
Pseudocode Examples

• This is it, folks: using pseudocode as a first step toward
expressing ordered, unambiguous, and executable steps
that define a terminating process (i.e., an algorithm)
initiates you into the realm of computer science

• While the textbook contains a more thorough
discussion of pseudocode, this is one of those areas
where you can’t have too many examples

• This handout works through pseudocode approaches to
a “make change” algorithm, as well as “Russian peasant
multiplication,” an alternative multiplication algorithm

Making Change
(in US Currency)

• While there are many ways to express a “make change”
algorithm, we’ll take an approach that illustrates how
algorithms can be reused within other algorithms

• For this example, we focus on US currency: quarters,
dimes, nickels, and pennies

• As an aside, think about whether you can:

Modify the algorithm to accommodate some other
currency/coinage system

Modify the algorithm to work with any coinage system

Expressing “Make Change” in
Human Terms

• As mentioned before, knowing how to perform an
algorithm does not necessarily mean that we know how
to express it in a manner that can be used by a machine

• Still, that doesn’t mean we can’t express this algorithm
at all — it’s just that human brains can manipulate and
infer things that machines cannot (for now)

• In natural language, one might say: “Determine the
number of quarters to use. Then, from what is left,
determine the number of dimes. Do the same for the
number of nickels and pennies.”

• We may also express the algorithm by example:
“Suppose you’re making change for 67 cents. A
maximum of 2 quarters ‘fits’ into 67 cents, for a total of
50 cents. With 17 cents remaining, a maximum of 1
dime leaves 7 cents. 1 nickel leaves 2 cents, which finally
results in 2 pennies.”

• People can handle these expressions of algorithms
because we are capable of inductive reasoning — we can
infer general principles either from limited information or
patterns and examples

Given the phrase “determine the number to use,” humans can choose the correct arithmetic
operations that make this determination

Given the phrase “do the same thing as before,” humans can figure out which steps form the
“same thing,” and whether these steps may vary slightly (by denomination, in this example)

Given a specific example such as 67 cents, humans can generalize to other amounts

The “Top-Down” Approach

• One approach to a make-change algorithm is to break it
down into the individual coin counts

• If we know how to count the number of quarters,
dimes, nickels, and pennies, respectively, within some
amount, then the overall make-change algorithm can use
these “sub-”algorithms to help find the answer

• We don’t worry about the details for these
“sub-”algorithms until later — an approach that is
known as top-down (since we start at the “top” and
work our way “down” the overall algorithm)

makeChange(amount)

let currentAmount := amount

let quarters := countQuarters(currentAmount)

currentAmount := currentAmount – (25 ! quarters)

let dimes := countDimes(currentAmount)

currentAmount := currentAmount – (10 ! dimes)

let nickels := countNickels(currentAmount)

currentAmount := currentAmount – (5 ! nickels)

let pennies := countPennies(currentAmount)

// Our answer consists of a list of four numbers, one for quarters,

// dimes, nickels, and pennies, respectively.

return [quarters, dimes, nickels, pennies]

We use indentation to indicate
what steps are “within” other
steps

To eliminate ambiguity, we give names to items that we care about and make sure that we
use them with absolute consistency; in our pseudocode, we use the word “let” to indicate that
we’re giving something a name

Sometimes, it’s useful to give “notes” to ourselves (or others) in
plain English — these are called comments and may show up
here and there, indicated via the “//” symbol

We sometimes rely on the
existence of built-in
operations: activities that we
assume are known without
further elaboration — in this
case, we assume that
subtraction (–) and
multiplication (!) are
available to us

“Top-down,” see?

makeChange

countQuarters countDimes countNickels countPennies

The “:=” symbol is used to
“assign” a value to something
that we’ve named

We use “return” to express an algorithm’s conclusion,
delivering its result — in this case, a list of coin counts,
enclosed in “[]” brackets and separated by commas

Going Down a Level

• Once we’ve convinced ourselves that the “top-level”
make change algorithm should work if we knew how to
count quarters, dimes, nickels, and pennies, then we “go
down” a level by working on those algorithms next

• Note how the top-down approach allows us to break a
bigger problem down into smaller chunks, without having
to worry about those pieces right away

• Not a bad approach, if you think about it — both in
terms of algorithms and with regard to some situations
that we may encounter in real life

countQuarters(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 25)

coinCount := coinCount + 1

currentAmount := currentAmount – 25

return coinCount

Indentation again — this time, it
tells us what part is repeated
“while” currentAmount " 25

Note how sometimes, our algorithms are determined by the
operations that we presume to be “built-in” — for example, would
this change in any way if we can do some kind of integer division?

Another “built-in” assumption: we assume that we can compare
one value to another, using a combination of equality, greater
than, or less than (and many more, where applicable)

Repetition is another key element of many
algorithms; in pseudocode, we use “while” to
indicate a conditional repetition — something
that we repeat as long as some condition is
true or false

Avoiding Redundancy

Using countQuarters() as a pattern, it isn’t too hard to figure
out the rest of the count() algorithms:

countDimes(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 10)

coinCount := coinCount + 1

currentAmount := currentAmount – 10

return coinCount

countNickels(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 5)

coinCount := coinCount + 1

currentAmount := currentAmount – 5

return coinCount

countPennies(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 1)

coinCount := coinCount + 1

currentAmount := currentAmount – 1

return coinCount

…but wait, this looks
pretty repetitive!

If you’re also thinking that countPennies() looks
like overkill, you would be right; for the moment,
though, that isn’t the point that we’re making

• Note how only the darker sections of each algorithm
are different — the overall structure and sequence are
otherwise the same

• After some staring, we realize that this difference is
based on the denomination of the coin — so we can turn
that into part of the algorithm’s input!

countDimes(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 10)

coinCount := coinCount + 1

currentAmount := currentAmount – 10

return coinCount

countNickels(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 5)

coinCount := coinCount + 1

currentAmount := currentAmount – 5

return coinCount

countPennies(amount)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= 1)

coinCount := coinCount + 1

currentAmount := currentAmount – 1

return coinCount

countCoins(amount, denomination)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= denomination)

coinCount := coinCount + 1

currentAmount := currentAmount – denomination

return coinCount

Expanding to Other
Currencies

At this point, our algorithm looks like this:
countCoins(amount, denomination)

let currentAmount := amount

let coinCount := 0

while (currentAmount >= denomination)

coinCount := coinCount + 1

currentAmount := currentAmount – denomination

return coinCount

makeChange(amount)

let currentAmount := amount

let quarters := countCoins(currentAmount, 25)

currentAmount := currentAmount – (25 ! quarters)

let dimes := countCoins(currentAmount, 10)

currentAmount := currentAmount – (10 ! dimes)

let nickels := countCoins(currentAmount, 5)

currentAmount := currentAmount – (5 ! nickels)

let pennies := countCoins(currentAmount, 1)

return [quarters, dimes, nickels, pennies]

Not bad, but it
still assumes US
currency; can we
change this?

• As one last tweak, we observe that the notion of “US
currency” is just a list of denominations: in this case,
[25, 10, 5, 1]

• If our algorithm can accept any list of denominations,
then we can handle any type of currency!

// countCoins() is the same as before.

makeChange(amount, denominationList)

let currentAmount := amount

let answerList := []

for each (denomination in denominationList)

coinCount := countCoins(currentAmount, denomination)

currentAmount := currentAmount – (denomination ! coinCount)

answerList[denomination] := coinCount

return answerList

Expanding on our use of “[]”
brackets to express lists, we
show that we can put nothing
in between those brackets to
indicate an empty list

Next, we have a new
type of repetition: we
use a “for each” phrase
to indicate that we’re
repeating some set of
steps once for each
element of the list

We re-use “[]” brackets to designate
individual items in a list — in this
case, we want the list of answers to
correspond to the list of denominations

Russian Peasant Multiplication

• Now let’s try the reverse — for makeChange(), we
started with an algorithm that we know intuitively, and
showed how it can be expressed in pseudocode

• This time, let’s look at an algorithm that is already
expressed in pseudocode, and see if we can follow its
instructions to perform the desired computation

• The algorithm is for Russian peasant multiplication — it’s
the same multiplication that you know and love (or
loathe?), but just done in a different way…and available
in two versions…

The version on the left builds a list of numbers to sum up in the end (making it easier to do
by hand), while the version on the right adds the numbers up right away (making it easier to
translate for a computer)…in the end, the result is the same — can you see why?

Both versions use one more major tool in specifying algorithms: a conditional statement
that does one thing if some condition is true, but does something else (or nothing at all) if
that condition is false, indicated by an “if – then” or “if – then – else” construct

listRussianPeasantMultiply(factor1, factor2)

if (factor1 > factor2) then

let term1 := factor2

let term2 := factor1

else

let term1 := factor1

let term2 := factor2

let addendList := []

while (term1 > 0)

if (term1 is odd) then

add term2 to addendList

term1 := halveWithoutRemainder(term1)

term2 := double(term2)

let product := 0

for each (number in addendList)

product := product + number

return product

russianPeasantMultiply(factor1, factor2)

if (factor1 > factor2) then

let term1 := factor2

let term2 := factor1

else

let term1 := factor1

let term2 := factor2

let product := 0

while (term1 > 0)

if (term1 is odd) then

product := product + term2

term1 := halveWithoutRemainder(term1)

term2 := double(term2)

return product

