Code and Pseudo Code

Ilan Vardi, Macalester College

This article illustrates how a computer language like Mathematica, which incorporates symbolic
computation and mathematical notation, can be used to write high-level descriptions of
mathematical algorithms. Several examples are given, including a simplification of a little-known
algorithm of R.W. Gosper to implement continued-fraction arithmetic.

It is quite common that mathematical results rely on explicit
descriptions of algorithms. These are often written in what is
called “pseudo code,” usually based on a computer language
like Pascal or C [Gonnet and Baeza-Yates 1991; Sedgewick
1988; Sedgewick 1990]. The question addressed here is how
to check that pseudo code is correct. In other words, how do
you get a “pseudo compiler” to check your pseudo code? 1
propose that a way to do this is to use a high-level language
such as Mathematica to write a real implementation. The
high-level and built-in mathematical capabilities of such a
language allow you to write pseudo code that is essentially a
transcription of the computer code, and so hopefully free of
“pseudo bugs.”

A Simple Example

Consider the process of adding and multiplying positive inte-
gers using their decimal expansions. The problem is to
describe algorithms that return the strings of digits corre-
sponding to the sum and product of two integers, given the
two strings of digits that represent the integers.

The input will be sequences of digits [d,,,..., dg]. Concate-
nation z * y of sequences will be used, with the unusual con-
vention that [0] * z returns z. This condition corresponds to
the usual convention that omits leading zeroes in decimal
expansions.

Here are two algorithms described in pseudo code.

Addition algorithm. Given as input two sequences of digits
a=[an,..., ap) and b =[b,, ..., by], return a sequence a @ b:

intialize k < 0
fori=0,1,..., max(m, n) do

k < a;+b; +| k/10]. If i > m, replace a; with 0 and
if i > n, replace b; with 0

¢; < kmod 10
return [Lk/lo_“ * [Cmax(m,n)> LRE) CO]

Ilan Vardi received his Ph.D. in 1982 in analytic number theory. He bas also
worked in other areas of mathematics, including combinatorics, probability, and
analysis. Much of his work on Mathematica has appeared in the book Computa-
tional Recreations in Mathematica. He is finishing a second book on mathematics
and Mathematica.

66 THE MATHEMATICA JOURNAL © 1996 Miller Freeman Publications

Multiplication algorithm. Given as input two sequences of
digits a = [ap, ..., ag] and b = [b,, ..., by], return a sequence
a® b:

initialize ¢ <[ ]
fori=0,1,...,mandj=0,1,...,ndo itj
———
ce=c®([La bj/lOJ] * [a;b; mod 10, 0, 0,...,0])
return c

The Mathematica implementation starts by defining the *
operator:

x_"join"y_ := If[x == {0}, y, x"Join"y]

The infix notation x~join"y, which means the same as
join[x, yl, has been used in order to make the program look
more like the mathematical description of the algorithm.

The next step is to write functions that take a list
[dgs ---, dp] and return the last element d, and the list without
its last element, [dy, ..., dq].

last[x_] := {Last[x]}
drop[x_] := Drop[x, -1]

The addition and multiplication programs are then

a_"plus™b_ :=
Block[{c = {}, i, k = 0},
Do[ k = If[i > Length[al, 0, a[[-i]]] +
If[i > Length[b], 0, b[[-i]1] + Floor[k/10];
PrependTo[c, Mod[k, 1011,
{i, 1, Max[Length[al, Length[b]1}]1;
Return[{Floor[k/10]}" join~c]
]

a_"times"b_ :=
Block[{c = {}, i, j, Kk},
Dol k = al[-i]] b[[-j11;
¢ = ¢"plus”({Floor[k/10]}" join~
Prepend[Table[0, {i+j-2}], Mod[k, 1011),
{i, 1, Length[al}, {j, 1, Length[b]}];
Return[c]



Note that Mathematica has a somewhat idiosyncratic syntax,
as evident, for example, in the fact that arrays can be
accessed from the right using negative indices, or in expres-
sions like

Quotient[#, 101" join"Mod[#, 10]& [last[a] last[b]]

used below. On the other hand, the control structure of the
program is identical to the one in the high-level description,
and once you get used to the peculiarities of the language, the
high-level description can be directly transcribed from the
program.

An even better example is to use a recursive algorithm:

Addition algorithm. Given as input two sequences of digits
a=[ay, ..., ag] and b =[b,, ..., by], return a sequence a ® b:

ifa=[ Jorb=[ Jthena*b

else (([ama ces a’l] ® [L(a0+ bo)/lOJ]) ® [bm cees
[(ap + by) mod 10]

b1]) *

Multiplication algorithm. Given as input two sequences of
digits a = [a, ..., ag] and b =[b,, ..., by), return a sequence
a®b:

if n =0 then
if m =0 then [|ag bo/101] * [ag by mod 10]
else b ® a

else ((a ® [by, ..., b1] * [0]) @ (a ® [by])

The return command has been omitted from the description
as it is assumed that the algorithm returns the last evaluation.
This is true of the Mathematica language, so the Return state-
ments will be omitted from the programs as well. The Math-
ematica implementation is

a_"plus”b_ :=
If[Length[a] Length[b] == 0,
a”join"b,
Block[{sum = Quotient[#, 10]~join~
Mod[#, 10]& [last[a] + last[bl]},
((drop[a]“plusdrop[sum])“plus~drop[b])~ join~last[sum]
1 1

where Quotient[a, b] means | a/b].

a_"times"b_ :=
If[Length[b]==1,
If[Length[a] == 1,
Quotient[#, 101" join~Mod[#, 10]& [last[a] last[bl],
b~times~a],
((a~times"drop[b])~join"{0}) "plus~(a~times~last[b])
]

In this case, one can argue that a better choice of computer
language would be Lisp or Scheme since the programs relied
on list operations and recursions, the basic paradigms of
these languages.

Using a Lower-Level Language

I recently asked an undergraduate class to solve the problem
of the previous section and then to implement their algo-
rithm. It turned out that all of them managed to write correct
programs in C or Pascal, but none of them wrote correct
high-level descriptions.

The students had a harder time writing the high-level
description because they wrote low-level programs. The fol-
lowing C implementation does in fact follow the first two
algorithms of the previous section closely, but this is hidden
by code dealing with input, output, and memory allocation.
Of course, this program will run at least 1000 times faster
than the Mathematica program, but speed is not the point of
this exercise. The data structure is an array a, where a[0]
denotes the length of a. The main control structure is

#include < stdio.h>

int *plus(int *num_a, int *num_b);
int *times(int *tnum_a, int *tnum_b);

main()
{int x[1001], y[10011, *z, s; /* up to 1000 digits */
for(x[0] = 1; (x[x[0]1=getchar()-"0") >= 0; x[0]++);

/* first number %/
for(y[0] = 1; (y[y[0]l=getchar()-"0") >= 0; y[0]++);

/* second number */

z = ((x[x[01] + “0°) == “+")7plus(x, y):times(x, y);

/* add or multiply */
for(s =1; s < z[0]; s++) putchar(z[s]+°0°);
/* print answer %/

}

The addition program first finds the longest input string and
allocates memory accordingly:

int *plus(int *p_a, int *p_b)
{int *a, *b, *c, size_a, size_b, k;
size_a = (a = (p_a[0] > p_b[0])?p_b:p_a)[0];
size_ b = (b = (p_a[0] > p_b[0])?p_a:p_b)[0];
(c = (int *) calloc(size_b+1, sizeof(int)))[0] = size_b + 1;
k =0;
while(size_b > 1)
clsize_b] = (k=(--size_a?a[size_a]:0)+b[--size_b]+ k/10)%10;
c[1] = (k/10)71:--(c++[0]); /* last digit */
return(c);

}

The multiplication program uses the fact that the memory
allocated by calloc is initialized to zero. Right shifts simply
consist of incrementing the array length.
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int *times(int *t_a, int *t_b)
{int *c, *temp, j, size_a, size_b, k;
(c = (int *) calloc(1, sizeof(int)))[0] = 2;
temp = (int *) calloc(2001, sizeof(int));
for(size_a = t_a[0]-1; size_a; size_a--){
temp[0] = t_a[0] - size_a + 1;
for(size_b = t_b[0]-1; size_b; size_b--){
temp[1] = (k = t_a[size_a] * t_b[size_b])/10;
temp[2] = K/10;
temp[0]++;
¢ = plus(c, temp);

/% c=0 %/

/* left shift %/

}

}
if('c[1]) c[1] = --(e++[0]);
return(c);

}

/* remove leading zero */

A Nontrivial Example

Writing an algorithm to do addition and multiplication does
not require the programming language to have any mathe-
matical features and, as noted above, using Lisp or Scheme
would be a good way to go. I will now give a more compli-
cated example where such things as built-in matrix multipli-
cation will be required, so that a computer algebra system
like Macsyma, Maple, or Mathematica is advantageous.

Recall that a continued fraction is a generalization of com-
pound fractions like 14/11 =1 3/11.

143 1 1 1

—_— =1 = —:1 —_— =
RS TR TV R 1+3+i
32

3+'—1 3+—1

13 143

In general, every rational number p/q can be written in the
form

ot 1
q a1 +
az +

1
+—

ar

where the a;, ¢ > 0, are positive integers. For ease of notation
this expression is usually written as

g: lao,a1,...,ar].

Consider the problem of adding and multiplying the
sequence of digits of two continued fraction expansions.
Even multiplying a continued fraction by 2 is a time-con-
suming task based on “Hurwitz rules” [Knuth 1981, exercise
4.5.3.14]. The general problem was declared to be hopeless
by Khinchin, the renowned expert in the field, who wrote
[Khinchin 1964]:
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There is, however, another and yet more significant
practical demand that the aparatus of continued frac-
tions does not satisfy at all. Knowing the representa-
tions of several numbers, we would like to be able, with
relative ease, to find the representations of the simpler
functions of these numbers (especially, their sum and
product). In brief, for an apparatus to be suitable from a
practical standpoint, it must admit sufficiently simple
rules for arithmetical operations; otherwise, it cannot
serve as a tool for calculation. We know how conve-
nient systematic fractions are in this respect. On the
other hand, for continued fractions there are no practi-
cally applicable rules for arithmetical operations; even
the problem of finding the continued fraction for a sum
from the continued fraction representing the addends is
exceedingly complicated, and unworkable in computa-
tional practice.

The problem was solved in a little-known paper of Mar-
shall Hall [1947], but an actual description of the addition
and multiplication algorithm was not given until the work of
R.W. Gosper [Beeler, Gosper, and Schroeppel 1972; Gosper
1976; Knuth 1981, exercise 4.5.3.15; Levy 1984, 78].
Gosper’s solution is based on three ideas. First, a computa-
tion like 3z, where z is given as a continued fraction, will
rapidly lead to more complicated forms. For example, com-

_ puting 3 - 14/11 gives

ﬂL&Lﬂ=3<1+ 1 )zzﬂlLﬂ+1

3,1,2] [3,1,2]

and so forth. Gosper’s idea was not to try to simplify these
forms, but to analyze the worst that can happen. It’s not
hard to see that you always get a linear fractional form

ar +b

— 1
wrd’ (1)

where a, b, ¢, d are integers, and z is given as a continued
fraction.

Gosper’s second idea was to consider the z as a formal
symbol that could input continued fraction digits into (1). In
other words, think of z not as representing a rational num-
ber, but as a symbolic quantity that transforms as

zeqt @)

where ¢ represents the next continued fraction digit. It
remains to see how (1) transforms under (2). A simple com-
putation shows that

ar +b
cx+d

agx +bxr +a
cqgr+dxr +c’

So if the form (1) is represented by a matrix

<2



then the transformation law that corresponds to inputting a
digit is

a b (9 +b a\ _ fa b q 1
c d cq+d ¢ \c d 1 0)°
The third idea is to realize that you can output continued

fraction coefficients without having complete knowledge of
z. Gosper’s original example was

70z + 29
12z +5 °

If >0, then

29 70z +29 70

S S mes S 12
This means that
70z + 29 _ 10z + 4
122+ 5 122 +5°
Similarly,
TS Tor 44 < 3
)
122+ 5 _ 2z +1
10z + 4 10z + 4’
and
gﬁrf:4+2;ir

This means that for any z > 0 you get a continued fraction
expansion

70z 429 1

12z +5 1+ 11

ARy

In other words, you are able to output three continued frac-
tion coefficients of the form (10z + 25)/(2z + 1) without
knowing too much about z. (Note that you cannot output a
fourth coefficient since (2z + 1)/z > 2 + 1/ does not give
the correct coefficient unless z > 1.)

In the case when z represents a sequence of continued frac-
tion coefficients, the situation is even better because the coef-
ficients are greater than or equal to one. Now, since one is
assuming that there is a continuing sequence of continued
fraction coefficients, the further assumption that z > 1 can be
made, so being able to output a continued fraction corre-
sponds to checking that for some integer n

in other words, that

(2] - [5)

el Lle+dl”

When this happens, the output will be the common value
g=Lla/c]. The point is that this always happens, given a suf-
ficient number of digits of .

It remains to see what happens to the form after this has
been output. This is

1 cx+d

ar+b - ax —cqr+b—dq’
cx+d

and the corresponding matrix transformation is

(2 0)= (ol )= (0 ) (2 0)

All these steps can be combined into an algorithm, but
first an algorithm to compute the continued fraction of a
rational number must be written. The following algorithm
essentially follows the 14/11 example. (Ordinary concatena-
tion [0] * [zg, ..., z,] =[O0, zg, ..., z,] Will be used from now
on.)

Algorithm to compute the continued fraction expansion of a

‘rational number. Given a rational number ¢, return a

sequence f(q)

if ¢=1/0 then [ ]else [Lgl] * f(1/(g -Lg)))

Algorithm to compute the continued fraction expansion of
(az + b)/(cz + d). Given a matrix

(%)

and the continued fraction expansion = [z, ...

the sequence
ab
()

if r =0 then f((a 2o+ b)/(c zo + d)).

else

, ], return

if a,b,¢,d > 0 and |a/c| = [(a+b)/(c+d)]
(( 1 —La/e] )( ) ) (Output a digit.)

else f(( )(zol [x1, -

then [|a/c]|] *

) (Input a digit.)

In Mathematica, these algorithms are
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ContinuedFraction[q_] :=
If[q == 1/0, {3,
{Floor[q]}"Join~ContinuedFraction[1/(q-Floor[q])]

ContinuedFraction[matrix_, x_] :=
If[Length[x] == 1,
ContinuedFraction[Divide @ @ (matrix . {First[x], 111,
Block[{q = Positive[Min[matrix]] &&
Quotient @ @ (matrix . {{1, 1}, {0, 1}})},
If[q & Min[q] == Max[q],
{#}"Join"ContinuedFraction[{{0, 1}, {1, -#}}.matrix, x]&
[First[qll,
ContinuedFraction[matrix.{{First[x],1}, {1,0}}, Rest[x]]
111

Since division by zero has been allowed, the line

0ff[Power: :infy]

is useful in order to avoid annoying warning messages.

Note the similarity in the control structure of the program
and the pseudo code. It should be clear that the pseudo code
is essentially a transcription of the computer program.

Finally, the algorithms for addition and multiplication can
be described. Just as before, computing z +y or zy leads to
more complicated expressions. The worst expression you get
is a “bilinear fractional form”

axy +bx+cy+d
exy+ fr+gy+h’

(3)

Treating = and y as formal variables, this can be represented
by an ordered pair of matrices (or tensor)

()G 7))

Letting y > ¢ + 1/y in (3) gives a transformation for the ten-
sor

(-G ()6 E)

where ordinary matrix multiplication is used on each com-
ponent. Similarly, letting z + ¢ + 1/z in (3) corresponds to

()G )- 6o 0)60)

Just as before, one uses an Euclidean algorithm to output
coefficients, but this time there won’t be a guarantee that
intermediate values will be greater than one. A tricky part of
the algorithm is to decide whether to choose z or y to input
the next digit. A direct solution is to alternate between them,
which requires a componentwise transpose

()G 0) =6

corresponding to switching z and y in (3).
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Algorithm to compute the continued fraction of (azy + bz
cy + d)/(exy + fr + gy + h). Given as input a tensor

a b e f

c d)’'\g h
and continued fraction expansions
¥ = Yo, ..., ys], return a sequence

H((CD-60) =)

if s = Othen f(((0): (57)) (7),2)-

else
ifa, b,c,d,e, f,g,h>0and
La/el=Lb/fl1=lc/g)=1d/n]then

la/ell* £ (2 —a/) (22 (51)) 200)
(Output a digit.)

e S({(CD: (D) () - wla)

(Input a digit and switch z, y.)

T =20y .ens Zp].

This algorithm allows one to add and multiply continued
fractions according to the rules

voy=f(((0):(01) =),
z@y=7(((00), (1) 29) -

The program is simplified by the fact that ordinary Mathe-
matica matrix multiplication for generalized matrices
behaves in the same way as the componentwise matrix mul-
tiplication defined above.

ContinuedFraction[tensor_, x_, y1 =
If[Length[y]l == 1,
ContinuedFraction[tensor.{First[y], 1}, xI,
Block[{q = Positive[Min[tensor]] & Quotient @ @ tensor},
If[q && Min[q] == Max[q],
{#}"Join~ContinuedFraction[{{0, 1},{1, -#}}.tensor, x, yl&
[q[[1, 1111,
ContinuedFraction[
Transpose / @ (tensor.{{First[y], 1},{1,0}}), Rest[y], x]

ContinuedFractionPlus[x_, y_] :=
ContinuedFraction[{{{0,1}, {1,0}}, {{0,0}, {0,1}}}, x, y]

ContinuedFractionTimes[x_, y_] :=
ContinuedFraction[{{{1,0}, {0,03}, {{0,0}, {0,1}}}, x, y]



Concluding Remarks

Subtraction and division can be also be computed in this
way by using the formulas

zoy=71(((%0).61) 2v)
zoy=1(((0): (1)) 29) -

The real advantage of Gosper’s method is that it allows
you to add and multiply numbers with known continued
fraction expansions, for example, e =[2,1,2,1,1,4,1, 1,
6,...] and ¢=(/S +1)/2=[1,1,1,...]. The algorithms
above are easily modified to compute quantities like e + ¢,
where the digit input would be the functions

2 ifn=0
e(n) =< 2(n+1)/3 if n=2(mod 3)
1 otherwise
and ¢(n) = 1.

Finally, there are problems with continued fraction arith-
metic. For example, the computation [1, 2, 2, 2, ...] ® [1, 2,
2,2, ...], corresponding to 2 x +2, will either return com-
pletely incorrect continued fraction coefficients, or return
[2, a], where a is a large integer, depending on whether one
uses an odd or even length input. This is slightly different
from the decimal case.
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