

Contents • Build Your Own Lisp

Chapter 1 • Introduction

About
Who this is for
Why learn C
How to learn C
Why build a Lisp
Your own Lisp

Chapter 2 • Installation

Setup
Text Editor
Compiler
Hello World
Compilation
Errors
Documentation

Chapter 3 • Basics

Overview
Programs
Variables
Function Declarations
Structure Declarations
Pointers
Strings
Conditionals
Loops

Chapter 4 • An Interactive Prompt

Read, Evaluate, Print
An Interactive Prompt
Compilation
Editing input
The C Preprocessor

Chapter 5 • Languages

What is a Programming Language?
Parser Combinators
Coding Grammars
Natural Grammars

Chapter 6 • Parsing

Polish Notation
Regular Expressions
Installing mpc
Polish Notation Grammar
Parsing User Input

Chapter 7 • Evaluation

Trees
Recursion
Evaluation
Printing

Chapter 8 • Error Handling

Crashes
Lisp Value
Enumerations
Lisp Value Functions
Evaluating Errors
Plumbing

Chapter 9 • S-Expressions

Lists and Lisps
Types of List
Pointers
The Stack & The Heap
Parsing Expressions
Expression Structure
Constructors & Destructors

Reading Expressions
Printing Expressions
Evaluating Expressions

Chapter 10 • Q-Expressions

Adding Features
Quoted Expressions
Reading Q-Expressions
Builtin Functions
First Attempt
Macros
Builtins Lookup

Chapter 11 • Variables

Immutability
Function Pointers
Cyclic Types
Function Type
Environment
Variable Evaluation
Builtins
Define Function
Error Reporting

Chapter 12 • Functions

What is a Function?
Function Type
Lambda Function
Parent Environment
Function Calling
Variable Arguments
Interesting Functions

Chapter 13 • Conditionals

Doing it yourself
Ordering
Equality
If Function

Recursive Functions

Chapter 14 • Strings

Libraries
String Type
Reading Strings
Comments
Load Function
Command Line Arguments
Print Function
Error Function
Finishing Up

Chapter 15 • Standard Library

Minimalism
Atom
Building Blocks
Logical Operators
Miscellaneous Functions
List Functions
Conditional Functions
Fibonacci

Chapter 16 • Bonus Projects

Only the Beginning
Native Types
User Defined Types
List Literal
Operating System Interaction
Macros
Variable Hashtable
Pool Allocation
Garbage Collection
Tail Call Optimisation
Lexical Scoping
Static Typing
Conclusion

Source

http://www.buildyourownlisp.com/static/source.tar.gz

Github

https://github.com/orangeduck/BuildYourOwnLisp

Ada Lovelace • Your typical brogrammer.

Introduction • Chapter 1

About

In this book you'll learn the C programming language and at the same time learn
how to build your very own programming language, a minimal Lisp, in under 1000
lines of code! We'll be using a library to do some of the initial work, so I'm cheating a
bit on the line count, but the rest of the code will be completely original, and you
really will create a powerful little Lisp by the end.
This book is inspired by other tutorials which go through the steps of building a
programming language from scratch. I wrote this book to show that this kind of fun
and creative project is a great way to learn a language, and not limited to abstract
high-level languages, or experienced programmers.
Many people are keen to learn C, but have nowhere to start. Now there is no excuse.
If you follow this book I can promise that, in the worst case, you'll get a cool new
programming language to play with, and hopefully you'll become an experienced C
programmer too!

Who this is for

This book is for anyone wanting to learn C, or who has once wondered how to build
their own programming language. This book is not suitable as a first programming
language book, but anyone with some minimal programming experience, in any
language, should find something new and interesting inside.
I've tried to make this book as friendly as
possible to beginners. I welcome beginners
the most because they have so much to
discover! But beginners may also find this
book challenging. We will be covering many
new concepts, and essentially learning two
new programming languages at once.
If you look for help you may find people are not
patient with you. You may find that, rather than
help, they take the time to express how much
they know about the subject. Experienced
programmers might tell you that you are
wrong. The subtext to their tone might be that
you should stop now, rather than inflict your
bad code on the world.
After a couple of engagements like this you
may decide that you are not a programmer, or don't really like programming, or that
you just don't get it. You may have thought that you once enjoyed the idea of building
your own programming language, but now you have realised that it is too abstract

A fridge • Your typical C user

and you don't care any more. You are now concerned with your other passions, and
any insight that may have been playful, joyful or interesting will now have become
an obstacle.
For this I can only apologise. Programmers can be hostile, macho, arrogant,
insecure, and aggressive. There is no excuse for this behaviour. Know that I am on
your side. No one gets it at first. Everyone struggles and doubts their abilities. Please
don't give up or let the joy be sucked out of the creative experience. Be proud of
what you create no matter what it is. People like me don't want you to stop
programming. We want to hear your voice, and what you have to say.

Why learn C

C is one of the most popular and influential programming languages in the world. It
is the language of choice for development on Linux, and has been used extensively
in the creation of OS X and to some extent Microsoft Windows. It is used on micro-
computers too. Your fridge and car probably run on it. In modern software
development, the use of C may be escapable, but its legacy is not. Anyone wanting
to make a career out of software development would be smart to learn C.

But C is not about software development and
careers. C is about freedom. It rose to fame on the
back of technologies of collaboration and freedom -
Unix, Linux, and The Libre Software Movement. It
personifies the idea of personal liberty within
computing. It wills you to take control of the
technology affecting your life.
In this day and age, when technology is more
powerful than ever, this could not be more
important.
The ideology of freedom is reflected in the nature of
C itself. There is little C hides from you, including its
warts and flaws. There is little C stops you from
doing, including breaking your programs in horrible

ways. When programming in C you do not stand on a path, but a plane of decision,
and C dares you to decide what to do.
C is also the language of fun and learning. Before the mainstream media got hold of
it we had a word for this. Hacking. The philosophy that glorifies what is fun and
clever. Nothing to do with the illegal unauthorised access of other peoples'
computers. Hacking is the philosophy of exploration, personal expression, pushing
boundaries, and breaking the rules. It stands against hierarchy and bureaucracy. It
celebrates the individual. Hacking baits you with fun, learning, and glory. Hacking is
the promise that with a computer and access to the internet, you have the agency to
change the world.
To want to master C is to care about what is powerful, clever, and free. To become a
programmer with all the vast powers of technology at his or her fingertips and the
responsibility to do something to benefit the world.

Mike Tyson • Your typical Lisp user

How to learn C

There is no way around the fact that C is a difficult language. It has many concepts
that are unfamiliar, and it makes no attempts to help a new user. In this book I am
not going to cover in detail things like the syntax of the language, or how to write
loops and conditional statements.
I will, on the other hand, show you how to build a real world program in C. This
approach is always more difficult for the reader, but hopefully will teach you many
implicit things a traditional approach cannot. I can't guarantee that this book will
make you a confident user of C. What I can promise, is that those 1000 lines of code
are going to be packed with content - and you will learn something worthwhile.
This book consists of 16 short chapters. How you complete these is up to you. It may
well be possible to blast through this book over a weekend, or to take it more slowly
and do a chapter or two each evening over a week. It shouldn't take very long to
complete, and will hopefully leave you with a taste for developing your language
further.

Why build a Lisp

The language we are going to be building in this book is a Lisp. This is a family of
programming languages characterised by the fact that all their computation is
represented by lists. This may sound scarier than it is. Lisps are actually very easy,
distinctive, and powerful languages.
Building a Lisp is a great project for so many
reasons. It puts you in the shoes of language
designers, and gives you an appreciation for the
whole process of programming, from language all
the way down to machine. It teaches you about
functional programming, and novel ways to view
computation. The final product you are rewarded
with provides a template for future thoughts and
developments, giving you a starting ground for
trying new things. It simply isn't possible to
comprehend the creativity and cleverness that
goes into programming and computer science
until you explore languages themselves.
The type of Lisp we'll be building is one I've
invented for the purposes of this book. I've
designed it for minimalism, simplicity and clarity, and I've become quite fond of it
along the way. I hope you come to like it too. Conceptually, syntactically, and in
implementation, this Lisp has a number of differences to other major brands of Lisp.
So much so that I'm sure I will be getting e-mails from Lisp programmers telling me
it isn't a Lisp because it doesn't do/have/look-like this or that.
I've not made this Lisp different to confuse beginners. I've made it different because
different is good.

If you are looking to learn about the semantics and behaviours of conventional Lisps,
and how to program them, this book may not be for you. What this book offers
instead is new and unique concepts, self expression, creativity, and fun. Whatever
your motivation, heed this disclaimer now. Not everything I say will be objectively
correct or true! You will have to decide that for yourselves.

Your own Lisp

The best way to follow this book is to, as the title says, write your own Lisp. If you are
feeling confident enough I want you to add your own features, modifications and
changes. Your Lisp should suit you and your own philosophy. Throughout the book
I'll be giving description and insight, but with it I'll be providing a lot of code. This will
make it easy to follow along by copy and pasting each section into your program
without really understanding. Please do not do this!.
Type out each piece of sample code yourself. This is called The Hard Way. Not
because it is hard technically, but because it requires discipline. By doing things The
Hard Way you will come to understand the reasoning behind what you are typing.
Ideally things will click as you follow it along character by character. When reading
you may have an intuition as to why it looks right, or what may be going on, but this
will not always translate to a real understanding unless you do the writing yourself!
In a perfect world you would use my code as a reference - an instruction booklet
and guide to building the programming language you always dreamed of. In reality
this isn't practical or viable. But the base philosophy remains. If you want to change
something, do it.

Cat • Install at own risk.

Installation • Chapter 2

Setup

Before we can start programming in C we'll
need to install a couple of things, and set up
our environment so that we have everything
we need. Because C is such a universal
language this should hopefully be fairly
simple. Essentially we need to install two
main things. A text editor and a compiler.

Text Editor

A text editor is a program that allows you to
edit text files in a way suitable for
programming.
On Linux the text editor I recommend is gedit.
Whatever other basic text editor comes
installed with your distribution will also work
well. If you are a Vim or Emacs user these are
fine to use. Please don't use an IDE. It isn't
required for such a small project and won't
help in understanding what is going on.
On Mac A simple text editor that can be used is TextWrangler. If you have a different
preference this is fine, but please don't use XCode for text editing. This is a small
project and using an IDE won't help you understand what is going on.
On Windows my text editor of choice is Notepad++. If you have another preference
this is fine. Please don't use Visual Studio as it does not have proper support for C
programming. If you attempt to use it you will run into many problems.

Compiler

The compiler is a program that transforms the C source code into a program your
computer can run. The installation process for these is different depending on what
operating system you are running.
Compiling and running C programs is also going to require really basic usage of the
command line. This I will not cover, so I am going to assume you have at least some
familiarity with using the command line. If you are are worried about this then
search for online tutorials on using it, relevant to your operating system.
On Linux you can install a compiler by downloading some packages. If you are

http://projects.gnome.org/gedit/
http://www.barebones.com/products/textwrangler/
http://notepad-plus-plus.org/
http://cli.learncodethehardway.org/book/

running Ubuntu or Debian you can install everything you need with the following
command sudo apt-get install build-essential . If you are running Fedora or a similar
Linux variant you can use this command su -c "yum groupinstall development-tools" .
On Mac you can install a compiler by downloading and installing the latest version
of XCode from Apple. If you are unsure of how to do this you can search online for
"installing xcode" and follow any advice shown. You will then need to install the
Command Line Tools. On Mac OS X 10.9 this can be done by running the command
xcode-select --install from the command line. On versions of Mac OS X prior to 10.9

this can be done by going to XCode Preferences, Downloads, and selecting
Command Line Tools for Installation.
On Windows you can install a compiler by downloading and installing MinGW. If
you use the installer at some point it may present you with a list of possible
packages. Make sure you pick at least mingw32-base and msys-base . Once installed
you need to add the compiler and other programs to your system PATH variable. To
do this follow these instructions appending the value ;C:\MinGW\bin to the variable
called PATH . You can create this variable if it doesn't exist. You may need to restart
cmd.exe for the changes to take effect. This will allow you to run a compiler from the

command line cmd.exe . It will also install other programs which make cmd.exe act
like a Unix command line.

Testing the Compiler
To test if your C compiler is installed correctly type the following into the command
line.

cc --version

If you get some information about the compiler version echoed back then it should
be installed correctly. You are ready to go! If you get any sort of error message about
an unrecognised or not found command, then it is not ready. You may need to
restart the command line or your computer for changes to take effect.

Hello World

Now that your environment is set up, start by opening your text editor and inputting
the following program. Create a directory where you are going to put your work for
this book, and save this file as hello_world.c . This is your first C program!

#include <stdio.h>

int main(int argc, char** argv) {
 puts("Hello, world!");
 return 0;
}

This may initially make very little sense. I'll try to explain it step by step.
In the first line we include what is called a header. This statement allows us to use
the functions from stdio.h , the standard input and output library which comes

http://www.mingw.org/
http://www.computerhope.com/issues/ch000549.htm

included with C. One of the functions from this library is the puts function you see
later on in the program.
Next we declare a function called main . This function is declared to output an int ,
and take as input an int called argc and a char** called argv . All C programs
must contain this function. All programs start running from this function.
Inside main the puts function is called with the argument "Hello, world!" . This
outputs the message Hello, world! to the command line. The function puts is short
for put string. The second statement inside the function is return 0; . This tells the
main function to finish and return 0 . When a C program returns 0 this indicates

there have been no errors running the program.

Compilation

Before we can run this program we need to compile it. This will produce the actual
executable we can run on our computer. Open up the command line and browse to
the directory that hello_world.c is saved in. You can then compile your program using
the following command.

cc -std=c99 -Wall hello_world.c -o hello_world

This compiles the code in hello_world.c , reporting any warnings, and outputs the
program to a new file called hello_world . We use the -std=c99 flag to tell the
compiler which version or standard of C we are programming with. This lets the
compiler ensure our code is standardised, so that people with different operating
systems or compilers will be able to use our code.
If successful you should see the output file in the current directory. This can be run
by typing ./hello_world (or just hello_world on Windows). If everything is correct you
should see a friendly Hello, world! message appear.
Congratulations! You've just compiled and run your first C program.

Errors

If there are some problems with your C program the compilation process may fail.
These issues can range from simple syntax errors, to other complicated problems
that are harder to understand.
Sometimes the error message from the compiler will make sense, but if you are
having trouble understanding it try searching online for it. You should see if you can
find a concise explanation of what it means, and work out how to correct it.
Remember this: there are many people before you who have struggled with exactly
the same problems.
Sometimes there will be many compiler errors stemming from one source. Always
go through compiler errors from first to last.
Sometimes the compiler will compile a program, but when you run it it will crash.

Debugging C programs in this situation is hard.

Rage • A poor debugging technique

It can be an art far beyond the scope of this
book.
If you are a beginner, the first port of call for
debugging a crashing C program would be to
print out lots of information as the program is
running. Using this method you should try to
isolate exactly what part of the code is incorrect
and what, if anything, is going wrong. It is a
debugging technique which is active. This is the
important thing. As long as you are doing
something, and not just staring at the code, the
process is less painful and the temptation to

give up is lessened.
For people feeling more confident a program called gdb can be used to debug your
C programs. This can be difficult and complicated to use, but it is also very powerful
and can give you extremely valuable information and what went wrong and where.
Information on how to use gdb can be found online.
On Mac the most recent versions of OS X don't come with gdb . Instead you can use
lldb which does largely the same job.

On Linux or Mac valgrind can be used to aid the debugging of memory leaks and
other more nasty errors. Valgrind is a tool that can save you hours, or even days, of
debugging. It does not take much to get proficient at it, so investigating it is highly
recommended. Information on how to use it can be found online.

Documentation

Through this book you may come across a function in some example code that you
don't recognise. You might wonder what it does. In this case you will want to look at
the online documentation of the standard library. This will explain all the functions
included in the standard library, what they do, and how to use them.

Reference

What is this section for?
In this section I'll link to the code I've written for this particular chapter of the
book. When finishing with a chapter your code should probably look similar to
mine. This code can be used for reference if the explanation has been unclear.
If you encounter a bug please do not copy and paste my code into your project.
Try to track down the bug yourself and use my code as a reference to highlight
what may be wrong, or where the error may lie.

#include <stdio.h>

int main(int argc, char** argv) {

http://web.archive.org/web/20140910051410/http://www.dirac.org/linux/gdb/
http://www.cprogramming.com/debugging/valgrind.html
http://en.cppreference.com/w/c

 puts("Hello, world!");
 return 0;
}

Bonus Marks

What is this section for?
In this section I'll list some things to try for fun, and learning.
It is good if you can attempt to do some of these challenges. Some will be
difficult and some will be much easier. For this reason don't worry if you can't
figure them all out. Some might not even be possible!
Many will require some research on the internet. This is an integral part of
learning a new language so should not be avoided. The ability to teach yourself
things is one of the most valuable skills in programming.

› Change the Hello World! greeting given by your program to something
different.

› What happens when no main function is given?

› Use the online documentation to lookup the puts function.

› Look up how to use gdb and run it with your program.

Programs • Useful for the theatre.

Basics • Chapter 3

Overview

In this chapter I've prepared a quick overview of
the basic features of C. There are very few features
in C, and the syntax is relatively simple. But this
doesn't mean it is easy. All the depth hides below
the surface. Because of this we're going to cover
the features and syntax fairly quickly now, and see
them in greater depth as we continue.
The goal of this chapter is to get everyone on the
same page. People totally new to C should
therefore take some time over it, while those with
some existing experience may find it easier to
skim and return to later as required.

Programs

A program in C consists of only function definitions
and structure definitions.
Therefore a source file is simply a list of functions and types. These functions can
call each other or themselves, and can use any data types that have been declared
or are built into the language.
It is possible to call functions in other libraries, or to use their data types. This is how
layers of complexity are accumulated in C programming.
As we saw in the previous chapter, the execution of a C program always starts in the
function called main . From here it calls more and more functions, to perform all the
actions it requires.

Variables

Functions in C consists of manipulating variables. These are items of data which we
give a name to.
Every variable in C has an explicit type. These types are declared by ourselves or
built into the language. We can declare a new variable by writing the name of its
type, followed by its name, and optionally setting it to some value using = . This
declaration is a statement, and we terminate all statements in C with a semicolon
; .

To create a new int called count we could write the following...

int count;

Or to declare it and set the value...

int count = 10;

Here are some descriptions and examples of some of the built in types.

void Empty Type
char Single Character/Byte char last_initial = 'H';

int Integer int age = 23;

long Integer that can hold larger values long age_of_universe = 13798000000;

float Decimal Number float liters_per_pint = 0.568f;

double Decimal Number with more precision double speed_of_swallow = 0.01072896;

Function Declarations

A function is a computation that manipulates variables, and optionally changes the
state of the program. It takes as input some variables and returns some single
variable as output.
To declare a function we write the type of the variable it returns, the name of the
function, and then in parenthesis a list of the variables it takes as input , separated by
commas. The contents of the function are put inside curly brackets {} , and lists all
of the statements the function executes, terminated by semicolons ; . A return

statement is used to let the function finish and output a variable.
For example a function that takes two int variables called x and y and adds
them together could look like this.

int add_together(int x, int y) {
 int result = x + y;
 return result;
}

We call functions by writing their name and putting the arguments to the function in
parenthesis, separated by commas. For example to call the above function and store
the result in a variable added we would write the following.

int added = add_together(10, 18);

Structure Declarations

Structures are used to declare new types. Structures are several variables bundled
together into a single package.
We can use structure to represent more complex data types. For example to
represent a point in 2D space we could create a structure called point that packs

Pointer • A short haired one

together two float (decimal) values called x and y . To declare structures we can
use the struct keyword in conjunction with the typedef keyword. Our declaration
would look like this.

typedef struct {
 float x;
 float y;
} point;

We should place this definition above any functions that wish to use it. This type is
no different to the built in types, and we can use it in all the same ways. To access
an individual field we use a dot . , followed by the name of the field, such as x .

point p;
p.x = 0.1;
p.y = 10.0;

float length = sqrt(p.x * p.x + p.y * p.y);

Pointers

A pointer is a variation on a normal type where the
type name is suffixed with an asterisk. For
example we could declare a pointer to an integer
by writing int* . We already saw a pointer type
char** argv . This is a pointer to pointers to

characters, and is used as input to main function.
Pointers are used for a whole number of different
things such as for strings or lists. These are a
difficult part of C and will be explained in much
greater detail in later chapters. We won't make use
of them for a while, so for now it is good to simply
know they exist, and how to spot them. Don't let
them scare you off!

Strings

In C strings are represented by the pointer type
char* . Under the hood they are stored as a list of characters, where the final

character is a special character called the null terminator. Strings are a complicated
and important part of C, which we'll learn to use effectively in the next few chapters.
Strings can also be declared literally by putting text between quotation marks. We
used this in the previous chapter with our string "Hello, World!" . For now, remember
that if you see char* , you can read it as a string.

Conditionals

Conditional statements let the program perform some code only if certain conditions
are met.
To perform code under some condition we use the if statement. This is written as
if followed by some condition in parenthesis, followed by the code to execute in

curly brackets. An if statement can be followed by an optional else statement,
followed by other statements in curly brackets. The code in these brackets will be
performed in the case the conditional is false.
We can test for multiple conditions using the logical operators || for or, and && for
and.
Inside a conditional statement's parenthesis any value that is not 0 will evaluate to
true. This is important to remember as many conditions use this to check things
implicitly.
If we wished to check if an int called x was greater than 10 and less then 100 ,
we would write the following.

if (x > 10 && x < 100) {
 puts("x is greater than 10 and less than 100!");
} else {
 puts("x is less than 11 or greater than 99!");
}

Loops

Loops allow for some code to be repeated until some condition becomes false, or
some counter elapses.
There are two main loops in C. The first is a while loop. This loop repeatedly
executes a block of code until some condition becomes false. It is written as while

followed by some condition in parenthesis, followed by the code to execute in curly
brackets. For example a loop that counts downward from 10 to 1 could be written
as follows.

int i = 10;
while (i > 0) {
 puts("Loop Iteration");
 i = i - 1;
}

The second kind of loop is a for loop. Rather than a condition, this loop requires
three expressions separated by semicolons ; . These are an initialiser, a condition
and an incrementer. The initialiser is performed before the loop starts. The condition
is checked before each iteration of the loop. If it is false, the loop is exited. The
incrementer is performed at the end of each iteration of the loop. These loops are
often used for counting as they are more compact than the while loop.
For example to write a loop that counts up from 0 to 9 we might write the
following. In this case the ++ operator increments the variable i .

for (int i = 0; i < 10; i++) {
 puts("Loop Iteration");
}

Bonus Marks

› Use a for loop to print out Hello World! five times.

› Use a while loop to print out Hello World! five times.

› Declare a function that outputs Hello World! n number of times. Call this
from main .

› What built in types are there other than the ones listed?

› What other conditional operators are there other than greater than > , and
less than < ?

› What other mathematical operators are there other than add + , and
subtract - ?

› What is the += operator, and how does it work?

› What is the do loop, and how does it work?

› What is the switch statement and how does it work?

› What is the break keyword and what does it do?

› What is the continue keyword and what does it do?

› What does the typedef keyword do exactly?

Reptile • Sort of like REPL

An Interactive Prompt • Chapter 4

Read, Evaluate, Print

As we build our programming language we'll need some
way to interact with it. C uses a compiler, where you can
change the program, recompile and run it. It'd be good if
we could do something better, and interact with the
language dynamically. Then we test its behaviour under a
number of conditions very quickly. For this we can build
something called an interactive prompt.
This is a program that prompts the user for some input,
and when supplied with it, replies back with some
message. Using this will be the easiest way to test our
programming language and see how it acts. This system
is also called a REPL, which stands for read-evaluate-
print loop. It is a common way of interacting with a
programming language which you may have used before
in languages such as Python.
Before building a full REPL we'll start with something simpler. We are going to make
a system that prompts the user, and echoes any input straight back. If we make this
we can later extend it to parse the user input and evaluate it, as if it were an actual
Lisp program.

An Interactive Prompt

For the basic setup we want to write a loop which repeatedly writes out a message,
and then waits for some input. To get user input we can use a function called fgets ,
which reads any input up until a new line. We need somewhere to store this user
input. For this we can declare a constantly sized input buffer.
Once we have this user input stored we can then print it back to the user using a
function called printf .

#include <stdio.h>

/* Declare a buffer for user input of size 2048 */
static char input[2048];

int main(int argc, char** argv) {

 /* Print Version and Exit Information */
 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 /* In a never ending loop */
 while (1) {

 /* Output our prompt */

 fputs("lispy> ", stdout);

 /* Read a line of user input of maximum size 2048 */
 fgets(input, 2048, stdin);

 /* Echo input back to user */
 printf("No you're a %s", input);
 }

 return 0;
}

What is that text in light green?
The above code contains comments. These are sections of the code between
/* */ symbols, which are ignored by the compiler, but are used to inform the

person reading what is going on. Take notice of them!

Let's go over this program in a little more depth.
The line static char input[2048]; declares a global array of 2048 characters. This is a
reserved block of data we can access anywhere from our program. In it we are
going to store the user input which is typed into the command line. The static

keyword make this variable local to this file, and the [2048] section is what declares
the size.
We write an infinite loop using while (1) . In a conditional block 1 always evaluates
to true. Therefore commands inside this loop will run forever.
To output our prompt we use the function fputs . This is a slight variation on puts

which does not append a newline character. We use the fgets function for getting
user input from the command line. Both of these functions require some file to write
to, or read from. For this we supply the special variables stdin and stdout . These
are declared in <stdio.h> and are special file variables representing input to, and
output from, the command line. When passed this variable the fgets function will
wait for a user to input a line of text, and when it has it will store it into the input

buffer, including the newline character. So that fgets does not read in too much
data we also must also supply the size of the buffer 2048 .
To echo the message back to the user we use the function printf . This is a function
that provides a way of printing messages consisting of several elements. It matches
arguments to patterns in the given string. For example in our case we can see the
%s pattern in the given string. This means that it will be replaced by whatever

argument is passed in next, interpreted as a string.
For more information on these different patterns please see the documentation on
printf .

How am I meant to know about functions like fgets and printf ?
It isn't immediately obvious how to know about these standard functions, and
when to use them. When faced with a problem it takes experience to know
when it has been solved for you by library functions.
Luckily C has a very small standard library and almost all of it can be learnt in
practice. If you want to do something that seems quite basic, or fundamental, it is
worth looking at the reference documentation for the standard library and
checking if there are any functions included that do what you want.

http://en.cppreference.com/w/c/io/printf
http://en.cppreference.com/w/c

Compilation

You can compile this with the same command as was used in the second chapter.

cc -std=c99 -Wall prompt.c -o prompt

After compiling this you should try to run it. You can use Ctrl+c to quit the program
when you are done. If everything is correct your program should run something like
this.

Lispy Version 0.0.0.0.1
Press Ctrl+c to Exit

lispy> hello
No You're a hello
lispy> my name is Dan
No You're a my name is Dan
lispy> Stop being so rude!
No You're a Stop being so rude!
lispy>

Editing input

If you're working on Linux or Mac you'll notice some weird behaviour when you use
the arrow keys to attempt to edit your input.

Lispy Version 0.0.0.0.3
Press Ctrl+c to Exit

lispy> hel^[[D^[[C

Using the arrow keys is creating these weird characters ^[[D or ^[[C , rather than
moving the cursor around in the input. What we really want is to be able to move
around on the line, deleting and editing the input in case we make a mistake.
On Windows this behaviour is the default. On Linux and Mac it is provided by a
library called editline . On Linux and Mac we need to replace our calls to fputs and
fgets with calls to functions this library provides.

If you're developing on Windows and just want to get going, feel free to skip to the
end of this chapter as the next few sections may not be relevant.

Using Editline
The library editline provides two functions we are going to use called readline and
add_history . This first function, readline is used to read input from some prompt,

while allowing for editing of that input. The second function add_history lets us
record the history of inputs so that they can be retrieved with the up and down
arrows.

We replace fputs and fgets with calls to these functions to get the following.

#include <stdio.h>
#include <stdlib.h>

#include <editline/readline.h>
#include <editline/history.h>

int main(int argc, char** argv) {

 /* Print Version and Exit Information */
 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 /* In a never ending loop */
 while (1) {

 /* Output our prompt and get input */
 char* input = readline("lispy> ");

 /* Add input to history */
 add_history(input);

 /* Echo input back to user */
 printf("No you're a %s\n", input);

 /* Free retrieved input */
 free(input);

 }

 return 0;
}

We have included a few new headers. There is #include <stdlib.h> , which gives us
access to the free function used later on in the code. We have also added
#include <editline/readline.h> and #include <editline/history.h> which give us access to

the editline functions, readline and add_history .
Instead of prompting, and getting input with fgets , we do it in one go using readline .
The result of this we pass to add_history to record it. Finally we print it out as before
using printf .
Unlike fgets , the readline function strips the trailing newline character from the
input, so we need to add this to our printf function. We also need to delete the input
given to us by the readline function using free . This is because unlike fgets , which
writes to some existing buffer, the readline function allocates new memory when it
is called. When to free memory is something we cover in depth in later chapters.

Compiling with Editline
If you try to compile this right away with the previous command you'll get an error.
This is because you first need to install the editline library on your computer.

fatal error: editline/readline.h: No such file or directory #include <editline/readline.h>

On Mac the editline library comes with Command Line Tools. Instructions for
installing these can be found in Chapter 2. You may still get an error about the history
header not being found. In this case remove the line #include <editline/history.h> , as

http://www.buildyourownlisp.com/chapter2_installation

Octopus • Sort of like Octothorpe

this header may not be required.
On Linux you can install editline with sudo apt-get install libedit-dev . On Fedora you
can use the command su -c "yum install libedit-dev*"

Once you have installed editline you can try to compile it again. This time you'll get a
different error.

undefined reference to `readline'
undefined reference to `add_history'

This means that you haven't linked your program to editline . This linking process
allows the compiler to directly embed calls to editline in your program. You can
make it link by adding the flag -ledit to your compile command, just before the
output flag.

cc -std=c99 -Wall prompt.c -ledit -o prompt

Run it and check that now you can edit inputs as you type them in.

It's still not working!
Some systems might have slight variations on how to install, include, and link to
editline . For example on Arch linux the editline history header is histedit.h . If

you are having trouble search online and see if you can find distribution specific
instructions on how to install and use the editline library. If that fails search for
instructions on the readline library. This is a drop-in replacement for editline. On
Mac it can be installed using HomeBrew or MacPorts.

The C Preprocessor

For such a small project it might be okay that we have to program differently
depending on what operating system we are using, but if I want to send my source
code to a friend on different operating system to give me a hand with the
programming, it is going to cause problem. In an ideal world I'd wish for my source
code to be able to compile no matter where, or on what computer, it is being
compiled. This is a general problem in C, and it is called portability. There is not
always an easy or correct solution.
But C does provide a mechanism to help, called
the preprocessor.
The preprocessor is a program that runs before
the compiler. It has a number of purposes, and
we've been actually using it already without
knowing. Any line that starts with a octothorpe #

character (hash to you and me) is a preprocessor
command. We've been using it to include header
files, giving us access to functions from the
standard library and others.
Another use of the preprocessor is to detect
which operating system the code is being

compiled on, and to use this to emit different
code.
This is exactly how we are going to use it. If we are running Windows we're going to
let the preprocessor emit code with some fake readline and add_history functions
I've prepared, otherwise we are going to include the headers from editline and use
these.
To declare what code the compiler should emit we can wrap it in #ifdef , #else , and
#endif preprocessor statements. These are like an if function that happens before

the code is compiled. All the contents of the file from the first #ifdef to the next
#else are used if the condition is true, otherwise all the contents from the #else to

the final #endif are used instead. By putting these around our fake functions, and
our editline headers, the code that is emitted should compile on Windows, Linux or
Mac.

#include <stdio.h>
#include <stdlib.h>

/* If we are compiling on Windows compile these functions */
#ifdef _WIN32
#include <string.h>

static char buffer[2048];

/* Fake readline function */
char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

/* Fake add_history function */
void add_history(char* unused) {}

/* Otherwise include the editline headers */
#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

int main(int argc, char** argv) {

 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 /* Now in either case readline will be correctly defined */
 char* input = readline("lispy> ");
 add_history(input);

 printf("No you're a %s\n", input);
 free(input);

 }

 return 0;
}

Reference

#include <stdio.h>
#include <stdlib.h>

#include <editline/readline.h>
#include <editline/history.h>

int main(int argc, char** argv) {

 /* Print Version and Exit Information */
 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 /* In a never ending loop */
 while (1) {

 /* Output our prompt and get input */
 char* input = readline("lispy> ");

 /* Add input to history */
 add_history(input);

 /* Echo input back to user */
 printf("No you're a %s\n", input);

 /* Free retrived input */
 free(input);

 }

 return 0;
}

#include <stdio.h>

/* Declare a buffer for user input of size 2048 */
static char input[2048];

int main(int argc, char** argv) {

 /* Print Version and Exit Information */
 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 /* In a never ending loop */
 while (1) {

 /* Output our prompt */
 fputs("lispy> ", stdout);

 /* Read a line of user input of maximum size 2048 */
 fgets(input, 2048, stdin);

 /* Echo input back to user */
 printf("No you're a %s", input);
 }

 return 0;
}

#include <stdio.h>
#include <stdlib.h>

/* If we are compiling on Windows compile these functions */
#ifdef _WIN32
#include <string.h>

static char buffer[2048];

/* Fake readline function */
char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

/* Fake add_history function */
void add_history(char* unused) {}

/* Otherwise include the editline headers */
#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

int main(int argc, char** argv) {

 puts("Lispy Version 0.0.0.0.1");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 /* Now in either case readline will be correctly defined */
 char* input = readline("lispy> ");
 add_history(input);

 printf("No you're a %s\n", input);
 free(input);

 }

 return 0;
}

Bonus Marks

› Change the prompt from lispy> to something of your choice.

› Change what is echoed back to the user.

› Add an extra message to the Version and Exit Information.

› What does the \n mean in those strings?

› What other patterns can be used with printf ?

› What happens when you pass printf a variable that does not match the
pattern?

› What does the preprocessor command #ifndef do?

› What does the preprocessor command #define do?

› If _WIN32 is defined on windows, what is defined for Linux or Mac?

Cat • cannot speak or program

Languages • Chapter 5

What is a Programming Language?

A programming language is very similar to a real language. There is a structure
behind it, and some rules which dictate what is, and isn't, a valid thing to say. When
we read and write natural language, we are unconsciously learning these rules, and
the same is true for programming languages. We can utilise these rules to
understand others, and generate our own speech, or code.
In the 1950s the linguist Noam Chomsky formalised a number of important
observations about languages. Many of these form the basis of our understanding of
language today. One of these was the observation that natural languages are built
up of recursive and repeated substructures.

As an example of this, we can examine the phrase.
› The cat walked on the carpet.

Using the rules of English, the noun cat can be
replaced by two nouns separated by and .
› The cat and dog walked on the carpet.

Each of these new nouns could in turn be replaced
again. We could use the same rule as before, and
replace cat with two new nouns joined with and . Or
we could use a different rule and replace each of the
nouns with an adjective and a noun, to add
description to them.
› The cat and mouse and dog walked on the carpet.

› The white cat and black dog walked on the carpet.

These are just two examples, but English has many different rules for how types of
words can be changed, manipulated and replaced.
We notice this exact behaviour in programming languages too. In C, the body of an
if statement contains a list of new statements. Each of these new statements,

could themselves be another if statement. These repeated structures and
replacements are reflected in all parts of the language. These are sometimes called
re-write rules because they tell you how one thing can be re-written as something
else.
› if (x > 5) { return x; }

› if (x > 5) { if (x > 10) { return x; } }

The consequence of this observation by Chomsky was important. It meant that
although there is an infinite number of different things that can be said, or written
down in a particular language. It is still possible to process and understand all of
them with a finite number of re-write rules. The name given to a set of re-write rules
is a grammar.
We can describe re-write rules in a number of ways. One way is textual. We could

http://en.wikipedia.org/wiki/Chomsky_hierarchy

say something like, "a sentence must be a verb phrase", or "a verb phrase can be
either a verb or, an adverb and a verb". This method is good for humans but it is too
imprecise for computers to understand. When programming we need to write down
a more formal description of a grammar.
To write a programming language such as our Lisp we are going to need to
understand grammars. For reading in the user input we need to write a grammar
which describes it. Then we can use it along with our user input, to decide if the
input is valid. We can also use it to build a structured internal representation, which
will make the job of understanding it, and then evaluating it, performing the
computations encoded within, much easier.
This is where a library called mpc comes in.

Parser Combinators

mpc is a Parser Combinator library I have written. This means it is a library that
allows you to build programs that understand and process particular languages.
These are known as parsers. There are many different ways of building parsers, but
the cool thing about using a Parser Combinator library is that it lets you build parsers
easily, just by specifying the grammar ... sort of.
Many Parser Combinator libraries actually work by letting you write normal code
that looks a bit like a grammar, not by actually specifying a grammar directly. In
many situations this is fine, but sometimes it can get clunky and complicated. Luckily
for us mpc allows us to write normal code that just looks like a grammar, or we can
use special notation to write a grammar directly!

Coding Grammars

So what does code that looks like a grammar...look like? Let us take a look at mpc

by trying to write code for a grammar that recognizes the language of Shiba Inu.
More colloquially know as Doge. This language we are going to define as follows.
› An Adjective is either "wow", "many", "so" or "such".
› A Noun is either "lisp", "language", "c", "book" or "build".
› A Phrase is an Adjective followed by a Noun.
› A Doge is zero or more Phrases.
We can start by trying to define Adjective and Noun. To do this we create two new
parsers, represented by the type mpc_parser_t* , and we store them in the variables
Adjective and Noun . We use the function mpc_or to create a parser where one of

several options should be used, and the function mpc_sym to wrap our initial strings.
If you squint you could attempt to read the code as if it were the rules we specified
above.

/* Build a parser 'Adjective' to recognize descriptions */
mpc_parser_t* Adjective = mpc_or(4,
 mpc_sym("wow"), mpc_sym("many"),

http://knowyourmeme.com/memes/doge

 mpc_sym("so"), mpc_sym("such")
);

/* Build a parser 'Noun' to recognize things */
mpc_parser_t* Noun = mpc_or(5,
 mpc_sym("lisp"), mpc_sym("language"),
 mpc_sym("book"),mpc_sym("build"),
 mpc_sym("c")
);

How can I access these mpc functions?
For now don't worry about compiling or running any of the sample code in this
chapter. Just focus on understanding the theory behind grammars. In the next
chapter we'll get set up with mpc and use it for a language closer to our Lisp.

To define Phrase we can reference our existing parsers. We need to use the function
mpc_and , that specifies one thing is required then another. As input we pass it
Adjective and Noun , our previously defined parsers. This function also takes the

arguments mpcf_strfold and free , which say how to join or delete the results of
these parsers. Ignore these arguments for now.

mpc_parser_t* Phrase = mpc_and(2, mpcf_strfold,
 Adjective, Noun, free);

To define Doge we must specify that zero or more of some parser is required. For
this we need to use the function mpc_many . As before, this function requires the
special variable mpcf_strfold to say how the results are joined together, which we
can ignore.

mpc_parser_t* Doge = mpc_many(mpcf_strfold, Phrase);

By creating a parser that looks for zero or more occurrences of another parser an
interesting thing has happened. Our Doge parser accepts inputs of any length. This
means its language is infinite. Here are just some examples of possible strings Doge

could accept. Just as we discovered in the first section of this chapter we have used
a finite number of re-write rules to create an infinite language.

"wow book such language many lisp"
"so c such build such language"
"many build wow c"
""
"wow lisp wow c many language"
"so c"

If we use more mpc functions, we can slowly build up parsers that parse more and
more complicated languages. The code we use sort of reads like a grammar, but
becomes much more messy with added complexity. Due to this, taking this
approach isn't always an easy task. A whole set of helper functions that build on
simple constructs to make frequent tasks easy are all documented on the mpc
repository. This is a good approach for complicated languages, as it allows for fine-
grained control, but won't be required for our needs.

http://github.com/orangeduck/mpc

Natural Grammars

mpc lets us write grammars in a more natural form too. Rather than using C
functions that look less like a grammar, we can specify the whole thing in one long
string. When using this method we don't have to worry about how to join or discard
inputs, with functions such as mpcf_strfold , or free . All of that is done automatically
for us.
Here is how we would recreate the previous examples using this method.

mpc_parser_t* Adjective = mpc_new("adjective");
mpc_parser_t* Noun = mpc_new("noun");
mpc_parser_t* Phrase = mpc_new("phrase");
mpc_parser_t* Doge = mpc_new("doge");

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 adjective : \"wow\" | \"many\" \
 | \"so\" | \"such\"; \
 noun : \"lisp\" | \"language\" \
 | \"book\" | \"build\" | \"c\"; \
 phrase : <adjective> <noun>; \
 doge : <phrase>*; \
 ",
 Adjective, Noun, Phrase, Doge);

/* Do some parsing here... */

mpc_cleanup(4, Adjective, Noun, Phrase, Doge);

Without having an exact understanding of the syntax for that long string, it should be
obvious how much clearer the grammar is in this format. If we learn what all the
special symbols mean we barely need to squint.
Another thing to notice is that the process is now in two steps. First we create and
name several rules using mpc_new and then we define them using mpca_lang .
The first argument to mpca_lang are the options flags. For this we just use the
defaults. The second is a long multi-line string in C. This is the grammar
specification. It consists of a number of re-write rules. Each rule has the name of the
rule on the left, a colon : , and on the right its definition terminated with a semicolon
; .

The special symbols used to define the rules on the right hand side work as follows.

"ab" The string ab is required.
'a' The character a is required.
'a' 'b' First 'a' is required, then 'b' is required.
'a' | 'b' Either 'a' is required, or 'b' is required.
'a'* Zero or more 'a' are required.
'a'+ One or more 'a' are required.
<abba> The rule called abba is required.

Sounds familiar...

Did you notice that the description of what the input string to mpca_lang should
look like sounded like I was specifying a grammar? That's because it was. mpc

uses itself internally to parse the input you give it to mpca_lang . It does it by
specifying a grammar in code using the previous method. How neat is that.

Using the table described above verify that what I've written above is equal to what
we specified in code.
This method of specifying a grammar is what we are going to use in the following
chapters. It might seem overwhelming at first. Grammars can be difficult to
understand. But as we continue you will become much more familiar with how to
create and edit them.
This chapter is about theory, so if you are going to try some of the bonus tasks, don't
worry too much about correctness. Thinking in the right mindset is more important.
Feel free to invent symbols and notation for certain concepts to make them simpler
to write down. Some of the bonus task also might require cyclic or recursive
grammar stuctures, so don't worry if you have to use these!

Reference

#include "mpc.h"

int main(int argc, char** argv) {

 /* Build a parser 'Adjective' to recognize descriptions */
 mpc_parser_t* Adjective = mpc_or(4,
 mpc_sym("wow"), mpc_sym("many"),
 mpc_sym("so"), mpc_sym("such")
);

 /* Build a parser 'Noun' to recognize things */
 mpc_parser_t* Noun = mpc_or(5,
 mpc_sym("lisp"), mpc_sym("language"),
 mpc_sym("book"), mpc_sym("build"),
 mpc_sym("c")
);

 mpc_parser_t* Phrase = mpc_and(2, mpcf_strfold,
 Adjective, Noun, free);

 mpc_parser_t* Doge = mpc_many(mpcf_strfold, Phrase);

 /* Do some parsing here... */

 mpc_delete(Doge);

 return 0;

}

#include "mpc.h"

int main(int argc, char** argv) {

 mpc_parser_t* Adjective = mpc_new("adjective");

 mpc_parser_t* Noun = mpc_new("noun");
 mpc_parser_t* Phrase = mpc_new("phrase");
 mpc_parser_t* Doge = mpc_new("doge");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 adjective : \"wow\" | \"many\" \
 | \"so\" | \"such\"; \
 noun : \"lisp\" | \"language\" \
 | \"book\" | \"build\" | \"c\"; \
 phrase : <adjective> <noun>; \
 doge : <phrase>*; \
 ",
 Adjective, Noun, Phrase, Doge);

 /* Do some parsing here... */

 mpc_cleanup(4, Adjective, Noun, Phrase, Doge);

 return 0;

}

Bonus Marks

› Write down some more examples of strings the Doge language contains.

› Why are there back slashes \ in front of the quote marks " in the
grammar?

› Why are there back slashes \ at the end of the line in the grammar?

› Describe textually a grammar for decimal numbers such as 0.01 or 52.221 .

› Describe textually a grammar for web URLs such as
http://www.buildyourownlisp.com .

› Describe textually a grammar for simple English sentences such as
the cat sat on the mat .

› Describe more formally the above grammars. Use | , * , or any symbols of
your own invention.

› If you are familiar with JSON, textually describe a grammar for it.

A Polish Nobleman • A typical Polish Notation user

Parsing • Chapter 6

Polish Notation

To try out mpc we're going to
implement a simple grammar that
resembles a mathematical subset of
our Lisp. It's called Polish Notation and
is a notation for arithmetic where the
operator comes before the operands.
For example...

1 + 2 + 6 is + 1 2 6

6 + (2 * 9) is + 6 (* 2 9)

(10 * 2) / (4 + 2) is / (* 10 2) (+ 4 2)

We need to work out a grammar which describes this notation. We can begin by
describing it textually and then later formalise our thoughts.
To start, we observe that in polish notation the operator always comes first in an
expression, followed by either numbers or other expressions in parenthesis. This
means we can say "a program is an operator followed by one or more expressions,"
where "an expression is either a number, or, in parenthesis, an operator followed by
one or more expressions".
More formally...

Program
the start of input, an Operator , one or more Expression , and the end of
input.

Expression either a Number or '(' , an Operator , one or more Expression , and an ')' .
Operator '+' , '-' , '*' , or '/' .
Number an optional - , and one or more characters between 0 and 9

Regular Expressions

We should be able to encode most of the above rules using things we know already,
but Number and Program might pose some trouble. They contain a couple of
constructs we've not learnt how to express yet. We don't know how to express the

http://en.wikipedia.org/wiki/Polish_notation

start or the end of input, optional characters, or range of characters.
These can be expressed, but they require something called a Regular Expression.
Regular expressions are a way of writing grammars for small sections of text such
as words or numbers. Grammars written using regular expressions can't consist of
multiple rules, but they do give precise and concise control over what is matched
and what isn't. Here are some basic rules for writing regular expressions.

. Any character is required.
a The character a is required.
[abcdef] Any character in the set abcdef is required.
[a-f] Any character in the range a to f is required.
a? The character a is optional.
a* Zero or more of the character a are required.
a+ One or more of the character a are required.
^ The start of input is required.
$ The end of input is required.

These are all the regular expression rules we need for now. Whole books have been
written on learning regular expressions. For the curious much more information can
be found online or from these sources. We will be using them in later chapters, so
some basic knowledge will be required, but you won't need to master them for now.
In an mpc grammar we write regular expressions by putting them between forward
slashes / . Using the above guide our Number rule can be expressed as a regular
expression using the string /-?[0-9]+/ .

Installing mpc

Before we work on writing this grammar we first need to include the mpc headers,
and then link to the mpc library, just as we did for editline on Linux and Mac.
Starting with your code from chapter 4, you can rename the file to parsing.c and
download mpc.h and mpc.c from the mpc repo. Put these in the same directory as
your source file.
To include mpc put #include "mpc.h" at the top of the file. To link to mpc put mpc.c

directly into the compile command. On Linux you will also have to link to the maths
library by adding the flag -lm .
On Linux and Mac

cc -std=c99 -Wall parsing.c mpc.c -ledit -lm -o parsing

On Windows

cc -std=c99 -Wall parsing.c mpc.c -o parsing

Hold on, don't you mean #include <mpc.h> ?

http://regex.learncodethehardway.org/
http://github.com/orangeduck/mpc

There are actually two ways to include files in C. One is using angular brackets
<> as we've seen so far, and the other is with quotation marks "" .

The only difference between the two is that using angular brackets searches the
system locations for headers first, while quotation marks searches the current
directory first. Because of this system headers such as <stdio.h> are typically put
in angular brackets, while local headers such as "mpc.h" are typically put in
quotation marks.

Polish Notation Grammar

Formalising the above rules further, and using some regular expressions, we can
write a final grammar for the language of polish notation as follows. Read the below
code and verify that it matches what we had written textually, and our ideas of polish
notation.

/* Create Some Parsers */
mpc_parser_t* Number = mpc_new("number");
mpc_parser_t* Operator = mpc_new("operator");
mpc_parser_t* Expr = mpc_new("expr");
mpc_parser_t* Lispy = mpc_new("lispy");

/* Define them with the following Language */
mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 operator : '+' | '-' | '*' | '/' ; \
 expr : <number> | '(' <operator> <expr>+ ')' ; \
 lispy : /^/ <operator> <expr>+ /$/ ; \
 ",
 Number, Operator, Expr, Lispy);

We need to add this to the interactive prompt we started on in chapter 4. Put this
code right at the beginning of the main function before we print the Version and Exit
information. At the end of our program we also need to delete the parsers when we
are done with them. Right before main returns we should place the following clean-
up code.

/* Undefine and Delete our Parsers */
mpc_cleanup(4, Number, Operator, Expr, Lispy);

I'm getting an error undefined reference to `mpc_lang'

That should be mpca_lang , with an a at the end!

Parsing User Input

Our new code creates a mpc parser for our Polish Notation language, but we still
need to actually use it on the user input supplied each time from the prompt. We
need to edit our while loop so that rather than just echoing user input back, it

actually attempts to parse the input using our parser. We can do this by replacing the
call to printf with the following mpc code, that makes use of our program parser
Lispy .

/* Attempt to Parse the user Input */
mpc_result_t r;
if (mpc_parse("<stdin>", input, Lispy, &r)) {
 /* On Success Print the AST */
 mpc_ast_print(r.output);
 mpc_ast_delete(r.output);
} else {
 /* Otherwise Print the Error */
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
}

This code calls the mpc_parse function with our parser Lispy , and the input string
input . It copies the result of the parse into r and returns 1 on success and 0 on

failure. We use the address of operator & on r when we pass it to the function.
This operator will be explained in more detail in later chapters.
On success an internal structure is copied into r , in the field output . We can print
out this structure using mpc_ast_print and delete it using mpc_ast_delete .
Otherwise there has been an error, which is copied into r in the field error . We
can print it out using mpc_err_print and delete it using mpc_err_delete .
Compile these updates, and take this program for a spin. Try out different inputs and
see how the system reacts. Correct behaviour should look like the following.

Lispy Version 0.0.0.0.2
Press Ctrl+c to Exit

lispy> + 5 (* 2 2)
>
 regex
 operator|char:1:1 '+'
 expr|number|regex:1:3 '5'
 expr|>
 char:1:5 '('
 operator|char:1:6 '*'
 expr|number|regex:1:8 '2'
 expr|number|regex:1:10 '2'
 char:1:11 ')'
 regex
lispy> hello
<stdin>:1:1: error: expected whitespace, '+', '-', '*' or '/' at 'h'
lispy> / 1dog
<stdin>:1:4: error: expected one of '0123456789', whitespace, '-', one or more of one of '01234
56789', '(' or end of input at 'd'
lispy>

I'm getting an error <stdin>:1:1: error: Parser Undefined! .
This error is due to the syntax for your grammar supplied to mpca_lang being
incorrect. See if you can work out what part of the grammar is incorrect. You can
use the reference code for this chapter to help you find this, and verify how the
grammar should look.

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

int main(int argc, char** argv) {

 /* Create Some Parsers */
 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Operator = mpc_new("operator");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 /* Define them with the following Language */
 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 operator : '+' | '-' | '*' | '/' ; \
 expr : <number> | '(' <operator> <expr>+ ')' ; \
 lispy : /^/ <operator> <expr>+ /$/ ; \
 ",
 Number, Operator, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.2");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 /* Attempt to parse the user input */
 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 /* On success print and delete the AST */
 mpc_ast_print(r.output);
 mpc_ast_delete(r.output);
 } else {
 /* Otherwise print and delete the Error */
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);
 }

 /* Undefine and delete our parsers */
 mpc_cleanup(4, Number, Operator, Expr, Lispy);

 return 0;
}

Bonus Marks

› Write a regular expression matching strings of all a or b such as aababa or
bbaa .

› Write a regular expression matching strings of consecutive a and b such
as ababab or aba .

› Write a regular expression matching pit , pot and respite but not peat ,
spit , or part .

› Change the grammar to add a new operator such as % .

› Change the grammar to recognise operators written in textual format add ,
sub , mul , div .

› Change the grammar to recognize decimal numbers such as 0.01 , 5.21 , or
10.2 .

› Change the grammar to make the operators written conventionally,
between two expressions.

› Use the grammar from the previous chapter to parse Doge . You must add
start and end of input.

Abstract Christmas Tree • A seasonal variation

Evaluation • Chapter 7

Trees

Now we can read input, and we have it structured internally, but we are still unable
to evaluate it. In this chapter we add the code that evaluates this structure and
actually performs the computations encoded within.
This internal structure is what we saw printed out by the program in the previous
chapter. It is called an Abstract Syntax Tree, and it represents the structure of the
program based on the input entered by the user. At the leaves of this tree are
numbers and operators - the actual data to be processed. At the branches are the
rules used to produce this part of the tree - the information on how to traverse and
evaluate it.

Before working out exactly how we are
going to do this traversal, let's see exactly
how this structure is defined internally. If
we peek inside mpc.h we can have a look
at the definition of mpc_ast_t , which is the
data structure we got from the parse.

typedef struct mpc_ast_t {
 char* tag;
 char* contents;
 mpc_state_t state;
 int children_num;
 struct mpc_ast_t** children;
} mpc_ast_t;

This struct has a number of fields we can
access. Let's take a look at them one by
one.
The first field is tag . When we printed out
the tree this was the information that
preceded the contents of the node. It was
a string containing a list of all the rules
used to parse that particular item. For
example expr|number|regex .
This tag field is going to be important as it
lets us see what parse rules have been

used to create the node.
The second field is contents . This will contain the actual contents of the node such
as '*' , '(' or '5' . You'll notice for branches this is empty, but for leaves we can
use it to find the operator or number to use.
The next field is state . This contains information about what state the parser was in
when it found this node, such as the line and column number. We won't make use of
this in our program.
Finally we see two fields that are going to help us traverse the tree. These are

children_num and children . The first field tells us how many children a node has, and
the second is an array of these children.
The type of the children field is mpc_ast_t** . This is a double pointer type. It isn't as
scary as it looks and will be explained in greater detail in later chapters. For now you
can think of it as a list of the child nodes of this tree.
We can access a child node by accessing this field using array notation. This is done
by writing the field name children and suffixing it with square brackets containing
the index of the child to access. For example to access the first child of the node we
can use children[0] . Notice that C counts its array indices from 0 .
Because the type mpc_ast_t* is a pointer to a struct, there is a slightly different syntax
to access its fields. We need to use an arrow -> instead of a dot . . There is no
fundamental reason for this switch in operators, so for now just remember that field
access of pointer types uses an arrow.

/* Load AST from output */
mpc_ast_t* a = r.output;
printf("Tag: %s\n", a->tag);
printf("Contents: %s\n", a->contents);
printf("Number of children: %i\n", a->children_num);

/* Get First Child */
mpc_ast_t* c0 = a->children[0];
printf("First Child Tag: %s\n", c0->tag);
printf("First Child Contents: %s\n", c0->contents);
printf("First Child Number of children: %i\n",
 c0->children_num);

Recursion

There is a odd thing about this tree structure. It refers to itself. Each of its children are
themselves trees again, and the children of those children are trees yet again. Just
like our languages and re-write rules, data in this structure contains repeated
substructures that resemble their parents.
This pattern of repeated substructures could
go on and on. Clearly if we want a function
which can work on all possible trees we can't
look just a couple of nodes down, we have to
define it to work on trees of any depth.
Luckily we can do this, by exploiting the
nature of how these substructures repeat
and using a technique called recursion.
Put simply a recursive function is one that
calls itself as some part of its calculation.
It sounds weird for a function to be defined in
terms of itself. But consider that functions can
give different outputs when supplied with
different inputs. If we give changed, or
different inputs to a recursive call to the same
function, and provide a way for this function

Recursion • Dangerous in a fire.to not call itself again under certain
conditions, we can be more confident this
recursive function is doing something useful.
As an example we can write a recursive function which will count the number of
nodes in our tree structure.
To begin we work out how it will act in the most simple case - if the input tree has no
children. In this case we know the result is simply one. Now we can go on to define
the more complex case - if the tree has one or more children. In this case the result
will be one (for the node itself), plus the number of nodes in all of those children.
But how do we find the number of nodes in all of the children? Well we can use the
function we are in the process of defining! Yeah, Recursion.
In C we might write it something like this.

int number_of_nodes(mpc_ast_t* t) {
 if (t->children_num == 0) { return 1; }
 if (t->children_num >= 1) {
 int total = 1;
 for (int i = 0; i < t->children_num; i++) {
 total = total + number_of_nodes(t->children[i]);
 }
 return total;
 }
}

Recursive functions are weird because they require an odd leap of faith. First we
have to assume we have a function which does something correctly already, and
then we have to go about using this function, to write the initial function we assumed
we had!
Like most things, recursive functions almost always end up following a similar
pattern. First a base case is defined. This is the case that ends the recursion, such as
t->children_num == 0 in our previous example. After this the recursive case is defined,

such as t->children_num >= 1 in our previous example, which breaks down a
computation into smaller parts, and calls itself recursively to compute those parts,
before combining them together.
Recursive functions can take some thought, so pause now and ensure you
understand them before continuing onto other chapters because we'll be making
good use of them in the rest of the book. If you are still uncertain, you can attempt
some of the bonus marks for this chapter.

Evaluation

To evaluate the parse tree we are going to write a recursive function. But before we
get started, let us try and see what observations we can make about the structure of
the tree we get as input. Try printing out some expressions using your program from
the previous chapter. What do you notice?

lispy> * 10 (+ 1 51)
>
 regex
 operator|char:1:1 '*'

 expr|number|regex:1:3 '10'
 expr|>
 char:1:6 '('
 operator|char:1:7 '+'
 expr|number|regex:1:9 '1'
 expr|number|regex:1:11 '51'
 char:1:13 ')'
 regex

One observation is that if a node is tagged with number it is always a number, has no
children, and we can just convert the contents to an integer. This will act as the base
case in our recursion.
If a node is tagged with expr , and is not a number , we need to look at its second child
(the first child is always '(') and see which operator it is. Then we need to apply
this operator to the evaluation of the remaining children, excluding the final child
which is always ')' . This is our recursive case. This also needs to be done for the
root node.
When we evaluate our tree, just like when counting the nodes, we'll need to
accumulate the result. To represent this result we'll use the C type long which
means a long integer.
To detect the tag of a node, or to get a number from a node, we will need to make
use of the tag and contents fields. These are string fields, so we are going to have to
learn a couple of string functions first.

atoi Converts a char* to a long .
strcmp Takes as input two char* and if they are equal it returns 0 .

strstr
Takes as input two char* and returns a pointer to the location of the second
in the first, or 0 if the second is not a sub-string of the first.

We can use strcmp to check which operator to use, and strstr to check if a tag
contains some substring. Altogether our recursive evaluation function looks like this.

long eval(mpc_ast_t* t) {

 /* If tagged as number return it directly. */
 if (strstr(t->tag, "number")) {
 return atoi(t->contents);
 }

 /* The operator is always second child. */
 char* op = t->children[1]->contents;

 /* We store the third child in `x` */
 long x = eval(t->children[2]);

 /* Iterate the remaining children and combining. */
 int i = 3;
 while (strstr(t->children[i]->tag, "expr")) {
 x = eval_op(x, op, eval(t->children[i]));
 i++;
 }

 return x;
}

We can define the eval_op function as follows. It takes in a number, an operator

string, and another number. It tests for which operator is passed in, an performs the
corresponding C operation on the inputs.

/* Use operator string to see which operation to perform */
long eval_op(long x, char* op, long y) {
 if (strcmp(op, "+") == 0) { return x + y; }
 if (strcmp(op, "-") == 0) { return x - y; }
 if (strcmp(op, "*") == 0) { return x * y; }
 if (strcmp(op, "/") == 0) { return x / y; }
 return 0;
}

Printing

Instead of printing the tree, we now want to print the result of the evaluation.
Therefore we need to pass the tree into our eval function, and print the result we
get using printf and the specifier %li , which is used for long type.
We also need to remember to delete the output tree after we are done evaluating it.

long result = eval(r.output);
printf("%li\n", result);
mpc_ast_delete(r.output);

If all of this is successful we should be able to do some basic maths with our new
programming language!

Lispy Version 0.0.0.0.3
Press Ctrl+c to Exit

lispy> + 5 6
11
lispy> - (* 10 10) (+ 1 1 1)
97

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Use operator string to see which operation to perform */
long eval_op(long x, char* op, long y) {
 if (strcmp(op, "+") == 0) { return x + y; }
 if (strcmp(op, "-") == 0) { return x - y; }
 if (strcmp(op, "*") == 0) { return x * y; }
 if (strcmp(op, "/") == 0) { return x / y; }
 return 0;
}

long eval(mpc_ast_t* t) {

 /* If tagged as number return it directly. */
 if (strstr(t->tag, "number")) {
 return atoi(t->contents);
 }

 /* The operator is always second child. */
 char* op = t->children[1]->contents;

 /* We store the third child in `x` */
 long x = eval(t->children[2]);

 /* Iterate the remaining children and combining. */
 int i = 3;
 while (strstr(t->children[i]->tag, "expr")) {
 x = eval_op(x, op, eval(t->children[i]));
 i++;
 }

 return x;
}

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Operator = mpc_new("operator");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 operator : '+' | '-' | '*' | '/' ; \
 expr : <number> | '(' <operator> <expr>+ ')' ; \
 lispy : /^/ <operator> <expr>+ /$/ ; \
 ",
 Number, Operator, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.3");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {

 long result = eval(r.output);
 printf("%li\n", result);

 mpc_ast_delete(r.output);

 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 mpc_cleanup(4, Number, Operator, Expr, Lispy);

 return 0;
}

Bonus Marks

› Write a recursive function to compute the number of leaves of a tree.

› Write a recursive function to compute the number of branches of a tree.

› Write a recursive function to compute the most number of children spanning
from one branch of a tree.

› How would you use strstr to see if a node was tagged as an expr ?

› How would you use strcmp to see if a node had the contents '(' or ')' ?

› Add the operator % , which returns the remainder of division. For example
% 10 6 is 4 .

› Add the operator ^ , which raises one number to another. For example
^ 4 2 is 16 .

› Add the function min , which returns the smallest number. For example
min 1 5 3 is 1 .

› Add the function max , which returns the biggest number. For example
max 1 5 3 is 5 .

› Change the minus operator - so that when it receives one argument it
negates it.

Walter White • Heisenberg

Error Handling • Chapter 8

Crashes

Some of you may have noticed a problem with the previous chapter's program. Try
entering this into the prompt and see what happens.

Lispy Version 0.0.0.0.3
Press Ctrl+c to Exit

lispy> / 10 0

Ouch. The program crashed upon trying to divide by zero. It's okay if a program
crashes during development, but our final program would hopefully never crash, and
should always explain to the user what went wrong.

At the moment our program can produce syntax errors
but it still has no functionality for reporting errors in the
evaluation of expressions. We need to build in some kind
of error handling functionality to do this. It can be
awkward in C, but if we start off on the right track, it will
pay off later on when our system gets more complicated.
C programs crashing is a fact of life. If anything goes
wrong the operating system kicks them out. Programs
can crash for many different reasons, and in many
different ways. You will see at least one Heisenbug.
But there is no magic in how C programs work. If you
face a really troublesome bug don't give up or sit and

stare at the screen till your eyes bleed. Take this chance to properly learn how to use
gdb and valgrind . These will be more weapons in your tool-kit, and after the initial

investment, save you a lot of time and pain.

Lisp Value

There are several ways to deal with errors in C, but in this context my preferred
method is to make errors a possible result of evaluating an expression. Then we can
say that, in Lispy, an expression will evaluate to either a number, or an error. For
example + 1 2 will evaluate to a number, but / 10 0 will evaluate to an error.
For this we need a data structure that can act as either one thing or anything. For
simplicity sake we are just going to use a struct with fields specific to each thing
that can be represented, and a special field type to tell us exactly what fields are
meaningful to access.
This we are going to call an lval , which stands for Lisp Value.

/* Declare New lval Struct */
typedef struct {

http://en.wikipedia.org/wiki/Heisenbug

 int type;
 long num;
 int err;
} lval;

Enumerations

You'll notice the type of the fields type , and err , is int . This means they are
represented by a single integer number.
The reason we pick int is because we will assign meaning to each integer value,
to encode what we require. For example we can make a rule "If type is 0 then the
structure is a Number.", or "If type is 1 then the structure is an Error." This is a
simple and effective way of doing things.
But if we litter our code with stray 0 and 1 then it is going to become increasingly
unclear as to what is happening. Instead we can use named constants that have
been assigned these integer values. This gives the reader an indication as to why
one might be comparing a number to 0 or 1 and what is meant in this context.
In C this is supported using an enum .

/* Create Enumeration of Possible lval Types */
enum { LVAL_NUM, LVAL_ERR };

An enum is a declaration of variables which under the hood are automatically
assigned integer constant values. Above describes how we would declare some
enumerated values for the type field.
We also want to declare an enumeration for the error field. We have three error
cases in our particular program. There is division by zero, an unknown operator, or
being passed a number that is too large to be represented internally using a long .
These can be enumerated as follows.

/* Create Enumeration of Possible Error Types */
enum { LERR_DIV_ZERO, LERR_BAD_OP, LERR_BAD_NUM };

Lisp Value Functions

Our lval type is almost ready to go. Unlike the previous long type we have no
current method for creating new instances of it. To do this we can declare two
functions that construct an lval of either an error type or a number type.

/* Create a new number type lval */
lval lval_num(long x) {
 lval v;
 v.type = LVAL_NUM;
 v.num = x;
 return v;
}

/* Create a new error type lval */
lval lval_err(int x) {

 lval v;
 v.type = LVAL_ERR;
 v.err = x;
 return v;
}

These functions first create an lval called v , and assign the fields before returning
it.
Because our lval function can now be one of two things we can no longer just use
printf to output it. We will want to behave differently depending upon the type of

the lval that is given. There is a concise way to do this in C using the switch

statement. This takes some value as input and compares it to other known values,
known as cases. When the values are equal it executes the code that follows up
until the next break statement.
Using this we can build a function that can print an lval of any type like this.

/* Print an "lval" */
void lval_print(lval v) {
 switch (v.type) {
 /* In the case the type is a number print it */
 /* Then 'break' out of the switch. */
 case LVAL_NUM: printf("%li", v.num); break;

 /* In the case the type is an error */
 case LVAL_ERR:
 /* Check what type of error it is and print it */
 if (v.err == LERR_DIV_ZERO) {
 printf("Error: Division By Zero!");
 }
 if (v.err == LERR_BAD_OP) {
 printf("Error: Invalid Operator!");
 }
 if (v.err == LERR_BAD_NUM) {
 printf("Error: Invalid Number!");
 }
 break;
 }
}

/* Print an "lval" followed by a newline */
void lval_println(lval v) { lval_print(v); putchar('\n'); }

Evaluating Errors

Now that we know how to work with the lval type, we need to change our
evaluation functions to use it instead of long .
As well as changing the type signatures we need to change the functions such that
they work correctly upon encountering either an error as input, or a number as input.
In our eval_op function, if we encounter an error we should return it right away, and
only do computation if both the arguments are numbers. We should modify our code
to return an error rather than attempt to divide by zero. This will fix the crash
described at the beginning of this chapter.

lval eval_op(lval x, char* op, lval y) {

 /* If either value is an error return it */
 if (x.type == LVAL_ERR) { return x; }
 if (y.type == LVAL_ERR) { return y; }

 /* Otherwise do maths on the number values */
 if (strcmp(op, "+") == 0) { return lval_num(x.num + y.num); }
 if (strcmp(op, "-") == 0) { return lval_num(x.num - y.num); }
 if (strcmp(op, "*") == 0) { return lval_num(x.num * y.num); }
 if (strcmp(op, "/") == 0) {
 /* If second operand is zero return error */
 return y.num == 0
 ? lval_err(LERR_DIV_ZERO)
 : lval_num(x.num / y.num);
 }

 return lval_err(LERR_BAD_OP);
}

What is that ? doing there?
You'll notice that for division to check if the second argument is zero we use a
question mark symbol ? , followed by a colon : . This is called the ternary
operator, and it allows you to write conditional expressions on one line.
It works something like this. <condition> ? <then> : <else> . In other words, if the
condition is true it returns what follows the ? , otherwise it returns what follows
: .

Some people dislike this operator because they believe it makes code unclear. If
you are unfamiliar with the ternary operator, you may initially find it awkward to
use; but once you get to know it there are rarely problems.

We need to give a similar treatment to our eval function. In this case because we've
defined eval_op to robustly handle errors we just need to add the error conditions to
our number conversion function.
In this case we use the strtol function to convert from string to long . This allows us
to check a special variable errno to ensure the conversion goes correctly. This is a
more robust way to convert numbers than our previous method using atoi .

lval eval(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) {
 /* Check if there is some error in conversion */
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err(LERR_BAD_NUM);
 }

 char* op = t->children[1]->contents;
 lval x = eval(t->children[2]);

 int i = 3;
 while (strstr(t->children[i]->tag, "expr")) {
 x = eval_op(x, op, eval(t->children[i]));
 i++;
 }

 return x;
}

Plumbing • Harder than you think

The final small step is to change how we print the result found by our evaluation to
use our newly defined printing function which can print any type of lval .

lval result = eval(r.output);
lval_println(result);
mpc_ast_delete(r.output);

And we are done! Try running this new program and make sure there are no
crashes when dividing by zero.

lispy> / 10 0
Error: Division By Zero!
lispy> / 10 2
5

Plumbing

Some of you who have gotten this far
in the book may feel uncomfortable
with how it is progressing. You may
feel you've managed to follow
instructions well enough, but don't
have a clear understanding of all of
the underlying mechanisms going on
behind the scenes.
If this is the case I want to reassure
you that you are doing well. If you
don't understand the internals it's
because I may not have explained
everything in sufficient depth. This is
okay.
To be able to progress and get code
to work under these conditions is a
great skill in programming, and if you've made it this far it shows you have it.
In programming we call this plumbing. Roughly speaking this is following
instructions to try to tie together a bunch of libraries or components, without fully
understanding how they work internally.
It requires faith and intuition. Faith is required to believe that if the stars align, and
every incantation is correctly performed for this magical machine, the right thing will
really happen. And intuition is required to work out what has gone wrong, and how
to fix things when they don't go as planned.
Unfortunately these can't be taught directly, so if you've made it this far then you've
made it over a difficult hump, and in the following chapters I promise we'll finish up
with the plumbing, and actually start programming that feels fresh and wholesome.

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Create Enumeration of Possible Error Types */
enum { LERR_DIV_ZERO, LERR_BAD_OP, LERR_BAD_NUM };

/* Create Enumeration of Possible lval Types */
enum { LVAL_NUM, LVAL_ERR };

/* Declare New lval Struct */
typedef struct {
 int type;
 long num;
 int err;
} lval;

/* Create a new number type lval */
lval lval_num(long x) {
 lval v;
 v.type = LVAL_NUM;
 v.num = x;
 return v;
}

/* Create a new error type lval */
lval lval_err(int x) {
 lval v;
 v.type = LVAL_ERR;
 v.err = x;
 return v;
}

/* Print an "lval" */
void lval_print(lval v) {
 switch (v.type) {
 /* In the case the type is a number print it */
 /* Then 'break' out of the switch. */
 case LVAL_NUM: printf("%li", v.num); break;

 /* In the case the type is an error */
 case LVAL_ERR:
 /* Check what type of error it is and print it */
 if (v.err == LERR_DIV_ZERO) {
 printf("Error: Division By Zero!");
 }
 if (v.err == LERR_BAD_OP) {

 printf("Error: Invalid Operator!");
 }
 if (v.err == LERR_BAD_NUM) {
 printf("Error: Invalid Number!");
 }
 break;
 }
}

/* Print an "lval" followed by a newline */
void lval_println(lval v) { lval_print(v); putchar('\n'); }

lval eval_op(lval x, char* op, lval y) {

 /* If either value is an error return it */
 if (x.type == LVAL_ERR) { return x; }
 if (y.type == LVAL_ERR) { return y; }

 /* Otherwise do maths on the number values */
 if (strcmp(op, "+") == 0) { return lval_num(x.num + y.num); }
 if (strcmp(op, "-") == 0) { return lval_num(x.num - y.num); }
 if (strcmp(op, "*") == 0) { return lval_num(x.num * y.num); }
 if (strcmp(op, "/") == 0) {
 /* If second operand is zero return error */
 return y.num == 0
 ? lval_err(LERR_DIV_ZERO)
 : lval_num(x.num / y.num);
 }

 return lval_err(LERR_BAD_OP);
}

lval eval(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) {
 /* Check if there is some error in conversion */
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err(LERR_BAD_NUM);
 }

 char* op = t->children[1]->contents;
 lval x = eval(t->children[2]);

 int i = 3;
 while (strstr(t->children[i]->tag, "expr")) {
 x = eval_op(x, op, eval(t->children[i]));
 i++;
 }

 return x;
}

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Operator = mpc_new("operator");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 operator : '+' | '-' | '*' | '/' ; \
 expr : <number> | '(' <operator> <expr>+ ')' ; \
 lispy : /^/ <operator> <expr>+ /$/ ; \

 ",
 Number, Operator, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.4");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 lval result = eval(r.output);
 lval_println(result);
 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 mpc_cleanup(4, Number, Operator, Expr, Lispy);

 return 0;
}

Bonus Marks

› Run the previous chapter's code through gdb and crash it. See what
happens.

› How do you give an enum a name?

› What are union data types and how do they work?

› Can you change how lval is defined to use union instead of struct ?

› What are the advantages over using a union instead of struct ?

› Extend parsing and evaluation to support the remainder operator % .

› Extend parsing and evaluation to support decimal types using a double field.

ALL CAPS • SO RIGHT YET SO WRONG.

S-Expressions • Chapter 9

Lists and Lisps

Lisps are famous for having little distinction
between data and code. They use the same
structures to represent both. This allows them
to do many powerful things which other
languages cannot do. If we want this power for
our programming language we're going to
have to separate out the process of reading in
input, and evaluating the input we have stored.
The final result of this chapter will only differ
slightly in behaviour from the previous chapter.
This is because we are going to spend time
changing how things work internally. This is
called re-factoring and it will make our life a lot
easier later on. Like preparation for a meal, just
because we're not putting food onto plates it
doesn't mean we're wasting time. Sometimes
the anticipation is even better than eating!
To store the program we will need to create an internal list structure that is built up
recursively of numbers, symbols, and other lists. In Lisp, this structure is commonly
called an S-Expression standing for Symbolic Expression. We will extend our lval

structure to be able to represent it. The evaluation behaviour of S-Expressions is the
behaviour typical of Lisps, that we are used to so far. To evaluate an S-Expression
we look at the first item in the list, and take this to be the operator. We then look at
all the other items in the list, and take these as operands to get the result.
By introducing S-Expressions we'll finally be entering the world of Lisp.

Pointers

In C no concept of lists can be explored without dealing properly with pointers.
Pointers are a famously misunderstood aspect of C. They are difficult to teach
because while being conceptually very simple, they come with a lot of new
terminology, and often no clear use-case. This makes them appear far more
monstrous than they are. Luckily for us, we have a couple ideal use-cases, both of
which are extremely typical in C, and will likely end up being how you use pointers
90% of the time.
The reason we need pointers in C is because of how function calling works. When
you call a function in C the arguments are always passed by value. This means a
copy of them is passed to the function you call. This is true for int , long , char , and
user-defined struct types such as lval . Most of the time this is great but
occasionally it can cause issues.

A common problem occurs when we have a large struct containing many other sub
structs we wish to pass around. Every time we call a function we must create
another copy of it. Suddenly the amount of data that needs to be copied around just
to call a function can become huge!
A second problem is this. When we define a struct , it is always a fixed size. It has a
limited number of fields, and each of these fields must be a struct which itself is
limited in size. If I want to call a function with just a list of things, where the number
of things varies from call to call, clearly I can't use a struct to do this.
To get around these issues the developers of C (or y'know...someone) came up with
a clever idea. They imagined computer memory as a single huge list of bytes. In this
list each byte can be given a global index, or position. A bit like a house number. The
first byte is numbered 0 , the second is 1 , etc.
In this case, all the data in the computer, including the structs and variables used in
the currently running program, start at some index in this huge list. If, rather than
copying the data itself to a function, we instead copy a number representing the
index at where this data starts, the function being called can look up any amount of
data it wants.
By using addresses instead of the actual data, we can allow a function to access
and modify some location in memory without having to copy any data. Functions
can also use pointers to do other stuff, like output data to some address given as
input.
Because the total size of computer memory is fixed, the number of bytes needed to
represent an address is always the same. But if we keep track of it, the number of
bytes the address points to can grow and shrink. This means we can create a
variable sized data-structure and still pass it to a function, which can inspect and
modify it.
So a pointer is just a number. A number representing the starting index of some data
in memory. The type of the pointer hints to us, and the compiler, what type of data
might be accessible at this location.
We can declare pointer types by suffixing existing ones with the * character. We've
seen some examples of this already with mpc_parser_t* , mpc_ast_t* , or char* .
To create a pointer to some data, we need to get its index, or address. To get the
address of a some data we use the address of operator & . Again you've seen this
before when we passed in a pointer to mpc_parse so it would output into our
mpc_result_t .

Finally to get the data at an address, called dereferencing, we use the * operator
on the left-hand side of a variable. To get the data at the field of a pointer to a struct
we use the arrow -> . This you saw in chapter 7.

The Stack & The Heap

I said that memory can be visualised of as one long list of bytes. Actually it is better to
imagine it split into two sections. These sections are called The Stack and The Heap.
Some of you may have heard tales of these mysterious locations, such as "the stack
grows down but the heap grows up", or "there can be many stacks, but only one

The Stack • Like what you do with bricks.

The Heap • U LOCK. KEEP KEY.

heap". These sorts of things don't matter much. Dealing with the stack and the heap
in C can be complex, but it doesn't have to be a mystery. In essence they are just two
sections of memory used for two different tasks.

The Stack
The Stack is the memory where
your program lives. It is where all of
your temporary variables and data
structures exist as you manipulate
and edit them. Every time you call
a function a new area of the stack
is put aside for it to use. Into this
area are put local variables, copies
of any arguments passed to the
function, as well as some
bookkeeping data such as who the
caller was, and what to do when
finished. When the function is done
the area it used is unallocated,
ready for use again by someone
else.
I like to think of the stack as a
building site. Each time we need to do something new we corner off a section of
space, enough for our tools and materials, and set to work. We can still go to other
parts of the site, or go off-site, if we need certain things, but all our work is done in
this section. Once we are done with some task, we take what we've constructed to a
new place and clean up that section of the space we've been using to make it.

The Heap
The Heap is a section of memory put aside for
storage of objects with a longer lifespan.
Memory in this area has to be manually
allocated and deallocated. To allocate new
memory the malloc function is used. This
function takes as input the number of bytes
required, and returns back a pointer to a new
block of memory with that many bytes set aside.
When done with the memory at that location it
must be released again. To do this the pointer
received from malloc should be passed to the
free function.

Using the Heap is trickier than the Stack
because it requires the programmer to
remember to call free and to call it correctly. If
he or she doesn't, the program may continuously allocate more and more memory.
This is called a memory leak. An easy rule to avoid this is to ensure for each malloc

there is a corresponding (and only one corresponding) free . If this can always be
ensured the program should be handling The Heap correctly.
I Imagine the Heap like a huge U-Store-It. We can call up the reception with malloc

and request a number of boxes. With these boxes we can do what we want, and we
know they will persist no matter how messy the building site gets. We can take
things to and from the U-Store-It and the building site. It is useful to store materials
and large objects which we only need to retrieve once in a while. The only problem
is we need to remember to call the receptionist again with free when we are done.
Otherwise soon we'll have requested all the boxes, have no space, and run up a
huge bill.

Parsing Expressions

Because we're now thinking in S-Expressions, and not Polish Notation we need to
update our parser. The syntax for S-Expressions is simple. It is just a number of other
Expressions between parentheses, where an Expression can be a Number,
Operator, or other S-Expression . We can modify our existing parse rules to reflect
this. We also are going to rename our operator rule to symbol . This is in anticipation
of adding more operators, variables and functions later.

mpc_parser_t* Number = mpc_new("number");
mpc_parser_t* Symbol = mpc_new("symbol");
mpc_parser_t* Sexpr = mpc_new("sexpr");
mpc_parser_t* Expr = mpc_new("expr");
mpc_parser_t* Lispy = mpc_new("lispy");

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : '+' | '-' | '*' | '/' ; \
 sexpr : '(' <expr>* ')' ; \
 expr : <number> | <symbol> | <sexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Expr, Lispy);

We should also remember to cleanup these rules on exit.

mpc_cleanup(5, Number, Symbol, Sexpr, Expr, Lispy);

Expression Structure

We need a way to store S-Expressions as lval . This means we'll also need to store
Symbols and Numbers. We're going to add two new lval types to the enum . The
first is LVAL_SYM , which we're going to use to represent operators such as + . The
second new type is LVAL_SEXPR which we're going to use to represent S-Expressions.

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_SEXPR };

S-Expressions are variable length lists of other values. As we learnt at the beginning

of this chapter we can't create variable length structs, so we are going to need to
use a pointer. We are going to create a pointer field cell which points to a location
where we store a list of lval* . More specifically pointers to the other individual
lval . Our field should therefore be a double pointer type lval** . A pointer to lval

pointers. We will also need to keep track of how many lval* are in this list, so we
add an extra field count to record this.
To represent symbols we're going to use a string. We're also going to change the
representation of errors to a string. This means we can store a unique error
message rather than just an error code. This will make our error reporting better and
more flexible, and we can get rid of the original error enum . Our updated lval struct
looks like this.

typedef struct lval {
 int type;
 long num;
 /* Error and Symbol types have some string data */
 char* err;
 char* sym;
 /* Count and Pointer to a list of "lval*" */
 int count;
 struct lval** cell;
} lval;

Are there ever pointers to pointers to pointers?
There is an old programming joke which says you can rate C programmers by
how many stars are on their pointers.
Beginner's programs might only use char* or the odd int* , so they were called
one star programmers. Most intermediate programs contain double pointer types
such as lval** . These programmers are therefore called two star programmers.
To spot a triple pointer is something special. You would be viewing the work of
someone grand and terrible, writing code not meant to be read with mortal eyes.
As such being called a three star programmer is rarely a compliment.
As far as I know, a quadruple pointer has never been seen in the wild.

What is that struct keyword doing there?
Our new definition of lval needs to contain a reference to itself. This means we
have to slightly change how it is defined. Before we open the curly brackets we
can put the name of the struct, and then refer to this inside the definition using
struct lval . Even though a struct can refer to its own type, it must only contain

pointers to its own type, not its own type directly. Otherwise the size of the struct
would refer to itself, and grow infinite in size when you tried to calculate it!

Constructors & Destructors

We can change our lval construction functions to return pointers to an lval , rather
than one directly. This will make keeping track of lval variables easier. For this we
need to use malloc with the sizeof function to allocate enough space for the lval

struct, and then to fill in the fields with the relevant information using the arrow
operator -> .
When we construct an lval its fields may contain pointers to other things that have
been allocated on the heap. This means we need to be careful. Whenever we are
finished with an lval we also need to delete the things it points to on the heap. We
will have to make a rule for ourselves. Whenever we free the memory allocated for
an lval , we also free all the things it points to.

/* Construct a pointer to a new Number lval */
lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

/* Construct a pointer to a new Error lval */
lval* lval_err(char* m) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 v->err = malloc(strlen(m) + 1);
 strcpy(v->err, m);
 return v;
}

/* Construct a pointer to a new Symbol lval */
lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

/* A pointer to a new empty Sexpr lval */
lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

What is NULL ?
NULL is a special constant that points to memory location 0 . In many places it is

used as a convention to signify some non-value or empty data. Above we use it
to specify that we have a data pointer, but that it doesn't point to any number of
data items. You will see NULL crop up a lot more later on so always remember to
look out for it.

Why are you using strlen(s) + 1 ?
In C strings are null terminated. This means that the final character of them is
always the zero character \0 . This is a convention in C to signal the end of a
string. It is important that all strings are stored this way otherwise programs will

break in nasty ways.
The strlen function only returns the number of bytes in a string excluding the
null terminator. This is why we need to add one, to ensure there is enough
allocated space for it all!

We now need a special function to delete lval* . This should call free on the
pointer itself to release the memory acquired from malloc , but more importantly it
should inspect the type of the lval , and release any memory pointed to by its fields.
If we match every call to one of the above construction functions with lval_del we
can ensure we will get no memory leaks.

void lval_del(lval* v) {

 switch (v->type) {
 /* Do nothing special for number type */
 case LVAL_NUM: break;

 /* For Err or Sym free the string data */
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;

 /* If Sexpr then delete all elements inside */
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 /* Also free the memory allocated to contain the pointers */
 free(v->cell);
 break;
 }

 /* Free the memory allocated for the "lval" struct itself */
 free(v);
}

Reading Expressions

First we are going to read in the program and construct an lval* that represents it
all. Then we are going to evaluate this lval* to get the result of our program. This
first stage should convert the abstract syntax tree into an S-Expression, and the
second stage should evaluate this S-Expression using our normal Lisp rules.
To complete the first stage we can recursively look at each node of the tree, and
construct different lval* types depending on the tag and contents fields of the
node.
If the given node is tagged as a number or symbol , then we use our constructors to
return an lval* directly for those types. If the given node is the root , or an sexpr ,
then we create an empty S-Expression lval and slowly add each valid sub-
expression contained in the tree.
To add an element to an S-Expression we can create a function lval_add . This
function increases the count of the Expression list by one, and then uses realloc to
reallocate the amount of space required by v->cell . This new space can be used to
store the extra lval* required. Using this new space it sets the final value of the list

with v->cell[v->count-1] to the value lval* x passed in.

Don't Lisps use Cons cells?
Other Lisps have a slightly different definition of what an S-Expression is. In most
other Lisps S-Expressions are defined inductively as either an atom such as a
symbol of number, or two other S-Expressions joined, or cons, together.
This naturally leads to an implementation using linked lists, a different data
structure to the one we are using. I choose to represent S-Expressions as a
variable sized array in this book for the purposes of simplicity, but it is important
to be aware that the official definition, and typical implementation are both subtly
different.

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ?
 lval_num(x) : lval_err("invalid number");
}

lval* lval_read(mpc_ast_t* t) {

 /* If Symbol or Number return conversion to that type */
 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 /* If root (>) or sexpr then create empty list */
 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }

 /* Fill this list with any valid expression contained within */
 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

Printing Expressions

We are now so close to trying out all of our new changes. We need to modify our
print function to print out S-Expressions types. Using this we can double check that

http://en.wikipedia.org/wiki/Cons

the reading phase is working correctly by printing out the S-Expressions we read in
and verifying they match those we input.
To print out S-Expressions we can create another function that loops over all the
sub-expressions of an expression and prints these individually separated by spaces,
in the same way they are input.

void lval_expr_print(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {

 /* Print Value contained within */
 lval_print(v->cell[i]);

 /* Don't print trailing space if last element */
 if (i != (v->count-1)) {
 putchar(' ');
 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

I can't declare these functions because they call each other.
The lval_expr_print function calls the lval_print function and vice-versa. There is
no way we can order them in the source file to resolve this dependency. Instead
we need to forward declare one of them. This is declaring a function without
giving it a body. It lets other functions call it, while allowing you to define it
properly later on. To write a forward declaration, write the function definition but
instead of the body put a semicolon ; . In this example we should put
void lval_print(lval* v); somewhere in the source file before lval_expr_print .

You'll definitely run into this later, and I won't always alert you to it, so try to
remember how to fix it!

In our main loop, we can remove the evaluation for now, and instead try reading in
the result and printing out what we have read.

lval* x = lval_read(r.output);
lval_println(x);
lval_del(x);

If this is successful you should see something like the following when entering input
to your program.

lispy> + 2 2
(+ 2 2)
lispy> + 2 (* 7 6) (* 2 5)

(+ 2 (* 7 6) (* 2 5))
lispy> * 55 101 (+ 0 0 0)
(* 55 101 (+ 0 0 0))
lispy>

Evaluating Expressions

The behaviour of our evaluation function is largely the same as before. We need to
adapt it to deal with lval* and our more relaxed definition of what constitutes an
expression. We can think of our evaluation function as a kind of transformer. It takes
in some lval* and transforms it in some way to some new lval* . In some cases it
can just return exactly the same thing. In other cases it may modify the input lval*

and the return it. In many cases it will delete the input, and return something
completely different. If we are going to return something new we must always
remember to delete the lval* we get as input.
For S-Expressions we first evaluate all the children of the S-Expression. If any of
these children are errors we return the first error we encounter using a function we'll
define later called lval_take .
If the S-Expression has no children we just return it directly. This corresponds to the
empty expression, denoted by () . We also check for single expressions. These are
expressions with only one child such as (5) . In this case we return the single
expression contained within the parenthesis.
If neither of these are the case we know we have a valid expression with more than
one child. In this case we separate the first element of the expression using a
function we'll define later called lval_pop . We then check this is a symbol and not
anything else. If it is a symbol we check what symbol it is, and pass it, and the
arguments, to a function builtin_op which does our calculations. If the first element
is not a symbol we delete it, and the values passed into the evaluation function,
returning an error.
To evaluate all other types we just return them directly back.

lval* lval_eval_sexpr(lval* v) {

 /* Evaluate Children */
 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(v->cell[i]);
 }

 /* Error Checking */
 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 /* Empty Expression */
 if (v->count == 0) { return v; }

 /* Single Expression */
 if (v->count == 1) { return lval_take(v, 0); }

 /* Ensure First Element is Symbol */
 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_SYM) {
 lval_del(f); lval_del(v);

 return lval_err("S-expression Does not start with symbol!");
 }

 /* Call builtin with operator */
 lval* result = builtin_op(v, f->sym);
 lval_del(f);
 return result;
}

lval* lval_eval(lval* v) {
 /* Evaluate Sexpressions */
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(v); }
 /* All other lval types remain the same */
 return v;
}

There are two functions we've used and not defined in the above code. These are
lval_pop and lval_take . These are general purpose functions for manipulating S-

Expression lval types which we'll make use of here and in the future.
The lval_pop function extracts a single element from an S-Expression at index i

and shifts the rest of the list backward so that it no longer contains that lval* . It then
returns the extracted value. Notice that it doesn't delete the input list. It is like taking
an element from a list and popping it out, leaving what remains. This means both the
element popped and the old list need to be deleted at some point with lval_del .
The lval_take function is similar to lval_pop but it deletes the list it has extracted the
element from. This is like taking an element from the list and deleting the rest. It is a
slight variation on lval_pop but it makes our code easier to read in some places.
Unlike lval_pop , only the expression you take from the list needs to be deleted by
lval_del .

lval* lval_pop(lval* v, int i) {
 /* Find the item at "i" */
 lval* x = v->cell[i];

 /* Shift memory after the item at "i" over the top */
 memmove(&v->cell[i], &v->cell[i+1],
 sizeof(lval*) * (v->count-i-1));

 /* Decrease the count of items in the list */
 v->count--;

 /* Reallocate the memory used */
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

We also need to define the evaluation function builtin_op . This is like the eval_op

function used in our previous chapter but modified to take a single lval*

representing a list of all the arguments to operate on. It needs to do some more
rigorous error checking. If any of the inputs are a non-number lval* we need to
return an error.

First it checks that all the arguments input are numbers. It then pops the first
argument to start. If there are no more sub-expressions and the operator is
subtraction it performs unary negation on this first number. This makes expressions
such as (- 5) evaluate correctly.
If there are more arguments it constantly pops the next one from the list and
performs arithmetic depending on which operator we're meant to be using. If a zero
is encountered on division it deletes the temporary x , y , and the argument list a ,
and returns an error.
If there have been no errors the input arguments are deleted and the new
expression returned.

lval* builtin_op(lval* a, char* op) {

 /* Ensure all arguments are numbers */
 for (int i = 0; i < a->count; i++) {
 if (a->cell[i]->type != LVAL_NUM) {
 lval_del(a);
 return lval_err("Cannot operate on non-number!");
 }
 }

 /* Pop the first element */
 lval* x = lval_pop(a, 0);

 /* If no arguments and sub then perform unary negation */
 if ((strcmp(op, "-") == 0) && a->count == 0) {
 x->num = -x->num;
 }

 /* While there are still elements remaining */
 while (a->count > 0) {

 /* Pop the next element */
 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero!"); break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a); return x;
}

This completes our evaluation functions. We just need to change main again so it
passes the input through this evaluation before printing it.

lval* x = lval_eval(lval_read(r.output));
lval_println(x);
lval_del(x);

Now you should now be able to evaluate expressions correctly in the same way as

in the previous chapter. Take a little breather and have a play around with the new
evaluation. Make sure everything is working correctly, and the behaviour is as
expected. In the next chapter we're going to make great use of these changes to
implement some cool new features.

lispy> + 1 (* 7 5) 3
39
lispy> (- 100)
-100
lispy>
()
lispy> /
/
lispy> (/ ())
Error: Cannot operate on non-number!
lispy>

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Add SYM and SEXPR as possible lval types */
enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_SEXPR };

typedef struct lval {
 int type;
 long num;
 /* Error and Symbol types have some string data */
 char* err;
 char* sym;
 /* Count and Pointer to a list of "lval*"; */
 int count;
 struct lval** cell;
} lval;

/* Construct a pointer to a new Number lval */
lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;

 return v;
}

/* Construct a pointer to a new Error lval */
lval* lval_err(char* m) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 v->err = malloc(strlen(m) + 1);
 strcpy(v->err, m);
 return v;
}

/* Construct a pointer to a new Symbol lval */
lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

/* A pointer to a new empty Sexpr lval */
lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

void lval_del(lval* v) {

 switch (v->type) {
 /* Do nothing special for number type */
 case LVAL_NUM: break;

 /* For Err or Sym free the string data */
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;

 /* If Sexpr then delete all elements inside */
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 /* Also free the memory allocated to contain the pointers */
 free(v->cell);
 break;
 }

 /* Free the memory allocated for the "lval" struct itself */
 free(v);
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_pop(lval* v, int i) {
 /* Find the item at "i" */
 lval* x = v->cell[i];

 /* Shift memory after the item at "i" over the top */

 memmove(&v->cell[i], &v->cell[i+1],
 sizeof(lval*) * (v->count-i-1));

 /* Decrease the count of items in the list */
 v->count--;

 /* Reallocate the memory used */
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_expr_print(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {

 /* Print Value contained within */
 lval_print(v->cell[i]);

 /* Don't print trailing space if last element */
 if (i != (v->count-1)) {
 putchar(' ');
 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

lval* builtin_op(lval* a, char* op) {

 /* Ensure all arguments are numbers */
 for (int i = 0; i < a->count; i++) {
 if (a->cell[i]->type != LVAL_NUM) {
 lval_del(a);
 return lval_err("Cannot operate on non-number!");
 }
 }

 /* Pop the first element */
 lval* x = lval_pop(a, 0);

 /* If no arguments and sub then perform unary negation */
 if ((strcmp(op, "-") == 0) && a->count == 0) {
 x->num = -x->num;
 }

 /* While there are still elements remaining */
 while (a->count > 0) {

 /* Pop the next element */
 lval* y = lval_pop(a, 0);

 /* Perform operation */
 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 /* Delete element now finished with */
 lval_del(y);
 }

 /* Delete input expression and return result */
 lval_del(a);
 return x;
}

lval* lval_eval(lval* v);

lval* lval_eval_sexpr(lval* v) {

 /* Evaluate Children */
 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(v->cell[i]);
 }

 /* Error Checking */
 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 /* Empty Expression */
 if (v->count == 0) { return v; }

 /* Single Expression */
 if (v->count == 1) { return lval_take(v, 0); }

 /* Ensure First Element is Symbol */
 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_SYM) {
 lval_del(f); lval_del(v);
 return lval_err("S-expression Does not start with symbol.");
 }

 /* Call builtin with operator */
 lval* result = builtin_op(v, f->sym);
 lval_del(f);
 return result;
}

lval* lval_eval(lval* v) {
 /* Evaluate Sexpressions */
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(v); }
 /* All other lval types remain the same */
 return v;
}

lval* lval_read_num(mpc_ast_t* t) {

 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ?
 lval_num(x) : lval_err("invalid number");
}

lval* lval_read(mpc_ast_t* t) {

 /* If Symbol or Number return conversion to that type */
 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 /* If root (>) or sexpr then create empty list */
 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }

 /* Fill this list with any valid expression contained within */
 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Symbol = mpc_new("symbol");
 mpc_parser_t* Sexpr = mpc_new("sexpr");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : '+' | '-' | '*' | '/' ; \
 sexpr : '(' <expr>* ')' ; \
 expr : <number> | <symbol> | <sexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.5");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 lval* x = lval_eval(lval_read(r.output));
 lval_println(x);
 lval_del(x);
 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 mpc_cleanup(5, Number, Symbol, Sexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› Give an example of a variable in our program that lives on The Stack.

› Give an example of a variable in our program that points to The Heap.

› What does the strcpy function do?

› What does the realloc function do?

› What does the memmove function do?

› How does memmove differ from memcpy ?

› Extend parsing and evaluation to support the remainder operator % .

› Extend parsing and evaluation to support decimal types using a double field.

Q-Expressions • Chapter 10

Adding Features

You'll notice that the following chapters will all follow a similar pattern. This pattern
is the typical approach used to add new features to a language. It consists of a
number of steps that bring a feature from start to finish. These are listed below, and
are exactly what we're going to do in this chapter to introduce a new feature called a
Q-Expression.

Syntax Add new rule to the language grammar for this feature.

RepresentationAdd new data type variation to represent this feature.

Parsing
Add new functions for reading this feature from the abstract syntax
tree.

Semantics Add new functions for evaluating and manipulating this feature.

Quoted Expressions

In this chapter we'll implement a new type of Lisp Value called a Q-Expression.
This stands for quoted expression, and is a type of Lisp Expression that is not
evaluated by the standard Lisp mechanics. When encountered by the evaluation
function Q-expressions are left exactly as they are. This makes them ideal for a
number of purposes. We can use them to store and manipulate other Lisp values
such as numbers, symbols, or other S-Expressions themselves.
After we've added Q-Expressions we are going to implement a concise set of
operators to manipulate them. Like the arithmetic operators these will prove
fundamental in how we think about and play with expressions.
The syntax for Q-Expressions is very similar to that of S-Expressions. The only
difference is that instead of parenthesis () Q-Expressions are surrounded by curly
brackets {} . We can add this to our grammar as follows.

I've never heard of Q-Expressions.
Q-Expressions don't exist in other Lisps. Other Lisps use Macros to stop
evaluation. These look like normal functions, but they do not evaluate their
arguments. A special Macro called quote ' exists, which can be used to stop
the evaluation of almost anything. This is the inspiration for Q-Expressions, which
are unique to our Lisp, and will be used instead of Macros for doing all the same
tasks and more.
The way I've used S-Expression and Q-Expression in this book is a slight abuse of
terminology, but I hope this misdemeanor makes the behaviour of our Lisp
clearer.

mpc_parser_t* Number = mpc_new("number");
mpc_parser_t* Symbol = mpc_new("symbol");
mpc_parser_t* Sexpr = mpc_new("sexpr");
mpc_parser_t* Qexpr = mpc_new("qexpr");
mpc_parser_t* Expr = mpc_new("expr");
mpc_parser_t* Lispy = mpc_new("lispy");

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : '+' | '-' | '*' | '/' ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

We also must remember to update our cleanup function to deal with the new rule
we've added.

mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

Reading Q-Expressions

Because Q-Expressions are so similar S-Expressions much of their internal
behaviour is going to be the same. We're going to reuse our S-Expression data fields
to represent Q-Expressions, but we still need to add a separate type to the
enumeration.

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_SEXPR, LVAL_QEXPR };

We can also add a constructor for this variation.

/* A pointer to a new empty Qexpr lval */
lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

To print and delete Q-Expressions we do essentially the same thing as with S-
Expressions. We can add the relevant lines to our functions for printing and deletion
as follows.

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
 case LVAL_QEXPR: lval_expr_print(v, '{', '}'); break;
 }
}

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;

 /* If Qexpr or Sexpr then delete all elements inside */
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 /* Also free the memory allocated to contain the pointers */
 free(v->cell);
 break;
 }

 free(v);
}

Using these simple changes we can update our reading function lval_read to be
able to read in Q-Expressions. Because we reused all the S-Expression data fields
for our Q-Expression type, we can also reuse all of the functions for S-Expressions
such as lval_add . Therefore to read in Q-Expressions we just need to add a special
case for constructing an empty Q-Expression to lval_read just below where we
detect and create empty S-Expressions from the abstract syntax tree.

if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

Because there is no special method of evaluating Q-Expressions, we don't need to
edit any of the evaluation functions. Our Q-Expressions should be ready to try.
Compile and run the program. Try using them as a new data type and ensure they
are not evaluated.

lispy> {1 2 3 4}
{1 2 3 4}
lispy> {1 2 (+ 5 6) 4}
{1 2 (+ 5 6) 4}
lispy> {{2 3 4} {1}}
{{2 3 4} {1}}
lispy>

Builtin Functions

We can read in Q-Expressions but they are still useless. We need some way to
manipulate them.
For this we can define some built-in operators to work on our list type. Choosing a
concise set of these is important. If we implement a few fundamental operations
then we can use these to define new operations without adding extra C code. There
are a few ways to pick these fundamental operators but I've chosen a set that will
allow us to do everything we need. They are defined as follows.

list
Takes one or more arguments and returns a new Q-Expression containing the

arguments
head Takes a Q-Expression and returns a Q-Expression with only of the first element

tail
Takes a Q-Expression and returns a Q-Expression with the first element
removed

join
Takes one or more Q-Expressions and returns a Q-Expression of them
conjoined together

eval Takes a Q-Expression and evaluates it as if it were a S-Expression

Like with our mathematical operators we should add these functions as possible
valid symbols. Afterward we can go about trying to define their behaviour in a similar
way to builtin_op .

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : \"list\" | \"head\" | \"tail\" \
 | \"join\" | \"eval\" | '+' | '-' | '*' | '/' ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy)

First Attempt

Our builtin functions should have the same interface as builtin_op . That means the
arguments should be bundled into an S-Expression which the function must use and
then delete. They should return a new lval* as a result of the evaluation.
The actual functionality of taking the head or tail of an Q-Expression shouldn't be too
hard for us. We can make use of the existing functions we've defined for S-
Expressions such as lval_take and lval_pop . But like builtin_op we also need to
check that the inputs we get are valid.
Let's take a look at head and tail first. These functions have a number of
conditions under which they can't act. First of all we must ensure they are only
passed a single argument, and that that argument is a Q-Expression. Then we need
to ensure that this Q-Expression isn't empty and actually has some elements.
The head function can repeatedly pop and delete the item at index 1 until there is
nothing else left in the list.
The tail function is even more simple. It can pop and delete the item at index 0 ,
leaving the tail remaining. An initial attempt at these functions might look like this.

lval* builtin_head(lval* a) {
 /* Check Error Conditions */
 if (a->count != 1) {
 lval_del(a);
 return lval_err("Function 'head' passed too many arguments!");
 }

Strawberry • A delicious macro.

 if (a->cell[0]->type != LVAL_QEXPR) {
 lval_del(a);
 return lval_err("Function 'head' passed incorrect types!");
 }

 if (a->cell[0]->count == 0) {
 lval_del(a);
 return lval_err("Function 'head' passed {}!");
 }

 /* Otherwise take first argument */
 lval* v = lval_take(a, 0);

 /* Delete all elements that are not head and return */
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lval* a) {
 /* Check Error Conditions */
 if (a->count != 1) {
 lval_del(a);
 return lval_err("Function 'tail' passed too many arguments!");
 }

 if (a->cell[0]->type != LVAL_QEXPR) {
 lval_del(a);
 return lval_err("Function 'tail' passed incorrect types!");
 }

 if (a->cell[0]->count == 0) {
 lval_del(a);
 return lval_err("Function 'tail' passed {}!");
 }

 /* Take first argument */
 lval* v = lval_take(a, 0);

 /* Delete first element and return */
 lval_del(lval_pop(v, 0));
 return v;
}

Macros

These head and tail functions do the
correct thing, but the code is pretty unclear,
and long. There is so much error checking
that the functionality is hard to see. One
method we can use to clean it up is to use a
Macro.
A Macro is a preprocessor statement for
creating function-like-things that are
evaluated before the program is compiled. It
can be used for many different things, one of
which is what we need to do here, clean up

code.
Macros work by taking some arguments (which can be almost anything), and
copying and pasting them into some given pattern. By changing the pattern or the
arguments we can alter what code is generated by the Macro. To define macros we
use the #define preprocessor directive. After this we write the name of the macro,
followed by the argument names in parenthesis. After this the pattern is specified, to
declare what code should be generated for the given arguments.
We can design a macro to help with our error conditions called LASSERT . Macros are
typically given names in capitals to help distinguish them from normal C functions.
This macro take in three arguments args , cond and err . It then generates code as
shown on the right hand side, but with these variables pasted in at the locations
where they are named. This pattern is a good fit for all of our error conditions.

#define LASSERT(args, cond, err) \
 if (!(cond)) { lval_del(args); return lval_err(err); }

We can use this to change how our above functions are written, without actually
changing what code is generated by the compiler. This makes it much easier to
read for the programmer, and saves a bit of typing. The rest of the error conditions
for our functions should become easy to write too!

Head & Tail
Using this our head and tail functions are defined as follows. Notice how much
clearer their real functionality is.

lval* builtin_head(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'head' passed too many arguments!");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'head' passed incorrect type!");
 LASSERT(a, a->cell[0]->count != 0,
 "Function 'head' passed {}!");

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'tail' passed too many arguments!");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'tail' passed incorrect type!");
 LASSERT(a, a->cell[0]->count != 0,
 "Function 'tail' passed {}!");

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

List & Eval

The list function is simple. It just converts the input S-Expression to a Q-Expression
and returns it.
The eval function is similar to the converse. It takes as input some single Q-
Expression, which it converts to an S-Expression, and evaluates using lval_eval .

lval* builtin_list(lval* a) {
 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_eval(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'eval' passed too many arguments!");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'eval' passed incorrect type!");

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(x);
}

Join
The join function is our final function to define.
Unlike the others it can take multiple arguments, so its structure looks somewhat
more like that of builtin_op . First we check that all of the arguments are Q-
Expressions and then we join them together one by one. To do this we use the
function lval_join . This works by repeatedly popping each item from y and adding
it to x until y is empty. It then deletes y and returns x .

lval* builtin_join(lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT(a, a->cell[i]->type == LVAL_QEXPR,
 "Function 'join' passed incorrect type.");
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 x = lval_join(x, lval_pop(a, 0));
 }

 lval_del(a);
 return x;
}

lval* lval_join(lval* x, lval* y) {

 /* For each cell in 'y' add it to 'x' */
 while (y->count) {
 x = lval_add(x, lval_pop(y, 0));
 }

 /* Delete the empty 'y' and return 'x' */
 lval_del(y);
 return x;
}

Builtins Lookup

We've now got all of our builtin functions defined. We need to make a function that
can call the correct one depending on what symbol it encounters in evaluation. We
can do this using strcmp and strstr .

lval* builtin(lval* a, char* func) {
 if (strcmp("list", func) == 0) { return builtin_list(a); }
 if (strcmp("head", func) == 0) { return builtin_head(a); }
 if (strcmp("tail", func) == 0) { return builtin_tail(a); }
 if (strcmp("join", func) == 0) { return builtin_join(a); }
 if (strcmp("eval", func) == 0) { return builtin_eval(a); }
 if (strstr("+-/*", func)) { return builtin_op(a, func); }
 lval_del(a);
 return lval_err("Unknown Function!");
}

Then we can change our evaluation line in lval_eval_sexpr to call builtin rather than
builtin_op .

/* Call builtin with operator */
lval* result = builtin(v, f->sym);
lval_del(f);
return result;

Finally Q-Expressions should be fully supported in our language. Compile and run
the latest version and see what you can do with the new list operators. Try putting
code and symbols into our lists and evaluating them in different ways. The ability to
put S-Expressions inside a list using Q-Expressions is pretty awesome. It means we
can treat code like data itself. This is a flagship feature of Lisps, and something that
really cannot be done in languages such as C!

lispy> list 1 2 3 4
{1 2 3 4}
lispy> {head (list 1 2 3 4)}
{head (list 1 2 3 4)}
lispy> eval {head (list 1 2 3 4)}
{1}
lispy> tail {tail tail tail}
{tail tail}
lispy> eval (tail {tail tail {5 6 7}})
{6 7}
lispy> eval (head {(+ 1 2) (+ 10 20)})
3

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Add QEXPR as possible lval type */
enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_SEXPR, LVAL_QEXPR };

typedef struct lval {
 int type;
 long num;
 char* err;
 char* sym;
 int count;
 struct lval** cell;
} lval;

lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

lval* lval_err(char* m) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 v->err = malloc(strlen(m) + 1);
 strcpy(v->err, m);
 return v;
}

lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

/* A pointer to a new empty Qexpr lval */
lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;

 return v;
}

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;

 /* If Qexpr or Sexpr then delete all elements inside */
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 /* Also free the memory allocated to contain the pointers */
 free(v->cell);
 break;
 }

 free(v);
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_pop(lval* v, int i) {
 lval* x = v->cell[i];
 memmove(&v->cell[i], &v->cell[i+1],
 sizeof(lval*) * (v->count-i-1));
 v->count--;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_join(lval* x, lval* y) {

 while (y->count) {
 x = lval_add(x, lval_pop(y, 0));
 }

 lval_del(y);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_expr_print(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {

 lval_print(v->cell[i]);

 if (i != (v->count-1)) {
 putchar(' ');

 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
 case LVAL_QEXPR: lval_expr_print(v, '{', '}'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

#define LASSERT(args, cond, err) \
 if (!(cond)) { lval_del(args); return lval_err(err); }

lval* lval_eval(lval* v);

lval* builtin_list(lval* a) {
 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_head(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'head' passed too many arguments.");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'head' passed incorrect type.");
 LASSERT(a, a->cell[0]->count != 0,
 "Function 'head' passed {}.");

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'tail' passed too many arguments.");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'tail' passed incorrect type.");
 LASSERT(a, a->cell[0]->count != 0,
 "Function 'tail' passed {}.");

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

lval* builtin_eval(lval* a) {
 LASSERT(a, a->count == 1,
 "Function 'eval' passed too many arguments.");
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'eval' passed incorrect type.");

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(x);
}

lval* builtin_join(lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT(a, a->cell[i]->type == LVAL_QEXPR,
 "Function 'join' passed incorrect type.");
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 x = lval_join(x, lval_pop(a, 0));
 }

 lval_del(a);
 return x;
}

lval* builtin_op(lval* a, char* op) {

 for (int i = 0; i < a->count; i++) {
 if (a->cell[i]->type != LVAL_NUM) {
 lval_del(a);
 return lval_err("Cannot operate on non-number!");
 }
 }

 lval* x = lval_pop(a, 0);
 if ((strcmp(op, "-") == 0) && a->count == 0) { x->num = -x->num; }

 while (a->count > 0) {

 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a);
 return x;
}

lval* builtin(lval* a, char* func) {
 if (strcmp("list", func) == 0) { return builtin_list(a); }
 if (strcmp("head", func) == 0) { return builtin_head(a); }
 if (strcmp("tail", func) == 0) { return builtin_tail(a); }
 if (strcmp("join", func) == 0) { return builtin_join(a); }
 if (strcmp("eval", func) == 0) { return builtin_eval(a); }
 if (strstr("+-/*", func)) { return builtin_op(a, func); }
 lval_del(a);
 return lval_err("Unknown Function!");
}

lval* lval_eval_sexpr(lval* v) {

 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(v->cell[i]);
 }

 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 if (v->count == 0) { return v; }

 if (v->count == 1) { return lval_take(v, 0); }

 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_SYM) {
 lval_del(f); lval_del(v);
 return lval_err("S-expression Does not start with symbol.");
 }

 /* Call builtin with operator */
 lval* result = builtin(v, f->sym);
 lval_del(f);
 return result;
}

lval* lval_eval(lval* v) {
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(v); }
 return v;
}

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err("invalid number");
}

lval* lval_read(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }
 if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Symbol = mpc_new("symbol");
 mpc_parser_t* Sexpr = mpc_new("sexpr");
 mpc_parser_t* Qexpr = mpc_new("qexpr");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \

 symbol : \"list\" | \"head\" | \"tail\" | \"eval\" \
 | \"join\" | '+' | '-' | '*' | '/' ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.6");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 lval* x = lval_eval(lval_read(r.output));
 lval_println(x);
 lval_del(x);
 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› What are the four typical steps for adding new language features?

› Create a Macro specifically for testing for the incorrect number of
arguments.

› Create a Macro specifically for testing for being called with the empty list.

› Add a builtin function cons that takes a value and a Q-Expression and
appends it to the front.

› Add a builtin function len that returns the number of elements in a Q-
Expression.

› Add a builtin function init that returns all of a Q-Expression except the final
element.

Teenage Ninja Turtle • Not Immutable.

Variables • Chapter 11

Immutability

In the previous chapters we've made
considerable progress on the infrastructure of
our language.
Already we can do a number of cool things that
other languages can't, such as putting code
inside lists. Now is the time to start adding in
the features which will make our language
practical. The first one of these is going to be
variables.
They're called variables, but it's a misleading
name, because our variables won't vary. Our
variables are immutable meaning they cannot
change. Everything in our language so far has
acted as if it is immutable. When we evaluate
an expression we have imagined that the previous thing has been deleted and a
new thing returned. In implementation often it is easier for us to reuse the data from
the previous thing to build the new thing, but conceptually it is a good way to think
about how our language works.
So actually our variables are simply a way of naming values. They let us assign a
name to a value, and then let us get a copy of that value later on when we need it.
To allow for naming values we need to create a structure which stores the name
and value of everything named in our program. We call this the environment. When
we start a new interactive prompt we want to create a new environment to go along
with it, in which each new bit of input is evaluated. Then we can store and recall
variables as we program.

What happens when we re-assign a name to something new? Isn't this like
mutability?
In our Lisp, when we re-assign a name we're going to delete the old association
and create a new one. This gives the illusion that the thing assigned to that name
has changed, and is mutable, but in fact we have deleted the old thing and
assigned it a new thing. This is different to C where we really can change the
data pointed to by a pointer, or stored in a struct, without deleting it and creating
a new one.

Symbol Syntax

Now that we're going to allow for user defined variables we need to update the
grammar for symbols to be more flexible. Rather than just our builtin functions it

should match any possible valid symbol. Unlike in C, where the name a variable can
be given is fairly restrictive, we're going to allow for all sorts of characters in the
name of a variable.
We can create a regular expression that expresses the range of characters available
as follows.

/[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/

On first glance this looks like we've just bashed our hands into keyboard. Actually it
is a regular expression using a big range specifier [] . Inside range specifiers
special characters lose their meaning, but some of these characters still need to be
escaped with backslashes. Because this is part of a C string we need to put two
backslashes to represent a single backslash character in the input.
This rule lets symbols be any of the normal C identifier characters a-zA-Z0-9_ the
arithmetic operator characters +\\-*\\/ the backslash character \\\\ the
comparison operator characters =<>! or an ampersands & . This will give us all the
flexibility we need for defining new and existing symbols.

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

Function Pointers

Once we introduce variables, symbols will no longer represent functions in our
language, but rather they will represent a name for us to look up into our
environment and get some new value back from.
Therefore we need a new value to represent functions in our language, which we
can return once one of the builtin symbols is encountered. To create this new type of
lval we are going to use something called a function pointer.

Function pointers are a great feature of C that lets you store and pass around
pointers to functions. It doesn't make sense to edit the data pointed to by these
pointers. Instead we use them to call the function they point to, as if it were a normal
function.
Like normal pointers, function pointers have some type associated with them. This
type specifies the type of the function pointed to, not the type of the data pointed to.
This lets the compiler work out if it has been called correctly.
In the previous chapter our builtin functions took a lval* as input and returned a
lval* as output. In this chapter our builtin functions will take an extra pointer to the

environment lenv* as input. We can declare a new function pointer type called
lbuiltin , for this type of function, like this.

typedef lval*(*lbuiltin)(lenv*, lval*);

Why is that syntax so odd?
In some places the syntax of C can look particularly weird. It can help if we
understand exactly why the syntax is like this. Let us de-construct the syntax in
the example above part by part.
First the typedef . This can be put before any standard variable declaration. It
results in the name of the variable, being declared a new type, matching what
would be the inferred type of that variable. This is why in the above declaration
what looks like the function name becomes the new type name.
Next all those * . Pointer types in C are actually meant to be written with the star
* on the left hand side of the variable name, not the right hand side of the type
int *x; . This is because C type syntax works by a kind of inference. Instead of

reading "Create a new int pointer x ". It is meant to read "Create a new
variable x where to dereference x results in an int ." Therefore x is inferred
to be a pointer to an int .
This idea is extended to function pointers. We can read the above declaration as
follows. "To get an lval* we dereference lbuiltin and call it with a lenv* and a
lval* ." Therefore lbuiltin must be a function pointer that takes an lenv* and a
lval* and returns a lval* .

Cyclic Types

The lbuiltin type references the lval type and the lenv type. This means that they
should be declared first in the source file.
But we want to make a lbuiltin field in our lval struct so we can create function
values. So therefore our lbuiltin declaration must go before our lval declaration.
This leads to what is called a cyclic type dependency, where two types depend on
each other.
We've come across this problem before with functions which depend on each other.
The solution was to create a forward declaration which declared a function but left
the body of it empty.
In C we can do exactly the same with types. First we declare two struct types
without a body. Secondly we typedef these to the names lval and lenv . Then we
can define our lbuiltin function pointer type. And finally we can define the body of
our lval struct. Now all our type issues are resolved and the compiler won't
complain any more.

/* Forward Declarations */

struct lval;
struct lenv;
typedef struct lval lval;
typedef struct lenv lenv;

/* Lisp Value */

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM,
 LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

typedef lval*(*lbuiltin)(lenv*, lval*);

struct lval {
 int type;

 long num;
 char* err;
 char* sym;
 lbuiltin fun;

 int count;
 lval** cell;
};

Function Type

As we've added a new possible lval type with the enumeration LVAL_FUN . We
should update all our relevant functions that work on lvals to deal correctly with
this update. In most cases this just means inserting new cases into switch
statements.
We can start by making a new constructor function for this type.

lval* lval_fun(lbuiltin func) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->fun = func;
 return v;
}

On deletion we don't need to do anything special for function pointers.

case LVAL_FUN: break;

On printing we can just print out a nominal string.

case LVAL_FUN: printf("<function>"); break;

We're also going to add a new function for copying an lval . This is going to come
in useful when we put things into, and take things out of, the environment. For
numbers and functions we can just copy the relevant fields directly. For strings we
need to copy using malloc and strcpy . To copy lists we need to allocate the correct
amount of space and then copy each element individually.

lval* lval_copy(lval* v) {

 lval* x = malloc(sizeof(lval));
 x->type = v->type;

 switch (v->type) {

 /* Copy Functions and Numbers Directly */
 case LVAL_FUN: x->fun = v->fun; break;
 case LVAL_NUM: x->num = v->num; break;

 /* Copy Strings using malloc and strcpy */
 case LVAL_ERR:

 x->err = malloc(strlen(v->err) + 1);
 strcpy(x->err, v->err); break;

 case LVAL_SYM:
 x->sym = malloc(strlen(v->sym) + 1);
 strcpy(x->sym, v->sym); break;

 /* Copy Lists by copying each sub-expression */
 case LVAL_SEXPR:
 case LVAL_QEXPR:
 x->count = v->count;
 x->cell = malloc(sizeof(lval*) * x->count);
 for (int i = 0; i < x->count; i++) {
 x->cell[i] = lval_copy(v->cell[i]);
 }
 break;
 }

 return x;
}

Environment

Our environment structure must encode a list of relationships between names and
values. There are many ways to build a structure that can do this sort of thing. We
are going to go for the simplest possible method that works well. This is to use two
lists of equal length. One is a list of lval* , and the other is a list of char* . Each entry
in one list has a corresponding entry in the other list at the same position.
We've already forward declared our lenv struct, so we can define it as follows.

struct lenv {
 int count;
 char** syms;
 lval** vals;
};

We need some functions to create and delete this structure. These are pretty simple.
Creation initialises the struct fields, while deletion iterates over the items in both lists
and deletes or frees them.

lenv* lenv_new(void) {
 lenv* e = malloc(sizeof(lenv));
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;
}

void lenv_del(lenv* e) {
 for (int i = 0; i < e->count; i++) {
 free(e->syms[i]);
 lval_del(e->vals[i]);
 }
 free(e->syms);
 free(e->vals);
 free(e);
}

Next we can create two functions that either get values from the environment or put
values into it.
To get a value from the environment we loop over all the items in the environment
and check if the given symbol matches any of the stored strings. If we find a match
we can return a copy of the stored value. If no match is found we should return an
error.
The function for putting new variables into the environment is a little bit more
complex. First we want to check if a variable with the same name already exists. If
this is the case we should replace its value with the new one. To do this we loop
over all the existing variables in the environment and check their name. If a match is
found we delete the value stored at that location, and store there a copy of the input
value.
If no existing value is found with that name, we need to allocate some more space
to put it in. For this we can use realloc , and store a copy of the lval and its name at
the newly allocated locations.

lval* lenv_get(lenv* e, lval* k) {

 /* Iterate over all items in environment */
 for (int i = 0; i < e->count; i++) {
 /* Check if the stored string matches the symbol string */
 /* If it does, return a copy of the value */
 if (strcmp(e->syms[i], k->sym) == 0) {
 return lval_copy(e->vals[i]);
 }
 }
 /* If no symbol found return error */
 return lval_err("unbound symbol!");
}

void lenv_put(lenv* e, lval* k, lval* v) {

 /* Iterate over all items in environment */
 /* This is to see if variable already exists */
 for (int i = 0; i < e->count; i++) {

 /* If variable is found delete item at that position */
 /* And replace with variable supplied by user */
 if (strcmp(e->syms[i], k->sym) == 0) {
 lval_del(e->vals[i]);
 e->vals[i] = lval_copy(v);
 return;
 }
 }

 /* If no existing entry found allocate space for new entry */
 e->count++;
 e->vals = realloc(e->vals, sizeof(lval*) * e->count);
 e->syms = realloc(e->syms, sizeof(char*) * e->count);

 /* Copy contents of lval and symbol string into new location */
 e->vals[e->count-1] = lval_copy(v);
 e->syms[e->count-1] = malloc(strlen(k->sym)+1);
 strcpy(e->syms[e->count-1], k->sym);
}

Variable Evaluation

Our evaluation function now depends on some environment. We should pass this in
as an argument and use it to get a value if we encounter a symbol type. Because our
environment returns a copy of the value we need to remember to delete the input
symbol lval .

lval* lval_eval(lenv* e, lval* v) {
 if (v->type == LVAL_SYM) {
 lval* x = lenv_get(e, v);
 lval_del(v);
 return x;
 }
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(e, v); }
 return v;
}

Because we've added a function type, our evaluation of S-Expressions also needs to
change. Instead of checking for a symbol type we want to ensure it is a function
type. If this condition holds we can call the fun field of the lval using the same
notation as standard function calls.

lval* lval_eval_sexpr(lenv* e, lval* v) {

 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(e, v->cell[i]);
 }

 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 if (v->count == 0) { return v; }
 if (v->count == 1) { return lval_take(v, 0); }

 /* Ensure first element is a function after evaluation */
 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_FUN) {
 lval_del(v); lval_del(f);
 return lval_err("first element is not a function");
 }

 /* If so call function to get result */
 lval* result = f->fun(e, v);
 lval_del(f);
 return result;
}

Builtins

Now that our evaluation relies on the new function type we need to make sure we
can register all of our builtin functions with the environment before we start the
interactive prompt. At the moment our builtin functions are not the correct type. We
need to change their type signature such that they take in some environment, and
where appropriate change them to pass this environment into other calls that

require it. I won't post the code for this, so go ahead and change the type signatures
of the buildin functions to take an lenv* as their first argument now. If you are
confused you can look at the sample code for this chapter.
As an example we can make use of our builtin_op function to define separate
builtins for each of the maths functions our language supports.

lval* builtin_add(lenv* e, lval* a) {
 return builtin_op(e, a, "+");
}

lval* builtin_sub(lenv* e, lval* a) {
 return builtin_op(e, a, "-");
}

lval* builtin_mul(lenv* e, lval* a) {
 return builtin_op(e, a, "*");
}

lval* builtin_div(lenv* e, lval* a) {
 return builtin_op(e, a, "/");
}

Once we've changed the builtins to the correct type we can create a function that
registers all of our builtins into an environment.
For each builtin we want to create a function lval and symbol lval with the given
name. We then register these with the environment using lenv_put . The
environment always takes or returns copies of a values, so we need to remember to
delete these two lval after registration as we won't need them any more.
If we split this task into two functions we can neatly register all of our builtins with
some environment.

void lenv_add_builtin(lenv* e, char* name, lbuiltin func) {
 lval* k = lval_sym(name);
 lval* v = lval_fun(func);
 lenv_put(e, k, v);
 lval_del(k); lval_del(v);
}

void lenv_add_builtins(lenv* e) {
 /* List Functions */
 lenv_add_builtin(e, "list", builtin_list);
 lenv_add_builtin(e, "head", builtin_head);
 lenv_add_builtin(e, "tail", builtin_tail);
 lenv_add_builtin(e, "eval", builtin_eval);
 lenv_add_builtin(e, "join", builtin_join);

 /* Mathematical Functions */
 lenv_add_builtin(e, "+", builtin_add);
 lenv_add_builtin(e, "-", builtin_sub);
 lenv_add_builtin(e, "*", builtin_mul);
 lenv_add_builtin(e, "/", builtin_div);
}

The final step is to call this function before we create the interactive prompt. We also
need to remember to delete the environment once we are finished.

lenv* e = lenv_new();
lenv_add_builtins(e);

while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r;)) {

 lval* x = lval_eval(e, lval_read(r.output));
 lval_println(x);
 lval_del(x);

 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

}

lenv_del(e);

If everything is working correctly we should have a play around in the prompt and
verify that functions are actually a new type of value now, not symbols.

lispy> +
<function>
lispy> eval (head {5 10 11 15})
5
lispy> eval (head {+ - + - * /})
<function>
lispy> (eval (head {+ - + - * /})) 10 20
30
lispy> hello
Error: unbound symbol!
lispy>

Define Function

We've managed to register our builtins as variables but we still don't have a way for
users to define their own variables.
This is actually a bit awkward. We need to get the user to pass in a symbol to name,
as well as the value to assign to it. But symbols can't appear on their own. Otherwise
the evaluation function will attempt to retrieve a value for them from the
environment.
The only way we can pass around symbols without them being evaluated is to put
them between {} in a quoted expression. So we're going to use this technique for
our define function. It will take as input a list of symbols, and a number of other
values. It will then assign each of the values to each of the symbols.
This function should act like any other builtin. It first checks for error conditions and
then performs some command and returns a value. In this case it first checks that
the input arguments are the correct types. It then iterates over each symbol and
value and puts them into the environment. If there is an error we can return it, but on

success we will return the empty expression () .

lval* builtin_def(lenv* e, lval* a) {
 LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'def' passed incorrect type!");

 /* First argument is symbol list */
 lval* syms = a->cell[0];

 /* Ensure all elements of first list are symbols */
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, syms->cell[i]->type == LVAL_SYM,
 "Function 'def' cannot define non-symbol");
 }

 /* Check correct number of symbols and values */
 LASSERT(a, syms->count == a->count-1,
 "Function 'def' cannot define incorrect "
 "number of values to symbols");

 /* Assign copies of values to symbols */
 for (int i = 0; i < syms->count; i++) {
 lenv_put(e, syms->cell[i], a->cell[i+1]);
 }

 lval_del(a);
 return lval_sexpr();
}

We need to register this new builtin using our builtin function lenv_add_builtins .

/* Variable Functions */
lenv_add_builtin(e, "def", builtin_def);

Now we should be able to support user defined variables. Because our def function
takes in a list of symbols we can do some cool things storing and manipulating
symbols in lists before passing them to be defined. Have a play around in the prompt
and ensure everything is working correctly. You should get behaviour as follows.
Explore what other complex methods are possible for the definition and evaluation
of variables. Once we get to defining functions we'll really see some of the useful
things that can be done with this approach.

lispy> def {x} 100
()
lispy> def {y} 200
()
lispy> x
100
lispy> y
200
lispy> + x y
300
lispy> def {a b} 5 6
()
lispy> + a b
11
lispy> def {arglist} {a b x y}
()
lispy> arglist
{a b x y}
lispy> def arglist 1 2 3 4
()
lispy> list a b x y

Eclipses • Like ellipsis.

{1 2 3 4}
lispy>

Error Reporting

So far our error reporting doesn't work so well. We can report when an error occurs,
and give a vague notion of what the problem was, but we don't give the user much
information about what exactly has gone wrong. For example if there is an unbound
symbol we should be able to report exactly which symbol was unbound. This can
help the user track down errors, typos, and other trivial problems.

Wouldn't it be great if we could write a
function that can report errors in a similar
way to how printf works. It would be ideal
if we could pass in strings, integers, and
other data to make our error messages
richer.
The printf function is a special function in
C because it takes a variable number of
arguments. We can create our own variable
argument functions, which is what we're
going to do to make our error reporting
better.
We'll modify lval_err to act in the same

way as printf , taking in a format string, and after that a variable number of
arguments to match into this string.
To declare that a function takes variables arguments in the type signature you use
the special syntax of ellipsis ... , which represent the rest of the arguments.

lval* lval_err(char* fmt, ...);

Then, inside the function there are standard library functions we can use to examine
what the caller has passed in.
The first step is to create a va_list struct and initialise it with va_start , passing in the
last named argument. For other purposes it is possible to examine each argument
passed in using va_arg , but we are going to pass our whole variable argument list
directly to the vsnprintf function. This function acts like printf but instead writes to
a string and takes in a va_list . Once we are done with our variable arguments, we
shoulder call va_end to cleanup any resources used.
The vsnprintf function outputs to a string, which we need to allocate some first.
Because we don't know the size of this string until we've run the function we first
allocate a buffer 512 characters big and then reallocate to a smaller buffer once
we've output to it. If an error message is going to be longer than 512 characters it will
just get cut off, but hopefully this won't happen.
Putting it all together our new error function looks like this.

lval* lval_err(char* fmt, ...) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;

 /* Create a va list and initialize it */
 va_list va;
 va_start(va, fmt);

 /* Allocate 512 bytes of space */
 v->err = malloc(512);

 /* printf the error string with a maximum of 511 characters */
 vsnprintf(v->err, 511, fmt, va);

 /* Reallocate to number of bytes actually used */
 v->err = realloc(v->err, strlen(v->err)+1);

 /* Cleanup our va list */
 va_end(va);

 return v;
}

Using this we can then start adding in some better error messages to our functions.
As an example we can look at lenv_get . When a symbol can't be found, rather than
reporting a generic error, we can actually report the name that was not found.

return lval_err("Unbound Symbol '%s'", k->sym);

We can also adapt our LASSERT macro such that it can take variable arguments too.
Because this is a macro and not a standard function the syntax is slightly different.
On the left hand side of the definition we use the ellipses notation again, but on the
right hand side we use a special variable __VA_ARGS__ to paste in the contents of all
the other arguments.
We need to prefix this special variable with two hash signs ## . This ensures that it is
pasted correctly when the macro is passed no extra arguments. In essence what
this does is make sure to remove the leading comma , to appear as if no extra
arguments were passed in.
Because we might use args in the construction of the error message we need to
make sure we don't delete it until we've created the error value.

#define LASSERT(args, cond, fmt, ...) \
 if (!(cond)) { \
 lval* err = lval_err(fmt, ##__VA_ARGS__); \
 lval_del(args); \
 return err; \
 }

Now we can update some of our error messages to make them more informative.
For example if the incorrect number of arguments were passed we can specify how
many were required and how many were given.

LASSERT(a, a->count == 1,
 "Function 'head' passed too many arguments. "
 "Got %i, Expected %i.",
 a->count, 1);

We can also improve our error reporting for type errors. We should attempt to report
what type was expected by a function and what type it actually got. Before we can
do this it would be useful to have a function that took as input some type

enumeration and returned a string representation of that type.

char* ltype_name(int t) {
 switch(t) {
 case LVAL_FUN: return "Function";
 case LVAL_NUM: return "Number";
 case LVAL_ERR: return "Error";
 case LVAL_SYM: return "Symbol";
 case LVAL_SEXPR: return "S-Expression";
 case LVAL_QEXPR: return "Q-Expression";
 default: return "Unknown";
 }
}

LASSERT(a, a->cell[0]->type == LVAL_QEXPR,
 "Function 'head' passed incorrect type for argument 0. "
 "Got %s, Expected %s.",
 ltype_name(a->cell[0]->type), ltype_name(LVAL_QEXPR));

Go ahead and use LASSERT to report errors in greater depth throughout the code.
This should make debugging many of the next stages much easier as we begin to
write complicated code using our new language. See if you can use macros to save
on typing and automatically generate code for common methods of error reporting.

lispy> + 1 {5 6 7}
Error: Function '+' passed incorrect type for argument 1. Got Q-Expression, Expected Number.
lispy> head {1 2 3} {4 5 6}
Error: Function 'head' passed incorrect number of arguments. Got 2, Expected 1.
lispy>

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Forward Declarations */

struct lval;
struct lenv;

typedef struct lval lval;
typedef struct lenv lenv;

/* Lisp Value */

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM,
 LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

typedef lval*(*lbuiltin)(lenv*, lval*);

struct lval {
 int type;
 long num;
 char* err;
 char* sym;
 lbuiltin fun;
 int count;
 lval** cell;
};

lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

lval* lval_err(char* fmt, ...) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;

 /* Create a va list and initialize it */
 va_list va;
 va_start(va, fmt);

 /* Allocate 512 bytes of space */
 v->err = malloc(512);

 /* printf the error string with a maximum of 511 characters */
 vsnprintf(v->err, 511, fmt, va);

 /* Reallocate to number of bytes actually used */
 v->err = realloc(v->err, strlen(v->err)+1);

 /* Cleanup our va list */
 va_end(va);

 return v;
}

lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

lval* lval_fun(lbuiltin func) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->fun = func;
 return v;
}

lval* lval_sexpr(void) {

 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_FUN: break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 free(v->cell);
 break;
 }

 free(v);
}

lval* lval_copy(lval* v) {

 lval* x = malloc(sizeof(lval));
 x->type = v->type;

 switch (v->type) {

 /* Copy Functions and Numbers Directly */
 case LVAL_FUN: x->fun = v->fun; break;
 case LVAL_NUM: x->num = v->num; break;

 /* Copy Strings using malloc and strcpy */
 case LVAL_ERR:
 x->err = malloc(strlen(v->err) + 1);
 strcpy(x->err, v->err); break;

 case LVAL_SYM:
 x->sym = malloc(strlen(v->sym) + 1);
 strcpy(x->sym, v->sym); break;

 /* Copy Lists by copying each sub-expression */
 case LVAL_SEXPR:
 case LVAL_QEXPR:
 x->count = v->count;
 x->cell = malloc(sizeof(lval*) * x->count);
 for (int i = 0; i < x->count; i++) {
 x->cell[i] = lval_copy(v->cell[i]);
 }
 break;
 }

 return x;

}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_join(lval* x, lval* y) {
 for (int i = 0; i < y->count; i++) {
 x = lval_add(x, y->cell[i]);
 }
 free(y->cell);
 free(y);
 return x;
}

lval* lval_pop(lval* v, int i) {
 lval* x = v->cell[i];
 memmove(&v->cell[i], &v->cell[i+1],
 sizeof(lval*) * (v->count-i-1));
 v->count--;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_print_expr(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {
 lval_print(v->cell[i]);
 if (i != (v->count-1)) {
 putchar(' ');
 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_FUN: printf("<function>"); break;
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_print_expr(v, '(', ')'); break;
 case LVAL_QEXPR: lval_print_expr(v, '{', '}'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

char* ltype_name(int t) {
 switch(t) {
 case LVAL_FUN: return "Function";
 case LVAL_NUM: return "Number";
 case LVAL_ERR: return "Error";
 case LVAL_SYM: return "Symbol";
 case LVAL_SEXPR: return "S-Expression";

 case LVAL_QEXPR: return "Q-Expression";
 default: return "Unknown";
 }
}

/* Lisp Environment */

struct lenv {
 int count;
 char** syms;
 lval** vals;
};

lenv* lenv_new(void) {

 /* Initialize struct */
 lenv* e = malloc(sizeof(lenv));
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;

}

void lenv_del(lenv* e) {

 /* Iterate over all items in environment deleting them */
 for (int i = 0; i < e->count; i++) {
 free(e->syms[i]);
 lval_del(e->vals[i]);
 }

 /* Free allocated memory for lists */
 free(e->syms);
 free(e->vals);
 free(e);
}

lval* lenv_get(lenv* e, lval* k) {

 /* Iterate over all items in environment */
 for (int i = 0; i < e->count; i++) {
 /* Check if the stored string matches the symbol string */
 /* If it does, return a copy of the value */
 if (strcmp(e->syms[i], k->sym) == 0) {
 return lval_copy(e->vals[i]);
 }
 }
 /* If no symbol found return error */
 return lval_err("Unbound Symbol '%s'", k->sym);
}

void lenv_put(lenv* e, lval* k, lval* v) {

 /* Iterate over all items in environment */
 /* This is to see if variable already exists */
 for (int i = 0; i < e->count; i++) {

 /* If variable is found delete item at that position */
 /* And replace with variable supplied by user */
 if (strcmp(e->syms[i], k->sym) == 0) {
 lval_del(e->vals[i]);
 e->vals[i] = lval_copy(v);
 return;
 }
 }

 /* If no existing entry found allocate space for new entry */
 e->count++;
 e->vals = realloc(e->vals, sizeof(lval*) * e->count);
 e->syms = realloc(e->syms, sizeof(char*) * e->count);

 /* Copy contents of lval and symbol string into new location */
 e->vals[e->count-1] = lval_copy(v);
 e->syms[e->count-1] = malloc(strlen(k->sym)+1);
 strcpy(e->syms[e->count-1], k->sym);
}

/* Builtins */

#define LASSERT(args, cond, fmt, ...) \
 if (!(cond)) { lval* err = lval_err(fmt, ##__VA_ARGS__); lval_del(args); return err; }

#define LASSERT_TYPE(func, args, index, expect) \
 LASSERT(args, args->cell[index]->type == expect, \
 "Function '%s' passed incorrect type for argument %i. Got %s, Expected %s.", \
 func, index, ltype_name(args->cell[index]->type), ltype_name(expect))

#define LASSERT_NUM(func, args, num) \
 LASSERT(args, args->count == num, \
 "Function '%s' passed incorrect number of arguments. Got %i, Expected %i.", \
 func, args->count, num)

#define LASSERT_NOT_EMPTY(func, args, index) \
 LASSERT(args, args->cell[index]->count != 0, \
 "Function '%s' passed {} for argument %i.", func, index);

lval* lval_eval(lenv* e, lval* v);

lval* builtin_list(lenv* e, lval* a) {
 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_head(lenv* e, lval* a) {
 LASSERT_NUM("head", a, 1);
 LASSERT_TYPE("head", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("head", a, 0);

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lenv* e, lval* a) {
 LASSERT_NUM("tail", a, 1);
 LASSERT_TYPE("tail", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("tail", a, 0);

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

lval* builtin_eval(lenv* e, lval* a) {
 LASSERT_NUM("eval", a, 1);
 LASSERT_TYPE("eval", a, 0, LVAL_QEXPR);

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(e, x);

}

lval* builtin_join(lenv* e, lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE("join", a, i, LVAL_QEXPR);
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 lval* y = lval_pop(a, 0);
 x = lval_join(x, y);
 }

 lval_del(a);
 return x;
}

lval* builtin_op(lenv* e, lval* a, char* op) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE(op, a, i, LVAL_NUM);
 }

 lval* x = lval_pop(a, 0);

 if ((strcmp(op, "-") == 0) && a->count == 0) {
 x->num = -x->num;
 }

 while (a->count > 0) {
 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a);
 return x;
}

lval* builtin_add(lenv* e, lval* a) {
 return builtin_op(e, a, "+");
}

lval* builtin_sub(lenv* e, lval* a) {
 return builtin_op(e, a, "-");
}

lval* builtin_mul(lenv* e, lval* a) {
 return builtin_op(e, a, "*");
}

lval* builtin_div(lenv* e, lval* a) {

 return builtin_op(e, a, "/");
}

lval* builtin_def(lenv* e, lval* a) {

 LASSERT_TYPE("def", a, 0, LVAL_QEXPR);

 /* First argument is symbol list */
 lval* syms = a->cell[0];

 /* Ensure all elements of first list are symbols */
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
 "Function 'def' cannot define non-symbol. "
 "Got %s, Expected %s.",
 ltype_name(syms->cell[i]->type), ltype_name(LVAL_SYM));
 }

 /* Check correct number of symbols and values */
 LASSERT(a, (syms->count == a->count-1),
 "Function 'def' passed too many arguments for symbols. "
 "Got %i, Expected %i.",
 syms->count, a->count-1);

 /* Assign copies of values to symbols */
 for (int i = 0; i < syms->count; i++) {
 lenv_put(e, syms->cell[i], a->cell[i+1]);
 }

 lval_del(a);
 return lval_sexpr();
}

void lenv_add_builtin(lenv* e, char* name, lbuiltin func) {
 lval* k = lval_sym(name);
 lval* v = lval_fun(func);
 lenv_put(e, k, v);
 lval_del(k); lval_del(v);
}

void lenv_add_builtins(lenv* e) {
 /* Variable Functions */
 lenv_add_builtin(e, "def", builtin_def);

 /* List Functions */
 lenv_add_builtin(e, "list", builtin_list);
 lenv_add_builtin(e, "head", builtin_head);
 lenv_add_builtin(e, "tail", builtin_tail);
 lenv_add_builtin(e, "eval", builtin_eval);
 lenv_add_builtin(e, "join", builtin_join);

 /* Mathematical Functions */
 lenv_add_builtin(e, "+", builtin_add);
 lenv_add_builtin(e, "-", builtin_sub);
 lenv_add_builtin(e, "*", builtin_mul);
 lenv_add_builtin(e, "/", builtin_div);
}

/* Evaluation */

lval* lval_eval_sexpr(lenv* e, lval* v) {

 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(e, v->cell[i]);
 }

 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 if (v->count == 0) { return v; }
 if (v->count == 1) { return lval_take(v, 0); }

 /* Ensure first element is a function after evaluation */
 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_FUN) {
 lval* err = lval_err(
 "S-Expression starts with incorrect type. "
 "Got %s, Expected %s.",
 ltype_name(f->type), ltype_name(LVAL_FUN));
 lval_del(f); lval_del(v);
 return err;
 }

 /* If so call function to get result */
 lval* result = f->fun(e, v);
 lval_del(f);
 return result;
}

lval* lval_eval(lenv* e, lval* v) {
 if (v->type == LVAL_SYM) {
 lval* x = lenv_get(e, v);
 lval_del(v);
 return x;
 }
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(e, v); }
 return v;
}

/* Reading */

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err("Invalid Number.");
}

lval* lval_read(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }
 if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

/* Main */

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Symbol = mpc_new("symbol");
 mpc_parser_t* Sexpr = mpc_new("sexpr");
 mpc_parser_t* Qexpr = mpc_new("qexpr");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.7");
 puts("Press Ctrl+c to Exit\n");

 lenv* e = lenv_new();
 lenv_add_builtins(e);

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 lval* x = lval_eval(e, lval_read(r.output));
 lval_println(x);
 lval_del(x);
 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 lenv_del(e);

 mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› Create a Macro to aid specifically with reporting type errors.

› Create a Macro to aid specifically with reporting argument count errors.

› Create a Macro to aid specifically with reporting empty list errors.

› Change printing a builtin function so that it prints its name.

› Write a function for printing out all the named values in an environment.

› Redefine one of the builtin variables to something different.

› Change redefinition of one of the builtin variables to something different an
error.

› Create an exit function for stopping the prompt and exiting.

Bananaphone • Another naive dream.

Functions • Chapter 12

What is a Function?

Functions are the essence of all programming. In the early days of computer science
they represented a naive dream. The idea was that we could reduce computation
into these smaller and smaller bits of re-usable code. Given enough time, and a
proper structure for libraries, eventually we would have written code required for all
computational needs. No longer would people have to write their own functions, and
programming would consist of an easy job of stitching together components.
This dream hasn't come true yet, but it persists, no matter how flawed. Each new
programming technique or paradigm that comes along shakes up this idea a little.
They promise better re-use of code. Better abstractions, and an easier life for all.
In reality what each paradigm delivers
is simply different abstractions. There
has always been a trade-off. For each
higher level of thinking about
programming, some piece is thrown
away. And this means, no matter how
well you decide what to keep and
what to leave, occasionally someone
will need that piece that has been lost.
But through all of this, one way or the
other, functions have always
persisted, and have continually
proven to be effective.
We've used functions in C, we know what they look like, but we don't know exactly
what they are. Here are a few ways to think about them.
One way to think about functions is as description of some computation you want to
be performed later. When you define a function it is like saying "when I use this
name I want that sort of thing to happen". This is a very practical idea of a function. It
is very intuitive, and metaphorical to language. This is the way you would command
a human or animal. Another thing I like about this is that it captures the delayed
nature of functions. Functions are defined once, but can be called on repeatedly
after.
Another way to think about functions is as a black box that takes some input and
produces some output. This idea is subtly different from the former. It is more
algebraic, and doesn't talk about computation or commands. This idea is a
mathematical concept, and is not tied to some particular machine, or language. In
some situations this idea is exceptionally useful. It allows us to think about functions
without worrying about their internals, or how they are computed exactly. We can
then combine and compose functions together without worry of something subtle
going wrong. This is the core idea behind an abstraction, and is what allows layers
of complexity to work together with each other rather than conflict. This idea's
strength can also be its downfall. Because it does not mention anything about
computation it does not deal with a number of real world concerns. "How long will

Black Box • Your typical function.

this function take to run?", "Is this function efficient?", "Will it modify the state of my
program? If so how?".

A third method is to think of functions as
partial computations. Like the Mathematical
model they can take some inputs. These
values are required before the function can
complete the computation. This is why it is
called partial. But like the computational
model, the body of the function consists of a
computation specified in some language of
commands. These inputs are called unbound
variables, and to finish the computation one
simply supplies them. Like fitting a cog into a
machine which previously spinning aimlessly,
this completes all that is needed for the
computation to run, and the machine runs.
The output of these partial computations is
itself a variable with an unknown value. This

output can be placed as input to a new function, and so one function relies on
another.
An advantage of this idea over the mathematical model is that we recognize that
functions contain computation. We see that when the computation runs, some
physical process is going on in the machine. This means we recognise the fact that
certain things take time to elapse, or that a function might change the program state,
or do anything else we're not sure about.
All these ideas are explored in the study of functions, Lambda calculus. This is a field
that combines logic, maths, and computer science. The name comes from the
Greek letter Lambda, which is used in the representation of binding variables. Using
Lambda calculus gives a way of defining, composing and building functions using a
simple mathematical notation.
We are going to use all of the previous ideas to add user defined functions to our
language. Lisp is already well suited to this sort of playing around and using these
concepts, it won't take much work for us to implement functions.
The first step will be to write a builtin function that can create user defined functions.
Here is one idea as to how it can be specified. The first argument could be a list of
symbols, just like our def function. These symbols we call the formal arguments,
also known as the unbound variables. They act as the inputs to our partial
computation. The second argument could be another list. When running the function
this is going to be evaluated with our builtin eval function.
This function we'll call just \ , (a homage to The Lambda Calculus as the \

character looks a little bit like a lambda). To create a function which takes two inputs
and adds them together, we would then write something like this.

\ {x y} {+ x y}

We can call the function by putting it as the first argument in a normal S-Expression

(\ {x y} {+ x y}) 10 20

If we want to name this function we can pass it to our existing builtin def like any

other value and store it in the environment.

def {add-together} (\ {x y} {+ x y})

Then we can call it by refering to it by name.

add-together 10 20

Function Type

To store a function as an lval we need to think exactly what it consists of.
Using the previous definition, a function should consists of three parts. First is the list
of formal arguments, which we must bind before we can evaluate the function. The
second part is a Q-Expression that represents the body of the function. Finally we
require a location to store the values assigned to the formal arguments. Luckily we
already have a structure for storing variables, an environment.
We will store our builtin functions and user defined functions under the same type
LVAL_FUN . This means we need a way internally to differentiate between them. To do

this we can check if the lbuiltin function pointer is NULL or not. If it is not NULL we
know the lval is some builtin function, otherwise we know it is a user function.

struct lval {
 int type;

 /* Basic */
 long num;
 char* err;
 char* sym;

 /* Function */
 lbuiltin builtin;
 lenv* env;
 lval* formals;
 lval* body;

 /* Expression */
 int count;
 lval** cell;
};

We've renamed the lbuiltin field from func to builtin . We should make sure to
change this in all the places it is used in our code.
We also need to create a constructor for user defined lval functions. Here we build
a new environment for the function, and assign the formals and body values to
those passed in.

lval* lval_lambda(lval* formals, lval* body) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;

 /* Set Builtin to Null */
 v->builtin = NULL;

 /* Build new environment */

 v->env = lenv_new();

 /* Set Formals and Body */
 v->formals = formals;
 v->body = body;
 return v;
}

As with whenever we change our lval type we need to update the functions for
deletion, copying, and printing to deal with the changes. For evaluation we'll need to
look in greater depth.
For Deletion...

case LVAL_FUN:
 if (!v->builtin) {
 lenv_del(v->env);
 lval_del(v->formals);
 lval_del(v->body);
 }
break;

For Copying...

case LVAL_FUN:
 if (v->builtin) {
 x->builtin = v->builtin;
 } else {
 x->builtin = NULL;
 x->env = lenv_copy(v->env);
 x->formals = lval_copy(v->formals);
 x->body = lval_copy(v->body);
 }
break;

For Printing...

case LVAL_FUN:
 if (v->builtin) {
 printf("<builtin>");
 } else {
 printf("(\\ "); lval_print(v->formals);
 putchar(' '); lval_print(v->body); putchar(')');
 }
break;

Lambda Function

We can now add a builtin for our lambda function. We want it to take as input some
list of symbols, and a list that represents the code. After that it should return a
function lval . We've defined a few of builtins now, and this one will follow the same
format. Like in def we do some error checking to ensure the argument types and
count are correct (using some newly defined Macros). Then we just pop the first two
arguments from the list and pass them to our previously defined function
lval_lambda .

lval* builtin_lambda(lenv* e, lval* a) {

Playgroup • Your typical parent environment.

 /* Check Two arguments, each of which are Q-Expressions */
 LASSERT_NUM("\\", a, 2);
 LASSERT_TYPE("\\", a, 0, LVAL_QEXPR);
 LASSERT_TYPE("\\", a, 1, LVAL_QEXPR);

 /* Check first Q-Expression contains only Symbols */
 for (int i = 0; i < a->cell[0]->count; i++) {
 LASSERT(a, (a->cell[0]->cell[i]->type == LVAL_SYM),
 "Cannot define non-symbol. Got %s, Expected %s.",
 ltype_name(a->cell[0]->cell[i]->type),ltype_name(LVAL_SYM));
 }

 /* Pop first two arguments and pass them to lval_lambda */
 lval* formals = lval_pop(a, 0);
 lval* body = lval_pop(a, 0);
 lval_del(a);

 return lval_lambda(formals, body);
}

Where did LASSERT_NUM and LASSERT_TYPE come from?
I took the liberty of improving the error reporting macros for this chapter. This
task was suggested in the bonus marks of the previous chapter. It makes the
code so much cleaner that it was hard to ignore!
If you were planning on completing this task yourself, now might be a good time
to do it. Otherwise you can look at the reference code for this chapter to see
what approach I took, and integrate that into your code.

Parent Environment

We've given functions their own
environment. In this environment we will
place the values that their formal
arguments are set to. When we come to
evaluate the body of the function we can do
it in this environment and know that those
variables will have the correct values.
But ideally we also want these functions to
be able to access variables which are in the
global environment, such as our builtin
functions.
We can solve this problem by changing the
definition of our environment to contain a reference to some parent environment.
Then, when we want to evaluate a function, we can set this parent environment to
our global environment, which has all of our builtins defined within.
When we add this to our lenv struct, conceptually it will be a reference to a parent
environment, not some sub-environment or anything like that. Because of this we
shouldn't delete it when our lenv gets deleted, or copy it when our lenv gets
copied.

The way the parent environment works is simple. If someone calls lenv_get on the
environment, and the symbol cannot be found. It will look then in any parent
environment to see if the named value exists there, and repeat the process till either
the variable is found or there are no more parents. To signify that an environment
has no parent we set the reference to NULL .
The constructor function only require basic changes to allow for this.

struct lenv {
 lenv* par;
 int count;
 char** syms;
 lval** vals;
};

lenv* lenv_new(void) {
 lenv* e = malloc(sizeof(lenv));
 e->par = NULL;
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;
}

To get a value from an environment we need to add in the search of the parent
environment in the case that a symbol is not found.

lval* lenv_get(lenv* e, lval* k) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) {
 return lval_copy(e->vals[i]);
 }
 }

 /* If no symbol check in parent otherwise error */
 if (e->par) {
 return lenv_get(e->par, k);
 } else {
 return lval_err("Unbound Symbol '%s'", k->sym);
 }
}

Because we have a new lval type that has its own environment we need a
function for copying environments, to use for when we copy lval structs.

lenv* lenv_copy(lenv* e) {
 lenv* n = malloc(sizeof(lenv));
 n->par = e->par;
 n->count = e->count;
 n->syms = malloc(sizeof(char*) * n->count);
 n->vals = malloc(sizeof(lval*) * n->count);
 for (int i = 0; i < e->count; i++) {
 n->syms[i] = malloc(strlen(e->syms[i]) + 1);
 strcpy(n->syms[i], e->syms[i]);
 n->vals[i] = lval_copy(e->vals[i]);
 }
 return n;
}

Having parent environments also changes our concept of defining a variable.

There are two ways we could define a variable now. Either we could define it in the
local, innermost environment, or we could define it in the global, outermost
environment. We will add functions to do both. We'll leave the lenv_put method the
same. It can be used for definition in the local environment. But we'll add a new
function lenv_def for definition in the global environment. This works by simply
following the parent chain up before using lval_put to define locally.

void lenv_def(lenv* e, lval* k, lval* v) {
 /* Iterate till e has no parent */
 while (e->par) { e = e->par; }
 /* Put value in e */
 lenv_put(e, k, v);
}

At the moment this distinction may seem useless, but later on we will use it to write
partial results of calculations to local variables inside a function. We should add
another builtin for local assignment. We'll call this put in C, but give it the = symbol
in Lisp. We can adapt our builtin_def function and re-use the common code, just like
we do with our mathematical operators.
Then we need to register these as a builtins.

lenv_add_builtin(e, "def", builtin_def);
lenv_add_builtin(e, "=", builtin_put);

lval* builtin_def(lenv* e, lval* a) {
 return builtin_var(e, a, "def");
}

lval* builtin_put(lenv* e, lval* a) {
 return builtin_var(e, a, "=");
}

lval* builtin_var(lenv* e, lval* a, char* func) {
 LASSERT_TYPE(func, a, 0, LVAL_QEXPR);

 lval* syms = a->cell[0];
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
 "Function '%s' cannot define non-symbol. "
 "Got %s, Expected %s.", func,
 ltype_name(syms->cell[i]->type),
 ltype_name(LVAL_SYM));
 }

 LASSERT(a, (syms->count == a->count-1),
 "Function '%s' passed too many arguments for symbols. "
 "Got %i, Expected %i.", func, syms->count, a->count-1);

 for (int i = 0; i < syms->count; i++) {
 /* If 'def' define in globally. If 'put' define in locally */
 if (strcmp(func, "def") == 0) {
 lenv_def(e, syms->cell[i], a->cell[i+1]);
 }

 if (strcmp(func, "=") == 0) {
 lenv_put(e, syms->cell[i], a->cell[i+1]);
 }
 }

 lval_del(a);
 return lval_sexpr();
}

Function Calling

We need to write the code that runs when an expression gets evaluated and a
function lval is called.
When this function type is a builtin we can call it as before, using the function
pointer, but we need to do something separate for our user defined functions. We
need to bind each of the arguments passed in, to each of the symbols in the formals

field. Once this is done we need to evaluate the body field, using the env field as an
environment, and the calling environment as a parent.
A first attempt, without error checking, might look like this:

lval* lval_call(lenv* e, lval* f, lval* a) {

 /* If Builtin then simply call that */
 if (f->builtin) { return f->builtin(e, a); }

 /* Assign each argument to each formal in order */
 for (int i = 0; i < a->count; i++) {
 lenv_put(f->env, f->formals->cell[i], a->cell[i]);
 }

 lval_del(a);

 /* Set the parent environment */
 f->env->par = e;

 /* Evaluate the body */
 return builtin_eval(f->env,
 lval_add(lval_sexpr(), lval_copy(f->body)));
}

But this doesn't act correctly when the number of arguments supplied, and the
number of formal arguments differ. In this situation it will crash.
Actually this is an interesting case, and leaves us a couple of options. We could just
throw an error when the argument count supplied is incorrect, but we can do
something that is more fun. When too few arguments are supplied we could instead
bind the first few formal arguments of the function and then return it, leaving the rest
unbound.
This creates a function that has been partially evaluated and reflects our previous
idea of a function being some kind of partial computation. If we start with a function
that takes two arguments, and pass in a single argument, we can bind this first
argument and return a new function with its first formal argument bound, and its
second remaining empty.
This metaphor creates a cute image of how functions work. We can imagine a
function at the front of an expression, repeatedly consuming inputs directly to its
right. After consuming the first input to its right, if it is full (requires no more inputs), it
evaluates and replaces itself with some new value. If instead, it is still it still requires

more, it replaces itself with another, more complete function, with one of its
variables bound. This process repeats until the final value for the program is created.
So you can imagine functions like a little Pac-Man, not consuming all inputs at once,
but iteratively eating inputs to the right, getting bigger and bigger until it is full and
explodes to create something new. This isn't actually how we're going to implement
it in code, but it is still fun to imagine.

lval* lval_call(lenv* e, lval* f, lval* a) {

 /* If Builtin then simply apply that */
 if (f->builtin) { return f->builtin(e, a); }

 /* Record Argument Counts */
 int given = a->count;
 int total = f->formals->count;

 /* While arguments still remain to be processed */
 while (a->count) {

 /* If we've ran out of formal arguments to bind */
 if (f->formals->count == 0) {
 lval_del(a); return lval_err(
 "Function passed too many arguments. "
 "Got %i, Expected %i.", given, total);
 }

 /* Pop the first symbol from the formals */
 lval* sym = lval_pop(f->formals, 0);

 /* Pop the next argument from the list */
 lval* val = lval_pop(a, 0);

 /* Bind a copy into the function's environment */
 lenv_put(f->env, sym, val);

 /* Delete symbol and value */
 lval_del(sym); lval_del(val);
 }

 /* Argument list is now bound so can be cleaned up */
 lval_del(a);

 /* If all formals have been bound evaluate */
 if (f->formals->count == 0) {

 /* Set environment parent to evaluation environment */
 f->env->par = e;

 /* Evaluate and return */
 return builtin_eval(
 f->env, lval_add(lval_sexpr(), lval_copy(f->body)));
 } else {
 /* Otherwise return partially evaluated function */
 return lval_copy(f);
 }

}

The above function does exactly as we explained, with correct error handling added
in too. First it iterates over the passed in arguments attempting to place each one in
the environment. Then it checks if the environment is full, and if so evaluates,
otherwise returns a copy of itself with some arguments filled.

If we update our evaluation function lval_eval_sexpr to call lval_call , we can give our
new system a spin.

lval* f = lval_pop(v, 0);
if (f->type != LVAL_FUN) {
 lval* err = lval_err(
 "S-Expression starts with incorrect type. "
 "Got %s, Expected %s.",
 ltype_name(f->type), ltype_name(LVAL_FUN));
 lval_del(f); lval_del(v);
 return err;
}

lval* result = lval_call(e, f, v);

Try defining some functions and test out how partial evaluation works.

lispy> def {add-mul} (\ {x y} {+ x (* x y)})
()
lispy> add-mul 10 20
210
lispy> add-mul 10
(\ {y} {+ x (* x y)})
lispy> def {add-mul-ten} (add-mul 10)
()
lispy> add-mul-ten 50
510
lispy>

Variable Arguments

We've defined some of our builtin functions so they can take in a variable number of
arguments. Functions like + and join can take any number of arguments, and
operate on them logically. We should find a way to let user defined functions work
on multiple arguments also.
Unfortunately there isn't an elegant way for us to allow for this, without adding in
some special syntax. So we're going to hard-code some system into our language
using a special symbol & .
We are going to let users define formal arguments that look like {x & xs} , which
means that a function will take in a single argument x , followed by zero or more
other arguments, joined together into a list called xs . This is a bit like the ellipsis we
used to declare variable arguments in C.
When assigning our formal arguments we're going to look for a & symbol and if it
exists take the next formal argument and assign it any remaining supplied
arguments we've been passed. It's important we convert this argument list to a Q-
Expression. We need to also remember to check that & is followed by a real
symbol, and if it isn't we should throw an error.
Just after the first symbol is popped from the formals in the while loop of lval_call

we can add this special case.

/* Special Case to deal with '&' */
if (strcmp(sym->sym, "&") == 0) {

 /* Ensure '&' is followed by another symbol */
 if (f->formals->count != 1) {
 lval_del(a);
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 /* Next formal should be bound to remaining arguments */
 lval* nsym = lval_pop(f->formals, 0);
 lenv_put(f->env, nsym, builtin_list(e, a));
 lval_del(sym); lval_del(nsym);
 break;
}

Suppose when calling the function the user doesn't supply any variable arguments,
but only the first named ones. In this case we need to set the symbol following & to
the empty list. Just after we delete the argument list, and before we check to see if
all the formals have been evaluated, add in this special case.

/* If '&' remains in formal list bind to empty list */
if (f->formals->count > 0 &&
 strcmp(f->formals->cell[0]->sym, "&") == 0) {

 /* Check to ensure that & is not passed invalidly. */
 if (f->formals->count != 2) {
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 /* Pop and delete '&' symbol */
 lval_del(lval_pop(f->formals, 0));

 /* Pop next symbol and create empty list */
 lval* sym = lval_pop(f->formals, 0);
 lval* val = lval_qexpr();

 /* Bind to environment and delete */
 lenv_put(f->env, sym, val);
 lval_del(sym); lval_del(val);
}

Interesting Functions

Function Definition
Lambdas are clearly a simple and powerful way of defining functions. But the syntax
is a little clumsy. There are a lot of brackets and symbols involved. Here is an
interesting idea. We can try to write a function that defines a function itself, using
some simpler syntax.
Essentially what we want is a function that can perform two steps at once. First it
should create a new function, and then it should define it to some name. Here is the
trick. We let the user supply the name and the formal arguments altogether in one
list, and then separate these out for them, and use them in the definition. Here is a
function that does that. It takes as input some arguments and some body. It takes

Currying • Not as good as it sounds.

the head of the arguments to be the function name and the rest to be the formal
arguments. It passes the body directly to a lambda.

\ {args body} {def (head args) (\ (tail args) body)}

We can name this function something like fun by passing it to def as usual.

def {fun} (\ {args body} {def (head args) (\ (tail args) body)})

This means that we can now define functions in a much simpler and nicer way. To
define our previously mentioned add-together we can do the following. Functions
that can define functions. That is certainly something we could never do in C. How
cool is that!

fun {add-together x y} {+ x y}

Currying
At the moment functions like + take
a variable number of arguments. In
some situations that's great, but what
if we had a list of arguments we
wished to pass to it. In this situation it
is rendered somewhat useless.
Again we can try to create a function
to solve this problem. If we can create
a list in the format we wish to use for
our expression we can use eval to
treat it as such. In the situation of + we could append this function to the front of the
list and then perform the evaluation.
We can define a function unpack that does this. It takes as input some function and
some list and appends the function to the front of the list, before evaluating it.

fun {unpack f xs} {eval (join (list f) xs)}

In some situations we might be faced with the opposite dilemma. We may have a
function that takes as input some list, but we wish to call it using variable arguments.
In this case the solution is even simpler. We use the fact that our & syntax for
variable arguments packs up variable arguments into a list for us.

fun {pack f & xs} {f xs}

In some languages this is called currying and uncurrying respectively. This is named
after Haskell Curry and unfortunately has nothing to do with our favourite spicy food.

lispy> def {uncurry} pack
()
lispy> def {curry} unpack
()
lispy> curry + {5 6 7}
18
lispy> uncurry head 5 6 7
{5}

Because of the way our partial evaluation works we don't need to think of currying
with a specific set of arguments. We can think of functions themselves being in
curried or uncurried form.

lispy> def {add-uncurried} +
()
lispy> def {add-curried} (curry +)
()
lispy> add-curried {5 6 7}
18
lispy> add-uncurried 5 6 7
18

Have a play around and see what other interesting and powerful functions you can
try to come up with. In the next chapter we'll add conditionals which will really start
to make our language more complete. But that doesn't mean you won't be able to
come up with some other interesting ideas. Our Lisp is getting richer.

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Forward Declarations */

struct lval;
struct lenv;
typedef struct lval lval;
typedef struct lenv lenv;

/* Lisp Value */

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

typedef lval*(*lbuiltin)(lenv*, lval*);

struct lval {
 int type;

 /* Basic */

 long num;
 char* err;
 char* sym;

 /* Function */
 lbuiltin builtin;
 lenv* env;
 lval* formals;
 lval* body;

 /* Expression */
 int count;
 lval** cell;
};

lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

lval* lval_err(char* fmt, ...) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 va_list va;
 va_start(va, fmt);
 v->err = malloc(512);
 vsnprintf(v->err, 511, fmt, va);
 v->err = realloc(v->err, strlen(v->err)+1);
 va_end(va);
 return v;
}

lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

lval* lval_builtin(lbuiltin func) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->builtin = func;
 return v;
}

lenv* lenv_new(void);

lval* lval_lambda(lval* formals, lval* body) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;

 /* Set Builtin to Null */
 v->builtin = NULL;

 /* Build new environment */
 v->env = lenv_new();

 /* Set Formals and Body */
 v->formals = formals;
 v->body = body;
 return v;
}

lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

void lenv_del(lenv* e);

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_FUN:
 if (!v->builtin) {
 lenv_del(v->env);
 lval_del(v->formals);
 lval_del(v->body);
 }
 break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 free(v->cell);
 break;
 }

 free(v);
}

lenv* lenv_copy(lenv* e);

lval* lval_copy(lval* v) {
 lval* x = malloc(sizeof(lval));
 x->type = v->type;
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 x->builtin = v->builtin;
 } else {
 x->builtin = NULL;
 x->env = lenv_copy(v->env);
 x->formals = lval_copy(v->formals);
 x->body = lval_copy(v->body);
 }
 break;
 case LVAL_NUM: x->num = v->num; break;
 case LVAL_ERR: x->err = malloc(strlen(v->err) + 1);
 strcpy(x->err, v->err);
 break;
 case LVAL_SYM: x->sym = malloc(strlen(v->sym) + 1);
 strcpy(x->sym, v->sym);

 break;
 case LVAL_SEXPR:
 case LVAL_QEXPR:
 x->count = v->count;
 x->cell = malloc(sizeof(lval*) * x->count);
 for (int i = 0; i < x->count; i++) {
 x->cell[i] = lval_copy(v->cell[i]);
 }
 break;
 }
 return x;
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_join(lval* x, lval* y) {
 for (int i = 0; i < y->count; i++) {
 x = lval_add(x, y->cell[i]);
 }
 free(y->cell);
 free(y);
 return x;
}

lval* lval_pop(lval* v, int i) {
 lval* x = v->cell[i];
 memmove(&v->cell[i],
 &v->cell[i+1], sizeof(lval*) * (v->count-i-1));
 v->count--;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_print_expr(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {
 lval_print(v->cell[i]);
 if (i != (v->count-1)) {
 putchar(' ');
 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 printf("<builtin>");
 } else {
 printf("(\\ "); lval_print(v->formals);
 putchar(' '); lval_print(v->body); putchar(')');
 }

 break;
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_print_expr(v, '(', ')'); break;
 case LVAL_QEXPR: lval_print_expr(v, '{', '}'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

char* ltype_name(int t) {
 switch(t) {
 case LVAL_FUN: return "Function";
 case LVAL_NUM: return "Number";
 case LVAL_ERR: return "Error";
 case LVAL_SYM: return "Symbol";
 case LVAL_SEXPR: return "S-Expression";
 case LVAL_QEXPR: return "Q-Expression";
 default: return "Unknown";
 }
}

/* Lisp Environment */

struct lenv {
 lenv* par;
 int count;
 char** syms;
 lval** vals;
};

lenv* lenv_new(void) {
 lenv* e = malloc(sizeof(lenv));
 e->par = NULL;
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;
}

void lenv_del(lenv* e) {
 for (int i = 0; i < e->count; i++) {
 free(e->syms[i]);
 lval_del(e->vals[i]);
 }
 free(e->syms);
 free(e->vals);
 free(e);
}

lenv* lenv_copy(lenv* e) {
 lenv* n = malloc(sizeof(lenv));
 n->par = e->par;
 n->count = e->count;
 n->syms = malloc(sizeof(char*) * n->count);
 n->vals = malloc(sizeof(lval*) * n->count);
 for (int i = 0; i < e->count; i++) {
 n->syms[i] = malloc(strlen(e->syms[i]) + 1);
 strcpy(n->syms[i], e->syms[i]);
 n->vals[i] = lval_copy(e->vals[i]);
 }
 return n;
}

lval* lenv_get(lenv* e, lval* k) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) {
 return lval_copy(e->vals[i]);
 }
 }

 /* If no symbol check in parent otherwise error */
 if (e->par) {
 return lenv_get(e->par, k);
 } else {
 return lval_err("Unbound Symbol '%s'", k->sym);
 }
}

void lenv_put(lenv* e, lval* k, lval* v) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) {
 lval_del(e->vals[i]);
 e->vals[i] = lval_copy(v);
 return;
 }
 }

 e->count++;
 e->vals = realloc(e->vals, sizeof(lval*) * e->count);
 e->syms = realloc(e->syms, sizeof(char*) * e->count);
 e->vals[e->count-1] = lval_copy(v);
 e->syms[e->count-1] = malloc(strlen(k->sym)+1);
 strcpy(e->syms[e->count-1], k->sym);
}

void lenv_def(lenv* e, lval* k, lval* v) {
 /* Iterate till e has no parent */
 while (e->par) { e = e->par; }
 /* Put value in e */
 lenv_put(e, k, v);
}

/* Builtins */

#define LASSERT(args, cond, fmt, ...) \
 if (!(cond)) { lval* err = lval_err(fmt, ##__VA_ARGS__); lval_del(args); return err; }

#define LASSERT_TYPE(func, args, index, expect) \
 LASSERT(args, args->cell[index]->type == expect, \
 "Function '%s' passed incorrect type for argument %i. " \
 "Got %s, Expected %s.", \
 func, index, ltype_name(args->cell[index]->type), ltype_name(expect))

#define LASSERT_NUM(func, args, num) \
 LASSERT(args, args->count == num, \
 "Function '%s' passed incorrect number of arguments. " \
 "Got %i, Expected %i.", \
 func, args->count, num)

#define LASSERT_NOT_EMPTY(func, args, index) \
 LASSERT(args, args->cell[index]->count != 0, \
 "Function '%s' passed {} for argument %i.", func, index);

lval* lval_eval(lenv* e, lval* v);

lval* builtin_lambda(lenv* e, lval* a) {
 /* Check Two arguments, each of which are Q-Expressions */

 LASSERT_NUM("\\", a, 2);
 LASSERT_TYPE("\\", a, 0, LVAL_QEXPR);
 LASSERT_TYPE("\\", a, 1, LVAL_QEXPR);

 /* Check first Q-Expression contains only Symbols */
 for (int i = 0; i < a->cell[0]->count; i++) {
 LASSERT(a, (a->cell[0]->cell[i]->type == LVAL_SYM),
 "Cannot define non-symbol. Got %s, Expected %s.",
 ltype_name(a->cell[0]->cell[i]->type),ltype_name(LVAL_SYM));
 }

 /* Pop first two arguments and pass them to lval_lambda */
 lval* formals = lval_pop(a, 0);
 lval* body = lval_pop(a, 0);
 lval_del(a);

 return lval_lambda(formals, body);
}

lval* builtin_list(lenv* e, lval* a) {
 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_head(lenv* e, lval* a) {
 LASSERT_NUM("head", a, 1);
 LASSERT_TYPE("head", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("head", a, 0);

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lenv* e, lval* a) {
 LASSERT_NUM("tail", a, 1);
 LASSERT_TYPE("tail", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("tail", a, 0);

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

lval* builtin_eval(lenv* e, lval* a) {
 LASSERT_NUM("eval", a, 1);
 LASSERT_TYPE("eval", a, 0, LVAL_QEXPR);

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(e, x);
}

lval* builtin_join(lenv* e, lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE("join", a, i, LVAL_QEXPR);
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 lval* y = lval_pop(a, 0);
 x = lval_join(x, y);
 }

 lval_del(a);
 return x;
}

lval* builtin_op(lenv* e, lval* a, char* op) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE(op, a, i, LVAL_NUM);
 }

 lval* x = lval_pop(a, 0);

 if ((strcmp(op, "-") == 0) && a->count == 0) { x->num = -x->num; }

 while (a->count > 0) {
 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a);
 return x;
}

lval* builtin_add(lenv* e, lval* a) { return builtin_op(e, a, "+"); }
lval* builtin_sub(lenv* e, lval* a) { return builtin_op(e, a, "-"); }
lval* builtin_mul(lenv* e, lval* a) { return builtin_op(e, a, "*"); }
lval* builtin_div(lenv* e, lval* a) { return builtin_op(e, a, "/"); }

lval* builtin_var(lenv* e, lval* a, char* func) {
 LASSERT_TYPE(func, a, 0, LVAL_QEXPR);

 lval* syms = a->cell[0];
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
 "Function '%s' cannot define non-symbol. "
 "Got %s, Expected %s.", func,
 ltype_name(syms->cell[i]->type), ltype_name(LVAL_SYM));
 }

 LASSERT(a, (syms->count == a->count-1),
 "Function '%s' passed too many arguments for symbols. "
 "Got %i, Expected %i.", func, syms->count, a->count-1);

 for (int i = 0; i < syms->count; i++) {
 /* If 'def' define in globally. If 'put' define in locally */
 if (strcmp(func, "def") == 0) {
 lenv_def(e, syms->cell[i], a->cell[i+1]);
 }

 if (strcmp(func, "=") == 0) {
 lenv_put(e, syms->cell[i], a->cell[i+1]);
 }
 }

 lval_del(a);
 return lval_sexpr();
}

lval* builtin_def(lenv* e, lval* a) {
 return builtin_var(e, a, "def");
}

lval* builtin_put(lenv* e, lval* a) {
 return builtin_var(e, a, "=");
}

void lenv_add_builtin(lenv* e, char* name, lbuiltin func) {
 lval* k = lval_sym(name);
 lval* v = lval_builtin(func);
 lenv_put(e, k, v);
 lval_del(k); lval_del(v);
}

void lenv_add_builtins(lenv* e) {
 /* Variable Functions */
 lenv_add_builtin(e, "\\", builtin_lambda);
 lenv_add_builtin(e, "def", builtin_def);
 lenv_add_builtin(e, "=", builtin_put);

 /* List Functions */
 lenv_add_builtin(e, "list", builtin_list);
 lenv_add_builtin(e, "head", builtin_head);
 lenv_add_builtin(e, "tail", builtin_tail);
 lenv_add_builtin(e, "eval", builtin_eval);
 lenv_add_builtin(e, "join", builtin_join);

 /* Mathematical Functions */
 lenv_add_builtin(e, "+", builtin_add);
 lenv_add_builtin(e, "-", builtin_sub);
 lenv_add_builtin(e, "*", builtin_mul);
 lenv_add_builtin(e, "/", builtin_div);
}

/* Evaluation */

lval* lval_call(lenv* e, lval* f, lval* a) {

 /* If Builtin then simply apply that */
 if (f->builtin) { return f->builtin(e, a); }

 /* Record Argument Counts */
 int given = a->count;
 int total = f->formals->count;

 /* While arguments still remain to be processed */
 while (a->count) {

 /* If we've ran out of formal arguments to bind */
 if (f->formals->count == 0) {
 lval_del(a);
 return lval_err("Function passed too many arguments. "
 "Got %i, Expected %i.", given, total);
 }

 /* Pop the first symbol from the formals */
 lval* sym = lval_pop(f->formals, 0);

 /* Special Case to deal with '&' */
 if (strcmp(sym->sym, "&") == 0) {

 /* Ensure '&' is followed by another symbol */
 if (f->formals->count != 1) {
 lval_del(a);
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 /* Next formal should be bound to remaining arguments */
 lval* nsym = lval_pop(f->formals, 0);
 lenv_put(f->env, nsym, builtin_list(e, a));
 lval_del(sym); lval_del(nsym);
 break;
 }

 /* Pop the next argument from the list */
 lval* val = lval_pop(a, 0);

 /* Bind a copy into the function's environment */
 lenv_put(f->env, sym, val);

 /* Delete symbol and value */
 lval_del(sym); lval_del(val);
 }

 /* Argument list is now bound so can be cleaned up */
 lval_del(a);

 /* If '&' remains in formal list bind to empty list */
 if (f->formals->count > 0 &&
 strcmp(f->formals->cell[0]->sym, "&") == 0) {

 /* Check to ensure that & is not passed invalidly. */
 if (f->formals->count != 2) {
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 /* Pop and delete '&' symbol */
 lval_del(lval_pop(f->formals, 0));

 /* Pop next symbol and create empty list */
 lval* sym = lval_pop(f->formals, 0);
 lval* val = lval_qexpr();

 /* Bind to environment and delete */
 lenv_put(f->env, sym, val);
 lval_del(sym); lval_del(val);
 }

 /* If all formals have been bound evaluate */
 if (f->formals->count == 0) {

 /* Set environment parent to evaluation environment */
 f->env->par = e;

 /* Evaluate and return */
 return builtin_eval(f->env,
 lval_add(lval_sexpr(), lval_copy(f->body)));
 } else {
 /* Otherwise return partially evaluated function */
 return lval_copy(f);
 }

}

lval* lval_eval_sexpr(lenv* e, lval* v) {

 for (int i = 0; i < v->count; i++) {
 v->cell[i] = lval_eval(e, v->cell[i]);
 }

 for (int i = 0; i < v->count; i++) {
 if (v->cell[i]->type == LVAL_ERR) { return lval_take(v, i); }
 }

 if (v->count == 0) { return v; }
 if (v->count == 1) { return lval_eval(e, lval_take(v, 0)); }

 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_FUN) {
 lval* err = lval_err(
 "S-Expression starts with incorrect type. "
 "Got %s, Expected %s.",
 ltype_name(f->type), ltype_name(LVAL_FUN));
 lval_del(f); lval_del(v);
 return err;
 }

 lval* result = lval_call(e, f, v);
 lval_del(f);
 return result;
}

lval* lval_eval(lenv* e, lval* v) {
 if (v->type == LVAL_SYM) {
 lval* x = lenv_get(e, v);
 lval_del(v);
 return x;
 }
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(e, v); }
 return v;
}

/* Reading */

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err("Invalid Number.");
}

lval* lval_read(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }
 if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;

}

/* Main */

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Symbol = mpc_new("symbol");
 mpc_parser_t* Sexpr = mpc_new("sexpr");
 mpc_parser_t* Qexpr = mpc_new("qexpr");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.8");
 puts("Press Ctrl+c to Exit\n");

 lenv* e = lenv_new();
 lenv_add_builtins(e);

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {
 lval* x = lval_eval(e, lval_read(r.output));
 lval_println(x);
 lval_del(x);
 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 lenv_del(e);

 mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› Define a Lisp function that returns the first element from a list.

› Define a Lisp function that returns the second element from a list.

› Define a Lisp function that calls a function with two arguments in reverse
order.

› Define a Lisp function that calls a function with arguments, then passes the
result to another function.

› Change variable arguments so at least one extra argument must be
supplied before it is evaluated.

Pug • if pug is asleep then pug is cute.

Conditionals • Chapter 13

Doing it yourself

We've come quite far now. Your knowledge of C should be good enough for you to
stand on your own feet a little more. If you're feeling confident, this chapter is a
perfect opportunity to stretch your wings out and attempt something on your own. It
is a fairly short chapter and essentially consists of adding a couple of new builtin
functions to deal with comparison and ordering.
If you're feeling positive, go ahead and try to
implement comparison and ordering into your
language now. Define some new builtin
functions for greater than, less than, equal to,
and all the other comparison operators we use
in C. Try to define an if function that tests for
some condition and then either evaluate some
code, or some other code, depending on the
result. Once you've finished come back and
compare your work to mine. Observe the
differences and decide which parts you prefer.
If you still feel uncertain don't worry. Follow
along and I'll explain my approach.

Ordering

For simplicity's sake I'm going to re-use our number data type to represent the result
of comparisons. I'll make a rule similar to C, to say that any number that isn't 0

evaluates to true in an if statement, while 0 always evaluates to false.
Therefore our ordering functions are a little like a simplified version of our arithmetic
functions. They'll only work on numbers, and we only want them to work on two
arguments.
If these error conditions are met the maths is simple. We want to return a number
lval either 0 or 1 depending on the equality comparison between the two input
lval . We can use C's comparison operators to do this. Like our arithmetic functions

we'll make use of a single function to do all of the comparisons.
First we check the error conditions, then we compare the numbers in each of the
arguments to get some result. Finally we return this result as a number value.

lval* builtin_gt(lenv* e, lval* a) {
 return builtin_ord(e, a, ">");
}

lval* builtin_lt(lenv* e, lval* a) {
 return builtin_ord(e, a, "<");
}

lval* builtin_ge(lenv* e, lval* a) {
 return builtin_ord(e, a, ">=");
}

lval* builtin_le(lenv* e, lval* a) {
 return builtin_ord(e, a, "<=");
}

lval* builtin_ord(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 LASSERT_TYPE(op, a, 0, LVAL_NUM);
 LASSERT_TYPE(op, a, 1, LVAL_NUM);

 int r;
 if (strcmp(op, ">") == 0) {
 r = (a->cell[0]->num > a->cell[1]->num);
 }
 if (strcmp(op, "<") == 0) {
 r = (a->cell[0]->num < a->cell[1]->num);
 }
 if (strcmp(op, ">=") == 0) {
 r = (a->cell[0]->num >= a->cell[1]->num);
 }
 if (strcmp(op, "<=") == 0) {
 r = (a->cell[0]->num <= a->cell[1]->num);
 }
 lval_del(a);
 return lval_num(r);
}

Equality

Equality is going to be different to ordering because we want it to work on more than
number types. It will be useful to see if an input is equal to an empty list, or to see if
two functions passed in are the same. Therefore we need to define a function which
can test for equality between two different types of lval .
This function essentially checks that all the fields which make up the data for a
particular lval type are equal. If all the fields are equal, the whole thing is
considered equal. Otherwise if there are any differences the whole thing is
considered unequal.

int lval_eq(lval* x, lval* y) {

 /* Different Types are always unequal */
 if (x->type != y->type) { return 0; }

 /* Compare Based upon type */
 switch (x->type) {
 /* Compare Number Value */
 case LVAL_NUM: return (x->num == y->num);

 /* Compare String Values */
 case LVAL_ERR: return (strcmp(x->err, y->err) == 0);
 case LVAL_SYM: return (strcmp(x->sym, y->sym) == 0);

 /* If builtin compare, otherwise compare formals and body */
 case LVAL_FUN:
 if (x->builtin || y->builtin) {
 return x->builtin == y->builtin;
 } else {
 return lval_eq(x->formals, y->formals)
 && lval_eq(x->body, y->body);
 }

 /* If list compare every individual element */
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 if (x->count != y->count) { return 0; }
 for (int i = 0; i < x->count; i++) {
 /* If any element not equal then whole list not equal */
 if (!lval_eq(x->cell[i], y->cell[i])) { return 0; }
 }
 /* Otherwise lists must be equal */
 return 1;
 break;
 }
 return 0;
}

Using this function the new builtin function for equality comparison is very simple to
add. We simply ensure two arguments are input, and that they are equal. We store
the result of the comparison into a new lval and return it.

lval* builtin_cmp(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 int r;
 if (strcmp(op, "==") == 0) {
 r = lval_eq(a->cell[0], a->cell[1]);
 }
 if (strcmp(op, "!=") == 0) {
 r = !lval_eq(a->cell[0], a->cell[1]);
 }
 lval_del(a);
 return lval_num(r);
}

lval* builtin_eq(lenv* e, lval* a) {
 return builtin_cmp(e, a, "==");
}

lval* builtin_ne(lenv* e, lval* a) {
 return builtin_cmp(e, a, "!=");
}

If Function

To make our comparison operators useful we'll need an if function. This function
is a little like the ternary operation in C. Upon some condition being true it evaluates
to one thing, and if the condition is false, it evaluates to another.
We can again make use of Q-Expressions to encode a computation. First we get the
user to pass in the result of a comparison, then we get the user to pass in two Q-
Expressions representing the code to be evaluated upon a condition being either

true or false.

lval* builtin_if(lenv* e, lval* a) {
 LASSERT_NUM("if", a, 3);
 LASSERT_TYPE("if", a, 0, LVAL_NUM);
 LASSERT_TYPE("if", a, 1, LVAL_QEXPR);
 LASSERT_TYPE("if", a, 2, LVAL_QEXPR);

 /* Mark Both Expressions as evaluable */
 lval* x;
 a->cell[1]->type = LVAL_SEXPR;
 a->cell[2]->type = LVAL_SEXPR;

 if (a->cell[0]->num) {
 /* If condition is true evaluate first expression */
 x = lval_eval(e, lval_pop(a, 1));
 } else {
 /* Otherwise evaluate second expression */
 x = lval_eval(e, lval_pop(a, 2));
 }

 /* Delete argument list and return */
 lval_del(a);
 return x;
}

All that remains is for us to register all of these new builtins and we are again ready
to go.

/* Comparison Functions */
lenv_add_builtin(e, "if", builtin_if);
lenv_add_builtin(e, "==", builtin_eq);
lenv_add_builtin(e, "!=", builtin_ne);
lenv_add_builtin(e, ">", builtin_gt);
lenv_add_builtin(e, "<", builtin_lt);
lenv_add_builtin(e, ">=", builtin_ge);
lenv_add_builtin(e, "<=", builtin_le);

Have a quick mess around to check that everything is working correctly.

lispy> > 10 5
1
lispy> <= 88 5
0
lispy> == 5 6
0
lispy> == 5 {}
0
lispy> == 1 1
1
lispy> != {} 56
1
lispy> == {1 2 3 {5 6}} {1 2 3 {5 6}}
1
lispy> def {x y} 100 200
()
lispy> if (== x y) {+ x y} {- x y}
-100

Recursive Functions

By introducing conditionals we've actually made our language a lot more powerful.
This is because they effectively let us implement recursive functions.
Recursive functions are those which call themselves. We've used these already in C
to perform reading in and evaluation of expressions. The reason we require
conditionals for these is because they let us test for the situation where we wish to
terminate the recursion.
For example we can use conditionals to implement a function len which tells us
the number of items in a list. If we encounter the empty list we just return 0 .
Otherwise we return the length of the tail of the input list, plus 1 . Think about why
this works. It repeatedly uses the len function until it reaches the empty list. At this
point it returns 0 and adds all the other partial results together.

(fun {len l} {
 if (== l {})
 {0}
 {+ 1 (len (tail l))}
})

Just as in C, there is a pleasant symmetry to this sort of recursive function. First we
do something for the empty list (the base case). Then if we get something bigger, we
take off a chunk such as the head of the list, and do something to it, before
combining it with the rest of the thing to which the function has been already
applied.
Here is another function for reversing a list. As before it checks for the empty list, but
this time it returns the empty list back. This makes sense. The reverse of the empty
list is just the empty list. But if it gets something bigger than the empty list, it reverses
the tail, and stick this in front of the head.

(fun {reverse l} {
 if (== l {})
 {{}}
 {join (reverse (tail l)) (head l)}
})

We're going to use this technique to build many functions. This is because it is going
to be the primary way to achieve looping in our language.

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;

}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Forward Declarations */

struct lval;
struct lenv;
typedef struct lval lval;
typedef struct lenv lenv;

/* Lisp Value */

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

typedef lval*(*lbuiltin)(lenv*, lval*);

struct lval {
 int type;

 /* Basic */
 long num;
 char* err;
 char* sym;

 /* Function */
 lbuiltin builtin;
 lenv* env;
 lval* formals;
 lval* body;

 /* Expression */
 int count;
 lval** cell;
};

lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

lval* lval_err(char* fmt, ...) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 va_list va;
 va_start(va, fmt);
 v->err = malloc(512);
 vsnprintf(v->err, 511, fmt, va);
 v->err = realloc(v->err, strlen(v->err)+1);
 va_end(va);
 return v;
}

lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;

}

lval* lval_builtin(lbuiltin func) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->builtin = func;
 return v;
}

lenv* lenv_new(void);

lval* lval_lambda(lval* formals, lval* body) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->builtin = NULL;
 v->env = lenv_new();
 v->formals = formals;
 v->body = body;
 return v;
}

lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

void lenv_del(lenv* e);

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_FUN:
 if (!v->builtin) {
 lenv_del(v->env);
 lval_del(v->formals);
 lval_del(v->body);
 }
 break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 free(v->cell);
 break;
 }

 free(v);
}

lenv* lenv_copy(lenv* e);

lval* lval_copy(lval* v) {
 lval* x = malloc(sizeof(lval));
 x->type = v->type;
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 x->builtin = v->builtin;
 } else {
 x->builtin = NULL;
 x->env = lenv_copy(v->env);
 x->formals = lval_copy(v->formals);
 x->body = lval_copy(v->body);
 }
 break;
 case LVAL_NUM: x->num = v->num; break;
 case LVAL_ERR: x->err = malloc(strlen(v->err) + 1);
 strcpy(x->err, v->err);
 break;
 case LVAL_SYM: x->sym = malloc(strlen(v->sym) + 1);
 strcpy(x->sym, v->sym);
 break;
 case LVAL_SEXPR:
 case LVAL_QEXPR:
 x->count = v->count;
 x->cell = malloc(sizeof(lval*) * x->count);
 for (int i = 0; i < x->count; i++) {
 x->cell[i] = lval_copy(v->cell[i]);
 }
 break;
 }
 return x;
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_join(lval* x, lval* y) {
 for (int i = 0; i < y->count; i++) {
 x = lval_add(x, y->cell[i]);
 }
 free(y->cell);
 free(y);
 return x;
}

lval* lval_pop(lval* v, int i) {
 lval* x = v->cell[i];
 memmove(&v->cell[i],
 &v->cell[i+1], sizeof(lval*) * (v->count-i-1));
 v->count--;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_print_expr(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {
 lval_print(v->cell[i]);
 if (i != (v->count-1)) {
 putchar(' ');
 }
 }
 putchar(close);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 printf("<builtin>");
 } else {
 printf("(\\ ");
 lval_print(v->formals);
 putchar(' ');
 lval_print(v->body);
 putchar(')');
 }
 break;
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_SEXPR: lval_print_expr(v, '(', ')'); break;
 case LVAL_QEXPR: lval_print_expr(v, '{', '}'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

int lval_eq(lval* x, lval* y) {

 /* Different Types are always unequal */
 if (x->type != y->type) { return 0; }

 /* Compare Based upon type */
 switch (x->type) {
 /* Compare Number Value */
 case LVAL_NUM: return (x->num == y->num);

 /* Compare String Values */
 case LVAL_ERR: return (strcmp(x->err, y->err) == 0);
 case LVAL_SYM: return (strcmp(x->sym, y->sym) == 0);

 /* If Builtin compare functions, otherwise compare formals and body */
 case LVAL_FUN:
 if (x->builtin || y->builtin) {
 return x->builtin == y->builtin;
 } else {
 return lval_eq(x->formals, y->formals) && lval_eq(x->body, y->body);
 }

 /* If list compare every individual element */
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 if (x->count != y->count) { return 0; }
 for (int i = 0; i < x->count; i++) {
 /* If any element not equal then whole list not equal */
 if (!lval_eq(x->cell[i], y->cell[i])) { return 0; }
 }
 /* Otherwise lists must be equal */
 return 1;

 break;
 }
 return 0;
}

char* ltype_name(int t) {
 switch(t) {
 case LVAL_FUN: return "Function";
 case LVAL_NUM: return "Number";
 case LVAL_ERR: return "Error";
 case LVAL_SYM: return "Symbol";
 case LVAL_SEXPR: return "S-Expression";
 case LVAL_QEXPR: return "Q-Expression";
 default: return "Unknown";
 }
}

/* Lisp Environment */

struct lenv {
 lenv* par;
 int count;
 char** syms;
 lval** vals;
};

lenv* lenv_new(void) {
 lenv* e = malloc(sizeof(lenv));
 e->par = NULL;
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;
}

void lenv_del(lenv* e) {
 for (int i = 0; i < e->count; i++) {
 free(e->syms[i]);
 lval_del(e->vals[i]);
 }
 free(e->syms);
 free(e->vals);
 free(e);
}

lenv* lenv_copy(lenv* e) {
 lenv* n = malloc(sizeof(lenv));
 n->par = e->par;
 n->count = e->count;
 n->syms = malloc(sizeof(char*) * n->count);
 n->vals = malloc(sizeof(lval*) * n->count);
 for (int i = 0; i < e->count; i++) {
 n->syms[i] = malloc(strlen(e->syms[i]) + 1);
 strcpy(n->syms[i], e->syms[i]);
 n->vals[i] = lval_copy(e->vals[i]);
 }
 return n;
}

lval* lenv_get(lenv* e, lval* k) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) { return lval_copy(e->vals[i]); }
 }

 if (e->par) {

 return lenv_get(e->par, k);
 } else {
 return lval_err("Unbound Symbol '%s'", k->sym);
 }
}

void lenv_put(lenv* e, lval* k, lval* v) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) {
 lval_del(e->vals[i]);
 e->vals[i] = lval_copy(v);
 return;
 }
 }

 e->count++;
 e->vals = realloc(e->vals, sizeof(lval*) * e->count);
 e->syms = realloc(e->syms, sizeof(char*) * e->count);
 e->vals[e->count-1] = lval_copy(v);
 e->syms[e->count-1] = malloc(strlen(k->sym)+1);
 strcpy(e->syms[e->count-1], k->sym);
}

void lenv_def(lenv* e, lval* k, lval* v) {
 while (e->par) { e = e->par; }
 lenv_put(e, k, v);
}

/* Builtins */

#define LASSERT(args, cond, fmt, ...) \
 if (!(cond)) { lval* err = lval_err(fmt, ##__VA_ARGS__); lval_del(args); return err; }

#define LASSERT_TYPE(func, args, index, expect) \
 LASSERT(args, args->cell[index]->type == expect, \
 "Function '%s' passed incorrect type for argument %i. Got %s, Expected %s.", \
 func, index, ltype_name(args->cell[index]->type), ltype_name(expect))

#define LASSERT_NUM(func, args, num) \
 LASSERT(args, args->count == num, \
 "Function '%s' passed incorrect number of arguments. Got %i, Expected %i.", \
 func, args->count, num)

#define LASSERT_NOT_EMPTY(func, args, index) \
 LASSERT(args, args->cell[index]->count != 0, \
 "Function '%s' passed {} for argument %i.", func, index);

lval* lval_eval(lenv* e, lval* v);

lval* builtin_lambda(lenv* e, lval* a) {
 LASSERT_NUM("\\", a, 2);
 LASSERT_TYPE("\\", a, 0, LVAL_QEXPR);
 LASSERT_TYPE("\\", a, 1, LVAL_QEXPR);

 for (int i = 0; i < a->cell[0]->count; i++) {
 LASSERT(a, (a->cell[0]->cell[i]->type == LVAL_SYM),
 "Cannot define non-symbol. Got %s, Expected %s.",
 ltype_name(a->cell[0]->cell[i]->type), ltype_name(LVAL_SYM));
 }

 lval* formals = lval_pop(a, 0);
 lval* body = lval_pop(a, 0);
 lval_del(a);

 return lval_lambda(formals, body);

}

lval* builtin_list(lenv* e, lval* a) {
 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_head(lenv* e, lval* a) {
 LASSERT_NUM("head", a, 1);
 LASSERT_TYPE("head", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("head", a, 0);

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lenv* e, lval* a) {
 LASSERT_NUM("tail", a, 1);
 LASSERT_TYPE("tail", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("tail", a, 0);

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

lval* builtin_eval(lenv* e, lval* a) {
 LASSERT_NUM("eval", a, 1);
 LASSERT_TYPE("eval", a, 0, LVAL_QEXPR);

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(e, x);
}

lval* builtin_join(lenv* e, lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE("join", a, i, LVAL_QEXPR);
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 lval* y = lval_pop(a, 0);
 x = lval_join(x, y);
 }

 lval_del(a);
 return x;
}

lval* builtin_op(lenv* e, lval* a, char* op) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE(op, a, i, LVAL_NUM);
 }

 lval* x = lval_pop(a, 0);

 if ((strcmp(op, "-") == 0) && a->count == 0) { x->num = -x->num; }

 while (a->count > 0) {
 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }
 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a);
 return x;
}

lval* builtin_add(lenv* e, lval* a) { return builtin_op(e, a, "+"); }
lval* builtin_sub(lenv* e, lval* a) { return builtin_op(e, a, "-"); }
lval* builtin_mul(lenv* e, lval* a) { return builtin_op(e, a, "*"); }
lval* builtin_div(lenv* e, lval* a) { return builtin_op(e, a, "/"); }

lval* builtin_var(lenv* e, lval* a, char* func) {
 LASSERT_TYPE(func, a, 0, LVAL_QEXPR);

 lval* syms = a->cell[0];
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
 "Function '%s' cannot define non-symbol. "
 "Got %s, Expected %s.",
 func, ltype_name(syms->cell[i]->type), ltype_name(LVAL_SYM));
 }

 LASSERT(a, (syms->count == a->count-1),
 "Function '%s' passed too many arguments for symbols. "
 "Got %i, Expected %i.",
 func, syms->count, a->count-1);

 for (int i = 0; i < syms->count; i++) {
 if (strcmp(func, "def") == 0) { lenv_def(e, syms->cell[i], a->cell[i+1]); }
 if (strcmp(func, "=") == 0) { lenv_put(e, syms->cell[i], a->cell[i+1]); }
 }

 lval_del(a);
 return lval_sexpr();
}

lval* builtin_def(lenv* e, lval* a) { return builtin_var(e, a, "def"); }
lval* builtin_put(lenv* e, lval* a) { return builtin_var(e, a, "="); }

lval* builtin_ord(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 LASSERT_TYPE(op, a, 0, LVAL_NUM);
 LASSERT_TYPE(op, a, 1, LVAL_NUM);

 int r;
 if (strcmp(op, ">") == 0) {
 r = (a->cell[0]->num > a->cell[1]->num);
 }
 if (strcmp(op, "<") == 0) {
 r = (a->cell[0]->num < a->cell[1]->num);
 }
 if (strcmp(op, ">=") == 0) {
 r = (a->cell[0]->num >= a->cell[1]->num);

 }
 if (strcmp(op, "<=") == 0) {
 r = (a->cell[0]->num <= a->cell[1]->num);
 }
 lval_del(a);
 return lval_num(r);
}

lval* builtin_gt(lenv* e, lval* a) {
 return builtin_ord(e, a, ">");
}

lval* builtin_lt(lenv* e, lval* a) {
 return builtin_ord(e, a, "<");
}

lval* builtin_ge(lenv* e, lval* a) {
 return builtin_ord(e, a, ">=");
}

lval* builtin_le(lenv* e, lval* a) {
 return builtin_ord(e, a, "<=");
}

lval* builtin_cmp(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 int r;
 if (strcmp(op, "==") == 0) {
 r = lval_eq(a->cell[0], a->cell[1]);
 }
 if (strcmp(op, "!=") == 0) {
 r = !lval_eq(a->cell[0], a->cell[1]);
 }
 lval_del(a);
 return lval_num(r);
}

lval* builtin_eq(lenv* e, lval* a) {
 return builtin_cmp(e, a, "==");
}

lval* builtin_ne(lenv* e, lval* a) {
 return builtin_cmp(e, a, "!=");
}

lval* builtin_if(lenv* e, lval* a) {
 LASSERT_NUM("if", a, 3);
 LASSERT_TYPE("if", a, 0, LVAL_NUM);
 LASSERT_TYPE("if", a, 1, LVAL_QEXPR);
 LASSERT_TYPE("if", a, 2, LVAL_QEXPR);

 /* Mark Both Expressions as evaluable */
 lval* x;
 a->cell[1]->type = LVAL_SEXPR;
 a->cell[2]->type = LVAL_SEXPR;

 if (a->cell[0]->num) {
 /* If condition is true evaluate first expression */
 x = lval_eval(e, lval_pop(a, 1));
 } else {
 /* Otherwise evaluate second expression */
 x = lval_eval(e, lval_pop(a, 2));
 }

 /* Delete argument list and return */
 lval_del(a);

 return x;
}

void lenv_add_builtin(lenv* e, char* name, lbuiltin func) {
 lval* k = lval_sym(name);
 lval* v = lval_builtin(func);
 lenv_put(e, k, v);
 lval_del(k); lval_del(v);
}

void lenv_add_builtins(lenv* e) {
 /* Variable Functions */
 lenv_add_builtin(e, "\\", builtin_lambda);
 lenv_add_builtin(e, "def", builtin_def);
 lenv_add_builtin(e, "=", builtin_put);

 /* List Functions */
 lenv_add_builtin(e, "list", builtin_list);
 lenv_add_builtin(e, "head", builtin_head);
 lenv_add_builtin(e, "tail", builtin_tail);
 lenv_add_builtin(e, "eval", builtin_eval);
 lenv_add_builtin(e, "join", builtin_join);

 /* Mathematical Functions */
 lenv_add_builtin(e, "+", builtin_add);
 lenv_add_builtin(e, "-", builtin_sub);
 lenv_add_builtin(e, "*", builtin_mul);
 lenv_add_builtin(e, "/", builtin_div);

 /* Comparison Functions */
 lenv_add_builtin(e, "if", builtin_if);
 lenv_add_builtin(e, "==", builtin_eq);
 lenv_add_builtin(e, "!=", builtin_ne);
 lenv_add_builtin(e, ">", builtin_gt);
 lenv_add_builtin(e, "<", builtin_lt);
 lenv_add_builtin(e, ">=", builtin_ge);
 lenv_add_builtin(e, "<=", builtin_le);
}

/* Evaluation */

lval* lval_call(lenv* e, lval* f, lval* a) {

 if (f->builtin) { return f->builtin(e, a); }

 int given = a->count;
 int total = f->formals->count;

 while (a->count) {

 if (f->formals->count == 0) {
 lval_del(a);
 return lval_err("Function passed too many arguments. "
 "Got %i, Expected %i.", given, total);
 }

 lval* sym = lval_pop(f->formals, 0);

 if (strcmp(sym->sym, "&") == 0) {

 if (f->formals->count != 1) {
 lval_del(a);
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 lval* nsym = lval_pop(f->formals, 0);
 lenv_put(f->env, nsym, builtin_list(e, a));
 lval_del(sym); lval_del(nsym);
 break;
 }

 lval* val = lval_pop(a, 0);
 lenv_put(f->env, sym, val);
 lval_del(sym); lval_del(val);
 }

 lval_del(a);

 if (f->formals->count > 0 &&
 strcmp(f->formals->cell[0]->sym, "&") == 0) {

 if (f->formals->count != 2) {
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 lval_del(lval_pop(f->formals, 0));

 lval* sym = lval_pop(f->formals, 0);
 lval* val = lval_qexpr();
 lenv_put(f->env, sym, val);
 lval_del(sym); lval_del(val);
 }

 if (f->formals->count == 0) {
 f->env->par = e;
 return builtin_eval(f->env, lval_add(lval_sexpr(), lval_copy(f->body)));
 } else {
 return lval_copy(f);
 }

}

lval* lval_eval_sexpr(lenv* e, lval* v) {

 for (int i = 0; i < v->count; i++) { v->cell[i] = lval_eval(e, v->cell[i]); }
 for (int i = 0; i < v->count; i++) { if (v->cell[i]->type == LVAL_ERR) { return lval_take(v,
i); } }

 if (v->count == 0) { return v; }
 if (v->count == 1) { return lval_eval(e, lval_take(v, 0)); }

 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_FUN) {
 lval* err = lval_err(
 "S-Expression starts with incorrect type. "
 "Got %s, Expected %s.",
 ltype_name(f->type), ltype_name(LVAL_FUN));
 lval_del(f); lval_del(v);
 return err;
 }

 lval* result = lval_call(e, f, v);
 lval_del(f);
 return result;
}

lval* lval_eval(lenv* e, lval* v) {
 if (v->type == LVAL_SYM) {
 lval* x = lenv_get(e, v);
 lval_del(v);

 return x;
 }
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(e, v); }
 return v;
}

/* Reading */

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err("Invalid Number.");
}

lval* lval_read(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }
 if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

/* Main */

int main(int argc, char** argv) {

 mpc_parser_t* Number = mpc_new("number");
 mpc_parser_t* Symbol = mpc_new("symbol");
 mpc_parser_t* Sexpr = mpc_new("sexpr");
 mpc_parser_t* Qexpr = mpc_new("qexpr");
 mpc_parser_t* Expr = mpc_new("expr");
 mpc_parser_t* Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <sexpr> | <qexpr> ; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 puts("Lispy Version 0.0.0.0.9");
 puts("Press Ctrl+c to Exit\n");

 lenv* e = lenv_new();
 lenv_add_builtins(e);

 while (1) {

 char* input = readline("lispy> ");
 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {

 lval* x = lval_eval(e, lval_read(r.output));
 lval_println(x);
 lval_del(x);

 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }

 lenv_del(e);

 mpc_cleanup(6, Number, Symbol, Sexpr, Qexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› Create builtin logical operators or || , and && and not ! and add them to
the language.

› Define a recursive Lisp function that returns the nth item of that list.

› Define a recursive Lisp function that returns 1 if an element is a member of
a list, otherwise 0 .

› Define a Lisp function that returns the last element of a list.

› Define in Lisp logical operator functions such as or , and and not .

› Add a specific boolean type to the language with the builtin variables true

and false .

String • How long is it.

Strings • Chapter 14

Libraries

Our Lisp is finally functional. We should be
able to write almost any functions we want.
We can build some quite complex constructs
using it, and even do some cool things that
can't be done in lots of other heavyweight
and popular languages;
Every time we update our program and run it
again it is annoying having to type in all of our
functions. In this chapter we'll add the
functionality to load code from a file and run
it. This will allow us to start building up a
standard library up. Along the way we'll also
add support for code comments, strings, and
printing.

String Type

For the user to load a file we'll have to let them supply a string consisting of the file
name. Our language supports symbols, but still doesn't support strings, which can
include spaces and other characters. We need to add this possible lval type to
specify the file names we need.
We start, as in other chapters, by adding an entry to our enum and adding an entry to
our lval to represent the type's data.

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_STR,
 LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

/* Basic */
long num;
char* err;
char* sym;
char* str;

Next we can add a function for constructing string lval , very similar to how we
construct constructing symbols.

lval* lval_str(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_STR;
 v->str = malloc(strlen(s) + 1);
 strcpy(v->str, s);
 return v;
}

We also need to add the relevant entries into our functions that deal with lval .
For Deletion...

case LVAL_STR: free(v->str); break;

For Copying...

case LVAL_STR: x->str = malloc(strlen(v->str) + 1);
 strcpy(x->str, v->str); break;

For Equality...

case LVAL_STR: return (strcmp(x->str, y->str) == 0);

For Type Name...

case LVAL_STR: return "String";

For Printing we need to do a little more. The string we store internally is different to
the string we want to print. We want to print a string as a user might input it, using
escape characters such as \n to represent a new line.
We therefore need to escape it before we print it. Luckily we can make use of a mpc

function that will do this for us.
In the printing function we add the following...

case LVAL_STR: lval_print_str(v); break;

Where...

void lval_print_str(lval* v) {
 /* Make a Copy of the string */
 char* escaped = malloc(strlen(v->str)+1);
 strcpy(escaped, v->str);
 /* Pass it through the escape function */
 escaped = mpcf_escape(escaped);
 /* Print it between " characters */
 printf("\"%s\"", escaped);
 /* free the copied string */
 free(escaped);
}

Reading Strings

Now we need to add support for parsing strings. As usual this requires first adding a
new grammar rule called string and adding it to our parser.
The rule we are going to use that represents a string is going to be the same as for C
style strings. This means a string is essentially a series of escape characters, or
normal characters, between two quotation marks "" . We can specify this as a
regular expression inside our grammar string as follows.

string : /\"(\\\\.|[^\"])*\"/ ;

This looks complicated but makes a lot more sense when explained in parts. It reads
like this. A string is a " character, followed by zero or more of either a backslash \\

followed by any other character . , or anything that isn't a " character [^\\"] .
Finally it ends with another " character.
We also need to add a case to deal with this in the lval_read function.

if (strstr(t->tag, "string")) { return lval_read_str(t); }

Because the input string is input in an escaped form we need to create a function
lval_read_str which deals with this. This function is a little tricky because it has to do

a few tasks. First it must strip the input string of the " characters on either side.
Then it must unescape the string, converting series of characters such as \n to their
actual encoded characters. Finally it has to create a new lval and clean up
anything that has happened in-between.

lval* lval_read_str(mpc_ast_t* t) {
 /* Cut off the final quote character */
 t->contents[strlen(t->contents)-1] = '\0';
 /* Copy the string missing out the first quote character */
 char* unescaped = malloc(strlen(t->contents+1)+1);
 strcpy(unescaped, t->contents+1);
 /* Pass through the unescape function */
 unescaped = mpcf_unescape(unescaped);
 /* Construct a new lval using the string */
 lval* str = lval_str(unescaped);
 /* Free the string and return */
 free(unescaped);
 return str;
}

If this all works we should be able to play around with strings in the prompt. Next
we'll add functions which can actually make use of them.

lispy> "hello"
"hello"
lispy> "hello\n"
"hello\n"
lispy> "hello\""
"hello\""
lispy> head {"hello" "world"}
{"hello"}
lispy> eval (head {"hello" "world"})
"hello"
lispy>

Comments

While we're building in new syntax to the language we may as well look at
comments.
Just like in C, we can use comments in inform other people (or ourselves) about
what the code is meant to do or why it has been written. In C comments go between
/* and */ . Lisp comments, on the other hand, start with ; and run to the end of

the line.

I attempted to research why Lisps use ; for comments, but it appears that the
origins of this have been lost in the mists of time. I imagine it as a small rebellion
against the imperative languages such as C and Java which use semicolons so
shamelessly and frequently to separate/terminate statements. Compared to Lisp all
these languages are just comments.
So in lisp a comment is defined by a semicolon ; followed by any number of
characters that are not newline characters represented by either \r or \n . We can
use another regex to define it.

comment : /;[^\\r\\n]*/ ;

As with strings we need to create a new parser and use this to update our language
in mpca_lang . We also need to remember to add the parser to mpc_cleanup , and update
the first integer argument to reflect the new number of parsers passed in.
Our final grammar now looks like this.

mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 string : /\"(\\\\.|[^\"])*\"/ ; \
 comment : /;[^\\r\\n]*/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <string> \
 | <comment> | <sexpr> | <qexpr>; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, String, Comment, Sexpr, Qexpr, Expr, Lispy);

And the cleanup function looks like this.

mpc_cleanup(8,
 Number, Symbol, String, Comment,
 Sexpr, Qexpr, Expr, Lispy);

Because comments are only for programmers reading the code, our internal
function for reading them in just consists of ignoring them. We can add a clause to
deal with them in a similar way to brackets and parenthesis in lval_read .

if (strstr(t->children[i]->tag, "comment")) { continue; }

Comments won't be of much use on the interactive prompt, but they will be very
helpful for adding into files of code to annotate them.

Load Function
We want to built a function that can load and evaluate a file when passed a string of
its name. To implement this function we'll need to make use of our grammar as we'll
need it to to read in the file contents, parse, and evaluate them. Our load function is
going to rely on our mpc_parser* called Lispy .
Therefore, just like with functions, we need to forward declare our parser pointers,
and place them at the top of the file.

mpc_parser_t* Number;
mpc_parser_t* Symbol;
mpc_parser_t* String;
mpc_parser_t* Comment;
mpc_parser_t* Sexpr;
mpc_parser_t* Qexpr;
mpc_parser_t* Expr;
mpc_parser_t* Lispy;

Our load function will be just like any other builtin. We need to start by checking that
the input argument is a single string. Then we can use the mpc_parse_contents function
to read in the contents of a file using a grammar. Just like mpc_parse this parses the
contents of a file into some mpc_result object, which is our case is an abstract syntax
tree again or an error.
Slightly differently to our command prompt, on successfully parsing a file we
shouldn't treat it like one expression. When typing into a file we let users list multiple
expressions and evaluate all of them individually. To achieve this behaviour we need
to loop over each expression in the contents of the file and evaluate it one by one. If
there are any errors we should print them and continue.
If there is a parse error we're going to extract the message and put it into a error
lval which we return. If there are no errors the return value for this builtin can just

be the empty expression. The full code for this looks like this.

lval* builtin_load(lenv* e, lval* a) {
 LASSERT_NUM("load", a, 1);
 LASSERT_TYPE("load", a, 0, LVAL_STR);

 /* Parse File given by string name */
 mpc_result_t r;
 if (mpc_parse_contents(a->cell[0]->str, Lispy, &r;)) {

 /* Read contents */
 lval* expr = lval_read(r.output);
 mpc_ast_delete(r.output);

 /* Evaluate each Expression */
 while (expr->count) {
 lval* x = lval_eval(e, lval_pop(expr, 0));
 /* If Evaluation leads to error print it */
 if (x->type == LVAL_ERR) { lval_println(x); }
 lval_del(x);
 }

 /* Delete expressions and arguments */
 lval_del(expr);
 lval_del(a);

 /* Return empty list */
 return lval_sexpr();

 } else {
 /* Get Parse Error as String */
 char* err_msg = mpc_err_string(r.error);
 mpc_err_delete(r.error);

 /* Create new error message using it */
 lval* err = lval_err("Could not load Library %s", err_msg);
 free(err_msg);
 lval_del(a);

 /* Cleanup and return error */
 return err;
 }
}

Command Line Arguments

With the ability to load files, we can take the chance to add in some functionality
typical of other programming languages. When file names are given as arguments
to the command line we can try to run these files. For example to run a python file
one might write python filename.py .
These command line arguments are accessible using the argc and argv variables
that are given to main . The argc variable gives the number of arguments, and argv

specifies each string. The argc is always set to at least one, where the first
argument is always the complete command invoked.
That means if argc is set to 1 we can invoke the interpreter, otherwise we can run
each of the arguments through the builtin_load function.

/* Supplied with list of files */
if (argc >= 2) {

 /* loop over each supplied filename (starting from 1) */
 for (int i = 1; i < argc; i++) {

 /* Argument list with a single argument, the filename */
 lval* args = lval_add(lval_sexpr(), lval_str(argv[i]));

 /* Pass to builtin load and get the result */
 lval* x = builtin_load(e, args);

 /* If the result is an error be sure to print it */
 if (x->type == LVAL_ERR) { lval_println(x); }
 lval_del(x);
 }
}

It's now possible to write some basic program and try to invoke it using this method.

lispy example.lspy

Print Function

If we are running programs from the command line we might want them to output
some data, rather than just define functions and other values. We can add a print

function to our Lisp which makes use of our existing lval_print function.
This function prints each argument separated by a space and then prints a newline
character to finish. It returns the empty expression.

lval* builtin_print(lenv* e, lval* a) {

 /* Print each argument followed by a space */

 for (int i = 0; i < a->count; i++) {
 lval_print(a->cell[i]); putchar(' ');
 }

 /* Print a newline and delete arguments */
 putchar('\n');
 lval_del(a);

 return lval_sexpr();
}

Error Function

We can also make use of strings to add in an error reporting function. This can take
as input a user supplied string and provide it as an error message for lval_err .

lval* builtin_error(lenv* e, lval* a) {
 LASSERT_NUM("error", a, 1);
 LASSERT_TYPE("error", a, 0, LVAL_STR);

 /* Construct Error from first argument */
 lval* err = lval_err(a->cell[0]->str);

 /* Delete arguments and return */
 lval_del(a);
 return err;
}

The final step is to register these as builtins. Now finally we can start building up
libraries and writing them to files.

/* String Functions */
lenv_add_builtin(e, "load", builtin_load);
lenv_add_builtin(e, "error", builtin_error);
lenv_add_builtin(e, "print", builtin_print);

lispy> print "Hello World!"
"Hello World!"
()
lispy> error "This is an error"
Error: This is an error
lispy> load "hello.lspy"
"Hello World!"
()
lispy>

Finishing Up

This is the last chapter in which we are going to explicitly work on our C
implementation of Lisp. The result of this chapter will be the final state of your
language implementation.
The final line count should clock in somewhere close to 1000 lines of code. Writing
this amount of code is not trivial. If you've made it this far you've written a real

program and started on a proper project. The skills you've learnt here should be
transferable, and give you the confidence to seek out your own goals and targets.
You now have a complex and beautiful program which you can interact and play
with. This is something you should be proud of. Go show it off to your friends and
family!
In the next chapter we start using our Lisp to build up a standard library of common
functions. After that I describe some possible improvements and directions in which
the language should be taken. Although we've finished with my involvement this is
really this is only the beginning. Thanks for following along, and good luck with
whatever C you write in the future!

Reference

#include "mpc.h"

#ifdef _WIN32

static char buffer[2048];

char* readline(char* prompt) {
 fputs(prompt, stdout);
 fgets(buffer, 2048, stdin);
 char* cpy = malloc(strlen(buffer)+1);
 strcpy(cpy, buffer);
 cpy[strlen(cpy)-1] = '\0';
 return cpy;
}

void add_history(char* unused) {}

#else
#include <editline/readline.h>
#include <editline/history.h>
#endif

/* Parser Declariations */

mpc_parser_t* Number;
mpc_parser_t* Symbol;
mpc_parser_t* String;
mpc_parser_t* Comment;
mpc_parser_t* Sexpr;
mpc_parser_t* Qexpr;
mpc_parser_t* Expr;
mpc_parser_t* Lispy;

/* Forward Declarations */

struct lval;
struct lenv;
typedef struct lval lval;
typedef struct lenv lenv;

/* Lisp Value */

enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_STR,
 LVAL_FUN, LVAL_SEXPR, LVAL_QEXPR };

typedef lval*(*lbuiltin)(lenv*, lval*);

struct lval {
 int type;

 /* Basic */
 long num;
 char* err;
 char* sym;
 char* str;

 /* Function */
 lbuiltin builtin;
 lenv* env;
 lval* formals;
 lval* body;

 /* Expression */
 int count;
 lval** cell;
};

lval* lval_num(long x) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_NUM;
 v->num = x;
 return v;
}

lval* lval_err(char* fmt, ...) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_ERR;
 va_list va;
 va_start(va, fmt);
 v->err = malloc(512);
 vsnprintf(v->err, 511, fmt, va);
 v->err = realloc(v->err, strlen(v->err)+1);
 va_end(va);
 return v;
}

lval* lval_sym(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SYM;
 v->sym = malloc(strlen(s) + 1);
 strcpy(v->sym, s);
 return v;
}

lval* lval_str(char* s) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_STR;
 v->str = malloc(strlen(s) + 1);
 strcpy(v->str, s);
 return v;
}

lval* lval_builtin(lbuiltin func) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->builtin = func;
 return v;
}

lenv* lenv_new(void);

lval* lval_lambda(lval* formals, lval* body) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_FUN;
 v->builtin = NULL;
 v->env = lenv_new();
 v->formals = formals;
 v->body = body;
 return v;
}

lval* lval_sexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_SEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

lval* lval_qexpr(void) {
 lval* v = malloc(sizeof(lval));
 v->type = LVAL_QEXPR;
 v->count = 0;
 v->cell = NULL;
 return v;
}

void lenv_del(lenv* e);

void lval_del(lval* v) {

 switch (v->type) {
 case LVAL_NUM: break;
 case LVAL_FUN:
 if (!v->builtin) {
 lenv_del(v->env);
 lval_del(v->formals);
 lval_del(v->body);
 }
 break;
 case LVAL_ERR: free(v->err); break;
 case LVAL_SYM: free(v->sym); break;
 case LVAL_STR: free(v->str); break;
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 for (int i = 0; i < v->count; i++) {
 lval_del(v->cell[i]);
 }
 free(v->cell);
 break;
 }

 free(v);
}

lenv* lenv_copy(lenv* e);

lval* lval_copy(lval* v) {
 lval* x = malloc(sizeof(lval));
 x->type = v->type;
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 x->builtin = v->builtin;
 } else {
 x->builtin = NULL;
 x->env = lenv_copy(v->env);

 x->formals = lval_copy(v->formals);
 x->body = lval_copy(v->body);
 }
 break;
 case LVAL_NUM: x->num = v->num; break;
 case LVAL_ERR: x->err = malloc(strlen(v->err) + 1);
 strcpy(x->err, v->err);
 break;
 case LVAL_SYM: x->sym = malloc(strlen(v->sym) + 1);
 strcpy(x->sym, v->sym);
 break;
 case LVAL_STR: x->str = malloc(strlen(v->str) + 1);
 strcpy(x->str, v->str);
 break;
 case LVAL_SEXPR:
 case LVAL_QEXPR:
 x->count = v->count;
 x->cell = malloc(sizeof(lval*) * x->count);
 for (int i = 0; i < x->count; i++) {
 x->cell[i] = lval_copy(v->cell[i]);
 }
 break;
 }
 return x;
}

lval* lval_add(lval* v, lval* x) {
 v->count++;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 v->cell[v->count-1] = x;
 return v;
}

lval* lval_join(lval* x, lval* y) {
 for (int i = 0; i < y->count; i++) {
 x = lval_add(x, y->cell[i]);
 }
 free(y->cell);
 free(y);
 return x;
}

lval* lval_pop(lval* v, int i) {
 lval* x = v->cell[i];
 memmove(&v->cell[i],
 &v->cell[i+1], sizeof(lval*) * (v->count-i-1));
 v->count--;
 v->cell = realloc(v->cell, sizeof(lval*) * v->count);
 return x;
}

lval* lval_take(lval* v, int i) {
 lval* x = lval_pop(v, i);
 lval_del(v);
 return x;
}

void lval_print(lval* v);

void lval_print_expr(lval* v, char open, char close) {
 putchar(open);
 for (int i = 0; i < v->count; i++) {
 lval_print(v->cell[i]);
 if (i != (v->count-1)) {
 putchar(' ');
 }

 }
 putchar(close);
}

void lval_print_str(lval* v) {
 /* Make a Copy of the string */
 char* escaped = malloc(strlen(v->str)+1);
 strcpy(escaped, v->str);
 /* Pass it through the escape function */
 escaped = mpcf_escape(escaped);
 /* Print it between " characters */
 printf("\"%s\"", escaped);
 /* free the copied string */
 free(escaped);
}

void lval_print(lval* v) {
 switch (v->type) {
 case LVAL_FUN:
 if (v->builtin) {
 printf("<builtin>");
 } else {
 printf("(\\ ");
 lval_print(v->formals);
 putchar(' ');
 lval_print(v->body);
 putchar(')');
 }
 break;
 case LVAL_NUM: printf("%li", v->num); break;
 case LVAL_ERR: printf("Error: %s", v->err); break;
 case LVAL_SYM: printf("%s", v->sym); break;
 case LVAL_STR: lval_print_str(v); break;
 case LVAL_SEXPR: lval_print_expr(v, '(', ')'); break;
 case LVAL_QEXPR: lval_print_expr(v, '{', '}'); break;
 }
}

void lval_println(lval* v) { lval_print(v); putchar('\n'); }

int lval_eq(lval* x, lval* y) {

 if (x->type != y->type) { return 0; }

 switch (x->type) {
 case LVAL_NUM: return (x->num == y->num);
 case LVAL_ERR: return (strcmp(x->err, y->err) == 0);
 case LVAL_SYM: return (strcmp(x->sym, y->sym) == 0);
 case LVAL_STR: return (strcmp(x->str, y->str) == 0);
 case LVAL_FUN:
 if (x->builtin || y->builtin) {
 return x->builtin == y->builtin;
 } else {
 return lval_eq(x->formals, y->formals) && lval_eq(x->body, y->body);
 }
 case LVAL_QEXPR:
 case LVAL_SEXPR:
 if (x->count != y->count) { return 0; }
 for (int i = 0; i < x->count; i++) {
 if (!lval_eq(x->cell[i], y->cell[i])) { return 0; }
 }
 return 1;
 break;
 }
 return 0;
}

char* ltype_name(int t) {
 switch(t) {
 case LVAL_FUN: return "Function";
 case LVAL_NUM: return "Number";
 case LVAL_ERR: return "Error";
 case LVAL_SYM: return "Symbol";
 case LVAL_STR: return "String";
 case LVAL_SEXPR: return "S-Expression";
 case LVAL_QEXPR: return "Q-Expression";
 default: return "Unknown";
 }
}

/* Lisp Environment */

struct lenv {
 lenv* par;
 int count;
 char** syms;
 lval** vals;
};

lenv* lenv_new(void) {
 lenv* e = malloc(sizeof(lenv));
 e->par = NULL;
 e->count = 0;
 e->syms = NULL;
 e->vals = NULL;
 return e;
}

void lenv_del(lenv* e) {
 for (int i = 0; i < e->count; i++) {
 free(e->syms[i]);
 lval_del(e->vals[i]);
 }
 free(e->syms);
 free(e->vals);
 free(e);
}

lenv* lenv_copy(lenv* e) {
 lenv* n = malloc(sizeof(lenv));
 n->par = e->par;
 n->count = e->count;
 n->syms = malloc(sizeof(char*) * n->count);
 n->vals = malloc(sizeof(lval*) * n->count);
 for (int i = 0; i < e->count; i++) {
 n->syms[i] = malloc(strlen(e->syms[i]) + 1);
 strcpy(n->syms[i], e->syms[i]);
 n->vals[i] = lval_copy(e->vals[i]);
 }
 return n;
}

lval* lenv_get(lenv* e, lval* k) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) { return lval_copy(e->vals[i]); }
 }

 if (e->par) {
 return lenv_get(e->par, k);
 } else {
 return lval_err("Unbound Symbol '%s'", k->sym);

 }
}

void lenv_put(lenv* e, lval* k, lval* v) {

 for (int i = 0; i < e->count; i++) {
 if (strcmp(e->syms[i], k->sym) == 0) {
 lval_del(e->vals[i]);
 e->vals[i] = lval_copy(v);
 return;
 }
 }

 e->count++;
 e->vals = realloc(e->vals, sizeof(lval*) * e->count);
 e->syms = realloc(e->syms, sizeof(char*) * e->count);
 e->vals[e->count-1] = lval_copy(v);
 e->syms[e->count-1] = malloc(strlen(k->sym)+1);
 strcpy(e->syms[e->count-1], k->sym);
}

void lenv_def(lenv* e, lval* k, lval* v) {
 while (e->par) { e = e->par; }
 lenv_put(e, k, v);
}

/* Builtins */

#define LASSERT(args, cond, fmt, ...) \
 if (!(cond)) { lval* err = lval_err(fmt, ##__VA_ARGS__); lval_del(args); return err; }

#define LASSERT_TYPE(func, args, index, expect) \
 LASSERT(args, args->cell[index]->type == expect, \
 "Function '%s' passed incorrect type for argument %i. Got %s, Expected %s.", \
 func, index, ltype_name(args->cell[index]->type), ltype_name(expect))

#define LASSERT_NUM(func, args, num) \
 LASSERT(args, args->count == num, \
 "Function '%s' passed incorrect number of arguments. Got %i, Expected %i.", \
 func, args->count, num)

#define LASSERT_NOT_EMPTY(func, args, index) \
 LASSERT(args, args->cell[index]->count != 0, \
 "Function '%s' passed {} for argument %i.", func, index);

lval* lval_eval(lenv* e, lval* v);

lval* builtin_lambda(lenv* e, lval* a) {
 LASSERT_NUM("\\", a, 2);
 LASSERT_TYPE("\\", a, 0, LVAL_QEXPR);
 LASSERT_TYPE("\\", a, 1, LVAL_QEXPR);

 for (int i = 0; i < a->cell[0]->count; i++) {
 LASSERT(a, (a->cell[0]->cell[i]->type == LVAL_SYM),
 "Cannot define non-symbol. Got %s, Expected %s.",
 ltype_name(a->cell[0]->cell[i]->type), ltype_name(LVAL_SYM));
 }

 lval* formals = lval_pop(a, 0);
 lval* body = lval_pop(a, 0);
 lval_del(a);

 return lval_lambda(formals, body);
}

lval* builtin_list(lenv* e, lval* a) {

 a->type = LVAL_QEXPR;
 return a;
}

lval* builtin_head(lenv* e, lval* a) {
 LASSERT_NUM("head", a, 1);
 LASSERT_TYPE("head", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("head", a, 0);

 lval* v = lval_take(a, 0);
 while (v->count > 1) { lval_del(lval_pop(v, 1)); }
 return v;
}

lval* builtin_tail(lenv* e, lval* a) {
 LASSERT_NUM("tail", a, 1);
 LASSERT_TYPE("tail", a, 0, LVAL_QEXPR);
 LASSERT_NOT_EMPTY("tail", a, 0);

 lval* v = lval_take(a, 0);
 lval_del(lval_pop(v, 0));
 return v;
}

lval* builtin_eval(lenv* e, lval* a) {
 LASSERT_NUM("eval", a, 1);
 LASSERT_TYPE("eval", a, 0, LVAL_QEXPR);

 lval* x = lval_take(a, 0);
 x->type = LVAL_SEXPR;
 return lval_eval(e, x);
}

lval* builtin_join(lenv* e, lval* a) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE("join", a, i, LVAL_QEXPR);
 }

 lval* x = lval_pop(a, 0);

 while (a->count) {
 lval* y = lval_pop(a, 0);
 x = lval_join(x, y);
 }

 lval_del(a);
 return x;
}

lval* builtin_op(lenv* e, lval* a, char* op) {

 for (int i = 0; i < a->count; i++) {
 LASSERT_TYPE(op, a, i, LVAL_NUM);
 }

 lval* x = lval_pop(a, 0);

 if ((strcmp(op, "-") == 0) && a->count == 0) { x->num = -x->num; }

 while (a->count > 0) {
 lval* y = lval_pop(a, 0);

 if (strcmp(op, "+") == 0) { x->num += y->num; }
 if (strcmp(op, "-") == 0) { x->num -= y->num; }
 if (strcmp(op, "*") == 0) { x->num *= y->num; }

 if (strcmp(op, "/") == 0) {
 if (y->num == 0) {
 lval_del(x); lval_del(y);
 x = lval_err("Division By Zero.");
 break;
 }
 x->num /= y->num;
 }

 lval_del(y);
 }

 lval_del(a);
 return x;
}

lval* builtin_add(lenv* e, lval* a) { return builtin_op(e, a, "+"); }
lval* builtin_sub(lenv* e, lval* a) { return builtin_op(e, a, "-"); }
lval* builtin_mul(lenv* e, lval* a) { return builtin_op(e, a, "*"); }
lval* builtin_div(lenv* e, lval* a) { return builtin_op(e, a, "/"); }

lval* builtin_var(lenv* e, lval* a, char* func) {
 LASSERT_TYPE(func, a, 0, LVAL_QEXPR);

 lval* syms = a->cell[0];
 for (int i = 0; i < syms->count; i++) {
 LASSERT(a, (syms->cell[i]->type == LVAL_SYM),
 "Function '%s' cannot define non-symbol. "
 "Got %s, Expected %s.",
 func, ltype_name(syms->cell[i]->type), ltype_name(LVAL_SYM));
 }

 LASSERT(a, (syms->count == a->count-1),
 "Function '%s' passed too many arguments for symbols. "
 "Got %i, Expected %i.",
 func, syms->count, a->count-1);

 for (int i = 0; i < syms->count; i++) {
 if (strcmp(func, "def") == 0) { lenv_def(e, syms->cell[i], a->cell[i+1]); }
 if (strcmp(func, "=") == 0) { lenv_put(e, syms->cell[i], a->cell[i+1]); }
 }

 lval_del(a);
 return lval_sexpr();
}

lval* builtin_def(lenv* e, lval* a) { return builtin_var(e, a, "def"); }
lval* builtin_put(lenv* e, lval* a) { return builtin_var(e, a, "="); }

lval* builtin_ord(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 LASSERT_TYPE(op, a, 0, LVAL_NUM);
 LASSERT_TYPE(op, a, 1, LVAL_NUM);

 int r;
 if (strcmp(op, ">") == 0) { r = (a->cell[0]->num > a->cell[1]->num); }
 if (strcmp(op, "<") == 0) { r = (a->cell[0]->num < a->cell[1]->num); }
 if (strcmp(op, ">=") == 0) { r = (a->cell[0]->num >= a->cell[1]->num); }
 if (strcmp(op, "<=") == 0) { r = (a->cell[0]->num <= a->cell[1]->num); }
 lval_del(a);
 return lval_num(r);
}

lval* builtin_gt(lenv* e, lval* a) { return builtin_ord(e, a, ">"); }
lval* builtin_lt(lenv* e, lval* a) { return builtin_ord(e, a, "<"); }
lval* builtin_ge(lenv* e, lval* a) { return builtin_ord(e, a, ">="); }

lval* builtin_le(lenv* e, lval* a) { return builtin_ord(e, a, "<="); }

lval* builtin_cmp(lenv* e, lval* a, char* op) {
 LASSERT_NUM(op, a, 2);
 int r;
 if (strcmp(op, "==") == 0) { r = lval_eq(a->cell[0], a->cell[1]); }
 if (strcmp(op, "!=") == 0) { r = !lval_eq(a->cell[0], a->cell[1]); }
 lval_del(a);
 return lval_num(r);
}

lval* builtin_eq(lenv* e, lval* a) { return builtin_cmp(e, a, "=="); }
lval* builtin_ne(lenv* e, lval* a) { return builtin_cmp(e, a, "!="); }

lval* builtin_if(lenv* e, lval* a) {
 LASSERT_NUM("if", a, 3);
 LASSERT_TYPE("if", a, 0, LVAL_NUM);
 LASSERT_TYPE("if", a, 1, LVAL_QEXPR);
 LASSERT_TYPE("if", a, 2, LVAL_QEXPR);

 lval* x;
 a->cell[1]->type = LVAL_SEXPR;
 a->cell[2]->type = LVAL_SEXPR;

 if (a->cell[0]->num) {
 x = lval_eval(e, lval_pop(a, 1));
 } else {
 x = lval_eval(e, lval_pop(a, 2));
 }

 lval_del(a);
 return x;
}

lval* lval_read(mpc_ast_t* t);

lval* builtin_load(lenv* e, lval* a) {
 LASSERT_NUM("load", a, 1);
 LASSERT_TYPE("load", a, 0, LVAL_STR);

 /* Parse File given by string name */
 mpc_result_t r;
 if (mpc_parse_contents(a->cell[0]->str, Lispy, &r)) {

 /* Read contents */
 lval* expr = lval_read(r.output);
 mpc_ast_delete(r.output);

 /* Evaluate each Expression */
 while (expr->count) {
 lval* x = lval_eval(e, lval_pop(expr, 0));
 /* If Evaluation leads to error print it */
 if (x->type == LVAL_ERR) { lval_println(x); }
 lval_del(x);
 }

 /* Delete expressions and arguments */
 lval_del(expr);
 lval_del(a);

 /* Return empty list */
 return lval_sexpr();

 } else {
 /* Get Parse Error as String */
 char* err_msg = mpc_err_string(r.error);

 mpc_err_delete(r.error);

 /* Create new error message using it */
 lval* err = lval_err("Could not load Library %s", err_msg);
 free(err_msg);
 lval_del(a);

 /* Cleanup and return error */
 return err;
 }
}

lval* builtin_print(lenv* e, lval* a) {

 /* Print each argument followed by a space */
 for (int i = 0; i < a->count; i++) {
 lval_print(a->cell[i]); putchar(' ');
 }

 /* Print a newline and delete arguments */
 putchar('\n');
 lval_del(a);

 return lval_sexpr();
}

lval* builtin_error(lenv* e, lval* a) {
 LASSERT_NUM("error", a, 1);
 LASSERT_TYPE("error", a, 0, LVAL_STR);

 /* Construct Error from first argument */
 lval* err = lval_err(a->cell[0]->str);

 /* Delete arguments and return */
 lval_del(a);
 return err;
}

void lenv_add_builtin(lenv* e, char* name, lbuiltin func) {
 lval* k = lval_sym(name);
 lval* v = lval_builtin(func);
 lenv_put(e, k, v);
 lval_del(k); lval_del(v);
}

void lenv_add_builtins(lenv* e) {
 /* Variable Functions */
 lenv_add_builtin(e, "\\", builtin_lambda);
 lenv_add_builtin(e, "def", builtin_def);
 lenv_add_builtin(e, "=", builtin_put);

 /* List Functions */
 lenv_add_builtin(e, "list", builtin_list);
 lenv_add_builtin(e, "head", builtin_head);
 lenv_add_builtin(e, "tail", builtin_tail);
 lenv_add_builtin(e, "eval", builtin_eval);
 lenv_add_builtin(e, "join", builtin_join);

 /* Mathematical Functions */
 lenv_add_builtin(e, "+", builtin_add);
 lenv_add_builtin(e, "-", builtin_sub);
 lenv_add_builtin(e, "*", builtin_mul);
 lenv_add_builtin(e, "/", builtin_div);

 /* Comparison Functions */
 lenv_add_builtin(e, "if", builtin_if);

 lenv_add_builtin(e, "==", builtin_eq);
 lenv_add_builtin(e, "!=", builtin_ne);
 lenv_add_builtin(e, ">", builtin_gt);
 lenv_add_builtin(e, "<", builtin_lt);
 lenv_add_builtin(e, ">=", builtin_ge);
 lenv_add_builtin(e, "<=", builtin_le);

 /* String Functions */
 lenv_add_builtin(e, "load", builtin_load);
 lenv_add_builtin(e, "error", builtin_error);
 lenv_add_builtin(e, "print", builtin_print);
}

/* Evaluation */

lval* lval_call(lenv* e, lval* f, lval* a) {

 if (f->builtin) { return f->builtin(e, a); }

 int given = a->count;
 int total = f->formals->count;

 while (a->count) {

 if (f->formals->count == 0) {
 lval_del(a);
 return lval_err("Function passed too many arguments. "
 "Got %i, Expected %i.", given, total);
 }

 lval* sym = lval_pop(f->formals, 0);

 if (strcmp(sym->sym, "&") == 0) {

 if (f->formals->count != 1) {
 lval_del(a);
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 lval* nsym = lval_pop(f->formals, 0);
 lenv_put(f->env, nsym, builtin_list(e, a));
 lval_del(sym); lval_del(nsym);
 break;
 }

 lval* val = lval_pop(a, 0);
 lenv_put(f->env, sym, val);
 lval_del(sym); lval_del(val);
 }

 lval_del(a);

 if (f->formals->count > 0 &&
 strcmp(f->formals->cell[0]->sym, "&") == 0) {

 if (f->formals->count != 2) {
 return lval_err("Function format invalid. "
 "Symbol '&' not followed by single symbol.");
 }

 lval_del(lval_pop(f->formals, 0));

 lval* sym = lval_pop(f->formals, 0);
 lval* val = lval_qexpr();
 lenv_put(f->env, sym, val);

 lval_del(sym); lval_del(val);
 }

 if (f->formals->count == 0) {
 f->env->par = e;
 return builtin_eval(f->env, lval_add(lval_sexpr(), lval_copy(f->body)));
 } else {
 return lval_copy(f);
 }

}

lval* lval_eval_sexpr(lenv* e, lval* v) {

 for (int i = 0; i < v->count; i++) { v->cell[i] = lval_eval(e, v->cell[i]); }
 for (int i = 0; i < v->count; i++) { if (v->cell[i]->type == LVAL_ERR) { return lval_take(v,
i); } }

 if (v->count == 0) { return v; }
 if (v->count == 1) { return lval_eval(e, lval_take(v, 0)); }

 lval* f = lval_pop(v, 0);
 if (f->type != LVAL_FUN) {
 lval* err = lval_err(
 "S-Expression starts with incorrect type. "
 "Got %s, Expected %s.",
 ltype_name(f->type), ltype_name(LVAL_FUN));
 lval_del(f); lval_del(v);
 return err;
 }

 lval* result = lval_call(e, f, v);
 lval_del(f);
 return result;
}

lval* lval_eval(lenv* e, lval* v) {
 if (v->type == LVAL_SYM) {
 lval* x = lenv_get(e, v);
 lval_del(v);
 return x;
 }
 if (v->type == LVAL_SEXPR) { return lval_eval_sexpr(e, v); }
 return v;
}

/* Reading */

lval* lval_read_num(mpc_ast_t* t) {
 errno = 0;
 long x = strtol(t->contents, NULL, 10);
 return errno != ERANGE ? lval_num(x) : lval_err("Invalid Number.");
}

lval* lval_read_str(mpc_ast_t* t) {
 /* Cut off the final quote character */
 t->contents[strlen(t->contents)-1] = '\0';
 /* Copy the string missing out the first quote character */
 char* unescaped = malloc(strlen(t->contents+1)+1);
 strcpy(unescaped, t->contents+1);
 /* Pass through the unescape function */
 unescaped = mpcf_unescape(unescaped);
 /* Construct a new lval using the string */
 lval* str = lval_str(unescaped);
 /* Free the string and return */
 free(unescaped);

 return str;
}

lval* lval_read(mpc_ast_t* t) {

 if (strstr(t->tag, "number")) { return lval_read_num(t); }
 if (strstr(t->tag, "string")) { return lval_read_str(t); }
 if (strstr(t->tag, "symbol")) { return lval_sym(t->contents); }

 lval* x = NULL;
 if (strcmp(t->tag, ">") == 0) { x = lval_sexpr(); }
 if (strstr(t->tag, "sexpr")) { x = lval_sexpr(); }
 if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }

 for (int i = 0; i < t->children_num; i++) {
 if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
 if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
 if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
 if (strcmp(t->children[i]->tag, "regex") == 0) { continue; }
 if (strstr(t->children[i]->tag, "comment")) { continue; }
 x = lval_add(x, lval_read(t->children[i]));
 }

 return x;
}

/* Main */

int main(int argc, char** argv) {

 Number = mpc_new("number");
 Symbol = mpc_new("symbol");
 String = mpc_new("string");
 Comment = mpc_new("comment");
 Sexpr = mpc_new("sexpr");
 Qexpr = mpc_new("qexpr");
 Expr = mpc_new("expr");
 Lispy = mpc_new("lispy");

 mpca_lang(MPCA_LANG_DEFAULT,
 " \
 number : /-?[0-9]+/ ; \
 symbol : /[a-zA-Z0-9_+\\-*\\/\\\\=<>!&]+/ ; \
 string : /\"(\\\\.|[^\"])*\"/ ; \
 comment : /;[^\\r\\n]*/ ; \
 sexpr : '(' <expr>* ')' ; \
 qexpr : '{' <expr>* '}' ; \
 expr : <number> | <symbol> | <string> \
 | <comment> | <sexpr> | <qexpr>; \
 lispy : /^/ <expr>* /$/ ; \
 ",
 Number, Symbol, String, Comment, Sexpr, Qexpr, Expr, Lispy);

 lenv* e = lenv_new();
 lenv_add_builtins(e);

 /* Interactive Prompt */
 if (argc == 1) {

 puts("Lispy Version 0.0.0.1.0");
 puts("Press Ctrl+c to Exit\n");

 while (1) {

 char* input = readline("lispy> ");

 add_history(input);

 mpc_result_t r;
 if (mpc_parse("<stdin>", input, Lispy, &r)) {

 lval* x = lval_eval(e, lval_read(r.output));
 lval_println(x);
 lval_del(x);

 mpc_ast_delete(r.output);
 } else {
 mpc_err_print(r.error);
 mpc_err_delete(r.error);
 }

 free(input);

 }
 }

 /* Supplied with list of files */
 if (argc >= 2) {

 /* loop over each supplied filename (starting from 1) */
 for (int i = 1; i < argc; i++) {

 /* Argument list with a single argument, the filename */
 lval* args = lval_add(lval_sexpr(), lval_str(argv[i]));

 /* Pass to builtin load and get the result */
 lval* x = builtin_load(e, args);

 /* If the result is an error be sure to print it */
 if (x->type == LVAL_ERR) { lval_println(x); }
 lval_del(x);
 }
 }

 lenv_del(e);

 mpc_cleanup(8,
 Number, Symbol, String, Comment,
 Sexpr, Qexpr, Expr, Lispy);

 return 0;
}

Bonus Marks

› Adapt the builtin function join to work on strings.

› Adapt the builtin function head to work on strings.

› Adapt the builtin function tail to work on strings.

› Create a builtin function read that reads in and converts a string to a Q-
expression.

› Create a builtin function show that can print the contents of strings as it is
(unescaped).

› Create a special value ok to return instead of empty expressions () .

› Add functions to wrap all of C's file handling functions such as fopen and
fgets .

Library • Built with just leather, paper, wood, and ink.

Standard Library • Chapter 15

Minimalism

The Lisp we've built has been
purposefully minimal. We've only
added the fewest number of core
structures and builtins. If we chose
these carefully, as we did, then it
should allow us to add in everything
else required to the language.
The motivation behind minimalism is
two-fold. The first advantage is that it
makes the core language simple to
debug and easy to learn. This is a
great benefit to developers and users.
Like Occam's Razor it is almost
always better to trim away any waste
if it results in a equally expressive
language. The second reason is that
having a small language is also
aesthetically nicer. It is clever,
interesting and fun to see how small
we can make the core of a language,
and still get something useful out of
the other side. As hackers, which we
should be by now, this is something we enjoy.

Atoms

When dealing with conditionals we added no new boolean type to our language.
Because of this we didn't add true or false either. Instead we just used numbers.
Readability is still important though, so we can define some constants to represent
these values.
On a similar note, many lisps use the word nil to represent the empty list {} . We
can add this in too. These constants are sometimes called atoms because they are
fundamental and constant.
The user is not forced to use these named constants, and can use numbers and
empty lists instead as they like. This choice empowers users, something we believe
in.

; Atoms
(def {nil} {})
(def {true} 1)
(def {false} 0)

http://en.wikipedia.org/wiki/Occam%27s_razor

Building Blocks

We've already come up with a number of cool functions I've been using in the
examples. One of these is our fun function that allows us to declare functions in a
neater way. We should definitely include this in our standard library.

; Function Definitions
(def {fun} (\ {f b} {
 def (head f) (\ (tail f) b)
}))

We also had our unpack and pack functions. These too are going to be essential for
users. We should include these along with their curry and uncurry aliases.

; Unpack List for Function
(fun {unpack f l} {
 eval (join (list f) l)
})

; Pack List for Function
(fun {pack f & xs} {f xs})

; Curried and Uncurried calling
(def {curry} unpack)
(def {uncurry} pack)

Say we want to do several things in order. One way we can do this is to put each
thing to do as an argument to some function. We know that arguments are
evaluated in order from left to right, which is essentially sequencing events. For
functions such as print and load we don't care much about what it evaluates to,
but do care about the order in which it happens.
Therefore we can create a do function which evaluates a number of expressions in
order and returns the last one. This relies on the last function, which returns the
final element of a list. We'll define this later.

; Perform Several things in Sequence
(fun {do & l} {
 if (== l nil)
 {nil}
 {last l}
})

Sometimes we want to save results to local variables using the = operator. When
we're inside a function this will implicitly only save results locally, but sometimes we
want to open up an even more local scope. For this we can create a function let

which creates an empty function for code to take place in, and evaluates it.

; Open new scope
(fun {let b} {
 ((\ {_} b) ())
})

We can use this in conjunction with do to ensure that variables do not leak out of
their scope.

lispy> let {do (= {x} 100) (x)}

100
lispy> x
Error: Unbound Symbol 'x'
lispy>

Logical Operators

We didn't define any local operators such as and and or in our language. This
might be a good thing to add in later. For now we can use arithmetic operators to
emulate them. Think about how these functions work when encountering 0 or 1

for their various inputs.

; Logical Functions
(fun {not x} {- 1 x})
(fun {or x y} {+ x y})
(fun {and x y} {* x y})

Miscellaneous Functions

Here are a couple of miscellaneous functions that don't really fit in anywhere. See if
you can guess their intended functionality.

(fun {flip f a b} {f b a})
(fun {ghost & xs} {eval xs})
(fun {comp f g x} {f (g x)})

The flip function takes a function f and two arguments a and b . It then applies
f to a and b in the reversed order. This might be useful when we want a function

to be partially evaluated. If we want to partially evaluate a function by only passing it
in it's second argument we can use flip to give us a new function that takes the
first two arguments in reversed order.
This means if you want to apply the second argument of a function you can just
apply the first argument to the flip of this function.

lispy> (flip def) 1 {x}
()
lispy> x
1
lispy> def {define-one} ((flip def) 1)
()
lispy> define-one {y}
()
lispy> y
1
lispy>

I couldn't think of a use for the ghost function, but it seemed interesting. It simply
takes in any number of arguments and evaluates them as if they were the
expression itself. So it just sits at the front of an expression like a ghost, not
interacting with or changing the behaviour of the program at all. If you can think of a
use for it I'd love to hear.

lispy> ghost + 2 2
4

The comp function is used to compose two functions. It takes as input f , g , and an
argument to g . It then applies this argument to g and applies the result again to
f . This can be used to compose two functions together into a new function that

applies both of them in series. Like before, we can use this in combination with
partial evaluation to build up complex functions from simpler ones.
For example we can compose two functions. One negates a number and another
unpacks a list of numbers for multiplying together with * .

lispy> (unpack *) {2 2}
4
lispy> - ((unpack *) {2 2})
-4
lispy> comp - (unpack *)
(\ {x} {f (g x)})
lispy> def {mul-neg} (comp - (unpack *))
()
lispy> mul-neg {2 8}
-16
lispy>

List Functions

The head function is used to get the first element of a list, but what it returns is still
wrapped in the list. If we want to actually get the element out of this list we need to
extract it somehow.
Single element lists evaluate to just that element, so we can use the eval function
to do this extraction. We can also define a couple of helper functions for aid
extracting the first, second and third elements of a list. We'll use these function more
later.

; First, Second, or Third Item in List
(fun {fst l} { eval (head l) })
(fun {snd l} { eval (head (tail l)) })
(fun {trd l} { eval (head (tail (tail l))) })

We looked briefly at some recursive list functions a few chapters ago. Naturally
there are many more we can define using this technique.
To find the length of a list we can recursive over it adding 1 to the length of the tail.
To find the nth element of a list we can perform the tail operation and count
down until we reach 0 . To get the last element of a list we can just access the
element at the length minus one.

; List Length
(fun {len l} {
 if (== l nil)
 {0}
 {+ 1 (len (tail l))}
})

; Nth item in List

(fun {nth n l} {
 if (== n 0)
 {fst l}
 {nth (- n 1) (tail l)}
})

; Last item in List
(fun {last l} {nth (- (len l) 1) l})

There are lots of other useful functions that follow this same pattern. We can define
functions for taking and dropping the first so many elements of a list, or functions for
checking if a value is an element of a list.

; Take N items
(fun {take n l} {
 if (== n 0)
 {nil}
 {join (head l) (take (- n 1) (tail l))}
})

; Drop N items
(fun {drop n l} {
 if (== n 0)
 {l}
 {drop (- n 1) (tail l)}
})

; Split at N
(fun {split n l} {list (take n l) (drop n l)})

; Element of List
(fun {elem x l} {
 if (== l nil)
 {false}
 {if (== x (fst l)) {true} {elem x (tail l)}}
})

These functions all follow similar patterns. It would be great if there was some way
to extract this pattern so we don't have to type it out every time. For example we may
want a way we can perform some function on every element of a list. This is a
function we can define called map . It takes as input some function, and some list. For
each item in the list it applies f to that item and appends it back onto the front of
the list. It then applies map to the tail of the list.

; Apply Function to List
(fun {map f l} {
 if (== l nil)
 {nil}
 {join (list (f (fst l))) (map f (tail l))}
})

With this we can do some neat things that look a bit like looping. In some ways this
concept is more powerful than looping. Instead of thinking about performing some
function to each element of the list in turn, we can think about acting on all the
elements at once. We map the list rather than changing each element.

lispy> map - {5 6 7 8 2 22 44}
{-5 -6 -7 -8 -2 -22 -44}

lispy> map (\ {x} {+ x 10}) {5 2 11}
{15 12 21}
lispy> print {"hello" "world"}
{"hello" "world"}
()
lispy> map print {"hello" "world"}
"hello"
"world"
{() ()}
lispy>

An adaptation of this idea is a filter function which, takes in some functional
condition, and only includes items of a list which match that condition.

; Apply Filter to List
(fun {filter f l} {
 if (== l nil)
 {nil}
 {join (if (f (fst l)) {head l} {nil}) (filter f (tail l))}
})

This is what it looks like in practice.

lispy> filter (\ {x} {> x 2}) {5 2 11 -7 8 1}
{5 11 8}

Some loops don't exactly act on a list, but accumulate some total or condense the
list into a single value. These are loops such as sums and products. These can be
expressed quite similarly to the len function we've already defined.
These are called folds and they work like this. Supplied with a function f , a base
value z and a list l they merge each element in the list with the total, starting with
the base value.

; Fold Left
(fun {foldl f z l} {
 if (== l nil)
 {z}
 {foldl f (f z (fst l)) (tail l)}
})

Using folds we can define the sum and product functions in a very elegant way.

(fun {sum l} {foldl + 0 l})
(fun {product l} {foldl * 1 l})

Conditional Functions

By defining our fun function we've already shown how powerful our language is in
its ability to define functions that look like new syntax. Another example of this is
found in emulating the C switch and case statements. In C these are built into the
language, but for our language we can define them as part of a library.
We can define a function select that takes in zero or more two-element lists as
input. For each two element list in the arguments it first evaluates the first element of
the pair. If this is true then it evaluates and returns the second item, otherwise it

performs the same thing again on the rest of the list.

(fun {select & cs} {
 if (== cs nil)
 {error "No Selection Found"}
 {if (fst (fst cs)) {snd (fst cs)} {unpack select (tail cs)}}
})

We can also define a function otherwise to always evaluate to true . This works a
little bit like the default keyword in C.

; Default Case
(def {otherwise} true)

; Print Day of Month suffix
(fun {month-day-suffix i} {
 select
 {(== i 0) "st"}
 {(== i 1) "nd"}
 {(== i 3) "rd"}
 {otherwise "th"}
})

This is actually more powerful than the C switch statement. In C rather than passing
in conditions the input value is compared only for equality with a number of constant
candidates. We can also define this function in our Lisp, where we compare a value
to a number of candidates. In this function we take some value x followed by zero
or more two-element lists again. If the first element in the two-element list is equal to
x , the second element is evaluated, otherwise the process continues down the list.

(fun {case x & cs} {
 if (== cs nil)
 {error "No Case Found"}
 {if (== x (fst (fst cs))) {snd (fst cs)} {
 unpack case (join (list x) (tail cs))}}
})

The syntax for this function becomes really nice and simple. Try to see if you can
think up any other control structures or useful functions that you'd like to implement
using these sorts of methods.

(fun {day-name x} {
 case x
 {0 "Monday"}
 {1 "Tuesday"}
 {2 "Wednesday"}
 {3 "Thursday"}
 {4 "Friday"}
 {5 "Saturday"}
 {6 "Sunday"}
})

Fibonacci

No standard library would be complete without an obligatory definition of the
Fibonacci function. Using all of the above things we've defined we can write a cute

little fib function that is really quite readable, and clear semantically.

; Fibonacci
(fun {fib n} {
 select
 { (== n 0) {0} }
 { (== n 1) {1} }
 { otherwise {+ (fib (- n 1)) (fib (- n 2))} }
})

This is the end of the standard library I've written. Building up a standard library is a
fun part of language design, because you get to be creative and opinionated on
what goes in and stays out. Try to come up with something you are happy with.
Exploring what is possible to define and do can be very interesting.

Reference

;;;
;;; Lispy Standard Prelude
;;;

;;; Atoms
(def {nil} {})
(def {true} 1)
(def {false} 0)

;;; Functional Functions

; Function Definitions
(def {fun} (\ {f b} {
 def (head f) (\ (tail f) b)
}))

; Open new scope
(fun {let b} {
 ((\ {_} b) ())
})

; Unpack List to Function
(fun {unpack f l} {
 eval (join (list f) l)
})

; Unapply List to Function
(fun {pack f & xs} {f xs})

; Curried and Uncurried calling
(def {curry} unpack)
(def {uncurry} pack)

; Perform Several things in Sequence
(fun {do & l} {
 if (== l nil)
 {nil}
 {last l}
})

;;; Logical Functions

; Logical Functions
(fun {not x} {- 1 x})
(fun {or x y} {+ x y})
(fun {and x y} {* x y})

;;; Numeric Functions

; Minimum of Arguments
(fun {min & xs} {
 if (== (tail xs) nil) {fst xs}
 {do
 (= {rest} (unpack min (tail xs)))
 (= {item} (fst xs))
 (if (< item rest) {item} {rest})
 }
})

; Maximum of Arguments
(fun {max & xs} {
 if (== (tail xs) nil) {fst xs}
 {do
 (= {rest} (unpack max (tail xs)))
 (= {item} (fst xs))
 (if (> item rest) {item} {rest})
 }
})

;;; Conditional Functions

(fun {select & cs} {
 if (== cs nil)
 {error "No Selection Found"}
 {if (fst (fst cs)) {snd (fst cs)} {unpack select (tail cs)}}
})

(fun {case x & cs} {
 if (== cs nil)
 {error "No Case Found"}
 {if (== x (fst (fst cs))) {snd (fst cs)} {
 unpack case (join (list x) (tail cs))}}
})

(def {otherwise} true)

;;; Misc Functions

(fun {flip f a b} {f b a})
(fun {ghost & xs} {eval xs})
(fun {comp f g x} {f (g x)})

;;; List Functions

; First, Second, or Third Item in List
(fun {fst l} { eval (head l) })
(fun {snd l} { eval (head (tail l)) })
(fun {trd l} { eval (head (tail (tail l))) })

; List Length
(fun {len l} {
 if (== l nil)
 {0}
 {+ 1 (len (tail l))}
})

; Nth item in List
(fun {nth n l} {
 if (== n 0)
 {fst l}
 {nth (- n 1) (tail l)}
})

; Last item in List
(fun {last l} {nth (- (len l) 1) l})

; Apply Function to List
(fun {map f l} {
 if (== l nil)
 {nil}
 {join (list (f (fst l))) (map f (tail l))}
})

; Apply Filter to List
(fun {filter f l} {
 if (== l nil)
 {nil}
 {join (if (f (fst l)) {head l} {nil}) (filter f (tail l))}
})

; Return all of list but last element
(fun {init l} {
 if (== (tail l) nil)
 {nil}
 {join (head l) (init (tail l))}
})

; Reverse List
(fun {reverse l} {
 if (== l nil)
 {nil}
 {join (reverse (tail l)) (head l)}
})

; Fold Left
(fun {foldl f z l} {
 if (== l nil)
 {z}
 {foldl f (f z (fst l)) (tail l)}
})

; Fold Right
(fun {foldr f z l} {
 if (== l nil)
 {z}
 {f (fst l) (foldr f z (tail l))}
})

(fun {sum l} {foldl + 0 l})
(fun {product l} {foldl * 1 l})

; Take N items
(fun {take n l} {
 if (== n 0)
 {nil}
 {join (head l) (take (- n 1) (tail l))}
})

; Drop N items
(fun {drop n l} {
 if (== n 0)
 {l}

 {drop (- n 1) (tail l)}
})

; Split at N
(fun {split n l} {list (take n l) (drop n l)})

; Take While
(fun {take-while f l} {
 if (not (unpack f (head l)))
 {nil}
 {join (head l) (take-while f (tail l))}
})

; Drop While
(fun {drop-while f l} {
 if (not (unpack f (head l)))
 {l}
 {drop-while f (tail l)}
})

; Element of List
(fun {elem x l} {
 if (== l nil)
 {false}
 {if (== x (fst l)) {true} {elem x (tail l)}}
})

; Find element in list of pairs
(fun {lookup x l} {
 if (== l nil)
 {error "No Element Found"}
 {do
 (= {key} (fst (fst l)))
 (= {val} (snd (fst l)))
 (if (== key x) {val} {lookup x (tail l)})
 }
})

; Zip two lists together into a list of pairs
(fun {zip x y} {
 if (or (== x nil) (== y nil))
 {nil}
 {join (list (join (head x) (head y))) (zip (tail x) (tail y))}
})

; Unzip a list of pairs into two lists
(fun {unzip l} {
 if (== l nil)
 {{nil nil}}
 {do
 (= {x} (fst l))
 (= {xs} (unzip (tail l)))
 (list (join (head x) (fst xs)) (join (tail x) (snd xs)))
 }
})

;;; Other Fun

; Fibonacci
(fun {fib n} {
 select
 { (== n 0) 0 }
 { (== n 1) 1 }
 { otherwise (+ (fib (- n 1)) (fib (- n 2))) }
})

Bonus Marks

› Rewrite the len function using foldl .

› Rewrite the elem function using foldl .

› Incorporate your standard library directly into the language. Make it load at
start-up.

› Write some documentation for your standard library, explaining what each
of the functions do.

› Write some example programs using your standard library, for users to learn
from.

› Write some test cases for each of the functions in your standard library.

Bonus Projects • Chapter 16

Only the Beginning

Although we've done a lot with our Lisp, it is still some way off from a fully complete,
production-strength programming language. If you tried to use it for any sufficiently
large project there are a number of issues you would eventually run into and
improvements you'd have to make. Solving these problems would be what would
bring it more into the scope of a fully fledged programming language.
Here are some of these issues you would likely encounter, potential solutions to
these problems, and some other fun ideas for other improvements. Some may take
a few hundred lines of code, others a few thousand. The choice of what to tackle is
up to you. If you've become fond of your language you may enjoy doing some of
these projects.

Native Types

Currently our language only wraps the native C long and char* types. This is pretty
limiting if you want to do any kind of useful computation. Our operations on these
data types are also pretty limited. Ideally our language should wrap all of the native
C types and allow for methods of manipulating them. One of the most important
additions would be the ability to manipulate decimal numbers. For this you could
wrap the double type and relevant operations. With more than one number type we
need to make sure the arithmetic operators such as + and - work on them all, and
them in combination.
Adding support for native types should be interesting for people wishing to do
computation with decimal and floating-point numbers in their language.

User Defined Types

As well as adding support for native types it would be good to give users the ability to
add their own new types, just like how we use structs in C. The syntax or method you
use to do this would be up to you. This is a really essential part making our language
usable for any reasonably sized project.
This task may be interesting to anyone who has a specific idea of how they would
like to develop the language, and what they want a final design to look like.

List Literal

Important List • Play! BE HAPPY and go home.

Some lisps use square brackets [] to
give a literal notation for lists of evaluated
values lists. This syntactic sugar for writing
something like list 100 (+ 10 20) 300 .
Instead it lets you write [100 (+ 10 20) 300] .
In some situations this is clearly nicer, but
it does use up the [] characters which
could possibly be used for more
interesting purposes.
This should be a simple addition for
people looking to try out adding extra
syntax.

Operating System
Interaction

One essential part of bootstrapping a language is to give it proper abilities for
opening, reading, and writing files. This means wrapping all the C functions such as
fread , fwrite , fgetc , etc in Lisp equivalents. This is a fairly straight forward task, but

does require writing quite a large number of wrapper functions. This is why we've
not done it for our language so far.
On a similar note it would be great to give our language access to whatever
operating systems calls are appropriate. We should give it the ability to change
directory, list files in a directory and that sort of thing. This is an easy task but again
requires a lot of wrapping of C functions. It is essential for any real practical use of
this language as a scripting language.
People who wish to make use of their language for doing simple scripting tasks and
string manipulation may be interested in implementing this project.

Macros

Many other Lisps allow you to write things like (def x 100) to define the value 100 to
x . In our lisp this wouldn't work because it would attempt to evaluate the x to

whatever value was stored as x in the environment. In other Lisps these functions
are called macros, and when encountered they stop the evaluation of their
arguments, and manipulate them un-evaluated. They let you write things that look
like normal function calls, but actually do complex and interesting things.
These are fun thing to have in a language. They make it so you can add a little bit of
magic to some of the workings. In many cases this can make syntax nicer or allow a
user to not repeat themselves.
I like how our language handles things like def and if without resorting to macros,
but if you dislike how it works currently, and want it to be more similar to
conventional Lisps, this might be something you are interested in implementing.

Variable Hashtable

At the moment when we lookup variable names in our language we just do a linear
search over all of the variables in the environment. This gets more and more
inefficient the more variables we have defined.
A more efficient way to do this is to implement a Hash Table. This technique
converts the variable name to an integer and uses this to index into an array of a
known size to find the value associated with this symbol. This is a really important
data structure in programming and will crop up everywhere because of its fantastic
performance under heavy loads.
Anyone who is interested in learning more about data structures and algorithms
would be smart to take a shot at implementing this data structure or one of its
variations.

Pool Allocation

Our Lisp is very simple, it is not fast. Its performance is relative to some scripting
languages such as Python and Ruby. Most of the performance overhead in our
program comes from the fact that doing almost anything requires us to construct
and destruct lval . We therefore call malloc very often. This is a slow function as it
requires the operating system to do some management for us. When doing
calculations there is lots of copying, allocation and deallocation of lval types.
If we wish to reduce this overhead we need to lower the number of calls to malloc .
One method of doing this is to call malloc once at the beginning of the program,
allocating a large pool of memory. We should then replace all our malloc calls with
calls to some function that slices and dices up this memory for use in the program.
This means that we are emulating some of the behaviour of the operating system,
but in a faster local way. This idea is called memory pool allocation and is a
common technique used in game development, and other performance sensitive
applications.
This can be tricky to implement correctly, but conceptually does not need to be
complex. If you want a quick method for getting large gains in performance, looking
into this might interest you.

Garbage Collection

Almost all other implementations of Lisps assign variables differently to ours. They
do not store a copy of a value in the environment, but actually a pointer, or reference,
to it directly. Because pointers are used, rather than copies, just like in C, there is
much less overhead required when using large data structures.
If we store pointers to values, rather than copies, we need to ensure that the data
pointed to is not delete before some other value tries to make use of it. We want to

deleted it when there are no longer any

Garbage Collection • Pick up that can.

references to it. One method to do this, called
Mark and Sweep, is to monitor those values that
are in the environment, as well as every value
that has been allocated. When a variable is put
into the environment it, and everything it
references, is marked. Then, when we wish to
free memory, we can then iterate over every
allocation, and delete any that are not marked.
This is called Garbage Collection and is an
integral part to many programming languages.
As with pool allocation, implementing a Garbage
Collector does not need to be complicated, but it
does need to be done carefully, in particularly if
you wish to make it efficient. Implementing this
would be essential to making this language

practical for working with large amounts of data. A particularly good tutorial on
implementing a garbage collector in C can be found here.
This should interest anyone who is concerned with the language's performance and
wishes to change the semantics of how variables are stored and modified in the
language.

Tail Call Optimisation

Our programming language uses recursion to do its looping. This is conceptually a
really clever way to do it, but practically it is quite poor. Recursive functions call
themselves to collect all of the partial results of a computation, and only then
combine all the results together. This is a wasteful way of doing computation when
partial results can be accumulated as some total over a loop. This is particularly
problematic for loops that are intended to run for many, or infinite, iterations.
Some recursive functions can be automatically converted to corresponding while

loops, which accumulate totals step by step, rather than altogether. This automatic
conversion is called tail call optimisation and is an essential optimisation for
programs that do a lot of looping using recursion.
People who are interested in compiler optimisations and the correspondences
between different forms of computation might find this project interesting.

Lexical Scoping

When our language tries to lookup a variable that has been undefined it throws an
error. It would be better if it could tell us which variables are undefined before
evaluating the program. This would let us avoid typos and other annoying bugs.
Finding these issues before the program is run is called lexical scoping, and uses the
rules for variable definition to try and infer which variables are defined and which
aren't at each point in the program, without doing any evaluation.

http://journal.stuffwithstuff.com/2013/12/08/babys-first-garbage-collector/

Static Electricity • A hair-raising alternative.

This could be a difficult task to get exactly right, but should be interesting to anyone
who wants to make their programming language safer to use, and less bug-prone.

Static Typing

Every value in our program has an
associated type with it. This we know before
any evaluation has taken place. Our builtin
functions also only take certain types as
input. We should be able to use this
information to infer the types of new user
defined functions and values. We can also
use this information to check that functions
are being called with the correct types before
we run the program. This will reduce any
errors stemming from calling functions with
incorrect types before evaluation. This
checking is called static typing.
Type systems are a really interesting and
fundamental part of computer science. They
are currently the best method we know of
detecting errors before running a program. Anyone interesting in programming
language safety and type systems should find this project really interesting.

Conclusion

Many thanks for reading this book. I hope you've found something of interest in its
pages. If you did enjoy it please tell your friends about it. If you are going to continue
developing your language then best of luck and I hope you learn many more things
about C, programming languages, and computer science.
Most of all I hope you've had fun building your own Lisp. Until next time!

Credits • Build Your Own Lisp

Special Thanks

Special thanks to my friends and family for their support, in particular to Francesca
Shaw for putting up with me spending all my time on this project, and to Caroline
Holden for proof reading.
Thanks to Miran Lipovaca, Frederic Trottier-Hebert, and Jonathan Tang, authors of
Learn you a Haskell, Learn you some Erlang, and Write Yourself a Scheme in 48
Hours for inspiration, and their ideas and thoughts.

Beta Readers

Thanks to all my Beta readers for their valuable feedback, corrections, suggestions,
and encouragement. Many thanks to Reddit users neelaryan, bitsbytesbikes,
acesHD, CodyChan, northClan, da4c30ff, nowords, ozhank, crackez, stubarfoo,
viezebanaan, JMagnum86, uNEV6X29rpf3, fortyninezeronine, skeeto, miketaylr,
wonnernaus, Barthalion, codyrioux, sigjuice, yoshiK, u-n-sky,

Image Credits

Many thanks to everyone who has made their images and photos available under
Creative Commons. I hope by making this book available to read online for free, I
have given a small something back to the creativity and good will of the community.
All images are licensed under CC BY 2.0 unless otherwise stated.

Ada Lovelace (1815-1852) by Mathematical Association of America
Fridge by sweethappychick1985
Mike Tyson by birzer
Amelia on MacBook Pro by Paulo Ordoveza
smashed Computer by cosmic yard sale
Cover of program, 1897, by Mucha by Mary Margret
German Pointer by Rory Nolan
Reptile Park #1 by Brandon Holton
Octopus Vulgaris (I think?) by Pat David
Felix by andreavallejos
The Xmas tree has been drinking by Kevin Dooley
For understanding recursion... by Andreas.
Walter White by Adam Barhan
Plumbing APIs by Salim Virji
Self Storage. Ghost Mural by Brad Coy
Building site in Berlin by Ingo Ronner
LISP Theory & Practice by Paul Downey

https://twitter.com/chessshaw
http://learnyouahaskell.com/
http://learnyousomeerlang.com/
http://en.wikibooks.org/wiki/Write_Yourself_a_Scheme_in_48_Hours
http://www.reddit.com/user/neelaryan
http://www.reddit.com/user/bitsbytesbikes
http://www.reddit.com/user/acesHD
http://www.reddit.com/user/CodyChan
http://www.reddit.com/user/northClan
http://www.reddit.com/user/da4c30ff
http://www.reddit.com/user/nowords
http://www.reddit.com/user/ozhank
http://www.reddit.com/user/crackez
http://www.reddit.com/user/stubarfoo
http://www.reddit.com/user/viezebanaan
http://www.reddit.com/user/JMagnum86
http://www.reddit.com/user/uNEV6X29rpf3
http://www.reddit.com/user/fortyninezeronine
http://www.reddit.com/user/skeeto
http://www.reddit.com/user/miketaylr
http://www.reddit.com/user/wonnernaus
http://www.reddit.com/user/Barthalion
http://www.reddit.com/user/codyrioux
http://www.reddit.com/user/sigjuice
http://www.reddit.com/user/yoshiK
http://www.reddit.com/user/u-n-sky
http://creativecommons.org/licenses/by/2.0/
http://www.flickr.com/photos/maaorg/5506899613/in/photostream/
http://www.flickr.com/photos/maaorg/
http://www.flickr.com/photos/sweetjewels/2471862881/
http://www.flickr.com/photos/sweetjewels/
http://www.flickr.com/photos/birzer/5523787875/in/photostream/
http://www.flickr.com/photos/birzer/
http://www.flickr.com/photos/brownpau/11453248476/
http://www.flickr.com/photos/brownpau/
http://www.flickr.com/photos/cosmicyardsale/3505255854/
http://www.flickr.com/photos/cosmicyardsale/
http://www.flickr.com/photos/double-m2/5563643510/
http://www.flickr.com/photos/double-m2/
http://www.flickr.com/photos/rorynolanphotos/3956684616/
http://www.flickr.com/photos/rorynolanphotos/
http://www.flickr.com/photos/24619260@N00/7912874890/in/photostream/
http://www.flickr.com/photos/24619260@N00/
http://www.flickr.com/photos/patdavid/8477588360/
http://www.flickr.com/photos/patdavid/
http://www.flickr.com/photos/genewolf/177857670/in/photostream/
http://www.flickr.com/photos/genewolf/
http://www.flickr.com/photos/pagedooley/5401818933/
http://www.flickr.com/photos/pagedooley/
http://www.flickr.com/photos/124330160/3072292718/
http://www.flickr.com/photos/124330160/
https://www.flickr.com/photos/adambarhan/10585708263/
https://www.flickr.com/photos/adambarhan/
http://www.flickr.com/photos/salim/2772443049/in/photostream/
http://www.flickr.com/photos/salim/
http://www.flickr.com/photos/bradfordcoy/3329523810/in/photostream/
http://www.flickr.com/photos/bradfordcoy/
http://www.flickr.com/photos/25143217@N05/4865529446/in/photostream/
http://www.flickr.com/photos/25143217@N05/
http://www.flickr.com/photos/psd/4220807/in/photostream/
http://www.flickr.com/photos/psd/

Strawberry Macro by atramos
Mutant, No Explaination by Orin Zebest
Emergence of mysterious Black Box by thierry ehrmann
SCF_MIT_2009 by Ulrick
Curry set by Vera & Jean-Christophe
Our Pug Is Cute When He Is Asleep by VeryMotoMoto
String in the Sun by Syops1st
St John's College Old Library - West Side by ben.gallagher
kid to do list, list, Be happy and go home by Carissa Rogers
Fat luck. by Sascha Erni, .rb
Static Electricity by andrechinn
Ada Lovelace Portrait by Alfred Edward Chalon is licensed in the Public
Domain

http://www.flickr.com/photos/atramos/6878730173/
http://www.flickr.com/photos/atramos/
http://www.flickr.com/photos/orinrobertjohn/5569090143/
http://www.flickr.com/photos/orinrobertjohn/5569090143/
http://www.flickr.com/photos/home_of_chaos/6332465890/
http://www.flickr.com/photos/home_of_chaos/
http://www.flickr.com/photos/ulrick/3322150017/
http://www.flickr.com/photos/ulrick/
http://www.flickr.com/photos/10630381@N03/2344177551/
http://www.flickr.com/photos/magical-world/
http://www.flickr.com/photos/30461626@N07/4692936866/in/photostream/
http://www.flickr.com/photos/30461626@N07/
http://www.flickr.com/photos/syops1st/8610153820/
http://www.flickr.com/photos/syops1st/
http://www.flickr.com/photos/bengallagher/4100757279/
http://www.flickr.com/photos/bengallagher/
http://www.flickr.com/photos/rog2bark/3437630552/
http://www.flickr.com/photos/rog2bark/
http://www.flickr.com/photos/nggalai/6340525770/
http://www.flickr.com/photos/nggalai/
http://www.flickr.com/photos/andrec/7827516246/
http://www.flickr.com/photos/andrec/
http://commons.wikimedia.org/wiki/File:Ada_Lovelace_portrait.jpg
http://en.wikipedia.org/wiki/Alfred_Edward_Chalon
http://en.wikipedia.org/wiki/Public_Domain

	Contents
	Chapter 1 - Introduction
	Chapter 2 - Installation
	Chapter 3 - The Basics
	Chapter 4 - An Interactive Prompt
	Chapter 5 - Languages
	Chapter 6 - Parsing
	Chapter 7 - Evaluation
	Chapter 8 - Error Handling
	Chapter 9 - S-Expressions
	Chapter 10 - Q-Expressions
	Chapter 11 - Variables
	Chapter 12 - Functions
	Chapter 13 - Conditionals
	Chapter 14 - Strings
	Chapter 15 - Standard Library
	Chapter 16 - Bonus Projects

