
G
it

THE EXPERT’S VOICE® IN SOFTWARE DEVELOPMENT

Pro Git

Scott Chacon
Foreword by Junio C Hamano, Git project leader

Everything you need to know about

the Git distributed source control tool

+++

)3".฀���
�
����
����
�

� ������ ������

�����

Pro Git

Scott Chacon

Pro Git

Copyright © 2009 by Scott Chacon

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Apress (

) and the author(s) ask for your support by buying the print or eBook edition through any online or
retail outlet. A copy of the license is included in the section entitled “Creative Commons Legal Code.”
All rights reserved subject to the Creative Commons license.

ISBN-13 (pbk): 978-1-4302-1833-3

ISBN-13 (electronic): 978-1-4302-1834-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

The Git logo on this book’s cover comes from , where
it is available under the GNU General Public License. It is available from

. You may redistribute it and/or modify it under the terms of the GPL (
), as published by the Free Software Foundation; either version 2 of the License, or

any later version.

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Duncan Parkes
Technical Reviewer: Shawn Pearce
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Beth Christmas, Candace English
Copy Editor: Tiffany Taylor
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Diana Van Winkle
Proofreader: Dan Shaw
Indexer: Julie Grady
Cover Designer: Anna Ishchenko
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 233 Spring Street, New York, New York,

10013, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

I would like to dedicate this, my first print book, to my little girl, Josephine,

whose release date was nearly the same as this book’s.

v

Foreword . xv

About the Author. xvii

About the Technical Reviewer . xviii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Getting Started. 1

CHAPTER 2 Git Basics. 15

CHAPTER 3 Git Branching . 47

CHAPTER 4 Git on the Server . 79

CHAPTER 5 Distributed Git . 107

CHAPTER 6 Git Tools . 143

CHAPTER 7 Customizing Git . 175

CHAPTER 8 Git and Other Systems. 203

CHAPTER 9 Git Internals. 223

APPENDIX Creative Commons Legal Code . 251

INDEX . 259

Contents at a Glance

vii

Contents

Foreword . xv

About the Author. xvii

About the Technical Reviewer . xviii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Getting Started . 1

About Version Control . 1

Local Version Control Systems . 2

Centralized Version Control Systems . 3

Distributed Version Control Systems . 4

A Short History of Git . 5

Git Basics . 5

Snapshots, Not Differences . 6

Nearly Every Operation Is Local . 7

Git Has Integrity . 7

Git Generally Only Adds Data . 7

The Three States . 8

Installing Git . 9

Installing from Source . 9

Installing on Linux . 10

Installing on Mac . 10

Installing on Windows . 11

First-Time Git Setup . 11

Your Identity . 11

Your Editor. 12

Your Diff Tool . 12

Checking Your Settings . 12

Getting Help . 13

Summary. 13

NCONTENTSviii

CHAPTER 2 Git Basics . 15

Getting a Git Repository . 15

Initializing a Repository in an Existing Directory 15

Cloning an Existing Repository . 16

Recording Changes to the Repository . 16

Checking the Status of Your Files . 17

Tracking New Files . 18

Staging Modified Files . 18

Ignoring Files . 20

Viewing Your Staged and Unstaged Changes 20

Committing Your Changes . 23

Skipping the Staging Area . 24

Removing Files . 24

Moving Files . 25

Viewing the Commit History. 26

Limiting Log Output . 30

Using a GUI to Visualize History . 31

Undoing Things . 32

Changing Your Last Commit. 32

Unstaging a Staged File . 33

Unmodifying a Modified File. 34

Working with Remotes . 35

Showing Your Remotes . 35

Adding Remote Repositories . 36

Fetching and Pulling from Your Remotes. 36

Pushing to Your Remotes . 37

Inspecting a Remote . 37

Removing and Renaming Remotes . 38

Tagging . 38

Listing Your Tags . 39

Creating Tags . 39

Verifying Tags . 41

Tagging Later . 42

Sharing Tags. 43

Tips and Tricks. 43

Auto-Completion . 43

Git Aliases . 44

Summary. 45

NCONTENTS ix

CHAPTER 3 Git Branching . 47

What a Branch Is . 47

Basic Branching and Merging . 53

Basic Branching . 53

Basic Merging. 57

Basic Merge Conflicts . 58

Branch Management. 60

Branching Workflows . 61

Long-Running Branches . 62

Topic Branches. 63

Remote Branches . 64

Pushing . 68

Tracking Branches . 69

Deleting Remote Branches . 69

Rebasing . 70

The Basic Rebase. 70

More Interesting Rebases . 72

The Perils of Rebasing. 74

Summary. 77

CHAPTER 4 Git on the Server . 79

The Protocols . 79

Local Protocol . 80

The SSH Protocol . 81

The Git Protocol . 81

The HTTP/S Protocol . 82

Getting Git on a Server . 83

Putting the Bare Repository on a Server . 84

Small Setups . 85

SSH Access . 85

Generating Your SSH Public Key . 85

Setting Up the Server . 86

Public Access . 88

GitWeb . 90

Gitosis . 91

Git Daemon . 95

NCONTENTSx

Hosted Git . 96

GitHub . 97

Setting Up a User Account . 97

Creating a New Repository . 99

Importing from Subversion . 101

Adding Collaborators . 102

Your Project. 103

Forking Projects . 104

GitHub Summary . 105

Summary. 105

CHAPTER 5 Distributed Git . 107

Distributed Workflows. 107

Centralized Workflow . 107

Integration-Manager Workflow . 108

Dictator and Lieutenants Workflow. 109

Contributing to a Project . 110

Commit Guidelines. 111

Private Small Team . 112

Private Managed Team . 118

Public Small Project. 124

Public Large Project. 127

Summary . 129

Maintaining a Project . 130

Working in Topic Branches. 130

Applying Patches from E-mail . 130

Checking Out Remote Branches . 133

Determining What Is Introduced . 134

Integrating Contributed Work . 135

Tagging Your Releases . 140

Generating a Build Number . 141

Preparing a Release. 141

The Shortlog . 142

Summary. 142

CHAPTER 6 Git Tools . 143

Revision Selection . 143

Single Revisions . 143

Commit Ranges . 147

NCONTENTS xi

Interactive Staging. 150

Stashing . 153

Stashing Your Work . 154

Creating a Branch from a Stash . 156

Rewriting History . 156

Changing the Last Commit . 156

Changing Multiple Commit Messages . 157

Reordering Commits . 158

Squashing a Commit . 159

Splitting a Commit . 160

The Nuclear Option: filter-branch . 160

Debugging with Git . 162

File Annotation . 162

Binary Search . 163

Submodules . 165

Starting with Submodules . 165

Cloning a Project with Submodules . 167

Superprojects . 169

Issues with Submodules . 169

Subtree Merging . 171

Summary. 173

CHAPTER 7 Customizing Git . 175

Git Configuration . 175

Basic Client Configuration . 176

Colors in Git. 178

External Merge and Diff Tools . 179

Formatting and Whitespace . 181

Server Configuration . 183

Git Attributes. 184

Binary Files . 184

Keyword Expansion . 186

Exporting Your Repository . 189

Merge Strategies . 190

Git Hooks . 190

Installing a Hook. 190

Client-Side Hooks. 191

Server-Side Hooks . 192

NCONTENTSxii

An Example Git-Enforced Policy . 193

Server-Side Hook . 193

Client-Side Hooks. 199

Summary. 202

CHAPTER 8 Git and Other Systems . 203

Git and Subversion . 203

git svn . 203

Setting Up . 204

Getting Started . 204

Committing Back to Subversion . 206

Pulling in New Changes . 207

Git Branching Issues . 208

Subversion Branching . 209

Subversion Commands . 210

Git-Svn Summary. 212

Migrating to Git . 212

Importing . 213

Perforce . 214

A Custom Importer . 216

Summary . 221

CHAPTER 9 Git Internals . 223

Plumbing and Porcelain . 223

Git Objects. 224

Tree Objects . 226

Commit Objects . 228

Object Storage . 231

Git References . 232

The HEAD. 233

Tags . 234

Remotes. 235

Packfiles . 235

The Refspec . 238

Pushing Refspecs. 239

Deleting References . 240

xiiiNCONTENTS

Transfer Protocols . 240

The Dumb Protocol . 240

The Smart Protocol . 242

Downloading Data . 243

Maintenance and Data Recovery . 244

Maintenance . 244

Data Recovery. 245

Removing Objects . 247

Summary. 250

APPENDIX Creative Commons Legal Code . 251

INDEX . 259

xv

In April 2005, Linus Torvalds published the very first version of Git, the distributed version

control system that is the topic of this book, and started managing the Linux kernel project

with it.

Countless online pages have been written about Git by third parties since then, but many

of them are unfortunately obsolete—not in the sense that the procedures they teach no longer

work, but in the sense that there are better ways to do the same things more effectively with

more modern versions of Git. The rate at which Git has undergone vast improvements both in

capability and usability has been simply too rapid for those pages to keep up.

For a long time, the user manual and the documentation that came with Git were the only

up-to-date and accurate sources of information, but they were primarily written by the people

who built Git. The Git community sorely lacked good introductory material written from the

perspective of the end user.

Enter Scott Chacon, the author of this book, who is also behind git-scm.com, the popular

online resource that has become the default home site for Git documentation. In this latest

book, Scott makes effective use of graphics to explain the key concepts and writes in plain and

clear language to give a readable overview of how to work with Git.

After you gain a solid understanding from this book, I hope you will find yourself being

more productive and using Git more effectively.

And, more important, I hope you will enjoy using Git.

Junio C Hamano

Git Project Leader

Foreword

xvii

About the Author

NSCOTT CHACON is a Git evangelist and Ruby developer employed at

Logical Awesome, working on GitHub.com, the largest Git hosting web

site. He is the author of the Git Internals Peepcode PDF in addition to

maintaining the Git home page (git-scm.com) and the Git Community

Book (book.git-scm.com). Scott has presented at conferences such as

RailsConf, RubyConf, RubyKaigi, Scotland on Rails, and OSCon, as well

as for companies such as Google, Yahoo, and Digg. Scott occasionally

talks about Git for a number of local groups and has done corporate

training on Git across the country.

xviii

About the Technical Reviewer

NSHAWN PEARCE is the second in command of the Git project. He has been actively involved

in the project since early 2006, contributing more than 1,300 changes in three years. Shawn

is the author of git-gui, a Tk based graphical interface shipped with Git; and git-fast-import,

a stream-based import system often used for converting projects to Git. In addition, Shawn’s

opinion, backed by his code, has influenced many key design decisions that form the modern

Git implementation.

In early 2006, Shawn founded the JGit project, creating a 100% pure Java reimplemen-

tation of the Git version control system. The JGit library can often be found in Java-based

products that interact with Git, including Git plug-ins for the popular Eclipse and NetBeans

IDEs; the Hudson CI server; Apache Maven; and Gerrit Code Review, a peer code-review sys-

tem specially designed for Git. Today he continues to develop and maintain JGit, EGit (the

Eclipse plug-in based on top of it), and Gerrit Code Review.

xix

First, I would like to thank the entire Git development community for giving us such a great

tool. I dislike working in C and so have contributed little actual code to the Git project, opting

instead to try to teach, document, and evangelize it, which I tend to be a lot better at. However,

without the guys that wrote and maintain Git, I would still be living in the sad and hopeless

version-controlled world that is Subversion.

I would also very much like to thank Shawn Pearce, who, aside from being one of the more

prolific developers on the Git project, is also the technical editor for this book. Shawn has saved

me from making countless horrible technical mistakes in this book and has done so on numer-

ous other occasions as well. I always enjoy working with him; I tend to give my best guess at

something, and then he teaches me what the right answer is. I have learned a ton from him,

which I often get to teach to hundreds of others (who then give me credit).

I want to thank my good friend Nick Hengeveld, who has contributed a lot of work to Git

and, more important for me, introduced me to the tool and taught me how to use it back in the

pre-1.0 days. There is probably no way I would be doing all this if he had not brought Git to

my attention and introduced it to the environment in which we both worked.

Further thanks go to Chris Wanstrath, Tom Preston-Werner, and PJ Hyett for inviting me

to join them in working on GitHub very early on, allowing me to spend basically all my time

thinking about and working on Git-related projects. It’s difficult to imagine a better group of

people to work with or a better job to have.

Last, I want to thank my wife, Jessica, who kept me continually working at this. Writing a

book of this scope is a heck of a process, and when I stalled out from time to time, she made

sure I got back on track. Thanks, Magoo.

Acknowledgments

xxi

You’re about to spend several hours of your life reading about Git. Let’s take a minute to

explain what we have in store for you. Here is a quick summary of this book’s nine chapters:

In Chapter 1, you’ll cover Version Control Systems (VCSs) and Git basics—no technical

stuff, just what Git is, why it came about in a land full of VCSs, what sets it apart, and why so

many people are using it. Then, you’ll learn how to download Git and set it up for the first time

if you don’t already have it on your system.

In Chapter 2, you’ll go over basic Git usage—how to use Git in the 80% of cases you’ll

encounter most often. After reading this chapter, you should be able to clone a repository, see

what has happened in the history of the project, modify files, and contribute changes. If the

book spontaneously combusts at this point, you should already be pretty useful wielding Git in

the time it takes you to go pick up another copy.

Chapter 3 is about the branching model in Git, often described as Git’s killer feature. Here,

you’ll learn what truly sets Git apart from the pack. When you’re done, you may feel the need to

spend a quiet moment pondering how you lived before Git branching was part of your life.

Chapter 4 will cover Git on the server. This chapter is for those of you who want to set up

Git inside your organization or on your personal server for collaboration. You’ll also explore

various hosted options if you prefer to let someone else handle that for you.

Chapter 5 will go over in full detail various distributed workflows and how to accomplish

them with Git. When you’re done with this chapter, you should be able to work expertly with

multiple remote repositories, use Git over e-mail, and deftly juggle numerous remote branches

and contributed patches.

Chapter 6 is about advanced Git commands. You’ll learn about topics like binary search-

ing to identify bugs, editing history, revision selection in detail, and a lot more. This chapter

will round out your knowledge of Git so that you’re truly a master.

Chapter 7 is about configuring your custom Git environment. This includes setting up

hook scripts to enforce or encourage customized policies and using environment configura-

tion settings so you can work the way you want to. You’ll also cover building your own set of

scripts to enforce a custom committing policy.

Chapter 8 deals with Git and other VCSs. This includes using Git in a Subversion (SVN) world

and converting projects from other VCSs to Git. A lot of organizations still use SVN and aren’t about

to change, but by this point you’ll have learned the incredible power of Git—and this chapter will

show you how to cope if you still have to use a SVN server. You’ll also cover how to import projects

from several different systems in case you do convince everyone to make the plunge.

Now that you know all about Git and can wield it with power and grace, you can move

on to Chapter 9, which delves into the murky yet beautiful depths of Git internals. Here you’ll

learn how Git stores its objects, what the object model is, details of packfiles and server pro-

tocols, and more. Throughout, the book refers to sections of this chapter in case you feel like

looking deeper at that point; but if you’re like me and want to dive right into the technical

details, you may want to read Chapter 9 first. I leave that up to you.

Let’s get started.

Introduction

C H A P T E R 1

Getting Started

This chapter is about getting started with Git. We’ll begin at the beginning by presenting some

background about n version-control tools, then move on to how you get Git running on your

system, and finally explain how to set it up so you can start working with Git. At the end of this

chapter, you should understand why Git exists and why you should use it, and you should be

ready to do so.

About Version Control
What is version control, and why should you care? Version control is a system that records

changes to a file or set of files over time so that you can recall specific versions later. For the

examples in this book, you will use software source code as the files being version controlled,

though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout

(which you would most certainly want to), a Version Control System (VCS) is a very wise thing

to use. It allows you to revert files back to a previous state, revert the entire project back to

a previous state, compare changes over time, see who last modified something that might be

causing a problem, who introduced an issue and when, and more. Using a VCS also generally

means that if you screw things up or lose files, you can easily recover. In addition, you get all

this for very little overhead.

1

CHAPTER 1 N฀ GETTING STARTED2

Local Version Control Systems
Many people’s version-control method of choice is to copy files into another directory (per-

haps a time-stamped directory, if they’re clever). This approach is very common because it’s

so simple, but it’s also incredibly error prone. It’s easy to forget which directory you’re in and

accidentally write to the wrong file or copy over files when you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple

database that kept all the changes to files under revision control (see Figure 1-1).

One of the more popular VCS tools was a system called rcs, which is still distributed with

many computers today. Even the popular Mac OS X operating system includes the com-

mand when you install the Developer Tools. This tool basically works by keeping patch sets

(that is, the differences between files) from one change to another in a special format on disk;

it can then re-create what any file looked like at any point in time by adding up all the patches.

Figure 1-1. Local version control diagram

CHAPTER 1 N฀ GETTING STARTED 3

Centralized Version Control Systems
The next major issue that people encounter is that they need to collaborate with developers on

other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were

developed. These systems, such as CVS, Subversion, and Perforce, have a single server that

contains all the versioned files, and a number of clients that check out files from that central

place. For many years, this has been the standard for version control (see Figure 1-2).

This setup offers many advantages, especially over local VCSs. For example, everyone knows

to a certain degree what everyone else on the project is doing. Administrators have fine-grained

control over who can do what; and it’s far easier to administer a CVCS than it is to deal with local

databases on every client.

However, this setup also has some serious downsides. The most obvious is the single

point of failure that the centralized server represents. If that server goes down for an hour,

then during that hour nobody can collaborate at all or save versioned changes to anything

they’re working on. If the hard disk the central database is on becomes corrupted, and proper

backups haven’t been kept, you lose absolutely everything—the entire history of the project

except whatever single snapshots people happen to have on their local machines. Local VCS

systems suffer from this same problem—whenever you have the entire history of the project in

a single place, you risk losing everything.

Figure 1-2. Centralized version control diagram

CHAPTER 1 N฀ GETTING STARTED4

Distributed Version Control Systems
This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git,

Mercurial, Bazaar, or Darcs), clients don’t just check out the latest snapshot of the files: they

fully mirror the repository. Thus if any server dies, and these systems were collaborating via it,

any of the client repositories can be copied back up to the server to restore it. Every checkout is

really a full backup of all the data (see Figure 1-3).

Figure 1-3. Distributed version control diagram

Furthermore, many of these systems deal pretty well with having several remote reposi-

tories they can work with, so you can collaborate with different groups of people in different

ways simultaneously within the same project. This allows you to set up several types of work-

flows that aren’t possible in centralized systems, such as hierarchical models.

CHAPTER 1 N฀ GETTING STARTED 5

A Short History of Git
As with many great things in life, Git began with a bit of creative destruction and fiery contro-

versy. The Linux kernel is an open source software project of fairly large scope. For most of the

lifetime of the Linux kernel maintenance (1991–2002), changes to the software were passed

around as patches and archived files. In 2002, the Linux kernel project began using a propri-

etary DVCS system called BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the

commercial company that developed BitKeeper broke down, and the tool’s free-of-charge sta-

tus was revoked. This prompted the Linux development community (and in particular Linus

Torvalds, the creator of Linux) to develop their own tool based on some of the lessons they

learned while using BitKeeper. Some of the goals of the new system were as follows:

฀ s฀ 3PEED

฀ s฀ 3IMPLE฀DESIGN

฀ s฀ 3TRONG฀SUPPORT฀FOR฀฀NON
฀LINEAR฀DEVELOPMENT฀�THOUSANDS฀OF฀PARALLEL฀BRANCHES	

฀ s฀ &ULLY฀DISTRIBUTED

฀ s฀ !BILITY฀TO฀HANDLE฀LARGE฀PROJECTS฀LIKE฀THE฀,INUX฀KERNEL฀EFFICIENTLY฀�SPEED฀AND฀DATA฀SIZE	

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these

initial qualities. It’s incredibly fast, it’s very efficient with large projects, and it has an incred-

ible branching system for non-linear development (See Chapter 3).

Git Basics
So, what is Git in a nutshell? This is an important section to absorb, because if you understand

what Git is and the fundamentals of how it works, then using Git effectively will probably be

much easier for you. As you learn Git, try to clear your mind of the things you may know about

other VCSs, such as Subversion and Perforce; doing so will help you avoid subtle confusion

when using the tool. Git stores and thinks about information much differently than these other

systems, even though the user interface is fairly similar; understanding those differences will

help prevent you from becoming confused while using it.

CHAPTER 1 N฀ GETTING STARTED6

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the

way Git thinks about its data. Conceptually, most other systems store information as a list of

file-based changes. These systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the

information they keep as a set of files and the changes made to each file over time, as illus-

trated in Figure 1-4.

Figure 1-4. Other systems tend to store data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a set

of snapshots of a mini filesystem. Every time you commit, or save the state of your project in

Git, it basically takes a picture of what all your files look like at that moment and stores a ref-

erence to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file

again—just a link to the previous identical file it has already stored. Git thinks about its data

more like Figure 1-5.

Figure 1-5. Git stores data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes Git recon-

sider almost every aspect of version control that most other systems copied from the previous

generation. This makes Git more like a mini filesystem with some incredibly powerful tools

built on top of it, rather than simply a VCS. We’ll explore some of the benefits you gain by

thinking of your data this way when we cover Git branching in Chapter 3.

CHAPTER 1 N฀ GETTING STARTED 7

Nearly Every Operation Is Local

Most operations in Git only need local files and resources to operate—generally, no informa-

tion is needed from another computer on your network. If you’re used to a CVCS where most

operations have that network latency overhead, this aspect of Git will make you think that the

gods of speed have blessed Git with unworldly powers. Because you have the entire history of

the project right there on your local disk, most operations seem almost instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out to the server to

get the history and display it for you—it simply reads it directly from your local database. This

means you see the project history almost instantly. If you want to see the changes introduced

between the current version of a file and the file a month ago, Git can look up the file from

a month ago and do a local difference calculation, instead of having to either ask a remote server

to do it or pull an older version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If you get

on an airplane or a train and want to do a little work, you can commit happily until you get to

a network connection to upload. If you go home and can’t get your VPN client working prop-

erly, you can still work. In many other systems, doing so is either impossible or painful. In

Perforce, for example, you can’t do much when you aren’t connected to the server; and in Sub-

version and CVS, you can edit files, but you can’t commit changes to your database (because

your database is offline). This may not seem like a huge deal, but you may be surprised what

a big difference it can make.

Git Has Integrity

Everything in Git is check-summed before it is stored and is then referred to by that checksum.

This means it’s impossible to change the contents of any file or directory without Git knowing

about it. This functionality is built into Git at the lowest levels and is integral to its philosophy.

You can’t lose information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this check-summing is called a SHA-1 hash. This is

a 40-character string composed of hexadecimal characters (0–9 and a–f) and calculated based

on the contents of a file or directory structure in Git. A SHA-1 hash looks something like this:

You’ll see these hash values all over the place in Git because it uses them so much. In fact,

Git stores everything not by file name but in the Git database addressable by the hash value of

its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is difficult

to get the system to do anything that is undoable or to make it erase data. As in any VCS, you

can lose or mess up changes you haven’t committed yet; but after you commit a snapshot

into Git, it is very difficult to lose, especially if you regularly push your database to another

repository.

This makes using Git a joy because you know you can experiment without the danger of

severely screwing things up. For a more in-depth look at how Git stores its data and how you

can recover data that seems lost, see “Under the Covers” in Chapter 9.

CHAPTER 1 N฀ GETTING STARTED8

The Three States

Now, pay attention. This is the main thing to remember about Git if you want the rest of

your learning process to go smoothly. Git has three main states that your files can reside in:

committed, modified, and staged. Committed means that the data is safely stored in your

local database. Modified means that you have changed the file but have not committed it to

your database yet. Staged means that you have marked a modified file in its current version

to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the directory, the working

directory, and the staging area (see Figure 1-6).

Figure 1-6. Working directory, staging area, and Git directory

The directory is where Git stores the metadata and object database for your project.

This is the most important part of Git, and it is what is copied when you clone a repository

from another computer.

The working directory is a single checkout of one version of the project. These files are

pulled out of the compressed database in the directory and placed on disk for you to

use or modify.

The staging area is a simple file, generally contained in your directory, that stores

information about what will go into your next commit. It’s sometimes referred to as the

index, but it’s becoming standard to refer to it as the staging area.

The basic Git workflow goes something like this:

1. You modify files in your working directory.

2. You stage the files, adding snapshots of them to your staging area.

CHAPTER 1 N฀ GETTING STARTED 9

3. You do a commit, which takes the files as they are in the staging area and stores that

snapshot permanently to your directory.

If a particular version of a file is in the directory, it’s considered committed. If it’s

modified but has been added to the staging area, it is staged. And if it was changed since it was

checked out but has not been staged, it is modified. In Chapter 2, you’ll learn more about these

states and how you can either take advantage of them or skip the staged part entirely.

Installing Git
Let’s get into using some Git. First things first—you have to install it. You can get it a number

of ways; the two major ones are to install it from source or to install an existing package for

your platform.

Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most recent

version. Each version of Git tends to include useful UI enhancements, so getting the latest ver-

sion is often the best route if you feel comfortable compiling software from source. It’s also the

case that many Linux distributions contain old packages; so unless you’re on a very up-to-date

distribution or are using backports, installing from source may be the best bet.

To install Git, you need to have the following libraries that Git depends on: , ,

, , and . For example, if you’re on a system that has (such as Fedora)

or (such as a Debian-based system), you can use one of these commands to install all

of the dependencies:

When you have all the necessary dependencies, you can go ahead and grab the latest

snapshot from the Git web site:

Then, compile and install:

After this is done, you can also get Git via Git itself for updates:

CHAPTER 1 N฀ GETTING STARTED10

Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through the

basic package-management tool that comes with your distribution. If you’re on Fedora, you

can use :

Or if you’re on a Debian-based distribution like Ubuntu, try et:

Installing on Mac

There are two easy ways to install Git on a Mac. The easiest is to use the graphical Git installer,

which you can download from the Google Code page (see Figure 1-7):

Figure 1-7. Git Mac OS X installer

The other major way is to install Git via MacPorts (). If you have

MacPorts installed, install Git via

You don’t have to add all the extras, but you’ll probably want to include in case you

ever have to use Git with Subversion repositories (see Chapter 8).

CHAPTER 1 N฀ GETTING STARTED 11

Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier installation

procedures. Simply download the installer file from the Google Code page, and run it:

After it’s installed, you have both a command-line version (including an SSH client that

will come in handy later) and the standard GUI.

First-Time Git Setup
Now that you have Git on your system, you’ll want to do a few things to customize your Git

environment. You should have to do these things only once; they’ll stick around between

upgrades. You can also change them at any time by running through the commands again.

Git comes with a tool called that lets you get and set configuration variables

that control all aspects of how Git looks and operates. These variables can be stored in three

different places:

฀ s฀ file: Contains values for every user on the system and all their reposi-

tories. If you pass the option to , it reads and writes from this file

specifically.

฀ s฀ file: Specific to your user. You can make Git read and write to this file

specifically by passing the option.

฀ s฀ file in the directory (that is,) of whatever repository you’re

currently using: Specific to that single repository. Each level overrides values in the

previous level, so values in trump those in .

On Windows systems, Git looks for the file in the directory (

 for most people). It also still looks for , although it’s rela-

tive to the root, which is wherever you decide to install Git on your Windows system when

you run the installer.

Your Identity

The first thing you should do when you install Git is to set your username and e-mail address.

This is important because every Git commit uses this information, and it’s immutably baked

into the commits you pass around:

CHAPTER 1 N฀ GETTING STARTED12

Again, you need to do this only once if you pass the option, because then Git will

always use that information for anything you do on that system. If you want to override this

with a different name or e-mail address for specific projects, you can run the command with-

out the option when you’re in that project.

Your Editor

Now that your identity is set up, you can configure the default text editor that will be used

when Git needs you to type in a message. By default, Git uses your system’s default editor,

which is generally Vi or Vim. If you want to use a different text editor, such as Emacs, you can

do the following:

Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve merge

conflicts. Say you want to use vimdiff:

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and opendiff as

valid merge tools. You can also set up a custom tool; see Chapter 7 for more information about

doing that.

Checking Your Settings

If you want to check your settings, you can use the command to list all the

settings Git can find at that point:

You may see keys more than once, because Git reads the same key from different files

(and , for example). In this case, Git uses the last value for each

unique key it sees.

You can also check what Git thinks a specific key’s value is by typing :

CHAPTER 1 N฀ GETTING STARTED 13

Getting Help
If you ever need help while using Git, there are three ways to get the manual page (manpage)

help for any of the Git commands:

For example, you can get the manpage help for the command by running

These commands are nice because you can access them anywhere, even offline.

If the manpages and this book aren’t enough and you need in-person help, you can try

the or channel on the Freenode IRC server (). These channels

are regularly filled with hundreds of people who are all very knowledgeable about Git and are

often willing to help.

Summary
You should now have a basic understanding of what Git is and how it’s different from the

CVCS you may have been using. You should also now have a working version of Git on your

system that’s set up with your personal identity. It’s now time to learn some Git basics.

C H A P T E R 2

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers every

basic command you need to do the vast majority of the things you’ll eventually spend your

time doing with Git. By the end of the chapter, you should be able to configure and initialize

a repository, begin and stop tracking files, and stage and commit changes. I’ll also show you

how to set up Git to ignore certain files and file patterns, how to undo mistakes quickly and

easily, how to browse the history of your project and view changes between commits, and how

to push and pull from remote repositories.

Getting a Git Repository
You can get a Git project using two main approaches. The first takes an existing project or

directory and imports it into Git. The second clones an existing Git repository from another

server.

Initializing a Repository in an Existing Directory

If you’re starting to track an existing project in Git, you need to go to the project’s directory

and type

This command creates a new subdirectory named that contains all of your necessary

repository files—a Git repository skeleton. At this point, nothing in your project is tracked yet.

(See Chapter 9 for more information about exactly what files are contained in the direc-

tory you just created.)

If you want to start version-controlling existing files (as opposed to an empty directory), you

should probably begin tracking those files and do an initial commit. You can accomplish that

with a few commands that specify the files you want to track, followed by a commit:

I’ll go over what these commands do in just a minute. At this point, you have a Git reposi-

tory with tracked files and an initial commit.

15

CHAPTER 2 N฀ G IT BASICS16

Cloning an Existing Repository

If you want to get a copy of an existing Git repository—for example, a project you’d like to

contribute to—the command you need is . If you’re familiar with other VCS sys-

tems such as Subversion, you’ll notice that the command is and not . This is

an important distinction—Git receives a copy of nearly all data that the server has. Every ver-

sion of every file for the history of the project is pulled down when you run . In fact,

if your server disk gets corrupted, you can use any of the clones on any client to set the server

back to the state it was in when it was cloned (you may lose some server-side hooks and such,

but all the versioned data would be there—see Chapter 4 for more details).

You clone a repository with . For example, if you want to clone the Ruby

Git library called Grit, you can do so like this:

That creates a directory named , initializes a directory inside it, pulls down all

the data for that repository, and checks out a working copy of the latest version. If you go into

the new directory, you’ll see the project files in there, ready to be worked on or used. If

you want to clone the repository into a directory named something other than , you can

specify that as the next command-line option:

This command does the same thing as the previous one, but the target directory is called

.

Git has a number of different transfer protocols you can use. The previous example uses

the protocol, but you may also see or , which uses

the SSH transfer protocol. Chapter 4 will introduce all of the available options the server can

set up to access your Git repository and the pros and cons of each.

Recording Changes to the Repository
You have a bona fide Git repository and a checkout or working copy of the files for that project.

You need to make some changes and commit snapshots of those changes into your repository

each time the project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states: tracked or

untracked. Tracked files are files that were in the last snapshot; they can be unmodified, modi-

fied, or staged. Untracked files are everything else—any files in your working directory that

weren’t in your last snapshot and aren’t in your staging area. When you first clone a repository,

all of your files will be tracked and unmodified because you just checked them out and haven’t

edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since your last

commit. You stage these modified files and then commit all your staged changes, and the cycle

repeats. This lifecycle is illustrated in Figure 2-1.

CHAPTER 2 N฀ G IT BASICS 17

Fig 2-1. The lifecycle of the status of your files

Checking the Status of Your Files

The main tool you use to determine which files are in which state is the command.

If you run this command directly after a clone, you should see something like this:

This means you have a clean working directory—in other words, there are no tracked and

modified files. Git also doesn’t see any untracked files, or they would be listed here. Finally,

the command tells you which branch you’re on. For now, that is always , which is the

default; you won’t worry about it here. The next chapter will go over branches and references

in detail.

Let’s say you add a new file to your project, a simple file. If the file didn’t exist

before, and you run , you see your untracked file like so:

CHAPTER 2 N฀ G IT BASICS18

You can see that your new file is untracked, because it’s under the “Untracked

files” heading in your status output. Untracked basically means that Git sees a file you didn’t

have in the previous snapshot (commit); Git won’t start including it in your commit snapshots

until you explicitly tell it to do so. It does this so you don’t accidentally begin including gener-

ated binary files or other files that you didn’t mean to include. You do want to start including

the file, so let’s start tracking the file.

Tracking New Files

In order to begin tracking a new file, you use the command . To begin tracking the

 file, you can run this:

If you run the command again, you can see that your file is now tracked and

staged:

You can tell that it’s staged because it’s under the “Changes to be committed” heading. If

you commit at this point, the version of the file at the time you ran is what will be in

the historical snapshot. You may recall that when you ran earlier, you then ran

—that was to begin tracking files in your directory. The command takes

a path name for either a file or a directory; if it’s a directory, the command adds all the files in

that directory recursively.

Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file called

 and then run the command again, you get something that looks like this:

CHAPTER 2 N฀ G IT BASICS 19

The file appears under a section named “Changed but not updated”—

which means that a file that is tracked has been modified in the working directory but not yet

staged. To stage it, you run the command (it’s a multipurpose command—you use it

to begin tracking new files, to stage files, and to do other things like marking merge-conflicted

files as resolved). Let’s run now to stage the file, and then run

 again:

Both files are staged and will go into your next commit. At this point, suppose you remem-

ber one little change that you want to make in before you commit it. You open

it again and make that change, and you’re ready to commit. However, let’s run one

more time:

What the heck? Now is listed as both staged and unstaged. How is that

possible? It turns out that Git stages a file exactly as it is when you run the command.

If you commit now, the version of as it was when you last ran the com-

mand is how it will go into the commit, not the version of the file as it looks in your working

directory when you run . If you modify a file after you run , you have to run

 again to stage the latest version of the file:

CHAPTER 2 N฀ G IT BASICS20

Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add or even show you

as being untracked. These are generally automatically generated files such as log files or files

produced by your build system. In such cases, you can create a file named listing

patterns to match them. Here is an example file:

The first line tells Git to ignore any files ending in or —object and archive files that

may be the product of building your code. The second line tells Git to ignore all files that end

with a tilde (~), which is used by many text editors, such as Emacs, to mark temporary files.

You may also include a , , or directory; automatically generated documentation; and

so on. Setting up a file before you get going is generally a good idea so you don’t

accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the file are as follows:

฀ s฀ "LANK฀LINES฀OR฀LINES฀STARTING฀WITH฀ are ignored.

฀ s฀ 3TANDARD฀GLOB฀PATTERNS฀WORK�

฀ s฀ 9OU฀CAN฀END฀PATTERNS฀WITH฀A฀FORWARD฀SLASH฀�) to specify a directory.

฀ s฀ 9OU฀CAN฀NEGATE฀A฀PATTERN฀BY฀STARTING฀IT฀WITH฀AN฀EXCLAMATION฀POINT฀�).

Glob patterns are like simplified regular expressions that shells use. An asterisk () matches

zero or more characters; matches any character inside the brackets (in this case a, b, or c);

a question mark () matches a single character; and brackets enclosing characters separated by

a hyphen 9]) matches any character between them (in this case, 0 through 9).

Here is another example file:

Viewing Your Staged and Unstaged Changes

If the command is too vague for you—you want to know exactly what you changed,

not just which files were changed—you can use the command. I’ll cover in

more detail later; but you’ll probably use it most often to answer these two questions: What

have you changed but not yet staged? And what have you staged that you are about to commit?

Although answers those questions very generally, shows you the exact

lines added and removed—the patch, as it were.

CHAPTER 2 N฀ G IT BASICS 21

Let’s say you edit and stage the file again and then edit the file

without staging it. If you run your status command, you once again see something like this:

To see what you’ve changed but not yet staged, type with no other arguments:

That command compares what is in your working directory with what is in your staging

area. The result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use

ed. (In Git versions 1.6.1 and later, you can also use ed, which may

be easier to remember.) This command compares your staged changes to your last commit:

CHAPTER 2 N฀ G IT BASICS22

It’s important to note that by itself doesn’t show all changes made since your last

commit—only changes that are still unstaged. This can be confusing, because if you’ve staged

all of your changes, gives you no output.

For another example, if you stage the file and then edit it, you can use

 to see the changes in the file that are staged and the changes that are unstaged:

Now you can use to see what is still unstaged:

You can use to see what you’ve staged so far:

CHAPTER 2 N฀ G IT BASICS 23

Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes.

Remember that anything that is still unstaged—any files you have created or modified that

you haven’t run on since you edited them—won’t go into this commit. They will stay

as modified files on your disk.

In this case, the last time you ran , you saw that everything was staged, so

you’re ready to commit your changes. The simplest way to commit is to type :

Doing so launches your editor of choice. (This is set by your shell’s environment

variable—usually or , although you can configure it with whatever you want using the

 command, as you saw in Chapter 1.)

The editor displays the following text (this example is a Vim screen):

You can see that the default commit message contains the latest output of the

command commented out and one empty line on top. You can remove these comments and

type your commit message, or you can leave them there to help you remember what you’re

committing. (For an even more explicit reminder of what you’ve modified, you can pass the

 option to . Doing so also puts the diff of your change in the editor so you can see

exactly what you did.) When you exit the editor, Git creates your commit with that commit

message (with the comments and diff stripped out).

Alternatively, you can type your commit message inline with the command by

specifying it after a flag, like this:

CHAPTER 2 N฀ G IT BASICS24

Now you’ve created your first commit! The commit has given you some output about

itself: which branch you committed to (), what SHA-1 checksum the commit has

(), how many files were changed, and statistics about lines added and removed in the

commit.

Remember that the commit records the snapshot you set up in your staging area. Any-

thing you didn’t stage is still sitting there modified; you can do another commit to add it to

your history. Every time you perform a commit, you’re recording a snapshot of your project

that you can revert to or compare to later.

Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them, the staging

area is sometimes a bit more complex than you need in your workflow. If you want to skip the

staging area, Git provides a simple shortcut. Providing the option to the command

makes Git automatically stage every file that is already tracked before doing the commit, letting

you skip the part:

Notice how you don’t have to run on the file in this case before you

commit.

Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accurately,

remove it from your staging area) and then commit. The command does that and also

removes the file from your working directory so you don’t see it as an untracked file next time

around.

If you simply remove the file from your working directory, it shows up under the

“Changed but not updated” (that is, unstaged) area of your output:

CHAPTER 2 N฀ G IT BASICS 25

Then, if you run , it stages the file’s removal:

The next time you commit, the file will be gone and no longer tracked. If you modified the

file and added it to the index already, you must force the removal with the option. This is

a safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snap-

shot and that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but

remove it from your staging area. In other words, you may want to keep the file on your hard

drive but not have Git track it anymore. This is particularly useful if you forgot to add some-

thing to your file and accidentally added it, like a large log file or a bunch of

compiled files. To do this, use the option:

You can pass files, directories, and file-glob patterns to the command. That means

you can do things such as

Note the backslash () in front of the . This is necessary because Git does its own file-

name expansion in addition to your shell’s filename expansion. This command removes all

files that have the extension in the directory. Or, you can do something like this:

This command removes all files that end with .

Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you rename a file

in Git, no metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart

about figuring that out after the fact—you’ll deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a command. If you want to rename a file in Git,

you can run something like

CHAPTER 2 N฀ G IT BASICS26

and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git

considers it a renamed file:

However, this is equivalent to running something like this:

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that

way or with the command. The only real difference is that is one command instead of

three—it’s a convenience function. More important, you can use any tool you like to rename

a file, and address the / later, before you commit.

Viewing the Commit History
After you have created several commits, or if you have cloned a repository with an existing

commit history, you’ll probably want to look back to see what has happened. The most basic

and powerful tool to do this is the command.

These examples use a very simple project called simplegit that I often use for demonstra-

tions. To get the project, run

When you run in this project, you should get output that looks something like this:

CHAPTER 2 N฀ G IT BASICS 27

By default, with no arguments, lists the commits made in that repository in

reverse chronological order. That is, the most recent commits show up first. As you can see,

this command lists each commit with its SHA-1 checksum, the author’s name and e-mail, the

date written, and the commit message.

A huge number and variety of options to the command are available to show you

exactly what you’re looking for. Here, I’ll show you some of the most-used options.

One of the more helpful options is , which shows the diff introduced in each commit.

You can also use , which limits the output to only the last two entries:

CHAPTER 2 N฀ G IT BASICS28

This option displays the same information but with a diff directly following each entry.

This is very helpful for code review or to quickly browse what happened during a series of

commits that a collaborator has added.

You can also use a series of summarizing options with . For example, if you want

to see some abbreviated stats for each commit, you can use the option:

As you can see, the option prints below each commit entry a list of modified files,

how many files were changed, and how many lines in those files were added and removed. It

also puts a summary of the information at the end.

Another really useful option is y. This option changes the log output to formats

other than the default. A few prebuilt options are available for you to use. The option

prints each commit on a single line, which is useful if you’re looking at a lot of commits. In

addition, the , , and options show the output in roughly the same format but

with less or more information, respectively:

CHAPTER 2 N฀ G IT BASICS 29

The most interesting option is , which allows you to specify your own log output

format. This is especially useful when you’re generating output for machine parsing—because

you specify the format explicitly, you know it won’t change with updates to Git:

Table 2-1 lists some of the more useful options that takes.

Table 2-1. Formatting Options for the Output

Option Description of Output

Commit hash

Abbreviated commit hash

Tree hash

Abbreviated tree hash

Parent hashes

Abbreviated parent hashes

Author name

Author e-mail

Author date (respects the option)

Author date, relative

Committer name

Committer e-mail

Committer date

Committer date, relative

Subject

NNote You may be wondering what the difference is between author and committer. The author is the per-

son who originally wrote the work, whereas the committer is the person who last applied the work. So, if you

send in a patch to a project and one of the core members applies the patch, both of you get credit—you as

the author and the core member as the committer. I’ll cover this distinction a bit more in Chapter 5.

CHAPTER 2 N฀ G IT BASICS30

The and options are particularly useful with another log option called

h. This option adds a nice little ASCII graph showing your branch and merge history, in

which you can see your copy of the Grit project repository:

Those are only some simple output-formatting options to —there are many more.

Table 2-2 lists the options I’ve covered so far and some other common formatting options that

may be useful, along with how they change the output of the command.

Table 2-2. Common Output Formatting Options

Option Description

Show the patch introduced with each commit.

Show statistics for files modified in each commit.

Display only the changed/insertions/deletions line from the command.

Show the list of files modified after the commit information.

Show the list of files affected with added/modified/deleted information as well.

Show only the first few characters of the SHA-1 checksum instead of all 40.

Display the date in a relative format (for example, “2 weeks ago”) instead of
using the full date format.

Display an ASCII graph of the branch and merge history beside the output.

Show commits in an alternate format. Options include , , ,
, and (where you specify your own format).

Limiting Log Output

In addition to output-formatting options, takes a number of useful limiting options—

that is, options that let you show only a subset of commits. You’ve seen one such option

already—the option, which show only the last two commits. In fact, you can do , where

 is any integer to show the last commits. In reality, you’re unlikely to use that often, because

Git by default pipes all output through a pager so you see only one page of log output at a time.

However, the time-limiting options such as and are very useful. For

example, this command gets the list of commits made in the last two weeks:

CHAPTER 2 N฀ G IT BASICS 31

This command works with lots of formats—you can specify a specific date (“2008-01-15”)

or a relative date such as “2 years 1 day 3 minutes ago”.

You can also filter the list to commits that match some search criteria. The

option allows you to filter on a specific author, and the option lets you search for key-

words in the commit messages. (Note that if you want to specify both author and grep options,

you have to add or the command will match commits with either.)

The last really useful option to pass to as a filter is a path. If you specify a directory

or file name, you can limit the log output to commits that introduced a change to those files.

This is always the last option and is generally preceded by double dashes -) to separate the

paths from the options.

In Table 2-3, I list these and a few other common options for your reference.

Table 2-3. Common Filtering Options

Option Description

Show only the last commits.

, Limit the commits to those made after the specified date.

, Limit the commits to those made before the specified date.

Only show commits in which the author entry matches the specified string.

Only show commits in which the committer entry matches the specified string.

For example, if you want to see which commits in the Git source code history were com-

mitted by Junio Hamano and were not merges in the month of October 2008, you can run

something like this:

Of the nearly 20,000 commits in the Git source code history, this command shows the 6

that match those criteria.

Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may want to take

a look at a Tcl/Tk program called that is distributed with Git. is basically a visual

 tool, and it accepts nearly all the filtering options that does. If you type on the

command line in your project, you should see something like Figure 2-2.

CHAPTER 2 N฀ G IT BASICS32

Figure 2-2. The history visualizer

You can see the commit history in the top half of the window along with a nice ancestry graph.

The diff viewer in the bottom half of the window shows you the changes introduced at any

commit you click.

Undoing Things
At any stage, you may want to undo something. Here, I’ll review a few basic tools for undoing

changes that you’ve made. Be careful, because you can’t always undo some of these undos.

This is one of the few areas in Git where you may lose some work if you do it wrong.

Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget to add

some files, or you mess up your commit message. If you want to try that commit again, you

can run with the option:

CHAPTER 2 N฀ G IT BASICS 33

This command takes your staging area and uses it for the commit. If you have made no

changes since your last commit (for instance, you run this command it immediately after your

previous commit), then your snapshot will look exactly the same and all you’ll change is your

commit message.

The same commit-message editor fires up, but it already contains the message of your

previous commit. You can edit the message the same as always, but it overwrites your previous

commit.

As an example, if you commit and then realize you forgot to stage the changes in a file you

wanted to add to this commit, you can do something like this:

All three of these commands end up with a single commit—the second command

replaces the results of the first.

Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working directory

changes. The nice part is that the command you use to determine the state of those two areas

also reminds you how to undo changes to them. For example, let’s say you’ve changed two

files and want to commit them as two separate changes, but you accidentally type

and stage them both. How can you unstage one of the two? The command reminds

you:

Right below the “Changes to be committed” text, it says

. So, let’s use that advice to unstage the file:

CHAPTER 2 N฀ G IT BASICS34

The command is a bit strange, but it works. The file is modified but once

again unstaged.

Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the file? How

can you easily unmodify it—revert it back to what it looked like when you last committed (or

initially cloned, or however you got it into your working directory)? Luckily, tells

you how to do that, too. In the last example output, the unstaged area looks like this:

It tells you pretty explicitly how to discard the changes you’ve made (at least, the newer

versions of Git, 1.6.1 and later, do this—if you have an older version, I highly recommend

upgrading it to get some of these nicer usability features). Let’s do what it says:

You can see that the changes have been reverted. You should also realize that this is a dan-

gerous command: any changes you made to that file are gone—you just copied another file

over it. Don’t ever use this command unless you absolutely know that you don’t want the file.

If you just need to get it out of the way, I’ll go over stashing and branching in the next chapter;

these are generally better ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even

commits that were on branches that were deleted or commits that were overwritten with an

 commit can be recovered (see Chapter 9 for data recovery). However, anything you

lose that was never committed is likely never to be seen again.

CHAPTER 2 N฀ G IT BASICS 35

Working with Remotes
To be able to collaborate on any Git project, you need to know how to manage your remote

repositories. Remote repositories are versions of your project that are hosted on the Internet or

network somewhere. You can have several of them, each of which generally is either read-only

or read/write for you. Collaborating with others involves managing these remote repositories

and pushing and pulling data to and from them when you need to share work.

Managing remote repositories includes knowing how to add remote repositories, remove

remotes that are no longer valid, manage various remote branches and define them as being

tracked or not, and more. In this section, I’ll cover these remote-management skills.

Showing Your Remotes

To see which remote servers you have configured, you can run the command. It

lists the shortnames of each remote handle you’ve specified. If you’ve cloned your repository,

you should at least see —that is the default name Git gives to the server you cloned

from:

You can also specify , which shows you the URL that Git has stored for the shortname to

be expanded to:

If you have more than one remote, the command lists them all. For example, my Grit

repository looks something like this.

This means I can pull contributions from any of these users pretty easily. But notice that

only the remote is an SSH URL, so it’s the only one I can push to (I’ll cover why this is in

Chapter 4).

CHAPTER 2 N฀ G IT BASICS36

Adding Remote Repositories

I’ve mentioned and given some demonstrations of adding remote repositories in previous

sections, but here is how to do it explicitly. To add a new remote Git repository as a short-

name you can reference easily, run :

Now you can use the string on the command line in lieu of the whole URL. For exam-

ple, if you want to fetch all the information that Paul has but that you don’t yet have in your

repository, you can run :

Paul’s master branch is accessible locally as —you can merge it into one of your

branches, or you can check out a local branch at that point if you want to inspect it.

Fetching and Pulling from Your Remotes

As you just saw, to get data from your remote projects, you can run

The command goes out to that remote project and pulls down all the data from that

remote project that you don’t have yet. After you do this, you should have references to all the

branches from that remote, which you can merge in or inspect at any time. (I’ll go over what

branches are and how to use them in much more detail in Chapter 3.)

If you cloned a repository, the command automatically adds that remote repository under

the name . So, fetches any new work that has been pushed to that

server since you cloned (or last fetched from) it. It’s important to note that the command

pulls the data to your local repository—it doesn’t automatically merge it with any of your work

or modify what you’re currently working on. You have to merge it manually into your work

when you’re ready.

If you have a branch set up to track a remote branch (see the next section and Chapter 3

for more information), you can use the command to automatically fetch and then

merge a remote branch into your current branch. This may be an easier or more comfortable

workflow for you; and by default, the command automatically sets up your local

master branch to track the remote master branch on the server you cloned from (assuming

CHAPTER 2 N฀ G IT BASICS 37

the remote has a master branch). Running generally fetches data from the server you

originally cloned from and automatically tries to merge it into the code you’re currently work-

ing on.

Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it upstream.

The command for this is simple: e]. If you want to push

your master branch to your server (again, cloning generally sets up both of those names

for you automatically), then you can run this to push your work back up to the server:

This command works only if you cloned from a server to which you have write access and

if nobody has pushed in the meantime. If you and someone else clone at the same time and

they push upstream and then you push upstream, your push will rightly be rejected. You’ll

have to pull down their work first and incorporate it into yours before you’ll be allowed to

push. See Chapter 3 for more detailed information on how to push to remote servers.

Inspecting a Remote

If you want to see more information about a particular remote, you can use the

 command. If you run this command with a particular shortname, such as

, you get something like this:

It lists the URL for the remote repository as well as the tracking branch information. The

command helpfully tells you that if you’re on the master branch and you run , it will

automatically merge in the master branch on the remote after it fetches all the remote refer-

ences. It also lists all the remote references it has pulled down.

That is a simple example you’re likely to encounter. When you’re using Git more heavily,

however, you may see much more information from :

CHAPTER 2 N฀ G IT BASICS38

This command shows which branch is automatically pushed when you run

on certain branches. It also shows you which remote branches on the server you don’t yet

have, which remote branches you have that have been removed from the server, and multiple

branches that are automatically merged when you run .

Removing and Renaming Remotes

If you want to rename a reference, in newer versions of Git you can run to

change a remote’s shortname. For instance, if you want to rename to , you can do so

with :

It’s worth mentioning that this changes your remote branch names, too. What used to be

referenced at is now at .

If you want to remove a reference for some reason—you’ve moved the server or are no

longer using a particular mirror, or perhaps a contributor isn’t contributing anymore—you

can use :

Tagging
Like most VCSs, Git has the ability to tag specific points in history as being important. Generally,

people use this functionality to mark release points (v1.0, and so on). In this section, you’ll learn

how to list the available tags, how to create new tags, and what the different types of tags are.

CHAPTER 2 N฀ G IT BASICS 39

Listing Your Tags

Listing the available tags in Git is straightforward. Just type :

This command lists the tags in alphabetical order; the order in which they appear has no

real importance.

You can also search for tags with a particular pattern. The Git source repo, for instance,

contains more than 240 tags. If you’re only interested in looking at the 1.4.2 series, you can run

this:

Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very much like

a branch that doesn’t change—it’s just a pointer to a specific commit. Annotated tags, how-

ever, are stored as full objects in the Git database. They’re check-summed; contain the tagger

name, e-mail, and date; have a tagging message; and can be signed and verified with GNU Pri-

vacy Guard (GPG). It’s generally recommended that you create annotated tags so you can have

all this information; but if you want a temporary tag or for some reason don’t want to keep the

other information, lightweight tags are available too.

Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify when you run the

 command:

The specifies a tagging message, which is stored with the tag. If you don’t specify a mes-

sage for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the

command:

CHAPTER 2 N฀ G IT BASICS40

That shows the tagger information, the date the commit was tagged, and the annotation

message before showing the commit information.

Signed Tags

You can also sign your tags with GPG, assuming you have a private key. All you have to do is

use instead of :

If you run on that tag, you can see your GPG signature attached to it:

A bit later, you’ll learn how to verify signed tags.

CHAPTER 2 N฀ G IT BASICS 41

Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit checksum

stored in a file—no other information is kept. To create a lightweight tag, don’t supply the ,

, or option:

This time, if you run on the tag, you don’t see the extra tag information. The

command just shows the commit:

Verifying Tags

To verify a signed tag, you use e]. This command uses GPG to verify the

signature. You need the signer’s public key in your keyring for this to work properly:

If you don’t have the signer’s public key, you get something like this instead:

CHAPTER 2 N฀ G IT BASICS42

Tagging Later

You can also tag commits after you’ve moved past them. Suppose your commit history looks

like this:

Now, suppose you forgot to tag the project at v1.2, which was at the updated rakefile com-

mit. You can add it after the fact. To tag that commit, you specify the commit checksum (or

part of it) at the end of the command:

You can see that you’ve tagged the commit:

CHAPTER 2 N฀ G IT BASICS 43

Sharing Tags

By default, the command doesn’t transfer tags to remote servers. You have to explic-

itly push tags to a shared server after you create them. This process is just like sharing remote

branches—you can run :

If you have a lot of tags that you want to push up at once, you can also use the option to

the command. This transfers to the remote server all of your tags that aren’t already

there:

Now, when someone else clones or pulls from your repository, they will get all your tags as

well.

Tips and Tricks
Before I finish this chapter on basic Git, a few little tips and tricks may make your Git experi-

ence a bit simpler, easier, or more familiar. Many people use Git without using any of these

tips, and I won’t refer to them or assume you’ve used them later in the book; but you should

probably know how to do them.

Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable.

Download the Git source code, and look in the directory; there should be

a file called sh. Copy this file to your home directory, and add this to your

 file:

CHAPTER 2 N฀ G IT BASICS44

If you want to set up Git to automatically have Bash shell completion for all users, copy

this script to the directory on Mac systems or to the

 directory on Linux systems. This is a directory of scripts that Bash will

automatically load to provide shell completions.

If you’re using Windows with Git Bash, which is the default when installing Git on

Windows with msysGit, auto-completion should be preconfigured.

Press the Tab key when you’re writing a Git command, and it should return a set of

suggestions for you to pick from:

In this case, typing git co and then pressing the Tab key twice suggests and .

Adding m<tab> completes automatically.

This also works with options, which is probably more useful. For instance, if you’re run-

ning a command and can’t remember one of the options, you can start typing it and

press Tab to see what matches:

That’s a pretty nice trick and may save you some time and documentation reading.

Git Aliases

Git doesn’t infer your command if you type it in partially. If you don’t want to type the entire

text of each of the Git commands, you can easily set up an alias for each command using

. Here are a couple of examples you may want to set up:

This means that, for example, instead of typing git commit, you just need to type git ci. As

you go on using Git, you’ll probably use other commands frequently as well; in this case, don’t

hesitate to create new aliases.

This technique can also be very useful in creating commands that you think should exist.

For example, to correct the usability problem you encountered with unstaging a file, you can

add your own alias to Git:

This makes the following two commands equivalent:

This seems a bit clearer. It’s also common to add a command, like this:

CHAPTER 2 N฀ G IT BASICS 45

This way, you can see the last commit easily:

As you can tell, Git simply replaces the new command with whatever you alias it for. How-

ever, maybe you want to run an external command, rather than a Git subcommand. In that

case, you start the command with a character. This is useful if you write your own tools that

work with a Git repository. I can demonstrate by aliasing to run :

Summary
At this point, you can do all the basic local Git operations—creating or cloning a repository,

making changes, staging and committing those changes, and viewing the history of all the

changes the repository has been through. Next, I’ll cover Git’s killer feature: its branching

model.

C H A P T E R 3

Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge from

the main line of development and continue to do work without messing with that main line.

In many VCS tools, this is a somewhat expensive process, often requiring you to create a new

copy of your source code directory, which can take a long time for large projects.

Some people refer to the branching model in Git as its “killer feature,” and it certainly

sets Git apart in the VCS community. Why is it so special? The way Git branches is incredibly

lightweight, making branching operations nearly instantaneous and switching back and forth

between branches generally just as fast. Unlike many other VCSs, Git encourages a workflow

that branches and merges often, even multiple times in a day. Understanding and mastering

this feature gives you a powerful and unique tool and can literally change the way that you

develop.

What a Branch Is
To really understand the way Git does branching, you need to take a step back and examine

how Git stores its data. As you may remember from Chapter 1, Git doesn’t store data as a series

of changesets or deltas, but instead as a series of snapshots.

When you commit in Git, Git stores a commit object that contains a pointer to the snap-

shot of the content you staged, the author and message metadata, and zero or more pointers

to the commit or commits that were the direct parents of this commit: zero parents for the first

commit, one parent for a normal commit, and multiple parents for a commit that results from

a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and you

stage them all and commit. Staging the files checksums each one (the SHA-1 hash I mentioned

in Chapter 1), stores that version of the file in the Git repository (Git refers to them as blobs),

and adds that checksum to the staging area:

When you create the commit by running , Git checksums each subdirectory (in

this case, just the root project directory) and stores those tree objects in the Git repository. Git

then creates a commit object that has the metadata and a pointer to the root project tree so it

can re-create that snapshot when needed.

47

CHAPTER 3 N฀ G IT BRANCHING48

Your Git repository now contains five objects: one blob for the contents of each of your

three files, one tree that lists the contents of the directory and specifies which file names are

stored as which blobs, and one commit with the pointer to that root tree and all the commit

metadata. Conceptually, the data in your Git repository looks something like Figure 3-1.

Figure 3-1. Single-commit repository data

If you make some changes and commit again, the next commit stores a pointer to the

commit that came immediately before it. After two more commits, your history might look

something like Figure 3-2.

A branch in Git is simply a lightweight movable pointer to one of these commits. The

default branch name in Git is . As you initially make commits, you’re given a

branch that points to the last commit you made. Every time you commit, it moves forward

automatically.

What happens if you create a new branch? Well, doing so creates a new pointer for you

to move around. Let’s say you create a new branch called . You do this with the

 command:

CHAPTER 3 N฀ G IT BRANCHING 49

Figure 3-2. Git object data for multiple commits

Figure 3-3. Branch pointing into the commit data’s history

This creates a new pointer at the same commit you’re currently on (see Figure 3-4).

Figure 3-4. Multiple branches pointing into the commit’s data history

CHAPTER 3 N฀ G IT BRANCHING50

How does Git know what branch you’re currently on? It keeps a special pointer called

. Note that this is a lot different than the concept of in other VCSs you may be used

to, such as Subversion or CVS. In Git, this is a pointer to the local branch you’re currently on.

In this case, you’re still on . The command only created a new branch—it

didn’t switch to that branch (see Figure 3-5).

Figure 3-5. file pointing to the branch you’re on

To switch to an existing branch, you run the command. Let’s switch to the

new branch:

This moves to point to the branch (see Figure 3-6).

Figure 3-6. points to another branch when you switch branches.

What is the significance of that? Well, do another commit:

CHAPTER 3 N฀ G IT BRANCHING 51

Figure 3-7 illustrates the result.

Figure 3-7. The branch that points to moves forward with each commit.

This is interesting, because now your branch has moved forward, but your

branch still points to the commit you were on when you ran to switch branches.

Let’s switch back to the branch:

Figure 3-8 shows the result.

Figure 3-8. moves to another branch on a checkout.

CHAPTER 3 N฀ G IT BRANCHING52

That command did two things. It moved the pointer back to point to the

branch, and it reverted the files in your working directory back to the snapshot that

points to. This also means the changes you make from this point forward will diverge from an

older version of the project. It essentially rewinds the work you’ve done in your branch

temporarily so you can go in a different direction.

Let’s make a few changes and commit again:

Now your project history has diverged (see Figure 3-9). You created and switched to

a branch, did some work on it, and then switched back to your main branch and did other

work. Both of those changes are isolated in separate branches: you can switch back and forth

between the branches and merge them together when you’re ready. And you did all that with

simple and commands.

Figure 3-9. The branch histories have diverged.

Because a branch in Git is in actuality a simple file that contains the 40-character SHA-1

checksum of the commit it points to, branches are cheap to create and destroy. Creating a new

branch is as quick and simple as writing 41 bytes to a file (40 characters and a newline).

This is in sharp contrast to the way most VCS tools branch, which involves copying all

of the project’s files into a second directory. This can take several seconds or even minutes,

depending on the size of the project, whereas in Git the process is always instantaneous. Also,

because you’re recording the parents when you commit, finding a proper merge base for

merging is automatically done for you and is generally very easy. These features help encour-

age developers to create and use branches often.

Let’s see why you should do so.

CHAPTER 3 N฀ G IT BRANCHING 53

Basic Branching and Merging
Let’s go through a simple example of branching and merging with a workflow that you might

use in the real world. You’ll follow these steps:

1. Do work on a web site.

2. Create a branch for a new story you’re working on.

3. Do some work in that branch.

At this stage, you’ll receive a call that another issue is critical and you need a hotfix. You’ll

do the following:

1. Revert back to your production branch.

2. Create a branch to add the hotfix.

3. After it’s tested, merge the hotfix branch, and push to production.

4. Switch back to your original story, and continue working.

Basic Branching

First, let’s say you’re working on your project and have a couple of commits already (see

Figure 3-10).

Figure 3-10. A short and simple commit history

You’ve decided that you’re going to work on issue #53 in whatever issue-tracking system

your company uses. To be clear, Git isn’t tied into any particular issue-tracking system; but

because #53 is a focused topic that you want to work on, you’ll create a new branch in which to

work. To create a branch and switch to it at the same time, you can run the com-

mand with the switch:

This is shorthand for

CHAPTER 3 N฀ G IT BRANCHING54

Figure 3-11 illustrates the result.

Figure 3-11. Creating a new branch pointer

You work on your web site and do some commits. Doing so moves the branch for-

ward, because you have it checked out (that is, your is pointing to it; see Figure 3-12):

Figure 3-12. The branch has moved forward

with your work.

Now you get the call that there is an issue with the web site, and you need to fix it imme-

diately. With Git, you don’t have to deploy your fix along with the changes you’ve made,

and you don’t have to put a lot of effort into reverting those changes before you can work on

applying your fix to what is in production. All you have to do is switch back to your

branch.

However, before you do that, note that if your working directory or staging area has

uncommitted changes that conflict with the branch you’re checking out, Git won’t let you

switch branches. It’s best to have a clean working state when you switch branches. There are

ways to get around this (namely, stashing and commit amending) that I’ll cover later. For now,

you’ve committed all your changes, so you can switch back to your branch:

CHAPTER 3 N฀ G IT BRANCHING 55

At this point, your project working directory is exactly the way it was before you started

working on issue #53, and you can concentrate on your hotfix. This is an important point to

remember: Git resets your working directory to look like the snapshot of the commit that the

branch you check out points to. It adds, removes, and modifies files automatically to make

sure your working copy is what the branch looked like on your last commit to it.

Next, you have a hotfix to make. You create a branch on which to work until it’s

completed (see Figure 3-13):

Figure 3-13. branch based back at your

 branch point

You can run your tests, make sure the hotfix is what you want, and merge it back into your

 branch to deploy to production. You do this with the command:

You’ll notice the phrase Fast forward in that merge. Because the commit pointed to by the

branch you merged in was directly upstream of the commit you’re on, Git moves the pointer

forward. To phrase that another way, when you try to merge one commit with a commit that

can be reached by following the first commit’s history, Git simplifies things by moving the

pointer forward because there is no divergent work to merge together—this is called a fast

forward.

CHAPTER 3 N฀ G IT BRANCHING56

Your change is now in the snapshot of the commit pointed to by the branch, and

you can deploy your change (see Figure 3-14).

Figure 3-14. Your master branch points to the same place

as your branch after the merge.

After your super-important fix is deployed, you’re ready to switch back to the work you were

doing before you were interrupted. However, first you’ll delete the branch, because you

no longer need it—the branch points at the same place. You can delete it with the

 option to :

Now you can switch back to your work-in-progress branch on issue #53 and continue

working on it (see Figure 3-15):

It’s worth noting here that the work you did in your branch is not contained in the

files in your branch. If you need to pull it in, you can merge your branch into your

 branch by running , or you can wait to integrate those changes until

you decide to pull the branch back into later.

CHAPTER 3 N฀ G IT BRANCHING 57

Figure 3-15. Your branch can move forward independently.

Basic Merging

Suppose you’ve decided that your issue #53 work is complete and ready to be merged into

your branch. In order to do that, you’ll merge in your branch, much like you

merged in your branch earlier. All you have to do is check out the branch you wish to

merge into and then run the command:

This looks a bit different than the hotfix merge you did earlier. In this case, your develop-

ment history has diverged from some older point. Because the commit on the branch you’re

on isn’t a direct ancestor of the branch you’re merging in, Git has to do some work. In this

case, Git does a simple three-way merge, using the two snapshots pointed to by the branch

tips and the common ancestor of the two. Figure 3-16 highlights the three snapshots that Git

uses to do its merge in this case.

Instead of just moving the branch pointer forward, Git creates a new snapshot that results

from this three-way merge and automatically creates a new commit that points to it (see

Figure 3-17). This is referred to as a merge commit and is special in that it has more than one

parent.

It’s worth pointing out that Git determines the best common ancestor to use for its merge

base; this is different than CVS or Subversion (before version 1.5), where the developer doing

the merge has to figure out the best merge base for themselves. This makes merging a heck of

a lot easier in Git than in these other systems.

Now that your work is merged in, you have no further need for the branch. You can

delete it and then manually close the ticket in your ticket-tracking system:

CHAPTER 3 N฀ G IT BRANCHING58

Figure 3-16. Git automatically identifies the best common-

ancestor merge base for branch merging.

Figure 3-17. Git automatically creates a new commit object

that contains the merged work.

Basic Merge Conflicts

Occasionally, this process doesn’t go smoothly. If you changed the same part of the same

file differently in the two branches you’re merging together, Git won’t be able to merge them

cleanly. If your fix for issue #53 modified the same part of a file as the hotfix, you get a merge

conflict that looks something like this:

Git hasn’t automatically created a new merge commit. It has paused the process while you

resolve the conflict. If you want to see which files are unmerged at any point after a merge con-

flict, you can run :

CHAPTER 3 N฀ G IT BRANCHING 59

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged. Git adds

standard conflict-resolution markers to the files that have conflicts, so you can open them

manually and resolve those conflicts. Your file contains a section that looks something like

this:

This means the version in (your branch, because that was what you had

checked out when you ran your command) is the top part of that block (everything

above the), whereas the version in your branch looks like everything in the bot-

tom part. In order to resolve the conflict, you have to either choose one side or the other or

merge the contents yourself. For instance, you might resolve this conflict by replacing the

entire block with this:

This resolution has a little of each section, and I’ve fully removed the , ,

and lines. After you’ve resolved each of these sections in each conflicted file, run

 on each file to mark it as resolved. Staging the file marks it as resolved in Git.

If you want to use a graphical tool to resolve these issues, you can run ,

which fires up an appropriate visual merge tool and walks you through the conflicts:

CHAPTER 3 N฀ G IT BRANCHING60

If you want to use a merge tool other than the default (Git chose for me in this

case because I ran the command on a Mac), you can see all the supported tools listed at the

top after “merge tool candidates”. Type the name of the tool you’d rather use. In Chapter 7, I’ll

discuss how you can change this default value for your environment.

After you exit the merge tool, Git asks you if the merge was successful. If you tell the script

that it was, it stages the file to mark it as resolved for you.

You can run again to verify that all conflicts have been resolved:

If you’re happy with that, and you verify that everything that had conflicts has been

staged, you can type to finalize the merge commit. The commit message by default

looks something like this:

You can modify that message with details about how you resolved the merge if you think it

would be helpful to others looking at this merge in the future—why you did what you did, if it’s

not obvious.

Branch Management
Now that you’ve created, merged, and deleted some branches, let’s look at some

branch-management tools that will come in handy when you begin using branches all the

time.

The command does more than just create and delete branches. If you run it

with no arguments, you get a simple listing of your current branches:

CHAPTER 3 N฀ G IT BRANCHING 61

Notice the character that prefixes the branch: it indicates the branch that you

currently have checked out. This means that if you commit at this point, the branch will

be moved forward with your new work. To see the last commit on each branch, you can run

:

Another useful option to figure out what state your branches are in is to filter this list to

branches that you have or have not yet merged into the branch you’re currently on. The useful

 and options have been available in Git since version 1.5.6 for this pur-

pose. To see which branches are already merged into the branch you’re on, you can run

:

Because you already merged in earlier, you see it in your list. Branches on this list

without the in front of them are generally fine to delete with ; you’ve already

incorporated their work into another branch, so you’re not going to lose anything.

To see all the branches that contain work you haven’t yet merged in, you can run

ed:

This shows your other branch. Because it contains work that isn’t merged in yet, trying to

delete it with will fail:

If you really do want to delete the branch and lose that work, you can force it with , as

the helpful message points out.

Branching Workflows
Now that you have the basics of branching and merging down, what can or should you do

with them? In this section, I’ll cover some common workflows that this lightweight branching

makes possible, so you can decide if you would like to incorporate it into your own develop-

ment cycle.

CHAPTER 3 N฀ G IT BRANCHING62

Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another multiple

times over a long period is generally easy to do. This means you can have several branches

that are always open and that you use for different stages of your development cycle; you can

merge regularly from some of them into others.

Many Git developers have a workflow that embraces this approach, such as having only

code that is entirely stable in their branch—possibly only code that has been or will be

released. They have another parallel branch named or that they work from or use

to test stability—it isn’t necessarily always stable, but whenever it gets to a stable state, it can be

merged into . It’s used to pull in topic branches (short-lived branches, like your earlier

 branch) when they’re ready, to make sure they pass all the tests and don’t introduce bugs.

In reality, I’m talking about pointers moving up the line of commits you’re making. The

stable branches are farther down the line in your commit history, and the bleeding-edge

branches are farther up the history (see Figure 3-18).

Figure 3-18. More stable branches are generally farther down the commit history.

It’s generally easier to think about them as work silos, where sets of commits graduate to

a more stable silo when they’re fully tested (see Figure 3-19).

Figure 3-19. It may be helpful to think of your branches as silos.

CHAPTER 3 N฀ G IT BRANCHING 63

You can keep doing this for several levels of stability. Some larger projects also have a

 or (proposed updates) branch that has integrated branches that may not be ready

to go into the next or branch. The idea is that your branches are at various levels of

stability; when they reach a more stable level, they’re merged into the branch above them.

Again, having multiple long-running branches isn’t necessary, but it’s often helpful,

especially when you’re dealing with very large or complex projects.

Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-lived

branch that you create and use for a single particular feature or related work. This is some-

thing you’ve likely never done with a VCS before because it’s generally too expensive to create

and merge branches. But in Git it’s common to create, work on, merge, and delete branches

several times a day.

You saw this in the last section with the and branches you created. You did

a few commits on them and deleted them directly after merging them into your main branch.

This technique allows you to context-switch quickly and completely—because your work is

separated into silos where all the changes in that branch have to do with that topic, it’s easier

to see what has happened during code review and such. You can keep the changes there for

minutes, days, or months, and merge them in when they’re ready, regardless of the order in

which they were created or worked on.

Consider an example of doing some work (on), branching off for an issue (),

working on it for a bit, branching off the second branch to try another way of handling

the same thing (), going back to your branch and working there for a while,

and then branching off there to do some work that you’re not sure is a good idea (

branch). Your commit history looks something like Figure 3-20.

Figure 3-20. Your commit history with multiple topic branches

CHAPTER 3 N฀ G IT BRANCHING64

Now, let’s say you decide you like the second solution to your issue best (). You

showed the branch to your coworkers, and it turns out to be genius. You can throw

away the original branch (losing commits C5 and C6) and merge in the other two. Your

history then looks like Figure 3-21.

Figure 3-21. Your history after merging in

 and

It’s important to remember when you’re doing all this that these branches are completely

local. When you’re branching and merging, everything is being done only in your Git reposi-

tory—no server communication is happening.

Remote Branches
Remote branches are references to the state of branches on your remote repositories. They’re

local branches that you can’t move; they’re moved automatically whenever you do any net-

work communication. Remote branches act as bookmarks to remind you where the branches

on your remote repositories were the last time you connected to them.

They take the form . For instance, if you wanted to see what the

branch on your remote looked like as of the last time you communicated with it, you

would check the branch. If you were working on an issue with a partner and

they pushed up an branch, you might have your own local branch; but the branch

on the server would point to the commit at .

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git server on

your network at . If you clone from this, Git automatically names it

CHAPTER 3 N฀ G IT BRANCHING 65

for you, pulls down all its data, creates a pointer to where its branch is, and names it

 locally; and you can’t move it. Git also gives you your own branch start-

ing at the same place as ’s branch, so you have something to work from (see

Figure 3-22).

Figure 3-22. A Git clone gives you your own branch and

 pointing to ’s branch.

If you do some work on your local branch and, in the meantime, someone else

pushes to and updates its branch, then your histories move for-

ward differently. Also, as long as you stay out of contact with your server, your

 pointer doesn’t move (see Figure 3-23).

To synchronize your work, you run a command. This command looks

up which server is (in this case, it’s), fetches any data from it that

you don’t yet have, and updates your local database, moving your pointer to its

new, more up-to-date position (see Figure 3-24).

To demonstrate having multiple remote servers and what remote branches for those

remote projects look like, let’s assume you have another internal Git server that is used only

for development by one of your sprint teams. This server is at . You

can add it as a new remote reference to the project you’re currently working on by running the

 command as I covered in Chapter 2. Name this remote , which will be

your shortname for that whole URL (see Figure 3-25).

Now, you can run to fetch everything the server has that you don’t

have yet. Because that server is a subset of the data your server has right now, Git

fetches no data but sets a branch called to point to the commit that

has as its branch (see Figure 3-26).

CHAPTER 3 N฀ G IT BRANCHING66

Figure 3-23. Working locally and having someone push to your remote server

makes each history move forward differently.

Figure 3-24. The command updates your remote references.

CHAPTER 3 N฀ G IT BRANCHING 67

Figure 3-25. Adding another server as a remote

Figure 3-26. You get a reference to ’s branch position locally.

CHAPTER 3 N฀ G IT BRANCHING68

Pushing

When you want to share a branch with the world, you need to push it up to a remote that you

have write access to. Your local branches aren’t automatically synchronized to the remotes

you write to—you have to explicitly push the branches you want to share. That way, you can

use private branches to do work you don’t want to share, and push up only the topic branches

you want to collaborate on.

If you have a branch named that you want to work on with others, you can push

it up the same way you pushed your first branch. Run :

This is a bit of a shortcut. Git automatically expands the branch name out

to , which means, “Take my local

branch and push it to update the remote’s branch.” I’ll go over the

part in detail in Chapter 9, but you can generally leave it off. You can also do

, which does the same thing—it says, “Take my and make it

the remote’s .” You can use this format to push a local branch into a remote branch

that is named differently. If you didn’t want it to be called on the remote, you could

instead run to push your branch to the

 branch on the remote project.

The next time one of your collaborators fetches from the server, they will get a reference to

where the server’s version of is under the remote branch :

It’s important to note that when you do a fetch that brings down new remote branches,

you don’t automatically have local, editable copies of them. In other words, in this case, you

don’t have a new branch—you only have an pointer that you

can’t modify.

To merge this work into your current working branch, you can run

. If you want your own branch that you can work on, you can base it off

your remote branch:

CHAPTER 3 N฀ G IT BRANCHING 69

This gives you a local branch that you can work on that starts where is.

Tracking Branches

Checking out a local branch from a remote branch automatically creates what is called a track-

ing branch. Tracking branches are local branches that have a direct relationship to a remote

branch. If you’re on a tracking branch and type , Git automatically knows which

server and branch to push to. Also, running while on one of these branches fetches

all the remote references and then automatically merges in the corresponding remote branch.

When you clone a repository, it generally automatically creates a branch that tracks

. That’s why and work out of the box with no other argu-

ments. However, you can set up other tracking branches if you wish—ones that don’t track

branches on and don’t track the branch. The simple case is the example you just

saw, running . If you have Git version 1.6.2

or later, you can also use the shorthand:

To set up a local branch with a different name than the remote branch, you can easily use

the first version with a different local branch name:

Now, your local branch will automatically push to and pull from .

Deleting Remote Branches

Suppose you’re done with a remote branch—say, you and your collaborators are finished

with a feature and have merged it into your remote’s branch (or whatever branch your

stable codeline is in). You can delete a remote branch using the rather obtuse syntax

. If you want to delete your branch from the server, you run

the following:

Boom. No more branch on your server. You may want to dog-ear this page, because you’ll

need that command, and you’ll likely forget the syntax. A way to remember this command

is by recalling the syntax that I went

over a bit earlier. If you leave off the portion, then you’re basically saying, “Take

nothing on my side and make it be .”

CHAPTER 3 N฀ G IT BRANCHING70

Rebasing
In Git, there are two main ways to integrate changes from one branch into another: the merge

and the rebase. In this section you’ll learn what rebasing is, how to do it, why it’s a pretty

amazing tool, and in what cases you won’t want to use it.

The Basic Rebase

If you go back to an earlier example from the “Basic Branching and Merging” section (see

Figure 3-27), you can see that you diverged your work and made commits on two different

branches.

Figure 3-27. Your initial diverged commit history

The easiest way to integrate the branches, as I’ve already covered, is the command.

It performs a three-way merge between the two latest branch snapshots (C3 and C4) and the

most recent common ancestor of the two (C2), creating a new snapshot (and commit), as

shown in Figure 3-28.

Figure 3-28. Merging a branch to integrate the diverged work history

However, there is another way: you can take the patch of the change that was introduced

in C3 and reapply it on top of C4. In Git, this is called rebasing. With the command, you

can take all the changes that were committed on one branch and replay them on another one.

CHAPTER 3 N฀ G IT BRANCHING 71

In this example, you’d run the following:

It works by going to the common ancestor of the two branches (the one you’re on and the

one you’re rebasing onto), getting the diff introduced by each commit of the branch you’re on,

saving those diffs to temporary files, resetting the current branch to the same commit as the

branch you are rebasing onto, and finally applying each change in turn. Figure 3-29 illustrates

this process.

Figure 3-29. Rebasing the change introduced in C3 onto C4

At this point, you can go back to the branch and do a fast-forward merge (see

Figure 3-30).

Figure 3-30. Fast-forwarding the branch

Now, the snapshot pointed to by C3 is exactly the same as the one that was pointed to

by C5 in the example. There is no difference in the end product of the integration, but

rebasing makes for a cleaner history. If you examine the log of a rebased branch, it looks like

a linear history: it appears that all the work happened in series, even when it originally hap-

pened in parallel.

CHAPTER 3 N฀ G IT BRANCHING72

Often, you’ll do this to make sure your commits apply cleanly on a remote branch—perhaps

in a project to which you’re trying to contribute but that you don’t maintain. In this case, you’d

do your work in a branch and then rebase your work onto when you were ready to

submit your patches to the main project. That way, the maintainer doesn’t have to do any inte-

gration work—just a fast-forward or a clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s the

last of the rebased commits for a rebase or the final merge commit after a merge, is the same

snapshot—it’s the history that is different. Rebasing replays changes from one line of work

onto another in the order they were introduced, whereas merging takes the endpoints and

merges them together.

More Interesting Rebases

You can also have your rebase replay on something other than the rebase branch. Take

a history like Figure 3-31, for example. You branched a topic branch () to add some

server-side functionality to your project, and made a commit. Then, you branched off that to

make the client-side changes () and committed a few times. Finally, you went back to

your branch and did a few more commits.

Figure 3-31. A history with a topic branch off another topic branch

Suppose you decide that you want to merge your client-side changes into your mainline

for a release, but you want to hold off on the server-side changes until it’s tested further. You

can take the changes on that aren’t on (C8 and C9) and replay them on your

 branch by using the option of :

CHAPTER 3 N฀ G IT BRANCHING 73

This basically says, “Check out the branch, figure out the patches from the com-

mon ancestor of the and branches, and then replay them onto .” It’s a bit

complex; but the result, shown in Figure 3-32, is pretty cool.

Figure 3-32. Rebasing a topic branch off another topic branch

Now you can fast-forward your branch (see Figure 3-33):

Figure 3-33. Fast-forwarding your branch to include

the branch changes

Let’s say you decide to pull in your branch as well. You can rebase the

branch onto the branch without having to check it out first by running

—which checks out the topic branch (in this case,) for

you and replays it onto the base branch ():

CHAPTER 3 N฀ G IT BRANCHING74

This replays your work on top of your work, as shown in Figure 3-34.

Figure 3-34. Rebasing your branch on top of your branch

Then, you can fast-forward the base branch ():

You can remove the and branches because all the work is integrated

and you don’t need them anymore, leaving your history for this entire process looking like

Figure 3-35:

Figure 3-35. Final commit history

The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in a single line:

Do not rebase commits that you have pushed to a public repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and you’ll be

scorned by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones that

are similar but different. If you push commits somewhere and others pull them down and base

work on them, and then you rewrite those commits with and push them up again,

your collaborators will have to re-merge their work and things will get messy when you try to

pull their work back into yours.

CHAPTER 3 N฀ G IT BRANCHING 75

Let’s look at an example of how rebasing work that you’ve made public can cause prob-

lems. Suppose you clone from a central server and then do some work off that. Your commit

history looks like Figure 3-36.

Figure 3-36. Clone a repository, and base some work on it.

Now, someone else does more work that includes a merge, and pushes that work to the

central server. You fetch them and merge the new remote branch into your work, making your

history look something like Figure 3-37.

Figure 3-37. Fetch more commits, and merge them into your work.

CHAPTER 3 N฀ G IT BRANCHING76

Next, the person who pushed the merged work decides to go back and rebase their work

instead; they do a to overwrite the history on the server. You then fetch from

that server, bringing down the new commits (see Figure 3-38).

Figure 3-38. Someone pushes rebased commits, abandoning commits

you’ve based your work on.

At this point, you have to merge this work in again, even though you’ve already done so.

Rebasing changes the SHA-1 hashes of these commits so to Git they look like new commits,

when in fact you already have the C4 work in your history (see Figure 3-39).

You have to merge that work in at some point so you can keep up with the other developer

in the future. After you do that, your commit history will contain both the C4 and C4' commits,

which have different SHA-1 hashes but introduce the same work and have the same commit

message. If you run a when your history looks like this, you’ll see two commits that

have the same author date and message, which will be confusing. Furthermore, if you push

this history back up to the server, you’ll reintroduce all those rebased commits to the central

server, which can further confuse people.

If you treat rebasing as a way to clean up and work with commits before you push them,

and if you only rebase commits that have never been available publicly, then you’ll be fine. If

you rebase commits that have already been pushed publicly, and people may have based work

on those commits, then you may be in for some frustrating trouble.

CHAPTER 3 N฀ G IT BRANCHING 77

Figure 3-39. You merge in the same work again into a new merge commit.

Summary
I’ve covered basic branching and merging in Git. You should feel comfortable creating

and switching to new branches, switching between branches, and merging local branches

together. You should also be able to share your branches by pushing them to a shared server,

working with others on shared branches and rebasing your branches before they’re shared.

C H A P T E R 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll be

using Git. However, in order to do any collaboration in Git, you’ll need to have a remote Git

repository. Although you can technically push change to and pull changes from individuals’

repositories, doing so is discouraged because you can fairly easily confuse what they’re work-

ing on if you’re not careful. Furthermore, you want your collaborators to be able to access

the repository even if your computer is offline—having a more reliable common repository

is often useful. Therefore, the preferred method for collaborating with someone is to set up

an intermediate repository that you both have access to, and push to and pull from that. I’ll

refer to this repository as a Git server; but you’ll notice that it generally takes a tiny amount of

resources to host a Git repo, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your server to

communicate with. The first section of this chapter will cover the available protocols and the

pros and cons of each. The next sections will explain some typical setups using those proto-

cols and how to get your server running with them. Last, I’ll go over a few hosted options, if

you don’t mind hosting your code on someone else’s server and don’t want to go through the

hassle of setting up and maintaining your own server.

If you have no interest in running your own server, you can skip to the last section of the

chapter to see some options for setting up a hosted account and then move on to the next

chapter, where I discuss the various ins and outs of working in a distributed source control

environment.

A remote repository is generally a bare repository—a Git repository that has no working

directory. Because the repository is only used as a collaboration point, there is no reason to

have a snapshot checked out on disk; it’s just the Git data. In the simplest terms, a bare reposi-

tory is the contents of your project’s directory and nothing else.

The Protocols
Git can use four major network protocols to transfer data: Local, Secure Shell (SSH), Git, and

HTTP. Here I’ll discuss what they are and in what basic circumstances you would want (or not

want) to use them.

It’s important to note that with the exception of the HTTP protocols, all of these require

Git to be installed and working on the server.

79

CHAPTER 4 N฀ G IT ON THE SERVER80

Local Protocol

The most basic is the Local protocol, in which the remote repository is in another directory

on disk. This is often used if everyone on your team has access to a shared filesystem such as

an NFS mount, or in the less likely case that everyone logs in to the same computer. The latter

wouldn’t be ideal, because all your code repository instances would reside on the same com-

puter, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from

a local file-based repository. To clone a repository like this or to add one as a remote to an

existing project, use the path to the repository as the URL. For example, to clone a local reposi-

tory, you can run something like this:

Or you can do this:

Git operates slightly differently if you explicitly specify at the beginning of the

URL. If you just specify the path, Git tries to use hardlinks or directly copy the files it needs.

If you specify , Git fires up the processes that it normally uses to transfer data over

a network, which is generally a lot less efficient method of transferring the data. The main rea-

son to specify the prefix is if you want a clean copy of the repository with extraneous

references or objects left out—generally after an import from another version-control system

or something similar (see Chapter 9 for maintenance tasks). You’ll use the normal path here

because doing so is almost always faster.

To add a local repository to an existing Git project, you can run something like this:

Then, you can push to and pull from that remote as though you were doing so over a network.

The Pros

The pros of file-based repositories are that they’re simple and they use existing file permis-

sions and network access. If you already have a shared filesystem to which your whole team

has access, setting up a repository is very easy. You stick the bare repository copy somewhere

everyone has shared access to and set the read/write permissions as you would for any other

shared directory. I’ll discuss how to export a bare repository copy for this purpose in the next

section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working reposi-

tory. If you and a co-worker are working on the same project and they want you to check

something out, running a command like is often easier than

them pushing to a remote server and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up and reach

from multiple locations than basic network access. If you want to push from your laptop when

you’re at home, you have to mount the remote disk, which can be difficult and slow compared

to network-based access.

CHAPTER 4 N฀ G IT ON THE SERVER 81

It’s also important to mention that this isn’t necessarily the fastest option if you’re using

a shared mount of some kind. A local repository is fast only if you have fast access to the data.

A repository on NFS is often slower than the repository over SSH on the same server, allowing

Git to run off local disks on each system.

The SSH Protocol

Probably the most common transport protocol for Git is SSH. This is because SSH access to

servers is already set up in most places—and if it isn’t, it’s easy to do. SSH is also the only

network-based protocol that you can easily read from and write to. The other two network

protocols (HTTP and Git) are generally read-only, so even if you have them available for the

unwashed masses, you still need SSH for your own write commands. SSH is also an authenti-

cated network protocol; and because it’s ubiquitous, it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify URL like this:

Or you can not specify a protocol—Git assumes SSH if you aren’t explicit:

You can also not specify a user, and Git assumes the user you’re currently logged in as.

The Pros

The pros of using SSH are many. First, you basically have to use it if you want authenticated

write access to your repository over a network. Second, SSH is relatively easy to set up—SSH

daemons are commonplace, many network admins have experience with them, and many

OS distributions are set up with them or have tools to manage them. Next, access over SSH is

secure—all data transfer is encrypted and authenticated. Last, like the Git and Local protocols,

SSH is efficient, making the data as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repository over

it. People must have access to your machine over SSH to access it, even in a read-only capac-

ity, which doesn’t make SSH access conducive to open source projects. If you’re using it only

within your corporate network, SSH may be the only protocol you need to deal with. If you

want to allow anonymous read-only access to your projects, you’ll have to set up SSH for you

to push over but something else for others to pull over.

The Git Protocol

Next is the Git protocol. This is a special daemon that comes packaged with Git; it listens on

a dedicated port (9418) that provides a service similar to the SSH protocol, but with absolutely

no authentication. In order for a repository to be served over the Git protocol, you must cre-

ate the file—the daemon won’t serve a repository without that file in

it—but other than that there is no security. Either the Git repository is available for everyone to

clone or it isn’t. This means that there is generally no pushing over this protocol. You can

CHAPTER 4 N฀ G IT ON THE SERVER82

enable push access; but given the lack of authentication, if you turn on push access, anyone on

the Internet who finds your project’s URL could push to your project. Suffice it to say that this

is rare.

The Pros

The Git protocol is the fastest transfer protocol available. If you’re serving a lot of traffic for

a public project or serving a very large project that doesn’t require user authentication for read

access, it’s likely that you’ll want to set up a Git daemon to serve your project. It uses the same

data-transfer mechanism as the SSH protocol but without the encryption and authentication

overhead.

The Cons

The downside of the Git protocol is the lack of authentication. It’s generally undesirable for

the Git protocol to be the only access to your project. Generally, you’ll pair it with SSH access

for the few developers who have push (write) access and have everyone else use for

read-only access.

It’s also probably the most difficult protocol to set up. It must run its own daemon, which

is custom—you’ll look at setting one up in the “Gitosis” section of this chapter—and it requires

xinetd configuration or the like, which isn’t always a walk in the park. It also requires firewall

access to port 9418, which isn’t a standard port that corporate firewalls always allow. Behind

big corporate firewalls, this obscure port is commonly blocked.

The HTTP/S Protocol

Last you have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the simplic-

ity of setting it up. Basically, all you have to do is put the bare Git repository under your HTTP

document root and set up a specific post-receive hook, and you’re done (See Chapter 7 for

details on Git hooks). At that point, anyone who can access the web server under which you

put the repository can also clone your repository. To allow read access to your repository over

HTTP, do something like this:

That’s all. The post-update hook that comes with Git by default runs the appropriate

command (fo) to make HTTP fetching and cloning work properly.

This command is run when you push to this repository over SSH; then, other people can

clone via something like

In this particular case, you’re using the path that is common for Apache

setups, but you can use any static web server—just put the bare repository in its path. The Git

data is served as basic static files (see Chapter 9 for details about exactly how it’s served).

CHAPTER 4 N฀ G IT ON THE SERVER 83

It’s possible to make Git push over HTTP as well, although that technique isn’t as widely

used and requires you to set up complex WebDAV requirements. Because it’s rarely used,

I won’t cover it in this book. If you’re interested in using the HTTP-push protocols, you can

read about preparing a repository for this purpose at

xt. One nice thing about making Git push

over HTTP is that you can use any WebDAV server, without specific Git features; so, you can

use this functionality if your web-hosting provider supports WebDAV for writing updates to

your web site.

The Pros

The upside of using the HTTP protocol is that it’s easy to set up. Running the handful of

required commands gives you a simple way to give the world read access to your Git reposi-

tory. It takes only a few minutes to do. The HTTP protocol also isn’t very resource intensive

on your server. Because it generally uses a static HTTP server to serve all the data, a normal

Apache server can serve thousands of files per second on average—it’s difficult to overload

even a small server.

You can also serve your repositories read-only over HTTPS, which means you can encrypt

the content transfer; or you can go so far as to make the clients use specific signed SSL certifi-

cates. Generally, if you’re going to these lengths, it’s easier to use SSH public keys; but it may

be a better solution in your specific case to use signed SSL certificates or other HTTP-based

authentication methods for read-only access over HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate firewalls

are often set up to allow traffic through this port.

The Cons

The downside of serving your repository over HTTP is that it’s relatively inefficient for the

client. It generally takes a lot longer to clone or fetch from the repository, and you often have

a lot more network overhead and transfer volume over HTTP than with any of the other

network protocols. Because it’s not as intelligent about transferring only the data you need—

there is no dynamic work on the part of the server in these transactions—the HTTP protocol is

often referred to as a dumb protocol. For more information about the differences in efficiency

between the HTTP protocol and the other protocols, see Chapter 9.

Getting Git on a Server
In order to initially set up any Git server, you have to export an existing repository into a new

bare repository—a repository that doesn’t contain a working directory. This is generally

straightforward to do.

In order to clone your repository to create a new bare repository, you run the com-

mand with the option. By convention, bare repository directories end in , like so:

CHAPTER 4 N฀ G IT ON THE SERVER84

The output for this command is a little confusing. Because is basically a

and then a , you see some output from the part, which creates an empty

directory. The actual object transfer gives no output, but it does happen. You should now have

a copy of the Git directory data in your directory.

This is roughly equivalent to something like

There are a couple of minor differences in the configuration file; but for your purpose, this

is close to the same thing. It takes the Git repository by itself, without a working directory, and

creates a directory specifically for it alone.

Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server and

set up your protocols. Let’s say you’ve set up a server called that you have

SSH access to, and you want to store all your Git repositories under the directory.

You can set up your new repository by copying your bare repository over:

At this point, other users who have SSH access to the same server, which has read access

to the directory, can clone your repository by running

If a user SSHs into a server and has write access to the directory,

they also automatically have push access. Git automatically adds group write permissions to

a repository properly if you run the command with the option:

You see how easy it is to take a Git repository, create a bare version, and place it on

a server to which you and your collaborators have SSH access. Now you’re ready to collaborate

on the same project.

It’s important to note that this is literally all you need to do to run a useful Git server to

which several people have access—just add SSH-able accounts on a server, and stick a bare

repository somewhere that all those users have read and write access to. You’re ready to go—

nothing else is needed.

In the next few sections, you’ll see how to expand to more sophisticated setups. This

discussion will include not having to create user accounts for each user, adding public read

access to repositories, setting up web UIs, using the Gitosis tool, and more. However, keep in

mind that to collaborate with a couple of people on a private project, all you need is an SSH

server and a bare repository.

CHAPTER 4 N฀ G IT ON THE SERVER 85

Small Setups
If you’re a small outfit or are just trying out Git in your organization and have only a few devel-

opers, things can be simple for you. One of the most complicated aspects of setting up a Git

server is user management. If you want some repositories to be read-only to certain users and

read/write to others, access and permissions can be a bit difficult to arrange.

SSH Access

If you already have a server to which all your developers have SSH access, it’s generally easiest

to set up your first repository there, because you have to do almost no work (as I covered in the

last section). If you want more complex access control type permissions on your repositories,

you can handle them with the normal filesystem permissions of the operating system your

server runs.

If you want to place your repositories on a server that doesn’t have accounts for every-

one on your team whom you want to have write access, then you must set up SSH access for

them. I assume that if you have a server with which to do this, you already have an SSH server

installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to set up

accounts for everybody, which is straightforward but can be cumbersome. You may not want

to run and set temporary passwords for every user.

A second method is to create a single “git” user on the machine, ask every user who is to

have write access to send you an SSH public key, and add that key to the

 file of your new “git” user. At that point, everyone will be able to access that machine via

the “git” user. This doesn’t affect the commit data in any way—the SSH user you connect as

doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server or some

other centralized authentication source that you may already have set up. As long as each user

can get shell access on the machine, any SSH authentication mechanism you can think of

should work.

Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to provide

a public key, each user in your system must generate one if they don’t already have one. This

process is similar across all operating systems.

First, you should check to make sure you don’t already have a key. By default, a user’s SSH

keys are stored in that user’s directory. You can easily check to see if you have a key

already by going to that directory and listing the contents:

CHAPTER 4 N฀ G IT ON THE SERVER86

You’re looking for a pair of files named and , where the

is usually or . The file is your public key, and the other file is your private

key. If you don’t have these files (or you don’t even have a directory), you can create them

by running a program called en, which is provided with the SSH package on Linux/

Mac systems and comes with the MSysGit package on Windows:

First it confirms where you want to save the key (), and then it asks twice for

a passphrase, which you can leave empty if you don’t want to type a password when you use

the key.

Now, each user that does this has to send their public key to you or whoever is adminis-

trating the Git server (assuming you’re using an SSH server setup that requires public keys). All

they have to do is copy the contents of the file and e-mail it. The public keys look some-

thing like this:

For a more in-depth tutorial on creating an SSH key on multiple operating systems, see

the GitHub guide on SSH keys at ey.

Setting Up the Server

Let’s walk through setting up SSH access on the server side. In this example, you’ll use the

 method for authenticating your users. I also assume you’re running a stan-

dard Linux distribution like Ubuntu. First, you create a “git” user and a directory for that

user:

CHAPTER 4 N฀ G IT ON THE SERVER 87

Next, you need to add some developer SSH public keys to the file for that

user. Let’s assume you’ve received a few keys by e-mail and saved them to temporary files.

Again, the public keys look something like this:

You append them to your file:

Now, you can set up an empty repository for them by running with the

option, which initializes the repository without a working directory:

Then, John, Josie, or Jessica can push the first version of their project into that repository

by adding it as a remote and pushing up a branch. Note that someone must shell onto the

machine and create a bare repository every time you want to add a project. Let’s use

as the hostname of the server on which you’ve set up your “git” user and repository. If you’re

running it internally, and you set up DNS for to point to that server, then you can

use the commands pretty much as is:

At this point, the others can clone it down and push changes back up just as easily:

CHAPTER 4 N฀ G IT ON THE SERVER88

With this method, you can quickly get a read/write Git server up and running for a hand-

ful of developers.

As an extra precaution, you can easily restrict the “git” user to only doing Git activities

with a limited shell tool called that comes with Git. If you set this as your “git” user’s

login shell, then the “git” user can’t have normal shell access to your server. To use this, specify

 instead of or for your user’s login shell. To do so, you’ll likely have to edit

your file:

At the bottom, you should find a line that looks something like this:

Change to (or run to see where it’s

installed). The line should look something like this:

Now, the “git” user can only use the SSH connection to push and pull Git repositories and

can’t shell onto the machine. If you try, you’ll see a login rejection:

Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting an inter-

nal private project, you want to host an open source project. Or maybe you have a bunch of

automated build servers or continuous integration servers that change a lot, and you don’t

want to have to generate SSH keys all the time—you just want to add simple anonymous read

access.

Probably the simplest way for smaller setups is to run a static web server with its docu-

ment root where your Git repositories are, and then enable that post-update hook I mentioned

in the first section of this chapter. You’ll work from the previous example. Say you have your

repositories in the directory, and an Apache server is running on your machine.

Again, you can use any web server for this; but as an example, I’ll demonstrate some basic

Apache configurations that should give you an idea of what you might need.

First you need to enable the hook:

CHAPTER 4 N฀ G IT ON THE SERVER 89

If you’re using a version of Git earlier than 1.6, the command isn’t necessary—Git

started naming the hooks examples with the postfix only recently.

What does this post-update hook do? It looks basically like this:

This means that when you push to the server via SSH, Git runs this command to update

the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the docu-

ment root as the root directory of your Git projects. Here, I’m assuming that you have wildcard

DNS set up to send to whatever box you’re using to run all this:

You also need to set the Unix user group of the directories to so your

web server can read-access the repositories, because the Apache instance running the CGI

script will (by default) be running as that user:

When you restart Apache, you should be able to clone your repositories under that direc-

tory by specifying the URL for your project:

This way, you can set up HTTP-based read access to any of your projects for a fair number

of users in a few minutes. Another simple option for public unauthenticated access is to start

a Git daemon, although that requires you to daemonize the process—I’ll cover this option in

the next section, if you prefer that route.

CHAPTER 4 N฀ G IT ON THE SERVER90

GitWeb

Now that you have basic read/write and read-only access to your project, you may want to set

up a simple web-based visualizer. Git comes with a CGI script called GitWeb that is commonly

used for this. You can see GitWeb in use at sites like (see Figure 4-1).

Figure 4-1. The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes with

a command to fire up a temporary instance if you have a lightweight server on your system

like lighttpd or webrick. On Linux machines, lighttpd is often installed, so you may be able to

get it to run by typing git instaweb in your project directory. If you’re running a Mac, Leop-

ard comes preinstalled with Ruby, so webrick may be your best bet. To start with

a non-lighttpd handler, you can run it with the option.

That starts up an HTTPD server on port 1234 and then automatically starts a web browser

that opens on that page. It’s pretty easy on your part. When you’re done and want to shut

down the server, you can run the same command with the option:

CHAPTER 4 N฀ G IT ON THE SERVER 91

If you want to run the web interface on a server all the time for your team or for an open

source project you’re hosting, you’ll need to set up the CGI script to be served by your normal

web server. Some Linux distributions have a package that you may be able to install via

 or , so you may want to try that first.

I’ll walk through installing GitWeb manually very quickly. First, you need to get the Git

source code, which GitWeb comes with, and generate the custom CGI script:

Notice that you have to tell the command where to find your Git repositories with the

 variable. Now, you need to make Apache use CGI for that script, for which

you can add a VirtualHost:

Again, GitWeb can be served with any CGI-capable web server; if you prefer to use some-

thing else, it shouldn’t be difficult to set up. At this point, you should be able to visit

 to view your repositories online, and you can use to clone

and fetch your repositories over HTTP.

Gitosis
Keeping all users’ public keys in the file for access works well only for a while.

When you have hundreds of users, it’s much more of a pain to manage that process. You have

to shell onto the server each time, and there is no access control—everyone in the file has read

and write access to every project.

You may want to turn to a widely used software project called Gitosis. Gitosis is basically

a set of scripts that help you manage the file as well as implement some sim-

ple access controls. The really interesting part is that the UI for this tool for adding people and

determining access isn’t a web interface but a special Git repository. You set up the informa-

tion in that project; and when you push it, Gitosis reconfigures the server based on that, which

is cool.

CHAPTER 4 N฀ G IT ON THE SERVER92

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to use

a Linux server for it—these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools pack-

age, which Ubuntu provides as ls:

Next, you clone and install Gitosis from the project’s main site:

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to put its

repositories under , which is fine. But you have already set up your repositories in

, so instead of reconfiguring everything, you create a symlink:

Gitosis is going to manage your keys for you, so you need to remove the current file,

re-add the keys later, and let Gitosis control the file automatically. For now,

move the file out of the way:

You need to turn your shell back on for the “git” user, if you changed it to the

command. People still won’t be able to log in, but Gitosis will control that for you. So, change

this line in your file

back to this:

Now it’s time to initialize Gitosis. You do this by running the command with

your personal public key. If your public key isn’t on the server, you’ll have to copy it there:

This lets the user with that key modify the main Git repository that controls the Gitosis

setup. Next, you have to manually set the execute bit on the post-update script for your new

control repository.

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server as the user

for which you added the public key to initialize Gitosis. You should see something like this:

CHAPTER 4 N฀ G IT ON THE SERVER 93

That means Gitosis recognized you but shut you out because you’re not trying to do any

Git commands. So, do an actual Git command and clone the Gitosis control repository:

Now you have a directory named n, which has two major parts:

The file is the control file you use to specify users, repositories, and permis-

sions. The directory is where you store the public keys of all the users who have any sort

of access to your repositories—one file per user. The name of the file in (in the previous

example,) will be different for you—Gitosis takes that name from the description at

the end of the public key that was imported with the script.

If you look at the file, it should only specify information about the

gitosis-admin project that you just cloned:

It shows you that the “scott” user—the user with whose public key you initialized

Gitosis—is the only one who has access to the gitosis-admin project.

Now you can add a new project. You’ll add a new section called where you’ll

list the developers on your mobile team and projects that those developers need access to.

Because “scott” is the only user in the system right now, you add him as the only member

and create a new project called iphone_project to start on:

Whenever you make changes to the gitosis-admin project, you have to commit the

changes and push them back up to the server in order for them to take effect:

CHAPTER 4 N฀ G IT ON THE SERVER94

You can make your first push to the new iphone_project project by adding your server as

a remote to your local version of the project and pushing. You no longer have to manually cre-

ate a bare repository for new projects on the server—Gitosis creates them automatically when

it sees the first push:

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a colon

and then the name of the project—Gitosis finds it for you.

You want to work on this project with your friends, so you have to re-add their public keys. But

instead of appending them manually to the file on your server, you’ll add

them, one key per file, into the directory. How you name the keys determines how you refer

to the users in the file. Re-add the public keys for John, Josie, and Jessica:

Now you can add them all to your “mobile” team so they have read and write access to

iphone_project:

After you commit and push that change, all four users will be able to read from and write

to that project.

Gitosis has simple access controls as well. If you want John to have only read access to this

project, you can do this instead:

Now John can clone the project and get updates, but Gitosis won’t allow him to push back

up to the project. You can create as many of these groups as you want, each containing different

CHAPTER 4 N฀ G IT ON THE SERVER 95

users and projects. You can also specify another group as one of the members, to inherit all of its

members automatically.

If you have any issues, it may be useful to add under the sec-

tion. If you’ve lost push access by pushing a messed-up configuration, you can manually

fix the file on the server under —the file from which Gitosis reads

its info. A push to the project takes the file you just pushed up and sticks it

there. If you edit that file manually, it remains like that until the next successful push to the

gitosis-admin project.

Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the HTTP

protocol and start using the Git protocol. The main reason is speed. The Git protocol is far

more efficient and thus faster than the HTTP protocol, so using it will save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a server out-

side your firewall, it should only be used for projects that are publicly visible to the world. If

the server you’re running it on is inside your firewall, you might use it for projects that a large

number of people or computers (continuous integration or build servers) have read-only

access to, when you don’t want to have to add an SSH key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run this

command in a daemonized manner:

 allows the server to restart without waiting for old connections to time out,

the option allows people to clone projects without specifying the entire path,

and the path at the end tells the Git daemon where to look for repositories to export. If you’re

running a firewall, you also need to punch a hole in it at port 9418 on the box you’re setting this

up on.

You can daemonize this process a number of ways, depending on the operating system

you’re running. On an Ubuntu machine, you use an Upstart script. So, in the following file

you put this script:

For security reasons, you’re strongly encouraged to have this daemon run as a user

with read-only permissions to the repositories—you can easily do this by creating a new user

 and running the daemon as that user. For the sake of simplicity, run it as the same “git”

user that Gitosis is running as.

CHAPTER 4 N฀ G IT ON THE SERVER96

When you restart your machine, your Git daemon starts automatically and respawns if it

goes down. To get it running without having to reboot, you can run this:

On other systems, you may want to use xinetd, a script in your sysvinit system, or some-

thing else—as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthenticated Git

server-based access to. If you add a section for each repository, you can specify the ones from

which you want your Git daemon to allow reading. If you want to allow Git protocol access for

your iphone project, you add this to the end of the file:

When that is committed and pushed up, your running daemon should start serving

requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you have to run this

on each project you want the Git daemon to serve:

The presence of that file tells Git that it’s OK to serve this project without authentication.

Gitosis can also control which projects GitWeb shows. First, you need to add something

like the following to the file:

You can control which projects GitWeb lets users browse by adding or removing a

setting in the Gitosis configuration file. For instance, if you want the iphone project to show up

on GitWeb, you make the repo setting look like this:

Now, if you commit and push the project, GitWeb will automatically start showing your

iphone project.

Hosted Git
If you don’t want to go through all the work involved in setting up your own Git server, you

have several options for hosting your Git projects on an external dedicated hosting site. Doing

so offers a number of advantages: a hosting site is generally quick to set up and easy to start

projects on, and no server maintenance or monitoring is involved. Even if you set up and run

your own server internally, you may still want to use a public hosting site for your open source

code—it’s generally easier for the open source community to find and help you with.

CHAPTER 4 N฀ G IT ON THE SERVER 97

These days, you have a huge number of hosting options to choose from, each with differ-

ent advantages and disadvantages. To see an up-to-date list, check out the GitHosting page on

the main Git wiki:

Because I can’t cover all the hosting sites, and because I happen to work at one of them,

I’ll use this section to walk through setting up an account and creating a new project at

GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site, and it’s also one of the very few

that offers both public and private hosting options so you can keep your open source and pri-

vate commercial code in the same place. In fact, I used GitHub while writing this book.

GitHub

GitHub is slightly different than most code-hosting sites in the way that it namespaces proj-

ects. Instead of being primarily based on the project, GitHub is user centric. That means

when you host our grit project on GitHub, you won’t find it at but instead at

. There is no canonical version of any project, which allows a project

to move from one user to another seamlessly if the first author abandons the project.

GitHub is also a commercial company that charges for accounts that maintain private

repositories, but anyone can quickly get a free account to host as many open source projects

as they want. I’ll quickly go over how that is done.

Setting Up a User Account

The first thing you need to do is set up a free user account. If you visit the Pricing and Signup

page at and click the Sign Up button on the Free account (see

Figure 4-2), you’re taken to the signup page.

Figure 4-2. The GitHub plan page

CHAPTER 4 N฀ G IT ON THE SERVER98

Here you must choose a username that isn’t yet taken in the system and enter an e-mail

address that will be associated with the account and a password (see Figure 4-3).

Figure 4-3. The GitHub user signup form

If you have it available, this is a good time to add your public SSH key as well. I covered

how to generate a new key earlier, in the “Small Setups” section. Take the contents of the pub-

lic key of that pair, and paste it into the SSH Public Key text box. Clicking the “explain ssh keys”

link takes you to detailed instructions on how to do so on all major operating systems.

Clicking the “I agree, sign me up” button takes you to your new user dashboard (see

Figure 4-4).

Figure 4-4. The GitHub user dashboard

CHAPTER 4 N฀ G IT ON THE SERVER 99

Next, you can create a new repository.

Creating a New Repository

Start by clicking the “create a new one” link next to Your Repositories on the user dashboard.

You’re taken to the Create a New Repository form (see Figure 4-5).

Figure 4-5. Creating a new repository on GitHub

All you really have to do is provide a project name, but you can also add a description.

When that is done, click the Create Repository button. Now you have a new repository on

GitHub (see Figure 4-6).

Figure 4-6. GitHub project header information

CHAPTER 4 N฀ G IT ON THE SERVER100

Because you have no code there yet, GitHub shows you instructions for how to create

a brand-new project, push up an existing Git project, or import a project from a public Subver-

sion repository (see Figure 4-7).

Figure 4-7. Instructions for a new repository

These instructions are similar to what you’ve already gone over. To initialize a project if it

isn’t already a Git project, you use

When you have a Git repository locally, add GitHub as a remote and push up your master

branch:

Now your project is hosted on GitHub, and you can give the URL to anyone you want to

share your project with. In this case, it’s . You

can also see from the header on each of your project’s pages that you have two Git URLs (see

Figure 4-8).

CHAPTER 4 N฀ G IT ON THE SERVER 101

Figure 4-8. Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone the

project. Feel free to give out that URL and post it on your web site or what have you.

The Your Clone URL is a read/write SSH-based URL that you can read or write over only

if you connect with the SSH private key associated with the public key you uploaded for your

user. When other users visit this project page, they won’t see that URL—only the public one.

Importing from Subversion

If you have an existing public Subversion project that you want to import into Git, GitHub can

often do that for you. At the bottom of the instructions page is a link to a Subversion import.

If you click it, you see a form with information about the import process and a text box where

you can paste in the URL of your public Subversion project (see Figure 4-9).

Figure 4-9. Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t work for

you. In Chapter 7, you’ll learn how to do more complicated manual project imports.

CHAPTER 4 N฀ G IT ON THE SERVER102

Adding Collaborators

You’ll now add the rest of the team. If John, Josie, and Jessica all sign up for accounts on

GitHub, and you want to give them push access to your repository, you can add them to your

project as collaborators. Doing so allows pushes from their public keys to work.

Click the “edit” button in the project header or the Admin tab at the top of the project to

reach the Admin page of your GitHub project (see Figure 4-10).

Figure 4-10. GitHub administration page

To give another user write access to your project, click the “Add another collaborator”

link. A new text box appears, into which you can type a username. As you type, a helper pops

up, showing you possible username matches. When you find the correct user, click the Add

button to add that user as a collaborator on your project (see Figure 4-11).

Figure 4-11. Adding a collaborator to your project

When you’re finished adding collaborators, you should see a list of them in the Repository

Collaborators box (see Figure 4-12).

If you need to revoke access to individuals, you can click the “revoke” link, and their push

access will be removed. For future projects, you can also copy collaborator groups by copying

the permissions of an existing project.

CHAPTER 4 N฀ G IT ON THE SERVER 103

Figure 4-12. A list of collaborators on your project

Your Project

After you push your project up or have it imported from Subversion, you have a main project

page that looks something like Figure 4-13.

Figure 4-13. A GitHub main project page

CHAPTER 4 N฀ G IT ON THE SERVER104

When people visit your project, they see this page. It contains tabs to different aspects of

your projects. The Commits tab shows a list of commits in reverse chronological order, similar

to the output of the command. The Network tab shows all the people who have forked

your project and contributed back. The Downloads tab allows you to upload project binaries

and link to tarballs and zipped versions of any tagged points in your project. The Wiki tab pro-

vides a wiki where you can write documentation or other information about your project. The

Graphs tab has some contribution visualizations and statistics about your project. The main

Source tab that you land on shows your project’s main directory listing and automatically ren-

ders the file below it if you have one. This tab also shows a box with the latest commit

information.

Forking Projects

If you want to contribute to an existing project to which you don’t have push access, GitHub

encourages forking the project. When you land on a project page that looks interesting and

you want to hack on it a bit, you can click the “fork” button in the project header to have

GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give them

push access. People can fork a project and push to it, and the main project maintainer can pull

in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case,) and click the “fork”

button in the header (see Figure 4-14).

Figure 4-14. Get a writable copy of any repository by clicking the “fork” button.

After a few seconds, you’re taken to your new project page, which indicates that this proj-

ect is a fork of another one (see Figure 4-15).

CHAPTER 4 N฀ G IT ON THE SERVER 105

Figure 4-15. Your fork of a project

GitHub Summary

That’s all I’ll cover about GitHub, but it’s important to note how quickly you can do all this.

You can create an account, add a new project, and push to it in a matter of minutes. If your

project is open source, you also get a huge community of developers who now have visibility

into your project and may well fork it and help contribute to it. At the very least, this may be

a way to get up and running with Git and try it out quickly.

Summary
You have several options to get a remote Git repository up and running so that you can col-

laborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server within

your own firewall, but such a server generally requires a fair amount of your time to set up and

maintain. If you place your data on a hosted server, it’s easy to set up and maintain; however,

you have to be able to keep your code on someone else’s servers, and some organizations

don’t allow that.

It should be fairly straightforward to determine which solution or combination of solu-

tions is appropriate for you and your organization.

C H A P T E R 5

Distributed Git

Now that you have a remote Git repository set up as a point for all the developers to share

their code, and you’re familiar with basic Git commands in a local workflow, you’ll look at how

to utilize some of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a contribu-

tor and an integrator. That is, you’ll learn how to contribute code successfully to a project

and make it as easy on you and the project maintainer as possible, and also how to maintain

a project successfully with a number of developers contributing.

Distributed Workflows
Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git allows

you to be far more flexible in how developers collaborate on projects. In centralized systems,

every developer is a node working more or less equally on a central hub. In Git, however, every

developer is potentially both a node and a hub—that is, every developer can both contribute

code to other repositories and maintain a public repository on which others can base their

work and which they can contribute to. This opens a vast range of workflow possibilities for

your project and/or your team, so I’ll cover a few common paradigms that take advantage

of this flexibility. I’ll go over the strengths and possible weaknesses of each design; you can

choose a single one to use, or you can mix and match features from each.

Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized work-

flow. One central hub, or repository, can accept code, and everyone synchronizes their work

to it. A number of developers are nodes—consumers of that hub—and synchronize to that one

place (see Figure 5-1).

This means that if two developers clone from the hub and both make changes, the first

developer to push their changes back up can do so with no problems. The second developer

must merge in the first one’s work before pushing changes up, so as not to overwrite the first

developer’s changes. This concept is true in Git as it is in Subversion (or any CVCS), and this

model works perfectly in Git.

If you have a small team or are already comfortable with a centralized workflow in your

company or team, you can easily continue using that workflow with Git. Simply set up a single

repository, and give everyone on your team push access; Git won’t let users overwrite each

other. If one developer clones, makes changes, and then tries to push their changes while

107

CHAPTER 5 N฀ D ISTRIBUTED GIT108

another developer has pushed in the meantime, the server will reject that developer’s changes.

They will be told that they’re trying to push non-fast-forward changes and that they won’t be

able to do so until they fetch and merge.

This workflow is attractive to a lot of people because it’s a paradigm that many are familiar

and comfortable with.

Figure 5-1. Centralized workflow

Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it’s possible to have a workflow

where each developer has write access to their own public repository and read access to every-

one else’s. This scenario often includes a canonical repository that represents the “official”

project. To contribute to that project, you create your own public clone of the project and

push your changes to it. Then, you can send a request to the maintainer of the main project

to pull in your changes. They can add your repository as a remote, test your changes locally,

merge them into their branch, and push back to their repository. The process works as follows

(see Figure 5-2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.

5. The maintainer adds the contributor’s repo as a remote and merges locally.

6. The maintainer pushes merged changes to the main repository.

This is a very common workflow with sites like GitHub, where it’s easy to fork a project

and push your changes into your fork for everyone to see. One of the main advantages of this

approach is that you can continue to work, and the maintainer of the main repository can pull

in your changes at any time. Contributors don’t have to wait for the project to incorporate

their changes—each party can work at their own pace.

CHAPTER 5 N฀ D ISTRIBUTED GIT 109

Figure 5-2. Integration-manager workflow

Dictator and Lieutenants Workflow

This is a variant of a multiple-repository workflow. It’s generally used by huge projects with

hundreds of collaborators; one famous example is the Linux kernel. Various integration

managers are in charge of certain parts of the repository; they’re called lieutenants. All the

lieutenants have one integration manager known as the benevolent dictator. The benevolent

dictator’s repository serves as the reference repository from which all the collaborators need to

pull. The process works like this (see Figure 5-3):

1. Regular developers work on their topic branch and rebase their work on top of .

The branch is that of the dictator.

2. Lieutenants merge the developers’ topic branches into their branch.

3. The dictator merges the lieutenants’ branches into the dictator’s branch.

4. The dictator pushes their to the reference repository so the other developers can

rebase on it.

This kind of workflow isn’t common but can be useful in very big projects or in highly

hierarchical environments, because it allows the project leader (the dictator) to delegate much

of the work and collect large subsets of code at multiple points before integrating them.

These are some commonly used workflows that are possible with a distributed system like

Git, but you can see that many variations are possible to suit your particular real-world work-

flow. Now that you can (I hope) determine which workflow combination may work for you,

I’ll cover some more specific examples of how to accomplish the main roles that make up the

different flows.

CHAPTER 5 N฀ D ISTRIBUTED GIT110

Figure 5-3. Benevolent dictator workflow

Contributing to a Project
You know what the different workflows are, and you should have a pretty good grasp of funda-

mental Git usage. In this section, you’ll learn about a few common patterns for contributing to

a project.

The main difficulty with describing this process is that there are a huge number of varia-

tions on how it’s done. Because Git is very flexible, people can and do work together in many

ways, and it’s problematic to describe how you should contribute to a project—every project

is a bit different. Some of the variables involved are active contributor size, chosen workflow,

your commit access, and possibly the external contribution method.

The first variable is active contributor size. How many users are actively contributing

code to this project, and how often? In many instances, you’ll have two or three developers

with a few commits a day, or possibly less for somewhat dormant projects. For really large

companies or projects, the number of developers could be in the thousands, with dozens or

even hundreds of patches coming in each day. This is important because with more and more

developers, you run into more issues with making sure your code applies cleanly or can be

easily merged. Changes you submit may be rendered obsolete or severely broken by work that

is merged in while you were working or while your changes were waiting to be approved or

applied. How can you keep your code consistently up to date and your patches valid?

The next variable is the workflow in use for the project. Is it centralized, with each devel-

oper having equal write access to the main codeline? Does the project have a maintainer

or integration manager who checks all the patches? Are all the patches peer-reviewed and

approved? Are you involved in that process? Is a lieutenant system in place, and do you have to

submit your work to them first?

CHAPTER 5 N฀ D ISTRIBUTED GIT 111

The next issue is your commit access. The workflow required in order to contribute to

a project is much different if you have write access to the project than if you don’t. If you don’t

have write access, how does the project prefer to accept contributed work? Does it even have

a policy? How much work are you contributing at a time? How often do you contribute?

All these questions can affect how you contribute effectively to a project and what work-

flows are preferred or available to you. I’ll cover aspects of each of these in a series of use cases,

moving from simple to more complex; you should be able to construct the specific workflows

you need in practice from these examples.

Commit Guidelines

Before you start looking at the specific use cases, here’s a quick note about commit mes-

sages. Having a good guideline for creating commits and sticking to it makes working with Git

and collaborating with others a lot easier. The Git project provides a document that lays out

a number of good tips for creating commits from which to submit patches—you can read it in

the Git source code in the file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to check

for this—before you commit, run , which identifies possible whitespace

errors and lists them for you. Here is an example, where I’ve replaced a red terminal color

with Xs:

If you run that command before committing, you can tell if you’re about to commit

whitespace issues that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to make your

changes digestible—don’t code for a whole weekend on five different issues and then submit

them all as one massive commit on Monday. Even if you don’t commit during the weekend,

use the staging area on Monday to split your work into at least one commit per issue, with

a useful message per commit. If some of the changes modify the same file, try to use

 to partially stage files (covered in detail in Chapter 6). The project snapshot at the tip

of the branch is identical whether you do one commit or five, as long as all the changes are

added at some point, so try to make things easier on your fellow developers when they have to

review your changes. This approach also makes it easier to pull out or revert one of the chang-

esets if you need to later. Chapter 6 describes a number of useful Git tricks for rewriting history

and interactively staging files—you can use these tools to help craft a clean and understand-

able history.

The last thing to keep in mind is the commit message. Getting in the habit of creating

quality commit messages makes using and collaborating with Git a lot easier. As a general rule,

your messages should start with a single line that’s no more than about 50 characters and that

describes the changeset concisely, followed by a blank line, followed by a more detailed expla-

nation. The Git project requires that the more detailed explanation include your motivation for

CHAPTER 5 N฀ D ISTRIBUTED GIT112

the change and contrast its implementation with previous behavior—this is a good guideline

to follow. It’s also a good idea to use the imperative present tense in these messages. In other

words, use commands. Instead of “I added tests for” or “Adding tests for,” use “Add tests for.”

Here is a template originally written by Tim Pope at tpope.net:

If all your commit messages look like this, things will be a lot easier for you and the devel-

opers you work with. The Git project has well-formatted commit messages—I encourage you

to run there to see what a nicely formatted project-commit history looks

like.

In the following examples, and throughout most of this book, for the sake of brevity I don’t

format messages nicely like this; instead, I use the option to . Do as I say, not as

I do.

Private Small Team

The simplest setup you’re likely to encounter is a private project with one or two other devel-

opers. By private, I mean closed source—not read-accessible to the outside world. You and the

other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when using

Subversion or another centralized system. You still get the advantages of things like offline com-

mitting and vastly simpler branching and merging, but the workflow can be very similar; the

main difference is that merges happen client-side rather than on the server at commit time.

Let’s see what it might look like when two developers start to work together with a shared

repository. The first developer, John, clones the repository, makes a change, and commits

locally. (I’m replacing the protocol messages with … in these examples to shorten them

somewhat.)

CHAPTER 5 N฀ D ISTRIBUTED GIT 113

The second developer, Jessica, does the same thing—clones the repository and commits

a change:

Now, Jessica pushes her work up to the server:

John tries to push his change up, too:

John isn’t allowed to push because Jessica has pushed in the meantime. This is especially

important to understand if you’re used to Subversion, because you’ll notice that the two devel-

opers didn’t edit the same file. Although Subversion automatically does such a merge on the

server if different files are edited, in Git you must merge the commits locally. John has to fetch

Jessica’s changes and merge them in before he will be allowed to push:

CHAPTER 5 N฀ D ISTRIBUTED GIT114

At this point, John’s local repository looks something like Figure 5-4.

Figure 5-4. John’s initial repository

John has a reference to the changes Jessica pushed up, but he has to merge them into his

own work before he is allowed to push:

The merge goes smoothly—John’s commit history now looks like Figure 5-5.

Figure 5-5. John’s repository after merging

CHAPTER 5 N฀ D ISTRIBUTED GIT 115

Now, John can test his code to make sure it still works properly, and then he can push his

new merged work up to the server:

Finally, John’s commit history looks like Figure 5-6.

Figure 5-6. John’s history after pushing to the server

In the meantime, Jessica has been working on a topic branch. She’s created a topic branch

called and done three commits on that branch. She hasn’t fetched John’s changes yet,

so her commit history looks like Figure 5-7.

Figure 5-7. Jessica’s initial commit history

Jessica wants to sync up with John, so she fetches:

CHAPTER 5 N฀ D ISTRIBUTED GIT116

That pulls down the work John has pushed up in the meantime. Jessica’s history now

looks like Figure 5-8.

Figure 5-8. Jessica’s history after fetching John’s changes

Jessica thinks her topic branch is ready, but she wants to know what she has to merge her

work into so that she can push. She runs to find out:

Now, Jessica can merge her topic work into her branch, merge John’s work

() into her branch, and then push back to the server again. First, she

switches back to her branch to integrate all this work:

She can merge either or first—they’re both upstream, so the order

doesn’t matter. The end snapshot should be identical no matter which order she chooses; only

the history will be slightly different. She chooses to merge in first:

No problems occur; as you can see, it was a simple fast-forward. Now Jessica merges in

John’s work ():

CHAPTER 5 N฀ D ISTRIBUTED GIT 117

Everything merges cleanly, and Jessica’s history looks like Figure 5-9.

Figure 5-9. Jessica’s history after merging John’s changes

Now is reachable from Jessica’s branch, so she should be able to

successfully push (assuming John hasn’t pushed again in the meantime):

Each developer has committed a few times and merged each other’s work successfully;

see Figure 5-10.

Figure 5-10. Jessica’s history after pushing all changes back to the server

CHAPTER 5 N฀ D ISTRIBUTED GIT118

That is one of the simplest workflows. You work for a while, generally in a topic branch,

and merge into your branch when it’s ready to be integrated. When you want to share

that work, you merge it into your own branch, then fetch and merge if

it has changed, and finally push to the branch on the server. The general sequence is

something like that shown in Figure 5-11.

Figure 5-11. General sequence of events for a simple multiple-developer Git workflow

Private Managed Team

In this next scenario, you’ll look at contributor roles in a larger private group. You’ll learn

how to work in an environment where small groups collaborate on features and then those

team-based contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jessica and Josie

are working on a second. In this case, the company is using a type of integration-manager

workflow where the work of the individual groups is integrated only by certain engineers, and

the branch of the main repository can be updated only by those engineers. In this sce-

nario, all work is done in team-based branches and pulled together by the integrators later.

CHAPTER 5 N฀ D ISTRIBUTED GIT 119

Let’s follow Jessica’s workflow as she works on her two features, collaborating in parallel

with two different developers in this environment. Assuming she already has her repository

cloned, she decides to work on first. She creates a new branch for the feature and

does some work on it there:

At this point, she needs to share her work with John, so she pushes her branch

commits up to the server. Jessica doesn’t have push access to the branch—only the

integrators do—so she has to push to another branch in order to collaborate with John:

Jessica e-mails John to tell him that she’s pushed some work into a branch named

 and he can look at it now. While she waits for feedback from John, Jessica decides

to start working on featureB with Josie. To begin, she starts a new feature branch, basing it off

the server’s branch:

Now, Jessica makes a couple of commits on the branch:

CHAPTER 5 N฀ D ISTRIBUTED GIT120

Jessica’s repository looks like Figure 5-12.

Figure 5-12. Jessica’s initial commit history

She’s ready to push up her work, but she gets an e-mail from Josie that a branch with

some initial work on it was already pushed to the server as . Jessica first needs to

merge those changes in with her own before she can push to the server. She can then fetch

Josie’s changes down with :

Jessica can now merge this into the work she did with :

There is a bit of a problem—she needs to push the merged work in her branch to

the branch on the server. She can do so by specifying the local branch followed by

a colon () followed by the remote branch to the command:

CHAPTER 5 N฀ D ISTRIBUTED GIT 121

This is called a refspec. See Chapter 9 for a more detailed discussion of Git refspecs and

different things you can do with them.

Next, John e-mails Jessica to say he’s pushed some changes to the branch and

ask her to verify them. She runs a to pull down those changes:

Then, she can see what has been changed with :

Finally, she merges John’s work into her own branch:

Jessica wants to tweak something, so she commits again and then pushes this back up to

the server:

CHAPTER 5 N฀ D ISTRIBUTED GIT122

Jessica’s commit history now looks something like Figure 5-13.

Figure 5-13. Jessica’s history after committing on a feature branch

Jessica, Josie, and John inform the integrators that the and branches

on the server are ready for integration into the mainline. After they integrate these branches

into the mainline, a fetch will bring down the new merge commits, making the commit history

look like Figure 5-14.

Figure 5-14. Jessica’s history after merging both her topic branches

CHAPTER 5 N฀ D ISTRIBUTED GIT 123

Many groups switch to Git because of this ability to have multiple teams working in paral-

lel, merging the different lines of work late in the process. The ability of smaller subgroups of

a team to collaborate via remote branches without necessarily having to involve or impede the

entire team is a huge benefit of Git. The sequence for the workflow you saw here is something

like Figure 5-15.

Figure 5-15. Basic sequence of this managed-team workflow

CHAPTER 5 N฀ D ISTRIBUTED GIT124

Public Small Project

Contributing to public projects is a bit different. Because you don’t have the permissions to

directly update branches on the project, you have to get the work to the maintainers some

other way. This first example describes contributing via forking on Git hosts that support easy

forking. The repo.or.cz and GitHub hosting sites both support this, and many project main-

tainers expect this style of contribution. The next section deals with projects that prefer to

accept contributed patches via e-mail.

First, you’ll probably want to clone the main repository, create a topic branch for the

patch or patch series you’re planning to contribute, and do your work there. The sequence

looks basically like this:

You may want to use to squash your work down to a single commit, or rearrange

the work in the commits to make the patch easier for the maintainer to review—see Chapter 6

for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the maintain-

ers, go to the original project page and click the Fork button, creating your own writable fork of

the project. You then need to add in this new repository URL as a second remote, in this case

named :

You need to push your work up to it. It’s easiest to push the remote branch you’re working

on up to your repository, rather than merging into your branch and pushing that up.

The reason is that if the work isn’t accepted or is cherry picked, you don’t have to rewind your

 branch. If the maintainers merge, rebase, or cherry-pick your work, you’ll eventually

get it back via pulling from their repository anyhow:

When your work has been pushed up to your fork, you need to notify the maintainer. This

is often called a pull request, and you can either generate it via the website—GitHub has a “pull

request” button that automatically messages the maintainer—or run the

command and e-mail the output to the project maintainer manually.

The command takes the base branch into which you want your topic branch

pulled and the Git repository URL you want them to pull from, and outputs a summary of all

the changes you’re asking to be pulled in. For instance, if Jessica wants to send John a pull

request, and she’s done two commits on the topic branch she just pushed up, she can run this:

CHAPTER 5 N฀ D ISTRIBUTED GIT 125

The output can be sent to the maintainer—it tells them where the work was branched

from, summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a branch like

 always track and to do your work in topic branches that you can easily dis-

card if they’re rejected. Having work themes isolated into topic branches also makes it easier for

you to rebase your work if the tip of the main repository has moved in the meantime and your

commits no longer apply cleanly. For example, if you want to submit a second topic of work to

the project, don’t continue working on the topic branch you just pushed up—start over from the

main repository’s branch:

Now, each of your topics is contained within a silo—similar to a patch queue—that you

can rewrite, rebase, and modify without the topics interfering or interdepending on each

other, as in Figure 5-16.

Figure 5-16. Initial commit history with work

CHAPTER 5 N฀ D ISTRIBUTED GIT126

Let’s say the project maintainer has pulled in a bunch of other patches and tried your first

branch, but it no longer cleanly merges. In this case, you can try to rebase that branch on top

of , resolve the conflicts for the maintainer, and then resubmit your changes:

This rewrites your history to now look like Figure 5-17.

Figure 5-17. Commit history after work

Because you rebased the branch, you have to specify the to your command

in order to be able to replace the branch on the server with a commit that isn’t

a descendant of it. An alternative would be to push this new work to a different branch on the

server (perhaps called).

Let’s look at one more possible scenario: the maintainer has looked at work in your second

branch and likes the concept, but would like you to change an implementation detail. You’ll also

take this opportunity to move the work to be based off the project’s current branch. You

start a new branch based off the current branch, squash the changes

there, resolve any conflicts, make the implementation change, and then push that up as a new

branch:

The option takes all the work on the merged branch and squashes it into one

non-merge commit on top of the branch you’re on. The option tells Git not to

automatically record a commit. This allows you to introduce all the changes from another

branch and then make more changes before recording the new commit.

CHAPTER 5 N฀ D ISTRIBUTED GIT 127

Now you can send the maintainer a message that you’ve made the requested changes and

they can find those changes in your branch (see Figure 5-18).

Figure 5-18. Commit history after work

Public Large Project

Many larger projects have established procedures for accepting patches—you’ll need to check

the specific rules for each project, because they will differ. However, many larger public proj-

ects accept patches via a developer mailing list, so I’ll go over an example of that now.

The workflow is similar to the previous use case—you create topic branches for each

patch series you work on. The difference is how you submit them to the project. Instead of

forking the project and pushing to your own writable repository, you generate e-mail versions

of each commit series and e-mail them to the developer mailing list:

Now you have two commits that you want to send to the mailing list. You use

 to generate the mbox-formatted files that you can e-mail to the list—it turns

each commit into an e-mail message with the first line of the commit message as the subject

and the rest of the message plus the patch that the commit introduces as the body. The nice

thing about this is that applying a patch from an e-mail generated with preserves

all the commit information properly, as you’ll see more of in the next section when you apply

these commits:

CHAPTER 5 N฀ D ISTRIBUTED GIT128

The command prints out the names of the patch files it creates. The

switch tells Git to look for renames. The files end up looking like this:

You can also edit these patch files to add more information for the e-mail list that you

don’t want to show up in the commit message. If you add text between the line and the

beginning of the patch (the line), then developers can read it; but applying

the patch excludes it.

To e-mail this to a mailing list, you can either paste the file into your e-mail program or

send it via a command-line program. Pasting the text often causes formatting issues, especially

with “smarter” clients that don’t preserve newlines and other whitespace appropriately. Luck-

ily, Git provides a tool to help you send properly formatted patches via IMAP, which may be

easier for you. I’ll demonstrate how to send a patch via Gmail, which happens to be the e-mail

agent I use; you can read detailed instructions for a number of mail programs at the end of the

aforementioned file in the Git source code.

First, you need to set up the section in your file. You can set each value

separately with a series of commands, or you can add them manually; but in the

end, your file should look something like this:

CHAPTER 5 N฀ D ISTRIBUTED GIT 129

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary, and the

host value will be instead of .

When that is set up, you can use to place the patch series in the

folder of the specified IMAP server:

Then, Git spits out a bunch of log information looking something like this for each patch

you’re sending:

At this point, you should be able to go to your folder, change the To field to the

mailing list you’re sending the patch to, possibly CC the maintainer or person responsible for

that section, and send it off.

Summary

This section has covered a number of common workflows for dealing with several very dif-

ferent types of Git projects you’re likely to encounter and introduced a couple of new tools to

help you manage this process. Next, you’ll see how to work the other side of the coin: main-

taining a Git project. You’ll learn how to be a benevolent dictator or integration manager.

CHAPTER 5 N฀ D ISTRIBUTED GIT130

Maintaining a Project
In addition to knowing how to effectively contribute to a project, you’ll likely need to know

how to maintain one. This can consist of accepting and applying patches generated via

 and e-mailed to you, or integrating changes in remote branches for repositories

you’ve added as remotes to your project. Whether you maintain a canonical repository or want

to help by verifying or approving patches, you need to know how to accept work in a way that

is clearest for other contributors and sustainable by you over the long run.

Working in Topic Branches

When you’re thinking of integrating new work, it’s generally a good idea to try it out in a topic

branch—a temporary branch specifically made to try out that new work. This way, it’s easy

to tweak a patch individually and leave it if it’s not working until you have time to come back

to it. If you create a simple branch name based on the theme of the work you’re going to try,

such as or something similarly descriptive, you can easily remember it if you

have to abandon it for a while and come back later. The maintainer of the Git project tends to

namespace these branches as well—such as , where is short for the person

who contributed the work.

As you’ll remember, you can create the branch based off your branch like this:

Or, if you want to also switch to it immediately, you can use the option:

Now you’re ready to add your contributed work into this topic branch and determine if

you want to merge it into your longer-term branches.

Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need to

apply the patch in your topic branch to evaluate it. There are two ways to apply an e-mailed

patch: with or with .

Applying a Patch with apply

If you received the patch from someone who generated it with the or a Unix

command, you can apply it with the command. Assuming you saved the patch at

ch, you can apply the patch like this:

This modifies the files in your working directory. It’s almost identical to running a

 command to apply the patch, although it’s more paranoid and accepts fewer fuzzy

matches then . It also handles file adds, deletes, and renames if they’re described in the

 format, which won’t do. Finally, is an “apply all or abort all” model

where either everything is applied or nothing is, whereas can partially apply patchfiles,

leaving your working directory in a weird state. is over all much more paranoid

CHAPTER 5 N฀ D ISTRIBUTED GIT 131

than . It won’t create a commit for you—after running it, you must stage and commit the

changes introduced manually.

You can also use to see if a patch applies cleanly before you try actually apply-

ing it—you can run with the patch:

If there is no output, then the patch should apply cleanly. This command also exits with

a non-zero status if the check fails, so you can use it in scripts if you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the command to

generate their patch, then your job is easier because the patch contains author information

and a commit message for you. If you can, encourage your contributors to use

instead of to generate patches for you. You should only have to use for legacy

patches and things like that.

To apply a patch generated by ch, you use . Technically, is built

to read an mbox file, which is a simple, plain-text format for storing one or more e-mail mes-

sages in one text file. It looks something like this:

This is the beginning of the output of the command that you saw in the pre-

vious section. This is also a valid mbox e-mail format. If someone has e-mailed you the patch

properly using il, and you download that into an mbox format, then you can

point to that mbox file, and it will start applying all the patches it sees. If you run a mail

client that can save several e-mails out in mbox format, you can save entire patch series into

a file and then use to apply them one at a time.

However, if someone uploaded a patch file generated via to a ticketing sys-

tem or something similar, you can save the file locally and then pass that file saved on your

disk to to apply it:

You can see that it applied cleanly and automatically created the new commit for you.

The author information is taken from the e-mail’s From and Date headers, and the message of

the commit is taken from the Subject and body (before the patch) of the e-mail. For example,

if this patch was applied from the mbox example I just showed, the commit generated would

look something like this:

CHAPTER 5 N฀ D ISTRIBUTED GIT132

The Commit information indicates the person who applied the patch and the time it was

applied. The Author information is the individual who originally created the patch and when it

was originally created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has

diverged too far from the branch the patch was built from, or the patch depends on another

patch you haven’t applied yet. In that case, the process will fail and ask you what you

want to do:

This command puts conflict markers in any files it has issues with, much like a conflicted

merge or rebase operation. You solve this issue much the same way—edit the file to resolve the

conflict, stage the new file, and then run to continue to the next patch:

If you want Git to try a bit more intelligently to resolve the conflict, you can pass a

option to it, which makes Git attempt a three-way merge. This option isn’t on by default

because it doesn’t work if the commit the patch says it was based on isn’t in your repository. If

you do have that commit—if the patch was based on a public commit—then the option is

generally much smarter about applying a conflicting patch:

CHAPTER 5 N฀ D ISTRIBUTED GIT 133

In this case, I was trying to apply a patch I had already applied. Without the option, it

looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the command

in interactive mode, which stops at each patch it finds and asks if you want to apply it:

This is nice if you have a number of patches saved, because you can view the patch first if

you don’t remember what it is, or not apply the patch if you’ve already done so.

When all the patches for your topic are applied and committed into your branch, you can

choose whether and how to integrate them into a longer-running branch.

Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a number

of changes into it, and then sent you the URL to the repository and the name of the remote

branch the changes are in, you can add them as a remote and do merges locally.

For instance, if Jessica sends you an e-mail saying that she has a great new feature in the

 branch of her repository, you can test it by adding the remote and checking out

that branch locally:

If she e-mails you again later with another branch containing another great feature, you

can fetch and check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only has a single

patch to contribute once in a while, then accepting it over e-mail may be less time consum-

ing than requiring everyone to run their own server and having to continually add and remove

remotes to get a few patches. You’re also unlikely to want to have hundreds of remotes, each for

someone who contributes only a patch or two. However, scripts and hosted services may make

this easier—it depends largely on how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as well.

Although you may have legitimate merge issues, you know where in your history their work is

based; a proper three-way merge is the default rather than having to supply a and hope the

patch was generated off a public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in this

way, you can provide the URL of the remote repository to the command. This does

a one-time pull and doesn’t save the URL as a remote reference:

CHAPTER 5 N฀ D ISTRIBUTED GIT134

Determining What Is Introduced

Now you have a topic branch that contains contributed work. At this point, you can determine

what you’d like to do with it. This section revisits a couple of commands so you can see how

you can use them to review exactly what you’ll be introducing if you merge this into your main

branch.

It’s often helpful to get a review of all the commits that are in this branch but that aren’t in

your branch. You can exclude commits in the branch by adding the option

before the branch name. For example, if your contributor sends you two patches and you cre-

ate a branch called and applied those patches there, you can run this:

To see what changes each commit introduces, remember that you can pass the option

to and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with

another branch, you may have to use a weird trick to get the correct results. You may think to

run this:

This command gives you a diff, but it may be misleading. If your branch has moved

forward since you created the topic branch from it, then you’ll get seemingly strange results.

This happens because Git directly compares the snapshots of the last commit of the topic

branch you’re on and the snapshot of the last commit on the branch. For example, if

you’ve added a line in a file on the branch, a direct comparison of the snapshots will

look like the topic branch is going to remove that line.

If is a direct ancestor of your topic branch, this isn’t a problem; but if the two his-

tories have diverged, the diff will look like you’re adding all the new stuff in your topic branch

and removing everything new to the branch.

What you really want to see are the changes added to the topic branch—the work you’ll

introduce if you merge this branch with . You do that by having Git compare the last

commit on your topic branch with the first common ancestor it has with the branch.

Technically, you can do that by explicitly figuring out the common ancestor and then run-

ning your diff on it:

CHAPTER 5 N฀ D ISTRIBUTED GIT 135

However, that isn’t convenient, so Git provides another shorthand for doing the same

thing: the triple-dot syntax. In the context of the command, you can put three periods

after another branch to do a diff between the last commit of the branch you’re on and its com-

mon ancestor with another branch:

This command shows you only the work your topic branch has introduced since its com-

mon ancestor with . That is a very useful syntax to remember.

Integrating Contributed Work

When all the work in your topic branch is ready to be integrated into a more mainline branch,

the question is how to do it. Furthermore, what overall workflow do you want to use to main-

tain your project? You have a number of choices, so I’ll cover a few of them.

Merging Workflows

One simple workflow merges your work into your branch. In this scenario, you have

a branch that contains basically stable code. When you have work in a topic branch

that you’ve done or that someone has contributed and you’ve verified, you merge it into your

 branch, delete the topic branch, and then continue the process. If you have a repository

that looks like Figure 5-19, with work in two branches named and , and

you merge first and then next, your history will end up looking like

Figure 5-20.

Figure 5-19. History with several topic branches

CHAPTER 5 N฀ D ISTRIBUTED GIT136

Figure 5-20. After a topic branch merge

That is probably the simplest workflow, but it’s problematic if you’re dealing with larger

repositories or projects.

If you have more developers or a larger project, you’ll probably want to use at least

a two-phase merge cycle. In this scenario, you have two long-running branches,

and , in which you determine that is updated only when a very stable release

is cut and all new code is integrated into the branch. You regularly push both of

these branches to the public repository. Each time you have a new topic branch to merge

in (Figure 5-21), you merge it into (Figure 5-22); then, when you tag a release, you

fast-forward to wherever the now-stable branch is (Figure 5-23).

Figure 5-21. Before a topic branch merge

CHAPTER 5 N฀ D ISTRIBUTED GIT 137

Figure 5-22. After a topic branch merge

Figure 5-23. After a topic branch release

This way, when people clone your project’s repository, they can either check out to

build the latest stable version and keep up to date on that easily, or they can check out ,

which is the more cutting-edge stuff.

You can also continue this concept, having an integrate branch where all the work

is merged together. Then, when the codebase on that branch is stable and passes tests,

you merge it into a branch; and when that has proven itself stable for a while, you

fast-forward your branch.

Large-Merging Workflows

The Git project has four long-running branches: , , and (proposed updates) for

new work, and for maintenance backports. When new work is introduced by contribu-

tors, it’s collected into topic branches in the maintainer’s repository in a manner similar to

what I’ve described (see Figure 5-24). At this point, the topics are evaluated to determine

whether they’re safe and ready for consumption or whether they need more work. If they’re

safe, they’re merged into , and that branch is pushed up so everyone can try the topics

integrated together.

CHAPTER 5 N฀ D ISTRIBUTED GIT138

Figure 5-24. Managing a complex series of parallel contributed topic branches

If the topics still need work, they’re merged into instead. When it’s determined that

they’re totally stable, the topics are re-merged into and are then rebuilt from the topics

that were in but didn’t yet graduate to . This means almost always moves

forward, is rebased occasionally, and is rebased even more often (see Figure 5-25).

Figure 5-25. Merging contributed topic branches into long-term integration branches

CHAPTER 5 N฀ D ISTRIBUTED GIT 139

When a topic branch has finally been merged into , it’s removed from the reposi-

tory. The Git project also has a branch that is forked off from the last release to provide

backported patches in case a maintenance release is required. Thus, when you clone the Git

repository, you have four branches that you can check out to evaluate the project in different

stages of development, depending on how cutting edge you want to be or how you want to

contribute; and the maintainer has a structured workflow to help them vet new contributions.

Rebasing and Cherry- Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their

branch, rather than merging it in, to keep a mostly linear history. When you have work in a topic

branch and have determined that you want to integrate it, you move to that branch and run the

 command to rebuild the changes on top of your current (or , and so on)

branch. If that works well, you can fast-forward your branch, and you’ll end up with a lin-

ear project history.

The other way to move introduced work from one branch to another is to cherry-pick it.

A cherry-pick in Git is like a rebase for a single commit. It takes the patch that was introduced

in a commit and tries to reapply it on the branch you’re currently on. This is useful if you have

a number of commits on a topic branch and you want to integrate only one of them, or if you

only have one commit on a topic branch and you’d prefer to cherry-pick it rather than run

. For example, suppose you have a project that looks like Figure 5-26.

Figure 5-26. Example history before a cherry-pick

If you want to pull commit into your branch, you can run

This pulls the same change introduced in , but you get a new commit SHA-1 value,

because the date applied is different. Your history looks like Figure 5-27.

CHAPTER 5 N฀ D ISTRIBUTED GIT140

Figure 5-27. History after cherry-picking a commit on a topic branch

Now you can remove your topic branch and drop the commits you didn’t want to pull in.

Tagging Your Releases

When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-create

that release at any point going forward. You can create a new tag as I discussed in Chapter 2. If

you decide to sign the tag as the maintainer, the tagging may look something like this:

If you do sign your tags, you may have the problem of distributing the public PGP key

used to sign your tags. The maintainer of the Git project has solved this issue by including their

public key as a blob in the repository and then adding a tag that points directly to that content.

To do this, you can figure out which key you want by running s:

Then, you can directly import the key into the Git database by exporting it and piping that

through ct, which writes a new blob with those contents into Git and gives you

back the SHA-1 of the blob:

Now that you have the contents of your key in Git, you can create a tag that points directly

to it by specifying the new SHA-1 value that the command gave you:

CHAPTER 5 N฀ D ISTRIBUTED GIT 141

If you run gs, the maintainer-pgp-pub tag will be shared with everyone. If

anyone wants to verify a tag, they can directly import your PGP key by pulling the blob directly

out of the database and importing it into GPG:

They can use that key to verify all your signed tags. Also, if you include instructions in the

tag message, running will let you give the end user more specific instructions

about tag verification.

Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like ‘v123’ or the equivalent to go

with each commit, if you want to have a human-readable name to go with a commit, you can

run on that commit. Git gives you the name of the nearest tag with the number

of commits on top of that tag and a partial SHA-1 value of the commit you’re describing:

This way, you can export a snapshot or build and name it something understandable to

people. In fact, if you build Git from source code cloned from the Git repository,

gives you something that looks like this. If you’re describing a commit that you have directly

tagged, it gives you the tag name.

The command favors annotated tags (tags created with the or flag),

so release tags should be created this way if you’re using , to ensure the commit

is named properly when described. You can also use this string as the target of a or

 command, although it relies on the abbreviated SHA-1 value at the end, so it may not be

valid forever. For instance, the Linux kernel recently jumped from 8 to 10 characters to ensure

SHA-1 object uniqueness, so older output names were invalidated.

Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an archive of the

latest snapshot of your code for those poor souls who don’t use Git. The command to do this is

:

If someone opens that tarball, they get the latest snapshot of your project under a proj-

ect directory. You can also create a zip archive in much the same way, but by passing the

 option to :

You now have a nice tarball and a zip archive of your project release that you can upload

to your website or e-mail to people.

CHAPTER 5 N฀ D ISTRIBUTED GIT142

The Shortlog

It’s time to e-mail your mailing list of people who want to know what’s happening in your

project. A nice way of quickly getting a sort of changelog of what has been added to your proj-

ect since your last release or e-mail is to use the command. It summarizes all

the commits in the range you give it; for example, the following gives you a summary of all the

commits since your last release, if your last release was named v1.0.1:

You get a clean summary of all the commits since v1.0.1, grouped by author, that you can

e-mail to your list.

Summary
You should feel fairly comfortable contributing to a project in Git as well as maintaining your

own project or integrating other users’ contributions. Congratulations on being an effective

Git developer! In the next chapter, you’ll learn more powerful tools and tips for dealing with

complex situations, which will truly make you a Git master.

C H A P T E R 6

Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you need to

manage or maintain a Git repository for your source-code control. You’ve accomplished the

basic tasks of tracking and committing files, and you’ve harnessed the power of the staging

area and lightweight topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may not

necessarily use on a day-to-day basis but that you may need at some point.

Revision Selection
Git allows you to specify specific commits or a range of commits in several ways. They aren’t

necessarily obvious but are helpful to know.

Single Revisions

You can obviously refer to a commit by the SHA-1 hash that it’s given, but there are more

human-friendly ways to refer to commits as well. This section outlines the various ways you

can refer to a single commit.

Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the first few

characters, as long as your partial SHA-1 is at least four characters long and unambiguous—

that is, only one object in the current repository begins with that partial SHA-1.

For example, to see a specific commit, suppose you run a command and identify

the commit where you added certain functionality:

143

CHAPTER 6 N฀ G IT TOOLS144

In this case, choose . If you that commit, the following commands are

equivalent (assuming the shorter versions are unambiguous):

Git can figure out a short, unique abbreviation for your SHA-1 values. If you pass

 to the command, the output will use shorter values but keep them

unique; it defaults to using seven characters but makes them longer if necessary to keep the

SHA-1 unambiguous:

Generally, eight to ten characters are more than enough to be unique within a project.

One of the largest Git projects, the Linux kernel, is beginning to need 12 characters out of the

possible 40 to stay unique.

A SHORT NOTE ABOUT SHA-1

A lot of people become concerned at some point that they will, by random happenstance, have two objects in

their repository that hash to the same SHA-1 value. What then?

If you do happen to commit an object that hashes to the same SHA-1 value as a previous object in your

repository, Git will see the previous object in your Git database and assume it was already written. If you try to

check out that object again at some point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The SHA-1 digest is 20 bytes

or 160 bits. The number of randomly hashed objects needed to ensure a 50% probability of a single collision

is about 2^80 (the formula for determining collision probability is . 2^80

is 1.2 x 10^24 or 1 million billion billion. That’s 1,200 times the number of grains of sand on Earth.

Here’s an example to give you an idea of what it would take to get a SHA-1 collision. If all 6.5 billion

humans on Earth were programming, and every second, each one was producing code that was the equiva-

lent of the entire Linux kernel history (1 million Git objects) and pushing it into one enormous Git repository, it

would take 5 years until that repository contained enough objects to have a 50% probability of a single SHA-1

object collision. A higher probability exists that every member of your programming team will be attacked and

killed by wolves in unrelated incidents on the same night.

CHAPTER 6 N฀ G IT TOOLS 145

Branch References

The most straightforward way to specify a commit requires that it have a branch reference

pointed at it. Then, you can use a branch name in any Git command that expects a commit

object or SHA-1 value. For instance, if you want to show the last commit object on a branch,

the following commands are equivalent, assuming that the branch points to :

If you want to see which specific SHA a branch points to, or if you want to see what any

of these examples boils down to in terms of SHAs, you can use a Git plumbing tool called

. You can see Chapter 9 for more information about plumbing tools; basically,

 exists for lower-level operations and isn’t designed to be used in day-to-day opera-

tions. However, it can be helpful sometimes when you need to see what’s really going on. Here

you can run on your branch.

RefLog Shortnames

One of the things Git does in the background while you’re working away is keep a reflog—a log

of where your and branch references have been for the last few months.

You can see your reflog by using :

Every time your branch tip is updated for any reason, Git stores that information for you

in this temporary history. And you can specify older commits with this data, as well. If you

want to see the fifth prior value of the HEAD of your repository, you can use the reference

that you see in the reflog output:

You can also use this syntax to see where a branch was some specific amount of time ago.

For instance, to see where your branch was yesterday, you can type

That shows you where the branch tip was yesterday. This technique only works for data

that’s still in your reflog, so you can’t use it to look for commits older than a few months.

CHAPTER 6 N฀ G IT TOOLS146

To see reflog information inline with your normal log information, you can run :

It’s important to note that the reflog information is strictly local—it’s a log of what you’ve

done in your repository. The references won’t be the same on someone else’s copy of the

repository; and right after you initially clone a repository, you’ll have an empty reflog, because

no activity has occurred yet in your repository. Running will

work only if you cloned the project at least two months ago—if you cloned it five minutes ago,

you’ll get no results.

Ancestry References

The other main way to specify a commit is via its ancestry. If you place a at the end of a refer-

ence, Git resolves it to mean the parent of that commit.

Suppose you look at the history of your project:

Then, you can see the previous commit by specifying , which means “the parent of ”:

CHAPTER 6 N฀ G IT TOOLS 147

You can also specify a number after the —for example, means “the second

parent of .” This syntax is only useful for merge commits, which have more than one

parent. The first parent is the branch you were on when you merged, and the second is the

commit on the branch that you merged in:

The other main ancestry specification is the . This also refers to the first parent, so

and are equivalent. The difference becomes apparent when you specify a number.

 means “the first parent of the first parent,” or “the grandparent”—it traverses the first

parents the number of times you specify. For example, in the history listed earlier,

would be

This can also be written , which again is the first parent of the first parent of the

first parent:

You can also combine these syntaxes—you can get the second parent of the previous ref-

erence (assuming it was a merge commit) by using , and so on.

Commit Ranges

Now that you can specify individual commits, let’s see how to specify ranges of commits. This

is particularly useful for managing your branches—if you have a lot of branches, you can use

range specifications to answer questions such as, “What work is on this branch that I haven’t

yet merged into my main branch?”

CHAPTER 6 N฀ G IT TOOLS148

Double Dot

The most common range specification is the double-dot syntax. This basically asks Git to

resolve a range of commits that are reachable from one commit but aren’t reachable from

another. For example, say you have a commit history that looks like Figure 6-1.

Figure 6-1. Example history for range selection

You want to see what is in your branch that hasn’t yet been merged

into your branch. You can ask Git to show you a log of just those commits with

—that means “all commits reachable by that aren’t reachable

by .” For the sake of brevity and clarity in these examples, I’ll use the letters of the com-

mit objects from the diagram in place of the actual log output in the order that they would

display:

If, on the other hand, you want to see the opposite—all commits in that aren’t in

—you can reverse the branch names. shows you everything in

 not reachable from :

This is useful if you want to keep the branch up to date and preview what

you’re about to merge in. Another very frequent use of this syntax is to see what you’re about

to push to a remote:

This command shows you any commits in your current branch that aren’t in the

branch on your remote. If you run a and your current branch is tracking

, the commits listed by are the commits that

will be transferred to the server.

You can also leave off one side of the syntax to have Git assume . For example, by

typing you can get the same results as in the previous example;

Git substitutes if one side is missing.

CHAPTER 6 N฀ G IT TOOLS 149

Multiple Points

The double-dot syntax is useful as shorthand; but perhaps you want to specify more than two

branches to indicate your revision, such as seeing what commits are in any of several branches

that aren’t in the branch you’re currently on. Git allows you to do this by using either the

character or before any reference from which you don’t want to see reachable commits.

Thus these three commands are equivalent:

This is nice because with this syntax, you can specify more than two references in your

query, which you can’t do with the double-dot syntax. For instance, if you want to see all com-

mits that are reachable from or but not from , you can type one of these:

This makes for a very powerful revision query system that should help you figure out what

is in your branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all the commits

that are reachable by either of two references but not by both of them. Look back at the exam-

ple commit history in Figure 6-1.

If you want to see what is in or but not any common references, you

can run

Again, this gives you normal log output but shows you only the commit information for

those four commits, appearing in the traditional commit date ordering.

A common switch to use with the command in this case is , which shows

you which side of the range each commit is in. This helps make the data more useful:

With these tools, you can much more easily let Git know what commit or commits you

want to inspect.

CHAPTER 6 N฀ G IT TOOLS150

Interactive Staging
Git comes with a couple of scripts that make some command-line tasks easier. Here, you’ll

look at a few interactive commands that can help you easily craft your commits to include

only certain combinations and parts of files. These tools are very helpful if you modify a bunch

of files and then decide that you want those changes to be in several focused commits rather

than one big messy commit. This way, you can make sure your commits are logically separate

changesets and can be easily reviewed by the developers working with you.

If you run with the or option, Git goes into an interactive shell mode,

displaying something like this:

You can see that this command shows you a much different view of your staging

area—basically the same information you get with but a bit more succinct and

informative. It lists the changes you’ve staged on the left and unstaged changes on the right.

After this comes a section. Here you can do a number of things, including stag-

ing files, unstaging files, staging parts of files, adding untracked files, and seeing diffs of what

has been staged.

Staging and Unstaging Files

If you type 2 or u at the prompt, the script prompts you for which files you want to

stage:

To stage the and files, you can type the numbers:

CHAPTER 6 N฀ G IT TOOLS 151

The next to each file means the file is selected to be staged. If you press Enter after typing

nothing at the prompt, Git takes anything selected and stages it for you:

Now you can see that the and files are staged and the file

is still unstaged. If you want to unstage the file at this point, you use the or (for revert)

option:

Looking at your Git status again, you can see that you’ve unstaged the file:

CHAPTER 6 N฀ G IT TOOLS152

To see the diff of what you’ve staged, you can use the or (for diff) command. It shows

you a list of your staged files, and you can select the ones for which you would like to see the

staged diff. This is much like specifying on the command line:

With these basic commands, you can use the interactive add mode to deal with your stag-

ing area a little more easily.

Staging Patches

It’s also possible for Git to stage certain parts of files and not the rest. For example, if you make

two changes to your file and want to stage one of them and not the other, doing

so is very easy in Git. From the interactive prompt, type 5 or p (for patch). Git will ask you

which files you would like to partially stage; then, for each section of the selected files, it

will display hunks of the file diff and ask if you would like to stage them, one by one:

CHAPTER 6 N฀ G IT TOOLS 153

You have a lot of options at this point. Typing ? shows a list of what you can do:

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them in cer-

tain files or skipping a hunk decision until later can be helpful too. If you stage one part of the

file and leave another part unstaged, your status output will look like this:

The status of the file is interesting. It shows you that a couple of lines are

staged and a couple are unstaged. You’ve partially staged this file. At this point, you can exit

the interactive adding script and run to commit the partially staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging—you

can start the same script by using or on the command line.

Stashing
Often, when you’ve been working on part of your project, things are in a messy state and you

want to switch branches for a bit to work on something else. The problem is, you don’t want to

do a commit of half-done work just so you can get back to this point later. The answer to this

issue is the command.

Stashing takes the dirty state of your working directory—that is, your modified tracked

files and staged changes—and saves it on a stack of unfinished changes that you can reapply at

any time.

CHAPTER 6 N฀ G IT TOOLS154

Stashing Your Work

To demonstrate, you’ll go into your project and start working on a couple of files and possibly

stage one of the changes. If you run , you can see your dirty state:

Now you want to switch branches, but you don’t want to commit what you’ve been work-

ing on yet; so you’ll stash the changes. To push a new stash onto your stack, run :

Your working directory is clean:

At this point, you can easily switch branches and do work elsewhere; your changes are

stored on your stack. To see which stashes you’ve stored, you can use :

In this case, two stashes were done previously, so you have access to three different

stashed works. You can reapply the one you just stashed by using the command shown in

the help output of the original command: . If you want to apply one of

the older stashes, you can specify it by naming it, like this: . If you

don’t specify a stash, Git assumes the most recent stash and tries to apply it:

CHAPTER 6 N฀ G IT TOOLS 155

You can see that Git re-modifies the files you uncommitted when you saved the stash. In

this case, you had a clean working directory when you tried to apply the stash, and you tried to

apply it on the same branch you saved it from; but having a clean working directory and apply-

ing it on the same branch aren’t necessary to successfully apply a stash. You can save a stash

on one branch, switch to another branch later, and try to reapply the changes. You can also

have modified and uncommitted files in your working directory when you apply a stash—Git

gives you merge conflicts if anything no longer applies cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t restaged.

To do that, you must run the command with a option to tell the com-

mand to try to reapply the staged changes. If you had run that instead, you’d have gotten back

to your original position:

The option only tries to apply the stashed work—you continue to have it on your

stack. To remove it, you can run with the name of the stash to remove:

You can also run to apply the stash and then immediately drop it from

your stack.

CHAPTER 6 N฀ G IT TOOLS156

Creating a Branch from a Stash

If you stash some work, leave it there for a while, and continue on the branch from which you

stashed the work, you may have a problem reapplying the work. If the apply tries to modify

a file that you’ve since modified, you’ll get a merge conflict and will have to try to resolve it.

If you want an easier way to test the stashed changes again, you can run ,

which creates a new branch for you, checks out the commit you were on when you stashed

your work, reapplies your work there, and then drops the stash if it applies successfully:

This is a nice shortcut to recover stashed work easily and work on it in a new branch.

Rewriting History
Many times, when working with Git, you may want to revise your commit history for some

reason. One of the great things about Git is that it allows you to make decisions at the last pos-

sible moment. You can decide what files go into which commits right before you commit with

the staging area, you can decide that you didn’t mean to be working on something yet with the

 command, and you can rewrite commits that already happened so they look like they

happened in a different way. This can involve changing the order of the commits, changing

messages or modifying files in a commit, squashing together or splitting apart commits, or

removing commits entirely—all before you share your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you can

make your commit history look the way you want before you share it with others.

Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that you’ll do.

You’ll often want to do two basic things to your last commit: change the commit message, or

change the snapshot you just recorded by adding, changing. and removing files.

If you only want to modify your last commit message, it’s very simple:

CHAPTER 6 N฀ G IT TOOLS 157

That drops you into your text editor, which has your last commit message in it, ready for

you to modify the message. When you save and close the editor, the editor writes a new com-

mit containing that message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by adding

or changing files, possibly because you forgot to add a newly created file when you originally

committed, the process works basically the same way. You stage the changes you want by edit-

ing a file and running on it or to a tracked file, and the subsequent

 takes your current staging area and makes it the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA-1 of the

commit. It’s like a very small rebase—don’t amend your last commit if you’ve already pushed it.

Changing Multiple Commit Messages

To modify a commit that is farther back in your history, you must move to more complex tools.

Git doesn’t have a modify-history tool, but you can use the tool to rebase a series of

commits onto the they were originally based on instead of moving them to another one.

With the interactive tool, you can then stop after each commit you want to modify and

change the message, add files, or do whatever you wish. You can run interactively by

adding the option to . You must indicate how far back you want to rewrite com-

mits by telling the command which commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the com-

mit messages in that group, you supply as an argument to the parent of the

last commit you want to edit, which is or . It may be easier to remember the

because you’re trying to edit the last three commits; but keep in mind that you’re actually des-

ignating four commits ago, the parent of the last commit you want to edit:

Remember again that this is a rebasing command—every commit included in the range

 will be rewritten, whether you change the message or not. Don’t include any

commit you’ve already pushed to a central server—doing so will confuse other developers by

providing an alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks some-

thing like this:

CHAPTER 6 N฀ G IT TOOLS158

It’s important to note that these commits are listed in the opposite order than you

normally see them using the command. If you run a log, you see something like this:

Notice the reverse order. The interactive rebase gives you a script that it’s going to run.

It will start at the commit you specify on the command line () and replay the changes

introduced in each of these commits from top to bottom. It lists the oldest at the top, rather

than the newest, because that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so, change

the word to the word for each of the commits you want the script to stop after. For

example, to modify only the third commit message, you change the file to look like this:

When you save and exit the editor, Git rewinds you back to the last commit in that list and

drops you on the command line with the following message:

These instructions tell you exactly what to do. Type the following:

Change the commit message, and exit the editor. Then, run this:

This command will apply the other two commits automatically, and then you’re done. If

you change to on more lines, you can repeat these steps for each commit you change

to . Each time, Git will stop, let you amend the commit, and continue when you’re finished.

Reordering Commits

You can also use interactive rebases to reorder or remove commits entirely. If you want to

remove the commit and change the order in which the other two commits are

introduced, you can change the script from this:

CHAPTER 6 N฀ G IT TOOLS 159

to this:

When you save and exit the editor, Git rewinds your branch to the parent of these com-

mits, applies and then , and then stops. You effectively change the order of

those commits and remove the commit completely.

Squashing a Commit

It’s also possible to take a series of commits and squash them down into a single commit with

the interactive rebasing tool. The script puts helpful instructions in the message:

If, instead of or , you specify , Git applies both that change and the change

directly before it and makes you merge the commit messages together. So, if you want to make

a single commit from these three commits, you make the script look like this:

When you save and exit the editor, Git applies all three changes and then puts you back

into the editor to merge the three commit messages:

CHAPTER 6 N฀ G IT TOOLS160

When you save that, you have a single commit that introduces the changes of all three

previous commits.

Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many times as

commits you want to end up with. For example, suppose you want to split the middle com-

mit of your three commits. Instead of , you want

to split it into two commits: for the first, and for the

second. You can do that in the script by changing the instruction on the commit you

want to split to edit:

Then, when the script drops you to the command line, you reset that commit, take the

changes that have been reset, and create multiple commits out of them. When you save and

exit the editor, Git rewinds to the parent of the first commit in your list, applies the first com-

mit (), applies the second (), and drops you to the console. There, you can do

a mixed reset of that commit with , which effectively undoes that commit and

leaves the modified files unstaged. Now you can stage and commit files until you have several

commits, and run when you’re done:

Git applies the last commit () in the script, and your history looks like this:

Once again, this changes the SHAs of all the commits in your list, so make sure no commit

shows up in that list that you’ve already pushed to a shared repository.

The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite a larger num-

ber of commits in some scriptable way—for instance, changing your e-mail address globally

or removing a file from every commit. The command is ch, and it can rewrite huge

swaths of your history, so you probably shouldn’t use it unless your project isn’t yet public and

other people haven’t based work off the commits you’re about to rewrite. However, it can be

CHAPTER 6 N฀ G IT TOOLS 161

very useful. You’ll learn a few of the common uses so you can get an idea of some of the things

it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file with a thought-

less , and you want to remove it everywhere. Perhaps you accidentally committed a file

that contained a password, and you want to make your project open source. is the

tool you probably want to use to scrub your entire history. To remove a file named

 from your entire history, you can use the option to ch:

The option runs the specified command after each checkout of the project

and then recommits the results. In this case, you remove a file called from every

snapshot, whether it exists or not. If you want to remove all accidentally committed editor

backup files, you can run something like .

You’ll be able to watch Git rewriting trees and commits and then move the branch pointer at

the end. It’s generally a good idea to do this in a testing branch and then hard-reset your

branch after you’ve determined the outcome is what you really want. To run on

all your branches, you can pass to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have subdirectories

that make no sense (, , and so on). If you want to make the subdirectory be the

new project root for every commit, can help you do that, too:

Now your new project root is what was in the subdirectory each time. Git will also

automatically remove commits that didn’t affect the subdirectory.

Changing E-mail Addresses Globally

Another common case is that you forgot to run to set your name and e-mail

address before you started working, or perhaps you want to open-source a project at work and

change all your work e-mail addresses to your personal address. In any case, you can change

e-mail addresses in multiple commits in a batch with as well. You need to be

careful to change only the e-mail addresses that are yours, so you use r:

CHAPTER 6 N฀ G IT TOOLS162

This goes through and rewrites every commit to have your new address. Because commits

contain the SHA-1 values of their parents, this command changes every commit SHA in your

history, not just those that have the matching e-mail address.

Debugging with Git
Git also provides a couple of tools to help you debug issues in your projects. Because Git is

designed to work with nearly any type of project, these tools are pretty generic, but they can

often help you hunt for a bug or culprit when things go wrong.

File Annotation

If you track down a bug in your code and want to know when it was introduced and why, file

annotation is often your best tool. It shows you what commit was the last to modify each line

of any file. So, if you see that a method in your code is buggy, you can annotate the file with

 to see when each line of the method was last edited and by whom. This example

uses the option to limit the output to lines 12 through 22:

Notice that the first field is the partial SHA-1 of the commit that last modified that line.

The next two fields are values extracted from that commit—the author name and the authored

date of that commit—so you can easily see who modified that line and when. After that come

the line number and the content of the file. Also note the commit lines, which des-

ignate that those lines were in this file’s original commit. That commit is when this file was

first added to this project, and those lines have been unchanged since. This is a tad confusing,

because now you’ve seen at least three different ways that Git uses the to modify a commit

SHA, but that is what it means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It records the

snapshots and then tries to figure out what was renamed implicitly, after the fact. One of the

interesting features of this is that you can ask it to figure out all sorts of code movement as

well. If you pass to , Git analyzes the file you’re annotating and tries to figure out

CHAPTER 6 N฀ G IT TOOLS 163

where snippets of code within it originally came from if they were copied from elsewhere.

Recently, I was refactoring a file named into multiple files, one of which

was . By blaming with the option, I could see where sec-

tions of the code originally came from:

This is really useful. Normally, you get as the original commit the commit where you cop-

ied the code over, because that is the first time you touched those lines in this file. Git tells you

the original commit where you wrote those lines, even if it was in another file.

Binary Search

Annotating a file helps if you know where the issue is to begin with. If you don’t know what is

breaking, and there have been dozens or hundreds of commits since the last state where you

know the code worked, you’ll likely turn to for help. The command does

a binary search through your commit history to help you identify as quickly as possible which

commit introduced an issue.

Let’s say you just pushed out a release of your code to a production environment, you’re

getting bug reports about something that wasn’t happening in your development environ-

ment, and you can’t imagine why the code is doing that. You go back to your code, and it turns

out you can reproduce the issue, but you can’t figure out what is going wrong. You can bisect

the code to find out. First you run to get things going, and then you use

 to tell the system that the current commit you’re on is broken. Then, you

must tell when the last known good state was, using :

Git figured out that about 12 commits came between the commit you marked as the last

good commit (v1.0) and the current bad version, and it checked out the middle one for you.

At this point, you can run your test to see if the issue exists as of this commit. If it does, then

it was introduced sometime before this middle commit; if it doesn’t, then the problem was

CHAPTER 6 N฀ G IT TOOLS164

introduced sometime after the middle commit. It turns out there is no issue here, and you tell

Git that by typing and continue your journey:

Now you’re on another commit, halfway between the one you just tested and your bad

commit. You run your test again and find that this commit is broken, so you tell Git that with

:

This commit is fine, and now Git has all the information it needs to determine where the

issue was introduced. It tells you the SHA-1 of the first bad commit and shows some of the

commit information and which files were modified in that commit so you can figure out what

happened that may have introduced this bug:

When you’re finished, you should run to reset your to where you

were before you started, or you’ll end up in a weird state:

This is a powerful tool that can help you check hundreds of commits for an introduced

bug in minutes. In fact, if you have a script that will exit 0 if the project is good or non-0 if

the project is bad, you can fully automate . First, you again tell it the scope of the

bisect by providing the known bad and good commits. You can do this by listing them with

the command if you want, listing the known bad commit first and the known

good commit second:

Doing so automatically runs on each checked-out commit until Git finds

the first broken commit. You can also run something like or or whatever you

have that runs automated tests for you.

CHAPTER 6 N฀ G IT TOOLS 165

Submodules
It often happens that while working on one project, you need to use another project from

within it. Perhaps it’s a library that a third party developed or that you’re developing separately

and using in multiple parent projects. A common issue arises in these scenarios: you want to

be able to treat the two projects as separate yet still be able to use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds.

Instead of writing your own Atom-generating code, you decide to use a library. You’re likely to

have to either include this code from a shared library like a CPAN install or Ruby gem, or copy

the source code into your own project tree. The issue with including the library is that it’s diffi-

cult to customize the library in any way and often more difficult to deploy it, because you need

to make sure every client has that library available. The issue with vendoring the code into

your own project is that any custom changes you make are difficult to merge when upstream

changes become available.

Git addresses this issue using submodules. Submodules allow you to keep a Git repository

as a subdirectory of another Git repository. This lets you clone another repository into your

project and keep your commits separate.

Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to your proj-

ect, possibly maintain your own changes to it, but continue to merge in upstream changes.

The first thing you should do is clone the external repository into your subdirectory. You add

external projects as submodules with the command:

Now you have the Rack project under a subdirectory named within your project.

You can go into that subdirectory, make changes, add your own writable remote repository

to push your changes into, fetch and merge from the original repository, and more. If you run

 right after you add the submodule, you see two things:

CHAPTER 6 N฀ G IT TOOLS166

First you notice the file. This is a configuration file that stores the mapping

between the project’s URL and the local subdirectory you’ve pulled it into:

If you have multiple submodules, you’ll have multiple entries in this file. It’s important

to note that this file is version-controlled with your other files, like your file. It’s

pushed and pulled with the rest of your project. This is how other people who clone this proj-

ect know where to get the submodule projects from.

The other listing in the output is the entry. If you run on that,

you see something interesting:

Although is a subdirectory in your working directory, Git sees it as a submodule and

doesn’t track its contents when you’re not in that directory. Instead, Git records it as a particu-

lar commit from that repository. When you make changes and commit in that subdirectory,

the superproject notices that the there has changed and records the exact commit you’re

currently working off of; that way, when others clone this project, they can re-create the envi-

ronment exactly.

This is an important point with submodules: you record them as the exact commit they’re

at. You can’t record a submodule at or some other symbolic reference.

When you commit, you see something like this:

Notice the 160000 mode for the entry. That is a special mode in Git that basically

means you’re recording a commit as a directory entry rather than a subdirectory or a file.

You can treat the directory as a separate project and then update your superproject

from time to time with a pointer to the latest commit in that subproject. All the Git commands

work independently in the two directories:

CHAPTER 6 N฀ G IT TOOLS 167

Cloning a Project with Submodules

Here you’ll clone a project with a submodule in it. When you receive such a project, you get

the directories that contain submodules, but none of the files yet:

The directory is there, but empty. You must run two commands:

to initialize your local configuration file, and to fetch all the data from

that project and check out the appropriate commit listed in your superproject:

Now your subdirectory is at the exact state it was in when you committed earlier. If

another developer makes changes to the code and commits, and you pull that reference

down and merge it in, you get something a bit odd:

CHAPTER 6 N฀ G IT TOOLS168

You merged in what is basically a change to the pointer for your submodule; but it doesn’t

update the code in the submodule directory, so it looks like you have a dirty state in your

working directory:

This is the case because the pointer you have for the submodule isn’t what is actually in

the submodule directory. To fix this, you must run again:

You have to do this every time you pull down a submodule change in the main project.

It’s strange, but it works.

One common problem happens when a developer makes a change locally in a submodule

but doesn’t push it to a public server. Then, they commit a pointer to that non-public state

and push up the superproject. When other developers try to run , the

submodule system can’t find the commit that is referenced, because it exists only on the first

developer’s system. If that happens, you see an error like this:

CHAPTER 6 N฀ G IT TOOLS 169

You have to see who last changed the submodule:

Then, you e-mail that guy and yell at him.

Superprojects

Sometimes, developers want to get a combination of a large project’s subdirectories, depend-

ing on what team they’re on. This is common if you’re coming from CVS or Subversion, where

you’ve defined a module or collection of subdirectories, and you want to keep this type of

workflow.

A good way to do this in Git is to make each of the subfolders a separate Git repository and

then create superproject Git repositories that contain multiple submodules. A benefit of this

approach is that you can more specifically define the relationships between the projects with

tags and branches in the superprojects.

Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful when

working in the submodule directory. When you run , it checks out the

specific version of the project, but not within a branch. This is called having a detached head—

it means the file points directly to a commit, not to a symbolic reference. The issue is that

you generally don’t want to work in a detached head environment, because it’s easy to lose

changes. If you do an initial submodule update, commit in that submodule directory without

creating a branch to work in, and then run again from the superproject

without committing in the meantime, Git will overwrite your changes without telling you.

Technically, you won’t lose the work; but you won’t have a branch pointing to it, so it will be

difficult to retrieve.

To avoid this issue, create a branch when you work in a submodule directory with

or something equivalent. When you do the submodule update a second

time, it will still revert your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a new

branch, add a submodule there, and then switch back to a branch without that submodule,

you still have the submodule directory as an untracked directory:

CHAPTER 6 N฀ G IT TOOLS170

You have to either move it out of the way or remove it, in which case you have to clone

it again when you switch back—and you may lose local changes or branches that you didn’t

push up.

The last main caveat that many people run into involves switching from subdirectories to

submodules. If you’ve been tracking files in your project and you want to move them out into

a submodule, you must be careful or Git will get angry at you. Assume that you have the rack

files in a subdirectory of your project, and you want to switch it to a submodule. If you delete

the subdirectory and then run , Git yells at you:

You have to unstage the directory first. Then you can add the submodule:

Now suppose you did that in a branch. If you try to switch back to a branch where those

files are still in the actual tree rather than a submodule—you get this error:

You have to move the submodule directory out of the way before you can switch to

a branch that doesn’t have it:

CHAPTER 6 N฀ G IT TOOLS 171

Then, when you switch back, you get an empty directory. You can either run

 to reclone, or you can move your directory back into the empty

directory.

Subtree Merging
Now that you’ve seen the difficulties of the submodule system, let’s look at an alternate way

to solve the same problem. When Git merges, it looks at what it has to merge together and

then chooses an appropriate merging strategy to use. If you’re merging two branches, Git uses

a recursive strategy. If you’re merging more than two branches, Git picks the octopus strategy.

These strategies are automatically chosen for you because the recursive strategy can handle

complex three-way merge situations—for example, more than one common ancestor—but it

can only handle merging two branches. The octopus merge can handle multiple branches but

is more cautious to avoid difficult conflicts, so it’s chosen as the default strategy if you’re trying

to merge more than two branches.

However, there are other strategies you can choose as well. One of them is the subtree

merge, and you can use it to deal with the subproject issue. Here you’ll see how to do the same

rack embedding as in the last section, but using subtree merges instead.

The idea of the subtree merge is that you have two projects, and one of the projects maps

to a subdirectory of the other one and vice versa. When you specify a subtree merge, Git is

smart enough to figure out that one is a subtree of the other and merge appropriately—it’s

pretty amazing.

You first add the Rack application to your project. You add the Rack project as a remote

reference in your own project and then check it out into its own branch:

Now you have the root of the Rack project in your branch and your own proj-

ect in the branch. If you check out one and then the other, you can see that they have

different project roots:

CHAPTER 6 N฀ G IT TOOLS172

You want to pull the Rack project into your master project as a subdirectory. You can do

that in Git with e. You’ll learn more about and its friends in Chapter 9,

but for now know that it reads the root tree of one branch into your current index and working

directory. You just switched back to your branch, and you pull the branch into the

 subdirectory of your branch main project:

When you commit, it looks like you have all the Rack files under that subdirectory—as

though you copied them in from a tarball. What gets interesting is that you can fairly easily

merge changes from one of the branches to the other. So, if the Rack project updates, you can

pull in upstream changes by switching to that branch and pulling:

Then, you can merge those changes back into your branch. You can use

 and it will work fine; but Git will also merge the histories together, which you

probably don’t want. To pull in the changes and prepopulate the commit message, use the

 and options as well as the subtree strategy option:

All the changes from your Rack project are merged in and ready to be committed locally.

You can also do the opposite—make changes in the subdirectory of your branch

and then merge them into your branch later to submit them to the maintainers or

push them upstream.

To get a diff between what you have in your subdirectory and the code in your

 branch—to see if you need to merge them—you can’t use the normal command.

Instead, you must run with the branch you want to compare to:

Or, to compare what is in your subdirectory with what the branch on the

server was the last time you fetched, you can run the following:

CHAPTER 6 N฀ G IT TOOLS 173

Summary
You’ve seen a number of advanced tools that allow you to manipulate your commits and stag-

ing area more precisely. When you notice issues, you should be able to easily figure out what

commit introduced them, when, and by whom. If you want to use subprojects in your project,

you’ve learned a few ways to accommodate those needs. At this point, you should be able to

do most of the things in Git that you’ll need on the command line day to day and feel comfort-

able doing so.

C H A P T E R 7

Customizing Git

So far, I’ve covered the basics of how Git works and how to use it, and I’ve introduced a num-

ber of tools that Git provides to help you use it easily and efficiently. In this chapter, I’ll go

through some operations that you can use to make Git operate in a more customized fashion

by introducing several important configuration settings and the hooks system. With these

tools, it’s easy to get Git to work exactly the way you, your company, or your group needs it to.

Git Configuration
As you briefly saw in Chapter 1, you can specify Git configuration settings with the

command. One of the first things you did was set up your name and e-mail address:

Now you’ll learn a few of the more interesting options that you can set in this manner to

customize your Git usage.

You saw some simple Git configuration details in the first chapter, but I’ll go over them

again quickly here. Git uses a series of configuration files to determine non-default behavior

that you may want. The first place Git looks for these values is in an file, which

contains values for every user on the system and all of their repositories. If you pass the option

 to , it reads and writes from this file specifically.

The next place Git looks is the file, which is specific to each user. You can

make Git read and write to this file by passing the option.

Finally, Git looks for configuration values in the file in the Git directory (

) of whatever repository you’re currently using. These values are specific to that single

repository. Each level overwrites values in the previous level, so values in trump

those in , for instance. You can also set these values by manually editing the file

and inserting the correct syntax, but it’s generally easier to run the command.

175

CHAPTER 7 N฀ CUSTOMIZ ING GIT176

Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and server

side. The majority of the options are client side—configuring your personal working prefer-

ences. Although tons of options are available, I’ll only cover the few that either are commonly

used or can significantly affect your workflow. Many options are useful only in edge cases that

I won’t go over here. If you want to see a list of all the options your version of Git recognizes,

you can run

The manual page for lists all the available options in quite a bit of detail.

core.editor

By default, Git uses whatever you’ve set as your default text editor or else falls back to the Vi

editor to create and edit your commit and tag messages. To change that default to something

else, you can use the setting:

Now, no matter what is set as your default shell editor variable, Git will fire up Emacs to

edit messages.

commit.template

If you set this to the path of a file on your system, Git will use that file as the default message

when you commit. For instance, suppose you create a template file at

that looks like this:

To tell Git to use it as the default message that appears in your editor when you run

, set the configuration value:

Then, your editor will open to something like this for your placeholder commit message

when you commit:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 177

If you have a commit-message policy in place, then putting a template for that policy on

your system and configuring Git to use it by default can help increase the chance of that policy

being followed regularly.

core.pager

The setting determines what pager is used when Git pages output such as log and

diff. You can set it to or to your favorite pager (by default, it’s), or you can turn it off

by setting it to a blank string:

If you run that, Git will show the entire output of all commands without paging, no matter

how long they are.

user.signingkey

If you’re making signed annotated tags (as discussed in Chapter 2), setting your GPG signing

key as a configuration setting makes things easier. Set your key ID like so:

Now, you can sign tags without having to specify your key every time with the

command:

CHAPTER 7 N฀ CUSTOMIZ ING GIT178

core.excludesfile

You can put patterns in your project’s file to have Git not see them as untracked

files or try to stage them when you run on them, as discussed in Chapter 2. However, if

you want another file outside of your project to hold those values or have extra values, you can

tell Git where that file is with the setting. Simply set it to the path of a file

that has content similar to what a file would have.

help.autocorrect

This option is available only in Git 1.6.1 and later. If you mistype a command in Git 1.6, it

shows you something like this:

If you set to , Git will automatically run the command if it has only one

match under this scenario.

Colors in Git

Git can color its output to your terminal, which can help you visually parse the output quickly

and easily. A number of options can help you set the coloring to your preference.

color.ui

Git automatically colors most of its output if you ask it to. You can get very specific about what

you want colored and how; but to turn on all the default terminal coloring, set to

:

When that value is set, Git colors its output if the output goes to a terminal. Other possible

settings are , which never colors the output, and , which sets colors all the time,

even if you’re redirecting Git commands to a file or piping them to another command. This

setting was added in Git version 1.5.5; if you have an older version, you’ll have to specify all the

color settings individually.

You’ll rarely want . In most scenarios, if you want color codes in your

redirected output, you can instead pass a flag to the Git command to force it to use

color codes. The setting is almost always what you’ll want to use.

color.*

If you want to be more specific about which commands are colored and how, or you have an

older version, Git provides verb-specific coloring settings. Each of these can be set to ,

, or :

CHAPTER 7 N฀ CUSTOMIZ ING GIT 179

In addition, each of these has subsettings you can use to set specific colors for parts of the

output, if you want to override each color. For example, to set the meta information in your

diff output to blue foreground, black background, and bold text, you can run

You can set the color to any of the following values: , , , , , ,

, , or . If you want an attribute like bold in the previous example, you can

choose from , , , , and .

See the manpage for all the subsettings you can configure, if you want to do

that.

External Merge and Diff Tools

Although Git has an internal implementation of , which is what you’ve been using, you

can set up an external tool instead. You can also set up a graphical merge conflict–resolution

tool instead of having to resolve conflicts manually. I’ll demonstrate setting up the Perforce

Visual Merge Tool (P4Merge) to do your diffs and merge resolutions, because it’s a nice graphi-

cal tool and it’s free.

If you want to try this, P4Merge works on all major platforms, so you should be able to

do so. I’ll use path names in the examples that work on Mac and Linux systems; for Windows,

you’ll have to change to an executable path in your environment.

You can download P4Merge here:

To begin, you’ll set up external wrapper scripts to run your commands. I’ll use the Mac

path for the executable; in other systems, it will be where your binary is installed. Set

up a merge wrapper script named that calls your binary with all the arguments pro-

vided:

The diff wrapper checks to make sure seven arguments are provided and passes two of

them to your merge script. By default, Git passes the following arguments to the program:

Because you only want the and arguments, you use the wrapper script

to pass the ones you need.

CHAPTER 7 N฀ CUSTOMIZ ING GIT180

You also need to make sure these tools are executable:

Now you can set up your config file to use your custom merge resolution and diff

tools. This takes a number of custom settings: to tell Git what strategy to use,

 to specify how to run the command, to tell Git if the

exit code of that program indicates a successful merge resolution or not, and to

tell Git what command to run for diffs. So, either you can run four commands

or you can edit your file to add these lines:

After all this is set, if you run commands such as this:

Instead of getting the diff output on the command line, Git fires up P4Merge, which looks

something like Figure 7-1.

If you try to merge two branches and subsequently have merge conflicts, you can run the

command ; it starts P4Merge to let you resolve the conflicts through that GUI

tool.

The nice thing about this wrapper setup is that you can change your diff and merge tools

easily. For example, to change your and tools to run the KDiff3 tool instead,

all you have to do is edit your file:

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

Git comes preset to use a number of other merge-resolution tools without your having

to set up the configuration. You can set your merge tool to , , , ,

, , , or . If you’re not interested in using KDiff3 for diff but rather

want to use it just for merge resolution, and the command is in your path, then you can run

CHAPTER 7 N฀ CUSTOMIZ ING GIT 181

If you run this instead of setting up the and files, Git will use KDiff3 for

merge resolution and the normal Git tool for diffs.

Figure 7-1. P4Merge

Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems that

many developers encounter when collaborating, especially cross-platform. It’s very easy for

patches or other collaborated work to introduce subtle whitespace changes because editors

silently introduce them or Windows programmers add carriage returns at the end of lines they

touch in cross-platform projects. Git has a few configuration options to help with these issues.

core.autocrlf

If you’re programming on Windows or using another system but working with people who are

programming on Windows, you’ll probably run into line-ending issues at some point. This is

because Windows uses both a carriage-return character and a linefeed character for newlines

in its files, whereas Mac and Linux systems use only the linefeed character. This is a subtle but

incredibly annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you commit, and

vice versa when it checks out code onto your filesystem. You can turn on this functionality

CHAPTER 7 N฀ CUSTOMIZ ING GIT182

with the setting. If you’re on a Windows machine, set it to —this converts

LF endings into CRLF when you check out code:

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want Git to

automatically convert them when you check out files; however, if a file with CRLF endings

accidentally gets introduced, then you may want Git to fix it. You can tell Git to convert CRLF

to LF on commit but not the other way around by setting to :

This setup should leave you with CRLF endings in Windows checkouts but LF endings on

Mac and Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn off this

functionality, recording the carriage returns in the repository by setting the value to

:

core.whitespace

Git comes preset to detect and fix some whitespace issues. It can look for four primary

whitespace issues—two are enabled by default and can be turned off, and two aren’t enabled

by default but can be activated.

The two that are turned on by default are , which looks for spaces at the

end of a line, and , which looks for spaces before tabs at the beginning of

a line.

The two that are disabled by default but can be turned on are , which

looks for lines that begin with eight or more spaces instead of tabs, and , which tells

Git that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting to the values

you want on or off, separated by commas. You can disable settings by either leaving them out

of the setting string or prepending a in front of the value. For example, if you want all but

 to be set, you can do this:

Git will detect these issues when you run a command and try to color them so

you can possibly fix them before you commit. It will also use these values to help you when

you apply patches with . When you’re applying patches, you can ask Git to warn you

if it’s applying patches with the specified whitespace issues:

Or you can have Git try to automatically fix the issue before applying the patch:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 183

Server Configuration

Not nearly as many configuration options are available for the server side of Git, but there are

a few interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’t check for consistency all the objects it receives during a push. Although

Git can check to make sure each object still matches its SHA-1 checksum and points to valid

objects, it doesn’t do that by default on every push. This is a relatively expensive operation and

may add a lot of time to each push, depending on the size of the repo or the push. If you want

Git to check object consistency on every push, you can force it to do so by setting

 to :

Now, Git will check the integrity of your repository before each push is accepted to make

sure faulty clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or otherwise try

to push a commit to a remote branch that doesn’t contain the commit that the remote branch

currently points to, you’ll be denied. This is generally good policy; but in the case of the rebase,

you may determine that you know what you’re doing and can force-update the remote branch

with a flag to your command.

To disable the ability to force-update remote branches to non-fast-forward references, set

:

The other way you can do this is via server-side receive hooks, which I’ll cover in a bit.

That approach lets you do more complex things like deny non-fast-forwards to a certain sub-

set of users.

receive.denyDeletes

One of the workarounds to the policy is for the user to delete the branch

and then push it back up with the new reference. In newer versions of Git (beginning with ver-

sion 1.6.1), you can set to :

This denies branch and tag deletion over a push across the board—no user can do it. To

remove remote branches, you must remove the ref files from the server manually. There are

also more interesting ways to do this on a per-user basis via ACLs, as you’ll learn at the end of

this chapter.

CHAPTER 7 N฀ CUSTOMIZ ING GIT184

Git Attributes
Some of these settings can also be specified for a path, so that Git applies those settings only

for a subdirectory or subset of files. These path-specific settings are called Git attributes and

are set either in a file in one of your directories (normally the root of your proj-

ect) or in the file if you don’t want the attributes file committed with

your project.

Using attributes, you can do things like specify separate merge strategies for individual

files or directories in your project, tell Git how to diff non-text files, or have Git filter content

before you check it into or out of Git. In this section, you’ll learn about some of the attributes

you can set on your paths in your Git project and see a few examples of using this feature in

practice.

Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary (in cases

it otherwise may not be able to figure out) and giving Git special instructions about how to

handle those files. For instance, some text files may be machine generated and not diffable,

whereas some binary files can be diffed—you’ll see how to tell Git which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as binary data.

For instance, Xcode projects on the Mac contain a file that ends in , which is basically

a JSON (plain-text JavaScript data format) dataset written out to disk by the IDE that records

your build settings and so on. Although it’s technically a text file, because it’s all ASCII, you

don’t want to treat it as such because it’s really a lightweight database—you can’t merge the

contents if two people changed it, and diffs generally aren’t helpful. The file is meant to be

consumed by a machine. In essence, you want to treat it like a binary file.

To tell Git to treat all files as binary data, add the following line to your

 file:

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print a diff for

changes in this file when you run or on your project. In the 1.6 series of Git,

you can also use a macro that is provided that means :

Diffing Binary Files

In the 1.6 series of Git, you can use the Git attributes functionality to effectively diff binary

files. You do this by telling Git how to convert your binary data to a text format that can be

compared via the normal .

CHAPTER 7 N฀ CUSTOMIZ ING GIT 185

Because this is a pretty cool and not widely known feature, I’ll go over a few examples.

First, you’ll use this technique to solve one of the most annoying problems known to human-

ity: version-controlling Word documents. Everyone knows that Word is the most horrific

editor around; but, oddly, everyone uses it. If you want to version-control Word documents,

you can stick them in a Git repository and commit every once in a while; but what good does

that do? If you run normally, you only see something like this:

You can’t directly compare two versions unless you check them out and scan them manu-

ally, right? It turns out you can do this fairly well using Git attributes. Put the following line in

your file:

This tells Git that any file that matches this pattern () should use the “word” filter

when you try to view a diff that contains changes. What is the “word” filter? You have to set

it up. Here you’ll configure Git to use the program to convert Word documents into

readable text files, which it will then diff properly:

Now Git knows that if it tries to do a diff between two snapshots, and any of the files end

in , it should run those files through the “word” filter, which is defined as the pro-

gram. This effectively makes nice text-based versions of your Word files before attempting to

diff them.

Here’s an example. I put Chapter 1 of this book into Git, added some text to a paragraph,

and saved the document. Then, I ran to see what changed:

CHAPTER 7 N฀ CUSTOMIZ ING GIT186

Git successfully and succinctly tells me that I added the string “Let’s see if this works”,

which is correct. It’s not perfect—it adds a bunch of random stuff at the end—but it certainly

works. If you can find or write a Word-to-plain-text converter that works well enough, that

solution will likely be incredibly effective. However, is available on most Mac and

Linux systems, so it may be a good first try to do this with many binary formats.

Another interesting problem you can solve this way involves diffing image files. One way

to do this is to run JPEG files through a filter that extracts their EXIF information—metadata

that is recorded with most image formats. If you download and install the program,

you can use it to convert your images into text about the metadata, so at least the diff will show

you a textual representation of any changes that happened:

If you replace an image in your project and run , you see something like this:

You can easily see that the file size and image dimensions have both changed.

Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those systems.

The main problem with this in Git is that you can’t modify a file with information about the

commit after you’ve committed, because Git checksums the file first. However, you can inject

text into a file when it’s checked out and remove it again before it’s added to a commit. Git

attributes offers you two ways to do this.

First, you can inject the SHA-1 checksum of a blob into an field in the file automati-

cally. If you set this attribute on a file or set of files, then the next time you check out that

branch, Git will replace that field with the SHA-1 of the blob. It’s important to notice that it

isn’t the SHA of the commit, but of the blob itself:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 187

The next time you check out this file, Git injects the SHA of the blob:

However, that result is of limited use. If you’ve used keyword substitution in CVS or Sub-

version, you can include a datestamp—the SHA isn’t all that helpful, because it’s fairly random

and you can’t tell if one SHA is older or newer than another.

It turns out that you can write your own filters for doing substitutions in files on commit/

checkout. These are the “clean” and “smudge” filters. In the file, you can set

a filter for particular paths and then set up scripts that will process files just before they’re

committed (“clean”; see Figure 7-2) and just before they’re checked out (“smudge”; see

Figure 7-3). These filters can be set to do all sorts of fun things.

The original commit message for this functionality gives a simple example of running all

your C source code through the program before committing. You can set it up by set-

ting the attribute in your file to filter files with the “indent” filter:

Then, tell Git what the “indent” filter does on smudge and clean:

Figure 7-2. The “smudge” filter is run on checkout.

CHAPTER 7 N฀ CUSTOMIZ ING GIT188

Figure 7-3. The “clean” filter is run when files are staged.

In this case, when you commit files that match , Git will run them through the pro-

gram before it commits them and then run them through the program before it checks them

back out onto disk. The program is basically a no-op: it spits out the same data that it gets in.

This combination effectively filters all C source code files through before committing.

Another interesting example gets keyword expansion, RCS style. To do this prop-

erly, you need a small script that takes a file through stdin, figures out the last commit date for

this project, and inserts the date into the file. Here is a small Ruby script that does that:

All the script does is get the latest commit date from the command, stick that into

any strings it sees in stdin, and print the results—it should be simple to do in whatever

language you’re most comfortable in. You can name this script and put it in your

path. Now, you need to set up a filter in Git (call it) and tell it to use your “expand_date”

filter to smudge the files on checkout. You’ll use a Perl expression to clean that up on commit:

This Perl snippet strips out anything it sees in a string, to get back to where you

started. Now that your filter is ready, you can test it by setting up a file with your key-

word and then setting up a Git attribute for that file that engages the new filter:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 189

If you commit those changes and check out the file again, you see the keyword properly

substituted:

You can see how powerful this technique can be for customized applications. You have

to be careful, though, because the file is committed and passed around with

the project but the driver (in this case,) isn’t; so, it won’t automatically work everywhere.

When you design these filters, they should be able to fail gracefully and have the project still

work properly.

Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an archive of

your project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive. If there is

a subdirectory or file that you don’t want to include in your archive file but that you do want

checked into your project, you can determine that file via the attribute.

For example, say you have some test files in a subdirectory, and it doesn’t make

sense to include them in the tarball export of your project. You can add the following line to

your Git attributes file:

Now, when you run to create a tarball of your project, that directory won’t be

included in the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution. Git lets you

put the string in any file with any of the formatting shortcodes,

many of which you saw in Chapter 2. For instance, if you want to include a file named

 in your project, and the last commit date was automatically injected into it when

 ran, you can set up the file like this:

CHAPTER 7 N฀ CUSTOMIZ ING GIT190

When you run , the contents of that file when people open the archive file will

look like this:

Merge Strategies

You can also use Git attributes to tell Git to use different merge strategies for specific files in

your project. One very useful option is to tell Git to not try to merge specific files when they

have conflicts, but rather to use your side of the merge over someone else’s.

This is helpful if a branch in your project has diverged or is specialized, but you want to

be able to merge changes back in from it, and you want to ignore certain files. Say you have

a database settings file called that is different in two branches, and you want to

merge in your other branch without messing up the database file. You can set up an attribute

like this:

If you merge in the other branch, instead of having merge conflicts with the

file, you see something like this:

In this case, stays at whatever version you originally had.

Git Hooks
Like many other Version Control Systems, Git has a way to fire off custom scripts when certain

important actions occur. There are two groups of these hooks: client side and server side. The

client-side hooks are for client operations such as committing and merging. The server-side

hooks are for Git server operations such as receiving pushed commits. You can use these hooks

for all sorts of reasons, and you’ll learn about a few of them here.

Installing a Hook

The hooks are all stored in the subdirectory of the Git directory. In most projects, that’s

. By default, Git populates this directory with a bunch of example scripts, many of

which are useful by themselves; but they also document the input values of each script. All

the examples are written as shell scripts, with some Perl thrown in, but any properly named

executable scripts will work fine—you can write them in Ruby or Python or what have you.

For post-1.6 versions of Git, these example hook files end with ; you’ll need to rename

them. For pre-1.6 versions of Git, the example files are named properly but are not executable.

To enable a hook script, put a file in the subdirectory of your Git directory that is

named appropriately and is executable. From that point forward, it should be called. I’ll cover

most of the major hook filenames here.

CHAPTER 7 N฀ CUSTOMIZ ING GIT 191

Client-Side Hooks

There are a lot of client-side hooks. This section splits them into committing-workflow hooks,

e-mail workflow scripts, and the rest of the client-side scripts.

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The hook is run

first, before you even type in a commit message. It’s used to inspect the snapshot that’s about

to be committed, to see if you’ve forgotten something, to make sure tests run, or to examine

whatever you need to inspect in the code. Exiting non-zero from this hook aborts the commit,

although you can bypass it with . You can do things like check for code

style (run or something equivalent), check for trailing whitespace (the default hook does

exactly that), or check for appropriate documentation on new methods.

The hook is run before the commit message editor is fired up but

after the default message is created. It lets you edit the default message before the commit

author sees it. This hook takes a few options: the path to the file that holds the commit mes-

sage so far, the type of commit, and the commit SHA-1 if this is an amended commit. This

hook generally isn’t useful for normal commits; rather, it’s good for commits where the default

message is auto-generated, such as templated commit messages, merge commits, squashed

commits, and amended commits. You may use it in conjunction with a commit template to

programmatically insert information.

The hook takes one parameter, which again is the path to a temporary file

that contains the current commit message. If this script exits non-zero, Git aborts the commit

process, so you can use it to validate your project state or commit message before allowing

a commit to go through. In the last section of this chapter, I’ll demonstrate using this hook to

check that your commit message is conformant to a required pattern.

After the entire commit process is completed, the hook runs. It doesn’t take

any parameters, but you can easily get the last commit by running . Generally,

this script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any workflow.

They’re often used to enforce certain policies, although it’s important to note that these scripts

aren’t transferred during a clone. You can enforce policy on the server side to reject pushes of

commits that don’t conform to some policy, but it’s entirely up to the developer to use these

scripts on the client side. So, these are scripts to help developers, and they must be set up and

maintained by them, although they can be overridden or modified by them at any time.

E-mail Workflow Hooks

You can set up three client-side hooks for an e-mail-based workflow. They’re all invoked by

the command, so if you aren’t using that command in your workflow, you can safely

skip to the next section. If you’re taking patches over e-mail prepared by ,

then some of these may be helpful to you.

The first hook that is run is . It takes a single argument: the name of the

temporary file that contains the proposed commit message. Git aborts the patch if this script

exits non-zero. You can use this to make sure a commit message is properly formatted or to

normalize the message by having the script edit it in place.

CHAPTER 7 N฀ CUSTOMIZ ING GIT192

The next hook to run when applying patches via is . It takes no

arguments and is run after the patch is applied, so you can use it to inspect the snapshot

before making the commit. You can run tests or otherwise inspect the working tree with this

script. If something is missing or the tests don’t pass, exiting non-zero also aborts the

script without committing the patch.

The last hook to run during a operation is . You can use it to notify

a group or the author of the patch you pulled in that you’ve done so. You can’t stop the patch-

ing process with this script.

Other Client Hooks

The hook runs before you rebase anything and can halt the process by exiting

non-zero. You can use this hook to disallow rebasing any commits that have already been

pushed. The example hook that Git installs does this, although it assumes that

 is the name of the branch you publish. You’ll likely need to change that to whatever your

stable, published branch is.

After you run a successful , the hook runs; you can use it to

set up your working directory properly for your project environment. This may mean moving

in large binary files that you don’t want source controlled, auto-generating documentation, or

something along those lines.

Finally, the hook runs after a successful command. You can use it to

restore data in the working tree that Git can’t track, such as permissions data. This hook can

likewise validate the presence of files external to Git control that you may want copied in when

the working tree changes.

Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks as

a system administrator to enforce nearly any kind of policy for your project. These scripts run

before and after pushes to the server. The pre hooks can exit non-zero at any time to reject the

push as well as print an error message back to the client; you can set up a push policy that’s as

complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from a client is . It takes a list of

references that are being pushed from stdin; if it exits non-zero, none of them are accepted.

You can use this hook to do things like make sure none of the updated references are

non-fast-forwards; or to check that the user doing the pushing has create, delete, or push

access or access to push updates to all the files they’re modifying with the push.

The hook runs after the entire process is completed and can be used to

update other services or notify users. It takes the same stdin data as the hook.

Examples include e-mailing a list, notifying a continuous integration server, or updating

a ticket-tracking system—you can even parse the commit messages to see if any tickets need

to be opened, modified, or closed. This script can’t stop the push process, but the client

doesn’t disconnect until it has completed; so, be careful when you try to do anything that

may take a long time.

CHAPTER 7 N฀ CUSTOMIZ ING GIT 193

update

The script is very similar to the script, except that it’s run once for each

branch the pusher is trying to update. If the pusher is trying to push to multiple branches,

 runs only once, whereas runs once per branch they’re pushing to. Instead

of reading from stdin, this script takes three arguments: the name of the reference (branch),

the SHA-1 that reference pointed to before the push, and the SHA-1 the user is trying to push.

If the update script exits non-zero, only that reference is rejected; other references can still be

updated.

An Example Git-Enforced Policy
In this section, you’ll use what you’ve learned to establish a Git workflow that checks for a cus-

tom commit message format, enforces fast-forward-only pushes, and allows only certain users

to modify certain subdirectories in a project. You’ll build client scripts that help the developer

know if their push will be rejected and server scripts that actually enforce the policies.

I used Ruby to write these, both because it’s my preferred scripting language and because

I feel it’s the most pseudocode-looking of the scripting languages; thus you should be able to

roughly follow the code even if you don’t use Ruby. However, any language will work fine. All

the sample hook scripts distributed with Git are in either Perl or Bash scripting, so you can also

see plenty of examples of hooks in those languages by looking at the samples.

Server-Side Hook

All the server-side work will go into the file in your directory. The file

runs once per branch being pushed and takes the reference being pushed to, the old revision

where that branch was, and the new revision being pushed. You also have access to the user

doing the pushing if the push is being run over SSH. If you’ve allowed everyone to connect

with a single user (like “git”) via public-key authentication, you may have to give that user

a shell wrapper that determines which user is connecting based on the public key, and set an

environment variable specifying that user. Here I assume the connecting user is in the

environment variable, so your script begins by gathering all the information you need:

Yes, I’m using global variables. Don’t judge me—it’s easier to demonstrate in this manner.

CHAPTER 7 N฀ CUSTOMIZ ING GIT194

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a particular for-

mat. Just to have a target, assume that each message has to include a string that looks like “ref:

1234” because you want each commit to link to a work item in your ticketing system. You must

look at each commit being pushed up, see if that string is in the commit message, and, if the

string is absent from any of the commits, exit non-zero so the push is rejected.

You can get a list of the SHA-1 values of all the commits that are being pushed by taking

the and values and passing them to a Git plumbing command that is called

. This is basically the command, but by default it prints out only the

SHA-1 values and no other information. So, to get a list of all the commit SHAs introduced

between one commit SHA and another, you can run something like this:

You can take that output, loop through each of those commit SHAs, grab the message for

it, and test that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits to test.

To get the raw commit data, you can use another plumbing command called .

I’ll go over all these plumbing commands in detail in Chapter 9; but for now, here’s what that

command gives you:

A simple way to get the commit message from a commit when you have the SHA-1 value is

to go to the first blank line and take everything after that. You can do so with the command

on Unix systems:

You can use that incantation to grab the commit message from each commit that is trying

to be pushed and exit if you see anything that doesn’t match. To exit the script and reject the

push, exit non-zero. The whole method looks like this:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 195

Putting that in your update script will reject updates that contain commits that have mes-

sages that don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that specifies

which users are allowed to push changes to which parts of your projects. Some people have

full access, and others only have access to push changes to certain subdirectories or specific

files. To enforce this, you’ll write those rules to a file named that lives in your bare Git

repository on the server. You’ll have the update hook look at those rules, see what files are

being introduced for all the commits being pushed, and determine whether the user doing the

push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much like the CVS

ACL mechanism: it uses a series of lines, where the first field is or , the next field

is a comma-delimited list of the users to which the rule applies, and the last field is the path to

which the rule applies (blank meaning open access). All of these fields are delimited by a pipe

() character.

In this case, you have a couple of administrators, some documentation writers with access

to the directory, and one developer who only has access to the and directories,

and your ACL file looks like this:

You begin by reading this data into a structure that you can use. In this case, to keep the

example simple, you’ll only enforce the avail directives. Here is a method that gives you an

associative array where the key is the user name and the value is an array of paths to which the

user has write access:

CHAPTER 7 N฀ CUSTOMIZ ING GIT196

On the ACL file you looked at earlier, this method returns a data

structure that looks like this:

Now that you have the permissions sorted out, you need to determine what paths the

commits being pushed have modified, so you can make sure the user who’s pushing has

access to all of them.

You can pretty easily see what files have been modified in a single commit with the

 option to the command (mentioned briefly in Chapter 2):

If you use the ACL structure returned from the method and check it

against the listed files in each of the commits, you can determine whether the user has access

to push all of their commits:

CHAPTER 7 N฀ CUSTOMIZ ING GIT 197

Most of that should be easy to follow. You get a list of new commits being pushed to your

server with . Then, for each of those, you find which files are modified and make

sure the user who’s pushing has access to all the paths being modified. One Rubyism that may

not be clear is , which is true if begins with —

this ensures that is not just in one of the allowed paths, but each accessed path

begins with an allowed path..

Now your users can’t push any commits with badly formed messages or with modified

files outside of their designated paths.

Enforcing Fast-Forward-Only Pushes

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or newer, you can

set the and settings. But enforcing this

with a hook will work in older versions of Git, and you can modify it to do so only for certain

users or whatever else you come up with later.

The logic for checking this is to see if any commits are reachable from the older revision

that aren’t reachable from the newer one. If there are none, then it was a fast-forward push;

otherwise, you deny it:

Everything is set up. If you run , which is the file into which

you should have put all this code, and then try to push a non-fast-forwarded reference, you get

something like this:

CHAPTER 7 N฀ CUSTOMIZ ING GIT198

There are a couple of interesting things here. First, you see this where the hook starts run-

ning.

Notice that you printed that out to stdout at the very beginning of your update script. It’s

important to note that anything your script prints to stdout will be transferred to the client.

The next thing you’ll notice is the error message.

The first line was printed out by you, the other two were Git telling you that the update

script exited non-zero and that is what is declining your push. Lastly, you have this:

You’ll see a remote rejected message for each reference that your hook declined, and it

tells you that it was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the error mes-

sage you’re printing out for that.

Or if someone tries to edit a file they don’t have access to and push a commit contain-

ing it, they will see something similar. For instance, if a documentation author tries to push

a commit modifying something in the directory, they see

CHAPTER 7 N฀ CUSTOMIZ ING GIT 199

That’s all. From now on, as long as that update script is there and executable, your reposi-

tory will never be rewound and will never have a commit message without your pattern in it,

and your users will be sandboxed.

Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your users’ com-

mit pushes are rejected. Having their carefully crafted work rejected at the last minute can be

extremely frustrating and confusing; and furthermore, they will have to edit their history to

correct it, which isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can use to

notify them when they’re doing something that the server is likely to reject. That way, they can

correct any problems before committing and before those issues become more difficult to fix.

Because hooks aren’t transferred with a clone of a project, you must distribute these scripts

some other way and then have your users copy them to their directory and make

them executable. You can distribute these hooks within the project or in a separate project,

but there is no way to set them up automatically.

To begin, you should check your commit message just before each commit is recorded, so

you know the server won’t reject your changes due to badly formatted commit messages. To

do this, you can add the hook. If you have it read the message from the file passed

as the first argument and compare that to the pattern, you can force Git to abort the commit if

there is no match:

If that script is in place (in) and executable, and you commit with

a message that isn’t properly formatted, you see this:

No commit was completed in that instance. However, if your message contains the proper

pattern, Git allows you to commit:

CHAPTER 7 N฀ CUSTOMIZ ING GIT200

Next, you want to make sure you aren’t modifying files that are outside your ACL scope. If

your project’s directory contains a copy of the ACL file you used previously, then the fol-

lowing script will enforce those constraints for you:

This is roughly the same script as the server-side part, but with two important differences.

First, the ACL file is in a different place, because this script runs from your working directory,

not from your Git directory. You have to change the path to the ACL file from this

to this:

The other important difference is the way you get a listing of the files that have been

changed. Because the server-side method looks at the log of commits, and, at this point, the

commit hasn’t been recorded yet, you must get your file listing from the staging area instead.

Instead of

you have to use

CHAPTER 7 N฀ CUSTOMIZ ING GIT 201

But those are the only two differences—otherwise, the script works the same way. One

caveat is that it expects you to be running locally as the same user you push as to the remote

machine. If that is different, you must set the variable manually.

The last thing you have to do is check that you’re not trying to push non-fast-forwarded

references, but that is a bit less common. To get a reference that isn’t a fast-forward, you either

have to rebase past a commit you’ve already pushed up or try pushing a different local branch

up to the same remote branch.

Because the server will tell you that you can’t push a non-fast-forward anyway, and the

hook prevents forced pushes, the only accidental thing you can try to catch is rebasing com-

mits that have already been pushed.

Here is an example script that checks for that. It gets a list of all the commits

you’re about to rewrite and checks whether they exist in any of your remote references. If it

sees one that is reachable from one of your remote references, it aborts the rebase:

This script uses a syntax that wasn’t covered in the “Revision Selection” section of Chapter

6. You get a list of commits that have already been pushed up by running this:

The syntax resolves to all the parents of that commit. You’re looking for any commit

that is reachable from the last commit on the remote and that isn’t reachable from any parent

of any of the SHAs you’re trying to push up—meaning it’s a fast-forward.

The main drawback to this approach is that it can be very slow and is often unnecessary—

if you don’t try to force the push with , the server will warn you and not accept the push.

However, it’s an interesting exercise and can in theory help you avoid a rebase that you might

later have to go back and fix.

CHAPTER 7 N฀ CUSTOMIZ ING GIT202

Summary
You’ve covered most of the major ways that you can customize your Git client and server to

best fit your workflow and projects. You’ve learned about all sorts of configuration settings,

file-based attributes, and event hooks, and you’ve built an example policy-enforcing server.

You should now be able to make Git fit nearly any workflow you can dream up.

C H A P T E R 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come in

contact with to Git. Sometimes you’re stuck on a project using another VCS, and many times

that system is Subversion. You’ll spend the first part of this chapter learning about , the

bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second part of

this chapter covers how to migrate your project into Git: first from Subversion, then from

Perforce, and finally via a custom import script for a nonstandard importing case.

Git and Subversion
Currently, the majority of open source development projects and a large number of corporate

projects use Subversion to manage their source code. It’s the most popular open source VCS

and has been around for nearly a decade. It’s also very similar in many ways to CVS, which was

the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called . This

tool allows you to use Git as a valid client to a Subversion server, so you can use all the local

features of Git and then push to a Subversion server as if you were using Subversion locally.

This means you can do local branching and merging, use the staging area, use rebasing and

cherry-picking, and so on, while your collaborators continue to work in their dark and ancient

ways. It’s a good way to sneak Git into the corporate environment and help your fellow devel-

opers become more efficient while you lobby to get the infrastructure changed to support Git

fully. The Subversion bridge is the gateway drug to the DVCS world.

git svn

The base command in Git for all the Subversion bridging commands is . You preface

everything with that. It takes quite a few commands, so you’ll learn about the common ones

while going through a few small workflows.

It’s important to note that when you’re using , you’re interacting with Subver-

sion, which is a system that is far less sophisticated than Git. Although you can easily do local

branching and merging, it’s generally best to keep your history as linear as possible by rebas-

ing your work and avoiding doing things like simultaneously interacting with a Git remote

repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git reposi-

tory to collaborate with fellow Git developers at the same time. Subversion can have only

203

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS204

a single linear history, and confusing it is very easy. If you’re working with a team, and some

are using SVN and others are using Git, make sure everyone is using the SVN server to collabo-

rate—doing so will make your life easier.

Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have write

access to. If you want to copy these examples, you’ll have to make a writeable copy of my

test repository. In order to do that easily, you can use a tool called that comes with

more recent versions of Subversion—it should be distributed with at least 1.4. For these tests,

I created a new Subversion repository on Google code that was a partial copy of the

project, which is a tool that encodes structured data for network transmission.

To follow along, you first need to create a new local Subversion repository:

Then, enable all users to change —the easy way is to add a

script that always exits 0:

You can now sync this project to your local machine by calling with the to

and from repositories.

This sets up the properties to run the sync. You can then clone the code by running

Although this operation may take only a few minutes, if you try to copy the original reposi-

tory to another remote repository instead of a local one, the process will take nearly an hour,

even though there are fewer than 100 commits. Subversion has to clone one revision at a time

and then push it back into another repository—it’s ridiculously inefficient, but it’s the only

easy way to do this.

Getting Started

Now that you have a Subversion repository to which you have write access, you can go through

a typical workflow. You’ll start with the command, which imports an entire

Subversion repository into a local Git repository. Remember that if you’re importing from

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 205

a real hosted Subversion repository, you should replace the here with

the URL of your Subversion repository:

This runs the equivalent of two commands— followed by —

on the URL you provide. This can take a while. The test project has only about 75 commits and

the codebase isn’t that big, so it takes just a few minutes. However, Git has to check out each

version, one at a time, and commit it individually. For a project with hundreds or thousands of

commits, this can literally take hours or even days to finish.

The part tells Git that this Subversion repository follows

the basic branching and tagging conventions. If you name your trunk, branches, or tags differ-

ently, you can change these options. Because this is so common, you can replace this entire

part with , which means standard layout and implies all those options. The following com-

mand is equivalent:

At this point, you should have a valid Git repository that has imported your branches and

tags:

It’s important to note how this tool namespaces your remote references differently. When

you’re cloning a normal Git repository, you get all the branches on that remote server available

locally as something like , namespaced by the name of the remote. However,

 assumes that you won’t have multiple remotes and saves all its references to points on

the remote server with no namespacing. You can use the Git plumbing command to

look at all your full reference names:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS206

A normal Git repository looks more like this:

You have two remote servers: one named with a branch; and another

named with two branches, and .

Notice how in the example of remote references imported from , tags are added as

remote branches, not as real Git tags. Your Subversion import looks like it has a remote named

 with branches under it.

Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and push your

commits back upstream, using Git effectively as a SVN client. If you edit one of the files and

commit it, you have a commit that exists in Git locally that doesn’t exist on the Subversion

server:

Next, you need to push your change upstream. Notice how this changes the way you work

with Subversion—you can do several commits offline and then push them all at once to the

Subversion server. To push to a Subversion server, you run the command:

This takes all the commits you’ve made on top of the Subversion server code, does

a Subversion commit for each, and then rewrites your local Git commit to include a unique

identifier. This is important because it means that all the SHA-1 checksums for your commits

change. Partly for this reason, working with Git-based remote versions of your projects

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 207

concurrently with a Subversion server isn’t a good idea. If you look at the last commit, you can

see the new that was added:

Notice that the SHA checksum that originally started with when you committed

now begins with . If you want to push to both a Git server and a Subversion server, you

have to push (dcommit) to the Subversion server first, because that action changes your com-

mit data.

Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and then the

other one will try to push a change that conflicts. That change will be rejected until you merge

in their work. In , it looks like this:

To resolve this situation, you can run , which pulls down any changes

on the server that you don’t have yet and rebases any work you have on top of what is on the

server:

Now, all your work is on top of what is on the Subversion server, so you can successfully

:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS208

It’s important to remember that unlike Git, which requires you to merge upstream work

you don’t yet have locally before you can push, makes you do that only if the changes

conflict. If someone else pushes a change to one file and then you push a change to another

file, your dcommit will work fine:

This is important to remember, because the outcome is a project state that didn’t exist on

either of your computers when you pushed. If the changes are incompatible but don’t conflict,

you may get issues that are difficult to diagnose. This is different than using a Git server—in

Git, you can fully test the state on your client system before publishing it, whereas in SVN, you

can’t ever be certain that the states immediately before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server, even if

you’re not ready to commit yourself. You can run to grab the new data, but

 does the fetch and then updates your local commits:

Running every once in a while makes sure your code is always up to date.

You need to be sure your working directory is clean when you run this, though. If you have

local changes, you must either stash your work or temporarily commit it before running

—otherwise, the command will stop if it sees that the rebase will result in a merge

conflict.

Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches, do

work on them, and then merge them in. If you’re pushing to a Subversion server via ,

you may want to rebase your work onto a single branch each time instead of merging branches

together. The reason to prefer rebasing is that Subversion has a linear history and doesn’t deal

with merges like Git does, so follows only the first parent when converting the snap-

shots into Subversion commits.

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 209

Suppose your history looks like the following: you created an branch, did two

commits, and then merged them back into . When you dcommit, you see output like

this:

Running on a branch with merged history works fine, except that when you

look at your Git project history, it hasn’t rewritten either of the commits you made on the

 branch—instead, all those changes appear in the SVN version of the single merge

commit.

When someone else clones that work, all they see is the merge commit with all the work

squashed into it; they don’t see the commit data about where it came from or when it was

committed.

Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using it much,

that’s probably best. However, you can create and commit to branches in Subversion using

.

Creating a New SVN Branch

To create a new branch in Subversion, you run :

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS210

This does the equivalent of the command in Subversion

and operates on the Subversion server. It’s important to note that it doesn’t check you out into

that branch; if you commit at this point, that commit will go to on the server, not .

Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your Subver-

sion branches in your history—you should have only one, and it should be the last one with

a in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local

branches to dcommit to specific Subversion branches by starting them at the imported Sub-

version commit for that branch. If you want an branch that you can work on separately,

you can run

Now, if you want to merge your branch into (your branch), you can do

so with a normal . But you need to provide a descriptive commit message (via), or

the merge will say instead of something useful.

Remember that although you’re using to do this operation, and the merge likely

will be much easier than it would be in Subversion (because Git will automatically detect the

appropriate merge base for you), this isn’t a normal Git merge commit. You have to push this

data back to a Subversion server that can’t handle a commit that tracks more than one par-

ent; so, after you push it up, it will look like a single commit that squashed in all the work of

another branch under a single commit. After you merge one branch into another, you can’t

easily go back and continue working on that branch, as you normally can in Git. The

command that you run erases any information that says what branch was merged in, so sub-

sequent merge-base calculations will be wrong—the makes your result look

like you ran . Unfortunately, there’s no good way to avoid this situation—

Subversion can’t store this information, so you’ll always be crippled by its limitations while

you’re using it as your server. To avoid issues, you should delete the local branch (in this case,

) after you merge it into .

Subversion Commands

The toolset provides a number of commands to help ease the transition to Git by

providing some functionality that’s similar to what you had in Subversion. Here are a few com-

mands that give you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you can run

 to view your commit history in SVN formatting:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 211

You should know two important things about . First, it works offline, unlike

the real command, which asks the Subversion server for the data. Second, it only

shows you commits that have been committed up to the Subversion server. Local Git commits

that you haven’t dcommited don’t show up; neither do commits that people have made to the

Subversion server in the meantime. It’s more like the last known state of the commits on the

Subversion server.

SVN Annotation

Much as the command simulates the command offline, you can get the

equivalent of by running . The output looks like this:

Again, it doesn’t show commits that you did locally in Git or that have been pushed to

Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that gives you by running

:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS212

This is like and in that it runs offline and is up to date only as of the last time you

communicated with the Subversion server.

Ignoring What Subversion Ignores

If you clone a Subversion repository that has properties set anywhere, you’ll likely

want to set corresponding files so you don’t accidentally commit files that you

shouldn’t. has two commands to help with this issue. The first is ,

which automatically creates corresponding files for you so your next commit can

include them.

The second command is , which prints to stdout the lines you need

to put in a file so you can redirect the output into your project file:

That way, you don’t litter the project with files. This is a good option if you’re

the only Git user on a Subversion team, and your teammates don’t want files in the

project.

Git-Svn Summary

The tools are useful if you’re stuck with a Subversion server for now or are otherwise

in a development environment that necessitates running a Subversion server. You should con-

sider it crippled Git, however, or you’ll hit issues in translation that may confuse you and your

collaborators. To stay out of trouble, try to follow these guidelines:

฀ s฀ +EEP฀A฀LINEAR฀'IT฀HISTORY฀THAT฀DOESN�T฀CONTAIN฀MERGE฀COMMITS฀MADE฀BY฀ .

Rebase any work you do outside of your mainline branch back onto it; don’t merge it

in.

฀ s฀ $ON�T฀SET฀UP฀AND฀COLLABORATE฀ON฀A฀SEPARATE฀'IT฀SERVER�฀0OSSIBLY฀HAVE฀ONE฀TO฀SPEED฀UP฀
clones for new developers, but don’t push anything to it that doesn’t have a

entry. You may even want to add a pre-receive hook that checks each commit message

for a and rejects pushes that contain commits without it.

If you follow those guidelines, working with a Subversion server can be more bearable.

However, if it’s possible to move to a real Git server, doing so can gain your team a lot more.

Migrating to Git
If you have an existing codebase in another VCS but you’ve decided to start using Git, you

must migrate your project one way or another. This section goes over some importers that are

included with Git for common systems and then demonstrates how to develop your own cus-

tom importer.

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 213

Importing

You’ll learn how to import data from two of the bigger professionally used SCM systems—

Subversion and Perforce—both because they make up the majority of users I hear of who are

currently switching, and because high-quality tools for both systems are distributed with Git.

Subversion

If you read the previous section about using , you can easily use those instructions to

 a repository; then, stop using the Subversion server, push to a new Git server,

and start using that. If you want the history, you can accomplish that as quickly as you can pull

the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well do it

right. The first problem is the author information. In Subversion, each person committing has

a user on the system who is recorded in the commit information. The examples in the previous

section show in some places, such as the output and the log. If you want

to map this to better Git author data, you need a mapping from the Subversion users to the Git

authors. Create a file called that has this mapping in a format like this:

To get a list of the author names that SVN uses, you can run this:

That gives you the log output in XML format—then it looks for the authors, creates

a unique list, and then strips out the XML. (Obviously this only works on a machine with ,

, and installed.) Then, redirect that output into your file so you can add the

equivalent Git user data next to each entry.

You can provide this file to to help it map the author data more accurately. You

can also tell not to include the metadata that Subversion normally imports, by passing

 to the or command. This makes your import command look like this:

Now you should have a nicer Subversion import in your directory. Instead of

commits that look like this:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS214

they look like this:

Not only does the field look a lot better, but the is no longer there,

either.

You then need to do a bit of post-import cleanup. For one thing, you should clean up the

weird references that set up. First you’ll move the tags so they’re actual tags rather

than strange remote branches, and then you’ll move the rest of the branches so they’re local.

To move the tags to be proper Git tags, run

This takes the references that were remote branches that started with and makes

them real (lightweight) tags.

Next, move the rest of the references under to be local branches:

Now all the old branches are real Git branches and all the old tags are real Git tags. The

last thing to do is add your new Git server as a remote and push to it. Because you want all

your branches and tags to go up, you can run this:

All your branches and tags should be on your new Git server in a nice, clean import.

Perforce

The next system you’ll look at importing from is Perforce. A Perforce importer is also distrib-

uted with Git, but only in the section of the source code—it isn’t available by default

like . To run it, you must get the Git source code, which you can download from

:

In this directory, you should find an executable Python script named .

You must have Python and the tool installed on your machine for this import to work. For

example, you’ll import the Jam project from the Perforce Public Depot. To set up your client,

you must export the environment variable to point to the Perforce depot:

Run the command to import the Jam project from the Perforce server, sup-

plying the depot and project path and the path into which you want to import the project:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 215

If you go to the directory and run , you can see your imported work:

You can see the identifier in each commit. It’s fine to keep that identifier there, in

case you need to reference the Perforce change number later. However, if you’d like to remove

the identifier, now is the time to do so—before you start doing work on the new repository.

You can use to remove the identifier strings en masse:

If you run , you can see that all the SHA-1 checksums for the commits have

changed, but the strings are no longer in the commit messages:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS216

Your import is ready to push up to your new Git server.

A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online—quality

importers are available for CVS, Clear Case, Visual Source Safe, even a directory of archives. If

none of these tools works for you, you have a rarer tool, or you otherwise need a more custom

importing process, you should use . This command reads simple instructions

from stdin to write specific Git data. It’s much easier to create Git objects this way than to run

the raw Git commands or try to write the raw objects (see Chapter 9 for more information).

This way, you can write an import script that reads the necessary information out of the sys-

tem you’re importing from and prints straightforward instructions to stdout. You can then run

this program and pipe its output through .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in , you

back up your project by occasionally copying the directory into a time-stamped

 backup directory, and you want to import this into Git. Your directory structure looks like

this:

In order to import a Git directory, you need to review how Git stores its data. As you may

remember, Git is fundamentally a linked list of commit objects that point to a snapshot of con-

tent. All you have to do is tell what the content snapshots are, what commit data

points to them, and the order they go in. Your strategy will be to go through the snapshots one

at a time and create commits with the contents of each directory, linking each commit back to

the previous one.

As you did in the “An Example Git-Enforced Policy” section of Chapter 7, you’ll write this

in Ruby, because it’s what I generally work with and it tends to be easy to read. You can write

this example pretty easily in anything you’re familiar with—it just needs to print the appropri-

ate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory, each of

which is a snapshot that you want to import as a commit. You’ll change into each subdirectory

and print the commands necessary to export it. Your basic main loop looks like this:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 217

You run inside each directory, which takes the manifest and mark of the

previous snapshot and returns the manifest and mark of this one; that way, you can link them

properly. Mark is the term for an identifier you give to a commit; as you create

commits, you give each one a mark that you can use to link to it from other commits. So, the

first thing to do in your method is generate a mark from the directory name:

You’ll do this by creating an array of directories and using the index value as the mark,

because a mark must be an integer. Your method looks like this:

Now that you have an integer representation of your commit, you need a date for the

commit metadata. Because the date is expressed in the name of the directory, you’ll parse it

out. The next line in your file is

where is defined as

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS218

That returns an integer value for the date of each directory. The last piece of meta-

information you need for each commit is the committer data, which you hardcode in a

global variable:

Now you’re ready to begin printing out the commit data for your importer. The initial

information states that you’re defining a commit object and what branch it’s on, followed by

the mark you’ve generated, the committer information and commit message, and then the

previous commit, if any. The code looks like this:

You hardcode the time zone 00) because doing so is easy. If you’re importing from

another system, you must specify the time zone as an offset.

The commit message must be expressed in a special format:

The format consists of the word , the size of the data to be read, a newline, and finally

the data. Because you need to use the same format to specify the file contents later, you create

a helper method, :

All that’s left is to specify the file contents for each snapshot. This is easy, because you

have each one in a directory—you can print out the command followed by the con-

tents of each file in the directory. Git will then record each snapshot appropriately:

NNote Because many systems think of their revisions as changes from one commit to another,

 can also take commands with each commit to specify which files have been added, removed,

or modified and what the new contents are. You could calculate the differences between snapshots and

provide only this data, but doing so is more complex—you may as well give Git all the data and let it figure it

out. If this is better suited to your data, check the man page for details about how to provide

your data in this manner.

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 219

The format for listing the new file contents or specifying a modified file with the new con-

tents is as follows:

Here, 644 is the mode (if you have executable files, you need to detect and specify 755

instead), and says you’ll list the contents immediately after this line. Your

method looks like this:

You reuse the method you defined earlier, because it’s the same as the way

you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the next

iteration:

That’s it. If you run this script, you’ll get content that looks something like this (you can

download the full script from):

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS220

To run the importer, pipe this output through while in the Git directory

you want to import into. You can create a new directory and then run in it for a start-

ing point, and then run your script:

As you can see, when it completes successfully, it gives you a bunch of statistics about

what it accomplished. In this case, you imported 18 objects total for 5 commits into 1 branch.

Now, you can run to see your new history:

CHAPTER 8 N฀ G IT AND OTHER SYSTEMS 221

There you go—a nice, clean Git repository. It’s important to note that nothing is checked

out—you don’t have any files in your working directory at first. To get them, you must reset

your branch to where is now:

You can do a lot more with the tool—handle different modes, binary data,

multiple branches and merging, tags, progress indicators, and more. A number of examples of

more complex scenarios are available in the directory of the Git source

code; one of the better ones is the script I just covered.

Summary

You should feel comfortable using Git with Subversion or importing nearly any existing reposi-

tory into a new Git one without losing data. The next chapter will cover the raw internals of Git

so you can craft every single byte, if need be.

C H A P T E R 9

Git Internals

You may have skipped to this chapter from a previous chapter, or you may have gotten here

after reading the rest of the book—in either case, this is where you’ll go over the inner work-

ings and implementation of Git. I found that learning this information was fundamentally

important to understanding how useful and powerful Git is, but others have argued to me that

it can be confusing and unnecessarily complex for beginners. Thus, I’ve made this discussion

the last chapter in the book so you could read it early or later in your learning process. I leave it

up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally

a content-addressable filesystem with a VCS user interface written on top of it. You’ll learn

more about what this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex

because it emphasized this filesystem rather than a polished VCS. In the last few years, the UI

has been refined until it’s as clean and easy to use as any system out there; but often, the ste-

reotype lingers about the early Git UI that was complex and difficult to learn.

The content-addressable filesystem layer is amazingly cool, so I’ll cover that first in this

chapter; then, you’ll learn about the transport mechanisms and the repository maintenance

tasks that you may eventually have to deal with.

Plumbing and Porcelain
This book covers how to use Git with 30 or so verbs such as , , , and so

on. But because Git was initially a toolkit for a VCS rather than a full user-friendly VCS, it has

a bunch of verbs that do low-level work and were designed to be chained together UNIX style

or called from scripts. These commands are generally referred to as plumbing commands, and

the more user-friendly commands are called porcelain commands.

The book’s first eight chapters deal almost exclusively with porcelain commands. But in

this chapter, you’ll be dealing mostly with the lower-level plumbing commands, because they

give you access to the inner workings of Git and help demonstrate how and why Git does what

it does. These commands aren’t meant to be used manually on the command line, but rather

to be used as building blocks for new tools and custom scripts.

When you run in a new or existing directory, Git creates the directory,

which is where almost everything that Git stores and manipulates is located. If you want to

back up or clone your repository, copying this single directory elsewhere gives you nearly

223

CHAPTER 9 N฀ G IT INTERNALS224

everything you need. This entire chapter basically deals with the stuff in this directory. Here’s

what it looks like:

You may see some other files in there, but this is a fresh repository—it’s what you

see by default. The directory isn’t used by newer Git versions, and the

file is only used by the GitWeb program, so don’t worry about those. The file contains

your project-specific configuration options, and the directory keeps a global file

for ignored patterns that you don’t want to track in a file. The directory con-

tains your client- or server-side hook scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the and files and the and

directories. These are the core parts of Git. The directory stores all the content for your

database, the directory stores pointers into commit objects in that data (branches), the

 file points to the branch you currently have checked out, and the file is where Git

stores your staging area information. You’ll now look at each of these sections in detail to see

how Git operates.

Git Objects
Git is a content-addressable filesystem. Great. What does that mean?

It means that at the core of Git is a simple key-value data store. You can insert any kind

of content into it, and it will give you back a key that you can use to retrieve the content again

at any time. To demonstrate, you can use the plumbing command , which takes

some data, stores it in your directory, and gives you back the key the data is stored as.

First, you initialize a new Git repository and verify that there is nothing in the direc-

tory:

CHAPTER 9 N฀ G IT INTERNALS 225

Git has initialized the directory and created and subdirectories in it, but

there are no regular files. Now, store some text in your Git database:

The tells to store the object; otherwise, the command simply tells you what

the key would be. tells the command to read the content from stdin; if you don’t spec-

ify this, expects the path to a file. The output from the command is a 40-character

checksum hash. This is the SHA-1 hash—a checksum of the content you’re storing plus

a header, which you’ll learn about in a bit. Now you can see how Git has stored your data:

You can see a file in the directory. This is how Git stores the content initially—

as a single file per piece of content, named with the SHA-1 checksum of the content and its

header. The subdirectory is named with the first 2 characters of the SHA, and the filename is

the remaining 38 characters.

You can pull the content back out of Git with the command. This command

is sort of a Swiss army knife for inspecting Git objects. Passing to it instructs the

command to figure out the type of content and display it nicely for you:

Now, you can add content to Git and pull it back out again. You can also do this with con-

tent in files. For example, you can do some simple version control on a file. First, create a new

file and save its contents in your database:

Then, write some new content to the file, and save it again:

Your database contains the two new versions of the file as well as the first content you

stored there:

Now you can revert the file back to the first version:

CHAPTER 9 N฀ G IT INTERNALS226

or the second version:

But remembering the SHA-1 key for each version of your file isn’t practical; plus, you aren’t

storing the filename in your system—just the content. This object type is called a blob. You can

have Git tell you the object type of any object in Git, given its SHA-1 key, with :

Tree Objects

The next type you’ll look at is the tree object, which solves the problem of storing the filename

and also allows you to store a group of files together. Git stores content in a manner similar to

a UNIX filesystem, but a bit simplified. All the content is stored as tree and blob objects, with

trees corresponding to UNIX directory entries and blobs corresponding more or less to inodes

or file contents. A single tree object contains one or more tree entries, each of which contains

an SHA-1 pointer to a blob or subtree with its associated mode, type, and filename. For exam-

ple, the most recent tree in the simplegit project may look something like this:

The syntax specifies the tree object that is pointed to by the last commit on

your branch. Notice that the subdirectory isn’t a blob but a pointer to another tree:

Conceptually, the data that Git is storing is something like Figure 9-1.

You can create your own tree. Git normally creates a tree by taking the state of your stag-

ing area or index and writing a tree object from it. So, to create a tree object, you first have to

set up an index by staging some files. To create an index with a single entry—the first version

of your file—you can use the plumbing command . You use this com-

mand to artificially add the earlier version of the file to a new staging area. You must

pass it the option because the file doesn’t yet exist in your staging area (you don’t even

have a staging area set up yet) and because the file you’re adding isn’t in your

directory but is in your database. Then, you specify the mode, SHA-1, and filename:

In this case, you’re specifying a mode of 100644, which means it’s a normal file. Other

options are 100755, which means it’s an executable file; and 120000, which specifies a sym-

bolic link. The mode is taken from normal UNIX modes but is much less flexible—these three

CHAPTER 9 N฀ G IT INTERNALS 227

modes are the only ones that are valid for files in Git (although other modes are used for direc-

tories and submodules).

Figure 9-1. Simple version of the Git data model

Now, you can use the command to write the staging area out to a tree object.

No option is needed—calling automatically creates a tree object from the state

of the index if that tree doesn’t yet exist:

You can also verify that this is a tree object:

You’ll now create a new tree with the second version of and a new file as well:

Your staging area now has the new version of as well as the new file .

Write out that tree (recording the state of the staging area or index to a tree object) and see

what it looks like:

CHAPTER 9 N฀ G IT INTERNALS228

Notice that this tree has both file entries and also that the SHA is the version 2

SHA from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory into this one.

You can read trees into your staging area by calling . In this case, you can read an

existing tree into your staging area as a subtree by using the option to :

If you created a working directory from the new tree you just wrote, you would get the two

files in the top level of the working directory and a subdirectory named that contained the

first version of the file. You can think of the data that Git contains for these structures

as being like Figure 9-2.

Figure 9-2. The content structure of your current Git data

Commit Objects

You have three trees that specify the different snapshots of your project that you want to track,

but the earlier problem remains: you must remember all three SHA-1 values in order to recall

the snapshots. You also don’t have any information about who saved the snapshots, when

they were saved, or why they were saved. This is the basic information that the commit object

stores for you.

To create a commit object, you call and specify a single tree SHA-1 and which

commit objects, if any, directly preceded it. Start with the first tree you wrote:

CHAPTER 9 N฀ G IT INTERNALS 229

Now you can look at your new commit object with :

The format for a commit object is simple: it specifies the top-level tree for the snapshot of

the project at that point; the author/committer information pulled from your and

 configuration settings, with the current timestamp; a blank line, and then the com-

mit message.

Next, you’ll write the other two commit objects, each referencing the commit that came

directly before it:

Each of the three commit objects points to one of the three snapshot trees you created.

Oddly enough, you have a real Git history now that you can view with the command, if

you run it on the last commit SHA-1:

CHAPTER 9 N฀ G IT INTERNALS230

Amazing. You’ve just done the low-level operations to build up a Git history without using

any of the front ends. This is essentially what Git does when you run the and

commands—it stores blobs for the files that have changed, updates the index, writes out trees,

and writes commit objects that reference the top-level trees and the commits that came

immediately before them. These three main Git objects—the blob, the tree, and the commit—

are initially stored as separate files in your directory. Here are all the objects in

the example directory now, commented with what they store:

If you follow all the internal pointers, you get an object graph something like Figure 9-3.

Figure 9-3. All the objects in your Git directory

CHAPTER 9 N฀ G IT INTERNALS 231

Object Storage

I mentioned earlier that a header is stored with the content. Let’s take a minute to look at how

Git stores its objects. You’ll see how to store a blob object—in this case, the string "what is up,

doc?"—interactively in the Ruby scripting language. You can start up interactive Ruby mode

with the command:

Git constructs a header that starts with the type of the object, in this case a blob. Then, it

adds a space followed by the size of the content and finally a null byte:

Git concatenates the header and the original content and then calculates the SHA-1

checksum of that new content. You can calculate the SHA-1 value of a string in Ruby by

including the digest library with the command and then calling

 with the string:

Git compresses the new content with zlib, which you can do in Ruby with the library.

First, you need to the library and then run on the content:

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll determine the

path of the object you want to write out (the first two characters of the SHA-1 value being the

subdirectory name, and the last 38 characters being the filename within that directory). In

Ruby, you can use the function to create the subdirectory if it doesn’t

exist. Then, open the file with and write out the previously zlib-compressed con-

tent to the file with a call on the resulting file handle:

CHAPTER 9 N฀ G IT INTERNALS232

That’s it—you’ve created a valid Git blob object. All Git objects are stored the same way,

just with different types—instead of the string , the header will begin with or .

Also, although the blob content can be nearly anything, the commit and tree content are very

specifically formatted.

Git References
You can run something like to look through your whole history, but you still

have to remember that is the last commit in order to walk that history to find all those

objects. You need a file in which you can store the SHA-1 value under a simple name so you

can use that pointer rather than the raw SHA-1 value.

In Git, these are called references or refs; you can find the files that contain the SHA-1

values in the directory. In the current project, this directory contains no files, but it

does contain a simple structure:

To create a new reference that will help you remember where your latest commit is, you

can technically do something as simple as this:

Now, you can use the head reference you just created instead of the SHA-1 value in your

Git commands:

You aren’t encouraged to directly edit the reference files. Git provides a safer command to

do this if you want to update a reference called :

That’s basically what a branch in Git is: a simple pointer or reference to the head of a line

of work. To create a branch back at the second commit, you can do this:

Your branch will contain only work from that commit down:

Now, your Git database conceptually looks something like Figure 9-4.

CHAPTER 9 N฀ G IT INTERNALS 233

Figure 9-4. Git directory objects with branch head references included

When you run commands like , Git basically runs that

 command to add the SHA-1 of the last commit of the branch you’re on into what-

ever new reference you want to create.

The HEAD

The question now is, when you run , how does Git know the SHA-1 of

the last commit? The answer is the file. The file is a symbolic reference to the branch

you’re currently on. By symbolic reference, I mean that unlike a normal reference, it doesn’t

generally contain a SHA-1 value but rather a pointer to another reference. If you look at the

file, you’ll normally see something like this:

If you run , Git updates the file to look like this:

When you run , it creates the commit object, specifying the parent of that com-

mit object to be whatever SHA-1 value the reference in points to.

You can also manually edit this file, but again a safer command exists to do so:

. You can read the value of your via this command:

CHAPTER 9 N฀ G IT INTERNALS234

You can also set the value of :

You can’t set a symbolic reference outside of the style:

Tags

You’ve just gone over Git’s three main object types, but there is a fourth. The tag object is very

much like a commit object—it contains a tagger, a date, a message, and a pointer. The main

difference is that a tag object points to a commit rather than a tree. It’s like a branch reference,

but it never moves—it always points to the same commit but gives it a friendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight. You can

make a lightweight tag by running something like this:

That is all a lightweight tag is—a branch that never moves. An annotated tag is more

complex, however. If you create an annotated tag, Git creates a tag object and then writes

a reference to point to it rather than directly to the commit. You can see this by creating an

annotated tag specifies that it’s an annotated tag):

Here’s the object SHA-1 value it created:

Now, run the command on that SHA-1 value:

Notice that the entry points to the commit SHA-1 value that you tagged. Also

notice that it doesn’t need to point to a commit; you can tag any Git object. In the Git source

code, for example, the maintainer has added their GPG public key as a blob object and then

tagged it. You can view the public key by running

CHAPTER 9 N฀ G IT INTERNALS 235

in the Git source code. The Linux kernel also has a non-commit-pointing tag object—the first

tag created points to the initial tree of the import of the source code.

Remotes

The third type of reference that you’ll see is a remote reference. If you add a remote and push

to it, Git stores the value you last pushed to that remote for each branch in the

directory. For instance, you can add a remote called and push your branch to it:

Then, you can see what the branch on the remote was the last time you

communicated with the server, by checking the file:

Remote references differ from branches (references) mainly in that they can’t

be checked out. Git moves them around as bookmarks to the last known state of where those

branches were on those servers.

Packfiles
Let’s go back to the database for your test Git repository. At this point, you have 11

objects—4 blobs, 3 trees, 3 commits, and 1 tag:

CHAPTER 9 N฀ G IT INTERNALS236

Git compresses the contents of these files with zlib, and you’re not storing much, so all

these files collectively take up only 925 bytes. You’ll add some larger content to the reposi-

tory to demonstrate an interesting feature of Git. Add the file from the Grit library you

worked with earlier—this is about a 12K source code file:

If you look at the resulting tree, you can see the SHA-1 value your file got for the

blob object:

You can then use to see how big that object is:

Now, modify that file a little, and see what happens:

Check the tree created by that commit, and you see something interesting:

The blob is now a different blob, which means that although you added only a single line

to the end of a 400-line file, Git stored that new content as a completely new object:

You have two nearly identical 12K objects on your disk. Wouldn’t it be nice if Git could

store one of them in full but then store the second object only as the delta between it and the

first?

It turns out that it can. The initial format in which Git saves objects on disk is called a loose

object format. However, occasionally Git packs up several of these objects into a single binary

CHAPTER 9 N฀ G IT INTERNALS 237

file called a packfile in order to save space and be more efficient. Git does this if you have

too many loose objects around, if you run the command manually, or if you push to

a remote server. To see what happens, you can manually ask Git to pack up the objects by call-

ing the command:

If you look in your directory, you’ll find that most of your objects are gone, and

a new pair of files has appeared:

The objects that remain are the blobs that aren’t pointed to by any commit—in this

case, the “what is up, doc?” example and the “test content” example blobs you created ear-

lier. Because you never added them to any commits, they’re considered dangling and aren’t

packed up in your new packfile.

The other files are your new packfile and an index. The packfile is a single file containing

the contents of all the objects that were removed from your filesystem. The index is a file that

contains offsets into that packfile so you can quickly seek to a specific object. What is cool is

that although the objects on disk before you ran the were collectively about 12K in size, the

new packfile is only 6K. You’ve halved your disk usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and sized

similarly, and stores just the deltas from one version of the file to the next. You can look into

the packfile and see what Git did to save space. The plumbing command

allows you to see what was packed up:

±฀

CHAPTER 9 N฀ G IT INTERNALS238

Here, the blob, which if you remember was the first version of your file, is

referencing the blob, which was the second version of the file. The third column in the

output is the size of the object in the pack, so you can see that takes up 12K of the file but

that only takes up 7 bytes. What is also interesting is that the second version of the file is

the one that is stored intact, whereas the original version is stored as a delta—this is because

you’re most likely to need faster access to the most recent version of the file.

The really nice thing about this is that it can be repacked at any time. Git will occasionally

repack your database automatically, always trying to save more space. You can also manually

repack at any time by running by hand.

The Refspec

Throughout this book, you’ve used simple mappings from remote branches to local refer-

ences; but they can be more complex.

Suppose you add a remote like this:

It adds a section to your file, specifying the name of the remote (), the

URL of the remote repository, and the refspec for fetching:

The format of the refspec is an optional , followed by , where is the

pattern for references on the remote side and is where those references will be written

locally. The tells Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a command, Git fetches

all the references under on the server and writes them to

locally. So, if there is a branch on the server, you can access the log of that branch

locally via

They’re all equivalent, because Git expands each of them to .

If you want Git instead to pull down only the branch each time, and not every other

branch on the remote server, you can change the line to

CHAPTER 9 N฀ G IT INTERNALS 239

This is just the default refspec for for that remote. If you want to do something

one time, you can specify the refspec on the command line, too. To pull the branch on

the remote down to locally, you can run

You can also specify multiple refspecs. On the command line, you can pull down several

branches like so:

In this case, the branch pull was rejected because it wasn’t a fast-forward refer-

ence. You can override that by specifying the in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If you want

to always fetch the and branches, add two lines:

You can’t use partial globs in the pattern, so this would be invalid:

However, you can use namespacing to accomplish something like that. If you have a QA

team that pushes a series of branches, and you want to get the branch and any of the

QA team’s branches but nothing else, you can use a config section like this:

If you have a complex workflow process that has a QA team pushing branches, developers

pushing branches, and integration teams pushing and collaborating on remote branches, you

can namespace them easily this way.

Pushing Refspecs

It’s nice that you can fetch namespaced references that way, but how does the QA team get

their branches into a namespace in the first place? You accomplish that by using refspecs

to push.

If the QA team wants to push their branch to on the remote server, they

can run

CHAPTER 9 N฀ G IT INTERNALS240

If they want Git to do that automatically each time they run , they can add

a value to their config file:

Again, this will cause a to push the local branch to the remote

 branch by default.

Deleting References

You can also use the refspec to delete references from the remote server by running something

like this:

Because the refspec is , by leaving off the part, this basically says to

make the topic branch on the remote nothing, which deletes it.

Transfer Protocols
Git can transfer data between two repositories in two major ways: over HTTP and via the

so-called smart protocols used in the , , and transports. This section will

quickly cover how these two main protocols operate.

The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires no

Git-specific code on the server side during the transport process. The fetch process is a series

of requests, where the client can assume the layout of the Git repository on the server. Let’s

follow the process for the library:

The first thing this command does is pull down the file. This file is written by

the command, which is why you need to enable that as a post-receive

hook in order for the HTTP transport to work properly:

Now you have a list of the remote references and SHAs. Next, you look for what the

reference is so you know what to check out when you’re finished:

You need to check out the branch when you’ve completed the process.

CHAPTER 9 N฀ G IT INTERNALS 241

At this point, you’re ready to start the walking process. Because your starting point is the

ca82a6 commit object you saw in the file, you start by fetching that:

You get an object back—that object is in loose format on the server, and you fetched it

over a static HTTP request. You can zlib-uncompress it, strip off the header, and look at

the commit content:

Next, you have two more objects to retrieve— , which is the tree of content that the

commit you just retrieved points to, and , which is the parent commit:

That gives you your next commit object. Grab the tree object:

Oops—it looks like that tree object isn’t in loose format on the server, so you get a 404

response back. There are a couple of reasons for this—the object could be in an alternate

repository, or it could be in a packfile in this repository. Git checks for any listed alternates

first:

If this comes back with a list of alternate URLs, Git checks for loose files and packfiles

there—this is a nice mechanism for projects that are forks of one another to share objects on

disk. However, because no alternates are listed in this case, your object must be in a packfile.

To see what packfiles are available on this server, you need to get the file,

which contains a listing of them (also generated by):

There is only one packfile on the server, so your object is obviously in there, but you’ll

check the file to make sure. This is also useful if you have multiple packfiles on the

server, so you can see which packfile contains the object you need:

CHAPTER 9 N฀ G IT INTERNALS242

Now that you have the packfile index, you can see if your object is in it—because the index

lists the SHAs of the objects contained in the packfile and the offsets to those objects. Your

object is there, so go ahead and get the whole packfile:

You have your tree object, so you continue walking your commits. They’re all also within

the packfile you just downloaded, so you don’t have to do any more requests to your server.

Git checks out a working copy of the branch that was pointed to by the reference

you downloaded at the beginning.

The entire output of this process looks like this:

The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more common

method of transferring data. These protocols have a process on the remote end that is intelli-

gent about Git—it can read local data and figure out what the client has or needs and generate

custom data for it. There are two sets of processes for transferring data: a pair for uploading

data and a pair for downloading data.

Uploading Data

To upload data to a remote process, Git uses the and processes. The

 process runs on the client and connects to a process on the remote

side.

For example, say you run in your project, and is defined

as a URL that uses the SSH protocol. Git fires up the process, which initiates a con-

nection over SSH to your server. It tries to run a command on the remote server via an SSH call

that looks something like this:

CHAPTER 9 N฀ G IT INTERNALS 243

The command immediately responds with one line for each reference

it currently has—in this case, just the branch and its SHA. The first line also has a list of

the server’s capabilities (here, and).

Each line starts with a 4-byte hex value specifying how long the rest of the line is. Your first

line starts with 005b, which is 91 in hex, meaning that 91 bytes remain on that line. The next

line starts with 003e, which is 62, so you read the remaining 62 bytes. The next line is 0000,

meaning the server is done with its references listing.

Now that it knows the server’s state, your process determines what commits

it has that the server doesn’t. For each reference that this push will update, the

process tells the process that information. For instance, if you’re updating the

 branch and adding an branch, the response may look something

like this:

The SHA-1 value of all 0s means that nothing was there before—because you’re adding

the reference. If you were deleting a reference, you would see the opposite: all 0s

on the right side.

Git sends a line for each reference you’re updating with the old SHA, the new SHA, and the

reference that is being updated. The first line also has the client’s capabilities. Next, the client

uploads a packfile of all the objects the server doesn’t have yet. Finally, the server responds

with a success (or failure) indication:

Downloading Data

When you download data, the and processes are involved. The client

initiates a process that connects to an process on the remote side to

negotiate what data will be transferred down.

There are different ways to initiate the process on the remote repository. You

can run via SSH in the same manner as the process. You can also initiate the

process via the Git daemon, which listens on a server on port 9418 by default. The

process sends data that looks like this to the daemon after connecting:

It starts with the 4 bytes specifying how much data is following, then the command to run

followed by a null byte, and then the server’s hostname followed by a final null byte. The Git

daemon checks that the command can be run and that the repository exists and has public

permissions. If everything is cool, it fires up the process and hands off the request

to it.

If you’re doing the fetch over SSH, instead runs something like this:

CHAPTER 9 N฀ G IT INTERNALS244

In either case, after connects, sends back something like this:

This is very similar to what responds with, but the capabilities are different.

In addition, it sends back the reference so the client knows what to check out if this is

a clone.

At this point, the process looks at what objects it has and responds with the

objects that it needs by sending “want” and then the SHA it wants. It sends all the objects it

already has with “have” and then the SHA. At the end of this list, it writes “done” to initiate the

 process to begin sending the packfile of the data it needs:

That is a very basic case of the transfer protocols. In more complex cases, the client sup-

ports or capabilities; but this example shows you the basic back and forth

used by the smart protocol processes.

Maintenance and Data Recovery
Occasionally, you may have to do some cleanup—make a repository more compact, clean up

an imported repository, or recover lost work. This section will cover some of these scenarios.

Maintenance

Occasionally, Git automatically runs a command called . Most of the time, this com-

mand does nothing. However, if there are too many loose objects (objects not in a packfile)

or too many packfiles, Git launches a full-fledged command. The stands for garbage

collect, and the command does a number of things: it gathers up all the loose objects and

places them in packfiles, it consolidates packfiles into one big packfile, and it removes objects

that aren’t reachable from any commit and are a few months old.

You can run manually as follows:

Again, this generally does nothing. You must have around 7,000 loose objects or more

than 50 packfiles for Git to fire up a real command. You can modify these limits with the

 and config settings, respectively.

The other thing will do is pack up your references into a single file. Suppose your repos-

itory contains the following branches and tags:

CHAPTER 9 N฀ G IT INTERNALS 245

If you run , you’ll no longer have these files in the directory. Git will move

them for the sake of efficiency into a file named that looks like this:

If you update a reference, Git doesn’t edit this file but instead writes a new file to

. To get the appropriate SHA for a given reference, Git checks for that reference in the

 directory and then checks the file as a fallback. However, if you can’t find

a reference in the directory, it’s probably in your file.

Notice the last line of the file, which begins with a . This means the tag directly above is

an annotated tag and that line is the commit that the annotated tag points to.

Data Recovery

At some point in your Git journey, you may accidentally lose a commit. Generally, this hap-

pens because you force-delete a branch that had work on it, and it turns out you wanted the

branch after all; or you hard-reset a branch, thus abandoning commits that you wanted some-

thing from. Assuming this happens, how can you get your commits back?

Here’s an example that hard-resets the branch in your test repository to an older

commit and then recovers the lost commits. First, let’s review where your repository is at this

point:

Now, move the branch back to the middle commit:

You’ve effectively lost the top two commits—you have no branch from which those com-

mits are reachable. You need to find the latest commit SHA and then add a branch that points

to it. The trick is finding that latest commit SHA—it’s not like you’ve memorized it, right?

CHAPTER 9 N฀ G IT INTERNALS246

Often, the quickest way is to use a tool called . As you’re working, Git silently

records what your is every time you change it. Each time you commit or change branches,

the reflog is updated. The reflog is also updated by the command, which is

another reason to use it instead of just writing the SHA value to your ref files, as you learned

in the “Git References” section of this chapter. You can see where you’ve been at any time by

running :

Here you can see the two commits you checked out, but there isn’t much information. To

see the same information in a much more useful way, you can run , which provides

normal output for your reflog:

It looks like the bottom commit is the one you lost, so you can recover it by creating a new

branch at that commit. For example, you can start a branch named at that

commit ():

Cool—now you have a branch named that is where your branch

used to be, making the first two commits reachable again.

CHAPTER 9 N฀ G IT INTERNALS 247

Next, suppose your loss was for some reason not in the reflog—you can simulate that by

removing and deleting the reflog. Now the first two commits aren’t reachable

by anything:

Because the reflog data is kept in the directory, you effectively have no reflog.

How can you recover that commit at this point? One way is to use the utility, which

checks your database for integrity. If you run it with the option, it shows you all objects

that aren’t pointed to by another object:

In this case, you can see your missing commit after the dangling commit. You can recover

it the same way, by adding a branch that points to that SHA.

Removing Objects

There are a lot of great things about Git, but one feature that can cause issues is the fact that

a Git clone downloads the entire history of the project, including every version of every file.

This is fine if the whole thing is source code, because Git is highly optimized to compress that

data efficiently. However, if someone at any point in the history of your project added a single

huge file, every clone for all time will be forced to download that large file, even if it was

removed from the project in the very next commit. Because it’s reachable from the history, it

will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repositories

into Git. Because you don’t download the whole history in those systems, this type of addition

carries few consequences. If you did an import from another system or otherwise find that

your repository is much larger than it should be, here is how you can find and remove large

objects.

Be warned: this technique is destructive to your commit history. It rewrites every commit

object downstream from the earliest tree you have to modify to remove a large file reference. If

you do this immediately after an import, before anyone has started to base work on the com-

mit, you’re fine—otherwise, you have to notify all contributors that they must rebase their

work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the next com-

mit, find it, and remove it permanently from the repository. First, add a large object to your

history:

CHAPTER 9 N฀ G IT INTERNALS248

Oops—you didn’t want to add a huge tarball to your project. Better get rid of it:

Now, your database and see how much space you’re using:

You can run the command to quickly see how much space you’re using:

The entry is the size of your packfiles in kilobytes, so you’re using 2MB. Before

the last commit, you were using closer to 2K—clearly, removing the file from the previous

commit didn’t remove it from your history. Every time anyone clones this repository, they will

have to clone all 2MB just to get this tiny project, because you accidentally added a big file.

Let’s get rid of it.

First you have to find it. In this case, you already know what file it is. But suppose you

didn’t; how would you identify what file or files were taking up so much space? If you run

, all the objects are in a packfile; you can identify the big objects by running another plumb-

ing command called and sorting on the third field in the output, which is file

size. You can also pipe it through the command because you’re only interested in the last

few largest files:

The big object is at the bottom: 2MB. To find out what file it is, you’ll use the

command, which you used briefly in Chapter 7. If you pass to , it lists all

the commit SHAs and also the blob SHAs with the file paths associated with them. You can use

this to find your blob’s name:

CHAPTER 9 N฀ G IT INTERNALS 249

Now, you need to remove this file from all trees in your past. You can easily see what

commits modified this file:

You must rewrite all the commits downstream from to fully remove this file from

your Git history. To do so, you use , which you used in Chapter 6:

The option is similar to the option used in Chapter 6,

except that instead of passing a command that modifies files checked out on disk, you’re

modifying your staging area or index each time. Rather than remove a specific file with some-

thing like , you have to remove it with —you must remove it from the

index, not from disk. The reason to do it this way is speed—because Git doesn’t have to check

out each revision to disk before running your filter, the process can be much, much faster. You

can accomplish the same task with if you want. The option

to tells it not to error out if the pattern you’re trying to remove isn’t there. Finally, you

ask to rewrite your history only from the commit up, because you know

that is where this problem started. Otherwise, it will start from the beginning and will unnec-

essarily take longer.

Your history no longer contains a reference to that file. However, your reflog and a new set

of refs that Git added when you did the under still do, so

you have to remove them and then repack the database. You need to get rid of anything that

has a pointer to those old commits before you repack:

Let’s see how much space you saved:

CHAPTER 9 N฀ G IT INTERNALS250

The packed repository size is down to 7K, which is much better than 2MB. You can see

from the value that the big object is still in your loose objects, so it’s not gone; but it won’t

be transferred on a push or subsequent clone, which is what’s important. If you really wanted

to, you could remove the object completely by running .

Summary
You should have a pretty good understanding of what Git does in the background and, to some

degree, how it’s implemented. This chapter has covered a number of plumbing commands—

commands that are lower level and simpler than the porcelain commands you’ve learned

about in the rest of the book. Understanding how Git works at a lower level should make it

easier to understand why it’s doing what it’s doing and also to write your own tools and help-

ing scripts to make your specific workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily use as

more than just a VCS. I hope you can use your newfound knowledge of Git internals to imple-

ment your own cool application of this technology and feel more comfortable using Git in

more advanced ways.

251

A P P E N D I X

Creative Commons Legal Code

Attribution-NonCommercial-ShareAlike

3.0 Unported
Reprinted from

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE

LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-

CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON

AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE

INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING

FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE

COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY COPY-

RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN

AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND

AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE

MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS

CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND

CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other

pre-existing works, such as a translation, adaptation, derivative work, arrangement

of music or other alterations of a literary or artistic work, or phonogram or perfor-

mance and includes cinematographic adaptations or any other form in which the

Work may be recast, transformed, or adapted including in any form recognizably

derived from the original, except that a work that constitutes a Collection will not

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE252

be considered an Adaptation for the purpose of this License. For the avoidance of

doubt, where the Work is a musical work, performance or phonogram, the synchro-

nization of the Work in timed-relation with a moving image (“synching”) will be

considered an Adaptation for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias

and anthologies, or performances, phonograms or broadcasts, or other works or

subject matter other than works listed in Section 1(g) below, which, by reason of

the selection and arrangement of their contents, constitute intellectual creations,

in which the Work is included in its entirety in unmodified form along with one or

more other contributions, each constituting separate and independent works in

themselves, which together are assembled into a collective whole. A work that con-

stitutes a Collection will not be considered an Adaptation (as defined above) for the

purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the

Work or Adaptation, as appropriate, through sale or other transfer of ownership.

d. “License Elements” means the following high-level license attributes as selected

by Licensor and indicated in the title of this License: Attribution, Noncommercial,

ShareAlike.

e. “Licensor” means the individual, individuals, entity or entities that offer(s) the

Work under the terms of this License.

f. “Original Author” means, in the case of a literary or artistic work, the individual,

individuals, entity or entities who created the Work or if no individual or entity

can be identified, the publisher; and in addition (i) in the case of a performance

the actors, singers, musicians, dancers, and other persons who act, sing, deliver,

declaim, play in, interpret or otherwise perform literary or artistic works or expres-

sions of folklore; (ii) in the case of a phonogram the producer being the person or

legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in

the case of broadcasts, the organization that transmits the broadcast.

g. “Work” means the literary and/or artistic work offered under the terms of this

License including without limitation any production in the literary, scientific and

artistic domain, whatever may be the mode or form of its expression including

digital form, such as a book, pamphlet and other writing; a lecture, address, ser-

mon or other work of the same nature; a dramatic or dramatico-musical work;

a choreographic work or entertainment in dumb show; a musical composition

with or without words; a cinematographic work to which are assimilated works

expressed by a process analogous to cinematography; a work of drawing, painting,

architecture, sculpture, engraving or lithography; a photographic work to which

are assimilated works expressed by a process analogous to photography; a work of

applied art; an illustration, map, plan, sketch or three-dimensional work relative to

geography, topography, architecture or science; a performance; a broadcast; a pho-

nogram; a compilation of data to the extent it is protected as a copyrightable work;

or a work performed by a variety or circus performer to the extent it is not other-

wise considered a literary or artistic work.

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE 253

h. “You” means an individual or entity exercising rights under this License who has

not previously violated the terms of this License with respect to the Work, or who

has received express permission from the Licensor to exercise rights under this

License despite a previous violation.

i. “Publicly Perform” means to perform public recitations of the Work and to com-

municate to the public those public recitations, by any means or process, including

by wire or wireless means or public digital performances; to make available to the

public Works in such a way that members of the public may access these Works

from a place and at a place individually chosen by them; to perform the Work to the

public by any means or process and the communication to the public of the per-

formances of the Work, including by public digital performance; to broadcast and

rebroadcast the Work by any means including signs, sounds or images.

j. “Reproduce” means to make copies of the Work by any means including without

limitation by sound or visual recordings and the right of fixation and reproducing

fixations of the Work, including storage of a protected performance or phonogram

in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict

any uses free from copyright or rights arising from limitations or exceptions that are

provided for in connection with the copyright protection under copyright law or other

applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby

grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the

applicable copyright) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and

to Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including

any translation in any medium, takes reasonable steps to clearly label, demarcate

or otherwise identify that changes were made to the original Work. For example,

a translation could be marked “The original work was translated from English to

Spanish,” or a modification could indicate “The original work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated in Collec-

tions; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now known or here-

after devised. The above rights include the right to make such modifications as are technically

necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights

not expressly granted by Licensor are hereby reserved, including but not limited to the rights

described in Section 4(e).

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE254

4. Restrictions. The license granted in Section 3 above is expressly made subject to and

limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this

License. You must include a copy of, or the Uniform Resource Identifier (URI)

for, this License with every copy of the Work You Distribute or Publicly Perform.

You may not offer or impose any terms on the Work that restrict the terms of this

License or the ability of the recipient of the Work to exercise the rights granted to

that recipient under the terms of the License. You may not sublicense the Work.

You must keep intact all notices that refer to this License and to the disclaimer of

warranties with every copy of the Work You Distribute or Publicly Perform. When

You Distribute or Publicly Perform the Work, You may not impose any effective

technological measures on the Work that restrict the ability of a recipient of the

Work from You to exercise the rights granted to that recipient under the terms of

the License. This Section 4(a) applies to the Work as incorporated in a Collection,

but this does not require the Collection apart from the Work itself to be made sub-

ject to the terms of this License. If You create a Collection, upon notice from any

Licensor You must, to the extent practicable, remove from the Collection any credit

as required by Section 4(d), as requested. If You create an Adaptation, upon notice

from any Licensor You must, to the extent practicable, remove from the Adaptation

any credit as required by Section 4(d), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under: (i) the terms

of this License; (ii) a later version of this License with the same License Elements

as this License; (iii) a Creative Commons jurisdiction license (either this or a later

license version) that contains the same License Elements as this License (e.g.,

Attribution-NonCommercial-ShareAlike 3.0 US) (“Applicable License”). You must

include a copy of, or the URI, for Applicable License with every copy of each Adap-

tation You Distribute or Publicly Perform. You may not offer or impose any terms

on the Adaptation that restrict the terms of the Applicable License or the ability of

the recipient of the Adaptation to exercise the rights granted to that recipient under

the terms of the Applicable License. You must keep intact all notices that refer to

the Applicable License and to the disclaimer of warranties with every copy of the

Work as included in the Adaptation You Distribute or Publicly Perform. When You

Distribute or Publicly Perform the Adaptation, You may not impose any effective

technological measures on the Adaptation that restrict the ability of a recipient

of the Adaptation from You to exercise the rights granted to that recipient under

the terms of the Applicable License. This Section 4(b) applies to the Adaptation as

incorporated in a Collection, but this does not require the Collection apart from the

Adaptation itself to be made subject to the terms of the Applicable License.

c. You may not exercise any of the rights granted to You in Section 3 above in any

manner that is primarily intended for or directed toward commercial advantage

or private monetary compensation. The exchange of the Work for other copy-

righted works by means of digital file-sharing or otherwise shall not be considered

to be intended for or directed toward commercial advantage or private monetary

compensation, provided there is no payment of any monetary compensation in

connection with the exchange of copyrighted works.

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE 255

d. If You Distribute, or Publicly Perform the Work or any Adaptations or Collec-

tions, You must, unless a request has been made pursuant to Section 4(a), keep

intact all copyright notices for the Work and provide, reasonable to the medium

or means You are utilizing: (i) the name of the Original Author (or pseudonym, if

applicable) if supplied, and/or if the Original Author and/or Licensor designate

another party or parties (e.g., a sponsor institute, publishing entity, journal) for

attribution (“Attribution Parties”) in Licensor’s copyright notice, terms of service

or by other reasonable means, the name of such party or parties; (ii) the title of

the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that

Licensor specifies to be associated with the Work, unless such URI does not refer

to the copyright notice or licensing information for the Work; and, (iv) consistent

with Section 3(b), in the case of an Adaptation, a credit identifying the use of the

Work in the Adaptation (e.g., “French translation of the Work by Original Author,”

or “Screenplay based on original Work by Original Author”). The credit required

by this Section 4(d) may be implemented in any reasonable manner; provided,

however, that in the case of a Adaptation or Collection, at a minimum such credit

will appear, if a credit for all contributing authors of the Adaptation or Collection

appears, then as part of these credits and in a manner at least as prominent as the

credits for the other contributing authors. For the avoidance of doubt, You may

only use the credit required by this Section for the purpose of attribution in the

manner set out above and, by exercising Your rights under this License, You may

not implicitly or explicitly assert or imply any connection with, sponsorship or

endorsement by the Original Author, Licensor and/or Attribution Parties, as appro-

priate, of You or Your use of the Work, without the separate, express prior written

permission of the Original Author, Licensor and/or Attribution Parties.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which

the right to collect royalties through any statutory or compulsory licensing

scheme cannot be waived, the Licensor reserves the exclusive right to collect

such royalties for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the

right to collect royalties through any statutory or compulsory licensing scheme

can be waived, the Licensor reserves the exclusive right to collect such royalties

for any exercise by You of the rights granted under this License if Your exercise

of such rights is for a purpose or use which is otherwise than noncommercial

as permitted under Section 4(c) and otherwise waives the right to collect royal-

ties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,

whether individually or, in the event that the Licensor is a member of a col-

lecting society that administers voluntary licensing schemes, via that society,

from any exercise by You of the rights granted under this License that is for a

purpose or use which is otherwise than noncommercial as permitted under

Section 4(c).

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE256

f. Except as otherwise agreed in writing by the Licensor or as may be otherwise per-

mitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work

either by itself or as part of any Adaptations or Collections, You must not distort,

mutilate, modify or take other derogatory action in relation to the Work which

would be prejudicial to the Original Author’s honor or reputation. Licensor agrees

that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in

Section 3(b) of this License (the right to make Adaptations) would be deemed to

be a distortion, mutilation, modification or other derogatory action prejudicial to

the Original Author’s honor and reputation, the Licensor will waive or not assert, as

appropriate, this Section, to the fullest extent permitted by the applicable national

law, to enable You to reasonably exercise Your right under Section 3(b) of this

License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND
TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS
THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE
OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THIS EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW,

IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY

SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES

ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon

any breach by You of the terms of this License. Individuals or entities who have

received Adaptations or Collections from You under this License, however, will not

have their licenses terminated provided such individuals or entities remain in full

compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termi-

nation of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual

(for the duration of the applicable copyright in the Work). Notwithstanding the

above, Licensor reserves the right to release the Work under different license terms

or to stop distributing the Work at any time; provided, however that any such elec-

tion will not serve to withdraw this License (or any other license that has been, or is

required to be, granted under the terms of this License), and this License will con-

tinue in full force and effect unless terminated as stated above.

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE 257

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor

offers to the recipient a license to the Work on the same terms and conditions as

the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the

recipient a license to the original Work on the same terms and conditions as the

license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it

shall not affect the validity or enforceability of the remainder of the terms of this

License, and without further action by the parties to this agreement, such provision

shall be reformed to the minimum extent necessary to make such provision valid

and enforceable.

d. No term or provision of this License shall be deemed waived and no breach con-

sented to unless such waiver or consent shall be in writing and signed by the party

to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to

the Work licensed here. There are no understandings, agreements or representa-

tions with respect to the Work not specified here. Licensor shall not be bound by

any additional provisions that may appear in any communication from You. This

License may not be modified without the mutual written agreement of the Licensor

and You.

f. The rights granted under, and the subject matter referenced, in this License were

drafted utilizing the terminology of the Berne Convention for the Protection of

Literary and Artistic Works (as amended on September 28, 1979), the Rome Con-

vention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and

Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised

on July 24, 1971). These rights and subject matter take effect in the relevant juris-

diction in which the License terms are sought to be enforced according to the

corresponding provisions of the implementation of those treaty provisions in the

applicable national law. If the standard suite of rights granted under applicable

copyright law includes additional rights not granted under this License, such addi-

tional rights are deemed to be included in the License; this License is not intended

to restrict the license of any rights under applicable law.

Creative Commons Notice
Creative Commons is not a party to this License, and makes no warranty whatsoever in con-

nection with the Work. Creative Commons will not be liable to You or any party on any legal

theory for any damages whatsoever, including without limitation any general, special, inci-

dental or consequential damages arising in connection to this license. Notwithstanding the

foregoing two (2) sentences, if Creative Commons has expressly identified itself as the Licensor

hereunder, it shall have all rights and obligations of Licensor.

APPENDIX N฀ CREATIVE COMMONS LEGAL CODE258

Except for the limited purpose of indicating to the public that the Work is licensed under

the CCPL, Creative Commons does not authorize the use by either party of the trademark

“Creative Commons” or any related trademark or logo of Creative Commons without the prior

written consent of Creative Commons. Any permitted use will be in compliance with Creative

Commons’ then-current trademark usage guidelines, as may be published on its website or

otherwise made available upon request from time to time. For the avoidance of doubt, this

trademark restriction does not form part of this License.

Creative Commons may be contacted at .

259

Index

Numbers and Symbols
 [0-9], 20
-3 option, 132
* (asterisk), 20, 61
\ (backslash), 25
^ (caret), 147, 149
! (exclamation point), 45
| (pipe), 195
? (question mark), 20
~ (tilde), 20, 147

A
[abc], 20
access, read-only, unauthenticated, 95–96
access control, with Gitosis, 91–95
access control list (ACL), 195–197
access_path, 197
active contributor size, 110
add command, 18, 19, 150, 153, 230
--add option, 226
aliases, 44–45
am command, 131–133, 191
--amend option, 32–33
ancestry references, 147
annotated tags, 39, 141, 234
-a option, 24
apply command, 130
archive command, 141
asterisk (*), 20, 61
attributes, 184–190

binary files, 184–186
exporting repository, 189–190
keyword expansion, 186–189
merge strategies, 190

authentication, generating SSH public key,
85–86

author, 29
--author option, 30
authorization, 86–87
authorized_keys method, 86–87
auto-completion, 43–44
auto gc command, 244

B
backslash (\), 25
--bare option, 83
bare repository, 79, 84

--base-path option, 95
benevolent dictator, 109
binary files, 184–186

diffing, 184–186
identifying, 184

binary search, 163–164
bisect command, 163–164
bisect start command, 164
BitKeeper, 5
blame command, 162
blobs, 226
branch command, 48, 60, 233
branches/branching

basic, 53–56
checking out remote, 133
creating, 48
creating, from stash, 156
deleting, 61
hotfix, 55
issues, 208–209
long-running, 63
management of, 60–61
merge conflicts, 58–60
merging, 57–70
overview, 47–52
proposed, 63
rebasing, 70–76
remote, 64–65, 68–69
sharing, 68–69
specifying multiple points, 149
Subversion, 209–210
switching, 50–52
topic, 63–64, 130, 137, 139–140
tracking, 69
workflows, 61–64

branches directory, 224
branch references, 145
-b switch, git checkout command, 53
build numbers, generating, 141

C
--cached option, 25
--cacheinfo option, 226
cat-file command, 225
Centralized Version Control Systems

(CVCSs), 3, 107
centralized workflows, 107–108

NINDEX260

changes
committing, 23–24
integrating, 130, 135–140
undoing, 32–34
viewing, 20–23, 134

checkout command, 50, 53
checksums, 7, 186
cherry-picks, 139–140
client configuration, 176–178
client-side hooks, 190–192, 199–201
clone command, 16, 83, 204–205
color settings, 178–179
color.* setting, 178
color.ui setting, 178
command aliases, 44–45
commit access, 111
commit command, 23–24, 230

--amend option, 157
-a option, 24

commit guidelines, 111–112
commit history

revising, 156–162
using GUI to visualize, 31
viewing, 26–32

commit-msg hook, 191, 199
commit objects, 228–230
commit process, 47
commits

branch references, 145
changing last, 32–33, 156
changing multiple, 157–158
debugging, 162–164
enforcing format for, 194–195
excluding, 134
filter-branch command and, 160–162
guidelines for, 111–112
merging, 55–57
ranges of, 147–149
referencing, 143–147
removing file from, 161
reordering, 158
reviewing, 134
splitting, 160
squashing, 159, 160
summary of, 142

committed state, 8
commit.template configuration value,

176–177
committer, 29
committing-workflow hooks, 191
commit-tree, 228
config command, 11, 12, 175
config file, 11, 175, 224
configuration, 11

basic client, 176–178
colors, 178–179
diff tools, 179–181

external merge, 179–181
formatting, 181–182
server, 183
whitespace, 181–182

content-addressable filesystem, 224–226
contributors, in private managed teams,

118–123
core.autocrlf setting, 181
core.editor setting, 176
core.excludesfile setting, 178
core.pager setting, 177
core.whitespace setting, 182
count-objects command, 248
custom importer, 216–221
customization. See configuration

D
data

downloading, 243–244
fetching from remote repositories, 36
storage, 6–7
uploading, 242

data model, 227
data recovery, 245–247
$Date$ keyword expansion, 188
datestamp, 187
debugging, 162–164

binary search, 163–164
file annotation, 162–163

denyNonFastForwards policy, 183
describe command, 141
description file, 224
dictator and lieutenants workflows, 109
diff command, 20–23, 135
diff.external setting, 180
diffs, viewing, 134, 152
diff tools, 12, 179–181
directory

git, 8, 223–224
working, 8, 55

Distributed Version Control Systems
(DVCSs), 4

distributed workflows, 107–109
double-dot syntax, 148
dumb protocol, 240–242

E
e-mail address

changing globally, 161
setting, 11

e-mail workflow hooks, 191
errors, whitespace, 111
/etc/gitconfig file, 11, 175
exclude file, 224
export_data method, 218–219
export-ignore attribute, 189
export-subst attribute, 189

NINDEX 261

extDiff tool, 180
external merge, 179–181
extMerge tool, 180

F
fast-forward-only pushes, 197–199
fast-import tool, 216–221
fetch command, 36
fetch origin command, 65
fetch-pack process, 243–244
file annotation, 162–163
file-based repositories, 80
files

checking status of, 17–18
committing changes to, 23–24
ignoring, 20
lifecycle of status of, 17
moving, 25, 26
removing, 24–25
removing from commits, 161
staging modified, 18–19
staging and unstaging, 150–152
tracked, 16
tracking new, 18
undoing changes to, 32–34
unstaging, 33–34
untracked, 16–18
viewing staged and unstaged changes,

20–23
FileUtils.mkdir_p() function, 231
filter attribute, 187
filter-branch command, 160–162
format option, 29–30
format-patch command, 127–132
formatting, 181–182
Freenode IRC server, 13
fsck utility, 247

G
garbage collection, 244
gc command, 237, 244–245
get_acl_access_data method, 196
Git

basics, 5–9
compared with other VCSs, 6
configuration, 11, 176–183
data model, 227
data storage in, 6–7
help, 13
history of, 5
hosted, 96–105
installation, 9–11
local operations in, 7
migrating to, 212–221
setup of, 11–12
states, 8–9
Subversion and, 203–212

user interface, 223
Git attributes. See attributes
.gitattributes file, 184–187
#git channel, 13
~/.gitconfig file, 11, 175
Git daemon, 95–96
Git data model, 227
.git directory, 8, 223–224
Git-enforced policy (example), 193–201
git-export-daemon-ok file, 81
git fsck utility, 247
#githib channel, 13
Git hooks. See hooks
GitHub, 97, 105, 108

adding collaborators, 102
creating new repository, 99–101
forking projects, 104
importing from Subversion, 101
main project page, 103
setting up user account on, 97

.gitignore file, 20, 25
gitk program, 31
Gitosis, 91–96
gitosis.conf file, 93
gitosis-init command, 92
Git projects. See projects
Git protocol, 81–82, 95–96
git reflog tool, 246
git remote add command, 36, 65, 238
Git repositories. See repositories
Git server

generating SSH public key, 85–86
network protocols, 79–83
public access to, 88–89
running, 79
setting up, 83–84
small setups, 85–91
SSH access, 85–88

git-shell tool, 88
git svn tool, 203–212

branching issues, 208–209
clone command, 204–205
dcommit command, 206–208
fetch command, 208
getting started, 204–206
pulling in new changes, 207, 208
rebase command, 207–208
setting up, 204
summary, 212

Git tools
debugging, 162–164
interactive staging, 150–153
revising commit history, 156–162
revision selection, 143–149
stashing, 153–156
submodules, 165–171
subtree merging, 171–172

NINDEX262

GitWeb, 90–91
glob patterns, 20
--global option, 12, 175
GNU Privacy Guard (GPG), 39
--grep option, 31

H
hash-object command, 140, 225
HEAD file, 145, 169, 224, 233–234
HEAD pointer, 50–52
help.autocorrect setting, 178
help sources, 13
hooks

client-side, 190–192, 199–201
committing-workflow, 191
e-mail workflow, 191
installing, 190
server-side, 190–199

hooks directory, 224
hosted Git, 96–105
hotfix branch, 55
http-fetch process, 240
HTTP protocol, 82–83, 240–242
HTTPS protocol, 82–83

I
--ignore-unmatch option, 249
importing

custom, 216–221
from Perforce, 214–216
from Subversion, 213–214

indent program, 187
index file, 8, 224
--index-filter option, 249
--index option, 155
--interactive option, 150
info directory, 224
installation, Git, 9–11
integration-manager workflows, 108
interactive staging, 150–153
-i option, 150

K
KDiff3 tool, 180
keydir directory, 93–94
key-value data store, 224
keyword expansion, 186–189

L
large-merging workflows, 137–139
Leopard, 90
lieutenants, 109
lighttpd server, 90
lightweight tags, 39, 234
Linux, installing Git on, 10
Linux kernel, 5, 109, 144

Local protocol, 80–81
local repository, adding to existing project, 80
log command, 26–32, 158
log -g command, 146
log information, 145–146
log output

formatting, 28–30
limiting, 30–31

long-running branches, 63
loose object format, 236

M
maintenance, 244–245
manual page (manpage), 13
master branch, 17, 56, 62
merge command, 55–57
merge commits, 57
--merged option, 61
merges/merging

basic, 53, 57
branches, 70
conflicts, 58–60
subtree, 171–172
strategies, 171, 190
three-way, 133
tools, 60

mergetool command, 59, 180
mergetool.*.cmd setting, 180
merge.tool setting, 180
mergetool.trustExitCode setting, 180
migration, to Git, 212–221
modified files, unmodifying, 34
modified state, 8
multiple-repository workflows, 109
mv command, 25–26

N
network protocols, 79–83

Git, 81–82, 95–96
HTTP/S, 82–83, 240–242
Local, 80–81
SSH, 81

--no-commit option, 126, 172
--no-merged option, 61
--not option, 134, 149

O
objects, 225–232

blobs, 226
commit, 228–230
packing, 235–238
removing, 247–250
storage, 231–232
tag, 234–235
tree, 226–228

objects directory, 224–232

NINDEX 263

objects/info/packs file, 241
octopus strategy, 171
origin remote, 35

P
packed-refs file, 245
packfiles, 235–238
patches

accepting and applying, 130
applying, from e-mail, 130–133
in large projects, 127–129
staging, 152–153

patch sets, 2
pbxproj files, 184
Perforce, migrating to Git from, 214–216
Perforce Visual Merge Tool (P4Merge), 179
pipe (|) character, 195
plumbing commands, 223–224
policy-enforcing server (example), 193–201
-p option, 134
porcelain commands, 223
post-checkout hook, 192
post-commit hook, 191
post-merge hook, 192
post-receive hook, 192
pre-commit hook, 191, 200
--prefix option, 228
prepare-commit-msg hook, 191
pre-rebase hook, 192, 201
pre-receive script, 193
print_export method, 217
private projects

managed teams, 118–123
small team, 112–118

project root, making subdirectory to, 161
projects

applying patches from e-mail, 130–133
checking out remote branches, 133
cloning, with submodules, 167–169
commit guidelines for, 111–112
contributing to, 110–129
determining what is introduced in,

134–135
generating build numbers, 141
integrating contributed work into, 135–140
maintaining, 130–142
preparing releases, 141
private managed team, 118–123
private small team, 112–118
public large, 127–129
shortlogs, 142
small public, 124–126
superprojects, 169
tagging releases, 140–141
working in topic branches, 130

proposed (pu) branches, 63

protocols
Git, 81–82, 95–96
HTTP/S, 82–83, 240–242
Local, 80–81
network, 79–83
SSH, 81

public access, 88–89
Public Clone URL, 101
public key, SSH, 85–86
public projects

large, 127–129
small, 124–126

pull command, 36, 133
pull requests, 124
push command, 37, 43
push origin command, 240
Python setuptools, 92

Q
question mark (?), 20

R
ranges, of commits, 147–149
rcs command, 2
rebase command, 70, 139, 157–158
rebasing, 70–76
receive.denyDeletes setting, 183, 197
receive.denyNonFastForwards setting, 183,

197
receive.fsckObjects setting, 183
receive-pack process, 242–243
recursive strategy, 171
references (refs), 232–235

ancestry, 147
branch, 145
deleting, 240
HEAD file and, 233–234
remote, 235
tag, 234–235

reflogs, 145–146, 246–247
reflog tool, 246
refs directory, 224
refspecs, 238–239
refs/remotes directory, 235
releases

preparing, 141
tagging, 140–141

remote command, 35
remote add command, 36, 65, 238
remote rename command, 38
remote show command, 37–38
remote branches, 64–65, 68–69

checking out, 133
deleting, 69
pushing, 68–69

remote references, 235

NINDEX264

remote repositories, 79
adding, 36
displaying, 35
getting data from, 36
inspecting, 37–38
pushing to, 37
removing, 38
renaming, 38
working with, 35–38

repositories
bare, 79, 84
cloning, 16, 80–83
commit data in, 48
creating, on GitHub, 99–101
exporting, 189–190
file-based, 80
initializing, in existing directory, 15
local, 80
maintenance on, 244–245
moving files in, 25–26
public access to, 88–89
recording changes to, 16–26
remote. See remote repositories
removing files from, 24–25
SSH access, 85–88

request-pull command, 124
--resolved option, 132
--reuseaddr option, 95
revision selection, 143–149

commit ranges, 147–149
multiple points, 149
single revisions, 143–147

rev-list command, 248
rm command, 24–25, 38

S
send-pack process, 242–243
server

configuration, 183
generating SSH public key, 85–86
network protocols, 79–83
public access to, 88–89
putting bare repository on, 84
running, 79
setting up, 83–84
small setups, 85–91
SSH access, 85–88
web, static, 88

server-side hooks, 190–199
SHA-1 checksum, 186
SHA-1 hash, 7, 143–144, 225
SHA^@ syntax, 201
shortlog command, 142
short SHA, 143–144
show-ref command, 205
signed tags, 40
--since option, 30

single revisions, 143–147
smart protocols, 242–244
snapshots, 47
source, installing Git from, 9
--squash option, 126, 172
SSH access, 85–88
SSH protocol, 81
SSH public key, generating, 85–86
SSH transfer protocol, 16
staged files, unstaging, 33–34
staged state, 8
staging

area, 8, 24
files, 150–152
of modified files, 18–19
patches, 152–153

standard layout, 205
stash command, 153–155
stash apply command, 155
stash drop command, 155
stashes/stashing, 153–156
static web server, 88
--stat option, 28
status, checking, of files, 17–18
status command, 17–20, 165
subdirectories, 161
submodule add command, 165
submodule init command, 167
submodules, 165–171

cloning project with, 167–169
getting started with, 165–166
issues with, 169–171

submodule update command, 167–169
subtrees, merging, 171–172
Subversion

annotation, 211
branching, 209–210
commands, 210–212
committing back to, 206–207
Git and, 203–212
importing from, on GitHub, 101
importing repository into Git repository,

205
migrating to Git from, 213–214
pulling in new changes, 207–208
server information, 211
style history, 210

superprojects, 169
svn blame [FILE] command, 211
svn info command, 211
SVN style history, 211
svn tool, 203–212

branching issues, 208–209
clone command, 204–205
dcommit command, 206–208
fetch command, 208
getting started, 204–206

NINDEX 265

pulling in new changes, 207–208
rebase command, 207–208
setting up, 204
summary, 212

svnsync tool, 204
symlink, creating, 92

T
tag command, 39–41
tags/tagging, 38–43, 234–235

adding later, 42
annotated, 39, 141
creating, 39–41
lightweight, 39
listing, 39
sharing, 43
signed, 40, 140–141
verifying, 41

tail command, 248
test-error.sh, 164
text editor, setting default, 12
three-way merges, 133
tilde (~), 20, 147
tools. See Git tools
topic branches, 63–64

integrating, 139–140
managing parallel, 137
working in, 130

tracked files, 16
tracking branches, 69
transfer protocols, 16, 240–244

downloading data, 243–244
HTTP, 240–242
smart, 242–244
uploading data, 242

--tree-filter option, 161, 249
tree objects, 226–228
triple-dot syntax, 135, 149
two-phase merge cycle, 136

U
unstaging files, 150–152
--until option, 30
untracked files, 16–18
update-ref command, 232–233, 246
update script, 193
update-server-info command, 240
upload-pack process, 243–244
Upstart script, 95
user-based ACL system, enforcing, 195–197
user interface, 223
user name, setting, 11
user.signingkey setting, 177
$user variable, 201

V
verify-pack command, 237, 248
version control, 1
Version Control Systems (VCS), 1–4

W
web-based visualizer, 90–91
WebDAV servers, 83
webrick server, 90
web server, static, 88
whitespace, 181–182
whitespace errors, 111
Windows, installing Git on, 11
workflows

centralized, 107–108
cherry-picking, 139–140
dictator and lieutenants, 109
distributed, 107–109
in large public projects, 127–129
in projects, 110
in small public projects, 124–126
integration-manager, 108
large-merging, 137–139
merging, 135–137
multiple-repository, 109
private managed team, 118–123
private small team, 112–118
rebasing, 139–140

working copy, 16
working directory, 8, 55
work themes, 125
write-tree command, 227

X
xinetd script, 96

Y
Your Clone URL, 101

Z
zlib library, 231

Offer valid through 2/10.

	Contents at a Glance
	Contents
	Getting Started
	About Version Control
	Local Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems
	A Short History of Git
	Git Basics
	Snapshots, Not Differences
	Nearly Every Operation Is Local
	Git Has Integrity
	Git Generally Only Adds Data
	The Three States

	Installing Git
	Installing from Source
	Installing on Linux
	Installing on Mac
	Installing on Windows

	First-Time Git Setup
	Your Identity
	Your Editor
	Your Diff Tool
	Checking Your Settings

	Getting Help
	Summary

	Git Basics
	Getting a Git Repository
	Initializing a Repository in an Existing Directory
	Cloning an Existing Repository

	Recording Changes to the Repository
	Checking the Status of Your Files
	Tracking New Files
	Staging Modified Files
	Ignoring Files
	Viewing Your Staged and Unstaged Changes
	Committing Your Changes
	Skipping the Staging Area
	Removing Files
	Moving Files

	Viewing the Commit History
	Limiting Log Output
	Using a GUI to Visualize History

	Undoing Things
	Changing Your Last Commit
	Unstaging a Staged File
	Unmodifying a Modified File

	Working with Remotes
	Showing Your Remotes
	Adding Remote Repositories
	Fetching and Pulling from Your Remotes
	Pushing to Your Remotes
	Inspecting a Remote
	Removing and Renaming Remotes

	Tagging
	Listing Your Tags
	Creating Tags
	Verifying Tags
	Tagging Later
	Sharing Tags

	Tips and Tricks
	Auto-Completion
	Git Aliases

	Summary

	Git Branching
	What a Branch Is
	Basic Branching and Merging
	Basic Branching
	Basic Merging
	Basic Merge Conflicts

	Branch Management
	Branching Workflows
	Long-Running Branches
	Topic Branches

	Remote Branches
	Pushing
	Tracking Branches
	Deleting Remote Branches

	Rebasing
	The Basic Rebase
	More Interesting Rebases
	The Perils of Rebasing

	Summary

	Git on the Server
	The Protocols
	Local Protocol
	The SSH Protocol
	The Git Protocol
	The HTTP/S Protocol

	Getting Git on a Server
	Putting the Bare Repository on a Server

	Small Setups
	SSH Access
	Generating Your SSH Public Key
	Setting Up the Server
	Public Access
	GitWeb

	Gitosis
	Git Daemon

	Hosted Git
	GitHub
	Setting Up a User Account
	Creating a New Repository
	Importing from Subversion
	Adding Collaborators
	Your Project
	Forking Projects
	GitHub Summary

	Summary

	Distributed Git
	Distributed Workflows
	Centralized Workflow
	Integration-Manager Workflow
	Dictator and Lieutenants Workflow

	Contributing to a Project
	Commit Guidelines
	Private Small Team
	Private Managed Team
	Public Small Project
	Public Large Project
	Summary

	Maintaining a Project
	Working in Topic Branches
	Applying Patches from E-mail
	Checking Out Remote Branches
	Determining What Is Introduced
	Integrating Contributed Work
	Tagging Your Releases
	Generating a Build Number
	Preparing a Release
	The Shortlog

	Summary

	Git Tools
	Revision Selection
	Single Revisions
	Commit Ranges

	Interactive Staging
	Stashing
	Stashing Your Work
	Creating a Branch from a Stash

	Rewriting History
	Changing the Last Commit
	Changing Multiple Commit Messages
	Reordering Commits
	Squashing a Commit
	Splitting a Commit
	The Nuclear Option: filter-branch

	Debugging with Git
	File Annotation
	Binary Search

	Submodules
	Starting with Submodules
	Cloning a Project with Submodules
	Superprojects
	Issues with Submodules

	Subtree Merging
	Summary

	Customizing Git
	Git Configuration
	Basic Client Configuration
	Colors in Git
	External Merge and Diff Tools
	Formatting and Whitespace
	Server Configuration

	Git Attributes
	Binary Files
	Keyword Expansion
	Exporting Your Repository
	Merge Strategies

	Git Hooks
	Installing a Hook
	Client-Side Hooks
	Server-Side Hooks

	An Example Git-Enforced Policy
	Server-Side Hook
	Client-Side Hooks

	Summary

	Git and Other Systems
	Git and Subversion
	git svn
	Setting Up
	Getting Started
	Committing Back to Subversion
	Pulling in New Changes
	Git Branching Issues
	Subversion Branching
	Subversion Commands
	Git-Svn Summary

	Migrating to Git
	Importing
	Perforce
	A Custom Importer
	Summary

	Git Internals
	Plumbing and Porcelain
	Git Objects
	Tree Objects
	Commit Objects
	Object Storage

	Git References
	The HEAD
	Tags
	Remotes

	Packfiles
	The Refspec
	Pushing Refspecs
	Deleting References

	Transfer Protocols
	The Dumb Protocol
	The Smart Protocol
	Downloading Data

	Maintenance and Data Recovery
	Maintenance
	Data Recovery
	Removing Objects

	Summary

	Creative Commons Legal Code
	Attribution-NonCommercial-ShareAlike 3.0 Unported
	License
	Creative Commons Notice

	Index

