
Keil and Johnson, C++, 1998 1-1

Chapter 1
Problem solving and program design
1. Problems, solutions, and ways to express them
2. The branch control structure
3. The loop control structure
4. Modular design and object-oriented design
5. Problem solving through top-down design and stepwise refinement
6. Abstractions, functions, and recursion

Introduction
We learn computer science and computer programming today as a kind of problem

solving: the aim is not beauty or knowledge, but practical solutions; ways to “get a job
done.”

How can we automate a task that is tedious when done by hand? How can we
summarize business information that no one ever summarized before? How can we
decide whether to allocate resources to a particular project? These are the kinds of
questions businesses and other organizations face. They are information processing
problems.

Such problems arise at a more and more rapid pace today, in a globally competitive
economy, as information technology periodically doubles the data-processing power at
the fingertips of managers, administrators, professionals, and everyone else. The power
of information tends to reorganize the way we perform many tasks. Taking advantage of
opportunities, and meeting the competition, forces us to face new problems and to try to
solve them.

Computers and computer software are often sold as “solutions.” If you have an
information-related problem, then your first step is to see if software you own can solve
it. Then you may look to acquire new software that does the job.

Software developers, and enterprises large enough to consider writing their own
software, are in a position to hire people who will use the skills presented in this text. If
you are looking for work in a growing industry, then it may serve you to learn those
problem-solving skills and offer them to a high bidder.

Decades of experience in software development have taught that writing programs is
more like constructing buildings than like writing poetry. The poet may find inspiration
one evening and write a beautiful work of art. The software developer has more bases to
touch. Some of the steps may seem tedious.

• Before even thinking about what to write in a computer program, the developer
must be sure of what the problem is, precisely. What is the input? What is the
output? How should they relate?

• Like a building, a complex piece of software must be designed. The design must be
verified. Only after this stage is it cost effective to code the program in a language.

Experience has shown that the most efficient way to write programs is first to design
them and then to write the program code. A written design is a useful form of
documentation as well. Thinking before coding is known to save effort.

The first issues we address in this chapter are how to specify a problem, how to break
a solution down into its component parts, and how to put that design for a solution down
on paper. The abstract step-by-step plan for a solution is called an algorithm. All your
study in computer science will involve work with algorithms. The three chief notations

Introduction 1-2

historically have been pseudocode, flowcharts, and module hierarchy charts. As object-
oriented technology has spread, class diagrams have become part of the documentation
tool set as well.

Once a set of steps in a problem solution have been chosen, it is possible to arrange
them in many different ways. Software developers have found, however, that a mere
three such orderings, or control structures, are sufficient to solve any solvable problem,
and that a design limited to these structures is immensely easier to understand than any
other. This chapter will discuss the sequence, branch, and loop control structures and
how to work with them in flowcharts and pseudocode.

Breaking down a problem in order to solve it also involves the construction of
software modules. A section of this chapter will present the concepts of functional
decomposition and object-oriented design. These differ chiefly in whether operations or
kinds of data item are the primary focus of a particular software design.

At the right is a diagram of a hierarchy, in which some items have a
supervisory or parent-like relationship to others, which are below them. We
can build programs using such a hierarchical structure.

A typical software-development problem is too complex for any
programmer or software designer to be able to hold all the details to its
solution in mind at one time. Studies have indicated that a human being can
concentrate on only about seven things at a time, at best. We overcome this obstacle in
daily life by putting some details out of our minds temporarily. We deal with them later
and concentrate for the moment on the big picture or on a single small part of it.

That’s one way we can successfully approach software problem solving. We can look
at a problem as a whole and break it down into subproblems. Then we can solve each of
the subproblems, one at a time. If a subproblem is itself too complex, then we can break it
down, and so on.

Most software development is done by teams, which may divide up
the work into smaller parts. One member of the team may work with one
part of the problem, another with another part. The team as a whole
makes this division and puts the solutions together.

Breaking down a complex problem into subproblems is called
modular design, or modular decomposition. Each sub-problem is solved
by building a component to perform a single task—a procedural module. If a module is
complex, we may break it into sub-modules.

A recent alternative to procedural decomposition of a problem is object-oriented
design. Here we build our design around the categories of data objects found in our
problem description. We started presenting objects in Chapter 1 and will continue this
discussion throughout the text.

A second category of divide-and-conquer strategy is the recursive solution⎯a solution
to a big problem expressed in part as a solution to a smaller instance of the same problem.
Recursion, like modularity and object orientation, is a theme that occurs throughout the
study of computer science. We will introduce it briefly as part of the discussion of the
mathematical foundations of computer science.

1. Problems, solutions, and ways to express them 1-3

1. Problems, solutions, and ways to express them
Programming does not begin with writing code in a programming language; it begins

with understanding a problem that is to be solved. Problem solving includes asking any
necessary questions about the problem to be sure that the user’s needs are understood.
Design is broken down into two stages:

• functional specification, in which what the program should do is planned, and
• architectural design, which determines how, internally, the program should

accomplish its objectives.
At each stage of analysis and design, a software team may review its work.

Understand the problem
The first step in software development is to specify the problem to be solved. This may

be more demanding than it sounds. Software development professionals can tell plenty of
stories of how they demonstrated a program, or an early prototype, and found that the
client’s first comment was to request a change or addition to the program’s original
purpose.

The specification stage is also called analysis. The skills required have more to do with
understanding a business or organization than using a programming language. The more
thorough the analysis and specification are, the less effort will be needed at a later stage
to re-specify the task that the program is to perform. Professionals who specialize in this
work are called systems analysts.

Key components of a program’s specification are its input, its output, and the
relationship between them. Software developers have long prepared sample input/output
as part of program specification. Most of our programming exercises include sample I/O.
As software has become more complex, the specification may include entire screens, such
as forms with which to get input or windows to display results.

Note that the specification phase does not address the critical question of how to arrive
at the desired output from a given set of user input. That issue is left for the design phase.

An algorithm is a plan for a solution
To accomplish an information-processing task, we usually need to break a problem

down into smaller sub-problems. This is because a problem worth solving is usually of
some complexity. We simplify it by divide-and-conquer tactics. To solve the problem,
“Display the sum of two numbers input by the user,” our breakdown might be, in words:

1. Get two numbers from the user.
2. Add them, saving the sum.
3. Display this sum.

Or, as a diagram (Figure Chapter 1 -1).
The next step is to plan a design for a solution. Only after the design stage do

professional programmers code their programs.
The preceding solution is not written in program code; it is still in an abstract form, in

the form of an algorithm.

Key concepts:
• problem solving
• problem

specification
• algorithm
• pseudocode
• flowchart
• program design

1. Problems, solutions, and ways to express them 1-4

An algorithm is a precise plan to solve a problem or complete a task in
a finite number of steps.

The first way we expressed the preceding algorithm is called
pseudocode. It uses text and is precise but informal, not following a
particular vocabulary, set of grammar rules, or style. Pseudocode is
written in a natural language, as opposed to a programming language.

In pseudocode, we may use operators, such as the equal sign or the
arithmetic operators (+, ×, −, ÷) of mathematics. One mathematical
operator you may not have seen is the left arrow (←). We will use it to
assign a value to a variable, as in sum ← a + b. You may wish to
pronounce the arrow as “gets,” as in “sum gets a + b.”

The second standard way to express algorithms is called a flowchart.
A flowchart is a diagram that pictures the flow of control, or the motion
of activity, from one step to another. It is composed of geometric shapes,
text, and arrows. The geometric shapes broadly define what type of
instruction or instruction sequence is being executed. Text within each
shape provides more specific information. The arrows indicate the
direction of movement from one instruction or operation to the next
command to be executed.

Each flowchart in this chapter will use some combination of the
following four shapes or elements:

Element Meaning

Flowcharts were once seen as an indispensable tool for software designers and
programmers. As programs have become larger and more complex, other tools have come
to the fore. Here, we use flowcharts as a tool to teach control structures. They provide a
picture of the jumps from step to step that occur at the level of machine code. You will
see few flowcharts after this chapter.

Figure Chapter 1 -1:
Simple algorithm to
add

Historical note

The word “algo-rithm”
comes to us from the
name of a great ninth-
century
mathematician,
Mohammed ibn Musa
Al-Khowa-rizmi. His
work, written in
Arabic, came to have
in-fluence in Europe,
where his algorith-mic
method of calculating
com-peted
successfully with the
use of the abacus. He
is credited with
inventing algebra,
named after the title of
a book he wrote. His
mis-fortune was that
algorithms came into
their full use only with
computer
programming, more
than a thousand years
after he died!

Beginning or end of program
or instruction sequence
Input or output

Decision

Other processing

Flow of control

1. Problems, solutions, and ways to express them 1-5

Benefits of a design approach
We could, of course, sit down at a computer and write a program without ever

consciously developing an algorithm, writing pseudocode, or drawing a flowchart. We
could type what came into our minds and then try to fix it if it didn’t work. That is called
“hacking”. (Some unlawful activities, such as computer break-ins and deliberate virus
propagation, also go by the same name.) If you wish to hack code in the sense of
programming without working from a design, then we wish you happy hacking. A
warning: the time spent correcting errors in such programs is almost always enormously
more than the time necessary to draw up a workable plan to start with.

A slogan that has been promoted among programmers is, “Test, then code.” It means
to verify your algorithm in your head or on paper before you code it in a programming
language.

It is universally accepted in the software industry that design is a crucial step in
efficiently solving a problem. Though it is an extra step that can be skipped if we wish to
jump right away into coding a program, even the coding can be greatly speeded up if the
code is based on a well-thought-out design. A common approach to problem solving and
software development is expressed as follows:

Repeat until problem is solved:
 Determine problem specification
 Design algorithm
 Code program
 Test program
 Debug program

Of course, this software development process may not always require repetition of all
steps. For example, it may be necessary to test and debug repeatedly, without changing
program specifications and without redesigning the solution.

A flowchart to describe the same process might be like the one in
Figure Chapter 1 -2.

Each phase is necessary. A poor understanding of what the program needs to input and
output invalidates all the rest of the work. Design precedes efficient coding. Every
program must be tested. If it is found not to work correctly, the errors (bugs) found must
be corrected. Parts of this process must be repeated if later steps reveal flaws in earlier
ones.

Later in this text, we will discuss in more detail the techniques of breaking down a
problem and of engineering the solution. The development of software was once an art of
individuals, but today it is so complex that most successful programming is done by use
of science, mathematics, and teamwork.

Figure Chapter 1 -2: Phases of

software development

2. The branch control structure 1-6

2. The branch control structure

It is easy to visualize the solution to a problem if that solution is just a series of steps
carried out one after the other without variation or repetition. We could picture a straight
road with no forks and no circles; only a series of highway signs or toll booths. That
would describe a program written for our model processor using only the non-jump
instructions.

But most problems can’t be solved in such a linear manner. Here is one: Accept from
the user an integer, the user’s age, and tell the user whether he or she is qualified to vote,
assuming that the legal voting age is 18.

A sequence of steps that always execute will not solve this problem; on some input,
certain steps should be followed, while on other input, different steps should be taken.

Here is a solution:

 If age is at least 18
 Say “OK”

We could diagram our solution as in Figure Chapter 1 -3.
The branch control structure is also known as the decision or

selection structure. It always involves a yes/no test and, based on that
test, a decision or selection of which branch to take out of two
possible paths.

Often we will want to provide two alternative actions, rather than
only the alternative of a certain action or none at all. The pseudocode
below and the flowchart in Figure Chapter 1 -4 represent a design to
solve the problem of displaying the greater of two user-input values.

Prompt for integers a and b
If a > b
 display a
otherwise
 display b

The branch control structure admits only two possible courses
of action. What if our problem requires three or more alternatives?
We resort to using two branch structures, one after the other. To
find the oldest of three people, for example, we may make two
comparisons, each of which yields a decision:

Input age1, age2, age3
If age1 > age2
 oldest ← age1
otherwise
 oldest ← age2
If age3 > oldest
 oldest ← age3
Display oldest

Key concepts:
• branch

(decision)
• jump
• nested branch

Figure Chapter 1 -3. One-way
branch

Figure Chapter 1 -4. Two-way
branch

Figure Chapter 1 -5:

Multiway branch

2. The branch control structure 1-7

Here we identify four algebra-type variables, age1, age2, age3, and oldest. We assign
values to these variables using the left-facing arrow.

The branch control structure may also be nested; that is, a branch may be put inside
another branch. Figure Chapter 1 -5 is a flowchart for a branch nested to four levels.
3. The loop control structure

Many computer programs process large quantities of data in a repetitive way. At least
one instruction sequence within such a program will be repeated for each data value or
each set of associated data values to be processed. For example, a payroll program must
repeat the same operations for each employee whose pay is to be computed. To repeat an
instruction or a group of instructions as often as required for all of the data to be
processed, a loop structure is needed. The loop is also known as the repetition or iteration
control structure.

An easy example is drawing a square:

edge ← 100
Do four times:
 Draw a line segment of length edge
 Turn 90° to the right

Consider this problem: Compute and display the sum of four input values.
Pseudocode for a solution to the problem might look like this:

1. Set sum to 0.
2. Set counter to 4.
3. Repeat until counter = 0:
 a. Prompt for input value
 b. Add input value to sum
 c. Decrement counter by 1
4. Display sum.

The loop occurs in step 3. The steps a, b, and c under step 3 are together
called the body of the loop. The flowchart in Figure Chapter 1 -6 diagrams
the same solution.

An essential component of every loop is a test to determine whether to
repeat the loop another time or to exit the loop. We will discuss three
categories of loop, categorized by the ways to exit them:

• counter controlled
• sentinel tested
• general exit tested
In the first method, a counter variable controls the loop so that it iterates a

predetermined number of times. In the second method, the loop is exited
when a special value, called a sentinel value, is encountered. For example, a
sentinel value of zero might be used to indicate the end of input of a list of
integers. A loop whose exit test involves other than a counter or a sentinel
value is in the third category.

The decision whether to repeat the loop body or not may be made either
before or after executing the instructions making up the body of the loop. If the decision
is made at the beginning of the loop, it is a top-tested loop. If the decision to repeat or not
is made after executing the body of the loop, it is a bottom-tested loop. It is possible for
the body of a top-tested loop not to be executed at all. The body of a bottom-tested loop,
on the other hand, will always be executed at least once. Counted loops are top tested.

Key concepts:
• loop
• top tested
• bottom tested
• sentinel value
• structured

design
• unstructured

design
• trace
• repetition
• iteration

Figure Chapter 1 -6: Counted loop to input
four input values and compute the sum.

3. The loop control structure 1-8

3.1. A counted-loop example
Consider the problem of finding a two-character pattern in a series of characters. Let

us suppose we wish to know whether we have made the error of typing two commas in a
row while entering text. The text is stored in a series of characters denoted by input1,
input2, input3, and so forth, up to n input characters. Pseudocode for one solution is as
follows:

found ← false
for each value of i from 1 to n − 1
 if inputi is a comma
 if inputi+1 is a comma
 found ← true
If found is true
 display “Two consecutive commas found”
otherwise
 display “Two consecutive commas not found”
If all the temporary information used in an algorithm, such as variables, is hard to keep

in mind at once, it is useful to trace its execution with pencil and paper. Often a table is
useful.

The solution above could be traced by a table that lists some variables and their values,
given input of “OK,,then”:

i found input i input i+1
1 false O K
2 false K ,
3 false , ,
4 true , t
5 true t h
6 true h e
7 true e n

The seven steps above are a trace of the duplicate-comma-finding algorithm as applied
to the input string, “OK,,then.” At each step, we wrote in the value of each variable at the
beginning of the loop body. The trace establishes that the algorithm reports that
“OK,,then” does have two consecutive commas.

Problems
1. Chapter 1 presented algorithms for converting between decimal and binary

numerals and for adding and subtracting binary numerals. These algorithms
involve counted loops. Write pseudocode or a flowchart for (a) binary-to-decimal
conversion; (b) decimal-to-binary conversion; (c) binary addition; (d) binary
subtraction

2. What is the output of this algorithm on input “OK,,then”? How does the text of
the pseudocode compare to the pseudocode in the example in this subsection?
for each value of i from 1 to n − 1
 if inputi is a comma and inputi+1 is a comma
 display “Two consecutive commas found”
 otherwise
 display “Two consecutive commas not found”

3. The loop control structure 1-9

3.2. A sentinel-controlled loop:
getting input until the user asks to quit

Let’s consider the same problem with one variation: instead of adding a fixed number
of input values, our program should get input and add it until the user enters a special
value, zero. Like the solution for the previous problem, the solution needs a loop; but it
should not be a counted one. With this problem, it is impossible to say ahead of time how
many iterations will occur. A flowchart of the solution is to the right.

The solution uses a sentinel value, zero, to tell when to exit from the loop. If the user
enters a zero, that value is treated specially and terminates the loop. If the first input value
is zero, how many times will the body of this bottom-tested loop execute?

Sentinel-controlled loops have a danger: the user may assume that a certain value is
normal data, rather than a sentinel, or the program may test an item as a sentinel even if it
were entered as normal data. Consider a program that reads a file of student records. The
data-entry operator has been instructed to enter a special value of 99 for year of
graduation as a sentinel to indicate end-of-file, and the program that reads the file uses
that sentinel. No record for any student will be read, then, starting with the first student
with a 1999 year of graduation! (This is one instance of the so-called “Year 2000”
problem.)

3.3. A business problem
Let’s consider a business matter: How much money will we end up paying back to the

bank if we borrow $10,000 for four years at 10% interest? For simplicity, we’ll assume
there is only one payment, at the end of the loan term.

Since interest accrues repeatedly, the solution to this problem requires a loop. The data
items we will need are the principal borrowed, the interest rate, the current year (relative
to the date of the loan) and the amount owed to the bank.

We choose the tool of pseudocode to sketch our design of a solution to the problem:

amt owed ← 10,000
interest rate ← 0.1
year ← 0
while year < 4
 add (interest rate times amt owed) to amt owed
 add 1 to year

It may be advisable to test our design by calculating results by hand to see if they are
reasonable. We trace this algorithm below:

Interest rate 0.1
Year Amt. owed Interest New amt. owed
0 10,000 1,000 11,000
1 11,000 1,100 12,100
2 12.100 1,210 13,310
3 13,310 1,331 14,641
4 14,641

It’s reasonable to consider paying $14,641 back after four years on a loan of $10,000
at 10% interest. We consider our design to be ready to implement.

3.4. A general-exit-tested loop
Perhaps you noticed that the double-comma-seeking algorithm mentioned before could

have been improved. It could have been designed to terminate instantly upon finding two

Figure Chapter 1 -7: The
sentinel value is zero

3. The loop control structure 1-10

commas in consecutive positions of the input. That would prevent wasting time looking
for commas after the presence of double commas was already determined.

Such a modification would require a third kind of exit test, which puts the solution in a
miscellaneous category of general-exit-tested loops. It could be written in pseudocode as
follows:

i ← 1
found ← false
while not found and i < n − 1
 if inputi is a comma
 if inputi+1 is a comma
 found ← true
 i ← i + 1

The exit test here checks two conditions: that found is not true and that the counter i
has not reached the next-to-last character of the input. The word and indicates logical
conjunction, the operation performed on bits by the AND gate at the hardware level.

3.5. Structured design in problem solving
Notice that our flowcharts each have exactly one beginning and one endpoint. This is

true as well of every component of our flowcharts. Flowcharts with this feature are called
structured flowcharts. We will encourage the use of structured design, reflected in
structured flowcharts, as opposed to unstructured design. The flowcharts in and depart
from the guideline of one-way-in, one-way-out.

The flowchart in Figure Chapter 1 -8 is an instance of an unstructured way of
expressing an algorithm that would involve the use of the go-to concept in pseudocode,
as below:

A. If x = 3 then go to step C
B. If y < 1 then
C. Display (“y < 1”) and
D. Go to step F
E. Display “x = 3”
F. Display “Done”

While it is possible to write a correctly-executing computer program
from unstructured flowcharts or pseudocode, software professionals
have found it difficult to understand the code and design of such
programs, the more so as programs become larger. Practically no one
writes commercial software today by unstructured techniques. If you
are skeptical, we invite you to find out by experience.

A flowchart, or a piece of pseudocode, may be well organized or not. If we make no
rules about the forms of our flowcharts, or if we often use the phrase “Go to...” in
pseudocode, then we are practicing unstructured design. This is a close cousin to
hacking. People who’ve practiced unstructured and structured design are likely to prefer
the structured variety. It is much easier to understand algorithms expressed entirely as
sequences, branches and loops.

Figure Chapter 1 -8: An
unstructured flowchart with
two entrances to process D

3. The loop control structure 1-11

One advantage of sequences, branches, and loops is that they have one entry
point and one exit point. Therefore, we can replace any one of these branches, or
loops, or sequences, with a rectangle, making it easier to understand the whole
algorithm. The general rule is: avoid unstructured jumps. Flowcharts are best
understood if they are easily decomposable into structured sub-flowcharts.
Pseudocode is best written free of the phrase “go to”.

While unstructured flowcharts, like plates of spaghetti, have an unlimited variety
of internal structures, it can be proven that any flowchart that is possible to draw
can be simplified into a structured one using the three basic control structures, the

sequence, the branch, and the loop, nesting these structures within each
other if necessary.

It is widely agreed that structured designs and structured flowcharts are
understandable to humans, while an unstructured design is often
impossible to follow above the scale of few isolated steps. Trying to
understand one can be like unravelling a hundred feet of loose kite string.

The concepts of structured programming were developed in the 1960s
and 1970s, long after computers had become widespread.

4. Modular design and object-oriented design
4.1. Divide and conquer

As we prepare more and more complex program designs, we will want to break down
our problems into simpler sub-problems. To solve a sub-problem, we will design a
module, or a program component. This is a simple case of the more general strategy,
“Divide and conquer.”

Some modules correspond to tasks that our problem solution requires us to carry out.
In this case, our design may be documented as a module hierarchy, where modules that
use other modules appear above them in the hierarchy.

A module hierarchy may be of any depth. The modules higher up in the chart make
use of the ones lower down. A module directly above another one, and connected to it,
uses the one below it directly. The relationship between two modules may be indirect if
a third module is connected between them.

The program design would very likely use a sequence of pseudocode for each
module. We will discuss modular design in more detail in Chapter 8.

4.2. Object-oriented design
Another way to break down a problem is into the categories of entities (persons,

things, events) that appear in the problem domain. Each entity has certain attributes and
certain behaviors.

For relatively simple problems, a design built around pseudocode and module
dependencies, that is, around what happens, will be effective. For very complex
problems, the solution must focus on entities, their attributes, and their behaviors.

Let’s take an example from real life. A computer is a thing, not an action. But if you
turn it on, it goes into action—a disk spins, characters appear on the screen. The behavior
is built into our notion of the object. If it didn’t compute, it wouldn’t be a computer.

Computer programs today model or represent things in the real world by defining data
items with built-in behavior. A window on the screen in a word-processor program, for
example, models a piece of paper on which you might type. When you select the window
by clicking your mouse in it, the window comes to the front on the screen and lets you
type words. The words appear in the window.

Figure Chapter 1 -9: An
unstructured flowchart with two
exits.

An unstructured design can be like a tangled
hose

Key concepts:
• module
• object
• object-oriented

programming
• window
• inheritance

4. Modular design and object-oriented design 1-12

The window has more behavior built in than that. If you click in the lower-right corner
and drag your mouse, the window changes size, letting you define the position of its
lower-right corner with the mouse. If you click and drag in the title bar at the top, the
window may be moved around the screen. If you click twice in the upper-left corner, the
window disappears. The latter three behaviors are characteristic of all windows in the
Windows, OS/2, and Macintosh environments.

A window on the screen is a data item, but its behavior is
built into it. That is, program code is associated with each
window data item.

In the terminology of computer programming, a data item that
is defined partly in terms of its behavior is called an object. One
of the aims of this text is to present a relatively new way of
writing software, called object-oriented programming. Our
second C++ program example, in the next chapter, will have an
object in it. Chapter 9 will show you how to define classes of
objects in C++.

To design a simple program that adds two numbers, it is not necessary to define
objects. Assembler languages don’t supply tools to support working with data items as
objects. But, to design a larger program, such as one that creates windows on the screen,
it will be useful to make objects part of our planning. Thus, the flowchart, pseudocode
and modular-breakdown techniques that we have used in this chapter in discussing design
will be augmented later by other ways to describe our software models of the real world.
Objects and categories of objects (classes) will become part of our design strategy.

A window object, for example, could be presented as a list of features. Some of them
are data attributes and others are behaviors:

A window has:
attributes • horizontal and vertical location on screen
 • width, height
behaviors • ability to be moved by user
 • ability to be resized
 • ability to be closed

The design of asm.exe, the processor simulator program presented in Appendix A,
makes heavy use of objects. To asm.exe, an assembler program is an object with a name,
a series of lines corresponding to RAM cells, a size (number of lines), and a screen view
consisting of rectangles showing the contents of its RAM cells, the program counter, the
instruction register, the accumulator, and the input/output area. The behavior of an
assembler program includes loading itself from disk, executing itself, and updating its
screen view.

Like each window in Windows, each rectangle on the screen in asm.exe has data
properties and behaviors: title, contents, screen location, size, background color, color of
contents. Its main form of behavior is to draw itself, either in normal colors or
highlighted.

In the simulator application, the three processor registers, the RAM cells, and the
input/output box are all specialized kinds of screen rectangles. Each special type has not
only the attributes and behaviors of screen rectangles in general, but also particular
attributes and behaviors characteristic of the special type. In a similar way, the word-
processor window in Windows Write is a specialized version of the universal window

A window in the Windows Write word

processor

4. Modular design and object-oriented design 1-13

that is seen in the Windows environment. The specialized types inherit the features of the
general types.

The class diagram in Figure Chapter 1 -10 signifies that a data type,
supervisors, models a category of people who are all employees; thus, a
supervisor is a kind of employee. This relationship is an inheritance one.

A different kind of relationship exists between employees and addresses. The
address of an employee may be an object, having a street and a city, and this
object is a component of the employee object. The relationship between the
classes employees and addresses is a containment relationship.

Software developers today use objects more and more to solve problems. The
problems are increasingly complex and often require accurately modelling some
aspect of the real world. The trend to ward reengineering business processes
means that software developers must solve complex problems quickly by reusing

program code and building on models that have been constructed earlier. Object-oriented
programming and object-oriented design have joined earlier techniques at the center of
the programmer’s and software engineer’s toolbox.

Lab activity
Open a file directory window on your computer and describe some of the properties
(data attributes) and behaviors of the window. Which of them are the same as the
attributes of all screen windows, as described in this section?

5. Problem solving through top-down design and
stepwise refinement

We defined an algorithm above as a precise plan to solve a problem or complete a task
in a finite number of steps. Algorithms were presented using flowcharts and pseudocode.
Flowcharts have the advantage of being pictorial. Pseudocode may be terse; it has the
advantage over C++ of being closer to English. Pseudocode allows you to show the logic
required to solve the problem without being concerned about the syntax of a specific
programming language such as C++.

A widely used way to solve a software-development problem is the top-down
approach. Top-down design means identifying the main, or top-level, steps of the
solution first. Some or all of the main steps may be subsequently broken down into
secondary steps or instruction sequences. Some of the secondary steps may be further
refined into even lower-level steps. This successively more detailed development of the
algorithm is called stepwise refinement. If the problem solution is complex, the final
pseudocode expression of the algorithm might resemble a research paper outline:

Figure Chapter 1 -10: A class diagram
showing inheritance and containment

relationships

Key concepts:
• top-down

design
• stepwise

refinement
• desk checking

5. Problem solving through top-down design and stepwise refinement 1-14

 I. (major step)
 A. (substep of I.)
 B. (substep of I.)
 1. (substep of I.B);
 2. (substep of I.B);
 C. (substep of I.)
 II. (another major step)
 A. (substep of II.)
 B. (substep of II.)
III. (another major step)

To take an example outside of software development, no home builder would try to
construct a house without a plan. The original plan may be drawn up by an architect. The
house design will go to a construction company, which will break down the construction
process into separate tasks and draw up a schedule. Some tasks in construction might be:
lay foundation, build frame, lay floor, raise wall, install pipe, install wiring, install
insulation, and plaster interior. Some steps, such as “lay floor,” may be repeated for
different parts of the house. Different teams of workers might carry out different tasks.
Software construction, too, is divided into tasks carried out by teams.

Below is a seven-step methodology for developing successful software solutions. It is
a slight variation on the one presented earlier. You are likely to need such an approach
for larger projects. Beginning programmers may find even short exercises less time
consuming if they use it.

Notice as you read through this sequence of steps that much preliminary work is done
before we start coding a solution in C++.

A problem-solving methodology
1. Clearly identify the problem. We have seen some very creative and well-written

programs that solve the wrong problem! Make sure that you and the person for
whom you’re writing the program agree on the problem to be solved.

2. Prepare a sample of the output your program is to generate.
3. Specify the necessary input data to produce the required output.
4. Using top-down design with stepwise refinement, prepare an algorithm, either in

flowchart form or in pseudocode. (If your problem involves two or more different
entities with attributes and behaviors, such as customers, employees, or
transactions, then your design step should include some attention to these entities
and their characteristics—see Chapter 9.)

5. Using pencil and paper, test your algorithm with sample data. Use sample data
that will test all parts of your algorithm. If your pencil-and-paper testing reveals
‘bugs’ (errors in logic), revise the algorithm. (You may be in this revision loop for
some time if the problem is particularly complicated.)

6. Code the solution. That is, write a C++ program based on your algorithm.
7. Test your program. Careful work in steps 4 and 5 will pay off with fewer errors at

program testing time. Again, as in step 5, use sample data that will test every part
of your program.

5. Problem solving through top-down design and stepwise refinement 1-15

After Step 7, you may need to repeat some or all of the steps—coding, design, or even
program specifications—until you are fully satisfied with the results.

5.1. Case study: a payroll application
Here is a simple example that uses the above seven-step problem-solving method.

1. Identify the problem.
The problem description, or specifications, is to compute the gross weekly pay for an

hourly employee, based on regular hourly pay for hours up to 40 and time-and-a-half for
overtime. If the slightest doubt exists in the mind of the software developer about the
problem to be solved, he or she must consult with the customer for clarification. The first
step is also an appropriate occasion to suggest additional specifications that the customer
may not be aware are feasible or desirable.

2. Prepare sample output
The output sample should include reasonable values, including the calculated value,

gross pay. Although our problem specification only calls for working with one
employee’s hours and pay, we plan to format our output as if it were a table, with labeled
columns:

Name Rate Hours Gross pay
---- ---- ----- ---------
Samuel B. Jones 8.75 45 415.63

3. Determine necessary input data
To arrive at our specified output, we need to prompt the user for the employee’s name,

from the employee roster; hourly pay rate, also from the roster; and number of hours
worked, from the time card.

4. Design an algorithm.
Using the top-down design principle, pseudocode of an initial version of the algorithm

might be:

1. Input name, pay_rate, hours_worked
2. Compute gross_pay, including overtime
3. Show name, pay_rate, hours_worked, gross_pay with headings

The first draft is only a skeleton. Shall we fill in some details? Using stepwise
refinement, we provide more substance to our algorithm:

1. Input raw data
 A. Prompt for name; input name
 B. Prompt for rate; input hourly rate
 C. Prompt for hours; input hours worked
2. Compute gross pay
 A. Compute regular pay
 B. Compute overtime pay
 C. Add overtime pay and regular pay to get gross pay
3. Show payroll report
 A. Show headings
 B. Display dashes under headings
 C. Show name, rate, hours, gross pay to 2 decimal places

5. Problem solving through top-down design and stepwise refinement 1-16

We look over our latest draft of the algorithm, and discover that the logic for
computing regular pay and overtime is not indicated. In fact, we realize that our as yet
rather limited programming tools require that we input hours as two separate entries,
regular hours and overtime hours. Here is a third draft of the algorithm. Notice that Parts
1 and 2 of the second version have been considerably revised:

1. Input raw data
 A. Prompt for name; input name
 B. Prompt for rate; input hourly rate
 C. Prompt for regular hours. The user should be prompted to input only 40
 if hours worked were over 40.
 D. Prompt for overtime hours. User should be prompted to input hours
 worked over 40 if work included overtime, otherwise to input 0.
2. Compute gross pay:
 gross pay ← pay rate × (regular hours + 1.5 × overtime hours)
3. Display payroll report
 A. Show headings
 B. Show dashes under headings
 C. Show name, rate, hours, gross pay (to 2 decimal places)

5. Test the algorithm with sample data
In order to test all parts of our algorithm, we will need to use two sets of sample data,

one with no overtime hours and another set with overtime hours. Since this is to be a
paper-and-pencil test, we should choose sample data that will make for easy computation.
The first set of test data will be for Les Toil, who worked at $10.00 per hour for 40 hours.

The portion of our algorithm that requires testing is the computation part. Here are the
inputs involved in computing gross pay:

 Rate: 10.00
 Regular hours: 40
 Overtime hours: 0

and here is the computation:
 gross = 10.00 × (40 + 1.5 × 0)
 = 10.00 × (40 + 0)
 = 10.00 × 40
 = 400.00
The algorithm produces a correct result for the first set of data.

The second set of test data, which must test the overtime computation, will be for
Morey Work, who worked at $10.00 per hour for 50 hours.

Here are the inputs used to compute gross pay:
 Rate: 10.00
 Regular hours: 40
 Overtime hours: 10

Here is the computation:
 gross = 10.00 × (40 + 1.5 × 10)

 = 10.00 × (40 + 15)
 = 10.00 × 55
 = 550.00

The algorithm produces a correct result for the second set of data.
Testing a program before coding it is called desk checking. It requires some extra work

initially, but it will reduce the number of errors that occur when the coded solution is
tested. Care and attention are musts in desk checking; it is easy to get seemingly correct

5. Problem solving through top-down design and stepwise refinement 1-17

results by performing what we think the pseudocode says, rather than applying it literally,
as a compiler will translate our program code. Sloppy desk checking reinforces errors
rather than catching them.

6. Abstractions, functions, and recursion
Computer science is concerned with the practical issues of data manipulation by

hardware and writing programs to accomplish this data manipulation. But it also has a
theoretical aspect that is of critical practical importance. It involves mathematics.
Theoretical computer science not only uses mathematics, as physics, chemistry and other
fields use certain parts of math; computer-science theory is a branch of mathematics, also
known in part as discrete mathematics.

6.1. Computers and abstractions
Mathematics is a field of study that works entirely with abstractions, such as numbers

and operations. Similarly, computers by their nature work with abstractions, because they
are symbol-manipulating machines. Letters, numbers, and words are among the symbols
they operate on.

The process of abstraction lets us set aside concrete details (e.g., what do we have
three of?) and concentrate on the matter at hand (e.g., three of anything plus five of
anything equals eight of that thing).

As we will discuss in detail, writing a subprogram module to accomplish part of a
program specification, such as output, is procedural abstraction, and designing classes,
such as window classes, is a form of data abstraction. In each case we focus initially on
deciding how a software component will work and on naming it, but we temporarily
leave aside implementation details that are not crucial to the user of the component.

6.2. Sets and functions
If you studied algebra using a mathematical approach (as opposed to a formula-

memorizing approach), then you know about sets. Three well-known sets are the set of
natural numbers (0, 1, 2 ...), the set of real numbers (numbers that can each be
represented as a series of digits with a decimal point somewhere in the series), and the set
of truth values, {True, False}.

In algebra, geometry, and trigonometry, you encountered functions. Perhaps you
learned that a function is a set, too. It is a mapping from one set to another set, possibly to
the same one. Every function consists of ordered pairs of values in such a way that a
given value in the first set always maps to a unique determined value in the second one.
Thus, given a certain value on the left (the function argument), a function is quite
predictable and always returns the same value on the right. Two values on the left,
however, may both have the same return value for a certain function.

One example of a function is the one that returns the ordinal value, or
position, of a letter in a series of letters. The letters ‘A’, ‘B’, and ‘C’, for
example, have the positions 1, 2, and 3 in the alphabet.

So our position function might be diagrammed as in Figure Chapter 1 -
11. We have the sets {‘A’, ‘B’, ‘C”}, {1, 2, 3}, and {(‘A’,1), (‘B’,2),
(‘C’,3)}. The third set is a function, which we could call index:

index(‘A’) = 1
index(‘B’) = 2
index(‘C’) = 3

Key concepts
• abstraction
• function
• computation
• computable

function
• recurrence
• recursion

Figure Chapter 1 -
11. A function
from letters to
natural numbers

6. Abstractions, functions, and recursion 1-18

A similar mapping can define what we mean mathematically by oddness
(Figure Chapter 1 -12):

odd(1) = true
odd(2) = false
odd(3) = true
odd(4) = false
...

Notice that while none of our functions have two arrows coming out of
the same argument set element, some may have two or more arrows
pointing to the same return-value set element.

Finally, we have functions from numbers to numbers, such as the
function that returns a value twice as large as its argument (input),
illustrated in Figure Chapter 1 -13:

twice(1) = 2
twice(2) = 4
twice(3) = 6
twice(4) = 8
...
Any of the functions described above could be extended to map from or between large

or even infinite sets.

6.3. Computable functions
In mathematics, a function is a passive, static abstraction. However, a very interesting

set of functions is the category that can be computed. That is, for each computable
function, there is one or more algorithm that starts with the argument value and step by
step arrives at the return value. The number of steps must be finite for us to call the
function computable.

Since you know that computer programs are supposed to be deterministic
(predictable), it may make sense to you that every computer program that works correctly
produces as its output the return value of a computable function, with the program’s input
corresponding to the function’s argument. It may also make sense that for every
computable function, it is possible to write a computer program whose output is the
return value of the function. In fact, it is possible to write many such programs. Thus, we
have a neat correspondence between the category of possible computer programs and a
category of mathematical functions.

This is true whether we take a narrow view and consider only programs with numeric
inputs and outputs, or a broad view, considering inputs and outputs that include text,
graphics, mouse clicks, and so forth. Since all computer data is stored as bit patterns, and
we have shown that any bit pattern corresponds to a number, therefore we could consider
only that set of functions from numbers to numbers and still defend our claim that the
class of computable mathematical functions has a correspondence to the set of all
possible computer programs.

Now, when we ourselves compute functions by hand we use operators and other
notation to specify the steps we take to get from the function’s argument to its return
value. For example, any two numbers have a sum, so we could define a mathematical
function sum(a,b) whose arguments could be any natural numbers a and b. This function
would return the sum of the two arguments. We may use the operator, +, to denote our
use of the function, in this way: a+b.

Figure Chapter 1 -12. A
function from natural
numbers to truth values

Figure Chapter 1 -13. A
function from natural
numbers to natural
numbers

6. Abstractions, functions, and recursion 1-19

Computing the sum, or +, function, may consist of looking up one or more values in an
addition table and possibly taking other steps.

The expression, (2 + 5) × 4, with the operators + and ×, corresponds to the application
of a product function to two arguments, one of which is the sum of 2 and 5:

(2 + 5) × 4 = product(sum(2,5), 4)
Finally, the language of mathematics provides us with ways to express functions of

different numbers of arguments if the argument values progress in a natural way from one
to the other. Consider sum(1, 2, 3, 4) or sum(1, 2, ... n) for some natural number n; in
other words, consider the sum of a series of consecutive numbers starting with 1.
Mathematics has a way to express such functions:

sum(1, 2, 3, 4) =

sum(1, 2, ..., n) =
Here the symbol Σ (a Greek letter) is pronounced “sigma” or “summation.” It is used

more or less as a super-powered plus sign.
Thus, mathematics gives us two ways to express the values of certain functions: the

functional notation, with function names followed by arguments in parentheses, and
operator notation. The operator notation often points to a step-by-step method for
computing a function that is computable.

A computation is a finite sequence of concrete steps that begins with a computable
function’s arguments and ends with its result or return value. For example,

 = sum(1, 2, 3, 4) = 1 + 2 + 3 + 4 = 3 + 3 + 4 = 6 + 4 = 10

The computation of this function took three steps, equal to the number of plus signs in
the first expression with operators.

A computation is a particular series of operations on particular data values, whereas an
algorithm is an abstract plan for computations on any of a wide variety of data values.

Whereas a function is a passive set of ordered pairs, a computation entails activity. A
computer program or a subprogram computes a mathematical function. Later you will
learn about C++ “functions”. These are subprograms, not mathematical functions.

6.4. Recursive mathematical functions
Some functions in mathematics are not computable. For example, we can imagine a

function whose argument is the executable file for a computer program, and whose return
value is true or false. This function take the value true if the argument program ever goes
into an infinite loop (“hangs” or “freezes”, in your experience). It returns false if the
argument program always terminates. Such a function would be highly useful
implemented as a computer program, because with such a program we could certify
whether the software we are buying, selling, or using is reliable in a crucial way.

Unfortunately, this function is uncomputable, regardless of what processor the
executable file is designed to run on. The program we would like to write, to compute
this function and earn perhaps billions of dollars, cannot be written.

How can we recognize computable functions, so as to avoid taking on impossible
software-development tasks and focus on work with fruitful prospects? It turns out that
every computable function can be expressed according to a certain form, the recurrence.

Here is a simple recurrence that assumes the operation “+” is defined:
sum(a,b) = a + b

It is too trivial to discuss.

6. Abstractions, functions, and recursion 1-20

Here is a more interesting one, which assumes that division is defined:
 quotient(a,b) = ⎧ a ÷ b if b ≠ 0 ⎨ ⎩ undefined otherwise

Notice that the definition on the right side of the recurrence is conditional; it depends
on the value of b. This recurrence says that quotient is a function that has a return value
of any arguments a and b, except where b is 0. To be undefined for certain argument
values does not disqualify quotient from being a function.

Clearly both sum and quotient are computable, since we compute them all the time by
hand or with calculators.

You may wonder what is recurring in the above recurrences. Nothing⎯but they follow
a format in which something may recur, i.e., occur over and over.

Consider this:
sum(a,b) = ⎧ undefined if a < 0
 ⎨ b if a = 0
 ⎩ sum(a−1, b+1) otherwise

Here we define the sum function conditionally on the value of a. In the case where a is
negative, we choose to leave the return value undefined. (If we wrote a program to
compute the function, it would show an error message.) If a is 0, our function expression
sum(a,b) takes the value b. Thus, for example, sum(0,5) = 5 by our definition. OK? So
much for the easy part.

In the case where a is positive, our function definition reuses itself, or recurses:
sum(a−1,b+1) is returned. Let’s step through the definition as it recurses with the
argument values 2 and 1, to see how sum(2,1) comes out:

sum(2,1) = sum(2−1,1+1) by the recursive case
 = sum(1,2) applying the − and + operators
 = sum(1−1,2+1) by the recursive case
 = sum(0,3) applying the operators
 = 3 by the base case
Our new definition of sum yields 2 + 1 = 3.
You might notice that as we apply and re-apply our definition of the sum function, the

arguments a and b take on successive values where a decreases with each step of
recursion and b increases. Thus whatever initial values a and b take, on some eventual
recursive invocation of the definition, a will take the value 0 and the second line of the
recurrence (b, if a = 0), the base case, will apply.

6.5. Recursive functions are computable
Why would we ever want to define a function sum in this way, when “sum(a,b) = a +

b” seems simpler? Because in practice the addition operator is more complex to apply
than would appear on the surface. For us, addition requires at least an addition table and
possibly repeated one-digit additions and carries. It is similar for a computer. But adding
1 to (incrementing) a value or subtracting 1 from (decrementing) it is simpler; quite
simple, at the hardware level. Mathematically, we could call finding the successor or
predecessor of a natural number a primitive operation, defined simply by the very nature
of natural numbers. The natural numbers are defined as 0 and the successors of natural
numbers, where each natural number has exactly one immediate successor.

What is significant is that any function that we can define by a recurrence is
computable if every component on the right side of the recurrence is computable. In other
words, even if we don’t choose to use recursion in every algorithm we use in a computer

base cases

recursive case

6. Abstractions, functions, and recursion 1-21

program, nevertheless if it is possible to express as a recurrence the function our program
is to compute (the problem it is to solve), we can be sure that it is also possible to write
our desired program using some algorithm that computes the function. When we are
solving a problem, it is useful to have a way of knowing that it can be solved.

Any loop can be specified using recursive pseudocode. Let’s consider a very simple
looping problem. What do you do to walk a distance of n steps? We could say, “Repeat n
times: take one step,” but another solution offers itself. Consider this algorithm:

Walk (num-steps)
If num-steps > 0
 Take a step
 Walk (num-steps − 1)
Here there are two possibilities. If the argument, or operand, or parameter, num-steps,

is zero, then the algorithm will do nothing. But if it is one or higher, the algorithm
reinvokes itself with a slightly smaller argument. That slightly smaller argument might be
zero, or the reinvoked version of the algorithm might call itself with an argument of zero.
Eventually, num-steps will get down to zero, and the recursion will stop.

We will be discussing recursive definitions of C++ grammar rules in Chapter 3, and
how to write recursive subprograms in C++ in Chapters 8 and beyond.

Mathematics and computer science are in some ways two paradises, two playgrounds,
for skeptical people. Every claim about functions, computable functions, and recursion
made above can be proven, though we don’t do so here. Though not every correct
program can be proven correct mathematically, every such program can be rewritten in
such a way that the result can be proven correct.

Every computer with the proper software-development environment is an inexpensive
laboratory for testing problem solutions empirically. If you have a bright software idea,
you can build and demonstrate a working prototype yourself.

As we shall see, a mathematical approach to software development has some practical
advantages over the empirical testing approach. Software engineers make use of both.
Summary

The specification stage in software development is called analysis. The software
developer must understand the problem at hand in order to solve it.

An algorithm is a precise plan to solve a problem in a finite number of steps. To solve
a problem, we may break it down into smaller sub-problems. Design is a critical phase in
the problem-solving process.

Flowcharts are a conventional way to pictorially represent the order of execution of
instructions. Pseudocode is a more commonly used informal way to describe an
algorithm in words.

Program design is considered an essential step in the software development process.
This problem-solving cycle may be described as a series of repeated steps: specify the
problem, design an algorithm, code a program, test the program, and debug the program.
Each step, or the whole series, is repeated until the problem is solved.

The three fundamental control structures used in programs are the sequence, the
branch, and the loop. Any algorithm may be diagrammed by a flowchart combining these
three control structures.

We use a branch control structure to cause a sequence of instructions to be executed
under some conditions but not under others, or to cause one sequence to execute if a test
condition is true and another to execute otherwise. We may combine and nest branches
for multiply branching algorithms.

Repetition is implemented through the loop control structure. A loop must have an exit
condition, which is tested either before the body of the loop (top tested) or after it

Summary 1-22

(bottom tested). A counter may be used to cause loops to execute a predetermined
number of times. A sentinel value input by the user may also be used to exit from a loop.

The software designer breaks a complex problem down into sub-problems. The
solution to each sub-problem may be designed as a module.

For highly complex problems such as those requiring display of data in screen
windows, a program must be designed with objects in mind. Whereas in very small
programs we work with instructions that manipulate data items, in larger ones we
typically work with objects—data items whose behavior is built in. Some classes of
objects may be defined to inherit the features of other classes. Object-oriented design and
object-oriented programming are indispensable tools of software engineering today.

Application programming increasingly consists of assembling software components
from standard and proprietary libraries—tool kits of predefined constants, functions, and
classes.

The accepted approach to program design is the top-down method, using stepwise
refinement. A design is often first expressed in pseudocode.

Writing a program can be accomplished using a seven-step process:
1. Identify the problem.
2. Specify output.
3. Specify input data.
4. Write an algorithm.
5. Desk check the algorithm using representative sample data.
6. Code the solution in a programming language.
7. Test the coded solution on the computer.

It is necessary to repeat steps whenever testing reveals an error.
Mathematics and much of computer science share the feature that their subject matter

consists of abstractions, such as algorithms, numbers, symbols, and functions. A
computer is a machine that manipulates abstractions (symbols). A function is a mapping
from a set to a set. A computable function is one for which an algorithm exists that starts
with the function’s argument value and arrives at the return value. Some functions are
uncomputable. Functions that can be defined by recurrences are computable. Any
computable function can be defined recursively.

Review problems 1-23

Review problems
1. Write a flowchart or pseudocode for

algorithms to solve each of the following
problems.

 (a) Input exactly 6 signed integers.
Display only the largest of the input
values, regardless of where it occurred in
the input list. Hint: Let the data address
for the first input also serve as the
storage location for the largest integer
found so far. Use a second data address
for subsequent input values. Sample
Input: –3,20,-4,5,7,0 Output: 20

 (b) Input signed integers until the current
input is less than the previous input.
Display the largest input value.

 Sample Input: 1,2,3,4,24,56,41 Output:
56

2. Does the flowchart below diagram an
algorithm? Explain.

3. In the software development process,

what steps are recommended before
coding a program? After coding?

4. Give an example of an object that is
found on the screen in the Windows or
OS/2 user environment. What are some
of its data attributes? Its behaviors?

5. How many times will a counter-
controlled loop iterate? A sentinel-
controlled loop?

6. Describe two variants of the loop control
structure.

7. Consider the flowchart to the right. For
each of the input pairs (A,B) shown
below, show the resulting output

 Input A Input B Output
 1 4 _____
 2 0 _____
 3 1 _____
 What simple function does this

algorithm calculate?
8. Is the pseudocode below an example of a

structured design? Why or why not?
1. If input file exists, open input file; else
exit program
2. Read input file, summing up contents
3. Display sum.

9. Modify the flowchart below so that it
will diagram a structured design.

10. Use pencil and paper to test a few

argument values and guess what familiar
mathematical functions are computed by
the following recurrences:
(a) f(a,b) =
 ∫ 0 if a= 0
 ⎩ b + f(a−1,b) otherwise
(b) (Challenge:) g(a,b) =
 ⎧ 0 if a= 0
 ⎪ b + g(⎣a÷2⎦, 2b)
 ⎨ if a is odd
 ⎪ g(⎣a÷2⎦, 2b)
 ⎩ if a is even

Review problems 1-24

11. Put these phases or sub-phases of the
problem-solving process in
chronological order, number the first
“1”, the second “2”, etc.
____ code program
____ desk check
____ write a design
____ get problem specifications
____ test program
____ debug code

12. Consider the flowchart below. For each
of the input pairs (A,B), shown below,
show the resulting output.

 Input A Input B Output
 2 1 _____
 1 3 _____
 4 2 _____
What is a way to describe the
relationship between input and output?

13. Label each term below with the letter of
its appropriate definition

____ pseudocode
____ object
____ algorithm
____ branch
____ loop
____ module
____ desk checking
____ stepwise refinement
____ top-down design
a) A precise plan to solve a problem

or complete a task in a finite
number of steps.

b) Informal natural-language way to
express an algorithm.

c) The decision control structure, in
which one action is taken or else
another.

d) The iteration control structure, in
which an action is repeated.

e) A way to design and code software
characterized by use of only three
control structures: sequence,
branch, and loop.

f) A data item that is defined partly in
terms of its behavior.

g) Verification of program
correctness without running it on a
computer.

h) A program component which may
consist of one or more
subprograms.

i) A method of developing a plan for
a program, beginning with an
overview of the problem and
breaking it down.

j) A method that uses repeated
improvements in a program design.

Problem-solving exercises 1-25

Problem-solving exercises

In the following exercises, prepare pseudocode or a flowchart of your solution. If you have read
Appendix A, you may as a lab exercise wish to code the solutions in the language of the model
processor explained there.

1. Design a program to accept keyboard input
of three integers to represent the dollar
amounts price, discount, and sales tax, in
cents. It should display the sum of the price
and the tax, minus the discount.

 Sample I/O:
 [Input:] 200
 [Input:] 20
 [Input:] 10
 [Output:] 190
2. Computers are often sold with service plans

whose cost depends on the computer’s value.
Design a program to input the signed
integers, price and monitor. If the sum of
these is less than 1000, the program should
display the message, “Plan costs $99.95”;
otherwise it should display the message,
“Plan costs $149.95”.

 Sample I/O:
 Example 1: [Input:] 749 [Input:] 199

[Output:] Plan costs $99.95
 Example 2: [Input:] 1299 [Input:] 399

[Output:] Plan costs $149.95
3. Design a program to input three integers, A,

B, and C. Make the necessary comparisons
to display the greatest of the three.

 Sample I/O: [Input:] –38 [Input:] 300
[Input:] 77 [Output:] 300

4. Design a program to input integers, A and B.
Compute and display
|A – B|. Note: Read |A – B| as “the absolute
value of the difference (A – B)”.

5. Design a program without input that uses a
loop structure to display each of the integers
from 1 through 10. The only data values that
may be stored initially via data statements
are 0, 1, and 10.

6. Design a program that will loop to accept
input of exactly three pairs of integers (A,B)
and compute and display the value of A – B
for each input pair.

7. Design a program to compute and display the
product of two input non-negative integers.
Display nothing if input includes a negative

number. (Hint: Perform the multiplication as
repeated addition, using one of the integers
as an addend and the other integer as a
counter to determine how many times to add
the addend to a sum representing the
product.)

8. (Challenge) Design a program to input two
non-negative integers (A,B) and a positive
integer (C). Compute A * B / C and display
the quotient and remainder. For each of the
inputs A, B, and C, loop for new input if
negative values are entered. The input value
of C must also be tested to be sure it is not 0.
Why?

9. (Challenge) A geometric progression is a
sequence of terms in which each term after
the first term is obtained by multiplying the
previous term by a constant multiplier. For
example, if the first term is 7 and the
constant multiplier is 3, then the resulting
geometric progression is:

 7 21 63 189 567 1701 etc.
 We can compute the sum of the first n terms

of a geometric progression. In the preceding
example, the sum of the first 5 terms is:

 7 + 21 + 63 + 189 + 567 = 847.
 Design a program that will accept positive

integers n, first, and k, input by the user, and
display the first n terms and then the sum of
those terms where the first term is first, the
constant multiplier is k, and the desired
number of terms is n.

10. (Challenge) Design a program to divide any
signed integer by any other non-zero integer,
using only addition, subtraction, and the
three control structures. First the dividend
and then the divisor are to be input from the
keyboard. The divisor must be tested to
avoid attempted division by 0, since division
by 0 is not defined. The result is to be output
as an integer quotient followed by an integer
remainder. Remember to test your program
with all possible sign combinations of the
dividend and divisor.

Problem-solving exercises 1-26

11. Write pseudocode to compute the base-2
integer logarithm of an input integer. (See
flowchart below.)

12. Write an algorithm to find the tallest person

in a room by comparing two persons at a

time. Hint: some persons will only have to be
compared only once to any other person.
Once you compare the shortest person with
even one other person, for example, you will
know enough never to compare that short
person again with anyone.

 27

1.

