
Main page
Table of contents
Dedication
Acknowledgments
About the Author
Letter from the Series Editor
Introduction
History
MUD Design
Expectations
Book Layout
Let's Get Ready to Rumble
Part ONE: The Basics
Chapter 1. Introduction to Network Programming
Why Learn the Basics?
History of Communication Networks in a Nutshell
IP Philosophy and Layered Hierarchy
Common Transport Protocols
Information on Networking Protocols
Summary
Chapter 2. Winsock/Berkeley Sockets Programming
Byte Ordering
What Is a Socket?
Sockets API
Domain Name System
Demo 2.1 Hello Internet Server
Demo 2.2 Hello Internet Client
Using select() to Avoid Multithreading
Demo 2.3 Hello Internet Server v2
Demo 2.4 Hello Internet Client v2

Summary
Chapter 3. Introduction to Multithreading
What Is Multithreading?
ThreadLib
Demo 3.1Basic Threading
Demo 3.2Yielding
ThreadLib Mutexes
Demo 3.3Mutexes
Summary
Chapter 4. The Basic Library
Big Numbers
What Time Is It?
Strings
Logging
Summary
Chapter 5. The Socket Library
Sockets API Wrapper Classes and Functions
Connections, Managers, and Policies, Oh My!
Summary
Chapter 6. Telnet Protocol and a Simple Chat Server
Telnet
ConnectionHandler Class
Creating a Telnet Protocol Class
Demo 6.2SimpleChat
Summary
Part TWO: Creating a SimpleMUD
Chapter 7. Designing the SimpleMUD
Choosing Game Characteristics
Setting
Players
Items

Here There Be Dragons!
It's a Small World, After All
Come and See What's in Store
Mortal Combat
I Command Thee
Summary
Chapter 8. Items and Players
Groundwork
Logs
Attributes
Items
Populating Your Realm with Players
Handler Design
Demo 8.1The SimpleMUD Baseline: The Core, Players, and Items
Summary
Chapter 9. Maps, Stores, and Training Rooms
Adding New Features to the Baseline
Ch-Ch-Ch-Changes
Running the Improved SimpleMUD
Summary
Chapter 10. Enemies, Combat, and the Game Loop
Enemies and Enemy Templates
Databases
Game Loop
Game Additions
Running the Final Version
Summary
Part THREE: Creating a BetterMUD
Chapter 11. The BetterMUD
Idea Behind the BetterMUD
Logic Modules

Overall Physical Design
Summary
Chapter 12. Entities, Accessors, and Databases
Basic Entity Concepts
Databases
Summary
Chapter 13. Entities and Databases Continued
Databanks
Entities
Databases
Accessors
Summary
Chapter 14. Scripts, Actions, Logic, and Commands
Scripts
Actions
Logic
Commands
Summary
Chapter 15. Game Logic
Game Module
Overall Module Design
The Meat of the Game
Main Function
Summary
Chapter 16. The Networking System
Files
A Better Design
A Better Telnet
Handler Design
Summary
Chapter 17. Python

Python Language
Integrating Python and C++
BetterMUD's Python Library
Exposing C++ to Python
Exposing the BetterMUD to Python
Summary
Chapter 18. Making the Game
Login Script
Python Script Base Class
Command Scripts
Logic Scripts
Summary
Chapter 19. Conclusion
Picking Features
The Future
Resources
Concluding the Conclusion
Chapter 20. What's on the CD?
Libraries
The MUDs
The Goodies
Appendixes
Let's Get Ready to Rumble

[LiB]

• Table of Contents
MUD GAME PROGRAMMING
By Ron Penton

Publisher : Premier
Press

Pub Date : 2003
ISBN : 1-59200-

090-8
Pages : 704

Develop your own Multi-User Dungeon games!
Multi-User Dungeon games are still going strong.
It's no wonderthey're easy to create and easy to
access. They also have an additional appeal for
game programmersthey serve as the foundation for
today's Massively Multiplayer Online Role Playing
Games. In order to create an MMORPG, you need to
know MUD programming. Get ready to build your
foundation! If you have a basic knowledge of C++,
"MUD Game Programming" gives you everything

http://www.coursedirect.com/default.htm

you need to know to begin programming your own
MUD games. The fundamentals of network basics
are put to the test as you work your way through a
simple MUD program. Put your new skills to work
as you wrap things up with a more advanced, robust
MUD. Pull out all the stops and test your creativity
with the flexible aspects of your new MUD engine.

Features

This book will teach the basics about TELNET and text-based
communication used for classical MUD's as well as the idea of
client-server communications.

It will cover the creation of a simple telnet chat program, a text-
based telnet MUD, and a complex graphic MUD using a binary
MUD protocol.

Discuss and demonstrate advanced MMORPG concepts, since they
are the modern-day evolvement of MUDS.

Accompanying CD contains the source from the book, all game
demos compiled for Windows and UNIX as well as source code from
some of the more popular open-source MUDS, such as Diku and
CircleMUD.

[LiB]

[LiB]

• Table of
Contents

MUD GAME PROGRAMMING
By Ron Penton

Publisher : Premier
Press

Pub Date : 2003
ISBN : 1-59200-

090-8
Pages : 704

 Dedication

 Acknowledgments

 About the Author

 Letter from the Series Editor

 Introduction

 History

 MUD Design

 Expectations

 Book Layout

 Let's Get Ready to Rumble

 Part ONE: The Basics

 Chapter 1. Introduction to Network Programming

 Why Learn the Basics?

 History of Communication Networks in a Nutshell

 IP Philosophy and Layered Hierarchy

 Common Transport Protocols

 Information on Networking Protocols

 Summary

 Chapter 2. Winsock/Berkeley Sockets Programming

 Byte Ordering

 What Is a Socket?

 Sockets API

 Domain Name System

 Demo 2.1 Hello Internet Server

 Demo 2.2 Hello Internet Client

 Using select() to Avoid Multithreading

 Demo 2.3 Hello Internet Server v2

 Demo 2.4 Hello Internet Client v2

 Summary

 Chapter 3. Introduction to Multithreading

 What Is Multithreading?

 ThreadLib

 Demo 3.1Basic Threading

 Demo 3.2Yielding

 ThreadLib Mutexes

 Demo 3.3Mutexes

http://www.coursedirect.com/default.htm

 Summary

 Chapter 4. The Basic Library

 Big Numbers

 What Time Is It?

 Strings

 Logging

 Summary

 Chapter 5. The Socket Library

 Sockets API Wrapper Classes and Functions

 Connections, Managers, and Policies, Oh My!

 Summary

 Chapter 6. Telnet Protocol and a Simple Chat Server

 Telnet

 ConnectionHandler Class

 Creating a Telnet Protocol Class

 Demo 6.2SimpleChat

 Summary

 Part TWO: Creating a SimpleMUD

 Chapter 7. Designing the SimpleMUD

 Choosing Game Characteristics

 Setting

 Players

 Items

 Here There Be Dragons!

 It's a Small World, After All

 Come and See What's in Store

 Mortal Combat

 I Command Thee

 Summary

 Chapter 8. Items and Players

 Groundwork

 Logs

 Attributes

 Items

 Populating Your Realm with Players

 Handler Design

 Demo 8.1The SimpleMUD Baseline: The Core, Players, and Items

 Summary

 Chapter 9. Maps, Stores, and Training Rooms

 Adding New Features to the Baseline

 Ch-Ch-Ch-Changes

 Running the Improved SimpleMUD

 Summary

 Chapter 10. Enemies, Combat, and the Game Loop

 Enemies and Enemy Templates

 Databases

 Game Loop

 Game Additions

 Running the Final Version

 Summary

 Part THREE: Creating a BetterMUD

 Chapter 11. The BetterMUD

 Idea Behind the BetterMUD

 Logic Modules

 Overall Physical Design

 Summary

 Chapter 12. Entities, Accessors, and Databases

 Basic Entity Concepts

 Databases

 Summary

 Chapter 13. Entities and Databases Continued

 Databanks

 Entities

 Databases

 Accessors

 Summary

 Chapter 14. Scripts, Actions, Logic, and Commands

 Scripts

 Actions

 Logic

 Commands

 Summary

 Chapter 15. Game Logic

 Game Module

 Overall Module Design

 The Meat of the Game

 Main Function

 Summary

 Chapter 16. The Networking System

 Files

 A Better Design

 A Better Telnet

 Handler Design

 Summary

 Chapter 17. Python

 Python Language

 Integrating Python and C++

 BetterMUD's Python Library

 Exposing C++ to Python

 Exposing the BetterMUD to Python

 Summary

 Chapter 18. Making the Game

 Login Script

 Python Script Base Class

 Command Scripts

 Logic Scripts

 Summary

 Chapter 19. Conclusion

 Picking Features

 The Future

 Resources

 Concluding the Conclusion

 Chapter 20. What's on the CD?

 Libraries

 The MUDs

 The Goodies

 Appendixes

 Let's Get Ready to Rumble

[LiB]

Dedication

For all of my friends.

Acknowledgments
I would first like to thank my family for putting up with me for the past few months... again. It's been
an ordeal, but it was certainly worth it!

I would like to thank all of my friends for their encouragement and friendship, especially Jim, James,
Dan, Scott, Andrew, Tracy, Jenny, Josephina, Brett, Kevin, Brian, Kristy, and Marla.

I would like to thank everyone at work for supporting me through this endeavor, and putting up with
me being half asleep most of the time (and sometimes fully asleep!).

I want to thank the pioneers of Gamedev.net, Kevin Hawkins and Dave Astle, for paving the road for
me and making a book such as this possible.

I would like to thank all of you in the #gamedev crew, specifically (in no particular order) Trent
Polack, Evan Pipho, April Gould, Joseph Fernald, Andrew Vehlies, Andrew Nguyen, John Hattan,
Ken Kinnison, Seth Robinson, Ernest Pazera, Denis Lukianov, Sean Kent, Nicholas Cooper, Ian
Overgard, Greg Rosenblatt, Yannick Loitière, Henrik Stuart, Chris Hargrove, Richard Benson, Mat
Noguchi, Richard Fine, Anthony Casteel, and everyone else!

I would like to thank the people of the non-existent Tiberian Adventure as well, for providing one of
the most entertaining (yet non-existent) MUDs in the world. If you don't get this, then chances are you
shouldn't be getting it!

And finally I would like to thank the crew of the old Buffalo DoomBBS for opening the door to
MUDs for me. You know who you are!

About the Author
It has always been the lifelong dream of Ron Penton to be a game programmer. From the age of 11,
when his parents bought him his first game programming book on how to make adventure games, he
has always striven to learn as much as possible about how games work and how to create them.

MUDs have also been a particular fascination of his, ever since his favorite BBS installed Swords Of
Chaos and MajorMUD in the early 1990sgames that wasted a good deal of his high school days.

Ron has a bachelor's degree in computer science and a minor in mathematics from the State University
of New York at Buffalo, and has written one other book, Data Structures for Game Programmers ,
and has contributed to Bruno Sousa's book Game Programming All in One .

Letter from the Series Editor
Welcome to MUD Game Programmingthe first comprehensive book on the art of developing text-
only Multi-User Dungeon games. Although everywhere you look you see the latest 3D rendering and
graphical simulations, MUDs and text-only games are still going strong and indeed are experiencing a
retro-resurgence with more and more developers creating games of this nature. There are a number of
reasons for this. First, anyone with a terminal and Telnet can play these games, so that's always cool.
But more importantly I think, game developers all over the world have a strong desire to learn
network-programming skills, and MUDs are a great place to start. Unlike their real-time big brother
with complex predictive algorithms, compression schemes, and mind numbing optimizations, MUDs
don't take much in the way of network mastery. If you can send packets with sockets or Dplay, you are
over-qualified.

With that in mind, the author, Ron Penton, has created the quintessential book on MUD game
programming. He starts with network basics, teaching you everything you need to know to create a
socket class on a Windows- or UNIX-based machine along with creating C++ classes to wrap all the
details of making connections and transmitting data. Then based on this communication class, he
builds a MUD, aptly named "SimpleMUD," to illustrate each concept of MUD programming until you
have attacked each problem that arises when developing such games. By the end of the book you have
a complete, fairly robust MUD called "BetterMUD" that contains all the major features of a
contemporary MUD game. In fact, it's probably better than most and with a little work can be the
starting point for a professional MUD, if you want to go that route.

In conclusion, if you missed the 70s and 80s, but are fascinated with Dungeons and Dragons, MUDs,
and using your imagination rather than an nVidia accelerator, MUD Game Programming is definitely
for you. Even if you never see yourself making a MUD, I still highly recommend this book to
everyone in the game biz. It should be required reading for those interested in game-related topics
such as large-scale network programming, database management, and synchronization techniques.
Good luck, and when exploring your favorite MUD, do what I do when you see someone in the room:

ATTACK, ATTACK, ATTACK, RUN.

Sincerely,

André LaMothe

Premier Press Game Development Series Editor

Introduction
If you've opened this book, you must already have some idea of what a MUD is and why you would
program one, but I'll give you my ideas on MUDs anyway.

What the heck are MUDs? Any game programmer who's lived within the past 20 years should be
familiar with them. You probably think of MUDs as text-based hack-and-slash games, in which you
run around killing as many people as you can.

In a way, that's correctbut MUDs don't have to be limited to hack-and-slash. Some MUDs are
communities of people who gather in their virtual worlds just to communicate with each other. MUDs
don't have to be text-based either. In fact, almost all virtual-world style games have similar structures
under the hood. It's really not all that difficult to adapt a graphical client program to interpret what is
happening in the MUD.

History

In the very beginning of text adventure games, there were three games you've probably heard of: Zork,
Advent, and Dungen. The last two have funny names because they were developed on old Digital
Equipment Corporation (DEC) computers that only supported files with six characters in their names.
Advent was really short for Adventure, and Dungen was short for Dungeon.

When Roy Trubshaw started working on making a multi-player game, he used the game Dungen as an
inspiration, and ended up calling it, Multi-User Dungeon, or MUD for short.

So the fact that games in this genre are called Multi-User Dungeons is just an historical accident; the
name of the original game became the name of the entire genre!

Nowadays, some people refer to MUDs as Multi-User Dimensions, but not too many people really
care about what MUD stands for.

To make things more complicated, various derivatives of the original MUD have also used acronyms
for their names, such as MOO, MUD, Object Oriented, MUSH, and Multi-User Shared
Hallucination. These terms have also come into the common vocabulary of MUD-like games, as well
as a few oddball terms that don't even have meanings, such as MUCK and MUX.

You may come across people who vehemently argue that there are fundamental differences between
all the genres, but quite honestly it really doesn't matter. MUD-like games have become complex
since the early days, and more often than not share many of the same features of the original games in
all those genres, so there's little point in differentiating them. It's not uncommon for people to refer to
all MUD-like games as MU*s. Here the term MU*s means all multiuser games. The asterisk symbol
(*) is a computer symbol that means "any string of characters", which is a reference to regular
expressions, but that's a complicated topic in computer science, so don't worry about it.

To sum up, most people call the games MUDs.

MUD Design

Aside from all the communications work, there are generally three parts to a MUD game engine.
Some people say two and some say four, but I've found that the three-part system makes the most
sense.

The physical level of a MUD is the level of the game that controls the physical aspects, such as the
existence and movement of items, characters, rooms, and so on. Basically, anything that can be
represented as a physical object is defined at the physical layer of the MUD. Objects defined at this
level are typically referred to as entities.

The logical level of a MUD controls what happens to the physical level. Characters need to make
decisions, items perform tasks when acted upon, and so forth. This is the part of the MUD that
controls what a character does when attacked, or when given an item, for example.

The data level of a MUD is closely related to the physical level. This is the level of the MUD that
defines all the physical entities in the game (as opposed to the physical level, which merely controls
them). For example, whenever you load up a map into the physical layer, the map is loaded from the
data layer.

Different MUDs implement these layers in different ways. In the very first MUDs, way back in the
bad old days when every computer language was a compiled language, all these layers were stored
in the MUD code itself. Everything (and I mean everything) was inside of the compiled code, and you
couldn't change anything until you went into the code, modified it, recompiled, restarted the MUD, and
then re-ran it.

Obviously having such interruptions is bothersome to the players of your MUD. There's not much
sense in having a simulation of a world that needs to be shut down all the time. After all, the real
world doesn't shut down (at least you had better hope not... makes you wonder what happens when
you sleep...).

The first layer that was promoted to the idea of being flexible was the data layer. Why the heck should
you put your game data inside the actual code? Isn't it a better idea to separate out that data and put it
into a file, and then when the MUD runs, you can load that data from the file, or reload the data when
it changes? The idea of coding data right into your game is so ancient that I honestly can't remember if
I've ever seen a MUD-like game that does that.

Then came the idea that you could have a flexible logic system. Most MUDs today don't have a
flexible logic system, but they're gaining popularity quickly. The basic idea is to separate out what
controls objects into a scripting language, such as Python, LUA, or even something like LISP.

Of course, you could take this idea even further and create the physical level of the MUD in a flexible
interpreted language, which would allow you to make a flexible world with new types of entities
that could be added any time you wanted. This is the least common kind of MUD. Almost always, the

need for a flexible physical layer just doesn't exist. Once you've got all the basic entities sorted out,
you almost never need new kinds.

There are a few MUDs out there that implement this level in a flexible manner, however. Most people
consider them to be MOOs or MUSHs, but as I said earlier, that really doesn't matter much.

The SimpleMUD

In this book, I'm going to take you through the construction of two MUDsthe first is called the
SimpleMUD. This is a very simple MUD (the name doesn't lie!), but it's a good start for
understanding how you can combine a simple data system with a networking reaction system. In the
SimpleMUD, I use C++ exclusively to code the physical and logical aspects of the game, and simple
ASCII data files to store the data level of the game.

The source for this MUD can be found on the CD in the directory /SimpleMUD, and sections of it are
presented in the Demos for Chapters 8, 9 and 10. If you're interested in jumping in right away and
know what a Telnet client is and how to use it, take a look at the version running on my Linux shell at
telnet://dune.net:5100. It's likely to be deserted however, since there's not much you can do in that
MUD. Everyone will probably be more interested in the second MUD.

BetterMUD

The BetterMUD is much more complicated and builds on the concepts learned in the SimpleMUD. It
implements a flexible logic layer using the Python scripting language. If you don't know any Python,
don't worry. Not only is the language very easy to pick up, but I have a whole chapter dedicated to
teaching it to you (Chapter 17).

The BetterMUD version on the CD is actually very sparse, and doesn't do much "out of the box." This
is because the BetterMUD is a very flexible MUD engine that supports reloadable logic. You can
essentially change how the entire game functions while it is running, and because of this I don't want
to force you into any single type of game. In the SimpleMUD I force you to use a specific economy, a
specific battle system, and so on, but those aspects of the BetterMUD are completely flexible. For
example, if you don't like the classic time-based style, you may decide to implement some sort of
turn-based combat system; and that's just one example of what can be accomplished.

I'll have my own personal version of BetterMUD running on my Linux shell as well: telnet:
//dune.net:5110. Feel free to drop in.

All the scripts I add on to my own version will be freely available to download from my website,
http://ronpenton.net/MUDBook/. If, for some unforeseen reason, I don't have my MUDs running at
Dune.net anymore when you read this, be sure to check my website for information on where I've

http://ronpenton.net/MUDBook/default.htm

moved them.

Expectations

There are a few things you should know to comprehend this book. First of all, a basic knowledge of
C++ is required, as well as knowing how to work with STL (especially the concepts of iterators and
functors).

Templates are also used in a few places, so you should know about those as well. All the code in this
book compiles under at least three compilers that I know of:

Microsoft Visual C++ 6.0

Microsoft Visual C++ 7.0

GCC 2.95 and above

I don't have access to MSVC7.1, but theoretically the code should work with it as well. Appendix A
contains the information on how to set up the compilers for the projects and demos.

Everything else, such as networking and threading, you learn within Part One of the book.

Book Layout

This book contains four major sections:

Part OneThe Basics

Part TwoCreating a SimpleMUD

Part ThreeCreating a BetterMUD

Appendixes (on the CD)

Part OneThe Basics

The six chapters in the first part of the book deal with all the topics you need to understand to
program the two MUDs in the book.

Chapter 1Introduction to Network Programming

This chapter teaches you most of what you need to know about computer networks, how they work,
and how they are used.

Chapter 2Winsock/Berkeley Sockets Programming

This chapter covers the Winsock/Berkeley Sockets API, which is the defacto standard when
programming network applications in C++. It's a relatively old API, however, and you may find
yourself annoyed at how many simple little tasks require lots of code. That's why Chapter 5 exists.

Chapter 3Introduction to Multithreading

Multithreading is a very important part of network programming, since you can never be sure when
networks are going to work reliably.

Chapter 4The Basic Library

This chapter shows you all the classes and functions that are within the BasicLib library that I made
for the book.

Chapter 5The Socket Library

Because programming in the original Sockets API is incredibly frustrating, I decided to make your life
easier and create a socket library that wraps up most of the functionality into simple-to-use classes.

The SocketLib uses the TCP Internet protocol exclusively, but that's fine, since MUDs almost always
use TCP anyway.

Chapter 6Telnet Protocol and a Simple Chat Server

This chapter teaches you about the Telnet protocol, which is the most often used in MUDs, as well as
how to create a simple Telnet-based chat server using the SocketLib from Chapter 5.

Part TwoCreating a SimpleMUD

These four chapters explore the creation of the SimpleMUD in detail.

Chapter 7Designing the SimpleMUD

This chapter takes you through all the design issues of SimpleMUD, showing you what the MUD can
and cannot do.

Chapter 8Items and Players

This chapter steps you through the creation of the basic physics layer as well as some logic layer
stuff, mostly dealing with the item and player entity types. This chapter also goes over the creation of
the basic networking module for the SimpleMUD built on top of the SocketLib.

Chapter 9Maps, Stores, and Training Rooms

This chapter builds on what you learned in Chapter 8, adding a map system to the SimpleMUD, as
well as the special room types that represent stores and training rooms.

Chapter 10Enemies, Combat, and the Game Loop

This final SimpleMUD chapter and ties everything up into a full game. Enemies are added to the
game, as well as combat, and the game loop which takes care of all timed events in the game.

Part ThreeCreating a BetterMUD

This part of the book describes the creation of the BetterMUD, an extremely flexible MUD that is
built around a flexible logic level built in Python.

Chapter 11The BetterMUD

This chapter covers all the design issues related to the BetterMUD.

Chapter 12Entities, Accessors, and Databases

This chapter goes over all the base entity classes, the concept of database accessors, and the base
database classes as well. None of the classes discussed in this chapter are classes that can be
instantiated, but rather base classes that will be used to build the final entity and database classes in
the next chapter.

Chapter 13Entities and Databases Continued

This chapter builds on what you learned from the previous chapter, to create the final entity and
database classes that will be used within the game.

Chapter 14Scripts, Actions, Logic, and Commands

This chapter goes over all the flexible concepts in BetterMUD. Everything discussed in this chapter
provides the foundation for the flexible logic system, which is the main feature of BetterMUD.

Chapter 15Game Logic

This chapter describes the physical engine of the BetterMUD, which includes entity management and
the timer system.

Chapter 16The Networking System

This is a relatively short chapter that describes the networking system of the BetterMUD. I don't
spend much time on this chapter because there have already been five chapters in this book dealing
with network programming, so most of this part of the BetterMUD is just replicating what you've seen
before.

Chapter 17Python

This chapter is an introduction to the Python programming language and describes how to integrate the
Python interpreter into your game.

Chapter 18Making the Game

This is the final chapter dealing with the BetterMUD, and it focuses mainly on making Python scripts
used to mold the BetterMUD's logic system into something that resembles a game. I go over the main
concepts of creating Python command objects and logic scripts to control item management,
encumbrance, simple spells, arming weapons, initialization scripts, currency, merchants, and finally
simple time-based combat.

Appendixes

The appendixes contain all the auxiliary information you might need to know. They are on the CD but
not printed in the book.

Appendix ASetting Up Your Compilers

Setting up the compilers for the code in the book was a difficult task for me, since I had to make sure
the code ran on three different compilers at the same time. Because of the complexity of this task,
compilation information and instructions are gathered into this appendix instead of being covered in
separate chapters.

Appendix BSocket Error Codes

There are so many things that can go wrong when you're dealing with socket programming, and there
are a ton of error codes detailing what went wrong. This appendix lists all the common error codes
and what they mean in plain English.

Appendix CC++ Primer

C++ and STL are requirements for this book, but no one can possibly be required to remember every
little quirk and detail about them. Because of this, I've included this simple primer that enables you to
refresh your memory on the features you may have forgotten.

Appendix DTemplate Primer

This is a bonus chapter from my Data Structures book on how to use templates.

Glossary

This is a glossary of all the fancy terms and acronyms used throughout the book.

Let's Get Ready to Rumble

This book focuses mainly on how to implement a MUD, but not so much on the various gameplay
issues that will confront you. The basic reason behind this is that people don't like to be told how they
should make their gameplay work. The great thing about MUDs is that no two MUDs are the
sameevery single one is customized to the likings of the person running it.

Because of this, I don't really want to tell you what kind of features and issues you need to have in
your game. Chances are you already know what you want, and it's probably not what I have in mind.

Don't forget to drop me a line at MUDBook@ronpenton.net if you have any questions about the book.
I'll try to respond to your mail as soon as possible.

With this in mind, you can start MUD Game Programming! Enjoy!

mailto:MUDBook%40ronpenton.net

Part ONE: The Basics

 1 Introduction to Network Programming

 2 Winsock/Berkeley Sockets Programming

 3 Introduction to Multithreading

 4 The Basic Library

 5 The Socket Library

 6 Telnet Protocol and a Simple Chat Server

Chapter 1. Introduction to Network Programming
Unless you've been living under a rock for the past 20 years, you've probably heard about something
called the Internet. To most people, that word is associated with ominous things like e-mail, the
World Wide Web (WWW), and naughty pictures. To you, the game programmer, the Internet is so much
morea universe of its own where you can create games to play with people who live across town as
well as those who live thousands of miles away.

The Internet is a grand thing for game programmers. It adds community interaction to games and
allows players to match wits and reflexes with anyone, instead of being required to play against
typically dumb and repetitive artificial intelligences. To learn how to efficiently program MUDs,
however, you must first have a solid understanding of network programming. This chapter supplies
that foundation. If you already have a good grasp of network programming, you may safely skip this
chapter.

In this chapter, you will learn to:

Relate the history of communication networks to game programming

Understand the philosophy and layered hierarchy of Internet Protocols (IPs)

Understand the basics of common transport protocols

Find additional information on networking protocols

Why Learn the Basics?

I have found that it is always a good idea to know the mechanics of anything I intend to work on. I
disagree with computer professors and gurus who rant for hours about the beauty of abstracting the
interface of a mechanism from its mechanics (how it works, in essence) to justify the concept that you
shouldn't need to know how something works to use it.

NOTE

Throughput is a communications term that describes how much data can go through the network
per unit of time. For example, the throughput of a 56 kilobits modem is roughly around 56 kbps
(kilobits per second), and the upstream throughput of my cable modem is around 128 kbps.

Indeed, few people who drive actually know the physics of acceleration and energy usage or even
how an internal combustion engine works. At first, this can seem like a good thing; anyone can jump
into a car without knowing how the engine works. You press the gas, and the car goes; you press the
brake, and the car stops.

It's not always that simple however. I can't count the number of times I've been at a stoplight and
watched the car next to me accelerate as fast as possible only to stop in a few hundred feet at the next
stoplight. Whenever that happens, I know the person has no idea of how energy and acceleration
work.

The person who accelerates to 50 MPH and then immediately brakes to a halt wastes far more energy
than the person who accelerates to 30 MPH, coasts, and then brakes to a halt. The first car wasted
energy accelerating 20 MPH faster, only to have that energy drained away as heat energy in the
brakes.

So you can see that knowing how something works may not be necessary for operating a mechanism
but is useful for operating it efficiently. And as you may know, game programming is all about using
things efficiently and taking them to the limit.

History of Communication Networks in a Nutshell

From the beginning of history, communication has been an important part of human society. As
important as communication has been, the mass distribution of communication through networks is
only a recent development. Most early communication was accomplished through horseback riders
carrying written messages.

NOTE

Latency is a communications term that describes how long it takes for one piece of data to reach
its desti nation. For example, it takes less than one millisecond (msec) for data to go from one
computer to another on my home network, and around 15 msec for data to reach my Internet
Service Provider's (ISP's) routers.

The invention of railroads brought a major advancement in communications networks by facilitating
the transfer of massive amounts of mail across the world. But communication was still inadequate.
While the throughput of these railroad networks was large, the latency was also large.

While masses of mail could be sent through railroad networks, it still took weeks for some pieces to
reach their destinations, and this was unacceptable to many people.

Electric Communication Telegraphs to Telephones

In 1835, something amazing happened: The telegraph was invented.

The telegraph was essentially a long wire with a speaker on one end and a battery at the other. Figure
1.1 shows a simple telegraph "network." Whenever the battery was engaged, it sent an electrical
signal down the wire that would power the speaker and cause a small tone to be heard. Since there
were only two states of the communicationthe presence or absence of sounda special messaging
system called Morse code was invented, which varied the number and length of tones to represent
different characters. Short tones were called dots, and long tones were dashes.

Figure 1.1. This simple telegraph network transmits electrical signals from one end
to the other.

NOTE

It is a commonly held "fact" that Samuel Morse invented the tele graph, but there are
conflicting reports about a person named C.M. Renfrew inventing it as well. You can read about
this more on the Internet if you wish; there's good information about telegraphs at this site:
http://www.worldwideschool.org/library/books/tech/engineering/HeroesoftheTelegraph/chap1.html
.

Even though communication in this manner had a low latency (tones were transmitted almost
instantly), you can imagine that the throughput of this method of communication was very low. There
were no machines back then to convert signals from Morse code to English, so people had to do it by
hand.

The next major innovation in communications occurred in 1876 with the invention of the telephone.

NOTE

Alexander Graham Bell is generally credited with inventing the tele phone, but he was only
lucky enough to get his patent approved first. Elisha Gray, working independently of Bell,
simultaneously invented the telephone, but he didn't file his patent application fast enough.
What have we learned today, class? Always file your patents immediately.

The telephone allowed people to encode sound data into an analog electrical pulse, which would then
be sent down a wire, to the speaker on the other end (Figure 1.2). This method of communication was
an incredible innovation, since with the direct interpretation of voice, communication could be
accomplished without people encoding and decoding Morse code. This greatly improved the
throughput of the communications, because voice data could now be transmitted in real time.

Figure 1.2. In this simple telephone network, voice data is turned into electricity by
the microphone, and turned into sound on the other end by a speaker.

This method of communication only increased people's desire for faster and better communications,
since only one person could use one telephone line at a time.

http://www.worldwideschool.org/library/books/tech/engineering/HeroesoftheTelegraph/chap1.html

NOTE

Both the telegraph and the tele phone supported two-way communi cations, which Figures 1.1
and 1.2 do not show, for simplicity's sake.

Switched Communication

Peer-to-peer networking connected many telephones to many other telephones. Alexander Graham
Bell was a major proponent of this kind of network, and it worked well for small networks.
Basically, every node in a peer-to-peer network is physically connected to every other node in the
network through wires. This gets to be a major problem as the number of nodes grows, because, as
you can probably see, the number of wires needed in this kind of network follows a geometric
progression based on the number of nodes in the network. To add a third node to a network, you need
two extra wires, making a total of three in the network. Table 1.1 shows a listing of the number of
wires needed for networks with different numbers of nodes.

Table 1.1. Wires Needed for Peer-to-Peer Networks

Nodes Wires

2 1

3 3

4 6

5 10

10 45

15 105

500 1,225

The number of wires needed in a peer-to-peer network follows this formula: (n * (n-1))/2. So you
can see that any network that gets past a certain size is in the realm of being completely
unmanageable.

Because of this, the concept of a centralized communications network was invented, and its

implementation was called a circuit-switched network. This kind of network contains any number of
nodes and one central switching station, arranged as shown in Figure 1.3.

Figure 1.3. This simple switched communications network connects four nodes to a
switching station.

Since only one conversation could be conducted at any given time on a telephone wire, the original
networks had to use switching to enable multiple conversations to occur at the same time. Essentially,
this is how it worked.

There was a human operator at the switching station, who monitored all the nodes for incoming
activity. Whenever one of the nodes wanted to talk to any of the other nodes, a person called the
operator from his node, and the operator asked whom he wanted to talk to. When the operator
determined whom the caller wanted to talk to, he physically connected a wire from the caller's circuit
to the destination circuit. For example, Figure 1.4 shows node 1 connected to node 4. When node 1
wants to talk to node 4, an operator physically connects the circuits with a wire.

Figure 1.4. Four circuits at the circuit switching station from Figure 1.3.

So, with this network, a total of two conversations can be held at the same time, and any single node
can talk to any other node, as long as the line is open. This spawned a major breakthrough in
communications, but its service was still inadequate. Eventually these switching stations became too
large for human operators to manage, so methods were developed to spread out the communications
into many switches, as shown in Figure 1.5.

Figure 1.5. In this configuration, two switches are connected with many wires,
allowing nodes from each local switch to connect to nodes on another switch.

When a person wanted to call someone at his local switch, the same procedure was followed. When a
person wanted to call someone on another switch, the operator connected the person to the operator
on the desired switch, and that operator connected the person to the right destination. Each switch had
only a certain number of wires connecting it to other switches, and that limited the number of
connections that could be made from switch to switch. For example, a switch may have 16 nodes,
which allows up to eight intra-switch connections at once, but it may have only four wires connecting
to an adjacent switch, which means that only four inter-switch connections can be made.

NOTE

The terms intra and inter refer to "internal" and "external" respec tively. So inter-switch
refers to connections between two nodes on one switch, but intra-switch refers to connections
of nodes that are on different switches.

Eventually, each switch in the United States was numbered with its own area code, and this led to our
current area code system.

It didn't take long for these networks to become such huge messes of wires that it was difficult to
make connections. Therefore, an even more centralized system was created. The switches were given
centralized switches, sometimes called hubs. Figure 1.6 shows one of these networks.

Figure 1.6. In this large switched network, the central switch controls connections
among the intermediate switches.

Packet-Switched Networks

Traditional circuit switching was great, but it had too many limitations for our growing
communications needs. Since traditional circuit-switched networks were so centralized, the main
hubs could go down, and half of the communications in the country would instantly be halted. Only
one line could be in use at any given time, limiting the number of concurrent connections drastically.
There also came a time when it took about seven to eight minutes just to go through all the operators
to connect to someone else on the network.

In the 1960s, the United States Advanced Research Projects Agency (ARPA) invented the first packet-
switched network. The idea of such a network is to separate data into tiny chunks, called packets.

In this type of network, instead of only one connection per wire, special machines at the end of each
wire accept discrete chunks of data (packets) and send each chunk one at a time down the wire, with
the chucks arriving first sent first. These machines are called switches, but they are much more
commonly known as routers. Figure 1.7 shows a simple network with two routers.

Figure 1.7. In a simple packet- switched network, the routers send packets of data
down the single wire that connects them.

Whenever a node has data to send, it puts that data into a discrete-sized packet and then sends it to the
router. The router decides where it goes and sends it to the right place. If the wire between the routers
is busy, the router puts the packet in a queue and keeps it there until the wire opens up and is
available for transmissions.

This kind of network is a great improvement, because it drastically reduces the number of wires
needed to connect two switches. One of the downsides, however, is that since many more
communications are now occurring on the same line at the same time, each connection has less
bandwidth. The original Defense Advanced Research Projects Agency Network (DARPANet) didn't
have enough bandwidth to transmit a single voice communication, unless it was the only

communication going on at the time.

Since data packets had to be in a form that the routers could understand, and the routers were digital
computers, it made sense that they would send digital data. Unfortunately, data sent over a wire is
analog by nature, so the digital data needed to be turned into an analog signal using a device called a
modulator-demodulator (modem for short). Early modems didn't do a great job of converting data
efficiently, and were limited to a bandwidth of about 300 baud.

NOTE

Bandwidth is a networking term that generally describes how much data can be sent through a
network. In the traditional sense, bandwidth refers to the size of a signal. For example,
telephones have 3,000 Hz of bandwidth, from 400 Hz to 3.4 KHz. Telephone wires are not rated
to send data above or below those thresholds. AM Radio broad casts use about 10 KHz of
bandwidth each, FM Radio broadcasts use about 200 KHz, and VHF/UHF TV broad casts use 6
MHz of bandwidth. Most people, when dealing with packet-switched networks, refer to their
throughput as bandwidth as well.

NOTE

Baud is an old term, dating back to the days of telegraphs. The term comes from the name of
one of the engineers who first worked with telegraphs, Jean Maurice Emile Baudot. The speed
at which an electronic circuit changed states was measured in bauds, and a baud was roughly
equivalent to the number of bits per second that could be transmitted. So 300 baud is about 300
bits per second. Modems stopped using the term baud at around the time the 14,400 bps modem
was invented. Does this sound like ancient history?

Over the years, significant improvements have been made to methods of data transmission over
traditional copper wires. New inventions such as fiber-optic wires and even wireless radio-
frequency (RF) communication allow data to be transferred in a much more efficient manner.
Eventually, everything will be transferred over packet-switched networks, since they are far more
cost-efficient and useful than the circuit-switched or broadcast networks that your telephone and cable
companies use. You won't need a specific cable line, phone line, or Internet line; everything will
connect into one standard interface.

NOTE

Eventually, all land-based copper wires will be replaced with fiber optics . Fiber-optic
communication is an incredible breakthrough in the realm of wired communications. Every
electrical circuit has resistance, which slowly saps out the signal strength and causes the wires

to become hot. There fore, to maintain signal strength on copper wires, repeaters must be
placed on the wire to boost the signal and send it further. Not only do these boosters require lots
of energy, but they slow down transmission speed as well. Fiber-optic wires directly transmit
light impulses with much less signal drop-off, and since they transmit light directly, they are
faster than traditional electrical signals as well. In addition, fiber-optic wires require fewer
repeaters.

NOTE

Communications

Broadband communications originally referred to cables that carried more than one type of data at the
same time. The first types of broadband included Digital Subscriber Line (DSL) and cable modem
technologies. However, the term now generally applies to any Internet communications that are faster
than traditional modems, which are limited to 56 kilobits per second.

DSL lines are essentially an extension of the standard telephone lines to your house. While telephone
wires are not officially supposed to handle data above 3.4 KHz bandwidth, most new telephone
wires actually can handle that kind of data. Therefore, digital data can be encoded into an analog
electrical signal above 4 KHz and transmitted to the phone company without disrupting the normal
phone conversation. The most popular DSL variant is ADSL (the "A" stands for asynchronous,
because it allocates more bandwidth for downloading than uploading), which uses the band of 25
KHz to 160 KHz for its upstream, and 240 KHz to 1,500 KHz for its downstream.

Unfortunately for me, DSL technology came too late. The year before DSL was standardized, my
telephone company installed a digital switch in my neighborhood that encoded the telephone data into
a digital stream of data and sent it to the phone company via a fiber-optic cable, ignoring any data
outside of the standard telephone range of 400 Hz to 3.4 KHz. Therefore, DSL cannot be used in my
neighborhood because the phone technology is too advanced for DSL. Talk about irony!

Cable modems work in a similar way to DSL, except they use the unused bands of the coaxial cable
that goes into your house, instead of your telephone line. Cable modems typically use the band of 5
MHz to 65 MHz for upstream data and 850 MHz to 1000 MHz for downstream data. Cable modems
use much more bandwidth for their signals, because coaxial cables are typically a lot longer than
telephone cables, and signals on them are weaker.

Mechanics of Packets and the Internet Wonderland

The Internet is a very cool thing, but I'm sure you already knew that. I want to show you how packets
actually work, so you can appreciate even more how wonderful the Internet is.The basis of the

Internet lies in the Internet Protocol (IP). This protocol was invented in 1981, which really wasn't
that long ago in the grand scheme of things.

The whole idea of the IP protocol was to define a standard method of communication among routers,
switches, and nodes on a network. Basically, every chunk of data that is sent is prefixed with a
header, also known as the IP header. Two versions of IP exist today: IPv4 and IPv6.

All About IPv4

Figure 1.8 shows the standard layout of an IPv4 header.

Figure 1.8. This is a standard IPv4 header.

The v4 means version 4. IPv4 is the current IP standard across the world, but there is a newer version
called IPv6. (What happened to IPv5? Who knows? It's probably having a party along with DirectX
4.) I'll get into IPv6 later on, since it's not used too muchyet.

You don't have to understand all the little details of the header; they're really important only to
network engineers. I'll go over the important points, though.

The first thing you should know is that the length of the header is variable. Everything up to the
Options parameter (bottom row of the figure) is set in stone, but the Options parameter is variable.
That is why there is a parameter that holds the length of the header (the Header Length parameter); any
data past the header is the data stored in the packet.

The Total Packet Length parameter describes the entire length of the packet, in bytes, including the
header. Since it's 16 bits long, an IP packet can be at most 65,535 bytes long.

The Time To Live (TTL) parameter is particularly interesting; it determines how long, in jumps, the
packet lives. This prevents packets from accidentally being routed around in circles forever. Every
time a packet passes through a new router, the TTL field is reduced by 1, and when it reaches 0, the
router completely discards the packet. The field is 8 bits, so there can be at most 255 hops between
routers before a packet is completely discarded. The 255 hops is an incredibly large number, so it is
reasonable protection.

The Protocol parameter determines which protocol is being used on top of the IP header. Only a few
kinds of protocols operate on top of IP. As a games programmer, you should mainly pay attention to
two:

Transmission Control Protocol (TCP)

User Datagram Protocol (UDP)

I describe these protocols in more detail later on. The Header Checksum parameter is an important
data integrity measure in IPv4. A checksum is a value that represents the data and is computed by a
checksum algorithm. The checksum is a simple measure that verifies if data has been changed in the
transmission. Whenever a router receives an IP packet, the packet's checksum is calculated and
compared to the existing checksum value in the packet. If the numbers match, you can be reasonably
certain that the data has not changed; if the numbers don't match, you know the data was somehow
changed by an error or interference in the communication path. Whenever the checksums don't match,
the router immediately discards the packet. You'll see why this is a good idea later on. Also, since the
TTL parameter is changed at every router, the checksum is recalculated whenever a router passes a
packet on.

Finally, the two most interesting parts of an IP packet are the source IP address and the destination IP
address. Every node on an IPv4 network is given a 32-bit IP address, typically represented as four
numbers, separated by periods, like this: 192.168.100.5.

NOTE

Under the old addressing system, organizations such as the University of California At Berkeley
were given more IP addresses than the entire country of China. You can see how the old system
just isn't going to work anymore, especially when you consider that Berkeley only has a few
thousand people, and China has 1.2 billion.

The original Internet addressing scheme classified all addresses into three groups: large, medium, and
small networks. This system was wasteful and isn't used much anymore, so I won't waste time
describing it.

Using 32-bit addresses limits the number of total nodes on a network to a little more than 4 billion,
which used to seem like a large number, but it seems smaller and smaller every day. There are
already many more than 4 billion people on this planet, so giving every person his own IP address is
not even possible anymore. This was the major concern for upgrading the system to IPv6, which I will
touch on next.

IPv6: Bigger and Better

IPv6 was created in 1995, when the Internet community realized that IPv4 was too constrained. The
biggest problem, by far, was the small address space allocated to IPv4. As I've said before, 4 billion
addresses is simply not enough to identify all the computers on the planet now or in the future. Most
large ISPs dynamically assign an IP address to a customer when he logs on and reuse that number for
another customer once he logs off. This method isn't useful anymore, as most people are starting to
realize the importance of permanent Internet addresses. How would you like a phone number that
changed every day? In addition, as broadband connections are becoming the standard, more and more
people are staying online longer and longer, making dynamic IP allocation less workable.

And finally, there are going to be thousands of devices in the future that will need their own IP
addresses. IBM has even promised refrigerators that can connect to the Internet, and gosh darn it, I
want them now!

Besides the larger address space, IPv6 has a host of new features making it more streamlined and
functional, and even better security features have been added. However, if you're interested in those
features, you should get a networking book, because this stuff isn't that important to game
programming.

Figure 1.9 shows a diagram of an IPv6 header.

Figure 1.9. Notice that there are fewer fields in this IPv6 header than in an IPv4
header.

IPv6 has been simplified, and the rarely used portions of the IPv4 header have been removed. The
other big change is the huge addresses; IPv6 addresses are 128 bits long. That means that there are a
total of 3.4x1038 addresses available. That's 340 undecillion addresses, and when you haven't even
heard of a number before, that means you've got enough addresses. But to further illustrate my point,
I'm going to show you some more pointless calculations that illustrate the sheer size of the IPv6
address space.

NOTE

The surface area of the earth, water included, is 5.1x10 14 meters squared. If you divide 3.4x10
38 by 5.1x10 14 , you get 6.6x10 23 . That means that there are around 660 sextillion IPv6
addresses available for every square meter of space on the planet . That ought to be enough for
anybody until we decide to give IP addresses to every molecule on the planet. Or until we
provide free Internet to the multiverse.

At any rate, there should be enough addresses for at least the next few hundred years, so we'll let
programmers find more addresses when the time comes. For now, there are places on the Internet
where you can obtain a block of a few millionor even billion IPv6 addresses.

The rest of the fields of an IPv6 header are pretty much the same as the important fields in IPv4, with
updated names. They're not really important.

IP Philosophy and Layered Hierarchy

IP packets are not guaranteed. When you send an IP packet, you have absolutely no idea if it will be
received. Even worse, you can't tell if a packet has reached its destination.

Doesn't that sound like an incredibly stupid way to design a network? Maybe so, but think about it for
a moment. Imagine how much more complex the routing hardware would have to be to ensure that
every IP packet arrived intact at its proper destination. Right now, the routers don't care; they take the
data and keep relaying it on until it either gets to its destination, or they discard the packet as junk.
Simple hardware is cheaper to build, and faster as well.

So, what is the point of unreliable communications? With digital data, even one byte missing out of a
file can make the entire thing useless, so unreliable communications seems like the opposite of what
you'd really want!

Instead of letting hardware control integrity and validation, the IP model puts software in charge.
Before going into this topic, I want to explain the layered hierarchy of Internet communications.

Internet protocols are actually designed into four distinct layers:

Network layer

Internet layer

Transport layer

Application layer

Each time you send a packet of data over the Internet, it is encapsulated by a new header at each
layer. For example, if you are sending Hyper Text Transfer Protocol (HTTP) data, which is basically
web-page data, the data you send is first enclosed into an HTTP header at the Application layer.
Then, the HTTP application sends the packet to the operating system, which adds a Transport layer
packet header as well as an IP packet header for the Internet layer. (HTTP uses TCP as the Transport
Layer Protocol. And I will get to TCP in a bit.) Finally, depending on what device you use for Internet
access, a Network layer packet header is added to the packet, and finally it is sent on its way. Figure
1.10 is a pictorial representation of the layered hierarchy of Internet packets. This particular example
demonstrates browsing the WWW with an Ethernet connection.

Figure 1.10. In this standard four-layer packet structure, each packet of data is
prefixed with the header of the various protocols it uses.

Previously, I told you all about the IP protocol. This protocol makes its home in the second layer, the
Internet layer. I started there first, because it is really the most important layer when dealing with
Internet communications. Now I will go into more depth on the layers themselves.

Network Layer

The lowest layer is called both the Network layer and the Physical layer, because it is the layer that
is added to a packet whenever a physical device sends the data. Examples of this include an Ethernet
card (Ethernet Protocol), a modem (PPP Protocol), a wireless Internet card (802.11b protocol), or a
cable modem (DOCSIS protocol). Each of these devices operates in a different way and has its own
header format depending on its needs.

The great thing about the layered protocol system is that the physical devices don't care what kind of
data you are sending over them, so you can send any kind of data, as long as the recipient of the data
expects it and knows how to decode it.

Internet Layer

The Internet layer is perhaps the most important layer, since every device in a single network must
understand and recognize it. The primary purpose of the Internet layer is to provide routing and
addressing services, so the routers know where to send packets. A network can use many different
kinds of devices, such as modems and Ethernet cards, and as long as they all understand the Internet
layer protocol in use, the network should operate perfectly.

Of the three major Internet layer protocols, I have described the two most commonly used: IPv4 and
IPv6. In the past, a third protocol, called IPX or Internetwork Packet Exchange, was widely used as
well. IPX is superior to IP in a few ways, but it never really caught on and is pretty much dead today.
One of IPX's notable characteristics was that it had a segmented address space. It had 32-bit network
addresses, and each network also had a 48-bit node address, essentially using 80-bit addresses.

Transport Layer

I haven't talked much about this layer yet, but it is important. The Transport layer accommodates
protocols such as TCP, UDP (explained in a section that follows) and Internet Control Message
Protocol (ICMP). These protocols are primarily designed to handle connections, rate of data
transmission, and data integrity verification.

For example, as I mentioned before, if you use the IP protocol, you have absolutely no idea if the
packet you sent reached its destination. To solve this problem, you need to have the Transport layer
protocol handle the transmission.

For example, when you wrap your data into a TCP (Transmission Control Protocol) packet, TCP
calculates the checksum of all of the data, and then your operating system wraps the entire TCP packet
into an IP header and sends that out.

When the recipient of your packet gets the data you sent, it sends an acknowledgement (ACK) packet
over TCP, saying that it got the packet. It may, however, fail to receive your message for a variety of
reasons. If the original TCP packet gets lost, for example, the ACK packet would never have been
sent, or the ACK packet itself may have gotten lost. If the sender doesn't receive the ACK packet, the
sender sends the data again, and keeps sending the data until he receives a confirmation that the data
has been sent. Here's a simple listing of the process:

1. Send packet.

Wait for ACK.

If no ACK in given amount of time, go back to 1.

Send next packet.

The hardware costs for this method of data verification are far lower than making the IP protocol
itself check the integrity of data and respond to the sender that there was an error. The routing
hardware doesn't really care much about acknowledgements; instead, it just assumes the
communications succeeded, and it lets the end computers figure out if something went wrong. The
reason this works is because the number of times data transmission fails is far fewer than the number
of times that the transmission is successful, so there's really no point in making every node along the
transmission path check that it is successful, and send errors backward along the path.

There is a slight chance of data transmission error, and that slows things down a little bit, because the
sender keeps trying to send the data; but, in the end, that is a far more desirable solution than having
incredibly expensive routing hardware.

The User Datagram Protocol (UDP) elects to forego the data integrity issues and opts instead for
speed over integrity; in other words, delivery is not guaranteed. For this reason, UDP is quite often
preferred over TCP for very fast games, such as first person shooters. I won't cover UDP in detail in
this book because it is not an important protocol for low-speed MUDs. I'll be sticking with TCP,

which is a little slower but more robust and has guaranteed delivery.

Application Layer

The Application layer is theoretically the highest layer of a packet header, and it contains information
about the specific application you are using with the packet. Examples of popular Application layer
protocols include HTTP, File Transfer Protocol (FTP), Telnet, Simple Mail Transfer Protocol
(SMTP), and so on. The topics in this book focus almost entirely on creating and using application
layer protocols for MUDs.

Other Layers

The four-layer model is really just a recommendation for networking; it's not a necessity. In the past,
some crazy people have demonstrated this fact using completely useless technologies. For example,
there is an IP over SMTP protocol, which defines how to send IP packets over SMTP. Of course,
SMTP is built on top of TCP, which in turn is built on top of IP, so what is the point? Who knows?
Never underestimate what a nerd and some free time can accomplish. After all, as game
programmers, who are we to judge?

It is usually accepted to use the slash notation (/) to show protocol layering. For example, you may
have heard of TCP/IP. This means that you are using TCP over the IP protocol. It is literally
pronounced "TCP over IP." Slash notation, however, is not common for other combinations, because
the entire idea of networked communications is to keep the layers as independent as possible. That
way, you can easily use higher protocols over different lower protocols. This is why you don't see
people saying "HTTP over TCP over IP." Not only is it a mouthful to say, but you aren't really
required to send HTTP over TCP anyway (though I've really never seen anyone who doesn't).

Common Transport Protocols

As a game programmer, you usually won't pay attention to the IP protocol; the operating system should
take care of that for you automatically. You'll only be slightly more interested in the TCP and UDP
protocols, since most compilers have built-in libraries to handle these protocols. I'll start with UDP
first, since it's simpler.

UDP

UDP, as I've said before, is the User Datagram Protocol. A datagram is basically just a single packet
of data. The UDP protocol is simple and doesn't offer the reliability of more complex protocols, such
as TCP. Essentially, you just send the packet out and hope it gets there. This is a "fire and forget"
protocol. Figure 1.11 shows the UDP header format.

Figure 1.11. The header format for a UDP packet.

NOTE

The port fields for UDP (and as you'll see shortly, TCP as well) are 16 bits long. This means that
a total of 65,536 ports are available for use. Ports below 1,024 are reserved for specific
application-level protocols assigned by the Internet Assigned Numbers Authority (IANA) . To
see a list of these ports, you can visit their Web site at http://www.iana.org . IANA covers
things such as HTTP (80), FTP (21), Telnet (23), SMTP (25), as well as hundreds of other
protocols that no one has ever heard of. You should generally try to keep your programs' port
numbers above 1,024. If you are not running as root, UNIX-based systems won't even allow you
to open ports below 1,024 (for servers). Table 1.2 shows a listing of common port numbers.

Table 1.2. Common Ports

Port Service Purpose

17 QOTD Quote of the day; sends a quote in text form

20 FTP Data FTP data port

http://www.iana.org/default.htm

21 FTP Control FTP control port

22 SSH Secure Shell Terminal (a secure version of Telnet)

23 Telnet Allows terminal control

25 SMTP Simple Mail Transfer Protocol

37 Time Sends the server time

53 DNS DNS lookups

80 HTTP World Wide Web pages

110 POP3 Post Office Protocol; more mail stuff

113 Ident Identifies the name of a computer

119 NNTP Newsgroups

143 IMAP Another old mail protocol

6666 IRC Internet Relay Chat

31415 PIE Pieserver; it serves digits of pi[*]

[*] See my website at http://ronpenton.net/projects for more information on Pieserver.

The first thing you should notice in Figure 1.11 is that the header is only 64 bits long, or 8 bytes.
That's pretty small for a packet header, at least compared to other protocols.

Next, notice the two port fields. You see, once a packet gets to its destination, there really is no way
for the receiving machine to figure out what program the packet is trying to get to. Therefore, the idea
of ports was invented. When a port receives a packet, the operating system is supposed to read the
port number off the packet and send the packet to the appropriate program. This way, you can have
many different programs on the same machine, all using the network connection at the same time.

In Figure 1.11, you should also notice the length and the checksum fields. The length tells you the
length of the packet data, including the header. The checksum field contains the checksum of the data

http://ronpenton.net/projects

in the packet, so that the receiving machine can figure out if the data is intact. If it isn't, the receiver
just discards the packet altogether and acts as if it never got it.

UDP is a connectionless protocol. This means that UDP programs don't connect to each other; they
just send the packet, and the server is supposed to accept it. Other protocols, especially TCP, will not
accept incoming packets unless you explicitly connect to the other end first.

The fact that UDP does not guarantee delivery of packets can lead to problems. In a fast-paced game
in which the server constantly sends the clients updates on the positions of other players, guaranteed
delivery is not a great problem. If, for example, a position update packet is sent but never delivered, a
reliable protocol like TCP will keep trying to send the packet; but by the time the protocol finally
sends the original packet, the player's position may have changed. So in this case, UDP is a useful
protocol.

But what happens with important data? What if something happens in a game, and the game is set up
so that it won't retransmit that data later on? You could end up with your clients completely missing
an important game event such as a gunshot and then getting out of sync. In this case, UDP isn't a very
useful choice.

For MUDs and MMOGs, using UDP usually isn't a good idea, since most things that happen in these
kinds of games are event basedthat is, events occur once and the client absolutely needs to know they
happened.

TCP to the Rescue!

TCP is probably the most highly used transport protocol, since it guarantees data delivery. If you tell
your TCP library to send data, it will get there, barring any unusual events such as a nonexistent
destination. Without TCP, file transfers and reliable communication over the Internet would be
virtually impossible.

In contrast to UDP, TCP is a connection-oriented protocol. This means that the client must tell the
server that he wants to connect, before the server will even listen to incoming data.

TCP is also a streaming protocol. This means that the protocol attempts to send streams of data,
separated into packets for delivery over a packet-switched network. This is an important part of TCP,
since it ensures not only that the data actually reaches its destination, but also that the data arrives
there in the same order in which it was sent.

NOTE

Because of the decentralized nature of the Internet, two packets you send from one place to
another may follow two completely different paths, which means that you can't be sure that
sending one packet first will mean it will arrive first. This makes TCP a great way to make sure

that the connections receive their data in order.

I've told you about TCP and the acknowledgement packet that it uses. Since this is important, here's a
quick recap. Whenever a TCP port receives data, it sends an acknowledgement packet saying that the
data was received. If the original sender never gets an acknowledgement, then the TCP port attempts
to send the data again. Of course, this process is inefficient if the sender sends one packet and then
waits for the acknowledgement before sending anything else.

That isn't how TCP actually works, though. TCP starts off sending all the packets it needs to in order,
and just continues sending until there is nothing left to send. If TCP realizes that an acknowledgement
packet hasn't come back for a packet it sent, it stops what it is doing and attempts to retransmit the
packet that wasn't acknowledged.

On the receiving end, if the receiver detects that it is getting a packet out of order, it buffers the data in
that packet until the packet or packets that are supposed to precede it arrive.

At the application level, all of these operations are transparent. Your TCP library handles all of this
for you and makes sure you get the data in its intended order.

Unfortunately, all of these safeguards come with a price, as you see when you examine the TCP
header shown in Figure 1.12. Note that the TCP packet header is much larger than a UDP header.

Figure 1.12. The standard for TCP packets.

TCP is a feature-rich protocol. It includes not only the kitchen sink but the disposal too. The minimum
size of a TCP header is 20 bytes, much larger than the 8 byte UDP header.

TCP uses the same port numbering scheme as UDP, 16-bit ports, which adds up to 65,536 ports. Like
UDP, TCP has a checksum field, which is used for data integrity.

The other fields you should at least note are the sequence, acknowledgement, window, and urgent
fields. The sequence field denotes the position of the packet in the current stream at its transmission
point; this is used so that the receiving end can piece together the packets if they arrive out of order.
The acknowledgement field tells the receiver the acknowledgement number that the sender is
expecting.

The window field is somewhat interesting. TCP implements flow-control mechanisms, which means
that each side of a TCP connection can tell the other side how much data it is willing to accept. This
is useful for preventing a connection from accidentally sending more information than the other side
can handle.

Notifying the other side on acceptance limits is also particularly useful whenever there are dropped
packets. Since TCP buffers data that is out of order, it may be useful for the receiver to tell the sender
to stop sending data until it catches up. Buffered data can take up lots of room, since the TCP library
can't do anything with that data until it gets all previous packets.

Finally, you should be aware that TCP supports a concept called urgent data, which the urgent field
handles. Urgent data should not be used inside the data stream, but contains important connection and
control information. The TCP library you are using should seamlessly strip this data out of the stream
and take care of it automatically.

That sums up all the important things you as a programmer need to know about TCP. If you're
interested in learning more about either UDP or TCP, networking books can do the trick. I just wanted
you to know the basic mechanics of how these technologies work as they affect game programming.

Information on Networking Protocols

There is one important part of networking that I have neglected to mention: the standard
documentation for all published networking protocols. Early on in the development of

NOTE

I'll let you in on an inside joke. There are many funny RFCs in the general RFC database. It is
kind of an Internet tradition to submit one of these every April Fools' Day. For example, RFC
1149 is officially entitled "A Standard for the Transmission of IP Datagrams on Avian
Carriers," which basically documents a method of transmitting IP packets using carrier pigeons.
RFC 2324 is entitled "Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)" and defines a
method of controlling coffee pots over HTTP. More recent is RFC 2795, "The Infinite Monkey
Protocol Suite (IMPS)." I don't even want to know what that's about. We programmers have a
strange sense of humor.

ARPANet, engineers recognized the need for a formal way to publish the standards and specifications
of protocols. They eventually called the documents they created RFCs, which stands for Request For
Comments.

You can easily look up RFCs by using their published identification numbers. For example, the
current RFC describing IPv4 is RFC 791. You can search for that with any Internet search engine, and
you'll get hundreds of links. RFCs are public documentation, and they're free to be published
anywhere.

Once RFCs are submitted to the world, they can never be changed. If a protocol needs to be changed,
the old RFC is deprecated, which means that it is no longer current, and a new RFC with updated
information is published.

My favorite place for getting RFC information is at a website entitled Connected: An Internet
Encyclopedia, which is located at http://www.freesoft.org/CIE/. If that site is down, you can
probably find a mirror, as it is very popular. The site is fairly well updated with all the RFCs, and it's
even got useful courses and background material for most of the networking topics I haven't covered
here.

http://www.freesoft.org/CIE/default.htm

Summary

I hope you found this chapter interesting. I have a passion for history, and I feel that knowing your
history is a good way of understanding why things are the way they are, what has succeeded and
failed in the past, and where we can go in the future. Packet networking is a new development in the
grand scheme of things, and we're still pioneering the field, so I think it is appropriate to know this
material.

As I've said at the start of the chapter, you don't have to be an expert in something to use it, but it helps
a lot if you at least know some of the mechanics. I hope you now understand the basics of how the IP,
TCP, and UDP protocols work, and how networks work in general. This knowledge should pave the
way to the next chapter, "Winsock/Berkely Sockets Programming."

Chapter 2. Winsock/Berkeley Sockets Programming
After reading Chapter 1, "Introduction to Network Programming," you know the basics of Internet
operations and networking in general for game programming. However, I have not yet shown you how
to actually use network communications in your programming adventures.

Most people fear learning about network programming because it seems like such an advanced topic.
I put off network programming for years because of this, and that was a mistake. I had absolutely no
idea how easy networked communications were.

Many years ago, researchers at the University at Berkeley created an Application Programming
Interface (API) to make it easy for the C programming language to use Internet communications. This
API eventually became known as the Berkeley Sockets API. Nearly every UNIX-based operating
system supports it, as does MacOS and Windows. Microsoft created its own version of Berkeley
Sockets and called it Winsock. Very little is changed in the Winsock library, so it is entirely possible
to use the two libraries interchangeably.

In this chapter, you will learn to:

Understand the fundamentals of byte ordering

Understand socket basics

Work with the API for sockets

Find IP addresses using the Domain Name System (DNS)

Use demos that illustrate the concepts of the chapter

Byte Ordering

Before I delve into the socket theory, I want to discuss a nasty aspect of network programming byte
ordering. Almost everyone I know grumbles when this topic is mentioned.

A long, long time ago in a galaxy not so far away, computers had small amounts of memory and small
data busses. The size of the data bus in a computer is typically called the word size. For example,
some of the first computers had a bus size of 4 bits, and thus their word sizes were 4 bits.

NOTE

This is an inside joke in the com puter world: Groups of 4-bit data are referred to as nibbles,
which fits into the whole bit and byte theme.

Obviously, there was only so much a 4-bit CPU could do, so larger machines were invented that used
8-bit data. These machines became the standard for awhile, and the 8-bit data size became the
standard atomic data structure, which meant that the smallest single piece of data you could store was
8 bits, also called a byte.

I don't want to dive too far into a discussion of binary math, so I'll briefly cover only what you need to
know.

In any number system, the digit furthest to the right has the least significance (assuming the number is
written left to right). In decimal, the digit furthest to the right is the ones column, the next is the tens
column, then the hundreds, and so on. The same goes for binary, except the columns are ones, twos,
and fours, each doubling the value of the previous as shown in Figure 2.1.

Figure 2.1. The juxtaposition of columns contrasts the arrangement of the digits of
base 10 and base 2 numbers.

So when you increase the size of the data from 8 to 16 bits, you would naturally assume that the new 8
bits, representing the higher-order bits of the number, would appear to the left of the lower-order bits,
as shown in Figure 2.2.

Figure 2.2. A mathematical representation of a 16-bit number in a computer.

Unfortunately, things aren't that simple. When computers started switching over to 16 bits, people
realized that they had a heck of a lot of code still running on 8-bit systems; the chip designers thought
it would be a great idea to have a 16-bit processor and also be able to run 8-bit code. Backward
compatibility is a wonderful thing, after all.

Well, due to the limitations of computer architectures, 16-bit processors also needed their memory
aligned to 16-bit boundaries and stored in 16-bit areas of memory, even if the data was just 8 bits.
Therefore, if you put an 8-bit piece of data into memory (without clever byte manipulations, of
course), the compiler converts it to 16 bits and stores it aligned on a 16-bit boundary. Looking back at
Figure 2.2 may help you picture this concept. In Figure 2.2, the data is being stored at address 0, but
the actual data is placed at address 1, and a value of 0 is placed at address 0.

So, imagine what would happen if later on you wanted to retrieve that 8-bit value by using a pointer.
You would load up address 0 and treat that as a byte and load that. But... oops! The data is actually at
byte 1!

You could certainly have the processor auto-translate addresses, but that would make the processor
much more complicated, and more complicated processors are slower and more expensive.

So, the solution that most chipmakers adopted was swapping the byte ordering, as shown in Figure
2.3. That way, both 8-bit and 16-bit programs know where their data is. The data in Figure 2.2 is said
to be stored in big-endian format, and the data in Figure 2.3 is called little-endian.

Figure 2.3. Compare Figures 2.2 and 2.3 to see how the byte order was swapped.

Unfortunately, this made a huge mess for us all, because some chips use little-endian, and some chips
use big-endian. When these computers attempt to communicate with each other with data larger than a
byte, problems ensue.

NOTE

The big-little-endian reference is actually an inside joke from the classic novel Gulliver's
Travels, by Jonathan Swift (which is a scathing political commentary, not a children's tale, but
that's a story for another day). In the book, two clans constantly argue over which side of a
hard-boiled egg should be eaten firstthe little end or the big end. They are called, respectively,
the little-endians and the big-endians. You learn something new every day.

Obviously, this is a huge problem for networking, since there must be a standard byte ordering for
data over a network. Therefore, when the Internet was first created, the creators decided to use big-
endian for the network byte order. Everything in every packet header is supposed to be in big-endian,
the proper mathematical ordering. How the data is organized outside of the protocol headers is really
up to you and how you design your Application layer protocols, but it is usually recommended that
you keep data in big-endian for consistency's sake.

Now, the important question is this: How do I convert data from my host byte order (which may or
may not be big-endian, depending on the system) to the network byte order? The Sockets API was
nice enough to include four functions for just this purpose:

// host to network long:
unsigned long htonl(unsinged long);

// network to host long:
unsigned long ntohl(unsigned long);

// host to network short:
unsigned short htons(unsigned short);

// network to host short:
unsigned short ntohs(unsigned short);

Now that we've got that out of the way, on to the beef!

What Is a Socket?

You've probably heard the term many times before in many contexts, but what is a socket? Probably
the first thing that springs to mind is an electrical socket, like that shown in Figure 2.4.

Figure 2.4. A typical electrical socket used in North America.

NOTE

If you know that your system is in big-endian order, you should still use the htonl and ntohl
functions, in the interest of portability. You never know when you'll want to convert the
program to a different platform, and you can save yourself lots of headaches by using the
functions. Besides, if your system is already in big-endian, calling these functions won't incur
overhead, since any decent compiler will just ignore the function call. So omitting the func tions
doesn't speed things up.

The electrical socket may look unfamiliar to you if you do not live in North America, but I'm sure you
have your own equivalent. You plug an electrical device into the socket to make a connection and can
then use all of its services, such as electricity.

There are literally thousands of other kinds of sockets, such as phone sockets (also known as RJ-11
jacks), Ethernet sockets (RJ-45), and so on.

Network sockets are similar in concept, but they aren't actual physical objects like electrical sockets
are. With network programming, each machine in a two-machine connection creates a socket, and then
one machine connects to the other. Figure 2.5 shows three computers in a simple socket network.

Figure 2.5. This simple network connects three computers (1 to 2, and 3 to 2).

Before I let you dive down into some actual socket coding, I'll explain the different "kinds" of
sockets. I put that word in quotation marks for a reason, which you will understand later on, when I
get into the code examples.

Listening Sockets

The most important kind of socket is the listening socket. This is a socket that the server creates with
a specific port number. Once the socket is created, it sits there and listens. Think of a person sitting by
a telephone waiting for a call.

This kind of socket is used only with TCP connections, since TCP is a connection-oriented protocol.
UDP does not use listening sockets.

Once a listening socket receives a TCP connection, it creates a new socket of a different type so that
you can "talk" to the socket.

Data Sockets

The other kind of socket is a data socket. These sockets don't do any listening; instead, they "call" a
server and, once connected to a server, data sockets can send or receive data (hence the name data
sockets).

Connection Diagrams

Figure 2.6 shows a connection diagram for TCP. When the server starts up, it creates a listening
socket and assigns it a port number. When the client wants to connect to the listening socket, it creates
a data socket and tells it to connect to the listening socket. When the listening socket gets the
connection request, it creates a new data socket, and then the server and the client can communicate
through their data sockets.

Figure 2.6. This is a connection diagram for TCP.

NOTE

Because UDP is connectionless and doesn't implement flow controls as TCP does, it is a popular
protocol for Internet viruses and Distributed Denial Of Service (DDOS) attacks. UDP is one of
the most abused protocols, but that doesn't mean you shouldn't use it.

UDP is even simpler, as shown in Figure 2.7.

Figure 2.7. This is a connection diagram for UDP.

Remember, UDP is a connectionless protocol, so there is no connecting needed, ever. You just create
the socket on a specific port and send or receive packets.

Whether or not the data is actually received, the timing of the transmission is up to the Application

layer protocol, instead of the Transport protocol.

Sockets API

I'm going to be brutal here for a second; the Sockets API is ugly. It's versatile, it works, and it's
stable, but it's ugly. The Sockets API was created when C was king, and C++ didn't even exist, so
clean object-oriented interfaces were unknown.

NOTE

The Microsoft Winsock API is an implementation of the Berkeley Sockets API, but they are not
com pletely compatible. I will notify you about the differences when I get to them. Don't
worrythere aren't many. A few #ifdefs here and there are enough to ensure that your network
ing programs are compatible with both UNIX and Windows. Platform independence is a
wonderful thing.

Because of this, the entire API is built with all kinds of messy structs and unions, as well as badly
named functions. Of course, the Sockets API is also the most popular networking API in the world,
which means you usually have no choice but to bite the bullet and use it. The trick is to create a thin
layer of sane software above it.

I'm not going to spend a great deal of time on the actual API; after all, this book is about MUDs, not
network programming in general. There are literally hundreds of books that cover this material better
than I can, since they are purely about networking. This chapter is an introduction to the API that
teaches you its use in relation to MUDs; therefore, I won't get into the juicy details of multicasting and
other things you may never use.

Two good books that cover this material are Multiplayer Game Programming by Todd Barron, and
Network Programming for Microsoft Windows , by Anthony Jones and Jim Ohlund.

Header Files

The main difference between the Sockets API and Winsock is that they require different header files
to access the APIs.

Winsock is easy in this regard; everything you need is in two files:

#include "winsock.h"
#include "ws2tcpip.h"

On UNIX systems, the Sockets API is spread among many different header files, thus making things
more difficult. What a surprise, huh?

Table 2.1 lists the file names and their contents.

Table 2.1. Sockets API Header Files

File Contents

sys/types.h All the needed basic types

sys/socket.h All the socket data structures

netinet/in.h All the functions needed for IPv4 and IPv6

unistd.h The gethostname() function needed to find the name of the local machine

netdb.h All the needed DNS functions

arpa/inet.h All the functions that start with inet_

errno.h All the error handling stuff

fcntl.h All the file control stuff

Don't worry if you don't know what some of that stuff means for now; I will eventually get to it all.

NOTE

The file winsock.h contains the header information for Version 1 of Winsock. The newer version
of Winsock, Winsock 2, adds a whole slew of new networking features, but alas, they are for
Windows only. The header for Winsock 2 is (surprise!) winsock2.h. It really makes no difference
which header you use; however, stick to the base Sockets API, since Winsock 2 is completely
backward compatible. In fact, it may even be better to use Winsock 2 (pretty much every
Microsoft operating system since Windows 95 has had Winsock 2 built in) since the imple
mentation is better optimized than in the old version. Just be sure to include the same version
library file with your project. See Appendix A, "Setting Up Your Compilers" (found on the CD),
for more information.

Socket API Errors

In UNIX, all sockets are files. The operating system doesn't differentiate between sockets and files, so

you can use the same reading and writing functions with both. Because of this, whenever a socket
error occurs, the global variable errno is set with the error value.

Unfortunately, Windows took an entirely different approach to the system, so sockets and files are
treated as separate entities. To make matters worse, they've also made Winsock incompatible with the
errno error reporting system. So, whenever an error occurs, you must retrieve the error by using the
WSAGetLastError() function. Don't worry, thoughthey both return the same error values.

You can solve this conflict by using #defines, and I show you how to do this in Chapter 4, "The Basic
Library," where I explain how to abstract the Socket APIs into a wrapper.

Appendix B, "Socket Error Codes" (found on the CD), has a complete listing of all the error codes
and their meanings. I have attempted to list every error that is possible for each socket function in this
chapter, but you should note that other socket errors might occur in the underlying network subsystem
as well.

Initializing the API

This is another area in which Winsock strays from the pure Sockets API. The Sockets API doesn't
need to be initialized; you can just jump right in and start using it. Winsock, however, needs to be
initialized first. It also needs to be shut down when you are finished using it. The initialization and
shutdown functions are listed here:

int WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData);
int WSACleanup(void);

The first function takes two parameters: the number of the Winsock version you want to use, and a
pointer to a WSADATA structure that will contain data about Winsock. As of this writing, the most
current Winsock version is 2.2, so you initialize Winsock like this:

WSADATA winsockdata;
WSAStartup(MAKEWORD(2, 2), &winsockdata);

It is usually best to keep track of the WSADATA structure, even though you're probably not going to use
it. The MAKEWORD function is a handy macro that creates a 16-bit value using the two-byte values you
pass into it.

When initializing the API, either a zero is returned to indicate no errors, or an error value is returned.
Table 2.2 lists all possible error values.

Table 2.2. WSAStartup() Error Codes

Table 2.2. WSAStartup() Error Codes

Error Meaning

WSAENOTREADY The network is not ready to be initialized.

WSAVERNOTSUPPORTED The supplied Winsock version is not supported.

WSAEINPROGRESS A blocking Winsock call is already in progress.

WSAEPROCLIM There are too many programs running Winsock at the moment.

WSAEFAULT The pointer to the WSADATA structure was invalid.

When you want to shut down Winsock, just call the WSACleanup function.

Creating a TCP Listening Socket

I will begin by showing you how to create a listening socket for TCP.

I've already described the different types of sockets, and unfortunately, the Sockets API doesn't really
distinguish among them. All sockets are identified by a common datatype: int. Yep; every socket is
just an integer. The Sockets API keeps track of everything for you internally.

NOTE

In general, it is always safer to use the typedefs that the API provides. In Winsock, even though
a SOCKET is an int when you use it, it may not always be. The Winsock API functions specifically
use SOCKET s, and if Microsoft decides to change a socket into type foobar someday, then you'll
be out of luck if you assumed you were using int s. While it would be incon venient for
Microsoft to do so, things like this have happened before. The bottom line is this: It's safer to
use typedefs than to assume that you're using a specific datatype.

As an alternative, Winsock gives you the option of using the SOCKET typedef. If you trace all the way
down through the header files, you eventually find that the SOCKET typedef is an int!

For now, I am going to assume that a socket is an integer; in Chapter 4, I will show you how to
seamlessly abstract the two APIs into a single wrapper.

Creating the Socket

Here's the code to create a socket:

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

This code calls the socket function, which attempts to create a socket for you. The first parameter is
the Address Family, which determines what network your socket will use.

The second parameter is the Socket Type. The example uses a type called SOCK_STREAM, which means
it will be a TCP socket. If you want to make this a UDP socket, you would use SOCK_DGRAM instead.
(DGRAM means datagram.)

NOTE

The Sockets API has the capability to use many types of networks, other than IP networks.
However, in practice, you will almost never need to use any of these other networks, since most
of them are either outdated or reserved for private companies. Therefore, you will almost
always be using the AF_INET address family.

Finally, the last parameter is Protocol. Different socket types may have several associated protocols.
For example, the most popular SOCK_STREAM protocol is IPPROTO_TCP, which is used in the example.
The popular SOCK_DGRAM protocols are IPPROTO_UDP and IPPROTO_ICMP. As I said earlier, you're going
to be concerned mainly with TCP and UDP.

If the function fails, it returns -1. If the function succeeds, a socket descriptor is returned. Table 2.3
lists the various error values that errno/WSAGetLastError() will contain if it fails.

Table 2.3. socket() Error Values

Error Meaning

ENETDOWN The network has failed and is down.

EAFNOSUPPORT The specified address family is not supported.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

EMFILE No more socket descriptors are available.

ENOBUFS There isn't enough memory available.

EPROTONOSUPPORT The specified protocol is not supported.

EPROTOTYPE The specified protocol is not supported by the socket type.

ESOCKTNOSUPPORT The specified socket type is not supported by the address family.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

Binding the Socket

So now you have a socket. Next you want to bind the socket to a port number. Unfortunately, it's not
as easy as it sounds; first you need to fill out a messy data structure.

Before you do that, though, I will show you the function definition:

int bind(int socket, struct sockaddr *name, int namelen);

The first parameter is the socket descriptor that you created with the socket function.

The second parameter is a sockaddr structure, which describes all types of things about the
socketmost importantly the port number. But there are other things as well, which I'll get to in a bit.

The final parameter is the size of the sockaddr structure. Why is this needed? The sockaddr structure
really isn't that important in the grand scheme of things; it's a flexible structure that has no solid
definition. Depending on the socket type and protocol you use, this structure varies in size, so it is
important for the function to know this.

Here is the standard definition of the sockaddr structure:

struct sockaddr {
 unsigned short sa_family;
 char sa_data[14];
};

The first piece of data is the sa_family variable. This is set to the address family that your socket is

using, which is almost always AF_INET, the Internet address family. The rest of the structure is just
padding to fill out the 16 bytes.

Obviously, this doesn't contain a heck of a lot of information about a socket connection, so it's not that
useful. Instead, you'll be using a more specific version, called sockaddr_in, where the in stands for
Internet. You can think of this as an ancient form of inheritance, before inheritance was actually
invented. The base structure is sockaddr, and a more specific version that is designed for IP networks
is the sockaddr_in structure.

The new structure looks like this:

struct sockaddr_in {
 unsigned short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The first variable, sin_family, is the same as the sa_family from the sockaddr structure. The
sin_port variable is simply the port number on which the socket will be open.

The third variable, sin_addr, is the IP address, which has two functions: First, if it's a listening
socket, the socket uses this address for listening; second, if it's a client-side data socket, the socket
uses this as the IP address for connecting. (I'll explain this in more detail in the section entitled
"Creating a TCP Data Socket.")

Both the port and the address are supposed to be in network byte order.

The last variable, sin_zero, is just padding to fill the structure to 16 bytes. Some implementations of
the Sockets API require that the padding must be filled in to zero, so you must do this.

So, now to actually bind a socket, you first create the sockaddr_in structure and fill it out:

struct sockaddr_in socketaddress; // create struct
socketaddress.sin_family = AF_INET; // set it for Internet
socketaddress.sin_port = htons(1000); // use port 1000
socketaddress.sin_addr.s_addr = htonl(INADDR_ANY); // bind to any address
memset(&(socketaddress.sin_zero), 0, 8); // clear padding

This binds a socket to port 1000 and to address INADDR_ANY. Basically, this means that the socket will
accept any incoming connections. You will almost always use that value, but you can use other values
instead. For example, if you use the address 127.0.0.1 (the loopback address that references your own
computer), the socket accepts only connections that are trying to connect to the IP address 127.0.0.1.
Since packets that are sent to your computer from other computers won't be trying to access that

address, the socket won't accept connections from outside your computer.

NOTE

If you are running a Network Address Translation (NAT) on your own personal network, each
computer on your local area network (LAN) has its own IP address (usually in the 192.168.0.*
range of addresses), but from outside your LAN, the Internet sees all your computers as a single
IP address. By specifying your LAN IP address, you can prevent people from accessing your
network programs if they aren't on your LAN. That way, the socket will only accept
connections from computers that are trying to reach your LAN address, which isn't visible on
the Internet. Figure 2.8 shows a simple NAT/LAN setup, in which the Internet sees the attached
computers as one IP address. All the computers behind the NAT are assigned internal IP
addresses and are accessed by the Internet using the IP address of the NAT itself. The Internet
doesn't know or care about the internal addresses.

Figure 2.8. A simple NAT/LAN setup.

The Sockets API provides a handy function for converting an IP address in string form to an integer in
network byte order. For example, if you want to use the IP address 127.0.0.1 in the sockaddr_in
structure, you type this:

socketaddress.sin_addr.s_addr = inet_addr("127.0.0.1");

Finally, you want to bind the socket with the address structure, so you type this:

bind(sock, (struct sockaddr*)&socketaddress, sizeof(struct sockaddr));

If the function doesn't succeed, it returns -1. If it succeeds, it returns 0. Table 2.4 shows the possible
error codes.

Table 2.4. bind() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

ENOBUFS There isn't enough memory available.

ENOTSOCK The socket descriptor passed in is not a real socket.

EACCES Access was denied.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The address is not valid for this machine.

EFAULT One or more of the parameters were invalid.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

Now your socket is bound and ready to accept connections!

Listening

Now that you've bound your socket to an address and port, you need to make it listen for connections.
Luckily for us, this function is incredibly simple:

int listen(int socket, int backlog);

The function accepts a socket descriptor and a backlog parameter. The backlog essentially tells the
socket how many connections to keep in its queue before it starts refusing them. A connection stays in
the socket's queue until you use the accept() function to remove it.

Here is an example of calling the function:

listen(sock, 16);

This tells the Sockets API that you want to listen on the socket, and you want it to queue 16
connections. If 17 machines try to connect to this socket before you are able to accept the connections,
the seventeenth connection is refused, and the first 16 remain in the queue until you accept them.
Whenever you accept a connection, it is removed from the queue, and more connections can then be
queued up.

If no error occurs, 0 is returned; if an error occurs, -1 is returned. Table 2.5 lists the error codes for
this function.

Table 2.5. listen() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EADDRINUSE The address is already in use.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

EINVAL The socket is not valid.

EISCONN The socket is already connected.

EMFILE No more socket descriptors are available.

ENOBUFS There isn't enough memory available.

ENOTSOCK The socket descriptor passed in is not a real socket.

EOPNOTSUPP The socket doesn't support this function.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

Now your socket is listening, and you're ready to accept connections!

Accepting Connections

At last, you are at the final part of the listening socket cycleaccepting connections. It's taken quite a
while to get this far, hasn't it? This is how you would call the function:

int accept(int socket, struct sockaddr *addr, socklen_t *addrlen);

The function has three parameters: the listening socket descriptor, a pointer to a sockaddr, and a
pointer to an int.

The sockaddr structure is filled out by the function; you can think of it as a caller-id box; it indicates
who is connecting to you. The addrlen pointer is supposed to contain the length of the addr structure.
Why is it a pointer? Well, presumably, it is possible for the accept function to modify this value, but
I've never seen it happen. It's just one of those quirks of the API. Here is how you would accept the
function:

int datasock;
struct sockaddr_in socketaddress;
socklen_t sa_size = sizeof(struct sockaddr_in);
datasock = accept(sock, &socketaddress, &sa_size);

Now the datasock variable should be a data socket, and you can use it to communicate with the
caller. If the function fails, it returns -1. Table 2.6 lists the possible error codes.

Table 2.6. accept() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EINPROGRESS A call to this function is still in progress, so the new call cannot be completed.

EINVAL The socket is not valid.

EMFILE No more socket descriptors are available.

ENOBUFS There isn't enough memory available.

ENOTSOCK The socket descriptor passed in is not a real socket.

EOPNOTSUPP The socket doesn't support this function.

EFAULT One or more of the parameters were invalid.

EWOULDBLOCK The function exited because it would block.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

One important aspect of this call differs significantly from any other calls I've shown you so farit
blocks. See the following sidebar for an explanation about blocking.

NOTE

Blocking Functions

If you are unfamiliar with the term blocking, that's okay. If you've ever used the cin or scanf functions
before, you've encountered blocking.

A blocking function depends on external input (keyboard or network) and cannot complete until that
input is received. Unfortunately, these input sources are not reliable; keyboard input can take a long
time if the user isn't there to type anything in, and network communications take time. However, a
blocking function stops your entire program and just waits for that external data to arrive.

In the bad old days, this was desirable behavior. There were many programs running on a system, and
whenever a program needed input from a potentially slow source, it could stop the program and
switch to something else while waiting for input.

This isn't such a great idea for games, though. No one wants the entire game to stop just to wait for
network or keyboard datathat's just annoying. Fortunately, there are ways around this. You can make
sockets nonblocking, which means that any blocking function will fail and return an EWOULDBLOCK
error if there is no data already queued up for it to use. I won't go into this method much; it is
generally wasteful of CPU usage, since the CPU is wasting time by constantly polling every socket.

Another method uses the select() function to poll many sockets at once to check if any of them has
activity. This is the desired method for single-threaded programs. I cover this method later on in this
chapter.

A third popular option is to use multithreading and have each blocking call occur in its own thread,
so that none disrupts the other threads of the program. I cover threading in detail in Chapter 3,
"Introduction to Multithreading."

Creating a TCP Data Socket

You've just learned how to create a listening socket for TCP, which is great for servers. However, a
listing socket is pretty useless if you don't have a method for connecting to it. This is where the data
socket comes in.

Luckily, creating a data socket is nice and easy and takes only two function calls. The first one should
be familiar to you.

Creating the Socket

Actually, creating the socket uses the same function as a listening socket: the socket() function. I bet
you didn't see that one coming, right?

Basically, you'll use the same parameters as last time:

int datasock;
datasock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

Ta-da! You now have a socket!

Connecting the Socket

Connecting a data socket to a listening socket takes one function call. Can you guess the function
name? If you said connect(), you get a star!

The function definition looks like this:

int connect(int socket, const struct sockaddr *name, int namelen);

The first thing you should notice is that it looks exactly like the bind function.

You need to fill out a sockaddr-type structure, which is going to be the sockaddr_in structure, since

we're using TCP. This time, you're going to fill it out with the address you want to connect to. For
example, if you want to connect to 192.168.0.2 on port 4000, you fill out the structure like this:

struct sockaddr_in socketaddress;
socketaddress.sin_family = AF_INET;
socketaddress.sin_port = htons(4000);
socketaddress.sin_addr.s_addr = inet_addr("192.168.0.2");
memset(&(socketaddress.sin_zero), 0, 8);

After you fill that out, you can connect:

connect(datasock, &socketaddress, sizeof(struct sockaddr));

If there are no errors, 0 is returned; if there are errors, -1 is returned. Table 2.7 lists the error codes
possible with this function.

Table 2.7. connect() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

EADDRINUSE The address is already in use.

EINVAL The socket is not valid.

EADDRNOTAVAIL The remote address is not valid.

EAFNOSUPPORT The specified address family is not supported.

ENOBUFS There isn't enough memory available.

ENOTSOCK The socket descriptor passed in is not a real socket.

EWOULDBLOCK The function exited because it would block.

ECONNREFUSED The server refused the connection.

EFAULT One or more of the parameters were invalid.

EISCONN The socket is already connected.

ENETUNREACH The destination address is unreachable.

ENOTSOCK The socket descriptor passed in is not a real socket.

ETIMEDOUT The operation failed to complete in the time-out period.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

If the function call succeeds, you are connected to a server and ready to send and receive data!

Sending Data

Now that you've got a data socket, you can send data. This is an amazingly simple operation to
accomplish, using the send function:

int send(int socket, const char *buffer, int len, int flags);

The first parameter is obviously the socket you want to use for sending the data, and the second
parameter is a pointer to a buffer. The buffer is in chars, which is just a big chunk of bytes in memory.
The next parameter is the length of the data in the buffer, and finally there is a Flags parameter. You'll
probably never use any of the flags, since they're only useful to low-level network programmers, so I
won't bother explaining them here. If you're really interested, networking books cover the details.

So, to send data, you would do something like this:

char* string = "hello, Internet!";
int sent;
sent = send(datasock, string, strlen(string), 0);

The function returns the number of bytes that send actually sent. Beware that the function may not send
all the bytes you requested. In this case, you should attempt to resend what wasn't sent.

If the call fails, the value of -1 is returned. Table 2.8 lists the error codes for this function.

Table 2.8. send() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

EACCES Access was denied.

EFAULT One or more of the parameters were invalid.

ENETRESET The network has been reset and the connection broken.

ENOBUFS There isn't enough memory available.

ENOTCONN The socket is not connected.

ENOTSOCK The socket descriptor passed in is not a real socket.

EOPNOTSUPP The socket doesn't support this function or option.

ESHUTDOWN The socket has been shut down.

EWOULDBLOCK The function exited because it would block.

EHOSTUNREACH The host is unreachable.

EINVAL The socket is not valid.

ECONNABORTED The connection was aborted and the socket is no longer usable.

ECONNRESET The connection was closed by the other side.

ETIMEDOUT The connection was closed unexpectedly.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

Pretty easy, don't you think?

Receiving Data

Receiving data is just as easy as sending data. Here is the function definition for the recv() function:

int recv(int socket, char *buffer, int len, int flags);

As you can see, the parameters are the same as the send() function. So you call it like this:

char buffer[128];
int received;
received = recv(datasock, buffer, 128, 0);

This creates a buffer large enough for 128 bytes of data and then waits for incoming data. Note that
this function probably returns before it gets a full 128 bytes of data, and it receives only a maximum
of 128 bytes of memory, so you don't have to worry about the buffer overflowing.

As usual, the function returns -1 on failure. Table 2.9 lists the error codes.

Table 2.9. recv() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EFAULT One or more of the parameters were invalid.

ENOTCONN The socket is not connected.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

ENETRESET The network has been reset and the connection broken.

ENOTSOCK The socket descriptor passed in is not a real socket.

EOPNOTSUPP The socket doesn't support this function or option.

ESHUTDOWN The socket has been shut down.

EWOULDBLOCK The function exited because it would block.

EINVAL The socket is not valid.

ECONNABORTED The connection was aborted, and the socket is no longer usable.

ETIMEDOUT The connection was closed unexpectedly.

ECONNRESET The connection was closed by the other side.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

Note also that recv() is a blocking function; it stops everything in the current thread and waits for the
next TCP packet to arrive.

That's pretty much it.

Closing a Socket

Once you've finished using a socket, you close it by calling two functions: the shutdown() function
and the close() function.

First, you call the shutdown() function. Here is the function definition:

int shutdown(int socket, int how);

The first parameter is the socket you are shutting down, and the second parameter is the method you
are using to shut it down. In almost all cases, you use the value 2, which shuts down both sending and
receiving. The other two possible options are 0 and 1, which shut down receiving and sending,
respectively.

As usual, the function returns 0 on success and -1 on failure. Table 2.10 lists the possible error codes.

Table 2.10. shutdown() Error Codes

Error Meaning

ENETDOWN The network has failed and is down.

EINVAL The socket is not valid.

EINPROGRESS A call to this function is still in progress, so the new call could not be completed.

ENOTCONN The socket is not connected.

ENOTSOCK The socket descriptor passed in is not a real socket.

WSAENOTINITIALIZED[*] The Socket Library isn't initialized.

[*] Winsock only

After you shut down a socket, it still exists in the system. The socket takes care of any pending data
that is sent or received and gracefully shuts down, but the socket isn't yet closed. You need to make
one more call to close it.

In UNIX sockets are files. Because of this, you can use the standard UNIX close() function to close a
socket.

However, Windows sockets are not files, so calling the close() function on them won't work. For
this reason, Microsoft changed the function's name to closesocket(). The parameters and the return
values are the same. Here is the definition:

int close(int socket);

Pretty simple function, don't you think?

As usual, the function returns 0 on success and -1 on failure. This function has the same error codes as
the shutdown() function, which are listed in Table 2.10.

Miscellaneous Functions

There are several other miscellaneous functions associated with the Sockets API.

Converting IP Addresses to Strings and Back

The first of these miscellaneous functions is the inet_addr() function, which takes an IP address in a
string and converts it into an unsigned long:

unsigned long inet_addr(const char *string);

The string must be in *.*.*.* format, where each number between the periods is a number from 0 to
255. If you used an invalid string, the function returns the value INADDR_NONE. Also remember that the
address is returned in network-byte-order (NBO), so there is no need to convert it when using it with
the Sockets functions.

The next function does the opposite; it takes a numeric address and converts it to a string:

char* inet_ntoa(struct in_addr in);

This is one ugly function; I hate it with a passion. Okay, you know that Internet addresses are stored in
unsigned longs, right? So why the heck does the function take a structure called in_addr? Who
knows? The designers decided to make things difficult for us.

So you must convert your Internet address into an in_addr first, which requires code that looks like
this:

unsigned long address = inet_addr("192.168.0.1");
struct in_addr addr;
addr.S_un.S_addr = address; // ugh, UGLY!
char* addrstr = inet_ntoa(addr);

Isn't that ugly? The in_addr structure is a union, which is an ancient C concept that is rarely used
nowadays, but it allows you to store many different types of data in the same amount of memory, as
long as the different types don't exist at the same time. Make sense? If not, don't worry about it. It's not
important.

So anyway, addrstr in the example will now be a pointer to a string. But you shouldn't do anything to
it, except copy it immediately and store the result for your own use. The function actually has a static
(or global, in some implementations) string buffer that it keeps for itself, and whenever the function is
called, it overwrites the buffer contents. This means that you shouldn't try deleting the buffer either,
which is another reason why this function is just plain ugly. Anyway, when it's done, the string should
contain 192.168.0.1. If an error occurs (though I've never seen this happen), NULL is returned.

Getting Socket Information

The next function is used to get information about a socket:

int getsockname(int socket, struct sockaddr* name, socklen_t* namelen);

Essentially, this gets the port and address of a socket and stuffs it into a sockaddr_in structure. Here
is an example:

struct sockaddr_in addr;
socklen_t sa_size = sizeof(struct sockaddr_in);// fill out the size
getsockname(sock, (struct sockaddr*)&addr, &sa_size);
unsigned short port = ntohs(addr.sin_port); // get the port number
unsigned long address = ntohl(addr.sin_addr); // get the address number

You can see why I dislike this function; it requires an inordinate amount of work to accomplish a
simple task. You need to have an address structure, and you need to fill in an integer with its size as
well. Then you can call the function and retrieve the data you want. Pain in the butt!

The other function in this category gets the information of the peer, which is the computer on the other
side of the connection:

int getpeername(int socket, struct sockaddr* name, socklen_t* namelen);

This function is virtually identical to the previous one. Note that you may get ENOTCONN errors with the
peer function, if it's not connected yet.

Domain Name System

IP addresses are like phone numbers. However, IP addresses are longer than phone numbers most of
the time, and it is virtually impossible to remember them. Humans are typically bad at remembering
long strings of numbers; words are much easier to remember.

Therefore, the designers of the Internet figured out a way to reference IP addresses by names. They
decided to create a hierarchical system called the Domain Name System (DNS).

DNS is hierarchical, which makes lookups easy to do. For example, in the beginning, the Internet had
seven Top-Level Domains (TLDs); most should be familiar to you. They are listed in Table 2.11.

Table 2.11. Original Top-Level Domains

Domain Meaning

.com Commercial use

.net Network providers, mostly ISPs

.org Nonprofit organizations

.edu Educational institutions

.mil United States military sites

.gov United States government sites

.int International sites

As you can see, the domains were largely U.S.-centric, which led to many problems once the Internet
became a worldwide construct. Because of this, each country has been assigned its own two-letter
TLD, which it should use. Using the old domains is discouraged, although that's not stopping anyone.
Some examples of these TLDs are .us (USA), .uk (United Kingdom), .fr (France), .de (Germany), .au
(Australia), and even .ax (Antarcticadon't ask).

You can imagine that all of these addresses are at the top level of a tree. Figure 2.9 shows this. The
next part of the DNS hierarchy is the domain level. For google.com, this would be "google."
Essentially, each root DNS server keeps track of the IP address of every domain.

Figure 2.9. A partial hierarchy of the DNS system.

So when you ask your DNS server for the address of google.com, it goes to the .com server, looks up
"google," and then returns the result. At the time of writing, google.com could be found at
216.239.33.100, but that might change by the time you read this.

That's not all a DNS server can do, however. For example, you're probably used to seeing addresses
like "www.google.com." That "www" at the front is the name of a specific machine on Google's
network. So when your DNS server looks up "google.com," it then contacts the DNS server on
Google's main machine (216.239.33.100) and asks it for the address of the machine named "www."
At the time of writing, that is returning 216.239.33.99. Again, that might change by the time you read
this.

To further illustrate my point, "news" resolves to 216.239.51.104, and "images" resolves to
216.239.37.104. All three of those services"www," "news," and "images"are running on different
machines in the Google network. The root .com DNS server doesn't know about the different
machines (it doesn't need to know about them); the server only knows about the root google.com DNS
server. Pretty cool, right?

As you look at Figure 2.9, you can see that it's possible to chain on servers if you want. Look at the
two .edu entries on the right. You can construct an address using that tree going to
www.cse.buffalo.edu, or www.eecs.berkeley.edu.

So that's my tiny intro to DNS. DNS is a huge subject, and if you're interested, I suggest a good
networking book.

Now, how do you use DNS in the Sockets API? You might think it's possible to do something like

http://www.google.com./default.htm
http://www.cse.buffalo.edu/default.htm
http://www.eecs.berkeley.edu/default.htm

this:

unsigned long google = inet_addr("www.google.com");

But you'd be wrong. The inet_addr function converts only standard format IP addresses to a number;
it doesn't look up DNSs.

Performing a DNS Lookup

As with everything in the Sockets API, the function of getting an IP address from a DNS lookup is just
plain weird and ugly. Once again, the function introduces another strange structure: hostent. Here is
what hostent looks like:

struct hostent {
 char* h_name;
 char** h_aliases;
 short h_addrtype;
 short h_length;
 char** h_addr_list;
};

ARGH! Almost makes you want to throw a brick at something, doesn't it? Honestly, since I'm not
going to be using this structure for anything other than looking up IP addresses, I really don't care to
know what all those things mean.

Here is the gethostbyname function, which performs a DNS lookup:

struct hostent* gethostbyname(const char* name);

gethostbyname accepts a string for the name and returns a pointer to the hostent structure. So how the
heck do you get an IP address out of that? Well, the IP address is stored as the first four bytes of the
two-dimensional array h_addr_list. Here is one way to get the address:

struct hostent* host;
host = gethostbyname("www.google.com");
unsigned long addr = *((unsigned long*)host->h_addr_list[0]);

The code is maddeningly ugly, but it's a necessary evil. The last line gets the address of the first

character in the 2D array, h_addr_list, converts that into an unsigned long pointer, and finally,
dereferences it. If you have no idea what I just said, it doesn't matter. Just know that it works, and
you'll be fine.

The helpful folks who designed the Sockets API decided to make things a tad easier for us. Before
you celebrate, though, you should be warned that it's not that much of an improvement. They created a
macro, named h_addr, which is really just h_addr_list[0]. So, instead of that huge ugly line I showed
you previously, you can now have a slightly smaller ugly line:

unsigned long addr = *((unsigned long*)host->h_addr);

Well, I'll give them an "A" for effortor maybe not.

If there was an error, the function returns NULL instead of a pointer to the hostent. However, you can't
look up the error using errno or WSAGetLastError(). Why would the designers make things easy for
you?

Instead, you must retrieve errors through a variable called h_errno. There is one saving grace to this
horrible mess of an API, however: h_errno works on both the Sockets API and Winsock. Hooray!

Table 2.12 lists the error codes that are returned by h_errno if gethostbyname fails.

Table 2.12. gethostbyname() Error Codes

Error Meaning

HOST_NOT_FOUND The address didn't resolve to anything.

TRY_AGAIN The DNS server failed, but the address still might be resolvable. Try again.

NO_RECOVERY An unrecoverable error has occurred.

NO_DATA There is no data available about the address.

There is one other thing you should know: The function cannot resolve addresses if they are already in
IP form. For example, trying to resolve "192.168.0.1" fails, since it is already an IP address. Just
something to remember.

Now, the cool thing about DNS is that you can do reverse lookups, too; you give DNS an IP address,
and the system tries to find the DNS entry that matches. This is accomplished by using the

gethostbyaddr() function:

struct hostent* gethostbyaddr(const char* addr, int len, int type);

Again with the hostent structuresigh. The first parameter is a pointer to the address that you want to
resolve, in NBO. Note that you'll need to do some casting, since NBO wants a char pointer, instead of
a pointer to an unsigned long. This is to ensure flexibility, so that the function isn't bound to any
specific type of address. The second parameter is the length of the address, and since we're using
IPv4, this will be 4. Finally, the type of the address is the last parameter; since you're using IPv4, this
is going to be AF_INET. For example, this is how you would call the function:

unsigned long address = inet_addr("216.239.33.100");
struct hostent* host;
host = gethostbyaddr((char*)&address, 4, AF_INET);

If the function succeeds, you can retrieve the string result of the lookup by accessing the h_name
variable inside your hostent structure. If the function fails, 0 is returned, and you can access the error
code through h_errno. This function uses the same error codes that are listed in Table 2.12.

By the way, you should not attempt to modify or delete the hostent structures returned by either
function; the Sockets API owns and manages them. Unfortunately, that means the structures might be
overwritten without notice, so you should copy the data you need from them immediately.

That's pretty much all you need to know about DNS, so on to the fun stuff!

Demo 2.1 Hello Internet Server

Now that you've learned the basics of network programming, you are ready to start your own network
program. In this demo, I show you how to create a server that listens for a string of data, prints it out,
and quits. You can find the code for this demo on the CD in the directory /
Demos/Chapter02/Demo01-HelloInternetServer/, in the file Demo01.cpp. Appendix A (found on the
CD) contains instructions for compiling this demo with various compilers.

Basically, the aim of this demo is to create a listening socket and wait for an incoming connection; the
demo then reads 128 bytes of data, prints it out to the screen, closes the sockets, and quits.

Include Files

The first piece of code I am going to show you is what I call Code Block 2.1. This block of code
appears in all the demos in this chapter, and I want to show it to you only once. Here it is:

// Code Block 2.1 - Header Includes
// This code block includes all of the standard Sockets API/Winsock headers
#ifdef WIN32 // Windows 95 and above
 #include "winsock2.h"
 #include "Ws2tcpip.h"
#else // UNIX/Linux
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <unistd.h>
 #include <netdb.h>
 #include <arpa/inet.h>
#endif
// End Code Block 2.1 - Header Includes

This block of code essentially relies on the definition of the preprocessor macro WIN32 to tell if it's
running on Windows or UNIX/Linux. If you're running Windows, the code just includes Winsock2.h
and ws2tcpip.h; if you're running something else, it includes all the official Sockets API header files.

Platform-Independent Defines

Since the base Sockets API and the Winsock libraries differ in some respects, you need to create a
way to make your code work no matter which implementation you are using. Since the APIs are
almost equivalent, this is easy.

You have several options in this regard; for example, you could do this whenever you want to close a
socket:

#ifdef WIN32
 closesocket(sock);
#else
 close(sock);
#endif

This method tends to be a little messy unless, of course, you isolate the socket-closing code into one
area, as I do in Chapter 4 when creating a socket wrapper. But for now, this is an awkward and
somewhat ugly method. Instead, let me show you Code Block 2.2:

// Code Block 2.2 - Redefinitions and globals for cross-compatibility
#ifdef WIN32 // Windows 95 and above
 WSADATA g_wsadata; // Winsock data holder
 #define CloseSocket closesocket
 #define GetSocketError WSAGetLastError
 #define StartSocketLib WSAStartup(MAKEWORD(2, 2), &g_wsadata);
 #define CloseSocketLib WSACleanup();
 #ifndef socklen_t
 typedef int socklen_t;
 #endif
#else // UNIX/Linux
 #define CloseSocket close
 #define GetSocketError errno
 #define StartSocketLib {}
 #define CloseSocketLib {}
#endif
// End Code Block 2.2 - Redefinitions and globals for cross-compatibility

Because Winsock needs a WSADATA structure, one is defined in the WIN32 branch of the code. The next
four lines address the four differences between Winsock and the Sockets API. For the Windows
branch, the macro CloseSocket is just another name for closesocket (note the capitalization
differences), and for the Linux branch, it is another name for close. The same thing is done for
GetSocketError, which calls either WSAGetLastError or errno, depending on the system.

Finally, the last two lines define the socket library initialization and shutdown stages, which exist in
Winsock, but not in the Sockets API. Therefore, the Windows version of StartSocketLib calls
WSAStartup, and the UNIX version does absolutely nothing (empty brackets).

The Windows block has an extra three lines in it. It turns out that in some older versions of Winsock,
the datatype socklen_t is not defined; so whenever the function detects that it doesn't exist, I simply
define it as an int. You'll need socklen_t for many socket functions.

The Rest of the Code

This demo follows the basic life cycle of a standard server:

1. Create socket.

Bind socket.

Listen on socket.

Accept connection.

Receive/send data.

Close socket.

Here's the code for starting up the program:

#include <iostream>
using namespace std;
int main() {
 int err;
 StartSocketLib;

The program uses the Standard C++ iostream library; if you're not familiar with the library and
namespaces, you should check out "C++ Primer" Appendix C (found on the CD).

The err variable is used for error reporting, as you will see in a minute. After that, the
StartSocketLib macro is invoked, and depending on what system you are using for compilation, starts
up Winsock (Windows) or does nothing (Linux).

Here's the next code segment that creates a socket. (Note that this begins Code Block 2.3.)

 // BEGIN CODE BLOCK 2.3 - Create a Listening Socket on port 4000
 int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if(sock == -1) {
 cout << "Socket creation error!" << endl;
 return 0;
 }
 cout << "Socket created!" << endl;

After the call to socket(), I check to see if an error occurred, and if so, print out a message and
return, quitting the program. If no error occurred, I print out a success message. All of the other
functions have similar error message blocks, so in the interests of brevity, I will not print them here.

Here's the rest of the program:

 // create a sockaddr_in for binding, listening on port 4000
 struct sockaddr_in socketaddress;
 socklen_t sa_size = sizeof(struct sockaddr_in);
 socketaddress.sin_family = AF_INET;
 socketaddress.sin_port = htons(4000);
 socketaddress.sin_addr.s_addr = htonl(INADDR_ANY);
 memset(&(socketaddress.sin_zero), 0, 8);

 // bind the socket
 err = bind(sock, (struct sockaddr*)&socketaddress, sa_size);

The first block of code fills out a sockaddr_in structure. The second block binds the socket to port
4000 on every IP address available. Here's the listening and accepting code. (Note that Code Block
2.3 ends after the socket is told to listen.)

 // listen on the socket
 err = listen(sock, 16);
 // END CODE BLOCK 2.3 - Create a Listening Socket on port 4000

 // wait for an incomming connection now
 int datasock;
 datasock = accept(sock, (struct sockaddr*)&socketaddress, &sa_size);

It creates a new socket when a connection is received. The datasock is used for communicating with
the client. And here is the code for receiving the message from a client and printing it:

 // receive data
 char buffer[128];
 err = recv(datasock, buffer, 128, 0);

 cout << "Data received:" << endl;
 cout << buffer << endl;

Finally, here is the code for closing the sockets and shutting down the system:

 shutdown(datasock, 2);
 CloseSocket(datasock);

 shutdown(sock, 2);
 CloseSocket(sock);

 CloseSocketLib;
}

At this point, you could compile and run the program, but it's pretty pointless without the existence of
anything that could send data to the program. That is what the next section is for.

Demo 2.2 Hello Internet Client

This demo is the counterpart to Demo 2.1. It actually sends the data to the server, so the server can
print it.

The demo is located on the CD in the directory /Demos/Chapter02/Demo02-HelloInternetClient/, in
the file Demo02.cpp. As usual, this is a regular console app, and you can compile it using the
instructions found in Appendix A (found on the CD).

The demo starts off with Code Blocks 2.1 and 2.2, which have been printed earlier, so there is no
need to show them again here. This code introduces a new block, Code Block 2.4, which basically
creates a socket for connection. The code looks like this:

#include <iostream>
#include <string.h>
using namespace std;
int main() {
 // BEGIN CODE BLOCK 2.4 - Creat a connecting data socket
 int err;
 char message[128] = "Hello Internet!";
 char ip[16] = "";
 unsigned long ipaddr;

 // start the socket library
 StartSocketLib;

This example uses the err variable again and three new variables as well. The message string
contains the message to be sent, the ip string that contains the IP address of the server in string form,
and the ipaddr variable that holds the IP address in network byte order.

After the library is started, the program asks the user for an IP address for connection:

 cout << "Enter the IP address to connect to: ";
 cin >> ip;

 // convert the IP address.
 ipaddr = inet_addr(ip);
 if(ipaddr == -1) {
 cout << "Error: invalid IP address" << endl;
 return 0;
 }

If the program doesn't work, it converts the string IP address into binary form and returns an error. As
with the Demo 2.1 listing, I will remove the error blocks from now on, to show you the "beef" of the
code.

This next block of code creates a socket, fills out another sockaddr_in structure (oy!), and then

attempts to connect the socket:

 // create a socket
 int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 // create a sockaddr_in for connection, on port 4000
 struct sockaddr_in socketaddress;
 socklen_t sa_size = sizeof(struct sockaddr_in);
 socketaddress.sin_family = AF_INET;
 socketaddress.sin_port = htons(4000);
 socketaddress.sin_addr.s_addr = ipaddr;
 memset(&(socketaddress.sin_zero), 0, 8);

 // connect the socket
 err = connect(sock, (struct sockaddr*)&socketaddress, sa_size);
 // END CODE BLOCK 2.4 - creating a connecting data socket

Note that Code Block 2.4 ended in the previous code section. By this point, the socket should be
connected and ready to send data, so that's what we do next:

 cout << "sending message: " << message << "..." << endl;

 // send data
 err = send(sock, message, strlen(message) + 1, 0);

This sends the message through the socket. Pretty simple, eh? Finally, the socket is shut down, and the
connection is closed:

 shutdown(sock, 2);
 CloseSocket(sock);

 CloseSocketLib;
}

Now that this is finished, you can fire up the server in a console window, fire up Demo 2.2, and
watch the results. If you have a friend who is willing to help you test it over the Internet, you can send
him either the server or the client and ask him to run it, while you run the other part. Figure 2.10
shows a screenshot of the two programs running at the same time.

Figure 2.10. Demos 2.1 and 2.2 are running simultaneously.

From the demo, you can see that I ran both demos on one computer and used the standard 127.0.0.1
"loopback" address to connect to my own computer.

So, as you can see, sending and receiving data is pretty easy.

Using select() to Avoid Multithreading

I have one more topic to cover in this chapter: using the select() function to avoid using
multithreading in your programs. As you will see in Chapter 3, multithreading can sometimes be a
pain in the butt; and you should consider yourself lucky that there is a way around it.

The select() function essentially checks a set of sockets, to see if any of them has activity. This helps
greatly, because you do not need to waste time checking every socket to see if it has activity (like the
non-blocking method), or creating a thread for every socket, which consumes memory.

The select() can handle a number of functions in the Sockets API block including the accept, send,
and recv functions as well as the lesser-used DNS functions gethostbyname and gethostbyaddr.
Unfortunately, you can't prevent the DNS functions from blocking, unless you specifically use
multithreading, since DNS functions don't actually have anything to do with sockets. The connect
function also blocks, but there is no way to prevent it from lagging up your program unless you use
multithreading.

Here is the select() function definition:

int select(int numfds,
 fd_set *readfds,
 fd_set *writefds,
 fd_set *exceptfds,
 struct timeval *timeout);

The first parameter is the number of the highest possible socket descriptor. Winsock just ignores this
parameter, but UNIX doesn't. You can handle this in two ways. The first method is to keep track of
your sockets and which one has the highest value. As you can imagine, this method is cumbersome; it's
easier to just pass in the maximum value of an int, which is logically the highest value a socket
descriptor can have. For a 32-bit system, you can pretty much assume that this is below the
hexadecimal value 0x7FFFFFFF, which is the highest value for an int. Whether this changes on 64-bit
systems remains to be seen.

NOTE

You shouldn't really pass in 0x7FFFFFFF to the function, because that wastes a lot of time on
UNIX-based systems. Since this is just a simple demo, I'm not terribly concerned about it, but
when I get to the SocketLib in Chapters 4 and 5 , you'll see me implement a better method.

The next three parameters of the select() function are all fd_sets, which are structures that keep
track of a set of sockets. (fd means file descriptor, because in UNIX, sockets are files.)

You can use four helpful functions that relate to fd_sets: FD_ZERO, FD_SET, FD_CLR, and FD_ISSET.

They clear an entire set, put a descriptor in a set, remove a descriptor from a set, and check to see if a
descriptor is in a set, respectively. This example uses the four functions. The example assumes that
sock is already defined elsewhere:

struct fd_set set; // declare the set
FD_ZERO(&set); // clear everything from the set
FD_SET(sock, &set); // add sock to the set
FD_CLR(sock, &set); // remove the socket from the set
bool b = FD_ISSET(sock, &set); // this will return false

Pretty simple, isn't it?

Now, whenever you want to use the select() function, you need to fill out a set containing all of the
sockets you wish to test using those functions. However, the function accepts three sets of sockets, so
which set does what?

Check the first set of sockets, readfds, to see if you can read from them. For listening sockets, you
can use this set of sockets to check if there are any incoming connections. For data sockets, this set of
sockets tells you if any data has been received.

Check the second set of sockets, writefds, to be sure you can write to them. You can use this set of
sockets to check if you can send data to the socket. (Sending data can block the system if you are
trying to send too much at once.)

Check the final set of sockets, exceptfds, for errors. This set of sockets isn't used as often as the other
two sets, because if an error occurs during the other operations, they return an error immediately
anyway.

The final parameter to the function is a pointer to a timeval structure:

struct timeval {
 int tv_sec; // seconds
 int tv_usec; // microseconds
};

This structure essentially holds a number of seconds and microseconds, which the select function is
supposed to wait for. If you set both values to 0, the function essentially returns immediately. If you
pass NULL, the function waits forever, essentially blocking until something happens.

NOTE

Even though the timeval structure has a microsecond value, it's no where near as accurate as
that. You may find yourself waiting several thousand microseconds for the function to return,

even if you specified 1!

Instead of always creating a new structure whenever I call select, I like to create a global 0-time
timeval structure and use that to pass into the function.

So, finally, take a look at the function in action (assuming lsock and dsock are listening/data sockets
that have been created previously):

struct fd_set set;
FD_SET(lsock, &set);
FD_SET(dsock, &set);
struct timeval zerotime;
zerotime.tv_usec = 0;
zerotime.tv_sec = 0;
int err = select(0x7FFFFFFF, &set, NULL, NULL, &zerotime);

The function has a few different return values. If the function times out without finding sockets with
activity, it returns 0. If there is an error, the function returns -1. If there are sockets with activity, the
function returns the number of sockets that have activity.

So how do you know what sockets had activity? The function physically changes the three sets that
were passed into it and removes every socket from the set that had no activity. Therefore, you need to
go through each set, find out which sockets are still in them, and take care of them.

In the previous code example, the set variable contains lsock if there are any incoming connections,
and dsock if the socket receives any data.

Easy, isn't it?

Demo 2.3 Hello Internet Server v2

Now that you know how to use the select() function, I want to show you how to actually use it to
create an enhanced version of the "Hello Internet Server" program, Demo 2.1.

Instead of accepting just one packet, this program goes through a perpetual loop, using the select()
function to poll the open sockets to see which have activity on them. Sounds easy, doesn't it?

This demo can be found in the directory /Demos/Chapter02/Demo03-HelloInternetServerV2/, in the
file Demo03.cpp. As with the other demos in this chapter, this one also begins with Code Blocks 2.1
and 2.2, so I do not show them.

This time, a socket management system is needed to keep track of all of the open data sockets. To
store them, I am using a vector, which is essentially an array. (See Appendix C on the CD if you are
unfamiliar with vectors.) This is how the main routine of the demo starts:

int main() {
 int err; // for getting errors
 int lsock; // listening socket
 vector<int> socketlist; // list of sockets

 // start the socket library
 StartSocketLib;

There is an error variable, a listening socket, and a vector of data sockets that is currently empty.

After this, Code Block 2.3 is inserted (see Demo 2.1), and that basically takes care of creating lsock
as a listening socket.

NOTE

I call the vector a "list of sockets," but don't confuse that with the STL container called list .

The following code comes after the listening socket has been created. It basically creates all of the
variables you need for the demo:

 fd_set rset; // the read-set
 int i; // a generic iterating variable

 struct timeval zerotime; // the zero-time timeval structure
 zerotime.tv_usec = 0;
 zerotime.tv_sec = 0;

 char buffer[128]; // used for getting messages
 bool done = false; // used for quitting
 vector<int>::iterator itr; // a vector iterator

This should be self-explanatory. In the next part, the loop is begun, and the socket set is cleared out
and filled with the listening and data sockets:

 while(!done) {
 // clear the set
 FD_ZERO(&rset);
 // add the listening socket
 FD_SET(lsock, &rset);
 // add all of the data sockets
 for(itr = socketlist.begin(); itr != socketlist.end(); itr++)
 FD_SET(*itr, &rset);

After the set is filled with all the sockets you want to check, you can call the select function to find
out which sockets have activity:

 i = select(0x7FFFFFFF, &rset, NULL, NULL, &zerotime);

After that, I check to see if i is more than 0, which indicates that there were sockets with activity. If
there was activity, I check to see if there are any incoming connections on the listening socket:

 if(i > 0) {
 if(FD_ISSET(lsock, &rset)) {
 // incoming connection
 int dsock = accept(lsock,
 (struct sockaddr*)&socketaddress,
 &sa_size);

 // add the socket to the list
 socketlist.push_back(dsock);
 }

After that, I loop through every data socket in the vector and check to see if there is activity on any of
them. If there is activity on any of them, the function attempts to receive the data:

 // loop through each socket and see if it has any activity
 for(itr = socketlist.begin(); itr != socketlist.end(); itr++) {
 if(FD_ISSET(*itr, &rset)) {
 // incoming data
 err = recv(*itr, buffer, 128, 0);

At this point, err should contain the number of bytes received: 0 if the socket was closed, or -1 if
there was an error. Here is the code that handles that:

 // quit if there's an error:
 if(err == -1) {
 cout << "Socket receiving error!" << endl;
 return 0;
 }

 // just shut down and close sockets that have been disconnected
 if(err == 0) {
 shutdown(*itr, 2);
 CloseSocket(*itr);
 socketlist.erase(itr); // erase socket from list

 // move iterator back because we removed an item:
 itr--;
 }

 // write out the data to the server window:
 else {
 cout << "Data: " << buffer << endl;
 if(strcmp(buffer, "servquit") == 0)
 done = true;
 }
 }
 }
 }
 }

Most notable is the code that checks to see if the socket was disconnected. If it was disconnected, the
function calls the shutdown and CloseSocket functions, and then the socket is removed from the
vector. The iterator is decremented at the end of that block, because you've deleted an item, and the
iterator skips over the next item in the vector if it isn't decremented.

The last block prints out the data it has received and checks to see if the text was servquit, which
means a message was sent by the client telling the server to shut down.

Finally, here is the code that closes all sockets that are still open and shuts down:

 shutdown(lsock, 2);
 CloseSocket(lsock);

 for(i = 0; i < socketlist.size(); i++) {
 shutdown(socketlist[i], 2);
 CloseSocket(socketlist[i]);
 }

 CloseSocketLib;
}

Well, that's all there is to it. So now you can try compiling and running it. You can use Demo 2.2 to
connect to this server, but it only prints the same message over and over; the server never quits. That's
okay though; you can press Ctrl+C on your keyboard to halt the program.

Demo 2.4 Hello Internet Client v2

Now that you've got a more flexible server running, you'll probably want a more flexible client as
well. Luckily, only a few more changes are needed to enable the client to send any message you want.
I've also decided to add the ability to send more than one message before quitting.

The demo can be found in the directory /Demos/Chapter02/Demo04-HelloInternetClientV2/, in the
file Demo04.cpp. As with all the other demos in this chapter, it is a console app, and can be compiled
using the instructions from Appendix A (on the CD).

The demo starts off with Code Blocks 2.1 and 2.2 and also uses Code Block 2.4 (from Demo 2.2,
shown previously). So at this point in time, you have a connected data socket called sock, and you're
ready to start sending data!

This first section of code starts a loop that loops until the user tells it to stop, and gets user input from
the console, separated by line:

 bool done = false;
 cout << "Type data to send now:" << endl;

 while(!done) {
 // get data to send
 cin.getline(message, 128);

The getline() function of cin basically tells it to get data and store it into the message buffer until the
user presses Enter, or 128 characters are reached. Once you've done that, you can send the data:

 // send data
 err = send(sock, message, strlen(message) + 1, 0);
 if(err == -1) {
 cout << "Socket sending error!" << endl;
 return 0;
 }
 if(strcmp(message, "servquit") == 0 ||
 strcmp(message, "quit") == 0) {
 done = true;
 }
 }
 shutdown(sock, 2);
 CloseSocket(sock);
 CloseSocketLib;
}

If the message is equal to servquit or quit, the demo quits and closes its sockets. That's pretty much
it.

You can now run the program in conjunction with Demo 2.3. Figure 2.11 shows the programs in

action.

Figure 2.11. The server (top) and two clients are running in conjunction.

Essentially, what you've created is a one-way chat server; people can send messages to the server,
but the server doesn't send anything back! It's not too useful, but it's still cool.

Summary

This is a big chapter, and I've thrown a lot of material at you. Fully covering the substantial subject of
sockets programming would require an entire book. (Indeed, I've got several socket books of more
than 500 pages sitting next to me right now.) I hope I've given you a full enough picture of using
sockets. As a MUD programmer, the actual network programming aspect is only going to take up a
little of your time, so I want to try to get on to the more interesting topics in the chapters that follow.

Chapter 3. Introduction to Multithreading
Multithreading is a subject that people love to hate, but it is pretty much a requirement for modern
computing. The way things are happening in the computing world, it looks as if multiprocessing is the
wave of the future. If you look at a modern video card, you can see that it's practically a general-
purpose CPU on its own, and one day the entire concept of a chip specifically dedicated to video
processing may be outdated; instead, you'll have many chips in every system, much like today's top-
of-the-line four-processor workstations.

Multithreading harnesses the power of multiple processors, and it is also a virtual necessity when
dealing with networked programming (even on a single processor machine). In the previous chapter, I
showed you ways to poll the network system to see if there is any data available, but this method is
wasteful. Wouldn't you rather have the network system tell your program, "Hey! I've got some data
here!" instead of your program saying, "Anything yet? Anything yet? Anything yet?" like an annoying
kid. Multithreading allows you to do this. It is an essential part of modern network programming,
especially for MMOGs, which can have many thousands of open sockets at any given time.

In this chapter, you will learn to:

Understand the advantages and disadvantages of multithreading

Understand the multithreading library used in this book

Implement ThreadLib mutexes

Use demos that illustrate the concepts of the chapter

What Is Multithreading?

To be sure you know what multithreading is, let me give you a quick rundown.

Multithreading is the ability of a computer to run more than one thread of execution at the same time.
(These threads can be part of the same program or separate programs entirely.) Back in the bad old
days, only one program could be running at any given time. You loaded the program and had to wait
until it completed before you went on to anything else. Computers back then were expensive
investments; people would pay millions of dollars for a computer that ran as fast as your average
graphing calculator. To increase the return on the investment, people were allowed to use the
computers for specified tasks, and users were charged by the amount of time they used.

NOTE

Pocket PCs and PalmPCs are already faster than some of the first super computers. Isn't that
nice to know?

Unfortunately, this system was inadequate. Imagine this situation: You've got a brand new computer
capable of doing a million calculations per second, and someone loads a program and tries to run it.
During the program's execution, it needs to stop and ask the operator for input. How fast can the
operator respond? How many millions of CPU cycles are wasted waiting for the operator to type an
entry? Obviously, when computing power was rare, this was seen as an obscene waste, so something
had to be done.

The first time-sharing systems were invented to solve this problem; they were referred to as round-
robin. In case you don't already know, every computer program consists of many instructions that the
processor goes through and executes one by one. This process is called serial execution, because it
executes instructions in a series, as shown in Figure 3.1.

Figure 3.1. The execution order of instructions of two programs is in a serial system.
The first program must complete before the second program starts.

For round-robin execution, however, the CPU switches to the first program, executes a few
instructions, switches to the next one, executes a few instructions, and continues on through all open
programs before returning to the first program. Whenever the CPU switches from one thread to
another, the action is known as a context switch. Round-robin execution is shown in Figure 3.2.

Figure 3.2. In this round-robin multithreaded system, a few instructions for each
program are executed before the CPU moves on to the next program.

Multithreading did wonders for enhancing the efficiency of computers.

NOTE

Modern systems no longer use simple round-robin processing because more efficient methods
for handling tasks have been discovered. These days, most multithreaded systems assign
priority values to threads and use priority queues to spend more cycles on the higher-priority
threads. Addi tionally, programs can be interrupted by important events, and a context switch
can be forced out of order; this is called pre-emption .

As computer chips became cheaper, the Personal Computer (PC) concept became popular. Instead of
logging into a public supercomputer to execute your programs, you can now use a PC any time you
want. Since PCs were designed mainly for single users, they once again devolved into the world of
serial execution. If you remember old operating systems such as DOS, you can remember being able
to run only a single program at any given time. If you were running a word processor and needed to

perform a quick math calculation, you needed to save your work, quit, open a calculator program, then
quit that, and go back to your document. Incredible pain in the butt!

NOTE

It is important to note that single processors do not execute multiple threads at the same time.
They work on one thread for a bit, and then stop working on that thread completely when it
switches to another thread. This gives the appearance that the computer is running many
programs at the same time, but it's really just switching between them really quickly.

Fortunately, within the past few years, multithreading has come back into favor, and our modern
operating systems have supremely efficient threading capabilities. For example, as I write this,
Windows XP reports that I have a total of 329 threads running at the same time. Every single thread is
doing something different, such as running my calculator, my word processor, my paint program,
Internet Explorer, downloads, and so on. It's just amazing what the systems can accomplish now. You
probably think nothing of being able to just press Alt-Tab and move instantly to another program. I
barely remember what it was like before we had systems like this, and I shudder when I think about
the possibility of ever going back.

Multithreading is here to stay.

NOTE

There are some pretty cool proces sor technologies on the road ahead. Intel recently released
its hyperthreading processor, which can actually run more than one thread at the same time on a
single proces sor. AMD has its own solution in the works for the future, which actually has more
than one execution core on the same chip.

What Is a Thread?

A thread is basically just a small independent section of code that the processor runs concurrently
with other threads. A thread isn't necessarily a whole program (programs are commonly referred to as
processes when dealing with multithreading), since a process can create as many threads as
necessary. Figure 3.3 shows the relationship between a process and its threads.

Figure 3.3. Every process has at least one thread: the main thread.

When you begin a process, it spawns one thread, which is the main thread. This main thread is really
just the main() function in a program. You can elect not to spawn more threads (for single-threaded
applications), or you can spawn as many threads as memory allows.

This is where things get sticky, however. At the level of the operating system (which manages all the
threads), threading is rather easy. If every program is single threaded, you can pretty much assume that
these programs will not be sharing memory, so you can set them off on their own threads and execute
them as you see fit.

However, it's not so easy once you have multiple threads within one program. For example, say you
have a program with two threads: the main game loop of your program, and a thread that receives data
from an open socket.

Most of the time, the socket thread is going to be sitting there waiting for data to arrive, and not
wasting CPU cycles by being constantly polled by the main thread. However, how does the main
thread ever find out when data arrives? You need some way to tell the main thread about data arrival,
at which time the main thread can do something with the data. This is usually accomplished using a
shared variable or even a global variable. (This isn't recommended, though.) I'll get into the specifics
later.

Synchronization

The main problem with multithreading, however, is synchronization. For example, in the same
system, whenever you receive data, you shove it into a 128-byte buffer, and then tell the main thread
that data has arrived. What happens if you start receiving more data while the main thread is still
reading the old data? You might accidentally overwrite the data while it's being read! Areas in your
code where these kinds of problems can occur are usually referred to as critical sections.

This is the biggest frustration when dealing with multithreaded applications. It is almost impossible to
keep track of when data is going to be modified by each thread, so you need to enlist the help of
objects that can help you synchronize your threads, without worrying about reading data that is being
written to, or writing to data that is being read.

Mutexes

A mutex (which stands for mut ual ex clusion) is the simplest synchronization structure available. It's
also the most useful. Essentially, a mutex is a Boolean variable associated with an object, and it
determines if the object is locked. If an object is locked, it is being used by a thread, and any other
threads that try to use the object must wait until it is unlocked.

NOTE

In Figure 3.4, I show five different states relating to the mutex: check, wait, lock, process, and
unlock. In reality, almost every mutex imple mentation out there implements the first three
states (check, wait, lock) in one function and calls that "lock." I separated them in the figure to
show you exactly what is happening behind the scenes.

Figure 3.4. Two threads share an object within a timeline and use a mutex to manage
mutual exclusion.

Figure 3.4 shows an example of two threads using a mutex to prevent stepping on each others' toes

when trying to process a single object. The first thread locks the mutex, and then goes on to process
the object. After the mutex is locked, the second thread gets to a point where it wants to process the
object as well, so it checks to see if the mutex is locked. When the second thread sees that the lock is
in place, so it decides to wait for the mutex to unlock. Meanwhile, the first thread completes its
processing and unlocks the mutex. Then the second thread locks the mutex and starts processing the
object. Finally, when the second thread is done, it unlocks the mutex as well.

Essentially, a mutex allows only one thread to lock it, so that whenever other threads try to lock the
same mutex, they must wait until it is unlocked. In an efficient system, the thread that is waiting for the
mutex to unlock should usually be sleeping, which means that the operating system doesn't waste time
processing that thread until the mutex is unlocked. This makes multithreading efficient, because you
don't have to keep polling a variable to see if it is available for use.

Unfortunately, mutexes have some drawbacks. For example, suppose you forget to unlock a mutex? If
so, any threads that attempt to lock the mutex when it is already locked wait forever. They become
zombie threads (yes, that's a technical term) threads that exist, but cannot be used for anything.
Obviously, you don't want this to happen.

NOTE

Always unlock your mutexes when you're done with them.

There's also another problem. What happens if you've got two threads that depend on a single object,
and one of the threads needs to be constantly accessing the object (say, the state of a player in a game,
accessed once per frame, which is about 30 to 60 times a second in a normal game). At the same time,
another thread needs to do a lot of processing on the state. (This processing could take up to 30
seconds if the function is programmed inefficiently, and assumes that it can lock the mutex as long as
it wants to, even if it isn't using the locked object.) What would happen? The thread that needs lots of
updates would essentially be halted for a long time, waiting for the hog thread to finish, and your
game would appear laggy.

NOTE

Don't lock your mutexes for a long time. Lock them only when you are directly accessing the
object, and unlock them the moment you are finished accessing the object.

Semaphores

A semaphore object is pretty easy to understand as well. Basically, a semaphore is an object that
allows a certain number of threads to access an object before it starts blocking.

If you think about it, a mutex is really a semaphore that allows just one thread to access an object. A
semaphore with a value of two would allow the first two threads to access the object, but any after
that would have to wait until one of the first two threads unlocks itself.

NOTE

Semaphores are the flags that were waved by sailors to communicate with other ships on the
sea, before wireless radio communication became popular. In essence, sema- phore objects in
computers do the same thing: They act as signals to other threads.

Figure 3.5 shows a thread diagram for three threads that want to access a semaphore that only allows
two threads to access it.

Figure 3.5. Three threads are synchronized with a two- thread semaphore. Only two
threads are allowed to access the object (gray area) at any given time.

Semaphores, while more flexible than mutexes, really aren't as useful as mutexes. Sema-phores are
most useful when used in conjunction with mutexes, so that you can create a system that allows many
threads to read an object and only one to write to it when nothing is reading it.

This situation doesn't come up too often; indeed, some threading libraries don't even have
semaphores, so I think that's about as much as I want to say about them.

Condition Objects

The third and final synchronization object I want to show you (don't worry, there are many more if
you're interested) is called a condition object. These things are pretty cool and give you lots of
control over the timing of thread execution.

Basically, a condition object has two main commands: wait and signal.

Say you have a bunch of threads that control the Artificial Intelligence (AI) of a group of bad guys.
They're all lounging in the Bad Guy Headquarters Recreation Room, waiting for someone to break in.
There's no need to continuously process their AIs, so you want to put them to sleep. But, you want an
easy way to wake them up when the alarm is pulled, right?

So, you have a condition object representing the alarm, and then tell all the threads of the bad guy to
wait on the alarm condition. When the alarm is tripped, the alarm condition is signaled, and all of the
threads waiting on the condition are woken up.

Figure 3.6 shows this process with four threads.

Figure 3.6. Of the four threads, three wait on a condition object, and one signals the
condition.

Problems with Multithreading

Multithreading is wonderful! Multithreading is great! Multithreading is a pain in the a**. When you

first start using it, multithreading seems like a Holy Grail to programmers. Who wouldn't want to have
hundreds of threads running at the same time? Who wouldn't want to have programs seamlessly scale
upward in performance when moved onto two-, four-, or even eight-processor servers?

Then you start experimenting with threads. You create some test programs and run them and then slam
your keyboard against your monitor when half of your threads stop working for no reason at all. Ah
yes, threads can be the bane of your existence. Let me show you a few ways in which threads can turn
you into a frustrated person.

Threads Use More Memory

If you know how modern computers work, you are aware that each program has a data structure
called a stack that it uses to keep track of local data for every function it is executing. If you don't
know much about stacks, it's no big deal; all you need to know is that your program has a stack.
Depending on how many functions are called, program stacks usually take up a fair amount of
memory. Some systems use resizable stacks, and some use fixed size. Either way, the operating
system tries to make absolutely certain that the stack is big enough to prevent overflowing when many
layers of functions are being called at the same time.

NOTE

Each thread keeps track of other things as well, such as the exact state of the CPU. However,
in relation to everything else, the stack is by far the largest piece of a thread's overhead.

When you get into multithreading and many threads are acting like little programs of their own, you
suddenly realize that every thread needs its own stack. This can be a significant hindrance, if you
planned on having threads for every little task in the entire program, because even the smallest of
threads needs its own stack.

Depending on the implementation, stack sizes can range from a few kilobytes to multiple megabytes.
So you always need to keep that in mind before you go crazy creating thousands of threads.

Threads Require More Processing

On a single-processor system, threads require additional processing overhead, because the operating
system performs calculations to figure out which thread should run when and how long each thread
should run. If you have thousands of threads, this takes a fair amount of processing power and may
slow down your program in the long run. However, for systems that use blocking IO calls, threading
is an absolute necessity, so there is really no way around it.

An important consolation exists, however. The great thing about multithreading is that theoretically, if

you run your program on a two-processor machine, most (not all) of the processing overhead
disappears, and your program runs faster than it would on a one-processor machine.

NOTE

It is a common mistake to think that if you run a program on a two-processor machine, it will be
twice as fast. How ever, this is definitely not the case. The same goes with four- or eight-
processor machines as well. This is caused by the law of diminishing returns. Every time you
introduce a new processor on a machine, you introduce more over head as well. By far, the
largest problem for n- processor machines is memory bandwidth . Only a certain amount of
memory can be transmitted from main memory to each of the processors in a given amount of
time, so when you start adding processors, they often want more memory than the memory bus
can handle. In those cases, you'll end up with a system in which most of the processors will be
waiting to read from or write to memory most of the time, instead of actually performing
processing tasks.

Deadlock

Deadlock is an extremely nasty issue, and just mentioning it is enough to cause most programmers to
run away screaming hysterically. If you do not think about every single way your threads will interact
with other threads, I guarantee you will run into deadlock.

So what is deadlock? Imagine you have two resources, A and B. You also have two threads, 1 and 2.
Thread 1, using a mutex, locks resource A and uses it. At the same time, thread 2 needs resource B, so
B is locked by thread 2. A little bit later, thread 1 decides it needs to use resource B, so it tries to
lock B as well. Because a mutex waits until the resource is available, thread 1 starts to wait. Then, a
little bit later, thread 2 decides it needs resource A, so it tries to lock resource A and enters a mutex-
waiting loop as well.

So what happens? Thread 1 is waiting for B, which 2 owns, but since 2 is waiting for A, which 1
owns, it cannot unlock B. Therefore, both threads wait for the other to release its resources, which
never happens. This is deadlock.

Figure 3.7 shows this.

Figure 3.7. This shows you a simple case that can lead to deadlocktwo threads try to
acquire the same resources.

There are many ways deadlock can occur, and they may not all be immediately apparent. This is one
of the most difficult problems you will face when developing multithreaded programs.

The programs in this book, however, won't be incredibly complex (in regards to threading) so
deadlock shouldn't be a serious concern.

Corruption

I have mentioned data corruption before, but it is such a serious concern with multithreading that I feel
I must mention it again. Data corruption is a huge problem with multithreading if you do not use
proper synchronization structures such as mutexes to control exclusive access to your data. You must
be absolutely certain at all times that data is modified only when the thread modifying the data knows
that nothing else is trying to read or write from it at the same time. Data contention can be the source
of many unexplainable bugs.

Debugging

Debugging a multithreaded program is hell. It is extremely difficult to step through a multithreaded
program because most debuggers don't support multithreading.

To make things worse, some debuggers that do support multithreading let other threads execute
normally, while the thread you are debugging is essentially stopped. This makes it extremely difficult
to time things correctly in a normal program.

Finally, multithreaded programs are nondeterministic. This means that the operating system controls
when threads are started and stopped, and you have absolutely no control over it. In a singlethreaded
program, you can simulate circumstances that led to a crash in your game by repeating the same inputs
and using the same seed for the random number generator, but you can't simulate the execution order
of threads. Because of this, your program may crash one time out of a hundred, but you cannot track
down the cause of the crash easily because the circumstances that led to the crash will rarely repeat
themselves!

Feel free to whack your head against the table when things like this happen.

Don't Let the Bedbugs Bite

It's always amusing to watch a game programmer write his first nongame application. You see, as
game programmers, we're accustomed to havingactually, we demand having complete control of the
computer. We need to squeeze every last bit of processing power out of the machine, and if the player
is dumb enough to be running Word or Excel in the background, well, that's his fault!

So when a game programmer starts working on nongame applications, he usually takes the same
approach to the program and assumes that he has complete control over the machine. Usually we have
a loop-based program that endlessly runs, waiting for something to happen or updating the screen at a
blazing 60 frames per second.

Well, regular applications don't need this kind of power; and more often than not, we're wasting
cycles when we program like this. Nothing is funnier than seeing a game programmer's first Telnet
client application eat up 100% of the CPU cycles because it was programmed like a game.

To see an example of what I am talking about, go back to Chapter 2, "Winsock/Berkeley Sockets
Programming," for a minute. I want you to run Demo 2.1. Once it is running, go about your regular
computing tasks, such as opening up a word processor, or something like that. Nice and fast, eh? Now
close the demo, and run Demo 2.3 instead. Now try doing your regular computing tasks. Not so fast, is
it? In fact, even on a top-of-the-line computer system, your entire computer will chug along as if it's
10-years-old already! This, ladies and gentlemen, is not a good thing.

What was going on with these demos? Demo 2.1 uses blocking functions, which I've explained
earlier. When a blocking function is called, the operating system puts that thread to sleep until
something important happens, and then wakes it up.

Demo 2.3, however, doesn't play nicely with the operating system. Instead, it just endlessly loops,
asking the Socket Library, "Did anything happen yet? Did anything happen yet?" until something
actually happens. The application doesn't take into consideration that it's just running along, wasting
everyone's time.

Sometimes, you've got to play along nicely with the operating system, even if you don't want to. Enter
the concept of manual sleeping; almost every threading library comes with the ability to manually
sleep. At the end of your game loop, you should tell the operating system that you want the thread to
sleep. You're almost always allowed to specify the minimum amount of time you want a thread to
sleep, which guarantees that the thread will sleep for at least that long, but possibly longer. Whenever
you manually tell the operating system to put a thread to sleep, you're handing control over to the OS.

ThreadLib

Almost every operating system (at least those that support multithreading) have built-in multithreading
libraries. Unlike the Sockets API, however, the libraries aren't very compatible.

Therefore, you need to select a library according to the platform you're developing on. Win32 has
threading built in, so that is a great help. Linux usually depends on the POSIX Threads library, more
commonly known as pthreads. I will be using both of these libraries to create our own ThreadLib
library.

Since threading libraries usually differ, I want to take you through the design of the ThreadLib library
that I use for the book before I go on to show you how to use threads.

To start off, I'll show you the main functions:

Creating a thread

Killing a thread

Waiting for a thread to finish

Getting the thread's ID

Yielding a thread to the operating system

The entire library is enclosed within the ThreadLib namespace, by the way. Namespaces are a very
handy way of avoiding naming conflicts with other pieces of code, and I explain them in much more
detail in Appendix C, "C++ Primer" (found on the CD).

Headers and Typedefs

For starters, different thread libraries use the headers that are in different files. Depending on which
compiler you are using, you'll want to include either windows.h (Win32) or pthread.h (Linux):

#ifdef WIN32 // Windows 95 and above
 #include <windows.h>
#else // Linux
 #include <pthread.h>
#endif

After that, I've got several typedefs, intended to make the library look cleaner. For example, I've got a
function pointer typedef. (Again, see Appendix C on the CD if you are unfamiliar with function

pointer typedefs.)

typedef void (*ThreadFunc)(void*);

This line defines a function pointer type that returns nothing (the first void) and takes a void pointer as
its parameter. The type is named ThreadFunc. So what's the purpose of this? Whenever you create a
new thread, you also need to tell it to execute a function. This typedef describes the kinds of functions
that are to be executed as new threads.

The parameter void* allows you to pass in any single object as a parameter to the function. This is
handy, because you can pass in a pointer to a number or a class, or you can even create your own
collection class that has multiple data members, representing multiple arguments to a function. This
will be demonstrated later on, when I show you how to create new threads.

Next on the agenda is the ThreadID typedef/class. Whenever you create a new thread, you need some
way to reference it later on, in case you want to kill it, or wait for it to finish.

Let me start off by saying that Linux has taken the easy route and uses a single datatype to refer to
threadspthread_t. Nice and easy.

Windows, on the other hand, is a pain in the butt. You see, a thread in Windows has two values
associated with it. The first is a HANDLE to the thread object, which is the WIN32 API's funky version
of a pointer. The only difference is that you can have many handles all with different values referring
to the same object. Therefore, there is really no way to compare two different handles to see if they
point to the same object. And, it gets better. It turns out that Windows keeps track of every handle it
passes out, and if you don't close every handle you have open, Windows never deletes the object that
the handle refers to. (ugh!) Not only that, but sometimes when you request a handle to a thread, it
gives you a pseudo-handle, which, as far as I can tell, is good for nothing!

Because of this crazy behavior of Windows threads and the fact that you cannot get the original handle
to a thread once you're in a thread, I've made a hack of sorts to make the library easier to use. Here
are the typedefs for the ThreadID:

#ifdef WIN32 // Windows 95 and above
 typedef DWORD ThreadID;
 std::map< DWORD, HANDLE > g_handlemap;
#else // Linux
 typedef pthread_t ThreadID;
#endif

On the WIN32 side of things, there are two lines of code: The ThreadID type is defined to be a DWORD,
and a global std::map is created as well. WIN32 uses DWORDS to hold thread ID numbers, so that's

what I'm going to use as well. The map may not be as obvious, though. If you're unfamiliar with maps,
I cover them in more detail in Appendix C (on the CD), but let me just give you a quick rundown here.
A map is a data structure that stores key-data pairs. A map assumes that whenever you have a piece
of data you want to store, you also have a unique key that is related to the data. For example, if you
live in the USA, a social security number could be a key referring to a person.

So, in this case, I have a unique key (thread ID number) referring to data that I want to store (the
handle to the thread). Whenever the ThreadLib needs to find the handle of a thread, it looks it up in the
table. That way, the user's program only needs to know about the thread ID number and never needs to
mess with the handle. This implementation hides the ugly Win32 implementation from the user.

The Linux version is much simpler; it just uses the pthread_t datatype.

From here on, you can use the ThreadID datatype to manage the threads within your programs.

Creating a New Thread

I mentioned previously that whenever you create a new thread, it needs a function pointer to execute.
In this section, however, I'm discussing the function signatures of the functions needed by the two
threading APIs, and these are different.

NOTE

A function signature (sometimes referred to as footprint) is just a formal phrase that describes
the parameters and the return type of a function. For example, the signature of int foo()
means that it returns an integer and takes no parameters. The function int bar() has the same
signature, but int baz(float blah) has a different signature, since it has different
parameters.

For example, the WIN32 threading library requires thread functions to be of the form

DWORD WINAPI Function(void*)

This means that the function returns a DWORD (a typedef that represents a 32-bit integer), has the WINAPI
function calling style, and takes a void* as its parameter. This is an advanced topic that I don't get to,
so don't worry about it; all you need to know is that the keyword WINAPI is required in front of the
function name.

On the other hand, pthreads requires functions that look like this:

void* Function(void*)

This version returns a void*, has no function calling style, and takes a void* as its parameter. You
may recall that I defined the ThreadFunc typedef to refer to functions of the form

void Function(void*)

This means that the ThreadFunc typedef is almost the same as the pthread style, except it has no return
value.

Ultimately, I want you to use functions of the last form with the threading library. This made my job a
little harder, because I needed to come up with a clever way to make the library convert ThreadFunc
functions into the native platform signature, which is not an easy task. I considered making a few
#define macros to handle the differences between the return values and the calling style, but that
method is messy. Instead, I've opted for a dummy function system (sometimes called a proxy system).

Figure 3.8 shows this dummy system. When a thread is created, it is told to call the appropriate
dummy function for the current platform, which in turn calls the intended function.

Figure 3.8. The ThreadLib uses this dummy function system.

So whenever you want to create a thread, you pass in both the function you want to execute (in
ThreadFunc form) and the parameters. In turn, the function packages the function and parameters into a
dummy data structure, and passes it to the dummy function, which then executes the function you
wanted.

ThreadLib::DummyData Structure

The dummy thread functions need to know two things: the function the dummy thread needs to call,
and the data to pass into it. Since the dummy function can only accept a single void* as a parameter,
you need to package these two things into a class of their own. Here is the DummyData class:

class DummyData {

public:
 ThreadFunc m_func;
 void* m_data;
};

ThreadLib::DummyRun Function

Here is the dummy function that will run the function you want it to run:

#ifdef WIN32
DWORD WINAPI DummyRun(void* p_data)
#else
void* DummyRun(void* p_data)
#endif
{
 // convert the dummy data
 DummyData* data = (DummyData*)p_data;

 // run the function with the given data
 data->m_func(data->m_data);

 // now delete the data
 delete data;

 // and return 0.
 return 0;
}

NOTE

Passing parameters into threads is a sticky business. You should always have a well-defined
process to handle what happens to the parameters once the thread has executed. If you don't,
you'll end up with memory leaks, and that's always a bad thing. This is also a reason to avoid
killing threads prematurelyif the thread is supposed to delete its own parameters when it's
finished with them, the thread won't get a chance to delete the parameters if you kill the thread
manually.

The most interesting part of the code is the first five lines. The function signature defined depends on
the system you are using. The rest of the function, however, is platform independent.

First the code casts the void* parameter into a DummyData*. The next command executes the m_func
function pointer contained within the dummy data class, also passing it the m_data data.

Note that since a pointer is passed into the function, I need to allocate the DummyData class outside this
function, and if I don't delete it, I'll have a memory leak. That works well for this purpose, because
every call to the thread creation function creates a new dummy data class, and I can safely delete the
class when I no longer need it.

ThreadLib::Create Function

After all this discussion, this section describes the part of the library that actually creates a new
thread. For each operating system, you'll be calling a different function to create a thread
(CreateThread for Windows, pthread_create for Linux).

First, let's look at the function signature:

inline ThreadID Create(ThreadFunc p_func, void* p_param)

The function returns a ThreadID, and its parameters are a ThreadFunc pointer and a void pointer. The
function will create a new thread that will execute p_func using p_param as its argument.

Here's the first block of code from the function:

 ThreadID t;
 // create a new dummy data block
 DummyData* data = new DummyData;
 data->m_func = p_func;
 data->m_data = p_param;

Basically, a new DummyData structure is created and set up.

 #ifdef WIN32 // create a WIN32 thread
 HANDLE h;
 h = CreateThread(NULL, 0, DummyRun, data, 0, &t);
 if(h != 0) {
 // insert the handle into the handlemap
 g_handlemap[t] = h;
 }
 #else // create a Linux thread
 pthread_create(&t, 0, DummyRun, data);
 #endif

On the WIN32 side, a new HANDLE is created. This will store the handle of the thread after the
CreateThread() function returns. CreateThread uses the parameters described in the following
paragraph.

The first parameter is a pointer to a structure that describes security attributes for the thread. Since I'm
not using any of these features, I just pass NULL into it, which tells the function to use the default
attributes. The next parameter is the initial stack size of the thread in bytes. Since the operating system
automatically resizes this anyway, I just pass 0 in. This tells the operating system to use the default
size, which can vary with the system setup, but that doesn't really matter much. After that, I pass in a
pointer to the DummyRun function and the dummy data structure as well. The fifth parameter is a
collection of flags to the operating system, none of which are interesting enough to mention, and a
value of 0 is sufficient. The final parameter is a pointer to the ThreadID type, and the function will put
the thread ID number into it.

After the new thread is created, this function checks to see if the handle is valid (not zero). If the
handle is valid, it needs to be inserted into the handle map. As you can see from the code, this is an
easy task to accomplish. You can insert a key/data pair into a map just as you would use an array,
where t is the key (you can think of it as an index of an array, but it isn't actually an array), and h is
the data to store in the table.

On the pthreads side of things, the function is similar, but simpler as well. The first parameter is a
pointer to the thread ID so that it can be filled out when the function is complete, and the second
parameter accepts creation flags, which are of little interest to us. The final two parameters are the
function pointer and the dummy data structure.

Here's the final block of code:

 if(t == 0) {
 // delete the data first
 delete data;
 // throw an error
 throw Exception(CreationFailure);
 }
 return t;
}

This code checks to see if the thread ID is valid (any number except 0). If the ID is 0, the thread
creation failed, so steps need to be taken to report the error and prevent memory leaks. As you can
see, this block of code deletes the dummy data that was created earlier and throws a
ThreadLib::Exception of type CreationFailure. I prefer exceptions because they greatly simplify
code and don't usually clutter it up as traditional error checking code does. If you're not familiar with
exceptions, see Appendix C, found on the CD.

Finally, the ID of the thread is returned, and you now have a new thread!

Getting the ID of a Thread

When you're in a thread executing code, you may need to find out which thread you are in by using the
simple functions for obtaining the ID that are shown here:

inline ThreadID GetID() {
 #ifdef WIN32
 return GetCurrentThreadId();
 #else
 return pthread_self();
 #endif
}

On the WIN32 side of things, you can call the GetCurrentThreadID() function to get the thread ID.
The Linux version uses the pthread_self() function.

Waiting for a Thread to Finish

Sometimes you'll want to be able to stop and wait for a thread to finish. This is usually helpful if you
want to run parallel threads and have the main thread wait until the parallel threads are finished. This
is a relatively easy thing to do.

In Windows, all you need to do is call the WaitForSingleObject() function with the threads handle,
and the function will wait until the thread is done. Linux has a similar function, called
pthread_join(), which joins the thread you want to finish with the current one. The two functions do
the same thing, really.

inline void WaitForFinish(ThreadID p_thread) {
 #ifdef WIN32
 // look up the handle and wait for the thread to finish
 WaitForSingleObject(g_handlemap[p_thread], INFINITE);
 // close the handle of the thread
 CloseHandle(g_handlemap[p_thread]);
 // remove the handle from the map
 g_handlemap.erase(p_thread);
 #else
 // "join" the thread. This essentially transfers control over to
 // the thread and waits for it to finish.
 pthread_join(p_thread, NULL);
 #endif
}

For the WIN32 code, the WaitForSingleObject() function needs a handle to the thread you want to
wait for. Since the function accepts a ThreadID as its parameter, and not a handle, you'll need to
consult the global handle map to look up the handle for the thread. Since maps are nice and easy to
use, you can access a handle just as you would an array, using this code: g_handlemap[p_thread]. The

code returns the handle of the thread. Pretty simple, don't you think? The second parameter of the
function is how long you want to wait; you could wait for only a specified time, but I rarely need that
kind of flexibility, so I just enter INFINITE as the time parameter. Of course, if the thread never
finishes, you could run into some zombie-thread problems, but if you design things well, you
shouldn't.

NOTE

Since WIN32 threads aren't actually removed from the system until you close the handle, you
should try to call the WaitForFinish() functions on your threads, even if you know they are
finished, just so the functions can close the handle. It's good program ming practice, since you
really shouldn't just launch a new thread and hope that it will finish correctly.

After you've waited for the thread, you can be certain that the thread is completed, so you should
close the handle of the thread, and delete the handle from the handle map.

The Linux version is easy. It accepts the thread number and a pointer to some attributes that I'm not
really concerned about, so I just pass NULL instead.

Killing a Thread

Sometimes, although rarely, you'll need to kill a thread outright. It's not recommended that you do so,
however, because killing threads tends to lead to all sorts of problems, most notably memory leaks.
However, you're still allowed to do so. Here's the code to kill a thread:

inline void Kill(ThreadID& p_thread) {
 #ifdef WIN32
 // terminate the thread
 TerminateThread(g_handlemap[p_thread], 0);
 // close the handle of the thread
 CloseHandle(g_handlemap[p_thread]);
 // remove the handle from the map
 g_handlemap.erase(p_thread);
 #else
 // cancel the thread.
 pthread_cancel(p_thread);
 #endif
}

As with the WaitForFinish() function, the WIN32 TerminateThread() function also requires a handle,
so it is looked up in the handle map and passed into the function. The second parameter specifies the
return value of the function. It's not very useful for what I'm doing here, so I just use 0.

After the thread is terminated, the function works the same way as the WaitForFinish() function: It
closes the handle and erases it from the handle map.

The Linux version simply calls the pthread_cancel() function to cancel the thread.

Yielding a Thread

Earlier, I told you about putting a thread to sleep. This is a useful function for a threading library, so
that you can play nicely with the operating system.

I use the Sleep function of Windows, and Linux's usleep function to tell the threading system to put the
current thread to sleep.

There's one little "gotcha," though; usleep accepts the sleep time in microseconds, rather than the
usual milliseconds. Don't ask me why the creators of the function decided they needed that kind of
resolution, but that's just how it is. I use a default of 1 millisecond for my function, but you can pass in
anything you like:

inline void YieldThread(int p_milliseconds = 1) {
 #ifdef WIN32
 Sleep(p_milliseconds);
 #else
 usleep(p_milliseconds * 1000);
 #endif
}

Demo 3.1Basic Threading

Now that I've shown you the basics of the ThreadLib, I want to show you how to create a program to
demonstrate threading. For this demonstration, I'll show you three threads: The main thread will
spawn two child threads, and each child thread will print out 10,000 letters. I'll call these the "a" and
"b" threads, since the first one prints out "a"s and the second "b"s.

The demo is located on the CD in the directory /demos/Chapter03/Demo03-01/. The source is
contained within Demo03-01.cpp. Instructions for compiling this demo can be found in Appendix A,
"Setting Up Your Compilers" (found on the CD).

First, the thread library header file is included:

#include "ThreadLib/ThreadLib.h"

After that, the PrintThread function is defined. This function takes a single character as its parameter
and prints that 10,000 times:

void PrintThread(void* data) {
 // convert the data passed in into a character.
 char c = (char)data;

 for(int i = 0; i < 10000; i++) {
 cout << c;
 cout.flush();
 }
}

Since this function is meant to be passed into the ThreadLib::Create() function, the parameter must
be of type void*. Since C++ allows you to cast anything into a void*, I exploit this and assume that the
void* is actually just a char and not a pointer to anything. So on the fourth line of code, the data is
cast into a character.

After that is the loop that runs for 10,000 iterations, printing out one character at a time, and flushing
the buffer after each character is printed, so that the character is actually printed to the screen
immediately. (If you don't manually flush it, cout tends to buffer a bunch of characters before it
actually prints them to screen.)

Now, the main thread:

int main() {
 ThreadLib::ThreadID a, b;
 a = ThreadLib::Create(PrintThread, (void*)'a');
 b = ThreadLib::Create(PrintThread, (void*)'b');

 ThreadLib::WaitForFinish(b);

 ThreadLib::WaitForFinish(a);

 char c;
 cin >> c;
 return 0;
}

Two thread IDs are created: a and b. Then two new threads are created, both pointing to the
PrintThread() function, one with the letter "a" as its parameter, and the other with the letter "b" (both
casted into void*s). Once those threads are created, the main thread calls the WaitForFinish()
function to wait until both threads finish executing.

Finally, the last three lines of code are input from the user and return 0. Windows NT has a bad habit
of closing a console program window when it finishes, so this procedure prevents that from
happening.

Figure 3.9 shows the results of the program when I ran it on my Windows XP computer.

Figure 3.9. Your results probably won't be the same as this screenshot from Demo
3.1, because all operating systems handle threading differently depending on what

you have running at the time.

As you can see from the figure, the two printing threads flip-flop back and forth, each printing a run of
around 18 characters before the other thread kicks in.

Demo 3.2Yielding

Now that you have experienced creating threads and waiting for them to finish, I want to show you
how to have more control over your threads. For this example, I'm going to make a simple change to
Demo 3.2, so that the PrintThread function will add a YieldThread() function call after every letter it
prints:

void PrintThread(void* data) {
 // convert the data passed in into a character.
 char c = (char)data;

 for(int i = 0; i < 10000; i++) {
 cout << c;
 cout.flush();
 ThreadLib::YieldThread();
 }
}

Ta-da! That's it. The demo can be found on the CD in the directory /demos/chapter03/ demo03-02/ in
the file demo03-02.cpp.

Now, what do you think will happen when you run this demo? Will the threads print out characters in
alternating runs? Probably not. Whenever a character is printed, the function tells the operating system
to yield and let another thread take a swing. Will this mean that we'll see nothing but an "abababab"
pattern? Maybe not. Even though the threads may be queued alternately, that doesn't mean the
operating system will run them in that order. We'll see what happens, though.

Figure 3.10 shows a screenshot of the program running on my Windows XP machine.

Figure 3.10. This is a screenshot from Demo 3.2.

No matter how hard I tried, I couldn't get the program to display something other than repeating "ab"s.
But even so, you're still not guaranteed to get that pattern, so just be aware of that fact.

ThreadLib Mutexes

I've been playing around with threading, and I feel that the only synchronization structures that the
ThreadLib really needs are mutexes, so that's all it has. There really was no reason to implement
semaphores or conditions, because I don't use them. Anyway, the code for the mutex is located in the
file /Libraries/ThreadLib/ThreadLibMutex.h on the CD. It's a pretty easy class to implement, because
it requires only four functions.

There is one important thing I would like to mention before going on to show you the code. WIN32
has a structure called a mutex, and you might think I would use it in the ThreadLib, but it turns out that
WIN32 mutexes are completely unnecessary for my purposes. You see, a WIN32 mutex is a
heavyweight threading object, which means it can be used across processes, between different
programs. Implementing this capability requires extra overhead though, and we only need lightweight
mutex objectsobjects that can be used across different threads, but always within the same process.
The pthreads library for Linux is lightweight in nature; it deals only with threads within a single
process. So what about WIN32? Well, WIN32 has an object known as a critical section, which is
just a lightweight mutex. So, for the thread library, I'll use critical sections instead of heavyweight
mutexes.

Data

I always like to show the class without functions first, just to give you an idea of what data the class
is going to store. So without further ado, here it is:

class Mutex {
protected:
// define the base mutex types
#ifdef WIN32
 CRITICAL_SECTION m_mutex;
#else
 pthread_mutex_t m_mutex;
#endif
}; // end class Mutex

In WIN32, the class has a CRITICAL_SECTION object, and in Linux, the class has a pthread_mutex_t
object.

Constructor

Both APIs require that mutex objects be initialized before they are used, and it's logical to do so
within the constructor:

Mutex() {

 #ifdef WIN32
 // use critical sections in Windows; much faster
 InitializeCriticalSection(&m_mutex);
 #else
 pthread_mutex_init(&m_mutex, 0);
 #endif
}

The only important point to note is the second parameter for the Linux function; it's supposed to be a
pointer to an attributes structure, but that's not really needed. I pass in 0, meaning that the default
attributes of a mutex are applied.

Destroying a Mutex

When you're finished with mutexes, they need to be destroyed. The destructor does this automatically
for you:

~Mutex() {
 #ifdef WIN32
 DeleteCriticalSection(&m_mutex);
 #else
 pthread_mutex_destroy(&m_mutex);
 #endif
}

Locking a Mutex

As with destroying mutexes, locking mutexes is a simple task:

inline void Lock() {
 #ifdef WIN32
 EnterCriticalSection(&m_mutex);
 #else
 pthread_mutex_lock(&m_mutex);
 #endif
}

Unlocking a Mutex

Unlocking a mutex is also a simple task:

inline void Unlock() {
 #ifdef WIN32
 LeaveCriticalSection(&m_mutex);
 #else
 pthread_mutex_unlock(&m_mutex);
 #endif
}

See, I told you this would be easy! That's it for the code.

Demo 3.3Mutexes

Now I want to show you how to use mutexes to lock resources in a demo. Basically, I'm going to use
the same format that was used in Demo 3.1 and 3.2 and just change the PrintThread() function again.
This demo is located on the CD at /Demos/Chapter03/ Demo03-03/Demo03-03.cpp. The same
compilation instructions apply.

This time, I want the threads to print 50 characters without being interrupted by the other printing
thread. So, for every 50 characters, a global mutex will be locked to prevent the other thread from
being called.

First, the mutex is defined:

ThreadLib::Mutex m;

Here's the new PrintThread() function:

void PrintThread(void* data) {
 // convert the data passed in into a character.
 char c = (char)data;

 for(int i = 0; i < 200; i++) {
 m.Lock();
 for(int j = 0; j < 50; j++) {
 cout << c;
 cout.flush();
 }
 m.Unlock();
 }
}

Now the printing loop is separated into two loops; the outer loop prints 200 groups of 50 characters.
Inside the outer loop, the mutex is locked, and then the 50 characters are printed. Once that is
complete, the mutex is unlocked.

So what will you see when you run this program? Theoretically, you should see alternating blocks of
50 "a"s and then 50 "b"s. However, I'm again reminding you that this may not be the case. When the
mutex is unlocked, it is entirely possible that execution may not switch to the other thread right away.
In this case, the same thread might lock the same mutex and end up printing 100 characters in a row.
While this is unlikely, it is still a possibility.

Figure 3.11 shows a screenshot of the demo in action.

Figure 3.11. This is a screenshot of the mutex Demo 3.3.

As you can see, the characters were printed in blocks of 50, as predicted. So now you know how
mutexes help you lock access to resources.

Summary

Threading is a difficult concept to get a handle on (no pun intended). I know many hardened veterans
of the game industry who still shudder with fear whenever they hear threading mentioned. If you
manage everything intelligently and don't go overboard with threading, you shouldn't have much of a
problem.

Now you're ready to tackle the Socket Library that I'm going to use for this book. Good luck with the
next chapter!

Chapter 4. The Basic Library
On the one hand, C++ is great because it's so flexible; on the other hand, since it is so flexible, it
doesn't have much built into the basic libraries. C++ is sorely lacking in the areas of both string
processing and precision timing. (The base C++ timer uses a resolution of one second, which is
almost useless for game programmers.) Sure, C++ has come a long way from standard C strings (I'm
sure you just shudderedI did), but it still has a long way to go before it is even half as useful as some
of the more robust string-based languages, such as Perl.

In this chapter, you will learn to:

Create multiplatform 64-bit integers

Create multiplatform time functions

Create flexible timer objects

Use C++ strings

Extend the functionality of C++ strings

Log errors and other events

Big Numbers

I'm going to come right out and say this: 32-bit integers are getting too small. Being able to store from
-2 billion to +2 billion numbers, 32-bit numbers seemed big a long time ago, but that's just not enough
storage space for numbers anymore.

Consider this: The standard C++ second-timer uses a signed 32-bit integer to store the number of
seconds that has passed since 1970. What happens when you get past 2 billion seconds? Simple:
Integers wrap around and become -2 billion instead. Obviously, this is a problem, but how long is 2
billion seconds anyway? It's 35 million minutes, or 596 thousand hours, which is 24 thousand days.
That's 68 years. In 2038, all of our C++ second-timers will wrap around. That's a big problem.

As game programmers, we may not have to be concerned with wrapping second-timers; instead, we'll
probably be using wrapping millisecond-timers. So how many milliseconds can 32 bits represent?
About 24 days. Since this book is about programming persistent worlds with huge uptimes, 24 days
just won't cut it for us.

So, why don't we use 64-bit numbers instead? A signed 64-bit number can hold from -9 quintillion to
+9 quintillion. That's a huge number; in fact it's so large that you probably can't conceive how big it
actually is. To put things is perspective, when used to store milliseconds, 64-bit integers can
represent 292 million years. I think 64 bits ought to be enough for a timer.

So, the first thing you need to do is create a uniform 64-bit integer format. I'm going to do this within
the BasicLib library package, which you can find on the CD in the directory /Libraries/BasicLib/. The
file that will hold the 64-bit datatype is called BasicLibTypes.h. Everything within this file is also
within the BasicLib namespace.

In the C99 standard, C is supposed to have a long long datatype (two longs), which is 64 bits. For
example:

long long foo; // signed 64 bits
unsigned long long bar; // unsigned 64 bits

Unfortunately, not all compilers are up-to-date. The Linux compiler, GCC, has no problems with 64-
bit integers, but Microsoft Visual C++.NET and prior versions don't support it (VS.NET 2003 should
support it, though); therefore, you need to use the Microsoft-specific 64-bit integer format:

__int64 foo; // signed 64 bits
unsigned __int64 bar; // unsigned 64 bits

NOTE

Personally, I never use bitshifts any more anyway. I put my trust into the compiler to make the

best decision about optimizing my code, since it can do a much better job than I can.

In front of the int64 are two underscores, not just one. As far as I can tell, __int64 acts just like a
long long, with just one exception: it doesn't support bitshifting. I'm not sure why this is, but it's one
limitation you must keep in mind when using __int64 .

So, finally, here's the code that seamlessly uses __int64's or long longs based on the system you are
using:

#ifdef __GNUC__ // Linux
 typedef long long int sint64;
 typedef unsigned long long int uint64;
#endif

#ifdef WIN32 // Windows
 typedef __int64 sint64;
 typedef unsigned __int64 uint64;
#endif

I've typedefed the 64-bit integers into new types: sint64 and uint64. Now, whenever you need to use
a 64-bit number, you can just include the BasicLib.h file, and use it:

#include "BasicLib/BasicLib.h"
sint64 foo;
uint64 bar;

Voilá! Platform-independent 64-bit integers!

NOTE

64-Bit Integers and Streams

Visual C++ 6 has a major problem streaming 64-bit integers to and from streams. I think it's actually a
bug somewhere in the template code, but regardless, you just can't do it. Since Microsoft has already
created a newer and better compiler, I can't imagine it cares much about fixing the old version. You're
going to have to live with this limitation.

I worked around the limitation and created a hack. Yes, hacks are an ugly thing, but sometimes they
are just plain neccessary.

To cut a long story short, I had to create some way of determining if you're using VC6, and I did so
using macros:

#ifdef WIN32
 #if _MSC_VER >= 1300
 #define GOODCOMPILER
 #else
 #define CRAPPYCOMPILER
 #endif
#endif

#ifdef __GNUC__
 #define GOODCOMPILER
#endif

If you have VC7 or above, or GCC, you have a good compiler. If you have VC6 or below, you have a
crappy compiler. To work around the streaming problem, I created a few stream helper functions:

template< typename type >
inline void insert(std::ostream& s, const type& t);
template< typename type >
inline type& extract(std::istream& s, type& t);

These functions essentially perform the same task as the common operator<< and operator>> (see
Appendix C, "C++ Primer," on the CD if you are unfamiliar with them), but since those operators are
broken in VC6, you need to use these instead whenever you stream a sint64 or uint64. For example:

sint64 bigint = 12345677889467365;
// cout << bigint << endl; <-- WILL NOT COMPILE ON VC6
BasicLib::insert(cout, bigint);
BasicLib::extract(cin, bigint);

You can find these functions in the BasicLibString.h file on the CD; I had to create a template
specialization for the 64-bit integer types, which wraps around the VC6 _i64toa, _ui64toa, and
_atoi64 functions. A template specialization is a function that works on a specific kind of datatype.
It's a rather large and complex topic, so I won't be covering it here. All you really need to know is
that you need to use insert and extract when streaming 64-bit integers.

What Time Is It?

Time is a tricky subject, because you need different ways of getting the time on every system out
there. I'll only cover the methods for Windows and Linux.

Windows

On Windows, you can use the timeGetTime() API function, but this practice is usually frowned upon.
While the function theoretically is a millisecond-timer, in actual use, it isn't nearly as accurate.
Sometimes the function can be off by dozens of milliseconds, and it just doesn't cut the mustard when
you need precision.

Luckily, there is an alternative Windows practicethe performance counter. All x86 CPUs since the
original Pentium have had a performance counter timer built into them, that is incredibly precise. This
means that you can't use the performance counter on machines older than a Pentium, but seriously,
who still has those around?

Here's the catch though: The precision, while extremely accurate, varies based on the system. The
performance counter has a value called the frequency, which represents how many times per second
the performance counter is updated. A value of 1,000 means that the counter updates 1,000 times a
second, and therefore every millisecond.

On my Athlon 1600, for example, this value is 3,579,545. In other words, the performance counter
updates 3.5 million times a second, which means that my timer updates once every 279 nanoseconds.
That's precise.

So, you can pretty much use the performance counter as a microsecond timer if you want, but I don't
have a need for that much precision. I just want a decent millisecond timer.

Getting the Frequency

To use the performance counter functions, the windows.h file needs to be included in your source
files. Here is the function definition for the frequency function:

BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);

LARGE_INTEGER is a type of data that is close to being an __int64, but isn't quite the same. This data is
actually just a combination of two 32-bit integers to form a struct, which means you can't pass a
sint64 pointer into the function; you need to cast it first:

sint64 freq;
QueryPerformanceFrequency((LARGE_INTEGER*)(&freq));

Theoretically, the function returns 0 if it doesn't succeed, and non-zero if it does; but we know that it
can only fail on machines older than Pentiums, so I find it safe to ignore the return value.

The frequency value never changes, so you should retrieve it once, and store it. I'll show you how I do
that further into the chapter.

Getting the Time

Getting the current time from the performance counter is similar. (Time in this case means the number
of ticks since the computer was started.)

sint64 t;
QueryPerformanceCounter((LARGE_INTEGER*)(&t));

Now t will hold the number of ticks since the system was started; of course, this value is meaningless
to you unless you have a frequency value. So, how do you use this time value? Dividing the time by
the frequency should give you the number of seconds that has passed since the system was started:

t = t / freq;

But that's only seconds, and I wanted milliseconds. So, instead, I'll convert the frequency value from
ticks per second into ticks per millisecond:

freq = freq / 1000;
QueryPerformanceCounter((LARGE_INTEGER*)(&t));
t = t / freq;

And now t holds the number of milliseconds passed since the system was started.

Linux

With Linux, it is somewhat easier to get the time. It has a nice function called gettimeofday, which
uses a timeval structure. You've seen this before, when dealing with the select() socket function. It
has two fields: one for seconds, and one for microseconds.

These fields are located within the Linux file sys/time.h, so you need to include that file to use the
time features:

#include <sys/time.h>
struct timeval t;
gettimeofday(&t, 0);

The first parameter of the function is a pointer to the timeval structure, and the second parameter is a
pointer to a structure describing the time zone. The second parameter is not required, so I'm not going
to bother with it.

The t_sec value of the timeval structure will have the number of seconds since 1970, and the t_usec
value will have the number of microseconds past the current second, which means that it will lie
somewhere from 0 to 1,000,000.

Milliseconds

Since the two different time retrieval methods get different times (Windows gets the time since the
system was started, and Linux gets the time since 1970), you're obviously only going to be able to use
these as relative timerscomparing them to see how much time has passed since the timer was last
called that is. But don't worrythey're still useful.

So, the base of my entire time library is a millisecond timer, in a function entitled GetTimeMS(), which
gets an arbitrary time in milliseconds. As I said before, this value is relative, so the only thing you're
guaranteed about a call to this function is that it will accurately return a number that can be subtracted
from any previous number, and it can be subtracted to find out the number of milliseconds that have
passed.

Here's the Windows portion of the code:

sint64 GetTimeMS() {
 #ifdef WIN32
 sint64 t;
 QueryPerformanceCounter((LARGE_INTEGER*)(&t));
 return t / g_win32counter.m_frequency;

I'll get to the g_win32counter.m_frequency part in a little bit; for now, it's safe to assume that it holds
the performance counter frequency.

NOTE

The reason I split up the assignment of the tv_sec field and multiplied it by 1,000 is subtle. Since
tv_sec is a signed 32-bit integer, multiplying anything above 2.14 million by 1,000 causes an
overflow; 2.14 million seconds is less than a year. That means that any time after 1971
multiplied by 1,000 causes a 32-bit overflow. Therefore, the time is copied over into the 64- bit
value and then multiplied by 1,000, thus ensuring that the num bers won't overflow.

And here is the Linux portion:

 #else
 struct timeval t;
 sint64 s;
 gettimeofday(&t, 0);
 s = t.tv_sec;
 s *= 1000;
 s += (t.tv_usec / 1000);
 return s;
 #endif
}

The s variable will hold the end result of the calculations. Once the time is retrieved into t, the
number of seconds is extracted and put into s and then multiplied by 1000 (remember, 1 second =
1,000 milliseconds).

Finally, the number of microseconds is divided by 1,000 (there are 1,000 microseconds in a
millisecond), added to the sum, and the sum is returned. Ta-da! You now have a millisecond timersort
of. There's one more thing you need to take care of.

What's the Frequency, Kenneth?

The easiest way to initialize the performance counter frequency is to make a function that initializes a
global value, and remember to call that function whenever you start your program. I've done this
before, and it gets tedious; I'd rather not waste my time trying to remember to initialize a timer,
especially if it's only needed on Windows, and nowhere else.

So, I'm going to explain how I exploit a neat feature of C++: Global classes are constructed
automatically when a program is first started. So what does this mean? I'm going to create a Windows
performance counter frequency class and have its constructor automatically get the frequency value
whenever your program is first run.

The class is inside the BasicLibTime.h file:

#ifdef WIN32

 class Win32PerformanceCounter {
 public:
 Win32PerformanceCounter() {
 QueryPerformanceFrequency((LARGE_INTEGER*)(&m_frequency));
 m_frequency = m_frequency / 1000;
 }
 sint64 m_frequency;
 };
 Win32PerformanceCounter g_win32counter;
#endif

Notice that this class exists only within WIN32; Linux has no idea about this file, and neither should
users of the library. For all intents and purposes, this class shouldn't exist for anything but the WIN32
branch of the GetTimeMS() function. The class has one variable: m_frequency, which is the frequency
of the performance counter divided by 1,000, so it represents ticks per millisecond. On the next-to-
last line, a single instance of this class, g_win32counter, is created; you shouldn't try accessing this
outside the BasiclLibTime.cpp file, because it literally doesn't exist outside this file. Basically, all
you need to know is that this class is automatically constructed when you run your program, so you
don't have to worry about initializing anything. I pull basically the same trick with the SocketLib in
the next chapter.

Other Times

I included three other relative time functions in the library, each to get seconds, minutes, and hours. I
don't think there is any need for a relative day or year function, but feel free to build one yourself.
These time functions are called GetTimeS, GetTimeM, and GetTimeH respectively. Each of these
functions relies on the result of GetTimeMS and divides the time by the appropriate value. For
example:

sint64 GetTimeS() {
 return GetTimeMS() / 1000;
}

And so on.

Timestamps

You'll often want to get a text string representing the current time and date of the system. Luckily, C++
has built-in features. First, we'll need to get the current time as a tm structure, which is an interesting
process, to say the least:

time_t a = time(0);
struct tm* b = localtime(&a);

First, the current time in seconds is retrieved using the standard C time() function; then a pointer to a
tm structure is retrieved from the localtime() function. To work, the function requires a pointer to the
current time. There's a similar function called gmtime(), which gets a tm structure using Greenwich
Mean Time (GMT); the local time function gets the time according to your computer's time zone.

Now that you have a tm structure, you can use the strftime() function to get a string based on the time
structure. This function is similar to the sprintf() C function, except it prints time values instead of
variable values. The time values we'll be interested in are %H, %M, %S, %Y, %m, and %d, which
represent hours, minutes, seconds, years, months, and days.

First, you'll need a buffer:

char str[9];

And then you'll fill the buffer with the function:

strftime(str, 9, "%H:%M:%S", b);

The first parameter to be filled is the char* buffer, the second parameter is the maximum length of the
buffer, the third parameter is a string describing the output format, and the final parameter is a pointer
to the tm structure. From the preceding example, you can see that I requested the time in HH:MM:SS
format, which can have a maximum of eight characters, the ninth being the NULL character (used to
terminate C-strings). For example, 8:00 A.M. should look like this: 08:00:00.

Here's the TimeStamp() function:

std::string TimeStamp() {
 char str[9];
 time_t a = time(0);
 struct tm* b = gmtime(&a);
 strftime(str, 9, "%H:%M:%S", b);
 return str;
}

The TimeStamp() function returns a C++ string. In case you've never used C++ strings, I explain them
later in this chapter.

The DateStamp() function is similar, except it returns times in YYYY.MM.DD format. (Yes! It's
unorthodox, but as a mathematician and a programmer, the most significant digits always go first! It
just makes more sense that way!)

std::string DateStamp() {
 char str[11];
 time_t a = time(0);
 struct tm* b = gmtime(&a);
 strftime(str, 11, "%Y.%m.%d", b);
 return str;
}

So the date May 30, 2010 would be represented as 2010.05.30.

Timers

Up until now, you have only had functions to get relative times, but you don't really have any reliable
way of creating a timer that will track the amount of time that has passed since you created or reset the
timer. Enter the Timer class. I want to make a class that will start counting time from 0 whenever it is
created, or when it is manually reset. This class should also be capable of being given a default time.
Say you save a time to disk, close the program, and then run it again; you might want to resume the
timer from when it was saved to disk.

To do this, a timer object must have two variables: the system time at which it was initialized or
reset, and the official starting time of the timer. Usually, you'll start the timer off at 0, so for now, let's
just assume the starting time is 0.

Here's the class with its functions and data:

class Timer {
public:
 Timer(sint64 p_timepassed = 0);
 void Reset(sint64 p_timepassed = 0);
 sint64 GetMS();
 sint64 GetS();
 sint64 GetM();
 sint64 GetH();
 sint64 GetD();
 sint64 GetY();
protected:
 sint64 m_inittime;
 sint64 m_starttime;
};

As you can see, there's a constructor (which basically calls Reset()), a Reset() function, and six
functions that get the number of milliseconds, seconds, minutes, hours, days, or years that have passed
since the timer was last reset or initialized.

Since the constructor of the timer just calls reset, let's look at the Reset() function:

void Timer::Reset(sint64 p_timepassed) {
 m_starttime = p_timepassed;
 m_inittime = GetTimeMS();
}

In the class definition, the = 0 in the parameter means that the parameter can be omitted, and if
omitted, it is assumed to be 0. For now, let's just assume that the parameter is 0; so the m_starttime
value is reset to 0, and the m_inittime value is set to the current time of the system.

Now look at the GetMS() function:

sint64 Timer::GetMS() {
 return (GetTimeMS() - m_inittime) + m_starttime;
}

GetMS() basically subtracts the init time from the current time, adds the starting time (which is zero
for this example), and results in exactly the number of milliseconds that has occurred since the timer
was last reset.

Now, if you initialized the timer with a value of 10,000 milliseconds:

timer t(10000);

the timer will start off with a default value of 10 seconds. From then on, the timer will start counting
from 10,000, instead of 0. This is very helpful for saving the value of the timer and then restarting it
later, keeping the same amount of time.

For example (assume the comments represent a large amount of processing that you don't see here):

sint64 x;
timer t;
// code block 1
x = t.GetMS();
// code block 2
t.reset(x);
// code block 3
x = t.GetMS();

After code block 1 has finished executing, x should hold the number of milliseconds required for the
processing. Code block 2 is then executed, and after that, the timer is reset to the value recorded
before block 2 executed. That means that the timer essentially wasn't counting during the execution of
block 2, but it is again counting after block 2. Finally, at the end of block 3, the value of x is again
updated, and x should hold the number of milliseconds it took to execute blocks 1 and 3, but not 2.

All of the other time functions within the class are based on the GetMS() function; for example, here is
the GetH() function:

sint64 Timer::GetH() {
 return GetMS() / 3600000;
}

There are 3,600,000 milliseconds in an hour (60 min/hr * 60 sec/min * 1000 ms/sec). All the other
functions are similar, and there is no need to show them here.

This about concludes my section on time, but I will brush on the topic again in later chapters, to show
you efficient ways of implementing a system that automatically executes functions after a specified
amount of time. Specifically, I deal with a simple timer system in Chapter 10, "Enemies, Combat, and
the Game Loop," and a more complicated queue-based timer system in Chapter 15, "Game Logic."

Strings

This book is about MUDs; therefore, it wouldn't be complete if I didn't include the information about
strings that you need.

Strings in C are a messy issue. Almost every other language in the world has better string abilities.
Standard C-strings are ugly to use, inflexible, prone to errors, and cause lots of security problems.
When you create a C-string, you can't change its sizeever. Your only option is to completely destroy
the string and create a new one. Rather than show you examples of C-strings, I'm just going to pretend
that they don't exist. Believe meit's better that way. You'll be saner without them.

So, what should you use instead of C-strings? I had considered writing my own string class for the
book, with cool reference-counting features and optimizations. On doing more

NOTE

C-strings are a security issue due to something called a buffer-overflow attack. There will be
times when the users of your server will send lots of data, and with C-strings, you'll inevitably
forget to check to see if you're writing past the end of the string in one place or another. Attack
ers use this situation to overwrite memory they shouldn't have access to, and many times this
happens to be places in memory where the computer stores the instructions of your program.
This means that hackers can actually overwrite the assembly code of your program, and ex
ecute anything they want!

research, I found that reference-counting optimizations aren't really such a great optimization after all.
Reference-counting means that the string actually keeps track of how many things are pointing at the
same string object, and only creates new strings when one of the strings is modified from the original.
This sounds great in theory, but in reality it has tons of problems; I decided I didn't want to waste
space by devoting an entire chapter to creating a string class. This is a book about MUDs after all, not
strings!

C++ to the rescue! The designers of the C++ standard library were smart; they realized that people
were just plain sick of C-strings. So, when creating the C++ standard template library (STL), they
decided to add a string class, called basic_string. The absolutely best thing about this class is that it
is flexible; it doesn't assume that you are using 8-bit ASCII characters. Instead, basic_string uses a
template parameter, so you can use characters of any type:

#include <string>
std::basic_string<char> str1; // ASCII 8-bit string
std::basic_string<wchar_t> str2; // unicode 16-bit string
std::basic_string<int> str3; // string of integers

Okay, so that notation looks a little ugly. Luckily, the designers of STL put in a couple typedefs:

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

By the way, the wchar_t type is a built-in C++ type that represents a wide character. So, to create an
8-bit ASCII stringthe most common type of string there isall you need to do is this:

std::string str1;

NOTE

For a primer on templates, see Appendix D , " Template Primer, " on the CD.

Creating Strings

Strings are easy to use. Here are a few ways to create them:

std::string str1 = "Hello!"; // "Hello!"
std::string str2("How are you?"); // "How are you?"
std::string str3(8, 'C'); // "CCCCCCCC"
std::string str4 = str1; // "Hello!"
std::string str5(str4); // "Hello!"

And here are a few ways to create strings from plain C-strings:

char cstring[] = "Hello!"; // "Hello!"
std::string str6 = cstring; // "Hello!"
std::string str7(cstring); // "Hello!"
std::string str8(cstring, 2); // "He"

I think it's a great idea to be able to do these kinds of things. In fact, whenever you have a string literal
such as "Hello!" inside your program, the compiler sees that as a plain C-string (a char*). So the
lines

std::string str1 = "Hello!"
std::string str6 = cstring;

from earlier are almost identical; they both create an std::string using a C-string.

Using Strings

C-strings are notoriously difficult to work with. You need to call functions on them to do anything
useful, such as concatenating, comparing, or even just finding out the length of them. BLEH! However,
C++ strings take care of all those little things for you. For example:

std::string str1 = "Hello!";
std::string str2 = "How are you?"
std::string str3;
str3 = str1 + " " + str2; // "Hello! How are you?"

Isn't that cool? Using C-strings, you'd have to first check to see if str3 had enough room, which would
mean that you'd need to find out the length of str1 and str2, and possibly resize a buffer, before
calling a concatenate function.

Catch my drift? Pain in the butt! C++ strings take care of all of that junk for you.

Or how about comparing strings? Using C-strings, it looks like this:

char cstr1[] = "Hello!";
char cstr2[] = "Hello!";
if(cstr1 == cstr2)
 // write some code here

A beginner would think that the code inside the if-statement would be executed; after all, the strings
are equal, right? Not quite. C-strings are just pointers, and when you compare them like that, you're
comparing the pointer values, not the actual strings. D'oh!

Now look at C++ strings:

std::string str1 = "Hello!";
std::string str2 = "Hello!";
if(str1 == str2)
 // do some code here

This code works all of a sudden. The != operator and the less-than and greater-than operators work as
well:

std::string str1 = "ABC";

std::string str2 = "BCD";
bool b;
b = (str1 != str2); // true
b = (str1 < str2); // true
b = (str1 > str2); // false

The less-than and greater-than operators compare the strings alphabetically. ABC is less than BCD
because it would come first in the dictionary.

And finally, you can find the size of a string:

std::string str1 = "Hello!";
int size = str1.size(); // 6

Pretty easy, isn't it?

NOTE

To use other terminology, you can also say that you compare strings lexographically . Impress
your friends by using this big word that almost no one knows the meaning of! "Oh, today I
lexographically compared two strings!"... nevermind.

Other String Functions

There are lots of string functions, so I'm only going to go over the important ones. Most string
functions are based on searching, which is great, because that's how I use strings most often.

For example:

std::string str1 = "Hello Mr. Anderson.";
size_t pos;
pos = str1.find("Mr"); // 6
pos = str1.find("He"); // 0
pos = str1.find("der"); // 12
pos = str1.find("narf"); // string::npos
pos = str1.find("o"); // 4
pos = str1.find("o", 5); // 16

There are two interesting cases in this code. When I try searching for narf, which doesn't exist within
str1, the value string::npos is returned. This is a value for the string that cannot be valid, and

whenever it is returned from a search function, it means that the search string was not found. The
second interesting case is the last line of code. The second parameter of the function says, "Start
searching for the search string at index 5," which means it will start searching for o after the first o
was found at index 4.

There's also a reverse-find function:

pos = str1.rfind("o"); // 16

The function to find any character within a given set of characters is also useful. For example:

std::string vowels = "aeiou";
std::string str1 = "That is the sound of inevitability.";
size_t pos;
pos = str1.find_first_of(vowels); // 2
pos = str1.find_first_of(vowels, 3); // 5
pos = str1.find_first_not_of(vowels); // 0
pos = str1.find_last_of(vowels); // 31
pos = str1.find_last_of(vowels, 30); // 29
pos = str1.find_last_not_of(vowels); // 34

The functions with a second parameter tell the function to start searching at that index; first functions
start at that index and go up, and last functions start at that index and go down.

There are more functions, of course, but I use them rarely if at all, so I don't want to spend any extra
time explaining them. A good STL reference should explain all the functions in depth.

My Own String Functions

For a MUD, you're going to need to do a bit of string parsing on your own, since the C++ string
library doesn't include those kinds of functions. That's not a big deal, though. Basically, I feel the
extra string functions you're going to need in this book are functions to convert strings to
uppercase/lowercase, trim whitespace off the ends of strings, get individual words from strings, and
remove individual words from strings. And since the C++ string library doesn't have string->datatype
or vice-versa functions, I'll create some of those, too.

Changing Cases

If you look at the standard C++ string class, you see that the equivalence operator is handy; but it has
a problem. Look at the following example:

std::string str1 = "HELLO";
std::string str2 = "hello";
boolean b = (str1 == str2) // false

Even though the strings contain the same word, they are not equal because they are different
characters. This is sometimes particularly troublesome. So how would you go about trying to see if
the words are the same?

The logical answer is to convert both strings to the same case, and then compare them. Unfortunately,
there is no standard C++ method to convert a string to a particular case. Who knows whether this was
an oversight or the developers felt it wasn't needed? Many compilers implement this function on their
own, but it's not part of the standard.

So let's build our own! C++ does include a function for converting individual characters to upper- or
lowercase, however. These functions are located in the standard C++ header <cctype>. These
functions will be in the BasicLib files: BasicLibString.h and BasicLibString.cpp.

First, an uppercase function:

std::string UpperCase(const std::string& p_string) {
 std::string str = p_string;
 for(int i = 0; i < str.size(); i++) {
 str[i] = std::toupper(str[i]);
 }
 return str;
}

The function essentially goes through every character in the string, converts it to uppercase, and then
returns the new string. The LowerCase() function is identical, except the call to toupper is replaced
with tolower. Therefore, there is no need to show it here.

Trimming Whitespace

Whitespace is a term used for space in text that is blank. Spaces, tabs, newline characters they're all
whitespace. Many times you're going to want to be able to trim the whitespace off the front and the
back of a string. For example, you've got a string

" hello "

that has four blank spaces both in front of and behind the word "hello". You just want to get the word

in there and ignore all that extra junk. Luckily, this is pretty easy using the string's search functions.

First, you need to define what whitespace actually is:

const std::string WHITESPACE = " \t\n\r";

This is a global const string that defines the four common whitespace characters. The first is a space;
the second is \t, which is the C++ escape sequence that means tab; then \n, which is newline; and
finally \r, which is a carriage-return. Here's the actual function:

std::string TrimWhitespace(const std::string& p_string) {
 int wsf, wsb;
 wsf = p_string.find_first_not_of(WHITESPACE);
 wsb = p_string.find_last_not_of(WHITESPACE);
 if(wsf == std::string::npos) {
 wsf = 0;
 wsb = -1;
 }
 return p_string.substr(wsf, wsb - wsf + 1);
}

There are two locals: wsf and wsb. These stand for "white space front" and "white space back." The
function uses the find functions to find the first and last characters in the string that aren't whitespace.
For the example string I showed you before, wsf would be 4 and wsb would be 8, pointing at h and o.
The if-statement in there checks to see if the string was entirely whitespace (meaning that no non-
whitespace characters were found); if whitespace is found, the entire string needs to be cleared, so
wsf is set to 0, and wsb is set to -1. Next you'll see why.

Finally, the substr function is called, chopping off the front and back whitespace portions. The first
parameter to substr is the position from which the substring starts, and the second parameter is the
length of the substring. So, in the example, the substring starts at index 4 ("h"), and is 8 - 4 + 1 (5)
characters long. This results in hello. For the case of a string of only whitespace, the length
calculation would result in 0 - -1 + 1, which is 0. So the result of TrimWhitespace(" "); is a string
that is 0 characters long.

Parsing

Parsing words out of a string is a somewhat simple task, once again utilizing the string class's search
features. Basically, the idea is to count the number of runs of whitespace contained in a string (a run
of whitespace is basically just one continuous chunk of characters that are all whitespace), until you
find the word you want.

To show you how the function works in detail, I'll be referring to this string:

"This is a string"

The first thing the function does is find the first character in the string that isn't whitespace. This will
be the beginning of the first word:

std::string ParseWord(const std::string& p_string, int p_index)
{
 int wss = p_string.find_first_not_of(WHITESPACE);

After that executes, wss has the index of the first word (word index 0) in the string. For the example,
wss would be 0, because index 0, "T" is a non-whitespace character.

Now, in order to find the correct word, you must loop through the string p_index times, finding the
end of the current word, and then the beginning of the next word:

 while(p_index > 0) {
 p_index--;
 wss = p_string.find_first_of(WHITESPACE, wss);
 wss = p_string.find_first_not_of(WHITESPACE, wss);
 }

As you can see, the loop runs until p_index is zero; if p-index is zero to begin with, the loop never
executes. So it searches for the index of the first whitespace character after the current word. With the
example string, this would be 4, since index 4 is the first whitespace character after the word "This."
Then the loop searches for the next non-whitespace character; in the example, that character is index
5, "i."

Depending on which word you want, this loop can repeat over and over, until the desired word is
found. At the end of the loop, the wss variable should be pointing to the first letter of the word you
want to extract.

Now that you have the index of the first letter of the word you want, you need to find out how long the
word is, by finding the end of the word:

 int wse = p_string.find_first_of(WHITESPACE, wss);

Now, if there was a problem finding the appropriate word (for example, you wanted the fifth word

when there were only four words), wss should be std::string::npos. So you need to check that:

 if(wss == std::string::npos) {
 wss = 0;
 wse = 0;
 }

If you couldn't find the word, set both indexes to 0, to signify that you want to return an empty string.
Finally, you return the substring:

 return p_string.substr(wss, wse - wss);
}

Since wse is pointing to the first whitespace character after the word you want, you don't need to add
a whitespace character to the length this time (as opposed to the TrimWhitespace() function). So, here
it is in action:

std::string str1 = "This is a string";
std::string str2;
str2 = BasicLib::ParseWord(str1, 0); // "This"
str2 = BasicLib::ParseWord(str1, 1); // "is"
str2 = BasicLib::ParseWord(str1, 2); // "a"
str2 = BasicLib::ParseWord(str1, 3); // "string"
str2 = BasicLib::ParseWord(str1, 4); // ""

This kind of a function becomes incredibly useful when dealing with a MUD.

There is a similar function, RemoveWord(), but instead of returning the requested word, it returns the
original string without the word. The function is identical to ParseWord() except for two aspects. The
idea of removing a word is somewhat odd. Imagine the string "This is a string". If you wanted to
remove word one ("is"), and only the word, you'd end up with "This a string", with two spaces
between "This" and "a". That would look weird, wouldn't it? Basically, the best way to remove a
word from a string is to not only remove the word, but the whitespace after the word as well. So you
want to remove "is " and not "is". Therefore, you need to add another line of code to the function.
After finding the first whitespace after the word to be removed, you need to find the beginning of the
next word after that:

 int wse = p_string.find_first_of(WHITESPACE, wss);
 wse = p_string.find_first_not_of(WHITESPACE, wse);

Notice that the first line is the same as it was in the ParseWord() function. Now, wse should be the
index of the first letter of the word after the word you want to remove.

The next difference is that you're not returning a substring. This time, you're going to call the string's
erase function to remove the word:

 std::string str = p_string;
 str.erase(wss, wse - wss);
 return str;
}

Ta-da! Here are some examples:

std::string str1 = "This is a string";
std::string str2;
str2 = BasicLib::RemoveWord(str1, 0); // "is a string"
str2 = BasicLib::RemoveWord(str1, 1); // "This a string"
str2 = BasicLib::RemoveWord(str1, 2); // "This is string"
str2 = BasicLib::RemoveWord(str1, 3); // "This is a "
str2 = BasicLib::RemoveWord(str1, 4); // "This is a string"

Notice that when trying to remove word index 3, there is a space at the end of the string. This is the
only anomaly in the algorithm, but it actually makes sense if you think about it. The RemoveWord()
function treats the whitespace after the word as part of that word.

Conversions

Unfortunately, there is no direct way in C++ to convert a string to another datatype, or vice-versa. But
it still is an easy process.

C++ has a stream class called stringstream, which acts like an input/output buffer, much like cin and
cout. Luckily, C++ has built-in functions that allow you to convert basic datatypes to and from strings,
via streams. For example, you can use cout to print ints, floats, strings, and so on:

std::cout << 10 << 3.1415 << "hello!";

You can do the same with stringstreams:

#include <sstream>
std::stringstream str;
str << 10 << 3.1415 << "hello!"; // "103.1415hello!"

You can also do it the other way around:

int i;
str >> i; // 103

Why is 103 in the integer? Because it picked out every digit it could find before it got to the period. If
you streamed it into a float instead, it would be "103.1415".

That's how you can convert datatypes. In an effort to make the datatype easy to work with, I've created
two functions to convert to and from strings. The first function converts a datatype into a string:

template< class type >
inline std::string tostring(const type& p_type) {
 std::stringstream str;
 str << p_type;
 return str.str();
}

The first thing you should notice is that this is a template function. Templates make life much easier,
so if you're not familiar with them, you should probably try to catch up. Since this function is
templated, it will work with any datatype that can be streamed into a stringstream. If you create a
custom class and have it support an operator<< into a basic ostream class, your class can
automatically be converted into a string class using this function.

So, the function takes a parameter of any datatype, creates a stringstream buffer, and then streams the
parameter into the buffer. Finally, the stream is converted into a string using the buffer's str()
function, and returned. Voilá! Here's how you use the lines of code:

std::string str1;
str1 = BasicLib::tostring(42); // "42"
str1 += " " + BasicLib::tostring(3.1415); // "42 3.1415"

It even works with the sint64 type.

Now, the other way around is the totype() function, which converts a string into any datatype that has
a defined stream-extraction operator.

template< class type >
inline type totype(const std::string& p_string) {
 std::stringstream str;

 str << p_string;
 type t;
 str >> t;
 return t;
}

The totype() function is also a template function, which takes a string as a parameter and returns
whatever you want. This function streams the string into the stringstream, creates a value of type
type named t, and streams the buffer into it. Finally, t is returned.

Using this function is a little odd, however. For example, try doing this:

int i = BasicLib::totype("42"); // COMPILER ERROR!

Template datatypes can only be determined by the types of the function parameters, and this function
only takes a std::string as its parameter; it can't tell that you want to return an int. So you need to
tell the function yourself:

using namespace BasicLib;
int i = totype<int>("42");
float f = totype<float>("3.1415");
sint64 s = totype<sint64>("1152921504606846976");

Now you've got functions to convert datatypes' to and from strings.

Searching and Replacing

MUDs need another common functionthe ability to search for a substring inside of a string and replace
it.

To do this, I've created the SearchAndReplace helper function:

std::string SearchAndReplace(
 const std::string& p_target,
 const std::string& p_search,
 const std::string& p_replace);

SearchAndReplace is really just a simple function that uses the string's find and replace functions, so
I'm not going to bother showing you the code. The code is on the CD in the file BasicLibString.cpp if

you want to see it, though.

Basically, the function goes through a string and replaces all instances of p_search with p_replace,
and returns the result. Here's some code:

string s = "This string has been read once, and only once.";
s = BasicLib::SearchAndReplace(s, "once", "twice");

After that code runs, s will hold "This string has been read twice, and only twice."

Logging

As a MUD programmer, logging errors and other types of events is somewhat important. Because of
this, I've created a simple log class, which is small and elegant.

The first concept you should be aware of is the decorator class. A decorator is a simple class that is
designed to decorate the log entries you send to it. For example, you can make an HTML decorator,
which will take log entries and add HTML codes to them.

NOTE

In a game, whenever you have an error, you can log the message as "ERROR: blah blah blah";
and if your decorator class supports a colored format like HTML, it can search for that string
and add red coloring to it, indicating that the string should stand out in the log file. Or if you're
boring, you can just use a plain text decorator, such as the one I've provided for you.

Decorators

The decorator classes should have four functions: FileHeader(), Decorate(), SessionOpen(), and
SessionClose(). All functions should return an std::string. The FileHeader() function returns a
string representing the header of the file, such as an HTML header with the title, and so on. The
Decorate() function takes a piece of text and decorates it according to the decorator rules. The
SessionOpen() and SessionClose() functions return strings representing the beginning and ending of a
single session. This would be great for keeping each session in a HTML table, or something similar.

Anyway, here's a simple plain-text decorator class I whipped up for you:

class TextDecorator {
public:
 static std::string FileHeader(const std::string& p_title) {
 return "==\n" +
 p_title + "\n" +
 "==\n\n";
 }
 static std::string SessionOpen() {
 return "\n";
 }
 static std::string SessionClose() {
 return "\n";
 }
 static std::string Decorate(const std::string& p_string) {
 return p_string + "\n";
 }
};

As you can see, this decorator class is simple. It prints out a simple header, and then prints out
newlines for the session openings and closings.

Furthermore, a newline character is added to each entry you want to decorate, because it is assumed
that you didn't put those in yourself. As I said, it's pretty simple.

The Logger

The logger is also pretty simple; it has only three functions: a constructor, a destructor, and a Log()
function. It also has three data members: a file stream and two Booleans, which determine if the log
should be time- and date-stamped. Here's the class definition:

template<class decorator>
class Logger {
public:
 Logger(const std::string& p_filename,
 const std::string& p_logtitle,
 bool p_timestamp = false,
 bool p_datestamp = false);
 ~Logger();
 void Log(const std::string& p_entry);
protected:
 std::fstream m_logfile;
 bool m_timestamp;
 bool m_datestamp;
};

The Constructor

The constructor tries to create the file if it doesn't exist, or just open it if it does exist. You set the file
name, the title of the log, and the two stamp Booleans as well. Those last two are optional
parameters, and they default to false. Here's the function:

template<class decorator>
Logger<decorator>::Logger(const std::string& p_filename,
 const std::string& p_logtitle,
 bool p_timestamp,
 bool p_datestamp) {
 fstream filetester(p_filename.c_str(), std::ios::in);
 if(filetester.is_open()) {
 filetester.close();
 m_logfile.open(p_filename.c_str(), std::ios::out | std::ios::app);
 }
 else {
 m_logfile.open(p_filename.c_str(), std::ios::out);
 m_logfile << decorator::FileHeader(p_logtitle);

 }
 m_timestamp = true;
 m_datestamp = true;
 m_logfile << decorator::SessionOpen();
 Log("Session opened.");
 m_timestamp = p_timestamp;
 m_datestamp = p_datestamp;
}

Since C++ has no easy way to tell if a file exists (sigh), I created a temporary file stream named
filetester. This is opened in read-only mode, which means that opening it fails if the file doesn't
exist. So the line after that checks to see if the file's open, and if so, the temporary file is closed, and
the log file is opened in append mode. That means that the contents of the file remain the same, and all
new data is added to the end of the file.

If the file doesn't exist, the log file is still opened, and the decorator class is consulted to get a file
header, which is then put into the log file.

The time- and date-stamp Booleans are both set to true, because the session's opening message
should always be time- and date-stamped. The decorator class is once again consulted to get text to
be written representing an open session, and then the entry Session opened. is logged. Finally, the
time- and date-stamp Booleans passed in as parameters are copied from the parameter values.

The Destructor

Whenever a logger is destroyed, the appropriate session-closing text should be written to the file, and
the file should be closed:

template< class decorator >
Logger< decorator >::~Logger() {
 m_timestamp = true;
 m_datestamp = true;
 Log("Session closed.");
 m_logfile << decorator::SessionClose();
}

Once again, the session-closing text should also be time- and date-stamped.

It's Log, LogIt's Big, It's Heavy, It's Wood!

No one remembers that song? Bah!

NOTE

Watch more Ren & Stimpy .

Anyway, here's the Log function, which sends a string of text to your logfile.

template< class decorator >
void Logger< decorator >::Log(const std::string& p_entry) {
 std::string message;
 if(m_datestamp) {
 message += "[" + DateStamp() + "] ";
 }
 if(m_timestamp) {
 message += "[" + TimeStamp() + "] ";
 }
 message += p_entry;
 m_logfile << decorator::Decorate(message);
}

A string containing the message is created; if the user wants time- or date-stamps, they are added to
the message, and the entry is added at the end as well. Finally, the message is sent through the
decorator and then added to the file.

Using the Logger

To make things easier for you, I've included a typedef in the logger files:

typedef Logger<TextDecorator> TextLog;

Therefore, you don't have to do all kinds of ugly stuff just to use a text decorator with a logger. Here's
how you would create one:

#include "BasicLib/BasicLib.h"
BasicLib::TextLog SystemLog("syslog.txt", "System Log");
SystemLog.Log("Log Entry");

After executing this code, I had a file named syslog.txt that looked like this:

==
System Log

==

[2003.05.19] [02:55:03] Session opened.
Log Entry
[2003.05.19] [02:55:03] Session closed.

Don't ask why I'm running code demonstrations at 3 A.M.blah. Feel free to create your own decorator
classes to make your log files prettier. HTML is a popular format nowadays for logs, so you might
want to make an HTML decorator.

Summary

And there you have it. This chapter taught you all about the basic library functions that I'll be using
throughout this book to make your life easier. So, to summarize, you've learned how to create large
64-bit integers, get platform-independent millisecond timers and timestamps, learned how to use
strings and add functions to utilize strings better, and create an elegant and flexible log class. That's a
lot of material to cover, but it's all mostly simple. Believe methis stuff will make your life so much
easier later on.

Chapter 5. The Socket Library
Back in Chapter 2, "Winsock/Berkeley Sockets Programming," I introduced you to the API for plain
vanilla-flavored BSD sockets. Throughout that chapter, you may have noticed my distaste for the API,
which is decades old and has clearly started to show its age lately. I particularly dislike how much
code it takes to actually get something done. Think about it. It takes at least 12 lines of code to get a
single listening socket created, and that doesn't even count error-handling code. I look at many MUDs
out there, and I see socket code thrown in every which way. Most MUDs are a maintenance disaster
because of this. If you want to do something correctly, you're going to have to design for it up front.

So that's the approach I'm taking with this chapter. I've created a comprehensive and flexible Socket
Library for you (located on the CD in the directory /Libraries/SocketLib/). This library has two
levels: classes that directly interface with the Sockets API ("wrapper" classes), and classes that build
on top of those wrappers.

In this chapter, you will learn to:

Create a flexible object-oriented socket hierarchy

Abstract the Sockets API select function into a class

Create an advanced policy-based connection class

Create a class to manage listening sockets

Create a class to manage connections

Sockets API Wrapper Classes and Functions

There are basically four classes that know about the implementation of the underlying Sockets API.
Since I've shown you in Chapter 2 how to use the API, I'm going to focus in this chapter on showing
you how to design the classes, and not the code behind them. In addition, I'll dig deeper into subjects I
outlined in Chapter 2. After all, this book is about MUDs, not a super-awesome Socket Library!

Socket Wrapper

My main problem with the Sockets API is that it handles listening sockets and data sockets the same
way; you can't tell them apart. This is an awkward design, and it can lead to many types of problems.
For example, you can inadvertently call send on a listening socket; obviously, you should only be
doing that on data sockets, but it's so easy to accidentally do something like that.

Using a proper class hierarchy can prevent stupid things such as that from happening. You can make
sure that a call to send or recv is never made on a listening socket. With good design, you can
completely remove some of the errors you had to check for in the past. Figure 5.1 shows the design
I'll be using for the sockets. All three of the classes shown in the figure can be found on the CD in the
files /Libraries/SocketLib/SocketLibSocket.h and /Libraries/SocketLib/SocketLibSocket.cpp.

Figure 5.1. Design for the hierarchy of sockets used in this book.

Sockets

The base class is Socket. You'll notice it has a variable of type sock, which is just my typedef for a
socket descriptor. I like typedefing things like that, because it makes programs more readable. When
you see a function that takes a sock as a parameter, instead of just an int, you know that it wants a
socket descriptor, and not some other type of data. The class also holds a sockaddr_in structure,
which, if you remember from Chapter 2, holds information about a socket. For this class, it holds the
local information about the socket (port number and address). All sockets have local information.

The last variable is a Boolean, m_blocking. This determines if the socket is blocking. Think back to
Chapter 2, when you learned that sockets block by default. There are many exploits that are possible
on blocking sockets.

NOTE

UML

Figure 5.1 is drawn in a diagram style known as a Unified Modeling Language (UML) Class
Diagram. UML is a pretty standard method of designing classes in object-oriented languages, so you
should at least be familiar with it if you plan on doing some serious programming. It's not too difficult
to understand. For example, you can see that the class name is in the top box, the datatypes are in the
middle box, and the functions are in the third box.

The hash (#) symbol means that the item is protected.

The plus (+) means that it's public.

The minus (-) means that it's private.

One aspect may look weird to youthe type of variable, or the return type of a function, is listed after
the function/variable name, after the colon (:). There are also several types of arrows used in UML
class diagrams; you only see the open-head inheritance arrows in this diagram. The other common
arrow type is a plain arrowhead, which is the uses arrow. For a more comprehensive look at UML,
there's a great chapter about it in Game Programming Tricks of the Trade, by Lorenzo Phillips
(Editor).

In particular, there's an "exploit" that allows you to connect to a listening socket and then disconnect
immediately; in the server, the select() function will detect the new connection, but by the time it
gets to the accept() call, the connection no longer exists. If you've got the listening sockets in the
same thread as everything else, this can cause your entire game to hang, because the call to accept()
will block until someone tries to connect again. Therefore, you need the ability to set a socket to

nonblocking mode.

Unfortunately, the method of setting the blocking mode of a socket is different with both Winsock and
BSD Sockets. (Typical!) The SetBlocking() function takes a Boolean as its parameter: true if you
want the socket to block, false if you don't want it to block.

The Winsock method is pretty easy:

void Socket::SetBlocking(bool p_blockmode) {
 int err;
 #ifdef WIN32
 unsigned long mode = !p_blockmode;
 err = ioctlsocket(m_sock, FIONBIO, &mode);

Just one call to the ioctlsocket function is required; however, the blocking Boolean needs to be
reversed for this function, because you're setting whether or not you want to enable nonblocking
mode. It's just a minor difference in semantics, that's all.

The Linux method is a little trickier, because the function to set the blocking mode sets a whole bunch
of other modes as well. Therefore, you need to retrieve the current flags of the socket, set or clear the
nonblocking bit, and then set the new flags. It's a bit of a pain:

 #else
 int flags = fcntl(m_sock, F_GETFL, 0);
 if(p_blockmode == false) {
 flags |= O_NONBLOCK;
 }
 else {
 flags &= ~O_NONBLOCK;
 }
 err = fcntl(m_sock, F_SETFL, flags);
 #endif

So the flags are retrieved, and depending on what mode you want, the nonblocking flag is either set
(using logical-or), or cleared (using logical-and). Finally, the new flags are sent back to the socket.
Here's the conclusion:

 if(err == -1) {
 throw(Exception(GetError()));
 }
 m_isblocking = p_blockmode;
}

The SocketLib library has some auxiliary functions and classes built into it, such as the Exception

class and the GetError() function. I'll go over these in more detail when I get to the parts that use
them more, but for now, you should just know that the SocketLib throws exceptions when errors
occur, and GetError() is a wrapper that gets error codes from the Sockets API.

I won't show you the code for the other functions in this class, since I've already covered the basics in
Chapter 2. If you're really interested, you can take a look at the source, but, as I've said, these socket
classes are just a wrapper around the Sockets API that clean up the interface for you.

I need to make one other important point: The constructor for the Socket class is protected. This was
done so that you could not create plain Socket classes on your own; they are pointless. The class only
provides useful functions for the ListeningSocket and DataSocket classes.

Listening Sockets

As a subclass of the Socket class, the ListeningSocket class inherits all of the functions and data of
Socket and adds a few new functions of its own. I don't introduce much that is new in the code, so I
won't show you any of the internals, but I'll show you how to use a listening socket in a bit.

NOTE

I've put one important concept into listening sockets that I haven't told you about before.
Whenever you tell a listening socket to listen on a port, the function turns on the socket's
SO_REUSEADDR option. Whenever you start up a program and make it listen on a port, then close
the program, and try to run it again, you probably receive an "address already in use" error if
this option isn't turned on. For some odd reason, the operating system still thinks the address is
in use, but turning on this option makes it work correctly, so that you receive only the address
already in use error when you try opening two active listening sockets on the same port.

Data Sockets

Data sockets are the other subclass. They also inherit from the plain sockets, but they need more data
and have more complex functions. For example, data sockets add another sockaddr_in structure; in
this case, it represents the remote address, which the socket is connected to. Because listening
sockets can't be connected to anything, they don't have remote addresses, but data sockets do. Also,
data sockets need information on how to connect to remote addresses and send and receive data. Once
again, the class is basically just a wrapper around what I showed you in Chapter 2, so I'm not going to
show you the internal code; that would be redundant.

Using Sockets

Because of the way my Socket Library is set up, it's incredibly easy to use. Observe:

using namespace SocketLib;
ListeningSocket lsock;
DataSocket dsock;
lsock.Listen(5000); // start listening on port 5000
dsock = lsock.Accept(); // wait for an incomming connection

Ta-da! Five lines of code for something that would take around 30-40 in the Sockets API. After this
code has executed, dsock will contain a socket (if a client connects to you, of course) that you can
send and receive data from:

char buffer[128] = "Hello there!";
dsock.Send(buffer, strlen(buffer));
dsock.Receive(buffer, 128);

This simple program sends a bunch of text"Hello there!"and then waits for the client to send
something back. Here again, stuff like this makes your life so much easier.

Socket Sets

The select() function is the other main feature of the Sockets API that I will frequently use. The
select() function polls a set of sockets activity. For this, I've created the SocketSet class, which will
keep track of an fd_set of sockets. It will essentially allow you to add sockets, remove sockets,
"poll" the sockets (call select()), and check if a socket has activity. Figure 5.2 shows the class
diagram for this class.

Figure 5.2. Class diagram for the SocketSet class, which tracks an fd_set of sockets.

The SocketSet class is fairly simple, but it does have one extra optimization that I did not discuss in
Chapter 2. Remember the first parameter of the select() function? It is supposed to be the value of
the highest socket descriptor within the set, plus 1. Windows ignores this value and does its own
thing, but if you don't put in a valid value for Linux, you're going to have problems.

In Chapter 2, I told you that you could just put 0x7FFFFFFF into it. That's a really dumb thing to do if
you're looking for speed, however, and I did that just for simplicity's sake. If you put a huge number
such as 0x7FFFFFFF into the function, it's going to take a long time to check the sockets (because it's
basically a for-loop underneath in Linux). If you use too small a value, you might end up ignoring
some sockets. As much as I hate doing extra work for tedious things such as this, I was forced to add
the capability to detect the largest socket descriptor into the Linux branch of the code.

Note the last variable within the class diagram in Figure 5.2: m_socketdescs. I made the code so that
variable doesn't exist in Windows, but it exists in Linux. It's basically an std::set that keeps track of
all the descriptors that have been added to the fd_set.

The internal implementation of storing sockets inside an fd_set isn't standard, so there really is no
way to check the largest value in a set without calling FD_ISSET() on every possible socket
descriptor, and as you can probably imagine, that would take forever. I just keep an std::set of
socket descriptors handy, so I can search through them whenever a socket is removed. If you know
how std::sets work, you'll realize that the highest value is always at the end of the container if you're
using regular numeric types, so to get the value of the largest descriptor, you simply need to get an
iterator to the last item and dereference it. The code is simple, so I won't bother showing it to you
here.

Here's an example of its use:

using namespace SocketLib;
DataSocket socks[3];
SocketSet sset;
// assume the sockets are connected here somewhere
sset.AddSocket(socks[0]);
sset.AddSocket(socks[1]);
sset.AddSocket(socks[2]);
int active = sset.Poll(1000); // wait 1 second for activity
if(sset.HasActivity(socks[0]));// check if there is activity
 // handle activity
// later on:
sset.RemoveSocket(socks[0]);

And so on. It's pretty easy to use. However, you must remember a few things when using this class.
First of all, different operating systems have different numbers of sockets that you can store inside an
fd_set. For example, Windows is set at 64 sockets, while Red Hat 8, which I am running, is set at
1024. Other implementations differ as well, I imagine.

To handle this, I've included a handy define inside of the Socket Library, the MAX constant.
SocketLib::MAX will hold the maximum number of sockets you can store in an fd_set.

So, you should remember to check the SocketLib::MAX variable to see how many sockets you can fit
in a set. Also, the SocketSet class doesn't actually count how many sockets it contains; it's really up to
whomever uses it to keep track.

Function Wrappers

I've included four functions within the SocketLib namespace to help you with network programming.
They are located within the SocketLibSystem.h and .cpp files. Here are the functions:

ipaddress GetIPAddress(const std::string p_address);
std::string GetIPString(ipaddress p_address);
std::string GetHostNameString(ipaddress p_address);
bool IsIPAddress(const std::string p_address);

The ipaddress type is just a typedef for an unsigned long int, but, as I've told you before, turning
items into typedefs makes your programs much more readable. Also, there's one little qualification
I've made: ipaddresses must be in Network-Byte-Order (NBO). All socket functions assume that
ipaddresses are in NBO, and if you play it right, you'll never have to convert addresses to and from
host-byte-order.

So, you can use the GetIPAddress() function to convert string addresses into a binary IP address like
this:

ipaddress addr = SocketLib::GetIPAddress("www.google.com");
addr = SocketLib::GetIPAddress("127.0.0.1");

Note that this function is smart. It can convert either DNS-capable addresses such as
www.google.com, or numeric addresses such as 127.0.0.1. However, you'll have to be careful when
converting a DNS-capable address; this function may block. (Remember from Chap-ter 2 that this
function needs to contact your DNS server.) So it's usually wise to call this function in a thread
separate from your main game, unless you know for sure that you're converting a plain numeric
address.

The next function takes an IP address and converts it into its numeric string:

std::string str = SocketLib::GetIPString(addr);

After the code has executed, that string should contain "127.0.0.1" (assuming addr still contains the
same address from the previous code example).

The other string conversion function does a reverse-DNS lookup:

addr = SocketLib::GetIPAddress("www.google.com");
str = SocketLib::GetHostNameString(addr); // "www.google.com"

And finally, we come to a function that detects whether a string contains a numeric IP address, or an
address that you should try to look up through DNS. This can help you determine if the GetIPAddress
function might block or not:

bool b;
b = SocketLib::IsIPAddress("www.google.com"); // false
b = SocketLib::IsIPAddress("127.0.0.1"); // true

So if the function returns false, GetIPAddress will probably block.

Errors

A Socket Library wouldn't be complete without an error reporting system, because many

things can go wrong with sockets, even when you prevent most errors with proper design.

Error Codes

The first thing I did was to create an enumerated type representing all the possible error codes:

enum Error {
 // errors that shouldn't happen; if they do, something is wrong:
 ESeriousError,

 // these errors are common
 ENetworkDown,
 ENoSocketsAvailable,
 ENoMemory,
 EAddressNotAvailable,
 EAlreadyConnected,
 ENotConnected,
 EConnectionRefused,
 ENetworkUnreachable,
 ENetworkReset,
 EShutDown,

 EHostUnreachable,
 EHostDown,
 EConnectionAborted,
 EConnectionReset,
 EOperationWouldBlock,

 // DNS errors
 EDNSNotFound,
 EDNSError,
 ENoDNSData,

 // These errors are specific errors that should never or rarely occur.
 EInProgress,
 EInterrupted,
 EAccessDenied,
 EInvalidParameter,
 EAddressFamilyNotSupported,
 EProtocolFamilyNotSupported,
 EProtocolNotSupported,
 EProtocolNotSupportedBySocket,
 EOperationNotSupported,
 EInvalidSocketType,
 EInvalidSocket,
 EAddressRequired,
 EMessageTooLong,
 EBadProtocolOption,
 EOptionNotSupported,
 EAddressInUse,
 ETimedOut,
 EShutDown,

 // auxiliary socketlib errors
 ESocketLimitReached,
 ENotAvailable,
 EConnectionClosed
};

As you can see, there are a plethora of possibilities, possibly even a cornucopia? In either case, there
are a lot of them! I'm not going to take the time to explain them here, because most are equivalent to
the errors I've shown you in Chapter 2 and are detailed in Appendix B, "Socket Error Codes" on the
CD. Notice the third grouping of errors. Most of those errors have been eliminated through the design
of the socket library. Theoretically, those errors should never occur. Theoretically, of course. Things
might not work out that way in real life, so if those errors occur, something is seriously wrong with
your program.

NOTE

If you ever plan to make a better error-handling system, you might want to think about
implementing a severity system, in which errors are assigned values that indicate how severe

they are. For example, you can make certain errors have a severity level that tells your game
that the connection needs to be closed, and others that tell your system that the entire network
just isn't working, and the game must be shut down.

Translating Errors

Like all things in life, there are problems with the native error codes in the Sockets API. Windows is
actually helpful here by giving each error its own specific value that you can retrieve using its
WSAGetLastError() function. On the other hand, Linux muddles its system by using two different
error-reporting mechanisms: errno and h_errno, which retrieve regular errors and host-lookup errors
respectively. The problem is that both variables use different error-numbering systems, and some
error codes conflict with each other on some systems.

To get around this problem, I've created a function to get errors that takes a Boolean parameter and
determines which error source it should get errors from:

Error GetError(bool p_errno = true);

If the parameter is true (the default value), the function gets errors from errno; if false, it gets errors
from h_errno. The WIN32 version of this function just ignores the parameter.

Then there is a function that actually does the translating:

Error TranslateError(int p_error, bool p_errno);

This function really shouldn't be used anywhere except by the GetError() function, so it's mainly just
a helper function that takes an integer error code and translates it into an actual Error type. It's a huge
and ugly function, so I recommend looking at the source only if you like seeing huge, ugly functions.

The SocketLib::Exception Class

And finally, here's the SocketLib::Exception class:

class Exception : public std::exception {
public:
 Exception(Error p_code);
 Error ErrorCode();
 std::string PrintError();
protected:
 Error m_code;

};

This class is very simple; it contains just a single error code and has functions to get the error code,
as well as print the error message to a string. You can throw exceptions like this:

throw SocketLib::Exception(SocketLib::GetError());

And then catch them like this:

try {
 // write socket code here
}
catch(SocketLib::Exception& e) {
 // handle error here
}

If you don't know how to use exceptions, see Appendix C, "C++ Primer," on the CD for more
information.

The Winsock Initializer

In Chapter 2, you learned that Winsock must be initialized and shut down whenever you use it. I'm
going to use a clever trick to make the program automatically initialize the Winsock library by
creating a global object, and initializing the library in that object's constructor.

In addition, I will shut down Winsock in the destructor of this object. The class is located in
SocketLibSystem.cpp and is called System. The class has a member variable of type WSADATA, which,
as you learned in Chapter 2, stores information about Winsock. Here's the class definition:

class System {
public:
 System() { WSAStartup(MAKEWORD(2, 2), &m_WSAData); }
 ~System() { WSACleanup(); }
protected:
 WSADATA m_WSAData;
};

The constructor automatically initializes Winsock, and the destructor shuts it down. Error checking is
not performed on either function, because it is dangerous. Throwing exceptions in constructors and

destructors is generally a bad idea, and it doesn't help you notify the user about what is wrong
(because there's nothing to catch the exceptions). If you threw an exception in the constructor, the
program would immediately exit, and it wouldn't be able to notify the person running the program that
there was a problem with Winsock. So, it's better to let it be, and detect the Winsock error when you
try using the network system.

Also, if you throw an exception in the destructor, there is a very possibility that many things in your
program may not shut down correctly. So, if shutting down Winsock fails, we really don't care,
because the program is exiting anyway.

Finally, the global instance of the system object is declared:

System g_system;

This name appears only within the SocketLibSystem module, so it shouldn't cause name conflicts
anywhere else in the program.

And that about sums up the portion of the library that wraps the Sockets API/Winsock.

Connections, Managers, and Policies, Oh My!

So now you've got a decent networking framework set up. You can connect to servers, listen for
clients, send and receive data, and so on. But all that doesn't help you organize your game in a
sensible manner. In an effort to make organizing a network module for this game easier, I've
developed a large library of modular classes for you to use.

I want to launch into a discussion about the reasoning for this library before I get down to the nitty-
gritty details. Over the years, I've been studying all the popular open-source MUDs, and I'm
disappointed. Most of them began their lives 10 to 20 years ago, long before C++ was standardized.

So I understand why most MUDs that have been reworked, improved on, and expanded are extremely
ugly today. Try adding a feature to a MUD, and you'll end up running around 100 files looking for
bugs, or even worse, one huge multimegabyte source file. Count me out, thank you.

Another reason some MUDs are ugly is because people use them to start learning C and C++. It's a
noble causebut misguided. Because many older MUDs teach concepts that are out-of-date and no
longer used, they teach people the wrong lessons.

So, I want to teach you how to program the proper way. As much as everyone hates templates, they
are an integral part of C++, and when used correctly, they can add much flexibility to your programs. I
hope you saw from Chapter 4, "The Basic Library," how useful templates can be for adding simple
decorator features to a class.

In my extended Socket Library, I want to introduce you to the idea of a policy class. You're going to
have sockets that send and receive data using a specific protocol. (I covered the concept of protocols
in Chapter 2.) Now, a socket has no idea about the protocol; its job is to be dumb and just send and
receive raw streams of bytes. That's a good way to think of it, because you can take the socket class
and easily move it to some other type of application with no problems.

So now you have a socket class that doesn't care about what protocol it uses, but you want to expand
it. You want to create some sort of flexible architecture in which you can say, "I want to create a
socket that uses this protocol!" This is where the idea of a policy comes in. A socket will just receive
raw data from the network and then send it off to its policy class, which will actually interpret that
data. This can be done using templates. For this behavior, I've created a new kind of DataSocket,
known as a Connection:

template< class protocol >
class Connection : public DataSocket

That's just the class declaration, for now. I'll get to the guts of the class later on. So, as you can see, it
inherits from DataSocket, and it will be able to do everything a regular data socket does. It also has a
template parameter that determines which protocol policy class to use. I'm jumping the gun a little bit
here, but just for the purposes of explanation, you can assume that you've got classes called Telnet,

FTP, and HTTP.

NOTE

I don't actually create FTP and HTTP classes anywhere in this book; they are imaginary classes
used only for the sake of demonstrating the connection concept.

Those classes represent various Application layer protocols. So, if you've got those classes, this
connection class allows you to do stuff like this:

Connection<Telnet> tcon; // Telnet connection
Connection<FTP> fcon; // FTP connection
Connection<HTTP> hcon; // HTTP connection

That is the idea behind a policy class; those three protocol classes are policies that govern how data
is interpreted.

Protocol Policies

The protocol policy classes you will be using in conjunction with the SocketLib are pretty simple.
They're only required to have one function, which is the function that the Connection class calls
whenever it receives raw data:

void Translate(Connection<protocol>& p_conn, char* p_buffer, int p_size);

The function takes as a reference the connection that is sending it data (for reasons illustrated in
Figure 5.3), a pointer to the raw data buffer, and the size of the data in the buffer.

Figure 5.3. A connection receiving data.

A protocol class must have one more itema typedef (or an inner class, but I prefer a typedef)that
defines the abstract class (meaning that it defines only an interface) that will handle "complete"
messages that the protocol object receives. This class is called protocol::handler (in the case of the
Telnet protocol, you would refer to its abstract handler base class as Telnet::handler).

Imagine this scenario: You've got a protocol that sends discrete commands, but due to the unreliability
of TCP network transmissions, each packet received by the connection may contain only a portion of
the command, or even multiple commands. So, this raw data is sent to the protocol object, and when
the protocol object detects that it has received one full command, it shoots that command off to the
connections' current protocol handler. Figure 5.3 demonstrates this process.

I designed the system like this for a reason: The protocol classand only the protocol classshould
know the format for sending complete commands to the handler. The connection class doesn't know
how to send data to its current handler, because it doesn't know what format the handler expects for
data. The connection class simply hands raw data to its protocol, which then translates it and sends it
to the handler.

Every connection handler is required to have a constructor that takes Connection<protocol>& as its
parameter (where protocol is whichever protocol policy you are currently using), so that the handler
can keep track of the connection it is linked to. You'll see more of this when I get into the specifics in
Chapter 6, "Telnet Protocol and Simple Chat Server."

Protocol handler classes must also have the following functions, which are called whenever certain
events occur to a connection:

void Enter(); // connection enters state
void Leave(); // connection leaves state
void Hungup(); // connection hangs up
void Flooded(); // connection floods

Additionally, you should always have at least one protocol handler class that has this function:

static void NoRoom(Connection<protocol>& p_connection);

This function is called whenever a connection manager receives a new connection, but there isn't
enough room for it, and the connection must be told so. I will show you much more about the handler
classes in Chapter 6, when I teach you about Telnet. For now, this is all you need to know about the
protocol and protocol handlers.

Connections

As I mentioned before, I wanted to create a more specialized socket class, one that would
communicate with a protocol class, and have other features as well. For this purpose, I've created the
Connection class, located in the file /Libraries/SocketLib/Connection.h. Figure 5.4 shows the UML
diagram of the Connection class.

Figure 5.4. UML diagram of the Connection class.

You can see that the class adds a bunch of new features on top of the regular data socket class, which
I will go over in the next few sections.

NOTE

The dotted box at the top of the diagram represents a template parameter.

New Variables

There are several new variables.

Protocol Object

First and foremost is the m_protocol member variable. You could theoretically make the protocol
class static, which would mean that the class would exist without data, but that method has a problem.
For example, it is entirely possible that you'll receive partial commands when receiving data from the
connection; therefore, something needs to buffer that data. I've decided to let the protocol class
handle the command buffering.

For the protocol class to handle the command buffering, the protocol class actually needs to be
instantiated. Therefore, the Connection class will always keep an instance of its own protocol object.
This method works really well if you ever plan to introduce multithreading into your engine.

NOTE

Handler classes have one special characteristic you must be aware ofhandler classes are
lightweight classes, meaning that every connection has its own instances of its handler classes.
Because the handler classes are also Polymorphic (which means they inherit from a common
base class), each handler can behave differently. Using polymorphic inherit ance, however,
requires the use of pointers, which is why the stack holds pointers to handlers, instead of actual
handler objects. This introduces yet another problem: Using indi vidualized lightweight classes
means that every connection needs a handler created by new . (Since handler classes are
polymorphic, you need to use pointers.) This effectively makes the Connection class own all of
its handlers. New handlers are passed into it, but from that point on, the Connection manages the
handler, and deletes it when it is no longer needed. This is essential to avoid memory leaks.

The Stack of Handlers

The next variable is the m_handlerstack, which holds protocol::handler pointers. In a traditional
network application, it is common to see connections maintaining a current state. For example, a
connection could be "logging in" or "playing the game." These specific states are represented by
individual protocol::handler objects. You'll have a handler class for connections that are logging in,
a handler class for connections that are in the game, and a handler class for any other state you can
think of. I show you a great deal about handlers in Chapter 6.

So why not just have a single handler pointer to represent the current handler? Well, there may be
times when you're going to want recursive states. Say the user is in state 1 and then switches to state
2. When the user in state 2 is finished, you might want the connection to go back to the previous state.
This is why I'm using a stack. When state 1 is on the top of the stack, you're in state 1, but when you
switch to state 2, the new handler is pushed onto the top of the stack. Later on, when you exit the state,

it is popped off the stack, and state 1 is back at the top. Basically, this system gives you flexibility.
Figure 5.5 shows this process.

Figure 5.5. With the handler stack process, you can add new states on top of earlier
states and go back to the earlier states later on, without the new states knowing

which state to return to.

A Sending Buffer

The next variable is m_sendbuffer, which is an std::string. This buffer is used to store data that you
want to send, until it can actually be sent. Why a string? Well, strings are good at storing plain bytes.
You can easily make your job easier by adding large chunks of bytes to the end of strings, and the
strings can also be turned into plain char* arrays by calling their data() function. Whenever you
buffer data into a connection, it is put into this string, and then sent out later (when a connection
manager deems it appropriate).

Rates and Times

The m_datarate variable keeps track of how many bytes-per-second the socket is receiving during the
current "time chunk." (I'll explain this in a bit.) Likewise, m_lastdatarate stores the amount of data
that was received during the previous time chunk. I calculate these values in chunks of time because
computers are discrete machines; there's really no way to get an exact instantaneous value of data-
per-time; instead, the best that can be done is to count the number of bytes received over a certain
period. That's what these variables store.

Other related variables are m_lastReceiveTime and m_lastSendTime. As you can probably guess,
these related variables store the last time data was received and sent. The m_checksendtime Boolean
is used to check client deadlock. This is an issue I will discuss a little later on.

NOTE

These time variables are stored as second values, not millisecond values.

The m_creationtime variable holds the system time (in seconds) at which the connection was created,
so you can tell how long the connection has been open.

Other Data

BUFFERSIZE is a const integer that determines how large a Connections receive buffer is, and then
m_buffer is the actual buffer. I've hard-coded BUFFERSIZE at 1024 bytes, and I can't see much use in
making it configurable, but you can change it if you want.

The last variable is a Boolean named m_closed that determines if the connection has been "closed."
You'll see this in action later on when dealing with connection managers. The idea is that within the
execution of a game, you may decide to close a connection, but you won't be able to inform the
connection manager; instead, you will end up setting this Boolean to true, and the connection manager
will go through every connection at a later point in time, to check if something wants the connection
closed. At this point, the connection manager forcibly closes the connection and deletes it.

This is done because there are lots of problems with being able to close a socket immediately in many
different parts of the code. For example, you may be in the middle of a loop going through all of the
connections, and you receive data that makes the game want to close the connection (maybe a "quit"
command). If you allow the game to shut down the connection immediately, the connection manager is
going to run into problems later when it comes back to the iteration.

New Functions

There are a bunch of new functions in the classfunctions that will help you buffer sends, get statistics,
and receive data.

The Constructors

There are two constructors. The plain constructor simply constructs the connection and clears all the
data members in it; the other constructor takes a reference to a DataSocket.

DataSockets and ListeningSockets don't do anything in their destructors, so you're free to pass them
around between functions. It would be a real nightmare if you had sockets automatically close when
they were destroyed. Why? Examine the following code:

void Function(DataSocket p_sock) {
 // blah
}

// later on:
DataSocket s;
// connect the socket here somewhere
Function(s);

If sockets auto-close on destruction, what's wrong with that code? When you passed the socket into
the function by-value into p_sock, you copied the socket, but when the function ended, it
automatically destructed that socket object, which will tell the operating system to close whatever
socket it is pointing to. So the next time you try using s, it won't be open. Believe meyou'll spend
hours tracking down these kinds of bugs.

NOTE

If you're feeling really ambitious, you may want to consider reference- counted sockets. These
are sockets that keep track of how many times they are referenced in your pro gram, and
whenever they drop down to a count of 0, they automatically close themselves.

So, that's why I made sockets able to freely copy themselves. This becomes important when you look
at the constructor of the connection class: It can take a data socket as a parameter and copy all the
DataSocket information into itself. Then whoever created the original data socket can safely discard it
and use the Connection. You'll see me do this later on, when I show you the ConnectionManager class.
Here's the code for the two constructors:

template< class protocol >
Connection<protocol>::Connection() {
 Initialize();
}
template< class protocol >
Connection<protocol>::Connection(DataSocket& p_socket)
 : DataSocket(p_socket) {
 Initialize();
}

The first constructor just calls the Initialize() function; the second takes a DataSocket as a
parameter and then uses the standard base-class constructor notation to construct the DataSocket
portion of the Connection. (See Appendix C on the CD for more information on base-class
constructors.)

Both functions call Initialize:

template< class protocol > void Connection<protocol>::Initialize() {
 m_datarate = 0;
 m_lastdatarate = 0;

 m_lastReceiveTime = 0;
 m_lastSendTime = 0;
 m_checksendtime = false;
 m_creationtime = BasicLib::GetTimeMS();
 m_closed = false;
}

As you can see, the code just resets all members to their default values.

Receiving Data

The connection class has its own overloaded Receive function. The class has its own receive buffer
and also keeps track of the incoming datarate, so this function doesn't take parameters or return
anything.

Instead, the Receive function attempts to receive data into its buffer; then it shoots that buffer off to the
protocol policy. Here's the function (split up into logical blocks):

template<class protocol>
void Connection<protocol>::Receive() {
 int bytes = DataSocket::Receive(m_buffer, BUFFERSIZE);

The function first tries to receive as much data as it can. The DataSocket::Receive function either
blocks, or throws an exception if it's in nonblocking mode and there is no data to receive. (This latter
method assumes you've used a select-based method to poll the socket.)

 BasicLib::sint64 t = BasicLib::GetTimeS();
 if((m_lastReceiveTime / TIMECHUNK) != (t / TIMECHUNK)) {
 m_lastdatarate = m_datarate / TIMECHUNK;
 m_datarate = 0;
 m_lastReceiveTime = t;
 }

The previous code fragment gets the current system time (in seconds), and then makes a few
calculations on it. Let me explain this segment. Data is sent in discrete chunks and is rarely
continuous. For example, one second you might get data in a huge burst, and then the next second, you
might get nothing. For MUDs, this could be a problem. For example, the particular client a person is
using may store a large command and then send it all at once. The server will see this burst of
activity, think that it's being flooded during that one second, and disconnect the user. Meanwhile, the
user was just typing one command and was probably going to take a few seconds to type the next
command.

Disconnecting your users like that is bound to annoy them to no end, so you need a better system.
Instead of keeping track of bytes per second, the class keeps track of bytes per 16 seconds. Why 16? I
like to use 16 seconds because it's a nice power-of-two that is close to 1/4 of a minute. Since it's a
power-of-two, the compiler will almost certainly optimize the division so that it doesn't take much
time. If you feel that 16 is inappropriate, you can change the value of the TIMECHUNK variable at the top
of the file to whatever you wish.

Whenever the function has detected that a new 16-second block has begun, it records the datarate for
the previous 16 seconds and resets the datarate to 0.

Here's the next part of the function:

 m_datarate += bytes;
 m_protocol.Translate(*this, m_buffer, bytes);
}

The number of bytes received is added to the datarate, and the buffer is sent to the protocol to be
translated.

Sending Functions

On many systems, it is expensive in terms of processing power to repeatedly call socket functions
such as send and recv. For a typical MUD game loop, you'll end up sending multiple lines of text to a
single connection during one loop, but you don't actually want to make a call to the send function
every time you send a line, right? So, the smart method is to buffer all the data you want to send, and
then, at the end of the game loop, make just one call to send, trying to send the entire buffer. In
practice, this usually works well.

template<class protocol>
void Connection<protocol>::BufferData(const char* p_buffer, int p_size) {
 m_sendbuffer.append(p_buffer, p_size);
}

The function takes a char* buffer and its size; then it appends the buffer to the end of the m_sendbuffer
string, using the append function.

Now, when you want to send it all, you do this:

template<class protocol>
void Connection<protocol>::SendBuffer() {
 if(m_sendbuffer.size() > 0) {
 int sent = Send(m_sendbuffer.data(), (int)m_sendbuffer.size());
 m_sendbuffer.erase(0, sent);

All right, the first part of the function is no-nonsense. The function tries to send what's in the buffer,
counts how many bytes are sent (nonblocking sockets return 0 when nothing is sent), and then erases
all those bytes from the front of the buffer.

 if(sent > 0) {
 m_lastSendTime = BasicLib::GetTimeS();
 m_checksendtime = false;
 }

The previous code fragment checks to see if any data was sent. If so, the time is recorded, and the
m_checksendtime Boolean is cleared to false. When this Boolean is false, it is assumed that there
are no problems sending data; you'll see how this works in the next segment:

 else {
 if(!m_checksendtime) {
 m_checksendtime = true;
 m_lastSendTime = BasicLib::GetTimeS();
 }
 } // end no-data-sent check
 } // end buffersize check
}

The final code segment occurs when no data was sent. If that happens, you know there is a problem
sending data. (Either the client is under deadlock and it's not accepting data, or you're flooding it with
too much data.) If the m_checksendtime flag has not been previously set, this is the first time you've
noticed a sending problem, so you mark down the current time in m_lastSendTime. Although
technically you didn't send anything, it is important to mark down the time you noticed sending
problems. If the flag is already set, that means you've noticed there have been sending problems
before, so don't update the time.

NOTE

This isn't an entirely accurate method of discovering when a client stops accepting data. For
example, if the client hasn't been sent anything in a long time, you'll notice that the client has
stopped receiving only when you try sending data to it. Because of this, it is often useful to send
a ping to clients occasionally, so that if they do end up disconnecting without notifying you,
you'll notice within a minute or so.

Closing Functions

Connections are designed to be used in conjunction with a connection manager, which, as the name
implies, will manage connections. You'll learn about connections later on, but for now, you should
know that whenever you manually close a connection, the connection manager must know about the
connection closing, so it knows not to manage that connec-tion any longer. There are a number of
possible solutions to this problem:

1. You could require the programmer to manually tell the connection manager.

You could make every connection be aware of its manager, and make the connection tell the
manager it has been closed.

You could simply store a Boolean, and have the connection manager check that later on.

Method 1 is a bad idea. Whenever you make code that's going to be difficult to use, it will anger
people who use it (including yourself!), and generally make the project much more difficult to work
on. Method 2 is also somewhat bad; it introduces cyclic dependencies (see Appendix C on the CD for
more information about these), and generally uses more memory and management. (That is, you have
to tell every connection about its manager in the first place.)

I have chosen method 3, as you may have already noticed when I showed you the data stored within
the class. There are three functions concerned with closing:

inline void Close() { m_closed = true; }
inline bool Closed() { return m_closed; }

inline void CloseSocket() {
 DataSocket::Close();
 if(Handler()) Handler()->Leave();
 while(Handler()) {
 delete Handler();
 m_handlerstack.pop();
 }
}

The Close function simply sets the m_closed Boolean to true, so that when the connection manager
checks the Boolean later using Closed, it can then really close the socket, using the CloseSocket
function.

Whenever the program physically shuts down a connection using CloseSocket, it calls the underlying
DataSocket::Close function to close the socket. After the socket is closed, the function checks to see
if the connection is active inside a state; if so, then the handler's Leave function is called, to notify the
current state that this connection has left it.

Once that has been done, the function goes through every state in the stack and deletes them (without
re-entering them).

Handler Functions

There are five functions in the class concerning protocol handlers, which make working with them
somewhat easier than manipulating the handler stack directly. Here are the functions:

void AddHandler(typename protocol::handler* p_handler);
void RemoveHandler();
typename protocol::handler* Handler();
void SwitchHandler(typename protocol::handler* p_handler);
void ClearHandlers();

The code for those functions is really quite simple, so I won't bother to go over it here. For example,
adding a handler involves pushing a new handler on top of the handler stack, and then calling its
Enter function. The RemoveHandler does the opposite; it calls its Leave function and pops it from the
stack.

Switching handlers involves these actions: leaving and popping the current handler, and then pushing
and entering the new handler (completely bypassing any handler that may have been below the first
one). Clearing handlers involves leaving the top handler and deleting all of them.

The first function pushes a new handler onto the top of the handler stack. This is important: Whenever
you pass a handler at the top, you must pass in one that has just been created using new. For example,
if you have a handler named logon, you'd pass it in to a connection like this:

conn->AddHandler(new logon(*conn));

It is also important never to delete that handler; the RemoveHandler function takes care of that for you.
So whenever you pass in a new handler to the connection, it's pushed on top of the handler stack, and
then the handler's NewConnection function is called, telling it that the connection has entered that state.

The RemoveHandler function deletes the handler at the top of the stack, since it's no longer needed, and
then the pointer to that handler (which is no longer needed) is popped off the stack.

Finally, the Handler function is a simple way of retrieving a pointer to the handler on top of the stack.

Other Functions

All the rest of the functions are pretty simple; most are just accessor functions that return a value. One
is more interesting than the rest: GetLastSendTime().

template< class protocol >

BasicLib::sint64 Connection<protocol>::GetLastSendTime() const {
 if(m_checksendtime) {
 return BasicLib::GetTimeS() - m_lastSendTime;
 }
 return 0;
}

When the m_checksendtime flag isn't set, the function always returns 0. This function is meant to return
the amount of time that has passed since a connection has noticed sending problems, so it returns 0 if
there aren't problems. Otherwise, if there are problems, the function returns the difference between
the current time and the time when the connec- tion noticed sending problems.

Table 5.1 lists the other functions.

Table 5.1. Accessor Functions for Connection's

Function Purpose

GetLastReceiveTime Is the system time (in seconds) at which data was last received on the socket

GetCreationTime Is the system time at which the connection was created

GetDataRate Is the number of bytes per second received by the connection over the previous time chunk

GetCurrentDataRate Is the number of bytes per second received by the connection during the current time chunk

GetBufferedBytes Returns the number of bytes of data currently buffered on the connection

Protocol Returns a reference to the connection's protocol object

All these functions are just simple accessors with nothing substantial in the code, so there is no need
to show you the source for them.

Listening Manager

For the Socket Library, I've developed two manager classesclasses that will manage sockets and
connections for you. The first of these is the ListeningManager class. As the name suggests, this
manager takes care of listening sockets.

Altogether, the ListeningManager is really a simple manager. It allows you to add ports, listen on the
listening sockets, and set a ConnectionManager. Whenever a ListeningManager detects a new
connection, it sends the connection off to its current connection manager. Figure 5.6 shows the class
diagram for the ListeningManager class.

Figure 5.6. ListeningManager class diagram.

The first thing you should take note of is the fact that this class has two template parameters: protocol
and defaulthandler. Obviously, the protocol is the protocol policy class that

NOTE

Some ISPs block outgoing connec tions on certain ports, so you may find that users might not be
able to connect to your server because of their ISP. In this situation, it's very useful to be able
to listen on more than one port.

connections in this manager will use (like Telnet, which I cover in Chapter 6). The second template
parameter is the default handler of a connection. Whenever a new connection is created, it obviously
must be given a default handler, right? So that's what this template parameter represents.

You can see that the ListeningManager maintains a vector of listening sockets; this means that the
ListeningManager class maintains multiple listening sockets. This is a neat feature if you want your
programs to listen on more than one port for the same purpose, which can be helpful in certain
situations.

Constructor and Destructor

The constructor for this class is simple; it just clears the connection manager pointer to 0, meaning

that it hasn't been given a connection manager yet:

template<typename protocol, typename defaulthandler>
ListeningManager<protocol, defaulthandler>::ListeningManager() {
 m_manager = 0;
}

And the destructor:

template<typename protocol, typename defaulthandler>
ListeningManager<protocol, defaulthandler>::~ListeningManager() {
 for(size_t i = 0; i < m_sockets.size(); i++) {
 m_sockets[i].Close();
 }
}

This goes through every listening socket and closes them, so that whenever a listening manager is
destructed, all of the sockets are automatically closed.

Adding New Sockets

Here's the function to add new listening sockets:

template<typename protocol, typename defaulthandler>
void ListeningManager<protocol, defaulthandler>::AddPort(port p_port) {
 if(m_sockets.size() == MAX) {
 Exception e(ESocketLimitReached);
 throw(e);
 }
 ListeningSocket lsock;
 lsock.Listen(p_port);
 lsock.SetBlocking(false);
 m_sockets.push_back(lsock);
 m_set.AddSocket(lsock);
}

You may have noticed from the class diagram in Figure 5.5 that the class contains a SocketSet. It uses
the set to poll all the sockets it contains, to see if there are any new connections. Therefore, the
number of listening sockets you're allowed to have is limited to the number of sockets a SocketSet
can contain. If there isn't enough room, the function throws

NOTE

Nonblocking Listening Sockets

Unless you dedicate an entire thread to each socket, it is important that you make listening sockets
nonblocking. There is a certain exploit when listening sockets are used in conjunction with the
select() system call. Imagine a client that sends a connection request and then quickly shuts down.
The select() call will detect that there's a connection, but by the time you call accept(), there's no
more connection available, and your thread starts blocking. If this thread is responsible for more than
just listening for new connections, your program is going to stop until another person actually
connects to it. This is bad. Therefore, you should usually try to make listening sockets nonblocking.

an exception of type ESocketLimitReached.

Then, the function creates a listening socket, tells it to start listening, sets it to nonblocking mode,
adds the socket to the socket vector, and finally adds the socket to the socket set as well.

Listening for New Connections

For now, the model of the ListeningManager is pretty simple. Once you've got all the ports added that
you want to listen to, you must manually call the Listen() function whenever you want to listen for
new connections.

Here's the function:

template<typename protocol, typename defaulthandler >
void ListeningManager<protocol, defaulthandler>::Listen() {
 DataSocket datasock;
 if(m_set.Poll() > 0) { // check if there are active sockets
 for(size_t s = 0; s < m_sockets.size(); s++) {
 if(m_set.HasActivity(m_sockets[s])) {
 try { // accept socket and tell the connection manager
 datasock = m_sockets[s].Accept();
 m_manager->NewConnection(datasock);
 }
 catch(Exception& e) {
 if(e.ErrorCode() != EOperationWouldBlock) {
 throw; // rethrow on any exception but a blocking one
 }
 }
 } // end activity check
 } // end socket loop
 } // end check for number of active sockets
}

The function first polls the socket set, to see if any of the listening sockets have action. If they do, a
for-loop goes through every listening socket and checks to see if it has activity.

The try-block tries to accept a data socket from any listening sockets that have activity, and then sends
the socket to the m_manager, which is the ConnectionManager class I mentioned before. The catch-
block after that catches any socket exceptions, and checks to see if they are EOperationWouldBlock
errors. The existence of a would-block error means that someone may be trying to exploit your server,
but you detected it. So, that error is just ignored. Any other kind of error, which will almost definitely
be a fatal network system error, is rethrown.

NOTE

Using the threading knowledge you learned from Chapter 3, " Introduction to Multithreading, "
you should know enough about threading now to be able to create a threaded system, in which
you have three threads. The first thread would simply listen for any connections, and then pass
them off to your connection manager. Your connection manager would be running in a thread of
its own as well, and would ship data off to the final threadthe game thread. I have not imple
mented this kind of system in this book due to space con straints, but I may in the future. Check
my website for updates: http://ronpenton.net/MUDBook .

Connection Manager

The ConnectionManager class is the most complex class within the SocketLib. This class manages
connections of a certain type. Like the ListeningManager class, ConnectionManager is also templated
with a protocol and a default handler. Figure 5.7 shows the class diagram.

Figure 5.7. Class diagram for the ConnectionManager class.

http://ronpenton.net/MUDBook

Variables

The first variable is a std::list that stores connections. The most common complaint about templates
I hear is that they are ugly. The people who say that are absolutely right. Templates are ugly.
Unfortunately, they are also very handy.

The good news, however, is that typedefs can be good friends and remove a lot of the ugliness when
you are dealing with templates. For example, every time you want to refer to this kind of list, you'd
need this code:

std::list< Connection<protocol> >

But with a typedef, you can do something like this instead:

typedef std::list< Connection<protocol> > clist;
typedef std::list< Connection<protocol> >::iterator clistitr;
clist m_connections;

Believe meit makes your life so much easier. Imagine that later you want to create an iterator for that
kind of list:

// without typedef:
std::list< Connection<protocol> >::iterator itr;
// with typedef:
clistitr itr;

Typedefs make your code cleaner and easier to read, and save you from lots of typing.

The class has three integers that represent three different limits of the connection manager.
m_maxdatarate is the maximum datarate (in bytes per second) that the manager allows on a socket. As
soon as that socket goes over that datarate, it is kicked for flooding. If the socket cannot send data, the
m_sendtimeout variable determines how much time (in seconds) before a connection is kicked. This
prevents deadlocked clients.

The third variable, m_maxbuffered, protects against attackers. Imagine that you set the send timeout
value to 60, so that if data cannot be sent for 60 seconds, the connection is kicked out. The attacker
might know this, and so he sets his connection to accept one byte of data per minute from your server,
thus keeping it from detecting that he is having sending problems. Now this attacker is in your game,
and data is continually sent to him. Data is buffered up, and only one byte of data is removed from the
buffer each minute. Since the string class in the connection will theoretically keep expanding to fit all

the data it's buffering, you'll eventually run out of memory. Therefore, it is logical to impose a limit on
the amount of data that can be buffered. So, once the buffer reaches the given size, you can assume that
there are major problems with the connection, and the connection manager will close it. As with the
listening manager, this class has its own SocketSet, named m_set.

Functions

The connection manager has quite a few functions, and not many of them are accessors, so I will be
showing you most of the code for the class.

Constructor and Destructor

The constructor for the connection manager has three optional parameters. More than likely, you're not
going to use the default values of the parameters, as they are only guidelines. The three parameters
are:

Maximum data reception rate, which defaults to 1024 bytes per second

Send timeout period, which defaults to 60 seconds

Maximum buffer size per connection, which defaults to 8192 bytes

The maximum data reception rate determines how many bytes per second you can receive before the
connection handler kicks a connection for flooding. The send time period determines how long the
connection manager waits for a connection to respond after it first notices a sending problem. The
maximum buffer size per connection determines how much data can be buffered to send before it
assumes there's a sending problem and terminates the connection.

template<typename protocol, typename defaulthandler>
ConnectionManager<protocol, defaulthandler>::
ConnectionManager(int p_maxdatarate, int p_sentimeout, int p_maxbuffered) {
 m_maxdatarate = p_maxdatarate;
 m_sendtimeout = p_sentimeout;
 m_maxbuffered = p_maxbuffered;
}

As for the destructor, it simply closes every connection:

template<typename protocol, typename defaulthandler>
ConnectionManager<protocol, defaulthandler>::~ConnectionManager() {
 clistitr itr;
 for(itr = m_connections.begin(); itr != m_connections.end(); ++itr)

 itr->CloseSocket();
}

Because the connections do not throw exceptions when they are closed, you don't need to catch any if
something goes wrong.

Adding New Connections

The NewConnection() function adds new connections to the manager. The function takes a reference to
a DataSocket as its parameter and then turns that into a Connection. Here's the code listing:

template<typename protocol, typename defaulthandler>
void ConnectionManager<protocol, defaulthandler>::
NewConnection(DataSocket& p_socket) {
 Connection<protocol> conn(p_socket); // create new connection
 if(AvailableConnections() == 0) {
 defaulthandler::NoRoom(conn); // ack! no room!
 conn.CloseSocket(); // just close it then
 }
 else {
 m_connections.push_back(conn); // add the connection
 Connection<Telnet>& c = *m_connections.rbegin();
 c.SetBlocking(false); // nonblocking
 m_set.AddSocket(c); // add to set
 c.AddHandler(new defaulthandler(c));
 }
}

The function first creates a Connection out of the socket (conn). Then it checks to see if there is any
more room for the connection within the manager.

Remember when I first showed you the concept of the protocol::handler classes? I said that some of
them must have a static NoRoom function. Whatever class you decide to use as a default handler for a
connection manager, it must have this function. Because the connection manager is essentially
clueless about what protocol it's actually using, it doesn't know how to tell a connecting client that
there is no more room for it. You could leave the job to the protocol class, but that's not really
customizable. A protocol implementation is supposed to be general, not specific to the server you're
going to be running, so it's not wise to give that responsibility to it. If you delegate the responsibility
to the default protocol::handler, however, you gain flexibility and you can customize messages sent
back to the client about how full the server is, or whatever else you might want to do. You'll see this
implemented in Chapter 6, when I show you how to implement a Telnet handler. So, once the "no
room" message has been sent, you need to close the socket; it's assumed that anyone sending sockets
to this class is in "fire and forget" mode, which means that they shoot sockets off to the handler and

then assume that the manager takes complete control of that socket.

On the other hand, if there is room for the connection, you need to do a little more work. First, the
connection is added to the back of the list via the push_back function, and then a reference to the
connection inside the list is created, named c. Remember, STL containers use copy-by-value, so conn
is not the same connection as what is actually stored in the list; it's now a different connection. After
that, it puts the socket into nonblocking mode, adds the connection into the connection managers'
SocketSet, and finally adds a new defaulthandler to the connection's handler stack.

The connection is placed into nonblocking mode due to the buffering system; you don't want your
connections blocking when you are trying to send data that might not get sent.

Closing Connections

There are two functions associated with closing connections: Close() and CloseConnections(). The
first function is used to immediately close a connection, and the second is used to go through all of the
connections to check if they need to be closed. Here's the first function:

template<typename protocol, typename defaulthandler>
void ConnectionManager<protocol, defaulthandler>::
Close(clistitr p_itr) {
 m_set.RemoveSocket(*p_itr);
 p_itr->CloseSocket();
 m_connections.erase(p_itr);
}

The connection is removed from the socket set so that it is no longer polled for activity (because it
will be closed in a moment!); then it's physically closed, and finally erased from the list of
connections. Note that this function requires an iterator into the connection list, and because there's no
way to get an iterator outside of the manager class, this function can only be called internally.

Here's the other function:

template<typename protocol, typename defaulthandler>
void ConnectionManager<protocol, defaulthandler>::
CloseConnections() {
 clistitr itr = m_connections.begin();
 clistitr c;
 while(itr != m_connections.end()) {
 c = itr++;
 if(c->Closed()) Close(c);
 }
}

This essentially loops through every connection that it is managing and checks to see if the connection
should be closed. If so, then the function calls the Close helper function that I showed you previously.

You should notice that the function uses two iterators: itr, and c. At the beginning of the loop, c is set
to the position pointed at by itr, and then itr is incremented to the next position. If you close a
connection, the position pointed to by c disappears, and that iterator is completely invalid. You can't
increment it or do anything else; your only viable option is to discard it. Luckily, because you have
already saved the next position into itr, you can simply assign itr to c, and then move itr to the next
position.

This process is shown in Figure 5.8. The method using only one iterator is on the left, and the method
using two iterators is on the right.

Figure 5.8. You need two iterators to iterate through a list if you are also going to be
removing items from the list.

Listening for Data

The Listen() function is quite long and complex, so I'm going to break it up into sections and explain
them piece by piece. Here's the function:

template<typename protocol, typename defaulthandler>

void ConnectionManager<protocol, defaulthandler>::Listen() {
 int socks = 0;
 if(TotalConnections() > 0) {
 socks = m_set.Poll();
 }

The previous segment checks to see if there are any connections in the manager, and if so, polls them.
There's really no sense in polling an empty socket set, especially considering that you know it will
eventually call select(), which is a system call, and will probably have more overhead than a simple
if-statement at this level.

 if(socks > 0) {
 clistitr itr = m_connections.begin();
 clistitr c;
 while(itr != m_connections.end()) {
 c = itr++; // set itr to the next, and use c as current
 if(m_set.HasActivity(*c)) { // check activity
 try {
 c->Receive(); // try to receive data
 if(c->GetDataRate() > m_maxdatarate) {
 c->Handler()->Flooded(); // connection flooded
 Close(c); // close em!
 }
 }

The previous code segment is executed whenever sockets have activity. It loops through every
connection within the manager using two iteratorsitr and cjust as you saw before with the
CloseConnections function.

If the m_set reports that connections have activity, it tries to receive data from the connection. If it
receives the data, it then checks to see if the datarate of the connection exceeds the m_maxdatarate
variable. If it does, the connections' handler is notified that it was flooding, and then the connection is
forcibly closed.

 catch(...) {
 c->Close(); // tell connection it's closed
 c->Handler()->Hungup();// tell handler it hung up
 Close(c); // actually close connection
 }
 } // end activity check
 } // end socket loop
 } // end check for number of sockets returned by the poll
}

The catch-block catches exceptions that occurred when data was being received; it is assumed that if

there was an exception, it was a fatal error. Even a would-block error is fatal in this case; it would be
a signal that something was seriously messed up with the connection, since the socket set said there
was something to receive on it. Therefore, the connection is told that it has been closed, the
connection's current handler is notified that the connection hung up, and it is closed.

Sending Data

Because of the buffering system that all connections employ, to minimize the system calls, it is most
efficient to buffer all the data you want to send and then send it all at once at a later time. The Send
function does this by going through every connection and attempting to send the contents of each
sending buffer. Here it is:

template<typename protocol, typename defaulthandler>
void ConnectionManager<protocol, defaulthandler>::Send() {
 clistitr itr = m_connections.begin();
 clistitr c;
 while(itr != m_connections.end()) {
 c = itr++; // move itr forward, keep c as current
 try {
 c->SendBuffer(); // try sending
 if(c->GetBufferedBytes() > m_maxbuffered || // too much data
 c->GetLastSendTime() > m_sendtimeout) { // or send timeout
 c->Close(); // tell connection it has closed
 c->Handler()->Hungup(); // tell handler it hung up
 Close(c); // close connection
 }
 }
 catch(...) { // catch all exceptions and hang up on them
 c->Close();
 c->Handler()->Hungup();
 Close(c);
 }
 } // end while-loop
}

Inside the try-block, the buffer for every connection is sent. Assuming the transmission succeeds, the
next if-statement checks to see if there were any sending problems. It checks the buffer size and the
amount of time that has passed since the connection started having sending problems (if any at all; see
the Connection class from earlier in this chapter). If either problem exists, the connection's handler is
told that the connection hung up, and then it is closed.

If an exception was thrown when sending the buffer, it is caught in the catch-block. In this case, any
exception thrown will be a fatal error, so the connection's handler is told that it has hung up, and the
connection is closed.

Summary

This was a large chapter, and you may find it lacking because it didn't include a code demo. For that, I
apologize, but the Socket Library is unusable until you have a working protocol and its associated
handler class(es) written as well. Don't despair. The next chapter is going to make up for the lack of a
demonstration in this chapter by containing a large demo.

In this chapter, you learned how to abstract the base Sockets API into an easy-to-use collection of
classes, as well as how to expand the library into a nice collection of classes used to manage sockets
and connections.

I hope you can see the usefulness of having the modular protocol class I've shown you; it's really
amazing to see how flexible this sort of design can be. And without further ado, here's the chapter on
Telnet!

Chapter 6. Telnet Protocol and a Simple Chat
Server
In the previous chapter, I showed you the base SocketLib library and the protocol policy system I've
set up. Unfortunately, I couldn't actually show you any demonstrations, since the library needs a
complete protocol policy to work and I haven't shown you any protocols yet!

So, in this chapter, I'm going to introduce you to the Telnet protocol, which is bar-none the most
common protocol used for text MUDs. The great thing about the protocol is that it is so simple, and
almost every operating system has built-in Telnet clients. Because of this, there's no need to dig too
far into learning how to create clients. This is good, because it gives me more room to go over the
real meat of MUDsthe servers.

In this chapter, you will learn to:

Understand the basics of the Telnet protocol

Work with the standard VT100 control codes

Create a Telnet protocol policy class

Create Telnet handlers

Create a simple chat server using Telnet

Use demos that illustrate the concepts of the chapter

Telnet

Way back in the bad old days before the Internet even existed, all computer-human interaction was
done on something called a terminal. Essentially, a terminal is just a screen that prints characters as a
display and is connected to a keyboard on which the user types the characters. Terminals are usually
connected to a mainframe or a server via a phone line or some other means.

When the Internet came along, it was possible to connect computers over TCP/IP, but there was no
standard way of emulating the relationship between a terminal and a server. Then along came Telnet.
The latest Telnet protocol is defined in RFC 854, and it's not likely to change.

Essentially, the Telnet protocol says that a stream of 7-bit characters is going to be transmitted in
duplex mode (both ways); this stream of characters can contain occasional control codes that define
the behavior of the terminal device.

You won't be concerned with the majority of the control codes available, so I won't explain them in
depth.

Simple Telnet Example

I want to show you a simple example of a Telnet server. This server simply accepts characters that
are sent to it, buffers them, and then prints them back out to the terminal when an end of line is
reached. In Telnet, the end of a line is always signaled with a carriage-return, line-feed combination,
also known as CRLF. A CRLF in C++ is represented by the escape codes "\r\n".

At this point, I want to begin Demo 6.1, which can be found on the CD in the
\Demos\Chapter06\Demo06-01\ directory. It uses the SocketLib, and you can find compilation
instructions for the demo in Appendix A, which is on the CD.

NOTE

If you're running either VC6 or VC7, you can just open up the project files and click Compile,
assuming you've set up your compiler as specified in Appendix A , " Setting Up Your Compilers,
" which is on the CD. In Linux, all you need to do is type "make" and the demo compiles.

Demo 6.1Very Simple Telnet Server

#include "SocketLib/SocketLib.h"
using namespace SocketLib;
int main() {
 ListeningSocket lsock;

 DataSocket dsock;
 char buffer[128];
 int size = 0;
 int received;
 lsock.Listen(5098); // listen on port 5098
 dsock = lsock.Accept(); // wait for a connection

The previous code sets up two sockets (one listening, one data), a buffer, and two integers. The
listening socket is told to listen on port 5098. Then the listening socket is told to wait for a data
connection using the Accept function.

 dsock.Send("Hello!\r\n", 8); // send "Hello!" to client when connected
 while(true) { // run for eternity
 received = dsock.Receive(buffer + size, 128 - size);
 size += received;
 if(buffer[size - 1] == '\n') { // when you get an "\n",
 std::cout << size << std::endl; // print size of string
 dsock.Send(buffer, size); // send it back to client
 size = 0; // reset the size
 }
 }
 return 0;
}

The last code segment first sends a welcome message"Hello!"and then it loops infinitely, trying to
receive data from the data socket. Whenever data is received, the size is updated, and the last
character is checked to see if it is '\n', a linefeed character. If so, the buffer is sent out, and the size
is reset. That's it.

NOTE

The default Telnet port is 23, but Linux does not allow you to open ports below 1024 unless you
are root. Because of this, I've chosen to run on an arbitrary port.

Here are a few caveats about the program. If you reach 128 characters without pressing Enter, the
server crashes, since it's trying to receive 0 bytes (128 - 128 = 0), and that's not allowed by the
Socket Library. (Think about it; why would you try to receieve 0 bytes?) The server must receive at
least 1 byte. So don't type more than 128 characters. This process is illustrated in Figure 6.1.

Figure 6.1. One string of text, "Hello computer" being received from a client. At the
start, a full buffer of 128 bytes can be received, but after receiving "Hello computer",

the size becomes 14, and only 114 more bytes can be received before the buffer is
full.

Also, when the client is closed, the server automatically terminates, because an exception is thrown
whenever the server tries to receive data from the socket after it has been closed. This program does
not catch it, and allows the exception to propogate upward until the program terminates. This is a
little messy, but you get the idea. Eventually, you'll see more robust programs, instead of this little
hack.

Running Demo 6.1

After you've compiled the program, you can run it on the operating system you compiled it for. Once
the server is running, you can connect to it using your favorite Telnet program. Windows and Linux
have Telnet programs built in, so you can open a Telnet program simply by typing "Telnet localhost
5098" on a command line, or by replacing 'localhost' with the address of the machine you're running it
on, if it's not the same machine. There are other popular Telnet clients out there as well; the most
popular is probably PuTTY. (TTY is an acronym that typically stands for TeleTYpewriter.) You can
find the newest version at http://www.chiark.greenend.org.uk/~sgtatham/putty/, but I've also included
a version on the CD in the directory /goodies/ Clients/PuTTY/. (It even comes with source code, if
you're devious enough to want to see it.)

Once you're connected, you can type various strings of text. Try typing "testing". The string "testing" is
printed out while you're typing it. (Systems may vary.) Then you can press Enter, and "testing" should
appear on the next line as well. If you look at the console window on which the server is running, it
should have printed out the number "9", which means that it received 9 characters: the 7 characters in
"testing", and the CRLF 2-character combination representing the end of the line.

NOTE

PuTTY is a really great Telnet pro gram that wonderfully supports all Telnet options (I will
explain these to you a little bit later), unlike certain other Telnet programs out there. However,
because the servers in this book won't support Telnet options, you can simply set PuTTY to
"raw" mode. It will still interpret VT100 codes, but it won't process or send Telnet option
packets.

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/default.htm

Processing Codes

The Telnet standard uses 7-bit ASCII as its method of data transmission. 7-bit ASCII actually takes up
8 bits of space; it defines the first 128 values in each byte and leaves the last bit undefined. There is
an 8-bit ASCII format as well, which puts the total number of defined characters at 256. But Telnet
doesn't officially support them, and there's no guarantee that any Telnet clients or servers will be able
to support characters with codes larger than 127.

If you look at the values of the first 32 ASCII characters, you can see that they are not actual
characters, but are control codes. Here are the most common ones:

10 means "newline"

13 means "carriage-return"

8 means "backspace"

9 means "tab"

7 means "bell"

NOTE

Way back in the bad-old days, before there were even computer monitors, computer output was
displayed on mechanical typewriters. These type writers understood ASCII codes and used them
to format output. For example, the "carriage return" code told the printer head on the type
writer to move all the way back to the left, and the "newline" code would move the paper up
one line. The "bell" code would make a little bell on the printer ring. Incidentally, many Telnet
programs still support the bell code, and you can use it annoy people.

Most of the other codes are no longer used, so they aren't that important.

So, when a Telnet server or client is receiving characters, it needs to actually process the meanings of
some of these codes.

Load up Demo 6.1 again. This time, type in "aaabbbccc", and press Enter. The server should say it
received 11 characters. Now, type "aaabbbccc", and then press Backspace three times. Then type
"ddd" and press Enter. What is printed? It's "aaabbbddd". But, how many characters did the server get
and then send out again? It should now say 17, even though 11 characters are printed to the Telnet
client (9 letters, 1 CR, 1 LF). The truth is that you sent "aaabbbccc<backspace><backspace>
<backspace>ddd<CR><LF>" back to the client. The client erased those three c's when it found the

backspace codes and replaced them with the d's.

So, both sides on a Telnet connection should expect to receive and process control characters. I'll
show you how to do this later on when I create the Telnet protocol class.

Telnet Options

Telnet has a system that enables you to configure a server or client by using specific options. A
Telnet option can either be on or off on either the client or the server.

For example, there is an option named "echo", and when it is on within the server, the server echoes
every character it receives from the client back to the client. If echo is off in the server, it does not
immediately send back whatever it receives. On the client side, if echo is on, the client echoes every
character it receives to the screen, and so on. Different clients support different default modes, but
you'll find that most of them use local-echo by default. If you couldn't see what you were typing in
Demo 6.1, you're probably using a client that has disabled local-echo by default.

NOTE

There's a certain built-in Telnet client out there that millions of people have on their operating
systems, which shall remain nameless! (Okay, I confess, it's Windows XP's Telnet client.) This
client doesn't support echo options properly. You can tell the client to stop echoing, and it gladly
obliges, but if you tell it to turn echo back on, it ignores you. I have no idea why it does this, but
this is one of the reasons I decided not to bother too much with Telnet options.

Telnet options are represented as 3-byte codes within a stream of text. The first character of an option
is always 0xFF, or 255 in decimal. The next character can be one of the four codes listed in Table
6.1.

This seems like a good way to negotiate which options are available, and then customize server
output based on what you know the client can handle, but alas, it doesn't quite work out that way.

You see, in a network environment, you don't have control over the client. You can tell the client to do
things, but it doesn't have to listen. Even worse, you can tell the client to do things, and it can reply,
"Okay, I'm doing it." But in actuality, it may just be ignoring you.

Table 6.1. Telnet Option Operation Types

Value Name Meaning

251 (0xFB) WILL The sender of the command enabled an option.

252 (0xFC) DO The sender of the command wants the receiver to enable an option.

253 (0xFD) WONT The sender of the command disables or refuses to enable an option.

254 (0xFE) DONT The sender of the command wants the receiver to disable an option.

I've been playing around with several Telnet clients for a while, and I'm sick of options. It's amazing
how many clients out there just outright ignore options altogether, and other clients gleefully turn off
echoing, but absolutely refuse to turn echoing back on.

It's madness, and you're much better off ignoring options completely. Yeah, it's not proper, but for
MUDs, the options really aren't useful anyway. It's useful to know that the options exist, however.

VT100 Terminal Codes

I previously told you about terminals that were used to access servers and mainframes. Most
terminals supported the base ASCII codes, but they wanted to add new things to the termi-nalsthings
that weren't supported by ASCII. Of course, the emergence of many new terminals at about the same
time with no standard for extended features resulted in a huge mess of incompatible terminal types.

Years down the road, the ANSI group decided to settle on the DEC VT100 standard for extended
terminal control codes. VT100 is pretty much supported by every Telnet client in existence, so you
can assume that Telnet clients support the control codes.

Among other things, the VT100 has codes for color, cursor control, and clearing text from the screen.
All VT100 control codes start with the ASCII "escape" character, 0x1B, or 27 in decimal, and after
that most of them have the left-square-bracket "[". Table 6.2 lists the most common codes.

Table 6.2. Common VT100 Control Codes

Code Meaning

<ESC>[0m Reset all color and text attributes

<ESC>[1m Bright/bold color

<ESC>[2m Dim/unbold color

<ESC>[4m Underline text

<ESC>[5m Blinking text

<ESC>[7m Reversed color text (foreground and background colors are swapped)

<ESC>[8m Hidden text (characters not displayed)

<ESC>[30m Black foreground color

<ESC>[31m Red foreground color

<ESC>[32m Green foreground color

<ESC>[33m Yellow foreground color

<ESC>[34m Blue foreground color

<ESC>[35m Magenta foreground color

<ESC>[36m Cyan foreground color

<ESC>[37m White foreground color

<ESC>[40m Black background color

<ESC>[41m Red background color

<ESC>[42m Green background color

<ESC>[43m Yellow background color

<ESC>[44m Blue background color

<ESC>[45m Magenta background color

<ESC>[46m Cyan background color

<ESC>[47m White background color

<ESC>[<R>;<C>H Move the cursor to row <R> and column <C>, or to the "Home" position if both <R> and <C> are omitted[*]

<ESC>[<C>A Move the cursor up <C> lines, or one line if <C> is omitted.[*]

<ESC>[<C>B Move the cursor down <C> lines, or one line if <C> is omitted.[*]

<ESC>[<C>C Move the cursor forward <C> spaces, or just one if <C> is omitted.[*]

<ESC>[K Erases everything after the cursor on the current line

<ESC>[1K Erases everything before the cursor on the current line

<ESC>[2K Erases the current line

<ESC>[J Erases every line below the current line

<ESC>[1J Erases every line above the current line

<ESC>[2J Erases the entire screen

[*] The values <R> and <C> are meant to be replaced by actual numbers.

[*] The values <R> and <C> are meant to be replaced by actual numbers.

[*] The values <R> and <C> are meant to be replaced by actual numbers.

[*] The values <R> and <C> are meant to be replaced by actual numbers.

Load Demo 6.1 again, and log into the demo by using your favorite Telnet client. This time, I want
you to play around with the VT100 codes (by pressing the Esc key), and then the rest of the code. For
example, "<ESC>[31m" will make your text turn red, and it will stay red until you reset it or change
the color.

The codes listed in the table are pretty much all you're going to need. There are other codes available,
but they aren't as useful for MUDs; they're mostly obscure commands that don't do anything useful.

ConnectionHandler Class

I've created a special generic class for the Socket Library called ConnectionHandler (found in
SocketLib/ConnectionHandler.h). It defines all the standard handler functions.

template<typename protocol, typename command>
class ConnectionHandler {
public:
 typedef Connection<protocol> conn;
 ConnectionHandler(conn& p_conn) : m_connection(&p_conn) {}
 virtual void Handle(command p_data) = 0;
 virtual void Enter() = 0;
 virtual void Leave() = 0;
 virtual void Hungup() = 0;
 virtual void Flooded() = 0;
protected:
 conn* m_connection;
};

If you look back at Figure 5.3 in Chapter 5, you understand that the ConnectionHandler is essentially
an abstract version of the protocol::handler class shown in that figure, which defines only the
constructor.

The class has two template parameters: the protocol used with the handler, and the class that defines a
command. For example, for a simple Telnet protocol, you would most likely choose something such
as std::string to represent a complete Telnet command. Whenever the protocol object for a
connection receieves enough data to make a complete command, it packages the data up into a
command class and sends it off to the command class's Handle function.

Also note that the class automatically keeps track of a pointer to its connection; it's usually a good
idea for each handler to know which connection it is attached to.

If you're not quite sure what the point of this class is, just continue reading; all will become clear in
the next section.

Creating a Telnet Protocol Class

At last, I can show you how to implement a class that interprets Telnet input. In this case, you're going
to be accepting input from a client and processing it so that you can use it within your game. This
class is located in the files \Libraries\SocketLib\Telnet.h and \Libraries\SocketLib\Telnet.cpp.

It may seem like a cool feature to be able to accept command codes from the client, but I usually
advise against it. There are many possible exploits if you allow that kind of stuff. Whenever I make a
Telnet server, I strip out all nonprintable characters from the stream, and process the basic command
codes: CR/LF/BS. This usually makes things much easier in the long run.

NOTE

An exploit is the common term used to describe a part of a network program that can be used to
per form behaviors (usually devious) that it wasn't meant to perform. Some people may call this
being hacked, even though true geeks don't really use that term.

For example, imagine a new player logging into the game and deciding to be "cool" by using colors in
his name, so that it looks like "<ESC>[31mJohnSmith". What a mess! Whenever your program
searches for user "JohnSmith", it won't match the real name, since it's got a huge, ugly command code
structure in front.

So the best bet is to strip out all nonprinting characters. It makes your life much easier. Officially,
Telnet doesn't support the 8-bit ASCII set, but it does support the 7-bit version. Therefore, you should
generally strip out characters above 127 as well. If you know your clients will support the extended
ASCII codes, by all means, use them, but it's generally not a good idea.

Data

Remember that Chapter 5 explained that each Connection maintains its own protocol object. Since
you cannot be assured that you will get complete commands in one receive call, you need someplace
to buffer the data. The Connection class doesn't do this for you; it just sends off the raw data stream to
the protocol and assumes the protocol object handles it.

In our case, the Telnet protocol object accepts the raw data, strips out bad characters and process
command codes, and then stores the results in its own buffer. For now, I've decided to use a static
buffer of 1 kilobyte. (I use the same BUFFERSIZE constant integer defined in the Connection.h file from
Chapter 5.)

class Telnet {
public:

 typedef ConnectionHandler<Telnet, string> handler;
protected:
 char m_buffer[BUFFERSIZE];
 int m_buffersize;
};

Note the typedef at the beginning of the class. This is essentially saying that the Telnet class uses the
ConnectionHandler class as its base handler class. Remember: the ConnectionHandler is abstract and
declares functions for you to define later on. Declaring it with the template parameters Telnet and
string means that it works on Telnet connections, and sends complete messages in the form of a
string. (Telnet is naturally just text commands.)

NOTE

If you were defining your own custom protocol, you might decide to create a structure that
represents your com mands instead of using just a string.

So, whenever you use Telnet::handler, you're actually referring to the ConnectionHandler<Telnet,
string> class, which declares all of the functions for you. Now, whenever you want to implement a
real handler for your program, all you need to do is inherit from Telnet::handler, and define the
functions.

The m_buffer is the array that holds the processed data, and m_buffersize remembers the amount of
data in the buffer.

Functions

There are four functions in the Telnet class: the constructor, the Handle function, the SendString
function, and the Buffered function.

The first just clears the size of the buffer to zero:

inline Telnet() { m_buffersize = 0; }

The next function accepts a buffer of raw data and translates the data into its own buffer until a full
command can be found:

void Translate(Connection<Telnet>& p_conn, char* p_buffer, int p_size) {
 for(int i = 0; i < p_size; i++) {
 char c = p_buffer[i]; // pick out a character
 if(c >= 32 && c != 127 && m_buffersize < BUFFERSIZE) {
 m_buffer[m_buffersize] = c; // insert it into buffer if good

 m_buffersize++; // increase buffer size
 }

The previous code segment starts a loop through every character in the raw data buffer. The character
is added to the buffer and the buffersize is incremented if the following conditions are met: The
character is greater than or equal to 32 (meaning it's a printable character); the character is not 127
(for some reason, 127 is the only oddball character above 32 that isn't printable); and the buffer isn't
full.

 else if(c == 8 && m_buffersize > 0) {
 m_buffersize--;
 }

If the character is value 8 (backspace), and the buffer isn't empty, the size of the buffer is decreased
by 1, meaning that the last character is erased.

 else if(c == '\n' || c == '\r') {
 if(m_buffersize > 0) {
 p_conn.Handler()->Handle(string(m_buffer, m_buffersize));
 m_buffersize = 0;
 }
 }
 }
}

And finally, if the character is either a CR or an LF, and the buffer isn't empty, the current handler of
the connection is notified about the new command, and the buffer size is reset to 0.

The third function is the SendString function. I have not discussed this function before for a good
reason: Not all protocols support sending strings of text to a client, but Telnet does. You should give
whatever protocol you're using functions that allow you to send data back to the connection. For
example, if you have a protocol that supports three different kinds of responses, you can give your
protocol class three different functionsone to send each kind of response. The protocol object would
then assemble the raw data and ship it off to the connection. Figure 6.2 shows this system.

Figure 6.2. This shows the interaction between a connection and a connection
handler being mediated by a protocol object. There can be many types of commands

inside the program, and it's the protocol object's job to translate to and from raw
byte data.

As you'll notice, the protocol stands as a mediator between connections and their handlers. Whenever
data is received from a connection, it is sent to the protocol and translated into something that a
handler understands.

I've refined the figure and made it apply to only the Telnet protocol class, which you can see in
Figure 6.3. This figure is a specialized version of Figure 6.2, applied to the Telnet protocol class. As
you can see, the class has only one type of command: string. Connections send raw data to Telnet,
which then performs the calculations you saw earlier to extract one full command. Then it shoots that
command off to the current handler on the connection. The handler can do whatever it wants; then it
shoots a string back to the Telnet class, and then back to the connection.

Figure 6.3. The class has only one type of command: string

When you are sending data from a handler to a connection using SendString, you have the option to
just buffer raw Telnet data on the connection. I don't find that method to be very good, however.

For example: VT100 only supports 8 colors, or 16 if you count both the bold and dim versions of
each color. This is obviously very limited for modern day computing, in which computers can support
millions of colors. So, what if, later on, you decide to make your own protocolone that supports all
kinds of new features, such as font control?

Even more ambitious: What if you decide to make your server handle both Telnet and your extended
protocol, so that users can log in using regular Telnet clients, or your own custom client if they want
to? You certainly don't want every one of your handlers to make a distinction every place you send

data to a connection, right?

So, instead, you can make your protocol object able to tell what kind of connection the client is using,
and then translate the data.

NOTE

It's generally a bad idea to tie your game code in with a specific protocol. For example, if you
want to send the string "Hello" in red text over ANSI Telnet, you'd send "\x1B[31mHello" . (\x
is a control code in C++ that inserts a character into a string using the two hexadecimal numbers
following the character. So \x1B means you're inserting ASCII character 0x1B, or 27, the
escape character.) Down the road, you might decide to use a different protocol, but you've
limited yourself to VT100 codes within your game engine. Now you'll have to search out and
change every occurrence of those codes. Believe methat's a pointless waste of time. Instead,
you can have your own control code format that is independent of the protocol. In that case, you
can send something such as "<red>Hello!" to the protocol, and the protocol finds the "<red>",
strips it out, and puts whatever the current protocol uses in its place. This is an incredibly
flexible way of programming.

For now, I don't do any translation, because I'm leaving it for later chapter (Chapter 16, "The
Networking System"). So the function just passes the string straight to the connection's buffer:

void Telnet::SendString(Connection<Telnet>& p_conn, std::string& p_string) {
 p_conn.BufferData(p_string.data(), p_string.size());
}

Codes

Also included within the Telnet.h file are static std::strings that represent some of the more popular
VT100 codes. Here they are:

const std::string reset = "\x1B[0m";
const std::string bold = "\x1B[1m";
const std::string dim = "\x1B[2m";
const std::string under = "\x1B[4m";
const std::string reverse = "\x1B[7m";
const std::string hide = "\x1B[8m";
const std::string clearscreen = "\x1B[2J";
const std::string clearline = "\x1B[2K";
const std::string black = "\x1B[30m";
const std::string red = "\x1B[31m";
const std::string green = "\x1B[32m";
const std::string yellow = "\x1B[33m";

const std::string blue = "\x1B[34m";
const std::string magenta = "\x1B[35m";
const std::string cyan = "\x1B[36m";
const std::string white = "\x1B[37m";
const std::string bblack = "\x1B[40m";
const std::string bred = "\x1B[41m";
const std::string bgreen = "\x1B[42m";
const std::string byellow = "\x1B[43m";
const std::string bblue = "\x1B[44m";
const std::string bmagenta = "\x1B[45m";
const std::string bcyan = "\x1B[46m";
const std::string bwhite = "\x1B[47m";
const std::string newline = "\r\n\x1B[0m";

The only thing to note is newline, which is a combination of a CRLF and a reset command. It's almost
always a good idea to reset the colors to normal on every line; you don't want to accidentally leave
the color codes the same on each new line.

Demo 6.2SimpleChat

In an attempt to tie together the concepts of Telnet, protocol policies, and protocol handlers, I'm going
to show you how to implement a simple Telnet chat server, known as SimpleChat.

The chat server is going to have two handlers: one to handle logging in, and one to handle chatting.

As well as these two handlers, the chat server is going to need a database structure, which will keep
track of every user in the chat server. Figure 6.4 shows these classes.

Figure 6.4. Class diagrams for the two handlers and the user database class with
functions that are underlined representing static functions.

The SimpleChat is going to need all three classes. The SimpleChat is Demo 6.2, and the directory
\Demos\Chapter06\Demo06-02\ on the CD contains the source files needed for the program
(SCUserDB.h/.cpp, SCLogon.h/.cpp, SCChat.h/.cpp, and Demo06-02.cpp).

Database

The most important part of the chat is the user database. The database stores simple User objects in a
list that represents all the users who are currently connected. The database and User class are located
within the files SCUserDB.h and SCUserDB.cpp.

Users

First let's look at the concept of a user. This chat isn't a persistent world program, because it doesn't
save data on users anywhere. A user can log in with one name and then quit, and any other user can
subsequently log in with that same name.

So users are simple objects; in fact, all that needs to be stored is the user's name and a pointer to his
connection, as you saw from Figure 6.4. A constructor initializes a user using a connection pointer
and a name as well.

Database Data

As you can see in Figure 6.4, the UserDatabase class has one data member: m_users, which is of type
users. The users type is really just a typedef for a list of User objects:

typedef std::list<User> users;
typedef std::list<User>::iterator iterator;

I've also taken the liberty to typedef the list<User>::iterator class as just plain iterator. As I have
mentioned many times before, typedefs make programming easier.

Iterator Functions

There are three iterator functions inside the DB class, which are designed to make the DB class act
somewhat like a regular STL container. Here are the first two functions:

static iterator begin() { return m_users.begin(); }
static iterator end() { return m_users.end(); }

The functions return iterators pointing to the beginning of the database and the end of the database.
Just like STL, the end function returns an invalid iterator, one that you can use to test whether you've
reached the end of the map.

Here's an example of using the iterator:

UserDatabase::iterator itr = UserDatabase::begin();
string name = itr->name; // get the name of the first user
++itr; // move to the next user
bool b = (itr == UserDatabase::end()) // if true, iterator is invalid.

You can see that the UserDatabase::iterator class acts just like a regular STL unidirectional
iterator.

The other iterator function performs a search on the database for a given connection pointer:

static iterator find(Connection<Telnet>* p_connection) {
 iterator itr = m_users.begin(); // start at front
 while(itr != m_users.end()) { // loop while valid
 if(itr->connection == p_connection) // compare pointers
 return itr; // match found, return itr
 ++itr; // no match, keep looking
 }
 return itr; // no match, return itr
}

The function essentially loops through the entire database, looking for a connection that matches the
pointer that was passed in. If a connection is found, an iterator pointing to that user is returned. By the
time the function gets to the second-to-last line of code, the iterator should be equal to m_users.end(),
so it is just returned. Remember: Whenever you use a function that returns an iterator, if it is equal to
the end iterator, that means that the function didn't find what it was looking for.

Database Functions

There are a number of database functions that can add, remove, or check the existence of IDs or
usernames. Here's the function to add users:

bool UserDatabase::
AddUser(Connection<Telnet>* p_connection, string p_name) {
 if(!HasUser(p_name) && IsValidName(p_name)) {
 m_users.push_back(User(p_connection, p_name));
 return true;
 }
 return false;
}

The function checks that the username doesn't exist in the DB and checks that the name is valid. If the
username passes both of those checks, a new User object is created and pushed onto the back of the
user list. true is returned on success, and false is returned on failure.

Next up is the user deletion function, which deletes a user based on his connection pointer:

void UserDatabase::DeleteUser(Connection<Telnet>* p_connection) {

 iterator itr = find(p_connection); // find the user
 if(itr != m_users.end()) // make sure user is valid
 m_users.erase(itr); // then delete the user
}

The function finds the User class associated with the connection, and then deletes it from the list.
(Assuming it exists. If it doesn't, nothing happens.)

Now the function checks whether a username is being used within the DB:

bool UserDatabase::HasUser(string& p_name) {
 iterator itr = m_users.begin();
 while(itr != m_users.end()) {
 it(itr->name == p_name) return true;
 ++itr;
 }
 return false;
}

This is similar to the find function that searched based on connection pointers, but this compares
names instead.

Valid Usernames

It's always a good idea to place restrictions on usernames. Otherwise, you'll end up having people
with confusing names like "__()><?`%", and that's just madness. For this reason, I've included a
function within the database that checks the validity of usernames. There are three stipulations. The
user name must

Not contain any of the predetermined invalid characters

Not be longer than 16 characters, or shorter than 3 characters

Start with an alphabetic character

You don't want huge or tiny names; those just annoy everyone. It's also a personal preference of mine
to force usernames to start with an alphabetic character, but it's not strictly necessary. Here's the
function:

bool UserDatabase::IsValidName(const string& p_name) {
 static string inv = " \"'~!@#$%^&*+/\\[]{}<>()=.,?;:";
 if(p_name.find_first_of(inv) != string::npos) {
 return false; // has invalid characters

 }
 if(p_name.size() > 16 || p_name.size() < 3) {
 return false; // too long or too short
 }
 if(!std::isalpha(p_name[0])) {
 return false; // doesn't start with letter
 }
 return true;
}

The function maintains a static string named inv. This string contains all the characters that are invalid
in usernames. The function first tries to find invalid characters within the string, and if it does, it
returns false. Next the function checks the size of the name, and finally it checks to see if the first
character is alphabetic.

If the string passes all those tests, you've got a valid name.

Logon Handler

Now I get to show you the two handlers that are used within the program. The first one the chat uses is
a handler to manage the logon process. Overall, it's going to be a fairly simple handler, because all it
needs to do is verify usernames and send them over to the chat handler.

This class is located within the SCLogon.h and SCLogon.cpp files. It inherits from the
Telnet::handler class, which you should remember from earlier descriptions is just another name for
a ConnectionHandler<Telnet, string>. This means that the SCLogon class needs to implement a
constructor that takes a Connection<Telnet>* as its parameter, as well as the Handle, Enter, Leave,
Hungup, and Flooded functions.

Last but not least, the class also has a NoRoom function, because it is going to be the default handler in
the SimpleChat, so it needs to know how to tell connections when there's no more room.

No Room

When the connection manager has no more room for a new connection, it leaves it up to the default
protocol handler to send an error to the connection, notifying the connection that there is no more
room. For SimpleChat, the SCLogon handler is the default handler, so it must know how to send these
messages. Here is the code:

static void NoRoom(Connection<Telnet>& p_connection) {
 static string msg = "Sorry, there is no more room on this server.\r\n";
 try {
 p_connection.Send(msg.c_str(), (int)msg.size());

 }
 catch(SocketLib::Exception) {
 // do nothing here; probably an exploiter if sending that data
 // causes an exception.
 }
}

Because the connection isn't added to the connection manager (there is no room!), the function tries to
send the data directly to the connection, instead of buffering it. This is the important part: The data is
enclosed within a try/catch block because the Send() function may throw exceptions if it cannot send
data properly. You want to catch any exceptions before they crash your program. In this case, if an
exception is thrown, it will probably be in the very rare circumstance that the person connecting to
you is trying to crash your server. There's really no logical reason for the client to be unable to accept
sends right after the client connects to the server, but you should always be on the safe side, and you
shouldn't assume that the send will work.

New Connections

Whenever a new connection arrives, the connection manager automatically invokes the Enter function
of a connection's handler.

Whenever the logon handler gets a new connection, it simply sends a welcoming string to the new
connection:

void SCLogon::Enter() {
 m_connection->Protocol().SendString(*m_connection, green + bold +
 "Welcome To SimpleChat!\r\n" +
 "Please enter your username: " + reset + bold);
}

Whenever the SDLogon class is constructed by the connection manager, it is automatically given a
pointer to its connection, so you don't have to worry about the m_connection variable being invalid.

Basically, the function just uses the connection's protocol object to send a string. Note the usage of the
VT100 color codes.

I showed you the Telnet::SendString() function earlier in this chapter, which buffers data on the
connections buffer. This is generally the best behavior, because the connection manager handles all
the sending details later (as long as you remember to tell it to), so you don't have to worry about
timeouts and sending errors here.

Handling Commands

Whenever the Telnet protocol handler detects that a full command has been entered (anything ending
in "\r" or "\n"), it sends the message to the handler. The logon handler treats any command as a
person's desired username and tries to validate it.

void SCLogon::Handle(connectionid p_connection, string p_data) {
 Connection<Telnet>* conn = m_connection;
 if(!UserDatabase::IsValidName(p_data)) {
 conn->Protocol().SendString(*conn, red + bold +
 "Sorry, that is an invalid username.\r\n" +
 "Please enter another username: " + reset + bold);
 return;
 }

This first batch of code checks to see if the username is valid. If the username is not valid, the user is
told so, and the function immediately returns.

 if(UserDatabase::HasUser(p_data)) {
 conn->Protocol().SendString(*conn, red + bold +
 "Sorry, that name is already in use.\r\n" +
 "Please enter another username: " + reset);
 return;
 }

The previous code segment then checks to see if the username has already been taken, and if so, it
again tells the client that the name was rejected, and returns. Here's the final code segment:

 UserDatabase::AddUser(conn, p_data);
 conn->Protocol().SendString(*conn, "Thank you for joining us, " +
 p_data + newline);
 conn->RemoveHandler();
 conn->AddHandler(new SCChat(*conn));
}

NOTE

There is one important thing I would like to mention: the RemoveHandler function. This function,
when called from inside a handler, actually deletes the handler that is calling it. This is a tricky
situation, but it's not all that bad if you pay attention to what you are doing. Whenever you call
this function, all of the current handler's class data is deleted. For this simple handler, that
means that the m_connection pointer no longer exists, and using its value causes some bad things
to happen. Local variables, on the other hand, are still perfectly valid, which is why the pointer
to m_connection is stored into conn at the beginning of the function. When you think about it, it's
not really a huge problem. Whenever you are calling the RemoveHandler function, you're

essentially leaving the state of that handler, so the next and only thing that should be done is
either going back to a previous state, or entering a new state. In this case, the connection is
entering the SCChat state. After that, the function should quit.

At this point, the username is acceptable, so the function simply adds the connection and the name to
the user database and tells the user that he's entered the chat. After that, the logon handler is removed
using the RemoveHandler function, and the connection is moved into the SCChat state, using
AddHandler.

Other Functions

The other three handler functionsFlooded, Hungup, and Leaveare empty for the logon class:

void Hungup() {};
void Flooded() {};
void Leave() {};

The handler functions are empty because the handler doesn't actually keep track of connections until a
valid nickname is entered, at which time connections are automatically transferred over to the chat
handler. So, essentially the logon handler doesn't care if the connections hang up, flood, or quit before
it enters a valid username.

NOTE

You may one day want a logon handler to care about flooding. If you catch a user continually
flooding your server, you should usually try banning that user. Some systems can do this
automatically if you code for it.

Chat Handler

The chat handler is a little more complex than the logon handler, and it even adds two new functions
to help you along. It is located in the SCChat.h and SCChat.cpp files.

New Connections

Handling new connections is a simple task for the chat handler. Since the logon handler has already
added the user to the database, all you need to do here is announce that a new user has arrived:

void SCChat::Enter() {
 SendAll(bold + yellow + UserDatabase::find(m_connection)->name +
 " has entered the room.");
}

The function uses the SendAll() function, which I will examine later on. For now, all you need to
know is that this function sends a string to every connection in the user database.

Exiting Connections

Whenever a connection leaves the SCChat state, you need to make sure that user is deleted from the
user database:

void SCChat::Leave() {
 UserDatabase::DeleteUser(m_connection);
}

Take note that this function is called whenever a connection moves to a different state, or simply
leaves this state (for example, when a connection is being deleted), so you should never call this
function on your own. This function basically exists to perform some house-cleaning whenever it's
needed.

Handling Commands

There are two types of commands that the handler knows about: regular chatting and instructional
commands. Whatever you type with a '/' character in front of it is interpreted as an instructional
command; everything else is assumed to be regular chatting.

At this time, there are only two instructional commands supported: /who and /quit. The first
command compiles a list of everyone on the server and sends it back to you. The second disconnects
you from the server.

The function first gets the name of the user who is sending the text and determines if the text is a
command:

void SCChat::Handle(string p_data) {
 string name = UserDatabase::find(m_connection)->name;
 if(p_data[0] == '/') {
 string command = BasicLib::ParseWord(p_data, 0);
 string data = BasicLib::RemoveWord(p_data, 0);

If the text is a command, the function creates two new strings: one represents the command (command);
the other represents the rest of the string (data). The next part of the function handles /who commands:

 if(command == "/who") {
 string wholist = magenta + bold + "Who is in the room: ";
 UserDatabase::iterator itr = UserDatabase::begin();
 while(itr != UserDatabase::end()) {
 wholist += (*itr).name; // add user's name to end
 ++itr; // go to next user
 if(itr != UserDatabase::end()) {
 wholist += ", "; // add comma if not last user
 }
 }
 wholist += newline;
 m_connection->Protocol().SendString(*m_connection, wholist);
 }

If the command is a /who command, the function creates a new string, named wholist, as well as an
iterator for the database. Then the function iterates through every user in the database and appends
each user's name to the end of the list. For every user except the last, a comma and a space are added
to the list as well. So you'll end up with, "Who is in the room: Bob, Sue, Zach", for example. Finally,
the who-list string is sent back to the connection using the Telnet::SendString function.

Here's the code that handles quitting:

 else if(command == "/quit") {
 CloseConnection("has quit. Message: " + data);
 m_connection->Close();
 }
 }

If the command were to quit, the CloseConnection() function would be called. The function is a
helper function that basically tells everyone in the room that the user has quit, and it even allows you
to add a quit message at the end. /quit goodbye! would result in "Bob has quit. Message: goodbye!"
being printed to everyone.

After that, the connection is told to close. (But remember, it won't actually be closed until the
connection manager gets around to it.)

The next section of code deals with anything that isn't a command:

 else {
 if(BasicLib::TrimWhitespace(p_data).size() > 0) {
 SendAll(green + bold + "<" + name + "> " + reset + p_data);
 }
 }

}

First, it checks the size of the string to ensure that all whitespace has been trimmed. If the check
returns 0, nothing happens. This prevents people from typing things like " " into the chatter, which
would be extremely annoying.

So basically the code encases your nickname in angle brackets, puts it in green, and then adds your
message at the end after resetting the colors. If your name is "Bob" and you typed "Hello", it would
print out "<Bob> Hello" to everyone.

The SendAll Function

I've included a function here, which you've seen used earlier, that sends data to every connection in
the database.

void SCChat::SendAll(const string& p_message) {
 UserDatabase::iterator itr = UserDatabase::begin();
 while(itr != UserDatabase::end()) {
 itr->connection->Protocol().SendString(*itr->connection,
 p_message + newline);
 ++itr;
 }
}

The function simply performs a loop through the database using the iterator class, and sends the string
in the parameter to every user, with a newline tacked onto the end.

Closing Function

The next important function in the chat manager is the CloseConnection function. This is essentially a
helper function that makes it easier for you to close connections.

void SCChat::CloseConnection(const string& p_reason) {
 SendAll(bold + red + UserDatabase::find(m_connection)->name +
 " " + p_reason);
}

In this case, the function simply sends a message to everyone saying that the user has quit. As I said,
it's just a simple helper.

Other Functions

There are two other simple functions within the handler, all very simple. They are Flooded() and
Hungup(), which are called when connections are forcibly closed by the connection manager:

void SCChat::Hungup() { CloseConnection("has hung up!"); }
void SCChat::Flooded() { CloseConnection("has been kicked for flooding!");

These two functions simply utilize the CloseConnection helper function to notify everyone in the
chatroom that the user has left.

Tying It All Together

Finally, you can integrate all the pieces together to form the chat server. This is done within the
Demo06-01.cpp file.

int main() {
 SocketLib::ListeningManager<Telnet> lm;
 SocketLib::ConnectionManager<Telnet> cm(128);

First, the two managers are created with the names lm and cm. The next step is to make the listening
manager know about its connection manager, and then tell it to start listening on a port:

 lm.SetConnectionManager(&cm);
 lm.AddPort(5099);

Here's the final part of the code:

 while(1) {
 lm.Listen();
 cm.Manage();
 ThreadLib::YieldThread();
 }
}

The listening manager is told to listen on port 5099, and then the loop starts. The loop listens for
incoming connections, and tells the connection manager to listen/send/close connections. Finally, it
calls the thread library's yield function, so that the program doesn't consume 100% of your computer's

resources.

That's pretty much it. Pretty easy, isn't it? You can compile this program using the instructions found in
Appendix A, which is on the CD; the program uses the SocketLib, ThreadLib, and BasicLib.

Figure 6.5 shows a screenshot from the chat.

Figure 6.5. Screenshot from the SimpleChat.

Summary

This chapter introduced you to the Telnet protocol and showed you how to use it. While Telnet is not
a complex protocol, it has its quirks. This chapter also showed you how to use and create protocol
policies as well as protocol handlers to manage your connections.

You may have seen Telnet programs that involve far less design and coding, and you may even be
saying that this design was overkill for a simple chat program. Well, you're correct if your end result
is only a chat program. However, my goal goes above and beyond. The biggest problem with most
MUDs is that they are too difficult to build on and expand.

If you've ever worked on a MUD, you know that 90% of the fun is building on it and expanding it.
Unfortunately, most MUDs I see are just huge messes of unorganized code, and every time someone
adds something, the whole thing gets a little more ugly and unmaintainable.

So, with this design, I hope you will find the entire networking subsystem to be nice and flexible. This
allows you to add cool features to your games later on, if you decide you want them.

This chapter concludes the introduction section of the book; now I will delve into the depths of MUD
mechanics.

Part TWO: Creating a SimpleMUD

 7 Designing the SimpleMUD

 8 Items and Players

 9 Maps, Stores, and Training Rooms

 10 Enemies, Combat, and the Game Loop

Chapter 7. Designing the SimpleMUD
Until now, this book has focused on teaching networking and building the three main libraries that are
used throughout the book. Little about actual MUDs has been discussed. You must be bored to death!
Unfortunately, those things are essential to the groundwork of a MUD, so they were necessary. As
they say, work comes before play.

Have no fear. This is where things get interesting! In this part of the book, I introduce you to the
basics of MUD programming concepts, in an attempt to show you how they are structured.

The culmination of Part Two is creating a complete MUD, dubbed "SimpleMUD." Obviously, this
MUD is going to be fairly straightforward to demonstrate the fundamentals of MUD programming.

This chapter is dedicated to designing the MUD and doing so before a single line of code is written.
This is an important part of programming, because you need to understand exactly what you want to
do before you start doing it. Many programmers fail to design things up front and adopt a "shoot from
the hip" attitude about game programming. Most of their projects fail miserably, because by the time
they are months into coding, they realize that they should have allowed for more flexibility. By the
time they get to that point, the project is a disaster.

In this chapter, you will learn:

Choose game attributes

Choose a setting

Determine player attributes

Determine attributes for items

Determine enemy attributes

Select a map system

Select special rooms

Track store items

Develop the combat system

Select commands

Choosing Game Characteristics

As you know if you've been playing for a significant amount of time, MUDs come in all shapes and
sizes. The first thing you need to decide when creating a MUD is what kind of MUD it should be.

MUD guru, Dr. Richard Bartle, in his famous article "Hearts, Clubs, Diamonds, Spades: Players
Who Suit MUDs," categorizes four types of MUD players: killers, socializers, achievers, and
explorers. Because of the diversity of MUD plays, it's impossible to tailor a MUD to suit one specific
category of player.

I've seen MUDs in which people don't take time to talk; they do nothing but compete to be number one
on the ranking list. I've also seen MUDs in which no one uses any of the MUD features; they use the
game essentially as a chat room.

Obviously, when creating your own MUD, you've got to consider which of these characteristics you
want to emphasize. Do you want people to socialize? Fight against each other? Explore new areas?
Try to win?

I prefer a healthy mix of all these characteristics. Obviously socializing is a must; without it, what's
the point of having a multiuser game? But, of course, you'll want some aspect of exploration in your
game as well; it keeps your game fresh in the minds of players. Competition is good to have, whether
direct through killing other players, or indirect through gaining more points than everyone else.
Competition compels people to play the game and to continue playing to beat everyone else.

So with this in mind, the SimpleMUD will be designed to combine an equal distribution of four
characteristics: socializing, participating in a multiuser game, exploring, and competing.

So what kinds of things should you plan for? The game will be the classic type with nothing fancythis
is a simple MUD, after all. A setting needs to be chosen first, and that partly determines the attributes
and features of players, as well as the enemies. Items and the map structure will also be considered.

Setting

When designing your MUD, take time to carefully consider the setting you want. Classically, MUDs
are in a medieval, fantasy setting, but this is only a tradition. Realistically, your MUD can be
whatever genre you want it to be, whether it be medieval, futuristic, modern, or something else
entirely. Keep in mind that the setting you choose is likely to influence game design considerations, so
it's best to think of the setting up front. Most modern-day games don't work too well, for example,
because guns enable an inexperienced player to kill someone who's been playing the game for months,
and that will hardly seem fair to your high-level players, so you probably won't keep players around
long that way.

I've always been a fan of medieval genres; call it clichéd, I don't care. I just love the idea of a
glorified version of history. Face itthere really wasn't anything glorious about wearing 200 pounds of
metal and trying to whack someone's head off with a sword that weighed another 50 pounds! Alas, our
ideas about the time period are based on fictional epics. That's part of the allure; modern culture has
already imbued medieval stories with glory and chivalry; therefore, the Middle Ages holds a certain
draw.

Another asset of medieval settings is that they seem more game-like. I can't imagine anything duller
than a shootout between people randomly aiming machineguns or laser cannons at each other; but with
old-fashioned combat, you have a sense of physical and competitive skill, and that's alluring. So, a
fantasy medieval world will be the setting for the SimpleMUD.

Players

Once you've nailed down the setting, you need to figure out how the players will be represented.
There are many aspects of a player you should be concerned with.

Attributes

When you describe a human being in the real world, you can use many words. He can be strong, fast,
agile, intelligent, and so on.

If you've ever played paper-and-pencil role playing games (RPGs), you know that most systems
quantify these attributes using numbers. It's not a coincidence that most MUDs use a similar system,
since MUDs are the digital equivalent of RPGs. Even modern graphical games, such as the Diablo
series, and MMORPGs, such as Dark Age of Camelot and Everquest, use collections of numbers to
represent player attributes.

So which attributes should you represent? Some complex MUDs have dozens of attributes; but for
SimpleMUD, I'll only use the few listed in Table 7.1.

Table 7.1. SimpleMUD Player Attributes

Attribute Purpose

Strength This determines how strong you are and directly affects play within the game, such as how much damage you deal out to other
people when attacking.

Health This attribute determines the overall well-being of your character. This affects things such as how many hitpoints you gain and
heal over time.

Agility This attribute determines how agile you are and affects how accurate you are with weapons and how adeptly you dodge attacks.

Experience
points

These tabulate your experience in the game. Experience points are like scores; whenever you kill someone, you get experience
points.

Level This is an artificial ranking that allows you to compare players within the game. Generally, players with the same level should be
equal in capabilities and power.

Money This is the amount of money you have.

Hitpoints What would a MUD be without some way to gauge how much life a player still has in him? Basically, these points work as they
do in any game; if they drop to zero, you die. Hitpoints are affected by your health.

Regen
amount This determines how many hitpoints you regenerate per minute and is affected by your health.

Accuracy This determines how accurate your strikes are and is affected by your agility.

Dodging This determines how well you can dodge attacksalso affected by agility.

Strike
damage

When added to your weapons attributes, this determines how much damage your attacks inflict on enemies. This is affected by
your strength.

Damage
absorption

This determines how much damage you suffer whenever you're hit.

This is also affected by your strength.

That's 12 attributesfor a simple game! You can see that attributes for more complex games can
become numerous.

Core Attributes

The first three attributes listed in Table 7.1 are core attributes (strength, health, and agility); they
define actual physical abilities. Pretty much everything else is gained within the game, changed
frequently, or based on the core attributes.

In any game system, you've got to create attributes that reflect the abilities your players are going to
have in the game. The calculations for these attributes must be tuned and balanced perfectly. I'll go
into more depth on this subject later on, so it's okay to just fudge the meanings of these attributes and
their calculations for now.

NOTE

You should keep in mind that the attribute system of the SimpleMUD is really arbitrary . You
really shouldn't feel obligated to copy it or emulate it if you don't want to. I'm sure if you've
played RPGs, MUDs, and MMORPGs, you have an idea what kind of at tribute system you
want to imple ment already, so don't think that what I show you here is set in stone.

It is a general practice in many MUDs and RPGs to assign random values (or let the user choose
them) to the core attributes, and then calculate everything else based on those.

The most popular system, Dungeons and Dragons (D&D), uses three rolls of a six-sided die to give
each player's attributes a value from 318, but for now, I'm just going to use a simple one-to-infinity
scale for all three of the core attributes. All players are going to start off with 1 for each core attribute
and are awarded 18 attribute points, which they can allocate to any of the attributes they want. So
when a new player joins, he can configure a character the way he wants; he can even everything out
and put everything at 7 points, or give a completely uneven spread with strength being 19, and health

and agility being 1. It's up to the user.

NOTE

You need to figure out if your attributes should be open- ended or closed. For example, in D&D,
you can range from 318, and that's a closed system. You can't go lower than 3 or higher than 18,
and you can't change your attributes in the game. This works well on paper because it's so
difficult to recalculate everything whenever your attributes change, but MUDs run on
computers, which are designed to do tons of calculations quickly. As a result of this, you'll see
that many MUDs tend to prefer open systems, be cause they give you opportunities to extend
the gameplay. Any time you offer the player an extra chance to improve his skills, you're adding
more gameplay and probably making the game more flexible and enjoyable to your players. Of
course, the downside to open-ended systems is that it's possible for people to advance an
attribute further than a reasonable level. Because of this, open- ended systems tend to become
unbalanced quickly, when certain players figure out which attributes give them super powers
past a certain number. (It happens.)

Furthermore, whenever a player advances a level, he is given two extra attribute points, which he can
put toward any of his three core attributes.

Life Attributes

NOTE

Regenerating hitpoints is a concept that you won't find in every MUD. Many MUDs refuse to
give you any free hitpoints (even though human bodies regenerate naturally), and instead force
you to gain your hitpoints by manually healing your self at something like a temple, or with
magical spells and potions. I tend to prefer a regeneration sys tem, however, simply because it
makes the game more playable. Makes it a little easier too; I hate difficult games. Maybe
you're tougher on your players, though, and don't want to give them free hitpoints.

The hitpoints (HP) attribute has two associated variables: Maximum Hitpoints (MHP) and Current
Hitpoints (CHP). Your MHP is calculated using your health and level attributes. When you start off,
you are at Level 1, and you are given 10 HP, plus your health divided by 1.5 (with the result truncated
using integer division). Since your health core attribute can vary from 1 to 19 at Level 1, your MHP
can range from 10 to 22. (1/1.5 is 0.6666, but that turns into 0 when truncated into an integer; 19/1.5
is 12.6666, which is 12 when truncated.) Whenever you gain a level, your MHP increase by (Health/
1.5) + PreviousLevel. So if you're Level 1, and you increase to Level 2, and your health is 19, you get
an extra 13 HP (19/1.5 + 1 = 12 + 1 = 13).

NOTE

To take the idea further, think about how humans regener ate. If you scratch or lightly cut
yourself, you stop bleeding in a minute, and the scar is gone a few days later. But it's kind of
difficult to imagine a person slowly regenerating his health after suffering a rendezvous with a
sharp sword to the neck. If you want a realistic system, maybe you should consider making
people regenerate health more quickly when they are healthy, and more slowly when they are
at their deathbeds. Maybe you can even take it further, and have players degenerate after they
have gone below a certain point; i.e., your bleeding is slowly draining your health and you can't
stop it on your own.

The number of hitpoints you regenerate per minute (HPR) is calculated by your health attribute. It is
simply your health divided by 5. So if your health is 15, you regenerate 3 hitpoints per minute.

Accuracy and Dodging Attributes

Both accuracy (ACC) and dodging (DG) are based on your agility attribute. These values are
percentage based, but they don't strictly fall into the 0100% range. When I get to the combat section,
you'll see how these work out, but for now, you should know that both accuracy and dodging are
calculated as Agility*3, so an Agility of 1 gives you accuracy and dodging values of 3, while an
Agility of 19 gives you 57.

Damage Attributes

Like the accuracy and dodging attributes, Strike Damage (SD) and Damage Absorption (DA) have
base and current values.

NOTE

For a more complex MUD, you might consider keeping an array of strike-damage values, based
on the type of weapon you are using. For example, an assassin would be adept at using a knife
and would get a special bonus when using knives, but he would be absolutely awful when yielding
a two-handed sword that a person like Conan The Barbarian Governor could handle with ease.

These values are raw-point based, so that a 1 for damage absorption means that you absorb 1 point of
damage every time you are hit, and a 1 for strike damage adds 1 point of damage to all strikes you
deal out to enemies.

Your SD and DA values are calculated by dividing your strength by 5, meaning that for every 5

strength points you gain, both your SD and DA will go up by 1.

Bases

In the previous four sections, I told you about nine different player attributes. Every player within the
game will have two values for each of those nine attributes: a dynamic value and a base value. The
dynamic value of each attribute is calculated based on the player's current level, attributes, and
inventory; these values aren't going to be saved to disk anywhere, since they are completely
calculated at run-time.

On the other hand, all nine attributes will also have base valuesvalues that are permanent to a player.
The base values will be modified by items that give permanent effects (such as magic potions or other
such stuff). These base values are the ones that will be saved to disk.

Within the game, the true value of any given attribute is calculated by adding the base and the
dynamic values of each attribute.

NOTE

The base/temporary value system is fairly common in MUDs. This system allows you to apply
both temporary and permanent attribute modifica tions to players. This in turn gives you more
flexibility and expandability in the game, by adding more effects. For example, you could have
cheap potions that increase your strike damage for a few minutes, or go for the real deal and
buy a permanent strike damage potion (only costs an arm and a leg!).

Experience and Leveling

To keep people in your MUD interested in playing, you need a system by which the players can see a
noticeable progression in their characters. If players don't see improvements, they tend to get bored
and leave. Some games do this very well, and have even earned reputations for how well they present
progress (if you've ever heard the term Evercrack, then you know what I'm talking about).

The classic way of representing a player's progression is through levels. Every time a user gains a
level, he also gains power, and this power is the reward for playing the game.

So how do you determine how the player increases in levels? The classic method is to use an
experience system. Every player has a certain number of Experience Points (EXP), and these points
are awarded to the player for doing various things throughout the game (though most games just hand
these out only when you kill, which is the case for SimpleMUD).

So, whenever you reach a predetermined number of EXP points, their level can be increased by 1.

What kind of system should you use? A linear system, in which you increase in level every x points,
tends to unbalance games quickly. What happens is that some people get far too powerful far too
quickly, and then the game isn't really fun for them anymore, since after a month of serious playing,
they can become virtual gods.

NOTE

You might want to think about a system that awards points for things other than killing. In a
truly community-oriented game, you're going to have characters who aren't great at killing but
provide some other valuable services (such as healing foolish heroes who think that they can
take on a diamond- skinned dragon to impress a damsel in distress). Awarding points only for
killing can lead to players never wanting to play other parts in the game. This can eventually
make your MUD completely combat based.

I've always preferred exponential experience curves. Take a look at Figure 7.1.

Figure 7.1. If players advance with exponential curves, games are more interesting
than with linear curves.

In the example, I've used two different formulas to calculate the curves. For the linear curve, I've used
the formula experience = (level - 1) * 100. That means that for every 100 points, you can advance to
another level. At 100 points, you go to level 2, and at 200 points, you go to level 3, and so on.

The exponential approach takes a bit more to get to the higher levels. I used the formula experience =
100 * (1.4 (level-1) -1). If you're not sure what exponentials are, let me give you a quick rundown. An
exponential curve follows a basic formula n x , in which n is a constant, and x is a variable.
Basically, n x+1 is equal to n*n x , so you know that if n is 2, increasing x by 1 doubles the result. In
the case of the formula I showed earlier, every level requires 1.4x as many experience points as the
level before it. Table 7.2 shows the number of experience points needed to attain levels 110 with
both formulas.

Table 7.2. Linear Versus Exponential Levels

Level Linear Exponential Exponential Difference

1 0 0 -

2 100 40 40

3 200 96 56

4 300 174 78

5 400 284 110

6 500 437 153

7 600 652 188

8 700 954 302

9 800 1375 421

10 900 1966 591

NOTE

There is an extra -1 thrown into the exponential formula for good reason. Mathematical rules
state that no matter what n is, n 0 is always 1. So at level 1, if you don't have the extra -1,
you're calculating 1.4 0 * 100, giving you 100. This means that you need 100 EXP just to reach
level 1. In reality, we want 0 instead of 100, so we take 1.4 0 -1 instead, which is 0. This way, the
graph starts off at 0 when your level is 1.

You'll notice that for levels 1 through 6, the amount of experience needed for each level on the
exponential curve falls below the linear curve. This shows that the exponential curve gives an easy
start to players. Beyond level 6 though, the exponential curve takes off way past the linear curve, and
it takes more and more experience to reach each new level.

NOTE

Some MUDs I've played on use a precalculated method, which follows no real formula, but has a
general trend of increasing experi ence requirements. As you'll see from playing the
SimpleMUD, the experience requirements get extremely high at higher levels, so even the
exponential method has its drawbacks.

For example, it takes 100 experience points to go from level 8 to 9 on the linear model, but it takes
421 points on the exponential model. Even worse, 9 to 10 takes 591 on the exponential model, but
still only 100 on the linear. Notice that each number in the difference column is approximately 1.4
times larger than the number before it.

With this kind of a curve built in to your game, you can ensure that people don't rapidly outpace your
game and beat it within a month. You must be careful, however, because using an exponential curve
eventually makes it virtually impossible for the players to advance.

Inventory

Every player in your game has an inventorya place where he keeps all the items he is carrying. Many
complex games use complicated systems for this, but for our purposes, each player simply has an
array of 16 objects he can carry at any given time.

As well as having an inventory, players have two different types of items equipped: a weapon and a
piece of armor. When a weapon is equipped, all its bonuses are added to the player's attributes, and
the player uses that weapon to attack enemies. The armor similarly adds bonuses to the player's
attributes to help him in combat.

Other Data

Other than the attributes and the inventory, SimpleMUD players don't have much else. Many
complicated MUDs have more data per player, but that's really not needed for this MUD. The only
other pieces of data SimpleMUD players have are their names, passwords, and user classes.

User classes determine the abilities of players. When players first sign on, they are class

"REGULAR", which means they are just regular users. People who keep order within the game will
be given the "GOD" class, in which they can kick unruly users if they need to. You, the operator of the
MUD, will be in the "ADMIN" class, however. This means that you have access to the special
commands that allow you to control the game.

Items

Throughout the game, there are items that the player can pick up and use. Previously, I've mentioned
weapons and armor, and these are the majority of items found throughout the MUD. However, there
are other items as wellitems that heal players and give them attribute bonuses.

There are three main item types:

Weapons

Armor

Healing Items

Every item will have a number of variables, some of which have meanings for some types of items,
some of which don't. They are all listed in Table 7.3.

Table 7.3. Item Attributes

Attribute Weapon Armor Healing

Min Min damage applied No meaning Min healing applied

Max Max damage applied No meaning Max healing applied

Speed Seconds between swings No meaning No meaning

Price Cost of item Cost of item Cost of item

9 attributes Temporary bonuses Temporary bonuses Permanent bonuses

I'll go more into detail about these in the next few sections.

Weapons of Mass Destruction

Weapons are used to harm enemies in the game. As such, they require two damage attributes: a
minimum amount of damage, and a maximum amount of damage (thus using the min and max values).
This is a pretty typical system, but I'm sure you've got one of your own designs already.

For example, if you have a weapon, such as a knife, and its values are 1 and 5, using a random

number generator, the knife could inflict 1, 2, 3, 4, or 5 damage points on your attacker.

Weapons can also be slower or faster than one another. Obviously, with small weapons such as
knives, you can attack faster, as opposed to large weapons, such as clubs. Therefore, all weapons
have a value that determines the number of seconds between swings.

All values within the set of nine standard attributes are temporary, meaning that you gain those
bonuses when you have the weapon armed, but you lose them when you disarm the weapon. It's
usually typical to give weapons varying values of the accuracy attribute because some weapons are
more accurate than others. Items can also have negative values for any of the attributes, making the
game a little bit more interesting. Imagine a tradeoff in which you can make a really huge sword do
lots of damage, but you can make it lower the player's accuracy because it's so huge and difficult to
manage.

NOTE

The SimpleMUD uses a simple linear random number generator to calculate the damage done
by a weapon. This means that if you have a weapon that does 1, 2, or 3 damage points, all three
values have an equal chance of being generated. You may want to experiment with other
random number-generating methods, however. For ex ample, a simulated normal generator
would generate num bers so that the middle values occur most often, and the lowest and highest
values are generated least often. This gives you a more realistic approach, because really high
and really low strikes aren't very common. I've included a special normal random number
generator in the BasicLib (BasicLibRandom.h) that you can call like this: int n =
BasicLib::RandomIntNormal(1, 3);. How it works isn't important, however, and would require
a whole book on mathematical theory to show you.

Your Knight in Shining Armor

In any MUD, you're going to need some way to clothe and protect your characters. For SimpleMUD, I
provide just one type of item, called Armor. The main purpose of this kind of item is simply to be put
on the player, so he can wear it for the bonuses it gives him.

Armor is a lot simpler than weapons because the only attributes that are valid for armor are the cost
and the set of nine standard attributes. Basically, a piece of armor adds its attributes to a player's
character when you arm it, and removes those attribute bonuses when you remove it.

NOTE

Armor in the game naturally focuses mainly on the damage absorption and dodging attributes.
Armor naturally absorbs shocks, which is where the DA comes from, but you can also make

armor lightweight and give it higher dodging values. For example, a piece of chainmail armor
would obviously have a higher dodging attribute than a full suit of platemail. Don't feel obligated
to stick to these two attributes, though. It's perfectly reasonable to create magical items that
increase other attributes, such as your strength or strike damage.

Heal, Brother!

Healing items serve a dual purpose in the SimpleMUD. Their main use is as simple hitpoint healers;
they calculate a random number between min and max, and add that number to the player.

On the other hand, healing items cannot be equipped, although they still have a set of the nine player
attributes, and it would be a shame to waste all that storage space. When healing items are used, they
permanently add their attribute values to your player's character. If a healing item has a value of 1 for
accuracy, your player's accuracy is permanently increased by 1 whenever the item is used.

NOTE

This can work both ways, by the way. You can give healing items negative values, for
substances that work like a poison to destroy your health if you use them.

To prevent rampant abuse of them, though, the game is set up so that they disappear from your
inventory the moment they are used.

Here There Be Dragons!

Since this is a combat-oriented MUD, you need enemies. For the SimpleMUD, these enemies are
going to be (you guessed it) simple. Since you're going to be fighting them, they obviously need some
combat attributes: hitpoints, accuracy, dodging, strike damage, and damage absorption.

In addition to those combat attributes, enemies have a default weapon, from which their damage range
will be taken.

Whenever you end up defeating an enemy, you gain a number of experience points; so enemies also
have a set number of experience points, which are added to your points whenever you kill them.

MUDs would be boring if all you got when you killed enemies was points; so enemies also have loot!
Whenever you kill an enemy, there's a chance it will drop some money. This is represented by two
values: a min and a max. The game generates a random number between the min and the max, and
that's the amount of money a monster drops when he dies.

Money is fun on its own, but it's awfully impersonal. If everyone just dropped money, it would get too
boring. If enemies can drop special items when they die, however, that makes the game more
interesting. You can make certain enemies drop items that can't be found anywhere else in the game,
and so on. Each item in an enemy's loot list has two values associated with it: the item number, and
the percent chance that the item will be dropped.

That's about it for the enemies.

It's a Small World, After All

The world is going to be simple. I'm going to use a room-based system (I can't think of a single MUD
that doesn't use a similar system). The world will basically have just a vector of rooms. Each room is
a separate entity in the game, a unit that encapsulates a number of things.

Give Me Some Room Here

Rooms in the game are relatively simple. They mainly act as a way of separating the various parts of
the game from each other, so that everything doesn't happen in the same place. Because of this, rooms
need to know who and what is in them, as well as where the exits are.

Each room has four possible adjacent room indexes, representing indexes of the rooms to the north,
east, south, and west. So if a room's north variable is 10, that means room 10 is to the north. If an exit
does not exist, the value is 0. Figure 7.2 shows an example of how the rooms are designed. This
figure is a visual representation of the rooms. You can see that every room has four connectors,
pointing toward another room, and that when its connector value is 0, there is no exit from the room in
that direction. Furthermore, each room has strings representing the room name and a description of the
room.

Figure 7.2. The room connectors point toward other rooms, and connector values
control exits.

During the game, the map also uses two lists to track which players and enemies are in the room. This
information isn't stored on disk, and I'll go into far more detail on these issues in Chapter 9, "Maps,
Stores, and Training Rooms."

Items are also stored in lists, which means that theoretically each room can store an infinite number of
items. This may seem like a good idea at first, but it doesn't work out in the real world. Most of the
time, every room in the realm ends up getting packed full of worthless items that people can't be
bothered to pick up and use. Therefore, I've put a limit on the number of items that can be in a room at

any given moment, and that number is 32. Whenever someone drops something, and there are already
32 items on the floor, the oldest item just vanishes forever.

Each room also stores the amount of money lying on the floor.

Rooms have a type value. There are different kinds of rooms with special features. The first room
type is a normal room and contains nothing special.

Another type of room is a storeroom. In these rooms, you can buy and sell items. Each storeroom has
an extra associated value, which is the store number. Since the realm may contain several different
stores, a storeroom needs to be able to tell which type of store it is. I'll cover stores in the next
section.

The other kind of room is a training room, where you can train for the next level when you have
gained enough experience.

Rooms also have information about what kinds of enemies they spawn. In MUDs, if your players go
around killing everything, eventually they're going to run out of enemies, and your players won't
appreciate that. Therefore, you need some way of creating more enemies. I've elected to take a simple
approach and make the rooms determine what kind of enemies should respawn. To work, this requires
two values: the ID of the enemy you want to spawn, and the maximum number of those enemies you
want in the room at any given time.

The game works on a respawn cycle: Every 2 minutes, the game goes through every room and tries
respawning enemies. If there are too many enemies in a room, additional enemies are not spawned. If
you want, you can use this method to make sure that rooms have only one enemy, or up to 16 if nothing
is killed in the room for 32 minutes.

That's all the data that is stored in each room.

Come and See What's in Store

Stores are simpleeach store has a list of items that it will buy and sell. SimpleMUD doesn't track the
number of each item in stock; that's an advanced feature for more advanced MUDs.

Instead, SimpleMUD assumes that the stores have an infinite amount of items available to sell, so they
never run out.

Whenever you buy an item, that item is placed in your inventory, and the amount it costs is subtracted
from your money.

Mortal Combat

Combat within the MUD is also pretty simple. There are a few things that must be considered. First of
all, you're only allowed to attack enemies. Player Versus Player (PvP) combat is a somewhat more
complex subject, so I'll tackle that in the more advanced MUD.

There are two parts to the attack phase: First, you need to see if you actually hit the enemy, and
second, you need to calculate how much damage you did.

Both players and enemies have accuracy and dodging attributes. When a player is attacking, a random
number from 0 to 99 is generated. The enemy's dodging attribute is subtracted from the player's
accuracy attribute, and the result is compared to the random number. If the random number is below
the calculated value, the enemy is hit.

Here is the basic formula:

if random(0,99) < (player.accuracy - enemy.dodging) then hit

For example, if the player's accuracy is 80%, and the enemy's dodging is 10%, the calculated value is
70, which means that the player hits the enemy about 70% of the time. The random number would
need to be 069 to get a successful hit.

Note that by using this system, it's possible to have accuracies higher than 100%, which means that
you'll have extraordinary accuracy against enemies with very low dodging attributes.

The next part is the damage calculation. Assuming you get a successful hit, you need to calculate how
much damage it does. The first part of this is to calculate a random number within the range of your
current weapon. If you are not using a weapon, it is assumed you are attacking with your fists, and a
range of 13 is used automatically. Once a value has been calculated, the value of your strike damage
attribute is added to it. Then, the value of the enemy's damage absorption attribute is subtracted from
the result, and that value is compared to 1. If it is less than 1 (which is possible if the enemy has
really tough armor), the value is reset to 1. Finally, the calculated value is subtracted from the
enemy's hitpoints. Here's the formula:

damage = random(weapon.min, weapon.max) + player.SD - enemy.DA
if damage < 1 then damage = 1

Now, obviously, this is just psuedocode; I'll show you the real code in Chapter 10, "Enemies,
Combat, and the Game Loop," when I get to coding these algorithms.

Now, what happens when you kill an enemy? The game goes through all the enemy's possible
droppable items and figures out if it drops any, as well as how much money it drops.

Enemies return your attacks by using the same formulas, so it's possible for you to die. What happens
when you die? Some games give you a certain number of lives, which represent the number of times
you can die before your character is permanently deleted. I don't like this method; it tends to make
people freak out when they are running low on lives, or get system operators to cheat and give them
more.

I like an approach that penalizes you by subtracting 10% of your experience points. This doesn't
change your level, but it makes you further away from gaining another level. But that's not enough
punishment. So in addition, you lose 10% of the money you're carrying and one item randomly chosen.
I don't like players to lose everything when they die because it makes it far too easy for scavengers to
steal all their hard-earned stuff. I tend to be generous, though; in your own MUDs, you're allowed to
be devious bastards if you like. So after you've lost an item and your money, you're automatically
transported back to the starting room in the world, and you're hoping you didn't lose an important
item.

Some MUDs have a combat state, in which the game automatically attacks for you. This feature is
somewhat advanced, and thus SimpleMUD doesn't have it. Every time you want to attack someone,
you must manually enter the attack command. The game will notify the user if he has attacked, or if he
still needs to wait for the next time he can attack, since it might be a few seconds before the user can
attack again.

I Command Thee

Obviously, SimpleMUD uses a simple text interface through Telnet to interact with the players.
Therefore, I need to make a list of all commands that a player can use within the game.

There are three groups of commands: player commands, god commands, and administration
commands.

NOTE

Many MUDs like to add "interaction" commands that help the players show their current state
of mind. Stuff like "cry," "laugh," and "smile" are quite common. While these commands seem
somewhat point less to the overall design of the game, you'd actually be surprised at how much
immersion these things add to the game.

Player Commands

Players have certain commands available to them at all times, as listed in Table 7.4.

Table 7.4. Regular Player Commands

Command Alternate Use

attack <enemy> a
<enemy> Initiates an attack on the indicated enemy.

 get
<item>

Attempts to pick an item off the ground. If a number is used in place of the item name, it assumes you want
to pick up that much money.

drop <item> - Drops an item or money in the room.

help - Shows a listing of the commands available to you.

north n Moves north.

east e Moves east.

south s Moves south.

west w Moves west.

quit - Quits the game.

who - Lists who is online.

use <item> - Arms or uses an item in your inventory.

remove
<weapon/armor> - Disarms your weapon or your armor.

chat <text> - Sends text to everyone in the realm.

whisper <player>
<text> - Sends text to a single person.

say <text> - Sends text to everyone in the room you are in.

inventory inv Shows you all the items in your inventory.

stats st Shows you all your statistics.

experience exp Shows you how much experience you have, and how much you need for the next level.

/ - Repeats the previous command you made.

time - Shows you the system time.

look | Shows you the description of the room that you are in.

The additional commands that are available if you are in stores or training rooms are listed in Table
7.5.

Table 7.5. Store and Training Room Commands

Command Room Use

list Store Lists all the items available to buy or sell.

buy <item> Store Player tries to buy an item in stock.

sell <item> Store Player tries to sell an item.

train Trainer Trains you to the next level if you have enough experience.

editstats Trainer Takes you to the stats editing mode so you can allocate your statpoints.

God and Admin Commands

If you're a god or admin in the game (you lucky dog, you), you have access to all the normal player
commands, as well as some extra commands to control things within the realm. Table 7.6 lists these
commands.

Table 7.6. God Commands

Command Rank/Class Use

kick <user> God Kicks a user out of the game.

announce <msg> Admin Makes a system announcement to everyone.

changerank <user> <rank> Admin Changes the rank/class of a user.

reload <database> Admin Reloads the specified database (items, enemies, stores, rooms, or individual players).

shutdown Admin Shuts down the MUD and saves all data to disk.

You should never underestimate how valuable it is to have these kinds of commands in the game. If
any of your players start acting unruly, it's a good idea to have a god kick him, so that the player
clearly knows that someone more powerful is nearby, and is not afraid to kick some insubordinate
butt.

Summary

Let me finish by saying that this has been a very difficult chapter for me to write, and a difficult game
for me to design. If you're anything like me, you'll know what I'm talking about. I'm a person who
aspires to make the most perfect game possible at all times, and if you're like me, you were probably
saying things like "Only 16 items per player! That's too limiting!"

I love to go with the best features available when I'm designing my games, and it was incredibly
difficult for me to decide which simple features to keep, and which advanced features to put off until
later. There's an advantage in this method, however. If you constantly plan for the best, you're going to
be in a perpetual state of planning, and you'll never get anything coded. For the SimpleMUD, I've
chosen a bunch of very simple features to put into the game, and I decided to go no further.

Once I have the simple design completed and fully coded, then I'll go on to more complex things.

The next few chapters show you how to assemble the SimpleMUD and administer it. Once that is
complete, you go on to the next part of the book, in which I design a more advanced MUD, using
dozens of new features.

Chapter 8. Items and Players
In the previous chapter, I showed you what capabilities I wanted to put into the SimpleMUD. It's
generally a good practice to spell out game capabilities even before you begin coding, so that you're
not surprised when you think of something new that you want to put into the game. Now that I know
what I want within the SimpleMUD, I can begin to design the software and code it.

This chapter is fairly large, but it covers a large part of the SimpleMUD. Most of the base classes
shown in this chapter are reused throughout the game. The chapter also introduces you to the concepts
of items and players within the game.

In this chapter, you will learn to:

Create entities that are matchable using partial strings

Create a map-based database

Create a vector-based database for game entities that need better lookup speed

Create "Smart database pointers" that allow you to access the databases transparently

Create logging classes

Create a class that represents the common attributes of players and items

Create the class representing items, as well as a database for them

Create the class representing players, as well as a database for them

Store items and players to disk

Create the connection handler that handles players logging in

Create the connection handler that handles editing player statistics

Create the connection handler that manages all game commands

Code the basic commands related to players, interaction, and items

Groundwork

The first thing I want to do is lay the groundwork for the entity classes, which are the classes that
represent physical objects within the game, such as players, items, and enemies. Within the game, all
these entities will have names and unique ID numbers that identify the entities. The ID is important,
because it is used to reference entities throughout the game. Instead of having a huge mess of pointers
all over the place, you'll track entity IDs instead. This way, you can easily tell the game, "Hey, I want
to access item number 403."

Within this chapter, all the code that I create for SimpleMUD is placed within the
Demos\Chapter08\Demo08-01\SimpleMUD directory on the CD. Since I'm building the entire MUD
incrementally throughout the next few chapters, I don't want you to look at the full codebase, so I've
separated out just the parts that are needed for this chapter. At the end of the chapter, I show you a
demo that gets what I've coded up and running for you.

Table 8.1 shows a listing of all the files introduced within this chapter and their purpose.

Table . Chapter 8 Files

File Purpose

Attributes.h Stores all the enumerations needed, as well as the Attributes class

DatabasePointer.h/.cpp Special pointers used to access databases

Entity.h Stores the Entity class

EntityDatabase.h Stores both the map- and vector-based database classes

Game.h/.cpp The connection handler that handles game commands from players

Item.h The class that represents items

ItemDatabase.h/.cpp The database that stores items

Logon.h/.cpp The connection handler that handles players trying to log on

Player.h/.cpp The class that represents players

PlayerDatabase.h/.cpp The database that stores players

SimpleMUDLogs.h/.cpp The files that hold the MUD logging classes

Train.h/.cpp The connection handler that handles players editing their stats

Entities

As I mentioned before, entities in the game are composed of two things: their names and their ID
numbers. I could create separate player, item, and monster classes, and give each of these classes
those variables individually, but that's unorganized and prone to error.

I prefer to create classes that minimize the amount of coding you need to do. Using this philosophy,
I've decided to create an Entity class to take care of this responsibility. This class is located in the
Entity.h file. Here's a listing of the class's data and function declarations:

typedef unsigned int entityid;
class Entity {
public:
 inline Entity(); // constructor
 inline string& Name(); // name reference
 inline entityid& ID(); // ID reference
 inline string CompName(); // name in lowercase
 bool FullMatch(const string& p_name); // full match
 bool Match(const string& p_name) ; // partial match
protected:
 string m_name;
 entityid m_id;
};

Look at the data first. The name is a simple std::string (although I removed the std:: from the code
just so it looks better), and IDs are just unsigned integers. (The entityid typedef is at the top of the
code segment.) I like to use typedefs because they make your code cleaner. In the game, 0 is
considered the invalid value, and every other value is valid, giving you about 4 billion valid IDs for
each entity type. It is assumed that each entity type is independent of all the rest, so item 1 is a
different entity than enemy 1 or player 1. Theoretically, memory considerations aside, SimpleMUD
supports up to 4 billion items, 4 billion players, and 4 billion enemies.

Accessors

There are several functions included along with the Entity class. Two of the functions, Name and ID,
are just simple accessor functions that return a reference to the variable they point to:

inline entityid& ID() { return m_id; }
inline string& Name() { return m_name; }

Because these variables return references, you can modify the variables through the functions, like
this:

n.Name() = "John";

The constructor (which I do not show) simply initializes the name to "UNDEFINED", and the ID to 0,
indicating that the object hasn't been constructed.

Full Matching

The other functions perform useful tasks on the class. For example, the CompName function returns the
name of the string in lowercase form (using the BasicLib::LowerCase function from Chapter 4). This
is mainly used for name comparisons. The fact that strings don't recognize "ABC" as being equal to
"abc" can be annoying. Imagine being in the game and wanting to refer to an inconsiderate person
named "JoHn". If you use a plain string comparison, the computer won't recognize who you're talking
to unless you exactly match the case of each letter of the string. In other words, the computer will
think that "john" is a different player than "JoHn." The CompName function solves this problem by
converting both names into lowercase, when making comparisons.

There are two ways of determining if two names match. The first method, called full matching, only
returns a positive match if the names are identical (ignoring case as I just mentioned). This
functionality is stored within the MatchFull function:

inline bool FullMatch(const string& p_str) {
 return CompName() == LowerCase(p_str);
}

Figure 8.1 shows two examples of full matching.

Figure 8.1. The full-matching function determines that one name matches and the
other doesn't.

Partial Matching

The other method is called partial matching, and it returns a positive match if the search string
matches the beginning of an entity's name.

For example, in a game in which partial matching isn't available, if a guy has a really long name, such
as "ReallySuperAwesomeDude," whenever you want to refer to him, you'd have to type his full name.
With partial matching, however, you can type "reall" or "rea" or any other partial string that matches
the front of the entity's name, and the computer returns a match. The partial matching capability is
found within the Match function.

Furthermore, after you've played a lot of MUDs, you'll find that the ability to partially match any word
within a string is useful. For example, when you see a "Jeweled Sword" sitting in a room, the word
"Jeweled" is eye candy, and your mind interprets that simply as a "sword." So you quickly type "get
sword" without thinking about it. The partial matching function accommodates your greed and
recognizes "get sword" as "Jeweled Sword" by performing partial matching on any word within a
string.

Here's the function:

inline bool Match(const string& p_str) const {
 if(p_str.size() == 0)
 return true;

This first segment of code returns true if the size of the search string is 0. The reason for this is
convenience; many times, there's just one enemy or one item in a room, and you can just type attack
or get, and the partial matching algorithm will match on that item (or if there are more, it will match
on the first one in the room). It's a convenience issue.

 string name = CompName();
 string search = BasicLib::LowerCase(p_str);
 size_t pos = name.find(search);
 while(pos != string::npos) {
 if(pos == 0 || m_name[pos-1] == ' ')
 return true;
 pos = name.find(search, pos + 1);
 }
 return false;
}

The previous code segment performs the partial matching. It first records the lowercased versions of
the name and the search string (because they are used more than once).

Then the code performs a search on the name, and records the position into pos. If no match was
found, the find function returns std::string::npos, which is a value representing the "invalid" string
index. If that happens, there was obviously no partial match, so the function skips the loop, and false
is returned.

If the position isn't npos, however, the body of the loop is executed. If pos is 0, that means that a match
was found at the beginning of the name. For example, the string "rus" would return 0 when searched
for within "rusty stake". The function would then return true, because the beginning of the string
matched.

The partial matching function also checks to see if the character before pos is a space. This would
happen if you searched for "sta" inside "rusty stake". The find function would return 6 (the index of
the substring), and because the previous character is a space, true is returned.

So why is there a loop in the function? Imagine for a moment that you're searching for "st" within
"rusty stake". Use Figure 8.2 as a guide for this example.

Figure 8.2. A loop is needed when the partial matching function searches for partial
matches within a name.

The first match for "st" is in the middle of "rusty", and that obviously doesn't count as a valid partial
match. But you haven't searched the entire string yet, so you need to keep looking. Therefore, the find
function is called again, this time starting at pos + 1. Now the function finds another match for "st",
this time at position 6. Because this is the beginning of a word, the function matches, and true is
returned. The function loops through the entire string looking for any partial match. If no matches are
found, when find reaches the end, it returns std::string::npos, the loop terminates, and false is
returned.

Entity Function Listing

Table 8.2 shows a listing of all the functions within the Entity class.

Table 8.2. Entity Functions

Function Purpose

Entity() Constructs the entity with "invalid" values

string Name() Returns the name of the object

string CompName() Returns a lowercase version of the name, used for comparisons

bool Match(string str) Determines if str partially matches the name of the entity

bool MatchFull(string str) Determines if str fully matches the name of the entity

entityid& ID() Returns a reference to the entity's ID

Entity Functors

Throughout the game, you're going to need to perform searches on groupings of entities, using full or
partial matching. Obviously, you can't rely on your grouping classes such as the EntityDatabase, or
any STL container to perform searching for you. STL relies on algorithms for searching, so I'll do the
same.

STL searching algorithms typically rely on the operator== of a datatype for comparisons, but this is a
problem for Entity's, since there are two ways to compare entities with strings. So that's not going to
work. Luckily for us, STL searching algorithms also have some backups that allow you to use
functors to check if an object meets a specific criterion.

A functor is somewhat like a function pointer in the guise of a class/struct. The advantages this
method has over function pointers are numerous. The most useful benefit is that a functor is allowed to
have variables that represent its state. It's true that functions can have static local variables, but
everything that calls that function will use the same variables. Using classes allows you to have many
different functors in various states. There are other benefits as well, but I won't go over them; it's time
to move on.

Functors are usually simple in nature and always overload an operator(). That's a weird operator to
overload, but just bear with me for a moment.

NOTE

Functors are really nothing more than the C++ equivalent to function pointersclasses that act
like functions. The examples I use here should be pretty simple to under stand, but if they still
confuse you, there are many great books on STL that can help (such as The C++ Standard
Library, a Tutorial and Reference, by N. Josuttis). I'll try to do my best, though!

I'm going to show you the basic layout of my matchentityfull functor, without function bodies:

struct matchentityfull {
 string m_str;
 matchentityfull(const string& p_str);
 bool operator() (const Entity& p_entity);
 bool operator() (Entity* p_entity);
};

You should note that the functor contains a string that you will be searching for within entities. The
constructor takes a constant reference to a string, which will copy that into the m_str variable. This
means that a string matching functor keeps track of the string that you are searching for. Before I show
you the functions, let me show you a simple example of how this functor works:

matchentityfull matcher("john"); // functor that searches for "john"
Entity a;
Entity* b;
// assume that 'a' and 'b' are initialized somewhere before the next line:
bool t = matcher(a); // see if 'a' matches "john"
t = matcher(b); // see if 'b' matches "john"

So you can see that this class simply performs a full entity-name match on Entity's and Entity
pointers.

Here's the code for the constructor:

matchentityfull(const string& p_str)
 : m_str(p_str) { /* do nothing */ }

All the constructor does is record the string and keep track of it for future use. Note that I use the
initializer-list syntax to construct the string, and do nothing within the function body.

Initializing variables in this manner is faster, as described in Appendix C, "C++ Primer," which is on
the CD.

Here's the code for the two other functions:

bool operator() (const Entity& p_entity) {
 return p_entity.MatchFull(m_str);
}
bool operator() (Entity* p_entity) {
 return p_entity != 0 && p_entity->MatchFull(m_str);
}

The first version just calls the Entity::MatchFull function and returns the result. The pointer version
first checks to make sure the pointer is nonzero and then calls the matching function. This way, if a
NULL pointer is ever passed in, it always returns false. Otherwise, trying to dereference a NULL
pointer may end up crashing it.

There is another functor, called matchentity, which is almost identical to matchentityfull; the only
difference is that it calls the Entity::Match function instead of Entity::MatchFull, so there's no need
to paste the code here.

So, now that you know what functors are, and what they can do, let me show you a more complicated
way to use them. Say, for example, you have a vector of entities, and another vector of entity pointers,
and you'd like to search them for a name.

vector<Entity> evec;
vector<Entity*> epvec;
// pretend we fill up both vectors somewhere before this line:
vector<Entity>::iterator itr1 = find_if(evec.begin(),
 evec.end(), matchentityfull("john"));
vector<Entity*>::iterator itr2 = find_if(epvec.begin(),
 epvec.end(), matchentity("john"));

See Appendix C on the CD for a short intro to STL if you're not familiar with its inner workings.
Essentially, the previous code segment automatically searches a vector of Entitys for the first full
match on the name "john", and searches a vector of Entity pointers for the first partial match of the
name "john". The cool thing is that you can use this algorithm on any STL container that supports
forward iterators. You'll see that the EntityDatabase class I show you next works quite well with
STL algorithms.

For future reference, both of these functors are modeled around the concept of predicate functors,
which are functors that evaluate a piece of data and return a Boolean, determining if the data satisfies
a criterion. In this case, matchentity returns true if a player partially matches a string, and
matchentityfull does so with full matches.

Entity Database Classes

Now you need a class to manage all the entities while they are in the game. In larger MUDs and in the
bad old days, memory was not cheap, and it was hard to come by. But nowadays you can get memory
for almost nothing, so I'm not going to spend any time in the SimpleMUD concentrating on memory
optimization.

The game has two kinds of databases: map-based, and vector-based. If you know much about data
structures, you know that STL maps have an O(log n) access complexity, which means that the map
performs log n comparisons when searching for an item in a database of size n. A database of 255
items would need at most 8 comparisons to find any item, and a database of 65,535 items would
require at most 16 comparisons.

Although this seems like a great database to use for everything, it's not optimal for some cases. There
will be times when 16 comparisons are too long, so a database with faster access is required. That's
where the vector comes in: an STL vector is basically just an array, and because of that, it has O(1)
complexity. Accessing any given index with the STL vector takes just one calculation.

For the SimpleMUD, the entity databases will simply be static classes that enclose either std::map's
or std::vector's, called EntityDatabase and EntityDatabaseVector. The base classes will be stored
in the file EntityDatabase.h.

Because the classes are static, you should be able to access a single database within the game
globally, without worrying about instantiating it. I'm sure people have told you before that globals are
bad, and they're right; but honestly, for database-type stuff, globals really aren't that bad. How many
different user/item/enemy databases do you need in a single game? I'm comfortable with having just
one.

Map-Based Database

As I mentioned previously, the map-based database simply wraps around an std::map.

Class Definition and Data

First of all, every entity database is a template class. It is assumed that you are going to be storing
Entity objects within the database, but each database should store only one type of entity. Therefore,
runtime polymorphism (virtual inheritance) is inappropriate to use in this case, and compile-time
polymorphism (a fancy term describing templates) will be used instead:

template< class datatype >
class EntityDatabase {
protected:
 static std::map<entityid, datatype> m_map;
};

I've stripped out all the functions and the iterator class, which I will get to in a bit. For now, all you
need to know is that each entity database stores a specific datatype by ID within an std::map. I prefer
maps because they are easy to iterate through, and offer relatively quick search times. In an ideal
world, if you had completely contiguous IDs for an entity type, you might prefer to store them in a
std::vector, but I find maps easier to use. Maps are helpful in case you forget to assign a specific ID
to any entity, and they prevent your MUD from unexpectedly crashing when you try accessing an entity
that doesn't exist.

Iterator Inner Class

As I explain in Appendix C, which is on the CD, std::maps are awkward to iterate through when
compared to the other container iterator types. This is because they don't actually store a single type
of data within them, but rather a pair of data. So whenever you access an iterator into a map, the
iterator doesn't return a single piece of data, but rather an std::pair structure that holds both the key
and the data. This make things a little ugly to use, however. If you make the map-based database
return iterators pointing directly into the std::map<entityid, datatype>, you must always use the
iterators like this:

// this code assumes you have an EntityDatabase that stores players named
// PlayerDatabase
PlayerDatabase::iterator itr = PlayerDatabase::begin();
// now access the player that the iterator points to:
itr->second.Name() = "Ron";

You'll need to constantly use the second variable of the iterator, which gets plain annoying; wouldn't
you rather just code like this:

itr->Name() = "Ron";

With the EntityDatabase class, I've created an inner iterator class, which inherits from
std::map::iterator, and redefines the operator* and operator-> functions, so that they return a
reference to the second value directly. The code isn't that complex, so I won't be presenting it here.
This is what is known as an iterator proxy class.

Figure 8.3 shows the basic concept of a database iterator and illustrates its relationship to a database.
Iterators point directly to entities; therefore, accessing entities is an instantaneous operation.

Figure 8.3. Iterators can be moved forward to point to the next entity in the
database.

Like the PlayerDatabase class from Chapter 6, "Telnet Protocol and a Simple Chat Server," the
EntityDatabase class has the standard begin and end iterator functions.

NOTE

You may have noticed the odd change in the way I name functions for this class. I usually like
my function names to be named as "Capitalize all important words," making functions like Begin
, and FindFull . However, this class ignores that naming convention and makes everything
lowercase. I do this for a simple reason: I want the data base class to look more in tune with the
STL. Because a database is really just another data structure, it makes sense to use the same
nomenclature.

While the PlayerDatabase class from SimpleChat could simply return iterators to its internal list, I
can't quite do that here, since I'm using an iterator proxy class. That means that I must construct them
first, using the contents of a map iterator:

inline static iterator begin() { return iterator(m_map.begin()); }
inline static iterator end() { return iterator(m_map.end()); }

As you can see, the database class simply mimics the std::map begin and end functions by passing
their results into the constructor of the inner iterator class.

Searching the Database

There are numerous ways to search for and retrieve entities from the database, aside from using the
iterator class.

ID-Based Lookups

ID-based lookups are the easiest; they involve looking up an entity based on its ID. There are three of
these functions: has, find, and get. The first lookup determines if an ID exists within the database:

inline static bool has(entityid p_id) {
 return (m_map.find(p_id) != m_map.end());
}

Remember that the map::find function returns the same iterator as the map::end function if the key
doesn't exist within the map, so if the two iterators are different, the key does exist, and true is
returned.

The EntityDatabase::find function looks for an ID within the database, and returns an iterator
pointing to the entity with that ID (or an invalid iterator if not found). This is done mainly for
optimization purposes; if you look up an ID first to see if it even exists, and then look it up again to
retrieve it, you're doing twice the necessary work. Instead, it's easier to get an iterator to the object,

and then see if the iterator is valid. If you use this method, you can immediately use the value you
looked up instead of doing it twice. Here's the code:

inline static iterator find(entityid p_id) {
 return iterator(m_map.find(p_id));
}

As you can see, the code simply wraps around the map::find function, because the map already
knows how to search by ID.

The final function is the get function, which simply returns a reference to the data attached to the
given ID.

inline static datatype& get(entityid p_id) {
 return m_map[p_id];
}

The function just returns a reference to the item with the ID you were looking for, but beware: If the
ID you look up does not exist within the database, it will be created for you automatically. This means
that a new entity is inserted into the database with only the default values (since you didn't fill it in).
This could produce some interesting side effects.

Name-Based Lookups

You'll also want to look up entities based on their names. This becomes particularly useful when
someone types in "attack Joe" in the game, and the game wants to find out who Joe is. In an effort to
make the game easier on players, the game can also perform partial name lookups.

There are four name-based lookup functions: has, hasfull, find, and findfull. You'll notice that two
of those functions (has and find) are also used for ID-based lookups, but I've overloaded the
functions to take different parameters.

Because you're doing string-based lookups now, you can't just use a simple lookup in a map. Sure,
you could store all the names within a map and have them retrieve the entities, but there's a serious
problem with that method: You can't do partial matches using that method.

NOTE

There is a special data structure, called a trie , which is short for retrieval-tree (and there are
holy wars fought over whether it's pro nounced "try" or "tree"). The trie data structure is
specifically de signed for rapid string-based lookups using a special kind of tree. A special
feature of tries is that they can also perform partial-matching quickly. Unfortunately, I don't

have the time or space required to go into tries in more detail, so I'll leave that up to you to
explore on your own.

To perform a partial name lookup, you need to perform a comparison on every entity in the database.
Here's the has function, the simplest of them all:

inline static bool has(std::string p_name) {
 return find(p_name) != end();
}

The function simply calls the find function to find a partial match to the given name, and then returns
true if the iterator returned is not equal to end (meaning that the player exists), or false if they are
equal.

The hasfull function is similar, replacing find with findfull:

inline static bool hasfull(std::string p_name) {
 return findfull(p_name) != end();
}

find functions are interesting. Here's the first one, which searches for partial matches:

static iterator find(const std::string& p_name) {
 return BasicLib::double_find_if(begin(), end(),
 matchentityfull(p_name),
 matchentity(p_name));
}

NOTE

To make the database classes more useful, they have been given two different name-based
lookup methods. You can search for an exact name match (ignor ing case, of course) using the
hasfull and findfull functions. But an Entity also supports partial matching. I considered
making the database respond to requests to perform a straight partial match, but this leads to
complications. Because of the method for searching the database, if you have two players in
your database named "Johnny" and "John" (in that order within the database), whenever you
do a partial search for "john", the database would always think you're talking about "Johnny",
because that's the first person the database finds that partially matches "John". As simple as
this sounds, it can be a nui sance to your users by making the real "John" totally impossible to

reference. Therefore, I've decided to make the database's partial matching find and has
functions first try to find an exact name match, and if none is found, then perform a partial
match. This makes your life much easier. To do this, I've created a new STL-like algorithm
function named double_find_if , and you can find that in the
Libraries/BasicLib/BasicLibFunctions.h file. I'm not going to show you the code because it's just
a simple helper function, but you should be aware that it acts just like std::find_if , except it
has a fourth parameter: a functor that is used for a second pass, if nothing was found on the first
pass.

The function makes use of my custom double_find_if function to perform a two-pass search on the
database. First it tries to find a full match using the matchentityfull functor I showed you earlier;
then it uses a partial match using the matchentity functor.

The findfull function is similar, but because it only needs one pass, it uses the standard find_if
function:

static iterator findfull(const std::string& p_name) {
 return std::find_if(begin(), end(), matchentityfull(p_name));
}

This function just does a single-pass full match using std::find_if.

EntityDatabase Function Listing

Table 8.3 shows a listing of all the functions within the EntityDatabase class.

Table 8.3. EntityDatabase Functions

Function Purpose

iterator begin() Returns an iterator pointing to the beginning of the database

iterator end() Returns the "invalid" iterator, pointing past the previous entity

bool has(entityid id) Determines if an entity with id exists within the database

bool has(string str) Determines if an entity with partial name str exists

bool hasfull(string str) Determines if an entity with the exact name str exists

iterator find(entityid id) Returns an iterator pointing to the entity with id

iterator find(string str) Returns iterator pointing to entity with partial name str

iterator findfull(string str) Returns iterator pointing to entity with exact name str

datatype& get(entityid id) Returns reference to entity with given id

size_t size() Returns number of items within database

Vector-Based Database

The vector-based database class is pretty simple compared to the map-based database. Let me show
you the class definition and data first.

Class Definition and Data

Here's the class definition for the EntityDatabaseVector class:

template< typename datatype >
class EntityDatabaseVector {
 typedef std::vector<datatype>::iterator iterator;
protected:
 static std::vector<datatype> m_vector;
};

As usual, I've removed the function declarations, so you can see the data more easily. As you can see,
it simply wraps around a vector.

The other interesting thing to note is that the class typedefs an std::vector<datatype>::iterator as
its own iterator class. Remember how map iterators work and that they don't actually return the data
stored in the map; instead, they return an std::pair<key,data>, which means that for iterators of
maps, you'll have to use itr->second to access the data, and that's really annoying. Because of that, I
created my own iterator class that would take care of that for you within the EntityDatabase class.

However, vectors are much easier to use, and because their iterators directly return the data, there's
absolutely no need to create my own iterator class. Instead, an iterator for the EntityDatabaseVector
class is really just a std::vector<datatype>::iterator. That makes things easier.

Functions

The vector-based database has a different purpose from the map-based database. A map-based
database is often used to search for entities with sparse ID numbers (the IDs aren't continuous, and
you could have IDs 110 and 91100 defined, but then have nothing defined for 1190), but the vector-
based database is used more for storing data that needs to be quickly accessible, and won't change
much. This means that things in vector databases are rarely added or deleted. There are just four
simple functions in the database:

inline static iterator begin() { return m_vector.begin() + 1; }
inline static iterator end() { return m_vector.end(); }
inline static size_t size() { return m_vector.size() - 1; }
inline static datatype& get(entityid p_id) {
 if(p_id >= m_vector.size() || p_id == 0)
 throw std::exception();
 return m_vector[p_id];
}

When introducing entityids, I mentioned that the value 0 is always considered invalid. Unfortunately,
vectors always begin with index 0, so you're going to have one "dummy" index, where there isn't
valid data.

NOTE

If you're really concerned about wasting that one index, you could make the get function simply
sub tract 1 from the index whenever it is called, thus treating the real index 0 as index 1, and so
on.

The first two functions are iterator functions, which return iterators pointing to the first and one-after-
last indexes in the array. Because index 0 is assumed to be invalid, the Begin function actually returns
an iterator pointing to index 1.

Also, because one index is always invalid, whenever the size function is called, 1 is subtracted from
the size.

NOTE

I could have used the vector::at function instead of my own version, but unfortunately, that was
a late addition to the STL standard, and not all compilers support it.

The last function is the get function, which returns data at a given index. The function uses bounds
checking, so if you try accessing an invalid index, an exception is thrown.

That's pretty much it for the actual database classes.

Database Pointers

Throughout the game, you're going to want to access entities within the databases. One easy way to do
this would be to use pointers, but I usually recommend against this method. Many more advanced
MUDs keep data on disk as much as possible, and only keep a few entities in memory at any given
time. In such systems, when entities haven't been accessed for a while, they are automatically written
back to disk and reloaded when they are needed again. As you can imagine, in such a system, entities
are constantly at different addresses and are a pain in the butt to keep track of.

So pointers are out of the question. Because each entity has a unique ID number, it would make sense
to store those throughout the game. Unfortunately, this is annoying in its own way; whenever you want
to use the entity that the ID points you to, you'll have to manually look it up in the database class.
Assuming there's an item database named ItemDatabase, this is how you'd do it:

Item& i = ItemDatabase::get(id);

That can tend to get quite tiresome after a while, so I've decided to create a databasepointer class.
For all intents and purposes, this class will act just like an entityid, but will also have some
overloads to make it act like a pointer to an entity as well. You'll see how this works in just a bit.

The relationship between a database pointer and an entity database is shown in Figure 8.4.

Figure 8.4. Unlike iterators, database pointers do not point directly at the entities,
and they must perform database lookups to actually access an entity.

Database pointers are slower than iterators, because you must look up the entity in the database when
you want to use it. This may seem like a bad thing at first, but it's very safe this way. Iterators can be
invalidated if the database moves around too much (maps rearrange their structure when things are
added and deleted), but a database pointer is always valid, as long as the database knows how to get
it.

Unfortunately, C++ is a language that has inherited a lot of ancient quirks from C. One problem in
particular is circular dependencies. If you are unfamiliar with C++, you can learn the details of the
C/C++ compiler in Appendix C, which is on the CD.

The problem is that there are lots of circular dependencies connected with the database classes. Take,
for example, players and rooms.

The player database needs access to the Player class. The player database pointer class needs access
to the player database. Examine Figure 8.5 for a moment.

Figure 8.5. The player and room classes have complex circular dependencies.

The relationship among rooms, players, their databases, and a database pointer class is quite

complicated, and you might not even see the problem at first. Database pointers are extremely generic
concepts, and as such, I would really like to implement them as a generic template class. Because of
this, I've created the generic databasepointer class, which I will show you in a little bit. First I want
to show you how I organized the files so that there are no circular dependencies. These are shown
within Figure 8.6.

Figure 8.6. Files are organized so that circular dependencies are avoided. Notice that
DatabasePointer.h doesn't point to anything.

The important thing to note is that the DatabasePointer.h file doesn't have any links to other files; it
doesn't include any of the other files shown in Figure 8.6. You'll see how this all works out.

Before Templates, There Were Macros

Unfortunately, despite the best laid plans of mice and men, templates just won't work for database
pointers. The problem is that you can't mix cyclic dependencies with templates it's not going to
happen in C++. Sure, you may get some compilers to do it for you, but those compilers aren't
following the standard, and you really shouldn't count on that behavior.

Before we had templates and all of the great things they added, programmers had to rely on macros. If
you've been properly taught C++, you might be feeling some shivers right now, but let me tell you;
there is a time for ideals, and there is a time for reality. You could spend weeks and weeks trying to
figure out how to get this done "the proper way," or you could put together a quick macro in a few
minutes and watch it work immediately. It's up to you to determine which way is more "proper." I
would wager that sometimes it's more proper to make a little hack to save yourself tons of wasted
effort.

So the MUD has a macro named DATABASEPOINTER, which declares the functions of a database pointer
(some of which are inlined), and another macro named DATABASEPOINTERIMPL, which contains the
implementations of the functions.

Here is the declaration macro:

#define DATABASEPOINTER(pt, t) \
class t; \
class pt { \
public: \
 pt(entityid p_id = 0) \
 : m_id(p_id) {} \
 \
 pt& operator=(entityid p_id) { \
 m_id = p_id; \
 return *this; \
 } \
 \
 operator entityid() { \
 return m_id; \
 } \
 operator t*(); \
 \
 t& operator*(); \
 t* operator->(); \
 \
 entityid m_id; \
}; \
 \
inline ostream& operator<<(ostream& s, const pt& p) { \
 s << p.m_id; \
 return s; \
} \
 \
inline istream& operator>>(istream& s, pt& p) { \
 s >> p.m_id; \
 return s; \
}

The declaration macro will take two parameters: the name of the pointer (pt) class, and the name of
the entity class (t). For example, to create a database pointer class named player that retrieves
Player entities (note the capitalization of the "p"), you would create it like this:

DATABASEPOINTER(player, Player);

The classes created by the macro are essentially just wrappers around a 32-bit entityid, which
makes it lightweight, yet powerful.

You may notice that some functions are inline, yet others are not. There is a good reason for this: The
inline functions don't need to access the database in any formthey simply operate on the m_id variable.
The functions that aren't inline do access the database. This proves to be a problem, however.
Because the database pointer header file can't include the database header files (circular dependency
errors!), it can't know about the database classes. Because this file doesn't know about the database
classes, you can't make inline functions access database functions; therefore, they must be placed

within the .cpp file instead.

The first two functionsthe constructor and the assignment operatorare simple and just assign the
parameter to the m_id variable of the classes, so I don't need to show you their code.

Conversion Operators

There are two conversion operators: operator entityid and operator t*. Conversion operators are
an interesting feature of C++ that allows the compiler to treat a datatype as another type when needed.

The first conversion operator allows you to use database pointers just as if they were entityids.
Here's an example of using a database pointer as an entityid:

// this code assumes the existence of an "item" database pointer class:
item ptr = 10;
entityid i = ptr; // i is now 10.
ptr = ptr + 10; // ptr.m_id is now 20.

See, isn't that cool? For (almost) all intents and purposes, database pointers are entityids with added
functions.

There's a reason I've included the operator t* function, which is the other conversion operator. This
operator would allow you to treat a database pointer like a pointer to the entity you want to access.
For example, you can treat an item database pointer as a pointer to the actual entity type, Item*.

I did this because of the two entity functors I showed you earlier: matchentityfull and matchentity.
To save you lots of effort, these two functors can operate on containers holding just pointers to
entities. But database pointers aren't exactly pointers; they're classes. If you didn't have this
conversion operator, and you had a vector of items, you couldn't use it in conjunction with the
matchentity or matchentityfull functors, because they expect an Entity*, and this container holds
items.

NOTE

I said "almost" because there are times when database pointers don't act like entityid s. That's
my fault; I'm lazy. You see, database pointers don't support the operators +=, -=, *=, /=, and so
forth. To support those operators, you'd need to actually write them into the macro manually.
The other option, of course, is to write things such as : ptr = ptr + 10;. The compiler accepts
that, because it tries adding ptr with 10, and to do so, it converts ptr into an entityid
automatically using the conversion operator, and then assigns the new value to ptr using the
assignment opera tor. So just watch out for that.

This is where the conversion operator comes in. (This is actually within the DATABASEPOINTERIMPL
macro.)

pt::operator t*() { \
 if(m_id == 0) \
 return 0; \
 return &(db::get(m_id)); \
}

This looks up the ID within the database and returns the address of the Entity that it found. If the ID is
0, the value 0 is returned. This is done because performing lookup on a nonexistent ID can cause the
program to crasha bad thing.

Now you can freely use any STL container of database pointers with any of the functors.

NOTE

Remember that database pointers have a hidden overhead that regular pointers don't have. In
this case, every call to the pointer conversion operator is an O(log n) algorithm on the map-
based databases, as opposed to O(1) for regular point ers, so any O(n) STL algorithm you call
on an array of database pointers automatically converts into an O (n log n) algorithm. For this
reason, it is advisable to only use STL algorithms on relatively small containers of database
pointers.

Dereference Operators

There are two operators within the macro that dereference the database pointer classes the macro
creates, and allow you to use them just like pointers to entities (kind of like STL iterators). Sound
cool? I think so, too.

The two functions are also declared inside of the DATABASEPOINTERIMPL macro:

t& pt::operator*() { \
 return db::get(m_id); \
} \
 \
t* pt::operator->() { \
 return &(db::get(m_id)); \
} \

These functions perform a lookup of the entity in the database and return references or pointers to that

item. You can use these functions just as you would access any iterator within the game:

// this uses the "item" class again; I haven't shown it to you yet
// but it's just a regular database pointer
item iptr = 10; // make it point to item 10
iptr->Name() = "Sword"; // change item 10's name to "Sword"
Item& i = *iptr; // make it a reference to item 10.

This way, you are not required to make your code look really ugly by performing manual database
lookups; you let the pointer class take care of it instead.

Stream Operators

This isn't a huge topic, but I just want to mention it. Each of the database pointer classes has two
stream operators (operator<< and operator>>), which simply stream the ID of the pointer to and from
iostreams.

Defining the Macros

I showed you earlier how to declare a DATABASEPOINTER macro, but let me show you an example
again:

DATABASEPOINTER(player, Player)

These definitions must be placed within the DatabasePointer.h file.

On the other hand, you declare the DATABASEPOINTERIMPL macros in the .cpp file, like this:

DATABASEPOINTERIMPL(player, Player, PlayerDatabase)

This macro takes three parameters: the name of the database pointer class, the name of the entity
class, and the name of the database that holds those items.

Logs

Right now I'm going to sidestep the main path of this chapter to tell you about the log classes.
SimpleMUD has two text logs: the user log, and the error log. I showed you the logging capabilities in
Chapter 4, "The Basic Library," using the BasicLib::Logger class, and the text-file version named
BasicLib::TextLog. SimpleMUD uses global text logs. The definitions for them can be found in the
files Demos\Chapter08\Demo08-01\SimpleMUD\SimpleMUDLogs.h and .cpp.

Because the logs are meant to be globals, I need to declare them as extern in the header file like this:

extern TextLog ERRORLOG;
extern TextLog USERLOG;

Any part of your program that uses these files can include the .h file, and you can use either of the logs
that you like.

However, you still need to construct the logs somewhere, so this is done in the .cpp file:

TextLog ERRORLOG("logs/errors.log", "Error Log", true, true);
TextLog USERLOG("logs/users.log", "User Log", true, true);

Remember the parameters for the constructor. The first parameter is the file name of the log, the
second is the name of the log, and the two Booleans determine if you want to datestamp and
timestamp every entry in the log. As you can see from the previous code segment, the logs are stored
in a subdirectory named "logs", and the files are named "errors.log" and "users.log".

Whenever errors occur in the game, it is advisable to log them to the error log, and user actions such
as logging on and off should be logged into the user log.

Attributes

As I mentioned in Chapter 7, "Designing the SimpleMUD," players and items will have groupings of
attributes. In a simple MUD such as this, you could make an individual variable for each attribute
within a player or item, but that gets to be unmanageable at a certain level. Whenever you add stuff,
your code becomes more and more messy. You can find all the attribute-related stuff in the
Attributes.h file.

Attribute Class

Instead of making an individual variable for each attribute within a player or an item, I've decided
that it's easier to create an enumeration:

enum Attribute {
 STRENGTH = 0,
 HEALTH = 1,
 AGILITY = 2,
 MAXHITPOINTS = 3,
 ACCURACY = 4,
 DODGING = 5,
 STRIKEDAMAGE = 6,
 DAMAGEABSORB = 7,
 HPREGEN = 8
};
const int NUMATTRIBUTES = 9;

Those are all nine of the attributes of players and items, including the first three base attributes, as I
showed you in Chapter 7. There's also an array of strings called ATTRIBUTESTRINGS, which contains
the names of all the attributes; I don't show them here.

There are also these two functions:

Attribute GetAttribute(string p_attr);
string GetAttributeString(Attribute p_attr);

I'm not going to bother showing you the code, because it's pretty boring; it only converts a string to
an Attribute, and vice versa.

Attribute Sets

When creating the item and player classes, it would make sense to give them an array of attributes.
However, it would make even more sense to create a custom class whose only purpose is to group a

collection of attributes together. For this purpose, I've created the AttributeSet class, which will act
like an array, and provide other basic features as well:

class AttributeSet {
public:
 AttributeSet();
 int& operator[](int p_attr);
 friend ostream& operator<<(ostream& p_stream, const AttributeSet& a);
 friend istream& operator>>(istream& p_stream, AttributeSet& a);
protected:
 int m_attributes[NUMATTRIBUTES];
};

Simply put, the constructor loops through all the attributes in the m_attributes array, and clears them
to zero. You can use the operator[] to treat an attribute set just like an array:

AttributeSet s;
s[HEALTH] = 10;
s[STRENGTH] = 9;

It's the little things like that which make your code so much easier to read and understand.

You may have noticed that attribute sets can also be inserted into and extracted from streams using the
standard operators << and >>. The main reason for this is that, for file storage, all the file formats I'm
using for SimpleMUD are going to be plain text ASCII files. I'll touch on the reasons more when I
show you the Item and Player classes. Here's the code for the first stream function:

ostream& operator<<(ostream& p_stream, const AttributeSet& a) {
 for(int i = 0; i < NUMATTRIBUTES; i++) {
 p_stream << "[" << GetAttributeString((Attribute)i) <<
 "] " << a.m_attributes[i] << "\n";
 }
 return p_stream;
}

The function loops through all the attributes within the set, and prints within square brackets first the
name, and then the value. The output of this function looks something like this:

[STRENGTH] 10
<snip>
[HPREGEN] 5

And so on. I didn't paste all nine attributes, just the first and last ones to save on space. Likewise,
here's the stream extraction function:

istream& operator>>(istream& p_stream, AttributeSet& a) {
 std::string temp;
 for(int i = 0; i < NUMATTRIBUTES; i++) {
 p_stream >> temp >> a.m_attributes[i];
 }
 return p_stream;
}

As you can see from the function, there is a temporary string named temp. This is used to "eat" the
labels of each attribute. Whenever the line [STRENGTH] 10 is read in, the [STRENGTH] part is read into
temp and discarded, and the value 10 is read into the current attribute. Because this function ignores
line labels, the order of the attributes within a stream must remain in the same order as they were
originally printed. The line labels are there primarily to help users of the system figure out the
meanings of the values.

Items

Between the Entity, EntityDatabase, EntityDatabaseVector, databasepointer, Attribute, and
AttributeSet classes, there was quite a bit of code. The good news is that because I spent so much
time developing the groundwork, the job of developing the rest of the game suddenly becomes easier.
You'll see how this works throughout the rest of this chapter.

Now that the groundwork is done, it's time to move on to the first type of entity that will be used
within the gameitems.

Item Class

Items, as I described in Chapter 7, are simply physical objects that you can pick up and carry around
in the game. Since items will have names and IDs, they are inherited from the Entity class.

Item Types

As I also mentioned in Chapter 7, items come in three flavors: weapons, armor, and healing items.
Because of this, I created an enumerated type (found in Attributes.h):

enum ItemType {
 WEAPON,
 ARMOR,
 HEALING
};

In addition to this enumeration, I've created two functions to help convert types to strings and vice
versa. First is the GetItemType function, which gets a type from a string, and the second is the
GetItemTypeString function, which does the opposite. These functions make reading and writing
enumerations to streams easier and make your output files more legible. However, since the way they
work isn't that important to MUD programming in general, I hope you'll forgive me if I move along
without showing you the code. Don't worry though; you can see it if you're still interested in the
Attributes.h file on the CD.

Money: It's What I Want

For SimpleMUD, I use a simple typedef to represent the money type:

typedef unsigned long int money;

This uses an unsigned 32-bit integer, so that means that the money type can represent anything from 0 to
4 billion dollars. This can be changed at any later date if you wish.

Item Attributes

Items have two types of attributes: the attributes of the item itself, and the attribute modifiers, which
will be added to a player's attributes when that particular item is used.

Here's a skeleton of the Item class, with the function declarations removed:

class Item : public Entity {
 ItemType m_type;
 int m_min;
 int m_max;
 int m_speed;
 money m_price;
 AttributeSet m_attributes;
};

Obviously, each item has its own type to identify to the game what kind of item it is. Based on the
item type, the three variables m_min, m_max, and m_speed have different meanings. Table 8.4 lists the
uses for each of those attributes for each item type.

Table 8.4. Item Attribute Uses

Type m_min m_max m_speed

Weapon min damage caused max damage caused pause between swings in seconds

Armor not used not used not used

Healing min damage healed max damage healed not used

In addition to those three attributes, every item also has a money type, representing how much money
the item is worth, and an AttributeSet, corresponding to the nine attributes that players have. This
attribute set contains deltas, which determine how much of each attribute to add or subtract to a
player whenever that item is used.

For example, a weapon with an accuracy attribute of 10 would add 10 to the player's accuracy
whenever that weapon was armed and remove 10 whenever it was disarmed.

Writing and Reading Items from Disk

I haven't really discussed how items are read and written to disk yet.

When designing a MUD, you have many options. Many older MUDs store their data in binary format,
since in binary form data is packed tightly, and thus uses less memory. (For example, a 32-bit integer
in binary always takes up 4 bytes, but a 32-bit integer in ASCII may take up to 10 bytes.) More
complex MUDs may even offload the disk storage capabilities into a dedicated database server, such
as a SQL server of some sort.

For SimpleMUD, you don't need anything fancy. It's going to stay nice and simple. Since I don't have
room to introduce editor tools to you, I'm going to use the simplest and most editable format
availableplain ASCII text files.

There's a lot of hype going around about XML data storage, but XML is far too complex for what I
need; instead, I'm just going to use a simple line-by-line approach to store data. Each item will be
defined as a seven-line string of ASCII text, in which each line contains a single attribute. Each line is
composed of two things: the name of the attribute, contained within square brackets, and the value of
the attribute.

Here's an example of an item string:

[ID] 1
[NAME] Knife
[TYPE] WEAPON
[MIN] 2
[MAX] 4
[SPEED] 2
[PRICE] 10
[STRENGTH] 0
[HEALTH] 0
[AGILITY] 0
[MAXHITPOINTS] 0
[ACCURACY] 10
[DODGING] 0
[STRIKEDAMAGE] 0
[DAMAGEABSORB] 0
[HPREGEN] 0

Since most of the writing capabilities of C++ files depend on using iostreams, I've decided to keep
the tradition, and let items use iostreams as well. Because of this, items have the standard stream
extraction operator, but not stream insertion, since there is no need to write items back to disk:

friend istream& operator>>(istream& p_stream, Item& i);

There is no stream insertion operator, simply because there is no need for one. Items are never
changed in the game; therefore, they never need to be written to disk.

Here's the function:

inline istream& operator>>(istream& p_stream, Item& i) {
 std::string temp;
 p_stream >> temp >> std::ws; std::getline(p_stream, i.m_name);
 p_stream >> temp >> temp; i.m_type = GetItemType(temp);
 p_stream >> temp >> i.m_min;
 p_stream >> temp >> i.m_max;
 p_stream >> temp >> i.m_speed;
 p_stream >> temp >> i.m_price;
 p_stream >> i.m_attributes;
 return p_stream;
}

As you can see, the code is mostly straightforward. For each attribute, the line label is read into temp
and ignored; then the real attribute is read into the appropriate variable.

NOTE

There is one limitation you should know about when extracting items: the attribute labels in the
stream mean absolutely nothing to the computer; they are there only for you, so that when you
open the file in a text editor, you know which attribute means what. The com puter, when
loading in items, ignores the labels within the brackets, and assumes that the items within the
stream are in the appropriate order.

There are two things to pay attention to, however: When reading in an item name, instead of streaming
the name using operator>>, I use the std::getline function. This is important, because item names
may have spaces in them, such as "Chainmail Armor". If you used the standard operator>>, it would
just read the first word, which isn't what I want. Luckily, the std::getline function exists and reads
in everything in the stream up until a newline character. Also note that the previous line pipes the
stream into the std::ws object, which simply "eats" all the whitespace leading up to the next word.
This is essential because the std::getline function doesn't do that automatically for you.

You should notice the two lines that read in the type of the item. Within the text file, as you saw when
I listed a sample item printout, the item type is an actual word, like "weapon" or "armor". Because of
this, I need to make use of the GetItemType function to convert a string into an ItemType enumeration.

Finally, you may have noticed that the function doesn't load in the ID of the item; instead, the item
database class is relied on to do that, which you will see a little later on.

Item Function Listing

Table 8.5 lits all the functions in the Item class, omitting those inherited from the Entity class.

Table 8.5. Item Functions

Function Purpose

Item() Constructs an item with "invalid" values

ItemType& Type() Returns the type of the item

int& Min() Returns the min attribute

int& Max() Returns the max attribute

int& Speed() Returns the speed attribute

money& Price() Returns the price of the item

int& GetAttr(int attr) Returns a reference to player attribute 'attr'

As you can see, all the functions are simply accessor functions; items have little need for anything
else. The GetAttr function works with the standard Attribute labels, like so:

Item i;
i.GetAttr(HEALTH) = 10;
int s = i.GetAttr(STRENGTH);

And so it continues. This saves you the trouble of writing different accessors for each attribute.

Item Database

The item database is an incredibly simple class, because most of the work has already been
accomplished with the EntityDatabase class. There are only a few things I need to do to make a fully
functional item database class. You can find the class within the ItemDatabase.h and .cpp files on the
CD.

File Storage

The first issue you need to tackle is the question of file storage: How will you store items to disk?
Previously, I deemed it optimal for a simple MUD like this to use ASCII text to store data, since you
can open text files in any text editor, without expending significant time making a custom editor for
items.

So now you need to figure out how items will actually be stored. When analyzing the game, you may
notice that items are just static objects and really should not be modified. Therefore, you can assume
that the MUD won't be modifying items, and there's really no need to be able to write them back out to
disk while the MUD is running.

Because of this, I've decided to store all the items in one large text file: /items/items.itm. When the
database starts up, it loads all the items from this file.

Class Definition

Here's the definition for the ItemDatabase class, which is located within the ItemDatabase.h file:

class ItemDatabase : public EntityDatabase<Item> {
public:
 static bool Load();
};

As you can see, an ItemDatabase is simply an EntityDatabase that stores Items. Additionally, it has
one new function: the Load function, which loads the database from the /items/ items.itm file.

Since all the database classes are meant to be static, the Load function is static as well. This means
you can call it like this within the game:

ItemDatabase::Load();

Also, there's one more note I should make: Since the m_map member inside the EntityDatabase class
is static, it must be defined in a .cpp file somewhere, or else you'll end up with linker errors when
you compile. So here's the definition:

std::map<entityid, Item> ItemDatabase::m_map;

You must do this for every class you create that inherits from EntityDatabase.

Loading the Database

Finally, here's the function to load the database from the /items/items.itm file:

bool ItemDatabase::Load() {
 std::ifstream file("items/items.itm");
 entityid id;
 std::string temp;
 while(file.good()) {
 file >> temp >> id;
 m_map[id].ID() = id;
 file >> m_map[id] >> std::ws;
 USERLOG.Log("Loaded Item: " + m_map[id].Name());
 }
 return true;
}

The function basically opens up the item file, and tries to read in item after item until there is nothing
more to read. The first thing the function does within the loop is read in the ID of the item.

Once I have the ID, I use the std::map::operator[] function to look up the item with that ID. At this
point, one of two things can happen: If an item with the ID already exists, its ID is simply overwritten
with the same value that I just read in from disk (essentially accomplishing nothing). If the item
doesn't exist, operator[] has a little side effect that I rely on: A new item with the given ID is created
and inserted into the map automatically, and its ID is set to what was just loaded in. Then, the rest of
the item is loaded in from the file, and all the whitespace after the item entry in the file is eaten up
using the std::ws stream modifier.

The final act is to notify the userlog that an item was loaded.

Item Database Pointers

Finally, when accessing items within the item database, it's usually a good idea to use a database
pointer, modeled around the database pointer macros I showed you earlier.

This simply requires a macro definition (which is located in the DatabasePointer.h file):

DATABASEPOINTER(item, Item)

Now you can use item throughout the game (notice that "i" is lowercase) just like a pointer into the
ItemDatabase, as I described earlier. You can use it like this:

item i = 10;
i->Dodge() = 20;

And so on.

Populating Your Realm with Players

Now that you've got all the classes dealing with items in the game, it's time to move on to a more
complicated topic: the classes dealing with players. Players represent any person in the game who
actually connects to it, as opposed to computer-controlled entities, which are a separate concept.

Player Class

Before I figure out how I'm going to store the player data to disk, I first need to know what data I need
to store to disk. All this data is, of course, going to be stored within the Player class, which is found
within Player.h and .cpp.

Player Variables

The class contains all the attributes I discussed in Chapter 7 and will be a child of the Entity class. In
addition to having the nine standard attributes, players have variables representing non-savable
session info, as well as other information. Here's a listing of the data:

const int PLAYERITEMS = 16;
class Player : public Entity {
 // Player information
 string m_pass;
 PlayerRank m_rank;

 // Player attributes
 int m_statpoints;
 int m_experience;
 int m_level;
 room m_room;
 money m_money;
 int m_hitpoints;
 AttributeSet m_baseattributes;
 AttributeSet m_attributes;
 BasicLib::sint64 m_nextattacktime;

 // Player inventory
 item m_inventory[PLAYERITEMS];
 int m_items;
 int m_weapon;
 int m_armor;

 // Non-savable info
 Connection<Telnet>* m_connection;
 bool m_loggedin;
 bool m_active;
 bool m_newbie;
};

In addition to a name and ID inherited from the Entity class, players have a password and a rank. The
ranks correspond to the same ranks defined in Chapter 7, and the next section shows you the
enumeration used to define the ranks.

There are seven extra player attributes in addition to the nine defined within the AttributeSet class.
Those seven attributes represent a player's statpoints, level, experience, room number, money, current
hitpoints, and the next time he may attack. (This last one won't be used until Chapter 10, "Enemies,
Combat, and the Game Loop.") You may note that these attributes are not included within the
AttributeSet class. There's a reason for this: Items have attribute sets, and whenever you use an item,
all the attributes in the item class are added to the player's attributes. However, there are certain stats
that should never be modified by an item, and those attributes are kept outside of the attribute set.

The class has two player sets: m_baseattributes and m_attributes. The first set contains all the
"base" attributes, or permanent values. Whenever you use an item, these are the stats that are modified
and saved to disk. The other set is the "dynamic" valuesvalues that are calculated by the game, based
on your level. A player's real values are calculated by adding the values within the two sets. Figure
8.7 shows the representation of the two attribute sets. To get a player's actual attributes, the values
within the base and dynamic sets are added to form the final result.

Figure 8.7. The relationship between the two sets of attribute data, and the third
"virtual" attribute set.

There is one datatype in there that you may not be familiar withroom. A room is basically a database
pointer pointing to a Room class. Because I haven't covered the map system for the MUD yet, you have
no idea what a Room or a room is yet, so this is going to cause a minor problem. However, I'm going to
stipulate right here that all rooms within the game also use entityids to be uniquely identified, and
that the room class acts like a databasepointer. So for now, I temporarily inserted this line near the
top of the Player.h file:

typedef entityid room; // REMOVE THIS LATER

I'll remove this in the next chapter, when I cover the map system.

The player's inventory is managed by four variables: an array of item database pointers, the number
of items within that array, and the indexes of the player's current weapon and armor. Whenever an
index in the array contains a zero, that means there's no item in that slot; any other value is the ID of
the item the player is carrying in that slot. Weapon and armor index values of -1 mean that you don't
have a weapon or armor armed.

Each player has four variables that are temporary and are only valid per "session"; therefore, those
variables won't be saved to disk. They are Connection<Telnet>*, which represents the player's
connection, and three bools that indicate if the player is logged in, active, or a newbie.

"Activity" isn't something that I've discussed before. Throughout the game, players may temporarily
"leave the realm" to accomplish a task such as editing their preferences or statistics, but they are still
connected. When they are in these states, the players are said to be "inactive," meaning that the game
won't send the players chat messages, and so on. I'll show you more about this later on in the chapter.

The "newbie" Boolean tells the game that the player is new to the game, and will be taken to the
character-training screen when he logs in. You'll see how this works when I show you the login
process.

Player Ranks

The PlayerRank type is defined as an enumerated type like this:

enum PlayerRank {
 Regular,
 God,
 Admin
};

If you'll recall from Chapter 7, regular, god, and admin are the three player ranks. Like the ItemType
and Attribute enumerations I covered before, PlayerRank also has two helper functions that allow
you to convert ranks to and from strings (PlayerRank GetRank(string) and string(
GetRankString(PlayerRank). Like before, their code isn't important, so I won't bother pasting it
here.

Directly Modifiable Attributes

Throughout the game, you're going to need ways of modifying certain attributes. However, you don't
want to just give access to all the attributes to anyone who feels free to change them; this could
rapidly destabilize your game. For example, if some function were to randomly add 10 levels to a
player (purely by accident, of course *wink*), you could get into some serious problems, since the
player will not have all the stat points he should have earned by gaining those levels. Therefore, you

need to restrict access to only those attributes that should be changed without side effects.

All directly modifiable attributes use a single function as their accessor. All these functions are inline
and return a reference to the attribute, like this:

inline money& Money() { return m_money; }

As shown, you can either read or change variables using the function, like this:

Player p;
p.Money() = 100; // modify
int m = p.Money(); // read

The directly modifiable attributes are as follows: m_pass, m_rank, m_connection, m_loggedin,
m_active, m_newbie, m_statpoints, m_experience, m_room, m_money, and m_nextattacktime.

Level Functions

Several functions deal with players' levels. These functions are mainly used for informational
purposes, but there's one function that performs the task of "training" a player to the next level if he
has enough experience to merit the training.

Informational Level Functions

First and foremost is the NeedForLevel() function. This simply determines how many experience
points a player needs for a specific level:

inline int Player::NeedForLevel(int p_level) {
 return (int)(100 * (pow(1.4, p_level - 1) - 1));
}

This uses the formula I showed you from Chapter 7. You should note that this function is static, which
means that you don't need a specific player instance to call it. You can simply use
Player::NeedForLevel(5) to find out how many experience points are needed for level 5.

The next function determines how many more experience points a player needs to advance to the next
level:

int Player::NeedForNextLevel() {

 return NeedForLevel(m_level + 1) - m_experience;
}

The function simply subtracts the experience you have from the experience you need for the next level.
Because of this, the result may be positive (you need more experience) or negative (you have enough
experience for the next level).

The final informational function is the Level function, which returns a player's current level:

inline int Level() { return m_level; }

Training

The last level function is the Train function, which is executed whenever your player trains inside a
training room. It returns a Boolean, which tells you if the player trained to the next level successfully.
Whenever you train, you gain more stat points and your attributes are recalculated. Here's the
function:

bool Player::Train() {
 if(NeedForNextLevel() <= 0) {
 m_statpoints += 2;
 m_baseattributes[MAXHITPOINTS] += m_level;
 m_level++;
 RecalculateStats();
 return true;
 }
 return false;
}

If you don't need more experience to go to the next level, you're awarded two stat points, your base
maximum hitpoints are increased by the value of your current level, your level is increased by one,
and your stats are recalculated.

If you don't have enough experience to go to the next level, false is returned, and nothing is changed.

Attribute Functions

Attribute functions can be separated into four groups: the recalculation function, hitpoint functions,
attribute set functions, and general accessors. These function groups deal with all the attributes that
the modifiable-attribute accessor functions didn't take care of already.

Recalculating Stats

You've already seen the function to recalculate stats used before, inside the Train function.
Essentially, the function goes through all the dynamic attributes (m_attributes) and recalculates them
based on your level or other attributes that may have changed.

void Player::RecalculateStats() {
 m_attributes[MAXHITPOINTS] = (int)
 10 + (m_level * (GetAttr(HEALTH) / 1.5));
 m_attributes[HPREGEN] =
 (GetAttr(HEALTH) / 5) + m_level;
 m_attributes[ACCURACY] = GetAttr(AGILITY) * 3;
 m_attributes[DODGING] = GetAttr(AGILITY) * 3;
 m_attributes[DAMAGEABSORB] = GetAttr(STRENGTH) / 5;
 m_attributes[STRIKEDAMAGE] = GetAttr(STRENGTH) / 5;
 // make sure the hitpoints don't overflow if your max goes down:
 if(m_hitpoints > GetAttr(MAXHITPOINTS))
 m_hitpoints = GetAttr(MAXHITPOINTS);

 if(Weapon() != 0)
 AddDynamicBonuses(Weapon());
 if(Armor() != 0)
 AddDynamicBonuses(Armor());
}

Essentially the Train function uses the formulas I showed you in Chapter 7 to calculate the values of
six of your attributes. Pay attention to the last four lines of code, which call a helper called
AddDynamicBonuses; essentially this takes the bonuses of a player's current weapon and armor and
adds them to his stats. I haven't gone over player item functions yet, but this is simple enough to
understand.

This functionality is contained within a single function for a good reason. MUDs were designed to be
tinkered with, and as such, they should be designed with the utmost flexibility. Whenever you change
your strength, it's not a good practice to manually change the DAMAGEABSORB and STRIKEDAMAGE
attributes within the function that changed the strength; this can lead to errors. It is always better to
keep your formulas in one place throughout the entire game.

Also, you could end up later on making a certain core attribute affect another attribute, so it's good to
have one place in the code that can take care of all changes.

It is important to note that the three core attributes (strength, health, and agility) aren't affected by any
of the other six attributes, and don't have dynamic values. It is also important to note that six non-core
attributes do not affect other attributes either. If you do end up making the attributes affect each other,
you may end up introducing bugs into your code, depending on the order that your stats are
recalculated.

Hitpoint Functions

There are two functions dealing with hitpoints:

inline int HitPoints() { return m_hitpoints; }

void Player::AddHitpoints(int p_hitpoints) {
 m_hitpoints += p_hitpoints;
 if(m_hitpoints < 0)
 m_hitpoints = 0;
 if(m_hitpoints > GetAttr(MAXHITPOINTS))
 m_hitpoints = GetAttr(MAXHITPOINTS);
}

The HitPoints function is a simple nonmodifiable accessor, which simply returns the player's current
hitpoints.

The AddHitpoints function is an "adding" function. I decided that instead of a direct "Set value"
function, it would be easier to "add" to the value. For example, throughout the game, you're much
more likely to be adding deltas to a player's hitpoints. The following code depicts the "set" versus
"add" methods when adding 10 hitpoints to a player:

player.SetHitpoints(player.Hitpoints() + 10); // function doesn't exist
player.AddHitpoints(10); // much easier to use

Obviously, the "add" method is far more usable. By the way, if you want to subtract, you can easily
use a negative number in the parameters.

The modification function handles some extra work in addition to modifying the hitpoints. To keep the
game consistent, the modification function makes sure that your hitpoints never go below 0 or above
your maximum amount.

Attribute Functions

Four attribute functions operate on the nine attributes, which exist within AttributeSets. You've
already seen one attribute used in a few functions: GetAttr.

inline int Player::GetAttr(int p_attr) {
 int val = m_attributes[p_attr] + m_baseattributes[p_attr];
 if(p_attr == STRENGTH || p_attr == AGILITY || p_attr == HEALTH) {
 if(val < 1) return 1;
 }
 return val;
}

As you saw earlier in Figure 8.7, this function generally adds the dynamic and the base values of an
attribute together to obtain the final result. There is one special case that the function needs to look out
for, however. Officially, a character's core attributes should never fall below 1; the game has
undefined behavior if that happens. The problem is that some people may accidentally use a bunch of
"cursed" items that lower their base attributes below 1. So, to fix that, the "reported" value of any
negative core attribute will be 1, no matter what its "real" value is.

You can also obtain the value of just a base attribute:

inline int Player::GetBaseAttr(int p_attr) {
 return m_baseattributes[p_attr];
}

I haven't found a pressing need to have a function that retrieves the dynamic attribute values alone, but
if a need ever arises, you can simply subtract the base value from the total value.

The final two functions are called SetBaseAttr and AddToBaseAttr, which, as you can imagine, set
and add to any of your base attributes:

void Player::SetBaseAttr(int p_attr, int p_val) {
 m_baseattributes[p_attr] = p_val;
 RecalculateStats();
}
void Player::AddToBaseAttr(int p_attr, int p_val) {
 m_baseattributes[p_attr] += p_val;
 RecalculateStats();
}

Whenever one of your attributes is changed, these functions also automatically call RecalculateStats,
to update the dynamically calculated stats of your player.

Other Attribute Functions

The remaining four attribute functions are the StatPoints, Experience, CurrentRoom, and Money
functions. They return references so you can modify their values however you please.

Item Functions

There are several player functions that deal with items in your inventory. They range from simple

accessors to helper functions, and to functions that physically modify your inventory.

Accessors

There are five item accessor functions. The first three of those are simple:

inline item GetItem(int p_index) { return m_inventory[p_index]; }
inline int Items() { return m_items; }
inline int MaxItems() { return PLAYERITEMS; }

These functions return an item representing an item within your inventory, the number of items in your
inventory, and the maximum number of items you can have in your inventory.

The other two accessors retrieve items representing your current weapon and armor:

inline item Player::Weapon() {
 if(m_weapon == -1) // if no weapon armed
 return 0; // return 0
 else
 return m_inventory[m_weapon]; // return item id
}
inline item Player::Armor() {
 if(m_armor == -1) // if no armor armed
 return 0; // return 0
 else
 return m_inventory[m_armor]; // return item id
}

The Weapon and Armor functions actually return an item (a database pointer object), pointing to the
item that those variables represent. Obviously, if either of those variables is -1 (meaning that you
don't have a weapon or an armor equipped), the item returned is equivalent to 0, which is the invalid
ID for all entities.

Helpers

There are two item helper functions: one to add temporary item bonuses to a player, and one to add
permanent item bonuses to your base attributes. You've already seen the first one used:

void Player::AddDynamicBonuses(item p_item) {
 if(p_item == 0) // make sure item is valid
 return;
 Item& i = *p_item; // get reference
 for(int x = 0; x < NUMATTRIBUTES; x++)
 m_attributes[x] += i.GetAttr(x); // add each attr

}

The first function loops through every index in your m_attributes attribute set (the temporary set, not
the base set), and adds each attribute from the item. This function is only meant to be called from
within RecalculateStats.

The other function adds permanent bonuses:

void Player::AddBonuses(item p_item) {
 if(p_item == 0) // make sure item is valid first
 return;
 Item& itm = *p_item; // get ref to actual Item object
 for(int i = 0; i < NUMATTRIBUTES; i++) {
 m_baseattributes[i] += itm.GetAttr(i); // add each attribute
 }
 RecalculateStats();
}

This function calls RecalculateStats at the end, because you want to update everything after you've
modified the attributes.

Inventory Modification

Two functions deal with modifying a player's inventory by physically adding or removing items to or
from it. Since it's easier to add items than remove them, I'll show you the add function first:

bool Player::PickUpItem(item p_item) {
 if(m_items < MaxItems()) {
 item* itr = m_inventory;
 while(*itr != 0)
 ++itr;

The previous code segment finds the first place in the inventory with an open slot. Since the function
checks to make sure that you are carrying less than the maximum number of items, this loop should
always find an open slot. (If it doesn't, you're in deep trouble as it is, so this function wouldn't be able
to fix it anyway.) Here's the second half:

 *itr = p_item;
 m_items++;
 return true;
 }
 return false;
}

The item is inserted into your inventory, your item count goes up, and the function returns true. If
there is no room, then nothing is inserted, and false is returned.

The next function removes an item from your inventory; the difference is that instead of passing in an
item ID as the parameter, you're now passing the index of the item within your inventory array. So if
you want to remove the item at index 0 (no matter what item ID it has), you'd pass in 0.

bool Player::DropItem(int p_index) {
 if(m_inventory[p_index] != 0) {
 if(m_weapon == p_index)
 RemoveWeapon();
 if(m_armor == p_index)
 RemoveArmor();
 m_inventory[p_index] = 0;
 m_items--;
 return true;
 }
 return false;
}

This function first checks to see if 0 exists at the index you want to remove. If it does, you obviously
cannot remove it (since it doesn't exist!), so false is returned. If a valid item exists at that index,
however, the function continues.

If the item is either your current weapon or your current armor, it is removed from your person by
calling the RemoveWeapon() or RemoveArmor() functions. Then a 0 is inserted into your inventory, and
the number of items you are carrying is reduced.

Weapon and Armor Modification

You may recall from Chapter 7 that players can have a single weapon and a single piece of armor that
is armed, which means that the player is holding a specific weapon or wearing a specific piece of
armor. To deal with this, there are four functions; two of them disarm something, and two of them arm
something. Since it's easier to remove stuff, I'll show you one of the removal functions first:

void Player::RemoveWeapon() {
 m_weapon = -1;
 RecalculateStats();
}

The RecalculateStats helper function is called after a weapon has been removed, so that the player's

stats can be updated.

Arming an item is a little more difficult, because if an item is already armed, it must first be
disarmed:

void Player::UseWeapon(int p_index) {
 RemoveWeapon();
 m_weapon = p_index;
 RecalculateStats();
}

Again, the armor function is virtually identical, so I'm not going to paste it here.

Item Searching

At times within the game, you're going to need to search for items within a player's inventory based on
a string name. Instead of forcing you to manually perform this kind of lookup, I've included a function
that returns the index of an item that matches a name:

int Player::GetItemIndex(const std::string& p_name) {
 item* i = double_find_if(m_inventory,
 m_inventory + MaxItems(),
 matchentityfull(p_name),
 matchentity(p_name));
 if(i == m_inventory + MaxItems())
 return -1;
 return i - m_inventory;
}

You know, I really love this piece of code. It is incredibly beautiful. As you can see, m_inventory is
just a regular array of items (which are databasepointers), but the double_find_if algorithm still
works on it!

In any STL algorithm, a pointer to an array acts just like an iterator, so you can pass m_inventory as
the starting iterator, and m_inventory + MaxItems() (which points to the address just past the end of
the array) as the ending iterator.

The function performs a double-pass search on your inventory array, first trying to fully match the
name, and then to partially match it. If there was no match, the function returns a pointer to the item
inside the array that matches the name, or m_inventory + MaxItems(). If there was no match, -1 is
returned, indicating that nothing was found inside the inventory.

Finally, if an item was found, a little bit of pointer math is used: i - m_inventory. Since both values

are pointers, the difference between those two pointers is the number of indexes between them. So the
function returns the index of an item within the inventory, matching your string.

Constructor

Like all good classes, the Player class has a constructor. This clears the variables inside of the class
to values that represent a brand new player. Here's the code:

Player::Player() {
 m_pass = "UNDEFINED";
 m_rank = REGULAR;
 m_connection = 0;
 m_loggedin = false;
 m_active = false;
 m_newbie = true;
 m_experience = 0;
 m_level = 1;
 m_room = 0;
 m_money = 0;
 m_baseattributes[STRENGTH] = 1;
 m_baseattributes[HEALTH] = 1;
 m_baseattributes[AGILITY] = 1;
 m_statpoints = 18;
 m_items = 0;
 m_weapon = -1;
 m_armor = -1;
 RecalculateStats();
 m_hitpoints = GetAttr(MAXHITPOINTS);
}

As per Chapter 7, all three of your core stats start at 1, and the number of stat points you have is set to
18. Once all the core and base stats are set, all your other stats are set using the RecalculateStats()
helper function.

The final step is to set your current hitpoints equal to your maximum hitpoints.

Communication

Obviously, since every connection in the game is tied to a player, and every player has a connection
pointer, the Player class is going to be in charge of how the game communicates information back to
the clients. For the Player class to be in charge, every player has a function named SendString, which
sends a string of text to the player:

void Player::SendString(const std::string& p_string) {
 // make sure the player is connected:
 if(Conn() == 0) {
 ERRORLOG.Log("Trying to send string to player " +

 Name() + " but player is not connected.");
 return;
 }
 // send the string plus a newline:
 Conn()->Protocol().SendString(*Conn(), p_string + newline);
 // send the statbar if the player is active:
 if(Active()) { PrintStatbar(); }
}

This is just a simple function that helps manage what is sent to a player's connection. If a string is
accidentally sent to a player who isn't connected, that event logs an error in the error log and returns
without doing anything. Stuff like that shouldn't happen, but if it does, you don't want your program to
unexpectedly crash and potentially lose data.

If the connection is active, the function uses its current Telnet protocol object to send the string to the
user. It also tacks on a newline at the end.

Finally, if the player is active within the game, his status bar is also printed out to the connection, so
that the player can see his vital stats whenever something happens in the game.

The status bar function is simple, but it is somewhat long; for that reason, I am going to refrain from
showing it here. All you need to know is that the status bar function prints out the status of the player
in a [current hitpoints/max hitpoints] format.

Functors

There are three player functors. Two of these are predicates, just like the matchentity and
matchentityfull functors you saw earlier, and one is a unary function.

The two predicate player functors determine if a player is active or logged in. Here's the active
functor:

struct playeractive {
 inline bool operator() (Player& p_player) {
 return p_player.Active();
 }
 inline bool operator() (Player* p_player) {
 return p_player != 0 && p_player->Active();
 }
};

As you can see, the active functor is structurally similar to the previous two, so I'm not going to spend
any more time explaining it. The other predicate functor is playerloggedin, which simply checks if a

player is logged in.

Designed to be used in STL algorithms such as std::for_each, the third functor performs an operation
on every object in a collection:

struct playersend {
 const string& m_msg;
 playersend(const string& p_msg)
 : m_msg(p_msg) { /* do nothing */ }
 void operator() (Player& p) {
 p.SendString(m_msg);
 }
 void operator() (Player* p) {
 if(p != 0) { p->SendString(m_msg); }
 }
};

This functor simply sends a string to a player. Assuming you had an array of 16 players named
parray, you could use it like this:

std::for_each(parray, parray + 16, playersend("Hello!"));

File Functions

The final two functions load and save players to a specific file. Like the Item class, the Player class
knows how to read and write to streams.

friend ostream& operator<<(ostream& p_stream, const Player& p);
friend istream& operator>>(istream& p_stream, Player& p);

The functions are structurally similar to the Item functions performing the same task: The stream
insertion routine (operator<<) goes through every attribute, writes out its name in square brackets,
and then writes out its value. The stream extraction routine assumes that all the variables are in a
specific order, and ignores the attribute labels on each line.

Here's a sample of the insertion function:

inline ostream& operator<<(ostream& p_stream, const Player& p) {
 p_stream << "[NAME] " << p.m_name << "\n";
 p_stream << "[PASS] " << p.m_pass << "\n";

The function continues in the same manner for these variables, in this order: m_name, m_pass, m_rank,
m_statpoints, m_experience, m_level, m_room, m_money, m_hitpoints, m_nextattacktime, and
m_baseattributes. The attack time variable deserves special mention, because VC6 doesn't support
streaming 64-bit integers, so I need to use the BasicLib::insert function to insert the value:

 p_stream << "[NEXTATTACKTIME] "; insert(p_stream, p.m_nextattacktime);

After that, the inventory is written out, and this is a special exception:

 p_stream << "[INVENTORY] ";
 for(int i = 0; i < p.MaxItems(); i++) {
 p_stream << p.m_inventory[i].m_id << " ";
 }
 p_stream << "\n";

For the inventory, all 16 items are written on the same line, with a single space separating each one.
Remember: item database pointers know how to write themselves to streams. They write their ID
number. Once those are written, the final two attributes are written: m_weapon, and m_armor.

The stream extraction routine is similar. Here are a few lines to give you a taste:

inline istream& operator>>(istream& p_stream, Player& p) {
 std::string temp;
 p_stream >> temp >> std::ws; std::getline(p_stream, p.m_name);
 p_stream >> temp >> p.m_pass;
 p_stream >> temp >> temp; p.m_rank = GetRank(temp);
<SNIP>
 p_stream >> temp; extract(p_stream, p.m_nextattacktime);
 p_stream >> p.m_baseattributes;
 p_stream >> temp;
 p.m_items = 0;
 for(int i = 0; i < p.MaxItems(); i++) {
 p_stream >> p.m_inventory[i].m_id;
 if(p.m_inventory[i] != 0) { p.m_items++; }
 }
<SNIP>
 return p_stream;
}

I snipped out most of the uninteresting code and left the important parts. This code should remind you
of the Item class extraction code, but there's one important addition. When a player's items are
loaded, the function automatically counts how many items are in his inventory and updates its m_items
variable. This saves you the trouble of writing the value out to disk and possibly introducing bugs into
your program.

Player Function Listing

Table 8.6 shows a listing of all the Player class functions for easy reference.

Table 8.6. Player Functions

Function Purpose

Player() Constructs a new player.

int NeedForLevel(int level) Calculates the experience total needed for 'level'.

int NeedForNextLevel() Calculates how much more experience a player needs for the next level.

bool Train() If a player has enough experience, this takes him to the next level and recalculates his stats. If not, false
is returned.

int Level() Returns a player's level.

void RecalculateStats() Recalculates a player's stats.

void AddHitpoints(int h) Adds 'h' to a player's hitpoints, but doesn't exceed the player's max hitpoints, or below 0.

int HitPoints() Returns a player's current hitpoints.

int GetAttr(int attr) Returns the full value of a player's attribute 'attr'.

int GetBaseAttr(int attr) Returns the base value of a player's attribute 'attr'.

void SetBaseAttr(int attr, int val) Sets the base value of 'attr' and recalculates stats.

void AddToBaseAttr(int attr, int
val) Adds 'val' to base value of 'attr' and recalculates stats.

int& StatPoints() Returns the number of statpoints a player has.

int& Experience() Returns the experience of a player.

room& CurrentRoom() Returns a player's room number.

money& Money() Returns a player's money.

sint64& NextAttackTime() Returns the game time at which a player can next attack.

item GetItem(int index) Returns the ID of the item at 'index' in inventory.

int Items() Returns the number of items in inventory.

int MaxItems() Returns the number of items a player can hold at max.

item Weapon() Returns the ID of current weapon.

item Armor() Returns the ID of current armor.

void AddBonuses(item i) Adds item i's bonuses to a player's base attributes.

void RemoveBonuses(item i) Removes item i's bonuses from a player's base attributes.

bool PickUpItem(item i) Makes the player attempt to add an item to his inventory. Returns false on failure (not enough room).

bool DropItem(int index) Makes the player attempt to remove an item from his inventory. Returns false on failure (item doesn't
exist).

void RemoveWeapon() Removes the player's current weapon. (The weapon stays in inventory.)

void RemoveArmor() Removes the player's current armor. (The armor stays in inventory.)

void UseWeapon(int index) Attempts to use a weapon in a player's inventory.

void UseArmor(int index) Attempts to use armor in a player's inventory.

int GetItemIndex(string name) Attempts to find the index of the item with 'name'; returns -1 if not found.

string& Password() Returns a player's password.

playerRank& Rank() Returns a player's rank.

connection<Telnet>*& Conn() Returns a player's connection pointer.

bool& LoggedIn() Returns whether a player is logged in.

bool& Active() Returns whether a player is active.

bool& Newbie() Returns whether a player is a newbie.

void SendString(string str) Sends 'str' to a player's connection.

void PrintStatBar() Prints a player's statbar to a player's connection.

Disk Storage

Using text files to store data is a tricky task. The problem arises when you come across the fact that
text data is constantly changing in size. For example, let's assume that you have 500 players in your
game, all stored within one file, just as items are stored. One of the players who started at the
beginning of the game, number 10 or so, had a health of 8 when the file was saved. Then he went into
the game, played around a while, and gained three more health points, giving him 11. At that point, the
player wanted to quit, and his character was saved back to disk.

But you have a problem. The player's health is now 2 characters long instead of just 1, so you need
more room for that data. You're going to have to move everything after the player's position down one
byte, and doing that within a file is a ridiculously slow and awkward operation.

With binary files, you usually don't have that problem; you know exactly how much space each
number takes up, and you usually limit your strings to a certain length.

The most common solution for this problem is to use separate files for each player. That way,
whenever a player is saved to disk, the program can safely overwrite the entire file, without worrying
about affecting other files. This is the approach I'm taking. Players are stored within a subdirectory
named /players/, and every player file is named "name.plr". So, JohnDoe's file would be stored in
"/players/JohnDoe.plr".

Of course, it wouldn't be life without a little snag thrown in for good measure. The C++ standard
doesn't define a method to retrieve file names from a specific directory; it actually just assumes you
know what files you'll need. So you can't sort through the /players/ directory and pick out all .plr files
and load them. Instead, you need another file, which contains the names of the player files within the
directory. This file is also within the / players/ directory, and is called "players.txt". This file simply
contains a list of all player files to be loaded when the game starts up, like so:

JohnDoe.plr
RonPenton.plr

And so on. Figure 8.8 shows this in action, as well as the organization of the files within the /player/
directory of the SimpleMUD. Players' names are stored within a file named "players.txt", and the files
that store the players are named "player.plr", where "player" is the player's actual name.

Figure 8.8. The organization of the files within the /player/ directory of the

SimpleMUD.

Whenever a new player is added within the game, the software automatically appends the filename to
the end of the players.txt file. The only downside is that if you create your own players, you must
remember to add their file names to the text file, otherwise, the MUD has no idea that the players
exist. Creating your own players isn't recommended, but as the runner of the MUD, you're certainly
entitled to do so.

PlayerDatabase

The database that stores players is just like the database that stores items. The PlayerDatabase is a
child class of the EntityDatabase class and is stored in the PlayerDatabase.h and PlayerDatabase.cpp
files.

In addition to loading players, the PlayerDatabase must know how to save the players back to disk.

Class Declaration

Here's the class declaration:

class PlayerDatabase : public EntityDatabase<Player> {
public:
 static bool Load();
 static bool Save();
 static bool AddPlayer(Player& p_player);
 static inline string PlayerFileName(const string& p_name);
 static void LoadPlayer(string p_name);
 static void SavePlayer(entityid p_player);
 static entityid LastID();
 static iterator findactive(const std::string& p_name);

 static iterator findloggedin(const std::string& p_name);
 static void Logout(entityid p_player);
};

As you can see, the class adds no new data and has functions to load/save the entire database, and to
load/save individual players. Additionally, there's a function to add new players to the database, and
a whole bunch of helper functions as well.

Loading the Database

The LoadDatabase function basically loads the player's players.txt file and attempts to load every
player listed in the file. If the player already exists within the database, he is essentially overwritten.
Here's the code:

bool PlayerDatabase::Load() {
 ifstream file("players/players.txt");
 string name;
 while(file.good()) { // while there are players
 file >> name >> std::ws; // load in the player name
 LoadPlayer(name); // call the LoadPlayer helper function
 }
 return true;
}

The players.txt file is read in. Then the player file names are read into name one by one (with
whitespace "eaten" using std::ws), and loaded from disk into the database. This function uses the
LoadPlayer helper function, which takes a player's name and loads that player from disk.

It may seem awkward to need a helper function for that, but it has to do with the way I've set up player
file names. Examine the source code for the helper:

void PlayerDatabase::LoadPlayer(string p_name) {
 entityid id;
 string temp;
 p_name = PlayerFileName(p_name); // create the proper file name
 ifstream file(p_name.c_str()); // open the file
 file >> temp >> id; // load the ID
 m_map[id].ID() = id;
 file >> m_map[id] >> std::ws; // load the player from the file
 USERLOG.Log("Loaded Player: " + m_map[id].Name());
}

The C++ file stream classes cannot be constructed with an std::string as the file name. This is

probably because file streams were created before the string class was standardized, but that doesn't
matter: It creates a problem. File streams expect char*s for the file names, and you can't pass strings
into the constructors. In addition, strings cannot be automatically converted into char*s using
conversion operators. (Believe methat's a whole other can of worms.) You have two options: You
can use the antiquated C-style methods to create the proper file name, or you can accept this limitation
and create a helper function to handle the loading for you. I'll get to that in a bit.

Like the ItemDatabase class, the database is responsible for loading the IDs and then loading in the
actual player.

I'm a huge fan of code flexibility, and the player file name helper-function helps quite a bit. Some
people may complain, "Ah, but there are 100 functions all over the place," but they've probably never
worked on projects requiring constant change. I'll show you exactly what I mean in a bit. This loader
function takes a player's name and loads that player in from disk into a Player object. You can spot
the flexibility in the code by looking at the PlayerFileName function, which is another helper:

inline string PlayerFileName(string& p_name) {
 return string("players/" + p_name + ".plr");
}

It's just a simple one-line function. "What the heck does that need a whole function for?" you may ask.
Consider this: Throughout the database class, you may need to construct the file name of a player from
his name. You could take the easy way out and put "players/" + name + ".plr" in about 20 places in
your code, or you could leave all the code that creates a file name in one central location. Imagine
your embarrassment if you accidentally spell the directory name "player/", leaving the 's' out. How
long would it take you to track that down or even to notice it in the first place? And what if, later on,
you want to change the directory name to something else? You'd need to search for every instance in
which you create a file name and change it. Blah! Too many bugs are created that way. Programming
is the art of trying to avoid doing work. Trust me.

At this point, you might be saying, "But too many function calls make the game slow!" That's possible
but unlikely. The function is inlined, which means that you're telling the compiler to optimize it sort of
like a macro. If you're not familiar with this stuff, I explain it in Appendix C, which is on the CD. The
bottom line is this: Your compiler is really smart, and will probably optimize the function better than
you could manually. Trust in your compiler!

Saving the Database

Saving the database is simple as well. The process opens up and destroys players.txt and then
rewrites all the names of the players into the database (just for safety's sake; you can never tell when
your files might get corrupted by accident). The process also saves every player to his own file.

bool PlayerDatabase::Save() {
 ofstream file("players/players.txt");
 iterator itr = begin();
 while(itr != end()) { // loop through every player
 file << itr->Name() << "\n"; // write the player's name
 SavePlayer(itr->ID()); // save the player
 ++itr; // go to the next player
 }
 return true;
}

NOTE

The function that saves the data base always returns true , because I didn't take the time to do
proper error checking here, in case you run out of disk space, or if any other unexpected error
occurs. In a more robust system, it's advisable to check if there were any errors, and take
appropriate action based on

There's nothing too special about the function; it simply uses the internal iterator class to loop through
every player in the database.

Saving a Single Player

Saving a single player to disk requires only an ID:

void PlayerDatabase::SavePlayer(entityid p_player) {
 std::map<entityid, Player>::iterator itr = m_map.find(p_player);
 if(itr == m_map.end()) return;
 std::string name = PlayerFileName(itr->second.Name());
 ofstream file(name.c_str());
 file << "[ID] " << p_player << "\n";
 file << itr->second;
}

If you're trying to save a player who doesn't exist to disk, the function can fail. Other than that, you're
pretty much homefree. The function makes sure to write out the ID of a player before writing out the
actual player.

Adding New Players

Whenever a new player logs into the MUD, the game needs to be able to add new players to the

database. Since the player database is very closely linked with the representation of players on your
hard drive, the function to add new players should take steps to ensure that all relevant information
about the player is written to disk immediately.

So whenever a new player is added to the database, his file name is added to players.txt, and the
initial state of the player is written out to disk. The function also has a few precautionary measures to
make sure players aren't duplicated. Here's the code:

bool PlayerDatabase::AddPlayer(Player& p_player) {
 if(Has(p_player.ID())) // make sure ID doesn't exist
 return false;
 if(HasFullName(p_player.Name())) // make sure name doesn't exist
 return false;
 m_map[p_player.ID()] = p_player; // insert player into database
 std::ofstream file("players/players.txt", std::ios::app);
 file << p_player.Name() << "\n"; // add player's name to file
 SavePlayer(p_player.Name(), p_player); // write player to disk
 return true;
}

As you can see from the code, the game checks to see if a player's ID or name already exists within
the database. If either of them already exists, the function fails, and the player isn't added.

If both of the tests succeed, the player is added into the database, and players.txt is opened in
"append" mode, which preserves the contents and allows you to write to the end of the file. The name
of the player's datafile is written to the player's .txt file, and finally the player is saved to his own .plr
file.

Searching the Database

Two functions search the database for a playerthe findactive and findloggedin functions which
search the database for players who are active or logged in. These functions are pretty simple,
actually, because of the functors I defined earlier in conjunction with the double_find_if algorithm I
defined in the BasicLib. Here's the code:

static iterator findactive(const std::string& p_name) {
 return BasicLib::double_find_if(
 begin(), end(), matchentityfull(p_name),
 matchentity(p_name), playeractive());
}
static iterator findloggedin(const std::string& p_name) {
 return BasicLib::double_find_if(
 begin(), end(), matchentityfull(p_name),
 matchentity(p_name), playerloggedin());
}

These two functions utilize the 5-parameter version of double_find_if, which takes 2 iterators and 3
predicate functors. In the 4-parameter version, only 2 functors are used one for the first pass and one
for the second pass. The 5-parameter version uses the first functor (matchentityfull) on the first pass
in conjunction with the third functor (playeractive or playerloggedin), and then uses the second
functor for the second pass, again in conjunction with the third functor.

When the findactive function performs the first pass, it checks to see if the name matches fully and if
the player is active. If neither of those conditions is true, the algorithm keeps searching. The end result
is that the findactive function finds a player who matches the given name and is also active. The
findloggedin function does the same for logged in players.

Logging Out

The player database class also has a function that performs all the operations that are needed to
successfully log a player out of the game:

void PlayerDatabase::Logout(entityid p_player) {
 Player& p = get(p_player);
 USERLOG.Log(
 SocketLib::GetIPString(p.Conn()->GetRemoteAddress()) +
 " - User " + p.Name() + " logged off.");
 p.Conn() = 0;
 p.LoggedIn() = false;
 p.Active() = false;
 SavePlayer(p_player);
}

The user log is told that the player is logging out, the connection is cleared, and both the logged in and
active Booleans are cleared. The final act is to save the player to disk. It's always a good idea to
frequently save players to disk in case of disaster.

Database Pointers

There is one final aspect of the player database that I have not yet covered: the database pointers.
Since I covered the concepts of such structures earlier, there is no need to go into detail about them
again. Here are the player macro definitions:

// in DatabasePointer.h:
DATABASEPOINTER(player, Player)
// in DatabasePointer.cpp:
DATABASEPOINTERIMPL(player, Player, PlayerDatabase)

This code simply allows you to use the player datatype like a pointer into the player database. As
with the item and Item classes, pay attention to the capitalization.

Handler Design

The SimpleMUD has several connection handlers. Almost all of them are going to be related to using
the player and the player database classes, so you'll need to have a firm understanding of the general
design. Within this chapter, there is a section on each handler that will be used. Some of the handlers
are outlined in this chapter and then fleshed out later in the book.

There are three handlers within the game: a logon handler, a game handler, and a training handler.

Logon Handler

First, when you log into the game, you'll be prompted with the logon handler, which is similar in
purpose to the logon handler found in SimpleChat from Chapter 6. This time the handler has more
responsibility, since it needs to support more options.

First and foremost, the logon handler has to accept two types of users: new users and existing users.
For existing users, it needs to check passwords and check to see if the user is already logged in
before it can let a connection into the game. For new users, it needs to validate usernames and
passwords and add them to the database.

It's always a good idea to be able to picture a process, so I've drawn a flowchart of the logon handler
functions in Figure 8.9.

Figure 8.9. Flowchart of the logon handler functions.

From Figure 8.9, you can see that the logon handler starts off by asking the player his name. At that
point, the player has two options: entering "new" to indicate that he's a new player, or entering his
existing username. If the player enters anything but "new", and what he entered into the handler doesn't
exist within the player database as an existing name, that is considered an invalid response, and the
state remains the same.

New users are prompted to enter their desired names and are notified if those names already exist. If
the names don't exist, the users are prompted for their desired passwords; when the users enter their
passwords, they are taken to the training handler, where they modify their stats.

Existing users are prompted for their passwords; when they enter the appropriate password, they are
taken to the game.

Note that whenever five invalid responses are received by the logon handler, it automatically
disconnects the player.

Logon States

A connection that is logging on can be in four different states at any given time. These four states are
represented by the four solid boxes within Figure 8.9:

enum LogonState {
 NEWCONNECTION, // first state
 NEWUSER, // new user; enter desired name
 ENTERNEWPASS, // new user; enter desired password
 ENTERPASS // existing user; enter password
};

Logon Data

The SimpleMUD: Logon class has several pieces of data attached to it:

class Logon : public Telnet::handler {
protected:
 LogonState m_state;
 int m_errors; // how many times has an invalid answer been entered?
 string m_name; // name
 string m_pass; // password
};

Every logon handler stores the state, the number of errors a connection has made, and the name and
password that the connection has entered.

Logon Functions

Here is a listing of all the functions that a logon handler has:

void Enter();
void Leave();
void Hungup();
void Flooded();
static void NoRoom(Connection<Telnet>& p_connection);
void Handle(string p_data);
void GotoGame(bool p_newbie = false);
static bool AcceptableName(const string& p_name);
Logon(Connection<Telnet>& p_conn);

The first six function names should be familiar to you, because they are the standard handler functions
inherited from the Telnet::handler class to handle events from a ConnectionManager.

The GotoGame function converts a connection from the logon handler to the SimpleMUD::Game handler,
and the AcceptableName function determines if a username is acceptable. The last function is a
constructor.

Hanging Up, Flooding, and No Room

I'd like to cover the simpler functions first, if I may. Essentially, the logon handler does not care too
much if a connection floods or hangs up; the connection manager automatically disconnects that
connection when those situations occur, and the logon handler doesn't really need to do anything
special.

Nevertheless, it always helps to keep a log of what is happening on your server, so those two
functions record the events in the user log:

void Hungup() {
 USERLOG.Log(
 SocketLib::GetIPString(m_connection->GetRemoteAddress()) +
 " - hung up in login state.");
};
void Flooded() {
 USERLOG.Log(
 SocketLib::GetIPString(m_connection->GetRemoteAddress()) +
 " - flooded in login state.");
};

These functions retrieve the IP address of the offending connection and write that information to the
user log.

When there's no more room left, a message needs to be sent to the connection trying to join:

static void NoRoom(Connection<Telnet>& p_connection) {
 static string msg = "Sorry, there is no more room on this server.\r\n";
 try {
 p_connection.Send(msg.c_str(), (int)msg.size());
 }
 catch(SocketLib::Exception) {
 // do nothing here; probably an exploiter if sending that data
 // causes an exception.
 }
}

The function must physically send the data to the socket using the Connection::Send function instead
of queuing it up using Connection::BufferData, since I can't rely on the ConnectionManager to send
queued data. (The connection isn't managed by the connection manager; it is immediately discarded
and closed.)

Since I am calling Connection::Send here, there is a remote possibility of an exception being thrown,
so I need to be ready for that, too. Because the connection is closing anyway, the catch block simply
catches the exception and ignores it.

Leaving and Entering

Whenever connections leave or enter this state, the Leave and Enter functions are called. Luckily, the
logon handler doesn't have to clean up after any connections when they leave (since they haven't been
added to the game yet), so you can leave it as an empty function:

void Leave() {};

On the other hand, when connections enter the game, the logon handler needs to send it a welcoming
message:

void Enter() {
 USERLOG.Log(
 GetIPString(p_connection.GetRemoteAddress()) +
 " - new connection in login state.");
 p_connection.Protocol().SendString(p_connection,
 red + bold + "Welcome To SimpleMUD v1.0\r\n" +
 "Please enter your name, or \"new\" if you are new: " + reset);
}

It's not an imaginative welcome message, but it works. A more flexible method of displaying a
welcome message is to load a message from a text file on the server, and print that, but that's just a
special feature that's not essential to the game. Feel free to implement it if you wish.

NOTE

A more advanced MUD would put IP-address detection into the con nection process, so one
person couldn't flood your MUD with connections.

Handling Commands

Remember what I showed you in Chapters 5 and 6: whenever a full command is received by a
protocol policy object, it passes the command onto the connection's current handler. The
Logon::Handle function is called whenever a connection is using the Logon class as its current
handler.

Essentially, this function performs the actions that I described earlier and illustrated within Figure
8.9. Since it's a relatively large function, I'm going to break it up into a few chunks, to describe it
better. Here's the first part (p_data is the string that the user typed in):

void Logon::Handle(string p_data) {
 if(m_errors == 5) {
 m_connection->Protocol().SendString(*m_connection, red + bold +
 "Too many incorrect responses, closing connection..." +
 newline);
 m_connection->Close();
 return;
 }

The previous section of code detects if five errors have occurred in the login process, and if so, the
connection is informed of this and closed. This prevents people from endlessly trying passwords,
trying to break into an account.

The next part of the code handles brand new connections:

 if(m_state == NEWCONNECTION) {
 if(BasicLib::LowerCase(p_data) == "new") {
 m_state = NEWUSER;
 m_connection->Protocol().SendString(*m_connection, yellow +
 "Please enter your desired name: " + reset);
 }

If the user enters "new" as the name, the state of the logon immediately moves to the NEWUSER state,
and the user is asked to enter his desired username. If the user enters anything other than "new", this
next piece of code is executed:

 else {
 PlayerDatabase::iterator itr = PlayerDatabase::findfull(p_data);
 if(itr == PlayerDatabase::end()) {
 m_errors++;
 m_connection->Protocol().SendString(*m_connection,
 red + bold + "Sorry, the user \"" + white + p_data + red +
 "\" does not exist.\r\n" +
 "Please enter your name, or \"new\" if you are new: " +
 reset);
 }

The player database is checked to see if any full names match the name the new user wants. I used a
full-name match so that people could have names that partially matched each other. If the name doesn't
exist, the user is told that he chose an invalid name, and the connection's error count goes up. If the
name already exists, however, the next piece of code is executed:

 else {
 m_state = ENTERPASS;
 m_name = p_data;

 m_pass = itr->Password();
 m_connection->Protocol().SendString(*m_connection,
 green + bold + "Welcome, " + white + p_data + red +
 newline + green + "Please enter your password: " +
 reset);
 }
 }
 return;
 }

The state changes to the state in which an existing user is prompted for his password, and the user's
name is recorded into the m_name string. Next, the player's password is retrieved and stored into the
m_pass string, and the user is prompted to enter his password.

The previous three code fragments should take care of every possible outcome whenever a new
connection makes an entry. Once the segment is complete, the function simply returns, because the
user's command has been handled.

The next segment takes care of new users:

 if(m_state == NEWUSER) {
 if(PlayerDatabase::hasfull(p_data)) {
 m_errors++;
 m_connection->Protocol().SendString(*m_connection,
 red + bold + "Sorry, the name \"" + white + p_data + red +
 "\" has already been taken." + newline + yellow +
 "Please enter your desired name: " + reset);
 }

First, the function checks to see if the database has the name that the player wants to use. If the name is
already in use, the player is told that the name has already been taken, and the error count is increased
again. If the name isn't taken, the function goes on to check if the name is acceptable:

 else {
 if(!AcceptibleName(p_data)) {
 m_errors++;
 m_connection->Protocol().SendString(*m_connection,
 red + bold + "Sorry, the name \"" + white + p_data + red +
 "\" is unacceptable." + newline + yellow +
 "Please enter your desired name: " + reset);
 }

If the name isn't acceptable, the error count is again increased, and the user is told that the name isn't
acceptable. (I haven't covered that function, but it is almost identical to the

UserDatabase::IsValidName function found in the SimpleChat demo, Demo 6.2 section in Chapter 6.)

Here is the final segment of code for the NEWUSER state:

 else {
 m_state = ENTERNEWPASS;
 m_name = p_data;
 m_connection->Protocol().SendString(*m_connection,
 green + "Please enter your desired password: " +
 reset);
 }
 }
 return;
 }

At this point, the user has entered a name that is both acceptable and new to the game, so the name is
recorded into the m_name string, and the user is asked to enter his desired password. After all of this,
the code block returns.

The next block of code handles new password commands:

 if(m_state == ENTERNEWPASS) {
 if(p_data.find_first_of(BasicLib::WHITESPACE) != string::npos) {
 m_errors++;
 m_connection->Protocol().SendString(*m_connection,
 red + bold + "INVALID PASSWORD!" +
 green + "Please enter your desired password: " +
 reset);
 return;
 }

The function performs a search on the desired password; if the function finds whitespace, the
password is rejected. This has to do with the fact that when passwords are read in by the player
database, the database assumes the password won't contain whitespace.

If the password is acceptable, the function continues:

 m_connection->Protocol().SendString(*m_connection,
 green + "Thank you! You are now entering the realm..." +
 newline);
 Player p;
 p.Name() = m_name;
 p.Password() = p_data;

The user is told that he is now entering the game, and a new Player object is created. The player's

name and password are recorded. And this is where the going gets a little tricky. First, before you can
insert the user into the database, you need to find him a valid ID. I've decided to use a simple method
to calculate the next available ID: find the highest ID in the database, and add 1. Of course, this opens
up a whole new can of worms, because the database might be empty.

To solve this problem, I first check to see if the database is empty, and if so, I assume that the first
user logging in has an ID of 1 and becomes the administrator of the MUD:

 if(PlayerDatabase::size() == 0) {
 p.Rank() = ADMIN;
 p.ID() = 1;
 }
 else {
 p.ID() = PlayerDatabase::LastID() + 1;
 }
 PlayerDatabase::AddPlayer(p);
 GotoGame(true);
 return;
 }

I haven't shown you the PlayerDatabase::LastID function at all, but it's so simple it doesn't really
need to be shown. This function retrieves an iterator to the last player in the database and returns its
ID.

Once the ID of the player is set, the player is added to the database, and the GotoGame function is
invoked with a parameter of true. The parameter signifies that this is a new character, and the handler
should set up the next state accordingly. I'll show you what this means when I cover the GotoGame
function.

The last block of code for this function checks an existing user's password. Remember that when the
player entered an existing username, the function looked up that user's password and stored it in the
m_pass string. Here's the code:

 if(m_state == ENTERPASS) {
 if(m_pass == p_data) {
 m_connection->Protocol().SendString(*m_connection,
 green + "Thank you! You are now entering the realm..." +
 newline);
 GotoGame();
 }

The code checks to see if the player's entry matches the password of the player he's trying to log in as.
If so, the player is told that he's entering, and the GotoGame function is called.

Here's the last part of the code that rejects an incorrect password:

 else {
 m_errors++;
 m_connection->Protocol().SendString(*m_connection,
 red + bold + "INVALID PASSWORD!" + newline +
 yellow + "Please enter your password: " +
 reset);
 }
 return;
 }
}

That pretty much sums up the logon command handler code.

GotoGame Function

There's only one more piece of code I want to show you before moving on to the training handler. The
GotoGame function prepares a connection to connect to the Game handler.

I told you earlier that the function takes a Boolean as a parameter, but it's optional. If you don't pass
anything in, the Boolean is assumed to be false. The parameter, when true, indicates that the
connection is a "newbie" to the game, and that this is the player's first time connecting. Here's the
function:

void Logon::GotoGame(bool p_newbie) {
{
 Player& p = *PlayerDatabase::findfull(m_name);
 if(p.LoggedIn()) {
 p.Conn()->Close();
 p.Conn()->Handler()->Hungup();
 p.Conn()->ClearHandlers();
 }

First, the connection retrieves a reference to the player. (It assumes that the lookup works,
considering that any code that calls this function should have already verified that the player exists.)
Next, the code checks to see if the player is already logged in. If so, it's probably because the
connection died, and the server didn't detect it yet; therefore, the server is told to close the connect
and then notify its current handler that the connection hung up. The code continues:

 p.Newbie() = p_newbie;
 p.Conn() = m_connection;
 p.Conn()->SwitchHandler(new Game(*p.Conn(), p.ID()));
}

The "newbie" state of the player is recorded from the parameter, the new connection is recorded into
the player's connection pointer, and the Logon handler is removed and swapped with a new Game
handler using the SwitchHandler function. This is a tricky thing to do, though, because when you
remove the handler from a connection, it is physically deleted, along with any member variables
within the handler. Why is this a concern? Because the function being executed belongs to the handler
that you just deleted! Therefore, if you access any member variables from this point on, you crash the
program. Because of this, whenever you change states, you need to make sure that the function
immediately exits and does not access members.

NOTE

Note that since GotoGame is called by another member function, the functions also need to make
sure they exit without accessing mem bers. You should notice that in the Handle function, the
function returns after every call to GotoGame .

Finally, the Game handler is set as the connection's new handler, and it's notified about the connection's
ID.

Training Handler

The next handler I'm going to cover is the simplest of the three SimpleMUD handlers the handler that
allows a player to assign his statpoints to his three core attributes (strength, health, and agility).

Class Skeleton

First, let me show you the class skeleton:

class Train : public Telnet::handler {
public:
 void Handle(string p_data);
 void Enter();
 void Leave();
 void Hungup();
 void Flooded();
 void PrintStats(bool p_clear = true);
 Train(Connection<Telnet>& p_conn, player p_player);
protected:
 player m_player;
};

Once again, you can see that the class inherits from the Telnet::handler class, which I showed you

back in Chapter 6, and the first four functions in this class are the same handler functions you've seen
several times before. The new function (besides the constructor) that this class defines is a helper
function. PrintStats prints out a players stats to the player's connection.

The constructor simply takes a reference to a connection, and a player database pointer object, which
it records into m_player, so I'm not going to show that function to you.

Leaving and Entering

Like the Logon handler, the Training handler doesn't need to clean up after connections when they
leave, so the Leave function is empty:

void Leave() {};

Whenever a connection enters the traning state, the handler needs to perform a little housekeeping.
Here's the code:

void Enter() {
 Player& p = *m_player; // retrieve the Player object
 p.Active() = false; // make the player "inactive"
 if(p.Newbie()) {
 p.SendString(magenta + bold +
 "Welcome to SimpleMUD, " + p.Name() + "!\r\n" +
 "You must train your character with your desired stats,\r\n" +
 "before you enter the realm.\r\n\r\n");
 p.Newbie() = false;
 }
 PrintStats(false);
}

The function retrieves the actual Player object and makes it inactive. Once that is done, the
connection checks to see if the player is a newbie, in which case it prints out a simple welcome
message, notifying the user that he needs to assign his 18 statpoints to the various core attributes, and
the newbie flag is cleared.

Finally, the function displays the player's stats, using false as the parameter for the PrintStats
function. (This means that it shouldn't clear the screen and wipe out the welcome message that was
just displayed to the player.)

Closing Connections

Of course, the handler also needs to be able to handle connections that accidentally close (due to

flooding, or hanging up). Both the Flooded and Hungup functions call the

PlayerDatabase::Logout function:
void Train::Hungup() {
 PlayerDatabase::Logout(m_player);
}
void Train::Flooded() {
 PlayerDatabase::Logout(m_player);
}

Handling Training Commands

Four commands are accepted when a character is in the training state: 1, 2, 3, and quit. The three
numbers represent three core attributes, with 1 being strength, 2 health, and 3 agility. Whenever a
player types quit, the handler removes itself from the connection's handler stack, and the connection
should return to the state in which it existed previously (the game state).

void Train::Handle(string p_data) {
 p_data = BasicLib::LowerCase(ParseWord(p_data, 0));
 Player& p = *m_player; // load the player object
 if(p_data == "quit") {
 PlayerDatabase::Save(p.ID()); // save player
 p.Conn()->RemoveHandler(); // remove the Training handler
 // tell the previous handler that it now has control again:
 p.Conn()->Handler()->NewConnection(*p.Conn());
 return;
 }

The previous code block is just the first half of the function. The string that the player typed in,
p_data, is first lowercased, and then the Player object representing the current player is retrieved. If
the player types quit, the player wants to exit the training mode, and go back to the game. Therefore,
the newly modified character is saved to disk, the training handler is removed, and the game handler
(or whatever handler was below the training handler on the connection's handler stack) is notified that
the connection has re-entered that state. Notice how the function immediately returns, since the
handler has been changed. I described the reasoning for this with the Logon handler previously.

 char n = p_data[0];
 if(n >= '1' && n <= '3') { // make sure number is 1, 2, or 3
 if(p.StatPoints() > 0) { // make sure user has points
 p.StatPoints()--; // subtract a point
 p.AddToBaseAttr(n - '1', 1); // add the point to a base attribute
 }
 }
 PrintStats(true); // print stats and clear screen
}

The last half of the code extracts the first letter of the player's command. If it's a valid command, the
letter should be 1, 2, or 3. The function checks to make sure that the first letter is 1, 2, or 3, and also
makes sure the user has some extra statpoints. If neither of those conditions occurs, the input is
ignored.

If the player entered a valid number and has extra statpoints left, the base attribute corresponding to
that number is incremented. The line that does this may be a little confusing however, so let me
explain it. In the Attribute enumeration I showed you earlier in this chapter, the strength, health, and
agility enumerations are given values of 0, 1, and 2. So when the user enters the character 1, and the
character 1 is subtracted from that value, you get the actual integer value 0, which is the value of the
strength enumeration. Likewise, 2 - 1 yields the actual integer 1, and 3 - 1 yields 2. That's it for this
function.

Printing Stats

The final function I want to show you is the PrintStats function:

void Train::PrintStats(bool p_clear) {
 Player& p = *m_player; // get player object
 if(p_clear) {
 p.SendString(clearscreen); // clear screen if needed
 }
 p.SendString(white + bold + // send stats
 "---------------------- Your Stats ----------------------\r\n" +
 dim +
 "Player: " + p.Name() + "\r\n" +
 "Level: " + tostring(p.Level()) + "\r\n" +
 "Stat Points Left: " + tostring(p.StatPoints()) + "\r\n" +
 "1) Strength: " + tostring(p.GetAttr(STRENGTH)) + "\r\n" +
 "2) Health: " + tostring(p.GetAttr(HEALTH)) + "\r\n" +
 "3) Agility: " + tostring(p.GetAttr(AGILITY)) + "\r\n" +
 bold +
 "--\r\n" +
 "Enter 1, 2, or 3 to add a stat point, or \"quit\" to go back: ");
}

The function retrieves a player from the database, clears the screen if requested to do so, and then
prints out the player's statistics, consisting of name, level, stat points remaining, and the three core
attributes.

Game Handler

The third and final handler, the Game handler, is the largest and most complex handler in the game.
This is the handler that reacts to every command that the user types.

The previous two handlersthe logon handler and the training handlerare complete. They don't need
features added later on in the game. The Game handler, however, will obviously be incomplete when
this chapter is finished. I haven't defined enemies, shops, or the entire map system yet, so things like
combat, commerce, and movement cannot be implemented.

Instead, the current incarnation of this handler implements all the features of the game that don't
require rooms, enemies, or shops.

Here is a list of all the user commands that will be implemented in this version of the game handler:

chat
experience
help
inventory
quit
remove
stats
time
use
whisper
who
kick
announce
changerank
reload items
shutdown

If you'll remember back from Chapter 7, everything above kick is available to everyone, everything
above announce is available to gods and higher, and every command is available to admins.

Game Data

Several pieces of data are associated to the game handlers. (I've removed the functions.)

class Game : public Telnet::handler {
protected:
 player m_player;
 string m_lastcommand;
 static BasicLib::Timer s_timer;
 static bool s_running;
};

The handler keeps a player database pointer so that it can look up a player's data whenever it needs
to. It also keeps a string, which tracks the last command the user entered. It's usually a good "user
interface" issue to allow a player to repeat his last command, so this helps.

The handler also has two static variables, which means they act like global variables inside of the
Game class. The s_timer keeps track of how long the game has been running, and the s_running
Boolean keeps track of whether the game is actually running. Setting the Boolean to false tells the
game that it has been shut down, and causes the program to exit.

Game Functions

The Game handler has quite a few functions dealing with all sorts of stuff, so I'm going to list them in
related categories. The first category is, of course, the standard handler functions:

void Handle(string p_data);
void Enter();
void Leave();
void Hungup();
void Flooded();

You've seen them all a few times before, so there's really no need to explain their purposes yet again.
The next group of functions sends text to different groups of players:

static void SendGlobal(const string& p_str);
static void SendGame(const string& p_str);
static void Announce(const string& p_announcement);
static void LogoutMessage(const string& p_reason);
void Whisper(string p_str, string p_player);

Four out of the five functions are static, which means that they can be called within any part of the
game without needing a Game object. SendGlobal is a function that sends a single string to any player
who is logged on, no matter what state he is in.

NOTE

When a connection is still in the Logon state, it hasn't actually logged on to a player yet, so the
SendGlobal function does not send text to connections within that state.

The SendGame function is similar, but instead of sending a string to every player who is logged in, it
limits the scope a little and sends a string to every player who is active within the game. Announce and

LogoutMessage are simple wrappers around SendGlobal and SendGame. They attach standard coloring
schemes and text to game announcements and logoff announcements, so that the game keeps a
consistent look and feel.

Finally, the Whisper function attempts to "whisper" some text from the current player to a player
named within the p_player parameter string.

The next functions deal with generating informational strings:

static string WhoList(const string& p_who);
static string PrintHelp(PlayerRank p_rank = REGULAR);
string PrintStats();
string PrintExperience();
string PrintInventory();

The first two strings are static, since they require no specific player information to be generated. The
who-list is a listing of everyone in the game, and the help-list generates a list of all the functions
available to any person who has been given a rank.

The stats, experience, and inventory listings all depend on a single player in the game, so those
obviously cannot be static.

And finally, here's the rest of the functions:

bool UseItem(const string& p_item);
bool RemoveItem(string p_item);
inline static BasicLib::Timer& GetTimer() { return s_timer; }
inline static bool& Running() { return s_running; }
Game(Connection<Telnet>& p_conn, player p_player);
inline static void Logout(player p_player);
void GotoTrain();

Those are functions to use an item ("arm" an item), remove an item ("disarm"), get the timer object,
get the running Boolean, construct the game handler, log a player out (this is a helper function), and
move a player into the training state (another helper function).

Handler Functions

Three out of the four handler functions are pretty simple; the only exception is the Handle function,
which is pretty large. I'll cover the simple handler functions first.

New Connections

If you'll recall the Logon handler, whenever a player successfully logs on in that handler, it switches
the state of the connection to the Game handler. When that happens, this function is called:

void Game::Enter() {
 USERLOG.Log(GetIPString(p_connection.GetRemoteAddress()) +
 " - User " + m_player->Name() +
 " entering Game state.");
 m_lastcommand = "";
 Player& p = *m_player;
 p.Active() = true;
 p.LoggedIn() = true;
 SendGame(bold + green + p.Name() + " has entered the realm.");
 if(p.Newbie())
 GotoTrain();
}

The function is fairly straightforward. The player log is updated to show that a player entered the
game state, the connection is recorded, and the last command string is cleared.

You should remember the "newbie" status from the Logon handler section of this chapter. If a player
logs in for the first time, that player has his "newbie" flag set, but it isn't set for a pre-existing player
who logs in. If a player is a newbie, he hasn't changed his stats and must be taken to the Train handler.
New players also have their room ID set to 1, which is the "main room" of the game.

If the player isn't a newbie, he's activated, and everyone in the game is told that he's joined.

Leaving the Handler

Of course, whenever the player leaves the game state, he needs to tell the game about it, so that's what
the Leave function takes care of:

void Game::Leave() {
 m_player->Active() = false;
 if(m_connection->Closed())
 PlayerDatabase::Logout(m_player);
}

This code deactivates the player, and checks to see if the connection has been closed. If it has been,
the player database is told to log the player out. Otherwise, it is assumed that the player is still logged
into the game (probably switching to the training state), and you don't want to log him off if that
happens. You should log a player off when the connection closes.

Closed Connections

Whenever a connection is unexpectedly closed, the game handler needs to take care of this

occurrence:

void Game::Hungup() {
 Player& p = *m_player;
 LogoutMessage(p.Name() + " has suddenly disappeared from the realm.");
}
void Game::Flooded() {
 Player& p = *m_player;
 LogoutMessage(p.Name() + " has been kicked out for flooding!");
}

Instead of just logging players off as the training handler does, the players within the game handler
notify everyone else within the game when they log out. Both of these functions utilize the
LogoutMessage helper function to notify everyone.

Handling Commands

By far, the largest function within the game handler is the Handle command. In a more complex MUD,
this kind of function would be more segmented, but this MUD is simple enough so that's not necessary.

I'm splitting up the function so that I can show you each command in detail, starting with the repeating
command:

void Game::Handle(string p_data) {
 Player& p = *m_player;
 if(p_data == "/") {
 p_data = m_lastcommand;
 }
 else {
 m_lastcommand = p_data;
 }
 string firstword = BasicLib::LowerCase(ParseWord(p_data, 0));

As usual, p_data is the string that contains the command that the player typed in.

The command to repeat the player's last command is simply a slash (/). If the command is a slash,
p_data is reassigned with the value of the m_lastcommand string. If the user typed in anything other
than a slash, the m_lastcommand is updated with the value of p_data.

The last part of the code fragment strips out the first word the player typed, makes the word
lowercased, and then stores it in a local variable named firstword. Now the function starts trying to
find out what command the player typed in:

 if(firstword == "chat" || firstword == ":") {
 string text = RemoveWord(p_data, 0);
 SendGame(white + bold + p.Name() + " chats: " + text);

 return;
 }

I've added a shortcut for players to use when they chat. Instead of being required to type "chat hello
everyone!", players can type a single colon instead of the whole word "chat". For example, a player
would type ": hello everyone!" instead. The function removes the command ("chat" or ":") from the
string and stores the rest of the string in text, and then sends that text out to everyone who is active in
the game, in the form of "Ron chats: hello every-one!". Since the command was successfully handled,
the function returns; there is no need to continue checking to see if the command needs to be handled.

The next four commands simply display status reports for the current player:

 if(firstword == "experience" || firstword == "exp") {
 p.SendString(PrintExperience());
 return;
 }
 if(firstword == "help" || firstword == "commands") {
 p.SendString(PrintHelp(p.Rank()));
 return;
 }
 if(firstword == "inventory" || firstword == "i") {
 p.SendString(PrintInventory());
 return;
 }
 if(firstword == "stats" || firstword == "st") {
 p.SendString(PrintStats());
 return;
 }

I'm pretty sure those commands are self-explanatory, so we'll move on:

 if(firstword == "quit") {
 m_connection->Close();
 LogoutMessage(p.Name() + " has left the realm.");
 Logout(p.ID());
 return;
 }

Closing connections is always a tricky business, simply because it's so difficult to keep track of
connections if they suddenly disappear. Remember that the Connection class simply sets a Boolean to
true whenever you close a connection, so that a ConnectionManager can later check and close the
connection when it does its housekeeping.

The realm is told that the player left, and the player is logged out, so there's nothing more for this

function to do.

Here are the two item functions:

 if(firstword == "remove") {
 RemoveItem(ParseWord(p_data, 1));
 return;
 }
 if(firstword == "use") {
 UseItem(RemoveWord(p_data, 0));
 return;
 }

The syntax for the remove command is relatively simple. You don't tell the game the name of the item
you want to disarm; instead, you tell the game remove armor or remove weapon. That makes life
simpler, really. That's why the function parses out word 1 (remember, remove is word 0), and passes
that into the RemoveItem helper function.

When a player uses an item, however, you need to type the name of the item you want to use, such as
use giant sword or whatever. That's why the use command strips out the word remove and passes the
rest of your string into the UseItem helper.

While not completely necessary for the game, I always find it extremely useful to have a time
function:

 if(firstword == "time") {
 p.SendString(bold + cyan +
 "The current system time is: " + BasicLib::TimeStamp() +
 " on " + BasicLib::DateStamp() +
 "\r\nThe system has been up for: "
 + s_timer.GetString() + ".");
 return;
 }

This function displays the current system time, and then it shows how long the server has been
running. I like to have functions like this so I can tell how long the server has been running. Admit it,
as a nerd, it's always fun to brag about how long your system has been online. Linux geeks especially
like to brag about this stuff, and frequently use this information to win arguments with Windows
nerds. As much as I love the newest versions of Windows, you have to admit, Linux stays up and
running much longer.

Next up is the "whisper" command, which allows a player to privately message another person in the
game, without everyone else hearing what he has to say. This can help when a player is planning some
nefarious scheme or another; here's the code:

 if(firstword == "whisper") {
 string name = ParseWord(p_data, 1);
 string message = RemoveWord(RemoveWord(p_data, 0), 0);
 Whisper(message, name);
 return;
 }

You use the command like this: "whisper ron Hello there!" The function strips out word 1 ("ron"),
which is the name of the player you are whispering to, and then it strips off the first two words
("whisper ron") and uses the rest of the string ("Hello there!") as the message. Finally, it calls the
Whisper helper function.

The final regular-user command is the "who" command:

 if(firstword == "who") {
 p.SendString(WhoList(BasicLib::LowerCase(
 ParseWord(p_data, 1))));
 return;
 }

This function follows a process similar to other commands, by stripping off word 1. Then it
lowercases the second word, and sends it off to the WhoList function, which displays a list of people
in the realm to the player.

There's a reason why this command has a parameter: You can choose which people are included in
the list. By default, if there is no parameter, the result of WhoList is just the return of a list of everyone
who is currently logged in. If you use the parameter of all, however, such as who all, the function
returns a list of everyone in the entire game, even those who aren't logged in.

Now, here is the "kick" god-command, which physically kicks people out of the game:

 if(firstword == "kick" && p.Rank() >= GOD) {
 PlayerDatabase::iterator itr =
 PlayerDatabase::findloggedin(ParseWord(p_data, 1));
 if(itr == PlayerDatabase::end()) {
 p.SendString(red + bold + "Player could not be found.");
 return;
 }
 if(itr->Rank() > p.Rank()) {
 p.SendString(red + bold + "You can't kick that player!");
 return;
 }
 itr->Conn()->Close();
 LogoutMessage(itr->Name() + " has been kicked by " +
 p.Name() + "!!!");
 PlayerDatabase::Logout(itr->ID());
 return;

 }

The function first searches for someone who is also logged in to kick. You can't kick people who
aren't logged in, of course. If no person is found, the kicker is informed.

If a person is found, the game compares ranks; a person can only kick a person whose rank is lower.
In SimpleMUD, this means that gods cannot kick admins, since the rank of admins is higher. It's "chain
of command" type stuff.

Finally, the connection for the kickee is closed, the realm is notified that the player was kicked out,
and the database is also told about it.

The last four commands are administrator-only commands, meaning that only people with a rank of
ADMIN can execute them. The "announce" command sends an announcement to everyone in the game
(even people in the Train handler):

 if(firstword == "announce" && p.Rank() >= ADMIN) {
 Announce(RemoveWord(p_data, 0));
 return;
 }

This simply removes the first word "announce" from the string, and sends it off to the Announce helper
function.

Here is the command to change a player's rank:

 if(firstword == "changerank" && p.Rank() >= ADMIN) {
 string name = ParseWord(p_data, 1);
 PlayerDatabase::iterator itr = PlayerDatabase::find(name);
 if(itr == PlayerDatabase::end()) {
 p.SendString(red + bold + "Error: Could not find user " +
 name);
 return;
 }
 PlayerRank rank = GetRank(ParseWord(p_data, 2));
 itr->Rank() = rank;
 SendGame(green + bold + itr->Name() +
 "'s rank has been changed to: " +
 GetRankString(rank));
 return;
 }

This function finds a player with the name you requested and changes his rank; the player doesn't even
have to be online. Everyone in the game is made aware of the rank changing as well.

The next command allows you to reload the item database:

 if(firstword == "reload" && p.Rank() >= ADMIN) {
 string db = BasicLib::LowerCase(ParseWord(p_data, 1));
 if(db == "items") {
 ItemDatabase::Load();
 p.SendString(bold + cyan + "Item Database Reloaded!");
 }

If the user wants the item database to be reloaded, he needs to type in "reload items", and this
immediately causes the item database to be reloaded. Reloading the player database isn't currently
possible with the version of the MUD described in this chapter, but this functionality will be added in
the next chapter.

The last command allows an administrator to remotely shut the server down. Because of this
command, it is wise to entrust administrator access only to responsible people, so that they don't end
up shutting down the MUD as a prank:

 if(firstword == "shutdown" && p.Rank() >= ADMIN) {
 Announce("SYSTEM IS SHUTTING DOWN");
 Game::Running() = false;
 return;
 }

All that needs to be done is setting the Game::s_running Boolean to false (through the Running()
accessor function), and the main game loop detects that setting and shuts the game down.

And finally, if the game doesn't recognize your command, it sends the text as a chat message:

 SendGame(bold + p.Name() + " chats: " + p_data);
}

This line of code only exists for the time being. In the next chapter, when I develop the map system,
all invalid commands are interpreted as "talking to everyone in the current room". Obviously, since
there's no map system yet, I can't have that functionality.

Sending Functions

As you have seen before, five different "sending" functions are defined within the Game class. They
are all pretty simple, so I'm not going to launch into a huge lecture about them; rather, I'll go over them
somewhat quickly.

Sending to the Game and Sending Globally

The functions SendGame and SendGlobal send strings to every connection that is active or logged in,
respectively. For example:

void Game::SendGlobal(const string& p_str) {
 operate_on_if(PlayerDatabase::begin(),
 PlayerDatabase::end(),
 playersend(p_str),
 playerloggedin());
}

This calls my special operate_on_if algorithm from the BasicLib. Essentially, operate_on_if acts
like the std::for_each algorithm, except that instead of using the playersend functor on every value
in the collection, it applies playersend only to players who pass the playerloggedin testing functor.
(I showed this functor to you when I was showing you the Player class.) Essentially what this means
is that it loops through every player in the database and sends the string to everyone who is logged on.

The SendGame function is virtually identical; the only difference is that instead of the playerloggedin
functor, it uses the playeractive functor to send stuff only to active players, not to inactive players.

Helpers

There are two helper functions that help send strings; I've mentioned them before:

void Game::LogoutMessage(const string& p_reason) {
 SendGame(SocketLib::red + SocketLib::bold + p_reason);
}
void Game::Announce(const string& p_announcement) {
 SendGlobal(SocketLib::cyan + SocketLib::bold +
 "System Announcement: " + p_announcement);
}

As I've said before, these functions exist to provide a certain look and feel to the game, because many
different places within the code may be making announcements or saying that someone has logged off,
and you want these messages to look consistent throughout the game.

Whispering

Whispering from one person to another requires a little bit more work than the other communication
methods. First, the game needs to find the person you're whispering to, and then tell that person what
you said, as well as telling yourself what you said to that player:

void Game::Whisper(std::string p_str, std::string p_player) {
 PlayerDatabase::iterator itr = PlayerDatabase::findactive(p_player);

 if(itr == PlayerDatabase::end()) {
 m_player->SendString(red + bold + "Error, cannot find user.");
 }
 else {
 itr->SendString(yellow + m_player->Name() + " whispers to you: " +
 reset + p_str);
 m_player->SendString(yellow + "You whisper to " + itr->Name() +
 ": " + reset + p_str);
 }
}

If the player isn't found, an error string is printed. But if the player is found, the message is sent to
both the player and yourself, albeit in slightly different forms for each. If you type whisper bob
hello!, he'll see Ron whispers to you: hello!, and you'll see You whisper to bob: hello!.

Status Printers

I am really running short on space about now, and I'm sure you're getting tired of seeing all this code
as well. Therefore, I'll skip showing you the status printing code, since it is essentially just a big mess
of formatted text-printing functions.

There is one note I'd like to make however, which is about the WhoList printer. To get a configurable
function that would optionally print only players who are online, or all players in the database, I
decided to use the operate_on_if algorithm and create a wholist functor (notice the lack of capitals),
which prints out the "wholist entry" line for a single player.

Here's part of the code for the WhoList function:

wholist who;
who = BasicLib::operate_on_if(
 PlayerDatabase::begin(),
 PlayerDatabase::end(),
 wholist(),
 playerloggedin());

The operate_on_if algorithm returns the "operation functor" that you passed into it, because in this
case, the wholist functor keeps track of a string of who-list entries. Every time wholist finds a player
who is logged in, it creates an entry for that player and adds that string to the end of its str member
variable, so when the function returns, you can get a string representing every entry in the list
generated from the function. As you can see, the operation of the operate_on_if algorithm combined
the wholist functor on a collection of players. The entry of every player who is online is calculated
and added to the wholist's str, which is a string. Of course, the entries consist of more than just the
player's name, but for simplicity's sake, that's all I show here.

Figure 8.10 shows a loose representation of what occurs.

Figure 8.10. Every time wholist finds a player who is logged in, it creates an entry for
that player and adds that string to the end of its str member variable.

Figure 8.11 shows a sample who-listing screenshot.

Figure 8.11. In this sample who-listing, each entry consists of a player's name, level,
online activity, and ranking.

Item Functions

The final functions I'm going to cover here are the two item functions, which arm/use or disarm items
in a player's inventory.

Using an Item

You can use the use command on all three types of items, and the behavior of the function differs
depending on the type. Let me show you the code first:

bool Game::UseItem(const std::string& p_item) {
 Player& p = *m_player;
 int i = p.GetItemIndex(p_item);
 if(i == -1) {
 p.SendString(red + bold + "Could not find that item!");
 return false;
 }

The previous code segment attempts to retrieve the index of the item the player is requesting for use.
If none is found, the function tells the player so and returns.

 Item& itm = *p.GetItem(i);
 switch(itm.Type()) {
 case WEAPON:
 p.UseWeapon(i);
 return true;
 case ARMOR:
 p.UseArmor(i);
 return true;

Once the item is found, it is retrieved from the item database, and the function performs a switch on
the type of the item. Armor and weapons are similar; they each call the player's UseWeapon or
UseArmor functions. Nothing is printed out to the user at this time; this functionality is implemented in
the next chapter.

 case HEALING:
 p.AddBonuses(itm.ID());
 p.AddHitpoints(BasicLib::RandomInt(itm.Min(), itm.Max()));
 p.DropItem(i);
 return true;
 }
 return false;
}

In the case of a healing item, however, the bonuses of that item are added to the player's stats, the
hitpoints that the item heals are calculated using the BasicLib::RandomInt function and added to the
player, and then the function calls the Player::DropItem on the item you just used. If you remember,
the DropItem removes an item from a player's inventory. Once you use a healing item, it simply
disappears, to prevent you from using it over and over again.

Disarming an Item

And finally, a player can disarm his weapon or his armor:

bool Game::RemoveItem(std::string p_item) {
 Player& p = *m_player;
 p_item = BasicLib::LowerCase(p_item);
 if(p_item == "weapon" && p.Weapon() != 0) {
 p.RemoveWeapon();
 return true;
 }
 if(p_item == "armor" && p.Armor() != 0) {
 p.RemoveArmor();
 return true;
 }
 p.SendString(red + bold + "Could not Remove item!");
 return false;
}

Depending on whether the player types weapon or armor, the player's weapon or armor is removed,
but only if the player has a weapon or piece of armor that is armed in the first place. If a player has
nothing armed, an error is printed to the player.

Helpers

There is one helper function, whose main purpose is to put a player into the training state:

void Game::GotoTrain() {
 Player& p = *m_player;
 p.Active() = false;
 p.Conn()->AddHandler(new Train(p.ID()));
 LogoutMessage(p.Name() + " leaves to edit stats");
}

It's a helpful function to use whenever a player needs to edit his stats.

Demo 8.1The SimpleMUD Baseline: The Core, Players, and
Items

Finally! At long last, you have reached (almost!) the end of this chapter. An incredible amount of code
was put into everything you've seen so far, so let me tell you something that will make you feel a lot
better.

The code for the Demo 8.1 main module is incredibly simple. Seriously. I've designed the rest of the
game and the entire framework leading up to it to make the code for actually running the game
incredibly simple.

You can find the code for the main module within the Demo08-01.cpp file in the /Demos/
Chapter08/Demo08-01/ directory on the CD.

Here goes nothing:

using namespace SocketLib;
using namespace SimpleMUD;
int main() {
 try {
 ItemDatabase::Load();
 PlayerDatabase::Load();
 ListeningManager<Telnet, Logon> lm;
 ConnectionManager<Telnet, Logon> cm(128, 60, 65536);

 lm.SetConnectionManager(&cm);
 lm.AddPort(5100);
 Game::GetTimer().Reset();
 Game::Running() = true;

 while(Game::Running()) {
 lm.Listen();
 cm.Manage();
 ThreadLib::YieldThread();
 } // end while
 } // end try

The item and the player databases are loaded, and both a logon manager and a connection manager
are created. The two managers are told to use the Logon class as their default handlers, and the
connection manager is set up to allow a flood limit of 128 bytes per second, a sending timeout limit of
60 seconds, and a sending buffer limit of 65,536 bytes, or 64 kilobytes.

Once those have been created, the listening manager is told about the connection manager, the
listening manager is told to listen on port 5100, the game timer is reset, and the game's running
Boolean is set to true.

After that, the loop starts, and it runs while the Game::Running Boolean continues to return true.
Inside the loop, the listening manager is told to listen for new connections, the connection manager is

told to manage its sending and receiving tasks, and the thread library yields the thread so that the
application doesn't suck up your entire CPU power.

That's it for the actual game logic.

Now, the entire thing is enclosed within a try block, so whenever an exception is thrown, you can
catch it:

 catch(SocketLib::Exception& e) { // catch socket exceptions
 ERRORLOG.Log("Fatal Socket Error: " + e.PrintError());
 }
 catch(ThreadLib::Exception&) { // catch thread exceptions
 ERRORLOG.Log("Fatal Thread Error");
 }
 catch(std::exception& e) { // catch standard exceptions
 ERRORLOG.Log("Standard Error: " + std::string(e.what()));
 }
 catch(...) { // catch other exceptions
 ERRORLOG.Log("Unspecified Error");
 }
 SimpleMUD::PlayerDatabase::Save(); // save the player database
}

Four types of exceptions can be thrown: socket, thread, standard, and miscellaneous. Technically,
miscellaneous exceptions should never be thrown, but when developing software on top of libraries,
you should be prepared for the unexpected. If a simple line of code or two can prevent that, you want
to prevent a random crash from wiping out minutes of changes to the database.

Each error type logs a message within the error log, so if the game crashes, you can get an idea of
what caused the crash, and then the player database is saved back out to disk.

That's all folks. Seriously.

Now that you've got a very basic "talker" server up and running, which is barely a MUD, it's a good
time to briefly discuss the overall design.

What you've got is a basic reactionary server. It doesn't do anything except listen for connections and
act on new commands from the existing connections. Figure 8.12 shows an example of what happens
when the listening manager is told to listen and a new connection logs on.

Figure 8.12. When a new connection joins the game, the SocketLib library handles
almost all the action.

Once a connection is logged on, whenever the connection sends data, the connection manager picks up
the data whenever its Manage command is invoked and follows a process somewhat like that shown in
Figure 8.13. Again, as you can see from the figure, almost all the messy low-level networking stuff is
handled by the SocketLib, so the SimpleMUD only really cares about actual game logic, which is the
way things should be. I can't tell you how many MUDs I've seen with the game logic inextricably and
directly entwined within the Sockets API, and those always end up as huge messes in the end.

Figure 8.13. Notice the route the process takes as it sends data from a connection to
the game and when the server responds.

And now for some screenshots! Once you've got the MUD up and running, just find your favorite
Telnet client, and telnet into your IP address on port 5100.

Figure 8.14 shows a screenshot of a sample stats printout, inventory listing, and experience printout.

Figure 8.14. Three status-printing functions.

Figure 8.15 shows a few inventory commands.

Figure 8.15. A person playing around with his inventory of items.

And finally, Figure 8.16 shows some speaking commands.

Figure 8.16. Various user-interaction commands in use.

Summary

I must apologize for the length of this chapter. The truth of the matter is that MUDs are extremely
complex games internally, and the only way you're going to get anything done is with tons of
designing, and tons of code.

Within this chapter, I've shown you some important concepts about entities within the game, and how
they are stored to disk. I've also shown you the three main connection handlers used within
SimpleMUD: the logon, training, and game handlers.

All these concepts will be built upon and improved within the next few chapters. For the next chapter,
I'll be covering the map system and the store system of SimpleMUD.

Chapter 9. Maps, Stores, and Training Rooms
In the previous chapter, I showed you the complete baseline for the SimpleMUD, which included
everything dealing with entities, databases, logs, items, players, and the three connection handlers.
Unfortunately, with all that code, you still don't have anything more than a glorified chat program.

This chapter takes the game to the next level, by adding the mapping system, as well as stores and
training rooms, which are special types of rooms.

In this chapter, you will learn how to:

Add a simple map system to the game

Add stores to the game

Add training rooms to the game

Implement the new commands dealing with maps, stores, and training rooms

Implement the new item getting-and-dropping commands

Adding New Features to the Baseline

I've added a bunch of new things to the game in this chapter: rooms, room databases, room database
pointers, stores, and store databases. Table 9.1 lists all the new components and where they are
stored within the /Demos/Chapter09/Demo09-01/SimpleMUD directory on the CD.

Table 9.1. New Component Files

Component Location

Room class Room.h and .cpp

RoomDatabase class RoomDatabase.h and .cpp

room database pointer class Pointers.h and .cpp

Store class Store.h and .cpp

StoreDatabase class StoreDatabase.h and .cpp

Rooms

The first order of business is the Room class. A Room, like almost every other object within the game, is
derived from an Entity. This means, of course, that rooms have names and IDs, but you don't
typically search through room names as you did in the previous chapter with players and items. Room
names simply describe the room to the player, so he can navigate around the MUD easily, always
having a general idea of where he is.

Room Data

Rooms have all the data described in Chapter 7, "Designing the SimpleMUD," and they store three
different groups of data.

Template Data

First, there is the "template" datadata that is loaded from disk, but never changes within the game:

RoomType m_type; // type of the room
int m_data; // storeid if it is a store
string m_description; // description of the room
entityid m_rooms[NUMDIRECTIONS]; // exits

enemytemplate m_spawnwhich; // which enemy to spawn
int m_maxenemies; // how many enemies max

Three new features need to be described at this point:

RoomTypeenumeration describing room function

NUMDIRECTIONSconstant. Number of exits per room

enemytemplatedatabase pointer for enemy templates

RoomType is a simple enumeration, much like the ItemType and PlayerRank enumerations in the
previous chapter. (They are found within the Attributes.h file.) The three values are PLAINROOM,
TRAININGROOM, and STORE, and these values obviously represent the three types of rooms. This design
means that rooms can serve only one purpose.

NUMDIRECTIONS can also be found in Attributes.h, and simply represents the number of directions a
player can move in any room. (Remember: for the SimpleMUD this is four.)

NOTE

This is a classic method of represent ing special rooms, and it works well in the SimpleMUD.
However, there may be a time when you need rooms to be more than one type (for example, a
room that serves both as a training room and a store). For that kind of implementation, you
should consider an alternative method of storing this information. One way would be to use
bitmasks, in which the first bit would represent whether the room is a store, the second bit
would repre sent whether it is a training room, and so on. The BetterMUD in this book takes a
completely different approach, as you'll see in Chapter 11, "The Better MUD."

Finally, the enemytemplate type is a databasepointer<EnemyTemplate, EnemyTemplateDatabase>.
Unfortunately, I don't go over those until the next chapter, so at the top of Room.h, I define it as a
simple entityid:

typedef entityid enemytemplate; // REMOVE THIS LATER

Volatile Data

Here's the next group of data:

list<item> m_items; // items in the room
money m_money; // money on the floor

Basically, this data is volatile. (It changes.) Whenever the game needs to save all the current rooms to
disk, there's no need to write all the template data I showed you previously, such as the room name
and description (since it never changes), so instead of writing out all a room's data, it needs to write
only the volatile data. I'll go into more detail on this when I cover room databases.

Because I mentioned in Chapter 7 that the capacity of a room is limited to 32 items, you may think that
it would be logical to use an array-like structure, such as a vector, to store the items. However,
vectors are problematic for two reasons. First, you'd need to keep one of these arrays per room,
which means that every room would have the capacity to store all 32 items all the time. Obviously,
you'll never even come close to having that many items lying around in the game, so this would waste
space. The second problem is that the continuous adding and removing of items are expensive vector
operations. In contrast, lists are quick for insertions and removals, so they actually work better in this
situation.

Temporary Volatile Data

Here's the final group of data:

list<player> m_players;
list<enemy> m_enemies;

These two lists store players and enemies (in the form of databasepointers, of course). You won't
see the enemy class until Chapter 10, "Enemies, Combat, and the Game Loop," but for now you can
assume that it's a databasepointer<Enemy, EnemyDatabase>.

However, the lists are never saved to disk (as items and money are). Keeping this information on disk
is redundant, since players and enemies already know the room they are in.

Imagine this scenario for a moment: You're editing the databases, and you change the room that a
player is in. The map databases track which players are in which rooms, though, which means that
you'll have to find the room within the room database and move that player's ID to the new room. This
is an incredibly inconvenient way of editing the databases, and it also wastes space by storing
redundant data.

Since players and enemies know which room they are in (on disk), when the players and enemies are
loaded, the game finds what rooms they exist in and inserts the entities into the appropriate rooms.

Then, depending on their identities, the players and enemies insert themselves into the m_players or
m_enemies lists.

Room Functions

Next I want to cover the functions that you can use on rooms. Many functions are fairly simple, but a
few are complex; I'll show you the simple functions first.

Accessors

As with most classes in this book, a bunch of simple accessor functions simply allow you to access
and modify room attributes. Here's a listing of the accessors:

inline RoomType& Type() { return m_type; }
inline int& Data() { return m_data; }
inline string& Description() { return m_description; }
inline entityid& Adjacent(int p_dir) { return m_rooms[p_dir]; }
inline enemytemplate& SpawnWhich() { return m_spawnwhich; }
inline int& MaxEnemies() { return m_maxenemies; }
inline list<item>& Items() { return m_items; }
inline money& Money() { return m_money; }
inline list<enemy>& Enemies() { return m_enemies; }
inline list<player>& Players() { return m_players; }

I don't really need to explain all those to you, do I? Make a special note of the Adjacent function,
however. The function returns the ID of the room adjacent to it in the given direction as an entityid.
Basically, you can call it like this:

Room r;
// *** do init stuff somewhere here ***
entityid south = r.Adjacent(SOUTH);

Of course, as with all aspects of entity IDs, the value 0 is invalid, so the return of zero from the
function means there is no exit in that direction. The enumeration values are defined in Attributes.h
as part of the Direction enumeration, and there are four values representing the four directions:
NORTH, EAST, SOUTH, and WEST.

Player Functions

The two player functions are somewhat simple. They allow you to add and remove players (based on
ID) to and from a room:

void Room::AddPlayer(player p_player) {
 m_players.push_back(p_player);
}

void Room::RemovePlayer(player p_player) {
 m_players.erase(std::find(m_players.begin(),
 m_players.end(),
 (entityid)p_player));
}

As you can see, it's simply wrapping STL code into easy-to-use functions. A new player is always
added to the back of the list. Players are removed using a combination of std::list::erase and
std::find. The findfunction is used to find a player within the list, compared to p_player. You may
have noticed, however, that p_player is explicitly converted to an entityid before it is used within
the find function. This is because database pointers don't know how to compare themselves with
other database pointers, but they do know how to compare themselves to entityids.

NOTE

I used lists to store the players in a room here, but you should feel free to use whatever you
want. Lists are helpful because they are resizable, and keep things in order. In the BetterMUD,
you'll see that I didn't have much use for keeping players in order, so I opted to use sets instead.

NOTE

Ambiguity Errors

The lack of an operator== to compare two database pointers with each other is intentional. In
addition, there is no operator== function that compares entityids either, but to the compiler, it looks
as if there is one because all database pointers have an operator entityid() conversion operator
function. If you have a database pointer named dbp1 and an entityid named id, the line dpb1 == id
would actually end up automatically calling the conversion operator of the pointer object, thus
converting it into an entityid. This would then call operator== on the IDs. Since you know that IDs
are just typedefs for integers, you should see that they already have a built-in operator==.

If, however, you wrote some code such as dbp1 == dbp2, you would get an ambigu ity error, meaning
that the compiler couldn't figure out which function to call. Since database pointers can be converted
to actual pointers (for example, Player* in the case of class player), they can't figure out if you're
trying to compare Player*s or entityids (even though you know they should be equivalent).

It gets even worse if you add an operator== to compare database pointers into the mix, because then
the program can't figure out if you want to compare Player*s, entityids, or database pointers. That

means that the new operator== you just added would never be called and would be pointless code.
Because of this, it is required that you convert your database pointers into plain entityids before you
compare them with other database pointers.

Item Functions

Three functions deal with items, and two of the functions are virtually identical to the two player
functions I just showed you: AddItem and RemoveItem. Both functions take item database pointers as
parameters.

Since the code is virtually identical, I'll show you only the third item function, which doesn't have a
player equivalent:

item Room::FindItem(const string& p_item) {
 std::list<item>::iterator itr = // find an item that matches
 BasicLib::double_find_if(
 m_items.begin(), m_items.end(),
 matchentityfull(p_item), matchentity(p_item));

 if(itr == m_items.end())
 return 0;
 return *itr;
}

Using a full or partial name as a parameter, this function finds the ID of an item within the room.
Basically, it's a wrapper around the double_find_if function, which you used in the previous chapter.
If an item isn't found, the ID of zero is returned, and if an item is found, its ID is returned. For
example, if you had items "Sword", "Axe", and "Club" in a room, and you run this function with input
"sw", it returns the ID of the "Sword" object.

NOTE

There is one tiny difference in the AddItem function: When the function detects that there are 32
or more items in the room, it automatically pops off the first item in the room. Since all new
items in the room are added to the end of the list, the first item in the list is also the oldest item
in the list. This means that whenever there are 32 items in a room, and you drop a 33rd, the
oldest item in the room is destroyed, and you can't get it back. This prevents certain rooms from
getting completely flooded with items that people don't seem to pick up.

File Functions

Three functions deal with loading and saving rooms to and from disk. They are

void LoadTemplate(istream& p_stream);
void LoadData(istream& p_stream);
void SaveData(ostream& p_stream);

The first function loads all the template data from disk. There's no equivalent save function, simply
because there doesn't need to be one; template data is loaded once from disk and shouldn't be
modified.

On the other hand, the next two functions deal with loading and saving the volatile data namely, the
items and money within a room.

I don't want to spend much space showing you the contents of these functions; they closely resemble
the player and item loading and saving functions described in the previous chapter. I'll show you
sample entries, however.

Here's what a sample room template looks like:

[ID] 1
[NAME] Town Square
[DESCRIPTION] You are in the town square. This is the central meeting place for the
realm.
[TYPE] PLAINROOM
[DATA] 0
[NORTH] 2
[EAST] 25
[SOUTH] 4
[WEST] 5
[ENEMY] 0
[MAXENEMIES] 0

This shows you that the ID of the room is 1, the name is "Town Square", and a brief description of the
room follows. It's a plain room, meaning that it's not a store or a training room; thus, the [DATA] tag
isn't meaningful for this room. For a store, however, this tag would be the ID of the store.

There are exits in all four directions; going north leads you to room 2, east to 25, south to 4, and west
to 5. There are no enemies within the room, which means that the [MAXENEMIES] entry is meaningless,
too.

Now here's an example of volatile data entry for a room:

[ROOMID] 1
[ITEMS] 10 5 6 3 1 11 0
[MONEY] 200

The entry contains the room ID, a list of all item IDs in the room (ending with a zero, commonly
known as a sentinel value), and the amount of money in the room. From this entry, you can see that
there are six items in the room (items 10, 5, 6, 3, 1, and 11, whatever they may be), and $200 on the
floor.

I'm going to show you the LoadData function, because it contains the most interesting function code.
Here it is:

void Room::LoadData(istream& p_stream) {
 string temp; p_stream >> temp; // chew up "[ITEMS]" tag

 m_items.clear(); // clear and load items
 entityid last;
 while(extract(p_stream, last) != 0)
 m_items.push_back(last);

 p_stream >> temp; p_stream >> m_money; // load money
}

The function uses the BasicLib::extract function to extract item IDs from the stream and scan until it
reaches zero, the sentinel value.

I need to make one important point about the function. Whenever this function is called, the room
clears its item list. The reasoning is that you may want to reload the room while in the game, and if
you start appending data to the end of the item list, you may end up with duplicated data. Imagine that
a room contains items 10, 11, and 12, and then in the middle of the game, you reload that room. If you
don't clear the item list, you'll end up with two of each item: 10, 11, 12, 10, 11, 12.

Also, as with the item and player loading functions that were described in Chapter 8, "Items and
Players," the database manages the loading in and setting of the entity ID; therefore, this code doesn't
load in the [ROOMID] tag.

The Room Database

Like players and items, rooms have a database as well. If you guessed that the database is called
RoomDatabase, you earned a cookie! No, I'm not mailing you a cookie; you'll have to come here and
get it.

Anyway, the room database is very simple, and it inherits from the EntityDatabaseVector class I
showed you in the previous chapter. Here's the class definition:

class RoomDatabase : public EntityDatabaseVector<Room> {
public:
 static void LoadTemplates();
 static void LoadData();
 static void SaveData();
}; // end class RoomDatabase

The room database class has functions for loading the templates for each room, loading the volatile
data for each room, and saving the volatile data for each room.

All the room data is stored within two files: /maps/default.map, which holds all the template data,
and /maps/default.data, which holds all the item and money data.

The maps are separated into two files for a reason; periodically in the game, all the item and money
data must be written to disk. Unfortunately, since I'm using ASCII text files, there's really no way to
go into the existing file and modify what has been changed. As I told you in Chapter 8, the only way to
write out ASCII data to disk is to completely destroy the file and rewrite all the data. Obviously,
since there is no reason to write the template data back to disk, it makes sense to keep the template
data in one file, and the volatile data in another, so that just the volatile data can be written out when
it needs to be.

Figure 9.1 shows a sample of the file setup for rooms. You can see that the template data is stored in
one file, regular volatile data in another, and temporary volatile data isn't stored at all.

Figure 9.1. Sample file setup for rooms.

The code for the three file functions is pretty simple and similar to what you've seen before with the
player and item databases, but since you haven't seen a vector-based database yet, I'll show you some
of the code in action.

Loading Templates

The process for loading the templates from disk is fairly straightforward. For each room, the room ID
is loaded in first, and then the vector is resized if there isn't enough room available. Once you know
there's enough room in the vector for the room you're loading the template for, the ID for that room is
set, and the template is loaded:

void RoomDatabase::LoadTemplates() {
 std::ifstream file("maps/default.map");
 entityid id;
 std::string temp;

 while(file.good()) {
 file >> temp >> id; // load ID
 if(m_vector.size() <= id) // check if there's room
 m_vector.resize(id + 1); // resize if there isn't

 m_vector[id].ID() = id; // set the ID

 m_vector[id].LoadTemplate(file); // load template
 file >> std::ws; // eat whitespace after it
 }
}

Basically, the only thing new here is the vector resizing. With an associative container such as a map,
STL automatically creates and inserts items when you call its operator[] on a key that doesn't exist,
but vectors aren't as easy to work with. Calling operator[] on a nonexistent index is an error, and
depending on your STL implementation, it may throw an exception. Don't worry, though; this behavior
is actually a good thing. With a map, if you accidentally try inserting something with a large key (in
the billions, say), you'll insert at most one new item. If a vector auto-resized on operator[], however,
your program would try to resize the array to within the billions, which is obviously not a good thing.

Loading Data

The LoadData function is similar to LoadTemplates. Essentially, the only differences are that it calls
Room::LoadData on each room, instead of Room::LoadTemplate, and it doesn't resize the vector either.
LoadData doesn't resize the vector because it shouldn't need to. Whenever you load a room from disk,
the template should have already been loaded; thus, the ID should already be valid.

NOTE

In a more robust MUD, it would be a good idea to add some error checking. I've neglected to do
so due to time and space constraints, but you should always put lots of error-checking code into
your MUD projects.

Saving Data

Saving the temporary data, just as with every other saving function you've seen in this book so far, is a
simple task:

void RoomDatabase::SaveData() {
 std::ofstream file("maps/default.data");
 iterator itr = begin();
 while(itr != end()) {
 file << "[ROOMID] " << itr->ID() << "\n"; // write ID
 m_vector[itr->ID()].SaveData(file); // write data
 file << "\n";
 ++itr;
 }
}

As I mentioned earlier, rooms don't know how to load or save their IDs to and from disk, so it is the
responsibility of the database to do it instead. The function essentially loops through every room,
writes out the ID, and then writes out the rest of the data.

Room Database Pointers

If you're beginning to notice a trend here, you're absolutely correct. Everything entity-based in the
game has a similarly designed database and similar means of being accessed. Therefore, it shouldn't
come as a surprise that the room database also has database pointers, just as players and items do.
The definition of these pointers has been added to the /SimpleMUD/DatabasePointer.h and .cpp files:

// .h file:
DATABASEPOINTER(room, Room)
// .cpp file:
DATABASEPOINTERIMPL(room, Room, RoomDatabase)

Keeping with the standard naming scheme I've been using all along, pointers to rooms are called room
(lowercase), while the actual room objects are Rooms (first letter capitalized).

Stores

The other major topic I cover in this chapter is stores. Stores are simple entities; their only purpose is
to store a list of all the kinds of items that can be bought and sold there.

Because of this, the Store class is simple:

class Store : public Entity {
public:
 typedef std::list<item>::iterator iterator;
 iterator begin() { return m_items.begin(); }
 iterator end() { return m_items.end(); }
 size_t size() { return m_items.size(); }
 item find(const string& p_item);
 bool has(entityid p_item);
 friend istream& operator>>(istream& p_stream, Store& s);
protected:
 list<item> m_items;
};

In terms of data storage, all a store needs is a list of the items that are bought and sold there.

Helper Functions

To make stores more usable, stores utilize some of the standard STL container functions, which
basically wrap around existing algorithms and functions.

For example, you can see that stores have the standard begin, end, and size functions, in addition to
two search functions: find and has.

The find function searches the store using a double full-then-partial name match, such as you saw
used in Chapter 8, and it returns the ID of the item it found, or zero if nothing is found. The other
searching function simply returns true or false if an item ID exists within the database.

Those two functions simply wrap around the BasicLib::double_find_if and std::find algorithms
respectively, so let me just skip to the file streaming function.

Stream Extraction Function

Since stores don't change throughout the game, you need only one function to deal with files: a stream
extraction function. Obviously, this function extracts a store from a stream.

First, let me begin by showing you a sample store entry in a file:

[ID] 1
[NAME] Bobs Weapon Shop
[Items] 40 41 42 43 44 58 59 60 61 62 63 64 65 66 67 68 0

The ID and the name are inherited from Entity, so every store has them as well as a list of all items
the store sells. This should remind you of the way that items are stored inside of rooms, and it should
come as no surprise that these are loaded in the same manner:

inline istream& operator>>(istream& p_stream, Store& s) {
 string temp;
 p_stream >> temp >> std::ws; // chew whitespace
 std::getline(p_stream, s.Name()); // read name
 s.m_items.clear(); // clear existing items
 entityid last;
 p_stream >> temp; // chew up "[ITEMS]" tag
 while(extract(p_stream, last) != 0) // loop while item ID is valid
 s.m_items.push_back(last); // add item
 return p_stream;
}

As usual, the database manages the loading of the [ID] tag, and this function simply loads the name
and every item until the sentinel value 0 is reached (using the BasicLib::extract function for help).

The Store Database

The store database is probably the simplest database class in the entire game. Take a look at the
definition:

class StoreDatabase : public EntityDatabase<Store> {
public:
 static bool Load();
}; // end class StoreDatabase

As you can see, the store database inherits from the map-based EntityDatabase class. It contains a
single function to load the database from disk.

All stores are kept in a text file named /stores/stores.str. The Load function is almost identical to the
other EntityDatabase loading functions you saw from Chapter 8, so I'm not going to show you the
code here; it's largely redundant and boring.

Also note that there is no associated database pointer for the Store class; there simply isn't a need for
one in the game.

Ch-Ch-Ch-Changes

Now that you know about the major components of the game that have been added for this chapter,
you can go on to the existing components that have been changed. There are many changes that need to
be made to enable the new components to work, such as making sure players are properly added to
and removed from rooms, adding the new room commands, and many other changes as well.

Entering and Leaving the Realm

Whenever a player is within the Game handler/state, that player's ID must be within a room's
m_players list. The easiest way to make sure this happens is to add the player to the room list
whenever he enters the state, and remove the player from his room list whenever he exits the state.

Luckily, we have two functionsGame::Enter and Game::Leavethat are called whenever a player enters
or leaves the state!

Entering

So the first order of business is making sure that a player is always inside of a room whenever he is
in the game state, by adding this line to the Game::Enter function. (I'm going to refrain from posting the
whole function, since you've seen it earlier, and I need to conserve space for more interesting things.)

 p.CurrentRoom()->AddPlayer(p.ID());

Within the function, p is a Player reference.

To make the game seem a little easier to play, the following is added to this function:

 if(p.Newbie()) GotoTrain();
 else p.SendString(PrintRoom(p.CurrentRoom()));

The first line of this code segment should be familiar to youit is from Chapter 8. It hasn't changed. The
addition is bolded (second line). If a player is not a newbie, the room's current description is printed
out to the player. (It isn't printed for newbies. The new player is immediately going into the training
state, so the player doesn't need a room description yet.) The bolded code uses the Game::PrintRoom
function, which I will show you in a little bit. And the bolded code gives a player a sense of his
bearings whenever he enters the game.

Leaving

On the other hand, whenever a player is leaving the game state, he needs to be removed from the room
that he is in. This line of code is added to the Game::Leave function:

 p.CurrentRoom()->RemovePlayer(p.ID());

No other changes need to be made to this function.

New Room-Related Commands

There are a bunch of new room-related commands that have been added to the Game::Handler
function:

lookprints a description of the current room

northmoves a player north

eastmoves a player east

southmoves a player south

westmoves a player west

getpicks up an item from the ground

dropdrops an item from a player's inventory

First, let's look at the look command:

if(firstword == "look" || firstword == "l") {
 p.SendString(PrintRoom(p.CurrentRoom()));
 return;
}

If the user types in either look or just l, the contents of the room are sent to his connection using the
PrintRoom function that I mentioned before.

All four movement commands are structurally similar, so I'm only going to show you the first one, for
moving north:

if(firstword == "north" || firstword == "n") {
 Move(NORTH);

 return;
}

If the user types north or just n, the Game::Move function is called to move a player in a specified
direction. As you can probably imagine, south calls Move with a parameter of SOUTH, and so on.

Finally, there are the two item commands:

if(firstword == "get" || firstword == "take") {
 GetItem(RemoveWord(p_data, 0));
 return;
}
if(firstword == "drop") {
 DropItem(RemoveWord(p_data, 0));
 return;
}

Both commands strip off the first word (get, take or drop), and then call either the GetItem or
DropItem functions with the name of the item, so get sword calls GetItem("sword"). I discuss these
functions in the next section.

New Room Functions

In the preceding sections, you saw four functions that you haven't seen before: Game::PrintRoom,
Game::Move, Game::GetItem, and Game::DropItem. Along with those, there is one more function
dealing with roomsGame::SendRoomwhich sends a string of text to everyone within a given room.

Printing Room Descriptions

The PrintRoom function is a long and boring one; it just goes through the contents of a room, formatting
and coloring things as it goes along. I'm going to show you bits and pieces of it, but on the whole, it's
not an important function.

string Game::PrintRoom(room p_room) {
 string desc = "\r\n" + bold + white + p_room->Name() + "\r\n";
 string temp;
 int count;
 desc += bold + magenta + p_room->Description() + "\r\n";

The function starts out by printing (to a string) the name of the room in white, and then the description

of the room in magenta. The next part of the code prints out the exits from the room:

 desc += bold + green + "exits: ";
 for(int d = 0; d < NUMDIRECTIONS; d++) {
 if(p_room->Adjacent(d) != 0)
 desc += DIRECTIONSTRINGS[d] + " ";

 }
 desc += "\r\n";

It checks to see if there is an exit in each direction, and if so, it prints out the name of the direction of
the exit. The next part is item and money printing:

 temp = bold + yellow + "You see: ";
 count = 0;
 if(p_room->Money() > 0) {
 count++;
 temp += "$" + tostring(p_room->Money()) + ", "; // print money
 }

 std::list<item>::iterator itemitr = p_room->Items().begin();
 while(itemitr != p_room->Items().end()) {
 count++;
 temp += (*itemitr)->Name() + ", "; // print item
 ++itemitr;
 }

The function checks if there is money on the ground, and if so, it's printed. The code block after that
loops through every item in the room, and prints each description.

The next block of code chops off the last two characters of the item string (if there are any items in the
room at all) and appends the item string to desc:

 if(count > 0) {
 temp.erase(temp.size() - 2, 2);
 desc += temp + "\r\n";
 }

Why are the last two characters chopped off? Well, if you had some items in a room, it would end up
looking like this: You see: Sword, Knife, Axe, , with an extra comma and a space at the end. This
is just a minor annoyance, but it is an annoyance nonetheless, so this code fixes it.

I'm not going to show you the rest of the function, since the next part of the function is essentially the
same as the item printing, except that it prints the people in the room instead.

Here's an example of what a room listing looks like:

Town Square You are in the town square. This is the central meeting place for the realm. exits:
NORTH EAST SOUTH WEST You see: Rusty Knife, Heavy Longsword, Jeweled Dagger People:
mithrandir, Washu, Tyraziel

In the next chapter, I revisit this function to add enemy printing as well.

Moving Between Rooms

There is a helper function as part of the Game handler that moves a player in one direction.

There are a number of things it needs to accomplish to successfully move a player in a direction, as
you'll see from the function:

void Game::Move(int p_direction) {
 Player& p = *m_player;
 room next = p.CurrentRoom()->Adjacent(p_direction);
 room previous = p.CurrentRoom();

The first thing the helper function does is get a reference to the player (p) and then get the room ID of
the player's current room (previous) and the room to which the player is moving (next).

 if(next == 0) {
 SendRoom(red + p.Name() + " bumps into the wall to the " +
 DIRECTIONSTRINGS[p_direction] + "!!!",
 p.CurrentRoom());
 return;
 }

If there is no exit in the direction the player wants to go, everyone is told that the player bumped into
the wall (much to his embarrassment), and the function ends.

At this point, you know that there is a room in the direction the player wants to go, so you need to
remove the player from that room, and tell everyone he left:

 previous->RemovePlayer(p.ID());
 SendRoom(green + p.Name() + " leaves to the " +
 DIRECTIONSTRINGS[p_direction] + ".",
 previous);
 SendRoom(green + p.Name() + " enters from the " +
 DIRECTIONSTRINGS[OppositeDirection(p_direction)] + ".",
 next);
 p.SendString(green + "You walk " + DIRECTIONSTRINGS[p_direction] + ".");
 p.CurrentRoom() = next;

 next->AddPlayer(p.ID());

The previous code segment also tells everyone in the new room that the player has entered it, and tells
the player that he moved to a different room. The player's current room is reset to next, and the player
is added to the room's player list.

 p.SendString(PrintRoom(next));
}

The last bit of code shows the room's description to the player, so he can navigate easily without
constantly looking around. This approach is okay for small MUDs like this, but for a larger MUD, you
might consider having two different room descriptions, one long and one short; when players move
around, the short description displays, but when they explicitly type look, the long description
displays.

Getting Items

Picking up items from the floor is a complicated task; there are so many different things that you need
to check.

The first part of the function checks to see if the player wants to pick up any money that's on the
ground. This is done by checking if the player typed in the character '$' as the first letter of the
parameter string:

void Game::GetItem(string p_item) {
 Player& p = *m_player; // get player reference
 if(p_item[0] == '$') { // check if player wants money
 p_item.erase(0, 1); // chop off the '$'
 money m = BasicLib::totype<money>(p_item); // get amount desired

If the player did indeed type '$', the '$' is erased from the string, and the amount of money the player
wants to pick up is converted into m. Next, the program checks that there's enough money on the
ground to satisfy the greedy player:

 if(m > p.CurrentRoom()->Money()) { // make sure enough money exists
 p.SendString(red + bold + "There isn't that much here!");
 }
 else {
 p.Money() += m; // add money to player
 p.CurrentRoom()->Money() -= m; // subtract money from floor
 SendRoom(cyan + bold + p.Name() + " picks up $" +

 tostring(m) + ".", p.CurrentRoom());
 }
 return;
 }

If there isn't enough money, then obviously the player can't pick it up, and the player is told so. On the
other hand, if there is enough money, the amount of money the player wants is added to his character,
subtracted from the room, and the entire room is told about how much money the player took. Then the
function returns.

NOTE

Because the game thinks that if you type in get $<whatever> you want money, it never thinks
that an item starts with the character $. There fore, you should never name items starting with
the letter $, because the game will never detect them when you want to get or drop them. Why
anyone would want to, I don't know.

NOTE

This method of keeping money separate from regular items is really just a hack. In real life, it's
more logical to represent a pile of coins as a bunch of coins. Unfortunately there is no easy way
to solve this kind of dual treatment of items and money, simply because the game would find it
extremely difficult to treat a few thousand coins in a single room as separate objects. I explore
a different way to tackle this problem in the BetterMUD.

On the other hand, if the first character isn't $, the game assumes that the player is trying to get an item:

 item i = p.CurrentRoom()->FindItem(p_item);
 if(i == 0) { // check if item exists in room
 p.SendString(red + bold + "You don't see that here!");
 return;
 }

 if(!p.PickUpItem(i)) { // try to pick up item
 p.SendString(red + bold + "You can't carry that much!");
 return;
 }

 p.CurrentRoom()->RemoveItem(i); // remove item from room
 SendRoom(cyan + bold + p.Name() + " picks up " + i->Name() + ".",
 p.CurrentRoom());
}

First the room is searched to see if it contains an item named p_item (a string), and the ID of that item
is stored in i. If the search turns up dry, the room doesn't have an item matching the name. The player
is told so, and the function returns.

Then, the player's PickUpItem function is called, attempting to pick up the item. If it returns false, that
means that the player didn't have enough room for the item, and thus the item isn't picked up.

Finally, if the function passes both tests, the item is removed from the room, and the room is told that
the player picked up the item.

Dropping Items

Dropping an item is essentially the opposite process from getting an item; if you're dropping money,
the game code makes sure you have enough money, and then drops it. If you're dropping an item, the
game code makes sure you have the item, and then drops it into the room using the Room::AddItem
function (which makes sure that there are at most 32 items in a room at any given time). Because the
code is similar, I don't want to waste precious space in this chapter. I hope you'll forgive me for
moving on.

Sending Text to a Room

To send text to a room, you need to be able to find every player in that room and send text to their
connections. This is where the m_players list inside every Room comes in handy. It would strain your
MUD to have a function that searches every player in the database to see if he is in a specific room,
and then sends text to him; so instead, I use the list of people already in a room:

void Game::SendRoom(string p_text, room p_room) {
 std::for_each(p_room->Players().begin(),
 p_room->Players().end(),
 playersend(p_text));
}

Here, I utilize the std::for_each algorithm and the playersend functor (from Chapter 8) to send
p_text to every player in room p_room. This works because the playersend functor was designed to
work on both containers of Rooms, and containers of Room*s (or datatypes that work just like Room*s,
such as the room database pointer class). See Chapter 8 for an in-depth discussion on this, if you
haven't already.

Commands Related to New Store

In addition to the movement commands, there are three new store commands:

listlists everything a store sells and buys

buy <item>buys an item from the store

sell <item>sells an item to the store

These commands are added into the Game::Handle function. Here's the part that handles store listing:

 if(firstword == "list") {
 if(p.CurrentRoom()->Type() != STORE) {
 p.SendString(red + bold + "You're not in a store!");
 return;
 }
 p.SendString(StoreList(p.CurrentRoom()->Data()));
 return;
 }

This code makes sure you're in a store first, and then it calls the Game::StoreList function (which you
haven't seen yet), passing in the ID of the store (contained within the current rooms' Data() variable),
to get a list of the items in the store.

Buying items is similar:

 if(firstword == "buy") {
 if(p.CurrentRoom()->Type() != STORE) {
 p.SendString(red + bold + "You're not in a store!");
 return;
 }
 Buy(RemoveWord(p_data, 0));
 return;
 }

This time the code calls the Game::Buy command with the name of the item you wish to purchase (by
removing the "buy" from the string). The "sell" command is equivalent, except that it calls Game::Sell
instead.

The StoreList Function

I don't know about you, but I think that code that prints information is boring. Unfortunately, MUDs are
packed with them, and the Game::StoreList function is one of them.

Here's the function declaration:

string Game::StoreList(entityid p_store);

Essentially the function takes the ID of a store, and prints out the items that are available to buy or
sell. The function is a large loop inside, utilizing the Store's iterator functions, and I don't want to take
up space showing you the code. Instead, I'll show you just a sample listing of a store:

 Welcome to Bob's Weapon Shop!

 Item | Price

 Rusty Knife | 5
 Knife | 15
 Dagger | 40
 Shortsword | 50

Ta-da!

Buying Items

It requires roughly the same amount of checking to buy items as to pick them up. The function to buy
items should check that the store has the item the player wants, check if the player has enough money
to pay for the item, and check if the player has enough room to carry it. Here is the code:

void Game::Buy(const string& p_item) {
 Player& p = *m_player; // get player
 Store& s = StoreDatabase::get(p.CurrentRoom()->Data()); // get store
 item i = s.find(p_item); // find if store has item
 if(i == 0) { // store doesn't have item
 p.SendString(red + bold + "Sorry, we don't have that item!");
 return;
 }
 if(p.Money() < i->Price()) { // see if player has enough money
 p.SendString(red + bold + "Sorry, but you can't afford that!");
 return;
 }
 if(!p.PickUpItem(i)) { // see if player can carry it
 p.SendString(red + bold + "Sorry, but you can't carry that much!");
 return;
 }
 p.Money() -= i->Price(); // subtract money

 SendRoom(cyan + bold + p.Name() + " buys a " + i->Name(),
 p.CurrentRoom());
}

That wasn't so difficult, was it?

Selling Items

Selling an item in a store is a little different from buying an item. The selling process first finds the
item the player wants to sell, and then finds out if the store wants to buy it, and finally sells it.

void Game::Sell(const string& p_item) {
 Player& p = *m_player; // get player
 Store& s = StoreDatabase::get(p.CurrentRoom()->Data()); // get store
 int index = p.GetItemIndex(p_item); // get inventory index of item
 if(index == -1) { // make sure player has item
 p.SendString(red + bold + "Sorry, you don't have that!");
 return;
 }
 item i = p.GetItem(index); // get the ID of the item
 if(!s.has(i)) { // see if store sells it
 p.SendString(red + bold + "Sorry, we don't want that item!");
 return;
 }
 p.DropItem(index); // remove item from inventory
 p.Money() += i->Price(); // add price
 SendRoom(cyan + bold + p.Name() + " sells a " + i->Name(),
 p.CurrentRoom());
}

As you can see from this code and the buying code you examined previously, stores in SimpleMUD
are, well, simple. In a more realistic game, stores would have limits to the amount of items they have
to be bought and sold. I'll get to this kind of stuff when going into BetterMUD.

New Training Room Commands

Finally, the last two commands added to the game in this chapter are

traintrains a player to the next level when he has enough experience

editstatsedits a player's stats and allocates statpoints to his attributes

The good news is that these commands are pretty easy to implement. Here's the "train" command

(added to Game::Handle):

if(firstword == "train") {
 if(p.CurrentRoom()->Type() != TRAININGROOM) {
 p.SendString(red + bold + "You cannot train here!");
 return;
 }

 if(p.Train()) {
 p.SendString(green + bold + "You are now level " +
 tostring(p.Level()));
 }
 else {
 p.SendString(red + bold +
 "You don't have enough experience to train!");
 }
 return;
}

Obviously, a player can only train inside of a training room, so the function makes sure the player can
do that first. If the player is inside a training room, the Player::Train function is called, which
returns a Boolean determining if the player has successfully trained. In either case, the player is told if
he went to the next level. If the player trained successfully, the Player::Train function automatically
adds his new bonuses to his character.

The editstats command simply takes you into the training state:

if(firstword == "editstats") {
 if(p.CurrentRoom()->Type() != TRAININGROOM) {
 p.SendString(red + bold + "You cannot edit your stats here!");
 return;
 }
 GotoTrain();
 return;
}

Once again, the command checks to see if the player is in a training room, and if the player is not, the
command prints out an error to the player, and quits out of the function. Otherwise, the player is
approved to move, and Game::GotoTrain is called, putting the player into the training state.

Database Reloading

In Chapter 8, I showed you how to reload the item database and the player database within the game.
In this chapter, I'm going to continue, and show you how to add a room template and store reloading

from within the game, so that you don't have to stop and re-run the game every time you change some
datafiles.

This is the code that is added to the Game::Handle function (inside the block of code that handles the
reload command):

else if(db == "rooms") {
 RoomDatabase::LoadTemplates();
 p.SendString(bold + cyan + "Room Template Database Reloaded!");
}
else if(db == "stores") {
 StoreDatabase::Load();
 p.SendString(bold + cyan + "Store Database Reloaded!");
}

Therefore, the two new reloading commands are

reload roomsreloads all the room template data from disk

reload storesreloads all the store data

I don't allow you to reload volatile room data, simply because editing that data is a very dangerous
thing to do while the MUD is running. Imagine this scenario:

You take the /maps/default.data that the MUD saved previously (you'll see this in the next chapter),
and start editing it. Meanwhile, someone comes into that room, and accidentally drops a valuable
item. Then, you finish editing the file, and reload it. The poor player finds out that his precious item
has been lost forever, because you just overwrote it by reloading the database.

NOTE

The "disappearing item" problem is only in SimpleMUD, and that's due to its limited design. You
see, rooms keep track of items within them on disk, and that's not such a great idea in the grand
scheme of things. In reality, items should keep track of where they are, but that kind of system
was a bit complex for SimpleMUD. I use this kind of a system in the BetterMUD, however.

Miscellaneous Changes

This section describes a few minor changes.

Removing the Old Room Definition

For example, this line, created in Chapter 8 inside of /SimpleMUD/Player.h needs to be removed:

typedef entityid room; // REMOVE THIS LATER

I just went ahead and deleted it.

Default Commands

In Chapter 8, SimpleMUD would interpret every unrecognized command a player typed in as a global
chat. In that effect, just saying something like hello would cause your player to chat hello to everyone
in the game. Now that the game supports room-based talking, however, the old line

SendGame(bold + p.Name() + " chats: " + p_data);

is changed to this instead

SendRoom(p.Name() + " says: " + p_data, p.CurrentRoom());

Now, whenever you say something in a room, it is sent only to whomever is in that room, and the only
way to send global messages is to use the chat or : commands now.

Using and Removing Items

Whenever a player uses or removes an item (this functionality was introduced in Chapter 8), he's
obviously performing an action that everyone in the room can see, so why not make the game more
realistic, and add code to the Game::UseItem and Game::RemoveItem functions to send messages to the
room the player is in?

For example, here's the large switch statement from Game::UseItem with the newly added parts in
bold:

switch(itm.Type()) {
case WEAPON:
 p.UseWeapon(i);
 SendRoom(green + bold + p.Name() + " arms a " + itm.Name(),
p.CurrentRoom());
 return true;
case ARMOR:
 p.UseArmor(i);
 SendRoom(green + bold + p.Name() + " puts on a " + itm.Name(),

p.CurrentRoom());
 return true;
case HEALING:
 p.AddBonuses(itm.ID());
 p.AddHitpoints(BasicLib::RandomInt(itm.Min(), itm.Max()));
 p.DropItem(i);
 SendRoom(green + bold + p.Name() + " uses a " + itm.Name(),
p.CurrentRoom());
 return true;
}

It's little things like this that make the game more fun. People can watch a player as he arms his
"Magic Sword Of Super Powers" and be in awe, or laugh at his "Rusty Knife."

Changes to the Main Module

Finally, now that you've got everything else programmed, you can make the final two changes.
Demo09-01.cpp contains the same code as Demo08-01.cpp (from Chapter 8), with two minor
additions (in bold):

int main() {
 try {
 ItemDatabase::Load();
 PlayerDatabase::Load();
 RoomDatabase::LoadTemplates();
RoomDatabase::LoadData();
StoreDatabase::Load();

<SNIP>

 PlayerDatabase::Save();
 RoomDatabase::SaveData();

}

Basically, all you need to do is load the room and store databases when the program begins, and save
the room database back out when the program ends. That's it!

Running the Improved SimpleMUD

Compiling this version of SimpleMUD is done the same way as the SimpleMUD from Chapter 8, and
you can find compilation instructions in Appendix A, "Setting Up Your Compilers," on the CD.

Once you've got SimpleMUD up and running, you can Telnet into it on port 5100 and play around. I've
included some sample datafiles, so you can play it the way it is.

Figure 9.2 shows a screenshot of the movement and store listing in action.

Figure 9.2. Examples of room listings, store listings, and movement in the new
version of SimpleMUD.

There's not much going on here; the player logs in, walks south, and takes a look at the listing in a
weapon shop. Yes, the character has over 8,000 hitpoints, but hey, I'm doing that for testing
purposes! Yeah!

Figure 9.3 shows the item and room interaction features.

Figure 9.3. New item commands available to players in SimpleMUD.

Pay attention to the first four lines in this figure. When a player types buy kn, he buys a rusty knife.
The same thing happens if a player types buy knif or buy k or buy kni. However, the command buy
knife buys the player a plain Knife instead of a Rusty Knife. Why does this happen?

NOTE

You might have noticed that the text of Bob speaking appears brighter than the rest of the
room's description. That's because it uses a different color. I managed to get this effect by
manually placing the VT100 color code for white into the room's description in the /maps/
default.map file. While this method is adequate for SimpleMUD, I wouldn't really recommend
doing this for more advanced games. I explore a much better way of accomplishing this in
Chapter 16, "The Networking System."

Remember: All searching algorithms perform a dual-pass search, attempting to match the full name of
an item first, and then performing a partial match. Therefore, when you type get knife, the algorithm
detects the plain "Knife" because it fully matches. Any other partial match of "knife" is instead
detected as a "Rusty Knife", since "Rusty Knife" is the first in the list. It's just a minor issue you
should watch out for, and if you design your stores correctly, people may never notice it.

Figure 9.3 also shows the player dropping, getting, and selling knives and using money.

NOTE

When using a dual-pass search, it's usually a good idea to put objects with the simplest names
first in the list. For example, it may be more user friendly to list "Knife" before "Rusty Knife",
even if it costs more. It's up to you, though.

Summary

This chapter has shown you how to create a simple map system that interacts with players and items.
It's pretty simple, but then again, this is a SimpleMUD. Having only four directions of freedom is
somewhat unrealistic and limiting, but it serves the purpose. In Part Three of the book, I'll be showing
you how to create a much more complex portal system that allows you to make your maps much more
realistic and less limited. Of course, this also makes editing them more difficult, but the benefits in
terms of flexibility far outweigh the minor inconveniences.

In this chapter, I also showed you the basics of an economy within your MUD. It's nothing glamorous,
but as far as showing you how some basic things are accomplished, it does the job. Part Three of this
book progresses to more complicated issues dealing with your economy.

Now, only enemies need to be added to the MUD, and it will be complete!

Chapter 10. Enemies, Combat, and the Game Loop
By now, you've seen how maps, stores, items, and players work within the SimpleMUD. It took quite
a bit of code just to get them all working together, and in the end, you had nothing more than a simple
online world where all you could do was to run around and talk. (And if you managed to hack in some
money through the datafiles, you could play around with items, too.)

But where's the fun? The adventure? The action? In this chapter, I introduce you to the final part of
SimpleMUD: enemies and combat, as well as the game loop.

In this chapter, you will learn to:

Implement enemies

Use enemy instances and enemy templates, using a simple system designed to minimize memory
usage

Create a simple game loop to manage timed events

Handle play/enemy combat and death

Make the changes needed to integrate combat into the SimpleMUD

Enemies and Enemy Templates

Enemies are set up a little differently from everything else in the game. There are actually two
different enemy classes: enemies themselves, and enemy templates. This is a fairly standard way of
representing things in a game that has a few volatile attributes (such as hitpoints) and many attributes
that won't change at all (everything else).

NOTE

Please note that when I refer to enemy templates, I am referring to an actual class within the
SimpleMUD, and not the C++ language feature known as templates .

The idea is to conserve memory. As Figure 10.1 shows, the templates store data that won't change
about a particular type of enemy, and the enemy classes store volatile data about each individual
enemy in the game. Whenever the game needs to access the nonvola-tile data of an enemy, it looks at
the template. But if the game needs to access an individual enemy's hitpoints, it looks into the regular
enemy class.

Figure 10.1. Relationship between enemies and enemy templates.

So the Enemy class represents individual instances of enemies within the game, and the EnemyTemplate
class represents data about individual types of enemies within the game. You'll have a template
representing Thugs, a template representing Thieves, a template representing Evil Monkeys, or
whatever else you decide to put into the game.

EnemyTemplate Class

Since enemy templates store all the base information about an enemy, I'll go over them first.

Data

Because an enemy's only purpose is to add combat into the game, all an enemy really needs are
combat-based variables. You'll need hitpoints, obviously, as well as accuracy, dodging, strike
damage, and damage absorption attributes. When a player dispatches an enemy within the game, he is
rewarded with experience points, so templates must also know how much experience they are worth.

Enemies in the SimpleMUD get their minimum and maximum damage variables (as well as their
swing time) from an item, which will serve as their weapon.

Enemy templates have three more elements: the min and max money variables (which determine how
much money an enemy drops when he dies) and a list of loot, which I will get to in a moment. First,
here's the class listing:

class EnemyTemplate : public Entity {
public:
 EnemyTemplate();
 int m_hitpoints; // number of HP
 int m_accuracy; // accuracy of enemy
 int m_dodging; // dodging of enemy
 int m_strikedamage; // strike damage
 int m_damageabsorb; // damage absorption
 int m_experience; // experience gained when killed
 item m_weapon; // weapon enemy uses
 money m_moneymin; // min $ enemy drops when it dies
 money m_moneymax; // max $ enemy drops when it dies
 list<loot> m_loot; // list of items that drop when it dies
};

The major thing to note about this class is that all its data is public; you'll see that this is because this
class is never really directly manipulated by anything except the Enemy class, so you don't really have
to worry about hiding its data.

The loot structure is simple:

typedef std::pair< item, int > loot;

I used the std::pair class (std::maps use pair objects to store pairs of keys and data) to define a
piece of loot as being an item ID and an integer. The item ID is obviously the ID of the item you want
the enemy to drop. The integer represents the percentage chance that the item will be dropped. So a
loot entry containing a 10 and a 1 has a 1% chance that item 10 will be dropped when the enemy dies.

Functions

There are only two functions involved with the enemy templates; the constructor (which clears every
variable to 0, so I'm not going to waste space with it here), and the stream extraction (operator>>)
function.

Before I go into the latter function, let me show you the format of an enemy template on disk:

[ID] 1
[NAME] Rabid Monkey
[HITPOINTS] 6
[ACCURACY] 40
[DODGING] -30
[STRIKEDAMAGE] 0
[DAMAGEABSORB] 0
[EXPERIENCE] 4
[WEAPON] 40
[MONEYMIN] 0
[MONEYMAX] 2
[LOOT] 40 3
[LOOT] 35 2
[ENDLOOT]

The only really major thing you need to pay attention to is the loot listing; everything else is fairly
straightforward.

Every loot entry contains two values: the item ID to drop, and the percent chance that it drops. After
every loot entry (even if there are no entries), you absolutely must have an [ENDLOOT] tag.

Because of the way this is set up, enemies can drop any number of items that you want them to.

I'm going to forgo showing you most of the operator>> function, and just show you the little snippet
that loads in the loot entries:

t.m_loot.clear();
while(extract(p_stream, temp) != "[ENDLOOT]") {
 entityid id;
 int chance;
 p_stream >> id >> chance;
 t.m_loot.push_back(loot(id, chance));
}

In this code, t is an EnemyTemplate object, and p_stream is the stream the enemy template is being
extracted from. At the top of the code, the loot list is cleared (in case there is anything already in it;
see my note about reloading room databases in Chapter 9, "Maps, Stores, and Training Rooms").

Then, the code loops through the stream until the token "[ENDLOOT]" is found. For each entry, the ID
and the chance that the item is dropped are loaded into temporary local variables, and then pushed

onto the back of the m_loot list.

Enemy Class

The Enemy class is a proxy class. Basically, it looks like a full enemy, but it really holds only a small
amount of information.

Class Data

Here's the class definition with all function definitions removed:

class Enemy : public Entity {
protected:
 enemytemplate m_template;
 int m_hitpoints;
 room m_room;
 BasicLib::sint64 m_nextattacktime;
};

There are four attributes:

The corresponding template in the form of an enemytemplate class, which you haven't seen yet.
You can see, however, from the naming scheme that it's a database pointer to an EnemyTemplate/.

The enemy's hitpoints.

The room the enemy is in.

The next time the enemy may attack.

This last variable is explained more when I get around to the game loop later on in this chapter.

Class Functions

Since this class acts like a proxy into an enemy template, a number of functions enable you to
completely hide the fact that this class accesses a template:

// regular functions:
Enemy();
void LoadTemplate(enemytemplate p_template);

// plain accessors:
int& HitPoints() { return m_hitpoints; }
room& CurrentRoom() { return m_room; }
sint64& NextAttackTime() { return m_nextattacktime; }

// proxy accesors:
string& Name();
int Accuracy();
int Dodging();
int StrikeDamage();
int DamageAbsorb();
int Experience();
item Weapon();
money MoneyMin();
money MoneyMax();
list<loot>& LootList();

I've grouped the functions into three different categories: the regular functions, the plain accessors,
and the proxy accessors.

The constructor puts 0s into every attribute, so there's no need to show it to you. The LoadTemplate
function loads in an enemy's hitpoints from an enemy template:

void Enemy::LoadTemplate(enemytemplate p_template) {
 m_template = p_template;
 m_hitpoints = p_template->m_hitpoints;
}

Even though Enemys are Entitys, their m_name variable is not used. Instead, the variable is left empty,
to conserve memory (since enemy names are already stored in the corresponding enemy template).

You can see that the three plain accessors simply return the values of three of the data members (not
including the template).

The rest of the functions, however, are proxy functions, which means that they actually look up the
corresponding EnemyTemplate, and return the requested value. Here is the code for three of them:

std::string& Enemy::Name() { return m_template->Name(); }
int Enemy::Accuracy() { return m_template->m_accuracy; }
int Enemy::Dodging() { return m_template->m_dodging; }

Since m_template is an enemytemplate database pointer, you can use it to look up the corresponding
EnemyTemplate class, and return its values. Figure 10.2 shows a small example of how this works.

Enemy instances hold a small amount of data, but when you request things like accuracy and names,
they look up those values from an enemy template.

Figure 10.2. The system of enemies and enemy templates.

The rest of the functions are similar.

Stream Functions

Enemies can be streamed both into and out of C++ streams, utilizing the standard operator>> and
operator<<. There is absolutely nothing special about the code, so let me show you the format of an
Enemy class when written to disk:

[ID] 1
[TEMPLATEID] 1
[HITPOINTS] 6
[ROOM] 5
[NEXTATTACKTIME] 0

This shows that Enemy 1, which is an instance of enemy type 1 (as you saw earlier, "Rabid Monkey"
is template 1), currently has 6 hitpoints, is in room 5, and the next time the enemy can attack is 0.
You'll see later that the last value means that this enemy can attack the moment he sees a player.

Databases

I'm beginning to feel like a broken record here: "Here's the player database; here's the item database;
here's the room database...". Guess what? Here are the enemy databases! (I bet you didn't see that one
coming).

There are two enemy databases, as you saw earlier in Figure 10.1: one database to store enemy
templates, and one database to store enemy instances.

It is crucial to determine what kind of database will be optimal to use for each of these different
types. First you need to think about how they are used.

NOTE

Since you're storing the enemy templates inside of a vector array, the IDs of your templates
need to be contiguous, or else you'll have holes in your database; you'll have enemy templates
that just don't exist, but the database thinks they do.

Enemy Template Database

Enemy templates are loaded one time, from disk, and then never modified. If you're careful when you
create the enemy templates, they should have contiguous ID numbers (meaning that if you have 50
enemies, they should occupy IDs 1 through 50). Because of these properties, a vector-based database
sounds ideal, and that's what I use:

class EnemyTemplateDatabase : public EntityDatabaseVector<EnemyTemplate> {
public:
 static void Load();
};

The database simply uses one function to load the template data from disk. The file is
/enemies/enemies.templates. The Load function is similar to all the other database loading functions
you've seen in the past two chapters, so I'm not going to bother with it here.

Enemy Database

The enemy database stores all of the enemy instances within the game. These instances are far more
volatile than the templates. The instances are created whenever the game needs more enemies, and
they are deleted when the enemies die. It makes a lot more sense to use a map-based database for
these:

class EnemyDatabase : public EntityDatabase<Enemy> {
public:
 static void Create(entityid p_template, room p_room);
 static void Delete(enemy p_enemy);
 static void Load();
 static void Save();
};

There are two functions that deal with creating and deleting instances, and two functions dealing with
loading and saving. I'll skip the file functions (if you're interested, you can always look at the source,
but they basically loop through the enemies/enemies.instances file and load in individual enemy
instances) and go right into the creation and deletion functions.

Creating Enemy Instances

The game should be capable of quickly and painlessly creating new enemies. The EnemyDatabase
class has a function designed just for that purpose. It's a factory function, which means that you just
tell it what kind of enemy you want and where you want it, and the function creates the enemy for you.

NOTE

Factory generators are a popular method of generating actual instances of entities in MUDs. I
like the method so much that the BetterMUD uses it almost exclusively.

Here's the code:

void EnemyDatabase::Create(entityid p_template, room p_room) {
 entityid id = FindOpenID(); // find an open ID
 Enemy& e = m_map[id]; // get reference to enemy at ID

 e.ID() = id; // set its ID
 e.LoadTemplate(p_template); // load its template
 e.CurrentRoom() = p_room; // set its room

 p_room->AddEnemy(id); // add the enemy to its room
}

The function uses the EntityDatabaseVector::FindOpenID function to find the first ID in the map that
isn't being used. Once you have an ID, the function uses the map's operator[] to retrieve a reference
to the Enemy object bundled with that ID. (It doesn't matter that it doesn't exist. I showed you
previously that std::map::operator[] automatically creates entries that don't exist.)

After the ID of the enemy is set, the enemy's template is loaded, and the enemy's current room is set.
The final step is to add the enemy to the room.

Within the game, you can simply call the function like this:

EnemyDatabase::Create(1, 5);

That creates an enemy of type 1 in room 5.

Deleting Enemy Instances

Deleting enemy instances is a simpler processit must merely reverse the creation process:

void EnemyDatabase::Delete(enemy p_enemy) {
 p_enemy->CurrentRoom()->RemoveEnemy(p_enemy);
 m_map.erase(p_enemy);
}

The enemy is removed from its room, and then erased from the std::map that stores all the instances.
That's it!

Database Pointers

As with most of the previous entity types you've seen (players and items in Chapter 8, rooms in
Chapter 9), both enemy classes have corresponding database pointers.

These two lines are added to the SimpleMUD/DatabasePointer.h file:

DATABASEPOINTER(enemy, Enemy)
DATABASEPOINTER(enemytemplate, EnemyTemplate)

And these two lines are added to the .cpp file for the implementation of the pointer functions:

DATABASEPOINTERIMPL(enemy, Enemy, EnemyDatabase)
DATABASEPOINTERIMPL(enemytemplate, EnemyTemplate, EnemyTemplateDatabase)

Now you have access to two database pointer classes: enemy and enemytemplate. They are used just

like any other database pointer object within the SimpleMUD.

Game Loop

Entities are finally finished, so you can sigh in relief or have a party. Now, I'll show you the
marvelous game loop.

The game loop is a concept in SimpleMUD that handles everything that depends on timers. For
example, the databases need to be saved at particular time intervals, players need to heal, and
enemies need to look for players to attack. The game loop manages all these functions.

NOTE

Event-based systems are really efficient, because they ensures that you do work only when
events occur, rather than constantly checking to see if something happened. How ever, there's
really no way you can ever go to a complete event based system, which is why a simple game-
loop is needed.

Up until this point, the SimpleMUD was purely an event-based system; everything that happened in
the game was triggered by something a connected player sent to the game. The game loop adds some
independent initiative to the game, so that it will actively perform actions when it needs to, instead of
just responding to player input.

The game loop is stored in a class appropriately named GameLoop, which you can find in the files
/SimpleMUD/GameLoop.h and .cpp. Here's a listing of the class:

class GameLoop {
public:
 GameLoop() { LoadDatabases(); }
 ~GameLoop() { SaveDatabases(); }

 void LoadDatabases(); // load all databases
 void SaveDatabases(); // save all databases
 void Load(); // load gameloop data
 void Save(); // save gameloop data
 void Loop(); // perform one loop iteration
 void PerformRound(); // perform combat round
 void PerformRegen(); // perform enemy regen round
 void PerformHeal(); // perform healing round

protected:
 BasicLib::sint64 m_savedatabases;
 BasicLib::sint64 m_nextround;
 BasicLib::sint64 m_nextregen;
 BasicLib::sint64 m_nextheal;
};

First, take a look at the constructor and destructor. They call the LoadDatabases and SaveDatabases
functions respectively. So whenever you create a GameLoop object, all of the databases are

automatically loaded from disk, and whenever a GameLoop object is destroyed, all the databases are
saved to disk. You'll see this in action when I show you Demo10-01.cpp later on in this chapter.

Next look at the data: There are four 64-bit integers, representing four different times. These four
times are in system time (which is kept by the Game::s_timer timer object), and indicate times when
the following events should occur: the next time the databases save, the next combat round, the next
monster regen, and the next player healing.

I'll get more into system timing in a little bit.

NOTE

System time is kept in milliseconds, starting from 0, inside the Game::s_timer object. For
example, a system time of 10,000 ticks would mean that the system has been running for 10,000
ticks / 1000 ticks/ second = 10 seconds. If GameLoop::m_savedatabases is 900,000 ticks (900
seconds, or 15 minutes), that means that the system will save the databases 15 minutes after the
system has started.

Loading and Saving Databases

When the database loading/saving functions are called, they are designed to automatically load or
save every database that needs to be loaded or saved to disk. For example, the
GameLoop::LoadDatabase function is as follows:

void GameLoop::LoadDatabases() {
 Load();
 ItemDatabase::Load();
 PlayerDatabase::Load();
 RoomDatabase::LoadTemplates();
 RoomDatabase::LoadData();
 StoreDatabase::Load();
 EnemyTemplateDatabase::Load();
 EnemyDatabase::Load();
}

The Load function deals with loading the four system-time variables from disk.

Saving is similar, but since not all databases need to be saved back to disk, the function is simpler:

void GameLoop::SaveDatabases() {
 Save();
 PlayerDatabase::Save();
 RoomDatabase::SaveData();
 EnemyDatabase::Save();

}

In addition to the time variables saved with the GameLoop::Save function, only players, rooms, and
enemies need to be saved to disk.

Loading and Saving Time Variables

The time variables are saved within a text file entitled game.data. When you start your MUD for the
first time, the game time starts at 0 and increases based on how long it's running. When the game has
been up for a period of time, and is then shut down, the MUD should save the time at which it was
sent to disk, so you know what time it is when you turn the game back on.

Saving

The GameLoop::Save function saves the time variables to disk:

void GameLoop::Save() {
 std::ofstream file("game.data");
 file << "[GAMETIME] ";
 insert(file, Game::GetTimer().GetMS()); file << "\n";
 file << "[SAVEDATABASES] ";
 insert(file, m_savedatabases); file << "\n";
 file << "[NEXTROUND] ";
 insert(file, m_nextround); file << "\n";
 file << "[NEXTREGEN] ";
 insert(file, m_nextregen); file << "\n";
 file << "[NEXTHEAL] ";
 insert(file, m_nextheal); file << "\n";
}

I've used the BasicLib::insert function to insert the times into the text file (due to the fact that VC6
does not stream 64-bit integers properly). As you can see, the function essentially writes the current
system time, and then the four other time variables. Here's a sample listing of the datafile:

[GAMETIME] 3917661
[SAVEDATABASES] 4500000
[NEXTROUND] 3918000
[NEXTREGEN] 3970000
[NEXTHEAL] 3960000

Since the times are millisecond-based, you can tell that the server represented by this file has been up
for about an hour, and that the next round will occur in less than one second from the current time
(3918000 minus 3917661 = 339, so in 339 milliseconds, the next combat round for enemies will
occur), and that the database is due to be saved in 9 minutes.

Loading

Loading the variables is slightly more complicated. In a "clean" installation of SimpleMUD, the
game.data text file won't exist, so all five timers must be reset to the default values.

First, let me show you the default value definitions:

sint64 DBSAVETIME = minutes(15);
sint64 ROUNDTIME = seconds(1);
sint64 REGENTIME = minutes(2);
sint64 HEALTIME = minutes(1);

These values determine how much time should pass between certain actions. For example, the
databases should be saved every 15 minutes (the seconds and minutes helpers are in the BasicLib),
combat rounds occur every second, monsters regen every two minutes, and players heal once a
minute. I refer to these values as delta values. (Delta is a mathematical term commonly associated
with change.)

Now the loading function:

void GameLoop::Load() {
 std::ifstream file("game.data"); // open file
 file >> std::ws; // eat whitespace
 if(file.good()) { // detect if file is good
 std::string temp;
 sint64 time;
 file >> temp; extract(file, time); // read system time
 Game::GetTimer().Reset(time); // reset timer to that time

 // read other variables:
 file >> temp; extract(file, m_savedatabases);
 file >> temp; extract(file, m_nextround);
 file >> temp; extract(file, m_nextregen);
 file >> temp; extract(file, m_nextheal);
 }

The previous code segment is executed when the game.data file exists. It loads in the current system
time, and resets the Game's timer object to the current system time, and then proceeds to load the other
variables.

If the file is corrupted, however, this code is executed:

 else {
 Game::GetTimer().Reset();
 m_savedatabases = DBSAVETIME;
 m_nextround = ROUNDTIME;
 m_nextregen = REGENTIME;
 m_nextheal = HEALTIME;
 }
 Game::Running() = true;
}

The game timer is reset to 0, and the four time values are set to their deltas, meaning that the first
database saving will occur at 15 minutes, and so on.

Finally, the game is told to start running.

The Loop

In the SimpleMUD, the GameLoop::Loop is called once every cycle, and this function takes care of the
various time-based activities:

void GameLoop::Loop() {
 if(Game::GetTimer().GetMS() >= m_nextround) {
 PerformRound();
 m_nextround += ROUNDTIME;
 }

 if(Game::GetTimer().GetMS() >= m_nextregen) {
 PerformRegen();
 m_nextregen += REGENTIME;
 }

 if(Game::GetTimer().GetMS() >= m_nextheal) {
 PerformHeal();
 m_nextheal += HEALTIME;
 }

 if(Game::GetTimer().GetMS() >= m_savedatabases) {
 SaveDatabases();
 m_savedatabases += DBSAVETIME;
 }
}

The function checks the four timer variables to see if their time has come. For example, if
m_nextround is 4534000, and the timer is at 4534013 (13 milliseconds later), the PerformRound

function is called, and ROUNDTIME (1 second, or 1000 milliseconds) is added to m_nextround, making
it 45345000. Since the timer is not guaranteed to be called on 1-millisecond boundaries, you must
check to see if the timer has gone past the time at which one of the actions was set to execute. The
function does the same for the other three time variables.

NOTE

This is an inefficient method of timing, but it serves its purpose in SimpleMUD. Imagine if you
had more than four different timed events. The function would become large and wasteful in
terms of processing power. It gets even worse when you want enemies to have different attack
times, instead of all enemies in the game attacking on the same game loop. I will be exploring
much better methods of utilizing timers in the next part of the book.

Performing the Combat Round

Whenever the game decides to perform a combat round, the GameLoop::PerformRound function is
called. This function simply goes through every enemy in the game, and if the enemy sees a player in
the same room, it is told to attack:

void GameLoop::PerformRound() {
 EnemyDatabase::iterator itr = EnemyDatabase::begin();
 sint64 now = Game::GetTimer().GetMS();

 while(itr != EnemyDatabase::end()) {
 if(now >= itr->NextAttackTime() && // make sure enemy can attack
 itr->CurrentRoom()->Players().size() > 0) // check players
 Game::EnemyAttack(itr->ID()); // tell enemy to attack
 ++itr;
 }
}

For every enemy, two things are checked: Can the enemy attack, and are there any players in the
room? Enemies keep track of the next time they are allowed to attack, which is based on which
weapon they are using. You'll see how this works when I show you the Attack function.

If there are no players in the room, there's obviously no one for the enemy to attack, so the function
doesn't do anything.

Regenerating Enemies

Every two minutes, the game performs an enemy regeneration cycle, in which it tries to put more
enemies into the rooms that have too few. As you saw in Chapter 7, rooms can have one type of

enemy, and each room can have a maximum number of enemies per room.

The process for this entails looping through every room, and determining if a new enemy should be
spawned:

void GameLoop::PerformRegen() {
 RoomDatabase::iterator itr = RoomDatabase::begin();
 while(itr != RoomDatabase::end()) {
 if(itr->SpawnWhich() != 0 && // make sure room can spawn enemies
 itr->Enemies().size() < itr->MaxEnemies()) // don't overflow
 {
 // tell the database to create a new enemy in the room
 EnemyDatabase::Create(itr->SpawnWhich(), itr->ID());
 Game::SendRoom(red + bold + itr->SpawnWhich()->Name() +
 " enters the room!", itr->ID());
 }
 ++itr;
 }
}

It's not a complex process; it uses the EnemyDatabase::Create function to create enemies in each room
that needs them. The loop checks two conditions per room: First, it determines if enemies should be
created (because rooms with a SpawnWhich ID of 0 shouldn't spawn any enemies), and second, it
decides if more enemies can fit into the room.

If these conditions are met, a new enemy is created, and a message is sent to the room stating that the
enemy has entered the room.

NOTE

This is also an inefficient process, but it works for SimpleMUD. In the next part of the book, I
explore more efficient methods of filling your realm with enemies, as well as other things, such
as the impact on the economy. If you think about it, an endless supply of enemies means an
endless supply of loot, and therefore an endless cycle of inflation.

Regenerating Health

It is typical in MUD-like games for users to have regenerating health. Having to constantly buy
healing potions can get annoying to your players after a while, so regenerating is usually used as a
solution.

Once every minute, the game goes through all the players, and if they are logged in, the players'
hitpoints are regenerated:

void GameLoop::PerformHeal() {
 PlayerDatabase::iterator itr = PlayerDatabase::begin();
 while(itr != PlayerDatabase::end()) {
 if(itr->Active()) {
 itr->AddHitpoints(itr->GetAttr(HPREGEN));
 itr->PrintStatbar(true);
 }
 ++itr;
 }
}

As you can see, the player's HPREGEN attribute is added to his hitpoints, and his statbar is updated.

NOTE

Note that true is passed into the PrintStatbar function. When the parameter is true, it tells the
game that this is just a trivial update of the hitpoints, so if the player is busy typing something
into his Telnet console, the hitpoint update doesn't overwrite what he's typing. The function
essentially does nothing when there is something in the player's input buffer.

Attacking and Dying

Finally, we reach the best part of the game controlling what happens when enemies attack and when
they kill players. Even though these functions are called by the GameLoop, they reside within the Game
class, so I can keep the logic in one central place.

Here are the declarations of the two functions that control this:

void EnemyAttack(enemy p_enemy);
void PlayerKilled(player p_player);

The Attack function tells the game that p_enemy should find a player and attack him. The Killed
function tells the game that p_player has died.

When Enemies Attack!

The Attack function follows the basic combat rules I defined in Chapter 7. Before I get into that,
however, the enemy first needs to figure out who he wants to attack. This is handled with the
assistance of the std::advance function, which takes an iterator, and moves it forward however many
places you specify:

void Game::EnemyAttack(enemy p_enemy) {
 Enemy& e = *p_enemy; // get enemy
 room r = e.CurrentRoom(); // get room
 std::list<player>::iterator itr = r->Players().begin();
 std::advance(itr, BasicLib::RandomInt(0, r->Players().size() - 1));

Basically, the previous code skips to a random player in the room, which means that the enemy
attacks a random person every round. Although these random attacks are not realistic, I did this for
"security" reasons: It prevents people from leaving the room, letting the enemy concentrate on
someone else in the room, and then come back in.

The next part of the code calculates how much damage is done by the enemy's current weapon:

 Player& p = **itr; // get player
 sint64 now = Game::GetTimer().GetMS();
 int damage;
 if(e.Weapon() == 0) { // fists, 1-3 damage, 1 second swingtime
 damage = BasicLib::RandomInt(1, 3);
 e.NextAttackTime() = now + seconds(1);
 }
 else { // weapon, damage, and swing time based on weapon attributes
 damage = BasicLib::RandomInt(e.Weapon()->Min(), e.Weapon()->Max());
 e.NextAttackTime() = now + seconds(e.Weapon()->Speed());
 }

If the enemy doesn't have a weapon, it is assumed the enemy will damage things in the 13 range, with
a swing time of one second. (This means that the enemy can attack again in one second.) If the enemy
is using a weapon, the damage range and swing time are taken directly from that enemy's weapon
object.

Next, the game figures out if the enemy hit the player.

 if(BasicLib::RandomInt(0, 99) >= e.Accuracy() -
 p.GetAttr(DODGING))
 {
 Game::SendRoom(white + e.Name() + " swings at " + p.Name() +
 " but misses!", e.CurrentRoom());
 return;
 }

 damage += e.StrikeDamage();
 damage -= p.GetAttr(DAMAGEABSORB);
 if(damage < 1)
 damage = 1;

The code generates a random number from 0 to 99, and if the accuracy of the enemy minus the dodging
of the player is more than or equal to the random number, the enemy missed.

For example, an enemy has an accuracy of 80, and the player has a dodging level of 20. Since 80 20 =
60, if the random number is between 60 and 99, the enemy misses. That means that the enemy hits the
player about 60% of the time. If the enemy misses, the function returns.

NOTE

Calculating whether the enemy hit a player could have been accomplished earlier, but it turns
out that waiting until this point saves code. No matter what, when an enemy swings, its next
attack time should be increased. So while you're calculating the next attack time, why not
calculate the damage as well?

If the enemy does hit the player, the enemy's strike damage is added to the overall damage value, and
the player's damage absorption is subtracted. This means that if the damage was 5, the enemy's SD is
1, and the player's DA is 3, then the actual damage dealt is 5 + 1 3 = 3. Finally, the damage is checked
to see if it is below 1, and if so, it's reset to 1.

You don't want enemies doing negative damage (that is, adding hitpoints), or 0 damage to players
(which would mean that the enemy missed, but we've already determined that he hit the player).

Here's the final chunk of code:

 p.AddHitpoints(-damage);
 Game::SendRoom(red + e.Name() + " hits " + p.Name() + " for " +
 tostring(damage) + " damage!", e.CurrentRoom());
 if(p.HitPoints() <= 0)
 PlayerKilled(p.ID());
}

The damage is removed from the player, and the room is told that the player got hit. Finally, if the
player's hitpoints are 0 or lower, the game is notified that the player was killed.

Live and Let Die

As in real life, everyone dies someday. In a dangerous world such as the SimpleMUDs, death comes
often if you're not careful.

Whenever a player is killed, the Game::PlayerKilled is called, and the unfortunate player is
penalized. A bunch of things need to happen, so I'm splitting up the code into segments:

void Game::PlayerKilled(player p_player) {
 Player& p = *p_player; // get the player
 Game::SendRoom(red + bold + p.Name() + " has died!", p.CurrentRoom());
 money m = p.Money() / 10; // calclate how much money to drop
 if(m > 0) {
 p.CurrentRoom()->Money() += m;
 p.Money() -= m;
 Game::SendRoom(cyan + "$" + tostring(m) +
 " drops to the ground.", p.CurrentRoom());
 }

The function in this code segment tells the room that a player has died, calculates how much money to
drop, and then drops it.

The next part of code drops a random item:

 if(p.Items() > 0) { // make sure the player has an item
 // loop through random indexes until you hit a valid item:
 int index = -1;
 while(p.GetItem(index = RandomInt(0, PLAYERITEMS - 1)) == 0);

 item i = p.GetItem(index); // get the item to drop
 p.CurrentRoom()->AddItem(i); // add it to the room
 p.DropItem(index); // remove it from the player

 Game::SendRoom(cyan + i->Name() + " drops to the ground.",
 p.CurrentRoom());
 }

The function essentially performs a "random bounce" to find an inventory item to drop. This is
somewhat awkward, but it's simple and it works for the SimpleMUD. Just keep in mind that this could
take a while to find an item, if the player isn't carrying much.

After an item is found, the item is added to the room and removed from the player's inventory, and the
room is told that the item was dropped.

The final part of the code subtracts 10% experience, and moves the player to Town Square:

 int exp = p.Experience() / 10;
 p.Experience() -= exp; // subtract 10% exp

 p.CurrentRoom()->RemovePlayer(p_player);
 p.CurrentRoom() = 1; // move player to room 1
 p.CurrentRoom()->AddPlayer(p_player);

 // set player HP to 70%
 p.SetHitpoints((int)(p.GetAttr(MAXHITPOINTS) * 0.7));

 // send messages:
 p.SendString(white + bold +
 "You have died, but have been ressurected in " +
 p.CurrentRoom()->Name());
 p.SendString(red + bold + "You have lost " + tostring(exp) +
 " experience!");
 Game::SendRoom(white + bold + p.Name() +
 " appears out of nowhere!!" , p.CurrentRoom());
}

The player's hitpoints are reset to 70% of maximum. You obviously don't want the player to be
ressurected with 0 (or less!) hitpoints, but you also don't want the player to start off with full hitpoints
either, so 70% is a good tradeoff.

The last thing the function does is print out messages to the player and to the people in the room in
which the player respawns, telling them about his entrance.

Game Additions

The two main additions to this version of the MUD are enemies and the game loop, but additions have
been made to the old versions as well. You've already seen the EnemyAttack and PlayerKilled
functions that were added to the Game class. Along with those additions, there are two more combat
functions, and two new commands ("attack" and "reload enemies") added to the Game class. These
constitute a bunch of tiny changes and additions.

Other Combat Functions

The other two combat functions are PlayerAttack (which is executed when a player attacks an enemy)
and EnemyKilled (which runs when an enemy is killed).

The PlayerAttack function is similar to EnemyAttack, which is a result of the design of the game.
Since players and enemies are two completely different entities within the game, you need
specialized functions to perform attacks in both ways.

NOTE

Having two functions that do essen tially the same thing is usually a sign that you're doing
something wrong. A more flexible MUD would have enemies and players be part of the same
entity type, or even inheriting from a common base class. If you decide to change the way
combat is performed in SimpleMUD, you'll end up needing to change both functions, which can
be a major source of errors. BetterMUD ends up treating players and enemies as the same
entity type in order to solve this problem.

Attacking Enemies

The first part of the PlayerAttack function (where the function finds the target) is the only thing that
differs from the EnemyAttack function. In the enemy version, the enemy picks a random player to
attack, but whenever a player attacks an enemy, he has usually typed in the name of the enemy (for
example attack goblin), so the function needs to take that text and figure out which enemy the player
is trying to attack:

void Game::PlayerAttack(const string& p_enemy) {
 Player& p = *m_player;
 sint64 now = Game::GetTimer().GetMS();

 // check if player can attack yet
 if(now < p.NextAttackTime()) {
 p.SendString(red + bold + "You can't attack yet!");
 return;

 }

 // find the enemy, and if it isn't found, tell player.
 enemy ptr = p.CurrentRoom()->FindEnemy(p_enemy);
 if(ptr == 0) {
 p.SendString(red + bold + "You don't see that here!");
 return;
 }

Remember that since this function is within the Game handler, it knows which player is attacking
(m_player). The parameter for the function contains the name of the enemy the player wishes to attack.

The rest of the function is essentially the same; it calculates the damage, swing time, whether the
enemy is hit, and so on. When PlayerAttack detects that an enemy has died, it calls the EnemyKilled
function.

Killing Enemies

The process that occurs when an enemy is killed is much different from the process that occurs when
players die. The most obvious difference is that enemies don't have to be immediately respawned,
since the game loop already takes care of that.

Another difference is that the function needs to go through the enemy's loot-list and figure out what to
drop, as well as how much money to drop, and how much experience to add to the player who killed
it.

Here's the first part of the code, which notifies a room about an enemy being killed and drops its
money:

void Game::EnemyKilled(enemy p_enemy, player p_player) {
 Enemy& e = *p_enemy;
 SendRoom(cyan + bold + e.Name() + " has died!", e.CurrentRoom());

 // drop the money
 money m = BasicLib::RandomInt(e.MoneyMin(), e.MoneyMax());
 if(m > 0) {
 e.CurrentRoom()->Money() += m;
 SendRoom(cyan + "$" + tostring(m) +
 " drops to the ground.", e.CurrentRoom());
 }

The parameters of the function are the instance ID (not template ID) of the enemy who has died, and
the player ID of the player who killed him.

The code uses a random number generator to generate the amount of money that has dropped, and then
drops it, and tells everyone about the new fortune on the floor.

The next piece of code drops all the loot:

 std::list<loot>::iterator itr = e.LootList().begin();
 while(itr != e.LootList().end()) {
 if(BasicLib::RandomInt(0, 99) < itr->second) {
 e.CurrentRoom()->AddItem(itr->first);
 SendRoom(cyan + (itr->first)->Name() +
 " drops to the ground.", e.CurrentRoom());
 }
 ++itr;
 }

The code loops through every entry in the loot list and calculates if the item needs to be dropped. This
is done by generating a random number from 0 to 99, and checking to see if the loot's percent chance
is less than this number. For example, a loot entry with a probability of 20 would be dropped
whenever the numbers 019 are generated (20 numbers out of 100, or 20%), and an entry with a
probability of 0 would never be dropped (since the generator can never generate numbers lower than
0). Entries with a probability of 100 will always be dropped (because the generator always generates
numbers below 100).

The last piece of code rewards the slayer and removes the enemy from the game:

 Player& p = *p_player;
 p.Experience() += e.Experience();
 p.SendString(cyan + bold + "You gain " +
 tostring(e.Experience()) + " experience.");
 EnemyDatabase::Delete(p_enemy);
}

That's all there is to combat in SimpleMUD.

New Game Commands

The Game class must be augmented to handle the two new commands introduced in this version of the
MUD: attack and reload enemies. As usual, these commands are added to the large Game::Handle
function found within /SimpleMUD/Game.cpp.

Here's the first one:

if(firstword == "attack" || firstword == "a") {
 PlayerAttack(RemoveWord(p_data, 0));
 return;
}

This simply calls the PlayerAttack function you saw earlier with the word attack removed from the
string. (For example, attack goblin would pass goblin into the function.) You can also use the letter
a as a shortcut for the whole word, as in a goblin.

Code for reloading enemies is added in the middle of the reload command you read about in the two
previous chapters. The new code block is in bold and the code blocks above and below it are for
reference.

else if(db == "stores") {
 StoreDatabase::Load();
 p.SendString(bold + cyan + "Store Database Reloaded!");
}
else if(db == "enemies") {
EnemyTemplateDatabase::Load();
p.SendString(bold + cyan + "Enemy Database Reloaded!");
}
else {
 p.SendString(bold + red + "Invalid Database Name");
}
return;

Essentially, the code tells the enemy template database to load all its templates. The instance database
cannot be reloaded for the same reasons I gave in the previous chapter about not being able to reload
room data, only room templates.

Additional Code Changes

Many changes still need to be made to the code to support the addition of enemies into the
SimpleMUD.

Database Pointer Placeholders

First and foremost, these two lines need to be removed from Room.h:

typedef entityid enemytemplate; // REMOVE THIS LATER
typedef entityid enemy; // REMOVE THIS LATER

This is because those two classes are now defined in DatabasePointer.h, and the lines would cause a
compiler error.

New Room Functions

The next step is to add three functions to the Room class:

enemy FindEnemy(const string& p_enemy);
void AddEnemy(enemy p_enemy);
void RemoveEnemy(enemy p_enemy);

You saw the code presented earlier in this chapter using these three functions to find, add, and remove
enemies in rooms. These three functions are similar to the FindItem, AddItem, and RemoveItem
functions, so I'm not going to show you the code here.

NOTE

The AddEnemy function's logic is slightly different from AddItem . The item function automatically
deletes items once it reaches the limit of 32 items, as you saw in Chapter 9, but the enemy
version of the function doesn't do this. Instead, the maxi mum number of enemies in a room is
determined by the MaxEnemies function of the Room class. Enemies are never deleted, because the
spawning function makes sure the maximum is never exceeded.

Printing Enemies

The final addition is within the Game::Printroom function, where code is added to print a list of all
the enemies within a room. The code for printing enemies is added after the code that prints players,
but it's really not that interesting, so I'll show you the results of the code instead:

Alley
You're in a dark alley, where shadows obscure your view and hide
dangerous things...
exits: NORTH SOUTH
People: mithrandir
Enemies: Rabid Monkey, Rabid Monkey, Rabid Monkey

Now players always know what enemies are in a room with them.

Main Module Changes

The main module for this version of SimpleMUD is contained within the Demo10-01.cpp file, and it

is much different from the versions you saw in Chapters 8 and 9.

The main module in the two previous versions explicitly called the loading and saving functions of
the various databases, but you don't need to do that anymore. The GameLoop class has functions to do
that for you.

So instead of manually loading all the databases in the main module, you'll declare a GameLoop object
instead. Later on, in the actual while-loop, the GameLoop objects' Loop function is called. Here's the
main part of the main function, with the important sections bolded:

try {
 GameLoop gameloop;

 ListeningManager<Telnet, Logon> lm;
 ConnectionManager<Telnet, Logon> cm(128, 60, 65536);
 lm.SetConnectionManager(&cm);
 lm.AddPort(5100);

 while(Game::Running()) {
 lm.Listen();
 cm.Manage();
 gameloop.Loop();
 ThreadLib::YieldThread();
 }
}

The loop object is created at the top of the previous code segment. The loop object automatically
loads all databases when it is created, so you don't have to do that here anymore.

The next bolded line shows the function that calls GameLoop::Loop inside the main while-loop. This
ensures that the loop object performs all the necessary timer-based actions (enemy attacking,
spawning, player health regeneration, and database saving).

The final bolded element is the final bracket on the last line of the code. When your code exits this
try-block, the GameLoop object goes out of scope, which means that its destructor is called. A
GameLoop's destructor automatically saves all of the databases that need to be saved, so there's no
need to manually call those earlier.

Running the Final Version

Now you're ready to run the final version of SimpleMUD. You would compile it just as you compiled
the previous two MUDs. (Complete instructions are in Appendix A on the CD.) Once you have
SimpleMUD compiled, you can run the MUD, then Telnet into it on port 5100 (just as with the previous
versions), and play around!

Figure 10.3 shows an example of my ultra-powerful (cheating!) character beating the tar out of a poor
monkey and a thug. It doesn't show up well in black-and-white, but the colors used by the server in a
Telnet client make the output much clearer.

Figure 10.3. A player attacking and killing a rabid monkey and a thug within the
SimpleMUD.

Figure 10.4 shows a more active battle, with a new player and the thug again. Woe is me. The player
fought in vain and died. You can see the player drop money and an item when he dies.

Figure 10.4. A player (who isn't cheating) valiantly fighting a dastardly thug.

You may notice that the figures show some text that looks a little strange. For example, you can see in
Figure 10.4: [9/12] aThug swings at Gandalf but misses! The letter "a" before "Thug" seems out
of place, but that's just the nature of Telnet.

I typed the letter a when I was trying to attack the thug. But before I could press Enter, the thug
attacked me, and the message that he attacked me was added onto the end of whatever I had already
typed in.

Depending on what kind of Telnet client you use, you may or may not see this behavior. I was using
the Telnet program of Windows XP.

Summary

Congratulations! You have now completed a full, albeit simple, MUD. That was a lot of work
involved for a game concept that many consider "primitive." Writing stable server code is a daunting
and difficult task, however.

Crashing simply is not an option for servers. You need to have these things run for days at a time, and
this is much more difficult to do than a regular game.

Anyway, I hope you've learned a good deal about the basics of making a MUD. In the next part of the
book, when I show you the BetterMUD, I'm not going to be nearly as "code oriented" as I was with
SimpleMUD. Instead, I'm going to focus on general design issues instead of the nitty-gritty details. By
this point, you should have a somewhat solid understanding of simple MUD-like server programs.

Let me go over everything you should have learned in this part of the book.

In Chapter 8, you learned how to:

Design a handler system to act as an intermediary between the SimpleMUD and players

Design a login system

Design a simple alternate-state handler to handle player statistics editing

Design a simple command parsing system

Build simple template database classes to minimize the amount of code repetition required

Build a simple smart-pointer class to seamlessly interact with the databases

Design players for a simple combat-oriented MUD

Design items and understand how they interact with players

In Chapter 9, you learned how to:

Design a simple global map system

Add stores and training rooms to the game

Use simple economic interaction via stores

Connect players, items, rooms, and stores

And in this chapter, you learned how to:

Implement enemies

Use a simple instance/template system for enemies

Implement a simple game loop that takes care of timed events

Handle player/enemy combat

Handle player/enemy death

Connect everything together, creating a full MUD

I would once again like to invite you to play on my version of SimpleMUD, running on
telnet://dune.net:5100. It may not be too active, because most people would probably prefer playing
around in BetterMUD, but if you're interested, I'll have it running.

Essentially, what you just learned how to make was a flexible-data MUD, with hard-coded physics
and logic. If you ever decide to expand the codebase, you should be aware that expanding the logic
for SimpleMUD (that is, controlling how enemies and items act), you might find it a difficult task.
This is one of the things you will learn how to fix in the next section.

Now, off to BetterMUD!

Part THREE: Creating a BetterMUD

 11 The BetterMUD

 12 Entities, Accessors, and Databases

 13 Entities and Databases Continued

 14 Scripts, Actions, Logic, Commands

 15 Game Logic

 16 The Networking System

 17 Python

 18 Making the Game

Chapter 11. The BetterMUD
This is where the book starts to get exciting. If you didn't have your fill of fun with designing the
SimpleChat and SimpleMUD, then I'm sure you'll enjoy creating the BetterMUD.

SimpleMUD was a basic MUD, which I'm sure is obvious from its name. Unfortunately, even though
it was simple, it still took considerable work to make a stable and robust server application. The
SimpleMUD, in its final form, was 5,500 lines of actual code (about 9,000 with comments and
whitespace). That's a lot of code for a simple project, especially if you're one person.

In this section of the book, you will learn how to make a far more complex MUD the BetterMUD.

In this chapter, you will learn to:

Understand the limitations and flaws of the SimpleMUD

Expand the SimpleMUD

Give up the idea of expanding the SimpleMUD in favor of making a BetterMUD

Appreciate the importance of abstracting the physics of a game from its logic

Understand the major entities involved in the BetterMUD

Idea Behind the BetterMUD

In many ways, the BetterMUD is simpler than the SimpleMUD, but in other ways, it is more complex.
That may sound like a contradiction, but as I explain, it should make more sense.

Flaws of SimpleMUD

If you've ever played an established MUD before, you know that the SimpleMUD is really dry. The
most you can do is run around killing people and buying stuff. I got bored with it in a few days. As
one of my friends affectionately told me, "The SimpleMUD is like a MUD with attention
deficit/hyperactivity disorder (ADHD)."

NOTE

As I write these words, SimpleMUD has consumed exactly 7 minutes and 59 seconds of CPU
time over the past 33 days, and is using 0.1% of the system memory. The CPU time is kept
really low through thread yielding, and the memory usage is kept low through the automatic
management of STL containers. Believe meknowing about those tools is valuable.

As a learning experience, it was pretty cool, though. You learned to make a persistent world, and if
you're new to MUD programming, you have probably never made a program that remained active for
longer than a few hours. As I'm writing this, my version of the SimpleMUD (on Dune.net) has been
running for 33 days solid, and that's a long time for a program to run, so I hope the SimpleMUD was a
valuable learning experience for you.

NOTE

Your players become especially angry when you make a change, hit compile, and the compile
fails. At that point, you spend another hour or two tracking down the new bugs you just created,
while your players can't log on, and they constantly message you asking, "When will the MUD
be back up!?" Believe me, this will happen; I know from experience. It gets even worse if your
players have paid to play on your MUD, because they expect a certain quality of service for
something they pay for. Your players don't have much leverage if the MUD is free, though.

Another flaw of the SimpleMUD is its static nature. To change anything but the physical data, you
have to stop the MUD, make the code changes, and then recompile it. This can become a significant
problem if you continuously make changes, because it interrupts the community and angers your
players.

So basically, all you can do to expand the SimpleMUD while it is running is to add new rooms,
monsters, items, and stores, and that quickly becomes boring.

You can't do anything special with items, besides using them as weapons, armor, or healing potions.
Monsters can't move around. There's no player versus player combat, and so on. I could make a list a
mile long of the things that SimpleMUD is missing.

Example of Extending SimpleMUD

So, now you've just read that the SimpleMUD is too simple, but the BetterMUD is in some ways
simpler than SimpleMUD. No, I'm not on drugs (though I may be crazy anyway). I'm being completely
serious here.

Imagine this scenario for a generic MUD. There's a player who can create medical potions from herbs
found in the ground in a forest. Since herbs are plants that grow abundantly in forests, you have a few
options for implementation.

Thinking in SimpleMUD terms, the naive way of implementing this scenario is to hack a new check
into the GameLoop module, and every 24 hours or so, it would fill up the room with 32 herbs (the
maximum number of items allowed per room in the SimpleMUD). This method has several
downsides:

All items remaining in the room at the end of the day are destroyed, since the SimpleMUD
destroys the oldest items first when you go over the limit of 32.

Walking into the room will treat you to a description of "Herb, Herb, Herb, Herb, Herb, Herb,
Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb,
Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb, Herb". That looks annoying on
this page, and that will certainly look annoying to your players.

Okay, so scratch the 24-hour refill method. Perhaps you could make a one-hour refill. Every hour,
generate another herb? Or better yet, make a check to see if there is an herb in the room, every hour,
and if not, then generate one?

As you can see, we're getting somewhere, but the process still doesn't correspond to how herbs grow.
Obviously, new plants don't appear out of nowhere every hour, and even if this is just a game, it still
looks cheesy. In reality, when you walk through a forest, there are hundreds of different plants, and
that's the sense you'd like to convey in the game.

So an even better method would be to make this type of check on a room: "If player picks an herb,
create a new one." Functionally, this is a good method in terms of what it accomplishes, until you start
thinking about where you're going to put the code.

From my vantage point, it looks as if this code would go somewhere within the Game::GetItem
function. (See Chapters 8, "Items and Players," 9, "Maps, Stores, and Training Rooms," and 10,
"Enemies, Combat, and the Game Loop," if you are unfamiliar with the layout of the SimpleMUD.) I
would like to strongly caution you against doing so, however.

What would the code look like? Perhaps something like this (in pseudo code):

if player.room == HERBROOM and item == HERB
 then insert new herb

That seems simple enough, at first. Then you realize: HERBROOM and HERB are hard-coded into the game
now; and if you move the room, or change the herb to something else, your game still thinks that it
needs to generate that item within that room. You may end up with some interesting side effects if you
change your data around a lot.

At this point, you might be saying to yourself, "Well, it's only one item and one room; I can remember
not to change them!" Sure, right now you remember. Next week you might remember as wellheck,
maybe even next year. But what if you let someone else edit your files? Will he remember? What if
you make more hacks like that in other rooms? Eventually you will have so many hacks that you won't
remember which items and rooms should not be modified.

So you can see that hard-coding is a bad method after all. And you may have thought up a better
alternative such as this: adding a piece of data to a room with this type of code "room respawns item
X when picked up".

Hey, that works! Then in the game, you can check:

if player.room.respawnitem == item_you_are_picking_up
 then insert new item_you_are_picking_up

Awesome! Well, not quite. Feel free to hit your head on a table right now. I know this must be
frustrating to see me shoot down so many different ideas, but we're almost there.

NOTE

If you look closely at Figure 11.1, you'll notice that its items are sorted by time. I did this for a
good reason; you can reap significant optimization ben efits by storing items in a sorted manner.
When the items are sorted by time, you can make certain assumptions about the data. For
example, if you know that the top item has the lowest time, you know that every item below it
has a higher time. If you check the registry at time 9,000 and see that the top item has a spawn
time of 10,000, you know that you don't have to spawn anything, and you don't have to bother
checking anything else in the registry. This speeds up operations significantly. Sorting is an
expensive operation, but luckily the STL has a priority_queue container that has relatively

quick inser tions and deletions (O(log n) times, for those of you who know about algorith mic
analysis), and the container handles the sorting for you. I'll touch on this subject again when
explaining the BetterMUD timer system in Chapter 15.

Figure 11.1. The operation of a theoretical item respawn registry, which manages
which items the game respawns and when.

What is the problem with this method? For starters, it adds extra data to every room in the game. How
many rooms are you going to have that respawn items in your game? Probably one or two, maybe a
dozen or two at most. So if you have 1,000 rooms, roughly 980 of them will have this extra piece of
data that is completely superfluous. The rooms don't care about respawning items, and yet here they
are, every one of them with an extra integer (4 bytes) and an extra 4 KB of memory. Yeah, yeah, I
know, 4 KB is nothing these days, but bear with me for a moment.

Later on, you decide to make a special herbone that can cure only a special kind of illness (ignoring
the fact that the SimpleMUD doesn't have illnesses), and due to its rarity, you need to make it respawn
once a week or so. Frustrated yet? You should be.

So, you begin to figure out how to make this happen. Perhaps you could create a global registry of
items that need to be respawned and a schedule for respawing. You could check this registry to see if
things need to be spawned during the game loop, and if so, spawn them into the game. Figure 11.1
shows this process.

Now that you have a registry added, you need to figure out how items determine how much time they
need to spawn. The best way to do this is to add yet another field to the room classa "how much time
does X take to respawn?" field. That's another 4 KB of memory for a MUD with 1,000 rooms, and
most of that 4 KB is wasted. (It's another 8 KB if you decide to go with 64-bit integers to represent
time!)

On top of all that, every time you change the physics of an entity class, you need to somehow go
through all your data files and add the extra field, or else your loading functions won't know what to
do.

Now, what if you want to…no, I'm kidding. I've taken this example far enough already, so there's no
need to torture you with a thousand "what if's" and "should I's". I hope you see the point: The inherent
flaw in the design of the SimpleMUD is that it cannot be extended without a significant amount of
work.

Hey! Wouldn't It Be Cool If... ?

A MUD is unique in being the one kind of game you can expand at small intervals. There's none of
this "one expansion pack a year" stuff that you see with some MMORPGs, or "one expansion pack,
total" that you see in nonpersistent-world games. MUDs are small communities in which people want
to build their own virtual worlds and love jumping in and creating new areas or items whenever that
meets their fancy.

Perhaps the best source of inspiration for MUD expansion occurs while you're playing the game, an
idea randomly hits you, and you blurt out, "Hey! Wouldn't it be cool if... ?" and right then and there,
you decide to start adding on.

This is the source of many problems in MUDs, however. So many of these "Hey! Wouldn't it be cool
if...?" ideas are simple, little one-time deals. Maybe you want to add a simple little effect, but don't
plan to use it anywhere else. I touched on this idea a little earlier; why would you add the capability
to achieve one minor effect to every object in the game, when most of those objects never need it?
When you design like that, you're wasting your time. You have to add these little of snippets of code
all over the place, and that's just ridiculous.

Separating the Physical from the Logical

To make a flexible system, you need to separate the physical aspects of the game from the logical
aspects of the game. What is the physical? The physical aspect of the game is basically the rule set
that describes what can happen in the game.

For example:

Items can be picked up and dropped by players.

Players can move from room to room.

The game produces "visual events" that players can see.

Items and players are created or destroyed.

Characters can see other characters moving around.

Those aspects are physical; they deal with what actually happens in the game. The logical side, on the
other hand, controls the physical. You can think of the logical part of the game saying, "This is what
happens when object X does Y." In the examples I showed you previously, the logical part of the
game determines if and when herbs should be respawned, and the physical part of the game only cares
about when the object is spawned. Figure 11.2 shows an example of abstraction for a normal room
and for an herb-respawning room. This figure shows the benefits of having optional logic modules
attached to the physical objects. Only items that require special behavior have logic modules attached
to them. Note that logic modules may also need extra data. (Data is shaded in the figure.)

Figure 11.2. Abstraction for a normal room and for an herb- respawning room.

Because of the way normal rooms are designed, they are not involved with respawning and don't even
know how to respawn. So, whenever an herb-room is told that someone picked up an herb, the logic
module is consulted, and the module says, "I'm going to insert another herb into the room at time X".

NOTE

To implement the "at time X" section of the logic module, you need a global timer registry,
similar to the one I showed you in Figure 11.1. I'll go into this more in Chapter 15.

When a normal room is told that someone picked an herb, the normal room recognizes that it doesn't
have a logic module, and therefore doesn't care what happens. Not only that, but since a normal room
doesn't have a logic module, it takes up less memory. The herb-room's logic module manages all the

special data it needs to know, such as when to respawn a new herb. The actual room has no reason to
know about that data.

Choosing an Implementation for Logic

Implementing the physics of the game is fairly easy. You can do that in C++, and there's really no need
to change the physics of the game often. So that's not going to be a problem.

The logic modules, however, are a different story. If you're still using C++, this may pose a problem.
Sure, logic modules can be written in C++, and doing so greatly increases the cleanliness of your
code, which is a good thing. But you still have that nasty little problem of not being able to add logic
dynamically. This means that to add new pieces of logic to the game, you must stop, recompile, and
run the code again. Unfortunately, these are the very procedures that are not advisable for MUDs, as I
mentioned previously.

Loading data dynamically is easy, as you saw with the SimpleMUD, and as you have probably
experienced in different contexts. Loading logic, which is always in code form, is a much more
difficult process, but fortunately, there are a bunch of ways around this.

If you're targeting the Windows operating system, one popular way to load logic is by using DLLs,
which are like EXEs, but you can load them at runtime, and call functions from them. This is a fast
and easy way to support extensibility, but the cost involved is nonportability. Linux has no DLL files,
so using this method limits you to Windows, which typically isn't as good a server platform as Linux.

Linux has expansion modules as well (SO files) but these can be a royal pain in the butt. To use SO
files in Linux, you need to have your root administrator add the dynamic library to the list of globally
available modules, which can be a big problem; root administrators are cautious about adding code
when they are not sure what the code does. They don't want to inadvertently add a virus or a backdoor
to the system, so you'll find many administrators unwilling to add new modules for you.

NOTE

I mentioned earlier that the SimpleMUD has been running for 33 days. The longest my
WindowsXP box ever ran was about 25 days. That's not to say that Windows is a bad server
platform; it's actually pretty good. But Windows computers tend to be used for more than just
server programs. For example, on the computer I am writing this on, I run lots of nonserver
applications, like my word processor, audio player, compiler, IRC clients, instant messenger
clients, and so on. All of these programs can have minor side effects that eventually destabilize
the operating system. On a Linux server, you typically run only tried- and-true server
applications, so they don't mess up the server. I would recom mend looking into a cheap Linux
box to run your MUD server, and if you're really serious about running one, look into a shell
service. (I use dune.net, and it's pretty good.) I list a bunch more in the Conclusion of this book.

Scripting

Another option for loading logic is to use a scripting language. There are tons of scripting languages
out there, each with its strengths and weaknesses. Some languages are nice and simple; others are
huge and complex. If you're particularly devious, you may try embedding a full stack-machine
language such as Java into your MUD, but that's going overboard in my opinion.

After playing around with a few languages, one jumped out at mePython. Lately, Python seems to have
gained quite a large following, and for a good reasonit's simple and powerful.

NOTE

Python was named after the British comedy troupe Monty Python . So, whenever you're
working with Python, be sure to insert as many references to Monty Python as possible.
Perhaps include some characters running around saying, " Help, help, I'm being repressed! " or
" This is supposed to be a happy occasion. Let's not bicker and argue about who killed who!"
Or even, perhaps, a riddle that involves knowing the air-speed of an unladen swallow.

The best thing about Python, however, is that it has a well-defined and documented C API, which
means that it is incredibly easy to integrate with your application and easy as well to call Python
scripts from your C/C++ program. Chapter 17 goes over everything you need to know about Python
for this book. I'm not going to be able to include a comprehensive tutorial of the entire language, but
believe me, you'll catch on quickly. The Python website (http://www.python.org) has a wonderful
tutorial on the language, as well as a complete index of every built-in module. (There are tons of
built-in moduleseverything from math to sockets, and strings to threading.) You can check ahead if you
like, but until I cover Python in Chapter 17, I focus mainly on implementing the physical side of
BetterMUD.

http://www.python.org/default.htm

Logic Modules

Logic modules in the BetterMUD are simply Python scripts that can be attached to any entity type.
Every entity has the capability to be given any number of logic modules, which allows you to mix and
match behaviors.

For example, in my version of the BetterMUD, I have character logic modules named "combat" and
"encumbrance." Chapter 18, "Making the Game," shows you how to implement these, so for now all
you need to know is that when characters have these modules, they have the ability to attack other
characters, and they have the ability to weigh the number of items a character is carrying. Now, if I
take away the "combat" module from any character, that character cannot be attacked or attack anyone
else, because the logic module is what gives the character those abilities. Likewise, if I take away
"encumbrance," the game happily allows your characters to carry an infinite number of items without
weighing them to see how much they can carry.

A cool thing about logic modules is that they use a flexible set of attributes that you can access from
within C++. This means that from C++, you can ask a logic module to get a 32-bit signed value based
on its name. I'll show you how this works a bit later on when explaining character quests.

Overall Physical Design

As well as having a completely flexible logical design, the BetterMUD has a flexible network layer,
because it is more abstracted from the game than the SimpleMUD's network layer.

Like the SimpleMUD, the BetterMUD focuses on the idea of entities, so I won't need to spend much
time going over entity concepts. In the BetterMUD, however, there are different kinds of entities.

Regions

The first major change from the SimpleMUD to the BetterMUD is the addition of regions. Most
MUDs have regional systems, which allow you to organize your game more easily. Figure 11.3 shows
a simple three-region layout. Regions also make it easy to group logic, and they ease the strain on
your auto-saving system.

Figure 11.3. Regions make it easy to group entities.

Regions and Scripts

To understand regions, imagine a collection of rooms in the magical forest of the realm. Whenever
evil monsters such as orcs and goblins enter the forest, they receive a curse that slightly lowers their
stats. Without regions, there's really no easy way to do this. To make this work, you give a region the

logical actions "character entered" and "character left," which are executed whenever characters
enter or leave. So when an evil monster enters a magical forest, the magical forest's logic module
curses the character, and when the character leaves the forest, the curse is removed. This is a nice,
elegant system of implementing a large collection of scripts in just one area, instead of putting them in
every room that is in the forest area.

Regions and Databases

Regions make things easier for the database, too. Imagine a large game, with thousands, or even tens
of thousands of rooms. Whenever your game tries to do a complete database dump, it takes a long
time, and the game is going to lag up for a second at least, or maybe much longer.

To prevent the lag, you may want your game to save one region at a time, splitting up the job over a
long period of time, so that the game doesn't lag.

Regions and Data

Regions are simple entities. They need to know only the basics: their name, ID, and description, as
well as a logic module, and lists of all entities contained within the region.

Rooms

In the BetterMUD, rooms are similar to and simpler than SimpleMUD rooms. In the BetterMUD,
rooms are no longer involved with money on the ground, simply because money isn't a special case
object. Neither do they deal with tracking who respawns in the room, because this functionality is
provided in the logic modules you implement instead.

The physical aspect of a room in the BetterMUD deals only with a few things: room name,
description, ID, associated region, exits from the room, characters in the room, and the items on the
floor.

Portals

Portals are a new concept in the BetterMUD. In the SimpleMUD, each room simply had four exit
IDsthose are the IDs of the rooms attached to that room. In the BetterMUD, it's not that simpleevery
room has a list of portals, which are basically structures that describe a path from one point to
another. Every portal has one or more entries into it, as shown in Figure 11.4. Rooms are never
explicitly linked; instead, they point to a portal, and the portal manages the entry of a player to
different rooms depending on which room they entered the portal from.

Figure 11.4. Rooms point to portals that control the entry of players.

Portals are complex, and I evaluated many designs before selecting one. You could easily go with
simple one-way portals, but there are problems with that kind of a design.

For example, it would make sense that if a portal door is closed, both one-way portals would need to
know that it is closed, which would mean that the portals need a communication system between their
logic modules. Overall, that's a bad design because it can blow up in your face rather quickly.

Other designs had me thinking about a segmented approach, in which there were two types of portals:
inter-regional (portals that connect rooms in two different regions), and intra-regional (portals that
connect two rooms in the same region). This design is complicated as well, because each room must
track whether its portals are inter- or intra-regional, which violently explodes the amount of code
needed. (Trust meI tried implementing it as a test to see how much code would actually be needed.)
The best rule you can use is the KISS rule; keep it simple, stupid.

The current portal design is nice and robust and is not limited to one- or two-way designs, since it
uses a list of variable entries. When a player enters a portal, the list of variable entries searches for
the player's starting point, and then spits the player out at the ending point. If there is a logic module

attached to a portal, it tells the module that someone is trying to enter the portal.

This is where portals are coolportal logic modules have the option of rejecting an entrance. Let's say
you create a magical portal that only admins can enter, and if a nonadmin tries entering, it says,
"Nope, you're not getting in here, buddy!" Or even better, you could have magic force field logic
scripts that not only reject entering, but also damage the players who try to enter. (That'll teach them!)
The possibilities are endless, and I could go on for days listing what logic modules can accomplish.

Accounts

Accounts are another new concept in the BetterMUD. There are times when you're going to want to
have more than one player in the gamemaybe an extra player to hold your loot and booty, or someone
to help you along in battles. Whatever the case, the ability exists. Therefore, your players can create
new characters without changing usernames or passwords.

An account is simply an entity and needs only the following:

ID

Name

Password

Access level

Number of characters allowed

Indication of whether or not characters are banned

List of all the players it owns

You'll see how this works in Chapter 16, when I go over the networking system.

Characters

In SimpleMUD, there were players and enemies; therefore. it was awkward for players to fight each
other without copying large amounts of code, which is always a sign of a weak design. In the
BetterMUD, I've unified the concepts of players and enemies into one entity type: characters.

Basically, a character is any living being in the game. Characters can hold stuff, move around, see
things, and die.

Attributes

Characters have attributes, much like the attributes in the SimpleMUD, but instead of hard-coding
these attributes, you're going to be able to access them via strings. This is because characters in the
BetterMUD are somewhat flexible. You load the attributes from a text file on disk whenever the MUD
starts, and the scripts and everything else have access to those variables.

Absolutely none of the attributes are hard-coded in the BetterMUD. This was designed to give you
complete flexibility over what you want to do with the engine. I'm not going to say "players must have
health and hitpoints!", because quite frankly, you may decide not to have those kinds of things in your
MUD. When I get to Chapter 18, you'll see how this whole thing works out; believe me, it's cool.

Containers

Characters need containers for various things, such as for a list of items that the character is currently
carrying.

Characters also have a collection of logic modules (in fact, all entites have these), and a special
collection of logic modules named command modules. Command modules allow characters to
interface with the game. Every character can have a personalized collection of commands, so you can
do things like giving blacksmiths a "repair" command to repair broken itemsan ability other
characters won't have.

Conditions

Characters will have all sorts of logic modules, and you can use them for varying purposes. You
could make logic modules represent conditionsstuff like "on fire" or "poisoned." With this kind of
system, you can say, "If a character has the logic module on fire, that character is actually on fire!"

Conditions are usually time based, which means that they last for a certain duration, or that they have
an event that repeats. (For example, the "on fire" condition logic would take off X hitpoints every
second until it burned out.)

NOTE

I go over the timer registry and action events in detail in Chapters 14 and 15 .

When a condition is activated, it should typically perform some operation on a player (usually just
modifying an attribute). During the activation sequence, the module has several options. For example,
it can set itself up to terminate after a minute or so, by adding an entry to the global timer registry. Or
the module can remain resident in a player and wait for another logic module in the game to remove
it. (For example, a player could pay a witchdoctor to remove a curse.) The other option would be to
set up an event in the global timer registry that would message the condition at a later time, telling it
to perform its "repeating" action (that is, the burning of the fire). Every time the fire module receives
a "burn" command, it will immediately add another "burn" command to the global timer registry.

Figure 11.5 shows three methods for using condition modules. The first method sets a condition and
then waits for another module to deactivate the condition. The second method shows the activation
telling the timer registry to remove the condition at a specific time. The final example shows a
condition that has also registered a repeating condition, which repeats until the condition is
deactivated.

Figure 11.5. Three methods of using condition modules.

Characters are by no means forced to use only those three methods with conditions. For example, a

character could be poisoned with a special venom that doesn't leave his blood-stream, and the venom
continues to call the repeating action of the condition until the character finds a cure. Due to the highly
flexible nature of these script objects, anything can happen. Maybe you can implement a linked set of
conditions, such as a cold. First, you can activate a symptomatic condition, which only slightly
modifies the character. After a certain amount of time when that condition is deactivated, it
automatically activates another condition, which makes the character even sicker. The chain can
continue until the character is eventually incapacitated or finds help. The possibilities are endless.

Quests

You can also use logic modules to represent quests, which constitute a large part of expanding the
gameplay in the BetterMUD. In the game, characters obviously want to do more than run around
killing everything in their paths, as they do in so many hack-and-slash games. The BetterMUD is
flexible, so why not put that flexibility to good use?

For example, let me use a common occurrence in RPG-type games: the Kill All Rats quest.

Newly arrived in the city, a player goes to the town employment office to get a job. The clerk
examines his papers and says, "Hey, we've got a rat problem in the sewers. Why don't you go down
there, kill 40 rats, and then come back for your pay?" The game then assigns the rat-quest to the
character, and he starts killing rats.

Whenever an action involves a character, all of his logic modules are notified. For example,
whenever a character kills a rat, the game checks all the character's logics and tells each one of them
that he killed something. The rat-quest module then says something like, "Oh! He killed a rat! I'll add
one to the tally now!"

Logic modules also have attributes, which allow other scripts to determine the state of a module, if it
knows what kind of module it is. For example, the "kill all rats" quest would allow you to retrieve a
variable named ratskilled, which would allow other logic modules in the game to figure out if
you've killed the requisite 40 or not.

It's advisable to keep the number of logic modules active in a current player to a minimum, but that's
up to you. Just keep in mind that the more script objects, the slower the game, since every logic
module must be notified about everything that happens to a character.

Items

Items are the final entity type in the game, and they are basically anything inanimate. Items are always
owned by a room or a character, and the items know who owns them.

Items have a listing of attributes, which corresponds to the attributes the players have. As with

characters, there are no default item attributes; you customize everything. I show you some
recommended values in Chapter 18.

There are two main types of items in the game; single items and collections of items. Single items are
always single items; they typically represent large items such as weapons and armor, or even smaller
stuff such as potions and scrolls.

Collections of items, on the other hand, are single items that have a count value, and thus act like many
of the same item. Only certain types of items can be combined into collec-tionsmostly things such as
coins, jewels, diamonds, and maybe even weapon-type stuff such as stars that can be thrown, or
arrows for a bow.

Collection objects can be split, but only by dropping them, giving them to other characters, or picking
them up. Whenever a collection object enters a new domain (either a room or an inventory of a
character), the object automatically merges with other collection objects of the same type. Strictly
speaking, splitting doesn't have to work this way, but it's easier on the interfaces if it does.

For example, you enter a room with a pile of 23 gold coins. There is an enemy in the room, and when
you kill him, he drops a pile of 10 gold coins. Instead of creating two pilesa pile of 23 gold coins and
a pile of 10 gold coinsthe game merges them to create one pile of 33 gold coins. It's not too realistic,
but it really cuts down on the clutter. It would be really annoying to enter a room that has 20 piles of
the same kind of object, because everyone is too lazy to pick them up.

Items also have logic modules, which are told about actions such as being dropped and picked up.

Summary

This chapter taught you about all of the basic ideas that are going to be implemented within the
BetterMUD. I have not shown you a complete picture of things yet (for example, I barely mentioned
databases, or the networking setup), but for now, I hope I've set your mind clicking so that you can
understand how things work from a broad perspective.

The SimpleMUD was mainly concerned with specifics such as, "How do I make this work?" and
"What data does this have?" I don't know about you, but I usually find that explaining every little nook
and cranny of the code is extremely tedious. Honestly, how much did you care about the
implementations of each SimpleMUD database class? Not much, eh?

I'm going to take an entirely different approach when showing you the BetterMUD. The SimpleMUD
was all about learning how to actually code a MUD application; the BetterMUD is all about how to
design a flexible and extensible MUD.

Chapter 12. Entities, Accessors, and Databases
The basic layout of the data in the BetterMUD is similar to that of the SimpleMUD, but there are
improvements all over the placetools that reduce the amount of code you need to write, tools to
automate usage, and so on. Overall, the basic entity classes and databases aren't complex, and since
they have the same basic layout as SimpleMUD classes that serve the same purpose, this chapter is
short. I focus on the better stuff later on. Hello scripting system! Aren't you excited?

In this chapter, you will learn to:

Understand basic entities

Use mixin classes to enhance entities

Understand database accessors

Comprehend the basic entity database classes

Basic Entity Concepts

All things in the BetterMUD, just as in the SimpleMUD, are entities. They are the physical objects
within the game, which will be stored by the databases and operated on by the C++ physics core.

IDs

Entities are accessed by their entityid just as in the SimpleMUD. In the SimpleMUD, I chose to use
32-bit unsigned integers for these IDs, which gave you a range of around four billion available IDs
for each entity type.

Due to some limitations in Python, however (the fact that it doesn't support unsigned integers, for
one), I used signed integers as IDs in the BetterMUD. A signed integer can have roughly two billion
positive values, so if you assume that negative IDs and 0 are invalid, you're left with two billion
possible IDs.

NOTE

Older bit MUDs that were built around 16-bit values frequently ran over their boundaries, and
this was a serious problem in the past. How ever, 32-bit values are quite large and should be
enough for what you need. If you don't think so, it's easy to convert the entities over to some
64-bit format, and with 18,446,744,073,709,551,616 total possible IDs, I think it's a safe bet that
you'll never run out. I'm com fortable with my puny two billion entity limit, however.

Now, before you start saying "Oh no! Less is worse!" you should think about that for a moment. Two
billion is an incredibly large number. If you assumed that you just stored the IDs for two billion
objects in memory, at 4 bytes per ID, you're looking at requiring 8 GB of memory, just to store the ID
numbers of two billion entities. I've never seen a MUD that required anywhere near that many entities.

At the heart of it all is the Entity.h file, which contains the entityid datatype and the Entity class.
Here's the typedef for entityid:

typedef signed int entityid;

Now, whenever you refer to entities in the game, you refer to this typedef. If you need to change the
typedef, all it takes is one simple change to this line, and suddenly all your entities are based on a
different numbering scheme. It's that simple.

Entity Class

In the SimpleMUD, the base entity class had two things: an ID and a name. I've expanded that a bit,
and entities in the BetterMUD have four things:

ID

Name

Description

Reference count

The actual entity class has these functions:

std::string Name() const;
std::string Description() const;
entityid ID() const;
void AddRef();
void DelRef();
int Ref() const;
void SetName(const std::string& p_name);
void SetDescription(const std::string& p_desc);
void SetID(entityid p_id);

As you can see, these are your standard get-and-set accessor functions. In the SimpleMUD, I used
mainly functions that returned references, but that was only for brevity. Strictly speaking, that's bad
engineering practice. Even though it's a little bit more work to create separate get-and set- functions
for each variable, you'll be thanking me when you need to change the game so that modifying one
variable makes something else happen within the game.

Auxiliary Classes

There are a few auxiliary classes you can use in conjunction with entities. Different types of entities
may share traits in common with other entities, but not all entities share all traits.

NOTE

Reference Counting and the Future

The reference count in the previous list is designed to facilitate future additions to the MUD. I haven't
gone over this idea yet, but there are objects in the BetterMUD that act similar to the SimpleMUD's
database pointers; I call them accessors. An accessor is a simple lightweight class that is used to

access entities in the databases.

Whenever you create an accessor pointing to an entity, that entity's reference count is increased, and
whenever you destroy the accessor, that entity's reference count is decreased. What this means is that
if the game is currently using entities somewhere, the reference count will be more than 0. If you've
got three different places in the code with accessors pointing to one entity, its reference count is 3.

The idea behind this is that someday you may want to move the BetterMUD into a true multithreading
environment, so that the database and the game can operate on different threads, and so that the
database knows when it's safe to write individual entities to disk. If the reference count is more than
0, the game is currently using that entity somewhere and may be modifying its data, so it's not safe to
write it to disk.

Another benefit is that the accessors could be modified to use mutexes (remember them from Chapter
3?), so that if the database is writing an entity to disk, an accessor has to wait until the database is
finished to access the entity. I may implement these ideas one day, if I get a chance to create a better
database system for the BetterMUD. Check out the news on the BetterMUD (dune.net, port 5110) to
see the latest improvements.

Basic Data Classes

For example, the character and item entity types both need to know which rooms and regions they are
in. For other entities, such as portals, regions, and rooms, having this information would be useless; a
room can't be in another room (at least in this design, it can't), and a region definitely can't be in a
room, because it's supposed to be the other way around. Portals can be in rooms, but they are a
special case, since they can be in many rooms at once.

So, what do you do? Do you give characters and items their own m_room variables? That's a lot of
wasted work if you ask me. Do you create a new class, say, RoomEntity, and have characters and
items inherit from that? That may work at first, but eventually you're going to end up with lots of
multiple inheritance problems if you try sharing other variables across entities.

The method I chose is to use a simple data class. Here is the data class for a room tag:

class HasRoom {
public:
 HasRoom() : m_room(0) {}
 entityid Room() const { return m_room; }
 void SetRoom(entityid p_room) { m_room = p_room; }
protected:
 entityid m_room;
};

The class has a piece of room data, named m_room, and it has three functions. Room returns the ID,
SetRoom sets the ID, and the constructor auto-initializes the room variable to 0 whenever it is created.
There are two other classes like this: HasRegion and HasTemplateID.

Container Classes

Following in the same tradition, there are several container classes that you can add to your entities.
In the game, entities often need to know the IDs of objects that they contain; characters need to know
what items they have, rooms need to know what items they contain (the characters and portals they
have), and so on. As before, since different types of entities can share similar containers of items, it
makes sense to make a special class that holds a container of that specific item, and inherit from that.

Here's an example of the HasCharacters class:

class HasCharacters {
public:
 typedef std::set<entityid> characters;
 typedef characters::iterator charitr;
 void AddCharacter(entityid p_id) { m_characters.insert(p_id); }
 void DelCharacter(entityid p_id) { m_characters.erase(p_id); }
 charitr CharactersBegin() { return m_characters.begin(); }
 charitr CharactersEnd() { return m_characters.end(); }
 size_t Characters() { return m_characters.size(); }
protected:
 characters m_characters;
};

The class uses two typedefs to define a set of entityids and an iterator into that set.

I've decided to go with sets for storing data within entities. I could easily have gone with lists or
vectors, but I feel that sets hold the best performance capabilities. Sets have O(log n) insertion and
deletion time, which on average, works out better than the O(1) insertion and O(n) deletion time for
lists and vectors. Basic Entity Concepts

NOTE

I use typedefs quite often within the BetterMUD, espe cially for containers. The reasoning for
this is quite simple: In the future, you may need to change the way a container works by turning
it into a list or something else. This way, whenever someone uses your room class, he can refer
to its container of characters as: Room::characters, instead of needing to remember which
container it actually is stored in. I've also typedefed the iterator, so you can refer to character
iterators inside a room like this: Room::charitr . Trust metypedefs make your life so much
easier.

Sets also have an interesting property that will make your life much easier in the long run: They can't
hold duplicate data. This means that the set data structure automatically makes sure that you never
have more than one ID inside it. This can save you lots of pain in case you accidentally add an entity
to a room more than once.

I have created four different container classes: HasCharacters, HasItems, HasRooms, and HasPortals.

NOTE

When an algorithm is classified as O(log n), that means that if there are n elements inside the
container, you take the logarithm of that number, and that's approximately how many
operations it will take to complete the algo rithm at most an upper bound, in other words. The
base-2 logarithm of 128 is 7, meaning that to insert and delete anything from a set of 128 items
will take approximately 14 operations (7 for insertion, 7 for deletion). On the other hand, if you
used a list of the same size, inserting would be instant (O(1). That means about 1 operation. To
delete something from the list, you need to search through the whole thing to find what you
want to delete. That would take on average 64 operations (1 at minimum, 128 at maximum).
Lists are great for insertions, but bad for searching-deletions.

Complex Function Classes

There are two complex classes that entities inherit from as well: the DataEntity class and the
LogicEntity class.

Data Entities

The DataEntity class stores a databank. In Chapter 11, "The BetterMUD," I told you that characters
and items have access to a flexible system of attributes, so that you can add and remove attributes
from characters and items at any time during the game. A databank implements this behavior; I will go
over it in more detail a little later on. For now, all you need to know is what a data entity can do.

A data entity has five functions:

int GetAttribute(const std::string& p_name);
void SetAttribute(const std::string& p_name, int p_val);
bool HasAttribute(const std::string& p_name);
void AddAttribute(const std::string& p_name, int p_initialval);
void DelAttribute(const std::string& p_name)

For the BetterMUD, all attribute values are stored as ints. I've found that I rarely have a use for floats

and I dislike their lack of precision, so using ints for attribute values is an acceptable compromise.

All these functions are string based, which means you can use entities that inherit from this class
flexibly. Look at the following code, for example, which assumes that I have a data entity named d:

d.AddAttribute("strength", 10); // insert an attribute into the object
int s = d.GetAttribute("strength");// get attribute
bool b = d.HasAttribute("strength"); // true
b = d.HasAttribute("pies"); // false
d.SetAttribute("strength", 20); // stronger now!
d.DelAttribute("strength"); // no more strength
s = d.GetAttribute("strength"); // uh oh! Exception thrown!

Most scripting languages are built around the same ideas (especially Python, which acts the same with
any datatype you use; see Chapter 17, "Python," for the nitty gritty details).

This should give you a really great opportunity to increase the flexibility of your MUD.

Logic Entities

On the other side of the spectrum are logic entities, which wrap around a LogicCollection. A logic
collection is a cool object in the BetterMUD. It essentially wraps around a bunch of logic modules, so
that entities can have more than one logic module attached to them, as Figure 12.1 shows.

Figure 12.1. A logic collection holds a variable number of logic modules, which can
be added and removed at will.

Basically, with a logic collection installed into an entity, you can add whichever logic module you
want. If you have a special logic module that responds when someone tells it something, you can add

that logic into it, without changing its responses to other actions within the game.

Here are the functions that a LogicEntity has. (I use some classes and concepts you haven't seen
before, so bear with me for a moment.)

bool AddLogic(const std::string& p_logic);
bool AddExistingLogic(Logic* p_logic);
bool DelLogic(const std::string& p_logic);
Logic* GetLogic(const std::string& p_logic);
bool HasLogic(const std::string& p_logic);
int DoAction(const Action& p_action);
int DoAction(
 const std::string& p_act,
 entityid p_data1 = 0, entityid p_data2 = 0,
 entityid p_data3 = 0, entityid p_data4 = 0,
 const std::string& p_data = "")

I'm jumping ahead a little here, since I explain the logic system in detail in a later chapter, but for
now, it is important to know what your entity classes can do.

Within the game, all logic modules are referenced by name, so you can add door-logic to a portal as
follows:

p.AddLogic("portallogic_door");

As long as the game knows about a logic module named portallogic_door, your portal now acts like
a door, and refuses access to people when it is closed. The cool thing about this is that you can add
other modules whenever you want:

p.AddLogic("portallogic_onlyadmins");

This kind of door acts like other doors and also blocks access to people who aren't admins.

NOTE

I mentioned that LogicEntity s wrap around LogicCollection s.
Because of this, I'm not going to show you the code for this class,
since it basically just passes the arguments on to the collection
class. One thing you should be aware of, how ever, is that when

collections have errors, they throw exceptions by default. However,
it's not really a good idea to have your entity classes throwing
exceptions around all over the place. The four functions that return
Booleans catch exceptions and return false if an error occurred.
This way, those functions are safe to call and won't cause your
program to cascade out of control if they can't execute.

Pretty cool, isn't it?

You can remove logic just as easily, and check to see if an object has a logic module of a specific
type installed, and so on. It's all very flexible, and that's great.

Now, whenever an action happens to the entity, you just send the action event to the entity using
DoAction, and every module is automatically told about the action.

I will go over logic modules, collections, and actions in much more detail in Chapter 15, "Game
Logic." For now, you only need to have a general idea of what they can do.

Entity Requirements

Tables 12.1, 12.2, and 12.3 show listings of which entities need which auxiliary classes.

Table 12.1. Auxiliary Data Needed by Entities

Entity HasRoom HasRegion HasTemplateID

character yes yes yes

item yes yes yes

room no yes no

portal no yes no

region no no no

account no no no

Table 12.2. Containers Needed by Entities

Entity HasCharacters HasItems HasRooms HasPortals

character no yes no no

item no no no no

room yes yes no yes

portal no no no no

region yes yes yes yes

account yes no no no

Table 12.3. Complex Containers Needed by Entities

Entity Data Logic

character yes yes

item yes yes

room yes yes

portal yes yes

region yes yes

account no no

Basic Entity Concepts

Using these classes, you can simply mix-and-match which parts you need for each entity. (It's like
putting together a wardrobe.) These classes are typically called mixins. Figure 12.2 shows the
inheritance hierarchy for two types of entities: characters and regions.

Figure 12.2. The inheritance hierarchy for characters and regions.

Note that LogicEntity inherits from the base Entity class. This is done because logic entities need to
be able to tell their logic modules which ID they are attached to. So if a class inherits from a
LogicEntity, the class doesn't have to inherit from an Entity. Here's a sample class declaration for
characters, which multiple-inherits from all of its mixins:

class Character :
 public LogicEntity,
 public DataEntity,
 public HasRoom,
 public HasRegion,
 public HasTemplateID,
 public HasItems

NOTE

Using multiple inheritance (MI) is a controversial topic. Some people love it, and some people
hate it. Some people never even need MI, but if it makes your life easier, why not use it? In the
classes I use, MI is simple and easy to manage. This is because all the base classes are mutually
exclusive, which means, that they don't share any bases, functions, or data in common. MI gets
to be tricky if you use conflicting bases, though. For example, suppose you added another line to
the inheritance list of the character class, public Entity . Now, since LogicEntity inherits from
Entity as well, what the heck happens? It turns out, by default, C++ creates a class that has two
instances of the Entity class, which you almost certainly didn't want. To solve this, you need to
use virtual inheritance, which fixes the so-called diamond-inheritance problem . This issue is
beyond the scope of this book, so feel free to explore it on your own. Just beware that MI is a
tricky concept to implement correctly.

Accessors

In a major departure from the SimpleMUD, I decided against the use of database pointer objects. I
have found that it's much easier to keep containers of IDs in memory, rather than pointer objects. All
accessors in the BetterMUD can be found in the directory /BetterMUD/BetterMUD/accessors on the
CD.

Comparing Database Pointers to Accessors

Instead of pointer objects, I use accessor objects.

Figure 12.3 shows an example of the two different methods you can use to access entities in a
database. The first method, used by the SimpleMUD, is slow and elementary. The second method,
used by the BetterMUDs, has accessors that are quicker and more efficient because they perform the
database lookup when they are created.

Figure 12.3. Two methods for performing functions on entities stored within
databases.

NOTE

Database accessors are basically smarter pointers than the database pointers of the
SimpleMUD. To avoid confusing the two different meth ods, however, I refer to the new idea as
accessors, rather than pointers.

Database pointers were a quick hack in the SimpleMUD; they were essentially a proxy class that
would perform lookups from the database and then work on the object. Of course, that was all wasted
effort if you did two operations in a row, like this:

player p = 10;
p.Name() = "RON";
p.Money() = 100000000; // I wish

The operations perform two lookups in the database, even though the lookups are for the same object.
So this represents wasted effort. To fix this in the SimpleMUD, I found myself using the following
code quite often instead (assuming dbp is a player database pointer object):

Player& p = *dbp;
p.Name() = "RON";
p.Money() = 100000000;

I ended up asking the database pointer object to return a reference to the player, and then used the
actual Player object to work on, which really defeated the whole idea of a database pointer in the
first place.

Features of Accessors

To fix this, I created a database accessor concept.

Database accessors have several features:

They perform lookups when they are created.

They increment their entities' reference count when they are created.

They are used from within Python to access needed parts of the game.

They release their hold on an entity when they are destroyed, decreasing its reference count.

NOTE

In my opinion, the lack of a base class for database accessors or macro is the one big flaw of the
BetterMUD. I had to make this choice for many reasons, however. First and foremost is the
major problem of circular dependen cies, which I highlighted with the SimpleMUD. C++ limits
itself quite a bit sometimes, and it is annoying, but we have to live with it. Another problem is
the way that I generate interfaces between Python and C++, which you'll see in Chapter 17. The
code generators I use don't play well with templates and inheritance. (The generators were
designed for C, after all.) So, basically, as you'll see later on, accessor classes basically need to
be copied and pasted from the class you are accessing. This can be annoying, but since most of
the game expansion can be done in Python any way, it's not a big deal. You'll find that you won't
need to be changing the accessor class definitions too often.

Here's an example of the character accessor, which performs lookups for Character entities:

character c(100);
c.SetName("Ron");
c.SetDescription("He is an awesome dude, as Strongbad would say.");

When the accessor is created, it looks up a pointer to the Character object it needs to access, which it
then keeps so that you can perform fast operations on it, without needing to look up the entity again.
When the accessor goes out of scope, the accessor tells the entity that it's no longer referencing it, and
its reference count is decreased, so that the database knows there is one less accessor pointing at that
entity.

NOTE

I chose to use the same naming scheme as the SimpleMUD for entities and their accessor
objects. For example, the class Character with a capital "C" represents the actual entity, and
the class character with a lowercase "c" represents the accessor objects.

Accessor Iterators

Accessors typically have their own iterators built in, which means that an accessor acts like an
iterator. Take the character entity, for example. Characters have container items that they are carrying,
and because of this, you need a way to iterate over those items.

Of course, the easiest way to do this would be to make the accessor return an actual iterator to the
item container, but alas, there is a problem with this method. The program I use to generate interfaces
between C++ and Python doesn't fully support interaction between C++ and Python iterators. (There
is limited support for vector iterators, but I'm not using vectors. D'oh!)

So instead, accessors sometimes wrap around a single iterator for each of their containers. Characters
wrap around an item iterator, and you can use functions like this:

character c(100);
c.BeginItems();
while(c.IsValidItem()) {
 entityid i = c.CurrentItem();
 c.NextItem();
}

It's fairly simple. If you ever need another iterator, you can easily create another accessor object.

That's as much as I want to tell you about entity accessors for the time being. I'll get back to them later
on, after I've shown you the intermediate stuff.

Helpers

To help with matching names of entities, I've included a few helper functions and classes inside the
Entity.h file. Since you're probably sick of all of the string-matching code I threw at you in the
SimpleMUD, I'll spare you the details and just show you how to work with the helpers.

Manual Matching

Two functors deal with string matching: one matches full names, and one matches partial names. They
are called stringmatchfull and stringmatchpart. (How original!) Anyway, they work like this:

1. Creates a matching functor with the name you are looking for

Loops through a list of names to see if any of them match

Here's an example of full matching:

stringmatchfull matcher("the rain in spain");
bool b = matcher("The grain in spain"); // false
b = matcher("the RAIN in spain"); // true
b = matcher("the rain"); // false

Matchers automatically disregard case, for obvious reasons. Partial matchers work the same way:

stringmatchpart matcher("the rain in spain");
bool b = matcher("the"); // true
b = matcher("spain"); // true
b = matcher("ain"); // false
b = matcher("grain"); // false

The matchers use the same matching rules that the SimpleMUD used. Partial matching only returns
true at the start of words; it won't match sequences of characters inside a word. That's why "ain"
returns false, even though it appears twice in the statement.

Automatic Matching

I have three automatic matching functions that you can use on an STL container of entityids to either
perform single or dual-pass matches, or a dual-pass partial name search.

However, the functions need to know what type of accessor you are using to look up the entities. Say
you have a set of IDs, named s, which represents a bunch of characters. This is how you would
perform a one-pass full match on the set:

set<entityid>::iterator itr;
itr = matchonepass<character>(
 s.begin(), s.end(),
 stringmatchfull("Ron"));

One odd bit of syntax you may notice is the <character> after the function name. When calling
template functions, C++ usually deduces the template types by the arguments you pass into it;
however, since you're not passing in a character accessor, the function has no way of knowing that
you're trying to search a container of characters. Instead, you must tell the function that you're looking
for characters. If you were looking through a container of IDs that represented Item objects, you
would call it like this: matchonepass<item>.

The function returns an iterator and takes two iterators and a functor as its parameters. The two
iterator parameters are supposed to represent the range of items you want to search, so you have the
option of searching only a particular range, or the whole container. The third argument is a functor
that returns either true or false. When scanning through the container, an iterator is returned that
points to the first object that returns true. So, after running this code, itr can be one of two things: an
iterator pointing to a character entity whose name is "Ron", or s.end(), which means that "Ron" isn't

within the container.

You can easily turn that into a one-pass partial matcher by replacing stringmatchfull with
stringmatchpart.

Of course, there will be times when you need to perform a dual pass search on a container as well:

set<entityid>::iterator itr;
itr = matchtwopass<character>(
 s.begin(), s.end(),
 stringmatchfull("Ron"),
 stringmatchpart("Ron"));

This code performs a two-pass search. First it searches for full matches, and then, it searches for
partial matches if no full matches were found.

The final function is a helper that automatically performs a full/partial two-pass search on a container
of entityids:

set<entityid>::iterator itr;
itr = match<character>(s.begin(), s.end(), "Ron");

As you can see, it's a lot cleaner than the other two functions.

Databases

Now that you have a basic comprehension of entities, I can move on to the databases of the
BetterMUD.

Designs

For the SimpleMUD, I threw a design at you and said, "This is what the SimpleMUD is using!" Well,
there are many ways to implement databases, especially for a persistent-world game.

The SimpleMUD and the BetterMUD don't actually have databases but rather simple containers that
hold entities and aren't nearly as complex as some of the real databases out there.

There are tons of technologies to choose from. SQL is a popular database format. (I've played around
with the MySQL implementation of SQL, and I liked what I saw. It's free, too! You can download it at
http://www.mysql.org.) Lots of computer languages have built-in APIs that talk to these databases.

There are database programs you can buy for lots of money, but you probably won't need the kind of
performance that they provide. MUDs usually aren't nearly as ambitious (in terms of player and world
size) as the latest MMORPGs, so most of the time having a dedicated database program is a waste of
effort.

The key benefit of a dedicated database is the fact that they (usually) abstract the data and the logic of
a game onto two separate machines. Look at Figure 12.4 for a moment.

Figure 12.4. Typical database setup.

Usually, you have the database on one machine, and the game on the other. Whenever the game needs
to access information, it asks the database to look it up and send it over the network connection.
Although networks are much more unreliable than having everything in one machine, databases are
typically installed on the same network as the game machine, so you probably have a fast Ethernet
connection between the two. That eliminates any concerns about speed, and connection losses are
also going to be rare (if not nonexistent).

The really great thing, however, is that the database machine can safely offload (store on to disk) the
data, without slowing down the game. This is a flaw that the SimpleMUD and the BetterMUD both

http://www.mysql.org/default.htm

have; eventually, the world can get large enough so that just saving the database periodically ends up
lagging the game.

I would have loved to have shown you how to implement a full "real" database for the MUD, but I
only have so much room. So I chose to go light on databases and focus on the really cool parts of the
scripting system of the BetterMUD.

Database Types

There are five major database types in the BetterMUD, four of which I present in this chapter. The
fifth variation is the PythonDatabase, which is a class that manages Python scripts. I'll go over that in
Chapter 16, "The Networking System," along with its offspring: the CommandDatabase and the
LogicDatabase.

All of the database classes I discuss in this section can be found on the CD in the files
BetterMUD/BetterMUD/databases/database.h and database.cpp, within the same directory.

Figure 12.5 shows the relationship hierarchy between all the databases I discuss in this chapter.

Figure 12.5. Relationships between all the entity databases in the BetterMUD.

The base Database class implements a number of helper functions that all entity databases use, and the
map- and vector-based databases are similar in design to the databases of the SimpleMUD.

Note that the Template/Instance database doesn't inherit from either the map or vector databases;
instead, it contains a copy of each. Databases

Basic Database

The basic Database class is a generic class that uses a single container to store entities. The main
reason for the existence of this class is the fact that even though maps and vectors store data in two
completely different ways, there are operations that you'll need to perform on both types. Here is a
listing of those functions:

 container::iterator begin();
 container::iterator end();
 virtual entityid findname(const std::string& p_name) = 0;
 virtual entity& get(entityid p_id) = 0;
 virtual entity& create(entityid p_id) = 0;
 size_t size() { return m_container.size() - 1; }
 void LoadEntity(std::istream& p_stream);
 void SaveEntity(std::ostream& p_stream, entity& p_entity);
 void LoadDirectory(const std::string& p_dir);
 void LoadFile(const std::string& p_file);
 void Purge();

The begin and end functions simply return iterators into the database, and findname does a full name
match for entities within the database. The other functions need to be described in more detail, though.

Getting and Creating

Data retrieval is the most common function you perform with a database. The get function retrieves
an existing entity from the database and returns a reference to that entity. However, you have to be
really careful when performing this function; if you get an entity that doesn't exist, the database throws
an exception at you.

On the other hand, if you want to create a new entity in the database, you should call the create
function, which creates an entity at the ID you specify and returns a reference to the brand-new entity.
If you call this function by the name of an entity that already exists, the function still works. It's
designed so that if you call it, you are guaranteed to get an entity, unless you run out of memory or
some other problem occurs. In addition, all entities returned from this function already have their m_id
data filled out.

You should note that these two functions are purely virtual, meaning that the Database class doesn't
implement them; it only says that the functions are available. This is because maps and vectors are
fundamentally different data structures and require different methods to perform these functions.

Loading and Saving Entities

Loading and saving entities is more automated in the BetterMUD than in the SimpleMUD. All entities
are required to have these two functions:

void Save(std::ostream& p_stream);
void Load(std::istream& p_stream);

They save and load an entity to or from a stream, which is a great thing to have, because you can use
file streams with these functions and save them to disk.

The Database class counts on the fact that these functions are available, and because of this, it has
automated its loading and saving functions. Here's an example of the loading function:

void LoadEntity(std::istream& p_stream) {
 entityid id;
 std::string temp;
 p_stream >> temp >> id; // load the ID

 entity& e = create(id); // load/create entity
 e.Load(p_stream); // load it from the stream
 p_stream >> std::ws; // chew up extra whitespace
}

This function performs the following simple task, which is repeated quite often. For that reason, the
function is built into the base database class:

1. Eat up the [ID] tag in the stream.

Load in the ID of the entity.

Create/load the entity from the database.

Load the data from the stream and put it into the entity.

Because of this process, the Load function of each entity should not load IDs from the stream It should
always assume that the ID has already been loaded previously by the database. This also means that
every entity in a file must start off with its ID tag, like this:

[ID] 542

And the rest of the data follows after that.

The saving process is simpler; it just writes out the tag, writes out the ID, and then writes out the
entity using its Save function.

Loading a Directory or File

From working with the SimpleMUD, I learned that working with one file per entity type was an
incredible pain in the butt. So, for the BetterMUD, I've decided that the ability to automatically load
an entire directory of files is a powerful tool. Therefore, the BetterMUD expands on the same ideas
used by the player database of the SimpleMUD.

In every directory that databases load files from, there is a manifest file, simply named "manifest". It's
a simple text file, and on every line is the name of a file within that directory that you want the
database to load. Figure 12.6 shows an example of a manifest file pointing to other files that a
database is supposed to load.

Figure 12.6. Files that aren't listed in the manifest aren't loaded.

NOTE

NOTE

Even though C++ doesn't have the ability to iterate over the files in a directory, the need for
such an operation is so common that it's built into almost every operating system. Because
every operating system has its own operating method and none of the implementations are
similar, people have created their own libraries to wrap around operating systems. One library
is the C++ Boost library, which you can download and use free at http://www.boost.org . It's a
really cool library that has a component named boost::filesystem that implements iterators to
iterate over files in a directory. Unfortunately, due to some issues with VC6, and the fact that
boost is still a work-in-progress, I couldn't get it to work prop- erly (though it worked like a
charm in VC7 and GCC for Linux). So, I don't use boost here. You should feel free to look into
it on your own, however. I've included the most recent version on the CD for you to play around
with if you want. It's in the directory /goodies/Libraries/boost.

So, like in the SimpleMUD's player database, the BetterMUD's general Database class can load a
directory of files using a manifest file. Here is the code to do it:

void LoadDirectory(const std::string& p_dir) {
 std::ifstream dir(
 std::string(p_dir + "manifest").c_str(),
 std::ios::binary); // open the manifest file
 dir >> std::ws; // chew up whitespace

 std::string filename;
 while(dir.good()) {
 dir >> filename >> std::ws;
 LoadFile(p_dir + filename);
 }
}

The function loads up the manifest file and then reads in name after name. For each name, it calls the
LoadFile helper function. LoadFile simply loops through every entity in a file, loading each one:

void LoadFile(const std::string& p_file) {
 std::string filename = p_file + ".data";
 std::ifstream f(filename.c_str(), std::ios::binary);
 f >> std::ws;

 while(f.good())
 LoadEntity(f);
}

Purging

http://www.boost.org/default.htm

There may be times in the game when you want to purge the entire contents of a database (rare, but it
happens). Because of this, all databases have a Purge function, which completely empties the
database.

Map and Vector Databases

The map and vector databases are similar to the map and vector databases from the SimpleMUD, so
I'm not even going to show you their implementations. The vector-based database class is called
VectorDatabase, and it doesn't add anything to the functions of normal dataabases.

The map-based database, MapDatabase, has some extra functions: FindOpenID, which finds an open ID
and returns it, and erase, which finds an entity and erases it from the database. Vectors can't delete
entities, because they shouldn't contain open spaces, and deleting entities at any index leads to open
holes in the vector. I haven't come across the need to delete portals, rooms, or regions while the game
is running, so I didn't bother implementing that function.

Template/Instance Database

Now, in the game, the dynamic objects (rooms, portals, and regions are all static objects, which
cannot be created or deleted at runtime, except by loading a new database) are the characters and the
items. All these items are generated from a template and are essentially stored in a database similar
to the enemy database of the SimpleMUD; whenever a new character or item is created, the entity is
copied over from a template.

To do this, I created a special database, the TemplateInstanceDatabase, which actually contains two
databases: one vector-based, and one map-based. Figure 12.7 shows this concept. Whenever a new
instance is created, a template is copied into it to store the initial values. Since the template database
doesn't inherit from the other databases, it has to wrap over their functions and add new functions as
well.

Figure 12.7. The template-instance database is a dual database that holds templates
and instances.

Functions

Here's a listing:

instances::iterator begin();
instances::iterator end();
templates::iterator begintemplates() { return m_templates.begin(); }
templates::iterator endtemplates() { return m_templates.end(); }

entity& get(entityid p_id);
size_t size();
size_t sizetemplates();
entityid findname(const std::string& p_name);
void erase(entityid p_id)
bool isvalid(entityid p_id)

void LoadEntityTemplate(std::istream& p_stream);
void SaveEntityTemplate(std::ostream& p_stream, entity& p_entity);
void LoadEntity(std::istream& p_stream);
void SaveEntity(std::ostream& p_stream, entity& p_entity);
void Cleanup()
void Purge()
void LoadFile(const std::string& p_file)

templateentity& gettemplate(entityid p_id);
entityid generate(entityid p_template);

The begin, end, get, size, findname, erase, and all the Load/Save functions simply wrap around the
template instance database that it contains. The only functions involved with templates at all are
gettemplate, generate, begintemplates, and endtemplates. The generate function takes an ID of a
template as its parameter, creates a new entity instance based on that template, and returns the ID of
the new instance.

For example, if you had a human template character at ID 1, you could create a new human character
like this:

entityid human = CharacterDB.generate(1);

And then human would hold the ID of the new character.

Here's the code for that function:

entityid generate(entityid p_template) {
 entityid id = m_instances.FindOpenID();
 entity& e = m_instances.create(id);
 e.LoadTemplate(m_templates.get(p_template));
 return id;
}

It finds an open ID within the instances database, creates a new entity at that ID, and then calls that
entity's LoadTemplate function to copy the template over.

The instance class entity and the template class entitytemplate don't have to be different, but I
would make them different. I've found that templates usually need less data than instances (which you
see when you look at the Character and CharacterTemplate classes), so it's a good idea to keep the
data to a minimum.

Garbage Collection

Deleting instances of entities in the game is dangerous. Since you can never be completely sure who
is hanging on to a reference of an entity when you delete it, a template/instance database keeps a set of
all of the IDs that the game wants cleaned up. For example, here's what happens in the erase function:

void erase(entityid p_id) {
 m_cleanup.insert(p_id);
}

When you want to remove an instance, instead of being blown away immediately, the instance's ID is
inserted into the m_cleanup set, and the game eventually cleans up that entity at a later time, by calling
the Cleanup function:

void Cleanup() {
 cleanup::iterator itr = m_cleanup.begin();
 while(itr != m_cleanup.end()) {
 cleanup::iterator current = itr++;
 entity& e = m_instances.get(*current);
 m_instances.erase(*current);
 m_cleanup.erase(current);
 }
}

This essentially loops through the entire cleanup set, and erases the instances from the instance
database.

Summary

This chapter gave you a brief glimpse of the underlying concepts of entity storage and management
concepts, which should be familiar to you from learning the SimpleMUD.

I've expanded on and improved those concepts in a number of areas, making the system more reusable
and flexible, and because of this, I was able to reduce the code at higher levels. Whenever I want to
make a database load a directory of entities, all I need to do is issue a command like this:
DB.LoadDirectory("data/blah/").

In the next chapter, I'll show you the complete implementations of all of the entity classes, but I keep
that simple as well. The actual entities are simple classes that don't have much to do with the actual
game, except that they contain data. The main idea I'm trying to promote here is keeping the hard-
coded stuff to a minimum, while making the actual game as flexible as possible, without making it too
flexible.

Chapter 13. Entities and Databases Continued
The previous chapter described the base entity and database classes and outlined the accessor
classes, but didn't show you how to actually implement the final entity or database classes. This
chapter does so. The good news is that since most of the work has already been accomplished in the
base classes, the final entity and database classes are really quite simple.

In this chapter, you will learn to:

Use databanks to make your entities flexible

Work with the six entity classes: accounts, characters, items, rooms, portals, and regions

Use entity databases to store files to disk

Use entity accessors as iterators

Databanks

Before discussing entities, I'd like to show you a special class. In the previous chapter, I mentioned
that there is a mixin class called DataEntity, which wraps around a databank.

A databank gives flexibility to the BetterMUD. I'm sure you're used to figuring out what kinds of data
you need, programming the data, and then realizing that you might not need an attribute or two. If you
create instead a flexible structure that can store an unlimited amount of data, you can easily add
variables to your characters while the game is running. If you think this idea is cool, just wait until I
show you Python.

The flexible structure I've described requires storing objects with arbitrary names, and what better
structure to store them in than an std::map? If you don't know this already, you should learn that
std::maps used with std::strings are practically the coolest thing you can ever do in C++. Examine
this code segment:

std::map<std::string, int> intbank;
intbank["pie"] = 20;
intbank["cool"] = 30;
int a = intbank["pie"]; // 20
a = intbank["cool"]; // 30

Pretty cool, isn't it? You can insert as many items as you want, and since it's a map, you'll have some
decent performance (O(log n) for those algorithm-obsessed folks) when inserting or retrieving items.
Sure, it's not nearly as fast as accessing variables directly by a memory offset (which is the way that
precompiled variables are accessed), but I believe that the time has finally come when the benefits of
having such an extensible system far outweigh the need to squeeze every drop of speed out of your
system.

Databank Class

The Databank class itself is fairly simple; it's a wrapper around an std::map that allows you to
manage the attributes within it easily:

template< typename type >
class Databank {
public:
 typedef std::map< std::string, type > container;
 typedef container::iterator iterator;
 iterator begin() { return m_bank.begin(); }
 iterator end() { return m_bank.end(); }

 bool Has(const std::string& p_name)
 void Set(const std::string& p_name, const type& p_val)
 type& Get(const std::string& p_name)
 void Add(const std::string& p_name, const type& p_val)

 void Del(const std::string& p_name)
 void Save(std::ostream& p_stream)
 void Load(std::istream& p_stream)
 void Clear()
 size_t size()

protected:
 container m_bank;
};

You can create databanks of any type you want, since this is a template class: for example, a
Databank<int>, or Databank<float>. You can also iterate through databanks to see which variables
they hold.

The second grouping of functions allows you to access and use the databank. To make databanks more
"consistent," they throw exceptions when you try getting or changing attributes that don't exist, rather
than accidentally creating them. Of course, to avoid throwing exceptions, you can first use the Has
function to see if an attribute exists.

Since the functions simply wrap around the std::map functions and add exception throwing in the
appropriate places, I'm not going to show you the code. You can find this class in
/BetterMUD/entities/Attributes.h.

Using a Databank

Using a databank is pretty simple, as you can see from this example:

Databank<int> bank;
bank.Add("health", 10);
bank.Add("strength", 20);
int i = bank.Get("health"); // 10
i = bank.Get("strength"); // 20
bank.Del("health");
i = bank.Get("health"); // *THROWS EXCEPTION*
bank.Set("strength", 30);

A databank is string-based, so you can easily add any variables to it that you want. Every entity
(except accounts) in the BetterMUD has a databank that you can use and access through the scripts,
which will allow you almost limitless freedom to add variables to characters in the game.

Databanks and Streams

Databanks also have stream loading and saving functions, which makes it easy to load and save
databanks to disk. Here's an example of the saving code:

void Save(std::ostream& p_stream) {
 p_stream << "[DATABANK]\n";

 iterator itr = m_bank.begin();
 while(itr != m_bank.end()) {
 p_stream << BasicLib::tostring(itr->first, 24) <<
 itr->second << "\n";
 ++itr;
 }
 p_stream << "[/DATABANK]\n";
}

This will create files that look like this:

[DATABANK]
health 10
strength 20
hitpoints 100
[/DATABANK]

Nice, pretty, and readable. The call to the BasicLib::tostring makes sure there are 24 columns
between the start of the attribute and the start of the variable. I could have used the setw function of
streams to accomplish the same thing, but problems occur when compilers work in different ways
(strange for a "standard" library, right? C++ still has a long way to go.).

A databank is loaded in a similar way:

void Load(std::istream& p_stream) {
 std::string temp;
 p_stream >> temp; // extract "[DATABANK]"

 while(BasicLib::extract(p_stream, temp) != "[/DATABANK]") {
 type t;
 p_stream >> t;
 Add(temp, t);
 }
}

The loop extracts each data tag using the BasicLib::extract function; each pass compares the data
tag to see if it is the [/DATABANK] tag. If it is, the loop ends.

If the databank doesn't have an attribute extracted from the stream, it is automatically loaded. This is a

particularly useful feature, because it allows you to load a databank from a file without manually
adding all the attributes first.

Entities

There are six entity classes in BetterMUD, representing accounts, characters, items, rooms, regions,
and portals. Most of them share a good deal in common, which makes it easier on us, since all we
need to do is make them inherit the features they need. Two of these entities are volatile, which means
that they can be created and deleted at any time while the game is running. Accounts can be created,
but not deleted, so they're not exactly volatile. The only way to create new rooms, portals, and
regions is to reload their template files.

Accounts

The "oddball" of the group is the account entity. Accounts really aren't used within the game, and
their main reason for existing is to manage the characters that your players can own. Here's the class
definition:

class Account :
 public Entity,
 public HasCharacters
{
public:
 void Load(std::istream& p_stream);
 void Save(std::ostream& p_stream);

 // Accessors
 std::string Password()
 BasicLib::sint64 LoginTime()
 accesslevel AccessLevel()
 bool Banned()
 int AllowedCharacters()

 void SetPass(const std::string& p_pass)
 void SetLoginTime(BasicLib::sint64 p_time)
 void SetAccessLevel(accesslevel p_level)
 void SetBanned(bool p_banned)
 void SetAllowedCharacters(int p_num)

protected:
 std::string m_password; // user's password
 BasicLib::sint64 m_logintime; // time of first login
 accesslevel m_accesslevel; // access level of player
 int m_allowedcharacters; // number of characters player is allowed
 bool m_banned; // is user banned?

}; // end class Account

The first thing you should notice is that the class inherits from Entity and HasCharacters, so it
automatically gets every piece of data and function from those classes. Consult the previous chapter to
review information on the Entity and HasCharacters classes.

In addition to the standard entity datatypes and a collection of character IDs, the account entity has
five variables, representing various data about itself including the following: a password, the time the
account first logged in, the access level of the account, how many characters the account is allowed,
and whether or not the account is banned.

NOTE

I put in the access-level ranking system for future expansion. Even tually, I would like to have
an online editor capable of logging into the game and uploading new maps and items; this kind of
capability would require a special implementation of the networking system, with its own
protocol and handlers.

Most of this should be self-explanatory; the access level is about equivalent to the ranking system of
the SimpleMUD, but it's not that important for the BetterMUD.

You can also ban people from the game, if they become too unruly; the logon process will not allow
banned characters to log in.

Characters

There are actually two character entity classes in the game: character templates and the actual
characters.

A character template is a simple structure that holds data about a character and copies that data into a
new character every time the game generates one.

Character Template Class

The character template class is basically just a placeholder; it's meant to hold data loaded from a
template file on disk, so that actual character instances in the game can copy this information into their
characters. Here's the class skeleton:

class CharacterTemplate :
 public Entity,
 public DataEntity {
 friend class Character;
public:
 void Load(std::istream& p_stream);
protected:
 typedef std::list< std::string > names;
 names m_commands;
 names m_logics;
};

The character class is a simple template class that inherits from the Entity and DataEntity mixin
classes. The line in bold declares that the Character class is a friend, and that it should have access
to all the data held within it.

I typedefed a list of strings and called it names, and then gave the class two of these lists. These lists
represent the names of the command modules and logic modules for characters. I'll discuss commands
and logic modules when I get to the scripting and python chapters, so for now, all you need to know is
that templates hold the names of scripts, rather than script objects themselves.

The template class can't do much. In fact, it only has one function: to load itself from a stream:

void CharacterTemplate::Load(std::istream& p_stream) {
 std::string temp;
 p_stream >> temp >> std::ws; std::getline(p_stream, m_name);
 p_stream >> temp >> std::ws; std::getline(p_stream, m_description);

 m_attributes.Load(p_stream);

 p_stream >> temp; // chew up the "[COMMANDS]" tag
 while(BasicLib::extract(p_stream, temp) != "[/COMMANDS]")
 m_commands.push_back(temp);

 p_stream >> temp; // chew up the "[LOGICS]" tag
 while(BasicLib::extract(p_stream, temp) != "[/LOGICS]")
 m_logics.push_back(temp);
}

As you can see, it's not difficult. Both the name and the description of a character are loaded by line,
because their names can have spaces. The databanks know how to load themselves automaticallyyou
simply call m_databanks.Load(p_stream), and it loads. Here's an example of a sample character
template in a text file:

[ID] 1
[NAME] Human
[DESCRIPTION] This is a normal Human Being

[DATABANK]
health 10
strength 10
[/DATABANK]
[COMMANDS]
go say chat get give drop look quit quiet
[/COMMANDS]
[LOGICS]
combatmodule encumbrancemodule humanmodule

[/LOGICS]

This defines a character template named Human, who has two attributes (health and strength), nine
game commands, and three logic modules. It's not important what these modules and commands do
right now, but keep this in the back of your mind.

Character Class

The Character class is a more complex version of the CharacterTemplate class. Instead of having
names of commands and logic modules, it has the actual modules, as well as a slew of additional data
that templates don't really care about (why would a template care if a character is logged in or not?).

Character Hard-Coded Data

Here's a condensed version of the Character class, with the functions removed so you can first see
what data it has:

class Character :
 public LogicEntity,
 public DataEntity,
 public HasRoom,
 public HasRegion,
 public HasTemplateID,
 public HasItems {
public:
 typedef std::list<Command*> commands;
protected:
 entityid m_account; // account number
 bool m_quiet; // interpret typing as chat or command?
 bool m_verbose; // print room descriptions?
 bool m_loggedin; // are you logged in?
 std::string m_lastcommand; // the last command the character entered
 commands m_commands; // which commands the character has

}; // end class Character

Characters inherit a logic collection, a databank, a room, a region, a template ID, and a collection of
item pointers from their mixin classes.

On top of those things, the class also has a pointer to its associated account, two style modes, a
logged-in state, a string representing the last command typed in, and a list of command pointers.

The quiet mode of a character is only applicable to players, and it involves how commands are

interpreted by the game module. The gist is that if a character is in quiet mode, misspelling a
command doesn't result in his accidentally saying something in the current room he's in. See Chapter
15 for a complete description (in the commands section).

NOTE

You can reward and punish players by adding and removing commands. If a player continuously
abuses the global chat command, you can delete his chat command object to teach him a lesson,
and if players prove worthy to your MUD, you can give them commands that allow them to help
you run the realm. It's a cool, flexible system.

The verbose mode determines whether or not room descriptions are printed out to players when they
enter a new room. Often, room descriptions are large and make the game run slow if you're moving
around quickly, so you have the option of turning them off, and just seeing the name, people, items,
and exits within a room.

The logged-in value should be self-explanatory, and the last command string serves the same purpose
it did in the SimpleMUD::Game::m_lastcommand string from the SimpleMUD.

The final variable is a list of command pointers, which represents every command you can execute
while in the game. If you have a command object named go, you can say go north while in the game,
and the game searches for that command and executes it, or gives you an error if you don't have the go
command.

Data Accessors

There are accessor functions for each of the hard-coded pieces of data (in addition to those inherited
from the base mixin classes):

entityid GetAccount()
bool Quiet()
bool IsPlayer()
bool Verbose()
std::string LastCommand()
bool IsLoggedIn()

void SetAccount(entityid p_account)
void SetQuiet(bool p_quiet)
void SetVerbose(bool p_verbose)
void SetLastCommand(const std::string& p_command)
void SetLoggedIn(bool p_loggedin)

All simple accessors return a variable directly, set a variable directly, or perform a simple

calculation. (IsPlayer checks to see if m_account != 0.) I don't think any of this code is important, so
I'm going on to more interesting topics.

Other Functions

The Character class has more functionsfunctions that are more complex and interesting than the
accessor classes:

Character();
~Character();

void Add();
void Remove();
void LoadTemplate(const CharacterTemplate& p_template);

void Load(std::istream& p_stream);
void Save(std::ostream& p_stream);

commands::iterator CommandsBegin() { return m_commands.begin(); }
commands::iterator CommandsEnd() { return m_commands.end(); }
commands::iterator FindCommand(const std::string& p_name);
bool AddCommand(const std::string& p_command)
bool DelCommand(const std::string& p_command)
bool HasCommand(const std::string& p_command)

Construction Time Again

The first two functions are the constructor and destructor.

The constructor simply initializes the variables with default values:

Character::Character() {
 m_account = 0;
 m_loggedin = false;
 m_quiet = false;
 m_verbose = true;
}

Obviously, a character doesn't have an account when first created, so it can't be logged in. The quiet
mode is set to false, so that players entering the game can chat by default, and the verbose mode is
set to true, so that players see the full room descriptions when they start off.

The destructor is important for characters because of the command system. Whenever a new command
is retrieved from the command database, a new pointer to a Command object is returned, and the
database assumes that the character who requested the command will manage it from then on. This

means that you need to delete all commands when a character is destructed:

Character::~Character() {
 commands::iterator itr = m_commands.begin();
 while(itr != m_commands.end()) {
 delete *itr;
 ++itr;
 }
}

Adding and Removing

The Add and Remove functions are helper functions that are used when loading a character from disk.
These functions physically add and remove a character from the room and region he is in:

void Character::Add() {
 region reg(m_region);
 reg.AddCharacter(m_id);
 room r(m_room);
 r.AddCharacter(m_id);
}

void Character::Remove() {
 if(m_region != 0 && m_room != 0) {
 region reg(m_region);
 reg.DelCharacter(m_id);
 room r(m_room);
 r.DelCharacter(m_id);
 }
}

The code uses accessor classes to perform database lookups, a concept I've discussed before. Later
on in this chapter, I'll show you the actual room and region classes used to do this.

The Remove function removes a character from a room and region if its room and region are valid.

The next section explains the reason for these functions.

Loading and Saving

Every entity in the game has the ability to load and save itself to disk. Furthermore, the Load function
can reload an entity from a stream, overwriting whatever data already exists in the character with
new data. Let me show you the loading function first:

void Character::Load(std::istream& p_stream) {
 if(!IsPlayer() || IsLoggedIn())
 Remove();

At this point, the code has checked to see if the character is a player and if he is logged in. If either of
those conditions is not true, then the Remove function is called, essentially removing the character
from his room and region in the game.

Imagine this scenario; you have a character in room 5, and you reload him from a stream. The only
problem is that the stream moves him to room 6. If you haven't removed the character from room 5
yet, the character thinks he's in room 6, but room 5 still thinks the character is there! D'oh! So you
need to remove the character before any data is loaded. Now you can load the hard-coded attributes:

 std::string temp;
 p_stream >> temp >> std::ws; std::getline(p_stream, m_name);
 p_stream >> temp >> std::ws; std::getline(p_stream, m_description);
 p_stream >> temp >> m_room;
 p_stream >> temp >> m_region;
 p_stream >> temp >> m_templateid;
 p_stream >> temp >> m_account;
 p_stream >> temp >> m_quiet;
 p_stream >> temp >> m_verbose;
 m_attributes.Load(p_stream);

And load the commands:

 p_stream >> temp; // chew up the "[COMMANDS]" tag
 while(BasicLib::extract(p_stream, temp) != "[/COMMANDS]") {
 if(AddCommand(temp)) {
 // command was added successfully, continue loading data
 commands::reverse_iterator itr = m_commands.rbegin();
 (*itr)->Load(p_stream);
 }
 else {
 throw Exception("Cannot load command: " + temp);
 }
 }

The function will first chew up a [COMMANDS] tag, which represents the start of a block of commands.
Then it tries loading command names until it finds [/COMMANDS]. You'll see exactly how this works a
bit later when I show you a sample of a character in text form. If a command fails to load, an
exception is thrown, and the loading of the character is abandoned. It's up to whomever calls this
code to safely reinsert the character into the realm.

When the new command has been loaded, the code obtains a reverse iterator that basically points to
the end of the command list, which is the command that was just added; I then tell the new command
to load itself from the stream.

Next, the logic module is loaded:

 m_logic.Load(p_stream, m_id);

Character files hold more than just characters; they also hold a listing of all the items the character is
currently holding. So the function starts a loop to do this:

 p_stream >> temp; // chew up "[ITEMS]
 while(BasicLib::extract(p_stream, temp) != "[/ITEMS]") {
 ItemDB.LoadEntity(p_stream);
 p_stream >> temp; // chew up each "[/ITEM]" tag
 }

Any list of items in a character is surrounded by "[ITEMS]" and "[/ITEMS]" tags, and every item
entry in the character is surrounded by "[ITEM]" and "[/ITEM]" tags. To actually load an item, the
ItemDB, which is a global instance of the ItemDatabase class, is called and told to load an entity
instance from the stream.

Here's the final act:

 if(!IsPlayer() || IsLoggedIn())
 Add();
}

This code adds the character back into the game, but only if he's neither a player, nor is logged in.
This stipulation exists because players who aren't logged in aren't actually in the game; they're off in
some strange imaginary ether-world, and the game just ignores them when they're logged off, so you
don't want to add logged-off players to rooms.

NOTE

You can see from the listing that logic modules and command mod ules each have [DATA] and
[/DATA] tags after the name of the module. This means that script modules, such as commands
and logics, actually store data of their own. A command could keep track of the last time it was
executed to ensure it is only executed once a day; or a logic module for a monster could track if
it is hunting down a player or trying to get revenge for committing Goblin Genocide. The format
is flexible enough for whatever you need to store.

Here's a sample character file:

[ID] 1
[NAME] Mithrandir
[DESCRIPTION] You are a plain old boring human. Deal with it.
[ROOM] 1
[REGION] 1
[TEMPLATEID] 1
[ACCOUNT] 1
[QUIETMODE] 0
[VERBOSEMODE] 1
[DATABANK]
strength 20
health 30
[/DATABANK]

[COMMANDS]
get
[DATA]
[/DATA]
give
[DATA]
[/DATA]
drop
[DATA]
[/DATA]
[/COMMANDS]

[LOGICS]
humanlogic
[DATA]
[/DATA]
[/LOGICS]

[ITEMS]
[ITEM]
[ID] 2
[NAME] Pie
[DESCRIPTION] A BIG CUSTARD PIE
[ROOM] 1
[REGION] 0
[ISQUANTITY] 0
[QUANTITY] 1
[TEMPLATEID] 2
[DATABANK]
[/DATABANK]
[LOGICS]
[/LOGICS]
[/ITEM]
[/ITEMS]

NOTE

As you can see from the file listing, the data format for this game has become quite complex.
The format I have will do for now, but maybe in the future, you could look into something

designed to be even more flexible, like XML. The great est thing about XML is that there are
XML file editors out there that can edit the data for you, no matter what it stores.

As you can see, it's a pretty complicated data format. Character files can become pretty large if they
contain many items, commands, and logic modules. Of course, the benefit of having so much data
available is that this becomes a flexible format for storing characters.

Saving players to a stream is a similar process, so I'm not going to bother with the code here.

Loading Templates

Loading a character from a character template is a fairly easy process. For the most part, you just
need to copy the data over. You also need to generate new commands and logic modules:

void Character::LoadTemplate(const CharacterTemplate& p_template) {
 m_templateid = p_template.ID();
 m_name = p_template.Name();
 m_description = p_template.Description();
 m_attributes = p_template.m_attributes;

The previous chunk of code copies over the template ID (the normal ID of the current character
should have already been set by the database when it was first created), the name, and the description.
The last line copies over m_attributes, the databank. This is a really cool part of the databank class:
You can copy it automatically (almost like magic!) into any other databank, because all the STL
containers support copying. The downside is that any existing members of the databank are
overwritten, but that's not such a big deal, since we're supposed to be loading the character template
into a brand new character anyway.

NOTE

You may have considered using binary files to store data in the game; and it's a viable
alternative. Binary data can be packed tightly onto disk, and this saves a great deal of space,
especially for elements that require a lot of data, such as the new character class. I chose to
avoid binary however, due to the fact that disk space isn't really a huge problem anymore (come
on people, you can buy 300+ GB hard drives now). It's easier to edit files in text format, and the
most important factor is that I want the datafiles to work on multiple systems. Binary data
suffers from endian problems, meaning that different operating systems pack bytes in different
orders, making a datafile on Windows completely useless on a Macintosh computer, unless you
spend time converting the data into the native format. Rather than deal with that mess, I chose
to use ASCII.

The code continues, loading all the commands and logic modules:

 CharacterTemplate::names::const_iterator itr =
 p_template.m_commands.begin();
 while(itr != p_template.m_commands.end()) {
 AddCommand(*itr);
 ++itr;
 }

 itr = p_template.m_logics.begin();
 while(itr != p_template.m_logics.end()) {
 AddLogic(*itr);
 ++itr;
 }
}

These two loops circle through the m_commands and m_logics lists inside the template, extracting each
name, and adding the command or logic module to the character, using the AddCommand or AddLogic
helpers. AddLogic was inherited automatically from the LogicEntity class from the previous chapter.

NOTE

The implication of loading a logic module based only on name alone from a template means that
you can't give that module any default data. Giving the module default data would be useful
when you want to use a certain logic module that contains different data in many places, but
honestly, that situation hasn't come up much for me. Still, if it bothers you, you might want to
find a way to eventu ally make script objects clonable (right now they aren't), so that when you
create a new character from a template, you can clone the template's scripts, rather than get
names and generate new scripts.

Command Functions

The last major grouping of functions in the character entity class deals with the commands. There are
six of these functions: two to retrieve iterators into the command list; one to search for a given
command name; and functions to add, remove, and check the existence of commands in a character.

CommandsEnd and CommandsBegin are simply wrappers around m_commands.end() and
m_commands.begin(), so I won't bother posting them here.

The function to find a command (FindCommand) is somewhat complicated, however. Whenever you're
playing a text-based game, the ability to condense and shorten commands is a very common feature,
because typing attack goblin every time you see a goblin is going to become frustrating.

Instead, you'd like the players to be able to type att go or maybe even a g. Sure, you could hard-code

some shortcuts, just as in the SimpleMUD (a or attack, n or north, and so on), but that quickly begins
to limit your engine.

Instead of providing shortcuts in the BetterMUD, I've decided to use a dual-linear search through the
commands, trying to find complete and then partial command matches. For example, let's assume a
character is given these commands:

go
attack
look
north
south
east
west
say

When a user wants to find a command named g, he first loops through all those commands finding one
matching the complete name g. Obviously there's no command g, so the game then starts the second
iteration, looking for a partial match. This time, go matches partially, so the game thinks the user
wants to go somewhere.

This is the same process you've seen used before in the SimpleMUD, when matching item and
monster names.

Here's the command matching function, which returns an iterator pointing to the matching function (or
the end iterator if none was found):

iterator FindCommand(const std::string& p_name) {
 stringmatchfull matchfull(p_name); // match full
 commands::iterator itr = m_commands.begin();
 while(itr != m_commands.end()) {
 if(matchfull((*itr)->Name())) // check match
 return itr;
 ++itr;
 }

 stringmatchpart matchpart(p_name); // match part
 itr = m_commands.begin();
 while(itr != m_commands.end()) {
 if(matchpart((*itr)->Name())) // check match
 return itr;
 ++itr;
 }
 return itr;
}

NOTE

Incidentally, this is the same reason why I don't use an std::map for the commands, but use an
std::list instead. When you insert things into a map using strings as the key, the items are
sorted by alphabetical order, since maps compare keys using the operator< of the key, and
operator< on strings returns true when the items are in alphabetical order (apple < orange). For
this reason, if you used maps, say would always come before south, so whenever the user types
s, meaning to go south, the game will think he's trying to say something instead. This can
become particu larly annoying, so using a list is a better idea, because you can rearrange the
order in which commands are inserted, and put the most frequently used commands first.

I couldn't use the BetterMUD::match function, since that only works on containers full of entityids, so
I had to hack up my own dual-loop here, but it's not such a big deal.

The other three functions add, delete, or check the existence of command objects. These functions
usually involve invoking the scripts in some way. For example, adding a command initializes a script
that checks the existence of a command, and deleting a command retrieves its name. Executing scripts
is prone to failure. You'll see this theme repeated throughout the last part of this bookscripts can fail
at any time. These functions are exception-safe. They catch everything and return a Boolean based on
success or failure:

bool Character::HasCommand(const std::string& p_command) {
 commands::iterator itr = m_commands.begin();
 while(itr != m_commands.end()) {
 try {
 if((*itr)->Name() == p_command) // compare name
 return true;
 }
 catch(...) {} // just catch script errors
 ++itr;
 }
 return false;
}

bool Character::AddCommand(const std::string& p_command) {
 if(HasCommand(p_command)) // can't add if it already has
 return false;
 try {
 m_commands.push_back(CommandDB.generate(p_command, m_id));
 return true; // command added successfully
 }
 catch(...) {} // just catch errors
 return false;
}

bool Character::DelCommand(const std::string& p_command) {
 try {
 commands::iterator itr = m_commands.begin();
 while(itr != m_commands.end()) { // find command
 if((*itr)->Name() == p_command) {
delete (*itr); // delete command object
m_commands.erase(itr); // erase from list

 return true; // success!
 }
 ++itr;
 }
 }
 catch(...) {} // just catch errors
 return false;
}

Since all the commands are stored as pointers within the list, you need to dereference them to get a
pointer by calling (*itr), and then use the operator-> to access members of the actual command
classes. You can see from the AddCommand function that it tells something called the CommandDatabase
to generate a new command (the line is in bold). I will cover this database in Chapter 14. Essentially
the database creates a brand new Command object when you give it a name, returns the Command object,
and assumes that your character will manage that command from now on. When your character is
destroyed, he must delete the command objects, or you will get a memory leak.

Items

Items are the other volatile entity in the game, but they're somewhat simpler than characters. Since
items are volatile entities, they're stored within template/instance databases, and thus need template
and instance classes. In the naming conventions for characters, items are named ItemTemplate, and
Item.

It's good to be consistent, so the classes dealing with items resemble the character classes, and thus I
won't need to show you too much about them.

Item Templates

The item template class inherits from the base mixin classes you saw from the previous chapter.
Noticing a trend here? The mixin classes are quite helpful since they are used so often:

class ItemTemplate :
 public Entity,
 public DataEntity {
friend class Item;
public:
 typedef std::list< std::string > names;
 void Load(std::istream& p_stream);
protected:
 bool m_isquantity; // is this a quantity object?
 int m_quantity; // if so, what is the quantity?
 names m_logics;
};

In addition to variables inherited from the mixins, items come with only two hard-coded variables,
Boolean and a quantity, which represent whether or not the item represents a quantity item. As I told
you in Chapter 11, a quantity item is an item that represents a simple item type that can be grouped
together, like coins and jewels.

Items have a databank and a collection of logic modules. Like character templates, the item templates
store these logic modules as simple names, and load the actual scripts when the items are instantiated.

Here's a sample item template that can be loaded from a stream:

[ID] 1
[NAME] Fountain
[DESCRIPTION] This is a large granite fountain.
[ISQUANTITY] 0
[QUANTITY] 1
[DATABANK]
[/DATABANK]
[LOGICS]
cantget
[/LOGICS]

This is a simple item template; it doesn't have any data, and it holds one logic module, cantget.
You'll see this module in Chapter 18. It prevents any character from picking it up.

That's really all there is to know about item templates.

Items

The actual Item class is somewhat simple too, as you can see from its definition:

class Item :
 public LogicEntity,
 public DataEntity,
 public HasRoom,
 public HasRegion,
 public HasTemplateID {
public:
 void Add();
 void Remove();
 void LoadTemplate(const ItemTemplate& p_template);
 void Load(std::istream& p_stream);
 void Save(std::ostream& p_stream);

 Item();
 std::string Name();
 bool IsQuantity()

 int GetQuantity()
 void SetQuantity(int p_quantity)
protected:
 bool m_isquantity; // is this a quantity object?
 int m_quantity; // if so, what is the quantity?
}; // end class Item

Items inherit logic collections, databanks, a room, a region, and a template ID. In addition items have
the same Add and Remove functions as in the SimpleMUD so that they can be added and removed from
a location (items are a bit more complex than characters, though, since they can either be in a room or
on a character, whereas characters can only be in a room). Items also have a LoadTemplate function,
which loads item template data from an ItemTemplate, and the standard Load and Save functions,
which stream an item to and from iostreams.

One function in the Item class is of particular interestthe Name function. You should have noticed that
this function has already been inherited from the Entity class, so why in the world would I redefine it
in the Item class? The answer involves the fact that items can be quantities. What happens if a player
sees an item lying on the ground that represents 27 gold coins? Should it say, "Pile of Coins?" Or how
about, "27 Gold Coins?" Or maybe, "Pile of 27 Coins?" There are so many possibilities that you
should avoid hard-coding such a thing. Instead, I've opted for a flexible method. Items that are
quantities have names such as "Pile of <#> Coins" or "<#> Gold Doubloons". This special Name
function finds any instances of "<#>" in the string and replaces it with the quantity of items. So "Pile
of <#> Coins" turns into "Pile of 27 Coins". The code to do this is really simple:

std::string Item::Name() {
 using BasicLib::SearchAndReplace;
 using BasicLib::tostring;
 if(m_isquantity)
 return SearchAndReplace(m_name, "<#>", tostring(m_quantity));
 else
 return m_name;
}

This code uses my custom SearchAndReplace function from the BasicLib to search for and replace all
instances of <#> with the string representation of the quantity.

The streaming functions and the template loading function are similar to the streaming and template
loading functions from characters, so I don't think you'll be interested in seeing all that code.

Here's a sample listing of an item object instance:

[ID] 11
[NAME] Fountain
[DESCRIPTION] This is a large granite fountain.
[ROOM] 1

[REGION] 1
[ISQUANTITY] 0
[QUANTITY] 1
[TEMPLATEID] 1
[DATABANK]
[/DATABANK]
[LOGICS]
cantget
[DATA]
[/DATA]
[/LOGICS]

As you can see, the layout is similar to that of a template item, with the addition of the room and
region, as well as the existence of the data fields for logic modules. The cantget module doesn't need
data; therefore, there's nothing within its [DATA] and [/DATA] tags.

Ownership of Items

I've mentioned before that items can be owned by two different kinds of entitiesrooms and characters.
I use a really simple method for defining how an item knows where it is. When an item exists within a
room, its m_room variable represents the ID of that room, and m_region represents the region.

If the item is on a character, however, m_room is the ID of the character that the item belongs to, and
m_region is 0.

Rooms

Rooms are a very simple entity types as well, and they don't add any extra data above and beyond the
mixins they inherit:

class Room :
 public LogicEntity,
 public DataEntity,
 public HasRegion,
 public HasCharacters,
 public HasItems,
 public HasPortals {
public:
 void Save(std::ostream& p_stream);
 void Load(std::istream& p_stream);
 void Add();
 void Remove();
}; // end class Room

Rooms have a listing of all characters, items, and portals that are within that room, and they know
what region they exist within.

This section is the shortest in the chapter, since there isn't anything remarkable about rooms at all. The
real power comes from the logic modules of the rooms, which allow them to react to any event that
may occur inside of a room. You'll see this in much more detail in Chapter 15.

Regions

Regions are almost as simple as rooms. In fact regions within BetterMUD exist only for a few
reasons. First, regions help with the organization of the datafiles. It is incredibly difficult to manage a
huge realm in the SimpleMUD, because the map data is all stashed in one file, and that can get
unbelievably unmanageable after a while.

The second reason is behavior; sometimes you want a specific event to occur in every room within a
region, and it really doesn't make much sense to use 80 copies of a single logic module within 80
rooms, when all the rooms in a region should have it.

The final reason is efficiency; the game is going to save single regions to disk at different intervals
throughout the game, so that you don't end up dumping the entire database to disk at once, and lag up
the game. Without regions, you're bound to dump everything at once when your game becomes large.

Almost all the discussion about regions deals with loading and saving them to disk, which is done in
the RegionDatabase class, later on in this chapter.

Here's the class listing:

class Region :
 public LogicEntity,
 public DataEntity,
 public HasCharacters,
 public HasItems,
 public HasRooms,
 public HasPortals {
public:
 void Save(std::ostream& p_stream);
 void Load(std::istream& p_stream);
 std::string& Diskname() { return m_diskname; }
 void SetDiskname(const std::string& p_name) { m_diskname = p_name; }
protected:
 std::string m_diskname;
}; // end class Region

One variable has been added to the regions you were familiar with in the SimpleMUD, and that
variable is their diskname. You'll see later on that regions frequently have names such as "The Elven

Forest", or "The Dwarven Mines". There's nothing remarkable about that, except that those names
have spaces in them, and on some operating systems, spaces in a file name are a huge no-no.

As you'll see later, I store regions inside their own directories, so "The Elven Forest" would ideally
be located inside /data/regions/The Elven Forest/. That's also an illegal directory name on some
operating systems, so most of the time you'll be making it look like this instead:
data/regions/TheElvenForest/. Of course, it would look stupid in the game if a player saw:
Mithrandir enters TheElvenForest. Instead of messing with that, I've added a new string that
represents the name of the directory the entity is supposed to be located in. So a region with the name
The Elven Forest would have a disk name of TheElvenForest.

Here's a sample of a region entity on disk:

[ID] 1
[NAME] Betterton
[DESCRIPTION] Betterton is a run down town.
[DATABANK]
[/DATABANK]
[LOGICS]
[/LOGICS]

This region entity has no data or logic yet.

Portals

Portals are a part of the physical world in BetterMUD that differ most from the physical structure of
the SimpleMUD.

In the SimpleMUD, the rooms knew how players could exit from them and move into different rooms,
but the BetterMUD doesn't use this concept. Instead, it has portals, which define how players move
from one place to the next, by defining a starting and an ending point.

A large part of building any world-type game is the ability to deny a player's access to an area and
force him to perform tasks to gain access. For example, there's the classic "find the key to this door"
quest, which you can probably find in every MUD out there.

The SimpleMUD has no way of denying access to a room; anyone can go anywhere. That makes the
game simple, but that was the point in the first place.

In the BetterMUD, on the other hand, such a solution is unacceptable. You could easily hard-code the
requirement for rooms to have "key-locks" on the doors, but hard coding such a thing into the physical
world is unnecessary and limiting. One day, you might want to come up with a special "double-
locked" door (the kind you see in all those military movies) for which you need two keys turned at the

same time to access the nuclear command system behind the door. Or maybe a magic door that denies
entrance to people of a specified level of "evilness", or whatever else you may think of. Heck, you
may even want portals that have traps that switch on when a player enters the door (watch out for
those saw blades! Ouch!), or doors that magically bless a player who walks through. Anyway, I'm
sure you can think of hundreds of ideas, which is why hard-coding anything into a portal is a bad
idea.

The basic design of the portals is that they have innumerable "paths," and each is a one-way path
starting at one room and ending at another.

Let's say you have a portal with one pathway, which leads from room 1 to room 2. When a player is
in room 1 and tries entering that portal, the game asks the portal if he can enter that portal, and if he
can, the game tells the portal that the player has entered it, and then moves him to room 2.

Of course, if the portal doesn't have a path from room 2 back to room 1, the player can't get back
(unless of course, there's a different portal object somewhere with that pathway in it).

Figure 13.1 shows a sample of some of the many possible ways to use portals.

Figure 13.1. Portals can be one-way, two-way, three-way and beyond. In addition,
two different one-way portals can act like a two-way portal.

Basically, portals are objects that connect rooms and allow characters to move throughout the game.

Portal Entries

When designing portals, you could take any route you want. You could easily make portals just one-
way objects, but then you'll have problems linking together two portals that should share a single
module of logic (a door closed on one side should be closed on the other side).

You could make portals two-way, but that's not really flexible. If you assume every portal has two
ways, you couldn't easily make one-way paths, or other tricky maneuvers.

So, the best idea I could come up with was using an n-way portal, which can contain any number of
paths. These paths are defined by a simple portalentry structure:

struct portalentry {
 entityid startroom; // starting room
 std::string directionname; // name of the direction
 entityid destinationroom; // ending room

 void Load(std::istream& p_stream);
 void Save(std::ostream& p_stream);
};

An entry consists of three pieces of data: a starting room, a destination room, and the name of the exit
that the path represents.

The SimpleMUD supported four directions in the game: north, east, south, and west. The BetterMUD
doesn't support any directions; it only supports exits based on portal names. Any room can have an
infinite number of exits from it, as long as each exit has a unique name. For example, if you want a
portal to connect rooms 1 and 2, and going from 1 to 2 is considered "going north," the direction name
of that exit should be north. You'll see how this works a little later on.

Entries know how to load and save themselves to disk too, which makes loading and saving portals
easier. You'll also see this later.

Portal Entity Class

The actual portal entity class is pretty simple. The only thing it adds on top of the various mixins it
inherits is a list of portal entries, representing all the paths in a portal:

class Portal :
 public LogicEntity,
 public DataEntity,
 public HasRegion {
public:
 typedef std::list<portalentry> portals;
 portals::iterator PortalsBegin() { return m_portals.begin(); }

 portals::iterator PortalsEnd() { return m_portals.end(); }

 void Load(std::istream& p_stream);
 void Save(std::ostream& p_stream);
 void Remove();
 void Add();
protected:
 portals m_portals; // list of entries
}; // end class Portal

Very simply, every portal has a list of entries and functions to iterate through it. Also present should
be the familiar Add and Remove commands (customized for portals, of course), as well as the Load and
Save commands. These have, of course, been customized for the portal's needs, but they are very
similar to the same functions found in other entities, so I won't show them to you here.

Here is a sample listing of a portal that can be loaded from disk:

[ID] 1
[REGION] 1
[NAME] Garden Path
[DESCRIPTION] This is a plain garden pathway.
[ENTRY]
 [STARTROOM] 1
 [DIRECTION] North
 [DESTROOM] 2
[/ENTRY]
[ENTRY]
 [STARTROOM] 2
 [DIRECTION] South
 [DESTROOM] 1
[/ENTRY]
[/ENTRIES]
[DATABANK]
[/DATABANK]
[LOGICS]
[/LOGICS]

Note the entries. This particular portal contains two entries: one leading from room 1 to room 2, and
the other going back the other way. The name of the first path is simply North, meaning that's the
direction a player needs to type to enter it (that is, go north). You can change the name to whatever
you want (flazzleblap?), as long as it makes sense for the room. You can use this feature to give your
game a more "realistic" touch, since your rooms are not limited to 4 or 8 "specific" exits.

Adding and Removing Portals

The Add and Remove functions for portals are a bit more sophisticated than those for the other entity

types. This is mostly because a single portal can exist within any number of rooms. So how does one
determine if a portal exists within a room? If a portal has a one-way path from room 1 to room 2,
should it exist in both rooms? What if it doesn't have a path back?

The best way to manage this is to insert portals only into rooms that are starting points. If you have a
portal that goes from 1 to 2 and 2 to 3, it should only exist within rooms 1 and 2, but not 3, since
there's no starting point in room 3.

Databases

In the last chapter, I went over the various database base classes: Database, VectorDatabase,
MapDatabase, and TemplateInstanceDatabase. None of these databases actually stored any entities,
however; they just provided the framework for the actual entity databases within the BetterMUD:
CharacterDatabase, ItemDatabase, RoomDatabase, PortalDatabase, RegionDatabase, and
AccountDatabase.

The beautiful part about all these classes is that they are simple. Heck, the RoomDatabase is so
insanely simple that it doesn't add a single member variable or function to the VectorDatabase that it
inherits from!

The two databases that hold volatile entities (characters and items) inherit from the
TemplateInstanceDatabase class, which means that they have a vector of templates and a map of
instances.

Accounts are stored in a map database; portals, rooms, and regions are all stored in vector databases.

This means that looking up item and character templates, portals, rooms, and regions is fast. It's a
little bit slower to look up item and character instances and accounts, but it's not that slow. If you
think about it, even with a completely full map database of 4-billion entities, it takes around 32
comparisons to find any item in the database.

I don't want to spend much more time going over the databases, simply because the database system
for the BetterMUD is quick and dirty.

In reality, you can swap out all these classes with more professional versions, if the need ever arises.
The problem with these "databases" is that they keep everything in memory, which means that your
game is ultimately limited by how much memory you have on the system at any given time. While
that's not such a big deal when you start out, multiple hundreds of megabytes eventually seems
limiting, if your MUD gets large enough. That's when you should start considering adding in a real
database.

Account Database

The database that stores accounts is mildly complex. The main purpose of this database is to manage
accounts, and that's precisely what it does. Here's the class skeleton:

class AccountDatabase : public MapDatabase<Account> {
public:
 entityid Create(const string& p_name, const string& p_pass);
 bool AcceptibleName(const string& p_name);
 void Load();
 void Save();

};

extern AccountDatabase AccountDB;

You should also note that I've created a global instance of the database named AccountDB. Remember
that the databases from the SimpleMUD were all static classes, but they're globals in the BetterMUD.
It's really just semantics; after working with the SimpleMUD for a while, I found that I was constantly
annoyed by typing MonsterDatabase::blah(). In the BetterMUD, you access the databases by calling
the global instance instead, such as AccountDB.Save().

The account database can do three things above and beyond what a MapDatabase provides: create new
accounts, test if various names are acceptable names for an account, and provide operations for
loading and saving all accounts from and to disk.

Creating New Accounts

The account creation function is simple:

entityid AccountDatabase::Create(const string& p_name,
 const string& p_pass) {

 entityid id = FindOpenID();
 Account& a = m_container[id];
 a.SetID(id);
 a.SetName(p_name);
 a.SetPass(p_pass);
 a.SetLoginTime(g_game.GetTime());
 return id;
}

This code gets an open ID from the map, creates the new account by retrieving it using the []
operator, and then sets all the information for it. Finally, the ID is returned.

Checking Name Validity

The account database's AcceptibleName function is the same as those of the SimpleChat and
SimpleMUD, so I'm not going to bother showing the function here. The gist is that this function can't
accept names with the following characteristics: weird characters such as " \"'~!@#$%^&*+/\\[]{}<>
()=.,?;:"; fewer than 3 characters; longer than 16 characters, names that don't start with an alphabetic
character; and names that are not equal to "new" (which screws up the login system).

Loading and Saving

Loading and saving the account database is a simple affair, especially loading:

void AccountDatabase::Load() {
 LoadDirectory("data/accounts/");
}

This code simply wraps around the Database::LoadDirectory function, which automatically loads up
a manifest file in the directory, and proceeds to load as many entities as it can, automatically inserting
them into the database as it goes.

Saving is a bit more complex, since there's no solid definition in the Database class that shows how
datafiles are spread out:

void AccountDatabase::Save() {
 // load up the manifest file:
 static std::string dir = "data/accounts/";
 static std::string manifestname = dir + "manifest";
 std::ofstream manifest(manifestname.c_str(), std::ios::binary);
 container::iterator itr = m_container.begin();

 // loop while there are accounts, saving each one to its own file:
 while(itr != m_container.end()) {
 std::string accountfilename = dir + itr->second.Name() + ".data";
 std::ofstream accountfile(accountfilename.c_str(),
 std::ios::binary);
 SaveEntity(accountfile, itr->second);

 // add an entry to the manifest:
 manifest << itr->second.Name() << "\n";
 ++itr;
 }
}

The function loads up the manifest (which clears its contents since you're overwriting the existing
contents of the file). Then the function loops through all accounts and saves a file for each, and also
adds the name of the account to the manifest file.

Character Database

The character database is a template/instance database that stores characters and character templates.
Seems obvious in retrospect, doesn't it?

This database can be queried to find players (a special subset of characters, representing anyone who
can log in and play the game), save players to disk, load individual players, load all templates, and

load individual templates:

class CharacterDatabase :
 public TemplateInstanceDatabase<Character, CharacterTemplate> {
public:
 bool HasName();
 entityid FindPlayerFull(const std::string& p_name);
 entityid FindPlayerPart(const std::string& p_name);
 void SavePlayers();
 void LoadPlayers();
 void LoadTemplates();
 void LoadTemplates(const std::string& p_file);
 void LoadPlayer(const std::string& p_name);
};

extern CharacterDatabase CharacterDB;

Characters are a special type of entity in the BetterMUD; they can exist as computer-controlled
objects, or they can exist as players, which are controlled by people who log into the MUD.

Because of this, it's often a good idea to store your players in a place separate from the rest of the
characters in the game. I have opted to place them all in /data/players.

The database only allows you to save players, not every character. It's actually the region database,
which you'll see later, that saves non-player characters to disk.

The SavePlayers and LoadPlayers functions are almost equivalent to the Save and Load functions from
the account database; they just load character files instead of account files. Because of this, I'm not
going to show you their code (how much stream code can a person take anyway?).

The other functions simply wrap around existing databases or functions, so I won't bother showing
those to you either; you've seen similar code a hundred times already.

The two LoadTemplates functions are designed to load character templates from disk. The function
that doesn't take any parameters loads up the manifest file found in /data/templates/characters, and
loads character templates from every file located within the manifest.

The function that takes a string parameter loads a specific file; for example if you passed in
playercharacters.data, the function would try to load all character templates from /data/
templates/characters/playercharacters.data.

Item Database

The item database function is extremely simple as well:

class ItemDatabase : public TemplateInstanceDatabase<Item, ItemTemplate> {
public:
 void LoadTemplates();
 void LoadTemplates(const std::string& p_file);
};

extern ItemDatabase ItemDB;

Each of these functions simply wrap around the VectorDatabase functions, LoadDirectory and
LoadFile functions, that are rerouted to load from the /data/templates/items directory. These two
functions perform the same way as the LoadTemplates functions from the character database.

Room and Portal Databases

The room and portal databases are among the simplest database classes in the BetterMUD. Observe:

class RoomDatabase : public VectorDatabase<Room> {};
extern RoomDatabase RoomDB;
class PortalDatabase : public VectorDatabase<Portal> {};
extern PortalDatabase PortalDB;

They're empty classes! That's it! I don't need to add any extra functions at all. This is because all the
work of loading and saving rooms and portals is done through the region database class.

Region Database

The region database is the most complex of all the databases in terms of what it adds to the base
database classes. Here's the class skeleton:

class RegionDatabase : public VectorDatabase<Region> {
public:
 void LoadAll();
 void LoadRegion(const std::string& p_name);
 void SaveRegion(entityid p_region);
 void SaveAll();
};
extern RegionDatabase RegionDB;

Using this class, you can load every region in the game, load a specific region, save a specific region,
or save every region in the game.

Every region in the game is stored within a directory of its own, and these directories contain five
files: region.data, rooms.data, portals.data, characters.data, and items.data. As you might have
guessed, these files store information about the region and all the rooms, portals, non-player
characters, and items in the region.

Loading from a Manifest

In the game directory /data/regions, there is a manifest file, which should contain the names of every
region in the game. For example, you might have a manifest file that looks like this:

Betterton
DwarvenMines
ElvenForest

With this manifest file, the game tries to load regions from the directories /data/regions/ Betterton,
/data/regions/DwarvenMines, and /data/regions/ElvenForest. This function loads each of those names
from the manifest and loads each region independently:

void RegionDatabase::LoadAll() {
 static std::string dir = "data/regions/manifest";
 std::ifstream manifest(dir.c_str(), std::ios::binary);
 manifest >> std::ws;

 std::string regionname;
 while(manifest.good()) {
 manifest >> regionname;
 LoadRegion(regionname);
 }
}

As you can see, the function simply invokes the LoadRegion helper function.

Loading a Specific Region

The database loads specific regions from disk using the LoadRegion function. You simply pass the
name of the region you want to load, such as LoadRegion("Betterton"), and the function tries
loading that region from /data/regions/Betterton.

Here's the code:

void RegionDatabase::LoadRegion(const std::string& p_name) {
 std::string dir = "data/regions/" + p_name + "/";

 std::string regionfilename = dir + "region.data";
 std::ifstream regionfile(regionfilename.c_str(), std::ios::binary);
 Region ® = LoadEntity(regionfile); // load region from file
 reg.SetDiskname(p_name); // set its disk name

 // now load each individual component:
 RoomDB.LoadFile(dir + "rooms");
 PortalDB.LoadFile(dir + "portals");
 CharacterDB.LoadFile(dir + "characters");
 ItemDB.LoadFile(dir + "items");
}

The function first calculates the name of the directory you're loading, and then the name of the region's
datafile. Once that is finished, the region is loaded using LoadEntity (inherited from the Database
classisn't that neat, and the disk name of the region is set, so that it knows how to save the region back
to disk.

After that, the function manually invokes the LoadFile helper for the room, portal, character, and item
databases for each file in the directory (for example rooms.data, portals.data). You don't need to add
.data to the end of the filenames, because the Database::LoadFile function does that for you
automatically.

That's all you need to load a region!

Saving a Specific Region

Saving a specific region to disk is slightly more complicated, mostly because the database classes
don't have any kind of SaveFile function. Instead, you need to manually stream everything you need
back to the files you need them in.

I'm going to split this function up to explain it better:

void RegionDatabase::SaveRegion(entityid p_region) {
 Region& reg = get(p_region);
 std::string workingdir = "data/regions/" + reg.Diskname();
 std::string regionfilename = workingdir + "/region.data";
 std::ofstream regionfile(regionfilename.c_str(), std::ios::binary);
 SaveEntity(regionfile, reg);

The preceding code gets the region you want to save, and then constructs a working directory string,
which is simply data/regions/ added to the disk name of a region. Databases

Once the string is constructed, the function opens up the "region.data" file in that directory, and

streams the region right into it, overwriting whatever was there.

The code continues and saves the rooms of a region to disk:

 std::string roomsfilename = workingdir + "/rooms.data";
 std::ofstream roomsfile(roomsfilename.c_str(), std::ios::binary);
 Region::rooms::iterator ritr = reg.RoomsBegin();
 while(ritr != reg.RoomsEnd()) {
 Room& r = RoomDB.get(*ritr); // get room
 RoomDB.SaveEntity(roomsfile, r); // save it
 roomsfile << "\n"; // add newline
 ++ritr; // go to next
 }

Saving the portals is a very similar process:

 std::string portalsfilename = workingdir + "/portals.data";
 std::ofstream portalsfile(portalsfilename.c_str(), std::ios::binary);
 Region::portals::iterator pitr = reg.PortalsBegin();
 while(pitr != reg.PortalsEnd()) {
 Portal& p = PortalDB.get(*pitr);
 PortalDB.SaveEntity(portalsfile, p);
 portalsfile << "\n";
 ++pitr;
 }

However, saving characters is a little different. Remember that characters are saved to their own files
inside of the /data/players directory, so this directory needs to store only non-player characters
(NPCs), which requires an if-statement:

 std::string charactersfilename = workingdir + "/characters.data";
 std::ofstream charactersfile(charactersfilename.c_str(),
 std::ios::binary);
 Region::characters::iterator citr = reg.CharactersBegin();
 while(citr != reg.CharactersEnd()) {
 Character& c = CharacterDB.get(*citr);
 if(!c.IsPlayer()) { // only save non-players
 CharacterDB.SaveEntity(charactersfile, c);
 charactersfile << "\n";
 }
 ++citr;
 }

And finally, items are saved by using a process similar to rooms and portals:

 std::string itemsfilename = workingdir + "/items.data";

 std::ofstream itemsfile(itemsfilename.c_str(), std::ios::binary);
 Region::items::iterator iitr = reg.ItemsBegin();
 while(iitr != reg.ItemsEnd())
 {
 Item& i = ItemDB.get(*iitr);
 ItemDB.SaveEntity(itemsfile, i);
 itemsfile << "\n";
 ++iitr;
 }
}

That's the function that takes up the most space.

NOTE

You can clearly see that the blocks to save entities are very similar, and this should be setting
off a warning bell in your head. You may consider writing some sort of templated function to
perform this kind of a task in the future, if you ever plan on expanding the game. I just want you
to know that the whole database system is a quick and dirty system, and you should by no means
spend all your time studying it. My main focus in the BetterMUD is the separation of logic and
data. I may one day implement a true database engine in the BetterMUD, but this will have to
do for now.

Saving the Whole Thing

The final function in the region database is saving all the databases to disk:

void RegionDatabase::SaveAll() {
 iterator itr = m_container.begin();
 while(itr != m_container.end()) {
 if(itr->ID() != 0) {
 SaveRegion(itr->ID());
 ++itr;
 }
 }
}

The function essentially loops through all the regions (checking to make sure none of them has an ID
of 0), and calls the SaveRegion helper to save that region to disk.

Directory Structure

The directory structure for the data of the BetterMUD is hierarchical; I've put everything into
directories that make sense. All the data for the game is stored within the directory /data, which has
many subdirectories, as shown by Figure 13.2.

Figure 13.2. The general directory structure of the BetterMUD.

Accounts and players are all stashed in the /data/accounts and /data/players directories. Regions, of
course, are another level, in which each region has its own directory. The figure shows two regions,
Betterton and the Dwarven Mines.

I haven't covered the /data/commands or /data/logics directories yet, but these two directories store
scripts designed to be used within the game. Timers keep a listing of all timers in the game (see
Chapter 15), logon keeps all the logon-related text files and scripts (see Chapter 16), and
/data/templates stores all the item and character template files.

Accessors

The final topic I want to discuss in this chapter is the accessor classes. These classes are very similar
to the database pointer classes of the SimpleMUD, except that they are a bit more abstracted; they
don't actually allow direct access to the entities that they point to, but instead wrap around them. This
is because the accessor classes are designed to be used as wrappers into the Python language, and
also as lightweight pointer classes.

Accessors are simple; they all contain a pointer to the object they point to, and they all manage
reference counts to the entities they point to. If you've got 10 accessors pointing to an object in the
game, that object's reference count is also going to be 10; the game always knows when something is
pointing to an entity.

Unfortunately, I ran into the same problem with accessors that I did with database pointers from the
SimpleMUD: circular dependencies and templates just don't mix. It's an unfortunate side effect of the
1-pass nature of C++, but there's not much you can do to fix it.

Accessor Problems

Unfortunately, the problem with C++ circular dependencies and templates is much bigger for the
BetterMUD, since accessors are wrapper (or proxy) classes. The accessor classes actually need to
be given all the functions you want to use with them, and there are many. For example, an item
accessor needs all the entity wrapper functions (accessors for ID, name, and description), the "has
room" functions, "has templateid" functions, and so on. You could end up with an accessor looking
like this (warning, do not attempt this at home!):

class item {
public:
 item(entityid p_id);
 item(const item& p_right);
 item& operator=(const item& p_right);
 ~item();
 entityid ID();
 std::string Name();
 std::string Description();
 void SetID(entityid p_id);
 void SetName(const std::string& p_name);
 void SetDescription(const std::string& p_desc);

... <SNIP> ...

protected:
 Item* m_item;
};

And then you could start on the character accessor class:

class character {
public:
 character (entityid p_id);
 character (const character& p_right);
 character& operator=(const character& p_right);
 ~character ();
 entityid ID();
 std::string Name();
 std::string Description();
 void SetID(entityid p_id);
 void SetName(const std::string& p_name);
 void SetDescription(const std::string& p_desc);

... <SNIP> ...

protected:
 Character* m_character;
};

Notice anything similar? Almost everything! Well, this is a predicament. It gets even worse when you
implement the functions in the .cpp file; even more code duplication!

Solution

I solved this problem using macros. I know macro use is frowned upon by almost everyone, but
sometimes you just have to choose the right tool for the job. Using macros in this case will save you
hours and hours of trying to figure out how to implement accessors using templates instead (with
circular dependencies, you can't), or wasting time copying the same code over and over.

In the /BetterMUD/accessors/AccessorMacros.h file, I've included a bunch of macros to be used in
accessor classes. Here's a listing of the "header" macrosthe macros that define the required function
headers:

ENTITYHEADERS(AC)constructor, destructor, copy constructor, ID, Name, Description
accessors

ENTITYTEMPLATEHEADERS(AC)accessors for template classes, like ItemTemplate and
CharacterTemplate

HASREGIONHEADERSregion accessors

HASROOMHEADERSroom accessors

HASTEMPLATEIDHEADERStemplate ID accessors

HASCHARACTERSHEADERScharacter collection accessors

HASITEMSHEADERSitem collection accessors

HASROOMSHEADERSroom collection accessors

HASPORTALSHEADERSportal collection accessors

HASDATABANKHEADERSdatabank accessors

HASLOGICHEADERSlogic module accessors

HASCOMMANDSHEADERScommand accessors

I'll show you a listing of all the functions these macros define a little bit later on. All these macros
have implementation equivalents, which contain implementation code. Instead of HEADERS at the end of
the macro, you have IMPLEMENTATIONS instead.

Example

Let me show you how to use macros with a simple example. This is the item accessor class:

class item {
public:
 ENTITYHEADERS(item);
 HASROOMHEADERS;
 HASREGIONHEADERS;
 HASTEMPLATEIDHEADERS;
 HASDATABANKHEADERS;
 HASLOGICHEADERS;

 bool IsQuantity();
 int GetQuantity();
 void SetQuantity(int p_quantity);
protected:
 Item* m_item;
}; // end class item

The item accessor has entity headers, room headers, region headers, template ID headers, databank
headers, and logic headers. I'll get to the parameters in a bit.

Once you have your accessor class defined, you can go ahead and shove the implementation macros
into your .cpp files:

ENTITYIMPLEMENTATIONS(item, m_item, ItemDB);
HASROOMIMPLEMENTATIONS(item, m_item);
HASREGIONIMPLEMENTATIONS(item, m_item);
HASTEMPLATEIDIMPLEMENTATIONS(item, m_item);
HASLOGICIMPLEMENTATIONS(item, m_item);
HASDATABANKIMPLEMENTATIONS(item, m_item);
bool item::IsQuantity() { return m_item->IsQuantity(); }
int item::GetQuantity() { return m_item->GetQuantity(); }
void item::SetQuantity(int p_quantity){ m_item->SetQuantity(p_quantity); }

Note that the functions that are unique to items, such as the quantity functions, are actually defined and
implemented normally; everything that's in a macro is repeatable, and used in other accessor classes.

A Macro

I bet you're a bit confused at the moment about the macros and their parameters, so to clear your head
I'm going to show you two of the macros.

Here is the ENTITYHEADERS macro:

#define ENTITYHEADERS(AC) \
 AC(entityid p_id); \
 AC(const AC& p_right); \
 AC& operator=(const AC& p_right); \
 ~AC(); \
 entityid ID(); \
 std::string Name(); \
 std::string Description(); \
 void SetID(entityid p_id); \
 void SetName(const std::string& p_name); \
 void SetDescription(const std::string& p_desc);

This macro takes a single parameter, which is meant to be the name of the class. In the item class
definition you can see that I passed in item. When expanding the macro, the compiler searches for any
instances of AC, and replaces it with the parameter, which is item. So when processing this macro, the
compiler actually sees this:

 item(entityid p_id);
 item(const item& p_right);
 item& operator=(const item& p_right);
 ~item();
 entityid ID();
 std::string Name();
 std::string Description();
 void SetID(entityid p_id);

 void SetName(const std::string& p_name);
 void SetDescription(const std::string& p_desc);

Your item class automatically has all these functions declared.

Of course, function declarations aren't worth anything unless you define them, which is what the
ENTITYIMPLEMENTATIONS macro does:

#define ENTITYIMPLEMENTATIONS(AC, PT, DB) \
AC::AC(entityid p_id) \
{ \
 PT = &(DB.get(p_id)); \
 PT->AddRef(); \
} \
AC::AC(const AC& p_right) \
{ \
 PT->DelRef(); \
 PT = p_right.PT; \
 PT->AddRef(); \
} \
AC& AC::operator=(const AC& p_right) \
{ \
 PT = p_right.PT; \
 PT->AddRef(); \
 return *this; \
} \
AC::~AC() { PT->DelRef(); } \
entityid AC::ID() { return PT->ID(); } \
std::string AC::Name() { return PT->Name(); } \
std::string AC::Description() { return PT->Description(); } \
void AC::SetID(entityid p_id) { PT->SetID(p_id); } \
void AC::SetName(const std::string& p_name) \
 { PT->SetName(p_name); } \
void AC::SetDescription(const std::string& p_desc) \
 { PT->SetDescription(p_desc); }

For the implementation macro, you pass in three parameters: the name of the accessor class (item),
the name of the pointer member variable that the class has (m_item), and the database used to look up
entities (ItemDB). So for example, the constructor would turn from this:

AC::AC(entityid p_id) \
{ \
 PT = &(DB.get(p_id)); \
 PT->AddRef(); \
} \

into this:

item::item(entityid p_id)
{
 m_item = &(ItemDB.get(p_id));
 m_item->AddRef();
}

Isn't that cool? You can do this for all the entity types, and keep code duplication at a minimum.

Iterators

I have mentioned this before, but not really in depth. Accessors act like iterators to collections that
they point to. For example, if you have a character accessor, you can use that accessor object as an
iterator over the items the character has in his inventory.

While I haven't shown you the functions available to the accessors yet, I'm sure you'll have no
problem picking up this example of a character accessor iterating over his items:

character c(10);
c.BeginItem(); // reset to first item
while(c.IsValidItem()) { // loop while item is valid
 process(c.CurrentItem); // some imaginary process function
 c.NextItem(); // go to next item
}

Most of the accessors have iterator seek functions, which will seek the iterator to a specific position,
like this:

c.SeekItem("sword");

If the character has a sword, c.CurrentItem returns the ID of it, or c.IsValidItem will be false.

Members of the Accessors and Macros

In this section, I'm giving you listings of the functions available in each of the accessor macros and
accessor types, for easy reference.

Entity Functions

accessor(entityid p_id);
accessor(const accessor& p_right);
accessor& operator=(const accessor& p_right);
~accessor();
entityid ID();
std::string Name();
std::string Description();
void SetID(entityid p_id);
void SetName(const std::string& p_name);
void SetDescription(const std::string& p_desc);

For the previous listing, I've replaced the name of the actual accessor class with the string accessor.

Region Functions

entityid Region();
void SetRegion(entityid p_region);

Room Functions

entityid Room();
void SetRoom(entityid p_room);

TemplateID Functions

entityid TemplateID();
void SetTemplateID(entityid p_templateid);

Character Container Functions

void AddCharacter(entityid p_id);
void DelCharacter(entityid p_id);
size_t Characters();
void BeginCharacter();
entityid CurrentCharacter();
void NextCharacter();
bool IsValidCharacter();
void SeekCharacter(const std::string& p_name);

Item Container Functions

void AddItem(entityid p_id);
void DelItem(entityid p_id);
size_t Items();
void BeginItem();
entityid CurrentItem();
void NextItem();
bool IsValidItem();
void SeekItem(const std::string& p_name);

Room Container Functions

void AddRoom(entityid p_id);
void DelRoom(entityid p_id);
size_t Rooms();
void BeginRoom();
entityid CurrentRoom();
void NextRoom();
bool IsValidRoom();
void SeekRoom(const std::string& p_name);

Portal Container Functions

void AddPortal(entityid p_id);
void DelPortal(entityid p_id);
size_t Portals();
void BeginPortal();
entityid CurrentPortal();
void NextPortal();
bool IsValidPortal();
void SeekPortal(const std::string& p_name);

Databank Functions

int GetAttribute(const std::string& p_name);
void SetAttribute(const std::string& p_name, int p_val);
bool HasAttribute(const std::string& p_name);
void AddAttribute(const std::string& p_name, int p_initialval);

void DelAttribute(const std::string& p_name);

Logic Module Functions

bool AddLogic(const std::string& p_logic);
bool AddExistingLogic(Logic* p_logic);
bool DelLogic(const std::string& p_logic);
Logic* GetLogic(const std::string& p_logic);
bool HasLogic(const std::string& p_logic);
int DoAction(const Action& p_action);
int DoAction(const std::string& p_act,
 entityid p_data1 = 0,
 entityid p_data2 = 0,
 entityid p_data3 = 0,
 entityid p_data4 = 0,
 const std::string& p_data = "");
int GetLogicAttribute(const std::string& p_logic,
 const std::string& p_attr);
void AddHook(TimedAction* p_hook);
void DelHook(TimedAction* p_hook);
size_t Hooks();
void ClearHooks();
void ClearLogicHooks(const std::string& p_logic);

I get to logic modules in Chapters 14 and 15, so don't worry if you don't yet know what the previous
listed functions do. The same goes for the command functions.

Command Functions

bool HasCommand(const std::string& p_command);
bool AddCommand(const std::string& p_command);
bool DelCommand(const std::string& p_command);
void BeginCommands();
std::string CurrentCommand();
std::string CurrentCommandUsage();
std::string CurrentCommandDescription();
void NextCommand();
bool IsValidCommand();
void SeekCommand(const std::string& p_name);

Those are all the functions defined by the macros; everything else that the accessors have is defined
normally in the accessor classes.

Accessor Dependencies

Table 13.1 shows the accessor class used by each accessor macro.

Table 13.1. Accessor Classes and the Macros They Need

Macro Account Character Item Room Region Portal

Entity yes yes yes yes yes yes

Region no yes yes yes no yes

Room no yes yes no no no

TemplateID no yes yes no no no

Characters yes no no yes yes no

Items no yes no yes yes no

Rooms no no no no yes no

Portals no no no yes yes no

Databank no yes yes yes yes yes

Logic no yes yes yes yes yes

Commands no yes no no no no

Account Accessor Functions

Account accessors have these functions in addition to their macros (as listed in Table 13.1):

std::string Password();
BasicLib::sint64 LoginTime();
int AccessLevel();
bool Banned();
int AllowedCharacters();
void SetPass(const std::string& p_pass);
void SetLoginTime(BasicLib::sint64 p_time);
void SetAccessLevel(int p_level);

void SetBanned(bool p_banned);
void SetAllowedCharacters(int p_num);

Character Accessor Functions

Characters have these extra accessor functions:

bool Quiet();
bool IsPlayer();
bool Verbose();
void SetQuiet(bool p_quiet);
void SetAccount(entityid p_account);
bool IsLoggedIn();
void SetLoggedIn(bool p_loggedin);
std::string LastCommand();

Item Accessor Functions

Items have these extra accessor functions:

bool IsQuantity();
int GetQuantity();
void SetQuantity(int p_quantity);

Portal Accessor Functions

Portals add a bunch of iterator functions that iterate through their list of path entries:

void BeginPath();
entityid CurrentStart(); // get current starting room
std::string CurrentDirection(); // get current direction name
entityid CurrentEnd(); // get current ending room
void NextPath();

bool IsValidPath();
void SeekStartRoom(entityid p_room);
void SeekEndRoom(entityid p_room);

The path iterator is a bit different from previous iterators, since you're actually accessing a complex

portalentry structure, rather than just an entity ID, as the other container iterators do. It's not that
difficult though; for each path in a portal, CurrentStart returns the ID of the starting room,
CurrentDirection returns the name of that path, and CurrentEnd returns the ending point of that path.

Likewise, there are two seek functions: one that seeks to the first path that has a starting room of
p_room; and the other that seeks to the first path that has an ending room of p_room.

Summary

I hope I didn't bore you to death with all the mundane details about entities, their databases, and their
accessor classes. I know you must be impatient to get to the real meat of the BetterMUD, so that you
can start making your own cool MUD, instead of dealing with all this low-level management. Don't
worry, it gets more interesting after this.

In the next chapter, I start getting into the interesting stuff, such as the basics of the scripting engine
and how to abstract the logic and the data of the game away from each other.

In this chapter, you learned to make your life easier by combining many little "mixin" classes to form
larger classes that share bits and pieces of functionality. The same concept was applied toward all the
databases, and macros were used for the same purpose when dealing with the accessor classes.

In the introduction of the book, I told you about the different layers of MUDs, and how you can hard-
code certain parts of a virtual world and leave other parts flexible. As you can see from this chapter,
the physical layer of the world is entirely hard-coded, and it is very difficult to change (in terms of
downtime of the MUD, that is). That's just one of the things you have to deal with when programming
in a static language such as C++.

I want you to start thinking about the future of your MUD projects, however, and think about possibly
implementing a dynamic physics system of your own. One thing that I've learned from using C++ is
that when you build a static physical world like this, you need to be sure to include data and functions
for everything you might need, whereas, as you'll see with the dynamic logic part of the game, you
can simply add features whenever you like.

Off to logic!

Chapter 14. Scripts, Actions, Logic, and Commands
This chapter explains the following flexible concepts of the BetterMUD: actions, logic, and
commands. I've briefly touched on all of these topics, but I never took the full plunge into what they
are and how they are implemented. For that, I apologize. The BetterMUD is a complex beast, and
there's no way I can split up the C++ core and gradually add features. On the Python side of things,
that's easy to do, but unfortunately, the core is best viewed as a whole entity with many interlinked
components. So, with this chapter, I explore the extendible concepts of the BetterMUD.

In this chapter, you will learn to:

Understand the basic ideas behind script objects

Learn what data actions contain

Learn the three major kinds of actions

Understand the parameters the actions require

Learn the workings of logic modules

Learn how commands work

Implement simple commands in C++

Implement a database that generates command objects

Scripts

I'll be explaining the specifics of implementing Python scripts in Chapters 17 and 18. That doesn't
prevent me, however, from showing you the basic interfaces that Python objects use throughout the
game.

The basic concept behind any piece of removable logic in the BetterMUD is the script. A script is,
simply, any object that holds logic (computer code) and can hold internal data.

The basic function of generic script objects is to load and save themselves to disk, however, so that's
just what the Script interface defines:

class Script {
public:
 virtual void Load(std::istream& p_stream);
 virtual void Save(std::ostream& p_stream);
 virtual std::string Name() = 0;
 virtual ~Script() {};
}; // end class Script

It should be noted that the Load and Save functions aren't pure virtual, but rather standard virtual. The
Script class defines default implementations of these functions.

NOTE

The Script class has a virtual destructor, which is very important to have due to a little-known
quirk in C++. Imagine having a class that returns new Script* objects (such as a script
database/factory), and relies on you to delete them. When you delete the script and the
language has no virtual destructor, only the destructor of the Script object that is called. If you
have a child class that inherited from the Script class, and it needs to delete data in its
destructor that Script s don't know about, you've just given yourself a memory leak, because
that child class never properly deletes what it needs to delete. It's enough to make you crazy
some times, isn't it? Supposedly the next standard of C++ will support automatic virtual
destruction, but that may be a few years off. We'll see.

Since all script objects are capable of storing variable amounts of miscellaneous data, it makes sense
that the scripts need to know how to write this data to disk. For example, you might give a special
command to a player that can be executed only once a week. Obviously, this command's script object
needs to store the last time the command was invoked, so that the next time a player tries to use it, it
can check, and say, "Hey, it hasn't been a week yet!" In addition, if you had to shut down the MUD and
then reload it without saving the data in the scripts, a player could use the command again, even if it
hadn't been a week.

Or worse yet, imagine what would happen if a player who was on a week-long quest was just hours

away from snapping up the Holy Grail, and all his quest data was wiped out because the script did
not save its data to disk. D'oh!

So scripts must save their data to disk. To do so, they use this format:

scriptname
[DATA]
... data goes here ...
[/DATA]

Even if there is no data, the [DATA] and [/DATA] tags must be written to disk. The default
implementation of the load and save functions does this for you automatically.

Actions

Everything that happens in the physical part of the world is considered an action and this includes
characters moving, attributes changing, items moving around, and people speaking.

A naive design would give each entity in the game specific calls for each event to look something like
this:

class Character {
 void SawCharacterLeave(entityid p_char, entityid p_portal);
 void SawCharacterEnter(entityid p_char, entityid p_portal);
 ...
 ...
 ...
};

Depending on the number of physical actions, this can end up making your codebase literally explode
in size.

Instead, as mentioned previously, I use a special structure to represent actions, called the Action
structure. (You can find this in /BetterMUD/Entities/Action.h.)

NOTE

There's a constructor that I didn't show in the previous code segment, but it simply takes
parameters matching each one of the fields. It also uses default parameters for each of the
arguments, so you don't have to use all the arguments all the time. You'll see this used in a bit.

struct Action {
 std::string actiontype;
 entityid data1;
 entityid data2;
 entityid data3;
 entityid data4;
 std::string stringdata;
};

An action contains six fields of data: two strings, and four entityids. These fields contain enough
data to represent the details of every physical action within the game.

For example, if you want to tell the game that character 1 entered the realm, you could create an
action like this:

Action a("enterrealm", 1);

Or when that character attempts to speak, you could create an action like this:

Action b("attemptsay", 1, 0, 0, 0, "Hello Game!!!");

The constructor uses default parameter values, but if you want to use the data string, you need to pass
in all parameters, even if they aren't used.

NOTE

I show you the meanings of all of the action parameters in a bit.

There are three major types of actions within the BetterMUD: attempted actions, query actions, and
completed actions.

Attempted Actions

Attempted actions are basically requests to the game. You have a script attached to a character, and
the script wants to move the character through a portal. The script then tells the game, "Hey, I want
this character to go through a portal!" Some attempted actions such as trying to go through portals may
fail; others, such as entering the realm, always work.

Attempted actions are always registered with the game module, which I show you in the next chapter.

Here is a listing of player-related attempted actions:

enterrealm a player is entering the realm

leaverealm a player is leaving the realm

announce a system-wide announcement is being made

chat a player wants to globally chat

attemptsay a player wants to speak in a room

vision a room-wide vision event is occurring

command a player wants to execute a command

Then we have some physical event requests:

attemptportalenter a character wants to enter a portal

attempttransport a character wants to teleport to another room without using a portal

transport a character is forced to teleport to another room, without asking permission

spawncharacter a new character wants to be spawned in a room

spawnitem a new item wants to be spawned at a location

destroycharacter a character is told to die

destroyitem an item is destroyed

attemptdropitem a character tries to drop an item

attemptgetitem a character tries to get an item

attemptgiveitem one character gives an item to another

There are also events that deal with the databases:

cleanup tells the item and character databases to clean up all their deleted instances

savedatabases tells the game to save all databases to disk

saveregion tells the game to save a particular region to disk

saveplayers tells the game to save the players (not all characters) to disk

savetimers tells the game to save all timers to disk

reloaditems tells the game to reload the item template database

reloadcharacters tells the game to reload the character template database

reloadregion tells the game to reload a particular region

reloadcommandscript tells the game to reload a command script by name

reloadlogicscript tells the game to reload a logic script by name

And then there are the attribute modifiers:

modifyattribute modify an attribute of an entity Actions

And finally, here are the other actions that don't fit into the other categories:

messagelogic send a generic text message to any logic module in the game

addlogic add a logic module to an entity

dellogic delete a logic module from an entity

do send a generic action event to an entity

Query Actions

Query actions are often supposed to return Booleans, and they govern things that can happen in the
realm. For example, you may want to prohibit players of a specific type from picking up items of a
specific type, or you may want items of a specific type to refuse to be picked up at all.

To figure out just what the heck can happen in the game, you need a bunch of query actions, which ask
an item if an action is allowed.

Here is a list of query actions:

cansay can a character say something?

canleaveregion can a character leave a region?

canenterregion can a character enter a region?

canleaveroom can a character leave a room?

canenterportal can a character enter a portal?

cangetitem can a character get an item?

candropitem can a character drop an item?

canreceiveitem can a character receive an item given by another character?

query generic query that asks custom questions.

All these actions (except query, which I go over in much more detail in Chapter 15) should return a
value of zero if the action is acceptable, or one if unacceptable. I know this sounds strange, since zero
usually means "no" or "false," but it involves the workings of the action reporting system.

A collection of logic modules governs the actions of every character. If several scripts are attached to
a character, the character asks each script if the action can be accomplished. Whenever an action
returns non-zero, it is assumed that it is important to return the information to whomever called the
script, so the game engine stops sending the action to each module, and just returns the value. Figure
14.1 shows the chaining system of the BetterMUD logic modules.

Figure 14.1. Modules are informed of actions until one of the modules returns a non-
zero value.

So, if a character has a module (for example, a logic module for someone dedicated to a church) that
prevents him from picking up certain items (such as an evil relic), that script returns a value of 1
whenever the script prevents the character from getting an item. The script returns 0 if the action is
allowed.

In a similar way, items and rooms are asked if they will allow characters to pick things up; I go over

the specifics of all this logic in the next chapter.

Completed Actions

Now that you've seen what actions can be requested by scripts, you need to know about the other side
of the equation. When you tell the game about an action, it tries to accomplish that action, and if it
succeeds, it must tell every actor in the equation about what happened.

For example, if a script requests that a player enter a portal, the game tries to move the player, and a
number of things must be done to accomplish that move. First, the player must ask the portal for
permission to enter, and if he receives permission, the room and everyone in it is told that the player
left the room and moved into a portal, the portal is told that the player entered, and then the new room
and everyone in it is told that the player entered.

Here are the completed actions that entities are informed of:

enterrealm A character entered the realm.

leaverealm A character left the realm.

leave The game tells a character to leave the game state.

hangup The game tells a character to hang up.

enterregion A character entered a region.

enterroom A character entered a room.

leaveroom A character left a room.

leaveregion A character left a region.

enterportal A character entered a portal.

getitem A character got an item.

dropitem A character dropped an item.

giveitem A character gave an item to another character.

error An error occurred.

announce A system announcement was made.

say Someone said something.

spawnitem A new item was spawned.

spawncharacter A new character was spawned.

destroyitem An item was destroyed.

destroycharacter A character was destroyed.

messagelogic A message was sent to a logic module.

modifyattribute An attribute was modified.

The preceding lists constitute all of the actions possible within the entire game. Table 15.1 shows
which entities are notified about which events.

Table 15.1. Entity Event Notifications

Event Items Characters Rooms Regions Portals

enterrealm no yes no no no

leaverealm no yes no no no

leave no yes no no no

hangup no yes no no no

enterregion no yes no yes no

enterroom yes yes yes no no

leaveroom yes yes yes no no

leaveregion no yes no yes no

enterportal no yes no no yes

getitem yes yes yes no no

dropitem yes yes yes no no

giveitem yes yes no no no

error no yes no no no

announce no yes no no no

say yes yes yes no no

spawnitem yes yes yeso no no

spawncharacter no yes yes no no

destroyitem yes yes yes yes no

destroycharacter no yes yes yes no

messagelogic yes yes yes yes yes

modifyattributes yes yes yes yes yes

Action Parameters

Tables 15.2, 15.3, and 15.4 list the parameters for each action event type. Most of the time you don't
have to pass room numbers as arguments, since the logic modules can assume that the room in
question is the room that currently contains the player.

Table 15.2. Attempted Action Parameters

Action arg1 arg2 arg3 arg4 data

chat player - - - text

announce - - - - text

vision room - - - text

enterrealm player - - - -

leaverealm player - - - -

attemptsay character - - - text

command character - - - text

attemptenterportal character portal - - -

attempttransport character room - - -

transport character room - - -

attemptgetitem character item quantity - -

attemptdropitem character item quantity - -

attemptgiveitem character character item quantity -

spawnitem template room/person isroom/person? quantity -

spawncharacter template room - - -

destroyitem item quantity - - -

destroycharacter character - - - -

cleanup - - - - -

savedatabases - - - - -

saveregion region - - - -

saveplayers - - - - -

savetimers - - - - -

reloaditems - - - - file

reloadcharacters - - - - file

reloadregion - - - - name

reloadcommandscript - - - - name

reloadlogicscript - - - - name

modifyattribute entity type entityid value - name

messagelogic entity type entityid - - name

addlogic entity type entityid - - logic

dellogic entity type entityid - - logic

do entity type entityid - - text

Table 15.3. Query Action Parameters

Action arg1 arg2 arg3 arg4 data

cansay character - - - text

canleaveregion character region - - -

canenterregion character region - - -

canleaveroom character room - - -

canenterroom character room - - -

canenterportal character portal - - -

cangetitem character item quantity - -

candropitem character item quantity - -

canreceiveitem giver receiver item quantity

query optional optional optional optional optional

Table 15.4. Happened Action Parameters

Action arg1 arg2 arg3 arg4 data

enterrealm player - - - -

leaverealm player - - -

leave - - - - -

hangup - - - - -

enterregion character region - - -

enterroom character portal - - -

leaveroom character portal - - -

leaveregion character region - - -

enterportal character portal - - -

getitem character item - - -

dropitem character item - - -

giveitem character recipient item -

error text

announce - - - - text

say character - - - text

spawnitem item - - - -

spawncharacter character - - - -

destroyitem item - - - -

destroycharacter character - - - -

messagelogic entity type entityid - - name

modifyattribute entity type entityid value - name

A few of the actions are "routable" actions, in which the action is routed to a specific entity in the
game. These actions have an entity type and an entity ID that determine where they go. Here is a
listing of the entity types:

0character

1item

2room

3portal

4region

So if you wanted to set attribute foo of item number 24 to the value 80, then you would construct an
action like this:

Action a("modifyattribute", 1, 24, 80, 0, "foo");

Logic

Logic modules are modules that react to actions. When I showed you the entity classes in Chapter 12,
I told you about the Logic and the LogicCollection classes, which are simple classes that wrap
around scripts (or C++ implemented functions too, if you want).

The Logic class is basically just an interface that wraps around a script. The class skeleton looks like
this:

class Logic : public Script {
public:
 virtual bool CanSave();
 virtual int Attribute(const
std::string& p_attr);
 virtual int DoAction(const Action&
p_action);
}; // end class Logic

NOTE

The Logic class is abstract and doesn't define an implementation. Originally, I had planned on
making both C++ and Python implementa tions of logic modules, but after playing around with it,
I realized that C++ modules aren't even needed; you can do anything you want from within
Python. The design is still there, however; so if you ever feel like implementing hard-coded logic
modules in C++, feel free. Just beware that you'll have to stop and restart the MUD to make
any changes, and that's not good.

The first thing of interest in the listing is the CanSave function. The reason for this function is that some
logic modules shouldn't be saved to disk when an entity is saved to disk. For example, you'll see in
Chapter 16 that I implement player connection interaction classes as Logic modules (logic modules
that dictate how to send data to a connection), but obviously these modules aren't important when a
character exits the game (because he is no longer connected), so he shouldn't be saved to disk.

Logic modules can have attributes that are accessible from outside the module, and this accessibility
is implemented by using the Attribute function. This is especially useful for quests, since other logic
modules in the game need to check the state of a quest in order to react to it.

NOTE

Even though this code doesn't show it (since it is an abstract class), all logic modules need to be
initialized with the ID of the object that it is attached to. You'll see this when I show you the
PythonLogic class in Chapter 17.

The final function is the DoAction function, which performs an action on the particular logic module.

The Python-implemented version of this class can be found in the directory /BetterMUD/
scripts/python. I go over the code in Chapter 17.

Commands

Previously, I explained the idea of commands, which are scriptable objects that can be given to
players to enable them to communicate with other players and with the game.

Perhaps the best aspect of commands is that they can be given to people on a per-person basis, and
this is probably a good place to have a rewards system. Imagine this scenario: A character spends a
lot of time in woods and forests, so having the ability to find herbs and turn them into elixirs would be
useful. But the character doesn't know how to do that; the BetterMUD has no way of saying "convert
this object into that."

Perhaps, as a reward for completing a quest or by paying for schooling, the character can be given the
ability to issue a makeelixer command. Then, whenever the character invoked that command on herb-
items in his inventory, the command script would destroy the herbs and generate a new elixir in his
inventory.

That's how commands work; they're simple scripts that can be executed by characters.

The Command class is very simple:

class Command : public Script {
public:
 virtual void Execute(const std::string& p_parameters) = 0;
 virtual std::string Usage() = 0;
 virtual std::string Description() = 0;
}; // end class Command

The command class has three functions: a player can execute the command, obtain its "usage," and can
get its description.

In the game, whenever a player types /blah blarg, the game interprets that as a command. The game
tries to find a command named blah, and executes it with a parameter's value of blarg.

The usage and the description of a command are just strings that describe the syntax of the command
and describe what it accomplishes. Usage and description help the player figure out what to do.

NOTE

It is important to note that all com mands must be given the ID of the character that they belong
to, so that when the commands are executed, they know who executed them. You will see how
this is done when new command objects are created.

The Commands class can be found in the directory /BetterMUD/scripts in the files Command.h and
.cpp. Like logic scripts, Commands is an abstract class that can be implemented in either Python or

C++.

C++ Commands

Before I had the Python engine up and running, I had a few C++ commands running as a test case,
which means I implemented the Command module class in C++. You can find this class in the same
directory as the Command class, in the file CPPCommand.h.

Here is the implementation of the C++ version of the class:

class CPPCommand : public Command {
public:
 CPPCommand(entityid p_character, std::string p_name,
 const char* p_usage, const char* p_description);
 std::string Name() { return m_name; }
 std::string Usage() { return m_usage; }
 std::string Description() { return m_description; }
protected:
 std::string m_name;
 const char* m_usage;
 const char* m_description;
 character m_character;
}; // end class CPPCommand

The class is a simple one; it contains one string and two const char* pointers. Since many instances of
the individual command classes have the same nonchanging description and usage strings, it doesn't
make sense to store the actual string data on a per-instance basis, so I'd rather have pointers to the
strings instead.

This class doesn't implement the Execute command, but lets classes that inherit from this class
implement it instead.

C++ Commands Implemented

I've implemented a few commands in C++. These commands are located in the file CPPCommands.h
(note the "s" at the end of the file name and that the base CPPCommand class is in a different file,
CPPCommand.h). For example, the first command I implemented was the Quit command:

class CPPCommandQuit : public CPPCommand {
public:
 CPPCommandQuit(entityid p_character) :
 CPPCommand(p_character, "quit", "\"quit\"",
 "This removes your character from the game and takes you"
 " back to the Game Menu.") {}

 void Execute(const std::string& p_parameters) {
 m_character.DoAction(Action("leave", m_character.ID()));
 }
}; // end class CPPCommandQuit

This defines the Quit command. When you give this command to a player, he can type /quit and the
game logs him out. As you can see from the Execute function, this command simply tells the game that
a player is leaving the realm. That's all there is to it!

Here's another example:

class CPPCommandChat : public CPPCommand {
public:
 CPPCommandChat(entityid p_character) :
 CPPCommand(p_character, "chat", "\"chat <message>\"",
 "This sends a message to every player who is currently "
 "logged into the game.") {}

 void Execute(const std::string& p_parameters) {
 if(p_parameters.size() == 0) {
 m_character.DoAction("error", 0, 0, 0, 0, "Usage: " + Usage());
 return;
 }
 g_game.AddActionAbsolute(
 0, "chat", m_character.ID(), 0, 0, 0, p_parameters);
 }
}; // end class CPPCommandChat

This one is slightly more complex. It checks to see if the user supplied the appropriate parameters
(that is, any text after "chat"), and if there is no parameter, the game prints an error to the character
who tried to chat.

Otherwise, the game is told about the chat action, using the AddActionAbsolute command, which
you'll learn about in the next chapter. For now, all you need to know is that the chat action adds a
command to the game, and that the command is executed as soon as the game can get to it. (The first
parameter is the time to execute the command, and zero means right away.)

There are other commands in the filecommands that make players say things, reload scripts, move
around the map, look at a room, kick other players, and set quiet-mode, which is a feature I will get to
in the next chapter when I show you how to execute commands.

I'm leaving these commands in the game as sort of a "legacy," so you can get an idea of how you can
implement logic modules in C++. In Chapter 18, however, I'll show you how to create commands in
Python, and I hope you'll agree that Python is preferable to C++. The primary reason, of course, is the

fact that Python commands are reloadable at run-time, which means that you can add stuff to existing
commands if you need to.

Command Database

I took the liberty of creating a class that will manage all commands for you. Since the database is
closely linked with Python, you won't be able to understand everything that it does until Chapter 17,
but it's easy enough to follow. Here is the class skeleton and the definition of the global instance of
the database:

class CommandDatabase : public PythonDatabase {
public:
 CommandDatabase() : PythonDatabase("data/commands/") {}
 Command* generate(const std::string& p_str, entityid p_character);
 void GiveCommands(entityid p_character, accesslevel p_level);
};

extern CommandDatabase CommandDB;

The database inherits from a PythonDatabase class, which you'll see in Chapter 17. All you need to
know at this point is that the PythonDatabase class generates Python scripts, and that you can wrap
those into a PythonCommand object (also in Chapter 17), which is the Python version of the Command
class. Figure 14.2 shows this relationship.

Figure 14.2. Commands have a partial inheritance hierarchy.

The CommandDatabase returns new instances of any kind of command you give it.

Generating Commands

Whenever the database is asked for a command, this is the function it calls:

Command* CommandDatabase::generate(
 const std::string& p_str, entityid p_character) {
 if(p_str == "quit")
 return new CPPCommandQuit(p_character);
 else if(p_str == "go")
 return new CPPCommandGo(p_character);
 else if(p_str == "chat")
 return new CPPCommandChat(p_character);
 else if(p_str == "say")
 return new CPPCommandSay(p_character);
 else if(p_str == "kick")
 return new CPPCommandKick(p_character);
 else if(p_str == "quiet")
 return new CPPCommandQuiet(p_character);
 else if(p_str == "shutdown")
 return new CPPCommandShutdown(p_character);
 else if(p_str == "look")
 return new CPPCommandLook(p_character);
 else if(p_str == "commands")
 return new CPPCommandCommands(p_character);
 else if(p_str == "reloadscript")
 return new CPPCommandReloadScript(p_character);

I'm going to split up the code right here, and I would like to note that this kind of code is generally
considered ugly. Whenever you add a new command class to the BetterMUD in C++, you also need to
come back to this class and make sure it knows how to create and return the new kind of class. That
can get extremely annoying if you end up adding lots of C++ classes.

Here's the rest of the function, which executes when it can't find a C++ command with the name you
requested:

 else {
 try {
 // try to load a Python script
 PythonInstance* command = SpawnNew(p_str);
 return new PythonCommand(p_character, command);
 }
 catch(...) {
 PyErr_Print();
 // no script found
 }

 }
 throw Exception("Unknown Command Script");
}

This code uses classes you won't see until Chapter 17, but I hope makes some sense to you right now.
The code calls the PythonDatabase::SpawnNew function to get an instance of a new Python class, and
once it has that, it creates a new PythonCommand object that wraps around the Python class instance.

If no class is found, an exception is thrown, and no command object is returned.

NOTE

If you really insist on adding lots of C++ commands to the game, you should note that the
chained if-else method is inefficient once you get a large number of commands. You would be
better off creating a map of some sort, to map names to classes. Or even better, just use Python
for your commands.

Summary

In this chapter, you learned about the various flexible data structures that are part of the BetterMUD.
By now, these concepts should be familiar to you, since I've explained how they work before.

Using a scripting language is a nice and powerful way to enhance the flexibility of your game, as I
hope you'll see in the upcoming chapters.

NOTE

The Command objects returned by the database are always new, and it is up to the character who
requested the objects to delete them when he's finished.

In the next chapter, I show you the overall game logic and how to actually use these classes to start
putting together a solid MUD.

Chapter 15. Game Logic
To this point, you've learned about the basic structure of the BetterMUD, the entities, accessor
classes, databases, actions, and the extensible scripting modules.

All these components must be managed by something, however, and this chapter shows you how to do
that.

In this chapter, you will learn to:

Use the game module to control the physical aspects of the game

Use action events to tell the game module what is happening

Understand how the timer system works

Understand how the physical transaction system works

Game Module

In the SimpleMUD, the game logic was mainly stashed into a Telnet handler for each connection. I
know I've mentioned this before, but it needs to be said again: That was not a very flexible design.

There's really no reason why a class that is designed to handle events inside the game should also
handle getting input from a player. In a proper design, the core of the game should be abstracted away
from the mechanism that handles connections, so that the design can be applied to many different
situations. I've also mentioned that I would eventually like to add the ability to use protocols other
than Telnet with the BetterMUD.

So, because of the need for flexibility, it makes sense to abstract the core physics engine into a
module of its own. Therefore, the Game class controls everything that happens in the BetterMUD.

As you saw in the last chapter, many types of game actions can occur. When logic modules want the
game to perform an action, such as moving a player, they notify the game engine by using an action.

The game engine checks to make sure that it can do what was requested, and then notifies all entities
involved.

Characters don't know how to move around, pick things up, or perform other actions. Instead, all the
physical logic is contained in one central location, the Game class.

Figure 15.1 should give you an overall sense of how the game data flows. The shaded square in the
Logics section represents a Reporter object, which I cover when I go over the network stuff in
Chapter 16.

Figure 15.1. General data flow within the BetterMUD.

At the core of the BetterMUD is the game module. This is a "controller" object. It essentially manages
the physical part of the game, which consists of entities. Whenever the logical part of the game needs
to perform actions on the physical world, it must send an action object to the game module. Or, if you
prefer, the game module can instead say "This action is going to happen at time X," and add the action
to the global collection of timer objects, which the game module also manages.

Action Queries

Due to the flexible nature of the engine, the game module not only tells entities what happened to
them, but asks them if certain things can happen to them as well.

For example, you may want to have a huge gargoyle statue object in a room. On the one hand, you
could simply say, "There is a statue in this room" in the description, but that can get boring. Besides,
if you wanted the gargoyle to come to life, it would seem more realistic if the gargoyle were an item.
So there is an item, and a player comes into the room. He decides to be cute, and tries picking up the

gargoyle, which is too heavy to lift and is also solidly implanted into the ground. Obviously, you want
to make absolutely certain that no- one can pick it up, even if someone manages to cheat and give
himself more than enough strength to pick it up.

So for specified, attempted actions, the game queries the actors involved and asks each one if he will
allow such an act to happen. This is the process taken to pick up an item, for example:

1. Query whether the item allows the player to take it.

Query whether the room allows the player to take it.

Query whether the player's current condition allows him to take it.

Transfer ownership of the item to the player.

Tell the room that the item was taken.

Tell the item that it was taken.

Tell all the characters in the room that the item was taken.

Tell all the items in the room that the item was taken.

Obviously, the first three actions are the queries. The game module first checks that the transaction
can be completed, and then starts moving things around. Why do I need all those queries?

I've already outlined reasons for the first query; you'll often have items that you just don't want people
to take, ever. The second query might confuse you though; why would a room care if an item is taken?

This is where your job comes in. As the MUD implementer, it's your job to brainstorm all the whacky
possibilities that can happen. For example, someone casts a super gravity spell on the entire room,
and while the room has super gravity, things are too heavy to be picked up.

Or maybe a part of a dungeon starts to crumble, and a precious item is now blocked by a large pile of
rubble, which allows a player to see the item but not to take it. If you ask the room if it will allow
players to take items, your game can handle these kinds of interesting scripts.

Of course asking players if they can take the item is a no-brainer; it's an easy way of checking to see if
a player is carrying too many things. See the "encumbrance" module in Chapter 18 for implementation
details.

Action Events

After an event has been thoroughly queried, and the game module decides it's okay to carry out the
event, the game module needs to tell every actor involved in the event that it happened. In the example
I showed you previously, when an item is taken, the game notifies the following four groups of actors:

1. The room in which the item was picked up

The item that was picked up

Every character in that room, including the person who picked up the item

Every other item in the room

Again, you may be thinking, "Why does the room or the other items need to know when an item is
removed?" If you're saying that, you're not using your thinking cap!

Be creative! Imagine...

You're Indiana Jones in some lost Aztec temple, about to claim the Sacred Statue of Pies for your
museum, and as you snatch it, you realize all too late that it was booby-trapped! As soon as the room
realizes you've taken the item, it sets off a trap that shoots poison darts at you, or maybe sets a huge
rolling ball object in motion that will crush you to death if you don't get out of there in time!

Okay, so you can understand why rooms must know about items leaving; but what about all the other
items? Why would they possibly want to know? Maybe you can imagine some set of magical items, a
group of three or so, which erect a powerful force field in the room when they are all together. If you
remove one... oops! The force field collapses, and that opens up the room to all sorts of evil
creatures.

With a flexible scripting language such as Python embedded into the game, almost anything is
possible. There is absolutely no way I could possibly tell you about all the cool things you can
implement on your own; it's your job to find out. In Chapter 18, you'll get a brief glimpse into some of
the things that can be done with the BetterMUD, but I assure you, the BetterMUD is designed to be
taken far above and beyond what I give you.

NOTE

I have to be honest with you here; I was having quite a bit of fun playing around with the
BetterMUD before it was even technically a MUD! What you can accomplish is virtually
limitless.

Physical Movement

In Chapter 13, you saw that every entity was given functions to add and remove entities from itself.
For example, rooms track the collection of all items, characters, and portals currently within them;
characters track all of the items they have, and so on.

The game module manages these collections. When a player moves to a different room, the game
removes him from the previous room and then places him in the new room. It's a pretty simple process
overall.

There are a few things you need to keep in mind when performing actions, however.

The first is that in a highly flexible world, data corruption is very easy. You might have a script
written by a new builder for the MUD, and he makes certain assumptions. For example, he may
mistakenly assume that a certain character will always exist. So when the script runs, and it tries to
get a pointer to the nonexistent character, it's obviously going to crash the script, and possibly cause
something bad to happen.

To keep the data corruption to an absolute minimum, the game module always tries to perform the
crashable parts of an action before it does any actual moving around.

For example, before anything is moved around as part of an action, the game module performs all the
database lookups, and then performs all the queries to see if the action can be performed.

Once the lookups and queries are completed, the entity being moved around in the action is moved
from one place to another, and the final act is to inform all the entities that are interested in what
happened.

If any database lookup causes a crash, or if the queries cause a crash, nothing happens; the action
fails, and whoever called the action should try to catch the exception.

The part of the code that performs the physical work should never cause a crash, simply because by
the time the function gets to that part of the code, all the entities involved have been confirmed to
exist.

Once the entity has been acted on, the function starts notifying everyone about the action, and each one
of these calls may cause a crash.

Of course, if the calls do cause a crash, you're just going to have to live with it; at that point, the
action has already occurred, and you're just informing players.

NOTE

Once an item has been moved, you can handle logic crashes in a few different ways. You're
going to be telling many items about the occurrence of an event, and each time you do so, the
event may throw an exception at you. A really sturdy approach would be to catch every time an
exception is thrown, log it, and then continue telling everyone else about it. However, I didn't

take this ap proach; instead, the first time anything throws an excep tion, the entire function
exits. The action still physically happens, but some entities may not be told about it. While this
could destabilize things, you should realize that scripts should only fail during testing. Once you
release a logic module to everyone in your realm, excep tions like this shouldn't happen
anymore. Testing your scripts is a very important phase of building a MUD.

Rogue Scripts

When you have a rogue script that crashes, what is the worst-case scenario? Maybe the script crashes
every time it's run, and the only way to fix it is to delete the script's data and reload it from scratch.
This can be a big problem, especially when that script was holding a lot of data. For example, the
crashed script was holding data important to a quest.

It's just one of the things you have to deal with though. The great thing about a flexible MUD is that it's
relatively painless to test; if a script screws up, you can simply reload it, and start testing again.

Because of this, I highly recommend that whenever you build new areas in the game, you restrict the
new area and all its scripts to a certain group of test characters (don't use any real characters, because
you may blow away your favorite character by accident). Once you've tested an area thoroughly, you
should then be able to integrate it into the rest of the game safely.

NOTE

When I was testing some scripts for the BetterMUD, I really couldn't stop saying to myself,
"Wow! This is so cool!" every time I found a tiny little syntax error in a script file. Instead of
stopping the whole program, fixing it, recompiling it, reloading the game, and setting everything
up again, I could just type /load <script> and it worked!

Overall Module Design

The game module for the BetterMUD is more complex but still resembles certain aspects of the game
module from the SimpleMUD.

Comparing the SimpleMUD Game to the BetterMUD Game

The first item of note is the name. Since I use namespaces for everything, I'm not really concerned
about calling the class Game, because it's unlikely that the BetterMUD is going to have a different class
with the same name inside it.

Another similarity is that the module keeps a timer (what would a MUD be without a timer, so that
you can brag about how long you've been online?), and the module also loads and saves the databases
to disk.

That's where the similarities end, however. In addition to the functions in the SimpleMUD that I've
just mentioned, the Game class was responsible for the following:

Translating connection input into game commands

Performing the game commands

Responding to user commands

Sending data back directly to connections

Within the BetterMUD, all these topics are handled in other areas. For example, the BetterMUD now
has a specific class called the TelnetGame class (see Chapter 16) that is designed only to translate
connection input into game commands. You'll see this in use in the networking chapter, and understand
how the design allows all the protocols you want to add.

Once the SimpleMUD knew what command a player wanted to execute, it figured out how to execute
the command and did whatever was necessary to carry out the player's wishes. The BetterMUD's
more flexible approach makes it irrelevant for the game module to know how user commands are
implemented. Instead, as you learned in Chapter 14, there are command objects that take care of
finding out how to do those things. This way, the game module doesn't need to know about player
commands at all.

Sending back responses is an indirect process in the BetterMUD. The only thing the game module
does is send event notifications back to entities, and it's up to the entities to consult their logic

modules and figure out how they're going to send the data back to the player's connection. This is
called the reporter concept, which is explained in detail within Chapter 16.

Game Module Functions

The BetterMUD game module is in charge of many new things, such as a timer registry, and keeping
track of which players and characters are in the game. You can also use the game module to search for
characters that are currently logged in or offline.

By and large, the biggest part of the game module is the physical entity management and action
management. Let me go over the simple parts first.

So Little Time

As I've mentioned before, the game module keeps a timer, which you may access to get the number of
milliseconds that the MUD has been running. The game module also has an elaborate timer system,
which enables you to add actions, and run them at a later time. I've mentioned this concept before a
few times, but now I'm finally showing it to you.

Timer

The timer functions are very simple:

BasicLib::sint64 GetTime();
void ResetTime();

You're allowed to reset the timer if you wish, but I don't really recommend doing that because if your
game is running, and it has a few hundred timer actions set to go off at time X, and you reset the time
to 0, all those actions are going to execute sometime way in the future, quite possibly when they
shouldn't be executed.

Timer Actions

In the previous chapter, I introduced you to the idea of actions, which are the primary methods of
communication between the game and modules. The Action class is simple, yet very flexible, since it
allows for a string data argument. The string data argument can contain almost anything you want, as
long as whoever is receiving the action knows how to decode it.

When I showed you the HasLogic mixin class in Chapter 12, you saw that this class has a function
called DoAction, which, when an action is passed in, tries to act based on that action.

While this method may not seem limiting, it is. Let's think about the actual game play for a moment.
Imagine, once again, that you're a famous adventuring archeologist, breaking into a booby-trapped
tomb to steal a priceless treasure; the moment you grab the treasure, the game starts a bunch of traps in
motion.

Rather than going with the "instant death by dart-in-the-neck" route, you might want to toy with the
hapless adventurer first; let him have the illusion that he can get out, instead of just killing him off
right away. So this tomb could be a maze of sorts, with only one exit, and the moment the adventurer
grabs the treasure, it sets off a trap that would cause the exit to close, but not right away. Instead, you
want it to close after about 30 seconds or so, to give the adventurer a chance to actually get out.

This is where the timer actions come in. Instead of telling the game, "Do this now!" you can tell it,
"Do this in 30 seconds!" instead. This adds a great deal of flexibility to your game.

Think about it in terms of illness and disease too; perhaps a player is poisoned by weak venom that
disperses in an hour. You'd like the script that poisoned the player to also remove the poison, right?
So the script executes two actions:

Tell the game to poison the character now

Tell the game to remove poison from the character in 60 minutes

To accomplish this, I've created the TimedAction structure (located within BetterMUD/
entites/Action.h):

struct TimedAction {
 BasicLib::sint64 executiontime;
 Action actionevent;
 bool valid;

 void Hook();
 void Unhook();
 void Save(std::ofstream& p_stream);
 void Load(std::ifstream& p_stream);
};

I've removed the constructors to make it look neater. For now, just look at the three pieces of data; I'll
get to the functions in the next section.

The structure essentially maintains a time at which it should be executed, an Action structure, and a
Boolean that determines if the timer action is still valid. You can simply think of these as actions that
are executed at a given time.

Problems with Timer Actions

At this point, I'm going to discuss a concept that I haven't covered fully before, and it's rather difficult
to understand at first. Let me explain by using an examplelet's go back to the poisoning example.

Example of Poisoning

Let us assume that your character is fighting an evil mutant python snake, and the snake bites the
character, injecting a venom into his bloodstream. The character quickly kills the snake, but, alas, he's
poisoned and is weakening by the minute.

Since being poisoned is unappealing (at least to most of us), your character wants to be cured as fast
as possible. To do this, he'll seek out the local Medicine Man and purchase a venom cure.
Congratulations! The character's now cured.

NOTE

Pythons aren't actually venomous. And now you know.

That whole process took maybe 45 minutes, and the character is eager to get back to fighting those
evil snakes, so he goes deep into the forest, takes out his sword, and begins looking for another evil
python to kill! OUCH!

It isn't his fault, but the character is not a very good warrior, and he's practicing and trying to improve,
but those damn pythons are just too tough for him. While he was searching for another python, one
slithered up behind him and poisoned him, again! Argh!

Now the character has to go all the way back to town, since, in a fit of impatience, he neglected to
buy another venom cure. Or maybe he didn't have enough money; it doesn't matter. The point is that
he's walking back to town, and halfway there the effects of the poison suddenly, and quite
unexpectedly, disappear. He's cured!

Aftermath

The character is thinking, "What the heck?" The poison is supposed to last 60 minutes, yet he was
poisoned only 10 minutes ago! While this isn't something you would normally complain about (Look
Ma! Free cure!), as a programmer, it should be tingling that little sense in the back of your mind that
keeps repeating, "This is wrong, it's not working the way it should!"

Oh boy. Why would something like this happen? The answer has to do with the timer system. First
look at Figure 15.2, in which timer events are shaded. The original "remove poison" timer event was

never removed when the poison was mitigated.

Figure 15.2. The process of being poisoned, cured, and then poisoned again.

Can you see the problem? When a character is first poisoned, the snake poison script automatically
sets a timer event for removing the poison 60 minutes from the time of poisoning. In the meantime, the
character goes to buy a poison cure, is cured, is poisoned again, but then the poison unexpectedly
disappears, since the original timer event still exists. In addition, if your character finally gives up
trying to kill those damned pythons, within 45 minutes or so, the game is going to try removing the
poison again, but this time, the player isn't poisoned, so the game will be trying to remove a logic
script that doesn't exist.

D'oh!

When Things Go from Bad to Worse

Guess what! It gets even worse. Imagine a script that tells a computer character to perform a specific
action at a specific time; but before he has the chance to do so, another character comes by and rudely
interrupts his life with a sword to the gut. The poor guy dies, but the game still wants to tell him to do
something later on.

What can happen? The best-case scenario is that your game, when getting the character from the
database, notices that he doesn't exist anymore. This causes your database to throw an exception at
you, but that's a good thing. When an exception is thrown, the game catches it, and gives up trying; it
says, "Yeah, you know what, this ain't gonna work," and it tosses the action event away, doing no
harm at all.

What's the problem then? The problem is that the game re-assigns ID numbers to entities. Imagine, that
somewhere else in the game, a random new character receives the previous character's ID. When the
game reaches the action, it performs the action on the new charac ter! That's a major "OOPS!" right
there. Figure 15.3 demonstrates this.

Figure 15.3. This figure shows the two possible outcomes of calling a timed action

on a character that doesn't exist anymore.

Actions should never ever ever ever ever accidentally switch ownership. As far as the game is
concerned, when that poor guy dies, every action he's attached to should die as well.

Hooks

So, now what? How do we make a system that links an entity to a timer action? It turns out that this
system is actually pretty simple. The timer actions already know which entities they rely on by their
values. For example, an "attemptgiveitem" action relies on three volatile entities: the person giving an
item, the person getting an item, and the actual item.

For this to work, all three entities must exist; if any of them stops existing, that's itthe timer action
cannot possibly work in a meaningful way, so it should be invalidated.

Since timer actions already know who their actors are, half the work is already done. The other part,
of course, is making sure that entities know which timer objects they are attached to. This is where the
term hook comes from. Essentially the entities are hooked onto the timer action, and when they die,
they tell the timer action, "Hey! I died! You're no longer valid!" Then, of course, the timer object has
to go to every entity it's attached to and remove itself.

Figure 15.4 shows an example of three entities linked with three timed actions in various ways. All
entities have hooks into timed actions that they control.

Figure 15.4. Hard pointers (TimedAction*) and soft pointers (entityid lookups) combine
to create the BetterMUD hooking system.

When I showed you the LogicEntity mixin class in Chapter 12, I briefly told you about the hook
functions it contained, but I didn't elaborate. Here is a listing of them:

typedef std::set<TimedAction*> actionhooks;
typedef actionhooks::iterator hookitr;
void AddHook(TimedAction* p_hook);
void DelHook(TimedAction* p_hook);
hookitr HooksBegin();
hookitr HooksEnd();
size_t Hooks();
void ClearHooks();
void ClearLogicHooks(const std::string& p_logic);
void KillHook(const std::string& p_act, const std::string& p_stringdata);

Remember, these functions are automatically included in any entity class that inherits from the
LogicEntity mixin class, so you can give your entities hook capabilities quite easily.

The first two lines define typedefs that make your life easier; actionhooks is simply a set of
TimedAction pointers.

The next two lines are the AddHook and DelHook functions. Whenever a new timed action is added to
the game, it automatically contacts every entity that it interacts with, and tells it to add a pointer to the
action to its hooks. When the timed action is removed from the game, it contacts each of its entities
and removes itself from the entity's set of hooks. Since these two functions simply wrap around the
std::set::insert and erase functions, there's no point in pasting in the code here.

NOTE

Figure 15.4 should illustrate why I generally like to stay away from pointers; they can become a

huge mess very quickly. There are better ways of going about a hooking system, such as using
smart refer ence classes. Indeed, if I had made the entire timer system in Python, I could have
used the built-in weakref class to do such a thing. You should look into using weak references if
you plan on doing more with Python.

The other two functions of interest are the ClearHooks and ClearLogicHooks functions.

Clearing All Hooks

Whenever the game destroys an entity, it calls its ClearHooks function, which basically goes through
every timed action hook in the entity, and tells it to unhook itself. It's just a simple loop:

NOTE

Heaps, which I also use in this chapter (hooray!), are my favorite data structure. Sets are my
second favorite. As I've told you many times already, a set is a cool structure to use when you
want fast insertions, lookups, and deletions. The coolest thing about sets is that they work just
fine with pointers too.

void ClearHooks() {
 hookitr itr = HooksBegin();
 while(itr != HooksEnd()) {
 hookitr current = itr++;
 (*current)->Unhook();
 }
}

There's one little catch, however. You need to maintain two iterators at all times, since the timed
action's Unhook function actually deletes the object that the current iterator points to. So if you do this

(*itr)->Unhook()
++itr

your code is likely to crash, since the object the iterator points to doesn't exist anymore.

Clearing Logic Hooks

Whenever the game removes a logic module from an entity, any timed events that were specifically

intended to go to that logic module must be deleted. You learned in the previous chapter that there are
three events associated with logic modules: addlogic, dellogic, and messagelogic. As it turns out,
only two of these actions must be hooked: dellogic and messagelogic.

The adding of logic modules doesn't need to be hooked, because it is assumed that the logic module
doesn't already exist, and you can't hook to a nonexistent object, now can you?

On the other hand, messages or logic deletion actions must be told if the logic module suddenly
disappears (for example when a character gets a venom cure from a shaman). The player hasn't
disappeared at all, but the logic module that the timer needs has disappeared.

You could let the logic modules themselves hold containers of hooks, but as you saw from the
previous chapter, I don't do that. There are a bunch of issues to consider, such as needing entities and
their logic modules to keep pointers to the timer. While this doesn't produce substantial overhead, it
does involve extra management and additional code. Another issue is creation time; you will often
want to delay the installation of a logic module onto a character by a few minutes, but also set the
removal time (give a character the logic in 10 minutes, and remove it in 20). There's a slight problem,
however. If you do that, when you put the closing time into the game, the logic module you want
closed doesn't even exist yet! Obviously there's no way to hook that, now is there?

So, instead of hooking the action to a logic module, I hook it to the entity in question instead, and
whenever a logic module disappears, I call the ClearLogicHooks function. This function is rather
tricky, because you need to search through all the entity's hooks, and find any that are directed toward
the module you just deleted:

void ClearLogicHooks(const std::string& p_logic) {
 hookitr itr = m_hooks.begin();
 while(itr != m_hooks.end()) {
 hookitr current = itr++;
 if((*current)->actionevent.actiontype == "messagelogic" ||
 (*current)->actionevent.actiontype == "dellogic") {
 if(ParseWord((*current)->actionevent.stringdata, 0)
 == p_logic)
 (*current)->Unhook();
 }
 }
}

The code loops through (keeping track of the next iterator, just like the ClearHooks function), and if
you find any messagelogic or dellogic actions, you know they're hooked to the current entity, but you
don't know if they point the logic module you're deleting. So you need to call the
BasicLib::ParseWord function and extract the name of the target module from the action's stringdata
field.

If you determine that the action was intended for the module you're unhooking, you can tell the timer

action to unhook itself.

NOTE

Remember from the last chapter that when sending messages to modules using the
"messagelogic" action, the name of the module is stored in stringdata, but you can also store
more string data after the name. This means that the name of the target module is the first
word of the string, and that anything after that is just extra data to be inter preted by the
module, so the ClearHooks function doesn't need it.

Killing Arbitrary Hooks

At times, you'll need a way to kill a hook manually. For example, you're probably going to want to
kill actions like "repeating poison damage" for players when they log off, so that they don't die while
they're not even logged in.

To do this, you need to be able to find a hook to an action and kill it manually. For this purpose, I've
created the KillHook function, which searches for an action based on its type and its data string, and
then kills it:

void KillHook(const std::string& p_act, const std::string& p_stringdata) {
 using BasicLib::ParseWord;
 hookitr itr = HooksBegin();
 while(itr != HooksEnd()) {
 hookitr current = itr++;

 // unhook the event if it matches the parameters
 if((*current)->actionevent.actiontype == p_act &&
 ParseWord((*current)->actionevent.stringdata, 0) ==
 p_stringdata)
 (*current)->Unhook();
 }
}

This functions loops through all the hooks and makes sure the action name and the first word of the
data string match. For example, in a poison script, you might have a timed action with the action name
do and the action string repeatpoison, so to kill that action you merely call the function like this:

KillHook("do", "repeatpoison");

The reason it compares only the first word of the data string is because you can add extra string
parameters to the data string; say for example you want to tell the script how much to poison someone

(for example, a damage level of 10), you could create the action using "repeatpoison 10" as the data
string. Whoever is killing the action probably won't care about the extra parameter, so it doesn't
bother comparing anything past the first word.

Hooking and Unhooking Timer Actions

From the previous section, you saw that making an entity unhook itself was a relatively painless
processall you need to do is call the Unhook function of timed action objects. Of course, before you
begin to do any unhooking of the timed actions, you need to first hook them to their entities.

Hook Function

When you first create a new timed action object, you need to make it find every entity it is attached to
and connect them together. This is accomplished with the TimedAction::Hook function, which I will
show you only part of:

void TimedAction::Hook() {
 if(actionevent.actiontype == "attemptsay" ||
 actionevent.actiontype == "command" ||
 actionevent.actiontype == "attemptenterportal" ||
 actionevent.actiontype == "attempttransport" ||
 actionevent.actiontype == "transport" ||
 actionevent.actiontype == "destroycharacter") {
 character(actionevent.data1).AddHook(this);
 }
 else if(actionevent.actiontype == "attemptgetitem" ||
 actionevent.actiontype == "attemptdropitem") {
 character(actionevent.data1).AddHook(this);
 item(actionevent.data2).AddHook(this);
 }

This shows the function hooking up seven different types of actions; attempting to say something,
sending a command, attempting to enter a portal, attempting to transport, forcing a transport,
destroying a character, and attempting to get and drop items.

If you compare this code to the tables in the previous chapter, you'll see that those first five actions
are the actions that use data1 as a character pointer and don't rely on any other entities.

The next two actions are the two actions that use data1 as a character, and data2 as an item.

From the code, you can see that they just add hooks to the required entities.

There's one other special case in the code: the logic actions. Here's the code for them:

 else if(actionevent.actiontype == "messagelogic" ||

 actionevent.actiontype == "dellogic") {
 switch(actionevent.data1) {
 case CHARACTER:
 character(actionevent.data2).AddHook(this);
 break;
 case ITEM:
 item(actionevent.data2).AddHook(this);
 break;
 case ROOM:
 room(actionevent.data2).AddHook(this);
 break;
 case PORTAL:
 portal(actionevent.data2).AddHook(this);
 break;
 case REGION:
 region(actionevent.data2).AddHook(this);
 break;
 }
 }

Remember from the last chapter that data1 represents the type of the entity whose logic module you
are acting on0 means a character, 1 an item, and so on. I've made an enumerated type that wraps
around those values, so you can read the code more easily (that is, CHARACTER is an enum with a value
of 0, and so on). The function determines what kind of entity you want to act on, and then enters a
switch statement to add the hooks where needed.

The function has other cases to handle other kinds of actions, but they're all in a similar vein, so I
don't show them here.

NOTE

In the code, I used unnamed temp- oraries objects that are constructed, called, and then
immediately dis carded. I did this by calling the constructor character(id), and then adding
the function call after that. It's just a trick used to make the code look a little cleaner; since I
don't need to look the entities up anywhere else, it's acceptable.

Unhook Function

What is hooked must eventually be unhooked, so there is also an Unhook function. It's very similar to
the hook function, but it works the other way around. Here's a sample:

void TimedAction::Unhook() {
 valid = false;

 if(actionevent.actiontype == "attemptsay" ||
 actionevent.actiontype == "command" ||

 actionevent.actiontype == "attemptenterportal" ||
 actionevent.actiontype == "attempttransport" ||
 actionevent.actiontype == "transport" ||
 actionevent.actiontype == "destroycharacter") {
 character(actionevent.data1).DelHook(this);
 }

The first part of the code sets the valid variable to falseonce you unhook a timer action, it is
assumed to be invalid and shouldn't be executed.

The next part of code looks very similar to the code I showed you before, but instead of hooking the
timer action... you guessed it! It's unhooked instead!

Timer Registry

Now that you have timer actions, a timer object, and the ability to hook actions to entities, you need
some way of actually storing these timer action events in the game. I have touched on this topic
before, and I mentioned using a priority queue to store timer actions, which is by far the best method.

NOTE

Here's a little something to think about for the future. The action format, while somewhat
flexible, is ulti mately limited to four entity slots, which have variable meanings depending on
the type of action. Because of this setup, you end up with the code shown hereit checks the
name of every action to determine what kind of actors it has. In the future, you might want to
consider an even more flexible format that will allow you to determine what kind of entity a
field represents, instead of making the field meanings depend on a pre- coded action. This
method allows you to add an infinite number of actions to the gameall with automatic hooking
support. Oh well, you can't have everything. I'll probably implement something like this if I ever
create a BetterMUD 2.0; or maybe I'll call it BestMUD.

A Queue for You

Let me go over the concept again. At one point in time, the game may have as many as a few dozen to
a few thousand timer actions in memory (quite possibly more, if you wish). If you store all these
actions in a list, you have to go through the list every time the game loop executes, and ask every
single one of them, "Hey, can you execute yet?"

If you're an experienced programmer, there should be a little voice in your head saying, "No! No! Bad
programmer! No cookie for you!" Going through every timer action in the game once per game loop
is incredibly dumb and wasteful. This wastes so much time it's not even funny. There are other

solutions, of course, such as checking the timers only once every second as the SimpleMUD did.
That's a bad idea, too; you don't allow your game much flexibility by forcing actions to occur on one-
second boundaries.

Think about something though; if you have an action that occurs an hour from now, why would you
check it every loop from now until an hour from now? If you have an action that happens in 10
minutes, you know that the one that happens in 60 minutes happens after it. So you think, "Hey, why
don't I check to see if the 10-minute action can be executed yet, and when it finally can, I'll start
checking the 60-minute action."

Now here comes the priority queue. A priority queue (the STL implementation of priority_queue
uses a special binary tree called a heap) is a queue that automatically arranges items by their number,
and puts the item with the highest priority at the top. The game module has a priority queue for timer
actions:

typedef std::priority_queue<
 TimedAction*, // datatype
 std::vector<TimedAction*>, // container type
 TimedActionComp > // comparison type
 timerqueue; // typedef name
timerqueue m_timerregistry;

One thing about STL is that it's very flexible. Of course, that flexibility comes at a price ugly code. I
almost laughed when I made the definition for a timer queue... that is one nasty piece of code right
there.

Meaning of the Code

Let me break the priority queue code down for you. The first part of the code, std::priority_queue,
obviously represents the STL heap data structure. I want this heap to store TimedAction*s, so that's
used as the first template parameter.

The next template parameter is std::vector<TimedAction*>, which tells the queue to use a vector of
TimedAction* as its underlying container. The priority_queue class is an adaptor, meaning that it
only defines how to work on a container, not the actual container itself. So, inside of the queue, I've
told it to use a vector of action pointers. You could theoretically use any random access container you
want (STL has one other, the deque), but it's just easier and faster to use a vector.

The final template parameter is a comparison functor object, which sorts the timer actions inside the
queue. For this, I needed to create my own custom TimedActionComp functor:

class TimedActionComp :
 public std::binary_function<TimedAction*, TimedAction*, bool> {
public:

 bool operator()(const first_argument_type& left,
 const second_argument_type& right) {
 return left->executiontime > right->executiontime;
 }
};

Ack! More ugly code! Unfortunately, you'll have to get used to this when working extensively with the
STL. Basically, the function inherits from std::binary_function, which is a base class defined by
STL that defines a functor that takes two parameters for operator(), and returns a specific type. For
example, I used parameters <TimedAction*, TimedAction*, bool>, meaning that the functor's
operator() takes two TimedAction*s as parameters, and returns a Boolean.

Here's an example of its use:

TimedActionComp comparetimes;
TimedAction* action1 = // whatever
TimedAction* action2 = // whatever
bool b = comaparetimes(action1, action2);

The functor object essentially compares the two timed action pointers and returns a Bool-ean based
on the function defined inside the functor.

If you look back at the functor definition, you can see that the function returns true whenever the
execution time of the left parameter is greater than the execution time of the right parameter;
essentially the function returns true when the left action occurs at a later time than the right.

If you don't pass in a custom functor comparison object, the std::priority_queue class uses, by
default, std::less<TimedAction*>. The std::less functor is an object that returns true if the left
TimedAction* is less than the right TimedAction*. Of course, this is not what we want to do, since the
function will be comparing pointer values, so that anything that is at a higher memory address will
end up at the top of the queue.

So the TimedActionComp class compares two pointers of timed action object and makes it look as if
any actions that occur at a later time are less than objects that occur at an earlier time.

Eventually this means that the action that must be executed next is always at the top of the priority
queue, and anything else below it is executed at a later time. This means that for any given game loop,
you only need to check one timer object, and if it isn't time for that top object to execute yet, you know
it's not time for any other objects to execute yet!

Adding Timed Actions

Now whenever you need to add a new timed action to the game, all you need to do is call the
AddTimedAction class with a pointer to a new timed action, and the game manages that action from
now on.

Here's the function:

void Game::AddTimedAction(TimedAction* p_action) {
 m_timerregistry.push(p_action);
 p_action->Hook();
}

The function pushes the new action onto the registry, and then hooks the action to all its actors. You
should always pass new pointers to timed actions into this function; once the game module has control
over a timed object, it takes care of the object and deletes it automatically when it's finished with it.

To Be or Not to Be

Earlier I told you all about hooks, and how entities need to tell the timed actions that they are hooked
into to kill themselves when the entity itself dies. But there's a problem: you can't remove timers from
the timer registry. The std::priority_queue class has absolutely no way to remove anything from the
queue except the very top item, so deleting the timer action when it gets unhooked is almost
impossible. Sure, you might be able to extract everything, discard the deleted action, and then re-
insert everything, but that is just an incredible mess, and a waste of time to boot.

This is where the valid field of a TimedAction becomes useful. Whenever you tell an action to unhook
itself, that means it's no longer a valid action, so the valid Boolean is set to false. Later on, when the
game loop gets around to executing that action, it sees that it's no longer valid, so it won't bother
executing the action; it deletes it instead.

Executing Timed Actions

The final part of the timer system is actually executing the actions, which is a very simple process:

void Game::ExecuteLoop() {
 BasicLib::sint64 t = GetTime(); // get time
 while(m_timerregistry.size() > 0 && // loop while there are timers
 m_timerregistry.top()->executiontime <= t) { // is it time yet?
 TimedAction* a = m_timerregistry.top(); // get the action
 m_timerregistry.pop(); // pop off the action
 if(a->valid) { // make sure it's valid
 try {
 a->Unhook(); // unhook it
 DoAction(a->actionevent); // perform the action
 } catch(...) {}

 }
 delete a; // delete the action
 }
}

The function starts by retrieving the current system time, so that it doesn't have to perform multiple
time lookups, which are usually expensive operations (time lookups typically use a hardware device
that isn't attached to the CPU directly).

The while-loop loops through the timer registry while there are timers available (it could be empty),
and the top timer has an execution time that is less than or equal to the current game time.

If an action needs to be executed, a pointer is retrieved from the top of the queue, and the pointer is
popped off the queue. From this point forward, the game assumes that the action has been handled, so
the queue no longer needs to keep a reference to it.

Now the action is checked to see if it's valid, and if so, the action is unhooked and executed.

Once the execution is completed, the timer action itself is deleted, and the loop continues.

The ExecuteLoop function will be called once per loop inside the main function, which I'll get to later
in this chapter.

NOTE

Dealing with dynamic memory here is a very risky business. Either the Unhook or the DoAction
functions may throw exceptions, and if they do, you automatically lose a pointer to a, meaning
you've got a TimedAction object floating in memory with nothing pointing to it. This can be a big
problem, since the game should keep running and actions will fail to perform, and thus the game
catches exceptions and keeps running. If you have enough thrown exceptions while performing
timer actions (through faulty scripts, or whatever), you'll end up with a large memory leak.
That's why whenever an excep tion is thrown, it is caught.

Timed Action Helpers

You shouldn't really be creating new TimedAction objects on your own and passing them into
AddTimedAction. Instead, you should rely on the four helper functions I've provided:

void AddActionRelative(BasicLib::sint64 p_time, const Action& p_action);
void AddActionAbsolute(BasicLib::sint64 p_time, const Action& p_action);

void AddActionRelative(
 BasicLib::sint64 p_time,

 const std::string& p_act,
 entityid p_data1 = 0,
 entityid p_data2 = 0,
 entityid p_data3 = 0,
 entityid p_data4 = 0,
 const std::string& p_data = "");
void AddActionAbsolute(
 BasicLib::sint64 p_time,
 const std::string& p_act,
 entityid p_data1 = 0,
 entityid p_data2 = 0,
 entityid p_data3 = 0,
 entityid p_data4 = 0,
 const std::string& p_data = "");

The first two functions allow passing in an action object directly, and the second two allow passing
in a variable number of parameters, which will be used to create a new action.

Basically, the functions allow you to create an action at an absolute time or a relative time. An
absolute time means that you're going to execute the action at a time relative to 0; if you specify
AddActionAbsolute(10000, act), you're telling the game to execute an action at exactly 10 seconds
from the time the game first started. As you can imagine, this function is somewhat limiting, due to the
fact that you really can't assume things are going to happen at any specific time.

On the other hand, you'll often want to "add an action, which will execute X minutes from now," and
this is the purpose of the AddActionRelative functions. I'll show you the functions that take actual
Action objects as their parameters:

void AddActionRelative(BasicLib::sint64 p_time, const Action& p_action) {
 AddTimedAction(new TimedAction(p_time + GetTime(), p_action));
}
void AddActionAbsolute(BasicLib::sint64 p_time, const Action& p_action) {
 AddTimedAction(new TimedAction(p_time, p_action));
}

The relative version takes the time you passed in and adds the current time to it; the absolute version
simply passes the time directly into a new TimedAction object.

Database Functions

The game module has a bunch of functions related to database management. They can be separated
into a few categories.

Loading Functions

The first of the database management functions are the loading functions:

void LoadAll();
void LoadTimers();
void ReloadItemTemplates(const std::string& p_file);
void ReloadCharacterTemplates(const std::string& p_file);
void ReloadRegion(const std::string& p_name);
void ReloadCommandScript(
 const std::string& p_name,
 SCRIPTRELOADMODE p_mode);
void ReloadLogicScript(
 const std::string& p_name,
 SCRIPTRELOADMODE p_mode);

Some of these functions are self explanatory, such as the LoadAll and LoadTimers functions, which
respectively load everything from disk, or just the timers. The other functions load specific types of
items from a given file; they wrap around the database classes, so I won't show you the function
definitions. However, I will show you how to use them:

ReloadItemTemplates("newitems");
ReloadCharacterTemplates("newcharacters");
ReloadRegion("SomeArea");
ReloadCommandScript("newcommands");
ReloadLogicScript("characters.newcharacterlogic");

The previous function calls load entities from the following files:

data/templates/items/newitems.data

data/templates/characters/newcharacters.data

data/regions/SomeArea/

data/commands/newcommands.py

data/logics/characters/newcharacterlogic.py

The first two are simple; they simply load (or reload) all template entities within a specific file. The
function automatically assumes it exists within the /data/templates/items or /
data/templates/characters directory.

The region function loads all five standard region files (items.data, characters.data, region.data,
rooms.data, and portals.data) from the directory /data/regions/SomeArea.

The last two are Python scripts, which you'll learn about in Chapters 17 and 18. Due to the way the
logic databases are set up, you must specify what kind of logic you're loading, such as
"character.logic" to load a character logic module, or "items.logic" to load an extra item logic.

Saving Functions

There are a few saving functions as well:

void SaveAll();
void SavePlayers();
void SaveRegion(entityid p_region);
void SaveTimers();

These functions do the following:

Save the whole game to disk

Save all players to disk

Save a particular region to disk

Save all the timer objects to disk

Other Functions

The other function related to databases is the Cleanup function:

void Cleanup();

This simply tells all the volatile databases (characters and items) to clean up any entities that have
been deleted:

void Game::Cleanup() {
 ItemDB.Cleanup();
 CharacterDB.Cleanup();
}

You should remember database cleanups from Chapter 12.

Timer Disk Functions

When you shut down the MUD, there's a bunch of timed action objects in memoryevents that are
important to the game, and thus must be written to disk. Otherwise, the next time the game loads, a
number of things won't work properly, since you'll start up with no event objects.

The BetterMUD takes care of loading and saving timer objects by using the Load and Save functions of
the TimedAction class. Let me show you the loader first:

void Game::LoadTimers() {
 std::ifstream timerfile("data/timers/timers.data", std::ios::binary);
 std::string temp;
 timerfile >> std::ws;
 if(timerfile.good()) { // make sure file exists
 timerfile >> temp;
 BasicLib::sint64 t;
 BasicLib::extract(timerfile, t); // load the time
 m_gametime.Reset(t); // set the time

 timerfile >> std::ws;
 while(timerfile.good()) { // load each timer now
 TimedAction* a = new TimedAction;
 a->Load(timerfile);
 timerfile >> std::ws;
 AddTimedAction(a);
 }
 }
}

The function tries to open up the file, and load in a game time, nearly as it did in the SimpleMUD.

Once the function does that, it creates new timed action objects, loads them from the disk, and sends
them off to the timer registry.

The opposite of loading is saving, of course:

void Game::SaveTimers() {
 std::ofstream timerfile("data/timers/timers.data", std::ios::binary);

 timerfile << "[GAMETIME] ";
 BasicLib::insert(timerfile, GetTime());
 timerfile << "\n\n";

 timerqueue temp(m_timerregistry); // copy queue

 while(temp.size()) { // go through each action
 TimedAction* a = temp.top();
 temp.pop();
 a->Save(timerfile);
 timerfile << "\n";
 }
}

This time the function saves the game time out to data/timers/timers.data, and then it writes out
everything in the timer event queue.

This is the tricky part, however. The only way to get the contents of a priority queue is to pop them all
out and write them. This isn't a problem if you're shutting down the server, but eventually, you'll need
to save the actions while the game is running. You could pop them all out, write them, and then push
them all back into the queue, but that requires a lot of management. Instead of doing that, I create a
copy of the queue, named temp, go through the copy, and pop everything out of it. Since I'm dealing
with pointers, there's really no problem with abandoning the pointers.

NOTE

It doesn't really matter what superglue does, but if you're inter ested, I've included the script on
the CD. It's a simple Python script that glues a user to a room for 20 sec onds, so that he can't
move around. It's pretty funny.

So, the file that is used in conjunction with the timer's Load and Save functions would look something
like this:

[GAMETIME] 205076603
[TIMER]
 [TIME] 205094154
 [NAME] messagelogic
 [DATA1] 0
 [DATA2] 1
 [DATA3] 0
 [DATA4] 0
 [STRING] superglue remove
[/TIMER]

This depicts a simple timer action trying to message a logic module that I used for testing: superglue!

The Meat of the Game

The final area that the game module involves is controlling the physical side of the game. It moves
things around, deletes them, and tells everyone about the events that happened in the game.

In the previous chapter, I showed you all the actions, and in Chapters 12 and 13, I showed you the
entity classes and what you can do with them. Now, I can finally show you how to move things
around.

Considerations

The Game.cpp file is by far the largest file in the BetterMUD's C++ core, the only one surpassing
1,000 lines of code.

The reason for this is that there are quite a few physical actions that must be taken care of, and every
one of them needs to follow a rigorous process.

In retrospect, I wish I could have designed an even more flexible system of entities, in which the type
of the entity is variable. This could become quite useful later on if you ever need to transmogrify
items from one type into another, like people turning into stone items, or the other way around. Now,
the scripting engine can simulate things like that, but a more flexible core system could have that
ability built-in. Another benefit of a flexible system like that is less code clutter.

For the BetterMUD, you'll see that there are three functions for moving items around: player to player,
player to room, and room to player. The problem is that these functions all have the same basic
purposeto transfer the ownership of an entity from one entity to another. In a system that treated all
entities in the same way, you could conceivably turn these three functions into a single function. I want
you to be thinking about these ideas for the future; the BetterMUD isn't perfect, but it's much better
than the SimpleMUD.

Transaction Processes

Every physical transaction in the game has a certain general process to follow when it is executed.
I've mentioned this before, but let me restate the full process so it's easier to see:

1. Retrieve actor entities from databases.

Perform an integrity check.

Ask permission to perform the transaction.

Perform the physical movement of the actors.

Notify every actor involved that the transaction occurred.

Clean up (optional).

Sample Transaction Process

Let me begin by showing you the transaction process of the "attempttransport" game action, which is
simpler than most others, since it doesn't involve portals.

Retrieving the Actors

Here is the process through which the game retrieves the actors:

1. Retrieve the character who is transporting.

Retrieve the room the character is leaving.

Retrieve the room the character is entering.

Retrieve the region the character is leaving.

Retrieve the region the character is entering (may be the same as 4).

Figure out if the character is changing regions.

This simple process involves looking up five distinct entities: a character, two rooms, and one or two
regions, depending on if the character is switching regions or not. If any of these database lookups
fail, they throw an exception. Obviously if you can't look them up, something really bad has happened,
because one of the entities in the equation just doesn't exist. At this point, you should simply give up.

NOTE

The code is part of the Transport helper function, which is not callable outside the Game class. I'll
show you a complete listing of the helper functions after this example.

There's absolutely no way you can possibly try to move the character if any of the actors are missing
in action. So the action throws an exception, and whatever is calling the action catches the exception

and cleans up the action.

Here's the accompanying code:

void Game::Transport(
 entityid p_character, // character who left
 entityid p_room) // room id
{
 character c(p_character);
 room oldroom(c.Room());
 room newroom(p_room);
 region oldreg(oldroom.Region());
 region newreg(newroom.Region());
 bool changeregion = oldroom.Region() != newroom.Region();

Nothing here is substantially new; all the databases are consulted for their entities, and the region
database may be consulted twice, but I'm not terribly concerned about that since I know it's a vector
database with almost instant lookups.

Integrity Checking

The transport transaction doesn't need to do any integrity checking, since it is assumed that you can
transport any character from one room to another. You'll see integrity checking later on when I show
you item movement; those transactions require that the actors be within the same room.

Asking Permission

The next part of the process asks permission of everyone involved to see if the character can be
transported. Here's the exact process:

1. Ask the region in which the character is located if he can leave.

Ask the new region if the character can enter.

Ask the character if he can leave the region he's in.

Ask the character if he can enter the new region.

Ask the room in which the character is located if the character can leave.

Ask in the new room if the character can enter.

Ask the character if he can leave the room he's in.

Ask the character if he can enter the new room.

Most of the time the character isn't switching regions, so the first four queries aren't executed, and
only 5 through 8 are queried. That's still a high number of different permissions to ask, however.

If any of the queries replies negatively, the entire action is abandoned, and the function returns. This
means that any one of the actors involved can deny the movement of a character from one room to
another. An Elven region may have a magical spell cast on it that doesn't allow Dwarves into the
region at all; or perhaps a character is trapped in a special region that won't allow him to be
transported out. Maybe your character has a condition that won't allow him to walk. Whatever the
reason, the key is that any of the actors involved can deny a character the ability to enter or leave.

NOTE

Because of the fact that any entity can deny a built-in action, you should try to keep your denial
scripts sparse. If you have too many denial scripts, your players might encoun ter some
unexpected behavior when they try moving from one place to another, yet your scripts just
don't allow it, even if they technically should be able to move.

Here's the code to ask permissions:

if(changeregion) {
 if(oldreg.DoAction("canleaveregion", p_character, oldreg.ID()) == 1)
 return;
 if(newreg.DoAction("canenterregion", p_character, newreg.ID()) == 1)
 return;
 if(c.DoAction("canleaveregion", p_character, oldreg.ID()) == 1)
 return;
 if(c.DoAction("canenterregion", p_character, newreg.ID()) == 1)
 return;
}
if(oldroom.DoAction("canleaveroom", p_character, oldroom.ID()) == 1)
 return;
if(newroom.DoAction("canenterroom", p_character, newroom.ID()) == 1)
 return;
if(c.DoAction("canleaveroom", p_character, oldroom.ID()) == 1)
 return;
if(c.DoAction("canenterroom", p_character, newroom.ID()) == 1)
 return;

In the previous chapter, I told you about logic collections, and how they contain 0 or more logic
modules. When you type something like c.DoAction(), you're telling the character to send an action
to its logic collection.

The collection then tries sending the action to every logic module it contains, but if any of them

returns a non-zero value, it stops executing them and returns the result right away. Almost all the
query actions must return one of two values:

0Operation is allowed

1Operation is denied

I say almost, because there is one query that does just the opposite: the custom "query" action.

The physical part of the game is like a country's constitution; it defines all the rights of entities in the
game. By default, entities can do anything the game core defines; characters can get, drop, and give
items; characters can move around, say things, and so on.

NOTE

The built-in queries are designed to be called only when a character is serious about entering.
The query assumes that the character tries to perform the action. In other words, the query
assumes that the character does not ask to perform an action and then decide not to perform it.
Because of this, when an actor denies an action, such as a force field denying a player entrance
to a room, the force-field script must give the player an error message. This is an important
element in making your game more variable. Instead of making a command that tries to move a
character from room to room and print generic statements such as, You cannot enter this
portal, you allow the force field to give a specific message, such as, "You are burned badly by
walking into the force field!" Then you take off a few hitpoints if you like.

These rights must be specifically taken away in specific instances. To understand this, think of the fact
that shouting "fire" in a crowded theatre is illegal, and yet we still have freedom of speech in the
USA.

On the other hand, you can define new actions in the game, but characters don't have the right to
perform those actions by default. For example, characters don't have the right to kill another person;
they must have scripts that specifically allow them to kill. You'll see how this works in more detail in
Chapter 18.

So whenever a character's built-in action queries return 1, that means he must have the right to
perform that action removed, and the function should return without doing anything.

Physical Movement

Now you're ready to physically move the character from one room to another. This is a very easy
process:

1. Remove the character from the region he's in.

Set a new region for the character.

Add the character to the new region.

Remove the character from the former room.

Set the new room of the character.

Add the character to the new room.

The process simply uses the modifier functions you can find within the entity classes you learned
about in Chapters 12 and 13:

if(changeregion) {
 oldreg.DelCharacter(p_character);
 c.SetRegion(newreg.ID());
 newreg.AddCharacter(p_character);
}
oldroom.DelCharacter(p_character);
c.SetRoom(newroom.ID());
newroom.AddCharacter(p_character);

At this point, the objects have been physically moved, and no matter what happens from now on, the
actual transaction has been completed.

Notifications

Of course, there's still more work. Now that you've physically moved the character, you must inform
everyone involved:

1. Tell the region that the character left.

Tell the character that he left the region.

Tell the room that the character left.

Tell the character that he left the room.

Tell all characters in the room that the character left.

Tell all items in the room that the character left.

Tell the new region that the character entered.

Tell the character that he entered the new region.

Tell the new room that the character has entered.

Tell all characters in the new room that the character has entered.

Tell all items in the new room that the character has entered.

You should note several items in this listing. The first is that notifications 1, 2, 7, and 8 are optional,
and occur only when the user is changing regions. Although you could conceivably want regions to
know whenever someone moves between rooms inside the same region, I honestly couldn't find much
justification for it.

You may think there's a step missing. "But you never told the character that he entered the new room!"
Actually, I did, but it's very subtle. In step 10, when I tell all the characters in the new room that
someone entered, that includes the character that was just transported. This is because when the code
is executed, the character has already been moved into the new room.

Likewise, when a room the character was in is told about the character leaving, it must assume that
the character has already left, and shouldn't go looking for him.

Here's the code to accomplish this:

if(changeregion) {
 oldreg.DoAction("leaveregion", p_character, oldreg.ID());
 c.DoAction("leaveregion", p_character, oldreg.ID());
}
oldroom.DoAction("leaveroom", p_character, 0);
c.DoAction("leaveroom", p_character, 0);
ActionRoomCharacters(Action("leaveroom", p_character, 0), c.Room());
ActionRoomItems(Action("leaveroom", p_character, 0), c.Room());

if(changeregion) {
 newreg.DoAction("enterregion", p_character, newreg.ID());
 c.DoAction("enterregion", p_character, newreg.ID());
}
newroom.DoAction("enterroom", p_character, 0);
ActionRoomCharacters(Action("enterroom", p_character, 0), c.Room());
ActionRoomItems(Action("enterroom", p_character, 0), c.Room());

The lines roughly correspond to the steps I previously outlined. The only special part of this code is

the call to ActionRoomCharacters and ActionRoomItems. These are two helper functions that
automatically loop through every character or item in a given room, and send them an action. They're
simple loops, so I'm sure you'd be bored out of your mind if I showed them to you; I made them helper
functions simply because I need to call them often, and I'd prefer a one-line function call over pasting
the same 11-line loop code in multiple places.

Cleanup

I mentioned before that the final step in a transaction is cleanup, but there is no cleanup step for
transports. Everything that's needed to be done has already been done. The only transactions that need
cleanups are the item-movement actions, and I'll show you an example of that later on.

Analysis

The code for the previous transaction is fairly lengthy, but it follows a well-defined process, so it's
not that difficult to follow. The only downside is that you need to remember which actions send which
notifications, and from which actors the actions need to ask permissions. Otherwise, the code is fairly
straightforward.

Earlier in this section, I discussed a more flexible system in which you could simply define an
ownership hierarchy between entities of arbitrary types. Instead of saying explicitly "characters can
own items, rooms can own characters, regions can own rooms," and so forth, you might want to
simply define the concept of general ownership. I mentioned the fact that you could simplify the
concepts of "give," "get," and "drop" into one concept: "transfer item from a to b."

Why not take it one step further? Isn't moving a character from one room to the next similar to moving
an item from a player to the ground? Couldn't you simply define one function, in which an entity type
would automatically know what kinds of entities it notifies, and then you could simply code one
function to move an entity's ownership from one place to another? That way, you could end up with
just one function to handle characters moving around, items moving around, or even rooms and portals
being moved arounda function that the BetterMUD doesn't support. Just some things to ponder when
you go off and make TheBestInTheWorldMUD.

Item Transaction Example

I won't show you all the transactions because much of the information would be redundant, but I do
want to show you another example of a transactionan item transaction. This transaction moves an item
from a room into a player's inventory.

Database Lookups

Here's the part of the code for an item transaction that performs the database lookups:

void Game::GetItem(
 entityid p_character, // character who wants item
 entityid p_item, // item
 entityid p_quantity) // optional quantity
{
 character c(p_character);
 item i(p_item);
 room r(c.Room());
 region reg(r.Region());

Nothing special here, the character, room, item, and region are all retrieved.

Integrity Checking

This step wasn't needed for transporting a player from one place to another, but it is required for
getting an item.

For a character to gain ownership over an item, the item must be within the same room. Trying to get
an item that is in a different room from the character doesn't really make any physical sense, so we
need to check for that first.

In addition, we also need to check to make sure that the character is trying to pick up a valid quantity
of a quantity object. This ensures that a character doesn't get 100 gold coins, when there are only 20
in the room, leaving the game to think that the room now has -80 coins. While that may be humorous to
some, it's obviously something that you don't want happening anywhere in the game.

Here's the code:

if(i.Room() != c.Room() || i.Region() == 0)
 throw Exception(
 "Character "+c.Name()+"tried picking up item "+i.Name() +
 "but they are not in the same room.");

if(i.IsQuantity() && p_quantity < 1) {
 c.DoAction("error", 0, 0, 0, 0,
 "You can't get "+BasicLib::tostring(p_quantity) +
 "of those, it's just not physically possible! FOOL!");
 return;
}

if(i.IsQuantity() && p_quantity > i.GetQuantity()) {
 c.DoAction("error", 0, 0, 0, 0,
 "You can't get "+BasicLib::tostring(p_quantity) +
 ", there are only "+BasicLib::tostring(i.GetQuantity())+"!");
 return;
}

Usually the command that is making a player pick up items must ensure that the player gets the
appropriate quantity, but you can never assume that the scripts will be playing nicely with the game.
Someone, through error or malicious intent, may make a script that tries to get too many or too little of
a quantity object (such as a negative number), so when this happens, you need to tell the offending
character that an error has occurred.

Asking Permission

Asking permission for item movement is a simple process:

if(i.DoAction("cangetitem", p_character, p_item, p_quantity) == 1)
 return;
if(r.DoAction("cangetitem", p_character, p_item, p_quantity) == 1)
 return;
if(reg.DoAction("cangetitem", p_character, p_item, p_quantity) == 1)
 return;
if(c.DoAction("cangetitem", p_character, p_item, p_quantity) == 1)
 return;

This code simply asks the item, the room, the region, and the character if the item can be retrieved.
Any one of these actors can deny it, and this makes your game pretty flexible.

Physical Movement

The physical movement of item entities is a tad more complex than the movement of characters,
because items can be "quantities." One object could be a "pile of 10 coins," of which a player may
only want to grab five, and let his buddy get the other five.

In this case, you're going to have to spawn a completely new item to represent one pile of five, and
subtract five from the original pile. Here's the first part of the code that handles quantity objects:

entityid newitemid = 0;
if(i.IsQuantity() && p_quantity != i.GetQuantity()) {
 newitemid = ItemDB.generate(i.TemplateID()); // generate new item
 item(newitemid).SetQuantity(p_quantity); // set quantity
 i.SetQuantity(i.GetQuantity() - p_quantity); // reset old quantity
}

This checks to see if the item is a quantity object, and if so, checks to see if the desired quantity is
different from the existing quantity.

If the quantities are the same (meaning the player wants all ten coins), you don't have a problem, and
you can simply move the item as normal.

On the other hand, you'll need to generate a brand new object to represent partial quanti-ties, which is
precisely what this part of the function does.

A new item is spawned, and its quantity is set to the requested quantity. At the same time, the previous
item has its quantity reduced by the requested amount.

On the other hand, if you're transferring a normal object, or a whole quantity object, this code is
executed instead:

else {
 r.DelItem(p_item);
 reg.DelItem(p_item);
 newitemid = i.ID();
}

This simply deletes the item from the room and region, and sets newitemid to the ID of the item being
transferred.

The final physical act is now processed:

item newitem(newitemid);
newitem.SetRoom(c.ID());
newitem.SetRegion(0);
c.AddItem(newitem.ID());

The newitem accessor now points to the item that is being moved (either the normal item, or a new
quantity item), sets its room and its ID, and then adds it to the character.

Notifications

Next up is the notification code, whereby everyone is told about the movement:

r.DoAction("getitem", p_character, newitemid, p_quantity);
newitem.DoAction("getitem", p_character, newitemid, p_quantity);
ActionRoomCharacters(Action("getitem", p_character, newitemid,
 p_quantity), c.Room());
ActionRoomItems(Action("getitem", p_character, newitemid,
 p_quantity), c.Room());

The room is told an item left, the item is told that it left, all the characters in the room are told that the
item was retrieved, and so are all the items.

Cleanup

Unlike moving characters, getting items has a cleanup phase. This is needed whenever you move a
quantity object onto a player; the game needs to see if you have any duplicate quantity items (that is,
"Pile of ten coins" and "Pile of 20 coins"), and then the game combines them into one quantity object
("Pile of 30 coins").

if(newitem.IsQuantity())
 DoJoinQuantities(CharacterDB.get(c.ID()), newitemid);

The code simply calls the DoJoinQuantities function on an entity that holds items, to see if any
existing quantity items match the type of the new quantity item.

DoJoinQuantities

The DoJoinQuantities function is a templated helper function that searches through any entity that
holds items and tries to join together a given quantity item.

template< typename entity >
void DoJoinQuantities(entity& p_e, entityid p_id) {
 item keep(p_id); // the item that is being kept

 // go through the items, finding any to merge with "keep":
 typename entity::itemitr itr = p_e.ItemsBegin();
 while(itr != p_e.ItemsEnd()) {
 typename entity::itemitr current = itr++;
 if(*current != keep.ID()) { // make sure current item is not "keep"
 item check(*current);
 if(check.TemplateID() == keep.TemplateID()) { // matching types
 keep.SetQuantity(keep.GetQuantity() + check.GetQuantity());
 DeleteItem(check.ID());
 }
 }
 }
}

You pass in two values; a reference to an entity that can hold items, and the ID of the item you want
others to merge into (keep). The loop begins and goes through every item the entity is holding. The
loop must ensure that you don't accidentally merge the keep item with itself, so that's the reason for the
*current != keep.ID() check.

If the item is fair game, you need to compare template IDs. Two "Pile of X coins" objects have two
different IDs, but their template IDs should be the same, since they are both the same type of object. If
they are the same, you need to merge them together, by setting the quantity of the item you want to keep
and deleting the previous item by calling the DeleteItem helper function.

NOTE

Entities are not told when quantity items are merged or destroyed by merging. Because of this,
it's really not a good idea to perform clever or complex operations with scripts on quantity
items; they exist mainly to support the need of large amounts of currency-type objects in the
game. The bottom line is this: If you have a quantity item with a specific ID at one point in time,
you should never assume you'll have that same item later on; the quantity item may have been
merged with a different object of the same type.

Example of a Transaction Destroying Entities

Before going on to more interesting things, I want to show you the last transaction example
the"destroyitem" transaction in which an item is literally deleted from the game.

In the game, the transaction to destroy an entity is a special case, and the transaction should be called
only sparingly. Therefore it is assumed that whenever an item is being destroyed, it is allowable.

In other words, there is no condition-check stage in this transaction; items can't tell the game, "No,
please don't delete me! I deserve to LIVE!" because there are many times when a stubborn item that
refuses to be destroyed screws up the logic of other actions.

Here's the code, which is pretty simple:

void Game::DestroyItem(entityid p_item) {
 item i(p_item);
 if(i.Region() == 0) {
 character c(i.Room());
 c.DoAction("destroyitem", p_item);
 i.DoAction("destroyitem", p_item);
 }
 else {
 room r(i.Room());
 region reg(i.Region());
 reg.DoAction("destroyitem", p_item);
 r.DoAction("destroyitem", p_item);
 i.DoAction("destroyitem", p_item);
 }
 DeleteItem(p_item);
}

Remember, whenever an item's region is 0, it is assumed to be carried by a character.

So if the item is being carried by a character or in a room, the function must tell the actors. If it's being
carried, the character and the item are both told that the entity has been destroyed; otherwise it is lying
on the floor in a room somewhere, and the region, room, and item are told it's been destroyed.

Finally, the DeleteItem helper is called.

DeleteItem

The DeleteItem function is just a simple helper that removes an item from its room and region and
notifies the item database to delete the item:

void Game::DeleteItem(entityid p_item) {
 item i(p_item);
 if(i.Region()) {
 region reg(i.Region());
 reg.DelItem(p_item);
 room r(i.Room());
 r.DelItem(p_item);
 }
 else {
 character c(i.Room());
 c.DelItem(p_item);
 }
 i.SetRoom(0);
 i.SetRegion(0);
 i.ClearHooks();
 ItemDB.erase(p_item);
}

Again, the function must figure out if an item is being carried by a character or lying on the ground in a
room, and depending on that information, the function either deletes itself from its character, or its
room and region.

The last part of code clears room and region to 0, clears the item's hooks, and finally tells the item
database to erase the item (you saw how this worked in Chapter 13).

Deleting Characters

Deleting characters resembles the process of deleting items, with one significant difference:
Characters force all their items into the room when they are destroyed. The room won't be consulted
on whether it wants the items or not, because that kind of a thing might end up giving you zombie
items. Zombies are items that exist within the game, aren't part of any room or character, but haven't
been deleted. Here's the snippet of code that drops all of the items on a character (within the

DeleteCharacter helper function):

c.BeginItem();
while(c.IsValidItem()) {
 item i(c.CurrentItem());
 r.AddItem(i.ID());
 reg.AddItem(i.ID());
 i.SetRoom(r.ID());
 i.SetRegion(reg.ID());
 r.DoAction("dropitem", p_character, i.ID(), i.GetQuantity());
 reg.DoAction("dropitem", p_character, i.ID(), i.GetQuantity());
 c.NextItem();
}

The item is added to the room, its positional ID is rearranged, and then the room and the region are
told that the item was dropped. This ensures that any items carried by a character when it dies
become part of the game, and are not lost.

Other Transactions

There are numerous other transactions included in the game module, most of which are very similar to
the code I've already shown you. Here's a listing of the helper functions that execute the transactions:

 void DoCommand(
 entityid p_player, // player doing command
 const std::string& p_command); // command being executed

 void Say(
 entityid p_player, // character saying something
 const std::string& p_text); // text being said

 void Login(
 entityid p_id); // the ID of the character

 void Logout(
 entityid p_id); // the ID of the character

 void EnterPortal(
 entityid p_character, // character who entered
 entityid p_portal); // portal entered from

 void Transport(
 entityid p_character, // character who left
 entityid p_room); // room id

 void ForceTransport(
 entityid p_character, // character who left
 entityid p_room); // room id

 void GetItem(
 entityid p_character, // character who wants item

 entityid p_item, // item
 entityid p_quantity); // optional quantity

 void DropItem(
 entityid p_character, // character who drops item
 entityid p_item, // item
 entityid p_quantity); // optional quantity

 void GiveItem(
 entityid p_giver, // character who is giving
 entityid p_receiver, // character who is getting
 entityid p_item, // item
 entityid p_quantity); // optional quantity

 void SpawnItem(
 entityid p_itemtemplate, // template of item
 entityid p_location, // location to put it
 entityid p_player, // player or room?
 entityid p_quantity); // optional quantity

 void DestroyItem(entityid p_item); // item to destroy
 void DestroyCharacter(entityid p_item); // character to destroy

 void SpawnCharacter(
 entityid p_chartemplate, // template of character
 entityid p_location); // location to put it

 void LogicAction(const Action& p_act);
 void AddLogic(const Action& p_act);
 void DelLogic(const Action& p_act);

You can see that every action maintains the same parameters as those defined by the actions in the
previous chapter. For example, the "attemptgetitem" action defines the data1, data2, and data3 values
of the Action object as the character, the item, and the quantity desired. The GetItem function takes
those same parameters.

Calling the Actions

The last part of this topic is the DoAction function, which accepts an Action object and figures out
which helper function to call. Here's a sample. (I've snipped most of it out for brevity.)

void Game::DoAction(const Action& p_action) {
 if(p_action.actiontype == "chat" ||
 p_action.actiontype == "announce")
 ActionRealmPlayers(p_action);
 else if(p_action.actiontype == "vision")
 ActionRoomCharacters(p_action, p_action.data1);
 else if(p_action.actiontype == "enterrealm")
 Login(p_action.data1);
 else if(p_action.actiontype == "leaverealm")
 Logout(p_action.data1);

 else if(p_action.actiontype == "attemptsay")
 Say(p_action.data1, p_action.stringdata);
 else if(p_action.actiontype == "command")
 DoCommand(p_action.data1, p_action.stringdata);
 else if(p_action.actiontype == "attemptenterportal")
 EnterPortal(p_action.data1, p_action.data2);
... <SNIP> ...
}

For each action type, a matching helper function is called to handle the event. Some actions are so
simple that they don't even need helpers, such as the "chat" and "announce" actions; they're simply
passed on to every player in the realm.

Commands

The final topic I want to brush on in this chapter is the execution of command objects, which is a
special kind of action. I briefly introduced you to commands in the previous chapter, and now I'm
going to show you the code that executes commands.

The first thing the command handler needs to do is grab the character that executed the command, and
parse the command around a little bit:

void Game::DoCommand(
 entityid p_player, // player doing command
 const std::string& p_command) // command being executed
{
 Character& c = CharacterDB.get(p_player);
 std::string full = p_command;
 if(full == "/")
 full = c.LastCommand(); // repeat last command
 else
 c.SetLastCommand(full); // set last command
 std::string command = BasicLib::ParseWord(full, 0);
 std::string args = BasicLib::RemoveWord(full, 0);

Just as with the SimpleMUD, you can repeat your last command by using the / key; so your last
command is loaded if you type /; if you don't type /, your last command is reset to whatever you
typed.

After the if/else clause is executed, full contains the string you want to execute. The strings command
and args are filled in with the first word of the string you want to execute, and the rest of the string.
So if you typed "/go north", command would hold "/go", and args would hold "north".

The next part of the code determines if a player is actually performing a command, or just chatting:

 if(!c.Quiet() && command[0] != '/') {
 DoAction("attemptsay", p_player, 0, 0, 0, full);
 return;
 }
 if(command[0] == '/')
 command.erase(0, 1);

You saw from Chapter 13 that characters have a quiet mode. With quiet mode, everything a character
types is assumed to be a command. If a character is not in quiet mode, anything he types is assumed to
be talking, unless it starts with a /.

Table 15.1 lists the behaviors demonstrated on various inputs.

Table 15.1. Quiet Mode Behavior

Input Quiet Mode Loud Mode

go north execute command go say go north

/go north execute command go execute command go

After the command handler determines if a character said anything, it removes the leading / if it
exists, so the command string is left with merely the command name, such as go or look, rather than /go
or /look.

Here's the next part of the code that searches to see if the character has the requested command:

 try {
 Character::commands::iterator itr = c.FindCommand(command);
 if(itr == c.CommandsEnd()) {
 c.DoAction("error", 0, 0, 0, 0,
 "Unrecognized Command: " + p_command);
 return;
 }
 (*itr)->Execute(args); // execute command
 }
 catch(...) {
 c.DoAction("error", 0, 0, 0, 0,
 "SERIOUS ERROR: Cannot execute " + command +
 ", please tell your administrator");
 }

}

The character finds the command by using its FindCommand function, which you saw in Chapter 13. If
the command isn't found, the character is informed, and the function merely returns.

If the command is found, however, the function tries to execute it by passing in the arguments.
Executing a script that may throw an exception could cause the whole thing to crash, which is a bad
thing; eventually it will reach the network system, which catches everything and disconnects the
connection if it isn't handled by then. So, I catch all errors, and whenever they occur, and I notify the
character by telling him about the error.

NOTE

Ironically, just calling the DoAction function on an error can also cause an exception to be
thrown, but I haven't found this to be a problem at all. If this is the case, something is probably
really messed up with the character, and you're safer letting the exception travel all the way up
to the network level, which discon nects the offending player. This approach minimizes the
amount of corruption that a crashed script can cause.

And that's it for commands!

Main Function

The main function of the BetterMUD is located within the file /BetterMUD/BetterMUD.cpp on the
CD, and it's a very simple function, reminiscent of the SimpleMUD's main module:

#include "SocketLib/SocketLib.h"
#include "BetterMUD/network/TelnetLogon.h"
#include "BetterMUD/network/BetterTelnet.h"
#include "BetterMUD/Game.h"

using namespace SocketLib;
using namespace BetterMUD;

int main() {
 try {

 ListeningManager<BetterTelnet, TelnetLogon> telnetlistener;
 ConnectionManager<BetterTelnet, TelnetLogon>
 telnetconnectionmanager(128, 60, 65536);

 telnetlistener.SetConnectionManager(&telnetconnectionmanager);
 telnetlistener.AddPort(5110);

 g_game.LoadAll();
 while(g_game.Running()) {
telnetlistener.Listen();
telnetconnectionmanager.Manage();
g_game.ExecuteLoop();
ThreadLib::YieldThread();
}
 }

 catch(BetterMUD::Exception& e) {
 std::cout << e.GetError();
 }

 g_game.SaveAll();
 CharacterDB.Purge();
 ItemDB.Purge();
 AccountDB.Purge();
 RoomDB.Purge();
 PortalDB.Purge();
 RegionDB.Purge();

 return 0;
}

The actual game loop is shown in bold; everything else mainly involves loading and saving the
databases. You should be familiar with the networking setup and the game loop, so I'll skip to the last
part of the code.

The final section of code saves all the databases and then purges the entity databases. Why do I do
this? It turns out that since I used globals for all the databases, I have absolutely no control over their

order of destruction. As you'll see in Chapter 17, my Python script module objects need to exist
whenever an entity is destroyed, so that the entities can remove references from the Python modules.

Unfortunately, I can't make C++ destroy the entity databases first, so sometimes the game crashes
when you shut down. Instead of crashing, I purge the databases to force the databases to destroy all
their entities, so that by the time the global Python script databases are destroyed, nothing points to
them anymore.

Summary

As you can see from this chapter, the game module is a complex beast. My line counter says that the
Game.cpp file itself contains three times as much code as any other file within the BetterMUD, which
should give you some idea of how complex it is.

You saw that the game module manages a number of functions in the game, such as loading and saving
databases, executing actions, keeping track of time, and executing commands. Overall, the game
module supports features similar to those seen in the SimpleMUD's game handler, but this design is
better because it doesn't actually directly interface with connections. You'll see how this is done in
the next chapter, when I show you the design of the networking system.

I want you to keep thinking about better designs for entity transactions in the future, and realize that I
made the simple design presented here to give more time to the flexible logic layer of the game.
Believe me, in Chapter 18 you'll be impressed by learning how the game can be enhanced by using
Python.

Chapter 16. The Networking System
Since more than half of this book is dedicated to networking, you must be completely bored with the
topic by now. Nevertheless, networking is an extremely important part of MUD programming, and the
job must get done. Networking code doesn't just write itself.

Because I've covered networking so extensively before, I'm not going to delve too deeply into it in
this chapter. I would like to give you a brief overview of the major concepts involved in the
networking system of the BetterMUD, and then move on to the more interesting topics. In this chapter,
you will learn to:

Design a more robust and flexible networking layer

Abstract reporting events to your clients in a non-specific manner

Create a flexible color coding system that doesn't require a specific protocol

Convert colors from the flexible system to VT-100 color codes

Understand how the BetterMUD logon process works

Understand how the BetterMUD menu system works

Implement a Telnet reporter

Files

The classes shown in this chapter can be found on the CD in the directory /BetterMUD/
BetterMUD/network. Table 16.1 lists the files and their contents.

Table 16.1. BetterMUD Network Files

File (.h/.cpp) Contents

BetterTelnet Better implementation of the SocketLib::Telnet class

TelnetReporter Reporter that reports to BetterTelnet connections

TelnetLogon Logon handler for BetterMUD Telnet connections

TelnetMenu All five menu handler classes for BetterMUD Telnet connections

TelnetGame Game handler class for Telnet connections

A Better Design

The design of the SimpleMUD was basic, because it assumed you were going to use Telnet to access
the MUD. Telnet is a great protocol in the fact that almost every operating system in the world has
built-in clients. This means that you can log into any Telnet MUD anywhere using any client, which is
one of the main claims to fame of MUDs. They're lightweight clients; you don't need to have certain
system specs to play a game; as long as you have a Telnet client. Years ago, I had a simple PDA
(Sharp Zaurus, I think) with a built-in modem and a Telnet client. On this little hand-held thing, I
could log in to any MUD in my area. You wouldn't believe how cool that was.

Competition from the Big Boys

Unfortunately, ever since the release of Ultima Online, the bar has been raised on persistent world
games. No, that's not quite correct; Ultima Online literally grabbed the bar and yanked it as far high
as they could. I was playing on a few different MUDs in 1997, and then suddenly, every one
disappeared!

Where did they all go? To graphical MUDs, also known as MMORPGs. For the past few years, I've
seen MUDs practically go the way of the dinosaurs, and that's for a very simple reason; Telnet clients
just don't cut it. Sometimes it's much more entertaining to have the client of a full-blown game handed
to you, which takes care of everything, and removes the need to type so much.

Sometimes I find myself thinking that Telnet is too limiting. Only 15 colors, very limited text controls,
and so on. Modern clients should be able to support more than 15 colors, for crying out loud!

Designing a Flexible System

Unfortunately, I don't have the room or the time to go over creating a new client for use with the
BetterMUD (Hey, server development is more fun anyway!), but that's no excuse for assuming we'll
be using Telnet!

The key to a good MUD is extensibility and the ability to adapt to future capabilities. Unfortunately,
no one can predict every feature that may be needed in the future (I bet people would pay good money
for that ability though), so you need to make sure your design is inherently flexible by abstracting out
certain things.

In Chapter 11 you learned the concept of abstracting physics and logic. This same concept can be
applied to the networking system. Instead of abstracting the physics and logic, I'm going to abstract the
physics and the protocol away from each other.

For example, when a player enters a room in the BetterMUD, everyone in that room must be told
about the new entry. This can be done in many ways; you could assume the client is text based, and
just shoot off a string. Instead of doing that, though, you may want to think about what a future protocol
might be like.

NOTE

The MUDs Return

One gleam of hope is emergingMUDs are making a comeback, and this is happening for many reasons.

First of all, ever since the MMORPG explosion, there have been dozens of clones, but very few of
them actually manage to be good and entertaining. Many are disasters (and a few didn't even work
right out of the box... oy!). Even worse are the monthly charges. Back in the mid- to late-80s, most
MUDs were run on a per-hour basis, but that was because they used so much power. As computers
became faster and cheaper, running a MUD became cheaper, and more people could afford to run
them.

By the mid-90s, almost all the MUDs I knew were completely free of charge, and now I can't find a
MUD that charges fees! Times are great indeed; I can't believe I'm running not one, but two MUDs of
my own now. When I first started playing them, I would have never dreamed this was possible.

Another reason why MUDs are making a comeback is because MMORPGs are too big. When they
first came out, they were novel, and you could play with tens of thousands of people at a time. But in
reality, that's a heck of a lot of people in a game. People tend to like the small-knit communities that
MUDs offer naturally, instead of the megalopolis approach of MMORPGs. It's easier to get to know
people, and you enjoy yourself more.

Consider a graphical client that knows about character graphics and keeps track of all the characters
in the game. Instead of notifying that kind of client in text form, you can probably shoot off a packet
containing the information "character X entered from portal Y", and then let the client figure out how
to display that information, for example by showing a graphical animation of the character coming
through a door.

So the main concern here is translating physical MUD events into data that is reported back to a
client.

Reporters

For reporting events to a client, I have created the idea of a reporter. Figure 16.1 shows the
relationship between the game, characters, and reporters (new components are shaded gray)

combined with the connection, protocol, and handler objects you should already be familiar with.

Figure 16.1. The reporter system combined with familiar elements of the connection
protocol and handler objects.

If you recall from Part Two of the book, the SimpleMUD implemented most game logic inside of a
Telnet handler named Game. In the BetterMUD, the game module is actually completely abstracted
from anything dealing with Telnet; it doesn't care what protocol people use.

The game informs characters about actions that happen in the game, such as players entering or
leaving the realm, items being dropped, and so on. When the character receives an action, he needs to
decide what to do with that action. If the character is a player, the character has a reporter object, and
the character passes the command along to the re-porter. Figure 16.1 shows a split at this pointan
action can go either to a Telnet reporter or a graphic reporter. In the game, every player character has
one reporter object; which means that if the character's connected to the game with Telnet, he sends
the action to a Telnet reporter.

Once it receives the action event, the reporter figures out how to tell the client what happened. A
simple Telnet reporter makes a string out of the action and sends that off. More complex protocols
probably require the creation of a complex packet object and its shipping.

That's the design for the reporting system. It allows you to add more protocols in the future, so you
can support more complex clients.

Reporter Design

Reporters are basically just special logic modules that are given to players in the game. Every time a
player's logic collection is told about a game action, the reporter logic module for that player is told
as well. Because of this, they inherit from the Logic class, as shown in Figure 16.2, which shows a

simple design, with two possible implementations.

Figure 16.2. Reporter classes inherit from the Logic class.

Telnet Reporters

I only had time to actually implement one reporter class for the BetterMUD, a version that uses Telnet
to communicate with players. It's quite simple, but you should feel free to make better versions of
your own.

Here's the class definition with most of the helper functions stripped out:

class TelnetReporter : public Logic
{
public:
 TelnetReporter(
 entityid p_id, // ID of character
 Connection<BetterTelnet>* p_conn) // address of connection
 : m_id(p_id),
 m_conn(p_conn) {}

 std::string Name() { return "telnetreporter"; }
 bool CanSave() { return false; }
 int DoAction(const Action& p_action);

 void SendString(const std::string& p_string);
protected:
 SocketLib::Connection<BetterTelnet>* m_conn;
 entityid m_id;
}; // end class TelnetReporter

The class only needs to respond to the DoAction events that it receives, and send messages to its
connection (m_conn) when it needs to. As I mentioned earlier, some logic modules shouldn't be saved

to disk, and reporter modules are a perfect example of that. They are only valid when players are
connected, so there's no reason to write them to disk.

Here's a sample from the DoAction function:

int TelnetReporter::DoAction(const Action& p_action) {
 if(p_action.actiontype == "enterroom")
 EnterRoom(p_action.data1, p_action.data2);

 else if(p_action.actiontype == "leaveroom")
 LeaveRoom(p_action.data1, p_action.data2);

 else if(p_action.actiontype == "say") {
 character c(p_action.data1);
 SendString(
 "<$yellow>" + c.Name() +
 " says: <$reset>" + p_action.stringdata);
 }

This code snippet takes care of three actions: players entering a room, leaving a room, or speaking.
The first two actions simply call the LeaveRoom and EnterRoom helpers (which are helpers that print
out information about characters leaving and entering the room), and the third action is simple enough
that you can just call the SendString helper function to directly send some text to the connection.

The strings <$yellow> and <$reset> are special additions to my better Telnet protocol, which I go
over in the next section.

State Changes

BetterMUD uses a fairly simple state system. This section deals with how the reporter class handles
changing between states. The existence of the reporter on a player means that the player's connection
is in the "game" state (much like the SimpleMUD). I've also got something new, a "menu" state, in
which players can manage their characters.

There are two special actions that deal with changing physical connection states inside the reporter.
They deal with the connection being hung up, and the connection leaving the game state. Here they are
(these are within the DoAction function I showed you earlier):

else if(p_action.actiontype == "hangup") {
 m_conn->Close();
 m_conn->ClearHandlers();
}
else if(p_action.actiontype == "leave") {
 m_conn->RemoveHandler();
}

When a connection is told to hang up, the reporter simply closes the connection and tells the
connection to remove all its handlers. This act makes the connection leave the handler it is currently
in, so you don't need to perform any other cleanup code, just as long as the game handler logs off
correctly (which it does).

On the other hand, the Leave function is called when the player quits the game. Figure 16.3 shows the
process of entering and leaving the game, starting from the menu state. When a player enters the game,
the menu handler remains on the stack and it isn't removed until the player quits from the menu.

Figure 16.3. The connection handler stack looks like this throughout the game.

When a player enters the game, the function swaps out the enter game handler with the game handler,
and it never removes the menu handler. Therefore, when the player quits the game, the connection
handler takes him back to the menu state.

A Better Telnet

I've improved the SocketLib::Telnet protocol object from Chapter 6 and integrated it into the
BetterMUD. You may remember that I described the idea of making the protocol object automatically
translate generic text-color tags into actual VT-100 control codes. This is the main addition to the
BetterTelnet class (nice original name).

In Chapter 9, I implemented stores and rooms in the SimpleMUD. In some room descriptions, I told
you that I had manually inserted VT-100 color codes into the descriptions of some rooms in the actual
text datafiles. This was a tricky business; I actually had to use a binary hex-editor program to insert
the escape codes.

Another downside of that method is that it assumes everyone is going to be using Telnet, and it's okay
to make that assumption for the SimpleMUD, but for the BetterMUD, which should have no idea what
Telnet is (outside the networking module, of course), that's just not going to cut it.

BetterMUD Color Codes

Without messing up how the text displays. I created a method to represent color codes inside a piece
of text. I've opted to use an HTML-like method of color tags. Here's a sample description of one of
the rooms within the BetterMUD:

You are in the gardens of Worthington, where you can see much
<#FFFF00>flora<$reset> and <#00FF00>fauna<$reset> all around.

The text within the angle brackets is color coded. I've included two different kinds of color codes:
hex-numeric, and alphabetic.

Whenever the BetterTelnet class is sent a new piece of text to return to the player, it tries to find
these tags and replace them with their VT-100 equivalents. So, for example, if this class sees <$red>,
it removes that from the string and replaces it with the VT-100 code <esc>[31m. I've included
translation mechanisms for all seven color codes, as well as the dim and bold codes, and a reset code
as well:

<$black>

<$red>

<$green>

<$yellow>

<$blue>

<$magenta>

<$cyan>

<$white>

<$bold>

<$dim>

<$reset>

The dollar sign signifies "string", which means that whenever the translator finds <$, it knows a
string-based code is going to follow.

Hex-numeric codes are much more versatile and can represent up to 16 million different colors. If
you've ever played around with HTML, you should be familiar with the concept. Basically, in
<#RRGGBB>, the first two hex-digits represent the red, the next two green, and the last two blue. A code
such as <#FFFFFF> represents pure white, whereas <#000000> represents pure black. The two colors
shown in the previous description example are pure yellow and pure green.

Converting BetterMUD Codes to VT-100

Unfortunately, there is no magical way to make VT-100 instantly support more than the default 15
colors, so the BetterTelnet protocol module has a bit of work to do. Whenever the protocol class
detects a hex-numeric color code, it must translate that color into the puny 15-color palette of VT-
100. For this approach, I've used a simple algorithm that splits each color component into the
numbers, 0, 1 or 2. For example, the red component of FF (255) translates to the number 2; 00
translates to 0, and 7F (127) translates to 1.

I used an algorithm to downsize the color ranges by splitting up the range 0255 into three regions. So
any component from 0 to 85 is treated as 0, 86 to 171 is treated as 1, and any component from 172 to
255 is treated as 2. Figure 16.4 shows this process for a sample color of <#007FFF>, which is a pretty
shade of light blue.

Figure 16.4. The process of converting a hex-decimal color code into a 3-digit based
code, which is used to convert into VT-100 color codes.

NOTE

If you have a paint program such as Paint Shop Pro, you can probably open up a color picker
tool, and enter the HTML code into it. If your paint program doesn't have an HTML converter,
then you'll have to make do with color conversion manually, by converting each hex- color
component into a decimal.

Therefore, <#007FFF> is translated into 012. Inside the BetterTelnet module file, I have a 3x3x3
array of color codes named g_telnetcolors. I use these three numbers as indexes into that array, like
this: g_telnetcolors[0][1][2], and the array at that point holds the Telnet color closest to what I
want.

For colors like white, black, blue, and magenta, the translation is exact; VT-100 specifically supports
those colors. But VT-100 doesn't support the cool blue color I just converted, so what the heck should
I do?

I make an estimate. When I initialized the Telnet color array, the entry 012 looked like this:

g_telnetcolors[0][1][2] = blue + bold;

So the color that is output is bold blue. This isn't an exact match, since bold blue is a little bit darker
than 007FFF, but it's Telnet's closest color match. Most colors are close enough so that you won't
notice too much difference, but there are a few colors that VT-100 doesn't come close to supporting:

g_telnetcolors[2][1][0] = yellow + dim;
g_telnetcolors[2][1][1] = red + bold;

The first color is supposed to be orange, but you'll never get anything orange-looking from VT-100.
The closest you'll get is the dim yellow (which, on most clients, ends up looking like a disgusting
shade of brownish chartreuse).

The other color is a carnation pink, which the closest you can get to pure bold red.

So you should be aware that the BetterTelnet protocol automatically tries to convert colors as best it
can, but sometimes it fails miserably.

BetterTelnet

The BetterTelnet class adds three new functions to the old SocketLib::Telnet class, as well as a
hidden class and a hidden array.

Here are the three new functions:

static std::string TranslateColors(const std::string& p_str);
static void TranslateStringColor(
 std::string::size_type i,
 std::string::size_type j,
 std::string& p_str);
static void TranslateNumberColor(
 std::string::size_type i,
 std::string::size_type j,
 std::string& p_str);

You shouldn't ever need to specifically call any of these functions yourself, because the protocol class
automatically calls them functions for you. For example, when you send text to a BetterTelnet
protocol object using the SendString (it has the same parameters as
SocketLib::Telnet::SendString), the function automatically calls TranslateColors for you, searches
for color tags beginning with <$ or <#, and translates them. The actual translation is done inside the
next two functions, which are just helpers. The helpers take the starting index of the color code, the
ending index of the color code, and the string to translate as parameters, and it performs the color
conversion in place.

I don't want to show you the code, since it is just boring string manipulations, and I'm sure you've had
your fill of them.

I also mentioned that I created a hidden class. This class is named INITTELNETCOLORS, and its only
purpose is to initialize the g_telnetcolors array with Telnet color codes when the program starts.
You don't have to worry about that. If you're interested in seeing how it works though, you can always
look at it inside the BetterTelnet.cpp file.

Handler Design

The BetterMUD's account logon process is almost identical to the SimpleMUD's character logon
process (the BetterMUD::TelnetLogon and SimpleMUD::Logon classes are almost the same). But once a
character is logged on, the similarities end.

Logging On

Logging into the game is a simple task, so I'm not going to spend much time on it. There is one
important point to remember, however. In the SimpleMUD, all the text strings printed to the user were
hard coded into the executable. The BetterMUD is little more flexible. For example, when you first
log into the game, the logon handler consults a text file named /data/logon/logon.data and prints the
contents of that file to the connection. For example, my BetterMUD has this logon file:

<#FF0000>
 ###### ####### ####### ####### ####### ######
 # # # # # # # #
 # # # # # # # #
 ###### ##### # # ##### ######
 # # # # # # # #
 # # # # # # # #
 ###### ####### # # ####### # #
 # # # # ######
 ## ## # # # #
 # # # # # # # #
 # # # # # # #
 # # # # # #
 # # # # # #
 # # ##### ######
<#FFFFFF>
Welcome to BetterMUD v1.0! If you are a new user, type "new" at the prompt
to create a new account. If not, just enter your user name and password to
log in.
<#7F7F7F>
If you have any problems or questions, please email the administrator at
Ron@Ronpenton.net
Please prefix your email titles with <#FF0000>MUD BOOK

<#00FF00>Your Name: <#FFFFFF>

The handler prints out a very basic ASCII text logo (note the usage of the BetterMUD color codes),
and short instructions for logging on. It also prints out my contact information, so that people who
can't log in can contact me.

You can replace the contents of the file with whatever you want when you run the MUD. I'm going to
show you the Enter function of the TelnetLogon class, to show you how this is done:

void TelnetLogon::Enter() {

 std::ifstream f("data/logon/logon.data", std::ios::binary);
 std::string str;
 std::getline(f, str, '\0'); // read everything from the file
 m_connection->Protocol().SendString(*m_connection, str);
}

It's not that difficult. I used the std::getline function to read the entire contents of the file into a
single string, and then I print the string out to the player's connection.

Table 16.2 lists the data text files used in the BetterMUD. Because the data is stored in the files, you
can update the news, your logo, or anything else without stopping the MUD and recompiling.

Table 16.2. BetterMUD Text Datafiles

File Contents

data/logon/help.data A description of the MUD, who runs it, and how to contact him.

data/logon/logon.data The MUD logo and basic logon information.

data/logon/newaccount.data Information for people signing up for a new account.

data/logon/news.data The latest game news.

There is one difference in the logon process from the SimpleMUD: accounts can be banned.
Whenever an account is banned, the logon process prevents the user from completing a logon, and
tells him who to contact about the issue before hanging up on him. This allows you to enforce rules in
the game and remove trouble makers.

NOTE

Whenever you have data like this in a text file, which is meant to be streamed directly out to a
connection, you should be cautious. Telnet requires that every line sent terminate in a CRLF
pair. ASCII text files on different operating systems use different line endings, however.
Windows is okay, because Windows ASCII text files by default end with CRLF on each line.
UNIX/Linux is a different beast, however. Those ASCII files have lines that typically end in an
LF, which looks messed up when streamed to Telnet. You could easily make a conversion
routine that automatically adds CRs before LFs, if you are so inclined. I didn't bother since I do
my file editing in the UltraEdit text editor, which has functions to automatically convert LF to
CRLF, and vice versa.

Menu Process

Figure 16.5 illustrates the entire logon process.

Figure 16.5. All the handlers involved in logging a character onto the game.

If you recall from Chapter 8, for the SimpleMUD, the player simply entered the player game after
logging on. The BetterMUD adds an intermediate stepa game menu. The five game menu handlers can

be found in the menu marked with dashed lines. They're all simple little classes, derived from
BetterTelnet::handler, which is just another name for the
SocketLib::ConnectionHandler<BetterTelnet, std::string> class. (See Chapters 6 and 8 if you've
forgetten what a ConnectionHandler is.)

Basically, you manage characters through a game menu. Here's a listing of what the Telnet version of
the menu looks like:

 BetterMUD v1.0 Main Menu

 0 - Quit
 1 - Enter the Game
 2 - Create a new Character
 3 - Delete an existing Character
 4 - View Help

 Enter Choice:

Option 0 obviously just hangs up your connection, and the other options correspond to the four boxes
that "Menu Handler" pointed to from Figure 13.4. Each of these options has its own state class, which
can all be found in the TelnetMenu.h and .cpp files.

The simplest of these is the TelnetMenuHelp handler. Its only purpose is to load the help.data file and
print it out to the user. Then it waits for user input and goes back to the main menu when it has
received input.

The other handlers are a bit more complex, as you can see from Figure 16.6.

Figure 16.6. The state diagrams of the four menu handlers.

It's not really a difficult process to understand. Most of the code deals with interfacing with the
various databases to print your available characters, or the available character prototypes to choose
from when you enter the game.

Adding Characters

When a player enters the game, he is given a list of prototype characters to choose from. In the
SimpleMUD, everyone started out as the same boring character with no individual characteristics.

In most popular game systems, you're allowed to choose a species such as a human, elf, or goblin. In

most games, each species has different physical attributes. Elves are usually quicker but weaker than
humans, ogres are slower and stronger, and so forth.

Instead of using species, I use prototypes. In Chapter 13, I showed you a dual-database that holds
templates and instances. A player's "species" is whatever template character his instance character
derives from. In the character template database, I have included characters named "Human", "Elf",
and "Dwarf", starting at ID 1. So when a player creates a new character, and chooses an ID of 1 as
his template, that template also designates his species in the game. The template copies information
that makes him unique from other species in the game.

So when a player enters the "new character" state, the game prints out a list of all the characters he
can choose to be. The game gets this list by consulting a script, named /data/logon/ logon.py. I'll go
over the script in more detail in Chapter 18, but for now all you need to know is that it is asked for a
string of the character templates that the character can become:

void TelnetMenuNew::PrintRaces() {
 std::string str = StringFromPy(m_creationmod.Call("listchars"));
 m_connection->Protocol().SendString(*m_connection, str);
}

Don't worry about not knowing exactly what the code in bold does yet; all you need to know is that it
returns a string.

Finally, the handler checks to see if the requested name is taken, and if it isn't, the new-character
handler tries to figure out if you've entered a valid character type. Here's a little snippet from that
section of code:

m_char = EntityFromPy(m_creationmod.Call("gettemplateid",
 EntityToPy(option)));

// check if it was valid
if(m_char == 0) {
 m_connection->Protocol().SendString(*m_connection,
 "<#FF0000>Invalid option, please try again: <#FFFFFF>");
 return;
}

// create character, set its account, and add char to account.
m_char = CharacterDB.generate(m_char);
character(m_char).SetAccount(m_account.ID());
m_account.AddCharacter(m_char);

// now perform the inital setup:
m_creationmod.Call("setup", EntityToPy(m_char));

This code again heavily relies on the logon.py script. The first thing it does is ask the script to get a
character template ID based on the option that the user selected. This should return a number other
than 0 if the user entered a valid option, or return 0 if the option was invalid (which can happen; users
like to try to break your programs).

Otherwise, the function continues and generates the character. The last line of the function again calls
the logon.py script, and this time the script is supposed to set up the new player, by putting him in an
appropriate room, giving him commands, and special logic modules or whatever else you want to do.

Deleting Characters

Whenever a character is deleted, the actual character isn't immediately deleted. This is actually a very
important security issue. Imagine if someone discovered your password and deleted your character
that you spent months creating…argh! To be on the safe side, the character deletion handler removes
only the character from the player's account. The administrator can delete the character manually at a
later date.

Game Handler

In the SimpleMUD, the Game handler was a very complex piece of code, which managed the game's
reaction to every input of the players. I'm not saying it was a great design, emm…it wasn't. But it was
okay, simply because it got the job done, and it wasn't designed to handle anything other than Telnet.

For the BetterMUD, however, things are different. In the BetterMUD, the game handler is much
simpler; its purpose and flexibility are shown in Figure 16.7.

Figure 16.7. The game handler translates commands from the native network format
into data the game understands.

The game handlers for the BetterMUD are just simple classes. Their only function is to translate data

from the client into data that the game understands. Take a look at the TelnetGame::Handle function,
for example:

void TelnetGame::Handle(string p_data) {
 g_game.DoCommand(m_character.ID(), p_data.c_str());
}

The function simply passes the command to the game. You should note that the game handler tracks
which character it is currently attached to, much as the SimpleMUD's Game class did. I'll show you
how the Game class works in Chapter 15.

Summary

You may have noticed that the SimpleMUD has a "training handler" but the BetterMUD does not. This
is because there is no need for a specific handler for modifying statistics. As you'll see later on, the
BetterMUD doesn't have such a rigid reward/editing system, and you can use logic modules to edit
stats. Instead of going into a trainer and adding points to your strength, you could have a logic module
that would be attached to a trainer, and when you pay him, he'll increase your strength through his
logic module.

This has been a very quick overview of the networking system for the BetterMUD. I didn't really go
over too much code, but that's mostly because so much of the code is based on the same concepts you
learned in the SimpleMUD. I find long explanations of code very boring, and you probably do too. So
this is enough about networking. It's time to get to the real meat of the BetterMUD!

Chapter 17. Python
Until now, everything in this book has been done in C++. Until recently, almost everyone in the game
industry used C++; it's been the only language that provides the flexibility and the speed that games
need to take advantage of every bit of processing power available at your fingertips. It's predecessor,
C, is perhaps the most popular MUD programming language in the world, and for good reason. When
the UNIX operating system hit, it introduced networking on a wide and flexible scale to everyone in
the world, and what better to do with UNIX than to program MUDs? Consider that when MUDs
became popular, C was by and large the only good language available for UNIX, and it was also the
preferred language of MUD builders. C is dying, however. It will never be completely dead (look at
CO-BOL!), but its days in the sunshine are coming to an end. Many would say that C++ is dying too,
but I'm not sure where I stand on that issue yet. Within the past few years, flexible interpreted
languages have hit the mainstream. Among the frontrunners are PERL and Python.

Python is the language that I have chosen to use with the BetterMUD, partly because I don't understand
PERL (it's so UGLY!), and mostly because Python is a very simple, powerful, and elegant language.

In this chapter, you will learn to:

Install Python

Use Python types, functions, classes, exceptions, and packages

Integrate a Python Interpreter into C++

Call Python functions from C++

Call C++ functions from Python

Integrate Python into the BetterMUD

Python Language

A language is considered interpreted if it doesn't create binary files containing machine code.
Keeping your programs in machine code limits you to running them on a single processor architecture;
your Windows programs obviously won't run on a Macintosh, because the compiled programs don't
speak the same machine code.

Interpreted language programs usually have two components: the program and an interpreter. Figure
17.1 shows you how an interpreted language system works.

Figure 17.1. With an interpreted language, there is no need to compile the language
for different systems, because the interpreter program does the conversion from the

language into machine code.

The major benefit of such a system is that you can run it on any system that has an interpreter
installed. Even better, you can tell an interpreter to dynamically reload programs when they change
(which is the main argument for implementing a scripting system in the BetterMUD).

The downside, of course, is the extra layer of abstraction. It takes work to translate the instructions
into a native machine format. Processors, however, are so fast these days that the translation of
instruction is rarely a concern, which explains why interpreted languages are quickly gaining
popularity in the computing world.

Installing Python

If you're on Windows, you probably don't have Python installed. If you're on Linux, you probably have
at least version 2.2 installed (at the time of this writing, Python is at version 2.3, which is much faster
than Python 2.2). If you don't have Python installed on your Linux machine, please ask your
administrator to install it for you, so you can play around with it.

NOTE

For this book, I am using Python 2.2. Even though Python 2.3 is much faster and less buggy, it
was released too late for me to switch everything over and test it completely. Feel free to use
Python 2.3 if you wish. I've included it on the CD.

I have included the distributions for Python on the CD in the directory /goodies/ python. The
Windows version of Python 2.2 is located at /goodies/python/windows/ Python-2.2.3.exe, and the
Linux version at /goodies/python/linux/Python-2.2.3.tgz.

Snake Charming

Once you've installed Python on your system, you can jump right into it and start programming right
away. The Python distribution comes with an interactive interpreter program. This should be named
something like Python2.2 on Linux, and python.exe on Windows.

Once you have the interpreter running, you will see something like the output shown in Figure 17.2.

Figure 17.2. The Python interactive interpreter allows you to type Python code that it
runs for you on the spot.

Python allows you to type in code, and as soon as you press Enter, the program executes the code you
entered. For your first Python program, type in print "Hello World!", and press Enter. The output

should look like this:

>>> print "Hello World!"
Hello World!

Wow! Even BASIC isn't this easy.

Variables

Python has datatypes, but variables are dynamically bound to their types. This means that a variable
can change what type it is, while a program is running! If you're used to static-typed languages like
C++, this concept may boggle your mind (it sure boggled mine for a few hours!).

NOTE

Do not show Python to an aged Assembly Code Guru. His mind will either terminally shut down,
or promptly explode.

Try it out. Type this code into Python:

x = 42
x = "YOU'RE SUPPOSED TO BE AN INT!"

Here's some sample output that I got from that code:

>>> x = 42
>>> x
42
>>> x = "YOU'RE SUPPPOSED TO BE AN INT!"
>>> x
"YOU'RE SUPPPOSED TO BE AN INT!"

You may experience any of these reactions:

1. Whoa! How cool!

THAT'S NOT POSSIBLE!

brain explodes

I really hope your reaction was #1, because you're going to have to get used to Python if you ever
want to do anything interesting in the BetterMUD.

Types

Python has built-in types, but you really don't care much about the types of your data. There's a built-
in function to determine the type of something called type. Look at the following interpreter
interaction:

>>> type(5)
<type 'int'>
>>> type ("pies")
<type 'str'>
>>> type(3.1415926535897932384626433832795)
<type 'float'>
>>> type(123456789000000000)
<type 'long'>

Those are the four types you'll be using most often. Python has other built-in types (such as Booleans
in 2.3 and complex/imaginary numbers), but you won't be using those as much.

Integers

Python has two types of integers. One is a standard 32-bit type that you're familiar with, and the other
is a very cool flexible integer format.

Ints

Python ints are standard signed 32 bits, representing numbers from -2,147,483,648 to 2,147,483,647.
The really awesome thing, however, is that ints never overflow. Look at this code:

>>> x = 2147483647
>>> type(x)
<type 'int'>
>>> x = x + 1
>>> type(x)
<type 'long'>
>>> x
2147483648L

Python automatically converts ints to longs whenever it overflows.

Longs

Python's long datatype is completely different from the long type of C++'s, however. C++ longs are
usually 32 bits (depending on the compiler), but Python's longs are special integers that can have huge
values. Look at this code for a moment, continuing from earlier:

>>> x
2147483658L
>>> x = x * x * x * x * x * x
>>> x
98079717355732488831849278277916776199747448861145121344L

That's a long number! Maybe that's where the name came from. Here, try it again:

>>> x = x * x * x * x * x * x
>>> x
890174673224950989224344909339850580102383540379533865907262500120651
398303359571312924055596951783353543195046215952854460786132127336962
202329058079176489889535289368883996834478628657762318330221731693433
323501333648123820496784420013400992680124611633700193823222168845171
934806058016485705467286157362404278885621815714812637741056L

HOLY CRAP! I love Python. You literally don't have to worry about integer overflows, ever (unless
you try passing numbers like this back into C++). I could keep going, but the results could easily be
longer than an entire page. I continued playing around, and eventually got a number that overflowed
my command window's buffer (11 pages worth, or 25,531 digits), so I can't really say how large the
number was, except that it was larger than 25,531 digits.

Floats

Floats in Python are the same as standard 64-bit doubles in C++. Because of this, you can represent
numbers as large as 2.22507 x 10308, or numbers as small as 4.94066 x 10-324. Unfortunately, floats
do over/underflow. Here's an example of overflow:

>>> x = 10000000000.0
>>> x = x * x * x * x * x * x * x * x
>>> x

1.0000000000000001e+080
>>> x = x * x * x * x * x * x * x * x
>>> x
1.#INF

And underflow:

>>> x = 1.0
>>> x /= 1e200
>>> x
9.9999999999999998e-201
>>> x /= 1e200
>>> x
0.0

So be careful if you know you're dealing with floats.

Strings

Strings are very easy to use in Python, as shown by the following code:

>>> x = "HELLO!"
>>> x[3]
'L'
>>> x[:3]
'HEL'
>>> x[2:]
'LLO!'
>>> x[1:4]
'ELL'

As in C++, you can use the square-bracket operator to access individual characters, but you can use it
to do more than that. If you put a colon in front of an index, as in x[:3], you're telling it to return the
first three characters of the string. On the other hand, x[2:] tells it to return every character after
index 2 (assuming indexing starts at 0). Or you could combine the two, and use x[1:4] to return every
character from index 1 (inclusive) to index 4 (exclusive). Unfortunately, you can't use this method to
change the characters within a string. Instead, you need to re-assign the string.

For example, you can change the character at index 3 like this:

>>> x = "HELLO!"
>>> x = x[:3] + "g" + x[4:]
>>> x

'HELgO!'

It's a little inefficient, but it gets the job done after all. There's an important reason why inline
modification of strings isn't allowed. All Python objects are references. If you run this code

x = "Rutabagas"
y = x

that means that both x and y are pointing to the same string in memory. Modifying one would cause all
references to change, and that is a bad thing™. So, you should modify strings by re-assigning them.

Lists

I'm going to keep this section short, since lists aren't used that much when interfacing with the
BetterMUD, but you should be aware that they exist. Look at this example:

>>> x = [10, 20, 30, 15]
>>> x
[10, 20, 30, 15]
>>> type(x)
<type 'list'>

In this code snippet x is now a list, which you can use just like a string:

>>> x[2]
30
>>> x[:2]
[10, 20]
>>> x[2:]
[30, 15]
>>> x[1:3]
[20, 30]

It makes sense, doesn't it? A string is really just a list of characters.

But wait, there's more!

>>> x = [10, "pies", 3.1415926535897932384626433832795]
>>> x
[10, 'pies', 3.1415926535897931]

Lists can contain many different kinds of items; they don't have to be homogenous like C++ lists.
Using this knowledge, you can easily create tree-like structures:

>>> x = [[10,20], [30,40]]
>>> x
[[10, 20], [30, 40]]
>>> x[0]
[10, 20]
>>> x[1]
[30, 40]

Pretty cool, huh? The top list contains two lists!

Libraries

Python has a whole slew of built-in libraries called modules that you can use. A module is basically
any collection of code within its own .py file.

In order to use a module, you must first import it, like this:

import math

And once that's in, you can do things with the contents of the module:

>>> import math
>>> math
<module 'math' (built-in)>
>>> math.pi
3.1415926535897931
>>> math.e
2.7182818284590451
>>> math.pi + math.e
5.8598744820488378

Or call functions:

>>> math.cos(1)
0.54030230586813977
>>> math.cos(math.pi)

-1.0

There are built-in modules for almost any function you would want to do, ranging from threading, to
sockets (so you don't have to build a Socket Library that sucks from scratch), strings, checksums, e-
mail (send e-mail from Python! How cool!), compression, file access, random numbers, timers... ah,
you know what? Python has almost everythingtoo many modules to list.

Functions

Python supports user-defined functions, and it's really simple syntax. For example, here's a function
that computes the Cartesian length of a 3D vector:

import math
def length(x, y, z):
 return math.sqrt(x * x + y * y + z * z)

Now you can use it:

>>> x = length(2, 2, 1)
>>> x
3.0

It's that simple.

Python and Coding Standards

You have to be very careful when using Python. Most other languages use brackets of some sort to tell
the compiler about the beginning and end of functions and classes. Python doesn't do that. Instead,
Python relies on line indentation. This may seem a little weird at first, but you get used to it, and
eventually learn to like it, because it enforces a really clean way of displaying your code.

Look at the following code:

x = 10
y = 20
if x == 10:
 print x
 print y
x = 30

The Python language knows that the if-block starting on line 3 ends after print y, because the
indenting resets back to the level of the if-statement. If any of the lines inside the block is indented
differently, you'll get a syntax error (unless the line is within another nested-block structure).

Try typing this into Python:

if x == 10:
 print x
 print y

You're going to get something that looks like this:

>>> if x == 10:
... print x
... print y
 File "<stdin>", line 3
 print y
 ^
SyntaxError: invalid syntax

So you need to be very careful about your indenting habits. It works out for the best though. I find
myself admiring my Python code for how much better it looks than it would in C++ (blasphemy!).
Don't worry, I still love C++. Both languages have their advantages and disadvantages; syntax in C++
just happens to be a downside.

Classes

Python is a pseudo-object-oriented language. It supports objects and inheritance, and on the outside,
those features look and act like the C++ concepts of the same kind. Classes exist in Python not
because of a special effort on the part of the Python developers, but because the overall design of the
language happens to support the idea.

Creating a Class

For starters, let me show you a very simple class:

class foobar:
 x = 10

And now play around with it:

>>> y = foobar()
>>> y
<__main__.foobar instance at 0x008E7020>
>>> y.x
10
>>> y.x = 20
>>> y.x
20

The first line creates a new instance of foobar, and then you toy with its x variable.

Class Variables

What appears to be happening in the preceding code, isn't actually happening! I'll explain this in a
bit, but first let me show you something (assume you execute this code segment after the previous
code):

>>> foobar.x
10
>>> foobar.x = 30
>>> foobar.x
30
>>> y.x
20

What the heck is going on here?! Isn't foobar a class? How can you access foobar.x, and when you
change it, why does y.x remain at 20? This is madness! Madness I tell you!

Okay, it's not that difficult, actually. Look at Figure 17.3.

Figure 17.3. The process of creating an instance and changing the x variable for y
and foobar .

When you create a class in Python using the class keyword, it actually creates a new class object,
representing that class. When I typed this line into the class definition:

 x = 10

I was actually saying "this class object, foobar, will have x, an integer that is 10". I wasn't saying "all
instances of foobar will have x". So in the middle panel of Figure 17.3, when you say y.x = 20, you
are trying to assign 20 to the x variable of y, but y doesn't have that! So, when you execute the
statement, the program gives y a new variable named x, and sets it to 20.

This brings up a few questions. When you say y.x before you give y an x object, why does it return
foobar.x? The designers of Python wanted to give Python capabilities that are similar to C++'s
static variables, so when you do something like this

class foobar:
 x = 10

you're saying that foobar has a static variable named x, which is equal to 10. When you say y.x
(before you accidentally give y an x object), you're telling y to see if it has x. The instance sees that it
doesn't have x , so it determines which class it is an instance of, and if that class has an x, it is
returned. Look at this code (executed after you accidentally give y an x object):

>>> y.x
20
>>> y.__class__.x
30

Ah-ha! We found the x variable of foobar!

Instance Variables

The question remains, however: "How do I give instances their own variables?" There are many
ways to do that, and you've already seen one of them, by accidentally giving an instance a variable.
There are other ways though. The most common way is to provide the class with an __init__ function
(that's four underscores, by the waytwo in front, and two in back):

>>> class pie:
... def __init__(self):
... self.kind = "Apple"
...
>>> p = pie()
>>> p.kind
'Apple'

What the heck is this business of self?

Think of how C++ class functions work internallythey always pass a pointer to the actual class object
into the function. For example

foo.bar(10);

is actually interpreted by the compiler as this:

bar(&foo, 10);

C++ hides the compiler interpretation from you, but Python doesn't bother. The first parameter passed
into any Python class function is a reference to the class on which the function is being used.

In C++, you can do something like this:

void init() {
 kind = "Apple";
}

And the compiler automatically knows that you're referring this->kind. Python does it a little
differently, though. If the initialization function looked like this instead

def __init__(self):
 kind = "Apple"

Python would think you're creating a new local variable named kind, which would be discarded the
moment the function was finished. Later, when you're trying to determine the class of pie, you get an
error:

>>> class pie:
... def __init__(self):
... kind = "Apple"
...
>>> p = pie()
>>> p.kind
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: pie instance has no attribute 'kind'

Inheritance

The fact that Python classes can inherit from other classes makes your life easier in the long run. The
syntax for inheritance is relatively simple as well:

>>> class superpie(pie):
... def isawesome(self):
... return "YES!"
...
>>> s = superpie()
>>> s.isawesome()
'YES!'
>>> s.kind
'Apple'

This example assumes I'm using the non-broken version of the class pie. See how easy it is?

Exceptions

Python has an effective exception system built-in, much like that of C++. It uses classes as exceptions.
Here's a simple example of catching an exception:

>>> try:
... y = thisdoesntexist
... except:
... print "EXCEPTION!!!"
...
EXCEPTION!!!

The try block attempts to execute some code, and the except block catches all exceptions.

You can also do specific exception catching:

>>> try:
... y = thisdoesntexist
... except OverflowError:
... print "Overflow Error!"
... except NameError:
... print "Name Error!"
...
Name Error!

Or you can even grab an instance of the exception object that was thrown:

>>> try:
... y = thisdoesntexist
... except Exception, inst:
... print inst
...
name 'thisdoesntexist' is not defined

Whenever you print an exception instance, it prints a description of what was thrown.

You can also raise your own exceptions:

>>> try:
... raise Exception
... except:
... print "EXCEPTION THROWN!"
...
EXCEPTION THROWN

Packages

Python, by default, looks for .py files from within the directory in your global path. This can get
annoying, because you may need a hierarchy of Python scripts in order to have your programs
organized in an efficient manner. Because of this, Python has introduced the idea of packages.

Essentially, to create a package of related files, you need to place a bunch of Python scripts into a
subdirectory, and place an empty file named __init__.py into that directory.

For example, if I want to create a package named "data", I create a directory named "data", and put a
file named __init__.py into it. Once I do that, I can put other .py files such as characters.py in there,
and I'll be able to import that module from within Python like this:

NOTE

Python 2.3 even supports putting packages into .zip files.

import data.characters

You can recursively apply the same idea to even more subdirectories if you want to, giving you a
cool, flexible hierarchy system.

Integrating Python and C++

I hope that my little crash course on Python was enough to give you a general feel for the language. I
have to admit, I picked up basics of the language in about two to three days, since the concepts are all
very similar to those of C++ (and all other object-oriented imperative languages), so I doubt you'll
have any problems.

Now, on to the difficult partintegrating C++ and Python. The good news is that the Python language
was originally made in C, so that gives us a nice platform to start with.

NOTE

If you ever have a question about Python, there is great free documentation available at http://
www.python.org . As of this writing, there's a great tutorial to the lan guage here:
http://www.python.org/ doc/current/tut/tut.html .

The Python-C API is very easy to use, and is well documented as well. As of this writing, you can
access the documentation for the Python-C API at this address:
http://www.python.org/doc/current/api/api.html.

Demo 17.1Making An Interpreter

The first demo I want to show you is an example of how easy it is to integrate the Python interpreter
into your C++ program.

You can find this demo on the CD in the directory /Demos/Chapter17/Demo17-01/ on the CD. To
compile the demo, set up your compiler as described in Appendix A, which is also on the CD.

I'm going to spit all the code out at you at once, but I don't think you'll mind, since it's really simple:

#include <iostream>
#include <string>
#include "Python.h"

int main() {
 std::cout << "Welcome to SIMPLEPYTHON!!" << std::endl;
 std::cout << "Chapter 17, Demo 01 - MUD Game Programming" << std::endl;

 Py_Initialize(); // initialize python

 std::string str;
 std::getline(std::cin, str); // get each line
 while(str != "end") { // exit if you got "end"
 PyRun_SimpleString(const_cast<char*>(str.c_str()));

http://www.python.org/default.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/api/api.html

 std::getline(std::cin, str);
 }

 Py_Finalize(); // shut down python
 return 0;
}

The three calls to Python functions in the code are marked in bold. The first call initializes the Python
interpreter, the second tells it to execute a string, and the final call tells the Python interpreter to shut
down.

Figure 17.4 shows the SimplePython interpreter in action.

Figure 17.4. SimplePython in action.

When I first got this working, I had two thoughts:

1. WOW! THIS IS SO COOL!!

Hey, I can't believe I made this in less than two minutes!

See how easy it is to get Python code up and running in your programs?

NOTE

C++ std::string s cannot be con verted into char* pointers implicitly, so to accomplish that you
must call their c_str function. However, the function returns const char* s, and Python, for
some oddball reason, accepts only non- const char* s as parameters to the functions. So in order

to properly pass an std::string into the function, I need to cast away its const characteristics
first.

Demo 17.2Python Objects

That first example was quite simple, and really only concerned the execution of Python code from a
string. If you want to do anything more complex, you'll have to mess around with the internals of
Python.

Everything in the API is based on the idea of a Python Object, which is a structure that points to an
object that is being used within Python. This code

x = 10

creates a new Python object, entitled x, and it holds an integer value of 10. Creating a class creates a
new Python object that contains the definition of a class, and creating an instance of that class creates
yet another Python object.

Python objects are stored in a simple structure called PyObject. They are large and fairly complex,
but luckily, you should never have to deal with them, except to pass them to and from Python-C API
functions. Here is a simple example, which loads a file containing Python code:

PyObject* mod = PyImport_ImportModule("pythontest");

After this code has been called, mod should be pointing to a Python object that represents the module
pythontest, which was loaded from the file pythontest.py. Python automatically assumes modules end
with a .py suffix.

NOTE

Python modules can contain code that is outside functions or classes. This code is executed when
the module is first loaded, so the mo ment you load it up, THIS IS A TEST OF PYTHON!!!! should
be enthusiastically printed to your console window. Modules can also have variables, as shown
by the x = 10 line.

Python Test Module

Now, what can you do with this module? You can actually do anything you want. Let me show you
what's in the module first though:

print "THIS IS A TEST OF PYTHON!!!!"
x = 10

def testfunc():
 print "TEST FUNCTION!!"
def printfunc(arg):
 print arg
def returnstring():
 return "HELLO C++!!"

Running the Code from Python

Once you have that loaded, you can execute Python code:

PyRun_SimpleString("import pythontest\n"
 "pythontest.testfunc()\n");

This imports the module into the namespace of the PyRun_SimpleString function, and then calls its
testfunc function, which should print TEST FUNCTION!! to your console.

Running the Code from C++

Now that you can call stuff using a simple string, try the slightly more complex operation of calling it
directly from C++:

PyObject* result =
 PyObject_CallMethod(mod, "testfunc", null);

NOTE

It should be noted that since you're importing the function inside the call to PyRun_SimpleString,
you don't actually have to import the module in C using PyImport_ImportModule first. But since I
plan on using the module later on, I load it anyway.

This calls the test function from mod with no parameters. Since the function doesn't return anything

either, why the heck did I record the result? This is one of the little quirks of Python. Even if you
return nothing, the language internally returns the null object. Of course, if it's a null object, you can
just ignore it right?

Wrong. Everything in Python is reference counted, which means that the Python-C API tries to track
the number of places in the program that are referencing any given Python object. Whenever the
reference count drops to 0, the Python-C API knows that it is safe to delete the object. If you
accidentally still have it after it has been deleted, you're going to be accessing an invalid object, and
you'll be in big trouble.

The PyObject_ functions always return new references to Python objects, which means that the null
reference count of the object that was returned from this function increased. It is up to you to remove
one from its reference count like this:

Py_DECREF(result);
result = 0;

You're telling Python that you've finished pointing to that object, and that you won't be referencing it
anymore. Therefore it's a good idea to clear the pointer as well.

This can get tricky, so later I'll show you my Python wrapper that takes care of this stuff for you.

NOTE

For each function in the API, the Python-C API documentation lists references as new or
borrowed . Whenever you call a function that returns a borrowed reference, you're not
supposed to decrease its refer ence count at all. This can make managing objects somewhat
difficult, but luckily, there aren't many func tions that return borrowed refer ences. In fact, in
my Python wrapper, I never use any of those functions, so I can safely assume that all pointers
need to be dereferenced.

Calling Functions with Parameters

Now we can try something more complicated, calling a function with a parameter:

result = PyObject_CallMethod(mod, "printfunc", "s", "HELLO PYTHON!");
Py_DECREF(result);
result = 0;

result = PyObject_CallMethod(mod, "printfunc", "i", 42);
Py_DECREF(result);
result = 0;

This calls the printfunc function with a string, and then with an integer, which should print them both.

Getting Results

On the other side of the equation, you're going to need to extract return values from Python objects.
This is a relatively painless task to accomplish, because Python contains tons of built-in functions for
converting the basic types from objects. This time, we're going to call returnstring:

result = PyObject_CallMethod(mod, "returnstring", null);
std::string str = PyString_AsString(result);
std::cout << str << std::endl;
Py_DECREF(result);
result = 0;

The line in bold is the function that converts a Python object to a C++ char* object, which I then
promptly copy into a std::string.

You need to be careful when using the PyString_AsString function. It returns a char*, which is a
pointer, but Python still owns the buffer it points to. You shouldn't modify it at all or try to delete it. In
fact, the safest, sanest thing to do is to copy the contents of the buffer into a string of your own right
away, because Python may even modify the buffer later on, or deallocate it without telling you (how
rude!).

NOTE

The char* s of C are the devil. I have never seen a more evil invention in my life. Well maybe
the Oscar Meyer Weeniemobile, but I don't think that counts. Use std::string of C++ instead.

All the code in this section is compiled into Demo 17.2 on the CD, which you compile in the same
way as Demo 17.1. When you run it, it should produce output like this:

Python Test!
Chapter 17, Demo 02 - MUD Game Programming
THIS IS A TEST OF PYTHON!!!!
TEST FUNCTION!!
TEST FUNCTION!!
HELLO PYTHON!
42
HELLO C++!!

That's it for this demo.

BetterMUD's Python Library

I found that all those C-style function calls and the manual reference counting management were
extremely annoying parts of the API. Maybe it's just me, but I take routes that make my life easier. I've
always said that programming is the art of avoiding work. If you think about it, it makes sense. Why
would you waste your time coding 800 manual dereferences of Python objects, when you could write
a simple wrapper around them to automatically handle it for you?

You can find the code for my Python library in the directory /BetterMUD/BetterMUD/ scripts/python.

PythonObject Class

My version of a Python object is called PythonObject. It's a simple wrapper around a PyObject*, but
it uses constructors and destructors to automatically increment and decrement reference counts. You
can find this class inside the PythonHelpers.h and .cpp files.

Here is the class skeleton:

class PythonObject {
public:
 PythonObject(PyObject* p_object = 0);
 PythonObject(const PythonObject& p_object);
 ~PythonObject();

 PythonObject& operator=(const PythonObject& p_object);
 PythonObject& operator=(PyObject* p_object);

 PyObject* get() const;
 bool Has(const std::string& p_name) const;

 std::string GetNameOfClass();
 std::string GetName();
protected:
 PyObject* m_object;
};

Managing Reference Counts

The constructors are pretty simple; you can construct a PythonObject from either a pointer to a
PyObject, or a reference to another PythonObject class.

The first constructor that takes a PyObject* simply assigns the parameter to m_object. It doesn't do
anything else. It is designed this way because I am assuming that whenever you pass a PyObject* into
the first constructor, it assumes that you're passing in a new reference that is returned from a Python
function call.

On the other hand, if you construct an object from another object, the constructor is a little more
complex:

PythonObject(const PythonObject& p_object) :
 m_object(p_object.m_object) {
 Py_XINCREF(m_object);
}

The first thing this does is assign p_object's PyObject* to m_object. Once that is done, the function
increases its reference count by calling Py_INCREF. Why do I do this? If you're copying something over
from another PythonObject, that means you now have two PythonObjects, each with pointers to the
same PyObject*, so you need to tell Python that you're now pointing to the object from two places.

On the other hand, the reference count is decremented when the object is destructed:

~PythonObject() {
 Py_XDECREF(m_object);
}

There are also two operator=s, which operate along the same principles:

PythonObject& operator=(const PythonObject& p_object) {
 Py_XDECREF(m_object);
 m_object = p_object.m_object;
 Py_XINCREF(m_object);
 return *this;

}

PythonObject& operator=(PyObject* p_object) {
 Py_DECREF(m_object);
 m_object = p_object;
 return *this;
}

The difference with these functions (as opposed to the previous two) is that when they are called, the
PyObject* inside the class already exists and owns a reference count, so you can't simply overwrite
m_object with the new pointer. If you do that, Python thinks that you're using the previous object and
never deletes it, even after you've long forgotten it.

NOTE

Forgetting to dereference PyObject* s is a great way to introduce huge memory leaks into your

program. Amaze your friends, be the life of the party! Leak memory now!

Once the outdated objects are dereferenced, you can reassign the pointer, increasing the count if
you're copying it over from another PythonObject, or doing nothing if it's from a PyObject*.

Because of this behavior, you can now rewrite some lines from Demo 17.2:

{
PythonObject p;
p = PyObject_CallMethod(mod, "printfunc", "s", "HELLO PYTHON!");
p = PyObject_CallMethod(mod, "printfunc", "i", 42);
}

Now, when you issue the second call to PyObject_CallMethod, the operator= of the PythonObject
class automatically dereferences the return value of the outdated object. Whenever p goes out of
scope (which should be after the last curly bracket in the previous code), it automatically
dereferences its current object (which is the return value from the second call, in this example).

Not only is the code cleaner, but I shaved off two lines and eliminated a possible source of huge
errorsforgetting to dereference the return values. We're human, and we often forget things. So why
bother ourselves with remembering every little detail?

See how you can make your life easy? I love avoiding work.

PythonObject Helper Functions

The helper functions assist you in performing specific tasks. For example, I didn't include a
conversion operator that automatically converts a PythonObject into a PyObject*, because that would
wreak havoc with the constructors and produce lots of errors (sometimes C++ can be a pain).

Instead, I provide a get function, which simply returns the pointer it is holding. This way, you can
pass the object into Python calls. Here is a modified version of some code from Demo 17.2:

PythonObject p = PyObject_CallMethod(mod, "returnstring", null);
std::string str = PyString_AsString(p.get());
std::cout << str << std::endl;

Another helper is the Has function, which determines if a Python object contains an object (could be a
class, an instance, a variable; anything!) with a given name. Believe it or not, this is simple to
accomplish, because the API has a function like that built right in:

bool Has(const std::string& p_name) const {
 return (bool)PyObject_HasAttrString(
 m_object, const_cast<char*>(p_name.c_str()));
}

This checks to see if an object contains an object with the given name. Again, since Python doesn't use
const strings, I need to manually cast away its const characteristics. It's a bit ugly, but it gets the job
done.

Every Python object has a name, so it makes sense to design the code to make it easy to extract these
names. The two functions that receive names from objects are shown in this code snippet:

std::string PythonObject::GetName() {
 PythonObject name = PyObject_GetAttrString(m_object, "__name__");
 return StringFromPy(name);
}

std::string PythonObject::GetNameOfClass() {
 PythonObject cls = PyObject_GetAttrString(m_object, "__class__");
 PythonObject name = PyObject_GetAttrString(cls.get(), "__name__");
 return StringFromPy(name);
}

The first function should be fairly straightforward. Every Python object has an attribute called
__name__, which is a string representing its name. I extract that object from the current object and call
the custom StringFromPy function to convert it into a C++ std::string.

The second function is a little trickier; it's meant to be called on objects that are assumed to be
instances of a class. If you call it on an element that isn't an instance of a class, you may crash the
program. Two steps are required to get the class name of an instance.The first step is to get an object
representing the class, which you can do by grabbing the __class__ attribute. Then, you need to grab
the name of the class, by getting its __name__ attribute. Finally, you can return the value as a string.

Data Conversion Helpers

The bunch of helper functions I've included for converting types to and from Python automatically use
PythonObjects to manage the reference counting. I'm going to show you the implementation of one
extractor, and one inserter, and then just the names of the rest. Here are the implementations:

inline PythonObject LongToPy(long p_obj) {
 return PyInt_FromLong(p_obj);
}
inline long LongFromPy(const PythonObject& p_obj) {

 return PyInt_AsLong(p_obj.get());
}

They're just simple wrappers, utilizing my object class, so that there are no memory leaks. Here's a
listing of all the converters:

inline PythonObject IntToPy(int p_obj);
inline PythonObject LongToPy(long p_obj);
inline PythonObject EntityToPy(entityid p_obj);
inline PythonObject LongLongToPy(BasicLib::sint64 p_obj);
inline PythonObject DoubleToPy(double p_obj);
inline PythonObject FloatToPy(float p_obj);
inline PythonObject StringToPy(std::string p_obj);

inline long LongFromPy(const PythonObject& p_obj);
inline entityid EntityFromPy(const PythonObject& p_obj);
inline BasicLib::sint64 LongLongFromPy(const PythonObject& p_obj);
inline double DoubleFromPy(const PythonObject& p_obj);
inline std::string StringFromPy(const PythonObject& p_obj);

NOTE

I originally implemented these functions as specialized template functions, in which you could
write ToPython(blah), and the function would automatically convert whatever type you had
into a Python object, or FromPython<double>(obj), which does the opposite. Using templates
would have allowed you to write prettier code, but alas, it just wasn't in the cards. VC6 has
major problems with template special ization, and absolutely refused to make the template
functions work, so I had to resort to creating separate conversion functions for each type. VC6
is a worthless piece of junk, and you should upgrade to VC7 as soon as you can. This has been a
public service announcement. Thank you.

Automating Callable Objects

To make calling Python functions and classes easier, I created the concept of a PythonCallable class,
which essentially calls a method inside a Python object. This class is located within the
PythonScript.h and .cpp files.

The Class

Here is a listing of the class:

class PythonCallable {
public:
 PythonCallable();
 PythonCallable(PythonObject& p_object);

 PythonObject Call(std::string p_name);
 PythonObject Call(std::string p_name, const PythonObject& p_arg1);
 // *****SEE EXPLANATION*****

 bool Has(const std::string& p_name) const;
 PyObject* get() const { return m_module.get(); }
protected:
 PythonObject m_module;
};

This class actually has more functions than I've shown you. There are another five versions of the
Call function, each one taking another parameter. There are versions for 0, 1, 2, 3, 4, 5, and 6
PythonObject arguments. Let me make it extremely clear to you right now: this is an ugly hack .
However, it is necessary. The flexibility of Python allows passing dynamic datatypes and lists of
variable arguments, but when you do this you're obviously going to run into a problem when you try to
interface it with C++, a static language with fixed numbers of arguments.

While it is true that C supports variable argument lists, their support is not standard. There are tiny
little quirks that tend to screw things up at the most inconvenient times. Rather than mess with all that,
I chose to avoid it, and use this hack instead.

The other functions of this class simply wrap around a PythonObject.

Calling Python

Since I basically copy the same function over a few times (Call), I decided to make the process a
little less painful by creating a helper macro:

#define PYTHONCALL(CALL) \
 PythonObject r; \
 try{ r = CALL } \
 catch(...) { \
 PyErr_Print(); \
 throw Exception("Python Function Call Failed"); \
 } \
 if(r.get() == 0) { \
 PyErr_Print(); \
 throw Exception("Python Function Call Failed"); \
 } \
 return r;

This macro is designed to wrap around some Python API function calls that return a new PyObject*.
The macro creates a result object named r and then tries calling the function.

In case anything throws, the function catches it, prints out the Python error, and then rethrows the
exception inside a BetterMUD::Exception class.

If the function returns 0, it failed, and again, the Python error is printed, and an exception is thrown.

Finally, if all goes well, the result object is returned.

Here's the 1-argument version of Call (which passes 0 arguments into the Python function):

PythonObject PythonCallable::Call(std::string p_name) {
 PYTHONCALL(
 PyObject_CallMethodObjArgs(
 m_module.get(),
 StringToPy(p_name).get(),
 null);)
}

I use the PyObject_CallMethodObjArgs function, which requires a Python string of the name of the
object you are calling, and it has a variable argument list of all the objects you're passing in, which
must be terminated with null. Since the PYTHONCALL macro wraps around the call, a result object
named r is created and returned (or an exception is thrown if an error occurs).

For comparison, here is the two-argument version, which passes in one argument to the Python
function (changes from the original are in bold):

PythonObject PythonCallable::Call(
 std::string p_name,
 const PythonObject& p_arg1) {
 PYTHONCALL(
 PyObject_CallMethodObjArgs(
 m_module.get(),
 StringToPy(p_name).get(),
 p_arg1.get(),
 null);)
}

The other five versions are similar, but have more arguments. If you ever need more than six
arguments passed into a Python function, you can easily copy and paste more functions into the code.

Finally, here is how you would call a PythonCallable object named obj, with hypothetical function
names:

obj.Call("testfunction");
obj.Call("needsargument", IntToPy(42));
std::string str;
str = StringFromPy(obj.Call("returnsstring"));
str = StringFromPy(obj.Call("returnsstringneedsarg"), IntToPy(42));
obj.Call("needs2args", IntToPy(42), FloatToPy(3.14159));

See how easy that is? If you know the code is not going to return anything, you don't care about return
values, because the functions all deal with self-managing PythonObjects.

I love it when everything works out without worrying about all the minor details. Don't you?

Python Modules

I've abstracted Python modules into my own class, named (very originally, I might add) PythonModule.
The PythonModule class is somewhat complex, and that's for a very good reason: script reloading.

Problem With Reloading

To gain some experience with the reloading problem, open your Python interpreter again, and start
playing around with code like this:

>>> class reloaden:
... def funky(self):
... print "OLD!!!"
...
>>> a = reloaden()
>>> a.funky()
OLD!!!

Now that you've done that, "reload" the class, by redefining it:

>>> class reloaden:
... def funky(self):
... print "NEW!!!"
...
>>> b = reloaden()
>>> b.funky()
NEW!!!
>>> a.funky()
OLD!!!

So what happened here? You created a class named reloaden, and defined a function named funky,
which printed out OLD!!! After that, you created an instance of that class, and called its funky function.

Then, you "reloaded" the class, by typing in a new definition, created a new instance named b, and
called its funky function, which printed out NEW!!!, just as expected.

The last line, however, calls a.funky() again, which, instead of printing out NEW!!!, still prints out
OLD!!!!

Argh! What the heck! Yeah, those were my first reactions too. Well, this behavior actually makes
sense. When you loaded the first class object of reloaden (by typing the definition), you created a
class object called reloaden. When you typed a = reloaden(), you created a new instance object
that points to the class object.

When you redefined reloaden, the old reloaden had not been deleted; it was just hidden because a
still references it. But whenever you create new instances of reloaden, the new instances all point to
the new version, even though the old version still exists. In fact, the old version of reloaden exists
until a stops referencing it. At that point, Python knows that the old reloaden is longer in use, and
cleans up after itself.

Figure 17.5 illustrates the process from the code I showed you previously.

Figure 17.5. Reloading classes an illustration of the process of the previous example.

Not having automatic reloading can give you a major headache in a game situation. Imagine that you
have a bunch of characters using a logic module that has a flaw. You reload the module with a fixed
version, but there's a huge problem! Every instance that used the old module still points to the flawed
module! Only new instances of the module use the correct code. Stupid Python! (BLASPHEMY!)

NOTE

You can still create new instances of the old class, if you're so inclined. Try typing this into the

interpreter: c = a.__class__() . That copies the old class, even though you can no longer create
it by calling reloaden() . This is an example of one of the many things you can do with the
flexibility of Python.

Fixing the Problem

If you still have your interpreter open, you can easily fix a so that it uses the new version of reloaden.
Just type this:

>>> a.__class__ = reloaden
>>> a.funky()
NEW!!!

You just re-assigned the reloaden class object. The reference count of the old version of reloaden is
decreased by this operation, and whenever you call functions on a, it references the new version of
reloaden, instead of the old one.

You can easily do the same thing from within C++

PyObject_SetAttrString(instanceobj, "__class__", classobj);

This code assumes that instanceobj is a PyObject* pointing to an instance of the old class, and
classobj points to the new version of the class.

Unfortunately, when you reload a module, the module has no idea what instances it created
previously, so it must search out all these instances and tell them to reload themselves.

That is a difficult problem, but I've managed to solve it and automate it by using two classes. My
PythonModule class generates new PythonInstance objects, and whenever it generates one, it adds a
pointer to it into a list. Whenever you tell the module to reload, it goes through the whole list, and
tells every instance to reload itself with a new version of its class.

This has disadvantages, however. Whenever an instance is deleted, the instance must tell its module
that it no longer exists.

Figure 17.6 shows you how modules and instances form a simple tree, in which modules tell each
instance when it must be reloaded, and each instance tells its module when it no longer exists.

Figure 17.6. The simple layering structure of Python modules and instances.

Module Class Interface

The PythonModule class interface looks like this:

class PythonModule : public PythonCallable {
public:
 std::string Name() { return m_module.GetName(); }
 void Load(const std::string& p_module);
 void Reload(PYTHONRELOADMODE p_mode);

 PythonInstance* SpawnNew(const std::string p_str);
 void DeleteChild(PythonInstance* p_instance);

protected:
 typedef std::list<PythonInstance*> spawnlist;
 spawnlist m_spawns;
};

PythonModule objects are loaded by passing in a string to the Load function. If you want to

load a file named "testpython.py", you call Load("testpython"). In response, the Reload function
takes a mode in which you can reload. There may be times (however rare) when you want to reload a
module, but allow everyone to temporarily keep the old version of the script, and the function allows
you to specify if you want to do that. You can pass in two values: LEAVEEXISTING, and
RELOADFUNCTIONS. The first mode simply reloads the module and doesn't touch the instances at all. The
second mode goes through all the instances and updates their class objects.

If the module you loaded has a class named "pies", you can create an instance of that class by calling
SpawnNew("pies"). You should note that this returns a brand new PythonInstance*, and when you
finish using it, you should manually delete it (because the module won't).

The final function is the DeleteChild function, which PythonInstances call when they are destructed,

so that the module knows that it no longer has to update that instance.

Loading a Module

Loading modules is easy:

void PythonModule::Load(const std::string& p_module) {
 PythonObject p =
 PyImport_ImportModule(const_cast<char*>(p_module.c_str()));
 if(p.get() == 0)
 throw Exception("Couldn't load python module: " + p_module);

 m_module = p;
}

The code simply tries to load the module from disk, and throws an exception if it can't.

Spawning New Instances

Spawning new class instances is a more complex process, since many things can go wrong. Here's the
code:

PythonInstance* PythonModule::SpawnNew(const std::string p_str) {
 try {
 PythonObject c =
 PyObject_GetAttrString(
 m_module.get(),
 const_cast<char*>(p_str.c_str()));
 if(c.get() == 0)
 throw Exception("Could not find python class: " + p_str);

The previous code chunk tries to load a class object from the module (pies from my example
previously). Not being able to get that class object means that this module doesn't have a class with
that name, and it just throws.

 PythonObject i = PyInstance_New(c.get(), null, null);
 if(i.get() == 0)
 throw Exception("Could not create python class instance: " + p_str);

Now the code tries to create a new instance of that class using PyInstance_New. If the instance
couldn't be created, then it also throws:

 PythonInstance* mod = new PythonInstance(i, this);
 if(!mod)
 throw Exception("Error allocating memory for python module");
 m_spawns.push_back(mod);
 return mod;
 }

The previous code then creates a new PythonInstance object by passing in the PythonObject
representing the instance (i), as well as a pointer to this, the module that the instance was spawned
from. The new module is added to the list of instances, and the pointer to the brand new
PythonInstance class is returned.

 catch(Exception& e) { throw; }
 catch(...) // catch any extra errors we didn't grab before
 {
 PyErr_Print();
 throw Exception("Unknown error attempting to create class "
 "instance: " + p_str);
 }
}

Finally, the code catches and rethrows any exceptions (so that the next block of code can work), or
catches anything else that happened, prints out a Python error, and throws.

Reloading

Reloading is a simple affair:

void PythonModule::Reload(PYTHONRELOADMODE p_mode) {
 m_module = PyImport_ReloadModule(m_module.get());
 if(p_mode == LEAVEEXISTING)
 return;
 spawnlist::iterator itr = m_spawns.begin();
 while(itr != m_spawns.end()) {
 (*itr)->Reload();
 ++itr;
 }
}

The module is reloaded using PyImport_ReloadModule, and then (if the caller wishes) the function
loops through all its instances and reloads them.

Using a Module

You can use the module class quite easily. Since it inherits from PythonCallable, you can even use it
to call functions inside the module. Here is a hypothetical example of using the class on a module
named pies, which has a function named foobar, and a class named blarg:

PythonModule mod;
mod.Load("pies");
mod.Call("foobar");
PythonInstance* inst1 = mod.SpawnNew("blarg");
mod.Reload(LEAVEEXISTING);
PythonInstance* inst2 = mod.SpawnNew("blarg");
mod.Reload(RELOADFUNCTIONS);
delete inst1;
delete inst2;

The code loads a module named pies, and then calls its foobar function. It then creates a new instance
of class blarg and stores it in inst1. After that, the module is told to reload, but it keeps all the
existing instances and does not update them.

Then, the code spawns a new instance, inst2. At this point, both instances are pointing to different
classes, with inst1 as the old version of blarg, and inst2 as the new version of blarg.

NOTE

In fact, I've hidden the copy con structor and operator= for both the PythonInstance and
PythonModule class, to make absolutely sure that you never copy them to another loca tion, ever .
Copying them completely messes up the pointer hierarchy that they must have to reload
modules properly.

Finally, the code reloads the module again, this time reloading everything, so that both inst1 and
inst2 are pointing to the very newest version of blarg. In the last step, the code deletes both
instances; this is an important action, because the module, when spawning a new instance, actually
spawns a new C++ instance object, which you must delete, or face a memory leak.

I chose to do things this way because of the complex relationship between instances and modules. An
instance must point to its module, and a module points to its instances, so you can easily reload them
when needed. It's a bad idea to copy these objects, since copying them automatically changes their
location in memory.

Python Instances

The PythonInstance class also inherits from PythonCallable, so that you can call class functions on it

quite easily.

Class Skeleton

Here is the class skeleton:

class PythonInstance : public PythonCallable {
public:
 PythonInstance(
 PythonObject p_instance, // instance object
 PythonModule* p_parent); // pointer to parent

 ~PythonInstance();
 std::string Name();
 void Reload()
 void Load(std::istream& p_stream);
 void Save(std::ostream& p_stream);
protected:
 PythonModule* m_parent;
};

The class is simpler than a module, and represents a class instance. Instances have names, can be
reloaded, and can also be loaded and saved to disk. I discussed this idea in Chapter 13. All class
instances must have the ability to load and save themselves from streams, because they may have
extra data that should be retained (such as a command object that remembers the last time it was
executed). When the entity that owns the class is reloaded from disk from the BetterMUD, the data
associated with the Python module should be loaded.

Deleting the Instance

Whenever an instance is destructed, it must notify its parent that it no longer exists:

PythonInstance::~PythonInstance() {
 if(m_parent)
 m_parent->DeleteChild(this);
}

Reloading

Whenever an instance is told to reload from disk, it must overwrite its __class__ attribute. This isn't a
difficult task:

void PythonInstance::Reload() {
 std::string clsname = m_module.GetNameOfClass();
 PythonObject cls = PyObject_GetAttrString(
 m_parent->get(),
 const_cast<char*>(clsname.c_str()));

 if(cls.get() == 0)
 throw Exception("Could not find python class: " + clsname);

 PyObject_SetAttrString(m_module.get(), "__class__", cls.get());
}

The function first gets the name of the current class object of the instance (assuming it is loaded.
PythonInstance objects should not exist unless they have been loaded), and then it retrieves a pointer
to the Python class object and stores it into cls.

If cls doesn't exist, that means the class was probably deleted when the module was reloaded, and
that's no good. Therefore an exception is thrown.

The final step is to reset the __class__ attribute and make it point to the new class object.

Once this has been completed, the instance object points to a reloaded version of its class.

Disk Operations

As I mentioned earlier, all PythonInstance objects know how to write themselves out to streams.
This is required because instances may hold data that must be preserved.

The standard way of representing an instance is like this:

instancename
[DATA]
... data goes here ...
[/DATA]

Even if there is no data, the tags need to be there. This makes your datafiles look a little ugly, but
eventually, you should have a nice editor for the MUD, so that you can't see the ugliness.

NOTE

The stream format for all script objects in the BetterMUD requires that the [DATA] and [/DATA]
tags be on their own separate lines. I did this because of the way I pass streamed data into
Python, which is the topic I touch on next.

Loading from Streams

When a PythonInstance must be loaded from disk, whatever is loading it first reads its name (usually
the entity in charge of the script does this), and that entity creates the instance object. Once the object
has been created, the stream is passed into the PythonInstance class, so that it can suck out all the
data, and load it into itself. Here is the function:

void PythonInstance::Load(std::istream& p_stream) {
 std::string str;
 std::string temp;
 bool done = false;

 // read in the "[DATA] tag:
 std::getline(p_stream, temp);

 // loop until you hit "[/DATA]"
 while(!done) {
 std::getline(p_stream, temp);
 if(temp == "[/DATA]")
 done = true;
 else
 str += temp + "\n";
 }

 // send everything in between to the script
 Call("LoadScript", StringToPy(str));
}

If you're using just primitive objects such as strings and numbers, interfacing between Python and C++
is very easy. There is no easy way to pass a C++ iostream into Python however, so instead of
bothering with that, I've decided to use strings to pass streams.

The loading function plucks out the [DATA] tag from the stream using std::getline, which means that
the tag must be on a line of its own; everything else on that line is ignored and discarded.

After that, I load things line by line, and store them into str, until I find a [/DATA] tag. By the time the
loop finishes, everything between (but not including) the data tags is within str.

I used the std::getline function for a reason. If I just used the operator>> stream extractor, it would
eat up all the whitespace between every word inside the tags. Look at this hypothetical example file:

[DATA]
This string has long spaces
[/DATA]

If I extracted each word until I found [/DATA], I would end up with a string that contains This string

has long spaces, but there wouldn't actually be any long spaces, because the stream extractor
automatically discarded them! There may be times when the whitespace inside a data tag has meaning,
and I don't want to destroy that. So the function loads the data line by line, and str holds the
appropriate number of spaces between its words.

The final line of the function calls the script's LoadScript function, passing in the string as its
parameter. Your scripts should know what to do with this data.

Saving to Streams

Luckily, saving to streams is much easier:

void PythonInstance::Save(std::ostream& p_stream) {
 p_stream << "[DATA]\n";
 p_stream << StringFromPy(Call("SaveScript"));
 p_stream << "[/DATA]\n";
}

This simply saves the data tags, as well as the string returned from the Python objects' SaveScript
function. It is perfectly legal for the Python script to return ("") if you don't have any data.

NOTE

Please remember to return a string. If you don't return anything, the function returns the null
object, which can't be converted to a string, and your program crashes.

Python Databases

In Chapter 12, I told you about the PythonDatabase class, which is a special database class that loads
and stores Python scripts. A PythonDatabase is actually a simple class that wraps around a collection
of PythonModules. Here is the class skeleton:

class PythonDatabase {
public:
 PythonDatabase(const std::string& p_directory);
 ~PythonDatabase();
 void Load();
 void AddModule(const std::string& p_module);
 void Reload(const std::string& p_module, PYTHONRELOADMODE p_mode);
 PythonInstance* SpawnNew(const std::string p_str);

protected:
 void Load(const std::string& p_module);

 typedef std::list<PythonModule*> modules;
 modules m_modules;
 std::string m_directory;
};

The functions should immediately remind you of the PythonModule class. This class was designed to
enable you to separate your related scripts into many files, so that you don't have to shove them all
into the same .py file on disk, which can become rapidly disorganized.

Using a managed collection of modules, on the other hand, allows you to do a few things. You can
load completely new modules at any time, and you can reload specific modules whenever you want.

I'm not going to show you the Reload or the SpawnNew functions; they simply loop through every
module in m_modules until they find a module matching the requested name. Then they call the
requested function on the right module. I also won't show the destructor, which simply loops through
every module and deletes it.

Loading a Database

Loading the database from a directory is similar to the Database::LoadDirectory function I showed
you in Chapter 12. The names of all Python modules that you want loaded are stored in a manifest
file:

void PythonDatabase::Load() {
 std::string filename = m_directory + "manifest";
 std::ifstream manifest(filename.c_str(), std::ios::binary);
 manifest >> std::ws;
 while(manifest.good()) {
 std::string modulename;
 manifest >> modulename >> std::ws;
 Load(modulename);
 }
}

Nothing new here. Each module name is loaded from the manifest, and then the Load(std::string)
helper is called to add the module to the database.

Adding a Module

Adding a new module while the program is running is also a relatively simple task:

void PythonDatabase::AddModule(const std::string& p_module) {
 Load(p_module);

 std::string filename = m_directory + "manifest";
 std::ofstream manifest(
 filename.c_str(), std::ios::binary | std::ios::app);
 manifest << "\n" << p_module << "\n";
}

To load the module, the function invokes the Load helper again, and then it opens up the manifest file
in append mode, and writes the name of the new module.

Loading Modules

I've written a helper that loads modules by their names. It's a relatively simple process with a few
quirks here and there:

void PythonDatabase::Load(const std::string& p_module) {
 std::string modname = m_directory + p_module;

 // convert "/" or "\" to "." for proper module loading
 modname = BasicLib::SearchAndReplace(modname, "/", ".");
 modname = BasicLib::SearchAndReplace(modname, "\\", ".");

First I created the name of the module by adding the name of the directory to the name of the module
to be loaded. If you created this database with the directory data/logic/characters/, and you wanted
to load a module named "defaultplayerlogic", it would create the string data/logic/
characters/defaultplayerlogic.

The next step is to convert all slashes into dots, because Python loads modules based on dots.The
module name would convert to "data.logic.characters.defaultplayerlogic".

 PythonModule* mod = new PythonModule();
 if(!mod) throw Exception("Not enough memory to load python module");

The previous code creates a new module, and throws if it can't be created. Now here's the tricky part:

 try {
 mod->Load(modname);
 m_modules.push_back(mod);
 }
 catch(...) {
 delete mod;
 throw;
 }

}

You should try loading the module. Since you created mod using new, if the loading throws an
exception, you must be sure to delete the module if something throws, or else you're going to end up
with a memory leak.

If the loading goes fine, the new module is added to the list of modules.

BetterMUD Script Databases

The BetterMUD has three database classes that utilize the features of the PythonDatabase class.
You've seen them all used before: the CommandDatabase, the ConditionDatabase, and the
LogicDatabase. Luckily they inherit most of their functions from PythonDatabase, so you don't have to
implement many of the functions in them. In fact, they are so simple, that I'm not even going to waste
your time by showing them to you. They're boring and uninteresting, and I want to move on to showing
you how to expose C++ classes to Python.

Exposing C++ to Python

As I'm sure you saw with all the examples in this chapter, it's very easy to call Python from C++. It's
another thing altogether to expose C++ to Python, however.

Usually, when a programmer wants to expose something to Python from C++, he builds a DLL or SO
file that holds the C/C++ code, and then calls it from Python. You can find hundreds of tutorials that
describe how to do this.

It is rare, however, to find information on exposing C++ to Python, while at the same time, embedding
the Python interpreter into the program. So, here I come, to the rescue.

Trials and Tribulations

There are many ways you can expose C++ to Python. When I first started working on this idea, I had
heard about the C++ Boost library (http://www.boost.org), which has a module named boost::python.
This is an excellent library, even though it is still under construction.

I spent weeks integrating boost::python into the BetterMUD, making a really stable design that worked
perfectly. And then one day I decided to check to make sure it worked in VC6.

It doesn't. I slammed my head on the table a few times over this, believe me. Boost::python uses
templates heavily, and since VC6 has very awkward and incomplete template support, getting
boost::python to work in VC6 proved to be ultimately impossible. I ended up scrapping the entire
design, and I had to go back to square one!

Using boost::python on a real compiler actually works like a breeze. If you use VC7 or GCC, I urge
you to look into boost. It's really cool.

NOTE

If there's a moral to learn in this story, it's that VC6 is an evil, horrible, ancient compiler, and
you should upgrade to VC7 or the latest version GCC this very instant! GO GO GO!

Here, Take a SWIG

When I ultimately had to give up on boost, I had to find a replacement quickly. Luckily, the SWIG
library (available free at http://www.swig.org, and you can find it on the CD as well, in
/goodies/Libraries/SWIG) is easy to use.

http://www.boost.org/default.htm
http://www.swig.org/default.htm

Just install it and add your SWIG directory to your system's path environment variable (for example,
in Windows I had to add D:\Programming\SWIG-1.3.19\ to my PATH environment variable, by going
to Start->Settings->Control Panel->System->Advanced->Environment Variables).

Demo 17.3SWIGging It Down

To show you how simple SWIG is, I've created a simple Demo for you, Demo 17.3.

C++ Header

First, create a header containing the code Python is to call. I've put all this code inside SWIGME.h:

std::string SWIGFunction() {
 return "This has been brought to you by the letter C";
}

class SWIGClass {
public:
 SWIGClass(int value) : m_value(value) {}
 void PrintValue() { std::cout << "My Value is " << m_value << std::endl; }

protected:
 int m_value;
};

I've created a simple function that returns a string, and a simple class that holds and prints an integer
value.

SWIG Interface

Now I need to create a SWIG interface file, which I call SWIG.i. Interface files are a simple format
that SWIG uses to figure out what you want to call from Python:

/* File : SWIGME.i */
%module SWIGME

%include "std_string.i"

/* grab the original header file here */
%include "SWIGME.h"

The first part of the file declares that you want to create a Python module named SWIGME.

By default SWIG doesn't support std::string (since SWIG was originally a C tool, it really only

supports evil char*s), but recent versions of the library come with a file called std_string.i, which
makes SWIG use std::strings properly. Cool!

The final part of the code takes the contents of the SWIGME.h file and includes them into the interface
file.

Generating SWIGME

Now that you have a header and interface file, you can generate C++/Python code with SWIG. Open
up a console window, go into the Demo 17.3 directory, and type this:

swig -c++ -python SWIGME.i

Since you're going to be generating C++ code, you must use the -c++ flag, so that SWIG recognizes
classes properly. The -python flag means you're going to be interfacing the code with Python, and of
course you need to tell it about the interface file too.

Now that you've run the program, it should have generated two files for you: SWIGME.py, and
SWIGME_wrap.cxx.

The first file is a Python module that allows Python to know about your C++ code, and the second is a
C++ module that contains all the wrapper code for talking with Python.

NOTE

SWIG isn't just a Python tool. You can use SWIG to interface C/C++ with a whole bunch of
languages: TCL, Python, Perl, Guile, Java, Ruby, Mzscheme, PHP, Oclaml, C#, Chicken
Scheme, and some others. It's a cool utility.

Python Tester

Now I want to create a Python module that calls the C++ functions. I've put this into a file named
swiggy.py:

import SWIGME

s = SWIGME.SWIGFunction()
print "Result of SWIGME.SWIGFunction: " + s

print "Creating SWIGME.SWIGClass of 10:"
a = SWIGME.SWIGClass(10)
a.PrintValue()

print "Creating SWIGME.SWIGClass of 42:"
b = SWIGME.SWIGClass(42)
b.PrintValue()

This simply calls the C++ functions and classes as if they were Python functions and classes. It should
be executed the moment the module is loaded.

C++ Test Frame

The final step is to create the C++ test frame that will import the SWIG-generated Python-C++
module, and run module swiggy. This is file Demo17-03.cpp:

#include "SWIGME.h"
#include "SWIGME_wrap.cxx"

int main() {
 std::cout << "Exporting C++!" << std::endl;
 std::cout << "Chapter 17, Demo 03 - MUD Game Programming" << std::endl;

 Py_Initialize(); // initialize python

 // initialize SWIGME module:
 init_SWIGME();

 // Import and run swiggy:
 PyRun_SimpleString("import swiggy");

 Py_Finalize(); // shut down python

 return 0;
}

Even though SWIG generated a .cxx module file, I've #included it here like a header file, because the
module generated a function named init_SWIGME. I need to call this function to inform the interpreter
of the SWIGME module, but I don't know about that function, since it's not in a header. It exists only
within the .cxx file.

Now you can compile the demo like all the other Python demos, and run it! You should get output that
looks like this:

NOTE

Since you're treating the SWIGME_wrap.cxx file as a header, rather than a module, you need
to make sure you don't compile it like a module, but rather, keep treating it like a header file.

There are other ways around this limitation of course, but this is the easiest.

Exporting C++!
Chapter 17, Demo 03 - MUD Game Programming
Result of SWIGME.SWIGFunction: This has been brought to you by the letter C
Creating SWIGME.SWIGClass of 10:
My Value is 10
Creating SWIGME.SWIGClass of 42:
My Value is 42

Ta-da! Isn't that cool?

Exposing the BetterMUD to Python

Now, your Python logic modules, command modules, and condition modules all need to access parts
of the BetterMUD. The modules can't do much when they can't access parts of the BetterMUD, so they
wouldn't be of much use without this ability.

This is the main reason behind the accessors that I showed you in Chapter 13. The accessor classes
are used as an interface between Python and C++.

For example, if you expose accessors to Python, you can do stuff like this:

import BetterMUD
c = BetterMUD.character(20)
c.SetName("Ron")
c.SetAttribute("intelligence", 500) // look! I'm smart!

Isn't that cool? You're calling C++ code from Python! You're letting your scripts access any
information they need to work better.

Game Wrapper

To give you access to the core game module, I've created a wrapper for the Game class that I showed
you in Chapter 15. The wrapper itself is stored in the /BetterMUD/accessors/ GameAccessor.h and
.cpp files. I'm not going to bother showing you the implementation, since it's just a simple wrapper
around the Game class, and you already know what it can do from Chapter 15.

Here, however, is a sample of Python code that would use the class:

import BetterMUD
m = BetterMUD.GameWrap()
m.AddActionAbsolute(0, "announce", 0, 0, 0, 0, "Python Really Rules")

This code essentially calls the Game module's AddActionAbsolute function, to add an immediate
announcement to the game, stating that Python rules, just in case someone forgot that it does.

Taking Another SWIG

All the other wrappers in the game are accessor wrappers. Rather than having my BetterMUD.i SWIG
interface file include all the accessor headers, however, I've decided to make your life a little bit
more difficult.

I've separated all SWIG-related files into their own directory: /BetterMUD/scripts/python/SWIG.

Within this directory are two files BetterMUD.i, and SWIGHeaders.h. These files exist before you
generate any interfaces.

The BetterMUD.i file simply looks like this:

/* File : BetterMUD.i */
%module BetterMUD

%include "std_string.i"

/* grab the original header file here */
%include "SWIGHeaders.h"

The SWIGHeaders file, on the other hand, contains mainly code that has been copy-and-pasted from
the accessor classes. Here's a sample:

class character
{
public:
 character(entityid p_id);
 ~character();

 std::string Name();
 entityid ID();
 entityid Room();
 entityid Region();

I'm going to stop right there, since you've already seen all this stuff before.

The reason I copied and pasted the interfaces into the SWIGHeaders file is that there will be times
when you don't want Python accessing some of the features of the accessors. If you don't want Python
to access a particular function of an accessor, you need only remove that function from the
SWIGHeaders.h file and regenerate it.

Generation Process

To generate the files needed to interface BetterMUD with Python, follow this process:

1. Open a console window.

Go into /BetterMUD/scripts/python/SWIG.

Type swig -c++ -python BetterMUD.i.

Copy the file BetterMUD_wrap.cxx into this directory: /BetterMUD/scripts/python.

Copy the file BetterMUD.py into the main /BetterMUD directory.

That's almost all you need to do. There's one little quirk, however, which I cover in the next section.

Why the Long Face?

Microsoft's compilers VC6 and VC7.0 don't support the long long datatype (VC7.1 does though), as I
showed you in Chapter 4. Instead, you need to use the __int64 type as a replacement.

To prevent confusion, I typedef'ed around it, and created a BasicLib::sint64 type to use instead.
Unfortunately, SWIG doesn't know what a BasicLib::sint64 is, and it tries to treat it as a new type
that needs its own special Python wrapper. Since it's just a normal 64 bit integer, it doesn't need this.

So, in the SWIGHeaders file, whenever I have a BasicLib::sint64 type, I change it to "long long".
For example, this line

 BasicLib::sint64 GetTime();

becomes

 long long GetTime();

Then, SWIG generates the BetterMUD_wrap.cxx file "properly".

You must take one more step, however. When you try compiling the wrapper module in VC6 or 7.0,
you'll get compiler errors (long followed by long is illegal), so you need to find every place in
the BetterMUD_wrap.cxx file that has long long, and replace it with BasicLing::sint64.

Then you can compile it properly, at last.

Summary

Interfacing two completely different languages is an interesting, fun topic. You can do much more with
Python and C combined, especially if you get the boost::python library working. The BetterMUD
requires only a small subset of all the things that you can possibly do, however.

I hope I've given you a good introduction to Python, and I doubt you'll have much trouble with it, since
it's incredibly simple. If you're ever stuck, the Python website has a great tutorial. Or you can look at
all the scripts I'm including with the BetterMUD for examples of how things are done.

And now, we're off the next chapter!

Chapter 18. Making the Game
The previous seven chapters were concerned with coding the C++ core of the BetterMUD. In
Chapter 11, I told you about how the C++ core is the physical part of the gamehow the core manages
entities, how entities move around, and how entities are saved to disk.

So far, you've got thousands of lines of code, but no game! The problem with designing a system like
the BetterMUD is that you can't put it together in bits and piecesat least not at first. Once the physical
game core is up and running, however, you can go nuts and start adding scripts left and right.

This chapter is designed primarily to show you how to create basic scripts to make your physical
engine into an actual game. I'm not going to go bananas with scripts; in fact the version of the
BetterMUD that will be on the CD is going to be just a tiny bit more advanced than the SimpleMUD.

However, with all of the flexibility of the BetterMUD at your fingertips, you can immediately start
playing around with scripts.

I would like to invite you again to join my own MUD server at http://dune.net and play around (if I
change servers, you can find out about it on my website, http://www.ronpenton.net. I'll be
continuously adding scripts and updates, so if you're interested in seeing some of the really cool
things that can be done, I'll have my own scripts available to download.

In this chapter, you will learn to create:

A login script to manage new characters

A base Python script class for your modules to use

Command scripts

Logic scripts

A script to refuse taking dangerous items

A script to manage encumbrance

A script to manage arming weapons

A script to manage currency and merchants

A script to perform combat between characters

http://dune.net/default.htm
http://www.ronpenton.net/default.htm

AI scripts for non-player characters

Login Script

I mentioned in Chapter 16 that the login process accesses a Python script that issued to perform
various login tasks, such as printing the races you can choose from and initializing your character
whenever you create a new one.

This script is located in the /data/logon/logon.py file.

Listing Available Races

Whenever you want to create a new character, the game's logon module contacts the logon script and
asks for a string representing the races your character can participate in.

Here's the function for requesting races:

def listchars():
 s = "<#FFFFFF>--\r\n"
 s += "<#00FF00> Please Choose a Race For Your Character:\r\n"
 s += "<#FFFFFF>--\r\n"
 s += "<$reset> 0 - Go Back\r\n"
 s += "<$reset> 1 - Human\r\n"
 s += "<$reset> 2 - Elf\r\n"
 s += "<#FFFFFF>--\r\n"
 s += "<#FFFFFF> Enter Choice: <$reset>"
 return s

After the options are printed to the user, he can choose one, and the choice is sent to the logon script
again, this time to the following function:

def gettemplateid(option):
 if option == 1: return 1
 if option == 2: return 2
 return 0

This function takes an option number and translates it into the template ID of the new player's
character. Incidentally, I have the database set up right now so that options 1-2 correspond to template
IDs 12, but that's a coincidence. Later on, you may want to make an option 3 that creates characters
with a template ID of 100 or something like that.

Setting Up the New Character

Once the logon module creates your new character, it sends the ID of that new character into the logon
script once morethis time to give the character all the commands he needs, and to put him in the right

room. Here's a condensed version of the function:

def setup(id):
 c = BetterMUD.character(id)
 a = BetterMUD.account(c.GetAccount())
 l = a.AccessLevel();

 c.SetRoom(1)
 c.SetRegion(1)
 if(l >= 0):
 c.AddCommand("north")
... <SNIP> ...
 c.AddCommand("say")

 if(l >= 2):
 c.AddCommand("kick")
 c.AddCommand("announce")

 if(l >= 3):
 c.AddCommand("shutdown")
... <SNIP> ...
 c.AddCommand("destroyitem")

The script sets the room and region of the character and then assigns commands based on your
account's access level. You can do whatever else you want here. It's up to you. That's the beauty of
scripts.

Python Script Base Class

Almost all Python scripts called from BetterMUD (the command and logic scripts) have similar
features. They have names, they can be saved to and from files, and they are always initialized with
the ID of the entity they are attached to.

Because all scripts share similar features, it makes a lot of sense to make a base class that you can use
for all Python scripts.

This class is stored in the /data/bettermudscript.py file:

class bettermudscript:
 # Initialize the script with an ID
 def Init(self, id):
 self.me = id
 self.mud = BetterMUD.GameWrap()
 self.ScriptInit()

 def ScriptInit(self):
 pass

 def Name(self):
 return self.name

 def LoadScript(self, s):
 pass

 def SaveScript(self):
 return ""

The Init function defines two variables: me, the ID of the current entity, and mud, a GameWrap object
that allows you to access the Game module of BetterMUD. After that, Init calls ScriptInit.

When making scripts of your own, you should never create your own Init function; instead, you need
to do all of your initialization in the ScriptInit function, which is actually empty here (the pass
keyword tells Python that you don't want the function to do anything). So when you create your own
script class, you just define a ScriptInit function and do your initializing there. The
bettermudscript.Init function automatically calls your new init function. This acts like a pure
virtual function in C++.

The Name function returns the name variable, which hasn't been defined at all. You'll see how this
works when I show you an actual script.

Finally, the LoadScript and SaveScript functions assume that they don't have to load or save any data;
they simply ignore what you pass in to them, and return an empty string when you ask it for save-data.

Command Scripts

Now you can join the game, but you can't perform any actions; there are no command scripts! Well,
that is remedied easily enough.

Command Class

All commands in the BetterMUD inherit from a base Command class, which provides a few functions to
make your life a little easier. Here's the class, which can be found in /data/
commands/PythonCommand.py:

class Command(data.bettermudscript.bettermudscript):

 # Usage
 def Usage(self):
 return self.usage

 # description
 def Description(self):
 return self.description

 # the standard call method.
 def Execute(self, args):
 try:
 self.Run(args)
 except UsageError:
 me = BetterMUD.character(self.me)
 me.DoAction("error", 0, 0, 0, 0, "Usage: " + self.Usage())
 except TargetError, e:
 me = BetterMUD.character(self.me)
 me.DoAction("error", 0, 0, 0, 0, "Cannot find: " + e.value)

In addition to names, commands have usage and description strings (as you saw in Chapter 14). So
when asked, the Command class returns usage and description strings (they don't exist in this class, but
if you inherit from Command class and define strings on your own, the functions still work).

The Execute function is called from C++ whenever you want to execute a command in the game. To
make things easier, I've inserted a try/catch block into the code, and it looks for UsageError and
TargetError exceptions.

The Execute function tries calling Run with the arguments given, and if that throws a UsageError
exception, the command gets an accessor to your character, and prints out an error, telling you how to
use the command. This is for cases in which you type go without specifying where you would like to
go, or something similar.

Since so many commands depend on finding an item to act on (get <item>, attack <charac- ter>,
and so on), it's fairly common that the designated targets cannot be found. Rather than hardcode You

cannot find: <blah> into each and every command, I've enabled commands to throw a TargetError
exception if you try to operate on a target that doesn't exist.

Finding Targets

To make things even easier, I've made a special FindTarget function that attempts to find a target
contained by an entity and returns the ID if it's found, or throws a TargetError if it can't be found.
Here's the code:

def FindTarget(seekf, validf, getf, name):
 seekf(name)
 if not validf(): raise TargetError(name)
 return getf()

The first three parameters are functions; seekf is a function that searches for an entity, validf checks
if the result of the seek was valid, and getf returns the ID of the item that seekf found. This might
seem confusing at first, so let me show you how to use it:

me = BetterMUD.character(10)
item = FindTarget(me.SeekItem, me.IsValidItem, me.CurrentItem, "sword")

This code first gets a character accessor, pointing to character 10 (whoever that may be), and then
gets the ID of an item with the name sword. If there is no item named sword, an exception is thrown,
and this code doesn't bother catching it. Essentially, when passed into FindTarget, the code is
transformed into the following snippet:

 me.SeekItem("sword")
 if not me.IsValidItem(): raise TargetError("sword")
 item = me.CurrentItem()

You can easily perform the same trick on a room, when searching for either items or characters within
that room, or a region, or whatever else you may need!

assume r is a room, reg is a region
i = FindTarget(r.SeekItem, r.IsValidItem, r.CurrentItem, "sword")
c = FindTarget(r.SeekCharacter, r.IsValidCharacter, r.CurrentCharacter,
 "mithrandir")
j = FindTarget(reg.SeekItem, reg.IsValidItem, reg.CurrentItem, "pie")

After those lines are successfully executed, i has the ID of the first item that matched sword inside the
room, c has the ID of the first person with the name mithrandir, and j has the ID of the first item in
the region named pie. If any of those fail, an exception is thrown, and it's up to someone else to
handle it.

Movement Commands

Once you enter the game, you really can't do anything but use the built-in C++ commands that I've
given you, so it's time to add some Python commands.

At this point, the only movement command available to you is the go command. You type go north or
go south if you want to go anywhere, and that can be annoying, so as a simple test of commands, I've
made additional directional commands. Here's one of them:

class north(PythonCommand.Command):
 name = "north"
 usage = "\"north\""
 description = "Attempts to move north"
 def Run(self, args):
 c = BetterMUD.character(self.me)
 self.mud.DoAction("command", c.ID(), 0, 0, 0, "/go north")

This is the north command, which acts as an alias to go north. You can see that the name, usage, and
description are all defined first, and then the Run function grabs an accessor to your character, and
commands him to /go north.

Pretty cool, huh? I've included commands for all the common directions: north, south, east, west, up,
down, northeast, northwest, southeast, and southwest. I've even included aliases of aliases, which
are nw, ne, se, and sw. Here's an example:

class ne(northeast):
 name = "ne"
 usage = "\"ne\""

This simply inherits from class northeast, and redefines its name and usage. This class was created
so that you can simply type ne instead of northeast to move northeast in the game.

In this particular case, you can't rely on partial matching to match ne with northeast, because the
partial string ne doesn't exist in northeast. If you typed no, the game would think you're going north,
and not northeast; the smallest string you could type to make the code think you want to go northeast is
northe, which isn't exactly a shortcut. So, to fix this, I just created a brand new command named ne.

Simple Commands

Now that you can freely move around, it's a good idea to create commands that modify the physical
world. For this, I've implemented the get, drop and give command objects. Here's the get command:

class get(PythonCommand.Command):
 name = "get"
 usage = "\"get <|quantity> <item>\""
 description = "This makes your character attempt to pick up an item"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError
 me = BetterMUD.character(self.me)
 r = BetterMUD.room(me.Room())

The code if not args checks to see if any arguments were passed into the function; if not, the
function raises a UsageError, which causes the command to print out Usage: get <|quan- tity>
<item> to the player. The game doesn't know how to get items if you don't give them a name. The
game retrieves accessors to your character (me), and to the room (r).

The usage string for this command is get <|quantity> <item>. The bar in front of quantity means
that it's an optional argument; it applies only to quantity items. If there's a sword on the ground, a
player could type get sword, or if there is a pile of coins, he could type get 10 coins. If a player
wants to get the entire pile (he's greedy!) he would type get coins. The next code segment tries to
figure out if a player is trying to get a quantity of items or not:

 quantity = 0
 item = args

 if string.digits.find(args[0]) != -1:

The string.digits string is a special built-in string in Python which contains the characters
0123456789. I search that string to see if the first character is a digit.

If a player is getting a quantity, the game extracts that quantity from the arguments using the split
function. I've designed the split function so that it splits the string into a list of two strings, one
containing the first word, and the other containing the rest of the string:

 # first letter is a digit, so get quantity
 split = args.split(None, 1)

So args was 10 gold coins, split[0] will be 10, and split[1] will be gold coins. The next part
converts the quantity into an integer:

 try:
 quantity = int(split[0])
 item = split[1]
 except:
 # do nothing
 pass

This could fail, however. If you try converting something like 1blah into an integer, an exception is
thrown. If that happens, the function catches the exception, and just nixes the idea of getting a quantity;
quantity is left at 0, and item is left as it was.

If the conversion was successful, the function tries to find the item:

 i = BetterMUD.item(FindTarget(r.SeekItem, r.IsValidItem,
 r.CurrentItem, item))

If the item is valid, an accessor to the item is retrieved; I need to do a little work on it however. If the
quantity value is 0, yet the item in question is an actual quantity object, you want the function to get
the entire quantity. So that's what it does:

 if i.IsQuantity() and quantity == 0:
 quantity = i.GetQuantity()
 self.mud.DoAction("attemptgetitem", me.ID(), r.CurrentItem(),
 quantity, 0, "")

Finally, the item is retrieved, or an error is printed if the item wasn't found.

Dropping an item is almost identical; you need only search the character's inventory for the item to
drop (instead of searching the room for an item), and tell the game that you dropped an item.

Giving an item away is slightly more complex, but that's because it must find a player to deliver an
item, and then find the item to give to that player. Overall, the code isn't that much different from
either getting or dropping an item, so I'm not going to show it here.

All three of these command modules can be found in the /data/commands/ usercommands.py script
file.

Logic Scripts

Logic scripts are the real meat behind the game and can be used to accomplish anything you put your
mind to.

Can't Get No Satisfaction

There will be times in the game when you want an item to exist, but you want it to be impossible for a
character to pick up and carry that item. You could implement some kind of a weight system, and give
the item an incredibly large weight value, but that doesn't make it impossible to pick up. There's
always a chance someone could gather enough strength to lift it.

For example, a sorcerer could cast a magic "bind" spell on an item, so that it cannot be lifted until
someone removes the spell. For casting the spell, you can create a cantget logic module.

When I started writing this logic module, I wasn't quite prepared for how simple this would be.
Observe:

class cantget(data.logics.logic.logic):
 def Run(self, action, arg1, arg2, arg3, arg4, data):
 if action == "cangetitem":
 c = BetterMUD.character(arg1)
 me = BetterMUD.item(arg2)
 self.mud.AddActionAbsolute(0, "vision", c.Room(), 0, 0, 0,
 c.Name() + " almost has a hernia, trying to pull " +
 me.Name() + " out of the ground!")
 return 1

Whenever an item with this logic module gets a query cangetitem, it simply prints a short error
message (to the room, so that everyone sees the character trying to pick up an item that is too big), and
returns 1, signifying that it won't allow the action.

That's it! Now, when creating your item templates, all you need to do is this:

[ID] 1
[NAME] Fountain
[DESCRIPTION] This is a large fountain, made of granite and marble.
[ISQUANTITY] 0
[QUANTITY] 1
[DATABANK]
[/DATABANK]
[LOGICS]
cantget
[/LOGICS]

Pay attention to the last three lines that state that the fountain item template will have the cantget logic
module. Now, in the game, whenever someone tries getting a fountain, something like this happens:

Mithrandir almost has a hernia, trying to pull Fountain out of the ground!

Ta-da! Let's move on to a more complex module.

Receiving Items

Since objects can be given scripts, you're inevitably going to have "malicious" itemsitems that may
injure or attack people when they are picked up. Using your imagination, I'm sure you can think of all
kinds of nasty items; hidden bombs that eventually blow up, magical artifacts that drain your health;
cursed objects that you can't drop, but weigh you down, and so on.

The BetterMUD allows players to give items to other players, and this is dangerous, since the game
by default lets characters accept the items. Any joker can go up to a player and hand him a dangerous
object, and that can make for extremely nasty game playno fun. In fact, if you allow this to happen, I
assure you that one of two things will happen: no one will play the game anymore, or you'll end up
removing all dangerous items, which entails removing a very interesting part of the game completely.

The "Can't Receive Items" Module

To ensure the game remains fun to play, I've come up with a way to reject receiving items, using the
cantreceiveitems logic module. Here's the module:

class cantreceiveitems(data.logics.logic.logic):
 def Run(self, action, arg1, arg2, arg3, arg4, data):
 if action == "canreceiveitem":
 g = BetterMUD.character(arg1)
 if not g.IsPlayer(): return 0
 i = BetterMUD.item(arg3)
 me = BetterMUD.character(self.me)
 g.DoAction("error", 0, 0, 0, 0, "You can't give " +
 me.Name() + "" + i.Name() + " but you have
 item receiving turned off. Type \"/receive on\"
 to turn receiving back on.")
 me.DoAction("error", 0, 0, 0, 0, g.Name() +
 " tried to give you " + i.Name() +
 " but you have item receiving turned off.
 Type \"/receive on\" to turn receiving back on.")
 return 1

When the game sends an entity an action event, that event is passed into every logic module that entity
has. This module for example, responds to the canreceiveitem event, which is an event that the game
poses to a character when a character is trying to give another character an item. When this module
gets an action event or query, the parameters correspond to those that I defined in Chapter 14. For the
canreceiveitem query, action will be canreceiveitem, arg1 will be the ID of the character trying to
give the item, arg2 will be the ID of the character receiving the item and arg3 will be the ID of the
item being given. The fourth argument and the data parameter are unused.

NOTE

I've made the script automatically accept items given by non-player characters (NPCs). This is
a personal taste issue; in the game, I plan on having NPCs give items to players as part of quest
scripts, and I don't want scripts being blocked because the player is being cautious. Gener ally
speaking, in my version of the game I don't plan on making NPCs give players evil objects.

If the module sees that the person who is giving an item isn't a player, the module returns 0, allowing
the transfer to take place. If the giver is a player though, the module sends error messages to both
people, saying that the receiver doesn't want to receive items, and then returns 1, signifying failure.

You can find the code for this in the /data/ logics/characters/itemstuff.py script file.

NOTE

Don't think that this is the only way to solve the problem. In fact, you may want to make a more
complex "opt-in" version of this module, in which you can give the module the names of people
who are "trusted" and should be allowed to freely give you items. So if you have friends who
you trust, you can make a special command to add them to your "friends" list.

The Receive Command

Of course, you're going to need a command that adds and removes the cantreceiveitems logic from
characters, so for this purpose, I've created the receive command. You'll be able to use it in the game
to toggle whether you want to receive items or not. Here's the code:

class receive(PythonCommand.Command):
 name = "receive"
 usage = "\"receive <on|off>\""
 description = "Turns your item receiving mode on or off"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError
 if args != "on" and args != "off": raise PythonCommand.UsageError

 me = BetterMUD.character(self.me)
 if args == "on":
 if me.HasLogic("cantreceiveitems"):
 me.DelLogic("cantreceiveitems")
 me.DoAction("announce", 0, 0, 0, 0,
 "Receiving mode is now ON")
 else:
 me.DoAction("error", 0, 0, 0, 0,
 "You are already in receiving mode!")
 else:
 if not me.HasLogic("cantreceiveitems"):
 me.AddLogic("cantreceiveitems")
 me.DoAction("announce", 0, 0, 0, 0,
 "Receiving mode is now OFF")
 else:
 me.DoAction("error", 0, 0, 0, 0,
 "You are already in non-receiving mode!")

The first two lines of the Run function check to ensure the arguments are valid; you must type on or off
after the receive command; everything else isn't recognized, and throws a UsageError exception.

Once you get the mode, the user is retrieved from the database, and the command adds or removes
your cantreceiveitems module, or gives you an error if you try setting the same mode that you're
already in.

Analysis

Right away, you should be able to see the benefits of having a logical system in BetterMUD. In
SimpleMUD, something like this would have been next-to-impossible to implement without first
taking down the entire MUD, patching in the code, recompiling, and then hoping it works. Oh, but it
gets better. In the SimpleMUD, if you had hardwired this into the game, every character would need a
Boolean specifically asking, "Can this player receive items?"

Now, imagine upgrading that system to an "opt-in" system, as I mentioned before. To do this, your
characters must be able to store lists of people who are your friends! That means you need to change
the physical layout of your files again, and add lists of characters to each itemnot a good idea.

But in the BetterMUD, that ability already exists! If the cantreceiveitems module would store a list
of your friends, all it needs to do is define its LoadScript and SaveScript functions so that whenever
they are invoked, the module simply writes out the list of players in the opt-in list. On disk it would
look something like this (this is all hypothetical):

cantreceive
[DATA]
10 40 32 86
[/DATA]

The numbers in the data block would be the IDs of users from whom the player wants to accept stuff.

I think it's time to move on to something a bit more complex.

Encumbrance

At this point, the BetterMUD allows characters to carry an infinite number of items. Obviously this is
not the greatest of ideas, since it would allow your characters to stash as much loot as they wanted,
and run around doing whatever they want. An important part of MUD game dynamics is imposing
limits on your players and making them work to overcome problems.

In this case, encumbrance is a problem. Players should be allowed to carry only a certain number of
items, and this number can be increased gradually through the game, as part of a rewards system.

NOTE

I wouldn't recommend establishing the ability to limit the actual number of items carried.
Consider this. Quantity objects allow you to carry a whole bunch of a similar kind of item. For
example, 100 coins should naturally weigh about 100 times more than 1 coin. But a quantity item
is considered just one item. So if you limit the number of items a person can hold to 20, he can
hold up to 2 billion coins (a completely unrealistic number in terms of weight), and 19 other
items as well. A weight system is far more realistic, however, since it takes into account that
you can carry many more small items than large items.

New Attributes

To implement this reward system, you need to add two attributes to your characters encumbrance and
max encumbrance. These values represent the current weight of all the items in your inventory, and the
maximum weight that you can carry.

Adding the Attributes

Of course, if you've been running the game for any length of time, and you just decided to add
encumbrance to the game, you may run into a snag. Your items don't have weights, and your characters
don't have encumbrance values. It's easy enough to add weights to your item templates. Just go into the
template files and add the attribute to their databanks. Here's an example of two updated item entries:

[ID] 2

[NAME] Pie
[DESCRIPTION] A BIG <#FFFF00>CUSTARD PIE<$reset>
[ISQUANTITY] 0
[QUANTITY] 1
[DATABANK]
weight 500
[/DATABANK]
[LOGICS]
[/LOGICS]

[ID] 5
[NAME] Pile of <#> Diamonds
[DESCRIPTION] A pile of shimmering Diamonds
[ISQUANTITY] 1
[QUANTITY] 1
[DATABANK]
weight 1
[/DATABANK]
[LOGICS]
[/LOGICS]

So what do these weight values mean? It doesn't matter; it's completely arbitrary in the gamethe
meanings of the values are up to you. You could use a simple system, in which each number is a
pound, or a kilogram, or whatever. Just keep in mind that you can't use fractions, so the smallest
positive weight you can use is 1. That means you can't have items that weigh less than 1. I usually try
to assign 1 weight point to the weight of a coin, which is usually the lightest object in the game. As
you can see from the sample file, the weight of a pie is 500, and the weight of a pile of diamonds is 1.

The weight value for quantity items is per-quantity, however. This means that a quantity item with
500 objects weighs as much as 500 times the weight attribute. Since the weight of a pile of 1 diamond
is 1, the weight for 500 diamonds is 500.

It's easy enough to give character templates default encumbrance values as well:

[ID] 1
[NAME] Human
[DESCRIPTION] You are a plain old boring human. Deal with it.
[DATABANK]
encumbrance 0
maxencumbrance 2000
[/DATABANK]
[COMMANDS]
[/COMMANDS]
[LOGICS]
cantreceive
[/LOGICS]

This shows a human who can hold a maximum weight of 2000, and has a current weight of 0.

Well, that's great, because you can add all this to the templates, reload the templates, and then go into
the game, but there's another problem. All existing instances of characters and items have no idea
what weight and encumbrance are. They were created from templates that didn't have those variables.

To solve this problem, you could make the game go through every item, and load a weight value from
its template, and you could do the same with all the characters.

Okay, great! But wait! There's another problem! Characters might have items on them, and if you set
all of their encumbrance values to 0, you give all of the characters a bunch of free encumbrance
points. When they drop the items they have, their current encumbrance will drop below 0, and that's a
bad thing.

So you need to go through all the items that characters have, and add up how much they weigh. Does
this sound complex enough yet? How the heck are you going to do all that? If you do it all in C++,
your only option is to totally shut down the MUD, and that's just not a good idea.

Initializer Scripts

Instead of adding all this code to C++ to make your updates go smoothly, you can do it all from
Python instead. This is the idea of an initializer script. It's a simple script that is meant to be run
once, and it updates everything in the game that needs updating. More often than not, this involves
going through all the item and character instances and giving them the new attributes.

Initializer Command

The first thing you need to do is make a command that executes initializer scripts. This is an easy
enough task:

class initialize(PythonCommand.Command):
 name = "initialize"
 usage = "\"initialize <script>\""
 description = "Performs an initialization using a script"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError
 exec("import data.logics.initializers." + args +
 "\nreload(data.logics.initializers." + args +
 ")\ndata.logics.initializers." + args + ".init()")

This code loads a script from /data/logics/initializers, reloads it, and then calls the init function in
that script file.

The reloading is included because if you run the initializer script once, Python usually doesn't get rid

of it. Python keeps the script loaded, and if you import it again, nothing changes, even if you change
the initializer script.

The exec function essentially allows you to execute the Python code that is in a string. So if you were
to execute an addencumbrance initializer, the code that would be executed would look like this:

import data.logics.initializers.addencumbrance
reload(data.logics.initializers.addencumbrance)
data.logics.initializers.addencumbrance.init()

And the game executes that script for you.

The Add Encumbrance Initializer Script

Now you need to make a script that goes through all the item instances and copies their weights from
their templates, and also goes through all the character instances and gives them their encumbrance
values, which are also taken from their templates. Figure 18.1 shows this process.

Figure 18.1. An initializer script goes through every instance, and copies an attribute
from the templates into the instances.

def init():
 mud = BetterMUD.GameWrap()

 # add weight to every item
 mud.BeginItem()
 while mud.IsValidItem():
 item = BetterMUD.item(mud.CurrentItem())
 template = BetterMUD.itemtemplate(item.TemplateID())
 if not item.HasAttribute("weight"):
 item.AddAttribute("weight", template.GetAttribute("weight"))

 mud.NextItem()

The previous code chunk goes through every item instance in the game, using the game wrapper
accessor as an iterator. It adds one to every item that doesn't have a "weight" attribute.

The next step is to go through all the characters and give them their two encumbrance values:

 # add encumbrance to every character
 mud.BeginCharacter()
 while mud.IsValidCharacter():
 character = BetterMUD.character(mud.CurrentCharacter())
 template = BetterMUD.charactertemplate(character.TemplateID())
 if not character.HasAttribute("encumbrance"):
 character.AddAttribute("encumbrance",
 template.GetAttribute("encumbrance"))
 if not character.HasAttribute("maxencumbrance"):
 character.AddAttribute("maxencumbrance",
 template.GetAttribute("maxencumbrance"))

Now that the characters have encumbrance and maxencumbrance variables, you need to calculate the
weight of the items currently carried by the character:

 # now calculate encumbrance of carried items
 character.BeginItem()
 encumbrance = 0
 while character.IsValidItem():
 item = BetterMUD.item(character.CurrentItem())
 if item.IsQuantity():
 encumbrance = encumbrance + item.GetAttribute("weight") *
 item.GetQuantity()
 else:
 encumbrance = encumbrance + item.GetAttribute("weight")
 character.NextItem()
 character.SetAttribute("encumbrance", encumbrance)

At this point, the encumbrance attribute holds the value of the weights of all the character's items
added together. The final step of the initializer gives the characters the "encum-brance" logic module
if they don't have it:

 if not character.HasLogic("encumbrance"):
 character.AddLogic("encumbrance")
 mud.NextCharacter()

And now your game is initialized to handle encumbrance.

You will probably have to make a script like this for any major update to the game.

Encumbrance Module

Finally, you can program the logic module itself. You must manage two distinct parts of the module:
accepting or rejecting items based on weight and modifying encumbrance.

NOTE

In case you screw anything up (nobody is perfect!), it's probably a good idea to save the
database before and after you run an initial ization script.

Calculating Weight

Since it's often necessary to calculate the weight of an item, I've included it as a special helper
function inside the encumbrance logic module class:

def Weight(self, i, q):
 item = BetterMUD.item(i)
 if item.IsQuantity():
 return q * item.GetAttribute("weight")
 else:
 return item.GetAttribute("weight")

The parameters are the class itself, the item ID, and the quantity. If the parameter is a quantity item,
the weight of the item is multiplied by the quantity and returned, or else the normal weight is returned.

Rejecting Items

Two actions allow the encumbrance module to reject getting items: cangetitem and canreceiveitem.
In both cases, the functions must check if the weight of the item will cause a player to carry too much
weight, and if so, the player isn't allowed to get it. Here's the code:

if action == "cangetitem":
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg2)
 weight = self.Weight(arg2, arg3)
 if weight + me.GetAttribute("encumbrance") >
 me.GetAttribute("maxencumbrance"):
 me.DoAction("error", 0, 0, 0, 0, "You can't pick up " + item.Name() +

 " because it's too heavy for you to carry!")
 return 1
 return 0

if action == "canreceiveitem":
 g = BetterMUD.character(arg1)
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg3)
 weight = self.Weight(arg3, arg4)
 if weight + me.GetAttribute("encumbrance") >
 me.GetAttribute("maxencumbrance"):
 me.DoAction("error", 0, 0, 0, 0, g.Name() + " tried to give you " +
 item.Name() + " but it's too heavy for you to carry!")
 g.DoAction("error", 0, 0, 0, 0, "You can't give " + me.Name() +
 " the " + item.Name() + " because it is too heavy!")
 return 1
 return 0

The code prints error messages appropriate for a character getting an item or for giving an item. In the
case of giving, an error is printed to both people involved, so that the giver knows he can't give the
item, and the receiver knows that he can't accept the item. Both of these instances return 1, telling the
physics layer that the action couldn't be done.

Weight Management

The encumbrance module also needs to manage your weight when you get or drop an item. There are
three events that can be triggered when you get a new item, and three events when you lose an item.

Here are two events for getting items:

if action == "getitem":
 if arg1 == self.me:
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg2)
 weight = self.Weight(arg2, arg3)
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance") +

 weight)
 return 0

if action == "spawnitem":
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg1)
 weight = self.Weight(arg1, item.GetQuantity())
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance") +
 weight)
 return 0

These events are called when a player gets a new item, or a new item is spawned into a player's
inventory. Both instances get accessors to the character and the item, calculate the weight, and then
add that to the character's encumbrance attribute.

Here are two of the events that occur when you lose an item:

NOTE

You should note that there may be times in the game when an item is forced into a player's
inventory without the player first being asked if he can have it. When this happens, you should
still perform the normal duties on the item. Being loaded with an item without being asked could
force a player's encumbrance over his max encumbrance, but that's not a huge deal. If you're
concerned about this issue, you can add a function to the encumbrance module that keeps a
player from moving anywhere if he is over his limit. You would do this by returning 1 whenever
you get a canleaveroom query.

if action == "dropitem":
 if arg1 == self.me:
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg2)
 weight = self.Weight(arg2, arg3)
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance")
 weight)
 return 0

if action == "destroyitem":
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg1)
 weight = self.Weight(arg1, item.GetQuantity())
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance")
 weight)
 return 0

These two actions simply remove the weight from a player's encumbrance whenever he loses the
item. You should note that the additem and destroyitem actions both check to ensure that the actor
(arg1) has the same ID as the character executing the logic script. This is because all characters in a
room are told when someone gets or drops an item, so the encumbrance module of everyone in a room
is also informed. It would be a major flaw to add or remove weight for an item a player doesn't
actually have.

The third event is a "mixed" event and can happen if a player either gives away or is given an item:

if action == "giveitem":
 if arg1 == self.me:
 me = BetterMUD.character(self.me)

 item = BetterMUD.item(arg3)
 weight = self.Weight(arg3, arg4)
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance")
 weight)
 if arg2 == self.me:
 me = BetterMUD.character(self.me)
 item = BetterMUD.item(arg3)
 weight = self.Weight(arg3, arg4)
 me.SetAttribute("encumbrance", me.GetAttribute("encumbrance") +
 weight)
 return 0

Whenever this event occurs, arg1 is the ID of the player giving away the item, so if it matches the ID
of the character that owns the current logic module, you must remove the weight. On the other hand,
arg2 is the recipient of the item, so if the player is the recipient, weight must be added to him.

Analysis

I hope you thought that example was pretty cool. The physical game engine has absolutely no clue
about how much items weigh, or how many items a player can carry at any time, but by adding a
simple logic module and a few attributes, you've now just added a completely new aspect to the
game. Now you can limit what players carry, and force them to perform quests to gain the ability to
carry more items. It's little things like this that add immensely to your replay value.

To Arms!

When I first told you about the stuff that will be in BetterMUD's physical layer, you may have been
surprised to see that there is no concept of "armed" weapons. How the heck will combat take place if
you can't arm weapons?

Well, the physics of BetterMUD isn't involved with "armed" weapons; that's for the logic layer to
implement. So you add a new attribute to characters in order to implement "armed" weaponsthe
weapon attribute. Simply put, the weapon attribute is the ID of the item in your inventory that you are
currently using as a weapon.

To make things more interesting, you have another attributethe defaultweapon attribute. In the
SimpleMUD, if a weapon isn't armed, the game assumes that a player is using his fists to attack, and
the game calculates a damage range from 13. That range is hard-coded into the game, and that very
fact should be making you squirm in your seat right now. The appropriate reaction should be "Eeeew,
hard-coding! Gross!!"

So the default weapon is the template ID of an item that can be used as a weapon; but these are

special items that are never actually created in the game, such as "fists" if the player is human, or
maybe "scorpion tail" if the player is some kind of giant mutant scorpion.

Additionally, items are given a new attribute, the arms attribute. This is a simple numeric that
determines if an item can be equipped. For now, the value of 0 means no, and the value of 1 means it
is a weapon. All other values are reserved for future use, such as adding armor types.

Armaments Module

"Consult the Book of Armaments! And Saint Attila raised the hand grenade up on high, saying, "O
Lord, bless this thy hand grenade, that with it thou mayst blow thine enemies to tiny bits, in thy
mercy." And the Lord did grin. And the people did feast upon the lambs and sloths, and carp, and
anchovies, and orangutans and breakfast cereals, and fruit-bats and-"

All right, enough quoting from Monty Python jokes. The armaments module basically allows
characters to arm and disarm weapons. Since the game has no physical sense of "arming" an item, I
have to use the query and do actions to ask items if they can be armed, and tell players to arm them.

Here's the armaments module in its entirety:

class armaments(data.logics.logic.logic):

 # helper function to arm an item; only handles weapons for now:
 def Disarm(self, itemtype):
 if itemtype == 1:
 me = BetterMUD.character(self.me)
 if me.GetAttribute("weapon") != 0:
 weapon = BetterMUD.item(me.GetAttribute("weapon"))
 me.SetAttribute("weapon", 0)
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0,
 me.Name() + " disarms " +
 weapon.Name() + ".")

 # helper function to disarm an item; only handles weapons for now:
 def Arm(self, item):
 me = BetterMUD.character(self.me)
 if item.GetAttribute("arms") == 1:
 me.SetAttribute("weapon", item.ID())
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0,
 me.Name() + " arms " + item.Name() +
 "!")

 # handle events:
 def Run(self, action, arg1, arg2, arg3, arg4, data):

 # can only arm weapons (arms = 1) right now:
 if action == "query" and data == "canarm":
 item = BetterMUD.item(arg1)
 if item.GetAttribute("arms") == 1:
 return 1
 return 0

 # try arming the item:
 if action == "do" and data == "arm":
 item = BetterMUD.item(arg3)
 self.Disarm(1)
 self.Arm(item)

 # try disarming the item:
 if action == "do" and data == "disarm":
 self.Disarm(arg3)

Look at the query function first. If it determines that you can arm an item (if it's a weapon, arms will
be 1), it returns 1. Remember that in Chapter 14 I told you about granting rights to entities and that all
entities automatically have the right to perform any of the standard physical events, such as moving
around. You had to specifically disable an act in order to prevent it.

With custom actions, like canarm, items cannot automatically be armed. The game assumes that a reply
of 0 means no. By default, every logic module should return 0, and thus say no whenever a player is
asked if he can arm an item. But if the item is a weapon (arms is 1), you know that the item can be
used as a weapon, and the function returns 1 for yes.

The other actions, do disarm and do arm simply call the helper functions to disarm and arm weapons.

Table 18.1 defines the event parameters for these actions.

Commands

Like all things in the BetterMUD, you need a way to actually invoke the logic module. This is done
via two commands, one that arms an item, and one that disarms an item.

Table 18.1. Event Parameters for disarm and arm

Parameter arm disarm

action do do

arg1 [*]entity type [*]entity type

arg2 [*]entity id [*]entity id

arg3 item being armed type of item being disarmed

arg4 not used not used

data arm disarm

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

Here's the arm command:

class arm(PythonCommand.Command):
 name = "arm"
 usage = "\"arm <item>\""
 description = "Attempts to arm an item"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError

 me = BetterMUD.character(self.me)
 item = BetterMUD.item(FindTarget(me.SeekItem, me.IsValidItem,
 me.CurrentItem, args))
 if not me.DoAction("query", item.ID(), 0, 0, 0, "canarm"):
 me.DoAction("error", 0, 0, 0, 0, "Cannot arm item: " +
 item.Name() + "!")
 return

 me.DoAction("do", 0, 0, item.ID(), 0, "arm")

Note that the ID of the item being armed is the third argument while passing the do and query events
around. The first two arguments are reserved for routing delayed events in the timer system to a
specific entity (see Chapter 14 if you don't remember this). Table 18.2 lists the event parameters for
the canarm query.

Table 18.2. Event Parameters for canarm

Parameter Can Arm

action query

arg1 item you want to arm

arg2 not used

arg3 not used

arg4 not used

data canarm

Disarming an item is similar to disarming in theSimpleMUD. A player must type disarm weapon to
disarm his current weapon:

class disarm(PythonCommand.Command):
 name = "disarm"
 usage = "\"disarm <item>\""
 description = "Attempts to disarm an item"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError

 me = BetterMUD.character(self.me)
 if args == "weapon":
 me.DoAction("do", 0, 0, 1, 0, "disarm")

This time, the third argument to the do event is the type of armament to be removed. The value 1
signifies a player wants to disarm his weapon.

Initialization Script

There is an initialization script for adding armaments to the game, which is very similar to the
encumbrance initialization script. Since the scripts are so similar, I won't show you the code, but you
can find it in the /data/logics/initializers/addarmaments.py file.

Analysis

So now a player can add armed weapons to a character, and the physical module isn't involved. Isn't
that neat?

For a more complex MUD, you might consider adding more than one weapon slot (you could make it
so that a player can hold two small, light weapons), or adding armor slots, or other cool
enhancements.

In this example you saw how you could make your own custom event messages that the core

BetterMUD physical engine doesn't support. The canarm and arm events are completely new, and can
be used to query characters and items about whether they can be armed.

In a similar vein, you could make canread or caneat events, to make the realm even more realistic.

I Put a Spell on You

The next endeavor I want to cover is learning how to "cast a spell". Spell casting requires several
elements, as do the other logics.

Basically, I want to create a spell named uberweight, that can be cast on items, and to make them
stick to the ground for 20 seconds, so that no one can pick them up.

This spell can only be cast once every 2 minutes, which players learn from reading a magic scroll.
Sound complex enough yet?

Designing the Item

The first task is to design the item in question. The actual item template is simple:

[ID] 54
[NAME] Scroll of Uberweight
[DESCRIPTION] This scroll contains the spell of Uberweight on it.
[ISQUANTITY] 0
[QUANTITY] 1
[DATABANK]
weight 50
arms 0
[/DATABANK]
[LOGICS]
canread uberweightscroll
[/LOGICS]

You can ignore everything but the two logic modules. Each of the two logic modules implements an
action: the first says that the item can be read, and the second says that it has the uberweightscroll
item logic module attached to it.

Can You Read?

The canread item logic module is really simple; it merely returns 1 whenever someone asks it if it can
be read:

class canread(data.logics.logic.logic):
 def Run(self, action, arg1, arg2, arg3, arg4, data):
 if action == "query" and data == "canread":
 return 1

Ta-da! Any item that has this module now returns 1 when asked if it can be read. This class can be
found in /data/logics/items/ basicitems.py. Table 18.3 lists the event parameters for the canread
action event.

Table 18.3. Event Parameters for canread

Parameter Can Read

action query

arg1 not used

arg2 not used

arg3 not used

arg4 not used

data canread

NOTE

Here's an idea for future expansion. Perhaps you want to give your characters a sense of
"literacy," so that only some characters can read. If you have a big dumb ogre charac ter, for
example, he is disadvantaged in the game, because he can't read magic scrolls to learn to cast
spells. Maybe you could even expand on this idea, and include the idea of languages for readable
objects. Some things could be written in an ancient Elven language, so dwarfs and humans can't
read them.

Scroll Module

In this particular version of the BetterMUD, I've decided to make it possible for characters to read
magical scrolls, and then memorize the spell learned from the scroll. Instead of copying the code for

every scroll type, I've made a base spellscroll class that does 95% of the work.

It must return an error if a player is trying to learn a spell that he already knows, or it must give the
player the command that controls the spell if he doesn't have it. Here's the code:

class spellscroll(data.logics.logic.logic):
 def DoRead(self, character, item, name):

 # look up character and item
 c = BetterMUD.character(character)
 i = BetterMUD.item(item)

 # check if character has spell command already
 if c.HasCommand(name):
 c.DoAction("error", 0, 0, 0, 0, "You already know this spell!")
 return

 # give character new spell command, and tell everyone:
 c.AddCommand(name)
 self.mud.AddActionAbsolute(0, "vision", c.Room(), 0, 0, 0,
 c.Name() + " reads " + i.Name() + "!")
 self.mud.AddActionAbsolute(1, "destroyitem", i.ID(), 0, 0, 0, "")
 c.DoAction("announce", 0, 0, 0, 0, "You now know the spell " +
 name + "!")
 c.DoAction("announce", 0, 0, 0, 0, "The " + i.Name() +
 " disappears in a bright flash of flame!")

This code assumes that the command object has the same name as the spell; so if you have a spell
named uberweight, the command object is named uberweight as well.

Note that the scroll is destroyed after it is read, and this is just a little quirk I enjoyed inserting into
the game. You don't want a single scroll giving everyone in the game a spell (if the owner is generous
enough to lend it to other people), so it's simply destroyed.

This class can be found in /data/logics/ items/spellitems.py.

NOTE

Please don't think that this is how you have to implement spells. The beauty of this system is
that you can imple ment spells in any way you want. Spells don't have to be commands that you
learn by reading scrolls. Instead you could make a "spell book" item that can store all of the
spells you know. Maybe you can even have your characters gain specific spells whenever they
get to a certain level. The possibilities are limitless.

Uberweightscroll Logic

Now that you have a scroll class, all you need to do is create an item logic that will be attached to the
scroll item, and give characters the spell when the item is read:

class uberweightscroll(spellscroll):
 def Run(self, action, arg1, arg2, arg3, arg4, data):
 if action == "do" and data == "read":
 self.DoRead(arg3, self.me, "uberweight")
 return

The uberweightscroll logic module is meant to be attached to scrolls, and whenever someone sends
a do read event to it, the base spellscroll class is called, adding the spell command uberweight to
the character.

Table 18.4 lists the parameters for the read event.

Table 18.4. Event Parameters for read

Parameter Read

action do

arg1 [*]entity type

arg2 [*]entity id

arg3 character performing the reading

arg4 not used

data read

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters that are used to route the event to an entity when using timers. See Chapter 14 for more information.

Uberweight Command

The next step is to create the uberweight command. This is the command that actually casts the spell.

This command must do several things. First, it must store data about the last time it was invoked, so

that you can limit how often the spell is cast.

NOTE

If you're inclined, you could limit the "casting time" to a small number such as 5 seconds, and
then give the character a "mana" attribute, and have the spell subtract from that variable
whenever it is cast. When the mana goes down to 0, the character isn't allowed to cast it
anymore, until he gets more energy. This method is used in many MUDs because it allows
characters to cast a single spell rapidly, but it sets reasonable limits. I've used a simple system
here, to show you that there are many ways to do anything.

Since this spell needs some extra data, I'll need to give it a ScriptInit function, so that it initializes
the data when the command object is first created:

class uberweight(PythonCommand.Command):
 name = "uberweight"
 usage = "\"uberweight <item>\""

 description = "puts a magical weight on an item"
 def ScriptInit(self):
 # init the next execution time to 0, so you can execute it right away
 self.executiontime = 0

This simply creates an executiontime variable, and sets it to 0. Whenever executiontime is more
than the game's current time, you'll be blocked from using the spell. Since the game always starts at 0,
you'll be able to cast the spell right away after it's given to you.

Now the actual execution:

def Run(self, args):
 if not args: raise PythonCommand.UsageError

 # grab the character and room
 me = BetterMUD.character(self.me)
 r = BetterMUD.room(me.Room())

 # check to make sure you can execute it
 time = self.mud.GetTime()
 if time < self.executiontime:
 me.DoAction("error", 0, 0, 0, 0, "You need to wait " +
 str((self.executiontime - time) / 1000) +
 " more seconds to use this again!")
 return

 # find the name of the item to cast on:
 id = FindTarget(r.SeekItem, r.IsValidItem, r.CurrentItem, args)
 item = BetterMUD.item(id)

 name = item.Name()

 # add 120 seconds; 2 minutes
 self.executiontime = time + 120000

 # tell everyone about it, and add a termination message:
 self.mud.AddActionAbsolute(0, "addlogic", 1, id, 0, 0, "uberweight")
 self.mud.AddActionAbsolute(0, "vision", r.ID(), 0, 0, 0,
 "<#FF0000>" + me.Name() +
 " just cast UBERWEIGHT on " + name + "!")
 self.mud.AddActionRelative(20000, "messagelogic", 1, id, 0, 0,
 "uberweight remove")

The function ensures that the character can execute the spell first; if not, he's told how long to wait. If
he can execute the spell, the function tries to find the item he wants to cast the spell on. If the item is
found, the execution time is reset to two minutes from that time (120 seconds, or 120,000
milliseconds), and three actions are added. The first adds the uberweight logic module to the item, the
second tells everyone in the player's room that he cast uberweight on an item, and the last one tells the
game to remove uberweight in 20 seconds. All of the events use the same parameter conventions I
showed you in Chapter 14.

There is a difference between the uberweight command object and the uberweight item logic module.

Uberweight Item Logic Module

The last component of the system is the logic module that is attached to items when they have
uberweight cast upon them. This module refuses to let items be picked up, much like the cantget
script I showed you before.

NOTE

It's very difficult for me to intention ally limit the code for the BetterMUD, but if I didn't this
book would weigh 50 pounds. You should always be thinking about how you can expand the
game. For example, I'm thinking about expanding this spell system later, to give levels of spells.
With that system, every time a player reads a new scroll, he advances a level, and the spell
becomes more powerful. Or maybe you'll have scrolls with levels built in, so that you need a
level 2 uberweight scroll to get to level 2, and so on. The point of all of this is to give you a start,
so you can see how a separated logic/physics engine allows essentially limitless expansion.

You should only use special uberweight logic for items, rather than re-using cantget, to send a
customized message to players when they try to get the item, and to tell a room when the spell wears
off.

class uberweight(data.logics.logic.logic):
 def Run(self, action, arg1, arg2, arg3, arg4, data):
 if action == "cangetitem":
 c = BetterMUD.character(arg1)
 me = BetterMUD.item(arg2)
 self.mud.AddActionAbsolute(0, "vision", c.Room(), 0, 0, 0,
 c.Name() + " struggles like a madman trying to pull " +
 me.Name() + " off the ground, but it's stuck!")
 return 1

 if action == "messagelogic":
 if data == "uberweight remove":
 self.mud.AddActionAbsolute(0, "dellogic", 1, self.me, 0, 0,
 "uberweight")
 me = BetterMUD.item(self.me)
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0,
 "The uberweight on " + me.Name() +
 " wears off!")

This object responds to two events: cangetitem and messagelogic. Like the cantget module, the
object prints a message to the room, telling everyone that the character can't get the item, and returns
1, telling the physics engine that the action was blocked.

When you first gave the uberweight logic to an item, the uberweight command inserted a message into
the timer queue:

 self.mud.AddActionRelative(20000, "messagelogic", 1, id, 0, 0,
 "uberweight remove")

Remember, that code tells the item's uberweight module to remove itself in 20 seconds. When the
item's module gets this message, it deletes the actual logic module, and then sends a vision event to
the room saying that the uberweight has ended.

That's it!

Example of Item Logic

Here's an example of the game text that appears when using the uberweight item logic module:

Avenue
You are on the main Avenue of Betterton. You can see the street stretching
off to the distance in an east-west direction.
Exits: East - Avenue, South - Magicians Door
People: Mithrandir
Items: Mountain Dew
/read scroll

You now know the spell uberweight!
The Scroll of Uberweight disappears in a bright flash of flame!
Mithrandir reads Scroll of Uberweight!
/uberweight mountain dew
Mithrandir just cast UBERWEIGHT on Mountain Dew!
/get mountain dew
Mithrandir struggles like a madman trying to pull Mountain Dew off the ground,
but it's stuck!
The uberweight on Mountain Dew wears off!
/uber moun
You need to wait 94 more seconds to use this again!
/
You need to wait 79 more seconds to use this again!

And you've just created your very first spell! Cast away!

Show Me the Money!

The concept of currency is not built into the BetterMUD. If you think about real life, coins and dollars
are just physical objects that represent an abstract value. In fact, if you really want to, you can turn the
BetterMUD into a barter system, in which there is no money at all; you trade items with other people
based on how much you think they're worth. If you ever traded in baseball cards as a kid, you know
exactly how such a system works.

Simple Systems

It's entirely possible in the BetterMUD to implement bartering, so that a character can, for example,
go up to a merchant and trade him two knives for a sword. All you need to do is create a logic module
to handle bartering. Heck, if you're really ambitious, you could even make merchant scripts that assign
different values to their items based on how much they think the items are worth. An arms merchant
might value weapons highly, but a magic merchant wouldn't, so trading him weapons would give you
less favorable trades.

Of course, there haven't been barter systems in wide use for hundreds of years in the industrialized
world, because barter systems are inconvenient. In such a system, not everyone can trade, because
trading requires both parties having something that the other wants. For a barter system to work, the
merchant must own a sword that a player wants, and the player must have something that the merchant
wants.

Currency Systems

Currency systems work more efficiently than bartering in the world most of us know. Instead of

trading in objects, you trade objects for abstract pieces of currency that are worth a particular value.
If you want a sword, you pay the merchant for it, and then the merchant can take that money and find
someone else who can sell him what he needs, instead of requiring you to give him things.

The entire idea of currency systems is what prompted me to put "quantity items" into the physical
engine of the BetterMUD. I've rarely seen a MUD that works without some kind of currency system,
so that's just what I'm going to show you how to implement.

You don't need to script any player-to-player transactions involving money. Players basically have to
trust each other in transactionsone player gives another money, and that players gives something in
return.

Of course, money really isn't worth anything until you can use it to buy things from NPC's in the game,
and that's the system you'll be using. The first thing you need to think about is what kind of currency
system you want to use. Since quantity objects now have weight, there is an upper limit on the size of
piles of cash you can lug around; you can't just pour a few million coins into your pocket (talk about
deep pockets!) and skip around as you did in SimpleMUD.

The weight of currency can be inconvenient to wealthy players. How the heck are they going to carry
around millions of dollars? How are they even going to accumulate wealth in the first place?

NOTE

Game currencies are not required to be based on a "solid" value. If you've studied economics at
all, you know that the value of money changes wherever you go. For example, in Buffalo, NY,
you can buy a decent lunch for about $7, but if you go to New York City, it's hard to find lunch
for less than $13 or so. Money is worth different amounts in different places. I can't say how
useful such a system would be to you, but if you feel like experimenting, feel free. Borrowing an
idea from Raymond E. Feists' Riftwar books, you could have a region in the game where there is
no metal, but tons of diamonds and gems, and therefore metal coins are worth a heck of a lot
more than diamonds. I would like to note that managing such a system is an extremely difficult
task, because there are ways for entrepreneurial players to endlessly convert money between
the two systems and gain value with every conversion. I'm just pointing out that if you ever
want to make such a system, you can.

Multiple Currencies

An elegant solution to this problem is to have different denominations of money. When you think about
coinage systems, you realize that countries press different valued coins. In USA we have pennies (1
cent), nickels (5 cents), dimes (10 cents), quarters (25 cents), and a bunch of less common coins as
well. You could create similar equivalents in your game with one kind worth 10 of another kind, and
so on.

NOTE

When making a currency system with coins using different values, I would always recommend
valuing coins as multiples of 10. So the smallest coin would be worth 1, the next up would be
worth 10, the next 100, and so on. This makes calculating prices in the game much easier for
your players.

Simple Currency Example

For the purposes of this book, I'm not going to go over a complete money system; there are only so
many things you can do. But I will show you the general gist of one system, and then you can make
changes and additions wherever appropriate.

The key to the basic BetterMUD currency exchange system is the merchant class, which is a character
logic module that lists items to sell, and lets you buy them from him.

Currency

The first thing I need is a currency type. That's easy enough to create:

[ID] 1
[NAME] <#> Copper Coins
[DESCRIPTION] These copper coins are small and dirty, they don't
have much value.
[ISQUANTITY] 1
[QUANTITY] 1
[DATABANK]
weight 1
arms 0
[/DATABANK]
[LOGICS]
[/LOGICS]

It's just a standard quantity-type object, with a weight of 1 unit per coin.

Helpers

The next thing you'll need are helper functions, which are functions that perform various money-
related tasks, such as checking if a character has enough money to buy something, and removing that
money when he does buy something.

The helpers and the merchant classes I cover in the section after this are located in
/data/logics/characters/currency.py

NOTE

The great thing about separating transactions into functions like this is that the separation
significantly helps later on if you make a multiple currency system. These functions should
automatically manage all of that for you, if you make the appro priate changes.

Here's the first helper function:

def HasEnoughCurrency(character, amount):
 total = 0
 character.BeginItem()
 while character.IsValidItem():
 item = BetterMUD.item(character.CurrentItem())
 if item.TemplateID() == 1: # copper pieces
 total = total + item.GetQuantity()

 character.NextItem()
 if total >= amount:
 return 1
 return 0

This simply looks through all the items on a player, searching for copper coins. Whenever

they are found, their quantity is added to the total. Finally, when the total is added up, if it's

enough to pay for the requested amount, 1 is returned, or 0 if not. The other function removes money
from your character and gives it to another character:

def GiveCurrency(character, recipient, amount):
 character.BeginItem()
 mud = BetterMUD.GameWrap()
 while character.IsValidItem():
 item = BetterMUD.item(character.CurrentItem())
 if item.TemplateID() == 1: # copper pieces
 mud.DoAction("attemptgiveitem", character.ID(), recipient.ID(),
 item.ID(), amount, "")
 return
 character.NextItem()

NOTE

Take care to never modify physical attributes such as quantity directly through these functions.
Doing so messes up any encumbrance system you have running, since the system is not told that
you are losing money. Instead, rely on physical actions. In this example, I give the money from
one character to the merchant; keep in mind that you don't have to do that if you don't want to.
Instead you could simply tell the character that you're destroying an item.

This finds a bunch of coins, and removes the amount from their quantity. This function assumes you've
already checked to see if the character has enough money in the first place.

Merchant Logic

Since merchant characters are frequently found in MUD games, I've decided to create a base Python
logic module that acts like a merchant. This is only a simple merchant, however; he'll only list things
and sell things.

I would like to note that due to the logic system of the BetterMUD, characters are the merchants, and
they don't have to be linked to a specific room, as they were in the SimpleMUD. Of course, this also
means that if someone kills a merchant, the merchant can't sell stuff anymore (seems obvious, doesn't
it?).

The merchant responds to two different custom events; do list and do buy. Table 18.5 lists the
parameters for these events.

Here's the list handler (which is, as usual, executed from within Run, and therefore has the standard
event parameters):

if action == "do" and data == "list":
 character = BetterMUD.character(arg3)
 character.DoAction("announce", 0, 0, 0, 0,
 "<#7F7F7F>--------------------------------------")
 character.DoAction("announce", 0, 0, 0, 0,
 "<#FFFFFF> Item | Cost")
 character.DoAction("announce", 0, 0, 0, 0,
 "<#7F7F7F>--------------------------------------")
 for x in self.iteminventory:
 item = BetterMUD.itemtemplate(x)
 character.DoAction("announce", 0, 0, 0, 0, "<#7F7F7F> " +
 item.Name().ljust(42) + "| " +
 str(item.GetAttribute("value")))
 character.DoAction("announce", 0, 0, 0, 0,
 "<#7F7F7F>--------------------------------------")
 return

Table 18.5. Event Parameters for list and buy

Parameter list buy

action do do

arg1 [*]entity type [*]entity type

arg2 [*]entity id [*]entity id

arg3 character who wants list character buying

arg4 not used not used

data list buy <item name>

[*] These are optional parameters used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters used to route the event to an entity when using timers. See Chapter 14 for more information.

[*] These are optional parameters used to route the event to an entity when using timers. See Chapter 14 for more information.

Due to width restraints on the page, I've cut the length of the separator bars down a bit; they're
actually supposed to be a full 80 characters across.

Basically this prints out a header, and then it goes through every item in self.iteminventory using a
Python for loop.

Merchants must have a list of entity IDs named self.iteminventory; this list represents every item the
merchant can sell.

The other action that merchants react to is the buy event:

if action == "do" and data[:3] == "buy":
 itemname = data.split(None, 1)
 itemname = itemname[1]
 character = BetterMUD.character(arg3)
 id = FindName(BetterMUD.itemtemplate, self.iteminventory, itemname)
 if id == 0:
 character.DoAction("announce", 0, 0, 0, 0, "Sorry, you can't buy " +
 itemname + "here!")
 return

 t = BetterMUD.itemtemplate(id)

 if not HasEnoughCurrency(character, t.GetAttribute("value")):
 character.DoAction("announce", 0, 0, 0, 0,
 "Sorry, you don't have enough money to buy " +
 t.Name() + "!")
 return

 GiveCurrency(character, me, t.GetAttribute("value"))
 self.mud.DoAction("spawnitem", id, character.ID(), 1, 0, "")
 self.mud.AddActionAbsolute(0, "vision", character.Room(), 0, 0, 0,
 character.Name() + " buys " +
 t.Name() + ".")

The format of the data parameter for this event is a bit tricky. Whenever a player wants to buy
something, he passes in buy followed by the item name in the data string. So if he wants a sword, data
would be buy sword. To get the name of the item, I use the string's split function to chop off buy, and
then grab the rest of the string and stash it into itemname.

On the fifth line, I use a function named FindName, which is a Python helper function (I created this for
you) that performs the same function as the C++ BetterMUD::match function. The function goes through
a list of IDs and tries to make a full or partial match on one of them, and return the ID.

Basically this process searches the inventory for an item that matches the item the user is trying to
buy.

NOTE

The IDs in the merchant's inventory represent item tem plates, rather than item instances. This
means that every time a character buys something, a brand new item is spawned and given to
the character. You should be aware that this is only one of many ways to do this. In a more
highly managed world, merchants might sell only items that they are carrying in their inventory,
and when they are sold out, no one can buy anything more. This is a great way of limiting the
number of items in a game, and increasing their perceived worth. When items are rare, they
generally cost more as well, since demand is larger than supply.

NOTE

At this point I want to warn you that this is a dangerous system. The function assumes that the
transfer of money was completed successfully, even though it may not have been. This is
because items can block being transferred, and piles of money are treated as regular items. I
would like to point out that it's just not a good idea to either put scripts of any kind on quantity
objects, or make it so that you can't move quantity objects around. Not allowing scripts to be
placed on quantity objects usually works out best for everything in the end. You should probably
update the uberweight script so that it can't be cast on quantity objects.

If the merchant doesn't sell the item, an error is returned, and the function quits out. The next step is to
make sure the character can pay for the item, so the function calls the HasEnoughCurrency function to
figure this out, using the item's "value" attribute as the amount of money he needs to pay.

The final actions include transferring the money from the character to the merchant, spawning the new
item into the player's inventory, and then telling everyone that the character made a purchase.

Merchant Character

The last thing I need to do is create an actual merchant character, and his inventory script. Here's the
merchant:

[ID] 300
[NAME] Magician Keeper
[DESCRIPTION] A tall fellow dressed in ornate robes.
[DATABANK]
[/DATABANK]
[COMMANDS]
[/COMMANDS]
[LOGICS]
bettertonmagicianshop
[/LOGICS]

This can be found in /data/templates/characters/storekeepers.data. The magician merchant has one
logic module, betterronmagicshop. Here's the logic module (which can be found in
/data/logics/characters/bettertonstores.py):

class bettertonmagicianshop(data.logics.characters.currency.merchant):
 def ScriptInit(self):
 self.iteminventory = [54, 55]

This simply inherits from the merchant and initializes the merchant script with two items, 54 and 55
(which are a scroll of uberweight and a healing potion, but that's not important).

Now you're almost ready to test it out. There are just two more things you need to take care of: the
commands to list and buy things.

Listing and Buying

In order for your characters to be able to list and buy items, they must have commands to tell the game
to list and buy items.

I'm sure you won't be surprised that these classes are named list and buy. I've put the commands in
the /data/commands/usercommands.py script file.

Here's the list command:

class list(PythonCommand.Command):
 name = "list"
 usage = "\"list <merchant>\""
 description = "Gets a list of the merchant's wares"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError

 me = BetterMUD.character(self.me)
 r = BetterMUD.room(me.Room())
 m = BetterMUD.character(FindTarget(r.SeekCharacter,
 r.IsValidCharacter, r.CurrentCharacter, args))
 m.DoAction("do", 0, 0, me.ID(), 0, "list")

It finds a character matching the name of the merchant you passed in, and then sends that character a
list action event. You should note that if a character tries listing someone who isn't a merchant, he'll
kindly ignore the character (since he doesn't have a module that responds to list events).

If a player want to see the magicians list, go into his room and type /list magician. He'll spit out
something that looks like this:

/list magician

 Item | Cost

 Scroll of Uberweight | 100
 Small Healing Potion | 10

Buying items is a little more complex, because a player needs to find a merchant to buy from, and tell
him what kind of item he wants to buy as well.

Here's the command:

class buy(PythonCommand.Command):
 name = "buy"
 usage = "\"buy <merchant> <item>\""
 description = "buys an item from a merchant"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError
 parms = args.split(None, 1)
 if len(parms) < 2: raise PythonCommand.UsageError

 me = BetterMUD.character(self.me)
 r = BetterMUD.room(me.Room())
 m = BetterMUD.character(FindTarget(r.SeekCharacter,
 r.IsValidCharacter, r.CurrentCharacter, parms[0]))
 m.DoAction("do", 0, 0, me.ID(), 0, "buy " + parms[1])

The first step is to split up the arguments so that the merchant's name is within parms[0], and the item
a player wants to purchase is in parms[1].

Then the code finds the merchant and it sends it a buy event with the name of the item added on to the
end of the data string.

A player can now use the buy command in the game:

/buy magician scroll
You give 100 Copper Coins to Magician
Keeper.
Mithrandir buys Scroll of Uberweight.

And now you have a functioning currency system.

NOTE

I didn't implement item buy-backs, but it's a simple task to accomplish if you need it. Using the
current merchant system, it would be best if you just destroyed items that were sold, but this
can lead to problems if you modify the items in any signifi cant way. Imagine that a player gets a
really cool magical effect perma nently added to his favorite sword, and then accidentally sells it
to the merchant. Oops. Not only would the merchant give a player the normal price, but he'd
destroy it as well. In this kind of situation, your best bet is to add a can't be sold flag to items
that are magically altered.

Cry Havoc and Let Slip the Dogs of War

Can you believe that you've gone through almost eight full chapters about a MUD without having gone
over combat yet? There's a reason for this, of course. The SimpleMUD was a really simple hack and
slash MUD. You run around, slaughtering things, pick up loot, and then kill some more. This was
entertaining a few decades ago, but it gets boring after a while. Some major commercial games still
use this same old tired format *cough*Diablo*cough*, and there are lots of people who still love
playing those kinds of games.

I want more from games than just hacking-and-slashing my way though thousands of orcs and goblins.
In the last MUD I played, a full 80% of the people on the MUD actually had programs that would play
the game for them. It started out simply with players creating simple programs to log in and run
around killing monsters for an hour or so while they were away, so that they could gain an edge over
anyone else who was playing.

Then people started making these programs more complex and had them executing overnight. Then
people made programs to group together with other programs, and wander around, communicating
with each other. After a few months, we had characters that were on top of the game, but no one
actually ever played them! How ridiculous!

The problem was that it was a typical hack-and-slash MUD. Basically all you could do was run
around, kill things, and encounter the occasional quirk here and there. Combat is an essential part of
any game like this, but you need to think about what else the game should do. That's why I'm not going
to spend a heck of a lot of time focusing on combat; it shouldn't be the only thing people do in your
game.

Of course, without some form of combat, you basically have a game in which players run around, pick
up items, and talk to people, which isn't all that interesting.

The combat system I'm implementing as a demonstration is simple. A player can use a weapon that
has a specified damage range and accuracy, hit people who have hitpoints, and dodge. This is even
simpler than the SimpleMUD's system, but that's not really a big problem because this system is going
to be completely flexible and upgradeable.

Combat Data

The first thing I need to do is figure out what kind of data attributes my characters need to participate
in combat.

I'll need some kind of an experience attribute to track the progress of characters as they go around
killing things. I'll call this experience. I'll also need to know how much experience the character is
worth when it dies, so that I can reward the player who killed him. This will be called
giveexperience.

Obviously I need some hitpoints, so that's what I'm adding nextthe hitpoints attribute. I'll also need a
maximum number of hitpoints, covered by maxhitpoints.

The final requirement is a weapon, but you've already seen how I accomplished this, when I showed
you how to arm weapons. The weapon attributes are weapon and defaultweapon.

Combat Module

The combat module is easily the most complex logic module I've implemented so far. It's over 150
lines, and that's just for a simple combat module! There are so many things to keep track of.

NOTE

In the SimpleMUD, the combat system was unfair. Some one could spend a few minutes hacking
away at an evil monster, only to have some other guy come into the room, finish him off, and get
all the experience you earned with your strenuous slashing. This is why the BetterMUD combat
module that I am showing you maintains a list of people who are attacking the character.
Whenever the character dies, he gives an equal amount of experience to all attackers, as shown
in Figure 18.2. For the future, maybe you could even consider a system that keeps track of how
much damage each person dealt to the poor dead character, and give out experience
accordingly, so that the people who do the most damage get the most experience.

Figure 18.2. The BetterMUD combat module distributes experience equally to all
attackers.

Module Data

The actual combat module tracks the data of its own, which is temporary data that you won't need to
track. There are three attributes within the module, all initialized when the module is created:

class combat(data.logics.logic.logic):
 def ScriptInit(self):
 self.attackedlist = []
 self.target = 0
 self.attacktime = 5000

The attackedlist is simply a Python list of all characters who are currently attacking you (in ID
form). This is needed so that you can dole out experience when you die a horrible death. It will
happen, trust me. Agony coming up!

The target variable keeps track of the person you are currently attacking; this simple module only
supports attacking a single person at a time.

The final attribute is the attacktime attribute, which keeps track of the time it takes to perform one
attack round. I've got it hardwired at 5 seconds.

NOTE

If you feel ambitious, you can create a multi-attack module that would keep track of groups of
people a player is attacking. This would be particularly useful for magic spells that cause hail or
fireballs to rain down on everyone in the room.

Events

There are a number of events that are related to combat in the game:

query canattackasks if a player can be attacked.

query getaccuracydeltaasks for special accuracy information.

do attacka player is performing an attack round.

do initattacka player is beginning to attack another player.

do attackeda player was attacked by another player.

do brokeattacka player stopped attacking another player.

do breakattacka player stopped attacking a player's target.

leaverooma player left another player's room (there might be a break in combat.

do killeda player killed another player.

do deathtransporttells an entity to transport a player somewhere when a player dies.

In addition to these events, there are attributes that you should be concerned with when they are
modified:

modifyattribute maxhitpointsa player's max hitpoints have changed.

modifyattribute hitpoints a player's hitpoints have changed.

modifyattribute experience a player's experience has changed.

The basic process goes like this. When a player starts attacking another player, he performs an
initattack action. This sets up a timer that causes an attack event to occur immediately. At the same
time, a player's target is given an attacked event, telling him that a player started attacking him.

When the attack event occurs, it automatically inserts another attack event to execute in another 5
seconds, and then performs the actual combat logic, which calls the modifyattribute hitpoints
event of the target when a player successfully hits it.

NOTE

An even better method would be to store the attack time value as an attribute in the character,
so that a player can get magic spells and other effects that can make you attack more slowly or
faster.

When a player dies, this event is detected by the modifyattributes hitpoints event, which performs
the death logic. When a player dies, the game sends a killed event to all players who were attacking
him, so that they know the player died.

This system is an automatic combat system. Once a player initializes an attack, he continues attacking
until his opponent dies. This is very easy to do using timer event actions. Because of this, however, a
player needs a way to stop attacking another player once his opponent dies. This is handled by
breaking combat, which is handled by the two events breakattack and brokeattack. The first of
these events is triggered when the game wants a character to stop attacking, and the second event is
triggered when a character stops attacking another character.

NOTE

Of the combat events listed in Table 18.6, the most useful event that can be used with the timer
system is the initattack . If you want, you can make guard logics who demand that you leave
the room, and if you don't, they initialize an attack on you in a few seconds or so. Breaking
attacks can be useful as timed events as well. The tea-house battle scene from Matrix:
Reloaded comes to minda mentor may stop attacking you after you have proven your worthiness

by surviving for a minute or so.

Table 18.6 lists the parameters for the actions.

Table 18.6. Parameters for Combat Events

Event arg1 arg2 arg3 arg4 stringdata

canattack attacker target - - -

getaccuracydelta attacker target - - -

attack entitytype[*] id[*] attacker - -

initattack entitytype[*] id[*] target - -

attacked entitytype[*] id[*] attacker - -

brokeattack entitytype[*] id[*] attacker - -

breakattack entitytype[*] id[*] - - -

killed entitytype[*] id[*] victim - -

deathtransport dead player - - - -

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

[*] These are optional parameters that route the event to an entity when timers are used. See Chapter 14 for more information.

Most of those actions can be routed through the timer system, but I don't really have a reason for doing
that at this time.

The getaccuracydelta query is a special kind of query that asks players being attacked if they have
any special accuracy values when being attacked by a certain character. For example, you could have
special vampire hunter characters who would get an accuracy bonus when fighting vampires.

May I Attack You, Kind Sir?

The right to attack people isn't a right implicitly granted by BetterMUD's physical engine. As stated
previously, the physical engine has no involvement with attacks, nor should it. Attacking is a logical
operation in the BetterMUD, and thus you need to ask permission of a character before attacking. By
default, characters say, "No," because they don't have any logic modules that say "Yes."

Whenever a character with the combat module is queried about combat, this is the code that is
executed:

if action == "query" and data == "canattack":
 return 1

In this simple module, it is assumed that anyone with the combat module can be attacked. You might
think of way to make it more flexible in the future, such as not allowing certain people to attack other
people, or whatever you brainstorm.

Experience

Whenever you kill a character and that character gives you experience, the character sends you an
event telling you that your experience changed:

if action == "modifyattribute" and data == "experience":
 me.DoAction("announce", 0, 0, 0, 0, "<#00FFFF>You gain " + str(arg4) +
 " experience!")
 return

As usual, me has already been initialized as a character accessor pointing to yourself.

This simply notifies your character that you've gained some experience. Remember that when you get
attribute modification events, arg3 is the new value of the attribute, and arg4 is the delta from the old
value, so it tells you how much you gained. (arg4 is optional, but the combat module supports it.)

Modifying Max Hitpoints

The combat module is notified whenever a player's maximum hitpoints change, so that it can ensure
that the player never ends up with more hitpoints than his maximum. It's a simple piece of code:

if action == "modifyattribute" and data == "maxhitpoints":
 if me.GetAttribute("hitpoints") > me.GetAttribute("maxhitpoints"):
 me.SetAttribute("hitpoints", me.GetAttribute("maxhitpoints"))
 return

Note that I use SetAttribute to directly reset the hitpoints on the character, rather than notifying the
Mud's physical engine. This is a matter of personal preference. Telling the physical engine tells
everyone that the hitpoints have changed, but that kind of behavior is usually reserved for situations in
which a player is being damaged or healed. In this case the player is being neither healed nor
damaged, and his physical attributes are changing. If it bothers you, you can change this so that the
game tells all the other modules that a player's hitpoints have changed.

Under Fire

Whenever a player is attacked, or a player stops attacking another player, the game announces those
events. The messages are relatively easy to handle. The combat module must add characters to its
attacked-list when it is attacked, and remove them when they stop attacking.

Here's the attacked event:

if action == "do" and data == "attacked":
 try:
 self.attackedlist.index(arg3)
 except:
 self.attackedlist.append(arg3)
 return

The Python list.index function searches a list for anything matching the argument. In this case I try
finding arg3, which is the ID of the character trying to attack the other character. The function returns
the index of that item, but I'm not really interested in the index of the item, since it probably doesn't

exist in the list anyway. Instead, I am actually counting on it to throw an exception if a match doesn't
exist. In the exception block, I add the ID to the list. This just makes sure that you can't put an ID into
the list more than once by accident.

Likewise, I need to remove the ID when the character breaks attacking:

if action == "do" and data == "brokeattack":
 try:
 self.attackedlist.remove(arg3)
 except:
 pass
 return

This catches any errors and ignores them. remove throws if arg3 isn't in the list.

En Garde!

Whenever you initiate an attack, whether triggered by a command or by some other logic module, the
combat module receives an initattack event. This must accomplish several actions, such as adding
an attack timer, setting a target, and maybe clearing an old target (if a character was already attacking
another character). Here's the code:

if action == "do" and data == "initattack":
 if arg3 == self.me: return
 # clear the old target if already attacking someone else
 if self.target != 0:
 t = BetterMUD.character(self.target)
 t.DoAction("do", 0, 0, self.me, 0, "brokeattack")
 else:
 self.mud.AddActionRelative(0, "do", 0, self.me, 0, 0, "attack")

 # set the new target and tell him he's been attacked
 self.target = arg3
 t = BetterMUD.character(arg3)
 t.DoAction("do", 0, 0, self.me, 0, "attacked")
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0, me.Name() +
 " begins attacking " + t.Name() + "!!")
 return

First you must check to ensure a character isn't attacking himself (no self-hatred in this game). So if a
character is trying to attack himself, the function simply returns, and does nothing.

If the module is already attacking another player, you need to break the attack. If a player is already
attacking someone else, that means you should already have an attack event in the timer queue, so you
don't need to add one. If a player isn't already attacking, however, you need to add an attack event

into the global timer queue.

Once that has been done, you set the target, tell him he's been attacked, and tell everyone in the room
that the attack has begun.

To the Barricades

On the other hand, you must break an attack when certain events occur. In fact, breaking an attack
happens so often that I decided to make it into a helper function:

def Break(self, me):
 if self.target == 0:
 return
 t = BetterMUD.character(self.target)
 me.KillHook("do", "attack")
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0, me.Name()
 + " stops attacking " + t.Name() + "!!")
 t.DoAction("do", 0, 0, self.me, 0, "brokeattack")
 self.target = 0

The parameter me is supposed to be an accessor pointing to the character who is breaking combat.

It grabs the target, and then tells the current character to kill its attack command that is sitting in the
timer queue. There should be an attack command in the timer queue, since a character is in attack
mode, and there is always an attack command in the queue when a character is in this mode.

The attack command tells the room that the attack has stopped, and then tells the former target that the
attack has stopped, and finally clears the attacker's target value.

You often need to break combat, for example, when the breakcombat event occurs:

if action == "do" and data == "breakattack":
 self.Break(me)
 return

Or when an attacker or a target leaves the room:

if action == "leaveroom":
 if arg1 == self.target or arg1 == self.me:
 self.Break(me)
 return

Or when one player tells another that he's killed them (believe me, attacking corpses doesn't improve
the world):

if action == "do" and data == "killed":
 self.Break(me)
 return

There's another instance that calls the break function, but I'll get to that later.

The Whites of Their Eyes

The second most complex section of the combat module is the part that carries out the combat rounds.
I'll split this up into chunks so it's easier to understand.

if action == "do" and data == "attack":
 target = BetterMUD.character(self.target)
 self.mud.AddActionRelative(self.attacktime, "do", 0, self.me, 0, 0,
 "attack")

First, the combat module gets the target. Then the module adds another attack round to the global
timer. Even if a player kills his target in this round, it's not a big deal, because when he breaks off
combat, this action is automatically killed.

The next part gets a weapon:

 if me.GetAttribute("weapon") == 0:
 weapon = BetterMUD.itemtemplate(me.GetAttribute("defaultweapon"))
 else:
 weapon = BetterMUD.item(me.GetAttribute("weapon"))

This is possibly the coolest part of the code. If a character doesn't have a weapon armed, the
character uses the default weapon of his character, which is not an actual item, but rather an ID into
the item's template database. I showed you this earlier, when I showed you how to arm weapons.

Basically, if you don't have a weapon, an itemtemplate accessor is stored in weapon; if you do have a
weapon, the item accessor pointing to your current weapon in stored in weapon. Here's the best part:
even though they are two totally different accessors, as long as they have the same function names, it
doesn't matter! Look at this part of the code and sigh happily:

 accuracy = weapon.GetAttribute("accuracy")
 accuracy += target.DoAction("query", me.ID(), target.ID(), 0, 0,

 "getaccuracydelta")
 accuracy += me.DoAction("query", me.ID(), target.ID(), 0, 0,
 "getaccuracydelta")

The accuracy is grabbed from the weapon and then modified according to the accuracy deltas returned
by the target and the player. This allows the player to have special modules that do +5 accuracy
versus certain characters, and so on. The next part checks to see if one character hit another:

 if accuracy <= random.randint(0, 99):
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0,
 me.Name() + " attacks " + target.Name() + " with " +
 weapon.Name() + ", but misses!")
 return

This uses the same 099 scale that I showed you in the SimpleMUD. If a character misses, the room is
informed of the miss, and then the function returns.

The next task is to calculate the damage done, tell everyone about the hit, and then modify the
hitpoints attribute:

 damage = random.randint(weapon.GetAttribute("mindamage"),
 weapon.GetAttribute("maxdamage"))
 self.mud.DoAction("vision", me.Room(), 0, 0, 0, "<#FF0000>" +
 me.Name() + " hits " + target.Name() + " with " +
 weapon.Name() + " for " + str(damage) + " damage!")
 self.mud.DoAction("modifyattribute", 0, target.ID(),
 target.GetAttribute("hitpoints") - damage,
 damage, "hitpoints")

And then the combat round is over! Catch your breath.

Note that the hitpoints aren't actually modified. Instead the function sends an action to the game
module telling it that the hitpoints have been modified. This is done so that the game can continue and
tell every logic module that the character's hitpoints have been changed.

Et Tu, Brute!

There comes a time when all things must die. In a dangerous digital world such as a MUD, the end
occurs often. The combat module is naturally the module that detects the ending of a character's mortal
coil, which it does by monitoring changes to a character's hitpoints attribute:

if action == "modifyattribute" and data == "hitpoints":

 if arg3 <= 0:
 me.DoAction("do", 0, 0, 0, 0, "died")

If a character's hitpoints ever reach 0 or below, he dies! Kerplunk.

The final thing the combat module must manage is handling when characters die. Again, this is a
rather large function, so I'm going to break it up into several sections:

if action == "do" and data == "died":
 self.Break(me)
 self.mud.AddActionAbsolute(0, "vision", me.Room(), 0, 0, 0, me.Name() +
 " dies!!!")

So now the character is dead, and most likely he was engaged in combat when he died (trying to fight
off his slayer), so the game tells the character to break off combat (no ghost fighters allowed). After
that, characters in the room are told of the untimely demise.

Then the character's experience is calculated and divided up among his attackers:

 experience = me.GetAttribute("giveexperience")
 if len(self.attackedlist) > 0:
 experience = experience / len(self.attackedlist)

This grabs a character's giveexperience attribute, and divides it by the number of attackers. You
should note that it's perfectly acceptable to have no attackers and still die (from a trap, for example),
and the code makes sure the length of the attack list is more than 0 before it performs division.

Now you need to go through the character's attack list, tell everyone he died, and then give them a
share of his experience:

 for x in self.attackedlist[:]:
 c = BetterMUD.character(x)
 c.DoAction("do", 0, 0, self.me, 0, "killed")
 self.mud.DoAction("modifyattribute", 0, x,
 c.GetAttribute("experience") + experience,
 experience, "experience")

This uses a standard Python for-loop, with a twist. The [:] notation at the end of self.attackedlist
makes a copy of self.attackedlist. This is important, because as you go through the list, telling
everyone that the character died, they remove themselves from the list, and you can't iterate through

Python lists that change while you're iterating through them.

The next step is to make sure the attack list is clear, and then drop all of the character's items:

NOTE

The combat module can only detect changes in hitpoints if you send modifyattribute messages
to the game itself. Sending those messages directly to characters isn't a good idea because they
don't actually implement the attribute modification. This is also why directly modifying the
hitpoints is a bad idea; other modules that might need to know about changes in hitpoints might
not be told.

 self.attackedlist = []
 me.BeginItem()
 while me.IsValidItem():
 self.mud.DoAction("dropitem", me.ID(), me.CurrentItem(), 0, 0, "")
 me.NextItem()

Any items that refuse to be dropped stay on the character. This is done because it is assumed that
items that refuse to be dropped are probably cursed, and should stick to a character until the curse is
removed. Since this is in a script, you can easily change it so that it calls the forcedropitem action
instead, if you don't want this functionality.

The section of code tries to figure out how to kill a character, based on whether the character is a
player or not:

NOTE

As I mentioned in Chapter 15, it is important to force items into the room when a character is
destroyed. If they aren't forced, the game thinks that the items are still on the non-existent
character, and you'll have a bunch of items that are just floating around in your memory, not
able to be used.

 if not me.IsPlayer():
 self.mud.AddActionAbsolute(0, "destroycharacter", self.me, 0, 0, 0,
 "")

If the character isn't a player, the function just destroys him. This means that any items that weren't
dropped previously are now forced into the room.

The final part of the code is executed when a player dies; his hitpoints are set to 70% of the
maximum, and then the game tries to figure out where to transport him:

 else:
 me.SetAttribute("hitpoints", (me.GetAttribute("maxhitpoints")
 / 10) * 7)

 r = BetterMUD.room(me.Room())
 if r.DoAction("do", me.ID(), 0, 0, 0, "deathtransport"):
 return
 r = BetterMUD.region(me.Region())
 if r.DoAction("do", me.ID(), 0, 0, 0, "deathtransport"):
 return
 if me.DoAction("do", me.ID(), 0, 0, 0, "deathtransport"):
 return
 self.mud.DoAction("forcetransport", me.ID(), 1, 0, 0, "")
return

The respawn system is hierarchical. Whenever a character dies, he is transported somewhere, but the
ethereal destination varies depending on where the character is. The room, region, and player are all
asked to perform a death transport event. If they don't perform any transporting, 0 is returned, and the
function goes on to the next entity. When the deathtransport action is invoked, it should return non-
zero to signify that it has accomplished the transportation.

If none of the threethe room, region, and player transport the player, the function finally gives up and
transports the player to room 1 as illustrated in Figure 18.3.

Figure 18.3. The game uses this process to figure out how a player should die.

This kind of a system is useful on a few levels. If you ever implement some kind of honor/ reputation
system, you can have good players respawn in a pleasant area, or bad players respawn in a dismal
area. It's also helpful to have regions respawn players in a local area, so that a player doesn't have to
wander around the entire game trying to get back to where he was. Or even more elaborate, you can
have a room that serves as an altar to some obscure death-cult, and if a player dies in that room, the

game sends you to a special area of the game. The point is that with this scripting system, you can do
almost anything you want.

Add-On Modules for the Combat of Nonplayer Characters

Once you have a combat module, you can give it to anyone who you want to be able to attack or be
attacked, but that's not quite good enough. This module can be given to anyone who will perform
combat, but it doesn't actually make anyone attack anyone else. It doesn't send any initattack or
breakattack messages on its own. It just responds to them. To make NPCs in the game attack, you
need to give them additional modules that react to certain events.

For example, I could create an evil combat AI module, which would attack people the moment it saw
them, and wouldn't break until either a character left or died. The evilmonster logic module can also
be found in /data/logics/characters/combat.py.

The first thing the module must do is attack anyone who enters the room:

if action == "enterroom":
 if arg1 != self.me:
 self.mud.AddActionAbsolute(0, "do", 0, me.ID(), arg1, 0,
 "initattack")
 return

Since characters are notified when they themselves enter the room, you need to make sure that the
character doesn't start attacking himself. As long as he's not attacking himself, he can start an attack
initialization immediately.

Then you must ensure that once the enemy has dispatched his prey, he begins attacking someone else
in the room (in case there are other people). This is triggered whenever the enemy receives a "killed"
event, telling him that he just killed someone:

if action == "do" and data == "killed":
 r = BetterMUD.room(me.Room())
 r.BeginCharacter()
 while r.IsValidCharacter():
 if r.CurrentCharacter() != arg3:
 self.mud.AddActionAbsolute(0, "do", 0, me.ID(),
 r.CurrentCharacter(), 0, "initattack")
 return
 r.NextCharacter()
 return

This simply goes through every character in the room and finds a new victim to attack. There is just

one thing to watch for, however; this code is called before the old victim has been removed from the
room, so you need to make sure you don't try to re-attack him. This is done in the line in bold; arg3
holds the ID of the character who just died.

Of course, the great thing about these kinds of scripts is that you can make different AIs. I've included
another AI script called "defender" in the same file, but the AI shown here attacks only when attacked
and breaks off when you break off combat.

Once More into the Breach

The final topic dealing with combat involves the attack commands, which allow a character to attack
someone else. These two commands can be found in /data/commands/ usercommands.py. The first
one handles attacking:

class attack(PythonCommand.Command):
 name = "attack"
 usage = "\"attack <character>\""
 description = "initiates attack mode on a character"

 def Run(self, args):
 if not args: raise PythonCommand.UsageError
 me = BetterMUD.character(self.me)
 r = BetterMUD.room(me.Room())
 t = FindTarget(r.SeekCharacter, r.IsValidCharacter,
 r.CurrentCharacter, args)
 target = BetterMUD.character(t)
 if not target.DoAction("query", me.ID(), 0, 0, 0, "canattack"):
 return

 me.DoAction("do", 0, 0, t, 0, "initattack")

NOTE

The canattack query assumes that there's some module attached to the character in question
that tells the charac ter why he cannot be attacked. This is useful for many situations. For
example, if a player tries to attack a demon god in your game, the god smites him immediately
and says to him, "How dare you attack me?!" Or you could have a moral system in place that
prevents a character from striking down elderly women. The point is that you can do anything
with these script modules.

The code is similar to what you've seen before. The function tries to find a character to attack using
the FindTarget function, and then the command asks the character if he can be attacked. If not, the
function just returns. If the character can attack, the command sends an initattack event to the

character.

Breaking attacks is even easier than attacking:

class breakattack(PythonCommand.Command):
 name = "breakattack"
 usage = "\"breakattack\""
 description = "Stops attacking your target"

 def Run(self, args):
 me = BetterMUD.character(self.me)
 me.DoAction("do", 0, 0, 0, 0, "breakattack")

All you do is send a breakattack event to yourself. That's it!

Summary

That's as much as I want to show you about the BetterMUD. I hope that you've gotten a good look at
how the whole system is put together, so that you can see how a dynamic data/ dynamic logic MUD
works.

I hope that now you have a clear sense of the power available to you with this system. I don't want
you to go away thinking that the BetterMUD is a complete MUD. It's far from being a complete MUD,
but the basic framework is there for you to play around with.

Clearly the most powerful part of the MUD is its flexibility. By abstracting the controls of the logical
away from the physical, you're essentially allowing yourself to change the game whenever you want.

I tried not to restrict you to any one paradigm of game, but that's difficult. Obviously, I set most of my
items and characters into a pseudo-medieval hack-and-slash style game, but you don't have to accept
that setting.

Heck, if you really want to, you can just use the BetterMUD core as a fancy chat program, but that
would be like driving a Lamborghini 20 mph to go to the grocery store on Sundays.

I would again like to extend an invitation to you to come and play on my BetterMUD server. It is
running on dune.net, port 5110. I can't guarantee that I'll always be there, but when you catch me, if
you have any questions, I'll be glad to answer them. I plan on adding tons of scripts and making it a
large community, and I'll have scripts available for you to download on my website. Check out
http://www.ronpenton.net/MUDBook/ for downloads, add-ons, code updates, and so forth.

I regret that I simply didn't have the time to make a full featured datafile editor for the BetterMUD, but
I'll work on one and post it to the website if you're interested.

I want you to think of what I've shown you as a guideline. You should now know enough about
network programming, threading, and general MUD design to tackle your own project from scratch.
Personally, after the experience I had writing the BetterMUD, I would recommend writing a MUD
entirely from scratch in Python. Python has so many built-in libraries that it makes everything
incredibly easy to code, and it's not as if you're going to be sucking up too much processor power,
since MUDs don't really need that much processing. Good luck, I hope to see you on my server!

http://www.ronpenton.net/MUDBook/default.htm

Chapter 19. Conclusion
"Parting is such sweet sorrow," as they say. You have reached the conclusion of the book, and I hope
it has been a good experience for you. Throughout the book, I focused on MUD design and had little
chance to discuss ideas about what you should put in your games.

I think that was a sound approach, however. As I keep saying, MUDs are such a broad genre of
games, that if I tried pushing a single approach, mobs would throng at my door with torches and
pitchforks.

The problem is that there are so many different ways to make MUDs. I've seen MUDs with no combat
at all, in which players merely run around and dynamically create objects and rooms. I've seen MUDs
with nothing but combat. I've even seen MUDs that the inhabitants swear aren't MUDs, even though
they have monsters and items; in these, guys stand around and chat all day as if they're in a chat room.

Picking Features

There's really no solid definition of features that a MUD must have, but I've tried to go over the most
common features. For example, a room-based system is almost always included in MUDs. Items and
characters are also main staples. Beyond that, however, things get a bit hazy.

Feudalism or Capitalism

What kind of economy are you going to have? Both the SimpleMUD and the merchant module of the
BetterMUD have open economies. Items and money are created on demand, and destroyed as well.
This is clearly not how the real world works, but that's okay; you're creating a virtual world! The
problem with open economies is that they tend to get unmanageable after a while. Think about this for
a moment.

Open Economies

Enemy characters are spawned out of nowhere, appearing by "magic" at certain intervals producing
an essentially unlimited supply of people. If every one of these characters is killed, you have a major
problem on your hands, because they drop things that are worth money. Eventually the economy of
your realm inflates, and there is so much money lying around that new players logging in are instant
millionaires. Think I'm kidding? In my copy of the SimpleMUD, I had 10 millionaires after one month.
Granted, I didn't actually spend a lot of time balancing the game more evenly, but balancing only goes
so far. Eventually the fact that there is an infinite supply of wealth catches up with you.

To counter such a situation, you could implement a system of sinks that suck the money out of the
game without returning anything. One very common way to implement this is to use toll roads.
Essentially, you can make your players pay to move around the game. Of course, if you make too many
toll roads with excessive fees, your players are likely to revolt against you. But at least toll roads are
a start in the right monetary direction.

A proven way of putting sinks into your game is to use the concept of durability. In the real world,
things are designed to break. Anything you buy is probably designed to stop working after a certain
period of time, to make sure you buy a new one. While built in obsolescence sounds evil, it's
necessary in a MUD. It ensures that items disappear eventually, and that people cannot accumulate
massive amounts of wealth, because they'll have to keep buying replacements.

Another popular option is a cleanup. Lots of MUDs have a specific time every day when the MUD
goes through every room, and deletes every ordinary item that is lying on the floor (as opposed to
special magical or rare items). Although this is one solution to the problem, it's not very elegant.
Items shouldn't disappear randomly. What if a player puts something down for a moment, runs off to
kill an ogre, and comes back an hour later to find the item has disappeared? That's probably going to

anger your players, so it's not a great idea.

An absolutely great idea for a sink would be charging rent. Your characters are going to accumulate
wealth, and they need to stash it somewhere, so you could have an entire area of a town filled with
apartments. The characters can buy keys and be charged by the week for storing stuff. If you're
particularly evil, you can write an eviction script, one that automatically throws the renter's items on
the sidewalk when he doesn't pay the rent.

Closed Economies

On the other hand, you could opt for a closed economy that would work like this: when the game
starts, there are only a certain number of objects and wealth in the game, and there can never be more.
This takes a lot of careful management, and some fudging here and there. I almost never see this kind
of a system implemented in a MUD because you eventually run out of items and cash to go around.
The entry of new characters into the game does not alter the number of items in the MUD. In this
situation, the early players usually gain a stranglehold on all the wealth, and newer players get
nothing, because the higher-ups have hoarded it all.

I wouldn't recommend going for a closed system unless you're a "reality" freak, and the very thought
of spawning items and wealth out of absolutely nowhere gives you nightmares.

Combat

It is difficult to write about combat in a general sense, simply because combat is different in every
kind of MUD out there. Medieval MUDs all seem to have coalesced into similar systems, usually
inheriting many features from Dungeons and Dragons rules, but those systems only go so far.
Honestly the whole "arm weapon and attack" system can get boring quickly, and doesn't work
particularly well with anything that is modern. For example, games in which you can shoot people
with guns rarely work out well, because guns almost always cause immediately incapacitating
wounds; and that's just not fun.

I particularly appreciate how Frank Herbert's Dune book solved this problem. It takes place tens of
thousands of years in the future, and weapons and defense technology have become so advanced that
using laser weapons on a shield would cause an intense nuclear fusion reaction, killing everyone
involved in the combat. Because of this, everyone in the future ends up fighting with knives versus
shields, putting the "art" and the "skill" back into combat. If you're making a combat-oriented MUD,
you should definitely think about these kinds of things.

Another important topic is player versus player combat, also known as PvP. This is an intensely
contested feature of MUDs. It's one thing to be killed by a computer enemyyou just suck in your chest,
accept your loss, and see if you can get your stuff back. But it's completely different when another
player kills you. The fact that another human being controlled the character that killed you completely

changes the dynamics of the attack. Instead of a numbskull computer character whose only job is to try
to kill you, some other player decided that he hated your guts enough to attack you! The nerve!

Things such as PvP inevitably lead to tensions and fierce competition. This can either be really good
or really bad. I've seen it turn out both ways. It's good because some people take this as simply
another form of sport, and they want to play your game even more. It's bad because there are always
people who take it too far. Verbal drubbings and swearing are common when people get too caught up
in the game, and when this happens over global chatter, it might seriously annoy other players.

I'll leave the PvP question in your hands. There really is no optimal solution to the problem. There are
a number of things you may want to try, however. For example, it's often a great idea to implement
levels of penalties. It's just not fair to have a level 70 swordmaster walk into town and slaughter
every level 5 character, now is it? One solution is to reward such an action with only 1 or 2
experience points or none at all. Of course, this doesn't solve the issue of psychotic players who
delight in killing newbies for absolutely no reason.

NOTE

Running a MUD is an interesting sociological experiment, and it can teach you a good deal about
human psychology.

To control psychotic behavior, I suggest making it impossible for characters to attack other characters
whose experience range is outside the range of the attacker's experience by a specified amountmaybe
5 levels in each direction. That way, level 70 people can only attack people in the range 6575. It all
depends on how you implement your ranking system. Again, it's your MUD, and you should do what
you want.

Administration

Administering your MUD takes a good deal of effort. MUDs don't just run themselves; you have to
take care of lots of details.

Hosting

First you need to figure out where you want to run your MUD. You can probably run a MUD over a
broadband Internet connection on your home computer, but I really wouldn't recommend that, for many
reasons.

First and foremost, your home computer is probably not a server. You probably program on it and
play games and music. Therefore, it's not a dedicated environment for a game server. That's

acceptable if you're just running a small MUD at your leisure, but for anything more serious, you
should look into a professional server solution.

NOTE

You should be aware that most broadband connections explicitly disallow the running of servers
on your connection. This is mainly due to the way they calculate bandwidth usage, and they
assume you'll be downloading far more content than you upload, but a server changes all of this.
If you do want to run a MUD on your home connection, look at your end user license agreement
to make sure it's okay first. Some ISPs even cancel your account if you run servers on it.

I've only recently started dabbling in Linux, and I'm impressed with what I see. If you know anything
about Linux, it shouldn't be difficult for you to find someone who will sell you access to a Linux shell
that you can run your MUD on. In fact, the site that I use, http://dune.net offers this very service, and
for reasonable prices as well. There are many other hosting companies as well, in case http://dune.net
doesn't fit your needs, or you don't feel like messing around in Linux.

Here are some sites you may want to check out:

http://www.silverden.com/ (Linux)

http://www.genesismuds.com/ (Linux)

http://dune.net/ (Linux)

http://www.mudhost.com/ (Linux)

http://www.gryphonmud.com/ (Linux)

http://www.mudshell.com/ (Linux)

http://www.ancientrealms.org/ (Linux or Windows NT available)

http://www.wolfpaw.net/ (Linux)

As you can see, almost all of the sites offer just Linux shells. This should tell you how important
Linux is as a server platform for MUDs. If you're not familiar with Linux at all, I urge you to learn
about it. I was hesitant at first, but it didn't take me long to figure out what I was doing. What's the best
thing about Linux? It comes with GCC, a full (almost standard) C++ compiler, completely for free.
How can you beat that?

http://dune.net/default.htm
http://dune.net/default.htm
http://www.silverden.com/default.htm
http://www.genesismuds.com/default.htm
http://dune.net/default.htm
http://www.mudhost.com/default.htm
http://www.gryphonmud.com/default.htm
http://www.mudshell.com/default.htm
http://www.ancientrealms.org/default.htm
http://www.wolfpaw.net/default.htm

Another great alternative is running a MUD on a university server, provided you have permission to
do so. Considering that most of the original MUDs were created in universities across the world, this
is sort of a tradition, and you shouldn't have much trouble gaining permission to run one.

Management

Will you be a benevolent dictator? Will you run a democracy, or will you let your realm be a
complete anarchy? These are some of the questions you need to think about when running a MUD.
You are taking on the role of a god; you created the realm, you can do anything you want in it, and the
players are at your mercy.

But how much control should you exert? Sometimes it's a good idea to impose a legal system such as
this: no killing when people are away from the keyboard, or no stealing. These kinds of things can be
enforced by the game, but at some point, actual management needs to come into play.

You're going to need people to manually enforce the rules, whether it be yourself, or people you can
trust. This is a very difficult thing to manage though. I'm sure you've heard the adage, power corrupts.
Who can resist the temptation of playing around with power? If all goes well, the people you recruit
to have extra police powers will behave, and your realm will live in peace. If they don't, your realm
will live in pieces.

Don't hesitate to be strict on frequent offenders. Generally offenders cause everyone else to have a
miserable time, so making an example out of one person usually pleases other players.

Security

Security is another topic that I haven't discussed much. When going over the Socket Library, I showed
you how to protect against single connections streaming tons of data to you to prevent being flooded
with information.

But that's only one way you can be attacked. The SocketLib's connection manager doesn't handle
denial of service attacks at all. These are the kinds of attacks that occur when one person connects to
your server with dozens or maybe even hundreds of connections, thus eating up your resources and
denying connections to other people trying to log on. In its current form, the SocketLib can't detect
these attacks, because it doesn't detect the number of connections that it has from the same IP address.
Therefore, you can have 50 connections all from the same person, all slowly flooding you below the
individual connection flood rate, but collectively lagging your server to death.

This could be fixed in the connection manager easily enough, by limiting the number of connections
per IP address.

On the other hand, you're going to come across an even trickier attack at timesthe distributed denial
of service attack. These attacks are usually caused by dozens or even hundreds of different computers

all attacking your server at once. The best way to block this kind of an attack is to simply disconnect
connections that sit in the login state for too long. But if people are really intent on attacking your
server, they'll just log in anyway. The best defense in that case is to have a corps of administrators
that you trust, and make sure that at all times, at least one of them is online to kick off troublemakers.

Of course, you'll encounter problems besides network attacks, and many will be problems of your
own design. Your players will find flaws in the game that will give them gains that they should not
have. I can recall an instance when a certain NPC in a MUD I played on offered high experience
points for killing him, but gave the players evil points when they attacked him. If you accumulated too
many evil points, town guardsmen would hunt you down, so people tried to avoid being evil.

NOTE

The term farming refers to people staying in an area and killing the same monsters over and
over again.

Of course, it got to a point at which the characters became more powerful than the guards, and started
farming that NPC to death, racking up tons of evil points, and tons of experience, without any
drawbacks.

So what happens when your players inevitably find your flaws? Do you punish them? If you do, you're
sure to receive complaints such as this, "Hey! I wasn't cheating! Your crappy game allowed me to do
that!" It's best to punish only cases in which people take excessive advantage of a bug. Chances are,
when a bug is discovered, there will be little doubt that it's not supposed to be there. Your players
will probably know that they are exploiting a bug, but people are people. Who can resist the
temptation of getting a permanent character boost?

If anything, this should help highlight the importance of testing. You must test your game before you
unleash it on the world, or else you should expect people to take advantage of your mistakes.

The Future

This book isn't the be-all and end-all of MUDs. I've only scratched the surface of what you can do,
and you should consider a number of things when thinking about the future.

Databases

I mentioned a few times before that the databases for the SimpleMUD and the BetterMUD aren't real
databases, but rather simple classes that store objects in system memory. After running a MUD long
enough, you'll have enough objects in memory to be a major drain on the system. In most systems,
most of these items sit around and are not used by anything for most of the time. So why should you
waste resources keeping them around?

Another reason to use a database is that databases are abstractable, and therefore you can keep them
on a separate computer and gain a slight processing advantage, especially for very large systems. If
you decide to look into databases, both Python and C++ have APIs that you can use with SQL
databases, which are the most common kind.

Online Editing

A concept I've always been fond of has been online editing of games. The basic idea is that you'll be
able to log into the game, and modify or add new entities to the game through a remote client. The
easiest way to implement this is to use simple clients that upload the new datafiles, and then tell the
game to reload them.

A slightly more advanced system would allow direct modification of entities while they are in
memory, but this can get to be difficult to manage at times, especially if the entity in question is being
used within the game. Imagine loading up a sword, and then modifying it in an editor. While you're
doing that, the sword can be modified by anything in the game, and its characteristics may have
changed once you reinserted the entity.

To solve this, think about making a system of "locks" for your entities. When editing a room, make
sure no one can enter it. When editing a player, make sure he can't log on, and so on. Either do that, or
do your editing late at night when very few people are playing.

MMORPGs

When you think about how a MUD works, you realize that it's basically just a messaging system.
People log on, and perform different kinds of actions; the game engine figures out what data these

actions change, and thens tell every client who cares about the action.

Advanced Connection Systems

Typically MUDs never see more than a few dozen people at a time, a hundred or so at most; but
there's absolutely no reason why MUD technologies can't be extended infinitely. Theoretically, the
BetterMUD on Linux should support up to 1,024 people, but I don't know 1,024 people who are
willing to test it at the same time.

The only reason it's limited to 1,024 connections, however, is because the connection manager is
limited to the size of one socket set, which is typically (but not always) 1,024 on Linux. It's not a very
difficult task to upgrade the networking system to handle more than that, but at that point, you're going
to need a new strategy.

Once you need to handle a lot of connections, you'll discover that multithreading is your best friend.
The best strategy is to create multiple threads, so that each thread manages a collection of
connections.

In fact, the best way you can do this is by separating the game and connection stuff into completely
different threads. The network threads would continuously monitor for any network activity and cache
the input somewhere for the game thread to get later.

Adapting a MUD to a MMORPG

When you think about a modern MMORPG, you can see that it's basically a MUD with a graphical
client attached. The major difference between the two is the way that maps are usually represented.
Instead of having one room that contains many people, you'll have a large area composed of many
tiles, which you can conceptualize as miniature rooms.

The notification system is going to be a little different, because you'll have to go to every tile that can
see where an action is occurring, and tell everyone within that radius about what happened. So
instead of telling one room about an event, you'll find yourself searching for everything within a 32
tile radius (or whatever) and telling them that something happened. At the very bottom core, a
MUD/MMORPG is just a system that figures out what happens, where it happened, and who it
happened to, while at the same time sending the messages about what happened to all the network
connections.

In modern MMORPGs almost all of the fancy graphic stuff is handled by the clients, letting the server
take a precious break from the rendering graphics.

Data Transmission

Of course, since you're handling so much more data, and probably have graphical sprites or models
representing everyone, you're going to have to send much more data out to clients. Every time a
character changes its state (for example changing from walking to resting or running or talking), you
should probably send out a state change notification. Of course since rooms in MMORPGS are
smaller objects now, characters are going to be moving in and out of them at a much faster rate.
Obviously this means that you're going to need a lot of bandwidth, which gets quite expensive.

This makes it really important that you send data only to clients that need to be informed. A client in
one area that can't see something happening 40 tiles away shouldn't know about it at all, so there's
absolutely no reason to inform him.

MMORPGs use another trick for faster data transmissionbinary packed data. For everything in this
book, I used ASCII for the data transmission, so that information is sent as text strings. For binary
packed data, the only thing you would send as strings would be actual strings; everything else would
be sent as its numerical binary representation instead.

For example, sending the number 128 in ASCII mode takes three bytes of data, one for each digit. On
the other hand, you should know that a single byte of data can represent numbers from 0255, so you
could easily pack the number into a single byte, thereby reducing the amount of data you sent by 3
times.

Of course, to make things more flexible, you're probably going to want to use 16-bit (2 bytes) or 32-
bit (4 bytes) numbers, because 0255 is a very small range. Using 16-bit numbers, every number larger
than 99 saves you at least a byte, and at most 3 bytes (since the largest number that you can send is
65,535, which is 5 characters). The downside is that any number below 10 wastes a byte, since 09
only take up 1 byte in ASCII, but 2 bytes when packed into binary as 16-bit integers. Start here

Using 32-bit numbers offers a potentially higher data compression savings, because you can store
numbers up to 10 digits in size in just 4 bytes. The downside is the fact that you very rarely need to
send 10-digit numbers, and instead will probably be sending numbers much smaller than that far more
often. When sending 32-bit integers, you waste 3 bytes when sending numbers 0-9, 2 bytes when
sending 10-99, and 1 byte when sending 100999. It's only when sending numbers 10009999 that you
break even, and when you use numbers larger than 9999, you get a compression savings.

Another big problem with binary data transmission is the endianness of the data. Some machines like
to store the byte with the least significant data in the first byte; others store it in the last byte. So the
number 128 could be represented in binary form as 0xF0000000 on a little-endian machine, and
0x000000F0 on a big-endian machine (remember 0xF0 is 128 in hexadecimal). Ultimately this means
that for every piece of binary data that you send, you need to make sure it's in the proper form for your
machine. This can end up giving you a lot of extra work to do, but luckily you don't need to make the
server do any of that extra work. Instead, you can make your clients do all the data translation and
assume that the server only transfers binary data in one particular way. This has the net effect of
distributing all of this extra processing among everyone who is connected, and freeing your server
from that work.

Distributed Computing

Once you get past a certain number of connections, one computer just isn't going to be able to handle
the load, no matter how powerful it is. A very popular way of making an MMORPG or MUD work
with thousands of connections is to use distributed computing, so that the game runs on multiple
computers. The easiest way to do this is to split up your realm into two or three regions, and have
each computer control everything within one given region, and switch connections between the
different servers when the characters move between the regions.

Pretty much the only thing you have to worry about in this situation is load balancing. Your servers
can become unbalanced quite easily if one region is more popular than another. There's little point in
having three or four distributed servers if everyone is going to be on just one of them.

With good planning, you can solve this kind of a problem. You should make it so that people want to
go to all areas of the game, and that one region doesn't have one huge benefit over another.

Some MMORPGs solve this problem by literally forcing you out of an area by teleportation if there
are too many people, but your players won't like this. It's unnatural, first of all, and it's annoying as
well. Nothing will anger your players more than being sucked out of an area while they're in the
middle of doing something.

Another option would be to prevent people from entering a new area if the server is full, but that can
also get annoying. In the end it all comes down to good level design.

The best part of a distributed setup is that it meshes into the database design very well, if you have a
professional database stored on a specific database server. You could have three machines, two
running the game and one storing the database, and the two game machines never worry about
synching data up with each other.

Show Me the Money!

You're going to have to decide early on whether you want to charge people to play your MUD. Back
in the bad old days of computing, charging for playing a MUD was not only common, but expected.

Nowadays, servers are so cheap that almost all MUDs you can find are free to play, which makes
pay-per-play a somewhat obsolete model. If you were to add on a graphical client, I guarantee that
people would be more inclined to play, but the bottom line is that people just don't like dishing out
money every month for a game.

The good news is that running a MUD is cheap. Both the SimpleMUD and the BetterMUD are costing
me about $16 a month to run, which is cheaper than most ISPs cost. If you can't afford that, it's pretty
easy to collect donations, or charge a one-time fee for playing the game. If you charge $20 for

someone to join the game, and you have 40 people pay it, you've just collected enough money to run
your MUD for four years.

You can also fund your adventures by having a donation system, whereby people can donate through
Paypal.com, personal check, or whatever. To make people want to donate money, you might consider
offering incentives, but you must be very careful about these.

When people give you money, you might want to give them something special in return. Initially, this
seems like a great idea. It's a great way to reward people for supporting your server. But this can lead
to major problems if you're not careful.

Say you decide to bestow a special sword on someone who donated a hefty sum and that sword gives
that character a nice boost over other players. This will probably raise resentment against him. What
happens when someone steals that sword? Does the thief have the right to keep it? If stealing is
allowed in the game, the thief will definitely love to keep the sword, and the donator will have lost
real money in the game, since he essentially paid for the sword. Either way, you're going to have at
least one angry player.

What makes things even worse is the fact that stealing the bonus item is almost indistinguishable from
theft in real life. The fact that the donator spent real money obtaining the item means that the thief
essentially stole real money from the donator. This may even get you into some legal troubles. My
recommendation is to stay away from this kind of thing. What about players who use donations as a
way of not playing? Someone can log on, donate lots of money, and get lots of bonus stuff, and
completely skip playing on the lower levels of the game. Someone who played for a few weeks to get
past those levels is going to be angry that someone else can just come into the realm and pay real
money to advance.

Another downside is figuring out what kind of bonuses to give to players when they donate money. If
you do give them some kind of super weapon, it may not be so super a few weeks later when they've
outgrown it. In a virtual world, things are constantly changing, and any bonus you give to someone
one week may not be worth anything later on. This also has a tendency to anger people.

The bottom line is that you really shouldn't give tangible things to people as bonuses. It would
probably be a better idea to give donators special abilities that no one else can have, or give them
special ranks, letting everyone in the realm know that they are important.

Real money tends to bring out the worst in people.

Resources

There are tons of resources out there dealing with MUDs. One of the most popular is the website
http://www.mudconnector.com, which lists most active MUDs. You can go there and log into anything
you want.

There are also books available on the topic.

Designing Virtual Worlds

By Dr. Richard Bartle (ISBN 0-1310-1816-7)

This is a fairly new book about MUDs and their predecessors, written by Richard Bartle, who helped
make the original MUD game. It doesn't have any code in it at all and is mainly focused on overall
design and gameplay issues, things that you should think about. Bartle gets into a fair amount of player
psychology analysis as wella very interesting topic.

Overall, the book is written with professional developers in mind, people who charge money to play
on their servers. This doesn't prevent it from applying to MUDs though.

Developing Online Games

By Jessica Mulligan and Bridgette Patrovsky (ISBN 1-5927-3000-0)

This book is also new, but is less related to MUDs than Designing Virtual Worlds. This book is
instead focused on the planning and business sides of making massively multiplayer online games. It's
an interesting read nonetheless, due to the inclusion of several post-mortems of popular MMORPGs,
such as Anarchy Online and Dark Age of Camelot. You can see the mistakes those and other games
made even before a single line of code was written. This book doesn't have any code in it either.

Massively Multiplayer Game Development

By Thor Alexander, et al. (ISBN 1-58450-243-6)

This book is published by Charles River Media, and if you know anything about their books, they
usually put out collections of short articles in one hard covered book. This is no exception.

The book contains some good chapters. The chapter dealing with calculation of items in a MMOG is
especially good. There's also a good chapter about implementing a sandbox for your scripting engine,
an idea I talked about earlier. The basic idea is to isolate your scripts in a testing area of the game
until you know they work. You can test your scripts in what is termed a sandbox without worrying
about spreading "sand" over the rest of your game.

I won't go out on a limb and recommend this book to you if you're just a casual game programmer,
however. There are a few chapters in this book that don't really have anything to do with MMOG

http://www.mudconnector.com/default.htm

game development, which is disappointing for a $60 book.

Game Scripting Mastery

By Alex Varanese (ISBN 1-931841-57-8)

This is a very good book. It's huge, and contains everything you might ever want to know about
putting a scripting engine into your game, or even making your very own scripting engine. I hope you
learned from the BetterMUD how important a scripting engine is.

The book covers several languages, such as LUA, TCL, and Python, and covers creating a completely
new scripting language and interpreter as well.

Programming Role Playing Games With DirectX

By Jim Adams (ISBN 1-931841-09-8)

This book isn't very closely related to MUDs and MMORPGs, but it's still a great reference. Along
with the networking and socket chapters of MUD Game Programming, this book should teach you
everything you might ever need to know about making a really good game client for your servers.

Linux Game Programming

By Mark Collins (ISBN 0-7615-3255-2)

Linux and MUDs go together like peanut butter and jelly. You might not want to believe it at first, but
eventually you'll catch on. Unfortunately, Linux is just so darned hard to get into, because it has a
steep learning curve. Luckily, there are a bunch of books out there that take a game programming
approach to Linux. This book teaches you all the basics about programming games in Linux, such as
using the SDL graphic library, the OpenGL 3D library, and other things.

Programming Linux Games

By John R. Hall (ISBN 1-886411-49-2)

This is another good Linux book, and the best part about it is that it's free! No strings attached. You
can download it online at many places. At the time of writing this, it is available at
http://www.overcode.net/~overcode/writing/plg/, but that may change. If the site doesn't exist, just
google Programming Linux Games, and I'm sure you'll pick up a few dozen links.

I picked up a dead-tree version of this book anyway, because I still prefer to read books on paper.

Network Programming for Microsoft Windows

By Anthony Jones and Jim Ohlund (ISBN 0-7356-1579-9)

http://www.overcode.net/%7Eovercode/writing/plg/default.htm

This book is the Winsock Bibleanything you ever needed to know about Winsock is in this book. The
best part about it is that it goes into the more advanced Winsock features that you can't find in the
standard Berkeley Sockets API, such as overlapped sockets. For any network programmer, this book
is a must-have.

Unix Network Programming

By W. Richard Stevens (ISBN 0-134900-12-X)

If the previous book is the bible on network programming in Windows, this book is the bible of
network programming in UNIX. The book goes over the entire Berkeley Sockets API with a fine-
toothed comb, and it's virtually a requirement when working with network programming.

Data Structures for Game Programmers

By Ron Penton (ISBN 1-931841-94-2)

I may be a bit biased when recommending this book, but I feel that to understand any of the more
advanced topics in game programming, you absolutely must have a solid foundation in data structures
and algorithms. This book goes over almost all the basic data structures, as well as a bunch of
advanced structures and algorithms, and will help you understand why using a priority queue for the
BetterMUD timer system was a great idea, and why using sets instead of lists makes the BetterMUD
more efficient.

Concluding the Conclusion

You've reached the end of the book. I hope you found it interesting and entertaining. If you have any
questions at all, feel free to contact me at MUDBook@RonPenton.net, or log into the BetterMUD or
the SimpleMUD, which I have running on Dune.net:

SimpleMUD: telnet://dune.net:5100

BetterMUD: telnet://dune.net:5110

I can't promise that I'll always be there, of course, but I'll be running the servers as long as I possibly
can (at least two years if interest holds up). Don't be scared if my version of the BetterMUD doesn't
look like the version of the BetterMUD on the CD; I'll be slowly improving on it and adding scripts
for all occasions. I'll always have the script source code for my version available at my website,
http://ronpenton.net/MUDBook/. Also, if I do change the MUDs from dune.net (if http://dune.net goes
out of business or something), I'll be sure to tell you where I've moved them on my website as well.

I look forward to meeting you there!

http://ronpenton.net/MUDBook/default.htm
http://dune.net/default.htm

Chapter 20. What's on the CD?
The CD contains all kinds of goodies dealing with MUDs and MUD programming.

Libraries

The three libraries, BasicLib, SocketLib, and ThreadLib, are stored in the directory /Libraries on the
CD. Feel free to use the code in them for whatever you want.

The MUDs

The two MUDsSimpleMUD and BetterMUDare stored within the /SimpleMUD and /BetterMUD
directories on the CD, respectively. You're free to take them and modify them however you wish, and
run them on your own.

The Goodies

I've included a bunch of goodies on the CD, including a few popular free Telnet programs, so you can
start playing MUDs on your own if you don't already have a Telnet program.

The distributions for the Python programming language, as well as the SWIG wrapper generator
program (both used in Chapter 17) are in the /Goodies directory as well.

Appendixes

The appendixes contain all the auxiliary information you might need to know. They are on the CD but
not printed in the book.

Appendix A Setting Up Your Compilers

Setting up the compilers for the code in the book was a difficult task for me, since I had to make sure
the code ran on three different compilers at the same time. Because of the complexity of this task,
compilation information and instructions are gathered into this appendix instead of being covered in
separate chapters.

Appendix B Socket Error Codes

There are so many things that can go wrong when you're dealing with socket programming, and there
are a ton of error codes detailing what went wrong. This appendix lists all the common error codes
and what they mean in plain English.

Appendix C C++ Primer

C++ and STL are requirements for this book, but no one can possibly be required to remember every
little quirk and detail about them. Because of this, I've included this simple primer that enables you to
refresh your memory on the features you may have forgotten.

Appendix D Template Primer

This is a bonus appendix from my Data Structures book on how to use templates.

Glossary

This is a glossary of all the fancy terms and acronyms used throughout the book.

Let's Get Ready to Rumble

This book focuses mainly on how to implement a MUD, but not so much on the various gameplay
issues that will confront you. The basic reason behind this is that people don't like to be told how they
should make their gameplay work. The great thing about MUDs is that no two MUDs are the
sameevery single one is customized to the likings of the person running it.

Because of this, I don't really want to tell you what kind of features and issues you need to have in
your game. Chances are you already know what you want, and it's probably not what I have in mind.

Don't forget to drop me a line at MUDBook@ronpenton.net if you have any questions about the book.
I'll try to respond to your mail as soon as possible.

With this in mind, you can start MUD Game Programming! Enjoy!

http://ronpenton.net/default.htm

Before you start
This file is not for reading, but just for acquaintance with the book
you are going to buy. Do not ruin your eyes reading it from a
monitor or pda. Just decide is the book worth your money. Buy
hardcovered books, support authors and publishers.

Like the book? Buy it!

	Part ONE: The Basics
	Chapter 1. Introduction to Network Programming
	Chapter 2. Winsock/Berkeley Sockets Programming
	Chapter 3. Introduction to Multithreading
	Chapter 4. The Basic Library
	Chapter 5. The Socket Library
	Chapter 6. Telnet Protocol and a Simple Chat Server
	Part TWO: Creating a SimpleMUD
	Chapter 7. Designing the SimpleMUD
	Chapter 8. Items and Players
	Chapter 9. Maps, Stores, and Training Rooms
	Chapter 10. Enemies, Combat, and the Game Loop
	Part THREE: Creating a BetterMUD
	Chapter 11. The BetterMUD
	Chapter 12. Entities, Accessors, and Databases
	Chapter 13. Entities and Databases Continued
	Chapter 14. Scripts, Actions, Logic, and Commands
	Chapter 15. Game Logic
	Chapter 16. The Networking System
	Chapter 17. Python
	Chapter 18. Making the Game
	Chapter 19. Conclusion
	Chapter 20. What's on the CD?

