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Chapter 1  
Problem solving and program design 
1. Problems, solutions, and ways to express them 
2. The branch control structure 
3. The loop control structure 
4. Modular design and object-oriented design 
5. Problem solving through top-down design and stepwise refinement 
6. Abstractions, functions, and recursion 

Introduction 
We learn computer science and computer programming today as a kind of problem 

solving: the aim is not beauty or knowledge, but practical solutions; ways to “get a job 
done.” 

How can we automate a task that is tedious when done by hand? How can we 
summarize business information that no one ever summarized before? How can we 
decide whether to allocate resources to a particular project? These are the kinds of 
questions businesses and other organizations face. They are information processing 
problems. 

Such problems arise at a more and more rapid pace today, in a globally competitive 
economy, as information technology periodically doubles the data-processing power at 
the fingertips of managers, administrators, professionals, and everyone else. The power 
of information tends to reorganize the way we perform many tasks. Taking advantage of 
opportunities, and meeting the competition, forces us to face new problems and to try to 
solve them. 

Computers and computer software are often sold as “solutions.” If you have an 
information-related problem, then your first step is to see if software you own can solve 
it. Then you may look to acquire new software that does the job. 

Software developers, and enterprises large enough to consider writing their own 
software, are in a position to hire people who will use the skills presented in this text. If 
you are looking for work in a growing industry, then it may serve you to learn those 
problem-solving skills and offer them to a high bidder. 

Decades of experience in software development have taught that writing programs is 
more like constructing buildings than like writing poetry. The poet may find inspiration 
one evening and write a beautiful work of art. The software developer has more bases to 
touch. Some of the steps may seem tedious. 

• Before even thinking about what to write in a computer program, the developer 
must be sure of what the problem is, precisely. What is the input? What is the 
output? How should they relate? 

• Like a building, a complex piece of software must be designed. The design must be 
verified. Only after this stage is it cost effective to code the program in a language. 

Experience has shown that the most efficient way to write programs is first to design 
them and then to write the program code. A written design is a useful form of 
documentation as well. Thinking before coding is known to save effort. 

The first issues we address in this chapter are how to specify a problem, how to break 
a solution down into its component parts, and how to put that design for a solution down 
on paper. The abstract step-by-step plan for a solution is called an algorithm. All your 
study in computer science will involve work with algorithms. The three chief notations 
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historically have been pseudocode, flowcharts, and module hierarchy charts. As object-
oriented technology has spread, class diagrams have become part of the documentation 
tool set as well.  

Once a set of steps in a problem solution have been chosen, it is possible to arrange 
them in many different ways. Software developers have found, however, that a mere 
three such orderings, or control structures, are sufficient to solve any solvable problem, 
and that a design limited to these structures is immensely easier to understand than any 
other. This chapter will discuss the sequence, branch, and loop control structures and 
how to work with them in flowcharts and pseudocode. 

Breaking down a problem in order to solve it also involves the construction of 
software modules. A section of this chapter will present the concepts of functional 
decomposition and object-oriented design. These differ chiefly in whether operations or 
kinds of data item are the primary focus of a particular software design. 

At the right is a diagram of a hierarchy, in which some items have a 
supervisory or parent-like relationship to others, which are below them. We 
can build programs using such a hierarchical structure. 

A typical software-development problem is too complex for any 
programmer or software designer to be able to hold all the details to its 
solution in mind at one time. Studies have indicated that a human being can 
concentrate on only about seven things at a time, at best. We overcome this obstacle in 
daily life by putting some details out of our minds temporarily. We deal with them later 
and concentrate for the moment on the big picture or on a single small part of it.  

That’s one way we can successfully approach software problem solving. We can look 
at a problem as a whole and break it down into subproblems. Then we can solve each of 
the subproblems, one at a time. If a subproblem is itself too complex, then we can break it 
down, and so on. 

Most software development is done by teams, which may divide up 
the work into smaller parts. One member of the team may work with one 
part of the problem, another with another part. The team as a whole 
makes this division and puts the solutions together. 

Breaking down a complex problem into subproblems is called 
modular design, or modular decomposition. Each sub-problem is solved 
by building a component to perform a single task—a procedural module. If a module is 
complex, we may break it into sub-modules. 

A recent alternative to procedural decomposition of a problem is object-oriented 
design. Here we build our design around the categories of data objects found in our 
problem description. We started presenting objects in Chapter 1 and will continue this 
discussion throughout the text.  

A second category of divide-and-conquer strategy is the recursive solution⎯a solution 
to a big problem expressed in part as a solution to a smaller instance of the same problem. 
Recursion, like modularity and object orientation, is a theme that occurs throughout the 
study of computer science. We will introduce it briefly as part of the discussion of the 
mathematical foundations of computer science. 
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1. Problems, solutions, and ways to express them 
Programming does not begin with writing code in a programming language; it begins 

with understanding a problem that is to be solved. Problem solving includes asking any 
necessary questions about the problem to be sure that the user’s needs are understood. 
Design is broken down into two stages:  

• functional specification, in which what the program should do is planned, and  
• architectural design, which determines how, internally, the program should 

accomplish its objectives.  
At each stage of analysis and design, a software team may review its work. 

Understand the problem 
The first step in software development is to specify the problem to be solved. This may 

be more demanding than it sounds. Software development professionals can tell plenty of 
stories of how they demonstrated a program, or an early prototype, and found that the 
client’s first comment was to request a change or addition to the program’s original 
purpose. 

The specification stage is also called analysis. The skills required have more to do with 
understanding a business or organization than using a programming language. The more 
thorough the analysis and specification are, the less effort will be needed at a later stage 
to re-specify the task that the program is to perform. Professionals who specialize in this 
work are called systems analysts. 

Key components of a program’s specification are its input, its output, and the 
relationship between them. Software developers have long prepared sample input/output 
as part of program specification. Most of our programming exercises include sample I/O. 
As software has become more complex, the specification may include entire screens, such 
as forms with which to get input or windows to display results. 

Note that the specification phase does not address the critical question of how to arrive 
at the desired output from a given set of user input. That issue is left for the design phase. 

An algorithm is a plan for a solution 
To accomplish an information-processing task, we usually need to break a problem 

down into smaller sub-problems. This is because a problem worth solving is usually of 
some complexity. We simplify it by divide-and-conquer tactics. To solve the problem, 
“Display the sum of two numbers input by the user,” our breakdown might be, in words: 

1. Get two numbers from the user. 
2. Add them, saving the sum. 
3. Display this sum. 

Or, as a diagram (Figure Chapter 1 -1). 
The next step is to plan a design for a solution. Only after the design stage do 

professional programmers code their programs. 
The preceding solution is not written in program code; it is still in an abstract form, in 

the form of an algorithm. 

Key concepts: 
• problem solving 
• problem 

specification 
• algorithm 
• pseudocode 
• flowchart 
• program design 
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An algorithm is a precise plan to solve a problem or complete a task in 
a finite number of steps. 

The first way we expressed the preceding algorithm is called 
pseudocode. It uses text and is precise but informal, not following a 
particular vocabulary, set of grammar rules, or style. Pseudocode is 
written in a natural language, as opposed to a programming language. 

In pseudocode, we may use operators, such as the equal sign or the 
arithmetic operators (+, ×, −, ÷) of mathematics. One mathematical 
operator you may not have seen is the left arrow (←). We will use it to 
assign a value to a variable, as in sum ← a + b. You may wish to 
pronounce the arrow as “gets,” as in “sum gets a + b.” 

The second standard way to express algorithms is called a flowchart. 
A flowchart is a diagram that pictures the flow of control, or the motion 
of activity, from one step to another. It is composed of geometric shapes, 
text, and arrows. The geometric shapes broadly define what type of 
instruction or instruction sequence is being executed. Text within each 
shape provides more specific information. The arrows indicate the 
direction of movement from one instruction or operation to the next 
command to be executed.  

Each flowchart in this chapter will use some combination of the 
following four shapes or elements: 

Element   Meaning 

 

Flowcharts were once seen as an indispensable tool for software designers and 
programmers. As programs have become larger and more complex, other tools have come 
to the fore. Here, we use flowcharts as a tool to teach control structures. They provide a 
picture of the jumps from step to step that occur at the level of machine code. You will 
see few flowcharts after this chapter. 

 
Figure Chapter 1 -1: 
Simple algorithm to 
add 

Historical note 

 
The word “algo-rithm” 
comes to us from the 
name of a great ninth-
century 
mathematician, 
Mohammed ibn Musa 
Al-Khowa-rizmi. His 
work, written in 
Arabic, came to have 
in-fluence in Europe, 
where his algorith-mic 
method of calculating 
com-peted 
successfully with the 
use of the abacus. He 
is credited with 
inventing algebra, 
named after the title of 
a book he wrote. His 
mis-fortune was that 
algorithms came into 
their full use only with 
computer 
programming, more 
than a thousand years 
after he died! 

Beginning or end of program  
or instruction sequence 
Input or output 

Decision 

Other processing 

Flow of control 
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Benefits of a design approach 
We could, of course, sit down at a computer and write a program without ever 

consciously developing an algorithm, writing pseudocode, or drawing a flowchart. We 
could type what came into our minds and then try to fix it if it didn’t work. That is called 
“hacking”. (Some unlawful activities, such as computer break-ins and deliberate virus 
propagation, also go by the same name.) If you wish to hack code in the sense of 
programming without working from a design, then we wish you happy hacking. A 
warning: the time spent correcting errors in such programs is almost always enormously 
more than the time necessary to draw up a workable plan to start with.  

A slogan that has been promoted among programmers is, “Test, then code.” It means 
to verify your algorithm in your head or on paper before you code it in a programming 
language.  

It is universally accepted in the software industry that design is a crucial step in 
efficiently solving a problem. Though it is an extra step that can be skipped if we wish to 
jump right away into coding a program, even the coding can be greatly speeded up if the 
code is based on a well-thought-out design. A common approach to problem solving and 
software development is expressed as follows: 

Repeat until problem is solved: 
 Determine problem specification 
 Design algorithm 
 Code program 
 Test program 
 Debug program 

Of course, this software development process may not always require repetition of all 
steps. For example, it may be necessary to test and debug repeatedly, without changing 
program specifications and without redesigning the solution. 

A flowchart to describe the same process might be like the one in  
Figure Chapter 1 -2. 

Each phase is necessary. A poor understanding of what the program needs to input and 
output invalidates all the rest of the work. Design precedes efficient coding. Every 
program must be tested. If it is found not to work correctly, the errors (bugs) found must 
be corrected. Parts of this process must be repeated if later steps reveal flaws in earlier 
ones. 

Later in this text, we will discuss in more detail the techniques of breaking down a 
problem and of engineering the solution. The development of software was once an art of 
individuals, but today it is so complex that most successful programming is done by use 
of science, mathematics, and teamwork.

 

 
Figure Chapter 1 -2: Phases of 

software development  
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2. The branch control structure 

It is easy to visualize the solution to a problem if that solution is just a series of steps 
carried out one after the other without variation or repetition. We could picture a straight 
road with no forks and no circles; only a series of highway signs or toll booths. That 
would describe a program written for our model processor using only the non-jump 
instructions. 

But most problems can’t be solved in such a linear manner. Here is one: Accept from 
the user an integer, the user’s age, and tell the user whether he or she is qualified to vote, 
assuming that the legal voting age is 18. 

A sequence of steps that always execute will not solve this problem; on some input, 
certain steps should be followed, while on other input, different steps should be taken. 

Here is a solution: 

 If age is at least 18 
  Say “OK” 

We could diagram our solution as in Figure Chapter 1 -3. 
The branch control structure is also known as the decision or 

selection structure. It always involves a yes/no test and, based on that 
test, a decision or selection of which branch to take out of two 
possible paths. 

Often we will want to provide two alternative actions, rather than 
only the alternative of a certain action or none at all. The pseudocode 
below and the flowchart in Figure Chapter 1 -4 represent a design to 
solve the problem of displaying the greater of two user-input values. 

Prompt for integers a and b 
If a > b 
 display a 
otherwise 
 display b 

The branch control structure admits only two possible courses 
of action. What if our problem requires three or more alternatives? 
We resort to using two branch structures, one after the other. To 
find the oldest of three people, for example, we may make two 
comparisons, each of which yields a decision: 

Input age1, age2, age3 
If age1 > age2 
 oldest ← age1 
otherwise 
 oldest ← age2 
If age3 > oldest 
 oldest ← age3 
Display oldest 

Key concepts: 
• branch 

(decision) 
• jump 
• nested branch 

 
Figure Chapter 1 -3. One-way 
branch 

 
Figure Chapter 1 -4. Two-way 
branch 

 
Figure Chapter 1 -5: 

Multiway branch 
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Here we identify four algebra-type variables, age1, age2, age3, and oldest. We assign 
values to these variables using the left-facing arrow. 

The branch control structure may also be nested; that is, a branch may be put inside 
another branch. Figure Chapter 1 -5 is a flowchart for a branch nested to four levels.
3. The loop control structure 

Many computer programs process large quantities of data in a repetitive way. At least 
one instruction sequence within such a program will be repeated for each data value or 
each set of associated data values to be processed. For example, a payroll program must 
repeat the same operations for each employee whose pay is to be computed. To repeat an 
instruction or a group of instructions as often as required for all of the data to be 
processed, a loop structure is needed. The loop is also known as the repetition or iteration 
control structure. 

An easy example is drawing a square: 

edge ← 100 
Do four times: 
 Draw a line segment of length edge 
 Turn 90° to the right 

Consider this problem: Compute and display the sum of four input values.  
Pseudocode for a solution to the problem might look like this: 

1. Set sum to 0. 
2. Set counter to 4. 
3.  Repeat until counter = 0: 
 a. Prompt for input value 
 b. Add input value to sum 
 c. Decrement counter by 1 
4. Display sum. 

The loop occurs in step 3. The steps a, b, and c under step 3 are together 
called the body of the loop. The flowchart in Figure Chapter 1 -6 diagrams 
the same solution. 

An essential component of every loop is a test to determine whether to 
repeat the loop another time or to exit the loop. We will discuss three 
categories of loop, categorized by the ways to exit them: 

• counter controlled 
• sentinel tested 
• general exit tested 
In the first method, a counter variable controls the loop so that it iterates a 

predetermined number of times. In the second method, the loop is exited 
when a special value, called a sentinel value, is encountered. For example, a 
sentinel value of zero might be used to indicate the end of input of a list of 
integers. A loop whose exit test involves other than a counter or a sentinel 
value is in the third category. 

The decision whether to repeat the loop body or not may be made either 
before or after executing the instructions making up the body of the loop. If the decision 
is made at the beginning of the loop, it is a top-tested loop. If the decision to repeat or not 
is made after executing the body of the loop, it is a bottom-tested loop. It is possible for 
the body of a top-tested loop not to be executed at all. The body of a bottom-tested loop, 
on the other hand, will always be executed at least once. Counted loops are top tested. 

Key concepts: 
• loop  
• top tested 
• bottom tested 
• sentinel value 
• structured 

design 
• unstructured 

design 
• trace 
• repetition 
• iteration 

 

 
Figure Chapter 1 -6: Counted loop to input 
four input values and compute the sum. 
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3.1. A counted-loop example 
Consider the problem of finding a two-character pattern in a series of characters. Let 

us suppose we wish to know whether we have made the error of typing two commas in a 
row while entering text. The text is stored in a series of characters denoted by input1, 
input2, input3, and so forth, up to n input characters. Pseudocode for one solution is as 
follows: 

found ← false 
for each value of i from 1 to n − 1 
 if inputi is a comma 
  if inputi+1 is a comma 
   found ← true 
If found is true 
 display “Two consecutive commas found” 
otherwise 
 display “Two consecutive commas not found” 
If all the temporary information used in an algorithm, such as variables, is hard to keep 

in mind at once, it is useful to trace its execution with pencil and paper. Often a table is 
useful. 

The solution above could be traced by a table that lists some variables and their values, 
given input of “OK,,then”: 

i found  input i  input i+1   
1 false  O K  
2 false  K , 
3 false , , 
4 true , t 
5 true  t h 
6 true  h e 
7 true  e n 

The seven steps above are a trace of the duplicate-comma-finding algorithm as applied 
to the input string, “OK,,then.” At each step, we wrote in the value of each variable at the 
beginning of the loop body. The trace establishes that the algorithm reports that 
“OK,,then” does have two consecutive commas. 

Problems 
1. Chapter 1 presented algorithms for converting between decimal and binary 

numerals and for adding and subtracting binary numerals. These algorithms 
involve counted loops. Write pseudocode or a flowchart for (a) binary-to-decimal 
conversion; (b) decimal-to-binary conversion; (c) binary addition; (d) binary 
subtraction 

2. What is the output of this algorithm on input “OK,,then”? How does the text of 
the pseudocode compare to the pseudocode in the example in this subsection?  
for each value of i from 1 to n − 1 
 if inputi is a comma and inputi+1 is a comma 
  display “Two consecutive commas found” 
 otherwise 
  display “Two consecutive commas not found” 
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3.2. A sentinel-controlled loop:  
getting input until the user asks to quit 

Let’s consider the same problem with one variation: instead of adding a fixed number 
of input values, our program should get input and add it until the user enters a special 
value, zero. Like the solution for the previous problem, the solution needs a loop; but it 
should not be a counted one. With this problem, it is impossible to say ahead of time how 
many iterations will occur. A flowchart of the solution is to the right. 

The solution uses a sentinel value, zero, to tell when to exit from the loop. If the user 
enters a zero, that value is treated specially and terminates the loop. If the first input value 
is zero, how many times will the body of this bottom-tested loop execute? 

Sentinel-controlled loops have a danger: the user may assume that a certain value is 
normal data, rather than a sentinel, or the program may test an item as a sentinel even if it 
were entered as normal data. Consider a program that reads a file of student records. The 
data-entry operator has been instructed to enter a special value of 99 for year of 
graduation as a sentinel to indicate end-of-file, and the program that reads the file uses 
that sentinel. No record for any student will be read, then, starting with the first student 
with a 1999 year of graduation! (This is one instance of the so-called “Year 2000” 
problem.) 

3.3. A business problem 
Let’s consider a business matter: How much money will we end up paying back to the 

bank if we borrow $10,000 for four years at 10% interest? For simplicity, we’ll assume 
there is only one payment, at the end of the loan term. 

Since interest accrues repeatedly, the solution to this problem requires a loop. The data 
items we will need are the principal borrowed, the interest rate, the current year (relative 
to the date of the loan) and the amount owed to the bank. 

We choose the tool of pseudocode to sketch our design of a solution to the problem: 

amt owed ← 10,000 
interest rate ← 0.1 
year ← 0 
while year < 4 
 add (interest rate times amt owed) to amt owed 
 add 1 to year 

It may be advisable to test our design by calculating results by hand to see if they are 
reasonable. We trace this algorithm below: 

Interest rate 0.1 
Year Amt. owed Interest New amt. owed 
0 10,000 1,000 11,000 
1 11,000 1,100 12,100 
2 12.100 1,210 13,310 
3 13,310 1,331 14,641 
4 14,641 

It’s reasonable to consider paying $14,641 back after four years on a loan of $10,000 
at 10% interest. We consider our design to be ready to implement. 

3.4. A general-exit-tested loop 
Perhaps you noticed that the double-comma-seeking algorithm mentioned before could 

have been improved. It could have been designed to terminate instantly upon finding two 

 

 
Figure Chapter 1 -7: The 
sentinel value is zero 
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commas in consecutive positions of the input. That would prevent wasting time looking 
for commas after the presence of double commas was already determined. 

Such a modification would require a third kind of exit test, which puts the solution in a 
miscellaneous category of general-exit-tested loops. It could be written in pseudocode as 
follows: 

i ← 1 
found ← false 
while not found and i < n − 1 
 if inputi is a comma 
  if inputi+1 is a comma 
   found ← true 
 i ← i + 1 

The exit test here checks two conditions: that found is not true and that the counter i 
has not reached the next-to-last character of the input. The word and indicates logical 
conjunction, the operation performed on bits by the AND gate at the hardware level. 

3.5. Structured design in problem solving 
Notice that our flowcharts each have exactly one beginning and one endpoint. This is 

true as well of every component of our flowcharts. Flowcharts with this feature are called 
structured flowcharts. We will encourage the use of structured design, reflected in 
structured flowcharts, as opposed to unstructured design. The flowcharts in and depart 
from the guideline of one-way-in, one-way-out. 

The flowchart in Figure Chapter 1 -8 is an instance of an unstructured way of 
expressing an algorithm that would involve the use of the go-to concept in pseudocode, 
as below: 

A. If x = 3 then go to step C 
B. If y < 1 then 
C.  Display (“y < 1”) and  
D.  Go to step F 
E. Display “x = 3” 
F. Display “Done” 

While it is possible to write a correctly-executing computer program 
from unstructured flowcharts or pseudocode, software professionals 
have found it difficult to understand the code and design of such 
programs, the more so as programs become larger. Practically no one 
writes commercial software today by unstructured techniques. If you 
are skeptical, we invite you to find out by experience. 

A flowchart, or a piece of pseudocode, may be well organized or not. If we make no 
rules about the forms of our flowcharts, or if we often use the phrase “Go to...” in 
pseudocode, then we are practicing unstructured design. This is a close cousin to 
hacking. People who’ve practiced unstructured and structured design are likely to prefer 
the structured variety. It is much easier to understand algorithms expressed entirely as 
sequences, branches and loops.  

 
Figure Chapter 1 -8: An 
unstructured flowchart with 
two entrances to process D 
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One advantage of sequences, branches, and loops is that they have one entry 
point and one exit point. Therefore, we can replace any one of these branches, or 
loops, or sequences, with a rectangle, making it easier to understand the whole 
algorithm. The general rule is: avoid unstructured jumps. Flowcharts are best 
understood if they are easily decomposable into structured sub-flowcharts. 
Pseudocode is best written free of the phrase “go to”. 

While unstructured flowcharts, like plates of spaghetti, have an unlimited variety 
of internal structures, it can be proven that any flowchart that is possible to draw 
can be simplified into a structured one using the three basic control structures, the 

sequence, the branch, and the loop, nesting these structures within each 
other if necessary.  

It is widely agreed that structured designs and structured flowcharts are 
understandable to humans, while an unstructured design is often 
impossible to follow above the scale of few isolated steps. Trying to 
understand one can be like unravelling a hundred feet of loose kite string.  

The concepts of structured programming were developed in the 1960s 
and 1970s, long after computers had become widespread. 

4. Modular design and object-oriented design 
4.1. Divide and conquer 

As we prepare more and more complex program designs, we will want to break down 
our problems into simpler sub-problems. To solve a sub-problem, we will design a 
module, or a program component. This is a simple case of the more general strategy, 
“Divide and conquer.” 

Some modules correspond to tasks that our problem solution requires us to carry out. 
In this case, our design may be documented as a module hierarchy, where modules that 
use other modules appear above them in the hierarchy. 

A module hierarchy may be of any depth. The modules higher up in the chart make 
use of the ones lower down. A module directly above another one, and connected to it, 
uses the one below it directly. The relationship between two modules may be indirect if 
a third module is connected between them. 

The program design would very likely use a sequence of pseudocode for each 
module. We will discuss modular design in more detail in Chapter 8. 

4.2. Object-oriented design 
Another way to break down a problem is into the categories of entities (persons, 

things, events) that appear in the problem domain. Each entity has certain attributes and 
certain behaviors. 

For relatively simple problems, a design built around pseudocode and module 
dependencies, that is, around what happens, will be effective. For very complex 
problems, the solution must focus on entities, their attributes, and their behaviors. 

Let’s take an example from real life. A computer is a thing, not an action. But if you 
turn it on, it goes into action—a disk spins, characters appear on the screen. The behavior 
is built into our notion of the object. If it didn’t compute, it wouldn’t be a computer. 

Computer programs today model or represent things in the real world by defining data 
items with built-in behavior. A window on the screen in a word-processor program, for 
example, models a piece of paper on which you might type. When you select the window 
by clicking your mouse in it, the window comes to the front on the screen and lets you 
type words. The words appear in the window. 

 
Figure Chapter 1 -9: An 
unstructured flowchart with two 
exits. 

 
An unstructured design can be like a tangled 
hose 

Key concepts: 
• module 
• object 
• object-oriented 

programming 
• window 
• inheritance 
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The window has more behavior built in than that. If you click in the lower-right corner 
and drag your mouse, the window changes size, letting you define the position of its 
lower-right corner with the mouse. If you click and drag in the title bar at the top, the 
window may be moved around the screen. If you click twice in the upper-left corner, the 
window disappears. The latter three behaviors are characteristic of all windows in the 
Windows, OS/2, and Macintosh environments. 

A window on the screen is a data item, but its behavior is 
built into it. That is, program code is associated with each 
window data item. 

In the terminology of computer programming, a data item that 
is defined partly in terms of its behavior is called an object. One 
of the aims of this text is to present a relatively new way of 
writing software, called object-oriented programming. Our 
second C++ program example, in the next chapter, will have an 
object in it. Chapter 9 will show you how to define classes of 
objects in C++. 

To design a simple program that adds two numbers, it is not necessary to define 
objects. Assembler languages don’t supply tools to support working with data items as 
objects. But, to design a larger program, such as one that creates windows on the screen, 
it will be useful to make objects part of our planning. Thus, the flowchart, pseudocode 
and modular-breakdown techniques that we have used in this chapter in discussing design 
will be augmented later by other ways to describe our software models of the real world. 
Objects and categories of objects (classes) will become part of our design strategy.  

A window object, for example, could be presented as a list of features. Some of them 
are data attributes and others are behaviors: 

A window has: 
attributes • horizontal and vertical location on screen   
 • width, height 
behaviors • ability to be moved by user 
 • ability to be resized  
 • ability to be closed 

The design of asm.exe, the processor simulator program presented in Appendix A, 
makes heavy use of objects. To asm.exe, an assembler program is an object with a name, 
a series of lines corresponding to RAM cells, a size (number of lines), and a screen view 
consisting of rectangles showing the contents of its RAM cells, the program counter, the 
instruction register, the accumulator, and the input/output area. The behavior of an 
assembler program includes loading itself from disk, executing itself, and updating its 
screen view. 

Like each window in Windows, each rectangle on the screen in asm.exe has data 
properties and behaviors: title, contents, screen location, size, background color, color of 
contents. Its main form of behavior is to draw itself, either in normal colors or 
highlighted. 

In the simulator application, the three processor registers, the RAM cells, and the 
input/output box are all specialized kinds of screen rectangles. Each special type has not 
only the attributes and behaviors of screen rectangles in general, but also particular 
attributes and behaviors characteristic of the special type. In a similar way, the word-
processor window in Windows Write is a specialized version of the universal window 

 
A window in the Windows Write word 

processor 
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that is seen in the Windows environment. The specialized types inherit the features of the 
general types. 

The class diagram in Figure Chapter 1 -10 signifies that a data type, 
supervisors, models a category of people who are all employees; thus, a 
supervisor is a kind of employee. This relationship is an inheritance one.  

A different kind of relationship exists between employees and addresses. The 
address of an employee may be an object, having a street and a city, and this 
object is a component of the employee object. The relationship between the 
classes employees and addresses is a containment relationship. 

Software developers today use objects more and more to solve problems. The 
problems are increasingly complex and often require accurately modelling some 
aspect of the real world. The trend to ward reengineering business processes 
means that software developers must solve complex problems quickly by reusing 

program code and building on models that have been constructed earlier. Object-oriented 
programming and object-oriented design have joined earlier techniques at the center of 
the programmer’s and software engineer’s toolbox. 

Lab activity 
Open a file directory window on your computer and describe some of the properties 
(data attributes) and behaviors of the window. Which of them are the same as the 
attributes of all screen windows, as described in this section?

5. Problem solving through top-down design and 
stepwise refinement 

We defined an algorithm above as a precise plan to solve a problem or complete a task 
in a finite number of steps. Algorithms were presented using flowcharts and pseudocode. 
Flowcharts have the advantage of being pictorial. Pseudocode may be terse; it has the 
advantage over C++ of being closer to English. Pseudocode allows you to show the logic 
required to solve the problem without being concerned about the syntax of a specific 
programming language such as C++.  

A widely used way to solve a software-development problem is the top-down 
approach. Top-down design means identifying the main, or top-level, steps of the 
solution first. Some or all of the main steps may be subsequently broken down into 
secondary steps or instruction sequences. Some of the secondary steps may be further 
refined into even lower-level steps. This successively more detailed development of the 
algorithm is called stepwise refinement. If the problem solution is complex, the final 
pseudocode expression of the algorithm might resemble a research paper outline:  

 
Figure Chapter 1 -10: A class diagram 
showing inheritance and containment 

relationships 

Key concepts: 
• top-down 

design 
• stepwise 

refinement 
• desk checking 
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 I. (major step)  
  A. (substep of I.)  
  B. (substep of I.)  
   1. (substep of I.B);  
   2. (substep of I.B);  
  C. (substep of I.)  
 II. (another major step)  
  A. (substep of II.)  
  B. (substep of II.)  
III. (another major step)  

To take an example outside of software development, no home builder would try to 
construct a house without a plan. The original plan may be drawn up by an architect. The 
house design will go to a construction company, which will break down the construction 
process into separate tasks and draw up a schedule. Some tasks in construction might be: 
lay foundation, build frame, lay floor, raise wall, install pipe, install wiring, install 
insulation, and plaster interior. Some steps, such as “lay floor,” may be repeated for 
different parts of the house. Different teams of workers might carry out different tasks. 
Software construction, too, is divided into tasks carried out by teams. 

Below is a seven-step methodology for developing successful software solutions. It is 
a slight variation on the one presented earlier. You are likely to need such an approach 
for larger projects. Beginning programmers may find even short exercises less time 
consuming if they use it. 

Notice as you read through this sequence of steps that much preliminary work is done 
before we start coding a solution in C++.  

A problem-solving methodology 
1. Clearly identify the problem. We have seen some very creative and well-written 

programs that solve the wrong problem! Make sure that you and the person for 
whom you’re writing the program agree on the problem to be solved.  

2. Prepare a sample of the output your program is to generate.  
3. Specify the necessary input data to produce the required output.  
4. Using top-down design with stepwise refinement, prepare an algorithm, either in 

flowchart form or in pseudocode. (If your problem involves two or more different 
entities with attributes and behaviors, such as customers, employees, or 
transactions, then your design step should include some attention to these entities 
and their characteristics—see Chapter 9.) 

5. Using pencil and paper, test your algorithm with sample data. Use sample data 
that will test all parts of your algorithm. If your pencil-and-paper testing reveals 
‘bugs’ (errors in logic), revise the algorithm. (You may be in this revision loop for 
some time if the problem is particularly complicated.)  

6. Code the solution. That is, write a C++ program based on your algorithm.  
7. Test your program. Careful work in steps 4 and 5 will pay off with fewer errors at 

program testing time. Again, as in step 5, use sample data that will test every part 
of your program.  
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After Step 7, you may need to repeat some or all of the steps—coding, design, or even 
program specifications—until you are fully satisfied with the results. 

5.1. Case study: a payroll application 
Here is a simple example that uses the above seven-step problem-solving method.  

1. Identify the problem.  
The problem description, or specifications, is to compute the gross weekly pay for an 

hourly employee, based on regular hourly pay for hours up to 40 and time-and-a-half for 
overtime. If the slightest doubt exists in the mind of the software developer about the 
problem to be solved, he or she must consult with the customer for clarification. The first 
step is also an appropriate occasion to suggest additional specifications that the customer 
may not be aware are feasible or desirable.  

2. Prepare sample output 
The output sample should include reasonable values, including the calculated value, 

gross pay. Although our problem specification only calls for working with one 
employee’s hours and pay, we plan to format our output as if it were a table, with labeled 
columns: 

Name Rate Hours Gross pay 
---- ---- ----- --------- 
Samuel B. Jones 8.75 45 415.63  

3. Determine necessary input data  
To arrive at our specified output, we need to prompt the user for the employee’s name, 

from the employee roster; hourly pay rate, also from the roster; and number of hours 
worked, from the time card. 

4. Design an algorithm.  
Using the top-down design principle, pseudocode of an initial version of the algorithm 

might be:  

1. Input name, pay_rate, hours_worked 
2. Compute gross_pay, including overtime  
3. Show name, pay_rate, hours_worked, gross_pay with headings  

The first draft is only a skeleton. Shall we fill in some details? Using stepwise 
refinement, we provide more substance to our algorithm: 

1. Input raw data  
 A. Prompt for name; input name 
 B. Prompt for rate; input hourly rate  
 C. Prompt for hours; input hours worked  
2. Compute gross pay  
 A. Compute regular pay  
 B. Compute overtime pay  
 C. Add overtime pay and regular pay to get gross pay 
3. Show payroll report  
 A. Show headings  
 B. Display dashes under headings  
 C. Show name, rate, hours, gross pay to 2 decimal places 
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We look over our latest draft of the algorithm, and discover that the logic for 
computing regular pay and overtime is not indicated. In fact, we realize that our as yet 
rather limited programming tools require that we input hours as two separate entries, 
regular hours and overtime hours. Here is a third draft of the algorithm. Notice that Parts 
1 and 2 of the second version have been considerably revised:  

1. Input raw data  
 A. Prompt for name; input name  
 B. Prompt for rate; input hourly rate  
 C. Prompt for regular hours. The user should be prompted to input only 40  
  if hours worked were over 40.  
 D. Prompt for overtime hours. User should be prompted to input hours  
  worked over 40 if work included overtime, otherwise to input 0. 
2. Compute gross pay: 
 gross pay ← pay rate × (regular hours + 1.5 × overtime hours) 
3. Display payroll report  
 A. Show headings 
 B. Show dashes under headings 
 C. Show name, rate, hours, gross pay (to 2 decimal places)  

5. Test the algorithm with sample data 
In order to test all parts of our algorithm, we will need to use two sets of sample data, 

one with no overtime hours and another set with overtime hours. Since this is to be a 
paper-and-pencil test, we should choose sample data that will make for easy computation. 
The first set of test data will be for Les Toil, who worked at $10.00 per hour for 40 hours.  

The portion of our algorithm that requires testing is the computation part. Here are the 
inputs involved in computing gross pay:  

 Rate: 10.00  
 Regular hours: 40  
 Overtime hours: 0  

and here is the computation:  
 gross = 10.00 × (40 + 1.5 × 0) 
  = 10.00 × (40 + 0)  
  = 10.00 × 40 
  = 400.00 
The algorithm produces a correct result for the first set of data.  

The second set of test data, which must test the overtime computation, will be for 
Morey Work, who worked at $10.00 per hour for 50 hours.  

Here are the inputs used to compute gross pay:  
 Rate: 10.00  
 Regular hours: 40  
 Overtime hours: 10  

Here is the computation:  
 gross = 10.00 × (40 + 1.5 × 10) 

 = 10.00 × (40 + 15)  
 = 10.00 × 55  
 = 550.00 

The algorithm produces a correct result for the second set of data. 
Testing a program before coding it is called desk checking. It requires some extra work 

initially, but it will reduce the number of errors that occur when the coded solution is 
tested. Care and attention are musts in desk checking; it is easy to get seemingly correct 
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results by performing what we think the pseudocode says, rather than applying it literally, 
as a compiler will translate our program code. Sloppy desk checking reinforces errors 
rather than catching them.

6. Abstractions, functions, and recursion 
Computer science is concerned with the practical issues of data manipulation by 

hardware and writing programs to accomplish this data manipulation. But it also has a 
theoretical aspect that is of critical practical importance. It involves mathematics. 
Theoretical computer science not only uses mathematics, as physics, chemistry and other 
fields use certain parts of math; computer-science theory is a branch of mathematics, also 
known in part as discrete mathematics. 

6.1. Computers and abstractions 
Mathematics is a field of study that works entirely with abstractions, such as numbers 

and operations. Similarly, computers by their nature work with abstractions, because they 
are symbol-manipulating machines. Letters, numbers, and words are among the symbols 
they operate on.  

The process of abstraction lets us set aside concrete details (e.g., what do we have 
three of?) and concentrate on the matter at hand (e.g., three of anything plus five of 
anything equals eight of that thing). 

As we will discuss in detail, writing a subprogram module to accomplish part of a 
program specification, such as output, is procedural abstraction, and designing classes, 
such as window classes, is a form of data abstraction. In each case we focus initially on 
deciding how a software component will work and on naming it, but we temporarily 
leave aside implementation details that are not crucial to the user of the component. 

6.2. Sets and functions 
If you studied algebra using a mathematical approach (as opposed to a formula-

memorizing approach), then you know about sets. Three well-known sets are the set of 
natural numbers (0, 1, 2 ...), the set of real numbers (numbers that can each be 
represented as a series of digits with a decimal point somewhere in the series), and the set 
of truth values, {True, False}. 

In algebra, geometry, and trigonometry, you encountered functions. Perhaps you 
learned that a function is a set, too. It is a mapping from one set to another set, possibly to 
the same one. Every function consists of ordered pairs of values in such a way that a 
given value in the first set always maps to a unique determined value in the second one. 
Thus, given a certain value on the left (the function argument), a function is quite 
predictable and always returns the same value on the right. Two values on the left, 
however, may both have the same return value for a certain function. 

One example of a function is the one that returns the ordinal value, or 
position, of a letter in a series of letters. The letters ‘A’, ‘B’, and ‘C’, for 
example, have the positions 1, 2, and 3 in the alphabet. 

So our position function might be diagrammed as in Figure Chapter 1 -
11. We have the sets {‘A’, ‘B’, ‘C”}, {1, 2, 3}, and {(‘A’,1), (‘B’,2), 
(‘C’,3)}. The third set is a function, which we could call index: 

index(‘A’) = 1 
index(‘B’) = 2 
index(‘C’) = 3 

Key concepts 
• abstraction 
• function 
• computation 
• computable 

function 
• recurrence 
• recursion 

 
Figure Chapter 1 -
11. A function 
from letters to 
natural numbers 
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A similar mapping can define what we mean mathematically by oddness 
(Figure Chapter 1 -12): 

odd(1) = true 
odd(2) = false 
odd(3) = true 
odd(4) = false 
... 

Notice that while none of our functions have two arrows coming out of 
the same argument set element, some may have two or more arrows 
pointing to the same return-value set element. 

Finally, we have functions from numbers to numbers, such as the 
function that returns a value twice as large as its argument (input), 
illustrated in Figure Chapter 1 -13: 

twice(1) = 2 
twice(2) = 4 
twice(3) = 6 
twice(4) = 8 
... 
Any of the functions described above could be extended to map from or between large 

or even infinite sets. 

6.3. Computable functions 
In mathematics, a function is a passive, static abstraction. However, a very interesting 

set of functions is the category that can be computed. That is, for each computable 
function, there is one or more algorithm that starts with the argument value and step by 
step arrives at the return value. The number of steps must be finite for us to call the 
function computable. 

Since you know that computer programs are supposed to be deterministic 
(predictable), it may make sense to you that every computer program that works correctly 
produces as its output the return value of a computable function, with the program’s input 
corresponding to the function’s argument. It may also make sense that for every 
computable function, it is possible to write a computer program whose output is the 
return value of the function. In fact, it is possible to write many such programs. Thus, we 
have a neat correspondence between the category of possible computer programs and a 
category of mathematical functions. 

This is true whether we take a narrow view and consider only programs with numeric 
inputs and outputs, or a broad view, considering inputs and outputs that include text, 
graphics, mouse clicks, and so forth. Since all computer data is stored as bit patterns, and 
we have shown that any bit pattern corresponds to a number, therefore we could consider 
only that set of functions from numbers to numbers and still defend our claim that the 
class of computable mathematical functions has a correspondence to the set of all 
possible computer programs. 

Now, when we ourselves compute functions by hand we use operators and other 
notation to specify the steps we take to get from the function’s argument to its return 
value. For example, any two numbers have a sum, so we could define a mathematical 
function sum(a,b) whose arguments could be any natural numbers a and b. This function 
would return the sum of the two arguments. We may use the operator, +, to denote our 
use of the function, in this way: a+b. 

 
Figure Chapter 1 -12. A 
function from natural 
numbers to truth values 

 
Figure Chapter 1 -13. A 
function from natural 
numbers to natural 
numbers 
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Computing the sum, or +, function, may consist of looking up one or more values in an 
addition table and possibly taking other steps. 

The expression, (2 + 5) × 4, with the operators + and ×, corresponds to the application 
of a product function to two arguments, one of which is the sum of 2 and 5: 

(2 + 5) × 4 = product(sum(2,5), 4) 
Finally, the language of mathematics provides us with ways to express functions of 

different numbers of arguments if the argument values progress in a natural way from one 
to the other. Consider sum(1, 2, 3, 4) or sum(1, 2, ... n) for some natural number n; in 
other words, consider the sum of a series of consecutive numbers starting with 1. 
Mathematics has a way to express such functions: 

sum(1, 2, 3, 4) =  

sum(1, 2, ..., n) =  
Here the symbol Σ (a Greek letter) is pronounced “sigma” or “summation.” It is used 

more or less as a super-powered plus sign. 
Thus, mathematics gives us two ways to express the values of certain functions: the 

functional notation, with function names followed by arguments in parentheses, and 
operator notation. The operator notation often points to a step-by-step method for 
computing a function that is computable. 

A computation is a finite sequence of concrete steps that begins with a computable 
function’s arguments and ends with its result or return value. For example,  

 = sum(1, 2, 3, 4) = 1 + 2 + 3 + 4 = 3 + 3 + 4 = 6 + 4 = 10 

The computation of this function took three steps, equal to the number of plus signs in 
the first expression with operators. 

A computation is a particular series of operations on particular data values, whereas an 
algorithm is an abstract plan for computations on any of a wide variety of data values. 

Whereas a function is a passive set of ordered pairs, a computation entails activity. A 
computer program or a subprogram computes a mathematical function. Later you will 
learn about C++ “functions”. These are subprograms, not mathematical functions. 

6.4. Recursive mathematical functions 
Some functions in mathematics are not computable. For example, we can imagine a 

function whose argument is the executable file for a computer program, and whose return 
value is true or false. This function take the value true if the argument program ever goes 
into an infinite loop (“hangs” or “freezes”, in your experience). It returns false if the 
argument program always terminates. Such a function would be highly useful 
implemented as a computer program, because with such a program we could certify 
whether the software we are buying, selling, or using is reliable in a crucial way. 

Unfortunately, this function is uncomputable, regardless of what processor the 
executable file is designed to run on. The program we would like to write, to compute 
this function and earn perhaps billions of dollars, cannot be written. 

How can we recognize computable functions, so as to avoid taking on impossible 
software-development tasks and focus on work with fruitful prospects? It turns out that 
every computable function can be expressed according to a certain form, the recurrence. 

Here is a simple recurrence that assumes the operation “+” is defined: 
sum(a,b) = a + b 

It is too trivial to discuss. 
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Here is a more interesting one, which assumes that division is defined: 
 quotient(a,b) = ⎧ a ÷ b if b ≠ 0     ⎨    ⎩  undefined otherwise      

Notice that the definition on the right side of the recurrence is conditional; it depends 
on the value of b. This recurrence says that quotient is a function that has a return value 
of any arguments a and b, except where b is 0. To be undefined for certain argument 
values does not disqualify quotient from being a function. 

Clearly both sum and quotient are computable, since we compute them all the time by 
hand or with calculators. 

You may wonder what is recurring in the above recurrences. Nothing⎯but they follow 
a format in which something may recur, i.e., occur over and over. 

Consider this: 
sum(a,b) = ⎧ undefined  if a < 0 
  ⎨ b if a = 0  
  ⎩ sum(a−1, b+1) otherwise 

Here we define the sum function conditionally on the value of a. In the case where a is 
negative, we choose to leave the return value undefined. (If we wrote a program to 
compute the function, it would show an error message.) If a is 0, our function expression 
sum(a,b) takes the value b. Thus, for example, sum(0,5) = 5 by our definition. OK? So 
much for the easy part. 

In the case where a is positive, our function definition reuses itself, or recurses: 
sum(a−1,b+1) is returned. Let’s step through the definition as it recurses with the 
argument values 2 and 1, to see how sum(2,1) comes out: 

sum(2,1) = sum(2−1,1+1)  by the recursive case 
 = sum(1,2)  applying the − and + operators 
 = sum(1−1,2+1)  by the recursive case 
 = sum(0,3)   applying the operators 
 = 3 by the base case 
Our new definition of sum yields 2 + 1 = 3. 
You might notice that as we apply and re-apply our definition of the sum function, the 

arguments a and b take on successive values where a decreases with each step of 
recursion and b increases. Thus whatever initial values a and b take, on some eventual 
recursive invocation of the definition, a will take the value 0 and the second line of the 
recurrence (b, if a = 0), the base case, will apply. 

6.5. Recursive functions are computable 
Why would we ever want to define a function sum in this way, when “sum(a,b) = a + 

b” seems simpler? Because in practice the addition operator is more complex to apply 
than would appear on the surface. For us, addition requires at least an addition table and 
possibly repeated one-digit additions and carries. It is similar for a computer. But adding 
1 to (incrementing) a value or subtracting 1 from (decrementing) it is simpler; quite 
simple, at the hardware level. Mathematically, we could call finding the successor or 
predecessor of a natural number a primitive operation, defined simply by the very nature 
of natural numbers. The natural numbers are defined as 0 and the successors of natural 
numbers, where each natural number has exactly one immediate successor. 

What is significant is that any function that we can define by a recurrence is 
computable if every component on the right side of the recurrence is computable. In other 
words, even if we don’t choose to use recursion in every algorithm we use in a computer 

base cases 

recursive case 
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program, nevertheless if it is possible to express as a recurrence the function our program 
is to compute (the problem it is to solve), we can be sure that it is also possible to write 
our desired program using some algorithm that computes the function. When we are 
solving a problem, it is useful to have a way of knowing that it can be solved. 

Any loop can be specified using recursive pseudocode. Let’s consider a very simple 
looping problem. What do you do to walk a distance of n steps? We could say, “Repeat n 
times: take one step,” but another solution offers itself. Consider this algorithm: 

Walk (num-steps) 
If num-steps > 0 
 Take a step 
 Walk (num-steps − 1) 
Here there are two possibilities. If the argument, or operand, or parameter, num-steps, 

is zero, then the algorithm will do nothing. But if it is one or higher, the algorithm 
reinvokes itself with a slightly smaller argument. That slightly smaller argument might be 
zero, or the reinvoked version of the algorithm might call itself with an argument of zero. 
Eventually, num-steps will get down to zero, and the recursion will stop. 

We will be discussing recursive definitions of C++ grammar rules in Chapter 3, and 
how to write recursive subprograms in C++ in Chapters 8 and beyond. 

Mathematics and computer science are in some ways two paradises, two playgrounds, 
for skeptical people. Every claim about functions, computable functions, and recursion 
made above can be proven, though we don’t do so here. Though not every correct 
program can be proven correct mathematically, every such program can be rewritten in 
such a way that the result can be proven correct. 

Every computer with the proper software-development environment is an inexpensive 
laboratory for testing problem solutions empirically. If you have a bright software idea, 
you can build and demonstrate a working prototype yourself. 

As we shall see, a mathematical approach to software development has some practical 
advantages over the empirical testing approach. Software engineers make use of both. 
Summary 

The specification stage in software development is called analysis. The software 
developer must understand the problem at hand in order to solve it. 

An algorithm is a precise plan to solve a problem in a finite number of steps. To solve 
a problem, we may break it down into smaller sub-problems. Design is a critical phase in 
the problem-solving process. 

Flowcharts are a conventional way to pictorially represent the order of execution of 
instructions. Pseudocode is a more commonly used informal way to describe an 
algorithm in words. 

Program design is considered an essential step in the software development process. 
This problem-solving cycle may be described as a series of repeated steps: specify the 
problem, design an algorithm, code a program, test the program, and debug the program. 
Each step, or the whole series, is repeated until the problem is solved.  

The three fundamental control structures used in programs are the sequence, the 
branch, and the loop. Any algorithm may be diagrammed by a flowchart combining these 
three control structures. 

We use a branch control structure to cause a sequence of instructions to be executed 
under some conditions but not under others, or to cause one sequence to execute if a test 
condition is true and another to execute otherwise. We may combine and nest branches 
for multiply branching algorithms. 

Repetition is implemented through the loop control structure. A loop must have an exit 
condition, which is tested either before the body of the loop (top tested) or after it 
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(bottom tested). A counter may be used to cause loops to execute a predetermined 
number of times. A sentinel value input by the user may also be used to exit from a loop.  

The software designer breaks a complex problem down into sub-problems. The 
solution to each sub-problem may be designed as a module. 

For highly complex problems such as those requiring display of data in screen 
windows, a program must be designed with objects in mind. Whereas in very small 
programs we work with instructions that manipulate data items, in larger ones we 
typically work with objects—data items whose behavior is built in. Some classes of 
objects may be defined to inherit the features of other classes. Object-oriented design and 
object-oriented programming are indispensable tools of software engineering today. 

Application programming increasingly consists of assembling software components 
from standard and proprietary libraries—tool kits of predefined constants, functions, and 
classes. 

The accepted approach to program design is the top-down method, using stepwise 
refinement. A design is often first expressed in pseudocode.  

Writing a program can be accomplished using a seven-step process: 
1. Identify the problem. 
2. Specify output. 
3. Specify input data. 
4. Write an algorithm. 
5. Desk check the algorithm using representative sample data. 
6. Code the solution in a programming language. 
7. Test the coded solution on the computer.  

It is necessary to repeat steps whenever testing reveals an error.  
Mathematics and much of computer science share the feature that their subject matter 

consists of abstractions, such as algorithms, numbers, symbols, and functions. A 
computer is a machine that manipulates abstractions (symbols). A function is a mapping 
from a set to a set. A computable function is one for which an algorithm exists that starts 
with the function’s argument value and arrives at the return value. Some functions are 
uncomputable. Functions that can be defined by recurrences are computable. Any 
computable function can be defined recursively. 
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Review problems 
1. Write a flowchart or pseudocode for 

algorithms to solve each of the following 
problems.  

 (a) Input exactly 6 signed integers. 
Display only the largest of the input 
values, regardless of where it occurred in 
the input list. Hint: Let the data address 
for the first input also serve as the 
storage location for the largest integer 
found so far. Use a second data address 
for subsequent input values. Sample 
Input: –3,20,-4,5,7,0 Output: 20 

 (b) Input signed integers until the current 
input is less than the previous input. 
Display the largest input value.  

 Sample Input: 1,2,3,4,24,56,41 Output: 
56 

2. Does the flowchart below diagram an 
algorithm? Explain. 

  
3. In the software development process, 

what steps are recommended before 
coding a program? After coding? 

4. Give an example of an object that is 
found on the screen in the Windows or 
OS/2 user environment. What are some 
of its data attributes? Its behaviors? 

5. How many times will a counter-
controlled loop iterate? A sentinel-
controlled loop? 

6. Describe two variants of the loop control 
structure. 

7. Consider the flowchart to the right. For 
each of the input pairs (A,B) shown 
below, show the resulting output 

  
  Input A Input B Output  
  1 4 _____ 
  2 0 _____ 
  3 1 _____ 
 What simple function does this 

algorithm calculate? 
8. Is the pseudocode below an example of a 

structured design? Why or why not? 
1. If input file exists, open input file; else 
exit program 
2. Read input file, summing up contents 
3. Display sum. 

9. Modify the flowchart below so that it 
will diagram a structured design. 

 
10. Use pencil and paper to test a few 

argument values and guess what familiar 
mathematical functions are computed by 
the following recurrences: 
(a) f(a,b) = 
 ∫ 0  if a= 0 
 ⎩ b + f(a−1,b) otherwise 
(b) (Challenge:) g(a,b) = 
 ⎧ 0 if a= 0 
 ⎪ b + g(⎣a÷2⎦, 2b)  
 ⎨  if a is odd 
  ⎪ g(⎣a÷2⎦, 2b)  
 ⎩  if a is even 
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11. Put these phases or sub-phases of the 
problem-solving process in 
chronological order, number the first 
“1”, the second “2”, etc. 
____ code program 
____ desk check 
____ write a design 
____ get problem specifications 
____ test program 
____ debug code 

12. Consider the flowchart below. For each 
of the input pairs (A,B), shown below, 
show the resulting output. 

 
 Input A Input B Output 
 2 1 _____ 
 1 3 _____ 
 4 2 _____ 
What is a way to describe the 
relationship between input and output? 

13. Label each term below with the letter of 
its appropriate definition 

____ pseudocode 
____ object  
____ algorithm 
____ branch 
____ loop 
____ module 
____ desk checking 
____ stepwise refinement 
____ top-down design 
a) A precise plan to solve a problem 

or complete a task in a finite 
number of steps. 

b) Informal natural-language way to 
express an algorithm. 

c) The decision control structure, in 
which one action is taken or else 
another. 

d) The iteration control structure, in 
which an action is repeated. 

e) A way to design and code software 
characterized by use of only three 
control structures: sequence, 
branch, and loop. 

f) A data item that is defined partly in 
terms of its behavior. 

g) Verification of program 
correctness without running it on a 
computer. 

h) A program component which may 
consist of one or more 
subprograms. 

i) A method of developing a plan for 
a program, beginning with an 
overview of the problem and 
breaking it down. 

j) A method that uses repeated 
improvements in a program design.
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Problem-solving exercises 

In the following exercises, prepare pseudocode or a flowchart of your solution. If you have read 
Appendix A, you may as a lab exercise wish to code the solutions in the language of the model 
processor explained there. 

1. Design a program to accept keyboard input 
of three integers to represent the dollar 
amounts price, discount, and sales tax, in 
cents. It should display the sum of the price 
and the tax, minus the discount.  

  Sample I/O:  
  [Input:] 200  
  [Input:] 20  
  [Input:] 10  
  [Output:] 190  
2. Computers are often sold with service plans 

whose cost depends on the computer’s value. 
Design a program to input the signed 
integers, price and monitor. If the sum of 
these is less than 1000, the program should 
display the message, “Plan costs $99.95”; 
otherwise it should display the message, 
“Plan costs $149.95”.  

 Sample I/O:  
 Example 1: [Input:] 749 [Input:] 199 

[Output:] Plan costs $99.95  
 Example 2: [Input:] 1299 [Input:] 399 

[Output:] Plan costs $149.95  
3. Design a program to input three integers, A, 

B, and C. Make the necessary comparisons 
to display the greatest of the three.  

 Sample I/O: [Input: ] –38 [Input:] 300 
[Input:] 77 [Output:] 300  

4. Design a program to input integers, A and B. 
Compute and display  
|A – B|. Note: Read |A – B| as “the absolute 
value of the difference (A – B)”.  

5. Design a program without input that uses a 
loop structure to display each of the integers 
from 1 through 10. The only data values that 
may be stored initially via data statements 
are 0, 1, and 10.  

6. Design a program that will loop to accept 
input of exactly three pairs of integers (A,B) 
and compute and display the value of A – B 
for each input pair.  

7. Design a program to compute and display the 
product of two input non-negative integers. 
Display nothing if input includes a negative 

number. (Hint: Perform the multiplication as 
repeated addition, using one of the integers 
as an addend and the other integer as a 
counter to determine how many times to add 
the addend to a sum representing the 
product.) 

8. (Challenge) Design a program to input two 
non-negative integers (A,B) and a positive 
integer (C). Compute A * B / C and display 
the quotient and remainder. For each of the 
inputs A, B, and C, loop for new input if 
negative values are entered. The input value 
of C must also be tested to be sure it is not 0. 
Why? 

9. (Challenge) A geometric progression is a 
sequence of terms in which each term after 
the first term is obtained by multiplying the 
previous term by a constant multiplier. For 
example, if the first term is 7 and the 
constant multiplier is 3, then the resulting 
geometric progression is:  

  7 21 63 189 567 1701 etc.  
 We can compute the sum of the first n terms 

of a geometric progression. In the preceding 
example, the sum of the first 5 terms is:  

  7 + 21 + 63 + 189 + 567 = 847.  
 Design a program that will accept positive 

integers n, first, and k, input by the user, and 
display the first n terms and then the sum of 
those terms where the first term is first, the 
constant multiplier is k, and the desired 
number of terms is n. 

10. (Challenge) Design a program to divide any 
signed integer by any other non-zero integer, 
using only addition, subtraction, and the 
three control structures. First the dividend 
and then the divisor are to be input from the 
keyboard. The divisor must be tested to 
avoid attempted division by 0, since division 
by 0 is not defined. The result is to be output 
as an integer quotient followed by an integer 
remainder. Remember to test your program 
with all possible sign combinations of the 
dividend and divisor.  



Problem-solving exercises 1-26

11. Write pseudocode to compute the base-2 
integer logarithm of an input integer. (See 
flowchart below.) 

 
12. Write an algorithm to find the tallest person 

in a room by comparing two persons at a 

time. Hint: some persons will only have to be 
compared only once to any other person. 
Once you compare the shortest person with 
even one other person, for example, you will 
know enough never to compare that short 
person again with anyone. 
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