html" %}

 </body>
</html>

The include tag will simply be replaced by the contents of the file it points to when the
template is compiled.

We can also extend our base template when we create individual pages. To do that, we
first define a block in our base template. This will serve as an anchor for the child
template to override:

<!DOCTYPE html>
<html lang="en">
 <body>

 {% include "header.html" %}

7.12. Templating with Selmer | 331

 {% block content %}
 {% endblock %}

 </body>
</html>

The child template will reference the parent using the extends tag and define its own

content for the content block:

{% extends "base.html" %}

{% block content %}

<h1>This is the home page of the site</h1>
<p>some exciting content follows</p>

{% endblock %}

Discussion
Selmer provides a powerful and familiar templating tool with many tags and filters for
easily accomplishing many common tasks. It separates the view logic from presentation
by design.

Selmer is also performant because it compiles the templates and ensures that only the
dynamic content needs to be evaluated when serving a request.

Selmer concepts

Selmer includes two types of elements, variables and tags.

Variables are used to render values from the context map on the page. The {{ and }}
are used to indicate the start and end of a variable.

In many cases, you may wish to post-process the value of a variable. For example, you
might want to convert it to uppercase, pluralize it, or parse it as a date. Variable filters
(described in the following subsection) are used for this purpose.

Tags are used to add various functionality to the template, such as looping and condi‐

tions. We already saw examples of the for, include, and extends tags. The tags use {%

and %} to define their content.

The default tag characters might conflict with client-side frameworks such as AngularJS.
In this case, we can specify custom tags by passing a map containing any of the following
keys to the parser:

:tag-open
:tag-close
:filter-open
:filter-close

332 | Chapter 7: Web Applications

2. You’ll need to restart a new REPL with lein-try including markdown-clj to try this.

:tag-second
:custom-tags
:custom-filters

If we wanted to use [and] as our opening and closing tags, we could call the render
function as follows:

(render (str "[% for ele in foo %] "
 "{{I'm not a tag, but the next one is}} [{ele}] [%endfor%]")
 {:foo [1 2 3]}
 {:tag-open \[
 :tag-close \]})

The render function works just like render-file, except that it accepts the template
content as a string.

Defining filters

Selmer provides a rich set of filters that allow decorating of the dynamic content. Some

of the filters include capitalize, pluralize, hash, length, and sort.

However, if you need a custom filter that’s not part of the library, you can trivially add

one yourself. For example, if we wanted to parse Markdown using the markdown-clj
library and display it on the page, we could write the following filter:2

(require '[markdown.core :refer [md-to-html-string]]
 '[selmer.filters/add-filter!])

(add-filter! :markdown md-to-html-string)

We can now use this filter in our templates to render our Markdown content:

<h2>Blog Posts</h2>

 {% for post in posts %}
 {{post.title|markdown|safe}}
{% endfor %}

Note that we had to chain the markdown filter with the safe filter. This is due to the fact
that Selmer escapes variable content by default. We can change our filter definition to
indicate that its content does not need escaping as follows:

(add-filter! :markdown (fn [s] [:safe (md-to-html-string s)]))

Defining tags

Again, we can define custom tags in addition to those already present in the library.

This is done by calling the selmer.parser/add-tag! function.

7.12. Templating with Selmer | 333

https://github.com/yogthos/markdown-clj
https://github.com/yogthos/markdown-clj

Let’s say we wish to add a tag that will capitalize its contents:

(require '[selmer.parser :refer [add-tag!]])

(add-tag! :uppercase
 (fn [args context-map content]
 (.toUpperCase (get-in content [:uppercase :content])))
 :enduppercase)

(render "{% uppercase %}foo {{bar}} baz{% enduppercase %}" {:bar "injected"})

Inheritance

We already saw some examples of template inheritance. Each template can extend a
single template and include any number of templates in its content.

The templates can extend templates that themselves extend other templates. In this case,
the blocks found in the outermost child will override any other blocks with the same
name.

See Also

• The Selmer GitHub repository

7.13. Templating with Hiccup
by Ryan Neufeld

Problem
You want to create HTML dynamically based on a template, written in pure Clojure
data.

Solution
Use Hiccup, a library for representing and rendering HTML templates made up of
regular Clojure data structures.

To follow along with this recipe, start a REPL using lein-try:

$ lein try hiccup

Hiccup represents HTML nodes as vectors. The first entry of the vector is the element’s
name; the second is an optional map of the element’s attributes; and any remaining
entries are the element’s body:

;; <h1 class="header">My Page Title</h1> in Hiccup...
[:h1 {:class "header"} "My Page Title"]

334 | Chapter 7: Web Applications

https://github.com/yogthos/Selmer

;;
;; lions
;; tigers
;; bears
;; in Hiccup...
[:ul
 [:li "lions"]
 [:li "tigers"]
 [:li "bears"]] ;; oh my!

Render any Hiccup data structure to HTML using the hiccup.core/html function:

(require '[hiccup.core :refer [html]])
(html [:h1 {:class "header"} "My Page Title"])
;; -> "<h1 class=\"header\">My Page Title</h1>"

Since nodes are represented as regular Clojure data, you can leverage any of Clojure’s
built-in functions or techniques to yield Hiccup-compliant vectors:

(def pi 3.14)
(html [:p (str "Pi is approximately: " pi)])
;; -> "<p>Pi is approximately: 3.14</p>"

(html [:ul
 (for [animal ["lions" "tigers" "bears"]]
 [:li animal])])
;; -> "lionstigersbears"

Using all of the preceding techniques, it’s possible to create a simple function to dy‐
namically populate the contents of a minimal blog page using only Clojure functions
and data:

(defn blog-index
 "Render a blog's index as Hiccup data"
 [title author posts]
 [:html
 [:head
 [:title title]]
 [:body
 [:h1 title]
 [:h2 (str "By " author)]
 (for [post posts]
 [:article
 [:h3 (:title post)]
 [:p (:content post)]])]])

(-> (blog-index "My First Blog"
 "Ryan"
 [{:title "First post!" :content "I'm here!"}
 {:title "Second post." :content "Yawn, bored."}])

 html)

7.13. Templating with Hiccup | 335

Formatted output:

<html>

 <head>
 <title>My First Blog</title>
 </head>
 <body>
 <h1>My First Blog</h1>
 <h2>By Ryan</h2>
 <article>
 <h3>First post!</h3>
 <p>I'm here!</p>
 </article>
 <article>
 <h3>Second post.</h3>
 <p>Yawn, bored.</p>
 </article>
 </body>
</html>"

Discussion
Hiccup is an easy, “no muss, no fuss” way of templating and rendering HTML from raw
functions and data. This comes in particularly handy when you don’t have the time to
learn a new DSL or you prefer to work exclusively with Clojure.

An HTML node is represented in Hiccup as a vector of a few elements:

• The node’s name, represented as a keyword (e.g., :h1, :article, or :body)

• An optional map of the node’s attributes, with attribute names represented as key‐

words (e.g., {:href "/posts/"} or {:id "post-1" :class "post"})

• Any number of other nodes or string values constituting the node’s body

Invoke hiccup.core/html with a single node, snippet, or entire page to render its con‐
tents as HTML. For content with special characters that should be escaped, wrap values

in a hiccup.core/h invocation:

(require '[hiccup.core :refer [h]])
(html [:a {:href (h "/post/my<crazy>url")}])
;; -> ""

Hiccup also has basic support for rendering forms. Use form-to and a bevy of other

helpers in the hiccup.form namespace to simplify rendering form tags:

(require '[hiccup.form :as f])

(f/form-to [:post "/posts/new"]
 (f/hidden-field :user-id 42)
 (f/text-field :title)
 (f/text-field :content))

336 | Chapter 7: Web Applications

;; -> [:form {:method "POST", :action #<URI /posts/new>}
;; [:input {:type "hidden"
;; :name "user-id"
;; :id "user-id"
;; :value 42}]
;; [:input {:type "text"
;; :name "title"
;; :id "title"
;; :value nil}]
;; [:input {:type "text"
;; :name "content"
;; :id "content"
;; :value nil}]]

See Also

• Hiccup’s GitHub repository, API documentation, and wiki.

• If you have more complicated needs from your templating engine—like consuming
and populating existing HTML files—you’ll need sharper tools such as Enlive
(Recipe 7.11, “Templating HTML with Enlive” on page 323) or Selmer (Recipe 7.12,
“Templating with Selmer” on page 330).

7.14. Rendering Markdown Documents
by Dmitri Sotnikov

Problem
You need to render a Markdown document.

Solution
Use the markdown-clj library to render Markdown documents.

To follow along with this recipe, start a REPL using lein-try:

$ lein try markdown-clj

Use markdown.core/md-to-html to read a Markdown document and generate a string
containing HTML:

(require '[markdown.core :as md])

(md/md-to-html "input.md" "output.html")

(md/md-to-html (input-stream "input.md") (output-stream "test.txt"))

7.14. Rendering Markdown Documents | 337

https://github.com/weavejester/hiccup/
http://bit.ly/hiccup-docs
http://bit.ly/hiccup-wiki
https://github.com/yogthos/markdown-clj

Use markdown.core/md-to-html-string to convert a string with Markdown content
to its HTML representation:

(md/md-to-html-string
 "# This is a test\n\nsome code follows:\n```\n(defn foo [])\n```")

<h1> This is a test</h1><p>some code follows:</p><pre>
(defn foo [])
</pre>

Discussion
Markdown is a popular lightweight markup language that’s easy to read and write and
can be converted to structurally valid HTML.

Since Markdown leaves many aspects of rendering the HTML open to interpretation,
it’s not guaranteed that different parsers will produce the same representation. This can
be a problem if you render a Markdown preview on the client using one parser and then
later generate HTML on a server using a different parser. By virtue of compiling to both

Clojure and ClojureScript, markdown-clj avoids this problem. With it, you can use the
same parser on both the server and the client and be guaranteed that the documents
will be rendered consistently.

Let’s take a look at more examples of using the library. The code blocks can be annotated

with language hints. In this case, the pre tags will be decorated with a class compatible
with the SyntaxHighlighter:

(md/md-to-html-string (str "# This is a test\n\nsome code follows:\n"
 "```clojure\n(defn foo [])\n```"))

<h1> This is a test</h1><p>some code follows:</p><pre class="brush: clojure">
(defn foo [])
</pre>

markdown-clj supports all the standard Markdown tags, with the exception of
reference-style links (because the parser uses a single pass to generate the document).

The markdown.core/md-to-html processes the input line by line, and the entirety of
the content does not need to be stored in memory when processing. On the other hand,

both the md-to-html-string and md-to-html functions load the entire contents into
memory.

The parser accepts additional formatting options. These include :heading-anchors, :code-

style, :custom-transformers, and :replacement-transformers.

When the :heading-anchors keyis set to true, an anchor will be generated for each
heading tag:

(md/md-to-html-string "###foo bar BAz" :heading-anchors true)

338 | Chapter 7: Web Applications

http://alexgorbatchev.com/SyntaxHighlighter/

<h3>

 foo bar BAz
</h3>

The :code-style key allows overriding the default style hint for code blocks:

(md/md-to-html-string "```clojure\n(defn foo [])\n```"
 :code-style #(str "class=\"" % "\""))

<pre class="clojure">
(defn foo [])
</pre>

We can specify transformers for custom tags by using the :custom-transformers key.

The transformer function should accept the text parameter, which is the current line,

and the state parameter, which contains the current state of the parser. The state can
be used to store information such as what tags are active:

(defn capitalize [text state]
 [(.toUpperCase text) state])

(md/md-to-html-string "#foo" :custom-transformers [capitalize])

<H1>FOO</H1>

Finally, we can provide a custom set of transformers to replace the built-in ones using

the :replacement-transformers key:

(markdown/md-to-html-string "#foo" :replacement-transformers [capitalize])

See Also

• The markdown-clj GitHub repository for more information on the library

7.15. Building Applications with Luminus
by Dmitri Sotnikov

Problem
You want to quickly create a typical Ring/Compojure web application structure to get
a fast start on a new web development project.

Solution
Use the Luminus Leiningen template when creating a new project.

At the command line, type:

7.15. Building Applications with Luminus | 339

https://github.com/yogthos/markdown-clj

$ lein new luminus myapp

This will create a new Ring/Compojure application with a skeletal namespace and re‐
source directory structure that is ready to be packaged as standalone Java Archive (JAR)
or Web Archive (WAR) file that can be deployed on an application server.

You can start the application in development mode by running:

$ lein ring server

Discussion
Luminus doesn’t do anything you couldn’t do yourself, but provides a standardized set
of libraries and boilerplate for creating common Ring/Compojure applications.

The template generates a standard directory structure within your project, defines a

main handler for your application, adds lein-ring hooks for it in the project.clj file,
provides a default logging configuration, and sets up the default routes.

When creating the application, you can add functionality by specifying profiles that
extend the generated code to include the relevant stubs. The following are some exam‐
ples of initializing the application with default configurations for different databases:

$ lein new luminus app1 +h2

Or, with PostgreSQL:
$ lein new luminus app2 +postgres

Or ClojureScript!
$ lein new luminus app3 +cljs

You can also specify multiple profiles simultaneously:
$ lein new luminus app4 +cljs +postgres

The resulting application is structured using the following namespaces.

The <app-name>.handler namespace contains init and destroy functions. These will
be called when the application is starting up and shutting down, respectively. It also

contains the app handler function that’s used by Ring to initialize the route handlers.

The <app-name>.routes namespace is used to house the core logic of the application.

Here is where you would define the application routes and their handlers. The <app-

name>.routes.home namespace contains the routes for the default / and /about pages.

The layout for the site is generated by the render function in the <app-

name>.views.layout namespace. The HTML templates for the pages can be found
under src/<app-name>/views/templates/. Luminus uses Selmer, introduced in
Recipe 7.12, “Templating with Selmer” on page 330, as its default templating engine.

340 | Chapter 7: Web Applications

https://github.com/yogthos/Selmer

Any miscellaneous helpers will be found under the <app_name>.views.util name‐
space.

When a database profile is selected, the <app_name>.models.db and <app_name>.mod

els.schema namespaces will be created. The schema namespace is reserved for table

definitions, while the db namespace houses the functions dealing with the application
model.

The application can be packaged as a standalone JAR file using lein ring uberjar or

as a WAR file using lein ring uberwar.

See Also

• The Luminus project page

7.15. Building Applications with Luminus | 341

http://www.luminusweb.net/

CHAPTER 8

Performance and Production

8.0. Introduction
You’ve spent all of this time developing your next big thing: what’s next but to ship it to
the wild? Whether it is a product, internal service, or library, the last (and most impor‐
tant) step is delivering the fruits of your labor to your audience.

It’s easy for developers to forget that code-complete is only the beginning of an actual
application’s life cycle. A successful project will spend much more time in production
than it will in development, and stability and maintainability are premium features.

This is a chapter all about really finishing your work and building something that will
run as painlessly as possible for years to come. Be the task performance, logging, release,
or long-term maintenance, it’s all important in shipping something that is truly excel‐
lent. There is certainly a lot to worry about when your baby finally leaves home; we hope
these recipes help you get it right.

8.1. AOT Compilation
by Luke VanderHart

Problem
You want to deliver your code as precompiled JVM bytecode in .class files, rather than
as Clojure source code.

Solution
Use the :aot (ahead of time) compilation key in your project’s project.clj file to specify

which namespaces should be compiled to .class files. The value of the :aot key is a vector
of either symbols indicating specific namespaces to be compiled, or regular expression

343

literals specifying that any namespace with a matching name should be compiled. Al‐

ternatively, instead of a vector, you can use the keyword :all as a value, which will AOT-
compile every namespace in the project:

:aot [foo.bar foo.baz]

;; or...
:aot [#"foo\.b.+"] ; Compile all namespaces starting with "foo.b"

;; or...
:aot :all

Note that if your project has specified a :main namespace, Leiningen will AOT-compile

it by default, regardless of whether it is present in an :aot directive.

Once your project is configured for AOT compilation, you can compile it by invoking

lein compile at the command line. All emitted classes will be placed in the target/

classes directory, unless you’ve overridden the output directory with the :target-

path or :compile-path options.

Discussion
It’s important to understand that AOT compilation does not change how the code ac‐
tually runs. It’s no faster or different. All Clojure code is compiled to the same bytecode
before execution; AOT compilation merely means that it happens at a singular, defined
point in time instead of on demand as the program loads and runs.

However, although it isn’t any faster, it can be a great tool in the following situations:

• You want to deliver the application binary, but you don’t want to include the original
source code with it.

• To marginally speed up an application’s start time (since the Clojure code won’t
have to be compiled on the fly).

• You need to generate classes loadable directly from Java for interop purposes.

• For platforms (such as Android) that do not support custom class loaders for run‐
ning new bytecode at runtime.

You may observe that there is more than one emitted class file for each AOT-compiled
namespace. In fact, there will be separate Java classes for each function, the namespace

itself, and any additional gen-class, deftype, or defrecord forms. This is actually not
dissimilar from Java itself; it has always been the case that inner classes are compiled to
separate class files, and Clojure functions are effectively anonymous inner classes from
the JVM’s point of view.

344 | Chapter 8: Performance and Production

See Also

• Clojure’s official documentation on AOT compilation

• Recipe 8.2, “Packaging a Project into a JAR File” on page 345

8.2. Packaging a Project into a JAR File
by Alan Busby

Problem
You want to package a project into an executable JAR.

Solution
Use the Leiningen build tool to package your application as an uberjar, a JAR file that
includes an application and all of its dependencies.

To follow along with this recipe, create a new Leiningen project:

$ lein new foo

Configure the project to be executable by adding :main and :aot parameters to the
project’s project.clj file:

(defproject foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]]
 :main foo.core
 :aot :all)

To finish making the project executable, add a -main function and :gen-class decla‐

ration to src/foo/core.clj. Remove the existing foo function:

(ns foo.core
 (:gen-class))

(defn -main [& args]
 (->> args
 (interpose " ")
 (apply str)
 (println "Executed with the following args: ")))

Run the application using the lein run command to verify it is functioning correctly:

$ lein run 1 2 3

8.2. Packaging a Project into a JAR File | 345

http://clojure.org/compilation

1. Bring your own Clojure!

To package the application with all of its dependencies included, invoke lein uberjar:

$ lein uberjar
Created /tmp/foo/target/uberjar/foo-0.1.0-SNAPSHOT.jar
Created /tmp/foo/target/foo-0.1.0-SNAPSHOT-standalone.jar

Execute the generated target/foo-0.1.0-SNAPSHOT-standalone.jar file by passing it as

the -jar option to the java executable:

$ java -jar target/foo-1.0.0-standalone.jar 1 2 3
Executed with the following args: 1 2 3

Discussion
Executable JAR files provide an excellent method to package a program so it can be
provided to users, called by cron jobs, combined with other Unix tools, or used in any
other scenario where command-line invocation is useful.

Under the hood, an executable JAR is like any other JAR file in that it contains a collection
of program resources such as class files, Clojure source files, and classpath resources.
Additionally, an executable JAR contains metadata indicating which class contains the

main method as a Main-Class tag in its internal manifest file.

A Leiningen uberjar is a JAR file that contains not only your program, but all the de‐
pendencies bundled in as well. When Leiningen builds an uberjar, it can detect from

the :main entry in project.clj that your program supplies a -main function and writes
an appropriate manifest that will ensure that the emitted JAR file is executable.

The :gen-class in your namespace and the :aot Leiningen option are required to
precompile your Clojure source file into a JVM class file, since the “Main-Class” manifest
entry doesn’t know how to reference or compile Clojure source files.

Packaging JARs Without Their Dependencies

Not only does Leiningen make it possible to package a project with its dependencies, it
also makes it possible to package it without its dependencies.

The jar command packages a project’s code without any of its upstream dependencies.
Not even Clojure itself is included in the JAR file—you’ll need to BYOC.1

By invoking the command lein jar in the foo project, you’ll generate target/foo-0.1.0-
SNAPSHOT.jar:

$ lein jar
Created /tmp/foo/target/jar/target/foo-0.1.0-SNAPSHOT.jar

346 | Chapter 8: Performance and Production

2. Available on most Unix-based systems.

3. All of which we won’t be committing to print. Take a look for yourself with the command lein uberjar &&

unzip -l target/foo-0.1.0-SNAPSHOT-standalone.jar.

4. See Recipe 8.9, “Releasing a Library to Clojars” on page 367, for more information on releasing libraries.

Listing the contents of the JAR file using the unzip command,2 you can see that very
little is packaged—just a Maven .pom file, generated JVM class files, and the project’s
miscellany:

$ unzip -l target/foo-0.1.0-SNAPSHOT.jar
Archive: target/foo-0.1.0-SNAPSHOT.jar
 Length Date Time Name
 -------- ---- ---- ----
 113 12-06-13 10:26 META-INF/MANIFEST.MF
 2595 12-06-13 10:26 META-INF/maven/foo/foo/pom.xml
 91 12-06-13 10:26 META-INF/maven/foo/foo/pom.properties
 292 12-06-13 10:26 META-INF/leiningen/foo/foo/project.clj
 292 12-06-13 10:26 project.clj
 229 12-06-13 10:26 META-INF/leiningen/foo/foo/README.md
 11220 12-06-13 10:26 META-INF/leiningen/foo/foo/LICENSE
 0 12-06-13 10:26 foo/
 1210 12-06-13 10:26 foo/core$_main.class
 1304 12-06-13 10:26 foo/core$fn__16.class
 1492 12-06-13 10:26 foo/core$loading__4910__auto__.class
 1755 12-06-13 10:26 foo/core.class
 2814 12-06-13 10:26 foo/core__init.class
 162 12-04-13 14:54 foo/core.clj
 -------- -------
 23569 14 files

The target/foo-0.1.0-SNAPSHOT-standalone.jar listing, on the other hand, includes
over 3,000 files.3

Since the packaged pom.xml file includes a listing of the project’s dependencies, build
tools like Leiningen or Maven can resolve these dependencies on their own. This allows
for efficient packaging of libraries. Can you imagine if each and every Clojure library
included the entirety of its dependencies? It would be a bandwidth nightmare.

Because of this property, lean JAR files such as this are what is deployed to remote

repositories when you use the lein deploy command.4

Without its dependencies included—namely, Clojure—you’ll need to do a bit more

work to run the foo application. First, download Clojure 1.5.1. Then invoke foo.core

via the java command, including clojure-1.5.1.jar and foo-0.1.0-SNAPSHOT.jar on the

classpath (via the -cp option):

8.2. Packaging a Project into a JAR File | 347

http://clojure.org/downloads

5. If you don’t happen to already have a similarly named project, and you want to follow along, create a new

one with lein new warsample.

Download Clojure
$ wget \
 http://repo1.maven.org/maven2/org/clojure/clojure/1.5.1/clojure-1.5.1.zip
$ unzip clojure-1.5.1.zip

Execute the application
$ java -cp target/foo-0.1.0-SNAPSHOT.jar:clojure-1.5.1/clojure-1.5.1.jar \
 foo.core \
 1 2 3
Executed with the following args: 1 2 3

See Also

• Recipe 3.6, “Running Programs from the Command Line” on page 130, to learn
about running Clojure programs from Leiningen

• Recipe 8.1, “AOT Compilation” on page 343

• lein-bin, a Leiningen plug-in for producing standalone console executables that
work on OS X, Linux, and Windows

8.3. Creating a WAR File
by Luke VanderHart

Problem
You want to deploy a Clojure web application built using Ring as a standard web archive
(WAR) file in a commonly used Java EE container such as Tomcat, JBoss, or WebLogic.

Solution
Assuming you are using Ring or a framework based on Ring (such as Compojure), the

easiest way to structure your project to build as a WAR file is to use the lein-ring plug-
in for Leiningen. Say that your project has a Ring handler function defined in a name‐

space called warsample.core,5 like so:

(ns warsample.core)

(defn handler [request]
 {:status 200
 :headers {"content-type" "text/html"}
 :body "<h1>Hello, world!</h1>"})

348 | Chapter 8: Performance and Production

https://github.com/Raynes/lein-bin

To configure the project with lein-ring, add the following key/value pairs to your
Leiningen project.clj file:

:plugins [[lein-ring "0.8.8"]]
:ring {:handler warsample.core/handler}

You’ll also need to make sure that your application declares a dependency on the jav

ax.servlet/servlet-api library. Most web app libraries do include a transitive de‐

pendency, which you can verify by running lein deps :tree. If no other library you’re

using includes it, you can include it yourself by adding [javax.servlet/servlet-api

"2.5"] to the :dependencies key in project.clj.

The :plugins key specifies that the project uses the lein-ring plug-in, and the map

under the :ring key specifies configuration options specific to lein-ring. The only

required option is :handler, which indicates the var name of the application’s primary
Ring handler function.

lein-ring provides a handy way to run your application locally, for development and
testing. At the command line, simply type:

$ lein ring server

An embedded Jetty server will be started, serving your Ring application (on port 3000

by default, though you can change this in the lein-ring options). It will also open your
operating system’s default browser to that page.

Once you think the application is running correctly, you can build a WAR file using the

lein ring war or lein ring uberwar commands. Both take the name of the WAR file
to emit:

$ lein ring war warsample.war

$ lein ring uberwar warsample-with-deps.war

lein ring war builds a WAR file containing only your application code, not any tran‐

sitive dependencies, whereas lein ring uberwar will build a WAR file containing
bundled JAR files for every dependency as well.

Both these commands will generate all the necessary configuration and wiring (such as
a WEB-INF directory and a web.xml file) before building the WAR. See the discussion

section for some options you can pass to lein ring that will influence how these arti‐
facts are generated.

After issuing the WAR build command, you will find the WAR file you created in your
project’s target directory. This is a perfectly normal WAR file that you can deploy just
as if it were a standard J2EE WAR. Every application server is different, so check the
documentation for your preferred system to see how to deploy a WAR file. If you have
an operations team responsible for production deployments, you will definitely want
to check with them to make sure you adhere to their processes and best practices.

8.3. Creating a WAR File | 349

Discussion
It is crucial to understand the difference between a bare WAR file generated using lein

ring war and an “uberwar” generated by lein ring uberwar, and when to use each.

A bare WAR file does not contain any of your project’s dependencies; it contains only
the application code itself. This means that your program will not work unless you make
sure that each and every JAR file your program depends on, including Clojure itself, is
present on your web application’s shared library path. Exactly how to do this depends
on the application server you’re using—you’ll have to refer to your system’s documen‐
tation to determine how to make them available.

An “uberwar,” on the other hand, includes all the JARs your program depends on in the
WAR archive as a bundled library under the WEB-INF/lib subfolder. Compliant appli‐
cation servers are capable of running each application (each deployed WAR file) in its
own class loader context and will make the bundled JARs available only to their appli‐
cations.

Typically, an uberwar is a safer choice. It spares you from much of the effort of manually
curating your libraries, and better reflects how your application’s classpath probably
looked in development.

The cost of an uberwar, however, is that a single library may be loaded multiple times
if it is bundled by multiple applications. If you are running 10 applications, all of which
use (say) Compojure, the server will actually load the Compojure code into the JVM’s
class space 10 times, once for each application. Some organizations running resource-
constrained or high-performance deployments prefer to ensure that there is minimal
redundancy in application dependencies. If this is the case, then you may have to fall
back to using a non-uber WAR file and managing your dependencies in your application
server’s shared library pool by hand.

Dependency Collisions
Although modern J2EE application servers do a pretty good job of keeping the classpaths
and bundled libraries of different applications isolated from one another, you do have
to be careful of the scenario where your application depends on a library that is part of
the core J2EE platform, such as JDBC, the Servlet API, various XML libraries like
JAX-*, StAX, JMS, etc.

These classes are usually provided by the application container itself, and if your appli‐
cation refers to them, those references will resolve to the instance provided by the con‐
tainer rather than the version your application has bundled. If they are exactly the same,
well and good; but if there is a version mismatch that includes breaking changes in the
class API, you may encounter cryptic errors as your application tries to call into classes
that are different than the ones it was built against.

350 | Chapter 8: Performance and Production

In this scenario, you will need to reconcile the dependency versions used by your ap‐
plication container and your application to make sure they are compatible.

Other lein-ring options

lein-ring provides some additional options you can set in the :ring configuration
map in project.clj to fine-tune how WAR files are generated. For an exhaustive descrip‐

tion, see the lein-ring project page.

A few of the more useful ones are shown in Table 8-1.

Table 8-1. lein-ring WAR options

Key Description Default

:war-exclusions A sequence of regexes of files to exclude from the target WAR All hidden files

:servlet-class The name of the generated Servlet class

:servlet-name The name of the servlet in web.xml The name of the handler function

:url-pattern The URL of the servlet mapping in web.xml /*

:web-xml A specific web.xml file to use instead of the generated one

Building WAR files from scratch

If you aren’t using Ring, or if you have a good reason not to use the lein-ring plug-in,
you can still create a WAR file, but the process is much more hands-on. Fortunately, a
WAR file is essentially a JAR file with a different extension and some additional internal

structure and configuration files, so you can use the standard lein jar tool to generate
one—provided you add the following files at the appropriate locations in the archive.

You’ll also need to define some AOT classes implementing javax.servlet.Servlet
yourself, and have these call into your Clojure application. Then you’ll need to wire
them up to the application server using a deployment descriptor (web.xml).

The structure of a WAR file is:

<war root>
|-- <static resources>
|-- WEB-INF
 |-- web.xml
 |-- <app-server-specific deployment descriptors>
 |-- lib
 | |-- <bundled JAR libraries>
 |-- classes
 |-- <AOT compiled .class files for servlets, etc.>
 |-- <.clj source files>

A full explanation of all of these elements is beyond the scope of this recipe. For more
information, see Oracle’s J2EE tutorial on packaging web archives.

8.3. Creating a WAR File | 351

https://github.com/weavejester/lein-ring
http://bit.ly/java-wars

6. jsvc on Unix systems; procrun on Windows.

Other web server libraries (for example, Pedestal Server) that include tooling for Lei‐
ningen will also often have a utility for building WAR files—check the documentation
of the library you’re using.

See Also

• Recipe 8.1, “AOT Compilation” on page 343

• Recipe 8.2, “Packaging a Project into a JAR File” on page 345

• lein-ring’s project page

• Oracle’s J2EE tutorial

8.4. Running an Application as a Daemon
by Ryan Neufeld

Problem
You want to run a Clojure application as a daemon (i.e., you want your application to
run in the background) in another system process.

Solution
Use the Apache Commons Daemon library to write applications that can be executed

in a background process. Daemon consists of two parts: the Daemon interface, which

your application must implement, and a system application6 that runs Daemon-compliant
applications as daemons.

Begin by adding the Daemon dependency to your project’s project.clj file. If you don’t

have an existing project, create a new one with the command lein new my-daemon.
Since Daemon is a Java-based system, enable AOT compilation so that class files are
generated:

(defproject my-daemon "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.apache.commons/commons-daemon "1.0.9"]]
 :main my-daemon.core
 :aot :all)

352 | Chapter 8: Performance and Production

https://github.com/weavejester/lein-ring
http://bit.ly/javaee-tut

To implement the org.apache.commons.daemon.Daemon interface, add the

appropriate :gen-class declaration and interface functions to one of your project’s

namespaces. For a minimally functional daemon, implement -init, -start, and -

stop. For best results, provide a -main function to enable smoke testing of your appli‐

cation without touching the Daemon interface:

(ns my-daemon.core
 (:import [org.apache.commons.daemon Daemon DaemonContext])
 (:gen-class
 :implements [org.apache.commons.daemon.Daemon]))

;; A crude approximation of your application's state
(def state (atom {}))

(defn init [args]
 (swap! state assoc :running true))

(defn start []
 (while (:running @state)
 (println "tick")
 (Thread/sleep 2000)))

(defn stop []
 (swap! state assoc :running false))

;; Daemon implementation

(defn -init [this ^DaemonContext context]
 (init (.getArguments context)))

(defn -start [this]
 (future (start)))

(defn -stop [this]
 (stop))

(defn -destroy [this])

;; Enable command-line invocation
(defn -main [& args]
 (init args)
 (start))

Package all of the necessary dependencies and generated classes by invoking the Lei‐

ningen uberjar command:

$ lein uberjar
Compiling my-daemon.core
Created /tmp/my-daemon/target/my-daemon-0.1.0-SNAPSHOT.jar
Created /tmp/my-daemon/target/my-daemon-0.1.0-SNAPSHOT-standalone.jar

Before proceeding, test your application by running it with java:

8.4. Running an Application as a Daemon | 353

7. On OS X we suggest using Homebrew to brew install jsvc. If you’re using Linux, you’ll likely find a jsvc

package in your favorite package manager. Windows users will need to install and use procrun.

8. Don’t worry, we’ll capture all this in a shell script soon.

$ java -jar target/my-daemon-0.1.0-SNAPSHOT-standalone.jar
tick
tick
tick
... Type Ctrl-C to stop the madness

Once you’ve verified your application works correctly, install jsvc.7 Finally, the moment

of truth. Run your application as a daemon by invoking jsvc with all of the requisite
parameters—the absolute path of your Java home directory, the uberjar, the output log

file, and the namespace where your Daemon implementation resides:8

$ sudo jsvc -java-home "$JAVA_HOME" \
 -cp "$(pwd)/target/my-daemon-0.1.0-SNAPSHOT-standalone.jar" \
 -outfile "$(pwd)/out.txt" \
 my_daemon.core
Nothing!

$ sudo tail -f out.txt
tick
tick
tick
... Ctrl-C to exit

Quit the daemonized process by adding the -stop flag
$ sudo jsvc -java-home "$JAVA_HOME" \
 -cp "$(pwd)/target/my-daemon-0.1.0-SNAPSHOT-standalone.jar" \
 -stop \
 my_daemon.core

If all is well, out.txt should now contain a couple of ticks. Congratulations! Daemon can
be a little hard to get set up, but once you have it running, it works fantastically. If you

encounter any problems launching a daemon using jsvc, use the -debug flag to output
more detailed diagnostic information.

You’ll find a full working copy of the my-daemon project at
https://github.com/clojure-cookbook/my-daemon.

Discussion
Have no illusions, daemonizing Java-based services is hard; yet, for over 10 years, Java
developers have been using Apache Commons Daemon to this end. Why reinvent the

354 | Chapter 8: Performance and Production

http://brew.sh/
http://bit.ly/daemons-procrun
https://github.com/clojure-cookbook/my-daemon

wheel with a separate Clojure tool? One of Clojure’s core strengths is its ability to breathe
new life into old tunes, and Daemon is one such “old tune.”

Not all tunes are created equal, however. Where some Java libraries require a little Java
interop, Daemon requires a lot. Daemonizing an application with Apache Commons
Daemon requires getting two parts just right. The first part is creating a class that im‐

plements the Daemon interface and packaging it as a JAR file. The Daemon interface con‐
sists of four methods, called at different points in an daemonized application’s life cycle:

init(DaemonContext context)

Invoked as your application is initializing. This is where you should set up any initial
state for your application.

start()

Invoked after init. This is where you should begin performing work. jsvc expects

start() to complete quickly, so you should kick-off work in a future or Java

Thread.

stop()

Invoked when a daemon has been instructed to stop. This is where you should halt

whatever processing you began in start.

destroy()

Invoked after stop, but before the JVM process exits. In a traditional Java program,
this is where you would free any resources you had acquired. You may be able to
skip this method in Clojure applications if you’ve properly structured your appli‐

cation. It doesn’t hurt to include an empty function to prevent jsvc from com‐
plaining.

It’s easy enough to create a record (with defrecord) that implements the Daemon inter‐

face—but that isn’t enough. jsvc expects a Daemon-implementing class to exist on the
classpath. To provide this, you must do two things: first, you need to enable ahead-of-

time (AOT) compilation for your project—setting :aot :all in your project.clj will
accomplish this. Second, you need to commandeer a namespace to produce a class via

the :gen-class namespace directive. More specifically, you need to generate a class that

implements the Daemon interface. This is accomplished easily enough using :gen-

class in conjunction with the :implements directive:

(ns my-daemon.core
 ;; ...
 (:gen-class
 :implements [org.apache.commons.daemon.Daemon]))

Having set up my-daemon.core to generate a Daemon-implementing class upon compi‐
lation, the only thing left is to implement the methods themselves. Prefacing a function

with a dash (e.g., -start) indicates to the Clojure compiler that a function is in fact a

8.4. Running an Application as a Daemon | 355

Java method. Further, since the Daemon methods are instance methods, each function

includes one additional argument, the present Daemon instance. This argument is tra‐

ditionally denoted with the name this.

In our simple my-daemon example, most of the method implementations are rather plain,

taking no arguments other than this and delegating work to regular Clojure functions.

-init deserves a bit more attention, though:

(defn -init [this ^DaemonContext context]
 (init (.getArguments context)))

The -init method takes an additional argument: a DaemonContext. This argument

captures the command-line arguments the daemon was started with in its .getArgu

ments property. As implemented, -init invokes the .getArguments method on con

text, passing its return value along to the regular Clojure function init.

On that topic, why delegate every Daemon implementation to a separate Clojure func‐

tion? By separating participation in the Daemon interface from the inner workings of
your application, you retain the ability to invoke it in other ways. With this separation
of concerns, it becomes much easier to test your application, via either integration tests

or direct invocation. The -main function utilizes these Clojure functions to allow you
to verify that your application behaves correctly in isolation of daemonization.

With all of the groundwork for a Daemon-compliant application laid, the only remain‐

ing step is packaging the application. Leiningen’s uberjar command completes all of

the necessary preparations for running your application as a daemon: compiling my-

daemon.core to a class, gathering dependencies, and packaging them all into a stand‐
alone JAR file.

Last but not least, you need to run the darn thing. Since JVM processes don’t generally

play nicely with low-level system calls, Daemon provides system applications, jsvc and

procrun, that act as intermediaries between the JVM and your computer’s operating
system. These applications, generally written in C, are capable of invoking the appro‐
priate system calls to fork and execute your application in a background process. For

simplicity, we’ll limit our discussion to the jsvc tool for the remainder of the recipe.

Both of these tools have a dizzying number of configuration options, but only a handful
of them are actually necessary for getting the ball rolling. At a minimum, you must

provide the location of your standalone JAR (-cp), your Java installation (-java-home),

and the desired class to execute (the final argument). Other relevant options include -

pidfile, -outfile, and -errfile; these specify where the process’s ID, STDOUT, and

STDERR output will be written to, respectively. Any arguments following the name of the

class to invoke will be passed into -init as a DaemonContext.

A more complete example:

356 | Chapter 8: Performance and Production

$ sudo jsvc -java-home "$JAVA_HOME" \
 -cp "$(pwd)/target/my-daemon-0.1.0-SNAPSHOT-standalone.jar" \
 -pidfile /var/run/my-daemon.pid \
 -outfile "/var/log/my-daemon.out" \
 -errfile "/var/log/my-daemon.err" \
 my_daemon.core \
 "arguments" "to" "my-daemon.core"

Once you’ve started a daemon with jsvc, you can halt it by re-

running jsvc with the -stop option included.

Since jsvc relaunches your application in a completely new process, it carries none of
its original execution context. This means no environment variables, no current work‐
ing directory, nothing; the process may not even be running as the same user. Because

of this, it is extremely important to specify arguments to jsvc with their absolute paths
and correct permissions in place.

For our sample, we’ve opted to use sudo to make this a less painful experience, but in
production you should set up a separate user with more limited permissions. The run‐
ning user should have write access to the .pid, .out, and .err files, and read access to Java
and the classpath.

jsvc and its ilk can be fickle beasts—the slightest misconfiguration will cause your

daemon to fail silently, without warning. We highly suggest using the -debug and -

nodetach flags while developing and configuring your daemon until you’re sure things
work correctly.

Once you’ve nailed an appropriate configuration, the final step is to automate the man‐
agement of your daemon by writing a daemon script. A good daemon script captures
configuration parameters, file paths, and common operations, exposing them in a clean,

noise-free skin. Instead of the long jsvc commands you executed before, you would

simply invoke my-daemon start or my-daemon stop. In fact, many Linux distributions

use similar scripts to manage system daemons. To implement your own jsvc daemon
script, we suggest reading Sheldon Neilson’s “Creating a Java Daemon (System Service)
for Debian using Apache Commons Jsvc”.

See Also

• The Daemon documentation

• The contents of the jsvc manpage, accessible via jsvc -help

• procrun, a Daemon runner for Windows

8.4. Running an Application as a Daemon | 357

http://www.neilson.co.za/?p=253
http://www.neilson.co.za/?p=253
http://bit.ly/commons-api
http://bit.ly/daemons-procrun

• lein-daemon, a Leiningen plug-in for creating daemons that can be managed via a

lein daemon command inside your project

• Recipe 8.1, “AOT Compilation” on page 343, for more information on AOT com‐
pilation

• Recipe 8.2, “Packaging a Project into a JAR File” on page 345, for more information
on packaging JAR files

• Meikel Brandmeyer’s blog post “gen-class—how it works and how to use it”

• Stuart Sierra’s Component library, a tiny framework for managing the life cycle of
software components

8.5. Alleviating Performance Problems with Type Hinting
by Ryan Neufeld

Problem
You have functions that get called very often, and you want to optimize performance
for those methods.

Solution
One of the easiest ways to increase performance for a given function is to eliminate Java

reflection. Enable warn-on-reflection to diagnose excessive reflection:

(defn column-idx
 "Return the index number of a column in a CSV header row"
 [header-cols col]
 (.indexOf (vec header-cols) col))

(def headers (clojure.string/split "A,B,C" #","))
(column-idx headers "B")
;; -> 1

(set! *warn-on-reflection* true)

(defn column-idx
 "Return the index number of a column in a CSV header row"
 [header-cols col]
 (.indexOf (vec header-cols) col))
;; Reflection warning, NO_SOURCE_PATH:1:1 - call to indexOf can't be resolved.

;; 100,000 non-hinted executions...
(time (dotimes [_ 100000] (column-idx headers "B")))
;; "Elapsed time: 329.258 msecs"

358 | Chapter 8: Performance and Production

https://github.com/arohner/lein-daemon
http://bit.ly/gen-class-post
https://github.com/stuartsierra/component

Once you’ve identified reflection, add type hints to your argument list preceding each

argument in the form <^Type> <arg>:

(defn column-idx
 "Return the index number of a column in a CSV header row"
 [^java.util.List header-cols col]
 (.indexOf header-cols col))

;; 100,000 properly hinted executions
(time (dotimes [_ 100000] (column-idx headers "B")))
;; "Elapsed time: 27.779 msecs"

When you have groups of functions that interact together, you may see reflection warn‐
ings in spite of your properly hinted arguments. Add type hints to the argument list
itself to hint the types of the functions’ return values:

;; As a simple example, imagine you want to compare the result
;; of two function calls

(defn some-calculation [x] 42)

(defn same-calc? [x y] (.equals (some-calculation x)
 (some-calculation y)))
;; Reflection warning, NO_SOURCE_PATH:1:24 - call to equals can't be resolved.

;; Now type-hint the return value of some-calculation
(defn some-calculation ^Integer [x] 42)

(defn same-calc? [x y] (.equals (some-calculation x)
 (some-calculation y)))

;; Look Ma, no reflection warnings!

Discussion
In highly performant code, it is often the case that you’ll choose to fall back to Java for
increased performance. There is an impedance mismatch between Clojure and Java,
however; Java is strongly typed, whereas Clojure is not. Because of this, (almost) every
time you invoke a Java function in Clojure, it needs to reflect on the type of the provided
arguments in order to select the appropriate Java method to invoke. For seldom-invoked
methods, this isn’t too big of a deal, but for methods executed frequently, the cost of
reflection can pile up quickly.

Type hinting short-circuits this reflection. If you’ve hinted all of the arguments to a Java
function, the Clojure compiler will no longer perform reflection. Instead, the function
application will directly invoke the appropriate Java function. Of course, if you’ve gotten
your types wrong, your methods may not work properly; improperly hinted functions
may throw a type-cast exception.

8.5. Alleviating Performance Problems with Type Hinting | 359

9. To accurately measure performance improvements from unchecked-math, we suggest using a tool like

Criterium. Benchmarking code with time can be tricky and often yields misleading results (or none at all).

What about when you have a sequence of values, all of a uniform type? Clojure provides

a number of special hints for these cases, namely ^ints, ^floats, ^longs, and ^dou

bles. Hinting these types will allow you to pass whole arrays as arguments to Java
functions and not provoke reflection for sequences.

Unchecked Math
You may have noticed Clojure puts training wheels on all of its numeric types too,
upgrading types liberally to avoid overflows. This isn’t without a cost, of course, as
Clojure needs to check on every operation to make sure you aren’t overflowing con‐
tainers. If you need even more to-the-metal performance and happen to have nerves of
steel yourself, then you may want to look at unchecked math.9

Setting unchecked-math to true will disable this safety, causing addition, subtraction,

multiplication, division, and inc/dec to occur without overflow checks. This in effect
reverts numeric behavior to a C-like state where it is possible to overflow a positive
integer to a negative one:

;; With checked math, you cannot overflow an integer
(inc Long/MAX_VALUE)
;; ArithmeticException integer overflow ...

(set! *unchecked-math* true)

;; Now integers are free to overflow
(inc Long/MAX_VALUE)
;; -> -9223372036854775808

unchecked-math isn’t absolute, however; it is possible for boxed types to sneak into your

operation, forcing checked math to occur. Combine unchecked-math with type hinting
to ensure your math is truly unchecked—at your own risk, of course!

See Also

• Chapter 1, Primitive Data

• Recipe 8.6, “Fast Math with Primitive Java Arrays” on page 360

8.6. Fast Math with Primitive Java Arrays
by Jason Wolfe

360 | Chapter 8: Performance and Production

https://github.com/hugoduncan/criterium

Problem
You need to perform fast numerical operations over significant amounts of data.

Solution
Primitive Java arrays are the canonical way to store large collections of numbers com‐
pactly and do math over them quickly (often 100 times faster than Clojure sequences).

The hiphip (array) library is a quick and easy way to manipulate primitive arrays of

double, long, float, or int members.

Before starting, add [prismatic/hiphip "0.1.0"] to your project’s dependencies or

start a REPL using lein-try:

$ lein try prismatic/hiphip

Use one of hiphip’s amap macros to perform fast math on typed arrays. amap uses a

parallel binding syntax similar to doseq:

(require 'hiphip.double)

(defn map-sqrt [xs]
 (hiphip.double/amap [x xs] (Math/sqrt x)))

(seq (map-sqrt (double-array (range 1000))))
;; -> (2.0 3.0 4.0)

(defn pointwise-product
 "Produce a new double array with the product of corresponding elements of
 xs and ys"
 [xs ys]
 (hiphip.double/amap [x xs y ys] (* x y)))
(seq (pointwise-product (double-array [1.0 2.0 3.0])
 (double-array [2.0 3.0 4.0])))
;; -> (2.0 6.0 12.0)

To modify an array in place, use one of hiphip’s afill! macros:

(defn add-in-place!
 "Modify xs, incrementing each element by the corresponding element of ys"
 [xs ys]
 (hiphip.double/afill! [x xs y ys] (+ x y)))

(let [xs (double-array [1.0 2.0 3.0])]
 (add-in-place! xs (double-array [0.0 1.0 2.0]))
 (seq xs))
;; -> (1.0 3.0 5.0)

For faster reduce-like operations, use one of hiphip’s areduce and asum macros:

(defn dot-product [ws xs]
 (hiphip.double/asum [x xs w ws] (* x w)))

8.6. Fast Math with Primitive Java Arrays | 361

https://github.com/Prismatic/hiphip

(dot-product (double-array [1.0 2.0 3.0])
 (double-array [2.0 3.0 4.0]))
;; -> 20.0

We’d love to throw in a quick time benchmark to demonstrate the
gains, but the JVM is a fickle beast when it comes to optimiza‐
tions. We suggest using Criterium when benchmarking to avoid
common pitfalls.

To see Criterium benchmarks of hiphip, see w01fe’s bench.clj gist.

Discussion
Most of the time, Clojure’s sequence abstraction is all you need to get the job done. The

preceding dot-product can be written succinctly in ordinary Clojure, and this is gen‐
erally what you should try first:

(defn dot-product [ws xs]
 (reduce + (map * ws xs))

Once you identify a bottleneck in your mathematical operations, however, primitive

arrays may be the only way to go. The preceding dot-product implementation can be

made more than 100 times faster by using asum, primarily because map produces se‐

quences of boxed Java Double objects. In addition to the cost of constructing an inter‐
mediate sequence, all arithmetic operations on boxed numbers are significantly slower
than on their primitive counterparts.

hiphip’s amap, afill!, reduce, and asum macros (among others) are available for int,

long, float, and double types. If you wanted to use reduce over an array of floats, for

example, you would use hiphip.float/reduce. These macros define the appropriate
type hints and optimizations per type.

Clojure also comes with built-in functions for operating on arrays, although greater care
must be taken to ensure maximal performance (via appropriate type hints and use of

unchecked-math):

(set! *unchecked-math* true)
(defn map-inc [^doubles xs]
 (amap xs i ret (aset ret i (inc (aget xs i)))))

Working with primitive arrays in Clojure isn’t for the faint of heart: if you don’t get
everything right, you can easily end up with code that’s both much uglier and no faster
(or even slower) than the straightforward sequence version. The biggest issue to watch
out for is reflection, which can easily bring you from 100 times faster to 10 times slower
with one small typo or missing type hint.

If you’re up to the challenge, you should keep these tips in mind:

362 | Chapter 8: Performance and Production

https://github.com/hugoduncan/criterium
http://bit.ly/hiphip-bench
http://clojure.org/java_interop#Java%20Interop-Arrays

• Use *warn-on-reflection* religiously, but be aware that it won’t warn you about
many of the ways your code can be slow.

• A solid profiler, or at least a comprehensive benchmark suite, is a must; otherwise
you won’t know which function is using 99% of your runtime.

• Especially if you’re not using hiphip, experiment with *unchecked-math*; it almost
always makes your code faster, if you’re willing to give up the safety of overflow
checks.

• If you want your array code to go fast under Leiningen, you probably want to add

the following to your project.clj: :jvm-opts ^:replace [].

See Also

• hiphip comes with a comprehensive suite of benchmarks of its and Clojure’s array
operations for the main primitive types, including performance comparisons with
handcoded Java alternatives.

• Vertigo goes beyond simple arrays of primitives to full C-style structs, which may
be a good choice if you need to manipulate structured data (i.e., not just sequences

of doubles) with maximal performance.

• Recipe 8.5, “Alleviating Performance Problems with Type Hinting” on page 358, to
learn more about type hinting and unchecked math.

• Recipe 8.7, “Simple Profiling with Timbre” on page 363, to learn about using Timbre
to output profiling statistics from your code.

8.7. Simple Profiling with Timbre
by Ambrose Bonnaire-Sergeant

Problem
You want fine-grained statistics on the running time and invocation counts of your code.

Solution
Use Timbre to insert profiling macros into your code that won’t incur a performance
penalty in production.

Before starting, add [com.taoensso/timbre "2.6.3"] to your project’s dependencies

or start a REPL using lein-try:

$ lein try com.taoensso/timbre

8.7. Simple Profiling with Timbre | 363

http://bit.ly/lein-tiered-compilation
http://bit.ly/hiphip-tests
https://github.com/ztellman/vertigo
https://github.com/ptaoussanis/timbre

Use the macros in the taoensso.timbre.profiling namespace to collect benchmark‐
ing metrics in development:

(require '[taoensso.timbre.profiling :as p])

(defn bench-me [f]
 (p/p :bench/bench-me
 (let [_ (p/p :bench/sleep
 (Thread/sleep 10))
 n (p/p :bench/call-f-once
 (f))
 _ (p/p :bench/call-f-10-times-outer
 (dotimes [_ 10]
 (p/p :bench/call-f-10-times-inner
 (f))))]
 (iterate f n))))

(p/profile :info :Bench-f
 (bench-me
 (fn ([] (p/p :bench/no-arg-f) 100)
 ([a] (p/p :bench/one-arg-f) +))))

Here we define a Clojure function bench-me, which is called with a higher-order func‐

tion f that takes zero or one argument.

Timbre outputs rich profiling information in a convenient table:

2013-Aug-25 ... Profiling :taoensso.timbre.profiling/Bench-f
 Name Calls Min Max MAD Mean Time% Time
 :bench/bench-me 1 13ms 13ms 0ns 13ms 95 13ms
 :bench/sleep 1 11ms 11ms 0ns 11ms 76 11ms
:bench/call-f-10-times-outer 1 970μs 970μs 0ns 970μs 7 970μs
 :bench/call-f-once 1 610μs 610μs 0ns 610μs 4 610μs
:bench/call-f-10-times-inner 10 20μs 214μs 35μs 39μs 3 394μs
 :bench/no-arg-f 11 5μs 163μs 26μs 20μs 2 215μs
 [Clock] Time 100 14ms
 Accounted Time 186 26ms

Discussion
Profiling with Timbre is a great solution for Clojure-only profiling. Standard JVM
profiling tools like YourKit and JVisualVM provide more comprehensive information
on Java methods but come with a greater performance penalty.

Timbre’s profiling is most useful when profiling a specific area of code, rather than using
profiling as an exploratory tool for tuning performance. As profiling markers are just
macros, they are flexible. For example, you could record how many times a particular

if branch was taken, all without leaving Clojure or suffering from mangled Clojure
function names via YourKit or JVisualVM.

364 | Chapter 8: Performance and Production

If profiling is deemed useful enough to keep in your code base, it is good practice to use

the profiling macros via a namespace alias. p, while conveniently named, is prone to
being shadowed by local bindings if used without an explicit namespace. In the solution

we used the alias p, so each call to p becomes p/p.

Remember, you should not be hesitant to add profiling statements: there is no perfor‐

mance penalty for code involving taoensso.timbre.profiling/p if tracing is not en‐
abled. This means you can leave tracing code in production, which is useful if you want
to profile the same code later, or if the profiling comments make your code clearer.

See Also

• Profiling with Timbre

8.8. Logging with Timbre
by Alex Miller

Problem
You want to add logging to your application code.

Solution
Use Timbre to configure your logger and add logging messages to your code.

Before starting, add [com.taoensso/timbre "2.7.1"] to your project’s dependencies

or start a REPL using lein-try:

$ lein try com.taoensso/timbre

To write a function that writes log messages, use the Timbre functions info, error, etc:

(require '[taoensso.timbre :as log])

(defn div-4 [n]
 (log/info "Starting")
 (try
 (/ 4 n)
 (catch Throwable t
 (log/error t "oh no!"))
 (finally
 (log/info "Ending"))))

The div-4 function takes a single argument and returns 4/n.

8.8. Logging with Timbre | 365

http://bit.ly/timbre-profiling
https://github.com/ptaoussanis/timbre

The log/info calls will create a log message output at the “info” level. Similarly, the

log/error call will create a log message at the “error” output level. Passing an exception
as the first argument will cause the stack trace to be printed as well.

If you call div-4 with values that will succeed or throw an error, you will see output like
the following in your REPL:

(div-4 2)
;; -> 2
;; *out*
;; 2013-Nov-22 10:34:11 -0500 laptop INFO [user] - Starting
;; 2013-Nov-22 10:34:11 -0500 laptop INFO [user] - Ending

(div-4 0)
;; -> 2013-Nov-22 10:34:47 -0500 laptop ERROR [user] -
;; oh no! java.lang.ArithmeticException: Divide by zero
;; -> nil
;; *out*
;; 2013-Nov-22 10:34:21 -0500 laptop INFO [user] - Starting
;; 2013-Nov-22 10:34:21 -0500 laptop ERROR [user] -
;; oh no! java.lang.ArithmeticException: Divide by zero
;; ... Exception stacktrace
;; 2013-Nov-22 10:34:21 -0500 laptop INFO [user] - Ending

Discussion
Timbre is a great way to get started with logging in your code. Using a log library allows
you to specify later where the output will go, possibly to more than one location or
filtered by namespace.

Timbre writes logs to any number of configured “appenders” (output destinations). By
default, a single appender is configured to write to standard out.

For example, to add a second appender for a file, you can dynamically modify the con‐

figuration by enabling the preconfigured spit appender:

;; Turn it on
(log/set-config! [:appenders :spit :enabled?] true)
;; Set the log file location
(log/set-config! [:shared-appender-config :spit-filename] "out.log")

Note that the output file’s directory must exist and the user must be able to write to the
file. Once this configuration has been completed, any log messages will be written to
both the console and the file.

The available logging levels are :trace, :debug, :info, :warn, :error, and :fatal. The

default log level is set to :debug, so all logging levels greater than or equal to :debug will

be recorded (everything but :trace).

To change the logging level at runtime, change the configuration:

366 | Chapter 8: Performance and Production

(log/set-level! :warn)

While Timbre is an excellent library for simple logging in your Clojure app, it may not
be sufficient if you are integrating with many Java libraries. There are a variety of popular
Java logging frameworks and logging facades. If you wish to leverage the existing Java

logging infrastructure, you might find the tools.logging framework more suitable.

See Also

• Timbre Readme

• Logging with tools.logging

8.9. Releasing a Library to Clojars
by Ryan Neufeld; originally submitted by Simon Mosciatti

Problem
You’ve built a library in Clojure, and you want to release it to the world.

Solution
One of the easiest places to release libraries to is Clojars, a community repository for
open source libraries. To get started, sign up for an account. If you don’t already have
an SSH key, the GitHub guide “Generating SSH Keys” is an excellent resource.

Once you have an account set up, you’re ready to publish any Leiningen-based project.

If you don’t have a project to publish, generate one with the command lein new my-

first-project-<firstname>-<lastname>, replacing <firstname> and <lastname>
with your own name.

You can now use the command lein deploy clojars to release your library to Clojars:

$ lein deploy clojars
WARNING: please set :description in project.clj.
WARNING: please set :url in project.clj.
No credentials found for clojars (did you mean `lein deploy clojars`?)
See `lein help deploy` for how to configure credentials.
Username: #
Password: #
Wrote .../my-first-project-ryan-neufeld/pom.xml
Created .../my-first-project-ryan-neufeld-0.1.0-SNAPSHOT.jar
Could not find metadata my-first-project-ryan-neufeld:
 .../0.1.0-SNAPSHOT/maven-metadata.xml \
 in clojars (https://clojars.org/repo/)
Sending .../my-first-project-ryan-neufeld-0.1.0-20131113.123334-1.pom (3k)
 to https://clojars.org/repo/

8.9. Releasing a Library to Clojars | 367

http://bit.ly/clj-timbre
http://bit.ly/clj-tools-logging
https://clojars.org
https://clojars.org/register
http://bit.ly/ssh-keys

Sending .../my-first-project-ryan-neufeld-0.1.0-20131113.123334-1.jar (8k)
 to https://clojars.org/repo/
Could not find metadata my-first-project-ryan-neufeld:.../maven-metadata.xml \
 in clojars (https://clojars.org/repo/)
Sending my-first-project-ryan-neufeld/.../0.1.0-SNAPSHOT/maven-metadata.xml (1k)
 to https://clojars.org/repo/
Sending my-first-project-ryan-neufeld/.../maven-metadata.xml (1k)
 to https://clojars.org/repo/

Enter your Clojars username, then press Return.

Enter your Clojars password, then press Return.

After this command has completed, your library will be available both on the Web

(https://clojars.org/my-first-project-ryan-neufeld) and as a Leiningen dependency ([my-

first-project-ryan-neufeld "0.1.0-SNAPSHOT"]).

Discussion
Releasing a library doesn’t get much easier than this; just create an account and press
the Big Red Button. Together, Leiningen and Clojars make it trivially easy for members
of the Clojure community such as yourself to release their libraries to the masses.

In this example, you released a simple, uniquely named library with little care for ver‐
sioning, release strategies, or adequate metadata. In a real project, you should pay at‐
tention to these matters to be a good open source citizen.

The easiest change is adding appropriate metadata and a website. In your project.clj file,

add an accurate :description and :url. If you don’t have a website for your project,
consider linking to your project’s GitHub page (or other public SCM “landing page”).

Less easy is having consistent version numbers for your project. We suggest a scheme
called Semantic Versioning, or “semver.” The semver scheme prescribes a version num‐
ber of three parts, major, minor, and patch, joined with periods. This ends up looking
like “0.1.0” or “1.4.2”. Each version position indicates a certain level of stability and
consistency across releases. Releases sharing a major version should be API-compatible;
bumping the major version says, “I have fundamentally changed the API of this library.”
The minor version indicates when new, backward-compatible functionality has been
added. Finally, the patch version indicates when bug fixes have been made.

It certainly takes discipline to follow Semantic Versioning, but when you do, you make
it easier for your fellow developers to understand your library versions and trust them
to behave in a way they expect.

Code signing is another important concern in the deployment process. Signing the
artifacts you release lets your users know the artifacts were created by someone they
trust (you) and contain exactly what you intended (i.e., they have not be tampered with).
Leiningen includes the facilities to sign release artifacts using GPG and include the

368 | Chapter 8: Performance and Production

https://clojars.org/my-first-project-ryan-neufeld
http://semver.org

relevant .asc signature files in lein deploy publications. Enabling code signing is de‐
scribed in the GNU Privacy Guard (GPG) section of Leiningen’s deploying libraries
guide.

See Also

• The Clojars wiki, a bountiful source of information on releasing libraries to Clojars

• Leiningen’s own deploying libraries guide, which covers code signing and how to
deploy to repositories other than Clojars

• The output of the lein help deploy command

8.10. Using Macros to Simplify API Deprecations
by Michael Fogus

Problem
You want to use Clojure macros to deprecate API functions and report existing depre‐
cations.

Solution
When maintaining a library that other programmers rely on to get their work done, it
behooves you to be thoughtful when making changes. In the process of fixing bugs and
making improvements to your library, you will eventually wish to change its public
interface. Making changes to a public-facing portion of your library is no small matter,
but assuming that you’ve determined its necessity, then you’ll want to deprecate the
functions that are obsolete. The term “deprecate” basically means that a given function
should be avoided in favor of some other, newer function.

For an example, take the case of the Clojure contrib library core.memoize. Without

going into detail about what core.memoize does, it’s fine to know that at one point a

segment of its public-facing API was a function named memo-fifo that looked like the
following:

(defn memo-fifo
 ([f] ...)
 ([f limit] ...)
 ([f limit base] ...))

Obviously, the implementation has been elided to highlight only the parts that were
planned for change in a later version—namely, the function’s name and its available
argument vectors. The details of the new API are not important, but they were different
enough to cause potential confusion to the users. In a case like this, simply making the

8.10. Using Macros to Simplify API Deprecations | 369

http://bit.ly/lein-deploy-gpg
http://bit.ly/lein-deploy-gpg
http://bit.ly/clojars-wiki
http://bit.ly/lein-deploy
https://github.com/clojure/core.memoize

change without due notice in a new version would have been bad form and genuine
cause for bitterness.

Therefore, the question arises: what can you do in the case where a feature is planned
for deprecation that not only supports existing code in the interim, but also provides
fair warning to the users of your library of a future breaking change? In this section,
we’ll discuss using macros to provide a nice mechanism for deprecating library func‐
tions and macros with minimal fuss.

In the case of the planned deprecation of memo-fifo, the new function, named simply

fifo, was changed not only in name but also in its provided arities. When deprecating
portions of a library, it’s often a good idea to print warning messages that point to the
new, preferred function to use instead. Therefore, to start on the way to deprecating

memo-fifo, the following function, !!, was created to print a warning:

(defn ^:private !! [c]
 (println "WARNING - Deprecated construction method for"
 c
 "cache; preferred way is:"
 (str "(clojure.core.memoize/" c
 " function <base> <:"
 c "/threshold num>)")))

When passed a symbol, the !! function prints a message like this one:

(!! 'fifo)

;; WARNING - Deprecated construction method for fifo cache;
;; preferred way is:
;; (clojure.core.memoize/fifo function <base> <:fifo/threshold num>)

Not only does the deprecation message indicate that the function called is deprecated,
but it also points to the function that should be used instead. As far as deprecation
messages go, this one is solid, although your own purposes may call for something

different. In any case, to insert this warning on every call to memo-fifo, we can create

a simple macro to inject the call to !! into the body of the function’s definition, as shown
here:

(defmacro defn-deprecated [nom _ alt ds & arities]
 `(defn ~nom ~ds ;
 ~@(for [[args body] arities] ;
 (list args `(!! (quote ~alt)) body)))) ;

Create a defn call with the given name and docstring.

Loop through the given function arities.

Insert a call to !! as the first part of the body.

370 | Chapter 8: Performance and Production

We’ll talk a bit about the goals of the defn-deprecated macro in the following discussion
section, but for now, you can see how it works:

(defn-deprecated memo-fifo :as fifo
 "DEPRECATED: Please use clojure.core.memoize/fifo instead."
 ([f] ...)
 ([f limit] ...)
 ([f limit base] ...)

The only changes to the definition of memo-fifo are the use of the defn-deprecated

macro instead of defn directly, the use of the :as fifo directive, and the addition (or

change) of the docstring to describe the deprecation. The defn-deprecated macro takes
care of assembling the parts in the macro body to print the warning on use:

(def f (memo-fifo identity 32))
;; WARNING - Deprecated construction method for fifo cache;
;; preferred way is:
;; (clojure.core.memoize/fifo function <base> <:fifo/threshold num>)

The warning message will only display once for every call to memo-fifo, and due to the
nature of that function, that should be sufficient.

Discussion
There are different ways to handle the same situation besides using macros. For example,

the !! function could have taken a function and a symbol and wrapped the function,
inserting a deprecation warning in passing:

(defn depr [fun alt]
 (fn [& args] ;
 (println
 "WARNING - Deprecated construction method for"
 alt
 "cache; preferred way is:"
 (str "(clojure.core.memoize/" alt
 " function <base> <:"
 alt "/threshold num>)"))
 (apply fun args))) ;

Return a function that prints the deprecation message before calling the
deprecated function.

Call the deprecated function.

This new implementation of !! would work in the following way:

(def memo-fifo (depr old-memo-fifo 'fifo))

Thereafter, calling the memo-fifo function will print the deprecation message. Using a
higher-order function like this is a reasonable way to avoid the potential complexities

8.10. Using Macros to Simplify API Deprecations | 371

of using a macro. However, we chose the macro version for a number of reasons, ex‐
plained in the following sections.

Preserving stack traces

Let’s be honest: the exception stack traces that Clojure can produce can at times be

painful to deal with. If you decide to use a higher-order function like depr, be aware
that if an exception occurs in its execution, another layer of stack trace will be added.

By using a macro like !! that delegates its operation directly to defn, you are ensured
that the stack trace will remain unadulterated (so to speak).

Metadata

Using a near 1-for-1 replacement macro like defn-deprecated allows you to preserve
the metadata on a function. Observe:

(defn-deprecated ^:private memo-foo :as bar
 "Does something."
 ([] 42))

(memo-foo)
;; WARNING - Deprecated construction method for bar cache;
;; preferred way is:
;; (clojure.core.memoize/bar function <base> <:bar/threshold num>)
;;=> 42

Because defn-deprecated defers the bulk of its behavior to defn, any metadata attached
to its elements automatically gets forwarded on and attached as expected:

(meta #'memo-foo)

;;=> {:arglists ([]), :ns #<Namespace user>,
;; :name memo-foo, :private true, :doc "Does something.",
;; ...}

Using the higher-order approach does not automatically preserve metadata:

(def baz (depr foo 'bar))

(meta #'baz)
;;=> {:ns #<Namespace user>, :name baz, ...}

Of course, you could copy over the metadata if so desired, but why do so when the macro
approach takes cares of it for you?

Faster call site

The depr function, because it’s required to handle any function that you give it, needed

to use apply at its core. While in the case of the core.memoize functions this was not a
problem, it may become so in the case of functions requiring higher performance. In

reality, though, the use of println will likely overwhelm the cost of the apply, so if you

372 | Chapter 8: Performance and Production

really need to deprecate a high-performance function, then you might want to consider
the following approach instead.

Compile-time warnings

The operation of defn-deprecated is such that the deprecation warning is printed every
time the function is called. This could be problematic if the function requires high speed.

Very few things slow a function down like a console print. Therefore, we can change

defn-deprecate slightly to report its warning at compile time rather than runtime:

(defmacro defn-deprecated [nom _ alt ds & arities]
 (!! alt) ;
 `(defn ~nom ~ds ~@arities)) ;

Print the warning when the macro is accessed.

Delegate function definition to defn without adulteration.

Observe the compile-time warning:

(defn-deprecated ^:private memo-foo :as bar
 "Does something."
 ([] 42))

;; WARNING - Deprecated construction method for bar cache;
;; preferred way is:
;; (clojure.core.memoize/bar function <base> <:bar/threshold num>)
;;=> #'user/memo-foo

(memo-foo)
42

This approach will work well if you distribute libraries as source code rather than as
compiled programs.

Turning it off

The real beauty of macros is not that they allow you to change the semantics of your
programs, but that they allow you to avoid doing so whenever it’s not appropriate. For
example, when using macros, you can run any code available to Clojure at compile time.
Thankfully, the full Clojure language is available at compile time. Therefore, we can
check a Boolean flag attached to a namespace as metadata to decide whether to report

a compile-time deprecation warning. We can change the newest defn-deprecated to
illustrate this technique:

(defmacro defn-deprecated
 [nom _ alt ds & arities]
 (let [silence? (:silence-deprecations (meta clojure.core/*ns*))] ;
 (when-not silence? ;

8.10. Using Macros to Simplify API Deprecations | 373

 (!! alt)))
 `(defn ~nom ~ds ~@arities))

Look up the metadata on the current namespace.

Only report the deprecation warning if the flag is not set to silence mode.

The defn-deprecated macro checks the status of the :silence-deprecations meta‐
data property on the current namespace and reports (or not) the deprecation warning
based on it. If you wind up using this approach, then you can turn off the deprecation

warning on a per-namespace basis by adding the following to your ns declaration:

(ns ^:silence-deprecations my.awesome.lib)

Now, any use of defn-deprecated in that namespace will not print the warning. Future
versions of Clojure will provide a cleaner way of creating and managing compile-time
flags, but for now this is a decent compromise.

See Also

• The official macro documentation

374 | Chapter 8: Performance and Production

http://clojure.org/macros

CHAPTER 9

Distributed Computation

9.0. Introduction
With the advent of cheaper and cheaper storage, we’re inclined to store more and more
data. As this data grows larger and larger, it becomes increasingly difficult to utilize to
its full potential. In response, numerous new techniques have emerged in the last decade
or so for dealing with such quantities of data.

The primary focus of this chapter is one such technique, MapReduce, developed at

Google in the early 2000s. Functional even in name, this technique uses map and re

duce in parallel across multiple machines at tremendous scale to process data at phe‐
nomenal speeds. In this chapter, we’ll be covering Cascalog, a data-processing library
built on top of Hadoop, which is an open source MapReduce implementation.

We’ll also briefly cover Storm, a real-time stream-processing library in use at several
tech giants such as Twitter, Groupon, and Yahoo!.

Cascalog
Cascalog defines a DSL based on Datalog, the same query language that backs Datom‐
ic. It might seem strange at first, but you will be thinking in Datalog in no time. Once
you’ve wet your feet with these recipes, visit the Cascalog wiki for more information on
writing your own queries.

Cascalog provides a concise syntax for describing data-processing jobs. Transforma‐
tions and aggregates are easy to express in Cascalog. Joins are particularly simple. You
might like the Cascalog syntax so much that you use it even for local jobs.

You can run your Cascalog jobs in a number of different ways. The easiest way is to run
jobs locally. When running jobs locally, Cascalog uses Hadoop’s local mode, completing
the entire job on your own computer. You get the benefit of parallelism, without the
hassle of setting up a cluster.

375

http://bit.ly/mapreduce-paper
http://cascalog.org/
http://hadoop.apache.org/
http://storm-project.net/
http://www.datomic.com/
http://www.datomic.com/
http://bit.ly/cascalog-wiki

Once your jobs outgrow local mode, you’ll need to start running them on a Hadoop
cluster. Having your own cluster is a lot of fun, but it can take a fair amount of work
(and money!) to set up and maintain. If you don’t need a cluster very often, you might
consider running your job on link to Amazon Elastic MapReduce (EMR). EMR provides
on-demand Hadoop clusters the same way EC2 provides on-demand servers. You’ll
need an Amazon Web Services account to run the job, but it isn’t difficult. You can read
exactly how to do it later, in Recipe 9.7, “Running a Cascalog Job on Elastic MapRe‐
duce” on page 400. Whether you run your job on EMR or on your own cluster, you will
package up your code into an uberjar (see Recipe 8.2, “Packaging a Project into a JAR
File” on page 345), then send it to Hadoop for execution. It is surprisingly simple to get
hundreds of computers working on your task.

9.1. Building an Activity Feed System with Storm
by Travis Vachon

Problem
You want to build an activity stream processing system to filter and aggregate the raw
event data generated by the users of your application.

Solution
Streams are a dominant metaphor for presenting information to users of the modern
Internet. Used on sites like Facebook and Twitter and mobile apps like Instagram and
Tinder, streams are an elegant tool for giving users a window into the deluge of infor‐
mation generated by the applications they use every day.

As a developer of these applications, you want tools to process the firehose of raw event
data generated by user actions. They must offer powerful capabilities for filtering and
aggregating data and must be arbitrarily scalable to serve ever-growing user bases. Ide‐
ally they should provide high-level abstractions that help you organize and grow the
complexity of your stream-processing logic to accommodate new features and a com‐
plex world.

Clojure offers just such a tool in Storm, a distributed real-time computation system that
aims to be for real-time computation what Hadoop is for batch computation. In this
section, you’ll build a simple activity stream processing system that can be easily ex‐
tended to solve real-world problems.

First, create a new Storm project using its Leiningen template:

$ lein new cookbook-storm-project feeds

In the project directory, run the default Storm topology (which the lein template has
generated for you):

376 | Chapter 9: Distributed Computation

http://aws.amazon.com/elasticmapreduce/
http://storm-project.net/
http://storm.incubator.apache.org/

$ cd feeds
$ lein run -m feeds.topology/run!
Compiling feeds.TopologySubmitter
...
Emitting: spout default [:bizarro]
Processing received message source: spout:4, stream: default, id: {}, [:bizarro]
Emitting: stormy-bolt default ["I'm bizarro Stormy!"]
Processing received message source: stormy-bolt:5,
 stream: default, id: {}, [I'm bizarro Stormy!]
Emitting: feeds-bolt default ["feeds produced: I'm bizarro Stormy!"]

This generated example topology just babbles example messages incoherently, which
probably isn’t what you want, so begin by modifying the “spout” to produce realistic
events.

In Storm parlance, the “spout” is the component that inserts data into the processing

system and creates a data stream. Open src/feeds/spouts.clj and replace the defspout
form with a new spout that will periodically produce random user events such as one
might see in an online marketplace (in a real application, of course, you’d hook this up
to some source of real data rather than a random data generator):

(defspout event-spout ["event"]
 [conf context collector]
 (let [events [{:action :commented, :user :travis, :listing :red-shoes}
 {:action :liked, :user :jim, :listing :red-shoes}
 {:action :liked, :user :karen, :listing :green-hat}
 {:action :liked, :user :rob, :listing :green-hat}
 {:action :commented, :user :emma, :listing :green-hat}]]
 (spout
 (nextTuple []
 (Thread/sleep 1000)
 (emit-spout! collector [(rand-nth events)])))))

Next, open src/feeds/bolts/clj. Add a bolt that accepts a user and an event and produces

a tuple of (user, event) for each user in the system. A bolt consumes a stream, does
some processing, and emits a new stream:

(defbolt active-user-bolt ["user" "event"] [{event "event" :as tuple} collector]
 (doseq [user [:jim :rob :karen :kaitlyn :emma :travis]]
 (emit-bolt! collector [user event]))
 (ack! collector tuple))

Now add a bolt that accepts a user and an event and emits a tuple if and only if the user
is following the user who triggered the event:

(defbolt follow-bolt ["user" "event"] {:prepare true}
 [conf context collector]
 (let [follows {:jim #{:rob :emma}
 :rob #{:karen :kaitlyn :jim}
 :karen #{:kaitlyn :emma}
 :kaitlyn #{:jim :rob :karen :kaitlyn :emma :travis}
 :emma #{:karen}

9.1. Building an Activity Feed System with Storm | 377

 :travis #{:kaitlyn :emma :karen :rob}}]
 (bolt
 (execute [{user "user" event "event" :as tuple}]
 (when ((follows user) (:user event))
 (emit-bolt! collector [user event]))
 (ack! collector tuple)))))

Finally, add a bolt that accepts a user and an event and stores the event in a hash of sets

like {:user1 #{event1 event2} :user2 #{event1 event2}}—these are the activity
streams you’ll present to users:

(defbolt feed-bolt ["user" "event"] {:prepare true}
 [conf context collector]
 (let [feeds (atom {})]
 (bolt
 (execute [{user "user" event "event" :as tuple}]
 (swap! feeds #(update-in % [user] conj event))
 (println "Current feeds:")
 (clojure.pprint/pprint @feeds)
 (ack! collector tuple)))))

This gives you all the pieces you’ll need, but you’ll still need to assemble them into a
computational topology. Open up src/feeds/topology.clj and use the topology DSL to
wire the spouts and bolts together:

(defn storm-topology []
 (topology
 {"events" (spout-spec event-spout)}

 {"active users" (bolt-spec {"events" :shuffle} active-user-bolt :p 2)
 "follows" (bolt-spec {"active users" :shuffle} follow-bolt :p 2)
 "feeds" (bolt-spec {"follows" ["user"]} feed-bolt :p 2)}))

You’ll also need to update the :require statement in that file:

 (:require [feeds
 [spouts :refer [event-spout]]
 [bolts :refer [active-user-bolt follow-bolt feed-bolt]]]
 [backtype.storm [clojure :refer [topology spout-spec bolt-spec]]
 [config :refer :all]])

Run the topology again. Feeds will be printed to the console by the final bolts in the
topology:

$ lein run -m feeds.topology/run!

Discussion
Storm’s Clojure DSL doesn’t look like standard Clojure. Instead, it uses Clojure’s macros
to extend the language to the domain of stream processing. Storm’s stream processing
abstraction consists of four core primitives:

378 | Chapter 9: Distributed Computation

Tuples
Allow programmers to provide names for values. Tuples are dynamically typed lists
of values.

Spouts
Produce tuples, often by reading from a distributed queue.

Bolts
Accept tuples as input and produce new tuples—these are the core computational
units of a Storm topology.

Streams
Used to wire spouts to bolts and bolts to other bolts, creating a computational
topology. Streams can be configured with rules for routing certain types of tuples
to specific instances of bolts.

The following subsections review the components of our system to give a better picture
of how these primitives work together.

event-spout

defspout looks much like Clojure’s standard defn, with one difference—the second

argument to defspout is a list of names that will be assigned to elements of each tuple
this spout produces. This lets you use tuples like vectors or maps interchangeably. The

third argument to defspout is a list of arguments that will be bound various components
of Storm’s operational infrastructure.

In the case of the event-spout spout, only collector is used:

(defspout event-spout ["event"]
 [conf context collector]

defspout’s body will be evaluated once, when the spout instance is created, which gives
you an opportunity to create in-memory state. Usually this will be a connection to a
database or distributed queue, but in this case you’ll create a list of events this spout will
produce:

 (let [events [{:action :commented, :user :travis, :listing :red-shoes}
 {:action :liked, :user :jim, :listing :red-shoes}
 {:action :liked, :user :karen, :listing :green-hat}
 {:action :liked, :user :rob, :listing :green-hat}
 {:action :commented, :user :emma, :listing :green-hat}]]

This call to spout creates an instance of a spout with the given implementation of

nextTuple. This implementation simply sleeps for one second and then uses emit-

spout! to emit a one-element tuple consisting of a random event from the preceding
list:

9.1. Building an Activity Feed System with Storm | 379

 (spout
 (nextTuple []
 (Thread/sleep 1000)
 (emit-spout! collector [(rand-nth events)])))))

nextTuple will be called repeatedly in a tight loop, so if you create a spout that polls an
external resource, you may need to provide your own backoff algorithm to avoid excess
load on that resource.

You can also implement the spout’s ack method to implement a “reliable” spout that will
provide message-processing guarantees. For more information on reliable spouts, see

Storm’s spout implementation for the Kestrel queueing system, storm-kestrel.

active-user-bolt

Every time a user takes an action in this system, the system needs to determine whether
each other user in the system will be interested in it. Given a simple interest system like
Twitter, where users express interest in a single way (i.e., user follows), you could simply
look at the follower list of the user who took the action and update feeds accordingly.
In a more complex system, however, interest might be expressed by having liked the
item the action was taken against, following a collection that the item has been added
to, or following the seller of the item. In this world, you need to consider a variety of
factors for each user in the system for every event and determine whether the event
should be added to that user’s feed.

The first bolt starts this process by generating a tuple of (user, event) for each user

in the system every time an event is generated by the event-spout:

(defbolt active-user-bolt ["user" "event"] [{event "event" :as tuple} collector]
 (doseq [user [:jim :rob :karen :kaitlyn :emma :travis]]
 (emit-bolt! collector [user event]))
 (ack! collector tuple))

defbolt’s signature looks very similar to defspout. The second argument is a list of
names that will be assigned to tuples generated by this bolt, and the third argument is
a list of parameters. The first parameter will be bound to the input tuple, and may be
destructured as a map or a vector.

The body of this bolt iterates through a list of users in the system and emits a tuple for

each of them. The last line of the body calls ack! on this tuple, which allows Storm to
track message processing and restart processing when appropriate.

follow-bolt

The next bolt is a prepared bolt; that is, one that maintains in-memory state. In many
cases, this would mean maintaining a connection to a database or a queue, or a data
structure aggregating some aspect of the tuples it processes, but this example maintains
a complete list of the followers in the system in memory.

380 | Chapter 9: Distributed Computation

https://github.com/nathanmarz/storm-kestrel

This bolt looks more like the spout definition. The second argument is a list of names,

the third argument is a map of bolt configuration options (importantly, these set :pre

pare to true), and the fourth argument is the same set of operational arguments received

in defspout:

(defbolt follow-bolt ["user" "event"] {:prepare true}
 [conf context collector]

The body of the bolt first defines the list of followers, and then provides the actual bolt

definition inside a call to bolt:

 (let [follows {:jim #{:rob :emma}
 :rob #{:karen :kaitlyn :jim}
 :karen #{:kaitlyn :emma}
 :kaitlyn #{:jim :rob :karen :kaitlyn :emma :travis}
 :emma #{:karen}
 :travis #{:kaitlyn :emma :karen :rob}}]
 (bolt
 (execute [{user "user" event "event" :as tuple}]
 (when ((follows user) (:user event))
 (emit-bolt! collector [user event]))
 (ack! collector tuple)))))

Note that the tuple argument is inside the bolt’s definition of execute in this case and
may be destructured as usual. In cases where the event’s user is not following the user
in the tuple, it does not emit a new tuple and simply acknowledges that it received the
input.

As noted earlier, this particular system could be implemented much more simply by
querying whatever datastore tracks follows and simply adding a story to the feed of each
follower. Anticipating a more complicated system, however, provides a massively ex‐
tensible architecture. This bolt could easily be expanded to a collection of scoring bolts,
each of which would evaluate a user/event pair based on its own criteria and emit a tuple

of (user, event, score). A score aggregation bolt would receive scores from each scoring
bolt and choose to emit a tuple once it received scores from each type of scoring bolt in
the system. In this world, adjusting the factors determining the makeup of a user’s feed
and their relative weights would be trivial—indeed, production experience with just
such a system was, in the opinion of the authors, delightful (see the Rising Tide project
page on GitHub).

feed-bolt

The final bolt aggregates events into feeds. Since it only receives (user, event) tuples
that the “scoring system” has approved, it needs only add the event to the existing list
of events it has received for the given user:

 (let [feeds (atom {})]
 (bolt
 (execute [{user "user" event "event" :as tuple}]

9.1. Building an Activity Feed System with Storm | 381

https://github.com/utahstreetlabs/risingtide
https://github.com/utahstreetlabs/risingtide

 (swap! feeds #(update-in % [user] conj event))
 (println "Current feeds:")
 (clojure.pprint/pprint @feeds)
 (ack! collector tuple))))

This toy topology simply prints the current feeds every time it receives a new event, but
in the real world it would persist feeds to a durable datastore or a cache that could
efficiently serve the feeds to users.

Note that this design can be easily extended to support event digesting; rather than
storing each event separately, it could aggregate an incoming event with other similar
events for the user’s convenience.

As described, this system has one enormous flaw: by default, Storm tuples are delivered
to exactly one instance of each bolt, and the number of instances in existence is not

defined in the bolt implementation. If the topology operator adds more than one feed-

bolt, we may have events for the same user delivered to different bolt instances, giving
each bolt a different feed for the same user.

Happily, this flaw is addressed by Storm’s support for stream grouping, which is defined
in the Storm topology definition.

Topology

The topology definition is where the rubber meets the road. Spouts are wired to bolts,
which are wired to other bolts, and the flow of tuples between them can be configured
to give useful properties to the computation.

This is also where you define the component-level parallelism of the topology, which
provides a rough sketch of the true operational parallelism of the system.

A topology definition consists of spout specifications and bolt specifications, each of
which is a map from names to specifications.

Spout specifications simply give a name to a spout implementation:

 {"events" (spout-spec event-spout)}

Multiple spouts can be configured, and the specification may define the parallelism of
the spout:

 {
 "events" (spout-spec event-spout)
 "parallel-spout" (spout-spec a-different-more-parallel-spout :p 2)
 }

This definition means the topology will have one instance of event-spout and two

instances of a-different-more-parallel-spout.

Bolt definitions get a bit more complicated:

382 | Chapter 9: Distributed Computation

 "active users" (bolt-spec {"events" :shuffle} active-user-bolt :p 2)
 "follows" (bolt-spec {"active users" :shuffle} follow-bolt :p 2)

As with the spout spec, you must provide a name for the bolt and specify its parallelism.
In addition, bolts require specifying a stream grouping, which defines (a) from which
component the bolt receives tuples and (b) how the system chooses which in-memory

instance of the bolt to send tuples to. Both of these cases specify :shuffle, which means

tuples from “events” will be sent to a random instance of active-user-bolt, and tuples

from “active users” will be sent to a random instance of follow-bolt.

As noted, feed-bolt needs to be more careful:

 "feeds" (bolt-spec {"follows" ["user"]} feed-bolt :p 2)

This bolt spec specifies a fields grouping on “user”. This means that all tuples with the

same “user” value will be sent to the same instance of feed-bolt. This stream grouping
is configured with a list of field names, so field groupings may consider the equality of
multiple field values when determining which bolt instance should process a given tuple.

Storm also supports stream groupings that send tuples to all instances and groupings
that let the bolt producing a tuple determine where to send it. Combined with the
groupings already seen, these provide an enormous amount of flexibility in determining
how data flows through your topology.

Each of these component specifications supports a parallelism option. Because the top‐
ology does not specify the physical hardware upon which it will run, these hints cannot
be used to determine the true parallelism of the system, but they are used by the cluster
to determine how many in-memory instances of the specified components to create.

Deployment

The real magic of Storm comes out in deployment. Storm gives you the tools to build
small, independent components that make no assumptions about how many identical
instances are running in the same topology. This means that the topology itself is es‐
sentially infinitely scalable. The edges of the system, which receive data from and send
data to external components like queues and databases, are not necessarily as scalable,
but in many cases, strategies for scaling these services are well understood.

A simple deployment strategy is built into the Storm library:

 (doto (LocalCluster.)
 (.submitTopology "my first topology"
 {TOPOLOGY-DEBUG (Boolean/parseBoolean debug)
 TOPOLOGY-WORKERS (Integer/parseInt workers)}
 (storm-topology)))

LocalCluster is an in-memory implementation of a Storm cluster. You can specify the
number of workers it will use to execute the components of your topology and submit

the topology itself, at which point it begins polling the nextTuple methods of the top‐

9.1. Building an Activity Feed System with Storm | 383

ology’s spouts. As spouts emit tuples, they are propagated through the system to com‐
plete the topology’s computation.

Submitting the topology to a configured cluster is nearly as simple, as you can see in
src/feeds/TopologySubmitter.clj:

(defn -main [& {debug "debug" workers "workers" :or {debug "false" workers "4"}}]
 (StormSubmitter/submitTopology
 "feeds topology"
 {TOPOLOGY-DEBUG (Boolean/parseBoolean debug)
 TOPOLOGY-WORKERS (Integer/parseInt workers)}
 (storm-topology)))

This file uses Clojure’s Java interop to generate a Java class with a main method. Because
the project.clj file specifies that this file should be ahead-of-time compiled, when you

use lein uberjar to build a JAR suitable for submission to the cluster, this file will be
compiled to look like a normal Java class file. You can upload this JAR to the machine

running Storm’s Nimbus daemon and submit it for execution using the storm command:

$ storm jar path/to/thejariuploaded.jar feeds.TopologySubmitter "workers" 5

This command will tell the cluster to allocate five dedicated workers for this topology

and begin polling nextTuple on all of its spouts, as it did when you used LocalClus

ter. A cluster may run any number of topologies simultaneously—each worker is a
physical JVM and may end up running instances of many different bolts and spouts.

The full details of setting up and running a Storm cluster are out of the scope of this
recipe, but they are documented extensively on Storm’s wiki.

Conclusion

We’ve only touched on a fraction of the functionality Storm has to offer. Built-in dis‐
tributed remote procedure calls allow users to harness the power of a Storm cluster to
make synchronous requests that trigger a flurry of activity across hundreds or thousands
of machines. Guaranteed data-processing semantics allow users to build extremely ro‐
bust systems. Trident, a higher-level abstraction over Storm’s primitives, provides
breathtakingly simple solutions to complicated real-time computing problems. A de‐
tailed runtime console provides crucial insight into the runtime characteristics of a fully
operational Storm cluster. The power provided by this system is truly remarkable.

Storm is also a fantastic example of Clojure’s ability to be extended to a problem domain.
Its constructs idiomatically extend Clojure syntax and allow the programmer to stay
within the domain of real-time processing, without needing to deal with low-level lan‐
guage formalities. This allows Storm to truly get out of the way. The majority of the code
in a well-written Storm topology’s code base is focused on the problem at hand. The
result is concise, maintainable code and happy programmers.

384 | Chapter 9: Distributed Computation

See Also

• Storm’s website

• The Storm project template

• storm-deploy, a tool for easy Storm deployment

• Rising Tide, the feed generation service on which this recipe is based

9.2. Processing Data with an Extract Transform Load (ETL)
Pipeline
by Alex Robbins

Problem
You need to change the format of large amounts of data from JSON lists to CSV for later
processing. For example, you want to turn this input:

{"name": "Clojure Programming", "authors": ["Chas Emerick",
 "Brian Carper",
 "Christophe Grand"]}
{"name": "The Joy of Clojure", "authors": ["Michael Fogus", "Chris Houser"]}

into this output:

Chas Emerick,Brian Carper,Christophe Grand
Michael Fogus,Chris Houser

Solution
Cascalog allows you to write distributed processing jobs that can run locally for small
jobs or on a Hadoop cluster for larger jobs.

To follow along with this recipe, create a new Leiningen project:

$ lein new cookbook

Modify your new project’s project.clj file by adding the cascalog dependency, setting

up the :dev profile, and enabling AOT compilation for the cookbook.etl namespace.
Your project.clj file should now look like this:

(defproject cookbook "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]
 [cascalog "1.10.2"]

9.2. Processing Data with an Extract Transform Load (ETL) Pipeline | 385

http://storm-project.net/
http://bit.ly/storm-template
https://github.com/nathanmarz/storm-deploy
https://github.com/utahstreetlabs/risingtide

 [org.clojure/data.json "0.2.2"]]
 :profiles {:dev {:dependencies [[org.apache.hadoop/hadoop-core "1.1.2"]]}}
 :aot [cookbook.etl])

Create the file src/cookbook/etl.clj and add a query to it:

(ns cookbook.etl
 (:require [cascalog.api :refer :all]
 [clojure.data.json :as json]))

(defn get-vec
 "Wrap the result in a vector for Cascalog to consume."
 [m k]
 (vector
 (get m k)))

(defn vec->csv
 "Turn a vector into a CSV string. (Not production quality)."
 [v]
 (apply str (interpose "," v)))

(defmain Main [in out & args]
 (?<-
 (hfs-textline out :sinkmode :replace)
 [?out-csv]
 ((hfs-textline in) ?in-json)
 (json/read-str ?in-json :> ?book-map)
 (get-vec ?book-map "authors" :> ?authors)
 (vec->csv ?authors :> ?out-csv)))

Create a file with input data in samples/books/books.json:

{"name": "Clojure Cookbook", "authors": ["Ryan", "Luke"]}

The full contents of this solution are available on GitHub in the Casca‐
log samples repository.

To retrieve a copy of the working project, clone the project from Git‐

Hub and check out the etl-sample branch:

$ git clone https://github.com/clojure-cookbook/cascalog-samples.git
$ cd cascalog-samples
$ git checkout etl-sample

You can now execute the job locally with lein run, providing an input and output file:

$ lein run -m cookbook.etl.Main samples/books/books.json samples/books/output

Or, on a Hadoop cluster
$ lein uberjar
$ hadoop jar target/cookbook-standalone.jar cookbook.etl.Main \
 books.json books.csv

The results in samples/books/output/part-00000 are as follows:

386 | Chapter 9: Distributed Computation

http://bit.ly/cc-cascalog-samples
http://bit.ly/cc-cascalog-samples

1. While queries look like regular Clojure, they are in fact a DSL. If you’re not familiar with Cascalog queries,
learn more in Nathan Marz’s “Introducing Cascalog” article.

Ryan,Luke

Discussion
While it would be easy to write a script that converted JSON to CSV, it would be a lot
of work to convert the script to run across many computers. Writing the transform
script using Cascalog allows it to run in local mode or distributed mode with almost no
modification.

There are a lot of new concepts and syntax in the preceding small example, so let’s break
it down piece by piece.

In this recipe, the data flows through the functions roughly in order. The first line uses

the defmain macro (from Cascalog) to define a class with a -main function that lets you

run the query over Hadoop. In this case, the class with a -main function is called Main,

but that is not required. defmain allows you to create several Hadoop-enabled queries
in the same file:

(defmain Main [in out & args]

Inside the Main function is a Cascalog operator, ?<-,1 that defines and executes a query:

(?<-

This operator takes an output location (called a “tap” in Cascalog), a result vector, and
a series of logic predicates. The next line is the destination, the place the output will be
written to. The same functions are used to create input and output taps:

(hfs-textline out :sinkmode :replace)

This example uses hfs-textline, but many other taps exist. You can even write your
own.

Use :sinkmode :replace in your output tap, and Cascalog will
replace any existing output. This helps while you are rerun‐
ning the query to debug it. Otherwise, you will have to remove
the output file every time you want to rerun.

This is a list of all the logic variables that should be returned from this query:

[?out-csv]

In this case, these are the logic variables that will be dumped into the output location.

Cascalog knows these are special logic variables because their names begin with a ? or a !.

9.2. Processing Data with an Extract Transform Load (ETL) Pipeline | 387

http://bit.ly/cascalog-intro-post

When thinking about logic variables, it helps to think of them as
containing all possible valid values. As you add predicates, you ei‐
ther introduce new logic variables that are (hopefully) linked to ex‐
isting variables, or you add constraints to existing logic variables.

The next line defines the input tap. The JSON data structures will be read in one line at

a time from the location specified by in. Each line will be stored into the ?in-json logic
var, which will flow through the rest of the logic predicates:

((hfs-textline in) ?in-json)

read-str parses the JSON string found in ?in-json into a hash map, which is stored

into ?book-map:

(json/read-str ?in-json ?book-map)

Now you pull the authors out of the map and store the vector into its own logic variable.
Cascalog assumes vector output means binding multiple logic vars. To outsmart Cas‐
calog, wrap the output in an extra vector for Cascalog to consume:

(get-vec ?book-map "authors" ?authors)

Finally, you convert the vector of authors into valid CSV using the vec->csv function.

Since this line produces values for the ?out-csv logic variable, which is named in the
output line earlier, the query will produce the output:

(vec->csv ?authors ?out-csv)))

Cascalog is a great tool for building an extract transform load (ETL) pipeline. It allows
you to spend more time thinking about your data and less time thinking about the
mechanics of reading files, distributing work, or managing dependencies. When writing
your own ETL pipelines, it might help to follow this process:

1. Finalize the input format(s).

2. Finalize the output format(s).

3. Start working from the input format, keeping track of the current format for each
step.

See Also

• Ian Rumford’s blog post “Using Cascalog for Extract Transform and Load”

• core.logic, a logic programming library for Clojure

388 | Chapter 9: Distributed Computation

http://bit.ly/cascalog-etl-post
https://github.com/clojure/core.logic

9.3. Aggregating Large Files
by Alex Robbins

Problem
You need to generate aggregate statistics from terabytes of log files. For example, for a

simple input log file (<date>,<URL>,<USER-ID>):

20130512020202,/,11
20130512020412,/,23
20130512030143,/post/clojure,11
20130512040256,/post/datomic,23
20130512050910,/post/clojure,11
20130512051012,/post/clojure,14

you want to output aggregate statistics like this:

{
"URL" {"/" 2
 "/post/datomic" 1
 "/post/clojure" 3}
"User" {"23" 2
 "11" 3
 "14" 1}
"Day" {"20130512" 6}
}

Solution
Cascalog allows you to write distributed processing jobs that run locally or on a Hadoop
cluster.

To follow along with this recipe, clone the Cascalog samples GitHub repository and

check out the aggregation-begin branch. This will give you a basic Cascalog project
as created in Recipe 9.2, “Processing Data with an Extract Transform Load (ETL) Pipe‐
line” on page 385:

$ git clone https://github.com/clojure-cookbook/cascalog-samples.git
$ cd cascalog-samples
$ git checkout aggregation-begin

Now add [cascalog/cascalog-more-taps "2.0.0"] to the project’s dependencies and

set the cookbook.aggregation namespace to be AOT-compiled. project.clj should look
like this:

(defproject cookbook "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}

9.3. Aggregating Large Files | 389

http://bit.ly/cc-cascalog-samples

 :dependencies [[org.clojure/clojure "1.5.1"]
 [cascalog "2.0.0"]
 [cascalog/cascalog-more-taps "2.0.0"]
 [org.clojure/data.json "0.2.2"]]
 :profiles {:dev {:dependencies [[org.apache.hadoop/hadoop-core "1.1.2"]]}}
 :aot [cookbook.etl
 cookbook.aggregation])

Create the file src/cookbook/aggregation.clj and add an aggregation query to it:

(ns cookbook.aggregation
 (:require [cascalog.api :refer :all]
 [cascalog.more-taps :refer [hfs-delimited]]))

(defn init-aggregate-stats [date url user]
 (let [day (.substring date 0 8)]
 {"URL" {url 1}
 "User" {user 1}
 "Day" {date 1}}))

(def combine-aggregate-stats
 (partial merge-with (partial merge-with +)))

(defparallelagg aggregate-stats
 :init-var #'init-aggregate-stats
 :combine-var #'combine-aggregate-stats)

(defmain Main [in out & args]
 (?<-
 (hfs-textline out :sinkmode :replace)
 [?out]
 ((hfs-delimited in :delimiter ",") ?date ?url ?user)
 (aggregate-stats ?date ?url ?user :> ?out)))

Add some sample data to the file samples/posts/posts.csv:

20130512020202,/,11
20130512020412,/,23
20130512030143,/post/clojure,11
20130512040256,/post/datomic,23
20130512050910,/post/clojure,11
20130512051012,/post/clojure,14

The full contents of this solution are available in the aggregation-

complete branch of the Cascalog samples repository.

Check out that branch to retrieve a full working copy with sample
data:

$ git checkout aggregation-complete

You can now execute the job locally:

390 | Chapter 9: Distributed Computation

http://bit.ly/cc-cascalog-samples

$ lein run -m cookbook.aggregation.Main \
 samples/posts/posts.csv samples/posts/output

Or, on a Hadoop cluster
$ lein uberjar
$ hadoop jar target/cookbook-standalone.jar \
 cookbook.aggregation.Main \
 samples/posts/posts.csv samples/posts/output

The results in samples/posts/output/part-00000, formatted for readability, are as follows:

{
"URL" {"/" 2
 "/post/datomic" 1
 "/post/clojure" 3}
"User" {"23" 2
 "11" 3
 "14" 1}
"Day" {"20130512" 6}
}

Discussion
Cascalog makes it easy to quickly generate aggregate statistics. Aggregate statistics can
be tricky on some MapReduce frameworks. In general, the map phase of a MapReduce
job is well distributed across the cluster. The reduce phase is often less well distributed.
For instance, a naive implementation of the aggregation algorithm would end up doing
all of the aggregation work on a single reducer. A 2,000-computer cluster would be as
slow as a 1-computer cluster during the reduce phase if all the aggregation happened
on one node.

Before you start writing your own aggregator, check through the source of casca

log.logic.ops. This namespace has many useful functions and probably already does
what you want to do.

In our example, the goal is to count occurrences of each URL. To create the final map,
all of the URLs need to end up in one reducer. A naive MapReduce program imple‐
mentation would use an aggregation over all the tuples. That means you’d be doing all
the work on only one node, with the computation taking just as long as it would on a
single computer.

The solution is to use Hadoop’s combiner function. Combiners run on the result of the
map phase, before the output is sent to the reducers. Most importantly, the combiner
runs on the mapper nodes. That means combiner work is spread across the entire cluster,
like map work. When the majority of the work is done during the map and combiner
phases, the reduce phase can run almost instantly. Cascalog makes this very easy. Many
of the built-in Cascalog functions use combiners under the covers, so you’ll be writing

9.3. Aggregating Large Files | 391

highly optimized queries without even trying. You can even write your own functions

to use combiners using the defparallelagg macro.

Cascalog often works with vars instead of the values of those vars. For

example, the call to defparallelagg takes quoted arguments. The #'
syntax means that the var is being passed, not the value that the var
refers to. Cascalog passes the vars around instead of values so that it
doesn’t have to serialize functions to pass them to the mappers and
reducers. It just passes the name of the var, which is looked up in the
remote execution environment. This means you won’t be able to dy‐
namically construct functions for some parts of the Cascalog work‐
flow. Most functions need to be bound to a var.

defparallelagg is kind of confusing at first, but the power to write queries that leverage
combiners makes it worth learning. You need to provide two vars that point to functions

to the defparallelagg call: init-var and combine-var. Note that both arguments are

being passed as vars, not function values, so you need to prepend a #' to the names.

The init-var function needs to take the input data and change it into a format that can

be easily processed by the combine-var function. In this case, the recipe changes the
data into a map of maps that can easily be merged. Merging maps is an easy way to write

parallel aggregators. The combine-var function needs to be commutative and associa‐

tive. The function is called with two instances of the output of the init-var function.

The return value will be passed as an argument to later invocations of the combine-

var function. Pairs of output will be combined until there is only one output left, which
is the final output.

What follows is an explanation of the query, bit by bit.

First, require the Cascalog functions you’ll need:

(ns cookbook.aggregation
 (:require [cascalog.api :refer :all]
 [cascalog.more-taps :refer [hfs-delimited]]))

Then define a function, init-aggregate-stats, that takes a date, URL, and user and
returns a map of maps. The second level of maps has keys that correspond to the ob‐

served values. This is the init function, which takes each row and prepares it for ag‐
gregation:

(defn init-aggregate-stats [date url user]
 (let [day (.substring date 0 8)]
 {"URL" {url 1}
 "User" {user 1}
 "Day" {date 1}}))

392 | Chapter 9: Distributed Computation

The combine-aggregate-stats function takes the output of invoking the init-

aggregate-stats function on all the inputs and combines it. This function will be called

over and over, combining the output of init-aggregate-stats function calls and the
output of other invocations of itself. Its output should be of the same form as its input,
since this function will be called on pairs of output until there is only one piece of data
left. This function merges the nested maps, adding the values together when they are
in the same key:

(def combine-aggregate-stats
 (partial merge-with (partial merge-with +)))

aggregate-stats takes the two previous functions and turns them into a Cascalog
parallel-aggregation operation. Note that you pass the vars, not the functions them‐
selves:

(defparallelagg aggregate-stats
 :init-var #'init-aggregate-stats
 :combine-var #'combine-aggregate-stats)

Finally, set up Main to define and execute a query that invokes the aggregate-stats

operation across input from in, writing it to out:

(defmain Main [in out & args]
 ;; This defines and executes a Cascalog query.
 (?<-
 ;; Set up the output path.
 (hfs-textline out :sinkmode :replace)
 ;; Define which logic variables will be output.
 [?out]
 ;; Set up the input path, and define the logic vars to bind to input.
 ((hfs-delimited in) ?date ?url ?user)
 ;; Run the aggregation operation.
 (aggregate-stats ?date ?url ?user :> ?out)))

If the aggregate you want to calculate can’t be defined using defparallelagg, Cascalog
provides some other options for defining aggregates. However, many of them don’t use
combiners and could leave you with almost all the computation happening in a small
number of reducers. The computation will probably finish, but you are losing a lot of

the benefit of distributed computation. Check out the source of cascalog.logic.ops
to see what the different options are and how you can use them.

See Also

• The source of cascalog.logic.ops, a namespace with many predefined operations
(including aggregators)

9.3. Aggregating Large Files | 393

http://bit.ly/cascalog-ops

9.4. Testing Cascalog Workflows
by Alex Robbins

Problem
You love testing your code. You love writing Cascalog jobs. You hate trying to test your
Cascalog jobs.

Solution
Midje-Cascalog provides a small amount of extra functionality that makes writing tests
for Cascalog jobs quite easy. To follow along with this recipe, clone the Cascalog samples

GitHub repository and check out the testing-begin branch. This will give you a basic
Cascalog project as created in Recipe 9.2, “Processing Data with an Extract Transform
Load (ETL) Pipeline” on page 385.

Now add the Midje plug-in and Midje-Cascalog dependency to the :dev profile in your

project.clj. The :profiles key should now look like this:

(defproject cookbook "0.1.0-SNAPSHOT"
 ;; ...
 :profiles {:dev {:dependencies [[org.apache.hadoop/hadoop-core "1.1.2"]
 [cascalog/midje-cascalog "2.0.0"]]
 :plugins [[lein-midje "3.1.1"]]}})

Create a simple query in src/cookbook/test_me.clj to write a test against:

(ns cookbook.test-me
 (:require [cascalog.api :refer :all]))

(defn capitalize [s]
 (.toUpperCase s))

(defn capitalize-authors-query [author-path]
 (<- [?capitalized-author]
 ((hfs-textline author-path) ?author)
 (capitalize ?author :> ?capitalized-author)))

You can now write a test for this query in test/cookbook/test_me_test.clj:

(ns cookbook.test-me-test
 (:require [cookbook.midje-cascalog :refer :all]
 [midje
 [sweet :refer :all]
 [cascalog :refer :all]]))

(fact "Query should return capitalized versions of the input names."
 (capitalize-authors-query :author-path) => (produces [["LUKE VANDERHART"]
 ["RYAN NEUFELD"]])
 (provided

394 | Chapter 9: Distributed Computation

http://bit.ly/midje-cascalog
http://bit.ly/cc-cascalog-samples
http://bit.ly/cc-cascalog-samples

 (hfs-textline :author-path) => [["Luke Vanderhart"]
 ["Ryan Neufeld"]]))

The full contents of this solution are available in the testing-

complete branch of the Cascalog samples repository.

Check out that branch to retrieve a full working copy with sample
data:

$ git checkout testing-complete

Finally, run the tests with lein midje:

$ lein midje
2013-11-09 12:19:27.844 java[3620:1703] Unable to load realm info from
 SCDynamicStore
All checks (1) succeeded.

Discussion
Unit testing is an important aspect of software craftsmanship. However, unit testing
Hadoop workflows is difficult, to say the least. Most distributed computing development
is done using trial and error, with only limited manual testing happening before the
workflow is considered “good enough” and put into production use. You shouldn’t let
your code quality slip, but testing distributed code can be difficult. Midje-Cascalog
makes it easy to test different parts of your Cascalog workflow by making it dead simple
to mock out the results of subqueries.

In the solution outlined, you are testing a simple query. It reads lines from the input
path, capitalizes them, and outputs them. Normally, you’d need to make sure part of the
test wrote some test data into a file, reference that file in the test, then clean up and delete

the file. Instead, using Midje-Cascalog, you mock the hfs-textline call.

fact is provided by the Midje library, which is well worth learning on its own. It is an

alternative to deftest from clojure.test. Here, you state the test as a call, followed

by an arrow and then the produces function. produces lets you write out the results of

a query as a vector of vectors. Having established the test, you use provided to outline
the functions you want to mock. This lets you test only the function in question, and
not the functions it depends on. Testing your Cascalog workflows is as important as
testing any other part of your application. With Midje-Cascalog, this is actually possible.

See Also

• Recipe 10.2, “Testing with Midje” on page 408

• The Midje-Cascalog documentation on GitHub

9.4. Testing Cascalog Workflows | 395

http://bit.ly/cc-cascalog-samples
http://bit.ly/midje-cascalog

9.5. Checkpointing Cascalog Jobs
by Alex Robbins

Problem
Your long-running Cascalog jobs throw errors, then need to be completely restarted.
You waste time waiting for steps to rerun when the problem was later in the workflow.

Solution
Cascalog Checkpoint is an excellent library that provides the ability to add checkpoints
to your Cascalog job. If a step fails, the job is restarted at that step, instead of restarting
from the beginning.

In an existing Cascalog project, such as the one generated by Recipe 9.2, “Processing

Data with an Extract Transform Load (ETL) Pipeline” on page 385, add [cascalog/

cascalog-checkpoint "1.10.2"] to your project’s dependencies and set the cook

book.checkpoint namespace to be AOT-compiled.

Then use Cascalog Checkpoint’s workflow macro to set up your job. A hypothetical
four-step job would look something like this:

(ns cookbook.checkpoint
 (:require [cascalog.api :refer :all]
 [cascalog.checkpoint :refer [workflow]]))

(defmain Main [in-path out-path & args]
 (workflow ["/tmp/log-parsing"]
 step-1 ([:temp-dirs parsed-logs-path]
 (parse-logs in-path parsed-logs-path))
 step-2 ([:temp-dirs [min-path max-path]]
 (get-min parsed-logs-path min-path)
 (get-max parsed-logs-path max-path))
 step-3 ([:deps step-1 :temp-dirs log-sample-path]
 (sample-logs parsed-logs-path log-sample-path))
 step-4 ([:deps :all]
 (summary parsed-logs-path
 min-path
 max-path
 log-sample-path
 out-path))))

Discussion
Cascalog jobs often take hours to run. There are few things more frustrating than a typo
in the last step breaking a job that has been running all weekend. Cascalog Checkpoint

396 | Chapter 9: Distributed Computation

http://bit.ly/cascalog-checkpoint

provides the workflow macro, which allows you to restart a job from the last step that
successfully completed.

The workflow macro expects its first argument, checkpoint-dir, to be a vector with a
path for temporary files. The output of each step is temporarily stored in folders inside
this path, along with some files to keep track of what steps have successfully completed.

After the first argument, workflow expects pairs of step names and step definitions. A
step definitions is a vector of options, followed by as many Cascalog queries as desired
for that step. For example:

step-3 ([:deps step-1 :temp-dirs [log-sample-path log-other-sample-path]]
 (sample-logs parsed-logs-path log-sample-path)
 (other-sample-logs parsed-logs-path log-other-sample-path))

This step definition defines step-3. It depends on step-1, so it won’t run until step-1

has completed. This step creates two temporary directories for its queries. Both :deps

and :temp-dirs can be either a symbol or a vector of symbols, or can be omitted. After
the options vector, you can include one or many Cascalog queries; in this case, there are
two queries.

:deps can take several different values. :last, which is the default value, makes the step

depend on the step before it. :all makes the step depend on all previously defined steps.
Providing a symbol, or vector of symbols, makes that step depend on that particular
step or steps. A step won’t run until everything it depends upon has completed. If several
steps have their dependencies met, they will all run in parallel.

Every symbol provided to :temp-dirs is turned into a directory within the temp di‐
rectory. Later steps can use these directories to read data output by earlier steps. These
directories are cleaned up once the workflow successfully runs all the way through. Until
then, these directories hold the output from the different steps so the workflow can
resume from the last incomplete step.

If you want to restart a step that successfully completed, delete the file

at <checkpoint-dir>/<step-name>. The :temp-dirs from the step
definitions can be found in <checkpoint-dir>/data/<temp-dir>, in
case you need to delete or modify the data there.

Another method for dealing with errors is providing error taps for your Cascalog quer‐
ies. Cascalog will put the input tuples that cause errors in a query into the error tap (for
different processing or to dump for manual inspection). With error taps in place, a
couple of malformed inputs won’t bring down your entire workflow.

Checkpointing your Cascalog jobs is a little bit of extra work initially, but it’ll save you
a lot of time. Things will go wrong. The cluster will go down. You’ll discover typos and

9.5. Checkpointing Cascalog Jobs | 397

edge cases. It is wonderful to be able to restart your job from the last step that worked,
instead of waiting for the entire thing to rerun every time.

See Also

• The cascalog.checkpoint project page on GitHub

9.6. Explaining a Cascalog Query
by Alex Robbins

Problem
Your Cascalog job runs very slowly and you aren’t sure why.

Solution
Use the cascalog.api/explain function to print out a DOT file of your query. You can
follow along by launching a REPL in an existing project, like that created in Recipe 9.2,
“Processing Data with an Extract Transform Load (ETL) Pipeline” on page 385:

(require '[cascalog.api :refer [explain <-]])

(explain "slow-query.dot" (<- [?a ?b] ([[1 2]] ?a ?b)))

Next, you’ll want to view the DOT file. There are many ways to do that, but the easiest

is probably by using dot, one of the Graphviz tools, to convert a DOT file to a PNG or
GIF:

$ dot -Tpng -oslow-query.png slow-query.dot

Now open slow-query.png (shown in Figure 9-1) to see a diagram of your query.

Discussion
Cascalog workflows compile into Cascading workflows. Cascading is a Java library that
wraps Hadoop, providing a flow-based plumbing abstraction. The query graph in the
DOT file will have different Cascading elements as nodes.

The explain function here is analogous to the EXPLAIN command in many SQL im‐

plementations. explain causes Cascalog to print out the query plan. And as with the
output from an SQL EXPLAIN, you might have to work to understand exactly what
you are seeing.

The biggest thing to look for is that the basic flow of the query is what you expected.
Make sure that you aren’t rerunning some parts of your query. Cascalog makes it easy

398 | Chapter 9: Distributed Computation

http://bit.ly/cascalog-checkpoint
http://www.cascading.org/

Figure 9-1. slow-query.png

to reuse queries, but often you want to run the query, save the results, then reference
the saved results from other queries instead of running it once for every time its output
is used.

9.6. Explaining a Cascalog Query | 399

You can also work to match up the phases from your query plan to a job as it is running.
This is tricky, because the phases won’t correspond exactly to your output map. However,
when you succeed, you’ll be able be able to track down the slow phases.

In general, to keep your Cascalog queries fast, make sure you are using all of the nodes
in your cluster. That means keeping the work in small, evenly sized units. If one map
input takes 1,000 times as long to run as the other 40 inputs, your whole job will wait
on the one mapper to finish. Working to split the long map job into 1,000 smaller jobs
would make the job run much faster, since it could be distributed across the entire cluster
instead of running on a single node. It is particularly easy to accidentally have nearly
the entire job end up in one reducer. This is easy to see happening in the Hadoop job
tracker, when nearly all the reducers are done and the job is waiting on one or two
reducers to finish. To fix this, do as much reduce work as possible during the map phase
using aggregators, and then make sure that the remaining reduce work isn’t all piling
up into a small number of reducers.

See Also

• Recipe 9.3, “Aggregating Large Files” on page 389

• “Cascading Flow Visualization” on Cascalog wiki

9.7. Running a Cascalog Job on Elastic MapReduce
by Alex Robbins

Problem
You have a large amount of data to process, but you don’t have a Hadoop cluster.

Solution
Amazon’s Elastic MapReduce (EMR) provides on-demand Hadoop clusters. You’ll need
an Amazon Web Services account to use EMR.

First, write a Cascalog job as you normally would. There are a number of recipes in this
chapter that can help you create a complete Cascalog job. If you don’t have your own,
you can clone Recipe 9.2, “Processing Data with an Extract Transform Load (ETL)
Pipeline” on page 385:

$ git clone https://github.com/clojure-cookbook/cascalog-samples.git
$ cd cascalog-samples
$ git checkout etl-sample

Once you have a Cascalog project, package it into an uberjar:

400 | Chapter 9: Distributed Computation

http://bit.ly/cascalog-flow-vis
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/

$ lein compile
$ lein uberjar

Next, upload the generated JAR (target/cookbook-0.1.0-SNAPSHOT-standalone.jar if
you’re following along with the ETL sample) to S3. If you haven’t ever uploaded a file
to S3, follow the S3 documentation to “Create a Bucket” and for “Adding an Object to
a Bucket”. Repeat this process to upload your input data. Take note of the path to the
JAR and the input data location.

To create your MapReduce job, visit https://console.aws.amazon.com/elasticmapre
duce/ and select “Create New Job Flow” (Figure 9-2). Once you’re in the new job flow
wizard, choose the “Custom JAR” job type. Select “Continue” and enter your JAR’s lo‐
cation and arguments. “JAR Location” is the S3 path you noted earlier. “JAR Arguments”
are all of the arguments you would normally pass when executing your JAR. For ex‐
ample, using the Cascalog samples repository, the arguments would be the fully qualified

class name to execute, cookbook.etl.Main, an s3n:// URI for input data, and an s3n://
URI for the output.

The next few wizard windows allow you to specify additional configuration options for
the job. Select “Continue” until you reach the review phase and start your job.

After your job has run, you should be able to retrieve the results from S3. Elastic Map‐
Reduce also allows you to set up a logging path to help with debugging if your job doesn’t
complete like you expect.

Figure 9-2. Specifying parameters in the new job flow wizard

Discussion
Amazon’s EMR is a great solution if you have big Cascalog jobs but you don’t have to
run them very often. Maintaining your own Hadoop cluster can take a fair amount of
time and money. If you can keep the cluster busy, it is a great investment. If you only

9.7. Running a Cascalog Job on Elastic MapReduce | 401

http://bit.ly/create-bucket
http://bit.ly/add-object-bucket
http://bit.ly/add-object-bucket
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

need it a couple of times a month, you might be better off using EMR for on-demand
Hadoop clusters.

See Also

• Recipe 9.2, “Processing Data with an Extract Transform Load (ETL) Pipeline” on
page 385, to learn about building a simple Cascalog job

• Amazon’s “Launch a Custom JAR Cluster” documentation

402 | Chapter 9: Distributed Computation

http://bit.ly/emr-jar-cluster

CHAPTER 10

Testing

10.0. Introduction
It’s one thing to trust your code is correct today, but how will you feel about it in a week?
A month? A year? When you’re long gone? For this kind of trust, we write tests for our
code. A well-written suite of tests is a statement to yourself and to anyone that comes
after you: “This is how this application works, now and so long as this test passes.”

In addition to tests, several other tools have recently sprung up in the Clojure space
aimed at improving program reliability. Often, these focus on validating that data looks
as expected to guard programs from receiving input they don’t know how to handle.
These solutions range from optional static typing with algebraic types analyzed at com‐
pile time, down to simple preconditions.

Admittedly, testing is a bit of a hot-button topic in the Clojure community right now.
People are starting to question whether these tests are worthwhile, or if there’s a better
way to think about program verification. In recent years, techniques such as REPL-
driven development, property-based testing, and optional typing have all popped up to
fill perceived voids in the testing landscape.

This chapter covers all of the above. As much as we’d love to push the envelope, nothing
beats a good old-fashioned unit test suite from time to time. At the same time, as we
build more and more gargantuan applications, it is clear that simple unit tests are not
always sufficient. We hope that regardless of your skill level or focus, you’ll find new
tools to add to your testing arsenal in this chapter.

403

10.1. Unit Testing
by Daniel Gregoire

Problem
You want to test individual units of Clojure code.

Solution
Clojure includes a unit-testing framework in its clojure.test namespace. It provides
ways to name and group tests, make assertions, report results, and orchestrate test suites.

For demonstration, imagine you had a capitalize-entries function that capitalized

values in a map. To test this function, define a test using clojure.test/deftest:

;; A function in namespace com.example.core
(defn capitalize-entries
 "Returns a new map with values for keys 'ks' in the map 'm' capitalized."
 [m & ks]
 (reduce (fn [m k] (update-in m [k] clojure.string/capitalize)) m ks))

;; The corresponding test in namespace com.example.core-test
(require '[clojure.test :refer :all])

;; In a real test namespace, you would also :refer all of the target namespace
;; (require '[com.example.core :refer :all])

(deftest test-capitalize-entries
 (let [employee {:last-name "smith"
 :job-title "engineer"
 :level 5
 :office "seattle"}]
 ;; Passes
 (is (= (capitalize-entries employee :job-title :last-name)
 {:job-title "Engineer"
 :last-name "Smith"
 :office "seattle"
 :level 5}))
 ;; Fails
 (is (= (capitalize-entries employee :office)
 {}))))

Run the test with the clojure.test/run-tests function:

(run-tests)
;; -> {:type :summary, :pass 1, :test 1, :error 0, :fail 1}
;; *out*
;; Testing user
;;

404 | Chapter 10: Testing

;; FAIL in (test-capitalize-entries) (NO_SOURCE_FILE:13)
;; expected: (= (capitalize-entries employee :office) {})
;; actual: (not (= {:last-name "smith", :office "Seattle",
;; :level 5, :job-title "engineer"} {}))
;;
;; Ran 1 tests containing 2 assertions.
;; 1 failures, 0 errors.

Discussion
The preceding example only scratches the surface of what clojure.test provides for
unit testing. Let’s take a bottom-up look at its other features.

First, you can improve reporting when an assertion fails by providing a second argument
that explains what the assertion is intended to test. When you run this test, you will see
an extended description of how the code was expected to behave:

(is (= (capitalize-entries {:office "space"} :office) {})
 "The employee's office entry should be capitalized.")
;; -> false
;; * out*
;; FAIL in clojure.lang.PersistentList$EmptyList@1 (NO_SOURCE_FILE:1)
;; The employee's office entry should be capitalized.
;; expected: (= (capitalize-entries {:office "space"} :office) {})
;; actual: (not (= {:office "Space"} {}))

For testing a function like capitalize-entries thoroughly, several use cases need to
be considered. To more concisely test numerous similar cases, use the

clojure.test/are macro:

(deftest test-capitalize-entries
 (let [employee {:last-name "smith"
 :job-title "engineer"
 :level 5
 :office "seattle"}]
 (are [ks m] (= (apply capitalize-entries employee ks) m)
 [] employee
 [:not-a-key] employee
 [:job-title] {:job-title "Engineer"
 :last-name "smith"
 :level 5
 :office "seattle"}
 [:last-name :office] {:last-name "Smith"
 :office "Seattle"
 :level 5
 :job-title "engineer"})))

The first two parameters to are set up a testing pattern: given a sequence of keys ks and

a map m, call capitalize-entries for those keys on the original employee map and

assert that the return value equals m.

10.1. Unit Testing | 405

Writing out multiple use cases in a declarative syntax makes it easier to catch errors and

untreated edge cases, such as the NullPointerException that will be thrown for the

[:not-a-key] employee assertion pair in the preceding test.

Unlike testing frameworks for other popular dynamic languages, Clojure’s built-in as‐

sertions are minimal and simple. The is and are macros check test expressions for

“truthiness” (i.e., that those expressions return neither false nor nil, in which case

they pass). Beyond this, you can also check for thrown? or thrown-with-msg? to test

that a certain java.lang.Throwable (error or exception) is expected:

(is (thrown? IndexOutOfBoundsException (nth [] 1)))

Above the level of individual assertions, clojure.test also provides facilities for calling

functions before or after tests run. In the test-capitalize-entries test, we defined

an ad hoc employee map for testing, but you could also read in external data to be shared

across multiple tests by registering a data-loading function as a “fixture.” The clo

jure.test/use-fixtures multimethod allows registering Clojure functions to be
called either before or after each test, or before or after an entire namespace’s test suite.
The following example defines and registers three fixture functions:

(require '[clojure.edn :as edn])

(def test-data (atom nil))

;; Assuming you have a test-data.edn file...
(defn load-data "Read a Clojure map from test data in a file."
 [test-fn]
 (reset! test-data (edn/read-string (slurp "test-data.edn")))
 (test-fn))

(defn add-test-id "Add a unique id to the data before each test."
 [test-fn]
 (swap! test-data assoc :id (java.util.UUID/randomUUID))
 (test-fn))

(defn inc-count "Increment a counter in the data after each test runs."
 [test-fn]
 (test-fn)
 (swap! test-data update-in [:count] (fnil inc 0)))

(use-fixtures :once load-data)
(use-fixtures :each add-test-id inc-count)

;; Tests...

You can think about fixture functions as forming a pipeline through which each test is

passed as a parameter, which we called test-fn in the preceding example. Take inc-

count, for example. It is the job of this fixture to invoke the test-fn function, continuing
the pipeline, and afterward, to increment a count (i.e., “do some work”). Each fixture

406 | Chapter 10: Testing

decides whether to invoke test-fn before or after its own work (compare the add-test-

id function with the inc-count function), while the clojure.test/use-fixtures
multimethod controls whether each registered fixture function is run only once for all
tests in a namespace or once for each test.

Finally, with a firm understanding of how to develop individual Clojure test suites, it is
important to consider how you organize and run those suites as part of your project’s
build. Although Clojure allows defining tests for functions anywhere in your code base,
you should keep your testing code in a separate directory that is only added to the JVM
classpath when needed (e.g., during development and testing). It is conventional to
name your test namespaces after the namespaces they test, so that a file located at

<project-root>/src/com/example/core.clj with namespace com.example.core has a cor‐
responding test file at <project-root>/test/com/example/core_test.clj with namespace

com.example.core-test. To control the location of your source and test directories and
their inclusion on the JVM classpath, you should use a build tool like Leiningen or
Maven to organize your project.

In Leiningen, the default directory for your tests is a top-level <project-root>/test folder,

and you can run your project’s tests with lein test at the command line. Without any

additional arguments, the lein test command will execute all of the tests in a project:

$ lein test

lein test com.example.core-test
lein test com.example.util-test

Ran 10 tests containing 20 assertions.
0 failures, 0 errors.

To limit the scope of tests Leiningen runs, use the :only option, followed by a fully
qualified namespace or function name:

To run an entire namespace
$ lein test :only com.example.core-test

lein test com.example.core-test

Ran 5 tests containing 10 assertions.
0 failures, 0 errors.

To run one specific test
$ lein test :only com.example.core-test/test-capitalize-entries

lein test com.example.core-test

Ran 1 tests containing 2 assertions.
0 failures, 0 errors.

10.1. Unit Testing | 407

http://leiningen.org/
http://maven.apache.org/

See Also

• The clojure.test API documentation contains full information on the unit-
testing framework.

• If you are instead using Maven, use clojure-maven-plugin to run Clojure tests.
This plug-in will incorporate your Clojure tests located in the Maven standard src/

test/clojure directory as part of the test phase in the Maven build life cycle. You

can optionally use the plug-in’s clojure:test-with-junit goal to produce JUnit-
style reporting output for your Clojure test runs.

10.2. Testing with Midje
by Joseph Wilk

Problem
You want to unit-test a function that integrates with external dependencies such as
HTTP services or databases.

Solution
Use Midje, a testing framework that provides ways to mock functions and return fakes.

To follow along with this recipe, start a REPL using lein-try:

$ lein try midje clj-http

Here is an example function that makes an HTTP request:

;; A function in namespace com.example.core
(require '[clj-http.client :as http])

(defn github-profile [username]
 (let [response (http/get (str "https://api.github.com/users/" username))]
 (when (= (:status response) 200)
 (:body response))))

(github-profile "clojure-cookbook")
;; -> "{\"login\":\"clojure-cookbook\",\"id\":4176246, ...}"

To test the github-profile function, define a test using midje.sweet/facts and mid

je.sweet/fact in the corresponding test namespace:

;; In the com.example.core-test namespace...
(require '[midje.sweet :refer :all])

(facts "about successful requests"
 (fact "returns the response body"

408 | Chapter 10: Testing

http://bit.ly/clj-test-api
https://github.com/talios/clojure-maven-plugin
https://github.com/marick/Midje

 (github-profile "clojure-cookbook") => ..body..
 (provided
 (http/get #"/users/clojure-cookbook") =>
 {:status 200 :body ..body..})))

Discussion
In Midje, facts associates a description with a group of tests, while fact maps to your

test. Assertions in your fact take the form of:

;; actual => expected

10 => 10 ; This will pass
10 => 11 ; This will fail

Assertions behave a little differently than most testing frameworks. Within a fact body,
every single assertion is checked, irrespective of whether a previous one failed.

Midje only provides mocks, not stubs. All functions specified in the provided body have
to be called for the test to pass. Mocks use the same syntax as assertions, but with a
slightly different meaning:

;; <function call & arguments to match> => <return value of function>

(provided (+ 10 10) => 0)

It is important to note you are not calling the (+ 10 10) function here—you are setting
up a pattern. Every function call occurring in the test is checked to see if it matches this

pattern. If it does match, Midje will not call the function, but will instead return 0. When

defining mocks with provided, there is a lot of flexibility in terms of how to match mock
functions against real calls. In the preceding solution, for example, regular expressions

are used. This expression instructs Midje to mock calls to http/get whose URLs end
in /users/clojure-cookbook:

;; The expectation
(http/get #"/users/clojure-cookbook$")

;; Would match
(http/get "http://localhost:4001/users/clojure-cookbook")
;; or
(http/get "https://api.github.com/users/clojure-cookbook")

Midje provides a lot of match-shaping functions that you can use to match against the
arguments of a mock:

;; Match an argument list that contains 1
(provided
 (http/get (contains [1])) => :result)

;; Match against a custom fn that must return true
(provided

10.2. Testing with Midje | 409

 (http/get (as-checker (fn [x] (x == 10)))) => :result)

;; Match against a single argument of any value
(provided
 (http/get anything) => :result)

From within a REPL, you can investigate all of Midje’s checkers:

(require 'midje.repl)
(doc midje-checkers)
;; *out*
;; -------------------------
;; midje.sweet/midje-checkers
;;
;; (facts "about checkers"
;; (f) => truthy
;; (f) => falsey
;; (f) => irrelevant ; or `anything`
;; (f) => (exactly odd?) ; when you expect a particular function
;; (f) => (roughly 10 0.1)
;; (f) => (throws SomeException #"with message")
;; (f) => (contains [1 2 3]) ; works with strings, maps, etc.
;; (f) => (contains [1 2 3] :in-any-order :gaps-ok)
;; (f) => (just [1 2 3])
;; (f) => (has every? odd?)
;; (f) => (nine-of odd?) ; must be exactly 9 odd values.
;; (f) => (every-checker odd? (roughly 9)) ; both must be true
;; (f) => (some-checker odd? (roughly 9))) ; one must be true

You may have noticed in the solution that we used ..body.. instead of an actual re‐
sponse. This is something Midje refers to as a metaconstant.

A metaconstant is any name that starts and ends with two dots. It has no properties
other than identity. Think of it as a fake or placeholder, where we do not care about the
actual value or might be referencing something that does not exist yet. In our example,

we don’t really care what ..body.. is; we just care that it is the thing returned.

To add Midje to an existing project, add [midje "1.5.1"] to your development de‐

pendencies and [lein-midje "3.1.2"] to your development plug-ins. Your project.clj
should look something like this:

(defproject example "1.0.0-SNAPSHOT"
 :profiles {:dev {:dependencies [[midje "1.5.1"]]
 :plugins [[lein-midje "3.1.2"]}})

Midje provides two ways to run tests: through a REPL, as you may have been doing, or
through Leiningen. Midje actually encourages you to run all your tests through the

REPL, as you develop them. One very useful way to run your tests is with the mid

je.repl/autotest function. This continuously polls the filesystem looking for changes
in your project. When it detects these changes, it will automatically rerun the relevant
tests:

410 | Chapter 10: Testing

(require '[midje.repl :as midje])

(midje/autotest) ; Start auto-testing

;; Other options are...
(midje/autotest :pause)
(midje/autotest :resume)
(midje/autotest :stop)

There are many more things you can do from the REPL with Midje. To find out more,

read the docstring of midje-repl by running (doc midje-repl) in a REPL.

You can also run Midje tests through the Leiningen plug-in lein-midje (add as noted

in project.clj). lein-midje allows you run tests at a number of granularities—all of your
tests, all the tests in a group, or all the tests in a single namespace:

Run all your tests
$ lein midje

Run a group of namespaces
$ lein midje com.example.*

Run a specific namespace
$ lein midje com.example.t-core

See Also

• Recipe 10.1, “Unit Testing” on page 404, for information on more basic unit testing
in Clojure

• The Midje GitHub repository

10.3. Thoroughly Testing by Randomizing Inputs
by Luke VanderHart

Problem
You want to test a function using randomly generated inputs to ensure that it works in
all possible scenarios.

Solution
Use the test.generative library to specify a function’s inputs, and test it across ran‐
domly generated values.

To follow along with this recipe, start a REPL using lein-try:

10.3. Thoroughly Testing by Randomizing Inputs | 411

https://github.com/marick/Midje

$ lein try org.clojure/test.generative "0.5.0"

Say you are trying to test the following function, which calculates the arithmetic mean
of all the numbers in a sequence:

(defn mean
 "Calculate the mean of the numbers in a sequence"
 [s]
 (/ (reduce + s) (count s)))

The following test.generative code defines a specification for the mean function:

(require '[clojure.test.generative :as t]
 '[clojure.test.generative.runner :as r]
 '[clojure.data.generators :as gen])

(defn number
 "Return a random number, of a random type"
 []
 (gen/one-of gen/byte
 gen/short
 gen/int
 gen/long
 gen/float
 gen/double))

(defn seq-of-numbers
 "Return a list, seq, or set of numbers"
 []
 (gen/one-of (gen/list number)
 (gen/set number)
 (gen/vec number)))

(t/defspec mean-spec
 mean
 [^example.generative-tests/seq-of-numbers arg]
 (assert (number? %)))

To run the mean-spec specification, invoke the run function in the clojure.test.gen

erative.runner namespace, passing in the number of threads upon which to run the
simulation, the number of milliseconds to run, and the var referring to a spec.

Here’s what happens when we run the previous example at the REPL:

(r/run 2 5000 #'example.generative-tests/mean-spec)
;; -> clojure.lang.ExceptionInfo: Generative test failed

This shows the behavior when the generative test fails. The exact details of the failure
are returned as the data of a Clojure information-bearing exception; you must retrieve

an instance of the exception itself and call ex-data on it to return the data map.

412 | Chapter 10: Testing

In the REPL, if you didn’t explicitly catch the exception, you can use the special *e

symbol to retrieve the most recent exception. Calling ex-data on it returns information
on the test case that provoked the error:

(ex-data *e)
;; -> {:exception #<ArithmeticException java.lang.ArithmeticException:
;; Divide by zero>, :iter 7, :seed -875080314,
;; :example.generative-tests/mean-spec, :input [#{}]}

This states that after only seven iterations, using the random number seed –875080314,

the function under test was passed #{} as input and threw a divide by zero error.

Once highlighted in this way, the problem is easy to see; the mean function will divide

by zero if (count s) is zero. Fix the bug by rewriting the mean function to handle that
case:

(defn mean
 [s]
 (if (zero? (count s))
 0
 (/ (reduce + 1.0 s) (count s))))

Rerunning now shows a passing test:

(r/run 2 5000 #'example.generative-tests/mean-spec)
;; -> {:iter 3931, :seed -1495229764, :test testgen-test.core/mean-spec}
;; {:iter 3909, :seed -1154113663, :test testgen-test.core/mean-spec}

This output indicates that over the allotted 5 seconds, two threads ran about 3,900
iterations of the test each and did not encounter any errors or assertion failures.

Discussion
There are two key parts to the preceding test definition: the defspec form itself, which
defines the generative test, and the functions used to generate random data. In this case,
the data generator functions are built from primitive data generation functions found

in the clojure.data.generators namespace.

Generator functions take no arguments and return random values. Different functions

produce different types of data. The clojure.data.generators namespace contains
generator functions for all of Clojure’s primitive types, as well as collections. It also

contains functions for randomly choosing from a set of options; the one-of function
used previously, for example, takes a number of generator functions and chooses a value
from one at random.

The defspec macro takes three types of forms: a function to put under test, an argument
specification, and a body containing one or more assertion forms.

The function under test is simply the function to call. Over the course of the generative
test, it will be called many times, each time with different values.

10.3. Thoroughly Testing by Randomizing Inputs | 413

The argument specification is a vector of argument names and should match the sig‐
nature of the function under test. Each argument should have metadata attached.

Specifically, it should have a :tag metadata key, mapped to the fully qualified name of
a generator function. Each time the test driver calls the function, it will use a random
value for each argument pulled from its corresponding generator function.

Why :tag?

You may find the use of :tag metadata a bit confusing. Normally, :tag is a type hint

and returns a JVM class. In test.generative, it should be a function that can return
any type of value you want to pass to the function under test.

The motivation for reusing :tag in this way is mostly historical. test.generative is
largely inspired by a library called QuickCheck, which is written in Haskell. Because
Haskell is strongly and statically typed, QuickCheck truly can use the type signature as
sufficient information on how to generate input data.

The link isn’t quite as strong in Clojure, and arguably is more confusing than helpful.

Just remember that, in the context of test.generative, :tag refers not to the actual
system type, but to a function that returns an object of the type(s) you want to pass to
the function to test.

The body of a defspec simply contains expressions that may throw an exception if some
condition is not met. It is executed on each iteration of the test, with the instantiated

arguments available, and with the return value of the function under test bound to %.
This example merely has a single assertion that the result is a number, for brevity, but
you can have any number of assertions executing arbitrary checks.

An interesting difference between test.generative and traditional unit tests is that
rather than specifying what tests to run and having them take as long as they do, in

test.generative you specify how long to run, and the system will run as many random
permutations of the test as it can fit into that time. This has the property of keeping test
runtimes deterministic, while allowing you to trade off speed and comprehensiveness
depending on the situation. For example, you might have tests run for five seconds in
development, but thoroughly hammer the system for an hour every night on the con‐
tinuous integration server, allowing you to find that (literally) one-in-a-million bug.

Running generative tests

While developing tests, running from the REPL is usually the most convenient. How‐
ever, there are many other scenarios (such as testing commit hooks or on a CI) where

running tests from the command line is required. For this purpose, test.generative

provides a -main function in the clojure.test.generative.runner namespace that

414 | Chapter 10: Testing

1. It is important to note that simple-check finds a local minimum, not the global minimum.

takes as a command-line argument one or more directories where generative tests can
be found. It searches all the Clojure namespaces in those locations for generative testing
specifications and executes them.

For example, if you’ve placed your generative tests in a tests/generative directory inside
a Leiningen project, you could execute tests by running the following at the shell, from
your project’s root directory:

$ lein run -m clojure.test.generative.runner tests/generative

If you want to control the intensity of the test run, you can adjust the number of con‐

current threads and the length of the run using the clojure.test.genera

tive.threads and clojure.test.generative.msec JVM system properties. Using

Leiningen, you must set these options in the :jvm-opts key in project.clj like so:

:jvm-opts ["-Dclojure.test.generative.threads=32"
 "-Dclojure.test.generative.msec=10000"]

clojure.test.generative.runner/-main will pick up any parameters provided in this
way, and run accordingly.

See Also

• The test.generative page on GitHub

• The QuickCheck Haskell library

• Recipe 10.4, “Finding Values That Cause Failure” on page 415, on SimpleCheck, a

property-based testing library for Clojure with some overlap with test.genera

tive and unique features

10.4. Finding Values That Cause Failure
by Luke VanderHart

Problem
You want to specify properties of a function that should hold true for all inputs, and
find input values that violate those properties.

Solution
Use simple-check. This is a property-specification library for Clojure that is capable of
“shrinking” the input case to find the minimal failing input.1

10.4. Finding Values That Cause Failure | 415

https://github.com/clojure/test.generative
http://hackage.haskell.org/package/QuickCheck
https://github.com/reiddraper/simple-check

To follow along with this recipe, add [reiddraper/simple-check "0.5.3"] to your

project’s dependencies, or start a REPL using lein-try:

$ lein try reiddraper/simple-check

Then, find a function to test. This example uses a contrived function that calculates the
sum of the reciprocals of a sequence of numbers:

(defn reciprocal-sum [s]
 (reduce + (map (partial / 1) s)))

Here’s the test code itself:

(require '[simple-check.core :as sc]
 '[simple-check.generators :as gen]
 '[simple-check.properties :as prop])

(def seq-of-numbers (gen/one-of [(gen/vector gen/int)
 (gen/list gen/int)]))

(def reciprocal-sum-check
 (prop/for-all [s seq-of-numbers]
 (number? (reciprocal-sum s))))

seq-of-numbers is a data generator composed of primitive generators found in the

simple-check.generators namespace.

Unlike with test.generative, simple-check generators are more
complicated than a single function that returns a value. Instead, they
are data structures that define not only how random values are sam‐
pled, but how they converge on the “simplest” possible failing case.

A full discussion of creating custom simple-check generators (oth‐
er than simple compositions of primitive generators) is beyond the

scope of this recipe, but full documentation is available on the simple-

check GitHub page.

The actual test is defined using the simple-check.properties/for-all macro, which

emits a property definition. It takes a binding form (similar to let or for) that specifies
the possible values to bind to one or more symbols, and a body. The body is what actually

specifies the properties that must hold, and must return true if and only if the test passes
for a particular set of values.

To run the test, invoke the simple-check.core/quick-check function, passing it the
defined property:

(sc/quick-check 100 reciprocal-sum-check)

416 | Chapter 10: Testing

https://github.com/reiddraper/simple-check

quick-check takes the number of samples to execute, and the property definition to
execute. The body of the property definition will be sampled repeatedly, with random‐
ized values bound to the symbols specified in the binding form.

As you may have already observed, the reciprocal-sum function has a problem: it will

throw a “divide by zero” error if a zero is present in the input sequence. The quick-

check function returns a data structure showcasing the problem:

{:result
 #<ArithmeticException java.lang.ArithmeticException: Divide by zero>,
 :failing-size 8,
 :num-tests 9,
 :fail [(5 0 0 -8 1 -2)],
 :shrunk
 {:total-nodes-visited 10,
 :depth 5,
 :result
 #<ArithmeticException java.lang.ArithmeticException: Divide by zero>,
 :smallest [(0)]}}

Fix the function by eliminating zero values:

(defn reciprocal-sum [s]
 (reduce + (map (partial / 1)
 (filter (complement zero?) s))))

Rerunning the test now indicates success:

(sc/quick-check 100 reciprocal-sum-check)
;; -> {:result true, :num-tests 100, :seed 1384622907885}

Discussion
simple-check has the very useful property of not only returning a failing sample input
to a test, but returning the minimal failing sample. In the preceding example program,
for instance, any time a zero occurs in the input sequence, it causes an error. However,

merely from looking at the sequence (5 0 0 -8 1 -2), it might not be apparent that
zeros are the problem. Not knowing anything else about the function under test, the

problem might be, for example, the negative numbers, or the value 5. simple-check
returns not just any arbitrary failing input, but the specific input that will consistently
cause the program to fail. As useful as it is to know that there is an input that will provoke
failure, it’s even more useful to know the specific problematic value. And, the larger and

10.4. Finding Values That Cause Failure | 417

more complex the inputs to the function are, the more useful it is to be able to reduce
the failing case.

test.generative and simple-check

You may have observed that test.generative (discussed in Recipe 10.3, “Thoroughly

Testing by Randomizing Inputs” on page 411) and simple-check cover a lot of the same
ground. They both generate a randomized distribution of inputs, and they both specify
“success” conditions in terms of properties or qualities that must hold across all inputs
and outputs, rather than specific examples.

However, there are a few key differences. simple-check minimizes the failing input

before returning, whereas test.generative bails the first time it sees a failure. However,

the data generators of test.generative are simple functions, without any additionally
specified behavior, which makes them much more flexible and easy to extend.

test.generative also provides the ability to specify not only how many iterations of
the test to run, but how long to test for, running as many tests as it can fit into the allotted
time frame across multiple threads.

Ultimately, both are valuable approaches that you should seriously consider when you
want to really thoroughly test something. The decision between them should be medi‐
ated by your own specific needs: how large or complicated the inputs are, how much
control you want over the running time, and how likely you are to need to extend the
set of generated primitives.

See Also

• Recipe 10.1, “Unit Testing” on page 404

• Recipe 10.3, “Thoroughly Testing by Randomizing Inputs” on page 411

• The simple-check project page

• “Introduction to QuickCheck” for information on the Haskell library that inspired

simple-check

10.5. Running Browser-Based Tests
by Matthew Maravillas

Problem
You want to run browser-based tests.

418 | Chapter 10: Testing

https://github.com/reiddraper/simple-check
http://bit.ly/quickcheck-intro

Solution
Use Selenium WebDriver via the clj-webdriver library. This will allow you to use

clojure.test to test your application’s behavior in actual browser environments.

To follow along with this recipe, create a new Leiningen project:

$ lein new browser-testing
Generating a project called browser-testing based on the 'default' template.

Modify the new project’s project.clj file to match the following:

(defproject browser-testing "0.1.0-SNAPSHOT"
 :profiles {:dev {:dependencies [[clj-webdriver "0.6.0"]]}}
 :test-selectors {:default (complement :browser)
 :browser :browser})

Next, add a simple Selenium test to test/browser_testing/core_test.clj, overwriting its
content:

(ns browser-testing.core-test
 (:require [clojure.test :refer :all]
 [clj-webdriver.taxi :as t]))

;; A simple fixture that sets up a test driver
(defn selenium-fixture
 [& browsers]
 (fn [test]
 (doseq [browser browsers]
 (println (str "\n[Testing " browser "]"))
 (t/set-driver! {:browser browser})
 (test)
 (t/quit))))

(use-fixtures :once (selenium-fixture :firefox))

(deftest ^:browser test-clojure
 (t/to "http://clojure.org")

 (is (= (t/title) "Clojure - home"))
 (is (= (t/current-url) "http://example.com/")))

(deftest ^:browser test-clojure-download
 (t/to "http://clojure.org")
 (t/click {:xpath "//div[@class='menu']/*/a[text()='Download']"})

 (is (= (t/title) "Clojure - downloads"))
 (is (= (t/current-url) "http://clojure.org/downloads"))
 (is (re-find #"Rich Hickey" (t/text {:id "foot"}))))

10.5. Running Browser-Based Tests | 419

https://github.com/semperos/clj-webdriver

A complete version of this repository is available on GitHub. Check
out a copy locally to catch up:

$ git clone https://github.com/clojure-cookbook/browser-testing
$ cd browser-testing

Run the tests on the command line:

$ lein test :browser

lein test browser-testing.core-test

[Testing :firefox]

lein test :only browser-testing.core-test/test-clojure

FAIL in (test-clojure) (core_test.clj:20)
expected: (= (t/current-url) "http://example.com/")
 actual: (not (= "http://clojure.org/" "http://example.com/"))

Ran 2 tests containing 5 assertions.
1 failures, 0 errors.
Tests failed.

Discussion
Browser tests verify that your application behaves as expected in your targeted browsers.
They test the appearance and behavior of your application as rendered in the browser
itself.

Manually testing applications in a browser is a tedious and repetitive task. The amount
of time and effort required for a complete test run can be unmanageable for even a
moderately sized project. Automating browser tests ensures they are run consistently
and relatively quickly, resulting in reproducible errors and more frequent test runs.
However, automated tests lack the visual inspection by a human inherent to manual
tests. For example, a manual test could easily catch a positioning error that an automated
test would likely miss if it were not explicitly tested for.

To write browser tests in Clojure, use the clj-webdriver library with your preferred

test framework, such as clojure.test. clj-webdriver provides a clean Clojure inter‐
face to Selenium WebDriver, a tool used to control and automate browser actions.

Some additional configuration may be required to use Selenium WebDriver or clj-

webdriver with your browsers of choice. See the Selenium WebDriver documenta‐

tion and the clj-webdriver wiki.

420 | Chapter 10: Testing

https://github.com/clojure-cookbook/browser-testing
http://bit.ly/cc-selenium
http://bit.ly/cc-selenium
http://bit.ly/clj-webdriver-wiki

Before you dive into testing, you can experiment with clj-webdriver at a REPL. Start

up a REPL with clj-webdriver using lein-try:

$ lein try clj-webdriver "0.6.0"

Use the clj-webdriver.taxi/set-driver! function, selecting the Firefox WebDriver

implementation (other options include :chrome or :ie, but these may require more
setup):

(require '[clj-webdriver.taxi :as t])

(t/set-driver! {:browser :firefox})
;; -> #clj_webdriver.driver.Driver{:webdriver ...}

This will open the browser you picked, ready to receive commands. Try a few functions

from the clj-webdriver.taxi namespace:

(t/to "http://clojure.org/")

(t/current-url)
;; -> "http://clojure.org/"

(t/title)
;; -> "Clojure - home"

(t/click {:xpath "//div[@class='menu']/*/a[text()='Download']"})
(t/current-url)
;; -> "http://clojure.org/downloads"

(t/text {:id "foot"})
;; -> "Copyright 2008-2012 Rich Hickey"

When you’re finished, close the browser from the REPL:

(t/quit)

Your tests will use these functions to start up and run against the browser. To save

yourself some work, you should set up the browser startup and teardown using a clo

jure.test fixture.

clojure.test/use-fixtures allows you to run functions around each individual test,
or once around the namespace’s test run as a whole. Use the latter, as restarting the
browser for each test will be far too slow.

The selenium-fixture function uses clj-webdriver’s set-driver! and quit func‐
tions to start up a browser for each of the keywords it’s provided and run the namespace’s
tests inside that browser:

(defn selenium-fixture
 [& browsers]
 (fn [test]
 (doseq [browser browsers]

10.5. Running Browser-Based Tests | 421

 (t/set-driver! {:browser browser})
 (test)
 (t/quit))))

(use-fixtures :once (selenium-fixture :firefox))

It’s important to note that using a :once fixture means the state of the browser will persist
between tests. Depending on your particular application’s behavior, you may need to
guard against this when you write your tests by beginning from a common browser
state for each test. For example, you might delete all cookies or return to a certain top-
level page. If this is necessary, you may find it useful to write this common reset behavior

as an :each fixture.

To begin writing tests, modify your project’s project.clj file to include the clj-

webdriver dependency in the :dev profile and :test-selectors for :default and

browser convenience:

(defproject my-project "1.0.0-SNAPSHOT"
 ;; ...
 :profiles {:dev {:dependencies [[clj-webdriver "0.6.0"]]}}
 :test-selectors {:default (complement :browser)
 :browser :browser})

Test selectors let you run groups of tests independently. This prevents slower browser
tests from impacting the faster, more frequently run unit and lower-level integration
tests.

In this case, you’ve added a new selector and modified the default. The new :browser

selector will only match tests that have been annotated with a :browser metadata key.
The default selector will now exclude any tests with this annotation.

With the fixture and test selectors in place, you can begin writing your tests. Start with
something simple:

(deftest ^:browser test-clojure
 (t/to "http://clojure.org/")

 (is (= (t/title) "Clojure - home"))
 (is (= (t/current-url) "http://example.com/")))

Note the ^:browser metadata attached to the test. This test is annotated as a browser
test, and will only run when that test selector is chosen.

In this test, as in the REPL experiment, you navigate to a URL and check its title and
URL. Run this test at the command line, passing the additional test selector argument

to lein test:

422 | Chapter 10: Testing

$ lein test :browser

lein test browser-testing.core-test

[Testing :firefox]

lein test :only browser-testing.core-test/test-clojure

FAIL in (test-clojure) (core_test.clj:20)
expected: (= (t/current-url) "http://example.com/")
 actual: (not (= "http://clojure.org/" "http://example.com/"))

Ran 2 tests containing 5 assertions.
1 failures, 0 errors.
Tests failed.

Clearly, this test was bound to fail—replace http://example.com/ with http://

clojure.org/ and it will pass.

This test is very basic. In most real tests, you’ll load a URL, interact with the page, and
verify that the application behaved as expected. Write another test that interacts with
the page:

(deftest ^:browser test-clojure-download
 (t/to "http://clojure.org")
 (t/click {:xpath "//div[@class='menu']/*/a[text()='Download']"})

 (is (= (t/title) "Clojure - downloads"))
 (is (= (t/current-url) "http://clojure.org/downloads"))
 (is (re-find #"Rich Hickey" (t/text {:id "foot"}))))

In this test, after loading the URL, the browser is directed to click on an anchor located
with an XPath selector. To verify that the expected page has loaded, the test compares

the title and URL, as in the first test. Lastly, it finds the text content of the #foot element
containing the copyright and verifies that the text includes the expected name.

clj-webdriver provides many other capabilities for interacting with your application.

For more information, see the clj-webdriver wiki.

See Also

• The clj-webdriver GitHub repository and wiki

• The Selenium project page

• Recipe 10.1, “Unit Testing” on page 404, to learn more about unit testing in Clojure

10.5. Running Browser-Based Tests | 423

http://bit.ly/clj-webdriver-wiki
https://github.com/semperos/clj-webdriver
http://bit.ly/clj-webdriver-wiki
http://bit.ly/selenium-project

10.6. Tracing Code Execution
by Stefan Karlsson

Problem
You want to trace the execution of your code, in order to see what it is doing.

Solution
Use the tools.trace library’s bevy of “trace” functions and macros to examine your
code as it runs.

Before starting, add [org.clojure/tools.trace "0.7.6"] to your project’s depen‐

dencies under the :development profile (in the vector at the [:profiles :dev :depen

dencies] path instead of the [:dependencies] path). Alternatively, start a REPL using

lein-try:

$ lein try org.clojure/tools.trace

To examine a single value at execution, wrap that value in an invocation of clo

jure.tools.trace/trace:

(require '[clojure.tools.trace :as t])

(map #(inc (t/trace %))
 (range 3))
;; -> (1 2 3)
;; *out*
;; TRACE: 0
;; TRACE: 1
;; TRACE: 2

To examine multiple values without losing context of which trace is which, supply a

descriptive name string as the first argument to trace:

(defn divide
 [n d]
 (/ (t/trace "numerator" n)
 (t/trace "denominator" d)))

(divide 4 6)
;; -> 2/3
;; *out*
;; TRACE numerator: 4
;; TRACE denominator: 6

424 | Chapter 10: Testing

https://github.com/clojure/tools.trace

Discussion
At its core, the tools.trace library is all about introspecting upon the execution of a

body of code. The trace function is the simplest and most low-level tracing operation.

Wrapping a value in an invocation of trace does two things: it logs a tracer message to

STDOUT and, most importantly, returns the original value unadulterated. tools.trace
provides a number of other granularities for tracing execution.

Stepping up a level from simple values, you can define functions with clo

jure.tools.trace/deftrace instead of defn to trace the input to and output from the
function you define:

(t/deftrace pow [x n]
 (Math/pow x n))

(pow 2 3)
;; -> 8.0
;; *out*
;; TRACE t815: (pow 2 3)
;; TRACE t815: => 8.0

It is not advisable to deploy production code with tracing in place.
Tracing is most suited to development and debugging, particularly

from the REPL. Include tools.trace in your project.clj’s :dev pro‐
file to make tracing available only to development tasks.

If you’re trying to diagnose a difficult-to-understand exception, use the clo

jure.tools.trace/trace-forms macro to wrap an expression and pinpoint the origin

of the exception. When no exception occurs, trace-forms prints no output and returns
normally:

(t/trace-forms (* (pow 2 3)
 (divide 1 (- 1 1))))
;; *out*
;; ...
;; ArithmeticException Divide by zero
;; Form failed: (divide 1 (- 1 1))
;; Form failed: (* (pow 2 3) (divide 1 (- 1 1)))
;; clojure.lang.Numbers.divide (Numbers.java:156)

Apart from explicitly tracing values or functions, tools.trace also allows you to dy‐

namically trace vars or entire namespaces. To add a trace function to a var, use clo

jure.tools.trace/trace-vars. To remove such a trace, use clojure.tools.trace/

untrace-vars:

10.6. Tracing Code Execution | 425

(defn add [x y] (+ x y))

(t/trace-vars add)
(add 2 2)
;; -> 4
;; *out*
;; TRACE t1309: (user/add 2 2)
;; TRACE t1309: => 4

(t/untrace-vars add)
(add 2 2)
;; -> 4

To trace or untrace an entire namespace, use clojure.tools.trace/trace-ns and

clojure.tools.trace/untrace-ns, respectively. This will dynamically add tracing to
or remove it from all functions and vars in a namespace. Even things defined after

trace-ns is invoked will be traced:

(def my-inc inc)
(defn my-dec [n] (dec n))

(t/trace-ns 'user)

(my-inc (my-dec 0))
;; -> 0
;; TRACE t1217: (user/my-dec 0)
;; TRACE t1218: | (user/my-dec 0)
;; TRACE t1218: | => -1
;; TRACE t1217: => -1
;; TRACE t1219: (user/my-inc -1)
;; TRACE t1220: | (user/my-inc -1)
;; TRACE t1220: | => 0
;; TRACE t1219: => 0

(t/untrace-ns 'user)

(my-inc (my-dec 0))
;; -> 0

See Also

• The tools.trace GitHub repository for a full list of trace functions/macros

426 | Chapter 10: Testing

https://github.com/clojure/tools.trace

10.7. Avoiding Null-Pointer Exceptions with core.typed
by Ambrose Bonnaire-Sergeant

Problem
You want to verify that your code handles nil correctly, eliminating potential null-
pointer exceptions.

Solution
Use core.typed, an optional type system for Clojure, to annotate and check a name‐

space for misuses of nil.

To follow along with this recipe, create a file core_typed_samples.clj and start a REPL

using lein-try:

$ touch core_typed_samples.clj
$ lein try org.clojure/core.typed

This recipe is a little different than others because core.typed uses
on-disk files to check namespaces.

Consider, for example, that you are writing a function handle-number to process num‐

bers. To verify that handle-number handles nil correctly, annotate it with clo

jure.core.typed/ann to accept the union (U) of the nil and Number types, returning

a Number:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t]))

(ann handle-number [(U nil Number) -> Number])
(defn handle-number [a]
 (+ a 20))

Verify the function’s correctness at the REPL using clojure.core.typed/check-ns:

user=> (require '[clojure.core.typed :as t])
user=> (t/check-ns 'core-typed-samples)
...
Type Error (core-typed-samples:6:3) Static method clojure.lang.Numbers/add
could not be applied to arguments:

Domains:

10.7. Avoiding Null-Pointer Exceptions with core.typed | 427

https://github.com/clojure/core.typed

 t/AnyInteger t/AnyInteger
 java.lang.Number java.lang.Number

Arguments:
 (U nil java.lang.Number) (Value 20)

Ranges:
 t/AnyInteger
 java.lang.Number

with expected type:
 java.lang.Number

in: (clojure.lang.Numbers/add a 20)
in: (clojure.lang.Numbers/add a 20)

ExceptionInfo Type Checker: Found 1 error clojure.core/ex-info (core.clj:4327)

The current definition is unsafe. check-ns recognizes that + can only handle numbers,

while the handle-number function accepts numbers or nil.

Protect the call to + by wrapping it in an if statement, returning 0 in the absence of a:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t]))

(ann handle-number [(U nil Number) -> Number])
(defn handle-number [a]
 (if a
 (+ a 20)
 0))

Check the namespace with check-ns again:

user=> (t/check-ns 'core-typed-samples)
...
:ok

Now that there is no way nil could accidentally be passed to + by this code, a null-
pointer exception is impossible.

Discussion
core.typed is designed to avoid all misuses of nil or null in typed code. To achieve
this, the concepts of the null pointer and reference types are separated. This is unlike in

Java, where a type like java.lang.Number implies a “nullable” type.

In core.typed, reference types are implicitly non-nullable. To express a nullable type

(such as in the preceding example), construct a union type of the desired type and nil.

For example, a java.lang.Number in core.typed syntax is non-nullable; the union type

428 | Chapter 10: Testing

(U nil java.lang.Number) expresses the equivalent to a nullable java.lang.Number

(the latter is closest to what java.lang.Number implies in Java type syntax).

This separation of concepts allows core.typed to throw a type error on any potential

misuse of nil. The preceding solution threw a type error when type checking the equiv‐

alent expression: (+ nil 20).

To better understand core.typed type errors, it is useful to note that some functions

have inline definitions. core.typed fully expands all code before type checking, so it is

common to see calls to the Java method clojure.lang.Numbers/add in type errors

when user code invokes clojure.core/+.

It is also common to see ordered intersection function types in type errors. Our first type

error claims that the arguments (U Number nil) and (Value 20) are not under either
of the ordered intersection function domains, listed under “Domains.” Notice two
“Ranges” are provided, which correspond to the listed domains.

The full type of clojure.lang.Numbers/add is:

(Fn [t/AnyInteger t/AnyInteger -> t/AnyInteger]
 [Number Number -> Number])

Briefly, the function is “ordered” because it tries to match the argument types with each
arity until one matches.

See Also

• core.typed Home on GitHub.

• The core.typed API reference (particularly the list of core-type aliases—for ex‐
ample, the entry for clojure.core.typed/AnyInteger)

• The Types wiki page, which documents valid types

• Recipe 10.8, “Verifying Java Interop Using core.typed” on page 429, and Recipe 10.9,
“Type Checking Higher-Order Functions with core.typed” on page 433, for further

examples of how to use core.typed

10.8. Verifying Java Interop Using core.typed
by Ambrose Bonnaire-Sergeant

Problem
You want to verify that you are using Java libraries safely and unambiguously.

10.8. Verifying Java Interop Using core.typed | 429

https://github.com/clojure/core.typed
http://bit.ly/core-typed-doc
http://bit.ly/anyinteger-doc
http://bit.ly/core-typed-types

Solution
Java provides a vast ecosystem that is a major draw for Clojure developers; however, it
can be often be complex to use large, cumbersome Java APIs from Clojure.

To type-check Java interop calls, use core.typed.

To follow along with this recipe, create a file core_typed_samples.clj and start a REPL

using lein-try:

$ touch core_typed_samples.clj
$ lein try org.clojure/core.typed

This recipe is a little different than others because core.typed uses
on-disk files to check namespaces.

To demonstrate, choose a standard Java API function such as the java.io.File con‐
structor.

Using the dot constructor to create new files can be annoying—wrap it in a Clojure

function that takes a string new-file:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t])
 (:import (java.io File)))

(ann new-file [String -> File])
(defn new-file [s]
 (File. s))

Setting *warn-on-reflection* when compiling this namespace will tell us that there

is a reflective call to the java.io.File constructor. Checking this namespace at the

REPL with clojure.core.typed/check-ns will report the same information, albeit in
the form of a type error:

user=> (require '[clojure.core.typed :as t])
user=> (t/check-ns 'core-typed-samples)
...
ExceptionInfo Internal Error (core-typed-samples:6)
 Unresolved constructor invocation java.io.File.

Hint: add type hints.

in: (new java.io.File s) clojure.core/ex-info (core.clj:4327)

Add a type hint to call the public File(String pathname) constructor:

430 | Chapter 10: Testing

http://bit.ly/javadoc-file-constructor

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t])
 (:import (java.io File)))

(ann new-file [String -> File])
(defn new-file [^String s]
 (File. s))

Checking again, core.type is satisfied:

user=> (t/check-ns 'core-typed-samples)
...
:ok

File has a second single-argument constructor: public File(URI uri). Enhance new-

file to support URI or String filenames:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t])
 (:import (java.io File)
 (java.net URI)))

(ann new-file [(U URI String) -> File])
(defn new-file [s]
 (if (string? s)
 (File. ^String s)
 (File. ^URI s)))

Even after relaxing the input type to (U URI String), core.typed is able to infer that

each branch has the correct type by following the string? predicate.

Discussion
While java.io.File is a relatively small API, careful inspection of Java types and
documentation is needed to confidently use foreign Java code correctly.

Though the File constructor is fairly innocuous, consider writing file-parent, a thin

wrapper over the getParent method:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann] :as t])
 (:import (java.io File)))

(ann file-parent [File -> String])
(defn file-parent [^File f]
 (.getParent f))

The preceding implementation is free from reflective calls, so… all good? No. Checking

this function with core.typed tells another story; Java’s return types are nullable and

core.typed knows it. It is possible that getParent will return nil instead of a String:

10.8. Verifying Java Interop Using core.typed | 431

user=> (t/check-ns 'core-typed-samples)
...
Type Error (core-typed-samples:7:3) Return type of instance method
java.io.File/getParent is (U java.lang.String nil), expected
java.lang.String.

Hint: Use `non-nil-return` and `nilable-param` to configure where
`nil` is allowed in a Java method call. `method-type` prints the
current type of a method.
in: (.getParent f)

Type Error (core-typed-samples:6) Type mismatch:

Expected: java.lang.String

Actual: (U String nil)
in: (.getParent f)

Type Error (core-typed-samples:6:1) Type mismatch:

Expected: (Fn [java.io.File -> java.lang.String])

Actual: (Fn [java.io.File -> (U String nil)])
in: (def file-parent (fn* ([f] (.getParent f))))

ExceptionInfo Type Checker: Found 3 errors clojure.core/ex-info ...

core.typed assumes all methods return nullable types, so it is a type error to annotate

parent as [File -> String]. Each preceding type error reiterates that the annotation

tried to claim a (U nil String) was a String, with the most specific (and useful) error
being the first.

core.typed is designed to be pessimistic about Java code, while being accurate enough

to avoid adding arbitrary code to “please” the type checker. For example, core.typed
distrusts Java methods enough to assume all method parameters are non-nullable and

the return type is nullable by default. On the other hand, core.typed knows Java con‐

structors never return null.

If core.typed is too pessimistic for you with its nullable return types, you can override

particular methods with clojure.core.typed/non-nil-return. Adding the following
to the preceding code would result in a successful type check (check omitted for brevity):

(t/non-nil-return java.io.File/getName :all)

As of this writing, core.typed does not enforce static type over‐

rides at runtime, so use non-nil-return and similar features with
caution.

432 | Chapter 10: Testing

Sometimes the type checker might seem overly picky; in the solution, two type-hinted
constructors were necessary. It might seem normal in a dynamically typed language to

simply call (File. s) and allow reflection to resolve any ambiguity. By conforming to

what core.typed expects, however, all ambiguity is eliminated from the constructors,
and the type hints inserted enable the Clojure compiler to generate efficient bytecode.

It is valid to wonder why both type hints and core.typed annotations are needed to
type-check ambiguous Java calls. A type hint is a directive to the compiler, while type

annotations are merely for core.typed to consume during type checking. core.ty

ped does not have influence over resolving reflection calls at compile time, so it chooses
to assume all reflective calls are ambiguous instead of trying to guess what the reflection
might resolve to at runtime. This simple rule usually results in faster, more explicit code,
often desirable in larger code bases.

See Also

• core.typed Home on GitHub

• The core.typed API reference—particularly the documentation for non-nil-

return and nilable-param

• Recipe 10.7, “Avoiding Null-Pointer Exceptions with core.typed” on page 427, and
Recipe 10.9, “Type Checking Higher-Order Functions with core.typed” on page 433,

for further examples of how to use core.typed

10.9. Type Checking Higher-Order Functions with
core.typed
by Ambrose Bonnaire-Sergeant

Problem
Clojure strongly encourages higher-order functions, but tools for verifying their use
focus on runtime verification. You want earlier feedback, preferably at compile time.

Solution
Use core.typed to type-check higher-order functions.

To follow along with this recipe, create a file core_typed_samples.clj and start a REPL

using lein-try:

$ touch core_typed_samples.clj
$ lein try org.clojure/core.typed

10.9. Type Checking Higher-Order Functions with core.typed | 433

https://github.com/clojure/core.typed
http://bit.ly/core-typed-doc

This recipe is a little different than others because core.typed uses
on-disk files to check namespaces.

To demonstrate core.typed’s abilities, define a typed higher-order function hash-of?,
which accepts two predicates and returns a new predicate.

Use clojure.core.typed/fn> to return an anonymous function with type annotations
attached:

(ns core-typed-samples
 (:require [clojure.core.typed :refer [ann fn>] :as t]))

(ann hash-of? [[Any -> Any] [Any -> Any] -> [Any -> Any]])
(defn hash-of? [ks? vs?]
 (fn> [m :- Any]
 (when (map? m)
 (and (every? ks? (keys m))
 (every? ks? (vals m))))))

Each argument to hash-of? has type [Any -> Any]: a single argument function taking
anything and returning anything.

Verifying hash-of? confirms that the preceding type annotations are correct:

user=> (require '[clojure.core.typed :as t])
user=> (t/check-ns 'core-typed-samples)
...
:ok

Using the clojure.core.typed/cf macro, you can type-check individual forms at the

REPL (or under test). Invoking hash-of? with two predicates verifies as expected, out‐
putting the resulting type:

user=> (require '[core-typed-samples :refer [hash-of?]])
user=> (t/cf (hash-of? number? number?))
(Fn [Any -> Any])

Passing + as a predicate, however, is a type error:

user=> (t/cf (hash-of? + number?))
Type Error (user:1:7) Type mismatch:

Expected: (Fn [Any -> Any])

Actual: (Fn [t/AnyInteger * -> t/AnyInteger]
 [java.lang.Number * -> java.lang.Number])

ExceptionInfo Type Checker: Found 1 error clojure.core/ex-info (core.clj:4327)

434 | Chapter 10: Testing

This is because hash-of? takes a function with an Any parameter and + takes at most a

Number.

Discussion
While Clojure’s built-in pre/post conditions are useful for defining anonymous func‐
tions that fail fast, these checks only provide feedback at runtime. Why not type-check

our higher-order functions as well? core.typed’s type-checking abilities aren’t limited
to only data types—it can also type-check functions as types themselves.

By writing returning anonymous functions created with the clojure.core.typed/fn>

form instead of fn, it is possible to annotate function objects with core.typed’s rich

type-checking system. When defining functions with fn>, annotate types to its argu‐

ments with the :- operator. For example, (t/fn> [m :- Map] ...) would indicate an

anonymous function that accepted a Map as its sole argument.

Beyond definition, it can also be useful to check the types of forms at the REPL. The

clojure.core.typed/cf macro is a versatile REPL-oriented tool for on-demand type
checking. It proves useful not only for checking your code, but also for investigating

built-in functions. Invoking cf on any of Clojure’s higher-order functions reveals their
type signatures:

user=> (t/cf iterate)
(All [x]
 (Fn [(Fn [x -> x]) x -> (clojure.lang.LazySeq x)]))

The All around iterate’s type indicates that it is polymorphic in x. It reads, “for all types

x, takes a function that accepts an x and returns an x, and takes an x, and returns a lazy

sequence of x.”

The cf macro can also detect when the wrong number of arguments are being passed
to a function returned by another function:

user=> (t/cf (fn [] ((hash-of? + number?))))
Type Error (user:1:15) Type mismatch:

Expected: (Fn [Any -> Any])

Actual: (Fn [t/AnyInteger * -> t/AnyInteger]
 [java.lang.Number * -> java.lang.Number])
in: ((core-typed-samples/hash-of? clojure.core/+ clojure.core/number?))

Type Error (user:1:14) Wrong number of arguments, expected 1 fixed
parameters, and got 0 for function [Any -> Any] and arguments []
in: ((core-typed-samples/hash-of? clojure.core/+ clojure.core/number?))

ExceptionInfo Type Checker: Found 2 errors clojure.core/ex-info (core.clj:4327)

10.9. Type Checking Higher-Order Functions with core.typed | 435

In this experiment, the faulty invocation of hash-of? is wrapped in

an anonymous function. At the time of this writing, core.typed eval‐
uates code before it type-checks it.

Without this, the raw invocation ((hash-of? + number?)) would

return a regular Clojure ArityException.

See Also

• The core.typed repository on GitHub

• The core.typed user guide, in particular its sections on polymorphism and func‐
tion annotations

• Recipe 10.7, “Avoiding Null-Pointer Exceptions with core.typed” on page 427, and
Recipe 10.8, “Verifying Java Interop Using core.typed” on page 429, for further

examples of how to use core.typed

436 | Chapter 10: Testing

https://github.com/clojure/core.typed
https://github.com/clojure/core.typed/wiki/User-Guide

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
#inst literals, 44
[] (square brackets), 71
{ } (curly braces), 84

A
activity stream processing, 376
aggregate statistics, 391
Amazon’s Dynamo Paper, 278
Amazon’s Elastic MapReduce (EMR) (see Elastic

MapReduce (EMR))
Amazon’s Simple Email Service (SES), 227
AMQP 0-9-1, 231
and operator, 37
anonymous functions, 435
AOT (ahead of time) compilation, 343
Apache Commons Daemon library, 352
Apache Commons Exec library, 169
Apache HttpComponents library, 220
API deprecations

compile-time warnings, 373
definition of, 369
faster call-site, 373
functions for, 371
library for, 369
macros for, 370
preserving metadata, 372
preserving stack traces, 372

applications
background deployment of, 352
configuring with data literals, 190
forcible termination of, 170
standardized approach to, 339

(see also web applications)
arguments, variadic, 67, 134
arrays

array maps, 85
primitive arrays, 361

ASCII, integer to character correspondence, 9
assertions, 409
asynchronous coordination, 146
asynchronous requests, 221
attachments, 229
attributes, 289

B
benchmarking, 43
big-endian integers, 183
BigDecimal type, 23, 25, 27
BigInteger type, 23, 25
binary data, 201, 247
binary search tree (BST), 112
bindings, 233
bit-set operation, 37
bit-test operation, 37
bitwise operations, 36
bolts, 379

437

BoneCP library, 257
browser-based tests, 418
BSD editline, 167
BSON (binary JSON), 282
byte arrays, preparing, 202

C
camel case, 20
capitalization, of strings, 3
Carmine, 284
Cascading library, 398
Cascalog

aggregating large files with, 389
basics of, 375
checkpointing jobs, 396
ETL pipeline processing with, 385
explaining queries, 398
testing workflows, 394

Cassaforte library, 277
Cassandra

basics of, 278
benefits/drawbacks of, 279
communication protocols, 279
connecting to, 277
distributed counters in, 280
library for, 277
record handling in, 279
structure of, 279
table creation in, 278

CDNs (content delivery networks), 172
characters

collapsing into strings, 8
exposing in strings, 7
Unicode conversion, 8

Checkpoint, 396
clj-commons-exec library, 168
clj-http library, 220
clj-mmap library, 178
clj-pdf library, 209
clj-time wrapper, 46–60
clj-webdriver library, 418
Clojars

library release to, 367
templates from, 137

Clojure
benefits of, 1, 63, 253
built-in comparison operators, 49
clojure.core.match, 151
clojure.core.reducers, 186

clojure.core/compare, 105
clojure.core/sort, 106
clojure.data.csv/read-csv, 203
clojure.data.json/reat-str, 207
clojure.data.json/write-str, 207
clojure.edn/read, 196
clojure.edn/read-string, 196
clojure.java.io/copy, 173
clojure.java.io/delete-file, 175
clojure.java.io/reader, 220, 244
clojure.java.io/resource, 171
clojure.java.io/writer, 166, 244
clojure.java.jbdc library, 255, 257, 260
clojure.java.jdbc/with-db-transaction macro,

262
clojure.java.shell/sh, 169
clojure.lang.Associative, 76, 102–103
clojure.lang.Cons, 69
clojure.lang.IPersistentList, 70, 116
clojure.lang.ISeq, 70
clojure.lang.MapEntry, 97
clojure.lang.Numbers, 49
clojure.lang.PersistentArrayMap, 85
clojure.lang.PersistentHashMap, 85
clojure.lang.PersistentList, 65, 68
clojure.lang.PersistentTreeMap, 85
clojure.main, 127
clojure.set/difference, 80, 83
clojure.set/intersection, 82
clojure.set/subset, 83
clojure.set/superset, 83
clojure.set/union, 80, 82
clojure.test namespace, 404
clojure.tools.cli/cli, 132
clojure.xml/parse, 206
core sequence functions, 115
development ecosystem, 121–139
immutability of, 63
Java interop functionality, 60, 429
numeric types in, 23
persistence in, 64
reading/writing data structures, 188
state management tools in, 93
transients, 67

clone operations, 64
cloud computing (see distributed computation)
Clucy, 270
collections

concatenation of, 5

438 | Index

determining values in, 111
indexed, 74
predictability of, 64
removing duplicate elements, 109
substituting strings for, 7

(see also composite data)
command lines

parsing input arguments, 132
running programs from, 130

commas, as whitespace, 84
comparisons

fuzzy, 28
of Java Dates, 49
of values, 105

compile-time verification, 433
Compojure library, 318, 339
composite data

custom data structures, 112–120
lists, 65–71
maps, 84–105
sets, 77–83
vectors, 71–77

compressed files, 204
concatenation, of strings/values/collections, 5
configuration

environment specific, 193
global, 191
multiple files, 192
using edn files for, 190

connection pools, 257
consistency, 279
ConsoleReader, 167
constant-time insertion, 68
consumer latency, 149
consumer/producer decoupling, 146
contagious types, 23
cookies, 312
core.async, 146
core.logic library, 153
core.typed system

avoiding null-pointer exceptions with, 427
checking higher-order functions with, 433
checking Java interop calls with, 429

counter columns, 280
CQL (Cassandra Query Language), 279
CSV (comma-separated values), 203, 385
csv library, 204
currency, 39

D
daemon execution

adding Daemon dependency, 352
benefits/drawbacks of, 355
interface for, 355
library for, 352
script automation, 357
system applications for, 356

data
adding to databases, 293
BSON (binary JSON), 282
custom data types, 285
form data, 311
indexing prior to search, 273
reading/writing Clojure data to disk, 188
removing from databases, 296
secure storage of, 314

data storage
built-in options, 288
external options, 289
storage services, 288

data structure servers, 284
data structures, creating custom, 112–120
database specification (db-spec), 255
databases

Datomic, 253, 287–302
full-text search of, 270
indexing data, 272
key-value datastores, 277
MongoDB, 280
Redis, 284
SQL, 254–269
timestamps and, 60

Datalog, 298
dates/times

basics of, 2
comparing/sorting, 49
converting Unix timestamps, 59, 61
formatting, 47
obtaining current, 43
parsing from a string, 46
ranges of, 52–56
relative time, 56
representing as literals, 44
time intervals, 50
time zones, 58

Datomic database
adding data to, 293
basics of, 253

Index | 439

benefits of, 300
connecting to, 287
querying, 300
removing data from, 296
schema definition, 289
transaction testing, 298
UUID generation, 42

daylight saving time, 59
DDL (Data Definition Language), 268
decoupling consumers/producers, 146
defentity macro, 268
DEFLATE algorithm, 205
defparallelagg macro, 392
defprotocol macro, 143
defspec macro, 413
degrees, converting to radians, 30
deprecations (see API deprecations)
development ecosystem

command line invocation, 130
command line parsing, 132
custom project templates, 135
interactive documentation, 123
library access, 126
minimal Clojure REPL, 121
namespaces, 125
running from a single entry point, 127
tracing code execution, 425

directories
deleting, 175
resources, 171
structuring with Luminus, 340

dispatch maps, 141
distributed computation

activity feed systems, 376
aggregating large files, 389
Cascalog, 375, 385–402
Elastic MapReduce, 375, 400
ETL data processing, 385

distributed counters, 280
doc macro, 123
docstrings, 143
document analysis, 275
documentation, interactive, 123
DOM (Document Object Model), 326
double values, 22, 25
duplicates, removing, 109
dynamic content delivery, 330
Dynamo Paper, 278

E
Elastic MapReduce (EMR)

basics of, 375
running Cascalog job on, 400

ElasticSearch, 272
Elastisch, 272
elements, removing duplicate, 109
email, 226
Enlive library

benefits/drawbacks of, 325, 329
best uses for, 329
DOM representation, 326
parsing/scraping with, 328
selector-based approach of, 323
selectors, 327
snippets, 324, 328
templates, 326

entities, 268
error taps, 397
ETL (Extract Transform Load) pipeline, 385
exceptions/errors

checkpointing Cascalog jobs, 396
custom handling of, 175
IllegalArgumentException, 77
IndexOutOfBoundsException, 77
java.io.FileNotFoundException, 173
java.io.IOException, 175
null-pointer, 427
preventing on file deletion, 175
reflection warnings, 359, 430
SQL exceptions, 259
tracing code execution, 425
unknown tags, 197
with sorted sets, 79

exchanges, 232
exponents, 22
expressions, parsing, 151
extensible data notation (edn)

additional security provided by, 189, 198
date expression in, 45
emitting records as edn values, 194

F
fault-tolerant equality, 28
feedparser-clj library, 224
fields, defining, 274
files

accessing resource files, 171

440 | Index

aggregating large, 389
compressed files, 204
configuration files, 190
copying, 173
CSV (comma-separated values), 203
deleting, 175
JAR file packaging, 345
JSON data, 207
listing, 176
memory-mapping, 178
parallelizing processing, 183
parallelizing processing with reducers, 185
PDF data, 209
reading properties from, 199
reading/writing binary data, 201
reading/writing non-sequentially, 182
reading/writing text files, 179
sparse files, 183
static files, 309
temporary, 181
XML data, 206

filtering, 81, 275
find and replace, 15
floating-point values

alternatives to, 22
comparison of, 29
lack of precision in, 40

fn expressions, 151
form data, 311
format specifiers, 11
format strings, 11
fractional numbers, 24
full-text search, 270
functional programming, 65, 325
functions, 25

:key-fn, 209
adding domain-specific, 145
anonymous, 435
apply, 66
array-map, 84
assoc, 73, 76, 85, 91
balance, 113
bigdec, 23
bigint, 23, 25
char, 8
clojure.core/read, 45
clojure.edn/read, 45, 189
clojure.string/capitalize, 3
clojure.string/join, 6

clojure.string/lower-case, 3
clojure.string/replace, 15
clojure.string/replace function, 4
clojure.string/split, 17
clojure.string/trim, 4
command line invocation of, 131
compare, 49, 105
cond, 139
condp, 139
conj, 67–73, 79, 85, 96
cons, 68
contains?, 80, 88
datomic.api/squuid, 42
delete-directory, 176
difference, 83
disj, 80
dissoc, 85, 91
distinct, 109
file-seq, 177
filter, 186
find-val, 113
first, 97
flush, 167
fold, 186
format, 10
formatter, 47, 48
from-unix-time, 59
fuzzy, 28
get, 75, 81, 86
get-bytes, 178
get-in, 87
hash-map, 84
hash-set, 77
higher-order, 433
insert-val, 113
int, 8, 26
Integer/parseInt, 25
Integer/toBinaryString, 37
Integer/toString, 32
intersection, 82
interval, 50
into, 67, 72, 78, 96
java.util.UUID/randomUUID, 41
juxt, 89
keys, 98
keyword, 20, 187
line-seq, 183
list, 65, 66, 70
load-config, 191

Index | 441

main, 127
map, 186
map-keys, 98
map-kv, 98
map-vals, 98
match, 113
Math, 30
Math/ceil, 26
Math/floor, 26
Math/round, 26
Math/toRadians, 30
merge, 103
merge-with, 103
middleware and, 307
name, 20
namespace, 20
nth, 74
pmap, 183
pop, 69, 73
postal.core/send-message, 226
pr, 188
pr-str, 188
print, 165
println, 165
put-bytes, 178
rand, 38
rand-int, 38
rand-nth, 38
rationalize, 24
read, 189
read-string, 188
realized?, 170
reduce-kv, 99
repeatedly, 54
rest, 69
safe-copy, 173
safe-delete, 175
second, 97
select-keys, 89, 90
seq, 7, 70
set, 77, 109
slurp, 179, 188, 219
some, 111
sort, 29, 49
sort-by, 108
sorted-map, 84, 85
sorted-map-by, 85
spit, 179, 188
stdin, 167

str, 5, 10, 20
subvec, 74
symbol, 20
to-unix-time, 61
tree-seq, 116
union, 82
update-in, 92
vals, 89, 98
value-fn, 209
value-set, 103
vec, 72
vector, 71
with polymorphic behavior, 139
with-precision, 27
xml-seq, 206
zipmap, 96, 98

fuzzy comparisons, 28

G
generative tests, 411
geometric functions, 139
GET requests, 219
global configuration, 191
Gmail, 227
GNU readline, 167
graph-like data, querying, 153
Gregorian calendar dates, 54
GUI (graphical user interface) windows, 213
Gzip compression format, 205

H
Hadoop

Cascading library, 398
combiner function, 392
on-demand through EMR, 376, 400
unit testing in, 395

handlers, 306, 318
hash maps, 85, 97
hash sets/tables, 78
Hiccup library, 211, 334
Hickey, Rich, 253
hierarchical data, querying, 153
higher-order functions, 325, 433
HTML templates, 211, 323–337

Enlive, 323
Hiccup, 211, 334
Selmer, 330

442 | Index

HTTP (Hypertext Transfer Protocol)
asynchronous requests, 221
GET/POST requests, 219
PUT/DELETE requests, 221
Ring library, 305–321

HTTP Kit library, 221
Hystrix library, 221

I
I/O (input/output) streams

accessing key-value pairs, 199
accessing resource files, 171
binary data, 201
compressed files, 204
copying files, 173
CSV data, 203
deleting files/directories, 175
disk storage/retrieval, 188
emitting records as edn values, 194
executing system commands, 168
handling unknown tagged literals, 196
JSON data, 207
listing files, 176
memory-mapping files, 178
parallelizing file processing, 183
parallelizing with reducers, 185
PDF files, 209
reading unbuffered keystrokes, 167
reading/writing non-sequentially, 182
reading/writing text files, 179
scrollable GUI windows, 213
STDOUT/STDERR, 165
using edn for configuration files, 190
using temporary files, 181
XML data, 206

ICMP ping requests, 223
ID numbers, 41
IFn interface, 86, 116
immutability

benefits of, 64
definition of, 63

in-memory searches, 112, 270
indexing, 272
inflections, 18
information retrieval, 271

(see also searching)
inheritance, 334
inline documentation, 124

integers
big-endian, 183
character conversion, 8
generating random, 38
maintaining precision in, 24
overflow error, 22

interactive documentation, 123
interface polymorphism, 63
Iota library, 185
IP addresses, checking availability of, 223
ISeq interface, 64
iText library, 211

J
JAR file packaging, 345
Java

BufferedInputStream, 201
BufferedOutputStream, 201
Cascading library, 398
classpaths, 122, 172
clojure.main, 122
comparison/sorting mechanisms, 107
createTempFile, 181
date/time classes, 46, 47
Fork/Join work-stealing framework, 186
Java JDBC, 255, 259, 260
java.io.File, 171, 176, 181
java.io.Reader, 203
java.lang.Character, 9
java.lang.Integer, 9
java.lang.String, 145
java.net.DatagramPacket, 248
java.net.DatagramSocket, 248
java.net.ServerSocket, 245
java.net.Socket, 243
java.net/InetAddress, 223
java.text.SimpleDateFormat, 55
java.util.Date, 43
java.util.GregorianCalendar, 54
java.util.Map, 199
java.util.Properties, 199
java.util.zip.GZIPInputStream, 204
java.util.zip.GZIPOutputStream, 204
JavaMail package, 226
Lucene library, 270
memory-mapping functionality, 178
primitive arrays, 361
RandomAccessFile, 182
ROME library, 225

Index | 443

Swing library, 213
verifying interop calls, 429

Jetty servers, 307
JFreeChart library, 211
JLine library, 167
Joda-Time library, 48, 50, 51, 59
JSON (JavaScript Object Notation) data, 207,

385
JVisualVM, 364
JVM bytecode, 343

K
key-value datastores, 277
keys

accessing key-value pairs, 199
applying transformation function to, 98
maintaining order of, 84
multiple values for, 100
nontraditional, 94
preserving semantic value of, 97
removing from maps, 91
retrieving values of, 86
retrieving values simultaneously, 89
setting in maps, 90
specifying key paths, 91
using composite values for, 94

keywords
converting data types, 20
sets and, 81
using as functions, 86

Korma, 266

L
Langohr client, 229
large/small numbers, 22
latitude/longitude, 30
lazy sequences, 54
leap years, 50
lein new, 137
lein run, 130
lein trampoline repl, 167
lein-try, 126
Leiningen plugins

benefits of, 127
build tool, 345
command-line invocation with, 130
customized boilerplate generation with, 135
profiles feature, 193

trampolining control with, 168
Liberator library, 321
libraries

loading, 126
releasing, 367

lists
adding items to, 68
constant-time insertion, 68
converting existing structure to, 66
creating, 65
removing items from, 69
selecting random elements from, 38
testing for, 70
vs. vectors, 66

logging, 365, 389
logic operators, 37
logic programming, 153
Lucene library, 270

M
Machine Head library, 236
machine-local time, 59
machine-to-machine (M2M) communication,

236
macros

clojure.java.jdbc/with-db-transaction, 262
defentity, 268
defparallelagg, 392
defprotocol, 143
defspec macro, 413
doc, 123
for deprecation, 370
for profiling, 363
source, 124
workflow, 397

mappings
field definition for, 274
mapping settings, 276
mapping types, 276

MapReduce (see Elastic MapReduce (EMR))
maps

applying functions to, 98
as sequences of entries, 96
combining, 103
configuration items and, 190
creating, 84
creating sorted, 85
literals, 84
map constructor functions, 84

444 | Index

map-based dispatch, 141
multiple key values, 100
nontraditional keys for, 94
part maps, 228
retrieving multiple values, 89
retrieving values from, 86
setting keys in, 90
updating keys in, 92
using as functions, 86
using composite key values, 94
XML representations in, 206

Markdown documents, 337
match statements, 152
mean, 32
median, 32
memoization applications, 285, 369
memory-mapping functionality, 178
message-oriented architectures, 241
messages

acknowledgement of, 234
bindings for, 233
consuming, 233
exchanges for, 232
publishing, 233
queues for, 232

metaconstants, 410
metadata, 124
middleware, 307
Midje, 394, 408
MIME (Multipurpose Internet Mail Exten‐

sions), 228
miniKanren Domain Specific Language, 153
mode, 32
monetary units, 39
Monger, 280
MongoDB, 280
MQTT (MQ Telemetry Transport) protocol,

236
multi-tenancy, 275
MultiAssociative protocol, 100
multimaps, 100
multimethods, 141, 146, 195
multiple config files, 192
multiple dispatch, 142
music, 159

N
namespaces

basics of, 125

providing entry points through, 129
natural ordering, 106
nested maps, 87, 91
Netflix’s Hystrix library, 221
networking/web services

asynchronous HTTP requests, 221
communicating over queues, 229
communicating with embedded devices, 236
email, 226
HTTP requests, 219
ping requests, 223
RSS data, 224
TCP clients, 243
TCP servers, 245
UDP packets, 248
using ZeroMQ concurrently, 240

NIO library, 178
Nippy library, 285
nodes, reading XML as, 206
notes, 159
null-pointer exceptions, 427
numbers

fractional, 24
large/small, 22
ordinalizing, 20
parsing out of strings, 25
random, 38
rational, 24

numeric operations
contagion in, 23
increasing speed of, 361
quote versions of, 23

numeric types
basics of, 2
bitwise operations, 36
currency, 39
fuzzy comparisons of, 28
integers with different bases, 31
list of, 23
maintaining accuracy with, 22
parsing, 25
random number generation, 38
rational numbers, 24
rounding/truncating, 26, 40
statistical data, 32
trigonometry, 30
unchecked math, 360
unique ID generation, 41

nursery rhyme example, 159

Index | 445

O
Okasaki, Chris, 64
open source libraries, 367
or operator, 37
ordinal numbers, 20
overwriting, 173

P
parsing

Clojure expressions, 151
dates from strings, 46
input arguments, 132
into Enlive data structure, 328
numbers out of strings, 25
parser differences, 338

part maps, 228
pattern matching, 12, 13, 151
PDF (Portable Document Format), 209
performance/production

AOT (ahead of time) compilation, 343
API deprecations, 369–374
background applications, 352
fast math, 361
improving Cascalog speed, 398
JAR file packaging, 345
logging with Timbre, 365
profiling with Timbre, 363
releasing a library, 367
tracing code execution and, 425
type hinting, 358
WAR file creation, 348

persistence
benefits of, 64
definition of, 64

ping requests, 223
placeholders, 11
pluralization, 18
polymorphic behaviors, 139
pooled data resources, 257
POST requests, 219
postal wrapper, 226
PostgreSQL database, 254, 257, 260, 266
primitive arrays, 361
primitive data

dates/times, 2, 43–62
numeric types, 2, 22–42
strings, 1, 3–22

printing functions, print/prntln, 166

profiles, 193
profiling tools, 363
project templates, 135
propertea library, 199
properties, reading from files, 199
property-specification libraries, 415
protocols

defining, 143
defining domain-specific, 145
for communication in Cassandra, 279
for polymorphism, 140
MQTT, 236
MultiAssociative, 100
vs. multimethods, 146

publish/consumption models, 233
publish/subscribe models, 236
Purely Functional Data Structures (Okasaki), 64

Q
quantities, 18
queries

explaining Cascalog, 398
for hierarchical data, 153
simple Datomic, 300
using Korma DSL, 266

queues, 232

R
RabbitMQ, 229
random access, 182
random numbers, 38
rational numbers, 24
reader literals, 45
realtime computation systems, 376
records

emitting as edn values, 194
inserting/updating, 262, 279
reading/processing, 264
updating, 262
vs. types, 144

red-black trees (RBT), 112–120
redirects, 320
Redis, 284
Reducers library, 185
redundancy, 278
reflection, 358, 430
regular expressions

drawbacks of, 16

446 | Index

extracting values with, 13
literals, 12, 15
re-find, 12, 14
re-matcher, 14
re-matches, 12
re-seq, 13
searching strings with, 12

reliability, improving, 403
(see also testing)

REPL (read-eval-print loop)
exiting, 122
interactive documentation, 123
loading temporary libraries, 126
running a minimal, 121

request redirects, 320
request routing, 318
request-response API, 306
request/response headers, 317
resources, accessing local, 171
resources, classpath-based, 172
Restful (RFC-2626 compliant) web applications,

321
Ring library

application structure with Luminus, 339
basics of, 305
cookie handling, 312
handling form data with, 311
middleware functions of, 307
performing redirects with, 320
request routing with Compojure, 318
request/response headers in, 317
serving static files with, 309
storing sessions with, 314

ROME library, 225
rounding up/down, 26, 40
RSS (Really Simple Syndication) data, 224
Ruby on Rails

inflections library, 19
pluralization, 18

runtime errors, with sorted sets, 79
(see also exceptions/errors)

S
safe-copy function, 173
safe-delete function, 175
scaling factors, 40
schema definition, 289
Scherer, Roman, 18
scripts, 128

searching
across changing data sets, 112
find and replace, 15
full-text, 270
search engines, 272
search index, 273
strings by pattern, 12
vs. lookup, 88

security issues
built-in string reader, 45, 189, 198
session storage, 314

Seesaw library, 213
selectors, 327
Selenium WebDriver, 418
Selmer library

dynamic content delivery with, 330
filters in, 333
inheritance, 334
tag definition, 333
variables and tags in, 332

sequence abstraction
benefits of, 64
listing files in directory hierarchies, 177
maps and, 96
red-black trees and, 116
vs. concrete lists, 66
vs. primitive arrays, 362

sequential IDs, 42
server-sent events (SSE), 146
sessions, storage of, 314
sets

adding/removing items from, 79
common operations on, 82
creating, 77
selecting random elements from, 39
testing for subsets, 82
testing membership of, 80
using as a function, 81

shell commands, 168
Simple Email Service (SES), 227
simple-check library, 415
singularization, 19
snippets, 324, 328
sorted maps, 85, 97
sorted sets, 78
sorting

dates/times, 49
using fuzzy comparison, 29
values, 105

Index | 447

source macro, 124
sparse files, 183
specifiers, 11
spouts, 379
SQL databases

connecting to, 254
connecting with connection pool, 257
manipulation of, 260
querying with Korma, 266

stack traces, 372
standard deviation, 32
state management tools, 93
static files, 309
statistics, 32, 363, 389
STDOUT/STDERR, 165
Storm

active-user-bolt, 380
benefits of, 384
core primitives in, 378
deployment, 383
event-spout, 379
feed-bolt, 381
follow-bolt, 380
project creation/setup, 376
topology definition, 382

streaming, 376
streams, 379
strings

basics of, 1
capitalization of, 3
concatenation of, 5
converting between data types, 20
definition of, 7
edn vs. core readers for, 45, 189
exposing characters in, 7
extracting values from, 13
find and replace in, 15
formatting, 10
parsing dates from, 46
parsing numbers out of, 25
pluralizing based on quantity, 18
reading JSON data, 207
searing by pattern, 12
splitting into parts, 17
Unicode in, 8
whitespace removal, 4

Swing library, 213
symbols

converting data types, 20

namespaced, 21
synthesized instruments, 159
System/currentTimeMillis, 43

T
tables

creating, 262, 267, 278
inserting/updating records, 262

tagged library, 194
tagged literals, 196
TCP (Transmission Control Protocol)

client creation, 243
server creation, 245

templates, 135, 211
test.generative library, 418
testing

browser-based, 418
Cascalog workflows, 394
failure-causing values, 415
for null-pointer exceptions, 427
generative tests, 411
integrated functions, 408
Java interop verification, 429
tracing code execution, 424
unit testing, 404

text files
reading/writing, 179
transforming line-by-line, 183

Thrift communication protocol, 279
Timbre

logging with, 365
profiling with, 363

time intervals, 50
(see also dates/times)

time zones, 50, 58
timestamps, 59, 61
tokenization, 17, 275
tools.cli library, 132
tools.trace library, 424
trampolining, 168
transaction-aware connections, 262
transform function, 327
transformation function, 98
transients, 67
trigonometric functions, 30
truthiness, 406
TTL (time to live), 280
tuples, 379
type hinting, 358

448 | Index

types
extending built-in, 145
vs. records, 144

U
uberjars, 345
UDP (User Datagram Protocol) packets, 248
unchecked math, 360
Unicode characters, conversion of, 8
unit testing (see testing)
universally unique ID (UUID), 41
Unix

ping requests, 223
timestamp, 43, 59

userbases, 376

V
validation/verification (see testing)
values

applying transformation function to, 98
comparing/sorting, 105
concatenation of, 5
determining presence of, 111
doubles, 22, 25
extracting from strings, 13
finding failure-causing, 415
floating-point, 22, 29
formatting into strings, 10
mapping keys to, 84
monetary units, 39
retrieving by index, 74
retrieving from maps, 86
retrieving multiple from maps, 89
setting by index, 76
testing for lists, 70
updating, 92

variadic arguments, 67, 134
vectors

adding items to, 72

creating, 71
getting value at index, 74
map entry, 97
removing items from, 73
retrieving values from, 87
setting value at index, 76
using as functions, 75
vs. lists, 66

W
WAR (web archive) files

bare vs. uberwar, 350
building from scratch, 351
creating, 348
dependencies and, 350

web applications
browser testing for, 420
Markdown documents, 337
RESTful architecture, 321
Ring library, 305–321
standardized approach to, 339
templating tools, 323–337

whitespace
commas as, 84
removal from strings, 4

workflow macro, 397

X
XML (Extensible Markup Language) data, 206

Y
YourKit, 364

Z
ZeroMQ, 240
zippers, 207
zmq-async library, 240

Index | 449

About the Authors
Luke VanderHart is a Clojure and ClojureScript developer working with Cognitect,
Inc. He is the coauthor of Practical Clojure (Apress) and ClojureScript: Up and Run‐
ning (O’Reilly). He lives and works in Durham, NC.

Ryan Neufeld is a polyglot software developer and budding architect specializing in
distributed systems and web applications. Whether it’s tough technical issues or one of
the softer elements of software engineering, Ryan relishes the opportunity to deliver
results for customers. Ryan currently lives in Durham, NC, where he works as a devel‐
oper at Cognitect, Inc.

Colophon
The animal on the cover of Clojure Cookbook is an aardwolf (Proteles cristata), a small
mammal with two separate populations in the plains of Eastern and Southern Africa.
Though its name means “earth wolf ” in the Afrikaans language, it is part of the hyena
family. The aardwolf generally doesn’t eat carrion like its larger cousins do—its diet
mainly consists of insects (especially termites), which it catches with a long, sticky
tongue.

Aardwolves have thick yellow or brown fur with dark stripes, with bushy tails and long
manes that run along their necks and backs. The mane is used to make the aardwolves
appear bigger and intimidate predators, since they are neither fast runners nor especially
good fighters. They do have strong jaws, but their teeth have evolved for eating insects
rather than attacking larger animals. They average 22–31 inches long, and weigh 15–22
pounds.

The aardwolf is nocturnal, and sleeps in underground burrows during the day. These
animals are very territorial, and use scent glands to mark the area containing their dens
(a mating pair may claim and rotate through multiple burrows, using only one or two
at a time). The breeding season occurs in late June/early July, with a litter of 2–5 cubs
born 90 days later.

Aardwolves are occasionally mistaken for hyenas and killed to protect livestock. How‐
ever, many African farmers recognize the benefit of the animals in controlling the ter‐
mite population and thus protecting crops. A single aardwolf can eat 200,000–300,000
termites per night.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://shop.oreilly.com/product/0636920025139.do
http://shop.oreilly.com/product/0636920025139.do

	Copyright
	Table of Contents
	Preface
	How This Book Was Written
	Audience
	Other Resources
	Structure
	Chapter Listing

	Software Prerequisites
	Conventions Used in This Book
	REPL Sessions
	Console/Terminal Sessions
	Typesetting Conventions

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Ryan Neufeld
	Luke VanderHart

	Chapter 1. Primitive Data
	1.0. Introduction
	Strings
	Numeric Types
	Dates

	1.1. Changing the Capitalization of a String
	Problem
	Solution
	Discussion
	See Also

	1.2. Cleaning Up Whitespace in a String
	Problem
	Solution
	Discussion
	See Also

	1.3. Building a String from Parts
	Problem
	Solution
	Discussion
	See Also

	1.4. Treating a String as a Sequence of Characters
	Problem
	Solution
	Discussion
	See Also

	1.5. Converting Between Characters and Integers
	Problem
	Solution
	Discussion
	See Also

	1.6. Formatting Strings
	Problem
	Solution
	Discussion
	See Also

	1.7. Searching a String by Pattern
	Problem
	Solution
	Discussion
	See Also

	1.8. Pulling Values Out of a String Using Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	1.9. Performing Find and Replace on Strings
	Problem
	Solution
	Discussion
	See Also

	1.10. Splitting a String into Parts
	Problem
	Solution
	Discussion
	See Also

	1.11. Pluralizing Strings Based on a Quantity
	Problem
	Solution
	Discussion
	See Also

	1.12. Converting Between Strings, Symbols, and Keywords
	Problem
	Solution
	Discussion
	See Also

	1.13. Maintaining Accuracy with Extremely Large/Small Numbers
	Problem
	Solution
	Discussion
	See Also

	1.14. Working with Rational Numbers
	Problem
	Solution
	Discussion
	See Also

	1.15. Parsing Numbers
	Problem
	Solution
	Discussion
	See Also

	1.16. Truncating and Rounding Numbers
	Problem
	Solution
	Discussion
	See Also

	1.17. Performing Fuzzy Comparison
	Problem
	Solution
	Discussion
	See Also

	1.18. Performing Trigonometry
	Problem
	Solution
	Discussion
	See Also

	1.19. Inputting and Outputting Integers with Different Bases
	Problem
	Solution
	Discussion
	See Also

	1.20. Calculating Statistics on Collections of Numbers
	Problem
	Solution
	Discussion
	See Also

	1.21. Performing Bitwise Operations
	Problem
	Solution
	Discussion
	See Also

	1.22. Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	1.23. Working with Currency
	Problem
	Solution
	Discussion
	See Also

	1.24. Generating Unique IDs
	Problem
	Solution
	Discussion
	See Also

	1.25. Obtaining the Current Date and Time
	Problem
	Solution
	Discussion
	See Also

	1.26. Representing Dates as Literals
	Problem
	Solution
	Discussion
	See Also

	1.27. Parsing Dates and Times Using clj-time
	Problem
	Solution
	Discussion
	See Also

	1.28. Formatting Dates Using clj-time
	Problem
	Solution
	Discussion
	See Also

	1.29. Comparing Dates
	Problem
	Solution
	Discussion
	See Also

	1.30. Calculating the Length of a Time Interval
	Problem
	Solution
	Discussion
	See Also

	1.31. Generating Ranges of Dates and Times
	Problem
	Solution
	Discussion
	See Also

	1.32. Generating Ranges of Dates and Times Using Native Java Types
	Problem
	Solution
	Discussion
	See Also

	1.33. Retrieving Dates Relative to One Another
	Problem
	Solution
	Discussion
	See Also

	1.34. Working with Time Zones
	Problem
	Solution
	Discussion
	See Also

	1.35. Converting a Unix Timestamp to a Date
	Problem
	Solution
	Discussion
	See Also

	1.36. Converting a Date to a Unix Timestamp
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Composite Data
	2.0. Introduction
	Immutability
	Persistence
	The Sequence Abstraction

	2.1. Creating a List
	Problem
	Solution
	Discussion
	See Also

	2.2. Creating a List from an Existing Data Structure
	Problem
	Solution
	Discussion
	See Also

	2.3. “Adding” an Item to a List
	Problem
	Solution
	Discussion
	See Also

	2.4. “Removing” an Item from a List
	Problem
	Solution
	Discussion
	See Also

	2.5. Testing for a List
	Problem
	Solution
	Discussion
	See Also

	2.6. Creating a Vector
	Problem
	Solution
	Discussion
	See Also

	2.7. “Adding” an Item to a Vector
	Problem
	Solution
	Discussion
	See Also

	2.8. “Removing” an Item from a Vector
	Problem
	Solution
	Discussion
	See Also

	2.9. Getting the Value at an Index
	Problem
	Solution
	Discussion
	See Also

	2.10. Setting the Value at an Index
	Problem
	Solution
	Discussion
	See Also

	2.11. Creating a Set
	Problem
	Solution
	Discussion
	See Also

	2.12. Adding and Removing Items from Sets
	Problem
	Solution
	Discussion
	See Also

	2.13. Testing Set Membership
	Problem
	Solution
	Discussion
	See Also

	2.14. Using Set Operations
	Problem
	Solution
	Discussion
	See Also

	2.15. Creating a Map
	Problem
	Solution
	Discussion
	See Also

	2.16. Retrieving Values from a Map
	Problem
	Solution
	Discussion
	See Also

	2.17. Retrieving Multiple Keys from a Map Simultaneously
	Problem
	Solution
	Discussion
	See Also

	2.18. Setting Keys in a Map
	Problem
	Solution
	Discussion
	See Also

	2.19. Using Composite Values as Map Keys
	Problem
	Solution
	Discussion
	See Also

	2.20. Treating Maps as Sequences (and Vice Versa)
	Problem
	Solution
	Discussion
	See Also

	2.21. Applying Functions to Maps
	Problem
	Solution
	Discussion
	See Also

	2.22. Keeping Multiple Values for a Key
	Problem
	Solution
	Discussion
	See Also

	2.23. Combining Maps
	Problem
	Solution
	Discussion
	See Also

	2.24. Comparing and Sorting Values
	Problem
	Solution
	Discussion
	See Also

	2.25. Removing Duplicate Elements from a Collection
	Problem
	Solution
	Discussion
	See Also

	2.26. Determining if a Collection Holds One of Several Values
	Problem
	Solution
	Discussion
	See Also

	2.27. Implementing Custom Data Structures: Red-Black Trees—Part I
	Problem
	Solution
	Discussion
	See Also

	2.28. Implementing Custom Data Structures: Red-Black Trees—Part II
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. General Computing
	3.0. Introduction
	3.1. Running a Minimal Clojure REPL
	Problem
	Solution
	Discussion
	See Also

	3.2. Interactive Documentation
	Problem
	Solution
	Discussion
	See Also

	3.3. Exploring Namespaces
	Problem
	Solution
	Discussion
	See Also

	3.4. Trying a Library Without Explicit Dependencies
	Problem
	Solution
	Discussion
	See Also

	3.5. Running Clojure Programs
	Problem
	Solution
	Discussion
	See Also

	3.6. Running Programs from the Command Line
	Problem
	Solution
	Discussion
	See Also

	3.7. Parsing Command-Line Arguments
	Problem
	Solution
	Discussion
	See Also

	3.8. Creating Custom Project Templates
	Problem
	Solution
	Discussion
	See Also

	3.9. Building Functions with Polymorphic Behavior
	Problem
	Solution
	Discussion
	See Also

	3.10. Extending a Built-In Type
	Problem
	Solution
	Discussion
	See Also

	3.11. Decoupling Consumers and Producers with core.async
	Problem
	Solution
	Discussion
	See Also

	3.12. Making a Parser for Clojure Expressions Using core.match
	Problem
	Solution
	Discussion
	See Also

	3.13. Querying Hierarchical Graphs with core.logic
	Problem
	Solution
	Discussion
	See Also

	3.14. Playing a Nursery Rhyme
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Local I/O
	4.0. Introduction
	4.1. Writing to STDOUT and STDERR
	Problem
	Solution
	Discussion
	See Also

	4.2. Reading a Single Keystroke from the Console
	Problem
	Solution
	Discussion
	See Also

	4.3. Executing System Commands
	Problem
	Solution
	Discussion
	See Also

	4.4. Accessing Resource Files
	Problem
	Solution
	Discussion
	See Also

	4.5. Copying Files
	Problem
	Solution
	Discussion
	See Also

	4.6. Deleting Files or Directories
	Problem
	Solution
	Discussion
	See Also

	4.7. Listing Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	4.8. Memory Mapping a File
	Problem
	Solution
	Discussion
	See Also

	4.9. Reading and Writing Text Files
	Problem
	Solution
	Discussion
	See Also

	4.10. Using Temporary Files
	Problem
	Solution
	Discussion
	See Also

	4.11. Reading and Writing Files at Arbitrary Positions
	Problem
	Solution
	Discussion
	See Also

	4.12. Parallelizing File Processing
	Problem
	Solution
	Discussion
	See Also

	4.13. Parallelizing File Processing with Reducers
	Problem
	Solution
	Discussion
	See Also

	4.14. Reading and Writing Clojure Data
	Problem
	Solution
	Discussion
	See Also

	4.15. Using edn for Configuration Files
	Problem
	Solution
	Discussion
	See Also

	4.16. Emitting Records as edn Values
	Problem
	Solution
	Discussion
	See Also

	4.17. Handling Unknown Tagged Literals When Reading Clojure Data
	Problem
	Solution
	Discussion
	See Also

	4.18. Reading Properties from a File
	Problem
	Solution
	Discussion
	See Also

	4.19. Reading and Writing Binary Files
	Problem
	Solution
	Discussion
	See Also

	4.20. Reading and Writing CSV Data
	Problem
	Solution
	Discussion
	See Also

	4.21. Reading and Writing Compressed Files
	Problem
	Solution
	Discussion
	See Also

	4.22. Working with XML Data
	Problem
	Solution
	Discussion
	See Also

	4.23. Reading and Writing JSON Data
	Problem
	Solution
	Discussion
	See Also

	4.24. Generating PDF Files
	Problem
	Solution
	Discussion
	See Also

	4.25. Making a GUI Window with Scrollable Text
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Network I/O and Web Services
	5.0. Introduction
	5.1. Making HTTP Requests
	Problem
	Solution
	Discussion
	See Also

	5.2. Performing Asynchronous HTTP Requests
	Problem
	Solution
	Discussion
	See Also

	5.3. Sending a Ping Request
	Problem
	Solution
	Discussion
	See Also

	5.4. Retrieving and Parsing RSS Data
	Problem
	Solution
	Discussion
	See Also

	5.5. Sending Email
	Problem
	Solution
	Discussion
	See Also

	5.6. Communicating over Queues Using RabbitMQ
	Problem
	Solution
	Discussion
	See Also

	5.7. Communicating with Embedded Devices via MQTT
	Problem
	Solution
	Discussion
	See Also

	5.8. Using ZeroMQ Concurrently
	Problem
	Solution
	Discussion
	See Also

	5.9. Creating a TCP Client
	Problem
	Solution
	Discussion
	See Also

	5.10. Creating a TCP Server
	Problem
	Solution
	Discussion
	See Also

	5.11. Sending and Receiving UDP Packets
	Problem
	Solution
	See Also

	Chapter 6. Databases
	6.0. Introduction
	6.1. Connecting to an SQL Database
	Problem
	Solution
	Discussion
	See Also

	6.2. Connecting to an SQL Database with a Connection Pool
	Problem
	Solution
	Discussion
	See Also

	6.3. Manipulating an SQL Database
	Problem
	Solution
	Discussion
	See Also

	6.4. Simplifying SQL with Korma
	Problem
	Solution
	Discussion
	See Also

	6.5. Performing Full-Text Search with Lucene
	Problem
	Solution
	Discussion
	See Also

	6.6. Indexing Data with ElasticSearch
	Problem
	Solution
	Discussion
	See Also

	6.7. Working with Cassandra
	Problem
	Solution
	Discussion
	See Also

	6.8. Working with MongoDB
	Problem
	Solution
	Discussion
	See Also

	6.9. Working with Redis
	Problem
	Solution
	Discussion
	See Also

	6.10. Connecting to a Datomic Database
	Problem
	Solution
	Discussion
	See Also

	6.11. Defining a Schema for a Datomic Database
	Problem
	Solution
	Discussion
	See Also

	6.12. Writing Data to Datomic
	Problem
	Solution
	Discussion
	See Also

	6.13. Removing Data from a Datomic Database
	Problem
	Solution
	Discussion
	See Also

	6.14. Trying Datomic Transactions Without Committing Them
	Problem
	Solution
	Discussion
	See Also

	6.15. Traversing Datomic Indexes
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Web Applications
	7.0. Introduction
	7.1. Introduction to Ring
	Problem
	Solution
	Discussion
	See Also

	7.2. Using Ring Middleware
	Problem
	Solution
	Discussion
	See Also

	7.3. Serving Static Files with Ring
	Problem
	Solution
	Discussion
	See Also

	7.4. Handling Form Data with Ring
	Problem
	Solution
	Discussion
	See Also

	7.5. Handling Cookies with Ring
	Problem
	Solution
	Discussion
	See Also

	7.6. Storing Sessions with Ring
	Problem
	Solution
	Discussion
	See Also

	7.7. Reading and Writing Request and Response Headers in Ring
	Problem
	Solution
	Discussion
	See Also

	7.8. Routing Requests with Compojure
	Problem
	Solution
	Discussion
	See Also

	7.9. Performing HTTP Redirects with Ring
	Problem
	Solution
	Discussion
	See Also

	7.10. Building a RESTful Application with Liberator
	Problem
	Solution
	Discussion
	See Also

	7.11. Templating HTML with Enlive
	Problem
	Solution
	Discussion
	See Also

	7.12. Templating with Selmer
	Problem
	Solution
	Discussion
	See Also

	7.13. Templating with Hiccup
	Problem
	Solution
	Discussion
	See Also

	7.14. Rendering Markdown Documents
	Problem
	Solution
	Discussion
	See Also

	7.15. Building Applications with Luminus
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Performance and Production
	8.0. Introduction
	8.1. AOT Compilation
	Problem
	Solution
	Discussion
	See Also

	8.2. Packaging a Project into a JAR File
	Problem
	Solution
	Discussion
	See Also

	8.3. Creating a WAR File
	Problem
	Solution
	Discussion
	See Also

	8.4. Running an Application as a Daemon
	Problem
	Solution
	Discussion
	See Also

	8.5. Alleviating Performance Problems with Type Hinting
	Problem
	Solution
	Discussion
	See Also

	8.6. Fast Math with Primitive Java Arrays
	Problem
	Solution
	Discussion
	See Also

	8.7. Simple Profiling with Timbre
	Problem
	Solution
	Discussion
	See Also

	8.8. Logging with Timbre
	Problem
	Solution
	Discussion
	See Also

	8.9. Releasing a Library to Clojars
	Problem
	Solution
	Discussion
	See Also

	8.10. Using Macros to Simplify API Deprecations
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Distributed Computation
	9.0. Introduction
	Cascalog

	9.1. Building an Activity Feed System with Storm
	Problem
	Solution
	Discussion
	See Also

	9.2. Processing Data with an Extract Transform Load (ETL) Pipeline
	Problem
	Solution
	Discussion
	See Also

	9.3. Aggregating Large Files
	Problem
	Solution
	Discussion
	See Also

	9.4. Testing Cascalog Workflows
	Problem
	Solution
	Discussion
	See Also

	9.5. Checkpointing Cascalog Jobs
	Problem
	Solution
	Discussion
	See Also

	9.6. Explaining a Cascalog Query
	Problem
	Solution
	Discussion
	See Also

	9.7. Running a Cascalog Job on Elastic MapReduce
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Testing
	10.0. Introduction
	10.1. Unit Testing
	Problem
	Solution
	Discussion
	See Also

	10.2. Testing with Midje
	Problem
	Solution
	Discussion
	See Also

	10.3. Thoroughly Testing by Randomizing Inputs
	Problem
	Solution
	Discussion
	See Also

	10.4. Finding Values That Cause Failure
	Problem
	Solution
	Discussion
	See Also

	10.5. Running Browser-Based Tests
	Problem
	Solution
	Discussion
	See Also

	10.6. Tracing Code Execution
	Problem
	Solution
	Discussion
	See Also

	10.7. Avoiding Null-Pointer Exceptions with core.typed
	Problem
	Solution
	Discussion
	See Also

	10.8. Verifying Java Interop Using core.typed
	Problem
	Solution
	Discussion
	See Also

	10.9. Type Checking Higher-Order Functions with core.typed
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Authors

