
PROBLEM SOLVING: 
METHODS, PROGRAMMING AND FUTURE CONCEPTS 



PROBLEM SOLVING: 
METHODS, PROGRAMMING AND FUTURE CONCEPTS 



STUDIES IN COMPUTER SCIENCE 
AND ARTIFICIAL INTELLIGENCE 12 

Editors: 

R.B. Banerji 
Saint Joseph's University 
Philadelphia 

M. Nivat 
Universite Paris VII 
Paris 

M. Wirsing 
L udwig-Maximilians-Universit~t 
MEmchen 

E L S E V I E R  

A M S T E R D A M  - L A U S A N N E  - N E W  Y O R K  - O X F O R D  - S H A N N O N  - T O K Y O  



PROBLEM SOLVING: 
METHODS, PROGRAMMING AND 
FUTURE CONCEPTS 

O l e g  V. G E R M A N  

a n d  

D m i t r i  V. O F I T S E R O V  

Belarusian State University of 
Informatics and Radioelectronics 
Minsk, Republic of Belarus 

1995 
ELSEVIER 

A M S T E R D A M  - LAUSANNE - NEW YORK - OXFORD - S H A N N O N  - TOKYO 



ELSEVIER SCIENCE B.V. 
Sara Burgerhartstraat 25 
P.O. Box 211, 1000 AE Amsterdam, The Netherlands 

ISBN: 0 444 82226 7 

�9 1995 Elsevier Science B.V. All rights reserved. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without 
the prior written permission of the publisher, Elsevier Science B.V., Copyright & Permissions 
Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands. 

Special regulations for readers in the U.S.A. - This publication has been registered with the 
Copyright Clearance Center Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923. Information 
can be obtained from the CCC about conditions under which photocopies of parts of this 
publication may be made in the U.S.A. All other copyright questions, including photocopying 
outside of the U.S.A., should be referred to the copyright owner, Elsevier Science B.V., unless 
otherwise specified. 

No responsibility is assumed by the publisher for any injury and/or damage to persons or 
property as a matter of products liability, negligence or otherwise, or from any use or operation 
of any methods, products, instructions or ideas contained in the material herein. 

This book is printed on acid-free paper. 

Printed in The Netherlands 



PREFACE 

Problem solving is the very area of artificial intelligence (AI) which, probably, will 

never result in a complete set of formalized theories, in a kind of pragmatic philosophy, 

or in a "universal" applied discipline. Studying the questions concerning this area 

encompasses different concepts, models and theories. 

In this connection the main accent falls on the theoretical framework (paradigm) of a 

problem solving system which should be considered from the viewpoint of the triad 

"human-problem-computer". In order to be effective, problem solving systems (or, more 

exactly, computer-aided problem solving systems (CAPSS)) should integrate human- 

solver's skill and abilities. That is, while humans are responsible for the "informal" part 

of problem solving activities the computer solves the "formal" part respectively. 

When solving a problem, the human's properties are put to the forefront. It is the 

human's level of skill, role in the informal and creative aspects of problem solving, and 

the human's interpretation of the solution which affects the outcome most strongly. 

Humans capture, as we are often reminded , the " art of problem solving" while 

computcrs are ideal for carrying out extensive calculations and conducting search 

through the problem space. 

Within this framework, both theoretical (mathematical) background and 

programming concept should be dcvelopcd to provide solution for the following tasks: 

�9 organizing the search activities of the human; 

�9 automating the solving processes of the computer; 

�9 creating program environment which provides an interface between the human 

and the computer; 

�9 partitioning the tasks between the human and the computer in some optimal way. 

These tasks are considered in the book. Our consideration is based on a new concept 

of CAPSS which incorporates the theory of weak methods, meta-proccdures, and a 

programming paradigm which serves to support solving activities in CAPSS. (It should 



vi Preface 

be noted here that some new terms, e.g. "weak methods", "recta-procedures", "CAPSS", 

etc., are explained in the following lext. The reader can use the glossary for help at the 

end of the book.) 

It is necessary to note that we consider weak methods mainly in the mathematical 

light. It is supposed, therefore, that the reader has a definite level of the mathematical 

culture (especially in the fields of discrete optimization theory and mathematical logic). 

However, the examples from these fields can be omitted without harm. 

The book is oriented to the different groups of readers: mathematicians, specialists in 

computer sciences, and programmers. It can be useful for the post-graduates and the 

students, specializing in AI and applied mathematics. 

The authors' contributions to this book are as follows: Dr. D.V. Ofitserov wrote 

Chapter 2.  The rest of the material belongs to Dr. O.V. German. 

It is a pleasant duty, to express our deep gratitude to the reviewers: Dr. Mitchell 

J. Nathan and Dr. David H. Green who performed a large work on improving the text. 

We are also obliged to senior editor Drs. A. Sevenster for his patience and interest in 

our project. We thamk E. Germanovich for her invaluable help and assistance in 

preparing this book. Many warm words must be addressed to the students who helped 

us in our work. We are very thankful to Mr. Nigel Rix, Mr. Shaun Lynch and Mr. 

Andrew Horrall from Cambridge University (UK) for their help in the preparation of 

the book. 



vii 

CONTENTS 

PREFACE ............................................................................................................. v 

CONTENTS ......................................................................................................... vii 

INTRODUCTION ................................................................................................. I 

Conception of the book ..................................................................................... 10 

The history of the subject .................................................................................. 13 

State of the art ................................................................................................. 20 

CHAPTER 0. PROBLEM CLASSIFICATION. INTRODUCTION TO THE 

SOLVING METHODS ......................................................................................... 33 

0.1 What is a problem ? .................................................................................... 33 

0.2 Problem classification ................................................................................ 37 

0.3 An approach to building an interpretation calculus ..................................... 38 

0.3.1 The theorem of solution existence ....................................................... 39 

0.3.2 Preliminary remarks ............................................................................ 39 

0.3.3 Rules for making atomic interpretations .............................................. 43 

0.3.4 Rules for making complex interpretations ............................................ 49 

0.3.5 Remarks on correctness of the procedure ............................................ 59 

0.4 Finding a solution by means of theorem proving ......................................... 61 

0.4.1 Using logic programming .................................................................... 61 

0.4.2 Combining proving and modeling techniques ...................................... 68 

0.5 Finding an optimum interpretation ............................................................ 80 

0.5.1 Task conceptualization ........................................................................ 84 

0.5.2 The notion of a task concept ............................................................... 84 

0.5.3 Scheme of a solving process ................................................................ 90 

0.6 Psychological aspects .................................................................................. 96 

0.7 Conclusion .................................................................................................. 96 



viii C o n t e n t s  

CHAPTER 1. ELEMENTS OF PROBLEM SOLVING THEORY: 

APPLICATION OF CUTTING STRATEGIES ..................................................... 97 

1.1 Introduction ................................................................................................ 97 

1.2 The properties of a solution's elements ........................................................ 99 

1.3 A system of axioms for incompatibility calculus .......................................... 101 

1.3.1 Resolution strategy for incompatibility calculus ................................... 106 

1.3.2 The case of 2-ary #-equations .............................................................. 113 

1.3.3. The case of n-ary #-equations ............................................................. 113 

1.4 An algorithm for searching for maximum-size zero submatrix ................... 121 

1.5 On the minimum-size cover problem (MSCP) ............................................. 139 

1.6 Precedence and incompatibility ................................................................... 145 

1.7 Prohibition ................................................................................................. 147 

1.8 Conditional executability ............................................................................ 150 

1.9 Other examples ........................................................................................... 154 

1.10 Conclusion ................................................................................................ 156 

CHAPTER 2. SOLVING DISCRETE OPTIMIZATION PROBLEMS ON 

THE BASIS OF W-TRANSFORM METHOD ....................................................... 157 

2.1 W-transform method ................................................................................... 158 

2.2 Some important cases of the analytical representation of the ~g(q)-function 161 

2.3 A general scheme for the discrete W-transform method ............................... 166 

2.3.1 Choosing the method for an estimation of the global minimum of q ... 170 

2.3.2 Approximation of the function 2 j ( f , )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 

2.3.3 Discrete W-transform method for F-indefinite problems ....................... 177 

2.4 An approximate solution to F-indefinite static optimization problems ......... 181 

2.4.1 F-indefinite mixed integer programming problems .............................. 181 

2.4.2 Application of the discrete ~t'-transform method to permutation 

problems ...................................................................................................... 196 

2.5 Conclusion .................................................................................................. 199 



Contents ix 

CHAPTER 3. WEAK METHODS AND HEURISTIC REASONING .................... 201 

3.1 Specific features of solving tasks by weak methods ..................................... 201 

3.2 Control  of the solving process .................................................................... 204 

3.3 Models of heuristic-based solution searching .............................................. 210 

3.4 Try-and-test procedures with cutting ........................................................... 213 

3.4.1 Branches-and-bounds method .............................................................. 213 

3.4.2 A searching strategy based on a heuristic evaluation function .............. 217 

3.4.3 Mixed strategies in problem solving .................................................... 223 

3.5 Intermediate remarks on heuristics utilization ............................................. 226 

3.6 Examples of problem solving principles ...................................................... 227 

3.7 Solution tree ............................................................................................... 232 

3.7.1 Restricted and directed "try-and-test" principle .................................... 233 

3.7.2 Cutting the worst variants .................................................................... 236 

3.7.3 Principle of suitability ......................................................................... 238 

3.7.4 Principle of minimization of aftereffect ................................................ 242 

3.7.5 The "Maxmin" -principle .................................................................... 246 

3.7.6 "Greedy" algorithm's schemata ............................................................ 251 

3.7.7 Principle of similarity .......................................................................... 255 

3.7.8 Transforming the conditions of the problem ........................................ 264 

3.8 Principle of dominance and choice function ................................................ 266 

3.9 An example of mechanization of heuristics ................................................. 272 

3.10 Conclusion ................................................................................................ 280 

CHAPTER 4. LOGIC-BASED PROBLEM SOLVERS: APPROACHES AND 

NEW METHODS ................................................................................................. 283 

4.1 Introduction ................................................................................................ 283 

4.2 Logical problem solvers .............................................................................. 284 

4.3 Group resolution principle in predicate calculus .......................................... 297 

4.3.1 Case of propositional system ................................................................ 297 



x Contents 

4.3.2 Generalization of g.r.p to predicate calculus ........................................ 300 

4.4 Implementation of group resolution principle .............................................. 308 

4.4.1 Preliminary remarks ............................................................................ 308 

4.4.2 Disjunct exclusion ............................................................................... 309 

4.5 Reduction algorithm with term re-writing ................................................... 314 

4.5.1 Formalisms ......................................................................................... 314 

4.5.2 Case of propositional system ................................................................ 314 

4.5.3 Case of predicate calculus .................................................................... 317 

4.6 Conclusion .................................................................................................. 324 

CHAPTER 5. PROGRAMMING CONCEPTS IN PROBLEM SOLVING ............. 325 

5.1. Programming or theorem proving ? ........................................................... 325 

5.2 Universal algorithm paradigm .................................................................... 339 

5.3 Computer mathematics ............................................................................... 347 

5.4 Expert systems ............................................................................................ 347 

5.5 Evolutionary problem solution synthesis (EPSS) concept ............................ 356 

5.6 Mathematical  induction and pattern recognition approaches ....................... 358 

5.7 Intellectual support concept in the problem solving system ......................... 360 

5.7.1 Languages ........................................................................................... 361 

5.7.2 An intelligent oracle ............................................................................ 371 

5.7.3 Insertion points ................................................................................... 373 

5.7.4 Exhaustive search procedure ................................................................ 376 

5.8 Making a semantic structure of the problem ................................................ 377 

5.9 Conclusion .................................................................................................. 384 

CHAPTER 6. FUTURE CONCEPTS: SOME PHILOSOPHICAL ISSUES ............ 387 

6.1 Universal problem solving approach restoration .......................................... 387 

6.2 Weak methods become strong ..................................................................... 392 

6.3 The role of formal logic in future developments .......................................... 394 

6.4 The human factor ...................................................................................... 397 

6.5 Are there other paradigms ? ........................................................................ 401 



Contents xi 

6 . 6  C o n c l u s i v e  r e m a r k s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 0 3  

R E F E R E N C E S  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 0 5  

G L O S S A R Y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 1 1  

I N D E X  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 1 9  



This Page Intentionally Left Blank



INTRODUCTION 

Problem solving is perhaps the oldest intellectual activity. Everybody faces various 

problems in his life. Very often, these problems are quite non-trivial. This book does 

not aim at covering every kind of problem. Rather, we will only deal with mathematical 

problems, or, more concretely, with a certain subset of such problems. However, we 

intend to display common approaches, principles and methods which can be applied to 

many different kinds of problems. We are interested in so-called weak methods and 

meta-procedures. Each method which does not warrant obtaining an exact solution or 

which is non-efficient with regard to its computational complexity is called weak in this 

book. Thus, any heuristic method is weak according to this definition. 

By meta-procedure we understand a solving strategy (not a method) which points out 

how an exact solution to a problem (from a given class) should be found. The meta- 

procedures are characterized by the following paradigm: 

(1) they are based on a heuristic search and (often) involve cutting mechanisms to 

reduce a search area; 

(2) they extensively use logical inference to prove (or refute) hypotheses and 

assumptions which are typical of heuristic reasoning. 

As we will consider a problem as a "black box", whose inner nature being known 

only partially, or even completely unknown to an investigator, these methods (and 

principles) are quite suitable for our conception of CAPSS. We shall call such problems 

partially-defined, having in mind their "black box"-properties. We proceed from the 

premise that if inner laws (i.e., the "nature") of a problem are known to the investigator, 

he can find the unknown values directly, and an exhaustive search may become 

substantially or entirely unnecessary. At the same time, as an exhaustive search is quite 

a rudimentary and labour-consuming method, other meta-procedures should be sought 

for. Expediency of a theory, which formalizes the methodology of meta-procedures 

(meta-methods, heuristics) and weak methods is based on three premises: 



2 Introduction 

1) ever,' new problem possesses some "black box"-propertics until it is solved 

successfully: 

2) there are problems with immanent property of partial definiteness (some examples 

are given below): 

3) this theory models an approach to problem solving, which can form a basis for a 

so-called "intelligent problem solver" (e.g. computer program, robot, human). 

Indeed, quite a lot of methods for solving partially-defined problems (i.e., problems 

regarded as "black box") are already developed, such as branch-and-bound, Monte- 

Carlo, (ct-13) - procedure, dynamic programming, depth-first search, many itcrative 

algorithms and most heuristic algorithms. 

This study presents a certain class of meta-procedures and weak methods which are 

oriented to the problems with the following essential features: 

1) considerable complexity of the original problem formalization in terms of finding 

an effectively computable procedure which connects the knowns to the unknowns; 

2) need for relevant interpretation when solving particular problems; 

These specific features manifest, for example, when we try to formalize rational 

strategies, other than simple exhaustive search, for finding an element with attribute ct 

in a certain set R of elements. The following strategies are possible: 

- using interrelations between objects; 

- considering attribute 13, so that 

o~-~ ~ o r ~  ~ .  

where ~ - stands for a logical implication; 

- finding consequences from ct ; 

- d e t e r m i n i n g  a characteristic function tbrm over R, or an approximation to this 

function; 

- determining a character of the set by means of random selection; 

- decomposing R into subsets one of which includes the element sought for; 



Introduction 3 

- introducing an additional element into R. which is obviously not included in tiae 

solution, and using the relations of this additional element with other elements of the 

set, 

- changing the problem to a different interpretation; 

- contracting the search space by means of the removal of obviously unsuitable 

elements; 

- use of heuristics and expert estimations, etc. 

To make clear the concept of a partially-defined problem, some examples of such 

problems are given below. 

Example 1. The computation of the value of an integral which cannot be expressed 

as quadratures. 

Example 2. Any NP-complete problem. 

Example 3. Finding whole-number roots of Diophantes' equation. 

Example 4. Finding roots of a polynomial with power equal to or greater than 5 on 

the basis of polynomial coefficients. 

Example 5. A deducibility proof in first order logic. 

Example 6. Finding syntax deduction in an arbitrary grammar. 

Example 7. Problems of multicriteria optimization. 

Of course, the examples given do not exhaust the whole list of similar problems. 

Using the examples we will try to reveal the essential features of the problems, which 

have been and still are of great interest to mathematicians and cognitive psychologists. 

1. Absence of a universal method (in the case of algorithmically unsolvable 

problems), which results in solving cveD particular problem by means of low efficiency 

methods with no guarantee of a successful solution. 

2. Impossibility to express, in functional and algorithmical form, the unknowns in 

terms of the knowns. 

3. Infinite or extremely big tree of states (combinatorial explosion). 

4. Incompleteness of the universe of discourse in terms of deduction of the necessary 

corollaries and theorems. 



4 bltroduction 

The foregoing considerations explain why we treat a partially-defined problem as a 

problem with inner regularities that are not completely known. Two ways of finding the 

solution can be proposed: 

- disclosure of latent regularities; 

- search for the solution without such disclosure. 

Successful search for solution depends on three following components: existence of 

the solution in principle, the availability of knowledge sufficient to find a solution, 

availability of a procedure (algorithm, function) to extract the solution from the 

knowledge. Write E, K, R for these components respectively. The following table 

presents possible combinations, 0 and 1, denoting respectively the absence or existence 

of the corresponding knowledge. 

1 
i i  

2 

3 
i l i  

0 
i i 

I 

E K 

0 

1 
i l i  _ i i  

1 
, i i  

1 

R 

0 

1 

0 

I 

Cases 1 and 8 are trivial. Cases 2, 3, 4 are contradictory. Cases 5-7 remain which are 

interesting. According to the given classification ,a partially-defined problem proper 

corresponds to cases 5,6. However, having in mind to create an algorithm based on 

meta-procedures we are justified to include the traditional interpretation 7 as well. Case 

6 is of great interest to educators and cognitive psychologists who study how problem 

solving with incomplete understanding is accomplished. 



Introduction 5 

Thus, note as an intermediate conclusion, that a theory of solving partially-defined 

problems deals with the development of meta-methods for problem solving. At early 

stages of the solving they make it possible to find solutions of algorithmically 

unsolvable or NP-complete problems (with no guaranteed results, though). 

Consideration of such methods makes up the theoretical content of this book. 

Our main goal consists of developing a theoretical framework which makes weak 

methods strong (i.e. enabling human-solver to find optimal and exact solutions for the 

partially-defined problems rather efficiently). 

The second main feature of the book is its practical orientation to new types of 

program packages which implement a programming environment for a certain wide 

class of problems. This environment is essentially based on ideas of creative problem 

solving in the spirit of G.Polya. This new orientation includes two features: 

(1) the package is function-oriented, i.e., the package provides powerful support for 

solving problems of a certain functional area, while programming language universality 

is retained enabling one to program any numerical procedure; 

(2) the package includes an environment for problem solving, which does not require 

knowledge of the solving algorithm a priori and which is based on ideas of structured 

search for solutions in the spirit of G.Polya. 

Historically, the main trends in languages and application packages (AP) are: 

improvement of programming techniques; increase of language's level and functional 

means; development of compilation theory; improvement in man-machine interface; 

programming automation. 

When analyzing concepts of the development in languages and AI, the "human- 

problem-computer" triad should be considered. In our opinion, only (or mainly) the 

second part of the triad has been the focus of attention of users and builders of the 

programming languages. Pioneer studies of G.Polya, J.R.Slagle, A.Newell, R.Banerji, 

N.Nilsson, Wang Hat, V.Pushkin, V.Glushkow, S.Maslow, A.Tyugy and others deal 

with principles of problem solving by means of man and machine, and make up a basis 

for a new programming paradigm, oriented to problem solving. 



6 bm'oduction 

A situation is quite possible when a human finds himself "face to face" with a 

problem. It is connected with the following factors: 

- a human is likely not to be familiar with a problem and its methods of solution: 

- the solution supplied by a mathematician or taken from a reference book, is to be 

programmed, debugged and tested prior to its use; 

- a suitable package may be unavailable, its delivery and installation may be time 

and money consuming; besides, the package may be not completely suitable, etc. 

The following conclusion is suggested: the proper programming means should be 

integrated in CAPSS to provide necessary support in solving problems. 

Fig.(). 1 shows the structure of a new type of package. The package components are 

intended for the following purposes. 

U s e r  

User interface support 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Solving K ................................... 
problem [ .  ,J ~_ _ 2. 0 ......... 1 

�9 v r o g r a m  i r : 
e n v l r o n l n e n t  P '  " I  . . . .  i 
. . . . . . . . . . . .  / / task speclticatlon 
[AlgOrittun 1 ~  ~ ! 

I Programning ! 1 ~  I, i:i:i ~iil;:ilil;: 

Dynamic problem ] Library of 
modeling and [ algorithms and 
analysis [ heuristics 

_..~ In;elli;eni ........... ~ "I conSUl[[ng -" 
_dialog . . . . . . . . . . .  V "7 subsystem 

Algorithm 
synthesi's and 
generation of 
problem solving 
plan subsystem 

F i g 0 .  1 .  

The problem solving environment is an integrating component which serves to 

control the program modules of the package; a special language is included to create 

and modify the computing context, intelligent dialog and environment for programming 

an algorithm. Its main purpose is the creation of a program for problem solving. A 

problem is considered to be stated if it is correctly specified in terms of syntax and 

semantics of an appropriate class of problems. The system supports creation of the 



Introduction 7 

specification for various categories of users, who are classified by the degree to which 

they know a problem's subject. It is supposed that the user realizes what he wants or 

that he can make it clear by means of a dialog with the system. The intelligent dialog 

subsystem and the consulting subsystem are responsible for user interface support. 

The consulting system also implements the procedure of "introducing the problem" 

Such an introduction is aimed at refining a problem (what is to be found), initial data 

(what is known) and solving plan (how to solve the problem). The consulting system 

presupposes a close interaction with the algorithm synthesis and problem solving plan- 

generation subsystem. 

The problem solving process is arranged in the following steps: 

1 - preparation of problem specification (model); 

2 - search for a solution; 

3 - algorithmic programming; 

4 - program execution using computer. 

The search for a solving algorithm (step 3) reduces to the subset of the following 

problems: 

- search for a suitable algorithm in the library; 

- algorithm synthesis by specification according to the properties and relations of 

computability; 

- algorithm synthesis by means of "extrapolation" (i.e., analogy) of appropriate 

heuristics over the problem specification; 

- search for an algorithm performed by a human in the problem solving environment 

with the help of leading questions, prompts and meta-procedures (guided by the 

intelligent dialog subsystem). 

Finally, the system simulation and dynamics analysis module provides for time 

representation of the solution obtained, e.g., simulation of a timetable or a time 

interaction. 

It is necessary to make one last introductory digression. 

This book describes approaches to problem solving in "human-machine" systems, 

which are human-oriented, where properties of a solver are put to the forefront. Really, 



8 Introduction 

if the problem solver is a human, the question of his (her) level of skill arises. Even a 

professional mathematician may be incompetent in the field of a given problem. 

Similarly, if the problem is solved by a computer, its possibilities are specified by 

methods available and by restrictions imposed by the well-known G6del's theorem I 

Thus, creation of a universal procedure for problem solving is algorithmically 

impossible. Our aim is different: we aim at making a machine responsible for the 

formal part, leaving the human to deal with the "informal" (interpretive) part. It seems 

reasonable to assume that, provided a problem (even a mathematical one) is transferred 

to the "interpretive plane" which is intelligible to a human-solver the man is able to 

find the solution in this interpretive plane. This is true even if he is not well-versed in 

the appropriate branch of mathematics. Naturally, it is difficult to give an example of 

such a plane for some mathematical fields, e.g., integro-differential equations. However, 

wide classes of problems may serve as a proving ground, such as discrete optimization 

problems on graphs and matrices. The system under consideration has to supply the 

user with an interface which allows him to treat a problem as an object (world) whose 

formal relations are "hidden" in its form but not in its essence. 

The foregoing reasoning is certainly simplified, and user's level of skill (including 

logical abilities) should be taken into account, though we omit this issue for the present. 

Primary studies in heuristic and game programming were mainly focused on 

problems of this kind. The specific character of these problems is closely related to 

psychology. Psychological aspects of the problem solving process are based on the 

heuristic concept, which in turn may be associated with an empirical regularity in the 

form of intuitive conjecture. This aspect of the search process may be called the "art of 

problem solving" (with certain reserve). As to its formal aspect, a theory is involved 

which is referred to as problem solving in English literature. The heart of the theory is a 

search through the problem space. The theory of problem solving is undoubtedly 

effective. However, there are some restrictions that cannot be overcome by this theory; 

in the first place, it concerns the contraction of the search area. Thus, progress in 

1Godel K. Uber formal unentscheidbare Satze der Principia Mathematica und Verwandter 
Systeme L - Monatshefie fur Mathematik und Physik, 38, 1931, S. 173-198. 



Introduction 9 

problem solving requires extensive scientific research and methodological support of a 

meta-method theory including methods for search in a state space by means of a 

heuristic estimator, methods for restricting the search, methods for the synthesis of a 

chain of operators which convert objects into a different state, etc. Heuristic methods 

can be justified by means of the following pattern. 

We can imagine different stages of the solving process: 

a) a regularity exists and we (confident in this fact) are searching for it; 

b) a regularity exists and we (not confident in its existence) are searching for it; 

c) a regularity does not exist and we (confident in the opposite) are searching for it; 

d) a regularity does not exist and we (not confident if it exists) are searching for it; 

e) a regularity does not exist and we give up the problem supposing all efforts to be 

unavailing. 

Analysis of alternatives a) - e) suggests the following conclusions. 

Firstly, alternative (a) does not prove to be the only possible one, in contrast to the 

usual intuitive approach. 

Secondly, problem solving is not only a search for a key regularity, but also a 

demonstration of its existence or absence. A note should be made that a human solving 

a problem, often tries to "kill two birds with one stone", namely: if a human finds a key 

regularity while solving a problem, the existence of this regularity is automatically 

proved. The opposite process (demonstration of existence of a regularity prior to search) 

seems to be more difficult for the following reasons: 

- there may be no proof at all; 

- demonstration may require greater effort than the search for a solution; 

- proof of the existence of a solution does not leads directly to solving procedure. 

Thus, at first sight, the case seems to be hopeless if a regularity does not exist while 

this fact cannot be proved. However, such reasoning is not relevant. Indeed, if there is 

no general regularity to find an efficient algorithm for solving general problem, it does 

not mean that it is impossible to find a particular solution using a heuristic approach, 

as often happens in practice. 



10 Introduction 

Thus, the heuristic approach to problem solving is likely to be the only possible one, 

provided, that the nature of a problem is partially known or completely unknown to an 

investigator. On the other hand, many problems can be solved by the following patterns. 

Pattern 1: 

- some approximate solution is found using a heuristic algorithm; 

- this approximate solution is used to contract the search area and to find the exact 

solution or to repeat the pattern from the beginning. 

Pattern 2: 

- some approximate solution is found using heuristic algorithm; 

- if a criterion is known which is to be satisfied by the exact solution, its satisfiability 

is checked; if the criterion is not satisfied the pattern is repeated from the beginning, a 

new approximate solution being generated; if all possible (allowable) solutions can be 

found, this pattern guarantees the exact solution to be found. 

Thus, another justification of heuristic methods is the fact that the using of these 

methods, guarantees exact solutions to be found. 

Conception of  the book 

This book is an introduction to problem solving from the viewpoint of a theory of 

weak methods and a programming paradigm oriented to supporting problem solving. 

The book investigates problem solving and is dedicated to a section of artificial 

intelligence theory, which interprets methods and postulates from different branches of 

mathematics. This is the main difficulty in the development of the appropriate theory. 

When building systems for problem solving, the authors employ the approach based 

on the concept of an integrated program environment implemented in the PROLOG 

language. Such an environment includes three macrosystems oriented to the following 

groups of problems: 

- equation forming (ME); 

- theoretical multiple and logical problems (SLE); 



Introduction 11 

- heuristic problems (HP). 

Thus, this program environment covers a wide class of problems from polynomial 

equations to NP-complete problems of planning. The ME environment is based on a 

structural-functional representation of a problem tree, where the parent vertex is 

functionally determined through the child vertices. Thus, an equation corresponds to 

the recursive specifications, i.e. expressions of the following form 

x = f(x). 

The functional interpreter "reduces" a tree to its root vertex and transfers the 

"unreducible" expression to the input of the solver (for the time being, an algorithm is 

built to solve polynomial equations of power n > 0). 

The SLE environment is based on methods for solving the following basic problems. 

A set S = { s i} of objects and a set 'e - { ~j  } of relational equations which are defined 

on S, are given. 

To find: 

(a) arbitrary tuple S L satisfying 'F" 

(b) minimal length tuple S* satisfying q' ; 

(c) tuple S F maximizing functional F. 

Equations are called relational when they use operators of relations between objects 

(relational operators). The SLE uses the following relational operators: 

# - incompatibility 

- implication 

----0 - prohibition 

>-- - precedence 

t> - dominance 

> - more/equal 

:- - exclusive OR. 

In terms of these relations, many problems of decision making can be specified as 

well as discrete optimization problems on graphs and sets. The general purpose 



12 Introduction 

PROLOG-based solver is developed which allows one to obtain solutions in a 

reasonable time period for sets of 40 - 60 objects. 

l ip  system is a procedure-oriented heuristic knowledge base for nonautomatic 

solutions of combinatorial and other optimization problems. The solving is built in the 

form of a search context tree. Each context is a set of relations and values for the 

unknowns, as well as calculational expressions. As a matter of fact, a user forms a 

context base dynamically; for this purpose he is supplied with the appropriate software 

for context manipulation (creation, deletion, storage, restoration, connection and 

dynamic unification). A user can use the heuristics library to solve many familiar NP- 

complete problems. To access a heuristic, the user has to specify the problem by filling 

up its frame. An example of problem frame" 

<<type_medium> 

<constraints on medium> 
_ m 

<constraints on_solving_process> 

<constraints on solution> 

<structure_of solution> 

<properties_of solution> 

<relations_between_elements o f  solution> >. 

A technological problem solving system (TPSS) is implemented as a prototype 

environment in MS-DOS with a modular structure and a total memory capacity of 750 

K. The principles of TPSS are based on the concept of nonautomatic programming, 

which was earlier reported by the authors 2. The TPSS supposes an active involvement 

of both a human and a machine in problem solving. This approach is different from the 

traditional philosophy of problem solving, where the computer's role is reduced to mere 

calculation, and from the automatic concept, where the man's role is reduced to problem 

specification. 

2 0 . V .  German, E.I. Germanovich. 0 paradigme programmirovaniya, orientirovannoy na 
reshenie zadach. - Upravlyayuschie sistemy i mashiny. Kiev, 1993, No.l, pp.72-77 (In Russian). 



Introduction 13 

The theoretical content of the book includes the following issues: heuristic 

programming and application of heuristics to problem solving, calculus of relations and 

synthesis of solving procedures, theory of ~-transformation as a formalization of meta- 

method for discrete optimization problems, implementation of the integrated 

environment for man-machine problem solving. 

The history of the subject 

The history of the subject goes back to the ancient Greeks who invented axiomatic 

method in mathematics and considered a proof as an essential part of it. They left some 

algorithmically unsolvable mathematical problems without answer(e.g., developing 

general algorithm for solving Diophantine equations) . They introduced the notion of 

heuristic (studies by Archimedes and Pappus) and made other necessary premises for 

the further development of mathematics in the aspects of problem solving. 

In "New Organon" F.Bacon (1561 - 1626) attempted to develop a method for 

invention, i.e., to develop a logic which allows study of the nature to be converted from 

casual activities into a systematic approach. Bacon considered the investigation of 

physical regularities rather than general mathematical problems. He listed 

methodologically significant aphorisms as meta-principles for problem solving on the 

one hand, and as empirical regularities in cognitive processes, on the other hand. 

Bacon's aphorisms may be interpreted as follows: 

(a) problem solving is not a random (blind) process; this process has to be directed 

by means of certain rules (heuristics); 

(b) induction (generalization by analogy) is an elementary solving operator ; 

(c) total study of a problem is possible only if the problem is considered in terms of a 

more general problem; 

(d) the course of solving has to be obvious as well as composed of individual steps; 

(e) regularities can be searched for in two ways - from general truths to particular 

ones, or vice versa; the latter way is essentially supported by examples and is preferred 

by Bacon; 

(f) new regularities are revealed through old ones; 



14 Introduction 

(g) human always inclines to assume more order than there is in reality (the 

presumption of regularity which is mentioned above); 

(h) the greatest obstacle in the way of scientific progress and solving new problems 

undoubtedly proves to be ... human's despair and the assumption of the existence of the 

impossible; 

(i) one should suppose that many regularities exist which have no parallel with 

already known regularities. 

The palterns of problems given by Bacon are the following. 

Single problems- these display regularities which are not found in other problems of 

this class. 

Transitory problems-  these reveal an intermediate character between representative 

and secretive problems (see below). 

Representative problems - the regularity under consideration is displayed in the most 

evident way ("...because if every body takes forms of many natures in particular 

combination, then one form deadens, suppresses, develops and binds another form. 

Therefore, individual forms (laws) become obscure"3). 

Secretive problems - these are opposed to representative problems ("...because they 

show the nature under study as if in embryo..."4). 

Constructive problems - these employ regularities of one class. 

Singular problems- these seem unusual as if isolated from other problems. 

Deflective problems - the regularity seems broken (because of the influence by 

another, more powerful regularity). 

Convoy and enmiW problems - these are characterized by the presence or absence of 

certain regularity. 

Extreme and limit problems - these show the limits for inner regularity,etc. 

To find the factors which determine a certain inner regularity, Bacon offers a kind of 

calculous which in modern representation (especially with the reference to inductive 

logic by J.S. Mill) may be summarized as shown in Table 0.1. 

3quoted on F.Bacon. "New Organon", MSP, 1935, p.384, (in Russian). 
4ibidem 



Introduction 15 

Table 0.1. 

Presence of re~ularit~ and determination of nature-formin~ factors 

Re~ularity Observable factors Factor which induces re~ularity 

L 

L 

~ ~ o 

L 

L1L 2 
L1 
L2 

a,b,c 
a,b ,c 
a,b ,h- 
a,b, b- 
a,b,c 
a,fd 
a,h,e 
a,b,c,d 
h-,b,c,d 

avb 
a 

a,b,c 
a,d,e 
b,h,e 
f,b,c 
a 

n 

a 

gl (a,b .... ) 
g2 (a,b .... ) 
~ ~ o 

~n (a,b .... ) 
a,b 

m 

a ,b  

h",b 

a (incomplete induction) 

b (deduction rule) 

(a,b) 
(hypothesis) 

is unknown 
avbvx 
x - unknown factor 

all solutions of equation 

gl(a,b,...)&g2(a,b .... )&...&gn(a,b .... )-1 

b 

Bacon's reasoning is notable for its maximal generality like that of his 

contemporaries and followers. His considerations are in the field of common logic, 

being valuable in terms of methodology rather than practical usage (nevertheless, the 

latter is by no means disclaimed). Anyway, Bacon shows the way based on experience. 

This point distinguishes him from, say, Descartes. The deduction of regularities from 

examples seems natural while specific deductive procedures depend on the type of 

regularity under consideration, and cannot be so general. Bacon's ideas are certainly of 



16 Introduction 

great value, for induction and incomplete induction constitute a basic mechanism for 

discovery in mathematics. 

A substantial contribution to the subject was made by R.Descartes in his essay "Rules 

for a mind" written between 1619 and 1629. This study aims at, as Descartes says" 

"...directing a wit in such way that solid and true judgements are given about all 

subjects available" 5 The purpose is achieved with the aid of a set oIrules which are 

methodologically similar to Bacon's aphorisms. Descartes adheres to the deductive 

method of cognition. As to a philosophical comparative analysis of deductive and 

inductive methods of cognition, it seems to be necessary and will be described below. 

Descartes' rules, like Bacon's, are of an extremely general, psychologically instructive 

nature. We give a brief account, o f  these rules in terms of the subject under 

consideration. 

(a) a problem should be considered from different positions (interpretations) e.g., 

physical analoffs should be sought in the light of mathematical problems. 

(b) a search must bc developed from the simple to the complex, "... therefore, it is 

better to give up rather than study the complicated problems in which one is unable to 

differ the simple from the complex and is compelled to take the questionable for the 

trustworthy". 

(c) acts of cognition must be evident. The evidence is assured in two ways: by means 

of intuition and by means of rules about deduction. By "intuition" Descartes means a 

state of mind "...so simple and clear that there is no doubt about we are thinking...". 

This thesis is of unquestionable significance. As a matter of fact, it essentially rests 

upon the philosophical solution for the problem of truth. The mathematical notion of 

truth runs across proof. In other words, something is considered true in mathematics, 

provided it can be proved. Meanwhile, there are two delicate sides of the issue. 

Firstly, there exist truths which cannot be proved. Secondly, there is a problem about 

lhc validity of the proof itself. As to the philosophical criterion for validity based on 

experience, one cannot always apply it to mathematics. Indeed, ho,~' can one ascertain 

the validity of a statement which cannot be proved? The second side of the issue is 

5R.Descartes. Pravila dla tTwkovodstva urea- Moscow.:SSEP, 1936, P.174,(in RussiatO. 



Introduction 17 

important as well. The validity of a proof appeals to common sense and maybe to the 

knowledge of a limited number of experts. Any proof can be divided into elementary 

steps of premises and conclusions. The elementariness means that it is inexpedient to 

look for more elementary formalisms. As to the validity of each elementary step, it is 

learned through evidence, or as Descartes says, through intuition. 

(d) a search must be purposeful (not trial-and-error). It supposes availability of a 

special method in the form of a set of such simple and precise rules that "...following 

these rules, one is always prevented from taking false for true...and is obtaining 

knowledge which makes it possible to learn everything within human reach". 

Thus, Descartes postulates that a method to learn truth exists in the form of a set of 

rules, even if he does not mention directly the existence of such a method, or its 

universality. Subsequently, a universal system of rules was sought for by G. Leibnitz. 

However, K. G6del destroyed this delusion. He showed that there are truths in 

mathematics that cannot be proved. As a corollary, a universal system is impossible 

which could search for such truths and prove them. This problem can be examined from 

the different viewpoints, though. 

Firstly, the variety of the world is infinite, which means that the set of truths within 

the reach of a man, will always be incomplete. Secondly, availability of a problem 

solving system, even if non-universal (but still effective), is important in itself, from 

both theoretical and practical viewpoints. The value of an unprovable truth is 

determined by its practical helpfulness. 

(e) search for a truth is based on such order as to deduce the unknown from the 

known. 

(f) when solving a problem, all the factors involved must be covered. 

(g) a problem must be simplified to such a degree that its inner nature still remains 

valid. 

(h) a proof must be thorough so that each of the steps is evident and is not 

overlooked. 

The comparison of Descartes' rules and Bacon's aphorisms offers a number of 

common points. The principal difference is the choice of the method (Descartes adheres 



18 Introduction 

to deduction while Bacon prefers induction). What is the philosophical difference 

between the methods? 

The deductive method establishes truths which follow from premises according to 

formal rules. On that ground, this method may be called "closed"; in other words, if 

there exists a set of true expressions E and a set of rules R, then deducibility of true 

expressions from E by means of R can be written as follows 

~ol =R(Ewqg0) 

�9 . . 

~Pk =R(Ew~~ 

The subscript of q~i refers to deduction length i. It is supposed that each true 

expression can be deduced, the length of deduction being finite. In other words, all true 

expressions are assumed io be finitely deducible. However, a deduction with length of 

1020 is obviously unattainable. This is the first constraint imposed on the deduction 

method. Besides, due to G6del's theorem, there exist truths which can be expressed in 

formal arithmetical systems and which cannot be proved within the systems. Such 

truths cannot be obtained by the deduction method. This constraint of deduction turns 

into an advantage in the case of induction, which reveals truths "beyond" certain formal 

systems, even if these "induced" truths cannot be proved within the system. Thus, the 

induction method "expands" the boundaries of formal systems. This feature is important 

for problem solving. 

Leibnitz (1646 - 1716) is to be mentioned next in this list. Leibnitz highlights 

principles of cognition, i.e."...all basic truths which suffice to obtain all necessary 

conclusions ''6, as well as art of employing these principles, namely: 

- art of reasoning; 

- art of discovery; 

- art of use. 

6quoted on G.K Leibnitz. Works in 4 volumes, Moscow. "7hought", 1982, (in Russian). 



Introduction 19 

Leibnitz defines each of these arts through maxims. The art of reasoning is 

expressed by the following maxims. 

al)  only an evident statement is recognized as truth, as well as all its evident 

corollaries 

(a2) otherwise, one has to content oneself with the probability of authenticity...any 

conclusion drawn from such truth being even less authentic; 

(a3) to derive one truth from another, some inseparable link has to be held. The art 

of discovery implies the following. 

(b 1) to get to know some object, all its properties have to be examined: 

(b2) a complex object requires the investigation of its individual parts (analysis)" 

(b3) the analysis must be complete �9 

(b4) all object should be considered as a whole; 

(b5) investigation should always be started from the easiest points, i.e. the most 

general and simple points. 

Here is an insight which deserves special attention from the viewpoint of our subject: 

"...by universal science I mean science which teaches to discover and prove ever5' 

knowledge on the basis of sufficient data...When studying any science, one should tr5 ~ to 

find principles for discove~ ~. These principles are related to some superior science, in 

other words - art of discovcry~ these principles may prove to be sufficient to derive all 

the other tn~lhs, or at least the most useflll truths, without burdening oneself with too 

numerous rules...I aim at disclosing of problem solving methods rather than solutions to 

individual problems, for a single one method includes an infinite number of solutions". 

This idea of Leibnitz proved to bc utopian, nevertheless, the ncv,. scientifical lead has 

been established. This idea is practical enough, provided the surplus generality is 

removed. 

The art of problem solving is still substantially based on psychology and intuition. 

As H. Poincare has noted "the rules in force are extremely delicate and subtle; the,,, are 

hardly expressible by exact words: they are more easy felt than defined..." and 

further:"...ihe fact is more than evident that the emotional component is essential in 

discovery or invention, this fact is confirmed by many thinkers..." 



20 Introduction 

We do not have for an object to describe psychological results in the field of problem 

solving, such as trial-and-error theory, Gestalt psychology, heuristic programming (in 

its psychological aspect). In this connection, fundamental studies by G. Polya should be 

mentioned. Acquaintance with these works is advisable. One should specially refer to 

studies by Soviet authors V. Pushkin, D. Pospelov, S. Maslov, Shanin et al. 

Here we draw the main conclusions. Historically, approaches to problem solving 

have been based on the concept of purposeful search using a certain set of rules and 

strategies. The attempt to create some universal calculus based upon this concept was 

unsuccessfid. Moreover, the presence of a "psychological aspect" in problem solving 

prevents the rules from simple formalization. Thus, two main approaches are possible: 

(a) development of principles for such systems that solve problems with the 

participation of a human, where the degree of human's involvement allowing a search 

for a solution must be formalized; 

(b) development of such systems where human's part is decisive (i.e., a human 

possesses properties of a problem solver). 

These approaches will be examined below, their "theoretical" development suggests 

the following directions: 

- creation of "particular" calculus (calculi) of problems based on mathematical logic 

tools, on methods for search in a state space and organized exhaustive search, etc.; 

- creation of theory of meta-methods for problem solving from the semiformal 

position of their application, as well as principles of problem solving in "human- 

computer" s3~stem, where the human-solver remains an "informal interpreter" of the 

solving process. 

State of  the art 

Consider the basic concepts for solution search by means of "extraction" of the 

solution from the proof of computability theorem [1, 2]. Interpret predicate 

P(X1,X 2 ..... Xk, Y1,Y 2 ..... Yp) as procedure P which calculates output variables Y1 ..... Yp 

from input data XI,X 2 ..... X k. Any description of the universe of discourse involves the 

specification of the following components' 



Introduction 21 

- information about objects and interrelations in the universe of discourse: 

- rules which arc specified by predicates P(...) and which determine compulability 

relations on a set of objccts in thc universe of discourse. Suppose S 1 ..... S k arc sets. 

Subset R of the Cartesian product S 1 *,..*S k is a relation on S l ..... S k. 

Tuple of < ll,...,lk > satisfies R if l  1 eS  1, 12~S2,...,lkeSk, < 11 ..... lk> e R. 

Suppose ~t I ..... ~t k are definitional domains for variables Xi ,X 2 ..... X k. Definition 

domain for relation R (XI,X 2 .... ,X k ) is Cartesian product ~l,...,~tk. 

Functional relation 

may be interpreted as a procedure or as predicate 

P(X~, X~2,...; X~+~,..., X~). 

Axioms of the universe of discourse are defined by a collection of relations and 

functional bindings: 

o- =</~,..., ~;F1,..., F~ >. 

The problem interpreted in such a way, can be represented as follows 

X,,w k-'~ You t 

w h e r e  Xin p - input data, Yout " data to be found. This dependence has to be derived 

from axioms of the universe of discourse: 

o k -  fx ,  

Fx'Xinp F--) Yout, 

where ~- -deducibility relation. 

I f o - ~ - F  x, either o- contains F x , or F x can be found through the sequential 

application of rules for deduction of o-. As the deduction rules, Armstrong's  axiom 

patterns of database relational algebra can be employed: 



22 Introduction 

1. Reflexivi~. : 

X w + X .  

2. Replenishment: 

X t----> Y involves X Z  ~ Y. 

3. Additivi~. : 

X 1---) Y and X ~-4 Z involves X ~ YZ.  

4. Projectivity: 

X ~-~ YZ involves X ~ Y. 

5. Transitivity: 

X ~ Y, Y w-> Z involves X I---> Z. 

Example. Consider a problem with axioms cr of the form: 

aa~--~ h 

b f l  r---~ h 

hc~-+ S 

hab  ~ c 

hfla ~--~ c 

abc~-~ S 

ha~-~ a 

hp~---) b 

Sab ~---> a 

which is defined on a triangle shown in Fig. 0.2. Let us try to prove the deducibility: 



Introduction 23 

c 

Fig. 0. 2. 

cry- (hab ~ S), 

In this case, the deduction is performed through the following sequential steps: 

1. h,a ,b~--~c /* assumed axiom */ 

2. h,a ~--~a /* assumed axiom */ 

3. h,ct,b ~-~a,b,c/* axiom of additivity and reflexivity */ 

4. a,b,c ~-~S /* assumed axiom */. 

If each deduction rule used, is assigned to a certain program, then the chain of the 

deduction rules will be interpreted as a linear program, which calculates the wanted 

output values through the given input. 

However, such a formalization does not allow one to write directly the recursive 

dependences; for example, operator 

A = A - B  

would take form of 

A, Bk--~ A,  

which, in terms of Armstrong's axioms, considers "A" as the same object both from 

the fight and from the left of "l--~" The operators of this sort require a special 

representation by means of auxiliary objects. To extend resources for structure synthesis 

of programs, predicates Q,QI,Q2,... , are introduced into the language; the predicates 

are implemented through programs q,ql,q2,..., which calculate logical values of these 

predicates. Introduce the following expressions 



24 Introduction 

Q --~ A ~--~ B 
f 

which are interpreted in the following way: "if Q is true, B can be calculated from A 

by means of procedure f'. The following deduction rule is added to the language to 

synthesize branching programs 

Q, v Q2 v .  . . v Q,, ; Q~ --~ A w-> B ; Q2 ~-~ A w-~ B ; . . . ; Q,, ~ A ~---~ B 
f f f 

A ~ B  

where at least one of predicates Q1,Q2,...,Qn is always true. Paper [2] has shown that 

branching programs can be built by means of this rule. The indexing of variables has 

been used in [1] to represent recursive rules and cycles. For example, the following 

rules are admissible: 

A[I]~-~I A [ I  + I] 

A[I]w-> B [ I ]  
g 

where I is an index. 

Thus, operator A=A - B is associated with a functional dependence of the following 

form: 

A [ I ] , B [ I ]  ~ A [ I  + 1]. 

Examine this approach to the concept of problem solving. It is based on a priori 

knowledge of computability relations over the set of objects. Rigorously, two sets of 

such relations can be mentioned: 

main relations - relations between main objects in the universe of discourse (main 

object exists in the universe of discourse); 

auxiliary relations - relations written with the use of auxiliary objects which have no 

interpretation in the universe of discourse. E.g., in expression A [ I ] ~  A[I + 1], I is 

such an object. Labels and conditionals can be classified among auxiliary objects as 

well. 



Introduction 25 

The introduction of auxiliary objects is associated with the extension of problem's 

axiomatics. As this extension is not formalized, there is no regular approach to its 

implementation. By way of example, consider the problem of finding the greatest 

common divisor (GCD) for two integer numbers A and B. The solving algorithm can be 

written as follows: 

M:if A > B, then assign A = A - B 

otherwise 

if A < B, then assign B = B - A 

otherwise, terminate program with answer: GCD = A = B. 

repeat from mark M, 

In this case, using auxiliary relations, a human-solver writes Euclid's procedure itself 

rather than the property upon which it is based. Lately, an approach to solution 

synthesis is widely spread employing the specification of the problem [3 - 61. In case of 

the problem of GCD, the specification could be vcritten as follows: 

PROBLEM (integer (A,B,C,X,Y)) 

GIVEN: A,B~ 

TO BE FOUND: C~ 

PROPERTIES: 

(A:C=X)& 

(B:C=Y)& 

(C~max)  

I 
( ( A : C =  X ) &  

(B: C : Y)& 

(A <> B) ~ (IA - BIC = I X -  Yl)) 

(C: C = 1) 

The specification of the same problem in PROLOG notation [5,7] is as follows 

GCD(C,C,C). 

GCD(A,B,C):- 

A < > B ,  



26 hltroduction 

abs (A,B,D,Z), 

t 

GCD(Z,D,C). 

abs(A,B,D,Z):- 

A > B ,  

Z = A - B ,  

D - B .  

abs(A,B,D,Z):- 

A < B ,  

Z = B - A ,  

D = A .  

The key rule for GCD(X,Y,Z) says that Z is the GCD for X and Y. In the first case, 

if X = Y, then Z = X = Y = C, i.e. the rule takes form: GCD(C,C,C). If X = Y, then 

GCD(X,Y:Z) is recursively determined through GCD( X - Y, min(X,Y),Z ); D denoting 

min(X,Y). 

This approach to problem solving supposes the man-made specification to be 

complete and consistent. It is clear that removing the square-bracketed part of the given 

specification, we have a partially-defined problem which can be solved with the aid of a 

human-solver. PROLOG uses a procedure for solution search through specification, 

which is a depth-first method based on a purposeful search for alternative solutions. 

This approach as well as the previous one is limited in terms of the use of 

computability relations. The limitation results from the requirements to describe a given 

problem completely and consistently. To meet these requirements the user must be a 

master of the subject which is not the normal case. 

Another trend in problem solving theory is associated with search for routes in a 

state space. Every. object 1,(i=ii~R)of a problem is associated with a set of 

characteristics (attributes, properties, functions etc.) PIt = <Pil,Pi2 .... ,Pii >, which 

determine element I i at instant t, index t indicates that the values of attributes Pik, 

k = 1,i are defined for this instant). 



Introduction 27 

The designator-state o "t at instant t is a collection of sets p t (i = 1,R) which 

correspond to objects of the system. 

Define a basic operation @ of an attribute setting for the description of intra- and 

inter-element interaction in terms of theoretical multiple operations of union U and 

difference \. The co-existence of mutually exclusive attributes p and ~ in the same set 

should be considered inadmissible, as well as the co-existence of attributes of the same 

nature showing different values. Suppose that values of any attribute fall within certain 

discrete domain, while at any instant the attribute is specified by only one value from 

this domain. Include null value in the range, bearing in mind the nature of the 

introduced operation @, which is formally described in Table 0.2. 

Table 0.2. 

Definition of setting attribute oneration 6) 

Values of attributes before the 

operation 

P=<pl=o~,p9=o~ ..... p,=(~,> 

P=<p~ = ~  ,p9=o~9 ..... p,=~,> 

P=<Pl =~1 ,P9=O~9,.- .,P,=~,> 

P=<Q> 

P=<p~=o~9,...,p,=o~n> 

P=<pl=o~]> 

The defined set of 

attributes 

@<Q> 

@<pl=~l > 

]@<pI=Q~> . . . . . . . . . .  ~ _ ~  

Pl =~l ,P~=~> ............................... 

I| > . . . . .  

[ O<pl=O~l> 

Resulting set 

without modification 

P=<pl =l~ 1 ,p~=~9,...,p,=g,> 

P=<p9=c~9,pa=o~,...,p,=o~,> 

P=<pl =~1 ,p~=g9> 

I P=<p 1 =ocl ,p).=oc).,...,p,=o~,> 

- - ' [ P = < p ,  =o~ 1 > 

Definition. Interaction patterns between objects A and B, which define the operation 

@ on sets of the objects A and B, are specified through a collection of predicate 

formulae according to the following expressions 

F A ,B 
, ~ | < P A , P 8  > (0.1) 



28 Introduction 

where 9A(PB) " collection of attributes being specified in sets PA t (PBt); Fi A,B - 

predicate formula found by induction: 

1) an expression derived from a predicate symbol through replacing its variables 

with other variables (not necessarily different ones), is a formula; 

2) if X and Y are formulae and u is a variable, then expressions --,(X), (X)&(Y), 

(X)v(Y), (X)-~(Y), (X)~-~(Y),Vu(X),3u(X) - are formulae as well. 

The operation �9 mentioned in (0.1), "works" if the value of the corresponding 

predicate formula is true. 

Evidently, a set of formulae like (0.1) formally defines the logical structure F of a 

problem and its quantitative aspect through the attributes of interacting objects of 

different nature: space-time attributes, state-quality attributes, quantitative attributes 

etc. The problem of our interest is like this" for given triad < F,tso,c~k > where %,~k are 

two different designators, an interaction tuple F *= <Fil,Fi2 ..... Fiz > has to be found so 

that the sequential execution of interactions in F*, beginning from % and Fil, converts 

the system into designator-state ~k. This problem will be examined in the book. The 

theory for solving problems of this kind, employs methods of search in a state graph 

using heuristic estimator [8-10]. 

Give an example. Consider a board with six squares and four counters numbered 1, 

2, 3, 4 (Fig. 0. 3 a). A counter may be only moved to adjacent vacant square. A movement 

sequence is to be found so that all the counters are placed as shown in Fig.0.3b. Design 

the state graph G for this problem. Label the states by So,S1,..,Sk, where S O and S k 

correspond to Fig.0.3a and Fig.0.3b respectively. Two vertices-states S m and S n are 

connected with an arc provided a counter can be moved from S m to S n in one 

movement. Display only that arcs which do not form cycles within G. A part of the 

graph G is shown in Fig.0.4. One can see that vertices have several output arcs which 

give alternative sequels in solving. The concept of search for solution by means of 

heuristic estimator is like this. 

The following value is found for each vertex v 

f (v) = g(v)  + h(v) 



Introduction 29 

I 14111 
12131 
I !  

Fig. 0. 3. a) 

! l la l  
3141 

! 
Fig. 0. 3. b) 

14 Ill 
131 

12] 
/ 

4111 
2131 

I 
/ \ 

14 ill i 14111 
2131 [ 131 

! 121 

/ "~ [7- 1 ~...'N 
2 3 

/ N 
14111 ! 1411131 

!!31 1211 
121 I !  

Fig. 0. 4. 

/ N  

where g(v) - route length from S O to S v (S v is the state corresponding to the vertex v; 

h(v) - estimated route length from S v to Sk; 

f(v) - resultant estimator. 

Suppose V l,V 2 ..... v z - are candidates for a sequel (alternative movements of the 

counter in the current state). Then the vertex with minimal value of f(v) is to be chosen. 

Give a search algorithm using the estimator f as described in [5]. Suppose S ~ is a set 

of  vertices already chosen, S is a set of vertices which are candidates for sequel, 

S ~ S ~ = a ,  v 0 is the initial vertex, v k is the terminal vertex in G; let G(v) denote child 

vertices of v, the vertices already passed being eliminated. 

Step 1. Place v 0 in S and calculate f(vo). 



30 httroduction 

Step 2. If S=G, then fail. Otherwise, go to step 3. 

Step 3. Choose vertex v x from S so that f(Vx)= min f(Vy) and place it in S ~ on 

removal from S. 

Step 4. If v x = v k then end (the route is found). Otherwise; go to step 5. 

Step 5. Find G(vx). If G(v x) = Q, go to step 2. Otherwise, find f(vi) for each vertex 

vi~G(vx). 

Step 6. For each vi: 

if vi~S~ then place v i in S; 

if vi~S~G(vx), then assign to v i the least of its estimations f(vi); 

if v i ~S~ then remove v i from S ~ and place 

it in S with the least estimation f(vi); 

in other cases, do not change S and S ~ 

Step 7. Go to step 2. 

The main difficulty in using this algorithm is to find h(v) to provide effective 

contraction of the search area. In this connection, the following points should be taken 

into account. 

Firstly, it is not always necessary to search for the shortest route in G, for any finite 

solution can be admissible. 

Secondly, there is no indication about the form of h(v). 

Thirdly, the practical efficiency of this method is questionable in case of large graphs 

G. 

To decrease the graph size (i.e. to contract the search area), 161 suggests splitting a 

problem into particular ones. For example, the first particular problcm is to transfer 

counter 1 to its destination square, the location of other counters being insignificant. 

The second particular problem is to transfer counter 2 to its final position, the solution 

,to subproblem 1 being kept. Subproblem 3 is to transfer counter 3 to its destination, the 

final location of counters 2 and 1 being kept, etc. Detailed examination of this concept 

is omitted here, as well as possible modifications of search algorithm for state graph. 



Introduction 31 

The common point of these modifications is a regularization of the search procedure 

which ensures the result. 

All the approaches described above have got some support in certain programming 

environments. Among the most popular systems the following ones may be listed: 

PROLOG, Lisp, Planer, PRIZ, ABSTR/PS, SITPLAN and others. 

Thus, the development of problem solving theory is urgent both theoretically and 

practically in the following aspects: 

- developing an approach based on using weak methods and meta-principles (meta- 

procedures); 

- creating a programming environment oriented to supporting problem solving 

activities of a human-solver. 



This Page Intentionally Left Blank



33 

Chapter 0 

PROBLEM CLASSIFICATION. 
SOL ViNG METHODS 

INTRODUCTION TO THE 

O. 1. What is a problem? 

When speaking of a problem one uses such words as "to find", "solution", "unknown 

variable (s)", "search", "model", "problem states", "goal", etc. We admit that these 

terms are primary, i.e. they cannot be formulated by means of some other simpler 

notions. It may be supposed that the content of a primary notion is intuitively clear and 

unequivocal. Therefore when one is asked what it means "to find a solution to a given 

task?" it is automatically supposed that every other person would interpret this question 

in the same way. However, the opposite question " is a given solution really a valid one 

Io the problem?" may sometimes be too difficult to answer (or even impossible to 

answer). 

Definition of terms. Let us introduce the terms directly connected with the main 

subject of the book. It is quite natural from the consideration above that every 

"definition" of a primary notion is not a definition in the sense of formal logic. There 

are two goals of such definitions: 

(i) to outline the conceptual field of a discussion; 

(ii) to set a primary basis (notation) for further development of a subject under 

consideration. 

A variable is an object which takes a meaning from a given domain. Sometimes the 

following notions are thought to be equivalent, i.e. 

<variable> = <object> = <unknown-value>. 



34 Chapter 0 

The distinction is provided due to the existence of an object and its denotation (or an 

object and its abstract essence). 

A variable may be bound or unbound. In the first case one may consider the variable 

to have a value. In the second case the variable is not assigned a value. It is quite 

natural to consider the very notion of a value as another object of the definite type. 

From this viewpoint a bound variable is a pair <V 1 ,V2> with an original object V 1 and 

derivative object V 2 standing for V 1 . We do not point out the nature of the derivative 

object and only require for V 2 to be a concrete object from some set of objects. Thus, the 

denotation 

< X, "john"> 

may easily be interpreted as assertion that the variable X is bound by a symbolic 

constant "john", or a symbolic constant "john" stands for the variable X. Some 

difficulties arise when V 2 represents a so-called self-definition (i.e., recursive 

definition), for instance, 

< X , X  2 - X  + 1 >  

or in more convenient form 

X = X Z - X + I .  

If the last is interpreted as an equation, then one may deduce that X = 1. 

ff the last is interpreted as a substitution for X then to avoid an ambiguity one needs 

to use the representation 

< X ,  " X  2 - X  + 1"> 

o r  

< X ,  Y Z - Y  +1> 

if replacement is valid. 

From the above considerations one may deduce that a pair <X, Z> with unbound 

variable Z defines an unbound state of variable X if Z is not a recursive function of the 

same single variable X. 



Problem classification. Introduction to the solving methods 3 5 

Another interesting case is a partly-bound variable X, i.e. with representation 

< X ,  [ " j o h n " ,  "bi l l" ,  " d i c k " ] *  > 

where X takes a meaning from a given list of symbolic objects, i.e. 

X = " j o h n "  I ? X = "bill" 12 X = "dic" 

where 1/" is exclusive "OR"- operation. 

We used an asterisk to denote the fact that the list above does not stand as a whole 

for the variable X. 

The case under consideration occupies an intermediate state between the previous 

two. 

A constant object is represented by <C, C>, where C is a concrete object, i.e. one 

may say that a constant object represents itself. The designation <V, V> with the bound 

variable V is of the same kind. To eliminate excessive identifiers a constant object is 

designated as a single one, i.e. instead of <C, C> it is simply written as C. Variables 

and constant objects will be called terms. 

To sum up all the above considerations of the object we have to introduce the notion 

of a problem state. A problem state is a set of pairs <Vil, Vil>, i = 1,I defined for all 

the terms we deal with in a problem. 

All the objects in a problem form a system of different relations. From the 

mathematical viewpoint, the n-ary relation R(t 1, t 2 ..... tn) is defined as a subset of the 

Cartesian product 

where T i is a definition space for term t i- 

An example of a 1-ary relation may be the following 

prm_rel (X) 

where prm_rel is the symbol for the relation "to be a prime number" and X stands 

for an arbitrary integer number. Thus, the relation 

prm_rel (12) 



36 Chapter 0 

is false since 12 is not a prime number, and 

prm_rel (13) 

is true. 

An example of 3-ary relation may be the following 

rect_sq (X,Y,S) 

where rect_sq is the symbol of relation "X (a width) and Y (a height) are the sizes of 

a rectangle and S is its area, i.e. 

S = X * Y .  

Thus, 

rect_sq (5,2,10) is an example of true relation 

and rect_sq (5,3,10) is an example of false one. 

Besides relationships of the above type there are functional equations (functions) as 

in the example below 

y = x 2 + 2 x + l  

o r y -  ~ e-~dx.  

One may consider these equations as the particular cases of the equality relation (=), 

i.e. 

= ( y ,  x 2 + 2 x + l )  

and - (y, ~ e-Xdx)~ 

Let us consider a function 

y = X 2 + 2 X  +1 .  

One may simply test that the state S' = (<y,4>, <x,2>) does not suit it, whilst on the 

contrary the state S" = (<y,l>, <x,0>) does. The notion of a solution is therefore 

frequently associated with the unknown state S suiting all given relations. The solution 

understood in such a manner will be called an interpretation for a given model, i.e. the 



Problem classification. Introduction to the solving methods 37 

set of original relations. To extend the notion of a solution one may need to find such an 

interpretation which satisfies additional criteria, for instance, such as 

maximize (4 x~ - 3 x  2 + 5XlX  2 --  2XIX 3 + 32-, ) 

where x 1 ,x 2 ,x 3 are boolean variables. 

In this context "to find an interpretation" means to build a solving procedure which 

warrants obtaining an optimum interpretation. All of the above give us a possibility to 

denote problem P by the 6-tuple 

P = <Model, Initial_State, [Criterion,] Solution, Solving_Procedurel,Proof]> (0.2) 

The members in square brackets are optional and may be omitted. It is worth noting 

that the "proof' is necessary as a certification of the solution validity (let us recall the 

question "is a given solution really valid?" formulated earlier). 

Now we may go directly to problem classification. 

0.2. Problem classification 

Considering definition (0.2) one may establish 64 different configurations of a 

problem P by the assumption that every member may take only two possible values: 

{0,1 }, where 1 means "it is known" and 0 - "it is not known". The typical combination 

is <1,1,1,0,0,0> and two absurd combinations are <0,0,0,0,0,0> and <0,0,0,0,0,1>. It is 

also beyond our interest to explore the trivial case < l, l, [x],0,1,1>, x ~ {0,1 }. 

The problems we shall discuss form the following groups: 

(i) finding suitable interpretation (i.e., variable values) for the model given in the 

following problem specification 

P = <Model, Initial_State, Solution, Solving_Procedure, [Proof]>. 

Here, Solution represents such an interpretation. 

(ii) finding optimum interpretation for the model given in the full specification (0-2) 

which includes Criterion(-ia). 

(iii) finding solving-procedure. 



38 Chapter 0 

Indeed, the first two groups (i)&(ii) are provided with a powerful and tremendous 

library of solving methods (LSM). However, there are three important problems 

concerning these groups which are connected with further investigations in the first 

instance: 

(P1) the development of "universal" solving procedures and meta-methods to 

constrain uncontrollable growth of LSM. The idea of a universal solving program was 

strongly criticized but the situation has drastically changed since the appearance of the 

logical programming languages, and their wide utilization starting from the early 70's. 

It is correct to speak of not one but a variety of "universal" methods to satisfy the needs 

of creative mathematics. The marginal line between LSM and "weak" methods 

separates two large classes of problems 

P = <*,*,*,*.0,0> 

and P = <*,*,*,*, 1,1> 

where "*" is either 0 or 1. 

(P2) there is a special class of problems (so-called NP-complete problems) which are 

still solved by the inefficient methods and there are no warrants to find efficient 

algorithms to solve them. 

(P3) it is often difficult to divide an original problem into a set of subproblems P1, 

P2 ,...,Po with concerted inputs and outputs. 

And, finally, the last group (iii) is primely connected with such "universal" weak 

methods. 

Let us proceed from the problems comprising the group "Finding Suitable 

Interpretation". 

0.3. An approach to building an interpretation calculus 

This section deals with the logical inference system on the basis of interpretation 

calculus developing Beth's ideas and rules of paramodulation for equality calculus. It is 



Problem classification. Introduction to the solving methods 3 9 

assumed that the reader is acquainted with the predicate calculus (see, for example, 

[7,8,91). 

0.3.1. The theorem of solution existence 

The idea of using theorem proving techniques for solving problems was proposed by 

R. Kowalsky [81. This idea consists in proving the following theorem [11 of solution 

existence: 

V x 3 y  R (x ,  y )  (0.3) 

asserting that for every input set x of the problem there exists a solution y obtained 

by some solving procedure R. 

If a problem is written in a suitable formal language then to obtain a solving 

procedure R one needs to realize the following scheme: 

1) to formulate a theorem of solution existence; 

2) to build a proof of this theorem; 

3) to extract a solving procedure R from the proof. 

The scheme above is connected with two main problems: 

(i) to prove that a solution really exists; 

(ii) to find a solution. 

We consider both these problems below. 

0.3.2. Preliminary remarks 

Beth [101 proposed a procedure to prove (or to refute) deducibility of a formula ~u 

from the set of formulae F on the basis of finding interpretation I satisfying every 

formula from F and refuting formula -~ (not-~,). Using this common principle we 

suggest for every formula of a given formal task representation the method for building 

individual interpretations in the form of a disjunction 

(L, v I;2 v . . .  



40 Chapter 0 

where every individual interpretation Iim , m = 1,z provides consistency of a given 

formula. Note that the individual interpretations Iim , m = 1,z do not form the whole 

Herbrand universe but correspond merely to its finite part. Besides, every individual 

interpretation provides consistency of a given formula what is not equivalent in general 

to its truth. To clear this fact let us consider the formula 

3xP(x) 

( is a symbol of negation). 

This formula is consistent with two interpretations 

Ip �9 (P1 = D ) and IF �9 (PI = ALL) 

where 

D stands for an empty interpretation (the null set); 

Ip is an interpretation for formula P(.); 

IF is an interpretation for formula P (.); 

"ALL" corresponds to every conceivable value from a given domain; 

P 1 is the designation for an argument of predicate P(.) or P (.). 

Suppose an original problem is formalized by a set of formulae 

F - { fPl, ~P2,'", (Pm } 

with interpretations I~l, Iq~ 2 ..... Iq~t and the theorem of solution existence represented 

by the formula qJ with interpretation I v . 

It directly follows from G6del's theorem asserting that 

I~ol& I~o2&...& I~o/~& I~ = D (0.4i) 

implies 

F l- qJ (0.4ii) 

with special symbol [-denoting logical (semantic) consequence. Thus, to prove that 

a given problem really has a solution one needs to verify equation (0.4i) above and this 

is therefore a pivot of further considerations. 



Problem classification. Introduction to the solving methods 41 

There are some known strategies using equality calculus [11,12]. The fact that 

I ~ & I ~  - D  

for some formulae qo and e immediately follows from the observation that 

1~, - { . . . , x -  o:} and 1 ~ -  { . . . , x  r ct} 

with constant object o~. We shall use this statement of equality calculus for direct 

proof of (0.4i). 

The procedure of logical inference presented here is the modification of Beth's 

algorithm [10]. It uses the notion of semantic entailment in predicate calculus. Let qo 

and qJ be two well formed formulae and qJ semantically follows qo ( qo [- q~ ) i.e. in every 

interpretation where qo is true ~ is false ( q~ is true). 

Interpretation is called a refutation if in it q~ & ~ = 1. The procedure is to look for 

such an interpretation in order to refute the assertion that q~ [- W �9 

Let us prove (or refute) that 

~r  v Q ( x ) )  I- ~ 'xP(x)  v V x Q ( x )  . 

To do this we need to find an interpretation (i.e., a substitution for x) in which q~ is 

true and qJ is false or show that there is no such interpretation. 

If W is false then it follows that ~' x Q(x) is false and ~' x P(x) is false too. In its turn 

from the fact that V x P(x) is false we can derive that 3 a P (a) and from the falsehood 

of ~' x Q(x) to conclude that 3 b Q (b) with substitutions "a" and "b" for x. 

Hence we get an interpretation in which q~ is false. This interpretation contains the 

terms 

P (a) 

and Q(b) 

and produces two clauses 

~p~ - ( P ( a )  v Q(a) ) ,  



42 Chapter 0 

cp2 - (P (b )  v Q (b)).  

In order to make q~l and qo 2 both tree it is sufficient to admit that Q(a) and P(b) are 

true. Consequently we showed that not ((p l-  xF) i.e. the interpretation (Table 0.3) 

satisfies qo and refutes q~. 

X: 

P(.) 

Q(.) 

P 0 

QO 
. . I I I I  [ _ [ [  

"a" 

false 

true 

true 

false 

"b" 

true 

false 

false 

true 

Table 0.3. 

t ( t~a;  t ~ b )  

true 

true 

true 

true 

Now let 

lit= Vx(P(x) v Q(x)) 

and r = Vx(P(x)) v Vx(Q(x)). 

If we assume ~g to be false we will derive 3 x ( P ( x )  v Q ( x ) ) .  Suppose x - a. In this 

case there are both P(a) and Q ( a ) .  As for q~ we have q~ - P(a) v Q ( a ) .  In order 

~p to be true, it is necessary for either P(a) or Q ( a )  (or both P(a) and Q ( a ) )  to 

be true what is in contradiction with supposition about the falsehood of ~lJ .Since we 

cannot find a refutation and have to derive qo ]- W. 

In order to find a regular procedure for seeking refuting interpretation consider the 

formula 

Vl-V, 

where F = {q~l,qo2 ..... q~y} and ~oi=~, ~ - are well-formed formulae of predicate 

calculus. In every interpretation each of the formula F becomes a propositional clause 

representing an expression built with atomic formulae which are connected by means of 

logical operators &, v, ~ ,  -- and --, and auxiliary symbols (,), and ~ where & - 



Problem classification. Introduction to the solving methods 43 

conjunction, v -disjunction, --->- implication,--- equivalency (also ~-> and = are used), 

- negation (often written above symbol of the formula), and ~ equivalent 

transformation. An example of a propositional clause is 

m 

q~ = P (a) v Q (a) with constant "a". 

Let fil(Xl (i) .... Xnl(i)) . . . . .  f im (Xl (i) .... ,Xnm(i)) be the atomic formulae used for writing 

q~i. Our task is to find such values for variables x 1,...,x n which provide truth of every 

well-formed formula q~i and falsehood of W. We admit that F and W may contain 

common atomic formulae or their negations. This task may be formulated as follows: to 

find an interpretation I (or to prove that such interpretation is impossible) which 

provides the truth of conjunction q~l & q~2 &...& ~- 

0.3.3. Rules for making atomic interpretations 

We shall use the following transformations. 

1. All the variables bound by different existential quantifiers should be made 

different by appropriate substitutions. 

An example. The system of formulae 

Vz 'v ' y3x(P(x ,y )  v Q(z)) 

and 3z3x(Q (z) v P (x , z ) )  

is replaced by 

V Vy3x(P(x,y) v Q(z)) 

and 3z3w(Q (z) v P(w , z ) ) .  

2. Delete all the existential quantifiers by means of special notation in which 

P(,~ ) stands for 3 x P(x) ; 
D 

P( 0 ) stands for 3 x P(x) ; 

P(f(,~ ) stands for 3 x P(f(x)); 

D - denotes the dummy element(set); 

~, - denotes some concrete object from x-domain; 



44 Chapter 0 

x - is a free variable. 

We will also use the designation Qi for predicate arguments beating in mind that Q 
is a predicate symbol and i is an argument number, e.g. P 1, P 2, P 3  are used for x, y, 

z in P(x, y, z) correspondingly. 

Consider the following two formulae: 

3 x V y P  (x ,  y )  (A1) 

V x 3 y P  (x ,  y) .  (A2) 

It is necessary to understand that in (A1) one deals with some concrete value of x, 

i.e. it is correct to replace (A1) by 

with the help of the following equivalencies: 

u 

V z ( Q ( z ) )  ~ 3 z ( Q  (z) )  

3 z ( Q ( z ) )  ~ V z ( Q  (z ) ) .  

It is not difficult to reproduce the transformations for (A1) as shown below: 

m 

3 x V y ( P ( x , y )  => 3 x 3 y P ( x , y )  ~ 3xP(x , t~ )  ~ P( .~ ,D) .  

As far as the formula (A2) is concerned one should bear in mind that there is a set of 

y-values corresponding to every possible x-value. Therefore, in order to create a correct 

interpretation in this case one needs to use the mechanism of "skolemization", i.e. the 

representation obtained according to the scheme below: 

V x 3 y ( P ( x , y )  => V x e ( x , f ( P 1 )  ::> 3 x P ( x , f ( e l ) )  => P ( D , f ( P 1 ) ) .  

m N , , . ,  N , , , ~  

Note that in P ( D, f ( P 1)) P 1 is a free variable. 

We also use the following common rules: 

V x V y .  . . V z  P( x,  y, . . . , z, a, . . . , b ) ~ P (D,D,. . . ,D,a, . . . ,  b) 

( P ( x, y , . . . ,  z, a , . . . ,  b) does not contain "[3 ") 



Problem classification. Introduction to the solving methods 45 

Vx'v'y...'v'z P(x ,y , . . . , z ,  o) => P( o,o . . . . .  o) 

(P contains one or more "o"). Consider some more complicated example. 

g x 3 y g z  P(x,y ,z ,a)=> g x g z  P(x ,g (x ) , z ,a )  => 

P ( o , g ( P 1 ) , o , a ) .  

The expression (PC,Y) & Q(_)) { ~ } is a counterpart of 3 x 3 y ((P(x,y) & Q(x)) 

where .~ is similarly instantiated for P and Q. 

Let the formula 

P ( ~ , O , O , ~ )  

be obtained by transformations. We may read this formula as follows: "there are such 

x and y that it is impossible to find corresponding second and third arguments for them 

to ensure a true value of P". 

If a formula has the form P (R, 0 , 0 , ~ ) then the final part of the previous 

definition should be read as "... to ensure a true value of P ". 
, ~ . . v  

Thus, to ensure true value for P it is necessary to set an interpretation Ip = { P 1 r R v 

v P 4 ;~ ~ }, where Ip is the symbol of interpretation for predicate P. The general rule 

determines the following distinct cases: 

1) P (~ ' , . ~ , . . . 5 ,  0 , 0 ,  ..., o )  --+ Ip - {P1 ~: s  P 2  ~: . ~ v . . . v P  k ve 5} 

From this for Ip we can obtain: 

Ip - {P1  - 2,  P 2  - .V,..., PE - ~', PE+, - PE+2 = . . . =  Pk+N -- ALL } 

"ALL" represents every valid element from the corresponding domain; "," is 

equivalent to "&"-operator. Some correlation is needed when there is a functor in the 

formula's representation. 

Suppose, there are two formulae 

P(~, f (P3), O ) 



46 Chapter 0 

ancl Q ( g ( Q 3 ) ,  f (Q3) ,  o ) 

where f(.) and g(.) are Scoleln functions. 

Let us try.' to solve two equations, P = 1 and Q -- 1. For the first one we obtain 

P l  ;e ~-v P 3  - v, P 2  ;~ f ( v ) .  

For the second equation we obtain 

(Q3  = v, ( Q 2  ;e f ( v )  v QI  ;~ g ( v ) ) ) ,  

where v is a free variable. 

Tile origin of the solution of the equation 

Q ( g ( Q 3 ) ,  f ( Q 3 ) , o ) =  1 

may be explained as follows. Obviously, in supposition for Q to be true and Q3 = v 

(where v can take every possible value) it is inadmittable that Q2 = f(v) and Q1 = g(v) 

simultaneously since in this case Q3 cannot be equal to v and this directly leads to a 

contradiction. 

In the first equation, since P I = ,~ leads to P3 = [] then there is no valid value of 

J (P3)  in such an interpretation. By analogy, for P and Q we obtain the following 

interpretations: 

1~ - {P1 - X' ,P3 - v, P2  - f ( v ) }  

I 0 - { Q 3 -  v, Q1 - g ( Q 3 ) , Q 2  - f ( Q 3 ) }  

2)  I ,  - { P 1  - e , P 2  - - 

3) P ( O  ~ 0 ~ . . .  ~ o )  --~ I p - 0  (an empty interpretation). 

The interpretation /3] r O v/3~, ;~ [3 v ... v tim , [3 does not hold in this case. 

From the opposite supposition (for example, P I ~ [], i.e. P l= ,~ for definite x) we 

derive a contradiction. 

I~ in this case has the form 



Problem classification. Introduction to the solving methods 47 

I~ - { P 1 -  ALL, P 2 -  ALL,..., Pm - ALL} 

4) From Ip - { P 1  :~ ~" x / P 2  ~: .t~} 

we can obtain 

I~ - { P I - ~ , P 2 - y }  

by means of De Morgan's Rule 

Ipl x/Ip2 --~ Ip~ & Ip2. 

Let there be a set of formulae fl,f2,'",fn �9 An interpetation I satisfying all the formulae 

is obtained as a conjunction of individual interpretations, i.e. 

I -  If,  & I/2 & ... & If.. (0.5) 

We especially stress the fact that all individual interpretations from (0.5) must be 

concerted,  i.e. represent either predicates P,Q .... or their negations only. To derive a 

general rule of conjunction we define an atomic interpretation I in one of the forms: 

(i) I = { P =  ,~}; (iii) I = D  ; 

(ii) I = { P :/: ~ }; (iv) I = A L L ,  

(v) I = { P = a } (a - constant symbol). 

Let 11 and 12 be the atomic interpretations. Then their conjunction is determined by 

the following cases (Table 0.4). 

The case with a constant is similiar to P(,~ ). The Table 0.4 requires further 

explanation. Namely, we shall discriminate between bound and unbound occurences of 

variable x denoting the former as ~, and the latter as x. It is clear that if 

11 = ( P  r  2 = ( P  = x )  t henx=~  provides 

I~ & I2=D.  

Let us recall that our main goal is to prove that 

I l & 1 2 & . . . & ]  t =[-7. 



48 Chapter 0 

. I1 . . . . . . . . . . .  

{ P = ~ }  

{ P = ~ }  

{ P = . ~ }  

{ P ~ }  

{ P = . ~ }  

{ p = . ~ }  

ALL 
, i |  , i  . i  i i , i i l , ,  i i 

i 

I?, ,, 

{ P ~ }  

ALL 

ALL 

{ P *  .~} 

{ P = f , }  

ALL 
i 

Table 0.4. 
l l l l  

I l & l ? . = l T , & l  1 ,, 

{ P = ~ }  

{ P =  ~ ,P :~.~ } 

{ P =  .~,P =~ } 

ALL 
i 

So, from considerations above it directly follows that if some interpretations contain 

unbound variables then one has to find such substitutions for these variables which 

~esult i~ obtaining ' [~1 ' for their conjunction. If, for example, I k contains the unbound 

x ariable x then it may produce a number of individual interpretations by binding the 

variable x w:ith concrete values ~ 1,,~2 ..... etc. Fortunately, the set of these values is 

directly obtained as a result of building interpretations for an initial set of formulae. 

Let us consider one complete example illustrating the proof on the basis of the 

atomic interpretations. 

An example. Let us prove that the formula 

= 3z (P(a ,  z )) 

may be derived from 

q, - v x 3 y ( P ( x ,  y ) ) .  

First of all, we create an interpretation for the formula ~p �9 

(i)~o = 'V'x3 y ( P ( x , y ) )  zz:> Vx P(x, f  (Pl)) ~ 3x P(x , f  (P1)) => 

~ P ( D , f ( P 1 ) )  

where P 1 is a free variable. 

Then we create an interpretation for the formula �9 �9 



Problem classification. Introduction to the solving methods 49 

(ii) 3z P(a,z) ~ P(a,D ) 

where "a" is a symbolic constant. 

From (i) we obtain 

P(D, f  (P1))---> Ip - { P 2  ve f ( P 1 ) } .  

From (ii) we obtain 

P ( a  n ) - - - > I z = { P l : x : a }  and Ip = { P l - a  P 2 = A L L }  p ~ ,, 

Thus, we derive 

1 2 Ip&Ip -~  (i.e., P~2 ~: f ( P i ) &  P'2 = ALL -->D). 

| . . . . . .  

On the other hand, it follows from Ip - { P 1 - ALL, P2 - f (P 1) } 

1 2 that Ip & Ip - ~ (since/5 ~ - ALL & ['i ~ a). 

0.3. 4. Rules for making complex interpretations 

To build an interpretation of a complex formula means to define the variable's values 

providing consistency of a given formula. 

Consider the next formula 

vx(3y(S(x,y)& M(y)) ~ (3z(I(~)&(Ex, z))). (o.6~ 

By sequential transformations we obtain 

Vx(S(x, f (x))& M ( f  (x)) --+ I('~)& E(x,5))~ 

Vx(S(x, f (x))& M ( f  (x)) v l(5)& E(x,5)) 

=> 3x(S(x , f  (x))& M ( f  (x))&(I(5)v E(x,5))) 

S(~x,f(Sl))& M(f(Sl))& (Z(e) v E(B ,~)). 

Our task is reduced to making an individual interpretation for the last formula 



50 Chapter 0 

S(~x, f (S1))& M ( f  (S1))&(I(~)v E(~, ,~))  (0.6b) 

to provide its consistency. 

We see, that the formula (0.6b) has a structure of the kind 

Y,&L&L, 

where 

f - S ( D x , f ( S 1 ) )  

f2 - M ( f  (S 1)) 

f3 - ( I (~)vE(Dx,~ , ) ) .  

The consistency of the formula t"1 is provided by the interpretation: 

S1 =v, S2 :/: f (v). 

The consistency of the formula f2 is provided by the interpretation: 

M 1  = f ( v ) .  

And, finally, for t"3 we set an interpretation 

I I - ~ , v E 1 -  v, E2 ~ 

where v is a free variable. 

Thus, we obtain the full interpretation for the formula (0.6b) in the form 

1~2 ~ - (S1 - v, S2 ~ f (v),M1 - f (v), 

( I  1 - ~ v E 1 - v , E 2  r ~)}. 

Let us show that from (0.6a) one may deduce the following formula [9]: 

m m ~ 

3xl(x) ~ VxVy(S(x,y) ~ M(y)) = 3 x I ( x )  v VxVy(S(x,y) v M(y)). 

Replacing the last formula by its negation we obtain 

3xl(x)& VxVy(S (x, y) v M (y)) - I(  G ,)& 3x3y(S (x, y) v M (y)) : 



Problem classification. Introduction to the solving methods 51 

: I( D ?)& M(?). 

For this last one we make an interpretation 

1(1) = { I 1  = A L L , S 1  = 2 , $ 2  = ~ , M 1  =~}. 

It is important to note that in I(1 ) an argument I 1 is defined for predicate I ( D x) as 

it must be concerted with the interpretation 12 which contains an individual 

interpretation for 1 (s It is easy to convince oneself that 

lo &I<  

In fact, when unifying two interpretations the free variable v in 1(2 ) becomes bound, 

i.e. v = ~ and f(v)--f(~ ) which directly leads to a contradictory system: 

S1 = v = ~  

$2:1: f (v) ~ $ 2 .  f (~) from 1(2 ) 

M l -  f ( v ) -  f (~) 

S1 =~ 

$2 - ~ from 1(1 ) 

M1 =~ 

where f(~" ) must simultaneously be and not be equal to ~.  To further proceeding let 

us consider the formula 

P & M { N }  

which means that there is no such an argument x which provides truth of P(x) & 

M(x). Thus, if we admit that P(~ ) is true then M(~,) should be false (i.e. M (x) should 

be true) and vice versa. Therefore, if there exists an interpretation in which M 1 -  



52 Chapter 0 

then to provide consistency of the formula P & M {[3} we should make an 

interpretation 

1 - { ( M 1 -  2 & P 1  ~ ~ ' )v  ( M 1  ~ ~ ' & P 1 -  ~')1 

In general, if there are the individual interpretations 

I~ 'MI  - ~ 

I N ' M 1 - E  

then to provide consistency of the formula P & M {D} we need to build an 

interpretation 

IN+, ' ( (M1 -- ~ ' & P 1  ~ ~') v ( M 1  ~: ~ ' & P 1 -  ~'))& 

& ( ( M 1  - ~ & P 1  r )7) v ( M 1  ~ ~ & P 1  - ~ ) ) &  

& ( ( M 1  - ~ '&P1  r ~ ) v  ( M 1  ~ ~ & P 1  - s 

I 

To simplify the interpretation for the formula P& M { [3 } it is more convenient to 

write 

I - { (M1 - x, P1 - x) v ( M 1  ~ x &  P1 r x)} 

where x is a free variable. 

By analogy, for the formula 

(AO) P& M &  Q& ...& Z { o } 

we make an interpretation 

I -  { P 1 -  x & ( M 1  r x v  Q1 ~ x v . . . v Z 1  ~ x ) v  

M 1  - x & ( P 1  ~ x v Q 1  ~: x v . . . v Z 1  ~ x ) v  

Z1 - x & ( M 1  :~ x v Q 1  :~ xv . . . ) }  



Problem classification. Iutroductiou to the solving methods 53 

where x is a free variable. 

Some typical generalizations of AO may be obtained without difficulties. Let us 

consider, for example, the formula 

P &  M{G,~}.  

One may simply establish the following interpretation 

I ={P1 = x , P 2  = y , ( M 1  :x x v M2 r y) v M1 = x , M 2  = y , ( P 1  ~: x v P2  ~: y)}. 

Besides, let us consider the following important example of the same kind: 

P &  Q{~',L-~} ~ P(:~,_y)& Q(~,_y){ ~y } 
. . . . . . . .  , . ; . ,  , . . . ,  , , . ,  , . , . .  

I - {P1 - 57,Q1 - ~', ( P 2  - y, Q2 ~ y v  P2 :x y, Q2 - y ) v  

wherey is a free variable. Note that P I,Q1 should be equally instantiated. 

We shall also use the following important rules for making complex interpretations. 

 al) P,1 Q{I} P(I) Q(I,) 

I - a common interpretation, I :,:L-3 

I 1 - is obtained from I by replacing variablcs 

(142) P v Q { r j } -  P ( ~ ) & Q ( r~ ), 

The following equivalences are essential in this case 

(A2.1) PCf , [ ] )  ~ P(~,,ALL )(since 3 x 3 y P ( x , y )  ~ 3 x V y P ( x , y ) )  

(A2.2) P(~. , y ,  ES , [] ) ~ P (~, .~,  A L L ,  ALL ). 

From this ,  

P ( 5 , ~ )  v Q(D,~ ' )  

gives the interpretations: 

Ip.o - { P 2  r ~" v Q2 r ~'} 



54 Chapter 0 

lp,~ - { P 1 -  A L L , P 2 -  ~ v Q 1 -  A L L , Q 2 -  ~, } 

(A3) P &  Q{I }  ~ Ip& I~ 

(conjunction of the individual interpretations not containing D). 

(A4) Propositional formula Q without variables is replaced by VxQ(x) (see example 

E0). 

(AS) For disjunction D, 

D -  P ( I ~ ) v Q ( I ~ ) v . . . v R ( I ~ )  {I} 

we set an interpretation 

z~ - z ~ & Z v / ~ & I v . . . v 4 ~ & I  

(,4 6) The interpretations are built only for the formulae or their negations. 

Let us consider some explanatory examples. 

Example E0. Consider a propositional system 

cA: P --~ S 

(P2:S --~ U 

(p3:P 

v . U  

To prove that 091, q92 , (P31-~ we introduce an equivalent system 

~o~-vx(P(x) -~ s(x)) 
~o; vx(s(~) -~ u(x)) 
~o; vxp (x) 

r 

(we leave the proof of correctness of such a transformation). 

Now we find suitable interpretations: 

I~i" P &  S { ~ } ~ 1~ - {P1 - x, S1 - x v P1 :/: x, S1 ~: x} 



Problem classification. Introduction to the solving methods 5 5 

x is a free variable (unbound variable stands for "ALL" here) 

/ ~ ' S &  U { ~ }  --~ I~,~ - { S 1 -  x, U 1 -  x v S1 r x, U1 :/: x} 

/ ~ P  { ~ } --~ I~,~ - {P1 - ALL } 

m 

(I~; contains an interpretation for P(x), (not for P ( x ) )  as it must be concerted 

according to the rule (A6) with 1~o ~ which deals with P(x)). 

I~,, " U ( ~ ) --+ I r  - { U 1 :/: "~ } 

m 

(Similarly, I r  establishes an interpretation for U(x) (not for U (x)) to concert with 

I~o~ ). 

Then we obtain: 

I~,, & I~o, ~ - { U 1 ~: ~,, P 1 - ALL  } 

( I r  & I~o, ~)& I~,, - {U 1 ~: ~, P 1 - A L L ,  S 1 ~: ~l substi tut ion ~ f o r  x}  

I r  I~, & I~o; & I~ - ~  (substi tution x - 5) 

Thus, qJ logically follows from qo 1,q~2,cp3. 

Example El .  For the formulae F: 

3yCSCy)& MCy) )  - S &  M{~}  

and V x ( P ( x ) v M ( x ) ) -  3 x ( P ( x ) v M ( x ) -  P & M { D }  

to prove F [- q~ for 

~ -  3 z ( S ( z ) &  P( z ) ) .  

According to general strategy we must replace g by ~ and derive F, ~ [- (I = D). 

- ~ -  V z ( S  (z)  v P ( z ) )  - 3 z ( S  (z)  v P ( z ) )  - 

- 3 z ( S ( z ) &  P (z))  - S &  P { D } 

Now we have " 



56 Chapter 0 

for S &  M { y }  ---> I1 - {S1 - .~& M 1  - .~} ; 

for P &  M {  ~] } --+ I 2  - { ( M 1  - f &  P1 ~: .9) v ( M 1  ~: .g& P1  - .~)}. 

for S & P { e }  ~ 13- {(Sl- 2& P1-  y)v(Sl  ~y&P1 ~ ) } .  

Note, that 13 is obtained from the relation between I p and I F . 

Thus, if in lpP1 :x ~ then in 1FP1 = ~ and vice versa. 

It is easy to see that 

I I & I 2 & I 3  =~ 

(namely what we want to conclude). 

Example E2. To prove that 

F 1, F 2 1 -  G ,where 

F I :  Vx(C(x) ---> (W(x)& R(x))). 

F 2 :  3x(C(x)& O(x)). 

G: 3x(O(x)& n(x)). 

After all necessary transformations we get 

FI:C&(WvR){G} .  

FZ:C&O{~}. 

G O & R { n } .  

We have the following interpretations : 

l p 2  { e l  - ~, O1 - ~} 

I~.  { ( o l  - ~ ,R1 ~ ~) ~ (O1 ~ ~& R1 - ~)} 

z is a free variable. 

Iy," {(C1 - u &  W1 - u &  R1 - u)  v 

(C1 ~: u &  W1 ~: u &  R1 ~: u)} 

u is a free variable. 



Problem classification. Introduction to the solving methods 57 

Now we obtain 

It2 & I~  Iz= ~ ' 

{ C 1 -  .~,01 - :~,R1 ~: 2} 

and proceed from 

( Iv2 & I e- )& Ir~ It:__ e 'G 

In this example we used the substitution .~ for z and u. 

E x a m p l e  E3. 

From the formulae 

n 

?F Vx(E(x)& V(x) ~ 3y(S(x,y)& C(y))) 

~o 2" 3x (P(x )& E(x)& Vy(S(x,  y) --+ P(y))) 

q9 3" Vx(P(x )  --~ V (x)) 

to deduce 

~ . 3 x ( P ( x ) & C ( x ) ) .  

Perform all necessary transformations: 

(1)Vx(E(x)& V (x) ~ 3y(S(x, y)& C(y))) ~ 

~ V x ( E ( x ) &  V (x) v S(x, y)& C(~)) -- 

~ 3x (E:x )& V ( x ) & ( S ( x , y ) v  C(y) )  

with an appropriate interpretation I1" 

I1 - { E l  - x & V 1  - x v E 1  ~: x &  V 1 .  x }  

w m 

x is unbound; the disjunction S (x, ~) v C (~) may not be taken into account due to 

the fact that C (~) is unconditionally true. 

w 

(2 )3x (P(x )& E(x)& Vy(S(x ,  y) v P(y))) ~ 

~ 3x (P(x )& E(x)& 3y(S(x ,y )& P(y)))  ~ 



58 Chapter 0 

m 

-- 3 x ( P ( x ) &  E(x)&(S(X,_y )& P(_y){[3y}))  

I 2 : -  {P1 - g & E 1  - ~ & ( S 1  - ~ ' & S 2  - y & P 1  - y v  

v S 1  - g & S 2  ~ y & P 1  ~ y)} 

with an unbound variable y and substitution ~ for x 

( 3 ) V x ( P ( x )  --~ V ( x ) )  -- V x ( P ( x )  v V ( x ) )  - 3 x ( P ( x ) &  V ( x ) )  

I 3 : -  {P1 - u & V 1  ~ u v P1  ~ u & V 1  - u} 

u is a free variable. 

m 

( 4 ) - ~  -- 3 x ( P ( x ) &  C ( x ) )  

1 4 : -  {P1  - v & C 1  * v v  P 1 .  v & C 1  - v} 

v is a free variable. 

To find I3 & I4 it is necessary previously to unify the unbound variables standing for 

the same predicate's arguments, i.e. to substitute v for u. Thus we get 

1 3 & 1 4 -  {P1 - v, C1 ~ v, V1 ~ v v  

v P 1  ~ v, C1 - v, V1 - v} 

with unbound variable v. 

Further we find 

( 1 3 & 1 4 ) & 1 2 .  

To do it we bind variables v and y with ~ : 

1 3 & I 4 & 1 2 : -  {P1 - ~ ' & E 1  - ~ & S 1  - ~ &  

& S 2 -  ~ & C 1 ,  ~ & V 1  ~ ~}. 

And finally we obtain I3 & I4 & I2 & I l: = [] using substitution ~ for unbound 

variable x in I1. 



Problem classification. Introduction to the solving methods 59 

0.3.5. Remarks on correctness of the procedure 

The grounds of the considered approach to proving deducibility of some formula qJ 

from a given set F of formulae are connected with the well-known Gedel completeness 

theorem. 

Therefore, we should prove correctness of the rules (A0 - A6) making complex 

interpretations. To be more precise we resrict our considerations by the rules (A0), 

(A1), (A2) and (A5) since the other rules may be proved by analogy. 

Atomic interpretations are considered to be true by definition. 

Let us consider the rule (A0)" 

P & Q { D } - - - >  I -  { P 1 -  x, Q1 ~ x v P1 ~ x, Q 1 -  x}. 

Suppose the opposite is true, i.e. there is a term t such that 

P(t) = 1, Q(t)= 1, 

Since 

e &  Q{ G} -- 3 x ( P ( x ) &  a ( x ) )  -- V x ( P ( x )  v a ( x ) )  

then it may be derived that P (t) v Q (t) is true which leads to a contradiction, that 

is 

( P ( t )  v Q ( t ) ) &  P ( t ) &  Q( t )  - D ,  

On the other hand, assume that P1 ~ x,Q1 ~ x. From this supposition one may 

derive 

P ( q ) -  1 , Q ( t  2) - 1,q ~ t 2. 

It gives 

(P(t~) v Q( t~) ) (P( t2)  v Q( t2 )  ) �9 P ( q ) . Q ( t 2 )  - 

= Q ( q ) .  P ( t , ) .  Q(t2) .  P ( t  2) 

and, therefore, 



60 Chapter 0 

P1 - t~, Q1 ~: t~ and P1 ~ t2,Q1 - t 2. 

It is easy to see that the result obtained is fully concerted with the rule (A0). The 

generalization of this proof may be done analogically. 

Now consider rule (A 1). 

Suppose, P v Q{~}. This is equivalent to 3x(P(x)  v Q(x)) from which one may 

derive 3xP (x) v 3xQ (x). Therefore, 

3 x P ( x )  v 3 y Q ( y )  --+ P ( ~ )  v Q ( ~ ) .  

Now consider an interpretation I = {~, ~ ..... ~, [3 ...,0} Rule (A1) gives 

P v Q{~,E]}--  

3 x 3 y ( P ( x ,  y)  v Q ( x ,  y ) )  .- 

3 x V y ( P ( x ,  y ) &  Q ( x ,  y ) )  .- 

3 x ( V y P ( x ,  y ) ) &  V z Q ( x , z ) )  --+ 

-+ 3 x ( B y P ( x ,  y)  v 3 z Q ( x , z ) )  - 

, - -3x3yP(x ,  y )  v 3 x 3 z Q ( x , z ) -  

-3x 3ye (x, y) v 3w 3zQ(~, ~)) 
V V 

- ~  P ( x ,  O ) v  Q ( w , o ) .  

For the rule (A2) we obtain 

P v Q { o } -  3 x ( P ( x )  v Q(x))~- 

- v x ( e ( x )  v Q(x))- ~p(~)~( . )  -~ P(o )& Q( o). 

The roles (A3) and (A4) may be proved without difficulties. Now consider the role 

(AS). Suppose, 

V V V V V V V 

D - PCx,, y , , . . . , z , )  v Q(x2 ,  Y2,. . . ,z2){  " }. 

It is equivalent to 

3x, 3yl . . . 3z, 3xz3y2 . . . 3z23u(  ( P (  xl , y,  , . . . , z, , u)  v 

vQ(x2  ,y2, . . . , z2 ,u)) -~  



Problem classification. Introduction to the solving methods 61 

"'3x13Yl ".'3z13u( P(Xl ,Yl . . . . .  Zl ,U ) v 

v 3x  2 3y2...  3z  2 3 u ( Q  (x  2 , Y2, '" ,  Z2, tI) ) 

--'> I v &  l V lq&, I. 

B v  
~  

induction (A5) may be proved for n > 2 formulae 

0.4. Finding a solution by means of theorem proving 

O. 4.1. Using logic programming 

It is rather natural to apply theorem proving techniques to problem solving. As was 

said before there are different problems one deals with when solving problems: (i) 

proving solution existence and (ii) finding a solution. The theorem proving technique is 

nolcvr for its combining tile above mentioned problems, i.e to prove the theorem of 

solution cxistcnce n~eans (in some way) to find a solution. The most effective (from a 

practical v~ewpoint) realization of this technique is associated vdth the progran~ming 

language Prolog [13,14]. In view of the fact tha! there are a lot of books concerning 

Prolog and related issues we shall outline the whole approach in a quite general 

manner. 

Prolog uses Horn's notation for well formed formulae with general representation 

(o.7): 

A, ( x , ,  .., xn, ) &  A 2 ( y , , . . . ,  7,,2 ) & "  & ,4,, ( z l , . . .  , Znm ) --+ B(u l  , . . .  ,tt,, k ) (0.7a) 

whereA 1 (...) ..... B(...) are the atomic formulae. 

Representation (0.7a) is called a clause with the head B(.) and body 

A 1 (...) ..... A m (...). A clause may bc either a fact, a rule, or a goal. 

A fact is a clause without body. A goal is a clause without head. A rule is a clause in 

general form (0.7a). 

The programming representation of a Horn-clause (0.7a) corresponds to the 

following clause-form: 



62 Chapter 0 

B(u , ,  ..., ) : - A ,  (x, ,  ..., x,, ), 

A2 (Yl ,..-, Y,,2 ), 

o o ~  

(0.7b) 

with symbol ":-" standing for "---~" ,meaning "implies". 

An execution of a rule consists in proving its head formula. This process results in 

obtaining a suitable interpretation for the formulae's arguments. To prove a head 

formula of a clause Prolog subsequently proves every formula in the body of the clause. 

Thus, to prove B(Ul,..., Unk) it starts with proving A 1 (Xl,..., x nl). After proving 

A 1 (x 1 .... ,Xnl) Prolog tries to prove A2(...), etc. There must be corresponding clauses 

(rules and facts) for every atomic formula, besides so-called standard formulae (for 

example, those connected with input-output and file processing). When proving an 

atomic formula Prolog selects the first alternative rule for this formula and executes it. 

If execution fails Prolog tries to execute the second rule, etc. If there are no more 

alternatives Prolog returns to the previous atomic formula and tries to prove it using 

other alternative rules. The whole process resembles looking for a path in a maze. The 

atomic formulae correspond to the grounds in the labirinth and rules (facts) correspond 

to the different ways out of the grounds. Consider the following example. Let there be 

given the Prolog-program fragment to calculate the area of a triangle shown in Fig.(0.5) 

Cl C2 

C 

Fig 0. 5. 

/*(R1)*/S(_,_,C I,C2,H . . . . . . . . .  Square):- 

bound (H), 



Problem classification, bltroduction to the solving methods 63 

bound (C 1 ), 

bound (C2), 

Square = 1/2 * H * (C1 + C2). 

/*(R2)*/S(A,_,C 1,C2,_,ALP . . . . . . .  Square):- 

bound (A), 

bound (C 1 ), 

bound (C2), 

bound (ALP), 

Square = A * (CI + C2) * SIN(ALP) * 1/2. 

/*(R3)*/S(A,B . . . . . . . . .  FI,XI,Square):- 

bound (A), 

bound (B), 

bound (FI), 

bound (XI), 

Square = A * B * SIN(FI + XI) * 1/2. 

... (etc.) 

Here bound (X) is standard predicate to test if a variable X is bound or free (i.e. 

hasn't a value). Here in this example are shown three rules R1, R2 and R3 for the 

atomic formula S(.) with arguments A, B, C1, C2, H, ALP, FI, XI corresponding to a, 

b, cl,  c2,  h, ot, q~ ~ ~ in Fig. 0.5. Argument Square stands for triangle's area. 

Consider, for example, rule (R1). When proving predicate S(.) using this rule Prolog 

first tests that variables H, C1 and C2 are bound by some values. In the case of this test 

being successful an area is simply found as a product I/2*H*(C1 + C2). If rules RI 

fails (because one of the variables H, C I and C2 is unbound) Prolog will tr3.' the next 

rule (R2) in which it is expected that four variables A, CI, C2 and ALP are bound. If 

R2 also fails Prolog will try R3 and so on. 

The theorem of solution existence is written as the goal-clause of a Prolog program, 

for example, 

Goal 



64 Chapter 0 

A --- 5 ,  

B=10, 

FI = 20, 

XI = 10, 

S(A, B, C 1, C2, H, ALP, FI, XI, Square), 

writ e(" Square =", Square). 

The theorem of solution existence corresponding to this goal is the following 

- ((V C1)(V C2)(VH)(VALP)(3Square))(S(5,1 O, C1, C2,H,ALP, 

20,1 O, Square)). 

From the previous section one may conclude that to prove deducibility 

b" t----'~ 

one should show that 

F, ~k--  r-1 

i.e. that a set of formulae {F,~P}is contradictory. Making a negation of �9 we 

obtain: 

3C13C23H3ALPVSquare S (5,10, C1, C2,H, ALP ,20, l O, Square) 

or after normalizing and skolemization 

S (5,10,cl,c2,h,alp,20,lO,Square). 

So, if we find an interpretation I providing the truth of F and falsehood of 9' i! 

would contain a required value of variable "Square" we are interested in. 

To prove a goal-clause Prolog uses a kind of linear resolution strategy. Onc may scc 

that every Horn-clause 

A(... ) :-  B(... ), (7(...),...,D(... ) 

is equivalent to disjunction 

B(. . . )  v C ( . . . ) v . . . vD( . . . )  v A(...).  



Problem classification. Introduction to the solving methods 65 

When proving atomic formula A(...) one in fact attempts to refute its negation, 

i.c.A (...). It is as in our case with the goal S. Suppose, there arc two formulae: 

A(...) (*) 

and B (.. .) v C ( . . . ) v . . . v D ( . . . )  v A(. . .)  (**) 

and, besides, the arguments in A (...) and in A are indiscernible (it may be done by 

means of the mechanism of unification briefly outlined below). Then, logical derivation 

from (*) and (* *) is a formula 

B (...) v C ( . . . )v . . .vn( . . . )  (***) 

which is called a resolvent. Since one needs to obtain an empty formula ( El ) then 

at the next step one takes the resolvent above and the rule for B(.), e.g. 

B(.):- E(.), 

F(.), 

. . .  

G(.). 

and tries to obtain their resolvent and so on. It is easy to notice that only facts really 

contract current resolvent. It therefore means that proving actually consists of reducing 

a given formula to some known facts. This is a deductive way of reasoning. The other 

reason for a resolvent being equal to "F'I" is the falsehood of every atomic formula in 

representation (***). 

A peculiarity of Prolog consists in availability of a set of rules for every atomic 

formula. To select a suitable role Prolog first of all performs the unification of a given 

atomic formula belonging to current resolvent and the head formula of the 

corresponding rule. Unification means valid substitution for a formula's arguments to 

provide their equality in both formulae participating in resolution. The rules of 

unification are summarized by Table 0.5 (for more details see [9,13]). 

Returning to our example, when unifying 



66 Chapter.O 

i i i i  i 

First argument 

X (free variable) 

X (free variable) 

X (free variable) 

X (free variable) 

a (constant) 

a (constant) 

f(x) (functor; x-free 

variable) 

i i  ill  i i  i i i i  

Second argument 

Y (free variable) 

a (constant) 

f(a) (fimctor; a-constant) 

f(z) (filnctor; z-free variable) 

b (constant) 

f(b) (functor; b-constant) 

f(y) (functor; y-free variable) 

Table 0.5. 
i i i 

Representation after unifica- 

tion for both arguments 

(X=Y) Y 

(X=a) a 

f(a) (X=f(a)) 

f(z) (X=f(z)) 

fail 

fail 

(Y=X)f(Y) 

S ( _ ,  _ ,  (_;1, C 2 , H ,  _ , _ ,  _ ,  _ ,  Square ~ ) and 

-S (5 ,10 ,c l , c2 ,h ,a lp ,20 ,  l O,Square ~2~ ) 

there would be obtained tile next matching: 

C1 - c l  

C 2 -  c 2  

H - h  

SquareO) - Square! 2) 

An underlying symbol (__) stands for "indifferent" variable matching for any valid 

argument of a formula. The resolvent Pl is the following 

P~ - ( b o u n d ( H )  v bound (C1)  v b o u n d ( C 2 )  v 

v S q u a r e  ~2) - 1 / 2 * H * ( C I  + C 2 ) ) .  



Problem classification. Introduction to the solving methods 67 

It is impossible to cut, for example, atomic formula b o u n d ( H )  from P l because 

predicate b o u n d ( H )  is not given. Yhe~'efore, Prolog will try rule (R2) (with the same 

result) and then - R3. For R3 Prolog obtains the following resolvent: 

P3 = bound  ( A ) v bound (B )  v bound (F1)  v bound(  X 1) v 

v S q u a r e  ~2~ - A * B * S IN  ( F 1  + X1)  * 1 / 2 ,  

Now, on the contrary, the following takes place: 

bound(A)  =" fa l se  " 

bound(B)  =" fa l se  ", 

bound( F 1) : "  fa l se  ", 

bound( X 1) =" j idse  ". 

As far as the formula 

Square ~-~ - A * B * Sin ( F1 + X 1) * 1 / 2 

is concerned it is evident that for 

A = 5 ; B =  1 0 ; F I = 2 0 ; X I = I 0 ,  

A'quare (2) would be equal to 25/2. That last value of Square (2) is the only suitable 

one to provide 

Square ~z~ _ A ' B ' S i n  ( F I +  X1)  * l / 2 - "  fa l se  ". 

Therefore, P3 =("false") what should be obtained) and the interpretation 

found is a refutation for the set of formulae 

{R1, R2 , R3 , S ,bound ( A ) , bound (B), bound ( F1) , bound ( X1)}. 

Hence, Prolog really proved the goal-clause and found a suitable interpretation 

representing a solution of the initial problem. 



68 Chapter 0 

O. 4.2. Combining proving and modeling techniques 

One of the drawbacks of the theorem proving approach to solving problems is the 

static representation of a problem. Even excluding non-traditional temporal logic, the 

possibilities of modern universal simulation systems (such as GPSS, Simula, GASP, 

SLAM et. al.) are of great importance for problem solving. In this section we consider 

combined simulation and proving techniques. There are some known versions of Prolog 

utilizing this peculiarity, for example T-Prolog, developed in Hungary. 

The basis for further considerations is the notion of generalized Horn clause with the 

following particular example: 

P:-Q, R, & T, & W,Z. 

where in addition to atomic formulae Q, R, Z are given two modeling programs 

(processes) T and W with prefix "&". To prove P in this example means subsequently to 

prove Q, R to fulfil T and W and then to prove Z. Fulfilment of processes T and W is 

understood in the sense of their termination in a given final state (states). Otherwise, 

Prolog interprets termination of a simulation process as a failure. Since processes T and 

W are developing in time then P is undefined until their termination. It means in its 

turn that all processes dependent on P cannot be initiated. Thus, in the case of endless 

processes (either T or W) it is impossible to say if P is true or false as follows from the 

well-known "Halting Problem" of A. Turing [7, 10]. 

There are two possibilities of realization of processes T and W. The first one is the 

realization of a simulating process and the second one is the realization of a planning 

process. The last case, evidently, is the most difficult. To proceed with it let us 

introduce: 

_ pin and Pfi - initial and final states of the simulated system; 

- U i (i = 1,I) - a set of operators applied to the system states; 

- predicate formulae Z i corresponding to operators Ui; the true value of Z i (Pj) is the 

necessary pre-condition for U i to be valid operator for the state Pj. 



Problem classification, bztroduction to the solving methods 69 

The planning process is defined as a finite sequence K of operators providing 

transformation 

p i ,  x , p ~  
f , 

Let us consider some formalized subproblems concerning building planning 

sequence. 

O. 4.2.1. Making a planning sequence when pre-conditions are omitted 

Suppose that 

e O,l,*l,t-l,m 

i.e. we deal with ternary-vectors representing states of the simulated system. We 

should interpret Pi = * as an indifferent (from the viewpoint of planning goals) element 

of corresponding state vector. 

Every operator U s can be represented as a vector 

u, -< u;,  u;,..., u;  > 

with elements U s e {0 1,*} j ' �9 

If U S = * then it follows that U s has no influence on the element Pj of a state vector. J 

Thus, the task is formulated as follows: there are given pin, pfi, {U s Is=l,s}. It is 

necessary to find a sequence K of operators providing mapping pin K > pfi 

Let us continue with the algorithm solving this task. Afterwards we shall give a 

necessary proof of the algorithm's correctness. 

Algorithm for making planning sequence K 

Step 1. Introduce auxiliary vector ~: 



70 Chapter 0 

f l /=<  1./1,1./2,...,1./n > 

,u~ - p s~ , i -  1,m 

P "  - <  P~",t:'2",...,P'" > ,P~ - <  P~ ,P2~ , . . . ,P~  > 

p,,,, p s~ ~ {0,1,*},1 - 1,m 

SetZ = 1, K = Q .  

Step 2. If 

(v0 (a ,  ~ {*, ~'" }) 
. . . . .  

then stop; otherwise determine the subset U z of operators UI3 (U[3 ~ K) satisfying 

the next selection rules: 

(B1)(V1)((/.t,:~*) --+ (U~ ~ {*,J.//})) 

(B2) (3/)(( / . t~**)& ( U f  - , u l ) ) , 1 -  1,m 

where ~ is an implication and & denotes conjunction. (The conditions (B1), (B2) 

are explained in the proof of the algorithm's correctness). 

Step 3. If U z = ~ then stop with general failure. If U z ~ Q then having in mind 

reduction of the set K length, select from U z (if tuZl > 1) operator Uy providing 

maximum value of 

z ( u ~  ) - z '  (u~)  + z ~ (u~) ,  

where 2, ~ (U ~ ) is the number of elements Uf ~U r satisfying (B1); 2 "2 (Ur) is the 

number of those elements Uf ~ U r satisfying the more rigid condition: 

( ( W Y - 1.l l :l k * ) & ( ~.l I :i k pl  in ). 

Obviously, the selected operator U?, provides the fastest approach to the final state 

Pfi. 



Problem classification. Introduction to the solving methods 71 

Step 4. The operator Uy selected at the previous step is assigned to the position Z 

from the end of K. Set Z= Z+ 1 and ~t = ~t o U,  where operation'o' is given by the Table 

0.6. Then go to step 2. 

The correctness of the algorithm is explained by the following 

a) The last operator in K(K ~ • ) must not "distort" the final state Pfi. It means that 

this operator provides a valid setting of elements in Pfi, i.e. those elements which must 

be set to unity cannot be set to zero and those elements which must be set to zero cannot 

be set to unity. This directly follows from the rule (B 1). 

b) Since we exclude self-transformations (i.e. those in the form P ' ~  P", P' = P"), 

then the selected operator must ensure these requirements are met (the rule (B2)). 

c) Finaly, the points a),b) remain justified for every intermediate state from the end 

of the transitions chain 

p~. ==> p~ ==> p2 ==>...==> p/~ 

when this state is considered as final after excluding those elements of the state 

vector which are set by the following operators. 

Table 0.6. 

meaning of ~1 meaning of U I meaning of a result 

~! = ~i o U i 

Invalid combinations which 

are cut by the rules (B1), 

(B2) 



72 Chapter 0 

Example. 

Suppose, 

p i n = < l l 0 0 1 1 >  

P f i = < 1 0 0 1 1 0 >  

U I = < 1 1 0 " * * >  

U 2 = < * * *  1 0 1 >  

U 3 = < * * 0 * * 0 >  

U 4 = < * *  1 * 1 * >  

U5 = < *  0 1  * * 1 >. 

At the first step only one operator U 3 satisfies the roles (B 1, B2). Therefore,  we set K 

= <U 3 >. As a result we find the state P' preceding the final state Pfi, i.e. 

P ' = < 1 0  * 1 1 " > .  

P' is obtained by replacing those elements in Pfi which are set (in "0" or in "1") by 

the operator  U 3 . Consider  now the state P' as a final one. This t ime operator  U s is a 

candidate  to K, i.e. K = < U 3 , U 5 > and P"= <1 * * 1 1 *>. For P" we may select 

operator  U 4 �9 

K = < U 4 , U 5, U 3 > 

and obtain P ' " =  < 1 * * 1 * * >. 

Finally,  we include in K operator U 2 and obtain: 

pin ~ piv = < 1 * * * * * > 

Kre s=<U 2,U 4,U 5,U 3 >. 

0.4.2.2. Making planning sequence with pre-conditions given by intervals 

Suppose that every operator U i is connected to the condition Z i given by an interval,  

e.g. Z i =<1 * 0 * 11  *>. From considerations above, it follows that Z i determines  some 

subset of  problem states, i.e. 



Problem classification. Introduction to the solving methods 73 

< 1 0 0 0 1 1 0 > < 1 1 0 0 1 1 0 >  

< 1 0 0 1 1 1 0 > < 1 1 0 1 1 1 0 >  

< 1 0 0 0 1 1 1 > < 1 1 0 0 1 1 1 >  

< 1 0 0 1 1 1 1 > < 1 1 0 1 1 1 1 > .  

Now every operator may be represented as a pair <U i, Zi> with condition Z i 

necessary for initiating the operator. Denote by Pi the subset of resulting states 

achieved by the execution of U i , i.e., 

Pi - Ui (Z i  ). 

For example, i f Z  i= < 1 " 0 "  1 1 " >  and U i = < 0 1  1 0 " ' 0 >  then Pi = 

= < 0  1 1 0 1  10 >. It means that one always gets only the state < 0 1 10 1 1 0 > a s a  

result of the application of operator U to every state defined by Z i. 

It is obvious that the intersection 

 r,j 

defines a subset of states obtained by the execution of U i which suit Zj ,  i.e. provide 

initiation of Uj. 

Let there be given a system of operators as shown below 

< Z  1 , U  1 > = ( < 0  1 " > , < 1 "  l > ) p l = < l  1 1> 

< Z  2 , U 2 > = ( < *  0 "  >, <*  0 0 > )  p 2 = < *  0 0 >  

< Z 3 , U 3 > = ( <  * 1 0 > , < 1  l * > ) p 3 = < l  1 0 >  

< Z 4 , U 4 > = ( <  ** 1 > , < * 0 1 > ) 9 4 = < ' 0 1 >  

< Z 5 , U 5 > = ( < 0 0 * > , < I  1 " > ) 0 5 = < 1  1 " >  

< Z 6 , U 6 > = ( < l  1 " > , < 0 "  l > ) P 6 = < 0 1  1>.  

Suppose, it is required to find the planning sequence K providing mapping 

K 
P/" = <  110 > = :>Pf  - <  111 >. 

Considering the initial state pin = < 1 10 > one may select either operator U 3 or U 6 . 

Thus, if K is represented as 



74 Chapter 0 

K - K ''"~ II K i"~e~ II K~""~ 

where K s ta r t  starting subsequence of K, 

and K inter(mediate), intermediate subsequence of K, 

and K finish, ending subsequence of K, 

and I[-  concatenation 

then it may be written that 

K start - ( U 3 ( P ' " ) v U 6 ( p ' ) ) = ( < l l O > u ,  v < 0 1 1 > u , ) .  

When using this special notation for K start one should bear in mind that instead of 

operator symbols we use corresponding state vector representations. Thus, for K finish 

we have: 

K s~'~h - ( U  1 v U s ) -  (< 01"  > U l v < 001 > Us). 

The last disjunction has been obtained in the supposition that the final state was 

achieved after applying either operator U 1 or U 5 . In the former case one may draw a 

conclusion that the second to last state was <0 1 *> since U 1 (< 0 1 *>)=<1 1 1>. In the 

latter case the analogous considerations are correct for operator U 5 . Our idea lays in 

the following. 

(R1) To build both sequences K start and K finish by turns until it is possible (all 

necessary premises for this are discussed below). 

(R2) If there is a common state in K start and K finish then this state connects both 

subsequences. Thus, in the example.above we find such a state: < 0 1 1 >U6 in K start and 

< 0 1 * >U1 in K finish . Therefore in our example we obtain K = < U 6 , U 1 >. 

Consider again K start = (<1 1 0> U3 v <0 1 l>l~j6 ). Since the state < 1 1 0 > U3 is 

equal to pin then this state may be deleted. It gives us the first concretization of (R1), 

namely: 

(RI.1). If K start has a duplicate of the state obtained earlier then the younger copy 

should be deleted. 

In our example it gives 



Problem classification. Introduction to the solving methods 75 

K "ta't - ( <  011 >U6 )). 

(R1.2). ff the disjunction of the states in K start becomes empty then there is no valid 

solution for an initial task. 

P r o o f  Supposition that in terms of assertion (R1.2) there is a common state, 

connecting K start and K finish directly leads to a contradiction. 

From K start = (< 0 1 1 > U6 ) one may obtain a new K start with representation 

K s tar t  - ( U I ( <  011 >u6)V (14(< 011 >u6)) - 

= ( <  111 >u~u, v < 001 >U6U4 ). 

The same considerations enable us to obtain new representation of  K finish , i.e. 

K ~'~h - ( <  11" * ) >U1U6 V "~ 0 1 >U4U5 , 

It gives us a new solution to the problem, since there is another common state in 

K finish (< 0 * 1 > U4U5 ) and in K start (< 0 0 1 > U6 U4 ); i.e. 

K = <  U6U4U 5 ~>o 

(R1.3). If for some state (operator) in K start ( K finish ) there is no valid following state 

(i.e. rtij = Q ) then this state (operator) should be deleted from K. It is also correct if all 

the following states for given state P' have already been obtained in K start (K finish ). 

(R2.1). State P' is common for K start and K finish if it corresponds to the state 

P" ~ K start and to the state P'"~ K finish such that there are no elements Pi" ~ P'' and 

Pi'" ~ P''' for the same index "i" and such that either PI" = 0  & Pi ' ' ' =  1 or 

PI" = 1 & Pi'" = 0. 

0.4.2.3. Making planning sequence in the system with post-conditions 

Let us now suppose, that every operator is represented by a pair < U i ,13 i > where I 3 i 

is a post-condition which may be interpreted as a goal of executing operator U i . We 



76 Chapter 0 

will represent 13 i by means of some (logical) function gi .With every state pt+l of a 

problem we connect a goal set G t§ = <gl,g2,.,gv > with logical functions gi ,  i=l ,v  �9 

Let pt+l be a current state with the goal set G t§ . The task to be solved is in finding 

a valid state pt and a corresponding set G t to satisfy the following conditions 

(i) U i does not distort pt+l ; 

(ii) G t+l ~ gi (gi is a derivation from G t+l ); 

(iii) G t c G t+l , -1 (G t ~ gi ) and G t is a maximum size set with the above shown 

properties. We confine our considerations to the supposition that G in = Q~. 

Consider the formula -~(G t ~ gi*). According to the G6del theorem it follows that 

there is an interpretation I providing truth of every formula in G t and false value of gi �9 

Suppose, 

G , + ,  _ 

Consider now the equation 

- - $  

g k & g ~  - 1. 

Its solution may be interpreted by means of a set of intervals, for example, if 

m 

gk - PI& Pz v P3 

g *  - 

then gk&gi  = (PI&P2 v P 3 ) & ( P 2  v P 3 ) =  P2&P3vPI&P2&P3 which gives the 

following interval representation" 

P1 P2 P3 

I a = < l  1 1> 

I b = < *  0 0> ,  

We need some intermediate operations for finding the common part of two intervals. 

Thus, if I 1 = < 1 * 0 > and 12 = < * * 0> then I1,2 = I1 ~ I2 = < 1 * 0>. By analogy with 

set difference we find 



l:~robhem classification. Introduction to the solving methods 77 

11/2 - I I \ 11,2 = 

1:2/l - 12 \ 11, 2 = < 0 * 0 > 

where \ is a symbol of subtraction operation. 

Subtracting one interval from another we may obtain a disjunction of intcl"vals, e.g, 

if 

I A = < * 0 * * 0 >  

IB=<I0*00> 

then 

I A \ I B = < 0 0 * * 0 > < * 0 *  1 0 >  

I B \ IA=Q.  

Evidently, if I A D I B then I B \ I A =Q. Suppose further, that for G t+l and gi* we 

subsequently find the individual solutions of equations: 

g l &  gi - 1 

in the form H 1 = { I l l ,  I12 ,.,Ilz } 

g 2 &  g i  - 1 

in the form H 2 = { I21,122 ,.,I2z } and 

g v &  gi - 1 

in the form H1 ~ = { I~ 1, Iv2 ,.,Ivz } 

where Hj represents disjunctions of all the intervals suiting to equation g:. & gi = 1 

Let, for instance, I x ~ H A ,I v ~ Iq):~ and I x :->Iy ~ Q. 

Include in H A Ix, v and I :~v.  Include in H~ I x,v and I y/•  where 

[x ,y  -- I x  ~ l y  

l~,, y - I x / Ix , y  

(*) 



78 Chapter 0 

And in general, let us include in H A all the nonempty intervals produced on the basis 

of (*) for an arbitrary I x and every possible interval I v from Hrt (~r Extending every 

set H~t is possible until there are no two similar intervals. 

Example. 

Let 

H 1 - {11 = <  0*  1" > , I 2  - <  *1"  1 >} 

H 2 - {13 = <  *00"  > , I 4  - <  * * 0 1  >} 

H 3 - { I 5 - < 0 " * 1 > } .  

Find 

Il n I3 - • 

Il  c~ I 4 -O 

6 I5 o. 

Thus, 

I1,5 - <  0 * 11 > 

11\ 5 - <  0 " 1 0  > 

15\ 1 - <  0 " 0 1  >. 

Include I1, 5 and I1\ 5 in H 1 instead ofI  1 . 

Include 11, 5 and 15\ 1 in H 3 instead of 15 . 

Changing indices of intervals, we obtain 

H 1 - {11 =< 0* 11 > , I2  - <  0* 10 >,I3 =<  *1" 1 >} 

H 2 - {14 =< *00" >,I5 - <  **01 >} 

H3 - {I1 =< 0 ' 1 1  >, /6  =< 0"01  >}. 

There is one common interval 11 in H 1 and H 3 now. 

Further we find" 

/3 ( ~ / 4  =Q 



Problem classil~cation, bltroduction to the solving methods 79 

Hence, 1 3 ~ 1 5 = < *  10 1> 

andI3, 5 = < *  10 1> 

I3\5=< * 1 1 1> 

I 5 \ 3 1 = < * 0 0  1>. 

Extend H 1 and H 2 to: 

H1 - {I1 --< 0 * 11 >,12 

H 2 - {15 - <  *00"  >, 13 

H 3 - {11 - <  0 *  11 >,17 

Repeating these necessary actions by 

we obtain finally 

H i =  { I 1 = < 0  1 1 1> 

I 2 = < 0 0  1 1 > 

I 3 = < 0 "  1 0 >  

I 4 = < 0 1 0 1 >  

I 5 = < 1 1 0 1 >  

I 6 = < 1 1 1 1 >  } 

H2= { I 7 = < 0 0 0 1 >  

I8=< 1 0 0 " >  

I 9 = < ' 0 0 0 >  

I 4 = < 0 1 0 1 >  

I 5 = < 1 1 0 1 >  } 

H3= { I i = < 0  1 1 1 >  

I 4 = < 0 1 0 1 >  

1 6 = < 1 1 1 1 >  

I 7 = < 0 0 0 1 >  }. 

- <  0 * 10 >,13 - <  *101 >,14 

- <  *101 >,16 - <  "001 >} 

=< 0 * O1 >}. 

- < * 1 1 1 > }  

analogy and leaving all intermediate results. 

The last step is an extremely silnple one: it is necessary to find an (arbitrary) interval 

which belongs to tile maximunl number of sets Hj (j = 1,2,3), i.e. 14 (in the above 



80 Chapter 0 

example). The indices of all the sets Hj containing a given interval (I 4 ) define the set of 

functions G*, for which 

*) 
(G* ~ gi �9 

Thus, in our example G *= { g l, g2, g3 }- 

Let us prove now that the set of formulae G*obtained in such a way is unextendable. 

Let I m be an interval on which G* is defined. Any function from G* is true on I m and gi 

is false. Besides, any function not belonging to G* is false on I m as it should be included 

in G* on the contrary. ( It is clear that including such a function in G*, i.e. obtaining a 

new set G** D G* provides G* [---- gi )- 

With reference to the proof of correctness of the algorithm outlined in w 0.4.2.1 it 

may be shown that the strategy used to select the next operator U i to include in K 

warrants obtaining the necessary sequence K providing mapping 

<pin,(~> K ~ <pfi ,Gfi> 

if such a selection keeps the inference relations G* ~ gj for all remaining operators 

Uj, j * i. 

If selecting operator U i excludes possibility for the other operator Uj to be selected it 

is necessary to organize solution as a tree-search procedure with backtracking. 

0.5. Finding an optimum interpretation 

Many difficulties arise when trying to find an optimum (with respect to the 

formalization (0-2)) solution. From the most common viewpoint there are two such 

problems, those which enable us to formalize an optimization criterion in terms of the 

initial problems, and those for which such a criterion is unclear or impossible (as in the 

case of partially-defined problems, for instance). For example, Euler's equation in 

variation calculus 

dFy-O 



Problem classification. Introduction to the solving methods 81 

defines the necessary condition for a function 

b 

l ( y ( x ) )  - I F ( x ,  y,  y ' )dx  
a 

to achieve an optimum value on the interval [a,b]. 

This example points out the criterion formalized in terms of the initial function 

F(x, y, y'). The great majority of optimization problems use the property 

d V(x) = o 
dx 

of the same type (i.e. derivative of given function F(x) is equal to 0) to find a 

corresponding value of the variable x providing optimum value of F(x). 

The problems of the other type do not give such a formal criterion. Here the accent is 

on determining the process of solution searching. It is essential that this process is 

strongly connected to the weak methods and heuristic reasoning. There is a number of 

methods using cutting to obtain on their basis a precise solution. These methods find 

and cut subsets X of values not containing optimum ones. If X is an initial set of valid 

values then cutting reduces it to ,~ - X\X. The effectiveness of such a strategy depends 

on the ratc of decreasing the row 

The well-known methods using cutting strategy are: the branches-and-bounds 

method, the method of ellipsis in linear programming (suggested by Hachiyan), the 

method of minorants and so on. Let us give an example of the latter procedure with a 

convex function f(x) for which one secks the minimum value on the interval [a, b]. 

Since f(x) is convex then if x I _< x 2 and f(x I ) _< f(x 2 ) it givcs 

I 
x* - a rg  m i n f ( x )  

x e[a,bl 

x _<x 2, 



82 Chapter 0 

where "argmin f(x)" stands for the argument x providing minimum value of the 

function f(x) on the given interval. 

Thus, supposing x 1 = (a + b -e )/2 and x 2 = (a + b +e )/2 we obtain: 

( a ) f ( x l )  <_ f ( x  2) --~ x* ~[a,x  2] 

( b ) f ( x l )  > f ( x 2 )  --~ x* ~[xl,b]. 

It gives us the possibility to reduce the length of the initial interval by at least two 

times. There are some important questions concerning the problems of the above type. 

(Problem 1) Finding relevant operators (actions) and conditions for their 

applicability. The operator in a broad sense is understood as an action connected with 

the task concept. This action may be one of the following type: 

- assigning a variable with value; 

- term substitution; 

- making equations; 

- expressing one variables by means of others; 

- transformating of expressions; 

- solving equations; 

- choosing alternatives; 

- introducting new objects; 

- finding a decision plan; 

- defining subgoals; 

-changing the original problem conditions; 

- verifying results obtained (and some others). 

(Problem 2) Determining the property W of the solution related to the original 

optimization criterion F as shown by the schemes below: 

(P2.a) F---~ W 

(P2.b) W --~ F 

(P2.c) W # F 

(P2.d) F ~ W 

(P2.e) W --~ F 



Problem classification. Introduction to the solving methods 83 

(P2.f) F ,--,-,> W 

(P2.g) W ,----,> F 

(P2.h) F,W ~-- V 

(P2.i) F---~ W 1 ; 

W ' - ( W  1 v W  2 ) 

F ~ ~  

w-(WlvW2) 

and some others, where 

(P2.a) means that W is a particular case ofF; 

(P2.b) means that F is a particular case of W; 

(P2.c) means that W and F are mutually incompatible; 

(P2.d & P2.e) are the same as (P2.a & P2.b) but W is negated with negation operator 

()" 

(P2.f) means that F is a likely reason for W; 

(P2.h) introduces new property V which logically follows from F and W; 

(P2.i) considers F as a particular reason of W. 

(Problem 3) Making a planning sequence to solve the problem. There are some 

interesting techniques in automatic solution synthesis that were considered above and 

based on the theorem proving methods. However, when speaking of problem solving 

one in fact has in mind something more profound than "pure" deductive reasoning. It 

concerns such abilities as 

(P3.1) the ability to interpret solution of a problem; 

(P3.2) purposeful behavior; 

(P3.3) the extension of the formal boundaries of a problem; 

(P3.4) the ability of self-learning on patterns and mistakes; 

(P3.5) intuition; 

(P3.6) the ability to "catch" the internal problem structure (insight); 

(P3.7) the ability to generalize; 

(P3.8) the capacity to reason with incomplete facts and inconsistent information; 

(P3.9) the ability to make hypotheses; 

(P3.10) the ability to ask questions. 



84 Chapter 0 

It is (at least by now) evident that the computer is incapable of competing with the 

human mind in these questions. So it seems to be rational to create human-machine 

integrated solving systems providing an appropriate specialization for both sides (i.e. 

the human should deal with the "informal" part of a problem and machine with the 

"formal" aspects of a problem). 

0.5.1. Task conceptualization 

To provide the necessary means for "manipulation" with task representation we 

should introduce some basic notions of task conceptualization. In the beginning of this 

chapter we considered the notion of a problem and problem states. Now we need some 

more detailed considerations to define the general scheme of a human-machine process 

in searching for a solution. Let us begin with the notion of the task concept. 

O. 5.2. The notion of  a task concept 

Task concept is a semantic whole consisting of a domain-concept, conditions- 

concept, solution-concept and a concept of transformations. 

Concept represents a set of interrelated notions. If the notions are primary (i.e. not 

defined through other notions) then concept is called atomic. Primary notions include 

the notions of an object, an action, relation, property and a function. 

Notions P1 and P2 form semantic whole if one of the following is true: 

(A) P1 and P2 are connected to each other as a relation and one of its arguments; 

(B) P1 and P2 are connected to each other as an action and its carrier or subject. 

(C) P1 and P2 are connected to each other as a function and its argument (object and 

its property). 

By induction it follows that a set P = {P1,P2 ..... Pn} of notions represents a semantic 

whole, if every Pi in P form a semantic whole with, as a minimum Pj ~ P\{Pi }. 

The structure of a concept C is an ordered set of C i where C i is a semantic whole 

contained in the semantic whole representing C. The structure of a concept C 

corresponds to a graph G(C, if') with a set E" of vertices connected by transitive arcs 



Problem classification. Introduction to the solving methods 85 

--.> 

(Ck,C m) ~ W if the semantic whole determining concept C m is contained in the 

semantic whole which represents concept C k. A task concept has the structure shown in 

Fig. 0.6. The character of this structure makes impossible an unlimited "enclosure" of 

the various individual tasks in it. Therefore, we confine our considerations to a definite 

set of discrete optimization problems, for instance to those given in [ 15 - 27]. Note that 

Fig. 0.6 does not pretend to be full or an exhaustive taxonomy. To proceed with our 

analysis, let us consider some examples. 

task concept 

concept of 
[task] domain 

concept of [task] 
conditions 

concept' of [taskl 
solution 

concept of [task] 
transformations 

--~ domain concept 

- - ~  domain type 

predicative definitions 
(formal depiction by 
set of formulae of 
predicate calculus) 

, 

'in te rp ret ation 

i "/iomain type 
--- set (subset) 
- -  system 
--- equation / inequation 

graph / net 
--- matrix 

object / element 
structure 

- -  algebra 
figure 

Fig. 0. 6. a) 

i 
[ concept of conditions 
domain restrictions 
restrictions on the 
solving process. 
restrictions on the re- 
sults of.task solving 
external restrictions 
(on computer memory, 
time andaccuracy) 

I concept of a solution 
I 

concept of solution as 
the whole 

parameters of a solution 
properties of a solutmn 

concept of 
transformations 

acceptable operations 
on task domain 
equivalent transforma- 
tions of domain 
e.quivalent transforma- 
tmns of task conditions 

concept of solution 
as the whole 

the structure of a solution 
the relations between 
elements of solution 
interpretation for 
elements of solution 



86 Chapter 0 

II 
II 

Domain type 

set ~i~) equation 
inequality 
grapn ~ )  
n e t  
matrix 
system 

incoherent 
oriented 
unoriented 

with cycles 
] ] witnoutcyc, es 

L tree 
not-tree 

weigh.ted . ! 
unwe~ghted 

i symmetrical. asymmetrical 
91nary 
integer 
rein 

finite 
infinite 

homogeneous 
eterogeneous 

~ [  ordered 
unordered 

discrete 
continuous 

of elements/objects 
of subsets 
of numbers 

vertices are w.eighted 
arcs are weighted 

square 
rectangular Fig. 0. 6. b) 

I 
RD1 
RD2 
RD3 
RD4 
RD5 
RD6 
RD7 
RD8 
RD9 

I 
RSP1 
RSP2 
RSP3 
RSP4 

RSP5 
RSP6 

RSP7 

RSP8 

RSP9 

RSP10 

Concept of conditions 

domain restrictions 

--'--restrictions 
---restrictions 
"-'-restrictions 
-'-restrictions 
---restrictions 
---restrictions 
---restrictions 
"---restrictions 
---restrictions 

I 
on the sum (or any other function) of elements 
on the cgmpatibihty of elements 
on the elements precedence(les) 
on the elements combination(s) 
on the subordination of elements 
on the elements belonging 
on the incompatibility of elements 
on the values of elements 
on the availability of elements 

restrictions on the solving process I 

----sectuential choice 
"--'an influence of step i on the step (i+l) 
"---'an influence of step i on the step (i+k) 
""no restrictions on the order of including 

elements in the solution 
--'recursive character of a solving process 
----a number of alternatives exponentially rises with the 

linear increase of the size of task domain 
---including some elements in a solution does not 
p e r m i t  one to include others 
----the inclusion some elements in a solution requires 

to include the others 
---selection of the elements for a solution is 

performed from a discrete set 
----selection of the elements for solution is 

performed from a continuous set 

Fig 0. 6. c) 



Problem classification, bltroduction to tile solving methods 87 

RRI  

RR2 

RR3 

RR4 

RR5 

RR6 

RR7 

ER1 
ER2 
ER3 
ER4 
ER5 
ER6 
ER7 
ER8 
ER9 

Restrictions on the results of task solving 

a solution represents an unordered set of 
distinct elements (elements of solution) 
a solution represents an ordered set of 
solution elements 
a solution corresponds to a definite 
subset of task domain 
a solution is defined on the whole 
task domain 
a solution is presented by the only 
element from task domain 
a solution is a structure on the set of 
elements from task domain 
a solution is given by the values of the 
elements [within given groups] 

The ralations between elements of solution 

restrictions on the sum (or any other function) of elements 
restrictions on the compatibility of elements 
restrictions on the elements precedence 
restrictions on the elements combination(s) 
restrictions on the subordination of elements 
restrictions on the elements belonging 
restrictions on the incompatibility of elements 
restrictions on the values of elements 
restrictions on the availability of elements 

Fig. O. 6. d) 

The structure of a solution 

SS 1 ~----matrix (submatrix) 
SS2P--(sub)set 
SS3t----[required] division into classes 
SS4p--sequence (ordered set) 
SS5[---!ist of values for solution elements 
SS6~ ~ (sub)graph 

Properties of a solution 
SP 1 "--'satisfaction of given functional relation 
SP2--optimization ol  given criterion 
SP3 "-'--being the only suitable solution 
SP4 "---'being an arbitrary suitable solution 
SP5--cpntaining the maximum number of 

elements of solution 
----containing the minimum number of 

elements of solution 
SP6 

Fig. 0. 6. e) 



88 Chapter 0 

The examples" of task concepts 

Let us consider the following concept 

< MA (binary, symmetrical) > 

< R D 2 >  

< RSP 1, RSP7, RSP9 > 

<SSI  > 

< E R 2 >  

< RR3 > 

< SP5 > 

All of the abbreviations used in this and the following examples are explained in 

Fig. 0.6b -~.6e. 

This compressed depiction may be interpreted as follows: "There is a binary 

symmetrical matrix for representing given restrictions on the compatibility of elements 

from a task domain. It is necessary to determine its submatrix, representing the 

maximum number of elements in a solution and satisfying the restrictions on the 

compatibility of elements. The process of finding the elements of a solution is 

sequential and, moreover inclusion of some elements in the solution may exclude 

others. The choice of elements is performed from a discrete set". The well-known 

problem of a maximum clique in a graph [24, 27] entirely suits this situation. 

Example 2. 

<< SE( finite, homogeneous, of elements )> 

< R D 3 >  

< RSP2, RSP3, RSP9 > 

< RR2, RR4 > 

< ER3 > 

< SS4 > 

< SP2 >> 



Problem classificatioH. Introduction to the solving methods 89 

"There is a finite homogel~cous set of elements with given precedence relations 

bet~vccn elements. The structure of a solution corresponds to ordered sequence of 

elements providing the optimum value of given criterion. The process of searching for a 

solution is characterized by the influence of ever)' given step on some future steps (i.e. it 

is not Markovian)". Such a reading may suit the problem of finding an optimum 

permutation of given elements from a discrete set with a defined precedence relation 

II81. 

Example 3. 

<< SE ( of SE( finite, unordered, of elements ) > 

< R D 8 >  

< RSP7 > 

< RRI, RRT, RR3 v RR4 > 

< SP 1, SP4 > 

< SS5 >> 

The problem consists in the following: "there is a set of unordered, finite (sub)sets of 

elements with given restrictions on their values. It is required to find the values of these 

elements satisfying a given fimctional dependency (an arbitrary suitablc solution is 

needed). A final solution is defined (i.e., valid) on the whole domain oron its pan" 

It is clear that the problem of finding a solution for a given boolean function 

represented in conjuctive normal form [221 thoroughly corresponds to the given 

formulation. 

Example 4. 

<< MA( binary, rectangular, assymetrical )> 

< RR3 v RR4 > 

< S S I  > 

< SP1, SP6 > 

< RSP 1, RSP3, RSP4, RSP9 >> 



90 Chapter 0 

"There is given a binary rectangular asymmetrical matrix. It is required to find a 

(sub)-matrix which satisfies given functional dependency and contains a minimum 

amount of elements of a solution. The process of solution searching is characterized by 

dependency between every current and the following steps and consists of choosing 

elements of solution from discrete sets". 

We can see that this formulation is suitable for minimum [cost] cover-problem [17, 

27]. 

0.5.3. Scheme of  a solvingprocess 

Solving a problem is connected with the purposeful transformation of its concept 

according to the scheme below which is called S-scheme: 

Pc* p~ 

C x . . . .  > C* . . . . . . .  > Q* . . . .  > Qx (0.8) 

where C x - is a concept of a task to be solved 

C* - is a concept of a task with a known solution obtained on the basis of an 

algorithm Pc,  

Q* (Qx) - is a concept of solution, corresponding to 

C* (Cx) 

~r  ~tQ - are the concept transformations 

The particular cases of (0.8) correspond to the truncated S-schemes (0.9 - 0.11) in 

which ~c and ~tQ are autotransformations H c, Hq that is 

H(C* ) --> C*, H(Q* ) --> Q* 

where C* and Q* are concepts. 

~c c 

C x . . . .  > C* . . . . . . .  > Q* ( ~l.Q - is an autotransformation) 

Rc* 

Cx . . . . . .  > Q* . . . .  > Qx ( ~tc "is an autotransformation) 

(0.9) 

(O.lO) 



Problem classification, bltroduction to the solving methods 91 

Rc* 
4) C x . . . . . .  > Qx (~I,Q ,~1, C are the autotransformations) (0.11) 

The solving process structures based on S-schemes are shown in Fig. 0.7. 

a) 

b) 

c) 

C Rc (Q1-C2) Rc (Q2-C3) Rc 
Cx--~~C1 - ~ Q I ~ C z  -~Qz ~ - . . .  

Re 
C y C x  �9 Q1 

Cx -'~'%-----~Cx Rc ~ Q2 

Q1, Q z , . . . ,  Q ,  - are the elements of a solution concept 

~ Q x  

"Cx..--m--. CI -~ 2 Cx i=0" ~ "q'N 

q 1 , q 2, �9 �9 �9 , q N - are the elements of a solution concept 

Q. Q Qx 

d) 
Cx 2 Qx 

i=o ~ qN 

i=i+l, ( q o , ' . . .  q i )  

~ consequential reduction 
decomposition 

~ simple Iteration 
iteration with finding solution operators Rq 

Fig. 0. 7. 

The nondeterministic actions during the search for a solution are connected with 

concept transformations. In general, this action is accomplished by a human-solver in 

the form of a search tree and it is, therefore, the duty of the computer system to provide 

automatically all of the necessary manipulations associated with a task concepts. Such 

manipulations consist of: 

(0) checking consistency of the model 

(1) addition/deletion of some equation(s)/inequality(ies) 

(2) variable substitution 



92 Chapter 0 

(3) modification of equation(s) / inequality(ies) by means of equivalent 

transformations 

(4) partial calculations 

(5) unification of two problem states (contexts) 

(6) generation and modification of objects on the basis of rules (productions) 

(7) defining a required subset (substructure) on a task domain 

(8) substitution of one part of a concept by another 

(9) organization of an intelligent helper 

(10) testing derivability of one equation (inequality, assertion, etc.) from the others 

and so on. 

0.5.3.0. Checking consistency of the model 

Let S be the set of formulae forming a current model. The consistency of S is 

understood in the sense that S ~ E! does not take place. Obviously, if S is consistent 

and the formula q~ is added to S then S w { q~ } is consistent if S ~-- ~ does not hold. 

0.5.3.1. Variable substitution 

Nontriviality of this procedure as well as equation modification may be shown by the 

following example: 

S (p'(x) / p(x)) �9 (i) aif (x) 

(ii) dif ( F ( x ) ) -  F'(x)* dif (x). 

After substitution P for F it should be obtained that 

(iii) f (dif (P(x)) / P(x) 

and further on the basis of 

(iv) I dif(z) ._ In(z)  + C  
z 



Problem classification, bltroduction to the solving methods 93 

it is derived with replacing Z by P(x) 

(v) In ( P ( x ) )  + C. 

The difficulty is in recognizing the part P'(x) �9 dif(x) in (i) as a whole because there 

is term P(x) separating P'(x) from dif(x). Therefore, the system has to use tile following 

rule without which it is impossible to get the final result (v): 

( A ( x ) /  B ( x ) ) -  A ( x )  , ( 1 / B ( x ) ) = ( 1 / B ( x ) )  , A ( x ) .  

0.5.3.2. Partial calculations and solving equations 

Let, for example, 

a - 1 6  

b -  ~/a 2 + 9  

c - b + d - 4  run~ 

Calculations are performed beginning from the row for which run-instruction was 

applied. 

Step 1. Variable "b" is replaced by ~ a  2 + 9 what results in 

c - ~/a 2 + 9 + d - 4  

Step 2. Variable "a" is replaced by constant "16" 

c - 2 1 + d  

Since there is no expression for "d" the variable "c" is assigned with the partially 

calculated expression above. The special kind of partially calculated expression is an 

equation (inequality), for example, 

x -  x 3 + x  5 - x  -1 +1 

or x > X 2 - 5 



94 Chapter 0 

It is therefore essential to recognize the type of functional equation in order to apply 

a suitable solving method. Partial calculations are connected with a number of technical 

problems, for example, symbolic arithmetic, making equations, the definition of the 

equation type and others. 

0.5.3.3.  Genera t ion  / d e l e t i o n  ~ t r a n s f o r m a t i o n  o f  task  objects  on the  ru le  bas is  

This system function may be demonstrated by the following example. Suppose, there 

is given an equation: 

(X 1V X'2 V X3)(X 1V X 2 V X'3)(X'I V X-3)(X1V X 4 V X3)(X" 4 V X3) -- 1. 

It is desirable that the system would be able to perform the necessary transformations 

using the rules of the next type: 

" if for some i X i = 1 then only those disjunctions which do not contain X i should 

remain or which contain X i ; in this last case delete X i from such disjunctions". 

0.5.3. 4. E x t r a c t i n g  a r equ i red  subse t  on the  task  d o m a i n  

The system must perform operators 

findali (x, P(x)), 

findsome (x, P(x)), 

where P(x) is a given property of an object belonging to task domain. The above 

operators are not traditional. The ability to execute these operators depends on the 

property P(x) as well as on the manner of task domain definition. In the problem 

solving system, for example, the following operator must be supported 

findsome 
( x,  { x 1 + x2 - 5 x 3 = max:, xl - 2 x 2 +6x 3 >4; 

3x 1 + 3 x 2 - 3x 3 > 0; x 1 >_ 0, x 2 >__ 0; x 3 > 0}). 



Problem classification, bttroduction to the soh, ing methods 95 

0.5.3.5. Unification o f  contexts 

This problem is one of the most important missions assigned to a problem -solving 

system. It co~sists in finding equivalency between two different task models, 

0.5.3.6. Orqanization o f  an intelligent helper 

There are some important points concerning human-machine interaction. One of 

them is the organization of an intelligent helper. The helper is oriented to providing the 

following types of assistance: 

- consulting on the methods or (at least) the ideas of a given problem solution: 

- organizing the system of questions and answers in the sense of G. Polya: 

- finding an analogous problem in the know!edge-base; 

- recognizing the type and the structure of a problem; 

- analyzing the possible alternatives when performing decision making; 

- retrieving and updating the history of a solution process: and some olhers, 

0.5.3. 7. Defining and interpreting the required substructures on a task domain 

The system must be able to read and analyze visually displayed information ~ot as 

the set of symbols but as the definite mathematical structures. For instance, if the 

following data are displayed 

0101 

b = 1001 

0100 

then the system must recognize that "b" represents an 0,1-matrix. This is the same 

process employed in the recognition of the variables in an expression. For example, 

given the expression 

~ + z - x = 2  

then the system has to be clear whether "xy" is a single or a compound variable. 



96 Chapter 0 

O. 6. Psychological aspects 

One of the main questions in the development of a human-machine problem solving 

system concerns mental creativity and productivity. There is a considerable amount of 

literature related to tllis issue (see, for example, 128, 29]). 

Wc shall consider the questions partially concerned with this aspect in chapter 6 

when discussing heuristic reasoning. However, it should be mentioned that the problem 

of activating creative processes is a very complicated one and has not been developed 

sufficiently to be of effective practical utilization. 

O. 7'. Conclusion 

It was shown that there are three kinds of general problems in which we are 

interested, i.e. 

(a) - finding interpretations which suit a given task model,represented by the system 

of relations, 

(b) - finding optimum interpretations; 

(c) - finding algorithms and some considerations were given to these problems. 

Every one of the general problems above may be dctaited according to a task model 

represented by a tuple (0-2). It is evident that tile human-machine solving syslem is 

essentially based oll weak methods mainly oriented to a general problem (c). To develop 

this approach one needs to consider solving process as the sequence of distinct operators 

with a priori given properties. It is the subject we shall consider in the following 

chapters. 



97 

Chapter 1 

ELEMENTS OF PROBLEM SOLVING THEORY: APPLICATION 
OF CUTTING STRATEGIES 

Abstract, The theory of problem solving operates with a definite set of formal 

models and corresponding methods. The majority of them deal with a space of potential 

states of lhe problem and search for the solution as the path connecting the initial 

slate with the final state of the problem. A short review of these techniques may be 

found in [ 15,16I. 

We confine our considerations to the task consisting in the meeting of the given 

requirements for a set K of operators. The requirements will be connected with a 

number of relations which must be satisfied. Moreover, we shall systematically use 

weak methods and meta-procedures to obtain an exact solution for a problem. This 

chapter highlights the details of the usage of the converging cuts principle enabling 

weak methods to become practically strong. Some well-known NP-complete problems 

are considered for which we apply this principle. 

1.1. Introduction 

Let us introduce some definitions. We suppose that the search for a problem solution 

consists in pcrlorming a number of elementa~ solving operations Oi. By clenicnt~tr~ 

solving operation we mcan tile determination of unknown value(s) on the basis of a 

known algorithm or rule(s). Therefore, the entire solving process represents an ordered 

sequence K in the following form K--- < Oil, Oi2 ..... Oiz >. Vet5, often, though, it is not 

obligatol 7 for K to be an ordered set, i.e. the problem consists in finding a set of solving 

operations with given properties. 



98 Chapter 1 

Henceforth, we shall consider the notions of an elementary solving operation and an 

element of a solution to be equivalent. Generally speaking, we do not take into account 

the computational complexity of the elementary solving operations (e.s.o.) Let us 

classify different tasks of finding solution K on the basis of the properties of the e.s.o. 

This classification is provided. 

( i ) By the very character of  the set of  e.s.o.: it may be finite and static, (i.e. be 

given a priori) or it may be dynamically modified according to known and/or unknown 

rules. 

(ii) By the character of  e.s.o, selection: the current choice of e.s.o, may have an 

influence on the future choices or not (i.e. the whole process may be regarded as 

Markovian or not). In addition, choice of e.s.o, may be performed conditionally or not. 

In the first case we deal with productions < Ci, Oi >, where Ci is a condition restricting 

the applicability of e.s.o. Oi. 

(iii) By the availability of  the solution definition: the final state of a problem may be 

known, i.e. the object we are to obtain is given by its specification, but the algorithm is 

unknown. On the other hand, the very object may be given through its properties and 

relations with other objects and in this case we do not know both: the object and an 

algorithm to obtain it. 

(iv) By the availability of  the very solution elements: there are may be no 

information concerning the e.s.o. (i.e. they must to be found). In this case the whole 

problem consists of the following: 

(a) finding the e.s.o's ; 

(b) finding an algorithm to build the solving sequence of e.s.o's; 

(c) finding the unknown object by application of the algorithm. 

It seems that it is this last case that one frequently faces in the applications that are 

most difficult. It is worthwhile to mention in this context that existing formal 

approaches to problem solving are scarcely powerful enough for problems of this kind. 

More realistically, we must consider the whole problem solving process as a tight 

interaction between human and system supporting that "part" of a search for a solution 

which may be regarded as formal. 



Elements of problem solving theory 99 

Given that the searching process is clearly connected with finding a set of solution 

elements, the main task of this chapter is to show regular methods by which this may be 

accomplished. Such regular methods represent the formalized solving principles. 

1.2. The properties of a solution's elements 

We distinguish 7 basic properties (relations) of the domain of a solution's elements 

which are used in the solving process. 

Precedence relation (~). Elementary solving operation Oi precedes the operation 

Oj ( Oi >- Oj ) if in every valid solution K Oi is performed before Oj. 

IncompatibiliW relation (#). Two elementary solving operations are incompatible if 

they cannot be represented in a solution simultaneously (or the choice of one of them 

excludes the choice of the other, and vice versa). By induction n-ary #-relation means 

that given combinations of e.s.o, are impossible. 

Implication (--,). E.s.o. Oi entails e.s.o. Oj (or requires/assumes Oj ) if the choice of 

Oi necessarily leads to the choice of O j. This is denoted by Oi --~ Oj. 

Alternative choice (:). We shall say that Oi generates mutually exclusive alternatives 

and write Oi --~ O j  Ok if choice of Oi leads to the choice of Oj or Ok which are mutually 

exclusive. 

There is an equivalency between 

O, -~ Oj "O k 

and 

(Oi v Oj v Ok)&(Oi v Oj v Ok). 

Equivalency_ (--~). Elementary solving operation Oi is equivalent to the sequence Ki = 

< Oil, Oj2 ,...,Ojt > of e.s.o, if the results of Oi and Ki are similiar in some context. 

Prohibition ( -o ). Elementary solving operation Oi prohibits Oj ( Oi -o Oj ) if the 

choice of Oi excludes the choice of Oj but an opposite may be false (i.e., it is not a 

symmetrical relation). 



1 O0 Chapter 1 

Domination ( I> ). Oi dominates Oj in the sense of some criterion (function) q~ (what 

is denoted by Oi t> Oj ) if q~ (Oi) > q~ (Oj), where q~ (.) - is a criterion which is to be 
q~ 

optimized (maximized). 

We additionally consider the property of existentionality( 3 ) and universality ( V ). 

Existenti0nali~ ( B ). The designation 3 ( Oil, Oi2 ..... Oit ) means that in a given set 
q, 

of e.s.o., there may exist at least one solution element which belongs to the searched 

sequence K (has a property q~ ). 

Universali~ ( 'v' ). The designation V ( Oil, Oi2,...,Oit ) means that all the 
q~ 

operations from a given set belong to the searched sequence K (have the property q~ ). 

Many problems may be formalized in terms of the given relations. Let us consider 

them in brief. The basic problems connected to the precedence relation are those 

belonging to scheduling theory [18]. Since many of them are NP-complete problems 

they represent an interesting field for the use of weak methods and heuristic reasoning. 

Relatively few of these problems may be formalized by means of "pure" logic. Some 

particular cases of the type are considered in this chapter. The main considerations are 

presented in chapter 3. 

Incompatibility (#) - relation is given a central part of the chapter. As will be 

demonstrated below, a great majority of NP-complete problems may be reduced to a 

formal representation using the #- relation. Using some equivalent transformations it is 

also possible to represent other logic relations such as implication (~) ,  inference (~---), 

and prohibition (-o) by means of #. The first part of the chapter is devoted to the 

interpretation of resolution strategy in a formal logical system on the basis of # - 

equations. 

An equivalency ( - - )  is a central component of the theory of formal grammars [19]. 

It, however, is beyond the scope of this book. 

Domination ( v, ) is also the subject of discussion in chapter 3. 



Elements of problem solving theoty 101 

It is important to note that to find a solving sequence K of the above type all relevant 

operators Oi must be given. Moreover, we assume that the set of e.s.o is discrete and 

finite. It is clear that such a simplification in some cases may be not correct. So, we 

have sufficient reason to separate four kinds of problems of very,' different natures: 

(i)  the problems with a discrete and finite set of e.s.o; 

(ii) the problems with a discrete and countable infinite set of e.s.o ; 

(iii) the problems with a continuum set of e.s.o ; 

(iv) the problems with an unknown set of e.s.o 

This chapter deals only with the problems of type (i). The problems of type (ii, iii) 

are considered in the next chapter. The problems of type (iv) are discussed in chapter 3. 

1.3. A system of axioms for incompatibility calculus 

We begin our discussion with a short guide Io incompatibility calculus (based on the 

Sheffer's operation [2()]). This calculus is essential for our approach due to its direct 

applicability to the different well-known NP-complete tasks (as a maximum clique 

problem and others). It is worth mentioning that reasoning in terms such as "A 

excludes B, and vice versa" is quite common together with the widely used production 

form "A implies B" There is a simple equivalency between these two forms of 

reasoning, namely 

(A - ,  m -- (A# 

with symbols --~ for implication; 

# for incompatibility: 

" for negation; 

~ for equivalency. 

To build incompatibility calculus it is sufficient to use only this operation (#). 

However, together wilh "#" we shall use the negation sylnbol also for the sake of 

readability. 



102 Chapter I 

Firstly we build a formal system of #-calculus. The axioms will be represented in the 

form 

A 
I I 

B 

where A is an initial set of formulae, and B represents a formula which follows from 

A due to inference rules of predicate calculus [7,9]. We avoid many details connected 

with specification of the language, well-formed formulae and inference rules of 

predicate calculus supposing the reader to be familiar with it. To distinguish different 

formulae in A we shall write A1; A2;...;Ak with designation Ai (i = 1,k ) for every 

individual formula. 

The list of axioms is the following 

x#y x#x x#y #x 
(AO) I I;I I1 I;I I; 

y#x x x 
Y 

m 

(x#y)#F;  x (x#y)#F; y 

(A1) I I;I I 
B m 

F F 

(x#y)#F;  F (x#y)#z; 

(A2) I I;I i; 

y (z y) 



Elements of problem solving theory 103 

(x#y)#F;  x # F 

(a3) l 

F 

(x#y)#F;  x (x#y)#F; y 

(A4) I I; I 

y#F x # F  

CA5) a) l 

(++y) + (++;) 

(,,,+y) + (++;) 
b) l , I; 

(++;) 

(++y) (++y) 
c) l ........... t; (resolution rule) 

(A6) (x # y )  # D is always true ( ~ stands for falsehood) 

( x # ~  ) # y  

(A7) I I; 

Y 



104 Chapter 1 

(xey)#F; (x#y)#F; 

(A8) I 
F 

I;I 
F 

I; 

(A9) I 

(++y) # + 

I;I 
(x# y) # x 

x#y  
I; 

(AIO) I 

x#y)#F;  x# y 

F 

I;I 

(x #y)#F; x#y 

F 

I; 

(x#y)#F; 

(All) [--~ 
(~#y)#O; 

I;I 
(x#y)#(F#G) 

+ (x#y)#F 

#(x,y,u,..., w) 

(A12) [ I;I 
is always true ; x , y , . . . ,w  



Elements of problem solving theory 105 

(A13) ] l; 

(;++) 

(A14) I I; 

#(x,y,u,w) 

#(a,b,c,d,...,w);a 
(A15) I I; (contraction rule) 

#(b,c,d,...,w) 

#(a,b,c,d,...,v,w);#(a,b,c,...,v) 
(A15') I 

#(a,  b, c, d,. . . ,  v, w) is to be deleted 

All these axioms may be easily verified by equivalence (a#b)~ a v b. Let US 

show that the following system is contradictory: 

(F 1) #(a ,  b ,y)  

(F2)  (x#y)#a 
(F3) (b# y)#z 
(F 4) x#a 
(V 5) ~-#6 

(F6)  (b#y)#6. 

From (F2) and (F4) on the basis of axiom (A3) we obtain (F7): 



106 Chapter 1 

( F 7 )  a .  

From (F6) and (FT) we obtain (F8): (b # y). With (F3) it gives (Fg): Z .  Finally, from 

(F5) it follows that (F10): a. Refering to (FT) we derive a contradiction. 

To simplify manipulations it is useful to represent every formula of incompatibility 

calculus as the conjunction of the formulae in the following form 

#(X il, X i2,..., X irl ) 

#(Xj l ,Xj2, . . . ,Xjr2)  

where xi h (Xjm) denotes some variable or its negation. This is always possible due to 

the known theorem about representing propositional formulae in the conjunctive 

normal form. This is also required by resolution strategy on the basis of Robinson's 

method [21]. 

1.3.1. Resolution strategy for incompatibility calculus 

Agreement on designations: 

# - is the symbol of incompatibility relation; 

x # y - means that two objects x and y cannot be presented for solution 

simultaneously; 

#(x,y) - is the same as x # y; 

#(a, b, c,...,w) - denotes an expansion of the previous case for the set of objects {a, 

b,c,...,w}; 

v ,~  , &,--> ,~ - disjunction, negation, conjunction, implication and equivalency 

correspondingly. 

E] - is the symbol of logical contradiction; 

F---  syntactic entailment; 

I = - semantic entailment ( ~ -  and I- are equivalent according to G6del's completeness 

theorem); 

@ - an empty set; 



Elements of problem solving theory 107 

~- is used to denote the belonging of some object(s) to the given set; 

- is the sign of set intersection; 

- is the sign of set combining. 

We begin our considerations by solving systems of equations representing #- 

relations between different pairs of objects. Afterwards, we will make generalization 

from the resolution strategy to a common case. Let us consider the system of equations 

in the form a # b (objects "a" and "b" are mutually exclusive). An acceptable solution S 

for such a system represents a set of objects satisfying every equation of the given 

system. The solution S has the property that either object "a" or its negation "~-" must 

be included in S. If a ~ S then it simply indicates that ~- ~ S. Obviously, a # g- for 

every "a". As a sequence, in the case when 

a i ~ S a n d a i  ~ S ~  ai ~ S  

the solution S must be denied and is called unacceptable (invalid). 

Let us have the system 

U ~ 

m 

x 1 #x  3 x 2 #x  4 x 3 #x  5 x 4 # x  7 

x 1 # x 4 x 2 # x 5 x 3 # x 6 x 4 # x 7 

x 1 # x  6 x 2 # x  7 x 4 # x  5 

x 1 # x 7 x 2 # x 3 

x 5 # x  7 

(~. 2) 

All the equations of the form Xi # x i (i= 1,7 ) are assumed by default. We are looking 

for the valid solution S if it exists. 

In this section we obtain inference rules for # - calculus directly from the system U of 

2-ary equations, although there are more effective procedures to find a solution in this 

case (these procedures are considered in the next section). Unfortunately, there are no 

efficient algorithms (from the computational complexity viewpoint) in the general case 

with n-ary #-equations (n > 2). Therefore, our considerations of inference rules remain 

valuable from this viewpoint. We directly begin with 

m 

Inference rule 1. If simultaneously xi #xj and x i # xj for some i ~ j, then x j ~ S. 



108 Chapter 1 

D 

Proof By assuming opposite (i.e. xj ~ S) we derive x i E S and x i E S and thus, the 

invalidity of S. 

m 

Inference rule 2. If simultaneously xj # xi and xk # x i (for some i, j, k) then xj # Xk. 
u 

Proof If we suggest that xj e S and Xk e S then it entails x i E S and xi e S and 

invalidity of S. 

This inference rule enables one to generate new formulae. For example, from (1.2) 
m 

we consider the formulae with Xl and x 1 and obtain : 

x3 # xa, x4 # x6, xa # xT. 

The inference rule 2 also remains operational in the common case concerning 

relations in the form #(a,b ..... c). 

So, from # ( ~ ,  x2, ~3) 

and #(xl,x2,x4,x7) 

( -  ) one can derive # x 2, x 3, x 4, x 7 . 

A proof may be simply obtained from equivalence #(a,b .... , c)-~ a v bv...vc. Also 

note that it immediately follows from Robinson's principle of resolution [21]. 

L e m m a  1.1. (i) If simultaneously for some i xi e S and x i e S or (ii) xi ~ S and 
m 

x i ~ S then S is invalid. If S is invalid due to inference rules, then system U is 

unresolvable. 

L e m m a  1.2. ff we derive xi ~ S then it also means that xj r S for every xj such as xi 

# X j .  

If there are for some xi only equations with xi (not with x i ) or only equations with 

x i (not with xi ) then such equations should be deleted from U without loss of solution. 

Definition. Two systems U and U' of #-equations are equivalent if any solution of 

one of them is a solution for the other (or may be transformed to that solution by means 

of a known algorithm). 



Elements of problem solving theory 109 

Definition. For two equations 

we call # (F,  G) their xi -resolvent.(This definition is essential for Chapter 4.) 

The solving procedure considers variables in the increasing order of their indices. 

Thus, firstly we consider all the equations containing the variable xl( x 1 ) and find all 

possible x l -resolvents which are automatically added to the initial system U excepting 

the tautologies (i.e., those of the form xa # x a ). Then we remove from U all of the 

equations with X l (x 1) and repeat our considerations with x2 (x 2 ) in a similar way, 

etc. 

We formalize this process as 

Theorem 1.1. (Cutting). Let V (xi) be a set of equations from U containing xi or x i. 

Then if x -resolvents from W (xi) are added to U one can remove W (xi)  from U and 

preserve equivalency of this new system and U. 

Proof Denote by U(i) the new system of equations {U ~ T(i)}\ W (xi), where T(i) is 

the set of consequences from W (xi) obtained by the x - resolutions. We must prove that 

any valid solution Si for U(i) does not contradict W (xi). Suppose an opposite, i.e. Si is 

in contradiction with ~ (xi). It means that there is a pair of equations 

Xoc#X i and xl3#xi 

with Xo~ ,x13 ~ S. But it is impossible since we derive from W (xi) x c~ # x13 which 

immediately leads to a contradiction. Therefore, U and U(i) are equivalent in the above 

defined sense. 

An analogous considerations may be applied to any other variable from U(i ), etc. 

until the system of equations U becomes unreducible. 

Corollary. If xi e S (or x i e S) then having got from this necessary results one 

can remove all of the equations with xi ( x i ) from consideration. 



1 10 Chapter I 

Proof Let x i e S and all necessary consequences from this be obtained. Consider the 

formula xi # a. It is clear that in both cases a E S or ar S (~  e S) this formula is always 

true for x i ES, i.e. the choice of "a" does not depend upon a given formula. 

Return to the example (1.2). After generating T(xl ) and removing ~1 / ( x l )  we get the 

following configuration 
m 

x 2 #x 4 x 3 #x  5 x 4 #x  7 
. . . . .  

x 2 #x  5 x 3 #x  6 x 4 #x  7 

x 2 # x  7 x 3 # x  4 x 4 # x  5 

x 2 #x  3 x 4 #x 6 

w m 

x 5 # x  6 

(1.3) 

From qJ (x : )  we obtain T: = x4 # xs, X4 # X 7, X4 # X 3 and a new configuration 
m 

x 3 # x 5 x 4 # x 7 

x 3 #x 6 x 4 #x 7 

x 3 #x  4 x 4 #x  7 

x 3 #x  4 x 4 #x  5 

x 4 # x 6 

X 4 # X 5 

m m 

x 5 # x  6 

x 5 # x  7 

(1.4) 

From ~1~ ( x 3 )  we find x 4 E S and further, due to lemma 1.2, x5 E S, x7 ~ S. 

Additionally we get new formulae 

m m 

98 4 # x  6, X4#X 5. 

According to the corollary above we exclude the equations with x4, xs, x7 (x 4, 
w u 

x 5, x 7 ) which results in an empty final configuration with a partial solution 

X 1,x 2 , x  4 , x  5 ,x  7 ES. 

The values of x3 and X6 may be obtained by the following common rule: 



Elements of problem solving theory 111 

"if the variables xil, Xi2,...,Xit remain unknown (it > it-l > ... > il ) then their 
B 

determinantion is obtained by including xi or x i in S in accordance with lemma 1.2 

starting from the variables with larger indices. This process cannot result in a logical 

contradiction ( [3 )". 

Thus, in our case we have 

a) X 6 E S  ~ x 3 E S  

b) x 6 e S  ~ x 3 E S  or  x3 E S .  

Generalization of the results obtained for n-ary (n > 2) #-relations may be performed 

without difficulty. 

So, inference rule 1 is replaced by 

Inference rule 1 . 

(i) if simultaneously 

#(a,b,c ..... w, xj) 

#(a,b,c ..... w, xj) 

#(a,-b, c,..., w, xj) 

.....  ,rj) 

then xj ~ S 

(ii) if simultaneously 

then R~S.  

where R is a set of objects, 

Thus, if R =  {a,b}, then R = {a,b} v {a,b}v {a,b} 

Inference rule 2 is replaced by 



1 12 Chapter 1 

Inference rule 2*. If 

then #(R,e) 

where R, Q are arbitrary subsets of objects. 

Example. 

From #(a,b, c) 

#(a,e,f ,g,h) 

we obtain #(b, c, e, f ,  g,h) 

Corollary. 

From #(a, F v G )  

and # (a, H v E )  

we derive 

#(F,H) 

#(F,E) 

#(G,H) 

# (G,E)  

Inference rule 3 retains its formulation. In addition we introduce the rule of 

simplification, namely :"if there are equations in the form # (F,G) and # (G) then the 

first one may be deleted without loss of solution". The proof immediately follows from 

the observation that every solution of # (G) is also suitable for # (F,G). 

On the basis of a given resolution strategy we now produce more efficient 

algorithms. 



Elements of problem solving theory 113 

1.3.2. The case of 2-ary #-equations 

For the systems with 2-ary (binary) #-equations there is a simple and efficient 

algorithm based on a binary-tree equivalent procedure [22]. 

Due to the very form of 2-ary #-equations it becomes practically effective to try 

alternative substitutions for variables i.e. to exercise both variants x = 1 and x = 0. 

If we cannot derive a contradiction from a substitution for a variable x, then we can 

reduce the initial system by deleting all of the formulae with x (or x ). 

So, for the system (1.2) supposing x4 c S we derive a contradiction, therefore, it is 
m 

deduced that x 4 E S and now we get x 1, x2, xs, x7 e S without contradiction. After 

reducing U we get the equation x3 # x 6. 

This may be summarized by the following : 

Lemma 1.3. If setting of x1, X2 , . . . ,  Xk does not lead to a contradiction then all the 

equations containing these variables or their negations may be deleted without loss of a 

solution. 

Proof ff the rest part U* of U which does not contain the variables X1, X2 . . . . .  Xk is 

unresolvable then addition to U of equations with X1,. . . ,Xk ( x  1 . . . . .  x k ) does not 

eliminate contradiction. 

1.3.3. The case of  n-ary #-equations 

In this section we will develop a combined method on the basis of resolution strategy 

and some reasonable heuristic method of searching for "the most" probable way to the 

goal. Our prime task is not to refute a given system of #-equations but to solve the 

system with some valid solution. Let us consider the system (1.5). 

Let us answer the question: "what is the estimation of the mathematical expectation 

of a number of valid solutions for U?". To answer the question denote by Vq~ the 

number of arguments of a formula q~. The number of interpretations for q~ is 2 v~ and 



114 Chapter I 

only one is invalid (i.e. providing falsehood of q~ ). So, we may introduce a probability 

of q~ to be true for every randomly generated interpretation I and denote it by tr( q~ ). 

U: 

# ( d , e , f )  

#(b, 

#(e,f) 

(1. s) 

Thus we have 

2 v' -1  

2v~ (1. 6) 

Note. For the validity of the whole procedure it is required that the initial system 

does not contain duplicates of any formula and that all the contractions which may be 

made by the contraction rule (A15') are performed. 

For the entire system U we obtain the approximated probability of an arbitrary 

interpretation to be the valid solution for U in the form 

Sol(U) - tr(q~ 1)* lr(~9 2 )*. . . ,  tr(~9 z ) (1. 7) 

where z is the number of equations in U. Note, that (1.7) does not take into account 

the conditional character of the probabilities tr( qai ). Let M denote the total number of 

variables in U. Therefore 2 M is the total number of different interpretations for U. The 



Elements of problem solving theory 115 

mathematical expectation of the number of valid solutions for U (denoted by v ) may 

be expressed approximately as 

v - 2 M ,  So l (U)  (1. 8) 

We use a good heuristic with the aim of locating solutions or performing a cutting on 

the basis of a partial result obtained. 

A heuristic results from the following reasoning. At every step we must select into 

solutions some variable (or its negation). This choice must be drawn from the set of 

alternatives. We must decide which choice is "the best"? To do it we have to bear in 

mind that failure of the whole process is connected with an emptiness of such a set. 

This is due to the fact that all variables from some formula #(Xl ,..., x2 ) have been 

included in S. Therefore we must adhere to the strategy that prefers initially to consider 

the "shortest" formulae (with minimum number of arguments). If we choose some 

variable Z then the system U is to be reduced by deleting all the formulae with Z and 

removing Z from the formulae containing Z. Let us denote by n2 -the number of 2-ary 

#-equations, by n3 - the number of 3-ary #-equations etc. Thus for system (1.5) we have 

n2 = 4, n3 = 4, n4 = 1. After including, for instance, "a" and then deterministically "e", 

" f "  in S, U will be reduced to 

# (b , ( )  

U (a)" # (d , c )  (1.9) 

#(b,c)  

with n2 ' =  3. 

An "effect" of appointing variable "a" to S may be estimated from the value of 

So l (~  a) )=0.42 on the basis of formula (1.7). Thus, we get 

So I (U (a) ) = 0.42 

with Va = 3.3 



116 Chapter I 

From the considerations above it follows that we should prefer such a choice which 

provides a maximum estimation of the value v' for reduced system U' due to 

appointment given variable to S. 

Estimating these values for variables of the system (1.5),we find that either variable 

"b ~ or variable "5"  should be included in S in the first instance. 

Suppose b e S. Reduced system U has the form 

Ut: 

#(d,e,f) 

~(e, Zt 

(1.10) 

Then "~" may be included unconditionally (because there is no equation with "~"). 

This time we obtain 

#(d,e,f) 
 (o.el 
#(e,Z/ 

with final solution b ,  5,  a, e, f e S 

(1.11) 



Elements of problem solving theory 117 

It is curious to note that this strategy for the system of 2-ary equations prefers to 

choose those variables which reduce the number of equations as much as possible. 

All that remains is to show how to perform cutting in the case of algorithm failure. 

Let us suppose that a set of appointments has the form 

s'={x, } 1 ,xi2 ,'..,Xit 

with last appointment x it produced by the algorithm. S' has a property that we 

cannot add to it any other variable (or its negation) from the remaining system without 

obtaining a contradiction. 

To proceed we must introduce the following counterpart of the theorem 1.1. 

Theorem 1.2. Any set of #-formulae containing variable x and x may be 

equivalently replaced by their resolvents due to the rule of resolution, i.e. from # (x,F) 

and (x ,G) follows # (F,G). 
w 

As we remember, #(F,G) is called x-resolvent of equations # (x,F) and # (x ,G). 

Theorem 1.2 asserts that the initial system U of #-equations may be replaced by the 

equivalent system of Z-resolvents for any variable Z ( Z ) together with those equations 

which do not contain variable Z (Z) .  

Before proving this tllcorem lct us consider an example. Suppose, we have a system 

U: 

Then an equivalent system U', obtained from U on the basis of d-resolvents has the 

next form: 



118 Chapter 1 

U r 
#(a,c) 

Another equivalent system U" obtained on the basis of a-rcsolvents has the next 

form: 

u". #(c,d). 

Note, that tautologies (i.e., #-equations containing pair (s) of contrary arguments x 
w 

and x ) may be deleted. For example 

#(a,c) 

#(a,v,d) 

give # (c,c,d) which is always true. 

As far as this example is concerned theorem 1.2 may be understood in such a way 

that any valid solution of U' or U" does not contradict U (i.e. may be expanded to the 

valid solution of U). 

Denote the system obtained from U with x-resolvents by U* (U' or U" are individual 

examples of U*). We must prove that every valid solution for U* is suitable for U (an 

opposite is evident due to the rules of logical inference). Suppose < o~, 13 .... ,7 > is a valid 

solution for U* and invalid for U. It means that there is a variable x ~{ot, f5 .... ,7} such 

that 

<o~,~ .... , ~ , > ~ x c S  

and<ct ,  13 .... , 7 > ~  x e S  

simultaneously. More precisely, it means that there are two formulae 

# (x,Z1) 

with ZI, Z2 e {oc, 13,..., 7}. 



Elements of problem solving theory 119 

The latter directly leads to a contradiction. 

Theorem 1.2. gives us the possibility to create an effective cutting mechanism. 

Return to the partial invalid solution S ' =  {Xil, xi2 ,...,xit }. We came to a conclusion 

that system Us' cannot be solved. For the sake of clarity lct us consider the next 

example 

u: 

# ( a, b, -ff , d, e ) 

#(a,c,~) 

#(~,d,~-) 

# ( b , d , e )  

#(c,d)  

# ( a , b , - d , d )  

# ( b , ~ , d )  

# ( b , d , F , g ) .  

With S '=  <a,b> we obtain 

Us,: 

#(-ff, d , e )  / f~ / 

# ( - ( , d , Y )  / f2 / 

#(d ,e)  / f3 / 

#(c,d)  / L / 

# ( g , d )  / fs / 

#(g,d)  / L / 



120 Chapter 1 

Us, is not solvable (by a valid solution). Every equation in Us, has its counterpart in 

initial system U. Our idea is in the following: to replace U in such a manner that 

formulae in a new system would possibly contain a combination <a,b>. Because S' is 

invalid then it follows that #(a,b) and therefore every formula of the type #(a,b,X) with 

an arbitrary set X may be deleted. To do this, let us find the complementary set S" of 

the set S" 

S" ={c,d,e} 

and then reduce subsequently the system U to the system U REDUCED by means of 

c-, d-, and e-resolutions. 

Theorem 1.2. warrants that every valid solution of (_]REDUCED may be extended to a 

valid solution of initial system U. If from U REDUCED we derive a contradiction, it 

means that an initial system U is contradictory. We avoid formal details connected with 

this procedure. Instead we may summarized with the following semiformal scheme: 

s.i. Step-by-step select the variables to the partial solution S' until S' becomes invalid 

or an "end" will be reached. 

s.ii. If S' is invalid then find the complementary set S". 

s.iii. Reduce U by generating x-resolvents for variables x not belonging to, S". Build 

new system U. 

s.iv. Resume procedure for U REDUCED 

If "end" then reduce an initial system U on the basis of the solution obtained and 

repeat the prOcedure with this nonempty reduced system. Thus, in our example one 

obtains: 

U ~ u c ~  =# (a,b). 

Hence, one can set 

m 

b e S ,  d e S  

and determine a suitable solution: { ~,  e, b ,  d }. 



Elements of problem solving theory 121 

1.4. An algorithm for searching for maximum-size zero-submatrix 

Let Bn, n (n > 2) be a symmetrical 0,1-matrix with zero diagonal. It is required to find 

a maximum zero submatrix of this matrix with equal set of rows and columns. Thus, for 

0,1-matrix in Fig . l . la  the maximum zero-submatrix is shown in Fig.l . lb. So we are 

interested in an algorithm to solve this problem. 

1 
2 
3 
4 
5 
6 
7 
8 

1 2 
0 1 
1 0 
1 1 
1 0 
1 1 
0 0 
0 1 
0 0 

3 4 5 6  
1 1 1 0 
1 0 1 0 
0 0 0  1 
0 0 1 1 
0 1 0 0 
1 1 0 0 
0 0 0  1 
0 0 1 0  

Fig. 1. 1. a) 

7 8 
0 0 
1 0 
0 0 
0 0 
0 1 
1 0 
0 1 
1 0 

3 4 7 
3 0 0 0  
4 0 0 0  
7 0 0 0  

Fig. 1. 1. b) 

1 6  
1 0 0  
2 1 0  
3 1 1  

7~ = 4  1 1  
5 1 0  
6 0 0  
7 0 1  
8 0 0  

Fig 1. 1. c) 

The reader may find existing approaches to this problem in [17,23]. An NP- 

completeness of this problem is shown in [24]. Due to this fact, the approaches based on 

the use of a binary search tree or on restricted "try-and-choose"-strategy (for example in 

Geoffrion'salgorithm) work poorly with the sparse 0,1-matrices. In particular, 

approbation of Geoffrion's algorithm on the IBM PC/XT for individual tasks and 0,1- 

matrices containing 40-60 rows (columns) has shown that the implementation of the 

procedure took from 1-2 to 150 minutes (in some cases). 

Suppose that a rapid heuristic method enables one to obtain a precise solution with 

probability p (i.e. for N different individual tasks (with relatively large N) a precise 

solution is obtained in N*p cases). In addition, assume that the algorithm is applied to 

the same individual task m>l times with cutting any previously found solution by 

means of special matrix transformations. Then the value (1 - p)m represents a 

probabalistic estimation of not locating the optimal solution. Even with p = 0.3 it is 

sufficient to repeat algorithm m = 8 times in order to provide value of (1 - p)m equal to 



122 Chapter 1 

0.057. In other words, with a strong heuristic algorithm it is possible to organize a 

probabilistic estimation of the number of iterations required. 

The idea of the suggested approach is in the following. 

1. Every iteration results in finding some solution (some zero submatrix). Let its size 

be equal to K (K represents the number of rows (and columns since the submatrix is 

square with the same set of rows and columns). Denote by g (k+l) the mathematical 

expectation of the number of zero submatrices with (k+l) rows (columns) contained in 

initial matrix Bn, n 

2. If kt (k+ 1) < l, then the procedure stops. 

If ~t (k+ l) > 1, then the procedure continues after excluding any solution obtained by 

special modification of matrix B. 

TASK FORMALIZATION 

Let Bn,n be a symmetrical (in regard to its main diagonal) 0,l-matrix with the 

dimensions n• We will omit, as a rule, the indices of the dimensions. Let b designate 

a set of rows (columns) (given by their numbers or indices) of an arbitrary zero 

submatrix of given matrix B. R (b )  will denote the number of elements of b.  We may, 

on occasion, use the designation b (B) to identify the matrix B we are considering. 

R. 

We are interested in finding the set b * with maximum value R( b *). 

The designations R(b*) and R* are equivalent; so are the designations R (b )  and 

The designation b will also be used to identify a matrix with a set of rows 

(columns) contained in b.  

Rows' (columns') numbers will be designated by i, j,..., m, n or by i l, i2,...,in or by the 

numbers 1,2 ..... N. We shall use Greek symbols o~, I~ .... ,y, with the same aim. 



Elemen t s  o f  p r o b l e m  so lv ing  theory  123 

If B(i , j )=l  then we consider rows i and j (columns i and j ) to be incompatible 

(mutually exclusive), i.e. i # j. 

Let there be two rows i and j with i # j. We will say that a row "i" Q-covers a row "j" 

if for every column k, k r i and k ~ j, we have that if B(j,k) = 1 then it follows that 

B(i,k) = 1 also (the opposite may be false). 

Row i and row j (column i and column j) are mutually compatible if the relation i # j 

does not apply (i.e., B(i,j) = 0). 

Define for all compatible rows i and j their disjunction V (i,j) = t, where t represents 

a new row such that t(k) = B(i,k)vB(j,k) for every k ~ i and k ~ j and B(t,i) = B(t,j) = 0. 

For example,  V (2,4) = <10101110> for the rows 2 and 4 from matrix in Fig. 1.1a. 

Let il, i2 ..... it be mutually compatible rows (i.e. there is no pair im, in with im# in ). 

Disjunction V ( i l , i  2 . . . . .  i t )  is defined as follows: 

V ( i l ,  i2 . . . . .  i t )  = V ( i l ,  V ( i 2 ,  V ( i  3 . . . .  , V ( i t - l , i t  ). . . ). 

Suppose the rows il, i2 ,...,it belong to b * (and therefore are mutually compatible ). 

Let us say that a row ct (i l, i2 .... ,it )- covers a row 13 ( ~#13 is assumed by default) if a 

new row ct' obtained as a disjunction 

ct ' -  V ( i  1,i  2 . . . . .  it ,  or) 

Q - covers a new row l~' obtained as a disjunction 

f l  ' = V (i l ,  i 2 . . . . .  it , f l  ). 

Naturally,  the notion we have introduced above assumes compatibility of o~ ( 13 ) with 

every row from (il, i2 ..... it). 

To solve the original problem we will use the following lemmas. 

L e m m a  1.4. If a row i is zero then it follows that i e b * 



124 Chapter I 

Using lemma 1.4 one may contract the initial matrix Bn, n. 

Lemma 1.5. If a row "i" Z-covers a row "j" (Z may be equal to ~ )  then one may 

exclude row "i" and column 'T' from Bn, n without losing a solution. 

Proof (for the case of ~ - coveting). Let a row "i" ~ - cover a row "j". Suppose that 

b * contains "i". It is evident that "i" may be replaced by "j" in b * without loss of a 

solution. 

Lemma 1.6. If row 'T' contains the only non zero element in column "j" (i.e. all but 

one element B(i,j) are zero) then one may delete the row "j" and the column "j" without 

loss of a solution. 

Lemma 1.7. Suppose, we have some current solution b with corresponding value of 

R(b ), where b determines some zero submatrix of an initial 0,1-matrix B. Then one 

may remove from B the rows and corresponding columns which contain a number of 

zeroes less than or equal to R (b) .  This removal does not lead to the loss of a solution. 

Proof Obviously, every row 'T' (column 'T') containing a number of zeroes which is 

less than or equal to a given value n may be compatible at most with n other rows 

(columns). An alignment n _< R ( b )  excludes the possibility for such a row 'T' to belong 

to a better solution b * with R (b *) > R(b ). 

Corollary. Suppose a row "i" contains n zero elements, n = R(b )+ 1. In order to test 

that "i" belongs to a better solution b ', one needs to build a submatrix with a set of rows 

(columns) containing row (column) 'T' and rows (columns) s (s -j ,k,1 .... ) with B(i,s)-0. 

If this submatrix is zero then we obtain a new record b '  such that R(b ') = R(b ) + 1. 

Otherwise, remove the row 'T' (column 'T') from B. 

Lemma 1.8. If every row of 0,1-matrix B contains precisely two units then one may 

delete from B an arbitrary row (and corresponding column) without loss of a 

solution. 



Elements of problem solving theory 125 

Proof ( a sketch). Any 3 rows may be mutually incompatible. In this case only one 

of these may be included in solution b *. Let us remove all of such rows from B. For the 

geometrical interpretation of the remaining set of rows we may use a cyclic chain with 

the arrows connecting every two incompatible vertices corresponding to the appropriate 

rows (Fig. 1.2a). 

Remove from this chain some vertex i. Then there is a set b * in the resulting chain 

(Fig.l.2b) which contains two end vertices due to lemma 1.6"j and k. Moreover, there 

is no such a set bl which does not contain both end vertices j and k and provides 

R(b *) = R(b~ ). From this, one may conclude that including vertex "i" in b~ may lead 

to finding (at the most) some new equivalent solution but not an improving the existing 

record. 

. . . .  

| .... (i) 0 0 
Fig. 1. 2. a) Fig. 1.2. b) 

| 

Lemma 1.9. Let B contain k >_ 2 similar and mutually compatible rows containing k 

or less "l"s in the columns jl, j2 .... ,jl _< k. Then one may remove rows jl, j2,...,jl ( and 

columns with the same names) from B without losing the solution. 

Proof (for the case k = 2; larger values of k may be automatically reproduced). Let 

rows o~ and 13 be the same (i.e. equal). Assume that each of them contains "l"s in the 

columns j l and j2. If optimum solution is represented by the rows (columns) 

{j 1, j2 ) w Z then there is another optimum solution represented by { ~, 13 } w Z. 



126 Chapter 1 

METHOD DEFINITION 1 

(The notion of  a basic structure ). Let i be the row which may be removed from B 

without the loss of a solution. We call such a choice (removal) determinate. The cases 

of determinate choices are defined by the lemmas 1.4 - 1.9 and by their corrolaries. 

It is clear that if B0 represents a zero (sub)matrix obtained from B by means of only 

determinate removals of its rows and corresponding columns, then B0 is a maximum 

zero (sub)matrix. 

As an example, consider the matrix depicted in Fig. 1.1a once more. Step-by-step 

remove from this matrix the rows and the corresponding columns containing at every 

step a maximum number of "l"s until matrix becomes zero. Thus, by deleting the rows 

(columns) il, i6, i5, i2, i8 in the given order, we obtain b = {i3, in, i7} and R(b ) = 3. 

Using this record and lemma 1.7 we can collapse the initial matrix by means of only 

determinate removals in the same order. It is therefore shown that b *= { i3, i4, i7 }. 

Every row which may be determinately removed from B is called D-row. A set of 

D-rows will be designated as a D-set or simply as D. 

Assume, that the current matrix B (not D) does not contain any D-row. Then the 

choice of a row i which is to be deleted is called indeterminate and row i in this case is 

called an N-row. A set of N-rows will be by analogy designated as an N-set or simply as 

N. Thus, earlier we selected as N-rows those which contained a maximum number of 

units at the moment of deleting. 

From now on we will use this principle for choosing N-rows. In addition, the D and 

N-sets have to be ordered in such a manner that row i occupies a position to the left of 

row j in the same set if row i was selected earlier than row j. 

A basic structure represents 3-tuple 

( N ,  D,  b N , D )  (1.12) 

where N, D - are corresponding N, D - sets 



Elements of problem solving theory 127 

b N,D- is a zero (sub)matrix derived from B by deleting the rows (columns) N w D. 

So, for the problem given in Fig.l . la  we may identify one of its basic structures in 

the form (1.13): 

( N -  {i, ,i 6 }~ D -  {/2'i5'i8 }; b N,I)-- {i3,i4,i 7 } ). (1.13) 

b 
* 

It is clear, that if N = Q, then the structure <Q,D, b Q~,D > provides b Q~,D = _ for 

given 0,1-matrix B. A matrix B' obtained as a result of adding to a matrix B a new row 

and column ~ will be called o~-expansion of matrix B and will be denoted as ~B. 

METHOD DEFINITION 2 

(Solvin~ orocedure). Let matrix B be given and D = •. As earlier, an N-row is a row 

with a maximum number of "l"s (at current step of an algorithm). Remove 

successively N- and D-rows (and corresponding columns) from B to obtain basic 

structure (1.12). In particular, when an N-set contains two or less, elements an optimal 

solution b* may be found simply as described below. Suppose, N = {o~,13 }. Designate a 

set D w b N,D of rows numbers by BBASIC. In s-expansion ~BBAsIC (in 13-expansion 13 

BBASIC ) retain only those rows (columns) each of which is compatible with o~ 

(correspondingly with 13). Thus, we obtain new matrix which will be denoted as 

ot BBASI C ( correspondingly fl BBASI C ). 

Lemma 1.10. There exists basic structure for a BBASI c and fl BBASI c of the form < 

- -  b* g , D ,  >. 

Proof Consider the basic structure <(3, D, b N,D > for B. Keeping in D w b N,D only 

those rows which are compatible with row o~ (row 13 ), we obtain a required structure. 

This trivial property enables us to find b* ( o~BBASIC ) and b* ( I~BBASIC ). 



128 Chapter 1 

Lemma 1.11. 

(1) If 

then 

b*(a]3BBAsIc)- b*(flBBAs, c) 

(2) if 

then assuming that 

we derive that 

a,fl cb*(a flBBAs, c). 

Proof Obviously, in the best case b* ( 061~BBAS IC ) contains as many rows as the best 

solution from { b* ( o~BBAS IC ), b* ( 13BBAS IC )} plus "1". This is possible only when 

both ct and 13 belong to b* ( oq3BBAS IC ). For instance, if o~ belongs to b* ( oq3BBAs IC ) 

but 13 does not belong to b* ( oq3BBAS IC ) then the condition (2) does not hold: 

and vice versa. 

Let us start with the general case. It is supposed that the basic structure is given and 

N = { nl, n2 ..... nx }, D = { dl, d2 ,...,dy }, b = { bl, b2 ..... bz }.Create a coveting matrix 

7t with a set of rows b N,D~NuD and a set of columns N. On the intersection of a row bi 



Elements of problem solving theory 129 

and a column nj write "1" if and only if rows bi and nj are incompatible in B (i.e. B(bi, 

nj ) - l ) .  Thus, for the basic structure (1.13) from the example in Fig. 1.1a we obtain 

matrix ~ shown in Fig. 1. l c. 

A subset pi of rows of a matrix "b '~ is called a covering subset if for every column j of 

matrix ~ there is (some) row in pi which contains a "1" in column j. A covering set p is 

called unexcessive if each of its own subset is not a covering one. From now on we are 

interested only in unexcessive covering sets. 

L e m m a  1.12. Let Pi be an unexcessive covering set for a matrix ~ corresponding to a 

basic structure < N, D, b N,D >. Then if there exists a maximum zero submatrix b * such 

that R(b *) > R( b N,D) it follows that pi ~ b *. 

Proof Suppose that the opposite is true, i.e. pi c_ b *. It follows immediately that no 

rows from N belong to b * because every such row is incompatible with pi. 

Consequently, all the rows belonging to N must be removed from B. But it leads to an 

old basic structure < N, D, b N,D >, i.e. b * = b N,D what is in contradiction with the 

initial supposition that R(b *) > R( b N,D). So it is necessary to exclude the combination 

pi, representing the unexcessive covering for ~ from B. How might this be achieved? 

There are three different variants described below. (Note that we require of each subset 

of l~ to be a compatible one, therefore, only such covering sets are of our interest) 

Variant A. Pi contains only a single row. In the example shown in Fig. 1.1c. we have 

Pl - -  {3} or P 2  - -  { 4 } .  This means that if a better solution than b N,D = {3,4,7} exists, 

then it does not contain either row 3 or row 4. 

In variant A it is possible to remove a row (rows) from matrix B (with corresponding 

columns) under the condition that, if a better solution than current one exists, then this 

solution will not be lost. Otherwise, it may be directly concluded that an optimal 

solution is found. 



130 Chapter 1 

Variant B. Pi contains exactly two rows: o~ and 13. In this case we write "1" on the 

intersection of row ~z and column 13 (and correspondingly on the intersection of row 13 

and column ~ ). 

Variant C. Pi contains more than 2 rows. For example, suppose Pi = { ~ ,  [3, it }. 

Introduce in matrix B a new row (column) < o~, 13 > with the following properties: 

< o~, 13 > is incompatible with row 7 and o~ ; 

< o~, 13 > is compatible with row 13 ; 

This ensures that < or, 13 > represents disjunction of rows o~ and/3. 

Additionaly we set B(o~, 13 ) = B([3, o~ ) = 1 (i.e. make o~ and 13 incompatible). Thus 

we achieve the following: 

(1) the possibility of the simultaneous appearance of rows o~, 13 and 7 in the solution 

is excluded due to the setting a # 13 ; 

(2) the possibility for combinations o% 137 and (zJ3 to be simultaneously presented in 

the solution is retained since the combination o~, 13 now corresponds to < o~, 13 >, 13; 

(3) the possibility for combinations < o~, 13 >, 13, y and < o~, 13 >, (z, ~, to be presented 

in the solution is excluded. 

The case when Pi contains 4 rows may be treated in a similar manner. If pi contains 

5 or more rows, for instance, pi = { a,b,c,d,e,f } then we introduce new rows: <a,b>, 

<c,d>, <e,f> ~ <e,f> 1 combining every two neighbouring rows in Pi into a new one in 

such a way that all the new rows except one <e,f> do not contain common rows. We 

create a number of duplicates for the last new row <e,f> equal to the number of other 

new rows different from <e,f>. Therefore, one new row <e,f> ~ corresponds to <a,b> and 

the other <e,f> 1 corresponds to <c,d>. For these new rows we establish the following # - 

relations: 

< a,b > # <  e , f  >o < c,d > # <  e , f  >1 < e , f  > 0 # <  a,b > 

a#b c#d < e , f  > o # <  e , f  > 

< a,b > # a  < c,d > # c  < e , f  > ~  



Elements of problem solving theory 131 

e#J 

< e , f  > 

< e , f  > 

l # e  

l # < c , d  > 

<i,j> - is disjunction of rows i and j' 

i j  e {a,b,c,d,e,f}. 

Interpretation of admittable combinations of rows in this system is illustrated by the 

Table 1.1. 

Table I.I. 

Old combination 

a.b,c.d.e,f 

a,b,c,d,e 

a,b,c,d,f 

b,c,d,e,f 

a,c,d,e,f 

a,b.c,e,f 

a,b,d,e,f 

. . . . . . .  Interpretat ion . . . . . . .  

no interpretation ( it is sufficient to build 

0,1-matrix coding #-relations with rows 

a,b,c,d,e,f, <a,b>, <c,d>, <e,~- ~ <e,f> l ) 

<a,b>, b, <c,d>, d, e 

<a,b>, b, <c,d>, d, f 

b, <c,d>, d, <e,f> ~ f 

a, <c,d>, d, <e,f> ~ f 

<a,b>, b, c, <e,f> 1, f 

<a,b>, b, d. <e,f>l  f 

General  rule of introducing new rows: one has to combine rows from p in pairs and 

create as many copies of the last new row as there are other new rows different from the 

lasl one. Suppose one introduced new row <o~, l~>. Then one needs to set the following 

relations: 

< a , f l > # ~  

a # f l  

<a, f l>#<x,y>'  



132 Chapter 1 

where <x,y> i is a copy of the last new row <x,y> corresponding to the new row 

< o~, 13 >. The row <x,y> i is compatible with the other new rows except those 

representing other copies of <x,y>. One needs to make all copies of the last row <x,y> 

mutually incompatible. 

Thus, we sum up as follows. 

1. At every iteration we find a basic structure 

< N, D, bN,D > 

2. ff the algorithm must be continued then we modify matrix B by introducing new 

rows (columns). In order to do this we: 

2a. find matrix 7t and its arbitrary unexcessive coveting set pi 

2b. exclude combination pi as described above. 

An arbitrary unexcessive coveting set of matrix 7t may be found by procedure with 

computational complexity O(mn) where m is a number of rows in ~. 

The estimation of the number  of iterations. We suppose that B is a randomly 

generated matrix for which we assume that: 

n o is the mean number of zeroes in the row of matrix B; 

n 1 is the mean number of ones in the row of matrix B; 

2 
N is the total number of elements in matrix B; 

p - n 0 / N - is the probability for any pair of rows to be compatible. 

The mathematical expectation of the number of zero-submatrices containing k rows 

(columns) (k > 0) satisfies the relation 

fl(k) <_ C~* pC~ (1. 14') 

L e m m a  1.13. Let matrix B be given, ff on the imersection of a row ~ (column cz ) 

and a column J3 (a row j3 ) we write a "1" instead of a "0" then we obtain 

,u ' (k) - (314)*  ,u(k) (I. 14") 



Elements of problem solving theory 13 3 

where ~t'(k) - is the new mathematical expectation of the number of zero submatrices 

with K rows (columns). 

Proof We may divide the total set of zero submatrices with k rows (columns) into 

subsets fla, f l ( k ) ,~a f l ( k ) , f l a~ (k ) , /Za~(k ) ,  where the indices ~13 identify those 

matrices from the whole number ~ (k) which contain rows o~ and 13. Inversion a ( f l )  

means that row o~ ( 13 ) does not belong to the given subset of matrices. 

In a probabalistic sense, rows cx and I~ are indistinguishable, i.e. 

Corollary. If an element B(i,j) = 0 then ,after setting B(i,j) = 1 every mathematical 

expectation g (2), ~t (3) ..... ~t (k) will reduce according to equation (1.14"). 

We are interested in the maximum k such that ~t (k) >_ 1/2 and ~t (k+l) < 1/2. This 

maximum k determines a probabalistic estimation of the number of maximum zero 

submatrices of matrix B. To be more accurate, we denote such a maximum k as k max. 

We will use a rule of "3 cy" which defines that any random value x belongs to the 

diapason ~t + 3or with a probability rather close to 1, where ~ is mathematical 

expectation of x and cy - standard deviation, 

o 

Further we suppose 

, t /(k max ) - ,tt (k  znax ) + 3 �9 ,tt (k  Inax )(1 - pC~"~x I (1.14'") 

where ~ (k max ) is determined from (1.14'). 
m 

Lemma 1.14. If we suppose that after every iteration the new value of /~ (k max ) 

becomes equal to 3/4 fl (k max ), where /~ (.) is the estimation of the number of zero 



134 Chapter 1 

submatrices with k max rows before iteration, we can draw a conclusion that, in order to 

reduce p (k max ) to 1/2, one needs to repeat Z iterations, where 

Z = . (1. i s )  
l n 4 - 1 n 3  

Proof Indeed, from 

~t(kmax).(1/4+3/16+9/64+ 27/256+...+3 z-1/4z)=p(kmax)  - 1/2 

one may derive 

(3/4)Z=l/12~t(kmax)) 

using the formula 

ao + aoq + aoq2 +...+aoq n =ao(1-qn+l) / (1- q) 

with 0 < q < 1. 

The last may be transformed to the equation in the form (1.15). 

Lemma 1.15. The suggested rules for cutting an arbitrary combination of rows, 

given by some unexcessive covering set pi, provide a contraction of ~ (k max ) 

approximately as stated by (1.14"). 

Proof Consider any new row <a,b> introduced at some iteration with new relations 

<a,b>#a 

a#b 
(*) 

for this row. 



Elements of problem solving theory 135 

Obviously, by virtue of (*), the real number Z of all zero submatrices with k rows 

(columns) of the initial 0,1- matrix cannot change. It is the same with respect to a copy 

<x,y> of the last new row corresponding to <a,b>. So, an additional established relation 

<a,b >#<x,y> i 

causes contraction p (k  max ) approximately as that stated by (1.14"). 

Note, however, that all these considerations are valid with regard to a randomly 

generated 0,1-matrix containing the same number of units (zeroes) and having the same 

dimensions as the considered one. So the above estimations remain correct in a 

probabalistic sense. The last point to be clarified is the dependancy o f / t  (k max ) on a 

new row < a,b > added to the matrix. Remembering, that <a,b> is a disjunction of the 

rows a and b with an additional "1" due to the relation <a,b> # a, we now show that 

adding this type of new row to a given matrix for arbitrary a and b will cause a decrease 

in the value of p (k max ). 

Let N O be the number of all zeroes in the 0,1-matrix B and ~t represent the number of 

zeroes in the disjunction of two arbitrary rows <a,b> from B. 

We have 

P < N  3. 

If <a,b> is added to B in accordance with the established rules, then it causes the 

total number of zeroes to become not greater than 

- 2 .  

km~, C 2 km~, C 2 
D k max Compare the values p 1 = C)v "Po ~ and p 2 = CN+I.,  o , 



136 Chapter 1 

No 
where Po = - ~ -  and PI = 

No 

(N+0 
�9 Namely, let us show that I t ]  > ~t2. 

This means that from the probabalistic viewpoint, adding an additional disjunctive row 

<a,b> to B, will cause a decreasing mathematical expectation ~t (k max ). 

After some transformations we find that the following relationship is to be proved: 

N + 1 -  k max 

N + I  

m 

I 1 N No 

(N + 1) 2 

C 2 
k m a x  

As it is rather difficult to derive an analytical proof of the above statement, we give 

the table below with the necessary results calculated over the reasonable diapasons of 

the parameters N,No and k max. The sign "+" denotes the case where the above 

relationship holds. Note also that negative results (denoted by "-") are practically 

meaningless due to the very low probability of the cases they represent. 

N 20 

No 20% 60% 80% 

k 0,2N 0,5N 0,7N 0,2N 0,5N 0,7N 0,2N 0,5N 0,7N 

" + "  + + + + + + - + + 

N 50 

No 20% 60% 80% 

k 0,2N 0,5N 0,7N 0,2N 0,5N 0,7N 0,2N 0,5N 0,7N 

" - t - "  -t- -I- -I- + -t- + -t- -t- + 



r 

N 
, , .  , . ,  J , , _ _ L  

No 20% 

k 0,2N 0,5N 

" + "  + + 
. . . . . . . .  

Elements of problem solving theo~ 
. . . .  

2O0 
. . . . .  J, , ,  , , , , ,  , , t _ , ,  . . . .  

61t% 

0,7N 0.2N 0,5N 0,7N 

+ + + j 
. . . .  

+ 

137 

80% 
_ , , L ,  , 

0,2N I 0,5N 0,7N 
i 

+ t + + 

N 10 
. . . .  , . ,  , , , .  , , ,  , ~ , , .  , , . , .  , , , .  , L , . , ,  1 

No 25% 
. . . . . .  , 

k 0,2N 0,7N 

" + "  + + 
. . . . . . .  

, u ,  . , ,  , ,  

71t% 

0,2N 0,7N 

+ + 

15 
, , , | ,  _ t | , , ,  , _ i , , ,  . . . . . .  

25% 70% 
. , . . . . . . . . . .  

0,2N 0,7N 0,2N 0,7N 
. . . . . . . . . . .  

+ + - + 
. . . . . .  

N 

No 

k 

It+11 
. . . . .  

25 

25% 70% 

0,2N 0,7N 0,2N 0,7N 

+ + + + 
. . . . . .  

30 

25% 
, , , , , .  , , ,  , 

0,2N 0,7N 

+ + 
, ,  , 

, , ,  , , ,  , ,  

70% 

0,2N 0,7N 

+ + 
. . . .  

N O - percentage of zero-elements in matrix 

"+" - denotes the cases with the realized relationship 
, - . . .  , . . . ,  

Consider the example in Fig. 1.3a. Here N = 13, n o = 9.46, p = 0.72769. After first 

iteration we obtain: 

N = { 2 , 3 , 5 } ;  D={13,10,1 ,9};  b ={4,6,7 ,8 ,11,12}> 
~ N , D  

. . . . .  

/a(k + 1) : / , ( 7 )  = C[3. pC~ = 2.2; . ( 7 )  = 7 

In 14 
Z = ~ 9,2 

In 4 - In 3 



13 8 Chapter 1 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  2 3 5 
1 1 1 1 1 1 1 0  0 
2 1  1 1 1 1  2 0  1 0  

3 1 1 1  1 3 1 0  0 
4 1  1 4 0 0 0  
5 1 " 1 ' 1 1  5 0 0 0  
6 1 1 1 6 1 0 1 
7 1  1 1 7 0  1 0 
8 1 1 1 8 0 1 0  
9 1 1 1 9 0 0 0  

1 0 1  1 1 1 1 1 0 1  0 1 
11 1 1 1 1 1 1 0 1  
12 1 1 1 1 2 0 0 1  
13 1 1 1 1 1 3 0 1 0  

Fig. 1. 3. a) Fig. 1. 3. b) 

To modify matrix B we build matrix n (Fig. 1.3b) and find 

pl = {6,7}; p2 = {11,8}; p3 = {11,7}; p4 = {6,8}. 

Now we set up B(6,7) = B(7,6) = B( l l , 8 )  = B(8,11) = B( l l , 7 )  = B(7,11) = B(6,8) = 

=B(8,6) = "1". The second iteration results in (Fig.l.3c): 

1 2 3 
1 1 
2 1 1 
3 1 

4 1 
5 
6 1 

7 1 1 
8 1 
9 

1 0 1  1 
11 1 
12 
13 1 

4 5 6 
1 

1 
1 

1 
1 

1 
1 
1 

1 

7 8 9 1 0  
1 1 

1 
1 1 

1 1 

1]L Il l  113 

nnnll 
I B i l  

l l l l l  
nnuun 
NnnN 
nnnul 
unto 
numm 

l l l  
i l l  

Fig 1 .3 .  c) 

N =13, no =8.84, p=0.68, ,u (7)=2.7, Z=6 .3 ,  



Elements of problem solving theory 139 

There is an unexcessive covering set 191 = {3 }, so it is necessary to delete row 3 and 

column 3. Therefore we obtain 

( N={6,10,1]}; D= {1,9,13,5}; b ={2,4,7,8,12}) 
~N,D 

Having built matrix 7t and removed row 2 and column 2, we obtain /t < 1; i.e. 

b 
* 

procedure stops with the best record = {4,6,7,8, 11,12}. 

Remark. We must remember that this result is optimal in a "probabilistic sense". 

Conclusions. Obviously the suggested algorithm is rather effective since Z=O(ln~t), 

where ~t is the mathematical expectation of the maximum number of zero submatrices. 

In comparison with Geoffrion's algorithm and Balas' algorithm it proves to be 

significantly faster for the number of individual tasks requiting computational time 

equal to (0,006-0,3) tcomp, where tcomp - is an analogous time required by the above 

mentioned algorithms. 

Note that matrix size growth function has also the form 

b* O(IRIln ) where I RI represents the number of rows in . Indeed, the number of 

new rows added to B at every iteration is not bigger than (R-2) and the number of 

iterations is about O(ln ~t ). 

1.5. On the minimum-size cover problem (MSCP) 

Let Bn, m be a 0,1-matrix with n rows and m columns. Suppose that Bn, m has no all 

zero column. 

Let us say that row i covers column j in Bn, m if i contains a "1" in column j. A set H 

of rows is said to be an unexcessive covering set of the matrix Bn, m, if each column 

from Bn, m is covered by at minimum one row from H and any subset of H does not 

satisfy this condition. 



140 Chapter 1 

The minimum size cover problem (MSCP) consists in finding a set B* of rows 

characterized by the following: 

(i) it contains the minimum number of rows among all the possible covering sets; 

(it) for every colunm j in Bn,m there is a row o~ from B* such that B(ct,j)= 1 (i.e. the 

row cx covers column j). 

A covering set is an unexcessive one if it is not possible to delete any row without 

violating point (it) above. 

The following lemmas are obvious and need no proofs. 

Lemma  1.16. Let o~ and 13 be two rows such that in every column, where 13 contains 

"1", o~ contains "1" also. Then row 13 may be deleted without losing a solution. 

Lemma 1.17. Let o~ and 13 be two columns such that in any row, where cx contains 

"1", 13 contains "1" also. Then column 13 may be deleted from Bn, m without loss of 

solution of the initial MSC-problem. 

Lemma  1.18. If there exists a column j containing the only "1" in the row o~ then 

this row o~ should be included in B* 

Lemma 1.19. If row cx is known to be included in B* then one may delete all the 

columns, containing "1" in the row and retain at minimum one solution in the resulting 

0,1-matrix. 

Let I-It be an arbitrary unexcessive covering set for Bn, m, l-It ={c~,13 ..... "f}. Then there 

exists a column j l in which row ~ contains a "1" and rows 13 .... ,7 contain only zeroes; 

there exists also a column j2 in which row 13 contains a "1" and rows o~ ..... y contain only 

zeroes, etc. 

Definition. Let Hi be an arbitrary unexcessive covering set for Bn,m, Fit = {o~,13 .... , 

7} and let B(a,j) = 1,B(13j)= 0 = ... =B(q,,j) = 0 for some column j. The element B(o~,j) 

on the cross of row c~ and column j will be called a symptomatic (characteristic) clement 

of I-It or simply a symptomatic (characteristic) element. 

Lemma 1.20. Every unexcessive covering set has a unique set of all its symptomatic 

elements (the last set will be called the syndrome). 

Proof. Let there be given two different unexcessive covering sets I71 and 1-I2 and two 

rows ~ and 13 such that o~ e II1, ~ ~ 1-'I2, ~E 1-/2, 13 ~ l-I1. It follows from the definition 



Elements of problem solving theory 141 

above that there exists a column k with symptomatic element B(oc,k) and a column 1 

with symptomatic element B(I3,1), i.e., corresponding syndromes of FII and 1-12 are 

different due at least to these symptomatic elements. 

An algorithm for solving MSC-problem is based oll the following scheme; 

(S1). Realizing rather a good heuristic algorithm to obtain some unexcessive 

covering set. 

($2). Making column-resolvenl(s) (consequence(s)) from the supposition that the 

covering set obtained is not minimal. It will be clear that on the basis of generated 

resolvents one would be able to get tl~e minimum-size covering set or repeat step S1 

with increasing probability of finding a required cover. 

($3). Repeating the above given steps (if a minimum-size covering set is not 

obtained) with the modified matrix Bn,m'. Bn,m' is obtained from Bn, m by including these 

column-resolvents). 

To find some unexcessive covering set a kind of a "greedy" algorithm may be used 

which prefers to include in the covering set those rows which contain the maximum 

number of "l"s in the considered 0,1-matrix.(If a row is included in !lie cover then all 

the columns, covered by o~, should not be taken into account when selecting other rows 

to the covering set). 

Consider now p. $2. Assume for the matrix in Fig 1.4a, the first unexcessive 

covering set FI ={[33, [34, [35, 1~6} has been obtained. Using the given set FI we can 

produce a set of new columns which are to be added to Bn,m in accordance with the 

following theorem. 

Theorem 1.3. Let the unexcessive covering set FI of matrix Bn,m contain k rows. 

Choose k arbitrary, and different columns jl .... ,jk. For these k columns find a set A of 

row numbers each of which contains more than a single "1" in columns j l,...,jk. 

i) if A = Q, then FI is an optimal minimum-size covering sel; 

ii) if A~: Q, then if 1-I is not a minimum-size covering set, at least one of the rows 

from A necessarily belongs to each minimum-size covering set. 



142 Chapter 1 

B~ 1 1 
B2 1 
[33 1 

[35 1 

B7 1 
B8 

Blo 1 1 

Bll 

1 1 

1 1 1 
1 1 

1 1 1 
1 1 1 

1 1 
1 1 1 

1 1 1 
1 

1 1 1 1 

Fig. 1. 4 a) 

1 
1 

Thus, for Fig.l .4a choose, for example, columns 0~1, Ct2, 0~3, 54 and find A = {~1, 

133, ]35, 131o}. The theorem asserts that if FI ={133, 134, 135, 136} is not a minimum-size 

covering set then every minimum-size covering set contains at minimum one row from 

A. 

Proof may be obtained without difficulties. 

Corro lary  2. If As  • then one can add to Bn, m a new column containing "1" in the 

intersection with every row belonging to A. 

Corro lary  3. If H is not optimal then there is a set A which has no common rows 

with H. 

Proof If such a set A does not exist, then it is correct, that H is an optimal solution 

by virtue of theorem 1.2, in respect to some nonminimal coveting set with the same 

cardinal number. It comes to a contradiction. 

Let us again consider Fig.l.4a. Generate the cuttings A1, A2, A3, A4, A5 which 

correspond to definite combinations of columns of the initial matrix Bn, rn, namely A1 - 

{~3, ~4 } corresponds to columns o~8, (X9, (X12, (X13; A2 = {~3, ~11} corresponds to 

columns o~6, o~8, cz12, o~13; A3 = {~3, ~9 } corresponds to columns cz3, (zs, o~12, o~13; A4 

= {133 }corresponds to columns o~3, (zs, Oil2, o~13; A5 = {135, ~9 } -c~3, o~5, oqo, (z12 

(Fig. 1.4b). 

We call the following scheme 



Elements of problem solving theory 143 

, ,  , 

f~l ' 1 

D2 
133 1 1 1 1 
134 1 
135 1 

, , ,  

137 
138 
139 1 1 

J 

1310 
13t~ 1 

Fig. 1 .4  b) 

cti 1, o~i2,..., ~ik ~--Ai 

resolution scheme bearing in n lind that the set Ai generated by virtue of given 

columns c~ i 1, cti2 . . . . .  ~ik represents their consequence. The strategy of generating the 

new columns Ai will be further called a resolvcnt generating discipline (RGD). The 

designation RGD(A)=B means that B is a set of resolvents produced from A. 

From Fig 1.4b it is clear that row 133 must be included into the optimal solution. So 

we can apply lemma 1.19 to the initial matrix in Fig. 1.4a (see result in Fig.l.5). For the 

latter we may produce the following resolvents for the columns in Fig.l.5 (now 

in RGD only three columns take place as one row 133 is already included in solution 

found), A7 = {1~6} for the columns { 0~4, c~5, 0~9 }, A8 = {1~4, 139 } for the columns { cx9, 

o~10, ot12 }. The row 136 should also be included into the optimal solution, etc. The final 

result FI ={133, 136, 1~4, 135 } is really a minimum-size covering set. 

The RGD, in respect to the current matrix Bn,m and the best covering set found, 

results in one of the following issues: 

Issue A. It is proved that FI is an optimal covering set. 

Issue B. A better covering set than 1-I is obtained. 

Issue C. Some new additional columns are gcneratcd which do not belong to Bn,m. 

In the case "Issue B" one needs Io repeat p.S2. The case "Issue C" should be further 

examined. 



144 Chapter I 

Of'2 Of'4 ,Cf'5 Of"6 Of'9 ~'10 Oftl J'12 
131 1 1 
[~21 1 1 

1~4 1 l j  1 
[~s 1 1 1 

~6 ..... 1 1 
137 1 1 
, , 

138 1 1 1 
[~9 1 1 1 1 

[~lO 1 ,, 1 , 
[~11 1 1 

Fig. 1.5. 

First of all let us show that, having some unexcessive set FI with k rows, we can 

always generate additional columns which do not belong to Bn, n~ and cannot be 

excluded due to deterministic lemmas 1.16-1.19. 

Define a set of all symptomatic elements of the covering set and the columns which 

contain them.We call these columns characteristic. It is obvious (due to lemma 1.20) 

that the number of such columns cannot be less than k. Let, for definitness, they will be 

O~il, cti2, . . .  , Ctik and there are no two symptomatic elements in the same row. Let us 

find resolvent A from 

Oql, Oq2 ..... O, ik ~ A. 

Then A is the very column we are speaking of, i.e. A cannot be excluded by lemma 

1.17. Really, A has no row common with FI. If we assume that A should be excluded by 

lemma 1.17, then there must be some column 13 which also has no common units in the 

rows from H. But in this case H cannot cover column 13. This comes to a contradiction. 

We may derive from this consideration the following. 

Assertion. For a given unexcessive covering set FI with k rows one can introduce at 

least one new column-resolvent, which, by the way, cuts the given covering set FI. 

Adding a new column resolvent: 

- does not change the number of minimum-size coveting sets in matrix ; 

- reduces the number of non-minimal covers of the initial matrix; 



Elements of problem solving theory 145 

- reduces the value of the mathematical expectation of the number of minimum-size 

covering sets ; 

For the issue "C" above we can use the following assertion: an optimal solution of 

the given MSCP is provided by the finite number of the resolvent-columns added. 

Evidently, we are highly interested in the procedure which generates "good" resolvents. 

We conclude this paragraph with a depiction of such a procedure. It finds for the given 

k rows from unexcessive covering set H = {Ctil. ot, i2 . . . . .  ot, ik} columns { ~ j l , I ] j 2  . . . .  , ~ j k }  

producing the desired resolvent. The procedure we are interested in consists of the 

following rules: 

1. Consider current matrix B. If there remain only k columns then find their 

resolvent. Stop. 

Otherwise perform the next step. 

2. If there is a row 13 containing one or less "l"s - delete 13. Go to step 3. 

3. Find the column with maximum number of "l"s and delete it. Repeat from step 1. 

This common scheme may have different particular implementations. For example, 

for the matrix in Fig.l.4a and k=4 it may produce the following resolvent A = {133 } by 

deleting the columns and the rows in the following order: {o~2, 132, o~7, o~9, 131, o~4, o~5, 

~6, 1~10,~6, ~8, Oil0, ~11, ~5, ~II, 1~4, ~7, ~9, o(,1}. 
Thus, our solving strategy for the MSCP is essentially based on a cutting mechanism 

with rather a high practical efficiency. 

1.6. Precedence and incompatibility 

Let the set of e.s.o be finite with a precedence relation (>-) given on it. The 

precedence relation may be interpreted by a graph G with vertices {Oi } and arcs 

(Oi, Oj ) such that Oi ~-Oj. Also we suppose that there is #-relation defined on { Oi }.  

Let us address the next example: 

ol ~- 02, ol ~- 03, 04 ~- 02, 04 ~- 05, 02 ~- 06,03 >-o7, 

o3 ~- 08, 01 ~- 07, 04 ~- 06, 05 ~- 07, 04 ~- 07,04 ~-03; 



146 Chapter 1 

It is required to find a maximum-size scquence K of e.s.o., satisfying the given 

relations, i.e. if Oi occupies a more left position in K than Oj it should be Oi >- Oj and, 

besides, no two e.s.o in the sequence K are incompatible. It is also presumed that every 

two e.s.o Oi and Oj not connected by some route in graph G are incompatible. 

The idea is in replacing precedence-relations by the #-relations. As a result we will 

obtain a maximum-size zero sub- matrix problem. To realize the idea create the next 

table 

Table 1.2. 

The formed sets of linked e.s.os Vertex (1) (e.s.o) 

01 

02 

03 

O4 

05 

06 

07 

08 

+02, +03, +O~, +07, +Os 

-O1,-O4, "1"O6 

-O1, "t-O7, "1"O8,-O4 

+O2, +O5, +O3,_+O7 O8 

-04,-t-O7 

-O1, -04, -02 

-O1, -O3, -05, -O4 

-O1, -03 
i , i , 

(2) 

The procedure for making the above table is tile following. Consider all the >- - 

relations starting with O1 >- 02 Write in Oi - row of the table 1.2 term "+ 02 " and in 

02 - row - term "- O1 " bearing in mind that "+ Oi " in the row Oj means Oj >- Oi and 

"- Oi " in the row Oj means Oi >- Oj. For the relations O1 >- 03, 04 >- O2, O4 >- O5 

proceed in the same way. When considering relation 02 >- 06, write in the row 06 term 

"- O2 " and all negative terms in the row O2. Write in the row O2 term "+ O6 ". It is 

clear that in this way we shall find the transitive closure of the origin graph G [13,15], 

so all remaining actions are omitted. The general n~le for filling up the table may be 

easily deduced. 

Now we immediately obtain an 0,1-matrix by coding the #-relations (Fig.l.6) with 

elements bij defined as follows: 



Elements of problem solving theory 147 

bij = 0, if in the r o w  Oi of the table 1.2 there is a member - Oj or in the row Oj there 

is a member - Oi and Oi # Oj. 

o11oelo31o41o5 o6107 08 
 lnmmmi 
 mmunnI 
| l l l l l l /  
 mUlllmU 
t ' - l N l l l l l l  
 IIIllIllI 
m n n n m i  
 munmol 

i 1 ] 
1 1 

II ,i 
lli, ,i i 1 

I 
i 

Fig. 1.6. 

Thus, ifbij = 0 then Oi # Oj (i.e., Oi and Oj are compatible). 

bij = 1 in other cases including those given by the initial #-relations, i.e. 

O 1 # O  7 , 0 4 # 0 6  , 0 4 # 0 7  , 0 4 # 0 3  . 

Solving maximum size zero submatrix problem on matrix shown in Fig. 1.6. we 

obtain a maximum-size zero-submatrix (O1,03, O8). 

Assertion. The above procedure finds (one of the) maximum-size route consisting of 

only mutually compatible vertices. 

Proof In fact, it is only required to prove that the resulting set of vertices form some 

route in the graph G. Suppose, that the opposite is tree. Then, there are two vertices Oi 

and Oj such that --'(Oi >" Oj) and --'(Oj >-- Oi). But it leads to bij = 1, and, therefore, Oi # 

Oj. So, we obtain a contradiction. 

1.7. Prohibition 

We shall say that e.s.o. Oi prohibits e.s.o. Oj and write..this fact as Oi --o Oj if Oj 

cannot be executcd after Oi. That is, if Oi---o Oj then the solving sequence K = < .... Oi 

..... Oj ,...> is invalid, although it is not always riglltful in relation to the sequence K ' =  

< .... Oj ..... Oi .... >. One may see that a prohibition is not "pure" logical relation since it 

depends on tile mutual arrangment of two elementary solving operators. 



148 Chapter 1 

For example, let the following system be given: 

a----ob c - - -oe  c - - -ob  

a - - -oe  f - - o b  a - - -oc  

f---o a e---o d. 

There are three main problems one may face, i.e. 

(Ai) to find a valid sequence K with all e.s.o, presented in it; 

(Aii) to find a maximum-length valid sequence K; 

(Aiii) to find a minimum-length valid sequence K which cannot be extended without 

loss of validity. 

Let us consider the first two problems. Introduce graph G(U, V) with the vertices 

{a,b,c, d,e,f} and the arcs V 9 { x,y } provided x ---o y ; x,y ~ U. For our example, 

G(U, V ) has the form shown in Fig. 1.7a. Begin with the problem (Ai). 

It is clear that every vertex not containing emanating arcs may be assigned to the 

leftmost position in K. In the considered example there are two such vertices "b" and 

"d" which are included first in K in the arbitrary order: 

K-(b ,d , . . . ) .  

Modify graph G(U, V ) by deletion of both vertices "b" and "d" with the coherent arcs 

(Fig. 1.7b). Thus, we obtain a new candidate, namely vertex "e": 

K-(b ,d ,e . . . ) .  

( )  
Fig. 1. 7 a) Fig. ~, 7 b) 



Elements of problem solving theory 14 9 

proceeding by analogy we obtain 

K - ( b , d , e , c , a , f ) .  

The whole idea is rather clear. However, it is, evident that problem (Ai) is 

unsolvable when the graph G(U, V ) contains cycles since the cycle excludes some e.s.o. 

from the resulting sequence K. 

Problem (Aii) comes to the following one: Find the minimum number of vertices 
. . . , ,  

which, if deleted, provide no cycles in the graph G(U, V ). The problem (Aii), therefore, 

is a kind of minimum-size cover problem considered earlier. Thus, for the system 

a---o b, b - - o  c, c - - o  a, b---o d, d---o e, e - - o  f, f - - o  d 

we have a graph G(U,V) shown in Fig. 1.8 and a minimum-size covering set of 

vertices {c,e} involved in two different cycles. Deleting both vertex "c" and vertex "e" 

we obtain an acyclic graph G which directly suits (Ai)-problem. The (Aii)-problem may 

be formalized in terms of solving #-equations. Consider, for example, the relation 

a---o b. 

Fig. 1.8. 

To represent this in terms of the incompatibility relation let us introduce a new 

object -ra standing for the "right side of "a" in sequence K". Thus, we obtain directly 

r a #b  



150 Chapter 1 

by 

instead of the above relation a ---o b. The initial system of equations may be replaced 

r a # b  r c # a  r d # e  r f # d  

r b # c  r b # d  r e # d  

ra + rb + rc = l re + r f  + rd = l 

with criterion 

a + b + c + d + e + f ~ m a x .  

1.8. Conditional executability 

Let there be given a logical equation in the conjunctive form as that shown below 

L 1 - ( a - b v c  e)(b c v c  a)(a dv-b  evc ) ( evc )  = 1. 

We are interested in finding a valid solution of this equation with the maximum 

number of positive boolean variables (i.e. variables without negation). There are some 

extreme cases of this problem. The first one is characterized by the absense of positive 

symbols in the original logical equation as in the following example 

This problem is directly reduced to the minimum-size cover problem with equivalent 

formulation on the sets represented below 

A=  , B= , C =  , D -  

and the optimum solution 



Elements of  problem solving theory 151 

with minimum-size covering set SC= {d,b} . 

In the other extreme case there is at least one elementary conjunction having no 

negative symbols in every disjunctive form participating in the representation of L, i.e. 

L : f l &  f 2 & . . . &  f , ,  

Thus, in the example below 

L 3 = (Kb v c)(a v dg)(b c v Fe v dc) = 1 

m 

J] = a b v c with positive conjunction "c" 

f2 = a v d e with positive conjuction "a" 
m 

f3 = b c v c e v d c with positive conjuction "d c". 

In this case the solution contains all the symbols (without negation) used in L, i.e. 

s~ = {a ,b ,c ,d ,e} .  

It is possible sometimes to transform an original equation to one of the above cases. 

For example, if 

( z) L 4= a - b v c e  c v c  =1 

one may extend L4 to the next equivalent form 

(- - -) 
L 4= a b  v c e v  c v c a  = 

( - -  a) = a b v c e v  c v : 

- (c e v b  c)(b c v a ) =  c (evb)(b v a )  = 1 

and deduce from it the solution 



152 Chapter I 

S ~ ={a,b,e,c}. 

Let us return to the formula L1, and denote A = {a,b,c,d,e}, where A is the set of 

all symbols contained in El. Consider the first disjunctive form (a b v c e) and denote 

V 1 = a b ,  V 2 =ce. 

Thus, for disjunctive form (a b v c e) we obtain the coresponding subset 

C , 

Acting by analogy, we produce tile following subsets flk of V,, for every 

disjunctive form 

, e l =  Vx = a , P ~ V3=b P3 V6 - -  ' - - "  , - -  , 

c c 

, a 4 _  V8 - 

Now let us create a 0,1-matrix with the rows (columns) a, b, c, d, e, V1 .... ,V9 (Fig. 

1.9) such that 

1) on the intersection of row x and column y, we write "0", if both x and y are e.s.os 

and there is a vector Vk such that 

{y e~Vk 

&vk~ 

where [2 stands for logical falsehood 



Elements of problem solving theory 153 

2) on the intersection of row x and column y, we write "0" if x is e.s.o, and y is a 

vector Vy and 

x &  Vj. ~ G, i.e., 

otherwise (i.e. if x & Vy = l-1 ) we write "1"; 

3) on the intersection of row x and column y, we write "0", if both x and y are some 

vectors V~ and Vy, and 

otherwise we write "1", i.e., if 

or V~. and Vy belong to the same se t /3  z for some Z. 

a b c d .... e Vl �89 v3 VaV5 v6 v714 v9 
a 

b : 
C 

d 
e 

vl 
v2 
I,'3 
V4 1 
V5 
v~l 
VT! 
V~ 

V9 

1 
1 
1 

I 
I 
I 

mmnmmmmmmn 

mmm 

I I I 

I I I 
I I 

, , ,, 

1 1 
i a 

m 

1 
1 

' 1 

1 1 
_ _ _  , ,  _ _  

1 1 
1 1 

, !  ~ , ,  

1 

1 

Fig. 1.9.  

To provide a maximum-size zero submatrix of tile matrix in Fig. 1.9 to be a solution 

b* with the maximum number of positive symbols, it is ncccssary to ensure that exactly 

one vector Vy from every set /3 k bc presented for b* Lct us dcsignatc this condition as 

CO. Thus b* = (a,b,d,e, V2,V3,VT,Vg)is an optimum subma|rix from which one may 



154 Chapter I 

deduce the solution / b, d, e, c) for the original equation L1 = 1. To easily ensure 

condition CO (in the case whenL1 = 1 is solvable) one needs to assign to every vector 

Vi, the same weight w( Vi ), which is equal to (N+I), where N is the total number of 

e.s.o, symbols; every symbol of e.s.o. (a, b, c, d, e) should have a weight of 1. Now if a 

valid solution exists, this will be obtained. This follows directly from the fact that 

including any Vi in b* is equivalent to including all the e.s.os in b*. 

1.9 Other examples 

Let us consider some well-known problems which may be directly solved on the 

basis of cutting strategies involving weak methods. Some examples are left without 

comments. Others contain an outline of all the necessary transformations needed to 

represent an initial problem in the terms of basic problems. 

Example  1. The problem of a graph colouring [24,26]. 

Example 2. Finding a maximum-size clique in the graph [17]. 

Example  3. Maximum matching set problem [17,27]. 

Example  4. Finding a solution to a boolean equation. Let there be an equation in the 

form 

  41(r, 
x, ~ {0,1}. 

We introduce the following sets: 

fll = {hi, b2, b3 },/~2 = {b4, b5, b6 }, f13 = {b7, b8 } 

where 

bl = Xl X2 b 4 = x  1 b7 = Xl X 4 
I 

= xx x3 bs = x2 bs = x2 

b3=x  4 b 6 =x3x  4 

and 13 t, 132, 133 stand for corresponding disjunctive forms restricted by round brackets. 



Elements of problem solving theory 155 

Let us build a 0,1-matrix A such that aij = 0 if bi and bj 

conditions 

- bi and bj do not contain common elements 

or 

satisfy the following 

- bi & bj :/=71 (their conjunction is not "false"). 

The last condition means that there is no object Xk such that x k ebl and xk ~bj or 

vice versa. 

In addition, we set aij = 1 for bi and bj such that there is an index q for which 

b i ~flq and bj ~ f lq .  

As a result the matrix shown in Fig.l.10 would be obtained. A maximum zero 

submatrix of this 0,l-matrix is b*= {b3,bs,bs}. It is easy to see that b* determines a 

suitable solution for a prime boolean equation by setting x3 =1, x4 = 0, x2 = 1 with an 

arbitrary value of xl. 

bl b2 b3 lu. b5 b6 b7 b8 
1 1 1 1 

1 1 

1 1 

1 

. !  . .  

1 

1 

F i g .  1 . 1 0 .  

bl ~ 
b2 1 
b3 1 
b4 ~ 1 

b5 ! 
b6 
b7 1 

b8 

It is easy to conceive that if tile number of rows in b* is less then the number of 

different disjunctive forms then the initial boolean cqtlalion is unresolvable. 

Example 5. Finding a minimun~-sizc set of rows and coillzllns covering all the units 

of a given 0,1-matrix. 

According to the well known Konig's theorem this problem is equivalent to finding 

the maximum number of "1" in 0,l-matrix in which no pair of "1" belong to the same 

row or to the same column. 



156 Chapter 1 

Example 6. An optimum assignment problem [17]. 

Example 7. Finding maximum-length route (cycle) in a given graph connecting (all) 

its vertices without repetition. 

Let there be an oriented graph G(U, D ) (Fig. 1.1 la). The arcs of G(U, I) ) are marked 

by the labels di. To proceed we must build a 0,l-matrix A with the elements aij = 1 if 

and only if the arcs di and dj are the input arcs for the same vertex, or di and dj are the 

output arcs for the same vertex, or di and dj form a simple cycle on tv,o vertices (as for 

arcs d8 and d9 in this example). Otherwise aij =0. A maximum zero submatrix for our 

example contains the rows dl, d2, ds, d7 and corresponds to the graph presented in 

Fig.l.l  lb. 

d2 

ds C) 
Fig. 1.11. a) Fig. l. 11. b)  

Example 8. Boolean function minimization. This problem may be formulated as 

finding a minimum size coveting set for a given set of simple implicants. 

Example 9. Minimizing pseudo-boolean equations [22]. 

1.10. Conclusion 

We have demonstrated an efficient technique to solve a wide-spread domain of NP- 

problems. We have also formulated a number of properties relevant to discrete 

optimization problems and then considered the basic three of them. Evidently, it is not 

possible to consider all possible problems here. So we are mainly interested in common 

principles which are useful from the problem solving system viewpoint. 



157 

Chapter 2 

SOLVING DISCRETE OPTIMIZATION PROBLEMS ON THE 
BASIS OF W-TRANSFORM METHOD 

Abstract 

The very nature of discrete optimization problems presumes the utilization of weak 

methods. Actually, such methods as dynamic programming and branches-and- 

bounds procedures are well-known examples of this kind. In this chapter, we shall 

demonstrate another approach based on a weak method strategy. This approach is a 

discrete modification of the Y-transform technique, the efficiency of which is approved 

by the results of solving a broad class of applied problems. 

The general formulation of the problems we shall deal with is as follows 

F(x)--->min (2.1) 

xcD (2.2) 

where F: R m ---> R, F(x) > 0; D is a finite set of points x e R. 

Since the type of function F(x) is not identified, the problems outlined in terms of 

(2.1, 2.2) will be called F-indefinite problems. We will also identify a type of D- 

indefinite problem if the characterization function | (D) for set D is unknown. 

The general idea of the W-transform technique is in finding a good approximation to 

the characterization function | in order to obtain the estimation of a normalized 

weighted value W D of the set D cardinality. 

For the sequence of decreasing values q l >- q2 >- ...>- qn one needs to obtain the 

values WDi (i = 1,n) of the set Di cardinality ,where Di = { x [ F(x) __ qi}. The values 

of WDi may be estimated statistically or may be approximated analytically. It is clear 

that if q* provides a minimum of F(x) then W(q* ) becomes zero. So, all theoretical 

considerations are concentrated around the technique of the representation and 

formalization of the functions | and q'(.). 



158 Chapter 2 

2.1. qL-transform method 

The discrete T-transform method consists of substituting a unimodal continuous 

function T(~) of one variable ~, ~ > 0 for a multimeasured and multiextreme F(x) 

function. The function T(~) is determined as a normalized weighted value of the set 

E(~) = {x IF(x) -< ~, x e D} 

cardinality: 

zp(x,O.o(,,,O 
,e(~)-  x ~  

iz)l 
where 

= ~l ,  i f  x ~ E(~') 
O (x, r ( 0 ,  otherwise . 

Theorem 2.1. Let the weighting function p (x, ~) satisfy the conditions: 

p(x,g ) > 0 when x e D, ~ > 0; 

p(x* ,~* ) = 0 when ~* = F(x* ), x* = Arg min F(x) :ted 

p(x,~l ) < p (x,~2) when x E D, ~1 < ~2" 

Then for all ~ _< ~* the function '-I'(~ ) is zero, and when ~ > ~*, it is a continuous 

strictly increasing function. 

From the theorem 2.1 it follows that the problem of finding a global extremum of the 

function F(x) on the set D is reduced to the determination of 

~*=max {~IT(~ ) = 0 }. (2.3) 

To evaluate the co-ordinates of the point of global extremum of F(x) ,the components 

of the generalized centers of gravity ~ (~)~ R m of the sets E(~ ), ~ > 0, i.e. weighted 

mean j-th components of vectors x ~ F(~ ), are found as follows: 



Solving discrete optimization problems on the basis of %transfi)r method 159 

z xj .fl(x, ~). O(x, 0 

zOO(x, r O(x, ~-) 
x~_D 

where the weighting function l~(x,~ ) satisfies the conditions: 

13(x,~ ) > 0 when x ~ D, ~ > 0: 

{3(x (1) ,g ) > [~ (x(2),~) when F(x (1)) < F(x (2)), x (1) , x (2) ~ D. 

It is clear that if ]E( ~* ) = 11 then the coordinates xj of the global minimum point o1" 

F(x) are found as follows 

x, - x ( r  - i m .  (2.4) 

A general scheme for the discrete q'-transform method is implemented as an 

algorithm involving the following steps: 

�9 generation of a set of random points in the feasible area D 

,, determination of the forecast estimates (2.3), (2.4) on the basis of the set obtained 

,, local optimization of the discrete variables vector of the problem (2.1), (2,2). 

If the set D is a continuous one then the above formalization takes the following 

representation. The generalized continuous W-function takes the form of (2.5): 

w(r - j ' ~ x , O - O ( x , O &  
D 

(2.5) 

where p(x, ~) ,as earlier ,is a weighting function. 

Components of the generalized centers of gravity x(~') ~ R"' of the sets E(~ ), ~ > 0 

are defined as follows 



160 Chapter 2 

j ' x j  .,o(x,~') �9 O ( x , ~ ' ) &  

x j ( r  - o 
j',o(x, ~) �9 O(x, ~-)& 
D 

, j -  1,n. (2.6) 

Theorem 2.2 [30]. Suppose, that F(x) e Lp, where Lp is the Lebesque's space and 

x(6") - [xl (G), x2 (G),..., L (6")]. IfE(~* ) is a coherent set, then 

l im ~j (~') - x j ,  j - 1,n 

" A %  where, x = min F(x). 
P 

An analytical representation of ~j (6"), J = i ,n  is given in [30] on the basis of an 

approximate evaluation of ~j (6"), j= l ,n  at the distinct points and interpolation with 

quadratic polynomial. The introduction of the generalized values ~j (6") is connected 

with ol~taining smoother approximating functions instead of using polynomials of high 

degree. 

Thus, we can see that the 'F-transform technique for solving problems (2.1), (2.2) 

enables one to obtain optimizing vector x* providing minimum F ( x * )  with relative 

error 

o ~  - where(Z)  - Z ,  i f  Z > O  

G + § O, i f Z < O  . 

To reduce the relative error o~ (if necessary ) one needs to use the technique outlined 

in I301. 



Solving discrete optimization problems on the basis of 7~-transform method 161 

2.2. Some important cases of the analytical representation of the 
W(Q-funcfion 

There are serious constraints on the analytical representation of the W-function due 

to difficulties of calculating multimeasured intervals (2.5,2.6). In some important cases, 

however, it is possible to obtain the desired analytical representation. 

Consider the linear programming problem of the form 

F(x) = (c,x) -~ min (2.7) 

Ax < b, (2.8) 

where (c,x) is a scalar production of vectors c,x e R n ; 

A =  Ila, ll is (m n)-matrix of real coefficients; be R m . 

Suppose, that all variables xj of the above problem must satisfy the following 

restrictions: 

x j > otj, otj ~ R n j -  1,n otj ~ R n j  = 1,n 

and the rank of the matrix A is equal to n. 

In this case both sets S = { x lAx _< b } and E(~ ) are convex polyhedrons and, in 

addition, E(~) is defined as follows 

Ax <_b 
( c , x )  <_ ~ . 

The measure W(~) of the set E(~) may be calculated analytically on the basis of the 

iterative procedure proposed in [31]. Therefore, the problem of finding the global 

optimum of a function F(x) on the set S is reduced to the determination of ~, 

r - max{~W(~-)-  O} (2.9) 



162 Chapter 2 

After minimizing q'(q ) according to (2.9) (for example, on the basis of the Fibonacci 

procedure) one may find the optimum vector by solving the linear equations (2.10): 

A . x : b  (2.10) 

, . . ,  , ,  

where A,b - is a matrix of coefficients and a vector of right parts of the inequalities 

(2.8), obtained by deleting from A and b i-th components corresponding to excessive 

restrictions (2.8) for the solution q*. These components are found during the procedure 

[31] execution. 

Let us give the main results concerning the definition of the measure of' the set 

S = { x l A - x  _< b},  representing a convex polyhedron. Note, that q'(~ ) as a measure of 

tile set E(~) = {xl/t'-'(x) <_ ~',x E S} is defined by analogy. We shall use the following 

designations: 

a i - the i-th row of a matrix A; 

1 

Ilxll-normofthev 
. _ .  

V(n,A,b) - the volume of a polyhedron S: 

V i (n- l,A,b) - the volumc of a set { xl(a~, x) - b ,  Ax _< b l 

(a~, x ) - scalar product in the space R n 

Assertion 2.1 [31 ]. For every ~, > 0 the following takes place: 

V(n,A,L. b )=  )~n. V(n,A,b). 

Assertion 2.2. [31 ]. If V(n,A,b) ~ 0 then V(n,A,b) is a continuous function of the 

argument b. 

Assertion 2.3. [31 ]. Suppose that 

1) V(n,A,b) = 0; 

2) Vi(n-l,A,b) = 0 for all i = 1,m. 

Then V(n,A,b) is a differentiable function such that 



Solving discrete optimization problems on the basis of 7J-transform method 163 

aT ' ( t l ,  A , b )  /,~ ( n -  l, A , b )  

The main result on the analytical representation of the convex polyhedron volume 

has been formulated in [31] as 

Theorem 2.3. If V(n,A,b) is a differentiable function of argument b then 

V(n,A,b)- 1 ~  b, .V~(n_ 1,A,b). (2.11) 

As it is pointed out in [31], formula (2.11) may be applied in the case of a non- 

differeniiable fimction V(n,A,b) as well. This circumstance is essentially used when 

performing the solving algorithm. 

Assertion 2.4. [31 l. If V(n,A,b) = 0, then 

V i (n-l ,A,h) = 0 for all i = l , m .  

Assertion 2.5. [31]. Let V(n,A,h) r 0, but there exist such numbers i for which V i 

(n-l ,A,h) = I). Then all restrictions corresponding to the given indices i are excessive 

and equation (2.11) remains correct without including these components (bi,ai). 

Now consider the algorithm which calculates a value V(n,A,b). Let V i (n- l ,A,b)  = 0 

and aij = c). Then variable x 1 may be excluded from the system since 

x I = (b i - aij "x i ) /ai l ,  

Denote a vector not containing excessive variables by x(1) and consider the system 

which is obtained by excluding the variable x I and the i-th restriction. Denote the 

volume of a corresponding polyhedron by ~li(n- 1,A 1 ,b). Since 



164 Chapter 2 

Ila, II - - - 
W ~ ( . - 1 , A , b ) -  ila,. i I �9 v , ( . - 1 ,  A , b )  

formula (2.11) takes the form 

V ( n , A , b ) -  1 b - - la, ,l v ( .  1A, , b) (2.12) 

where W ~ ( n - l , A / ( i ) , b  ) is a volume of the (n-l) dimensional i-th side S of 

polyhedron after excluding variable Xl(i) and i-th restriction. Thus, volume V(n,A,b) 

may be evaluated recursively on the basis of the equation (2.12). 

After (n-l) exclusions it yields the volume of the area corresponding to the 

restrictions 

a l  "X(n-1) < fit, l -  1 , m -  ( n -  1) 

where x (n-l) is a scalar value. This volume is evaluated by the formula 

max{0;[ min ( i l l ) _  max ( i l l ) l} .  

a 1 > 0 a I a I <0 a I 

The algorithm for realizing this procedure is as follows. 

Algorithm 2.1. 

Input: A,b,N = { 1,2,...,n}, M = { 1,2 ..... m}; S = 0. 

Output: The volume VOL of polyhedron; the set M of the active restriction numbers. 

Procedure VOL(M,N,A,b,S) 

begin 

i_f [N[ = 1 then for ~ e N do 



Solving discrete optimization problems on the basis of 7~-transform method 165 

VOL:= max{O;[ min ( b i )  - max ( b i ) ] }  
aij > 0 aij aij < 0 aij 

else begin 

for all 1 ~ M do 

begin 

K : = I ;  

while alk = 0 do K := K + 1; 

for all i ~ M, i ~ 1 do 

bik alk 

1 
for all j e N, j * k d___oo a , j ' -  a~j -(a~k . a ~ j ) - ~  ; 

alk 

comment �9 b~, a,j - are the elements of vector b and matrix A; 

end 

V = VOL( ,--if, A,b,O); 

i__f (INI- n ) and (V = O) then M:=M/1; 

comment: l-th restriction is excessive; 

S = S + V ;  

end 
, .  

WOE-= S/INI; 

end 

end. 

The above algorithm has several advantages, namely: 

�9 it may be relatively easy programmed; 



166 Chapter 2 

�9 it is not necessary to calculate the determinant (s) of matrix A; 

�9 it is simpler than the existing algorithms; 

�9 it enables one to find the excessiveness of the set (2.2) of constraints; 

�9 when being programmed in the environment of such algebraic languages as 

REDUCE or FORMAC, the algorithm yields the analytical representation of W(q). 

However, in the view of the exponential growth of the number of operations necessary 

to calculate V(n,A,b) for linearly increasing n, practical effectiveness of the algorithm 

is still unknown. 

Example. Let there be given the following linear programming problem 

F(x) = 3x 1 + 2x 2 --~ min 

Xl + 4x2 <72 (2.13) 

6x 1 + 3x 2 >120 (2.14) 

x 1 + x 2 <32 (2.15) 

x 1 + x 2 > 26 (2.16) 

x 1 > 10 (2.17) 

x 2 > 8 (2.18) 

Adding to the constraints set the inequality 

3x 1 +2x  2 <q 

one obtains the polyhedron E(g) with the measure 'F(g). After the minimization of 'F 

(~) according to the algorithm one obtains ~ = 66. For this value q constraints (2.13), 

(2.15), (2.17) and (2.18) are proved to be excessive. Then solving the linear system 

6x I + 3x 2 = 120 

Xl + x2 = 26 

one finds Xl = 14, x 2 = 12. 

2.3. A general scheme for the discrete W-transform method 

Let us proceed in the following way. 



Solving discrete optimization problems on the basis of 5U-transform method 167 

A general scheme for the discrete W-transform method is implemented as an 

algorithm involving the following steps: 

�9 generation of a set of random points in the feasible area D; 

�9 determination of the forecast estimates (2.3), (2.4) on the basis of the set obtained; 

�9 local optimization of the discrete variables vector of the problem (2.1), (2.2). 

The following were chosen as weighting functions: 

E I n G 
~,,, ;) -1r  r(,,)l ", P(,,, ;) - 

It is known that a discrete analog of the set measure is set cardinality. Hence, we 

have a discrete representation of T-function as follows 

~(;)_ IE(;)I (2.,9) 
I01 

where E(~-) - {x I F ( x )  <_ g', x ~ D }  and a representation of a general T-function 

in the form 

~ p ( x , O .  O(x,~) 

IDI 
(2.20) 

The first step of a general scheme for the ~-transform method consists of the 

generation of the randomly distributed points { x i e D, i c 1, N 1 }. There are a number of 

possible ways of doing this: 

�9 on the basis of the penalty functions; 

�9 by means of an approximation to a feasible area D by a simpler area (for example, 

if D is a hyperparallelepiped). 

Find F m i  n = minF(x ( i ) )and  interval [G, G] where 
i 

~ ' -  Fro= ; ~-- Fk, k - rain (/~,/~ ) , 



168 Chapter 2 

k - the number of different values function F(x) takes 

{x  (i) ~ D , i =  I ,N  1}; 
A 

k - a given number (in the calculations below k = 20). 

Cm -- ~ ' - - ( m -  1). A~- 

in the area 

(2.21) 

1 �9 (Fm~ -Fmin)  A ~ ' - ~  

Additionally, the random points x (i) ~ D,i = N 1 + 1,N are generated. 

At  the second step one needs to define a prognostic value for the global extremum 

~-*- max{~q~(~-) - O} 

and corresponding values for vector x. 

There are, for example, the two following approaches for finding a prognostic value 
. 

. The first one is based on an approximate evaluation of the function 

 p(x,O- O(x,9) 
k T ~ ( ~ )  _ x ~ D  

IDI 

at the points ~'~, v = 1, k 

1 N 
�9 

i=1 

- F (x ( i ) ) [  m.  O(x,~ 'v)  (2.22) 

and a further extrapolation of q~(q) at the zero point, i.e. 

,t,(g) = o.  

The second method is reduced to the determination of a confidence interval with the 

level p for ~* and to the choice of a corresponding value 



Solving discrete optimization problems on the basis of  ~-transform method 1 6 9  

1 F 2 - <  
r + ( I - ~ ) .  I I 

P 

where F~, F 2 are the smallest and the next smallest values of F(x) found during the 

generation of random points; 

d is a parameter allowing the selection of the value q from the confidence interval 

I(p) to be varied. 

To find coordinates of the global optimum point q*, find components of the 

generalized gravity centers E(gv), v= l , k  on the basis of the next formula 

N m 

..(i) "[~w / F(x(i))] "| ~-v) Z ~ j  

X--j ( ( v )  -- i=l (2.23) 
N m 

i=1 

where xq ) is the j-th coordinate of i-th random point, j=l,ln, i=l,N. As a result of 
s 

the approximation to functions s (q) on the basis of the set of calculated points (2.23), 

one can obtain the optimal value x* : -  x5(r 

By definition, vector x*eR n defines a gravity center of the set E(q*) of the optimal 

vectors for the problem (2.1, 2.2). Thus, a vector Xg e D of discrete variables may be 

obtained as 

x; - ar xmin[[x'- xll 2 

m 1 
2 

j= l  



170 Chapter 2 

Suppose now, 

( i (~ ' ) )  - arg min Ili (~') - = 

Thus, as a result of the second step of the algorithm, the prognostic value of the 

global extremum q'and the corresponding vector x will be found. If 

, 0  

then there is an error of approximation which may be decreased by the variaton 

method, in the W-transform plane. This results in obtaining the value of 

~'*- arg min F[(i(O)] 

and the corresponding coordinates of the vector x providing a global extremum for 

. ^ *  is used as basic at the final step of the algorithm the function F(x) The given vector Xg 

to perform a local optimization. 

The procedure of local optimization consists of transforming the discrete value of 

^~t ^ $  

every j-th component of the vector Xg starting with xj until it remains within the 

allowable boundaries, provided other components are satisfied. If F(x) is a unimodal 

function then the discrete values i~. should be subsequently modified until F(x) 

decreases. Suppose, x" provides F(x" ) < F(i~ ). Then x" is used at the next iteration of 

the minimization procedure, etc. 

r162 

2.3.1 .  Choosing the method for an estimation of the global minimum of 

As was pointed out earlier, there are two approaches to prognosticate the value of q*. 

In accordance with the first approach, a set of points % has been approximated by 

algebraic polynomials, Chebyshev's polynomials and by analogical means. As a result, 

the value 



Solving discrete optimization problems on the basis of ~F-transform method 171  

~* - argmin F[(2(q))] 
ff 

could be found with corresponding vector Xg ) providing F ( i  ) is 

approaching its global minimum. To provide the improvement of F(x), a procedure of 

i* and finishes with local optimization should be used which starts with a given vector g 

some new vector i* of the local minimum ofF(i*). 
g g 

To approximate the function q'(9) we have used the algebraic polynomial 

2 

Z a k - ~  defined in the points ~ov = W(q~), v= 1,----k. The coefficients a o , a l , a  2 have 
k=0 

been determined on the basis of a linear regression technique, i.e. the values of 

a o , a 1 , a 2 were found from the equation 

k 2 

yv[~F(q,,) - ~ ak~] 2 ---> min 
v=l k:O 

(2.24) 

with weighting coefficients qtv such that 

- I v ( c ) -  V( v)l -m _ [V(qv) ]  -m (2.25) 

The last equation is connected with an assumption, that the closer q'(qv) is situated 

to 0, the stronger is its influence on q* and, therefore, the larger its corresponding 

weight 3%. On the basis of a o, a] ,a 2 and roots ql, q2 of an approximating polynom we 

can find 

q* = Imax{ ~'1, q2 }, a2 -> 0 



172 Chapter 2 

In the last two cases we performed an approximation of the reverse function W -1 

using set of points g,, = W-' (~ov) ,v  - 1,k ,by means of an algebraic polynomial with 

order h, given in the form 

h 

W-'  (~ )  - ~~ ak" P~ (~) 
k=O 

where Pk((p) is a Chebyshev's polynomial of order k. We also used as an 

approximation, a cubic polynomial spline with q nodes given by coefficients b k in the 

representation 

q 

k = l  

in the system of fundamental splines Qk(q~). 

Coefficients a k ,k = 0,h, bm,m = 1,q and the number q of nodes were defined on the 

basis of the mean risk minimization approach [32]. 

It has been established that all the considered methods for estimating q* are too 

imprecise. In order to obtain a more precise estimation, let us use different approach 

[33]. 

Theorem 2.4. [33]. If there exist positive constants r and Z such that 

l im W ( O  
)- 

then the probability P { ~  c[/?,F1] } assymptoticaly approaches the given value 

0 < p <  1 for 

f i - F 1  _ F2 - FI , 
- - r  p - 1  

F 1 - min F ( x ( ~ ) ) , i -  1, N , 

F 2 - m!n{F(x(~) ) lF(x(O ~ F l , i -  1,X}.  
1 



Solving discrete optimization problems on the basis of W-transform method 173 

Theorem 2.5. Let r=l  and p(x,q) = Iq-F(x)l. Then 

lim T(g') : IE( f ) l  

Proof Let (p(q) - 
~(~) 

and assume that F(x) takes values g* < gl <--. < gz from 

the set D. From the conditions of theorem 2.1 it follows that for any 

~ ~ [91 ,9 l+ , ] , / -  1,z and 9(x,q)=lr it is true that 

 o(0 = 

l 

v=l  

]D] 

1z)-- -V+ - -  , 
(2.26) 

It is not difficult to note that for any e> 0 for which q = q*+e < q l the second 

addendum in (2.26) becomes zero and q~(q) takes a constant value of IE(q* )[/ID[. 

Hence, to estimate q precisely one needs to select the correct value from the interval 

[#,F1 l, where P : F 1 - ( F  2 - F 1 ) / ( 1  _ 1). Suppose, for example, 
P 

- P + - P )  / d (2.26a) 

which gives 

6" - F~ + ( 1 - ~ ) -  
1 6 /  1 
p 

(2.26b) 



174 Chapter 2 

Here, d enables us to control the correct choice of the value q* from interval 

[F, F1],l<_d<_m. As follows from [33], the usage of the assymptotic formula 

e P',F 1 =p from theorem 2.4 is legitimate only in the case when F 1 and F 2 are 

close to the q*-value. Otherwise, the result may be too imprecise. For the problems with 

high dimensions it is advantageous to increase the probability p and parameter d which 

cause the shifting of q* to the lower bound of F. 

2.3.2 Approximation of the function ~j (G) 

The problem of the approximation to the function ~j (G) on the set of points (2.23) is 

reduced to the determening of its value in the point q*. Obviously, the closer is the 

interval [~,~-] to the point q*, the more precise is the value of ~j(q). Beating in mind 

this consideration, let us modify the method of selecting an interval [~,~]. 

Having calculated Fmi n, Fma x, Aq on the basis of the set of points { x 0) eD,i=I,N } let 

us now define a set of values 

Gu :Fmax -(U-1)-AG (2.27) 

where 

[ L,IE (qL-1)I  IE( 
V=~min{u,lE(qu)l_lE(~u+~l;u=t_l,...,1},iZlE(qL_l~=lE(GL)l 
L=max{u,~(qu)r l,2 .... } 

Then, from the points (2.27) let us choose the last k values qu setting up 

G-:-Gv-k+l,~-Gv. Find ~j (~-) for every point %e [~,~-] according to the formula (2.23). 

Some experiments have been conducted to estimate the accuracy of the 

approximation given by different methods, namely: 

�9 linear regression methods (M1); 



Solving discrete optimization problems on tke basis of ~-transform method 175 

�9 exponential smoothing method (M2), and 

�9 minimization of a mean structural risk method (M3). 

In the Ml-method the approximation is provided by polynomials of the form 

2 

k=0 

The points of the approximation have been choosen unevenly to provide the highest 

accuracy of ~j(~). This is due to the supposition that the gravity centers ~j(~)eR n of 

the corresponding sets E(% ) seriously affect the estimated value of ~j(~). The most 

serious drawback of the given approach, however, is connected with the necessity to 

apply a more complicated technique in order to solve the relatively simple initial 

problem. Thus, it may occur that the given set of points ~j (G) is insufficient to provide 

the necessary accuracy of the approximation. From this viewpoint it may be more 

desirable to use the M3-based approach [32,34] oriented at the restricted statistical 

samples. The general scheme of this approach is the following. A fixed set G of linear 

functions of the form 

h 

k=l 

should be selected with parameter vector a and linear functions gk(q). It is assumed that 

G is somehow ordered, for example by the following ordering 

G1 c G 2 c ...c GmcG. 

For every subclass G c, a least-squares estimator fi (c) and an estimate J(c) for the 

upper creadibility level rl of a mean risk I(c) are further found in such a way that they 

satisfy s inequalities: 

P{I(c) < J(c)} > l-q, c = 1,s, 

where 0 < n < 1. 



176 Chapter 2 

Then the best estimate h* is being searched for among estimates ci (c),c = 1-~. This 

value h* corresponds to the minimum value J(c), c = 1,s. As a result, an approximating 

function G(g,h* ) enables one to restore the value G(g*,h*) in the point g*. 

An advantage of this approach is based on a compromise between complexity and 

accuracy of the computational procedure. We investigated the efficiency of the approach 

for two different classes of functions G: 

�9 algebraic polynomials of the order h given by the coefficients aij in the 

representation 

h 

- Z ajk. Pk 
k=O 

(2.29) 

where Pk(g) is Chebyshew's polynomial of the order k; 

�9 cubic polynomial splines with q nodes given by coefficients bij in the 

representation 

q 

k = l  

( 2 . 3 o )  

where Qk(g),k =1, q is a system of fundamental splines. 

The method has been proved to be effective only for the interpolation of g* in the 

* *<  , interval [~,~-]D g .In the case g ~ however, one should solve the extrapolation 

problem, for example, on the basis of the exponential smoothing method [35]. 

According to this method the restored value ~j(~-) at the point g* is defined by the 

values 91 .... ,9k as follows 

X~ - Sj k+l + g'k - g'* "R,' k+l (2.31) 
' Ag" ' 

where parameters Sj,k+l,Rj,k+l a r e  computed on the basis of the recursive scheme 

below: 



Solving discrete optimization problems on the basis of  5V-transform method 177 

Sj,v+ 1 - a" ~j(~'~) + ( 1 -  a)"  (Sj~ +Rj~);  

Rj,v+ 1 - p . (S ] , v+ l  - S j ,v)  W ( 1 - 1 ~ ) .  R j , v ,V  - 1 , k ;  

S j l  - X j ( ~ I ) , R j l  - 0. 

(2.32) 

(2.33) 

(2.34) 

Here, Sjv is an exponentially weighted mean value of the function ~j (g) for q>gv ; 

Rjv is an estimate of a trend of the function x-j (~-) at the point gv ; 

0 _< c~ _< 1,0 _< fl_< 1 are weighting coefficients with respect to the corresponding 

values ~j (gv),V = 1,k which are choosen on the basis of the try-and-test principle 

[36,371. 

All the approximation methods considered above were used in the control test on the 

basis of the Steinberg problem [38]. The highest accuracy was provided by the 

exponential smoothing technique in the case IE(%)I- 1. This result has been taken into 

account in the discrete ~-transforming algorithm which is outlined below. 

2.3.3. Discrete ~-transform method for F-indefinite problems 

Summing up of all the results obtained gives an algorithm for solving discrete 

optimization problems on the basis of W-transform technique. 

Inputs: - problem (2.1, 2.2); 

the numbers of the basic points N 1, N; 

parameters /~, m, p, d. 

Outputs: - an approximated value q* of a global minimum of the objective function 

and 

vector i providing g*; 

the value ~ of possible error of approximation. 

begin 

find a set of random points { x (i) ~ D },i - 1,N 

compute the values Fmin, Fma x , k, Ag; 

for i =1,2 .... ,N 1 do to find gu by (2.27); 



178 Chapter 2 

for i=Nl+l  .... ,N d___o 

begin 

generate x (i) E D ;  

define gu by (2.27); 

end 

fo___yr v = 1,2 ..... k d__o_o gu =gu-k-v; 

F 1 "= min {F(x(i) )l i=l, N }; 

F 2 "= min {F(x(i) ) IF(x(i) ~F1 ,  i=l ,N }; 

define g* by (2.26b); 

for j = 1,2 .... n d__oo 

for n = 1,2 .... ,k d__9_o define xj(Gv) by (2.23) 

call MES(g* ); 

= ([F(Xg)-g*l/g*)+; 

i__f e > 0 then begin 

xg "= argmin {F(xg )lXg = VAR(g) }; 

call MPP(Xg); 

define g* by (2.26b); 

= IF( x0 )%*1/~* ); 

end 

. else x 0 "= Xg, 

end 

The algorithm uses 3 procedures MES, VAR and MPP. The first realizes an 

exponential smoothing technique. Procedure VAR is defined as follows. 

Inputs: o~* ,13" ,xj(Gv), J =  l,n; v : 1,k, g* ,A~. 

Outputs: Xge D 

procedure VAR(g*) 

begin ~z "= ~z ,13 = 13"; 



Solving discrete optimization problems on the basis of q/-transform method 179 

for j = 1 , 2  ..... n do 

begin 

sj, .:  o; 

for n = 1,2 ..... k do 

compute Sj,v+l and Rj,v+l 

compute x j  by (2.31); 

end 

return(<x >); 

end; 

Procedure MES is the following. 

Inputs g*, �9 "Fmax;  x j (g ' ) , j= l ,n ;Aq 

Outputs: Xg E O;a ,1~ 

by (2.32-2.34); 

procedure MES( ~* ); 

begin 

F ~ " - -  F nlax 

F o "= F* " 

~x':= 0.1. 

o~" "= 0 .9  

h 1 "= 0 .1  

~' "= 0.1" 

13" "= 0.9; 

h 2 "= 0.1; 

M1.13.= 13' 

for o~= o~', ~ '+h ..... (~" do 

i_f F* < F o then begin 

F o "= F* ' 



180 Chapter 2 

or ''= oc* -h 1 ; ~"'= oc* +h 1" 

~ '=~*-h2 ;~"  .= ~*+h2. 

h 1 "= h 1/10; h 2 "= h 2/10, 

goto MI; 

end 

end 

The definition of the procedure MPP is given for the case of integer variables. 

:g 

Inputs" vector Xg eD 

O u t p u t s :  An approximate solution x ~ to the problem (2.1,2.2); F 1 ,F 2 . 

procedure MPP(x g ) 

. begin x ~ "= Xg,  F1 ,F2"= F(x ), 

MI" for j=l,2 .... n d__0_o 

begin 

~ +1,  ~ +2,  .}. Xj+ "= {xlx~ D, xj "= xj Xg .. , 

�9 o o - 2 ,  ..} Xj. "= {xlxe D, xj = Xg- 1, Xg . 

X j ' =  X j+ w Xj.  ; 

end 

/1 

X *'= argmin {F(x ) Ix~UX j }; 
j-1 

:=F(x*); 

?7 

F2* :=min {F(x)lx e U X j  ,F(x),FI* }; 
j=l 

i___f F(x O) > FI* then 

xO: - X , 

F 1 "=FI*, 



Solving discrete optimization problems on the basis of W-transform method 181 

F 2 " = F  2 , 

goto M1; 

end 

Discrete q~-transform method has proved, however, not to be effective in the case 

when an objective function F(x) had more than one optimum point. This also was the 

case when one of local optimum was slightly different from the global one. Other 

strategies for finding the global optimum of an objective function F(.) are given in [39 - 

41].These are based on dividing a set D into a number of subsets, one of which contains 

an optimal point. To sum up, let us list the main positive features of the discrete q~- 

transform method: 

- a possibility to predict the value of the function F global optimum with a 

corresponding error of approximation; 

- a possibility to use this method in the case of a non-analytical representation of an 

objective function (i.e. an objective function is given by the set of pairs <x i ,Yi >, Yi = = 

F(x i )). 

- an effective computational realization. 

2.4. An approximate solution 
problems 

to F-indefinite static optimization 

Let us apply the described technique based on the W-transform method to the 

combinatorial and integer-variable optimization problems. It provides us with a good 

example of using a weak solving strategy for the problems known as NP-complete. 

2. 4.1. F-indefinite mixed integer programming problems 

Consider the following problem formulation: 

F(x) --> min 

x = {x 1 ,x2,...,Xnl , . . . ,x n ) ~ D 

(2.35) 

(2.36) 



182 Chapter 2 

where D = {xlgi(x)< b i , i = 1,m; 

xj ~ N, j= l , n  1 ; x k ~ R, k = n 1 +l,n}; 

gi : Rn---~R, i = 1,m; 

N is the set of integers and R is the set of real numbers. As earlier, we suppose that 

function F ( x )  is strictly positive or strictly negative. 

Let x = (y,z), where y = (Yl ,Y2 ..... yn 1 ) and z = = (z 1 ,z 2 .... Zn_nl); y and z are 

subvectors of vector x. 

Dy = { z [ ( y , z )  c D ,  ze  R n'nl }, y e N nl 

D z = {yl(y,z) cD, ze  Dy,y ~ N nl }; 

Ey (q) = {zlF(y,z) _<q ,ze Dy }, y ~ N nl ; 

E z (~) = {yIF(y,z)_<q, y~D z }, ze  Rn'nl; 

Qy(z,~) and Qz(Y,~) are characterization functions of the corresponding sets Ey(q) 

and E z (g) ; 

N nl - is the set of all y such that yj ~N, j = 1,n. 

In the case when 0 < nl  < n ,the T-transform method has some peculiarities. Thus, 

W(g) takes the form 

IP[(Y,Z) , ~"] " Oy (Z, O &  

~(~)- YcDzDy (2.37) 

Z fl~)Y (z'Fmax)~ 
YCDzDy 

where Fma x - maxF(x). 
xeD 

Theorem 2.5. Let F(y,z) ~ Lp(Dy ) for every fixed y~ N nl .Then for all q<g*, 

func t ion~(g)  in (2.37) has a null value a n d ,  for ~>~* , it is a continuous strictly 

increasing function. 

To find the coordinates of the global optimum of the function F(x) under the 

condition 0< n l  < n ,let us compute the generalized values of the mass cenlers 



Solving discrete optimization problems on the basis of tP-transfotvz method 183 

y(.c) eRnland z ( g ) e R  n-hI  of the corresponding sets Ez(g) and Ey(4) from (2.37, 

2.38): 

Z YJ" I f l[(y 'z) 'gl ' |  
Y ~gz Dy 

- ( 2 . 3 8 )  

Y/(~-) - Z f fl[ (y 'z) '  g]'(+z (y :g ) e  

Z zk. ffl[(y,z),~-l .e)y(y,g)~ 
_ ye_j)~ D: 
z/,. (g) = . (2.39) 

Z ffl[ (y, z), g] �9 | (y, g) dz 
y~D~ D, 

Theorem 2.6. Let F(y,z) E Lp(Dy) for every fixed y e N nl, I E (4)1 = 1 for every z 

R nnl and the set Ey(g ) be compact for every y ~ N nl Then y = y ( ~ ) a n d  

z *  - lim. 2 ( g )  where ( y , z*) x* * = ~ Argmin F(x). This theorem directly follows from 
q--+ g 

theorem 2.1. 

The general scheme of the discrete T-transform method may be realized as a 

kind of integer programming algorithm: 

�9 generating the set of random points X = {y(i),z(ki) } ~ D, 

�9 obtaining estimates 4" and x* for the set X; correcting the soluuon obtained: 

�9 optimizing locally the objective function in the x*-area. 

c i s Functions 0 (x,4)= t~-F(x)t S and f l (x,O = [ts'(Xi ' S > 0 are selected as before, 

The following theorems are used to find an estimate of g* in (2.9). 

Theorem 2.7. [33 ]. Let n~ = 0 and F(x) have lhc single global minimum at the point 

x* = ( y", z*) ~ D. Let F(x) have the first and the second derivative F'(x) and F"(x) 

respectively. Suppose that the Hessian H(x*) is not degenerate. Then the limit 



184 Chapter 2 

lim ~E(q)] 
q_.~q n 

exists and has a positive value. 

Theorem 2.8. Let 0_< n 1 < n, F(x) has the single global minimum at the point 

Z* * �9 * * Z* R n 'n l  0 <  < n, E x = ( y ,  z ), e , nl Dy .  Suppose, that F(y,z) has the first and the 

second derivative at the point z* and the Hessian H(z*) is not degenerate. Then the limit 

l im 
'e(9) 

n - n l  

q*) 

exists and has a positive value. 

Theorem 2.9. Let n = n I , p(x,z) = lq  - F(x) I Then 

l im W(G) = IE(r 
s Iol 

It follows from the above theorems that we should use an estimate q which is 

defined as shown below: 

F l - ( 1 - d ) "  F2-F12 ,0<n l<n  

q* P "-"1-1 

= F _ ( l _ d ) .  F2_F~ ,nl=n. 
p - l _  1 

(2.40) 

To compute the approximate coordinates of the point x* we suggest using the 

following formulae: 



Solving discrete optimization problems on the basis of T-transform method 185 

L.( ;v) -  

MM, 

i=l k,=l 
MM, 

~j[Gv/F(y(,),z(k,))]~.| ' (y(O,9~) 
;=lk,=l 

MM, 

~z~k')'[r (z(k,),~-) 
z\ ( r  ;-~ k,-i 

M Mi 

'~" ~ [ ~ % / F ( y ( ' ) , z  
t=l ki=l 

(k,))]~.O ,,,(z(k,),~- ) 
Y 

(2.41) 

j= l , n l ;  k=l ,n-nl .  

These formulae enable one to compute a series of numbers for further extrapolation 

at the point ~'* . The points y' e R nl and z' ~ R n-nl define a mass center x = (y'~ z' ) of 

the set E(~'* )=Argmin F(x). Vector x* may be found as 

x*-Argmin ID '- qi = 
xeD 

where Ilxll is a norm of the vector x. 

Assume, 

<,,*'(o > = <x'(r162 2. 
xeD 

If the error e of approximation is positive then in order to reduce r, one should use 

the method of variations in the T-transform plane which produces more exact values ~:*' 

and x*'. These values are used at the final step of the considered scheme - in a local 

optimization procedure consisting of the subsequent dcfinition of each component j(k) 

of vector x * '=  (y*', z*'). The procedure commences with components yj and z k and 

continues until the values generated remain within set D. 



186 Chapter 2 

At every c-th iteration ,the procedure forms two subsets of points Yj+ and Yj. such 

that 

/(y ,z(~-l)) ~_D, 

~-  -{Y~i =Y}C-1),(i~J); 

kl2j =y~.C'-'l)- 1,y~-C-1)--2,...;} 

(y,z(~-l)) ~ ) ,  

Yi =Y}C-1),i~J; 
~+-{y 

yj=y~C-1)+l,ySf-1)+2,...;}; 

/=l ,n l  

(at the first iteration y(0)= y*', z(0)= z*' ). 

Find y(C)= argmin{F(y, z(Cl)}. If F(y(c) ,z(c'l) ) < F(y(cl) ,z(c-l) ) then y(C) is used at 

the next (c + 1)-th iteration. 

The optimization of the subvector z*' is quite different, however. At the 1-st iteration 

find 

Z~ - inf(Zk(~ Z~ - s u p ( Z ( ~  1 , n - n l  

$, 

where k is k-th component of subvector z ; 

Z (0) - {Z k [(y(1),Z) ~D,z i -Z;'}. 

At the c-th iteration form finite subsets Zk+ and Zk., k = 1,n-nl where 

](y(~),z) ~ D,  z; = z} c-l) , (i :r k )  
z~ - {z[ 

- _ (  t,. . . , ( c - l )  _ , ) / ~  L 

[(y<:~),z) eD,  z, - z} c-l), (i z/z. k )  

z,,,+ - {Zlz,, , = ~- ' )+h, , , ;  z+<~-')+:2h,,,,...,z~ 

hk - z~ - z~ i - l , . -  nl 
4 



Solving discrete optimization problems on the basis of W-transform method 187 

Choose z(c) = argmin { F(y(c), Zmin); F(y(c), Z (c ' l )  }, where Zmi n = argmin { F(y(C), 

n - n l  

z)lze U zk .  Choose also an index 1 corresponding to vector z(c) and such that 
k=l  

z(c) e Z I=Zl+~Zl_. 

If there exists an index k = l, n-nl such that h k > ~ ( ~ is a given positive number) 

then z(c) is used at the next ( c + 1 )-th iteration with new upper and lower bounds 

If Z l contains more than one member, then assume 

Z~ t - min{z~ ~) } - hi; Z~ - max{z~ ~) } + h l . 

If h_<~ for given positive number ~ then z~ C) = const. 

As it is observed from the above considerations, the scheme is divided into two 

stages: 

�9 mapping ~ to the set D and 

�9 truncating the integer variables to the nearest allowable values in D. 

The first stage is connected with the problem in the following form 

f (x)  - I l i -  xll 2 min (2.42) 

Ax _< b (2.43) 

where Amn is a matrix of real coefficients; be  R n 

Due to the pequliarities of the problem (2.42, 2.43) there is a number of effective 

methods, for example see [41,42]. Rewrite the above formulation in the form 

1 
f ( x )  - 2 ( x , x ) -  ( i ,  x) ~ rain (2.44) 

Ax _< b (2.45) 



188 Chapter 2 

where ( i  ,x) is a scalar product of two vectors in R n Obviously, (2.44, 2.45) are 

equivalent to (2.42, 2.43) respectively and the dual representation may be written as 

W(u)=l/2.(AAt, u) + (b-Ai  ,u) --~ min 

ui>_ 0, i ~ [ 1,m] 

or in general form: 

q~(u)=l/2.(Du,u) + (c ,u) --~ min (2.46) 

ui_> 0, ie[1,m] (2.47) 

where I) =AA t is a square matrix of an order m; c = b -Ai  ,c ,u~R m is a dual 

vector. 

It is seen that problem (2.46, 2.47) has a simpler representation as it requires only 

the non-negativeness of variables u i , i ~ [ 1,m]. 

Assertion 2.6. In the problem (2.44, 2.45) let solution set X - { x lAx _< b } be non- 

empty. Then problem (2.46, 2.47) has an optimal solution u* such that 

i * = i  - u oA 

is ,  in its own turn ,the solution of the problem (2.44, 2.45). 

Definition. Point u providing a solution of the problem 

W(u) --~ min 

ui>_ 0, i e I = [1,m] ( I may be empty) 

is called a characteristic point. 

Assertion 2.7. The set of all characteristic points of the problem (2.46, 2.47) is 

finite. 

The problem (2.46, 2.47) is solved by two procedures. The first one builds a 

characteristic point and the second one tests if this characteristic point is optimal or not. 

If no t ,  then it looks for another characteristic point u with a lower value q~(u). This 

scheme guarantees only decreasing values of the function q~(u) and by virtue of 



Solving discrete optimization problems on the basis of W-transform method 189 

assertion 2.7, should terminate with the optimal solution after a finite number  of 

iterations. 

If  vector ~,* =(~*r is obtained,  then at the second stage the subvector ~* should be 

truncated to the nearest integer vector from D. It should be noted that such a truncation 

does not guarantee an optimality of the resulting vector x*=<~(~-*)> but in most 

practical applications the result should be considered acceptable. 

To sum up the above considerations let us provide an algori thm to solve (2.42, 2.43). 

Inputs: ~ ~Rn; problem (2.42, 2.43); set D. 

Ou tpu t s  point x* ~ D 

procedure P R K ( i  ) 

begin 

for i = 1,2 . . . . .  m do 

ui':=0; 

M : = {  1 ,2  . . . . .  m }; 

D: = A A  t , 

c:=b.A~, �9 

M4:  r :=VT(u ' ) ;  

comment:  r = (r 1 , r 2 . . . .  , r m ), VW(u') = Du'  + c; 

I(u'): = { i l u i' = 0, i e M }; 

for all i e I(u') d__QO 

i_fr i < 0 

then goto M I ;  

for all i ~ I(u') 

do if r i a 0 then go to M1 

u*'= u' ; goto M2; 

MI" for all i e I(u') do 

h i' "= -min{0;sign( r i ) }; 

for all i s  I(u') do 

h i' "= -sign( r i ); 



190 Chapter 2 

o~ = -  (Vq~(u'),h ') / ( Dh', h' ); 

h ~ "= h' + c~h'; 

M3: for all i ~  M do 

if ui ~ = 0 then 

begin 

M: = M \ i; 

delete i- th row and i- th column from D; 

delete i- th element from c; 

end 

h o .= .Vq~(uO) �9 

MS: ~x o "= -(VW(u~ h ~ ) / ( Dh ~ , h ~ ); 

for all i ~ M do ui ~ "= ui ~ + ~o.hi~ 

for all i ~ M do 

i__f ui ~ < 0 then 

begin 

for all ui ~ < 0, i c M do ui~ = 0; 

goto M3; 

end 

M 2 "  

i f  VW(u ~ = 0 then u': = u ~ , 

goto M4; 

13 .= (VW(u~ Dh ~ ) / ( Dh ~ , h o ); 

h o .= _Vq~(u o) + 13.h~ ; 

goto M5; 

i * ' = i  -u*  

comment:  i* - (~* ,~* )" 

M7:  for i = 1, 2 . . . . .  n 1 d__9_o 

ifi  ~ * J -  ~* ] < I[~?*~- .v* I then 

y* :=  l~*J  else y " ' =  y][-* 

comment:  Ly~ is the greatest integer which is less than y; 



Solving discrete optimization problems on the basis of %transform method 191 

~y] is the least integer which is greater than y; 

i f  x * = ( y * , 2 * ) e D t h e n  

return ( x* ); 

fori  = 1 , 2  .... , n l d o  

i_f Yi -Y i  ~0 then ~: = Yi -Y i ,  

~oto M6; 

M6: ifZ < 0 then 7: = -l/~. ; 

else 7: = 1/Z 

f o r i =  l, 2 ..... n l d o  

goto M7; 

Yi "- Yi +2.y 

end 

It should be noted that the above algorithm may be ineffective when point 

i* -(~*,~,*) coincides with the vertex of cone and point x* = ( y*,  ~* ) ~ D is not the 

nearest one in respect to the point x* = ( y*, ~*) ~ D .  

Combining this result with that obtained earlier we have the following algorithm for 

solving partly integer linear programming problems: 

Inputs: problem (2.35, 2.36); the set Mi(1), i = 1, M 1 of basic points, M i ; i = 1, M ; 

k, s, p, d. 

Outputs: g*, x 0 - an approximate solution tO the problem (2.35, 2.36); the value e of 

error. 

begin 

generate the set of random points { (y(i),z(ki)} c D 

compute Fmin, Fmax, k, A~; 

Ml 

N, :=IqM, I  
i=1 

for i:=l, 2 ..... N 1 



192 Chapter 2 

do 

define ~-u by (2.27); 

for i: = M  1 + 1  .... ,M do 

for K i := 3/.(1) +I,.~M i 

do 

begin 

generate { (y(i),z(ki))e D 

define q by (2.27); 

end 

for t )  = 1 ,2  . . . . .  kd__o 

qv:-- qv-k+v 

F 1 "= min {F (y(i),z(ka)) k i = 1, Mi ,  

F 2 "= min {F (y(i),z(l~))[F (y(i),z(l~))~ F 1 

define q* by (2.40) 

for t )  = 1, 2, ..., k d__oo 

begin 

for j = 1,2,...,n 1 

do 

define Yj(qv) by (2.41) 

for j  = 1,2 ..... n-n 1 

do 

define ~k (~'~) by (2.41); 

end 

call MES (q*); 

�9 = ([F(Xg)-9* 1/9') + ; 

if e > 0 then begin 

�9 :=argmin{F(x)[x=VAR (~-)}) }; 
ff 

call MPP (f ,*);  



Solving discrete optimization problems on the basis of 7J-transform method 193 

define ~* by (2.40) 

e.=lF(x~ -* 

end 

. else x~ 

end 

Procedures MES, VAR and HPP have the same meaning as earlier. Procedure VAR 

takes now the following form: 

Inputs: o~*, 13"" Yj(~-v), Fk(~v) , j  = 1,n 1 , 

k = 1, n-n 1 , v = 1, k ; g*, Ag 

Outputs: x*~ D. 

procedure VAR ( g* ) 

begin 

for j = 1 , 2  .... ,n d__o 

begin 

Rj l=0;  

i__f j < n 1 then Sjl = yj  (gl) 

else Sjl = Z~_n, (~-1) 

for v = 1,2 .... .  k do 

compute Sj,v+ 1 , P"j,v+l by (2.32-2.34) 

i f j  _< n 1 then 

define )Sj by (2.41), 

~j:= ~j else 

define Zj-n, by (2.41) and 

set Xj:=Zj._nl" 

end 



194 Chapter 2 

x* "= PRK( s ); 

return ( x* ); 

end 

Procedure MPP has the following form 

i * =  ,~* , Inputs: vector (~* ) e D ~. 

Outputs: an approximate solution x ~ = (yO ,z o ); F1 F2. 

procedure MPP ( i* ) 

begin 

y0. ~* z0.= "* = , z ; 

F1 :=F( x ~ ), F 2 :=F1 ; 

MI" for j=l,2,. . . ,n 1 

d__QO begin 

Yj+ "={Yl ( Y , z O ) ~ D ,  Y i : Y  O, ir i : l , n l ;  

Yj : Y ~  +I, Y~ +2 .... } 

Yj. " = { y [  ( y , z ~  Y i = y  O, i • j ,  i = l , n  1 

yj : yO_l ,y )O_2  .... } 

Yj ": Yj+ w Yj. " 

end 

r/1 

y * ' = a r g m i n { F ( y , z  ~  UYj }; 
j=l 

F 1 = F(y*, z ~ ); 

, /'/1 , 

F 2 "= min{F(y,z~ y e U Yj, F(Y,Z ~ =~ F1 } 
j=l 

i__f F(y ~ ,z ~ > F~ then yO . :  y , ,  

Roto MI; 

ind "= 1; 



Solving discrete optimization problems on the basis of U-transform method 195 

for k =1,2 ..... n-nl  d__o 

begin  

Z k . = { Z k l ( y 0 , z ) ~ D ,  z i = z  ~  = l ,n -n  1 , ( i F l ~ e k ) } ;  

L U . . 
z~c "= inf  Z k ,  z/~ = sup Z k , 

u L ) / 4  h "= (z  k - z k , 

M3" 

end 

for k = 1,2 ..... n-n 1 

do 

begin  

Z k  + .= { Z l ( yO ,z ) ~ D, z i = z ~  i = l , n - n  1 (iCk); 

u 
z k = z ~ + h k , . . . , z  k }; 

Z k_ "= { z l ( y 0 , z )  ~ D, z i = z 0, i = l , n - n  1 (i~k); 

L 
z k = z~c - h k .... , Zk 

Z k "= Zk+ t..) Z k . "  

end 

z* "= a rgmin  {F( yO ,z ) l z  

F1 ~ �9 = F ( y ~  ); 

n-n  1 
UZk }; 

k=l  

M2" 

, n - n l  , 

F 2 " = m i n { F ( y ~  LIZ k , F ( y ~  1 }; 
k=l 

i f V ( y ~  o ) > F 1  then i n d ' = 0 ,  z ~  1 " = F 1 , F  2 " = F  2 " p r h ' = 0 ;  

for k =1,2 ..... n-n l  do 

if  h k > ~  then prh  "= 1 g o t o M 2 ;  

for k =1,2 .... ,n-nl  do 

if z ~ ~ Z k then 

begin  

l - = k ;  

i f  h I _< e then 



196 Chapter 2 

M4: 

z o, , l goto M 4 else 

begin 

L "= { z l l F  ( z ) - F( z ~ ), z e Z l }; 

z L "= inf L-hi; 

z~ / "= sup L+h I ; 

h I " : ( z / U -  z L) /4 ;  

goto M3; 

end 

end 

i_f prh = 1 then 

begin 

for k=l ,2  ..... n-n 1 d____oo 

i f  h k _< e then 

L U 0 
z k ' = Z ~ ,  z k : = Z  k 

begin 

o 
z~ '=  z k - h k 

U.= zO+hk Zk 

hk'-- ( ~  

end 

end 

zoto M3 

i_f _ind = 0 then goto_Ml; 

end 

else 

2.4.2. Application of  the discrete ~'-transform method to permutation problems 

Let P be a set of permutations P ={ Pl ,P2 ,"',Pn } defined for the discrete finite set 

M={ 1,2 ..... n}. Consider the problem in the following form" 



Solving discrete optimization problems on the basis of tP'-tran,forrn method 197 

F(P) --~ min (2 .48)  

e ={ P~ ,P2 ..... p, }. (2.49) 

As earlier, it is supposed that F(p) is a strictly positive (negative) function. Usually, 

all constraints in the problem (2.48,2.49) are given by a precedence relation..>-, e.g. Pi 

~- pj entails i < j. The general scheme of the solving procedure in this case is the same 

as before: 

�9 generating the number of random permutations; 

�9 estimating values g* and x*; 

�9 correcting an approximation error e and 

�9 optimizating locally the basic permutation P* 

Let an cstimate of ~* of the objective filnction F(p) and the values of xj( % ), ~ = l,k 

of corresponding functions xj( c ) be known. Taking into account that vector x* = x(g*), 

represents the mass center of the set E( g* ) of optimal permutat ions,  find one of these 

by solving the following problem 

?7 * 2 
q~(P) = Z (Xj - p j ) .  

j--1 

Previously give 

L e m m a  2.1 [43 I. Let ~l >- c~2 > ..-> o~,1 and 13 t, ~ 2  . . . . .  13 n are two series of numbers. 

?7 
Then permutation p = {Pl,P2 .... ,Pn} provides a maximum of the sum Z a j  .tip, if and 

J = l  

only if 13pl > 13p2.> ....... > 13p, 1 . 

Assert ion 2.8. Let x I > x 2 > _ . . . > _ x  m . Permutation p = {Pl,P2 .... ,Pn} minimizes 

function q~(P) if and only if Pl >- P2 >-...-> Pn. 

?/ 

Set < 2(~-) >-- argmin Z (2j(~-)-  pj)2. When P coincides with the set of all m! 
pep  j = l  

possible permutations, definition of p* = < 2 ( ~ )  )> is reduced to the minimizing 

fi~nction cO(p) in accordance with assertion 2.8. As earlier, p* is an approximate 



198 Chapter 2 

solution and is further used to find a corrected example p** = argmin {F( p ) I P = 

=<2(9)>}. In its turn, p** represents a basic permutation used in the local optimization 

phase. We suggest using a sequential search based on the mutual transposition scheme 

with the complexity O( m 2 ). If this scheme results in a better solution p' than the 

current basic permutation, then p' becomes a basic one and is used in the following 

iterations. We confine our considerations to the MPP-procedure which realizes a 

sequential search scheme. 

Inputs: basic permutation p*; 

Outputs: improved permutation p**, F1, F 2 

MI" 

M2: 

procedure MPP (p*) 

begin 

p** "= p*, F 1 "= F(p* ), F 2 "= F 1 ; 

p "= p** ; 

for all k e M do 

begin 

Jo . = p 0 ;  

f o r j = j o  +l , jo+2 ..... n do 

begin 

Pk "=J; 

for all 1 ~ M do 

iS p~ = j then goto M2; 

Pl "=Jo ; 

i f p  c P then 

begin 

i__fF 1 > F(p) then F 1 "= F(p), p * "= p; 

i__fF 1 < F(p) and F(p) < F 2 then F 2 = F(p); 

end 

Pl "=J; 

end 



Solving discrete optimization problems on the basis of tF-transform method 199 

end 

end 

Pk "= Jo 

i___f F( p0 ) > F I then pO .= p , ,  goto M I  

2.5. Conclusion 

The chapter has dealt with the discrete optimization problems with infinite sets of 

solving operators. It has demonstrated a weak strategy (called W-transform method) for 

this class of problems. Our next task is to consider a class of problems with unknown 

sets of e.s.os. 



This Page Intentionally Left Blank



201 

Chapter 3 

WEAK METHODS AND HEURISTIC REASONING 

Abstract 

This chapter deals with weak methods such as algorithmic procedures and heuristic 

principles. One can consider a heuristic principle(s) as a generator of a family of 

algorithms. We shall consider the general strategies and the solving principles which 

have high practical efficiency. As weak methods and heuristic reasoning form one of 

the main parts of a computer-aided problem solving system, they should be given 

special attention from the theoretical and practical viewpoints. 

3.1. Specific features of solving tasks by weak methods 

The following features are common for solving technologies based on weak methods: 

(1) the task model may be partly indefinite; 

(2) the proof of solution correctness may be absent and 

(3) the solution may not be optimal. 

Partial vagueness of a problem may be connected with insufficient knowledge about 

the task domain or its natural intricacy. We shall distinguish between the following 

basic weak strategies: 

- restricted and directed "try-and-test" policy; 

- cutting and exclusion; 

- heuristics; 

- induction. 



202 Chapter 3 

In particular, a general strategy of building logical inference in a rule-based expert 

system is a mixed case of a restricted try-and-test strategy, heuristic reasoning and a 

cutting policy. 

A principle of exclusion (cutting) represents one of the effective means of providing 

a reduction of the search area. If a solution does not have a feature P, then all variants 

which imply P or follow from P shoud be excluded (however, the latter may lead to 

losing a solution). 

The most interesting realization of the cutting principle is associated with making 

suppositions. 

The following statement is of this kind: 

"removing a condition from the problem model generates alternatives and, vice 

versa, making a supposition (imposing a condition) on the problem domain leads to a 

reduction of the number of alternatives". 

Let F be a set of given conditions defined on the task domain, and f be an additional 

set of conditions, that is {F w f} represents the condition set for some particular 

problem with known solution R. This solution is applicable to the initial problem, in the 

case of F ~-- f, and may be adopted as basic if 

I) 

for a current state of the problem-related knowledge. 

The basic solution may not be an optimal one, but does not contradict the problem's 

specification. An effective cutting policy is based on the consideration of mutually 
n 

incompatible suppositions f and f .  

Let F be a set of problem related conditions. If an assumption of f leads to a 
E 

contradiction, i.e. { F, f } ~ 17, then f is automatically adopted and vice versa. 

A practically acceptable way of making assumptions is that associated with adopting 

the supposition f which is most probably false ( it is the background of reductio ad 

absurdum reasoning). 



Weak methods and heuristic reasoning 203 

Heurist ics .  In its own right a heuristic represents an empiric modus with rather high 

practical efficiency. An important part of an expert knowledge base consists of heuristic 

rules. Heuristics are also used for choosing rules in rule-based expert systems. 

Induction. We have, in a way, discussed the essential features of induction earlier. 

The following inductive rules of Mill may serve as basic examples of inductive 

reasoning. 

Rule  1. If n >__ 2 cases have the single common feature, then this feature is a causa 

(or consequence ) of a given phenomenon. 

Denoting by A,B,C... the causae of some phenomenon and by a,b,c.., its features we 

may write rule 1 schematically as follows 

A,B,  C ~ a,b ,c  

A , D , E  ~ a ,d ,e  

A~-~a 

where symbol ~ stands for relation " to be causa of ...". 

Rule 2. If the case where given feature "a" is present, and the case where "a" is 

absent are identical in the remainder, and the given phenomenon arises in the first case 

and does not arise in the second, then "a" may be considered a causa (consequence) of 

the given phenomenon, i.e. 

A , B , C  ~ a,b ,c  

B ,C  ~ b,c 

A~-~ a 

Rule 3. If a given part of the reasons is known to cause a definite set of consequences 

then the remaining part of the reasons is a causa of the remaining consequences, i.e. 

A,B,  C ~-) a ,b ,c  

AI--~ a 

B~-~ b 

Cr---~ c 



204 Chapter 3 

Rule 4. Each phenomenon varying coherently with another phenomenon is either 

the causa or the consequence of that second phenomenon. 

3.2. Control of the solving process 

A control scheme for the solving process is either formalized in a m o d e l  

specification or represents an external part of the model. A good example of the latter 

possibility is the nondeterministic ( AND - OR ) - graph. Consider the case when the 

solution plan should be found for such a graph taking the following preliminaries. Let 

X l,X 2 ..... x N be the objects in some area and for each object x i, the corresponding 

procedure (s) is ( a r e )  known which calculates x i. Denote by q~i (Xil,Xi2 ..... Xit ) the 

procedure which defines x i and takes the objects xil,..., xit as input parameters. In their 

own way the objects xij are calculated by other procedures q~ij �9 Thus, we can write that 

x , -  ~ P , ( x , , , x , ~  . . . . .  x , )  

with a suitable graphical interpretation shown in Fig 3.1. The double arc in Fig 3.1. 

corresponds to the conjunction of the input parameters of the same procedure for the 

object x. If there is more than one procedure ~o for the object x then we have an example 

of an OR-vertex for that object x ( Fig. 3.2 ). 

Fig. 3.1 Fig. 3.2. 

Let there be given procedures 

with the' numbers of arguments n l, n 2 ,..., n k respectively. 



Weak methods and heuristic reasoning 205 

Define the state S i of the system as a set of objects which are determined at step i and 

let S O be an initial and S e be a final state. The state S e will be denoted by 

S e =< Xel,Xe2,. . . ,Xez,*>, 

where an asterisk stands for any (may be empty) subset of objects, and objects 

Xel,Xe2,... , Xez are to be found in S e . 

One may consider a procedure q~k (Xkl,Xk2 ..... Xkm) to be valid in state Sj if 

(Xkl ,Xk2,. . . ,Xkm ) C_ Sj 

or, more briefly, 

As it can now be seen the problem consists in finding an ordered set C = <q)io,%l .... , 

q~iz > which provides a mapping 

C 
So 

and every procedure (Pit iS valid in state S t from which (Pit starts. 

Let us refer to an example. We shall assume that the designation 

q9 i < Xil ,Xi2 ,...,Xin]Xin+l ,Xin+2 ,...,Xim > 

is used to distinguish between the subset of objects xil,xi2 ..... Xin which are inputs for 

the procedure % and the subset of objects Xin+l,Xin+2,...,Xim which are the outputs of %. 

Let 

091"< x 1,x31X4 > 

q92"< IXl ,x2 ,x5 > 

(,03"< x 1 ,x3 Ix4 ,X6 > 

094"< x l ,x51x7,x9 > 

~05"< x 2,x7[X4 > 

096"< x 1 , x3 ,x4[x6 ,x8  > 



206 Chapter 3 

(/97" < X 3 ,X6 IX5 ,X7 > 

(/98" < X5 ,X6 IX9 >.  

The corresponding (AND-OR) graph is shown in Fig.3.3. The nodes of the graph 

represent the objects x i ( i = 1,8) and the arcs are labeled in such a way that every arc 

connecting nodes x i and xj and ending in the node xj is associated with the symbols of 

the procedures which use x i as an input parameter and xj as an output parameter. Thus, 

the arc (x  1 ,x  4 ) is labeled with qo 1, qo 3 because qo 1 and (I)3 both take xlas input and X 4 as 

output parameters. 

~5 

Fig. 3.3. 

Let 

S O = < x  1,X3,x 5 > 

and 

S e = < x  7 , x 9 , * > .  

The whole procedure for finding a sequence C for the mapping 

C 

is performed in two stages. 

Stage 1 (normalization of an initial AND-OR-graph). 



Weak methods and heuristic reasoning 2()7 

The following normalizing operations are to be performed in arbitrary order as far as 

is possible 

(O~) All labels of the flmctions with one or more input arguments deleted arc to be 

removed from the g raph  

(02) All input arcs of the nodes from S o should be deleted; 

(O 3) if x i ~ S e and x i hasno outputarcs then x i should be deleted with all its arcs ~, 

(0  4) if x is an alternative node then it has to be deleted with all its arcs. 

A node x i is called alternative if it satisfies the following definition: 

(i) x~ ~SowS~. 

(ii) Let x and y be connected by the arc (x ,y) .  Then the node x is an alternative node 

if for every node y (x r y) there is a node z (z :~ x) such that ( z ,y  ) is the arc 

connecting nodes z and y and 

L(z ,y )  \ L (x , y )  :x G, 

where L ( a,b ) is the set of labels for the arc ( a,.b ) and "V' is .a set difference 

operation. 

(iii) Deletion of x i leads to the situation in which each vertex x k from S e remains 

attainable from S o . 

From Fig.3.3. one can establish that the node x 2 is an alternative node. Indeed, x 2 is 

comlected with x 4 by the arc (x2,x4) with L(x2,x4) = {q93,q~5}. Other node z = x 3 is 

connected by the arc ( X3,X 4 ) with the node x 4 and L( x 3, x 4 ) = { q~l }. It follows, 

further, that 

(Os) If some procedure cpi has lost ( by virtue of the above operations) all its output 

argumcnls then one should delete the identifier " q~i " f r o m  the arcs of the labeling 

sets of the graph. If this results in losing all the identifiers for some arc, then this arc 

should be deleted; 



208 Chapter 3 

(06)  If an arc ending in the node x and containing identifier qo in its labeling set has 

been deleted then the identifier qo has to be removed from all the labeling sets assigned 

to the arcs incoming to x. 

Let us return to example in Fig. 3.3. Remove node x 8 by virtue of operation 03. 

Remove input arcs of the node xs~S 0 and output arcs of the node x 7 ~ S e ( the 

resulting graph is shown in Fig. 3.4 ). We may now remove node x 2 as it is an 

alternative node (Fig. 3.5). Node x 4 in graph in Fig 3.5 is also alternative. 

q~ 

q~ 

Fig.3.4. Fig.3.5. 

Removing X 4 with all its arcs results in the graph shown in Fig. 3.6. 

Fig.3.6. 

Stage 2 ( Dividing a normalized graph into levels ). 



Weak methods  and  heurist ic  reasoning 209 

This stage consists of the leveling of a normalized graph by levels Lo,LI,...,L k. L o 

contains the nodes having no input arcs. L i contains the nodes x i (not belonging 

to the levels Li_ 1, Li. 2 ..... L 0 ) which are calculated by some procedure q~z valid in 

state S i = L o w L 1 w ... w Li. 1 , i.e 

Si ~--~ (/9 z . 

Thus, from Fig. 3.6 one can directly derive the following definitions 

L 0 = {Xl,X 3 ,x5}  

L 1 = {x6} ' 

t 2 = {x7,x9}" 

Now every object x k belonging to the level L i ( i r 0 ) is replaced by a procedure 

identifier q~j if q~j calculates x k. Forbiding the same procedures identifier which is 

presented more than once in each level we obtain that 

= 

Finally, the resulting ordered set C is formed in such a way that procedure qo t stands 

in C to the left of q~q if and only if q~t 6 Ln, q~q ~ Lm, n < m; if n = m then the mutual 

disposition of q~t and q~q in C may be arbitrary. This rule enables one to obtain, for 

instance, the following resulting set : C = < q~3, q%, q~8 >- 

Let us conclude this section by considering the inference strategy controlled by data. 

Since the control structure is not explicitly defined in such models then one needs to use 

some special mechanisms: 

- nondeterministic alternative choosing; 

- backtracking; 

- unification algorithm. 

The mechanism of nondeterministic alternative choosing is based on a so-called 

heuristic evaluating function introduced by N. Nilsson. This is a subject of the next 

section. 



2 1 0  C h a p t e r  3 

3.3. Models of heuristic-based solution searching 

Heuristic searching is based on the representation of the states of a problem by a tree 

with a root-node corresponding to the initial slate of the problem. We shall denote by 

l'(x) lor evcry node x all its direct succesors. Every node y c I'(x) will also be called a 

child of the node x. 

Select some goal node(s) corresponding to the final state. 

Now we can formulate our task as follows. Let there be given initial (So) and final 

(Se) states and the set of operators q~j mapping each state into the others. As before, we 

are interested in the operating chain 

C = < (19il , (Pi2 , " "  (Pit > 

C 
providing the mapping So ~ Se and corresponding to some routine <So,S 1 .... , 

Se> in the tree, beginning at the root and ending at the node S e , such that 

s~ ~ r(s~_~). 

The known strategies of a search in the tree represent some kind of heuristic try-and- 

test disciplines. The most significant among them are the "Depth-First " discipline, 

cutting the search-area method, and heuristic evaluation function-based algorithms. 

3.3.1.Depth-First discipline 

Define a level of a node x in a search - tree on the basis of the following scheme: 

(i) Root-node has a 0-1evel; 

(ii) A level of a node x which is not a root-node is equal to a level of a node 

y (x e l '(y))added with 1. 

In "Depth-First" strategy, at every step the node is selected and opened with its 

maximum level value ( to open a node x means to find F(x)). The whole procedure is 

the following [5]: 

(1) The root-node is placed in the list which is called OPENED. 



Weak methods and heuristic reasoning 211 

(2) If the OPENED-list  is empty, than we have a general failure, otherwise go to 

next step. 

(3) In OPENED-list  find a node with a maximum level value and move this node to 

another list which is called CLOSED. 

(4) If a level of the node ct has a maximum allowable value then go Io step (2) or else 

go to next step. 

(5) Open the node cz and place every node 15 ~ F((z) in the OPENED-list  if I~ does 

not belong either to OPENED-list  or to the CLOSED-list. 

(6) If Y(cz) contains a goal node then stop or else go to step (2). 

To illustrate this strategy let us refer to an example in Fig. 3.7. 

Fig.3.7. 

Suppose, it is required to find a routine connecting nodes 1 and 7.The initial node 1 

is the only member of the OPENED-list, i.e., 

OPENED = {1} 

Further we find: 

1-'(1) = {2(1) ,4(1)}, 

where the levels of the corresponding nodes are pointed out in round brackets. 

Assume that 

OPENED = {2 (1) ,4(1)}, 



212 Chapter 3 

CLOSED = { 1 (~ }. 

Choose node 2 to be opened: 

F(2) = {3,4,6}. 

Since node 4 has already been included in the OPENED-list then set 

OPENED = {40),3(2),6(2)}. 

CLOSED = { 1(~ (1) }o 

r (3 )  = {4}. 

Node 4 is already included in the OPENED-list and, therefore, it remains in this list: 

OPENED = {4 (1) ,6 (2) } ;CLOSED = {1 (o),2(1),3(2)}. 

Now open node 6 : 

F(6) = {1,5} 

and set 

OPENED = { 4 (1) ,5 (3) } ; CLOSED = { 1 (o), 2 (1), 3 (2), 6(2) }. 

By analogy with the above steps, find that 

r ( 5 )  = {3,8}, 

OPENED = { 4 (1),8(4)}, 

CLOSED = {1(~ ,3(2),5(3), 6(2)} 

r ( 8 )  = { 9}, 

OPENED = {4(1) ,9(5)}, 

CLOSED = {1(~ ,2 (1) ,3(2) ,5(3) ,6 (2) ,8(4)}. 

Finally, 

F(9) = {7}: the ending node is reached. 

The whole routine we are interested in may be found in reverse order by means of 

the sets F((x). Thus, the ending node 7 belongs to the set F(9), hence it follows that 

node 9 should be the last but one node in the routine. 



Weak methods and heuristic reasoning 213 

We further find: 9 ~ F(8), hence node 8 should precede node 9, etc. The resulting 

routine connecting nodes 1 and 7 in the initial graph is the following: <1, 2, 6, 5, 8, 9, 

7>. 

The algorithm we have considered above did not use any additional suppositions 

with respect to the nodes. In particular, if some additional information concerning the 

ending node is known, this would enable us to contract the number of opened nodes 

which could not belong to the resulting routine. This property is used by different 

cutting strategies embedded in searching procedures. 

3.4. Try-and-test procedures with cutting 

As an examples of these procedures we may point out the branches-and-boundaries 

method by Little et. al. and (~-13)- procedure by N. Nilsson. 

3.4.1. Branches-and-bounds method 

Let us consider the main ideas of this method. First of all, this method is connected 

with some general scheme of making alternatives and their evaluation. This scheme 

may be generally represented as shown in Fig. 3.8. 

1-I2.2 

~ 1 7 6 1 7 6 1 7 6  . . 1  

Fig. 3.8. 

Nodes in Fig.3.8., as before, correspond to the states of the problem. There are only 

two directions from each node (this is, however, not a principal constraint). Each 



214 Chapter 3 

direction is assigned with indexed identifier FI. Identifier R( b i ) represents some 

numeric value assigned to node b i. 

Commonly speaking, there are no restrictions on the number of levels in the 

solution tree. However, it is reasonable to try to keep its depth as small as possible. This 

consideration should be taken into account when choosing a supposition rim: first of all 

one must try to prove a supposition which has the least plausability or (vice versa) tO' to. 

refute a supposition which has maximum plausability ( i.e., to adhere to the reductio ad 

absurdum principle). As it is very plausible that such a strategy leads to obtaining a 

contradiction then the corresponding alternative may be cut at the outset. 

Let us look for the state b* with minimum value of R(b*).Assume that we know 

some solution (state) b x with current record R(b x ). It is clear thcn that each node b i 

providing at best the valuc R( b i ) > R ( b x ) may be deleted (the corresponding part of 

search tree may be cut as shown in Fig. 3.8 by the shadcd area). 

For the sake of clarit7 consider the traveling salesman problem. Given a net with 4 

nodes connected by the weighted arcs with the weights Cij >_ 0 ( Cij = oo ), f ind the cycle 

passing through each node and having minimum total cost. We shall use the cost- 

matrix C = [Cij] shown in Fig. 3.9.a,b. 

3 

"3 \ 
- /, 

8 

1 

\ 

1 2 3 4 

\ 4  

1 oo 5 6 7 

2 3 oo 4 2 

3 2 1 oo 8 

4 4 4 3 :oo 

F i g . 3 . 9  a Fig.3.9 b 

To apply the branches-and-bounds method to this problem one has to take into 

account two basic ideas: 

A1) it is required to select the only element in each row (column) of matrix C with 

the minimum total sum in such a way that these elements form a cycle. This last 



Weak methods and heuristic reasoning 215 

requirement is essential, for example, the elements C12,C23,C31,C44 do not form a 

cycle. 

A2) if the same positive number D is subtracted from each element in the same rov~ ' 

(column) then the total sum of elements forming an optimal cycle for the traveling 

salesman problem would decrease by the value of D. 

Let us make use of the last property. 

Find the minimal elements hj in every column in the initial cost-matrix and then 

subtract them from the elements of the corresponding columns. Then find the minimal 

elements h i in every row and subtract them from the elements of the corresponding 

rows. This gives us the matrix of Fig. 3.10 from which one can obtain the value for 

the minimal total resulting cycle cost, i.e., 

4 4 ^ *  

C = Ehi + Z h j  =11. 
i=1 j=l  

There are two alternative suppositions for every element in the matrix in Fig. 3.10, 

namely, one can assume, for example, that the arc (3, 4) belongs to an optimal cycle C* 

and vice versa, i.e., that (3, 4) ~ C ~ 

1 
2 

3 

4 

hj 

1 2 3 4 hi 

oo 1 0 2 3 

1 oo 1 0 0 

0 0 0 0 3 0  

2 3 0 oo 0 

2 1 3 2 

Fig.3.10 

If the arc (3, 4) really belongs to C* then set C4, 3 = o0 and delete row 3 and column 4 

which results in obtaining the matrix shown in Fig. 3.11. Using rule A2) again wc 

obtain the matrix shown in Fig. 3.12. For this latter matrix one can find ~-* [3-~.4]- 3. It 

means that the cost of an optimal cycle containing the arc (3, 4) may be expressed as 

follows 



216 Chapter 3 

C + ~"3,4 + C = 1 1 + 3 + 3 = 1 7 ,  

w h e r e  ~'3,4 is defined from the matrix in Fig. 3.12. 

1 2 3 

1 oo 1 0 

2 1 oo 1 

4 2 3 oo 

hj 1 1 0 

1 2 3 hi 

1 oo '0  0 0 

2 0 oo 1 0 

4 0 1 oo 1 

hj 1 1 0 

Fig 3.11.  Fig. 3.12 

I 1 \ 1 ~  i ~ i \~ 
At the same time, a cost of the cycle C :  1[~,2),[~,4),[~,3),[~,1)I is equal to 

, , ,  

5+2+3+2=12 which allows us to draw a conclusion that arc (3, 4) does not belong to the 

optimal cycle. Hence, set C3, 4 - ~ .  

Suppose now that arc (l, 4) belongs to C*. Omitting all the details we find that total 

cost of the optimal cycle containing this arc is equal to 13. Consequently, this arc does 

not belong to C* and C3, 4 - oo. After these cosiderations, we see that there remains only 

one acceptable elcmcnl in the column 4 of the matrix shown in Fig. 3.9.b, namely-  

C2, 4 =2. It is therefore correct that (2,4) e C*.Hence, one should delete row 2 and 

column 4 with the result shown in Fig. 3.13. and {~*--12. 

Assume, that ( l ~ )  ~ C* From this supposition one can aulomatically derive tha! 

, C*  (4 3) e . Delete row 4 and column 3 (see Fig. 3.14). 

1 2  3 h i  

1 

3 

4 

hj 

oo 1 0 0 

0 1 ~ 0 

2 3 co 0 

0 1 0 

1 2 
oo 1 

0 1 

Fig. 3.13.  Fig. 3.14 



Weak methods and heuristic reasoning 217 

C* For this case it is required that (3,1) ~ and an optimal cycle has a total cost 

C*=12. 

c*: 

Continuing b v analogy, we obtai~ a search tree with the optimal cycle found with a 

~*_ 
total cost _ 12. The productivity of the branches-and-bounds method significantly 

depends on the accuracy of the estimation of the bounds it provides. 

3. 4.2. A searching strategy based on a heuristic evaluation func t ion  

The use of a heuristic evaluation function was proposed by N. Nilsson. Let us denote 

by f(n) the value of a heuristic evaluation function for the node n of a search tree. f(n) 

estimates t.hc cost of an optimal path connecting the root-node of a tree, the given node 

n, and one of the goal nodes. 

Bearing in mind that our goal is to find a route between the root-node and goal-node 

of a search tree, an algorithm to reach the goal is given by the following. 

(1) Put root-node s into the list OPENED and find f(s). 

(2) If OPENED =Q then stop algorithm with general failure or else go to the next 

step. 

(3) Select a node x in OPENED-list with minimal value of f (x). 

(4) If x is a goal-node then slop algorithm (the goal is reached) or else find l~(x). For 

every node y ~ F(x) find f(y). If a node y does not belong to the list OPENED then the 

node y should be put in this list. If v is already in the OPENED-list then v is assigned 

with the minimum value f(y) selected from the given values of the heuristic evaluation 

function for that node. 

(5) Go to step (2). 

This algorithm is known as an algorithm A*. 

It is not difficult to conclude that the correct selection of the type of heuristic 

evaluation function forms the core of the whole approach. The function f in algorithm 

A* has the form of 



218 Chapter 3 

f ( n )  - g(n)  + h(n),  

where g(n) represents the cost of an optimal path connecting the root-node to the 

given node n; h(n) is the cost of an optimal path connecting given node n to the goal- 

node. 

In addition, let ~(n) be an estimation of the function g(n),and h(n) in respect to the 

function h(n), and 3~(n) in respect to the functionfln), i.e. 

)~(n) - ~ ( n ) +  ]~(n). 

From the definition of g(n) we have 

_> g ( . )  

It should be noted that the definition of ~(n) does not generally cause any 

difficulties. The case of fi(n), however, is quiet different. There are some theoretical 

considerations relevant to the definition of the function/~(n). 

Lemma 3.1 [5]. If for each n /~(n)<_ h(n) then at any time before algorithm A* 

terminates there is an opened node n' in every optimal path P from root-node s to the 

goal-node such that f(n 3 <-f(s). 

Proof. By definition, 

f ( n ' )  - ~ ( n ' ) +  #~(n'). 

Since n' belongs to the optimal path P then ~ ( n ' ) :  g(n') and )~(n') < f (n ' )  for we 

have adopted that h(n') <_ h(n). 

Note that for every pair of nodes Xl and x 2 belonging to an optimal path P it follows 

that 

Indeed, let x 1 precede x 2 in P. Then 



Weak methods and heuristic reasoning 219 

f ( x l ) -  g (x l )  + J(x l , x2 )+h(x2) ,  

wherej(xl,x2) is a cost of optimal path from x I to x 2 . 

It is evident, however, that 

h ( x l ) -  J (x l , x2 )+h(x2 )  and 

g ( x 2 ) -  j ( x l , x 2 ) +  g(x l ) .  

All the above necessarily leads to the desired conclusion that 

f(s). 

Theorem 3.1 [5]. If for every node n, the relation /~(n) _< h(n) holds and if the cost 

of eyeD' arc in a search tree is greater than some low positive number ;5, lhen algorithm 

A* terminates successfi~lly with an optimal-cost path P connecting the root-node and 

the goal-node. 

Proof. There are three different cases. 

Case 1. The algorithm stops but goal-node is not reached. It means that the 

OPENED-list is empty and there are no nodes to be expanded. This case is possible if 

and only if there is no path connecting the root-node to the goal-node. 

Case 2. The algorithm never stops. Such an issue is impossible if a problem has a 

finite number of states. Let the opposite be true, i.e., the search tree has a finite size but 

the algorithm never terminates. It implies that the OPENED-list is never empty, i.e. the 

same nodes will be put in it many times and the values of fin) will subsequently 

decrease. 

If some node is once again included in the OPENED-list then it means that a new 

path from the root-node to the goal-node is found. Since the total number of all 

different paths is restricted then the initial supposition for the case 2 is contradictory. 

Case 3. An algorithm terminates at the goal node, but the path found is not optimal. 

Assume, that this is a goal t and j ; ( t ) -  ~( t )>  f(s) .  However, according to the lemma, 

just prior to the termination of the algorithm there should exist a node n' such that 



220 Chapter 3 

f(n') <_ f(s). It implies that not node t but node n' would be expanded first ,and this 

contradicts the suppositions of case 3. 

It is said that a heuristic evaluation function h satisfies a monotonic constraint if for 

every pair of nodes x and y, such that 

y ~ r ( x )  

the relationship 

h ( x )  >_ h ( y )  + c (x ,  y) 

where c(x,y) is a cost of the arc (x, y), takes place. 

Theorem 3.2. If function h satisfies a monotonic restriction then A* is optimal. 

Proof. Find 

~x - max  h(y) + c(x y) 
yer(x) 

Then ,for every node x, suppose 

i(x)- &. 

It is clear that h(x) >__ i(x) for all x. By virtue of theorem 3.1, A* is optimal. Despite 

the fact that A* finds a minimum-cost path connecting the root-node to the goal-node, 

this algorithm has an exponential complexity. In this connection all attempts to 

improve the computational characteristics of A are quite natural. Consider. for 

example, the approach of Ghallab & Allard [44]. The3' have suggested a heuristic 

algorithm At: which is faster than its counterpart. This algorithm realizes a "deep-first" 

searching strategy which prefcrsto expand those nodes belonging to the same path in 

search tree. It is assumed that node n is acceptable if f(n) is less than or equal to (l+~,). 

max{ f(n') }, where n' belongs to the set of nodes which take first places in the 

OPENED-list. 

Another difference between A* and A a lies in the fact that if ,for the node n 

expanded last, the subset F(n) contains no acceptable nodes, then Ae, tries to expand 



Weak methods and heuristic reasoning 221 

first the nodes from In(n) then - from l '(I '(n)), etc. under an assumption that due to 

monotonicity of h(x) some nodes will become acceptable together with an increasing 

f(n'). 

Algorithm A~ 

1. OPENED-Iist={s} 

CLOSED-list=nil g(s)=0 

f(s)=h(s) 

e-threshold=(l+e)f(s) 

Expand (s) 

AX:={x e F(s) I Acceptable(x)} 

/* x is acceptable if x e OPENED-list and f(x) < e-threshold 

2. if AX~nil then 

n=Select AX 

else 

n=Select OPENED-list 

fi 

3. Expand (n). 

4. If F(n) does not contain any acceptable nodes then find I'(F(n)), F(F(F(n))), etc. 

until either an acceptable node t is found, the OPENED-list becomes empty, or the 

number N of sequential expanding operations 

Expand(t). 

5. AX= {x e F(n) [ x is acceptable}. 

Fo,~ 

N 
exceeds some critical value. 

6. If the goal-node is reached then stop the algorithm. If the OPENED-list is nil then 

there is a general failure else compute new e-threshold and repeat the steps beginning 

from step 2. 

Procedure "select AX" selects the node x with minimal value of f(x) from the nodes 

belonging to the set AX. 



222 Chapter 3 

Procedure select_OPENED-list is more complex as it must find an acceptable node n 

in the OPENED-list such that this node n belongs to the path connecting the last 

expanded node to the goal-node. 

Procedure select OPENED-list should minimize the criterion 

o~l" f ( x )  + o~2 �9 h(x) 

where C~l and ct 2 are selected from the following considerations. The minimization 

of h(x) permits the goal-node to be reached more quickly. However, the probability of 

backtracking to the upper levels of search tree also increases.. The minimization of fix) 

leads to increasing the e-threshold to retain the current path for further expansion. It 

increases the number of nodes to be expanded subsequently. The authors of As- 

algorithm recommend that values of o~ 2 and o~ 1 are chosen which satisfy the inequality 

cz22c~ 1 . 

The following results have been obtained for the traveling salesman problem with 

N = 9 cities (see table below). 

~. 0 0.01 0.05 O.l 0 .15 
, 

resulting-path cost 100 1 0 0 . 1  100.4 101 .1  101.9 
. . . . . . . .  , 

the nuinber of nodes 1 O0 92 77 54 42 

expanded . 

the number of backtracks 100 33 48 21 13 
. . . .  

Table 3.1 

0.25 

103.0 

23 

O O  

1(}7.0 

1 
15 

,, 

0 

From this table one can see that if s = 0 then the resulting path has minimal cost 

(100) but the maximal number of the nodes expanded. Together with the augmentation 

of ~-:, the number of nodes expanded decreases. For ~:=0,25 only 23 nodes have been 

expanded and only 3 backtracks have been performed. This is significantly less than 

in the case ,: = 0. Note that the loss of accuracy is not higher than 3% for this case 



Weak methods and heuristic reasoning 223 

Another approach to increase the productivity of the heuristic-based searching 

procces is connected with the use of a probabilistic estimation of the hypothesis that the 

current path is an optimal one. Consider the approach suggested in [45 ]. Let T i denote 

a tree with the root-node i. Let node n belong to T i . Suppose that the length (cost) of an 

optimal path from the root-node of the initial graph T to the goal-node is N. If T i does 

not contain an optimal path, then for the node n we have 

[z(n) = (N - i) + (n - i), 

~(n) = n,  

) ( n )  = N + 2 n -  2i. 

Take the function 

a(n) = ? ( n ) -  N 

2n 

One can see that if n lies on an optimal path then 

a ( n ) -  N - N  
2n 

= 0 as j~ (n ) :  N, 

We can now write that 

a(n) - 1 

It is easy to see that a(n) is a random function distributed over the range [0,1 ]. The 

idea of the approach [45] is of obtaining samples for given nodes nl,n 2 ..... n t and testing 

the hypotheses which regard the means of a(nl),a(n2) .... ,a(nt) respectively. 

3. 4. 3. Mixed  strategies in problem solving 

Consider a combination of "branches-and-boundaries" and cutting strategies. For 

this purpose let us introduce the heuristic function 

F(x) - WR (x) + F W ( x ) -  L S ( x ) -  FLS(x) 



224 Chapter 3 

where 

WR(x) - function evaluating gains obtained at the node x of a search tree: 

FW(x) - function estimating maximal future gains expected from this node 

LS(x) - function evaluating losses in the node x; and 

FLS(x) - function estimating minimal future losses expected from this node. 

F(x) may be represented also in the form 

F(x) - RG(x) + EG(x) 

where 

RG(x) - W R ( x ) -  LS(x),  

EG( x) - FW( x) - FLS( x). 

Usage of F(x) is based on the following mixed strategy: 

(R l) Node y ~ OPENED-list is chosen if F(y) is maximal among the nodes in that 

list; 

(R2) all the nodes z with the value of F(z) which is less than some value RG(q) of 

tile end-node q (i.e., the node for which either F (q ) -g ,  or ever), node t ~ l'(q) is already 

contained either in the OPENED-list, or in the CLOSED-list) should be cut do~vn (are 

not to be expanded). Consider an example below. 

Let us maximize the following pseudoboolean function 

G = 4xlx2  + 3xl + 5x3 + 3x2x3 + 4xlx3 

where variables x i ~ { 0,1 }. 

Start to build a search tree by expanding the initial node S O by making two different 

suppositions (i)x 1 ~ solution and (ii) xl E solution. 

In case (i) G is reduced to 

G (i) = 4x2 + 5x3 + 3x2x3 +4 x3 

with LS=3, WR=0 

and FW = 16, FLS=0 



Weak methods and heuristic reasoning 225 

for which F = 13. 

In case (ii) G is reduced to 

G ( i i ) = 5 x 3 + 3 x 2 x 3 ,  

with LS=8,WR=3 , 

FW=8, FLS=0 

and F=3. 

So, proceed from G(i) by making, for example, suppositions for 

x 2 c solution and case (iv): x2 ~ solution. 

In case (iii) we have 

G (iii) = 9 x3 

case (iii): 

and, in respect of the initial function G for a partial solution x 1,x2, 

LS=10, WR=0,  

FW=9, FLS=0 --~ F = - 1. 

By analogy, in case (iv) we have, for the partial solution xl x 2 ,  

m 

G iv - 9 x3 + 3 x3 

with 

LS=3, WR=4, 

FW=9, FLS=3 

and F=7. 

This last case indicates that we are to move on because the corresponding value F iv 

is maximal among those obtained earlier. 

Thus, make the final suppositions: 

x 3 e solution (case (v)) 

x3 ~ solution (case (vi)). 

In case (v) we obtain F=7, in case (vi) F= 1. 



226 Chapter 3 

Comparing FV=7 to those obtained earlier one can conclude that this is an optimal 

solution and all other solutions may be cut off as indicatcd by rule R2. Hence, an 

optimal solution is x lx2x3 .  

Note that the solving strategy is based on the supposition that 

Vx(WR(x )  + FW(x) + LS(x) + FLS(x)) - cons, 

and can easily be modified if this condition does not hold. 

3.5. Intermediate remarks on heunsfics utilization 

The heuristic principles together with the corresponding theory of weak methods 

[16] constitute the basis for heuristic programming. There are some difficulties in the 

utilization of these principles connected with the problems related to their formalization 

and an ambiguity of interpretation. Let us consider, for example, a heuristic assertion 

that "it is better to exclude the objects which probably do not belong to the solution 

from initial task domain than to include those having good chances to be present in the 

solution." When solving a minimum-size cover problem on a 0,1-matrix, one may 

interpret this principle as a step-by-step deleting from the matrix of rows containing the 

maximum number of zeroes. In the example shown in Fig. 3.15. this gives, after 

deleting the rows c~4,oq,a' 6, the minimum-size covering set {o~3,c~2,cr 5 }, with all 

deterministically included rows. On the contrary, including rows with the minimum 

number of zeroes may lead to a non-optimal solution" for example, {or 1 , 0~4, a'3, ~5 }. 

od 

cx2 

a3 

oul 

oc5 
eal 

a7 

1 2 3 

1 1 

I1 

5 6 7 8 9 

" i l l  
, ,  

1 1 r 
. . . . .  

1 1 

' i "  

1 

1 1 

1 

Fig.3.15 



Weak methods and heuristic reasoning 227 

From the exan~ple above one may, conclude that it is necessary' to build a suitable 

interpretation of these principles in every concrete problem. This interpretation should 

bc rcprcsented in a quite formal wax' if it is to be computerized. This means that one 

needs a definite kind of formal language to represent such principles as those 

considcred before. Let us sum up these preliminary considerations by the following 

(1) there exists a set of heuristics (meta roles) one occasionly refers to while solving 

(partly) indefinite problems; 

(2) to utilize some heuristic(s) one has to make an appropriate interpretation 

satisfying the conditions required by this heuristic. Since making an interpretation 

involves a kind of mental activity which is difficult to computerize it is more a human 

prerogative than a computer's; 

(3) to formalize heuristic principles one needs a kind of formal language which is 

suitable for analysis by logical means. 

3.6. Examples of problem solving pnnciples 

In this section we consider some principles of problem solving. We avoid 

building suitable interpretations and postpone that to later considerations. Every 

principle will be identified by the prefix PRj. The principle PRO is that considered 

above. 

PR1. An object which causes the greatest "harm" must be put into conditions which 

are opposite to those corresponding to the most "useful" object. 

PR2. To find a good solution one has to eliminate bad ones. 

PR3. The decision with the farthest reaching consequencies must be taken the first. 

PR4. The unkt~own problem may be converled into the known one dually either 

through a conditions transformation or through a task domain transformation. One 

needs to find equivalent transformations (i.e., transformations which do not lead to 

losing the solution). If one fails, then attempts are to be made to find transformations 

with "minimum discrepancy" between initial and transformed tasks. 



228 Chapter 3 

PR5. The task may be solved either in by moving from what is known to what is 

unknown (is required to be found) or in the opposite direction. 

PR6. (Every) task is connected with hidden regularity. Define independent and 

dependent factors. To clarify the nature of regularity try some simple and deterministic 

examples. Collect, if necessary, some statistical material and analyze it. Try to reduce 

the number of "independent factors", for example, by replacing factors X~ and X 2 by 

the third (synthesized) factor X 3 . 

PR7. Similar tasks are solved by similar methods. 

PR8. To determine the influence of every independent factor X, ~ { Xj, X2 ..... X~ } 

one has to fix some of the factors and to vary the others. 

PR9. If the required solution has no property P, then all variants should be declined 

which imply P. 

PR10. On the contrary, if the required solution has a property P and a particular 

variant W implies P then W should be declined. 

PRII.  The idea of greedy algorithms: to find an optimum solution at every step is 

correct provided that it does not lead to loss of a global optimum solution after each 

step. It means, as in the example of a minimum-size covering set for a given 0,1- 

matrix, that one has to establish all the necessary conditions for providing the 

correctness of deleting or including each row in the solution. 

PRI2. If there is a factor X violating a given regularity then its influence may be 

restricted in the following ways 

12.1) deleting factor (object) X if and only if it does not lead to the loss of a solution. 

12.2) replacing X by Y, where Y is a new object performing all the functions of X, 

and being neutral in respect to the problem solution. 

12.3) introducing a "positive" factor Z which suppresses the "negative" factor X or 

neutralizes its negative influence. 

PRI3. Improve, first of all, those factors affecting the criterion C which have "the 

worst" values in respect to the optimum meaning of C. 



Weak methods and heuristic reasoning 229 

PR14. In order to provide a restricted "try-and-test"-method one has to know some 

applicable principle of choosing a solution. The more precise is this principle, the less 

is the computational complexity of the "try-and-test" method. 

PR15. It is necessary to seek such conditions, which after being removed, generate 

the minimum number of new alternatives, or, if being admitted, provide a reduction in 

the maximum number of alternatives. 

PR16. Let F be a set of conditions given on the task domain, f be the additional 

conditions, and {F w f} be the conditions for some particular case of an initial 

problem with known solution R. The latter is also a solution for a common problem 

with condition set F ff 

FI----T. 

One may consider R basic solution ff the following is true: 

not( F ~--- f ) & not( F l--- f ). 

The basic solution may be not an optimal one but it does not contradict problem 

conditions. 

PRI7. Simple problems make up the complicated ones, that is, a complicated 

problem may be or may not be recursively represented by means of more simple 

problems. However, we cannot assert that a recursive representation is sufficient for the 

problem being resolvable effectively. To be more precise, consider an example. The sum 

S, = 1 + 2 + 3 + . . . + n  = 
n(n + 1) 

may be recursively reduced to 

Sn2 - 12 + 2 2 + . . . + n  2 

and vice versa, i.e: 

n 2 - 2 . S , - n  



230 Chapter 3 

(n  - 1) 2 - 2 .  S,,_ 1 - ( n  - 1) 

( r / -  2) 2 - 2.  S,_ 2 - ( n  - 2) 

�9 ~ o 

12 -- 2 . S  I - I  

o r  

n n - I  

S a-2~_~S,-S.-S.+2]~_~S. 
i-1 i=I 

Taking into account that 

S.=S._,+n 

we obtain a recursive representation of S,,2 through S,,, S,,_~ .... S~ with the help of a 

primitive recursion operator and function f(x)=x+l. 

PRI8. The extreme cases either distort the nature of a regularity or make it more 

transparent to the investigator. This principle is in accordance with the corresponding 

Backon's maxima and recommends either to avoid "atypical" cases or to find such 

forms which reveal as much as possible of the essense of a problem. 

PRI9.  One may think of some factor as 

a) of known entity with known nature; 

b) of known entity with unknown nature; 

c) of unknown entity with known outer effects; 

d) of unknown entity with unknown nature. 

In case b) one may determine the nature of the factor with the help of 

experiment(s). In general, a solution may be sought according to the alternatives in 

principle PR 15. A set of alternatives should form a full group of alternali,ves. In case 

c) one should clear the conditions necessary for the factor being activated, since it 

may be sufficient to know, at least partly, the nature of the unknown factor which 

reflects under given conditions, To realize this idea, divide the initial problem into 



Weak methods and heuristic reasoning 231 

subproblems. Consider a subproblem which contains an unknown factor. Adhere to the 

following scheme of deducing the properties of the unknown factor: 

(property X) )(action X) 

,~(sequence Y) 

Use the inference roles: 

X - ~  Y,~" 

X 

which defines which properties do not belong to factor, and 

X - +  Y ,Y  

(presumably)X 

enables one to make an alternative for principle PRI 5. 

Let factor X violate (contradict) regularity Y. Its negative influence may be 

eliminated by: 

a) deleting factor X; 

b) neutralizing factor X; 

c) introducing a positive factor Z which supresses factor X. 

Point b) may be realized (partly or completely) by: 

b. 1) relaxing an initial criterion; 

b.2) replacing an initial criterion by the other; 

b.3) separating X from Y (or removing the linkage between these two factors); 

b.4) introducing new factor X' which is in antagonism with negative factor X; 

b.5) replacing X by the new alternative X' not violating Y; 

b.6) defining constituent parts of X with applying neutralization procedure to these 

parts; 



2 3 2 Chapter 3 

b.7) weakening factor X. 

Point a) is related to: 

a.l) the definition of the constituent parts of X and removing the most essential of 

these; 

a.2) a move to the system where X is absent and Y is present; 

a.3) reducing X to the state where it loses the negative properties; 

a.4) introducing a new factor X' maintaining system integrity after the removal of 

factor X; 

a.5) move to the antisystem, where X and Y are mutually concerted and developing 

X. 

Point c) may be realized by 

c. 1) move to a wider system; 

c.2) finding a factor which motivates X; 

c.3) finding a factor which motivates Y. 

Our following task is to illustrate some of the above listed principles with examples 

of the corresponding problems. Note, that we are not pretending to consider as many 

principles as possible but we wish to demonstrate that these principles really form the 

basis of the solving procedure, i.e. constitute the concept of the approach to finding a 

solution. 

3.7. Solution tree 

Consider the 5-tuple: 

< S z , S F , A , R a , R  s > 

where S z - is an initial system state; 

S r is a final system state; 

A is an algorithm providing the mapping S I ~ SF; 

R a is a list of restrictions on algorithm A realization; 

R s is a criterion (list of restrictions) which must be fulfilled in SF . 

(3.o.) 



Weak methods  and heuristic reasoning 233 

The state Sj  , directly reached from state S x , is called the nearest successor of Sx, 

and the state S x  is the nearest predecessor of $'~, . Graph F(S,H) with the set S of 

system states Sj  ~ S and the set H of edges connecting all the vertices with their nearest 

successors, forms a solution tree with root S t and leaf S F , if 

1)the ~-th (~>0) level in I-" is formed by the nearest successors of (/,z-1)-th level 

which do not belong to the levels (~t-2),(~-3),...,(0); 

2) the leaves in F correspond to those states in which all the nearest successors are 

contained in the upper levels in F (the exception, maybe, is for the leaf S F). The 

possible problem formulations for ( 3.0 ) are the follQwing : 

a) for given S 1 , R a, R s , find the corresponding S F and A;  

b) for given SI,SF,RA, find A;  

c) for given S t , R s , find S r . 

Let us focus our attention on the formulation a). In this case the combinatorial 

character of the problem is expresscd the most clearly; the crux of the matter is in 

seeking an optimal way in F from the node S t to (some) leaf S r satisfying R s The 

total number Z of all possible ways from S 1 passing through levels 1 ..... m is 

Izl - Iz, t Iz l...lzmt 
where ]Z,. I - is the cardinality of the set of nodes in tile i-th level. 

Since an unrestrictcd " try-and-test " method for large Z is practically ineffective, we 

start our considerations with the r e s t r i c t e d  and d i r e c t e d  "try-and-test " - principle. 

3. 7.1. R e s t r i c t e d  a n d  d i r e c t e d  " t ry  a n d  t e s t "  - p r i n c i p l e  

The restricted and directed "try-and-test" - principle enables us tosmooth out some 

of the drawbacks of the original algorithm, e.g., those connected with the choice of a 

single general criterion CR for the multicriterium optimization task. From the formal 

viewpoint, the solution is searched for on the partial solution graph I-"c I" with every 

level containing alternative vertices, i.e. vertices which admit a set of alternatives in 



234 Chapter 3 

the sense of compared values of criterion CR. Let CR represent a function of arguments 

0:I, 6g 2 ..... t2',. 

State-vertex S~c dominates over state-vertex S I (S~c t> S I ), if Sic and S~ belong to the 

same level in r '  and all arguments (parameters) c~(,a'~ .... .  a't k characterizing S~ are 

equal or better than corresponding parameters C~l / , c~ .. . . .  c~/ characterizing state-vertex 

$I. In this case, a chosen set consists of such vertices S~, S y ,  that Sx ~, Sy and Sy ~. Sx 

and there is no vertex S~ which does not belongs to the chosen set and such that 

S k > S~ or (and) Sk t> S y .  On the basis of the restricted "try-and-test"-principle ,one 

may improve (in the sense of R, from (3.0)) the solution of a problem "a") obtained 

with some known heuristic algorithm A'. The scheme of the corresponding procedure in 

this case may be as follows : 

S.O. There are given S l , R A , R s, A '. Set/1 = O, S u = SI. 

S. 1. f f  S u is a leaf, then stop: S F = S u , else go to step 2. 

S.2. In the level (#  + 1 ) determine a chosen set Cu+ l . Let Sj ~ Cu+ 1 . 

Suppose, that in the 5-tupple (3.0), St = Sj and find S r with the help of algorithm 

A'. Repeat step S.2. for all other state-vertices from Cu+ l . 

S. 3. Go from state-vertex S u of the ~t-th level to the vertex S t in the level (#  + 1 ) for 

which a final state S v , found by algorithm A', is better (in the sense of Rs)  than any 

other final state S F ,  reached from the state S t, belonging to (/1 + 1)-th level. 

S e t # = # + l , S  u = S, , go to step l. 

Taking into account that the set of all routes obtained by this procedure contains the 

route found by algorithm A' the final solution cannot be worse than that one. 

Example. Consider a dead-lock problem in the system of parallel abstract processes 

in the following interpretation. 

Let there be given abstract processes P~, P2 ..... Every process Ps is characterized by 

the corresponding realization Ui: 

U i - < ~ - , R [  >,  

j - 1 ,2, . . . ,coi  



Weak methods and heuristic reasoning 235 

where >- - is a precedence re la t ion  

J >- R j+l R/  c_ R - is the (sub)set of resources process Pi needs at step j,, and R i i 

denotes the separation of two sequential subsets of resources.in realization U~. 

Model <>-, R I> defines a system of abstract parallel processes as follows �9 

El .  Every process Pi subsequently realizes steps j 0=1,2 .... ) of the corresponding 

realization U i (i=1,2 ... .  ) starting from s tepj=l .  

E2. A move to next step (j + 1) from step j is possible if every resource in R/j+~) 

possesses sufficient capacity (number of resource units). (We shall suppose that every' 

process requires one resource unit of every resource in the corresponding subset R J ). 

E3. At any one time the process may realize one and only one step of the 

corresponding realization. It is also insisted that a move from one step to the next step 

is performed for only one process at a time. 

In the senses of El-E3 a dead-lock corresponds to the case when there are no 

processes satisfying E2 and have yet not fulfilled their realizations. 

The state S t of the model U_ = <>-, R_J > corresponds to the set of pairs 

{ <x,N(x)> ..... <y,N(y)> }, 

where x(y) - is an indentifier of process Px (Py)" 

N(x) (N(y)) - is the number of the step being realized by process Px (Py) at moment 

A state St+ ~ is the nearest successor of a state S t if it differs from S t by only the pair 

<i.N(i)> and St+ t is obtained from S t according to the rules El-E3. In this case we call 

states S t and St+ ~ adjacent and denote this fact by S t > St+ ~ . 

Definition. Any deterministic role A which generates for a given state S t an 

adjacent state St,. j not violating E I-E3 and not introducing a new process into the 

system is called a V-rule. The simplest examples of V-rules arc FIFO [46], LIFO ,etc. 

Using a V-rule and the scheme of a restricted and directed "try-and-test" method the 

problem of preventing a dead-lock may be solved as follows. Let the current state of 



236 Chapter 3 

model <>-,R i> be S t . Then moving from S t to adjacent state St+ 1 (S t >-St+l) is allowed 

if in chain 

v v v 

S,+I~"S,+2~-...~-S,+m 

the final state St+ m reached from S t after m steps with the help of the V-rule is 

empty, i.e. St+m={Q~}. It simply means that in St+ m all processes have finished their 

realizations. Finding the best (in some sense ) V-rule is essential for the 

synchronization strategies used in a local network protocols and process monitoring 

[47]. Note, that one of the main requirements to these algorithms is providing the  

minimum total time for realizing all processes. 

3. 7. 2. Cutting the worst variants 

This principle has the most effective utilization in the "branches-and-bounds" - 

method [48]. Intuitively, its idea is in reduction of search space by deleting the 

purposeless and the worst, from the viewpoint of a heuristic evaluation function, state- 

vertices in the solution graph. Rather often this principle may be complementary to the 

previous one. Let us consider some illustrative examples of this principle. Consider the 

minimum-cost covering tree problem, which involves a weighted graph and the search 

for a subgraph that spans the graph and has minimal cost. The resulting tree must 

contain the edges forming a minimum-cost cover of the graph nodes. To apply the 

cutting principle, one needs to know the property characterizing the solution. Suppose 

some minimum-cost covering tree is that shown in Fig. 3.16. 

Fig. 3.16. 



Weak methods and heuristic reasoning 237 

Let us assume that nodes 5,6 are connected by an edge in the initial graph. What can 

one say about the length of the edge (5,6)? May the length of a dotted line connecting 

nodes 5 and 6 be less than 6 ? The answer to the question can only be negative. Modify 

Fig. 3.16. In the new Fig. 3.17. length X cannot be less than 5. These relations are 

established according to the following speculations. 

G3 2 
...."' 

Fig. 3.17. 

Consider again Fig. 3.16. On the supposition that the dotted edge exists, its length X 

must satisfy the inequality 

X _> max{U~,}, 

where U~ - is a length (weight) of the edge ~p such that it belongs to the same cycle 

as a dotted edge (4,5) or (5,6).This is exactly the property we require. It enables us to 

delete from the graph the edges with the largest weights if they belong to an), cycle. 

Proof may be obtained as follows. 

For every coherent graph with n-1 cycles, the assertion is evident. Suppose it is 

correct for any graph with n _> 2 simple cycles. The cycle is simple if it does not contain 

other cycle(s). Connect any two nodes to get (n+l) simple cycles. Let an additional edge 

be o~• . If this does not belong to the resulting covering tree then the assertio~ is correct 

duc to supposition for n > 2 simple cycle-graphs. Suppose cz~ belongs to a minimum- 

cost covering tree (i.e. the tree with the same nodes as in initial graph). Then in lhc last 

remaining cycle containing rz,. U~,. cannot be the largest anlong the nodes forlnillg 

this singe cycle. It simply n~eans that the weight (/~. of the edge ~x inay vary within 

the bounds (0, U~X. ], where 



2 3 8 Chapter 3 

U =min{maxU s} 
max jEJ  

and max U j is the maximal edge weight in the j-th cycle containing o~ x . This 

property of o~ x may be extended to other edges except that having the maximum weight 

and belonging to any cycle since the supposition that this edge belongs to a resulting 

tree leads to a contradiction. So, we obtain a cutting principle for the minimum-cost 

covering tree problem, i.e. "delete subsequently the edges with the maximum weight if 

such edges belong to any cycle in the graph". 

The second example of this kind may be that concerning the "Traveling Salesman 

Problem" which was investigated earlier. 

3. 7.3. Principle of  suitability 

This and the following principles deal directly with the precedence relation (~ )  on 

the set O of e.s.o. The whole problem is formulated as finding optimal permutation on 

O. There are two possible tasks connected with the relation >--. The first one requires us 

to impose an optimal preccdence relation on the given set O of e.s.o ,to provide the 

given result. In other words, it requires us to generate a precedence relation in some 

optimal way. The second task requires us to order a partly ordered set of e.s.o to ensure 

some given criterion. This second variant may be considered as a generalization of the 

first one as it deals with a partly ordered set of e.s.o such that for any pair of e.s.o X and 

Y neither X~-Y nor Y ~  X may hold. 

An interpretation of the suitability principle was previously formulated as the 

statement that "an object which causes the greatest harm must be put into those 

conditions which are opposite to those corresponding to the most "useful" object. 

Denote this principle as the C-principle. Suppose there are N positions and N objects, 

and it is known, for every object i, a quantitative estimation f (.) of the harm caused by 

this object and for every position Fl(i) there is known the "degree of satisfaction" g(Fl 

(i)) of negative influence connected with assignment object i to the position Fl(i). 

Hence, 



Weak methods and heuristic reasoning 239 

N 

min ] ~  f .  g (F l ( i ) )  
i=l 

corresponds to such an assignment of objects I...N to positions FI(I)...FI(N) that 

maximal estimations f,. (.) correspond to minimal values of g(Fl(i)). 

Conversely, if the effect of assigning objects to the positions is evaluated by the  

"positive" iiffluence f ( . )  made by the objects i (i=l, N)(i.e.,  the usefulness of objecrs 

assignment to positions is estimated), then 

max  ~ f .  g(YI(i))  
i - i  

is guaranteed by such all assignment when maximal f ( . )  correspond to maximal 

values of g(Fl(i)). Consider some examples. Let there be given an unordered set A of 

il~depende~ll jobs: A={a~ ..... a,, } with the corresponding working times t~ .... .  t,, and 

due dates D~ ..... D,,. Every job a; is completed at time r; and it is required to find an 
�9 . 

optimal linear sequence of operations to ensure 

F - max[ max(0;  v,. - D,. ) ] --> min. (3.1) 
i 

We may interpret the set A as programming modules and the initial problem as the 

known "N jobs- one computer" scheduling problem with given due dates and criterion 

(3. l).The principle of suitability in our case may be realized as follows: 

(a) One determines the most "negative" (in the sense of (3.1)) object among those not 

assigned to the positions. 

(lo) The object selected at the previous step is assigned to the free position which 

neutralizes its negative influence as much as possible. 

From the view of point (b),the schedule we are intrested in has the property thai its 

final (the lnOSt righthand) position neutralizes any negative influence caused by the 

assignment of the object to it. It means that the object which occupies the rightmost 

position in the resulting schedule has no influence on the other objects. Therefore, this 



240 Chapter 3 

position may be used in the sense of the point (b) above. It remains to locate such a job 

which corresponds to this rightmost position. 

Obviously, the value of Ta(N) of the job a(N) which occupies the rightmost position N 

does not depend on the length of the schedule at all as it is equal to the sum 

N 

Z t~ - c o n s t .  Thus, (3.1) requires 
i=1 

[(N )1 m a x  0; ~__~ti--Da(N) ---) min .  
i=I 

It follows automatically that Da(N) should be the maximal among/91 .. . . .  Dn (more 

accurately, the value of O a(N) should satisfy the relation 

Da(N) >- ~_ati 
i=1 

but the former relationship assumes the latter one). 

Example 2. Let X and Y be two sequential service devices and A be the set of jobs: 

A I = {a I . . . . .  an}. Every job from A is firstly executed on device X and then is 

transferred to device Y. There are known times t/~ and tiy required by every job a/ to be 

executed correspondingly on devices X and Y. The problem becomes that of finding the 

final schedule P satisfying the criterion 

F ' -  m in  m a x  {v i }, 
i 

where x i - is a completion time of the job a i . 

Define how each job assigned to the next flee position in II makes an influence on 

F'. Suppose that device X becomes free at moment A x when some job a e leaves it. Also 

suppose that this job leaves the device Y at moment A y > A x. Precisely at moment A x 

device X is occupied by the next job a r which releases it at moment 



Weak methods and heuristic reasoning 241 

A ,  A ,  + t~.. 

One may consider the assignment ofjob a r after job a e to be bad if A~, > Ay , as in 

the interval [A x ,Ay] tile device Y would be unoccupied by any job. In accordance with 

the principle under consideration one shouid neutralize the negative influence of job a~, 

by demanding that A'x -< A y. Having in mind the form of F' it should also be required 

that 

m a x [ ( A  x + tr~);Ay. ] + tv ----> min .  

It, further, gives 

A x ---> m i n .  

Obviously, the condition obtained must be kept at all times within the interval 

occupied by FI. The condition 

A'~_<A y 

may be preserved by the strategy illustrated in Fig. 3.18, and the condition 

A' --> min 
X 

may be preserved by the corresponding strategy shown in Fig. 3.19. In fact, this is all 

that is required by an algorithm as suggested in [18]. 

increasing the difference ( 
< 

start of schedule 

t iv - t ,x ) 

f 

time axe 

Fig. 3.18. 

decreasing t ix 

s ta r t  of schedule time axe  

f 

Fig. 3.19. 



242 Chapter 3 

3. 7. 4. Principle of minimization of aftereffect 

To illustrate this principle consider the multiprocessor scheduling problem in the 

following formulation. Let there be given the system < P,>->, where P = { p i } ,  i=l,m - 

is the set of programming modules and ~- - is a partial order relation imposing a 

precedence on P, i.e. Pi ~- Pj if module pj cannot start executing before Pi has 

finished. There are also given the execution times of modules from P on the 

corresponding processors 1,2 ..... n. 

We are interested in the schedule realizing an acceptable module assignment to the 

processors and providing 

min  m a x  {T i } (3.2) 
i=l...n 

where x i - is the time at which processor i completes execution of the last module 

assigned to it. The value of xi also contains the lengths of the idle intervals (if any) 

when processor i does not perform any work because of the restrictions imposed by the 

precedence relation. First of all, the principle we are exploring requires us to clarify the 

nature of the influence on the final criterion (3.2) of each module assignment to the 

corresponding computer. To do this, one should destinguish between two aspects 

connected with this principle: 

(i) in the first attempt the modules are assigned to processors which cause the 

greatest influence on the assignment of other modules (this aspect forms the basis for 

known scheduling strategies [48]); 

(ii) the estimation is necessary in order to evaluate the effect of module assignment 

on the resulting criterion (3.2). 

From the viewpoint of the second aspect, the idea of known strategies to choose the 

critical path modules in graph coding the pair (P, >-) in the first attempt is not the best. 

In [50] an algorithm is proposed which takes into account for each module Pi the 

corresponding sum 



Weak methods and heuristic reasoning 243 

T ( p ~  ) - ~_~ tj 
j ~Suc ( pi ) 

where, t j - execution time of module j ; 

Suc(p,.) - the set of modules connected to module Pi by the paths starting from Pi in 

the precedence graph coding <P,>->. 

This approach, however, does not discriminate between two different vertices Pa and 

Pb in the precedence graph with equal values T(pa)= T(pb) the difference between 

the topologies of subgraphs 

({PaUSUC(Pa)},~)aFId({PbUSuc(pb )},P). 
Let us show how to use the aspect (i) above to find the necessary estimations for 

modules. 

Denote the precedence graph,coding <P,>-> ,by GfP, U ) with the vertices P and arcs 

) 

U such that(pi,Pj) ~ U if Pi >- Pj .Call the subgraph < {Px u Suc(px)},>-> Px" 

subgraph (see examples in Fig. 3.20). 

Graph G(P,U) P2-subgraph P3-subgraph 

Fig.3.20 

Let Lo be the schedule length, i.e. 

Lo - max{r /}  
i=l.,.n 



244 Chapter 3 

and L x be the length of the schedule built for the Px " subgraph. Consider a 

homogeneous multiprocessor system (for a heterogeneous multiprocessor system ,all the 

results obtained here may be easily reproduced by analogy). Then, the strategy of 

module assignment based on the estimations of Lj and providing minimum L o satisfies 

the conditions below: 

(i) to assign module j to a processor, all predecessors in G should be executed; 

(ii) the corresponding value Lj computed for Pj - subgraph should be maximal 

among other modules satisfying p. (i); 

(iii) each module is assigned to the idle processor which completes its execution 

before the others. 

One may directly use this scheme to find all the estimations Lj .  Indeed, in order to 

find L k one has to build the schedules for Pl -subgraphs ( 1 ,  k) such that p~ c_ Pk (i. e. 

Pl is a subgraph of pk'subgraph).  So, one has a recursive scheme where the estimations 

of L r for the vertices having no successors are equal to the corresponding execution 

times t r . Instead of formal algorithms, consider the example in Fig. 3.21 for the 

homogeneous 2-processors system (the numbers near the vertices define execution 

times). 

2 4 4 

Fig. 3.21. 

First, one establishes 

L 9 =3,  L 8 =4, L 7 =2 

Now it is possible to find L6,L 5 and Lao.That is, having built the corresponding 

schedules for P6, P5 and Plo" subgraphs,it is possible to obtain: 



Weak methods and heuristic reasoning 245 

L 6 - 7, L 5 - 4,  Lt0 - 8, 

Further, it may be deduced that L 4 = 9 and L 3 = 12. 

As an illustration, the schedule for the p4-subgraph obtained on the basis of 

estimations L 6, L 7, L 8 and L 9 is sho~vn ill Fig. 3.22. 

4 1 o i 8  1 t 

i I It ! t 
9 7 .i 

2 5 7 9 
L4 

Fig. 3.22. 

The resulting estimations L i of all modules are shown in Fig. 3.23. 

modules 1 2 3 4 5 6 7 8 9 1C 

bj 11 13 1.~ 9 4 7 2 4 3 8 

Lj 1,! 1~: 12 9 4 7 2 4 3 8 

Fig. 3.23a 

_2 1 1 1 4 , 1 6 1 8  I t 
J I I I 

~ I 1o !~19 171t 
4 6 1 1 12 15 17 

11 3 1 6 1  8 1  ~ 
s 9 i 

4 6 1 1 12 15 

Fig. 3.23b): bj-  based schedule Fig. 3.23c): L i - based schedule 

Also given are the estimations obtained in accordance with the formula [491 " 

b].=t:.+ max {b k} 
pk ~Suc( pj ) 

b]. = tj i f  S u c ( p j )  = Q .  



246 Chapter 3 

The only (!) difference between L l and b I provides the better final result in the sense 

of (3.2). 

The principle of the minimization of an aftereffect on the basis of the estimations Lj 

has proved to be more effective than that based on the estimations bj.The following 

results were obtained for 27 arbitrary graphs and 2 processors : in 3 cases the resulting 

length L0 was shorter for homogeneous systems and in 2 cases - for heterogeneous. The 

relative retraction of the length L 0 was maximal for heterogeneous systems and as 

much as 23,6 % of the length L 0 obtained on the b j-estimations basis. There were no 

cases when making use of b j estimations resulted in more reduced schedule length. 

These results show that the efficiency of the principle of the minimization of an 

aftereffect depends on evaluating the consequencies of module assignment to 

processors. 

3. 7. 5. The "Maxmin "-principle 

The essence of the "maxmin" - principle is intuitively understood as improving those 

factors affecting the integrated criterion C which has "the worst" values in respect to 

optimal meaning of C. To clarify this principle, let us consider an explanatory example 

known as the containers packing problem [51]. Suppose, there are n resources 

(containers) q,r2,.. . ,r n each with capacity p = 1. There are also processes i = 1,2,...,N. 

Every process i requires a definite part of each resource j: 0 < Pij < 1. Further Pij will 

be referred to as the requirement of process i for a given part of resource j (in 

conditional units). Introduce the requirements matrix p = [Pig]. Let the problem 

consist in finding a maximum number N max of parallel processes which can be 

executed on resources r~, r 2 . . . . .  r n provided that 

x/ 

f j  = E P i j  < 1 for all j=l,2,. . . ,n 

i ~ N  ~ '  



Weak methods and heuristic reasoning 247 

With the help of the "maxmin" - principle one can find a heuristic solution as 

follows. 

Step 1. If there is at least one column j in the requirements matrix t9 which violates 

V 

the constraints f j  then go to step 2; otherwise stop' the solution consists of the number 

of rows remaining undeleted in 9.  

Step 2. Let there remain rows I = {i~,i 2 . . . . .  ik} in 9.  Delete the row i*~  I 

providing 

v 

m a x  f j --~ min  
j= l . . .n  " 

Go to step 2. 

Example. Let requirements matrix p be given in the following form /9 - 

I ) F O C C S S C S  

i 

1 

2 

4 

6 
i 

X 

r l  

0.2 

0.5 

0.2 

0.5 

0.3 

1.7 

I 'CSOU r c e s  

r2 

0.4 

0.3 

0.5 

0.2 

1.4 

r3 
i,i i i i , , ,  

0.7 
i 

0.3 

0.4 

0.1 

0.2 

1.7 

Deleting row 1 one obtains the following vector of elements sums in each column: 

Z =  (1.5;1.4;1.0) and maximal sum VIm~, equal to 1 .5 .  By analog)' for every row 
l 

2,3 ..... 6, the following vectors may be obtained: 



248 Chapter 3 

~ 2 =  (1.2;1.0;1.4), V2,~ = 1.4 

]~3-  (1.5; 1.4; 1.7), V3,~ = 1.7 

~ 4  - (I. 2; 1.1; I. 3), V4~,x - 1 . 3  

~ 5 -  (1.7; O. 9; 1.6), V~x - 1 . 7  

~ 6  = (1.4; 1.2; 1.5), Vm6,x = 1.5. 

It is necessary to select a row which provides the minimal value of V,~x among rows 

j=l,2 ..... 6. Thus, the first selected row is row 4 as this provides 4 Vm, ~ = 1.3 which is a 

minimum one. Row 4 is deleted from the requirements matrix. Repeating the procedure 

by analogy, one obtains the final solution in the following form N ~ '  

processes 

3 

5 

,6 

resources 
i i 

r l  r2 r3 

0.2 0 0.7 

0.2 0 0 

0 0.5 0.1 

0.3 0.2 0.2 

0.7 0.4 0 
, 

Example 2. Let the set I = {i1,i2,' .... i n } of indepent tasks be given. Let there be 

k >_ 2 different (modules) processors. The matrix [t U ] i = l,"-n, j = l,---k of operating times 

of tasks i on computers j is known. The problem consists of making an optimal schedule 

for the execution of tasks employing criterion (3.2). 

The "Maxmin" - principle enables one to realize the following solution scheme [5 2]: 

- at every step of the planning procedure, module i, is selected from the modules 

not yet scheduled, which satisfies the following conditions: 

(i) the value 

V 

f = rk + tsk 



Weak methods and heuristic reasoning 249 

where  r~ is a current  work ing  t ime of processor  k is the m i n i m u m  a m o n g  

r I, r 2 . . . . .  r k and 

(ii) this value is the m a x i m u m  a m o n g  all unscheduled  modules  S. 

More  precisely,  

V 

f : max m i n ( r  k + t sk ) 
s k 

Let [tij ]: 

p r o c e s s o r s  . . . . . . .  
, 

m o d u l e s  p l  p2 p3 

1 5 4 6 
. . . . .  

2 3 8 2 
. . . . . . .  

3 4 3 5 
. . . . . . . .  

4 2 4 4 
, , , , 

First  set r~ = z" 2 = "t" 3 = 0. 

We have: 

V 

S - I f  l -  min r 1 +tll 'V~2 + t l 2 ; V  3 +t13 = 4 
k 

V 

S - 2 f 2 =  m i n r  I + t21 ; r 2 + t22 ; r 3 + t23 = 2 
k 

V 

S - 3 f 3 =  min ~'1 +t31;/-2 +t32;/-3 +t33 = 3 
k 

V 

S - 4 f 4 =  min "t'l + t41 ;/-2 + t42 ; 1"3 + t43 = 2 
k 

V 

max f s = 4. 
s 

The  above result  cor responds  to the ass ignment  of  module  1 to processor  P2 " 

2-2 --2"2 + t12  -- 4" 



250 Chapter 3 

Delete the row 1 from matrix [tij] and repeat the procedure by analogy. 

v ( ,  , , ) 
S -  2 f 2  = min z I + t z l ; z  2 + t22;z  3 +t23 = 2 

k 

v ( .  . . ) 
S -  3 f 3  = min r I +t31;z 2 +t32;z" 3 +t33 = 4  

k 

v ( ,  . , ) 
S - 4 f 4  = min "r I +t41;z  2 + t 4 2 ; r  3 +t43 = 2 

k 

max 2 , f3  , f4  = 4, 
s 

which corresponds to the assignment of module 3 to processor p~ . Set 

2"1 --2"1 + t 3 1 - 4 .  

Further, we obtain 

v 

S - 2 f 2 : 2  

v 

S - 4 f 4 = 4  

Assign module 4 to P3 

2-3 - 2"3 + t43 - 4 

v 

and finally S=2 f 2  = 6 assign module 2 to processor P3. The resulting schedule has 

the form shown in Fig. 3.24. 

P1 

P 2  

P3 

3 ] t 

l ' > 
1 

4 6 

Fig.  3 .24 .  



Weak methods and heuristic reasoning 251 

3. 7.6. "Greedy" algorithm's schemata 

The basic idea of the greedy algorithms is rather simple: to choose the best 

continuation from every problem state. This strategy is successful provided it keeps the 

optimal solution within the bounds of possibility. To clarify this idea let us consider the 

shortest path problem given on the graph. Consider the following relations: 

X 2 = X 1 + 4 X 6 = X 2 + 2 X 9 = X 7 + 4 

X 3 = X 1 + 3 X 7 = X 3 + 2 X lo = X 7 + 5 

X 4 = X  1+5 X 8 = X  4+3  X l l = X  5+ 1 

X s = X l + 6  

X12 -- X 9 + 6 = X l o  + 4 = X l l  + 2 

where X i stands for the minimum-length path connecting vertices x 1 and x i in a 

graph. Weuse  the following common relationship: 

S* (i,k) = min(Sij  + dflr ), 
J 

where S*(i, k) is the minimum total length path, connecting vertices i and k �9 

djk is the length of the arc (j, k). 

This relation may be applied directly to the final step of the algorithm. Now xve can 

write 

X~2 = m i n ( X 9  + 6; X~o + 4; X~ + 2) 

X9 = min (X7  + 4) 

X~0 = min (X7  + 5; X8 + 2) 

X~ = m i n ( X  5 + 1) 

X7 = m i n ( X  3 + 2) 

X8 = min (  X4 + 3) 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 



252 Chapter 3 

X 5 = m i n ( X  l + 6) 

X 3 -'- min(X~ + 3). 

(vii) 

(ix) 

Processing these relations in reverse order, one can obtain X~ = 0 ; X  4 =5; 

X 3 = 3;X 5 = 6;X 8 =8 ;X  7 = 5;X~ = 7;X~0 =10;X9 = 9;X~2 = 9. Thas, the minimum 

length path we are interested in has total length = 9. It is not difficult to find the path 

itself For example, considering the relation 

X!2 = m i n ( X  9 + 6;X10 + 4;Xll + 2) 

where X 9, Xl0 and X~t are already known, one simply finds that the last but one 

vertex in the searched path is l l, etc. 

The correctness of the "greedy" algorithm principle may be provided by additional 

considerations for the last step performed by the algorithm. This is valid due to the fact 

that finding the optimal solution at the last step ensures a global optimum provided that 

the previous path is an optimal one. The last relation lies in the basis of dynamic 

programming optimum principle I53]. Denote the control chosen at the step i by X; 

Then one may write 

I-4" - gxtr  (~-1 + f (Xi)) ,  

i-I 
where L i = E f (Xj)  and I//" i is a definition space of X i 

j=l 

Bellman's optimum principle says that the value of X; should be optimal 

independently of the way it was reached. Let us consider the next cxample, which 

requires one to find the values of unknowns X~, X 2, X 3 providing 

X l + 2X 2 + 3X 3 --+ m a x  

under the restriction 

4X~ + 3 X  2 + X 3 < 10 



Weak methods and heuristic reasoning 253 

X~,2, 3 are integers and non negative. 

Suppose that the value of X~ is searched for the first, and then the values of X 2 and 

X 3 are defined. Let us investigate the latter step consisting of the selection of the value 

of X 3. In our further considerations we shall refer to the following table given below 

X 3 
, , i , ,  

0 

1 

2 

/ /  

L3 
, 

X 1 + 2 X  2 
. . . . . . . . .  

X 1 + 2X:  + 3 
. . . . . . . .  

X I + 2 X 2  + 6  

X~ +2X2 + n  
, , , 

~t'l,2 
i 

4X~ + 3X 2 < l 0 

4X~ + 3 X  2 <_ 9 
, , , 

4X~ + 3X 2 < 8 

4X~+3X 2 < 1 0 - n  

Table 3.2 

According to Belhnan's principle one may write 

L~ = max{/-,2 + 3X3}= max/-,3. 
2" 3 ~ul, 2 

Consider, for instance, the rows corresponding to X 3 = 0 and X 3 = 1. We obtain two 

particular problems as follows 

a) X~ + 2X 2 ~ max 

4X~ + 3X 2 _< 10 

L2,~ - X~ + 2X2 

b)X~ + 2X 2 + 3 ~ max 

4X~ + 3X 2 < 9 

/ o s , -  XI +2X2. 

Compare now L2, a and L2, b. To do this ,let us take into account the fact that the 

restriction in particular problem a) is weaker (looser) than in problem b), i.e. 



254 Chapter 3 

N~:4X, + 3X 2 < 10 

~G:4X,  + 3X 2 < 9. 

In problem a) one has the possibility to use an additional unit with the aim of 

increasing the value of L2, a , i.e. it is correct to write 

L2,~ - L2,b + ALa,b, 

where La, b is an increment of the functional L3 due to an appropriate reassignment 

of the additional unit between the unknown values X~ and X 2 . It is easy to see, that the 

maximal possible value of ALa, b is equal to 2/3 (due to increasing the value of X 2 by 

1/3). This consideration results in finding the optimal value of X 3 which is equal to 9 

(since the value of AL,,,b cannot be fractional). With the optimal value of X 3 = 9, one 

obtains the formulation of the new task: 

X~ + 2X 2 ~ m a x  

4X, + 3 X  2 < 1  

X,, 2 >__ 0.  

This problem is resolved by using the values X l = X 2 = 0. Thus, the final solution 

to the initial optimization problem is 

X, - X  2 - 0 ; X  3 - 9 .  

Thus we have shown that the "greedy" strategy in its pure form is applicable if, at 

each step, it does not lead to loss of the global optimal solution. We have reestablished 

the well-known Bellman's tenet having remarked that choosing the solution at the final 

step in accordance with this strategy did no! lcad to loss of an optimal solut.ion. 

"Separating" the final step from the whole procedure, we obtain a new problem of a 

smaller size, but this new problem appears to be dependent of the last choice of X~,. 

Finding such a dependancy may be not a simple task or may even be impossible. It may 

be significantly simplified in the case of a small and discrete set of all possible variants, 

as in the shortest-path problem, for example. In addition, a criterion of optimality in the 



Weak methods and heuristic reasoning 255 

problems considered above was a kind of additive function of the independent 

subcriteria which may be considered as an essential constraint on the whole strategy, 

but this question is beyond our interests in this book. 

3. 7. 7. Principle o f  similarity 

It is assumed that the analogy between two systems (objects) is based on existing 

fundamental laws. Evidently, if there is an isomorphism between two problems as 

formal systems then the solution of each of them is suitable for the other and vice versa. 

Generally spewing, the goal of finding direct analogies between problems is mainly 

explained by the searching for a more evident interpretation of a given problem. The 

evidency of such an interpretation may be quite conditional and in any case is human- 

dependant. 

Natural interest is aroused concerning the approximate analogy between two 

problems or their similarity. The question of the applicability of one problem solution to 

another is considered, for example, in [54]. Following this general idea, consider the 

illustration outlined in [55]. 

Let us consider the scheduling problem in a homogeneous multiprocessor system 

with n >_ 1 processors. Let us denote the set of processes by T = {T l , T 2 ... . .  Tm }, where 

T~ is an individual process with processing time r i . Let 0 = {r; }, i =  1-~ be the set of 

all processing times. Suppose further, that there is a partial order (>-) representing a 

precedence relation between processes such that T i>-T: if process Tj may not be 

initiated before the completion of process T i. Let us also require for >-- to be irreflexive 

and asymmetrical relation. In this case the pair (T,>-) may be interpreted by an 

oriented graph G(T,-U) with vertex set T and arc set U such that (T,.,Tj)E U if 

m 

Ti >" Tj and ~ ( T / > - T  k >-7)) (Fig. 3.25). We admit that every process T,. may be 

interrupted at an arbitrary time in its execution and be renewed afterwards. 



256 Chapter 3 

<T, >- > : 
. . . 

x i / ~ ~ . T J )  
/ / 

Fig. 3.25. 

There are also given the due dates D = {d I , d 2 .... .  dm } corresponding, to processes 

Tl, T2 .... 7", which impose time restrictions on the completion times of the processes f., 

that is, 

fi <di , i=l ,m.  

To summarize the all above, the model of the scheduling problem under discussion 

may be represented by a 5-tuple of the form 

(a)(T,>-,n,O,D), 

where n is the number of processors in the system. 

Problem definition. Let fmax = max(f  ..... f, ,).  If some element of the 5-tuple (a) is 

not defined then it will be denoted by an asterisk (*). Considcr the following model: 

(b) (T,>-,n >_ 2,0,D = *). 

With respect to this model, let us formulate the problem "PRA" as follows: 

"To find a schedule with interruptions pro riding 

m i n  f m~, . 

To solve the "PRA"-problem we should solve the "PRB"-problem, corresponding to 

the model 

(c)(T, >-= * ,n  - l ,O,D).  



Weak methods and heuristic reasoning 257 

The notation ">-= *" is used to indicate that the release dates of the processes are 

undefined (i.e. are arbitrary and may not coincide)." 

"PRB"-problcm: " Given model (c), find a scheduling strategy providing (if it is 

possible) f _< d i for all i = 11 n~ .,, 

Let us now use the solution to the PRB-problem for solving the PRA-problem. 

Solution of the PRB-problem. An algorithm for solving the PRB-problcm is 

connected to the following events: 

1) achieving the nearest interruption point assigned to some process Tj under 

execution 

2) initiating some new process. 

We shall use the designation lju = [Ayu,dyu ] referring to process Tju with due date 

dju and A ju = d y u - r S u ,  where rSu is the remaining processing time of the process 

Tju at the time t u > O. It is assumed that the times A jp and dj/u do not belong to the 

interval lju. 

If all intervals l ju do not have common subintervals ( see Fig. 3.26a ) then the 

scheduling policy we are interested in is defined by the sequential processes 

Tlu,T~u . . . . .  TI~ u in the order of non decreasing values Aju. 

/ ,  

t I~ 

rll ,1 _~ r12 ,1 

_ 

1 

AI g d'l g A2~L 
�9 . 

. , .  

121a l [ 3 b t  a) 
. . . . . . . . . . . . . . .  , 

1 _ 1 1 

d2~ AI3. d ~ .  

. .  . ,  , . 

.LL:i:~.'.~.L.i:.L::ii.L~i - 

': :. : : 7 :  . -  . 7  : . . ? . - / 2 ~ . . #  
. . . . . . . . . . . . . .  , , , i  

i i : 

] ' I Alg Ill.t] '  ~ dl~t 
t [ ~  

ne~ cl-~sposii"~irtrf'qfr~i,)al 1 la 

c) 

Fig.3.26 



258 Chapter 3 

In the case of some intersecting intervals 1]~ ( Fig. 3.26b) one has to dispose of the 

common subintervals (which are dashed in Fig. 3.26b,c ) in the free spans denoted by 

zl; (see fig 3.26a).Any process Tau is permitted to use only those free spans which are 

situated to the left of the point Aau. The feasibility of a schedule is determined, as one 

can see, by the total magnitude of the free spans r/i .This magnitude should be sufficient 

to remove all common subintervals. 

The common rule is the following: 

A. Choose an interval l~u with minimum value A~u (or having the earliest due date 

d~u if there is more than one such interval). 

B. If interval l~u does not intersect any other interval l j# ,  then process T~u will be 

assigned to the processor with interrupt moment t u, = t u + r(u (one should repeat the 

sequencing of remaining processes starting with the calculated time t u, ). 

If the interval l~u has stroked subintervals, then choose the leftmost one (let its 

length be L,u). The process Tlu is assigned to processor on the interval [tu,tu, ], where 

t~, - m i n ( A 2 u , t  u + I~u ). 

To illustrate this scheduling policy we give an example in Fig. 3.27. 

,.- . . . .  ,~.," .... III . . - -5"1 '  ' " ; ' " "  / "  ~ . . . . . . . .  . : 

i- i- ~ ' :y/ / f f t , ' 7 , , ' E , ' 7 ~  " , 

: -~ / ..'==r'~-.- : III ! 

I '  ! 11'  : . , :  ," : - , , ,  �9 . , . ' 1 . " ~  i 

i i . ,".."! ~ i ~ iV 
I '  ~ ;""i"'" ~ / ':r I I I  

1/ I~." : ] / I i I , i ! 
: : : ! i i 

_.'I r" insufficient span to fit stroked interval 

- ; ; - . - - .  , . .  . I t i  
, _ _ _  _ 

i I " ' " : "  : I V  i 
_ _ ' *  : 

I V  

Fig. 3.27. 



Weak methods and heuristic reasoning 259 

Corollary 1. The feasibility of schedule (Sh) for the remaining processes would not 

be violated if Sh is fcasible before the assignment of process Tlu with a minimum value 

A l~, on interval [tu, tu, ] where tt,, is defined according to the common rule formulated 

above. 

Proof. 

1). If interval l~u does not intersect other intervals then the total length of the free 

spans situated to the left of the time A:~ will be the same despite the occupation of 

interval [tz,t/z] by the process TI~. 

2). If interval l~u intersects other intervals then to make good the time deficit of the 

proccss T~u, defined by the stroked part of l~u, one may use only those free spans 71~ ~ 

which are situated to the left of the point A~u. There is the only way to achieve this, that 

is, to dispose of the stroked part of the interval l~u within the boundaries of the 

intervals ~1~ ~) (see Fig. 3.26 c). As a result, the interval llu will occupy a new position 

where it does not intersect any other interval (Fig. 3.26c) and point (1) of this proof 

now may be applied. 

Evidently, if the relation A~ < A j +-~ dg <_ d] holds for every i, j then one may set a 

preemption point for the process T~u at time 

I c-'ou+l- min(A21,;tl, + fil,). 

In the general case, w~+~ is chosen with regard to the length LI~ of the stroked part 

of an interval l ~  only, i.e. 

a)l,+,- min(zX:l,;ti, +/~l,). 

Now we can consider the "PRA" - problen) solution. The concept of making use of 

the previous solution to the " PRA" - problem is as follows: 

- to define due dates d~, d: . . . . .  d m for the processes T~, T 2 . . . . .  T m in some optimal way 

(to be clarified later); 



260 Chapter 3 

- to use the fact, that the above outlined scheduling policy assumes that >-= * and, 

therefore, is suitable for any concrete form of precedence relation ~-.,, 

Lemma 3.1. For a given number n of processors it is correct to say that 

m 

Z r i  

L ( S h ) -  max'[f i  ]' >-i=1 
1 /"/ 

where L(Sh) denotes the schedule Sh length, and 

m 

i=1 = inf  fmax 

With regard to inf fmax , one can set such due dates which, if satisfied ,will provide 

m i n ( L ( S h )  - inf  fm~x ). 

A procedure for defining optimal due dates (from now on denoted as the 

D-procedure) is as follows. 

1) If for all processes To" , such that Tc >- To,, there are known the corresponding 

values of Ao" (7 = 1, 2 .... ) then assume 

d e -  min ( A e 7 )  
7 

a n d  A c - d e - ~'c 

else go to step 2. 

2) For the processes Tx having no succesors in the precedence graph assume 

d x - inf  f max 

A x - d x -  z" x. 

Consider the illustration in Fig. 3.28. In this case we have: 



Weak methods and heuristic reasoning 

3 3 3 2 

Fig. 3.28. 

3 + 3 + 3 + 2 + 5 + 1 + 2 + 2  
inf  fm.x = = 7 

" 3 

d 8 - 7 ;A  8 - 7 -  2 -  5 

d 7 - d 6 - 5 ;A 6 - 4 ; A  7 - 3; 

d 2 - m i n ( A  6,A7) - 3 ;A 2 - 0; 

d t - 4 ;  A l - 1; 

d 4 - 3; A 4 - 1; 

d, - m i n ( A 6 , k T ) -  3 ;A 3 - 0 ;  

d 5 - 5 ;A 5 - 0 .  

261 

Note. The D-procedure even allows negative values of optimal due dates. In these 

cases one should create a schedule starting from the time point corresponding to the 

negative value A x with the highest absolute meaning among all the negative values A;. 

The resulting schedule in this case should be corrected by adding the value tA,~ ] to all 

time moments found. 

Let us start the sequencing processes on the basis of the optimal due dates. The 

complete scheduling process is divided into two stages.At the first stage we create a 

schcdule for the optimal number of processors which may not coincictc with those given 

in the "PRA"-problem model. It is obvious that there exists a number n o p  t of processors 

which, if increased, does not lead to an improvement of the criterion 

m i n ( L ( S h )  - inf  fm~ ). 



262 Chapter 3 

At the second stage we must correct the resulting schedule in accordance with the 

given number of processors. 

Let cp tu = { ~ u  , T2u . . . . .  T, au } be an ordered set where 

p 

A ~u - ( d ~u 

at t ime t/u Let the , ,umber  of processes for which A i# = t/t be ?/# (",t/ E {0, 1 . . . . .  f l})  

and the number of all available processors is n > 2. Then 

1) If n >_ n u then the first n processes in q~tu are assigned to the n processors with 

the same interrupt point at time coz+~, 

C_.Ou+ ~ - min(gO~u,OO2u . . . . .  tO,u), 

where c.O;u - is the time of the interrupt point assigned to process T,p accordingly to 

the common rule in the "PRB"-problem without taking into account other processes 

f r o m { T i u , T 2 u  . . . .  T,,u}. 

2) ff n < n u then additional (n u - n )  fictional processors are introduced that 

enables us to use point (1) of the given algorithm, which is further referred to as the 

SR-algorithm ("Service-on-Ready"). It is also assumed that at the point cou+ ~ , the real 

number of n processors is to be restored. 

Consider again Fig 3.28. An initial interval disposition is shown in Fig. 3.29a. At 

time t u = 0 there are processes T 2, T 3, and T 5 with A 2 = A3 = A5 = 0. 

The processes T 2, T 3, T 5 are assigned to processors with interrupt point at time ~ = 1 

defined from the relation below: 

o) 1 - m i n ( m i n ( t ,  + Li , , ;A l ) ) , i -  2 ,3 ,5 .  
i 



Weak methods and heuristic reasoning 263 

a) 

b) 

c) 

I [ i ; i :: 

I '  , : , " " , " ; ' , ' . / / - - '  ' : '  ~ ' - - ' . ' ; - / '  ' ' ' : '  ' " '  ' " / / ' , < "  " ' : :  .... 'z//,z;"' ~'~ ...... ::..--.i.-;.:,-:~".~,',;/~.,.'~,.'."~.~ 

l 
I ,  : :.',,/,.".,,.':" lli'.r.:'5., :;,, ...: ,;,~;, ~,.,.. ,,f, , . ,  .,/ . . . . . . . . . . . . . .  

0 " ~ L'.',?i" _ :  ::. ,_ : ,.r.:: '. . . . . . . .  < ; , . , . ;  

. .  ;//z,z../,,,z>, z . . , / , . . . . , ; / / , ,  "..,,~ " , ' , ~  ,',.,;;Z./,/,.,...~,',;, / z / , , , /  / , ' , ,  , ,  . ' . .  

' - - ' , ' : : ' : :  ' ( " f t  ; ' / -  " ' - "  ' : ;:. ' ' , : ' ; ' : : -  ; ' ; "~ ' ; , 2 ,7 , , ' k ' , z : ; ' , "  ',,/'z" ,/,';;;:;",:' " ; ~ ' : .  " ~ :  , : , / ;~; '2,; ; ' , / '~"; ' , '  ' ' .... 

1{ 2 3 i  4 !  5 6 7.' 8 

I I T 2 :  ! 
l I T 3 i  :: :: ' 
! I T S !  _ , !  ! 
I . . . .  

18 
i 

Fig.3.29 a) b)c) 

o I 

I -1 T1 
" '~ ' I T 2  

t i 
' , T 3  

j ! T 5 :  

2J 3 : 4  :, 
_ 3 . _ _ ~  

Z 

I1 

5 
15 ~ 

-~17 
i 

16 ' 
! ~ T I :  

T 5  
T 7  

. . . . . . . . . . . . . . . .  

3 4~ 5 

8 7 

18 

7 8 

Fig 3.29 d ) e) f) 

15. ~ 17 
i 

18 
i I , 

t 
1 2 3 4 5 6 7 8 

T6 

Fig.3.29 g) h) 



264 Chapter 3 

Here Li, is the length of the lefimost stroked part of an interval li~. 

At time t I =1 ~ ={T3,Ts,TI,T2,T4}. Since n ,  >n ,  we have to introduce 2 

additional fictional processors (Fig.3.29d). An interruption point is now assigned at 

time t 2 = 3. The disposition of the intervals for this time is shown in Fig.3.29e. 

~2 = {TI,T7}. Since n > n~ , the process T 5 is also assigned to a processor. Further 

steps are performed by analogy and are illustrated in Fig.3.29 f, g, h. Optimality of the 

SR-schedule is defined by the fact that all processes complete on time according to the 

D-procedure. We now realize the second stage of our scheduling strategy under the 

assumption that n > 1 fictional processors were used. The reader is referred to [55] for 

an algorithm providing the mapping of intervals with nl processors to the optimal 

length intervals with n 2 processors. Fig.3.30 illustrates this algorithm by mapping the 

in~e~a,,~ ~, ~ n : ~ processors to t~e into~a, E, 7~]  wit~ ~ 3 processors ~ u s  

1 
we obtain the resulting schedule L(Sh) = 8 -=- [55]. 

3 

T I  I I I 

T 2  

T 3  

T 4  

T 5  
i i 

~, i I 

I I 

I I 

I I 

T 2  

0 1 2 3 . 6 6 6  7 . 6 6 6  

Fig. 3.30 

3. 7. 8. Transforming the conditions of the problem 

Sometimes it is possible to loosen some restrictions on the task domain provided the 

domain is modified appropriately in order to retain the equivalence between the new 



Weak methods and heuristic reasoning 265 

problem and the old one. Let us, for example, consider the problem of the maximum 

matching set in a graph. Let there bc given a graph G(U,V) with a set of vertices U and 

a set of weighted edges V. Each cadge V,j is assigned with T,./. It is required to find a set 

V" c V with maximum total weight such that no tv,'o edges from V* have common 

vertices. The problem may bc intcrprctcd on a weighted 0, l -matr ix B with elements 

bij - O, if cdgcs i and j have no common vertex (-ices), and hi~ = 1 otherwisc. This is 

quite similar to the maximum zero submatrix problem except that there are integer 

weights assigned to the matrix rows. This last condition may be considered as an 

additional restriction. For instance, let B take the form 

V ! 0 1 
i 

V 2 1 o 
....... 

o o 
. . . .  

V 4 0 1 
, ,  

. . . . . . . .  

v, v: v, c 

0 0 1 2 

0 1 1 
, | 

0 0 1 1 

0 0 0 2 
. . . . .  

1 0 0 1 
, , ,  

Then, transform matrix B by replacing row i with C, new rov,s identical with row i. 

Denote for every i thcsc new rows by V,. I , V, 2 . . . . .  V,.:. It is assumed, that for cveu  a and b 

BIa, b] = 0. Taking into account the abovc considcrations, we have a new matrix. 

V* Lemma.  If row V~,/ belongs to an optimal matching set then all the rows 

identical with V,j belong to V* also. 

The proof is self-evident. What we have now is already familiar to the reader. Thus, 

we have managed to eliminate an initial restriction on thc task domain and get an 

cquivalent problem. 



266 Chapter 3 

v,, v. 
Vii 0 , 0 1 1 1 0 

Vi2 0 0 1 1 1 0 

V21 1 1 0 0 0 
. . . . . . . .  

i 

i V2 z 1 1 0 0 0 
. . . . . . .  

V23 1 1 0 0 0 0 

0 0 0 0 0 0 

V41 0 0 1 1 1 0 
. . . . .  

V43 " 0 0 1 1 1 0 
. . . . . .  

V 5 1 1 1 1 1 1 

v. 
0 0 1 

0 0 1 
, ,, 

1 1 1 
, , ,  

1 1 1 

1 1 

0 0 

0 0 0 
. . . .  i . . . . . . . .  . , , ,  

0 0 0 
, 

0 0 

3.8. Principle of dominance and choice function 

The essence of a solving procedure may be interpreted in terms of choosing 

alternatives from the sets of solving operators. Let ~o(cr~ . . . . .  o~,,) be a choice function 

which is used for selecting some alternative(-s) o~ i from the set = I ,N}. The 

choice function q~ is viewed in connection with the criterion V, which is to be optimized 

by the selected subset ,~ of the alternatives. 

We shall say that an alternative o~ i dominates over the set 

A={czjlj = I,N} if o( i E 09(A). Tile set A on which (p(A) r ~ is said to be regular. 

O~ thc contra~,  if (p(A) is undcfincd ona givcn set A, then A is called nonrcgular  

Let us call a problem S (k) - homogeneous, if all subsets of set A ,with cardinal 

number k are regular. 

Denote by Isff)!-  the number of those subsets of the given set A with cardinal 

number k where q~ chooses o~ i . 

Let us suppose that A is nonregular and S (kl - homogeneous. The idea of finding the 

solution A optimizing the criterion V consists of the following: 



Weak methods and heuristic reasoning 267  

(i) to operate with the regular subsets of A which have cardinal number k; 

(ii) to define the values Is~k) [ for the alternatives; 

(iii) to use these values [S~k) I for selecting ,~ which will also be referred to as a 

probably-optimal-solution (p.o.s.). 

Denoting by K - the number of all possible solutions; 

by M(A ) - the number of all subsets of a set A which are better, in the sense of a 

criterion V, than subset ,~, introduce an aposterior estimation 

p~po~ = K - M ( A  ) 

K 

of a probability for the subset ,/~ to be an optimal solution. 

One can ~vritc an expression for the probability P, of including the alternative cr i in 

the optimal solution in the form: 

g t 

p~ _ K~ . ~_~pjp.o.~.,(i), 

K j=l 

where K i is the total number of valid solutions containing O(i; 

p!;o.~.) (i) is the probability of including Of i in the j-th p.o.s. J 

The formal explanation of the p.o.s may be done on the basis of the following 

inductive scheme. The idea is that of showing that including an object (alternative) in 

p.o.s keeps all relations (> / =) between ISil- degrees corresponding to the remaining 

alternatives. The selection of alternatives is performed in accordance ~ith the 

nondecreasing order of their [S,I-degrees. Choose alternativcs until there is only one 

alternative to bc selected from among remaining ones. For this last alternative the 

adequacy of its IS, I-degree and the corresponding probability P~, is c\'ident (as ii 

domi~atcs over the remaining alternalives and, consequently, has a lll~:tXillil.llll value of 

its IS~ I-degree and probability P, ). 



268 Chapter 3 

However, let us, suppose that this scheme breaks down the correspondence between 

the Is;I-degrees and the probabilities P,.. Then the last alternative has the maximum 

value of a ]s~l-degree but not the maximum value of probability Pi. This supposition, 

however, contradicts the definition of the Is/l-degrees. Let us now show that after 

choosing an alternative a z under the supposition that ISzl >_ Is~l >-lay[ for some 

alternatives az, a~, ay, the relation 

Is;l>_ Is yl 

for alternatives ax, ay will remain true (in a probabalistic sense). We shall use the 

following designations 

Is~ I(ISx I, lay I )- the number of the valid solutions where q~ has chosen trz (trx, try). 

k If a solving subset A has cardinali~ k, then assume K =Cia I to be the number of all 

possible solutions and 

ei _lsil 
K 

is a probability of choosing tri in solution. Since, ISz I> Is~l >-ISyt is supposed to be 

true, then, obviously, Pz >-- Px >-- Py. 

Let I I Is+>l be the number of sets, containing a' z where qa chooses tt x . Thus, 

ISx >I -Nz "Px 

where N z is the total number of sets, containing trz. 

Similarly, 

Is <z>l-uzP  . 

After including trz in the required solution, Is~l and Is, l become equal to 



Weak methods and heuristic reasoning 269 

Is;I =ls l ISx  l, 
I~;I---Iayl - [Sy,~>l. 
Further, we have 

ISx -Is~l-gzPx -(K-Nz)Px, 

I 'yl-IXyl- z y - 

Hence, one can see that ]S'xl >_ ]S'yl. Note, that if qo chooses a~ and ar t 

simultaneously ( a'y and tr z simultaneously) then 

KPx - NzPx >- KPy - NzP~ 

Consider two illustrations. 

Example 1. Let there be given a quadratic matrix [t o. ] with elements tij defining the 

expenses connected with executing job i on processor j. It is required to assign every job 

j to (only one) processor in such a way that every job is assigned to some processor and 

there are no processors executing the same job. The assignment should provide the 

minimum value of the total expenses. 

For matrix [ tij ] 

1 _2 3 _4 5 

1 

2 

4 

5 

2 3 

5 1 

4 "',~ 

5 i5 

2 4 

6 4 3 

3 8 7 

"6i 3 4 

5" 3 3 
. . .  

1 2 6 

we shall consider S-subsets representing submatrices of dimension 2*2 (one of them is 

designated with dotted line). It is obvious that the choice function is defined on every 

submatrix with dimensions 2*2 (it chooses a diagonal pair of elements with the 



270 Chapter 3 

minimum total sum). Considering all such submatrices, we can deduce for every 

element its Is,. ] -degree, representing the number of 2*2 submatrices where the choice 

function selects that element. Omitting unnecessary details, let us show the IS~ l-degrees 
of the matrix elements as encircled values in the corresponding cells: 

Is i I 
2 

i 

2 

5 

4 

S 

@ 

3 

@ 
1 

4 

5 

G ") 
. . . . . .  J 

6 

3 

6 
i 

6 

@ 
1 

4 

(9 
8 

3 

3 

@ 

@ 
3 

7 

@ 
4 

i 

@ 
3 

@ 
6 

Let us now take advantage of the IS/I-degrees with the help of the next solving 

scheme: Exclude elements tij with the minimum value of ISijl-degree in a step-by-step 

fashion. 

This scheme results in finding an optimal solution: {t~l, t22, t34, t45, t53 }. The reader 

may obtain the same result by using the well-known Hungarian-algorithm [56]. Note, 

that our scheme suggests a probably-optimal-solution which may be not optimal, but 

has a good chance of being optimal. 

Example 2. Let us consider the minimum-size cover problem With the following 

actual representation of a 0, l-matrix 



Weak methods and heuristic reasoning 271 

r 
f2 
f3 

M =  f4 

f5 
f6 
f7 

1 2 3 4 5 6  

0 0 1 0 0 1  

1 1 0 0 0 1  

0 1 1 0 1 0  

0 0 0 1 1 0  

0 0 1 1 0 1  

1 0 0 1 0 0  

1 0 0 0 1 0  

Using this matrix one can represent the initial covering problem as a boolean 

equation of the following form 

F --(~ ~ ~6 ~ ~ ) ~ ( ~  v ~ ) ~ ( ~  v ~ ,, ~ ) ~  (y4 ,, ~ ,, ~ ) ~  

&(A v A v,~)&(~ v ~ v f s ) -  1 

where it is required to find a solution providing the minimum of (fl + f2 + .-.+f7 ) (fi = 1, 

if row i is included in the solution, and fi =0, otherwise). Let us write down all the 

disjunctions from F, i.e. 

G , - ( f ~  f, v f~) 

O~ - ( .~vA  vA) 

G4 - ( f 4 v L v f 6 )  

~ - ( z ~ ~ A ) .  

Consider the domain A = {G~, G 2 . . . . .  G6}. Let the choice function be defined on the 

pairs < Gi, G j > as follows: 



272 Chapter 3 

if and only if 

f~ ~.G~&f~ ~.Gj 

. . .  (etc). 

~ ( G i , G j ) - 0 ,  otherwise. 

For instance, ~o(G,, G 2) = {fz } 

= o .  

We shall find the [Si[-degrees of the alternatives f ,  f2 ..... f7 by counting all the 

pairs < Gi , G j > ( x :~ y)where q~ chooses f.. 

Thus, we obtain the following values: 

]Sfl [ - l ; ]S f2  ! - 3;1Sf3 [ - 3;13f4 ] - 1 ;  

';lap I = ' .  

Let us delete the row with the minimum [Si[-degree, for example, fl, and then, 

having corrected the ]Si]-degrees, repeat this procedure again until one or more rows are 

deterministically included in the solution. This process results in the following p.s.o.: 

{ f2, f3, f6 } which in turn is one of the minimum-size covers. 

3.9. An example of mechanization of heuristics 

As was pointed out earlier, one needs to formalize a given heuristic(s) in ordcr to 

apply it to an actual problem. We have considered a number of problems, where such a 

formalization was human-made. It is quite natural to suppose that the mechanization of 

heuristics should require the creation of a special theory which we do not intend to 

develop here. Instead, we will address ourselves to the application of enhanced 

traditional methods. 



Weak methods and heuristic reasoning 273 

Obviously, the very notion of a heuristic is rather fuzzy, therefore, it is both context 

and human-depcndant. 

Heuristic, as we understand it, does not indicate real actions but merely defines their 

character, i.e. it is a condition-action frame. This frame may be represented by a 2- 

tuple: 

l l -  (C,A), 

where C is a condition frame; 

A is an action frame. 

It should be noted that FI merely distinguishes between a concrete condition "c" and 

a concrete action "a", i.e. for given "c" and "a" one may say that if "c" satisfies C then it 

may provoke any action "a", satisfying A. To be more precise, we shall associate C and 

A with vectors s = (sl, s2 . . . . .  s, ), where each component s i e {0, 1, *, 2 }. 

Let us now devise an interpretation for s. If si = 0 in C then it is interpreted as 

"absent" for some condition (-s); if si = 1 then a corresponding condition is considered 

to take place; if si = * in C then it is not important in respect to the given heuristic P; if 

s, = 2 then the real value of s,. is undefined. By analogy, for the action frame A, we 

establish the following interpretation: if s i - 0(1), then applying any action satisfying C 

results in setting the component s,. of state-vector s to 0(1); if s i = *, then no action 

satisfying C may change the current value of s; in s and, finally, if s, - 2 then the 

resulting value of si may be either 0 or 1. 

Let us give an explanatory example. Consider the following heuristic 

r I = ( C - ( 0 1  * * ) ; A  - ( 2 1 0  *)).  

According to the given specification of C, one may conclude that in order to apply 

any action "a" satisfying A il is necessary that, in the state-vector s - ( s ] , s z , s 3 , s 4 )  

standing for C, s i should be equal to () and s 2 should be equal to 1. The values of s 3 

and s 4 can be arbitrary. 

The action flame A in the above example may be extended to the set of real actions 

satisfying A, i.e. to the following set: 



274 Chapter 3 

10"  . 

Note that component s4 in both vectors is equal to "*" as they cannot change it by 

definition. Suppose now that the current state-vector s is <0110>. It is easy to see that 

our heuristic FI is valid in s as a condition combination in C covers this individual 

vector. It is, therefore, clear that applying the general action A will result in a new 

state-vector of the form <2100>. For another current state-vector <0212> we obtain the 

new state-vector in the form <2102> ,etc. 

Suppose now that the current state-vector is <2102> and it was directly obtained by 

applying the heuristic above. Then one may deduce that the previous state-vector was 

<0122>. Comparing this result with that obtained above, one may see some discrepancy 

in the specification of the same vector from which vector-state <2102> has been 

obtained. 

Thus, our goal is to employ a traditional A* - based approach in order to remain 

within the boundaries of a given problem specification ( i.e. < S~ f ,  {Flz } > ). More 

precisely, we are going to introduce some new techniques based on a traditional 

ideology of heuristic evaluation function utilization. As the reader can note from our 

particular heurictic specification, the problem of the mechanization of heuristics is 

reduced to a partly defined problem. 

Consider a state-tree T of a given problem with the set of nodes S standing for 

corresponding state-vectors ,~ . Let us denote the nodes as a,b . . . .  or S a ,S b . . . . .  For a 

given node "a" we have a A* -based heuristic evaluation function f(a) of the form 

f(a) = g(a) + h(a), 

where h(a) evaluates the length of an optimal path in T connecting "a" to the final 

state S / Let us answer the question "does "a" really belong to the optimal path pop, 

connecting S O (initial state) to S f ?". Suppose, that the function h is defined exactly. 

Then it is clear that if node "a" belongs to popt and node "b" is a direct successor of 

node "a" then "b" belongs to popt if and only if 



Weak methods and heuristic reasoning 275 

h(b) : h(a)- 1. 

This simply means that from node "b" one needs to open subsequently as many 
(i 

nodcs as frown node "a" subtracted less one. Denoting b3 h (i) .the value of the fu~ction 

h for thc number i of opened nodcs, an ideal graphic of h may bc rcprescntcd as 

shown in Fig. 3.31. 

o / 

h 

\ o  
o \ 

i \ o 

0 1 2 ... n*  

n* is an optimal path length 

Fig .3 .31  

0 

Evidently, h(0)= n * As the real value of h(x) is unknown one should use an 

estimate s instead of h(x). This leads to an "arbitrary" disposition of points around 

the "ideal line" (in Fig. 3.31 these points arc denoted by circles). It is clear that for any 

path in T, emanating from S ~ the corresponding set of points may be obtaincd on the 

basis of s For example, in Fig. 3.32 two different sets of points are shown for the 

imaginary paths P1 and P2. 

h . 1 ~  ideal line for P l 

I \ 
I ~ ~ POinotSOfPl 

, i 

~ o f  P2 ideal line tbr P2 

Fig  3 . 3 2  



276 Chapter 3 

The following observation is essential for further considerations, namely: "in the 

supposition that the given set of points corresponds to an optimal path popt .there is the 

only "ideal line" approximating this set of points". To obtain this "ideal line", consider 

a set of points represented by the pairs 

( x , , Y , ) , ( x 2 , Y 2 ) , . . . , ( x , , Y , ) .  

An approximating line of the form 

y = a x + b  

may be found on the basis of well-known criterion 

~ ( y , - ( a x , + b ) )  2 --) min 
i=! 

In our notation we have 

0 

h (i) = a �9 i + b, 

o 

which for i = 0 and h(0) = 0 gives a = - 1 .  Actually, 

o 

h(O) - b - nop, 

0 �9 b 

h ( i )  - 0 ---) nop , = 
- a  

So, we have 

)' 
h( i )  - ( - i  + b)  ---) min.  

i=0 

By setting 

0 

~h( i )  

o~b 
- 0 one may obtain 



Weak methods and heuristic reasoning 277 

h ( i ) + i - b  - 0 ,  
i - - 0  

which in turn gives 

( h ( i ) + i )  - ( n  
i = 0  ' 

=0, 

~ 0 (n  + l )n  
h(i) + = (1 + n)b, 

i=o 2 

]~ 0 (n + l )n  
h(i) + 

2 
and b = ,=o 

n + l  

~ 0  17 
1 h ( i )  + . 

n + l  ,-0 2 

Replacing i by g(i) we may obtain another equation for b in the form 

(,+l)b- f(x), 
x ~  Path 

where "Path" represents a path in T with length n which starts in S ~ and traverses 

(n+ 1) nodes. 

These formulae enable one to find an estimate for ?lop t a s  it was shown earlier that 

f ~176 h o p  t = b provided the path P, with a set of values n p - ho,h ! . . . . . .  is an optimal 

one. It is essential that the result we obtained is connected to the "history" of the 

searching process represented by the sequence H p on the one hand, and is not restricted 

by A* - based supposition that h(x) >_ [~(x) where h(x) is an estimate of h(x),  on the 

other. The only essential restriction is in the requirement for H p to be a correlated 

sequence which primarly depends on the accuracy of the estimation function/~(x). 



278 Chapter 3 

Considcr again Fig 3.32. Suppose that one has the statistics for a given 

(0 0 / 
Path(io, i l , i  2 . . . . .  in) represented by a sample h(io) . . . . .  h ( i , )  . These statistics cnable 

0 
one to use the equation for "b" to find a prognosticated value of h(in§ t ). It is a well- 

0 
known fact that the "real" value of h(in§ ] ) falls in the interval h(in§ l ) + 3or (wherc O"is 

~ ,  and D is a deviation of a given sample) with probability 0,997. To take an 

advantage from the fact suppose that every next opened node provides the maximal 

decrease of real value h(in+ ~ ) in comparison with the prognosticated one. It means, that 

0 

h(in+ k) = h(in+ k ) +  O~m~, where O~'max)0, OYma x = 30". From this suppositibn one can 

derive the following important result. As it was found 

1 ,g., 0 n 
b. - �9 ~ h ( i ) + - .  

n + l  ;=o 2 

0 1 n 
Hence, h,+t = h,,+~- Ofma x - -  - - r /  - -  1 + ~ .  S, + - - O~'max, 

n + l  2 

where 5', - h( i ) .  
i=0 

'lI  i n  1/n+, n + 2  5', + - n  I + ~ S ~  + O~'ma x " t - ~  
n + l  2 2 

Thus, we obtain (omitting details) 

Ab,,,,,+ l = b , , -  b,,+i = 
O~m& x 

n + 2  

To proceed, let us note that Ab defines the maximal shift of the regression line 

provided new value of 



Weak methods and heuristic reasoning 279 

hn+ 1 ~ hn+l ~ O(ma x 

exists (see illustration in Fig 3:33). 

If, starting from the curren! point i,,, every next point i,,+1,i,,+2 .... will be declined 

from a regression line as much as a value of Crma x, then minimal value K which 

provides inequality 

o 
7~ h,7~ 

bn 

bn-k- 

' •  o ~"point of a sample 
. .  ~ ofagivenpath 

" ~ " ~ ~ - -  old regression line 

~ w  regression line 
A bn,n+l \ \,\. ~ n 

":'~.-,. " ~  predicted value 

h(in) "-... ".. ~ of h(n+ 1) 

i l l  

n n+l 

Fig3.33 

O~mnx ~max 1 , ~  0 t7 O~'max Jr" 4"'" + >-- " Z_, h ( i ) - - ~ _ ,  
( n + l ) + l  ( n + l ) + 2  ( n + l ) + k - I  n + l  ;-0 

defines a lower bound on the number of the nodes to be opened before reaching the 

final state-node S y from i,,. It may bc derived from the above that 

1 1 1 / 
O'ma x 1 + ~ + - ~ + . . . + ~  > b , - n .  

n + 2  n + 3  n + k  

Using an approximate equation 

1 1 1 k - 1  k - 1  
~ + ~ + . . . - F ~  = 
n + 2  n + 3  n + k  n + 2  n + 2  

k - 2  
. . . .  F 
n + 3  n + k  

2 



280 Chapter 3 

and omitting all intermediate calculations one may obtain the following result: 

k 2. [2(n  + 3) - 1] + k .  [2(n  + 3 ) (n  - I) + 4 - 2 .  C]  - 2n(n + 3) - 2 C . n  - 4 > 

where C = (b, -- n)(n  + 2)(n  + 3 ) .  

a'ma x 

Thus, for O~m, x = 2, b, = 20,n = 10 we obtain k = 7. All that remains is to integrate 

the results obtained. 

Let there be found the values of npath,bnpat h, gpalh(npath,bnpath,Olmax) for a given path 

in a state tree T. It is obvious that the minimum possible path length is 

L mJ~_ + K ( bnpa, h O~ma x ). path rl path path J~ path ' ' 

Following Nilsson [5 ], formulate this result with the following theorem. 

Theorem. A heuristic evaluation function f ( x ) =  g(x)+ h(x) with arbitrary 

function h(x) ,may be replaced by the function f*(x)  = g(x) + K(x, bx,c~m~),, 

E0 0 ; 0 
provided that h(x)~ h(x)-~m.~,h(x)+ C~m~ , where h(x )  is an exact value of a 

minimum cost path from vertex x to the final node. 

[0 0 ] 
Proof. If the condition h(x) ~ h(x)-O~m~;h(x)+ C~m. ~ is true, then it follows that 

0 
K(x,O~m~)<_h(x). According to Nilsson [5 ] ,4" , with heuristic function 

f*(x)  = g(x)+ K(x, bx,~m~), always stops at the final node with the minimum cost. 

solution path found. 

3.10. Conclusion 

We summarize this section as follows. In order to improve the strategies based on 

heuristic evaluation function f = g + h,the following concepts can be realized: 



Weak methods and heuristic reasoning 281 

(1) using a probabalistic evaluation function as in 3.9 to relax the restriction on the 

monotonicity of the function h: 

(2) estimating the values of the function h by means of some heuristic procedure as 

in 3.7.1; 

(3) cutting the parts of a search tree as was proposed in 3.4.3,3.7.2,3.8; 

(4) evaluating the function h starting from the lower levels of a search tree ( 3.7.4): 

(5) using heuristic principles to produce weak methods (3.6, 3.7). 



This Page Intentionally Left Blank



283 

Chapter 4 

LOGIC-BASED PROBLEM 
NEW METHODS 

SOL VERS: APPROACHES AND 

4. 1. Introduction 

In this chapter we give an outline of logic-based problem solvers and new theoretical 

methods of logical inference which possess a number of positive features. The reader 

should bear in mind that there are three main directions of logic utilization in CAPSS: 

- as a problem solving technology providing theoretical basis of so-called logic-based 

problem solvers incorporated in CAPSS; 

- as an intelligent controller which is used to test the correctness of task 

transformation steps consisting of equation generating and modification, making 

substitutions, inferences, etc.; 

- as an intelligent oracle representing a subsystem of CAPSS , specializing in 

human-machine hypotheses making and treatment. 

The second and the third points are discussed in the next chapter.This chapter deals 

with the first point in the above list and is organized in two parts: 

the first one represents a depiction of logical problem solvers and the second one 

contains an outline of two new logical inference methods based on the cut principle. 



284 Chapter 4 

4.2. Logical problem solvers 

One of the interesting paradigms of solving technologies is that one connected to 

logical inference. This paradigm is based on proving a so-called theorem of solution 

existence: 

V x 3 y ~p(x, y)  

which asserts that y is the ouput of a problem (p with x as its input. 

Many works have been devoted to using the proving technique with the aim of 

solving problems with clearly stated solution existence theorem [1,2]. However, it is not 

always possible to state a solution existence theorem in a practically acceptable way. For 

example, in dynamic models, where applied operations directly lead to the alteration 

of a static model representation. Another area of interests is that one which uses logical 

means to specify a problem and a solution procedure. We will subsequently consider 

these aspects. 

Let us start with dynamic models which are widely used in robotics and scheduling 

systems. In these applications the solution existence theorem gets a new interpretation. 

Consider an illustration of a planning problem q~(x,y) where y identifies some unknown 

planning sequence (which is to be found) and x denotes a pair < X ~ ,X fin > in which X ~ 

(X fin ) stands for the initial (final) state of the system so that y provides mapping 

y 
xo ~ xnn. 

This planning problem is rather typical for logic-based solution systems [ 5,48 ]. 

Let a final state X fin be associated with the goal G o and initial state X ~ be associated 

with a current world model M o. First, one should try to derive G o from M o, i.e. to prove 

M o F- G o. 

It is done by classical derivation of a contradiction (E3) from { M o u G O }. If so, then 

a problem is trivially resolved. Otherwise, a number of disjuncts are to be defined which 



Logic-based problem solvers: approaches and new methods 285 

make it possible to derive an empty disjunct from { M o U G o }. Let us denote these new 

disjuncts by D o. Then, they should satisfy the following condition: 

{ M o u G  o u Do } ~-5. 

Further, suitable operators are looked for which introduce these disjuncts D o into the 

world model if being applied to M o. Clearly, all these operators should be valid in M o. 

that is, their pre-conditions should not contradict M o. Each operator is represented as a 

3-tuple 

Oi =<(P) pre-conditions; 

(LD) list of conditions deleted; 

(LA) list of conditions added>. 

In order to apply Oi to M 0 it is needed that 

M 0 ~ P .  

The application of operator Oi leads to deleting the conditions from LD and 

adding new conditions defined in LA. Formula P becomes a new goal for the planning 

system and all the steps relevant to G o are performed for this new goal. Suppose. it is 

proved that 

Mo ~- P. 

Then operator Oi is applied to M 0 which leads to a new model M 1 obtained from M o 

by deleting predicates from LD and adding predicates from LA. The procedure 

continues by analogy with the aim to prove M o ~- G O . 

Consider an example. Let a world model consists of a monkey (M), a box (B) and a 

banana (BN). Let the model comprise the following predicates: 

ATR(x) - the monkey is in the point x: 

AT(BOX,y) - the box is in the point y; 

H B  - the monkey does not possess the banana. 

Let 



286 Chapter 4 

M o ={ATR(a),AT(BOX,b), HB }, 

G O -HB. 

Define the following operators: 

1. fl (m) - climb the box at point m; 

P: ATR(m)&AT(BOX, m); 

LD: ATR(m); 

LA: ATR(BOX). 

2. f2(m,n) - go to point n from point m; 

P: ATR(m); 

LD: ATR(m); 

LA: ATR(n). 

3. f3(m,n) - pull the box from m to n; 

P: ATR(m)&AT(BOX, m); 

LD: ATR(m),AT(BOX, m); 

LA: ATR(n),AT(BOX, n). 

4. f4 - grasp banana; 

P: ATR(BOX), AT(BOX,c); 

LD:HB ; 

LA: HB. 

The solution procedure consists of the following steps. 

Since not( M o ~- G O ) is true, find D O = HB. Select operator f4 because HB e LA(f4). 

Form a new goal: 

ATR(BOX)&AT(BOX,c)& HB 

and two new subgoals: 

ATR(BOX) and AT(BOX,c). 



Logic-based problem solvers: approaches and new methods 287 

Now we have 

not(M o ~ ATR(BOX)), 

not(M o ~- AT(BOX,c)). 

Consider the first subgoal: ATR(BOX). Select operator f l(m) because 

ATR(BOX) e LA(fl). A new goal becomes the same as a pre-condition of the operator 

fl,  i.e. 

ATR(m)&AT(BOX, m). 

It follows then that 

not( M 0 ={ATR(a),AT(BOX,b), H B  } w ATR(m)&AT(BOX, m)) 

since m should be equal to a and b simultaneously. Thus we obtain the sets 

D' = { ATR(b), AT(BOX,b) } or 

D" = { ATR(a), AT(BOX,a) }. 

Deleting redundant predicates, we obtain: 

(a) D '= { ATR(b) } 

(b) D ''= { AT(box,a) }. 

Choose variant (b) and select operator f3(m,a) with a pre-condition: 

G 3 =ATR(m)&AT(BOX,m). 

It is the same as at the previous step. Thus, to avoid repetition, choose a new subgoal 

ATR(b) and find the next suitable operator f2(m,b) with a pre-condition ATR(m). This 

time we have 

M 0 ~- ATR(m) 

for m = a. 

Thus, one can apply operator f2(a, b) to M o and 

M 1 = {ATR(b), AT(BOX,b), H B  }. Apply t3 to M 1 and obtain: 

obtain a new model 

M 2 = {ATR(BOX),AT(BOX,a), H B  }. 



288 Chapter 4 

For operator fl one should provide true value of predicate AT(BOX, c). This 

predicate becomes a new goal and the procedure continues by analogy. We, however, 

omit all the corresponding details since this is a rather elementary example and makes 

no difficulties for the reader. 

Now shift accent to the logical specification of the solving procedures which is 

somewhat a different way of applying logic to problem solving. 

We shall deal with a scheduling problem here. First, let us specify the predicates 

relevant to scheduling problems. 

ASG(Process,Time,Processor) 

/Process is to be assigned to Processor at the moment Time/. 

Dur(Process, Starttime,Finishtime) 

/Process starts execution at the moment Starttime and finishes at the moment 

Finishtime/. 

Wrt(Process,Worktime) 

/Process "Process" has an execution time Worktime/. 

ActProc(ListofProcesors,T) 

/A list of processors which are ready to execute processes at the moment T/. 

FreePr(Processor, Time) 

/Processor "Processor" becomes free at the moment Time/. 

Systemclock(Time) 

/A system timer initially equal to 0/. 

List(Listofprocesses) 

/ A list of processes ready to be executed at the moment T/. 

Precedence(Processl, Process2) 

/ Process 2 cannot be executed before Processl ends/. 



Logic-based problem solvers: approaches and new methods 289 

We are interested in a scheduling policy which minimizes the total execution time of 

a given set of processes. Define logic of a scheduler by the specification of its 

components. We use the Prolog notation for the desired specification. 

The following fragment is used to determine a list of processes which can be 

executed at the moment T: 

findreadylist:-: 

unpreceded(X), 

list(Readylist), 

not(member(X,Readylist)), 

include(X,Readylist,ReadylistNew), 

retract(list(_)), 

assert(list(ReadylistNew)), 

fail. 

findreadylist. 

unpreceded(X):- 

precedence(_,X), !,fail. 

unpreceded(_). 

member(_, []):-!,fail. 

member(X,[Xl_)]:-!. 

member(X, L[, Y] ):" !, member(X,Y). 

include(X,T, [XIT]). 

The list of ready processes is stored in the database predicate "list(Readylist)". The 

sense of the other predicates ("member","unpreceded") is clear from the above given 

clauses. 

When the execution of the process is over some other process or processes could 

possibly become ready for the execution, i.e. the database predicate list(Readylist) 

should be updated. This is performed by the following fragment: 



290 Chapter 4 

refreshing:- 

systemclock(T), 

completed(X,T 1), 

TI<=T, 

retractall(precedence(X,_)), 

retract(copmpleted(X,_)), 

fail. 

refreshing. 

Here, the database predicate "completed" is used to keep the completion time of the 

corresponding process. 

The following fragment is used in order to choose a process from a list of ready 

processes and to assign it to a vacant processor. The vacant processors form a list 

ActProc. 

update:- 

retractall(actproc(_,_)), 

systemclock(T), 

assert(actproc([],T)), 

freepr(Pr,T 1), 

TI<= T, 

actproc(X,_), 

retractall(actproc(_,_)), 

include(Pr, X,Xnew), 

assert(actproc(Xnew,T)), 

fail. 

update. 

If the list of vacant processors in actproc is empty then the system clock should be 

modified by a predicate "changesystemclock" defined below: 



Logic-based problem solvers: approaches and new methods 291 

changesystemclock:- 

retract(systemclock(_)), 

freepr(_,T), !, 

assert(systemclock(T)), 

freep r(_, T 1 ), 

systemclock(T2), 

TI<T2, 

retract(systemclock(_)), 

assert(systemclock(T 1)), 

fail. 

It is seen from the above fragment that the system clock becomes equal to T where 

T= min free(Pr,T). 

If a list of ready processes is not empty then the processes are assigned to vacant 

processors. 

assignment:- 

list([XlTail]), 

actproc(IZlRl,T 1 ), 

TI<=T, 

assert(asg(X,T,Z)), 

retractall (list(_)), 

retractall(actproc(_,_)), 

assert(list(Tail)), 

assert(asg(R,T 1 )), 

retractall(freepr(Z,_)), 

wrt(X, WTime), 

Tfin=T+WTime, 

assert(freepr(Z,Tfin)), 

retractall(completed(X,_)), 



292 Chapter 4 

assert(completed(X, Tfin)), 

fail. 

assignment. 

Now a control algorithm of our program may be represented as follows. 

control:- 

retractall (list(_)), 

assert(list([])), 

assert(actproc([1,2 .... ,N],0)), 

assert(freepr(1,0)), 

assert(freepr(2,0)), 

assert(freepr(N,0)), 

repeat, 

findreadylist, 

assignment, 

changesystemclock, 

refreshing, 

update, 

not(precedence(_,_)),!. 

The main aspect of our logic-based scheduler is connected to the question "how to 

implement different scheduling strategies in the main model?" Obviously, a mechanism 

of the specification of a scheduling policy is required together with an interpreter 

which translates such a specification into a logic program. 

To simplify our considerations we will suppose that each scheduling strategy 

assignes priorities to processes in such an order that the processes with the highest 

priority levels are assigned to the vacant processors first. Consider, for example, the 

following scheduling policy: 

"Processes with the largest processing time are assigned to the vacant processors 

first". 



Logic-based problem solvers: approaches and new methods 293 

This policy can be interpreted as below: 

preferrable(A,B) :- 

wrt(A, TA), 

wrt03,TB), 

TA>=TB. 

A more complicated variant which uses levels of processes corresponding to the 

nodes in a precedence graph may be represented as follows: 

preferrable(A,B) :- 

level(A, Ta), 

level(B,Tb), 

Ta>=Tb. 

level(X, Tx):- 

not(precedence(X,_)), 

wrt(X, Tx). 

level(X,0):- 

retractall(workcell(_)), 

assert(workcell(0)), 

precedence(X,Y), 

workcell(Z), 

level(Y,T), 

T>=Z, 

retractall(workcell(_)), 

assert(workcell(T)), 

fail. 

level(X,T):- 

wrt(X, Tx), 

workcell(R), 

T=Tx+R. 



294 Chapter 4 

Thus, the main task may be formulated in terms of finding a suitable specification 

language (SL) and creating a compiler from SL to Prolog. 

Clearly, some kind of a mathematical language can be used as SL. For example, we 

could formalize the level definition as follows: 

if not(precedence(X,_)) then wrt(X,Tx), 

level of x = Tx 

else 

level_of_x = maximum level_of_y + Tx 

where y e {ZI precedence(X, Z)}. 

In what follows we describe one variant of SL (all necessary details may be found in 

chapter 5 where a hierarchy of languages used in CAPSS is considered). We use 

designation f(...) for a function and {P} for a set P. An asterrisk right before a symbol, 

e.g. *X, identifies a term which is defined as an output of the corresponding 

specification. 

f(*xl,x2) - xl is defined through x2 in f(.); 

*f(xl,x2) - the value of function f is calculated; 

*f(xl,x2)=T - the value of function f is set equal to term T; 

{predicate(x,*z) } - a set of all z such that predicate(x,z) is true; 

{f(*x)=T} - a set of all x such that f(x)=T; 

max {f(*x)=T} - maximum element in the set defined previously; 

min {f(*x)=T} - see above; 

,for set P: 

*P={al,a2 ..... an} is setP initialization; 

*ye P y is an element of P; 

{*fun({predicate(x,*y)})} - a set of values of function "fun" defined on arguments y 

from set {predicate(x,*y)}. 

In this simplified language our definition of levels may be rewritten in the following 

way: 



Logic-based problem solvers: approaches and new methods 295 

if not(precedence(x,_)) then 

*level(x) = wrt(x,Tx) 

else 

*level(x) = max {*level({precedence(x,*y) }) } + wrt(x,*Tx). 

Elements of SL can be realized by the following Prolog fragments: 

(i) *f(xl,x2)=T 

assert(function(fix I ,x2 ), T)). 

(ii) {predicate(x,*z)} 

initialization(_) :- 

retractall (predi catelist(_)), 

fail. 

initialization(X):- 

predicate(X,Z), 

predicatelist(R), 

not(member(Z,R)), 

include(Z,R,R 1), 

retractall (predicate list(_)), 

assert(predicatelist(R 1)), 

fail. 

initialization(_). 

As a result, a set predicatelist(Z) is obtained corresponding to 

{predicate(X,*Z) }. 

(iii) {f(*x)}=T} 

Since the condition f(x)=T is not a pure logic expression it refers to an algebraic 

equation solution procedure. 

(iv) max {P} where P is a set further designated as Plist. 



296 Chapter 4 

choice(X):- 

Plist([RIZ]), 

select(R,Z,X). 

select (R, [],R). 

select(R,[YIT],X):- 

Y>R,!, 

select(Y,T,X). 

select(R,[_lZl,X):- 

selectfR, Z,X). 

A special part of the interpreter deals with alternative and recursive definitions. 

Consider the following typical example. 

*f(0)=T0 

*f(X)= *f(*g(X-1)) 

This may be translated into the following code: 

functiondefinition(f(X),Z):- 

assert(function(f(0),T0)), 

define(function(f(X),Z)), 

retractall(function(__,_)). 

define(function(f(0),Z):- function(f(0),Z). 

define(function(f(X),Z)):- 

function(g(X- 1),G), 

1 

define(function(f(G),Z)). 

We have used meta-predicates such as 

define(function(_,_)) 



Logic-based problem solvers: approaches and new methods 297 

which are beyond current Prolog language versions possibilities. It was done 

intentionally in order to avoid a lot of unnecessary details. Thus, in this section we have 

demonstrated the idea of using logic language (for example, Prolog) to specify solution 

procedures or their essential parts. A specification language is needed either to specify a 

problem in a formal way or to specify the rules and heuristics which are used in the 

solution procedure. It is clear that in this approach logic is used in a way different from 

its usage as a proving mechanism for a clearly stated solution existence theorem. Thus, 

realizing a specification language consists of the extension of knowledge processing 

languages and Prolog itself. Loglisp and Qute are worth to be mentioned. Qute is an 

amalgation of Prolog and Lisp with additional possibilities such as mechanism similar 

to Hilbert's e -symbol. For example, 

Epsilon(X;member(X,l[apple,orange])) 

finds a value of X which makes predicate "memeber" with the definition 

member(X, lXl_]). 

member(X,l_lZl):- 

member(X,Z). 

true. 

It is expected that a "mixing" Prolog and Lisp is especially fruitful for problem 

specification aims. 

4.3. Group resolution principle in predicate calculus 

4.3.1 Case o f  propositional system 

Let us start from propositional calculus. First, let us show how to reduce 

DECIDABILITY PROBLEM (denoted as DEC for short) to MINIMUM-SIZE COVER 

PROBLEM (MSCP). Let the following system of disjuncts be given 

m 

D 1 = x 1 x / x  2 v x 3 w x 4 

D2=X-1V X 4 



298 Chapter 4 

D3=X1VX2 VX 4 

D4=Xl VX2 VX 3 

D5=X 1VX 3 VX4. ' X i ~ {0,1}. 

For this system we build a covering matrix shown in Fig.4.1. 

Columns D l*,...,DS* of this matrix are obtained from disjuncts D 1 .... ,D5 respectively 

in the following way: " "l" is placed in row x i ( x  i )  and column Dj* if and only if x i 

(~.) belongs to Dj. Additional columns A1, A2, A3, A4 correspond to tautologies x i v 

~ . ,  i=1,4. 

We assert that MSCP defined on the coveting matrix is equivalent to DEC-problem 

in the following sense: the given DEC-problem is resolved in a valid interpretation I if 

and only if the corresponding MSCP possesses a minimum-size cover with n rows, 

where n stands for a number of variables (x i ) in DEC-problem. Instead of a full proof 

we give only a sketch. 

DI* D2* D3* D4* D5* A1 A2 A3 A4 

Xl 1 0 1 0 1 1 0 0 0 

X2 1 0 0 0 0 0 1 0 0 

X3 0 0 0 0 1 0 0 1 0 

X4 1 1 0 0 1 0 0 0 1 

Xl 0 1 0 1 0 1 0 0 0 

X2 0 0 1 1 0 0 1 0 0 

R 

X3 1 0 0 1 0 0 0 1 0 

X4 0 0 1 0 0 0 0 0 1 

Fig. 4.1. 

First, a minimum-size cover for covering the matrix contains at least n rows due to 

additional columns Aj. Clearly, if DEC is satisfied with the interpretation I then I 



Logic-based problem solvers." approaches and new methods 299 

should contain exactly n letters (other~'ise, I would be contradictory). By the sense of 

this interpretation I, it should have at minimum one common letter with each disjunct 

Dj (because Dj is true in I). From this,one can directly conclude that I represents a 

minimum-size cover for the covering matrix.The following theorem directly refers to 

theorem 1.3 and corollary 2 from section 1.5. 

Theorem 4.1. Let column-resolvent 13 be produced on the basis of colunm-disjuncts 

])~,...,D,z. Then disjunct 13 can be derived from disjuncts Dil ..... Diz in 

propositional calculus. 

Proof  If 7t is not a minimum cover for a covering matrix corresponding to a given 

set of disjuncts then each minimum-size cover for this covering matrix covers [5. Since 

a minimum-size cover corresponds to a solution of the DEC-problem then each feasible 

solution of DEC satisfies fr In other words, 15 represents a logical consequence of the 

dis iuncts of DEC. These considerations remain valid with regard to the disjuncts 

forming a submatrix D of the covering matrix with colunns Dil ..... Diz. Because rt is not 

a minimum cover for D by supposition it follows that 

~- D, 1 ..... Diz --+~. 

According to well-known Deduction theorem [7, 9] one can obtain thai 

Thus+ theorem 4.1 establishes a link between MSCP and DEC. To generalize this 

link to first order logic is our nearest task. From now on we shall call the principle of 

generation of a column-resolvent 13 on the basis of disjuncts D,t ..... D,z -group 

resolution principle (g.r.p.). Note, that it is sufficient to use exactly (n+ 1) characteristic 

column-disjuncts to produce a group resolvent for a given non-redundant cover rt of a 

covering matrix. 



300 Chapter 4 

4.3.2 Generalization of  g.r.p, to predicate calculus 

It is possible to identify a general formulation of g.r.p, applicable to predicate 

calculus. This formulation requires the following: 

�9 A set J of column-disjuncts, participating in group resolution, should be 

unifiable; 

�9 It is sufficient to use only (n+l) column-disjuncts when producing column- 

resolvent; 

�9 An empty column-resolvent always testifies to a contradictory system of disjuncts. 

Let us start with the following example: 

C1 = P(a) 

C2 = D(y) v L(a,y) 

C3=P(x) v Q(y) v L(x, y) 

C4 = D(b) 

C5 :  Q(b). 

A covering matrix is shown in Fig.4.2. 

P 1 

c~ c4 c; c~ 

D 1 1 

L 1 

Q 

P 1 

L 1 

Q 1 

Fig. 4.2. 



Logic-based problem solvers: approaches and new methods 301 

In this example n=4 (there are four different literals: P,D,Q,L). Let us choose five 

columns: CI*,  C2", ..., C5" and find their column-resolvent: A=Q. 

Note that all the disjuncts C 1 .... ,C5 are unifiable. Hence it follows that the system of 

disjuncts { C1,...,C5} is contradictory. It should be noted here that g.r.p, enables one to 

generate a resolvent of a group of n >__ 2 disjuncts at a time. Therefore, g.r.p, may be 

regarded as a generalization of Robinson's resolution principle. Consider one more 

example. Let 

(1) DI-- E(x)  v V(x) v S(x,f(x)) 

(2) D 2 = E ( x )  v V(x) v C(f(x)) 

(3) D3 = P(a) (4.2) 

(4) D4 = E(a) 

(5) D 5 = S ( a , y )  v P(y) 

(6) D 6 = P ( x ) v  V ( x )  

(7) D 7 = P ( x )  v C ( x ) .  

A covering matrix for these disjuncts is shown in Fig.4.3 

E 1 1 

E 1 1 1 

V 1 1 1 1 1 

v 1 1 

S 

S 

1 1 

1 1 

P 1 1 1 

P 1 1 1 1 

C 1 1 

[ I  ~ ~ ~ ~ ~ ~ l [ l l l l / l /  

Fig.4.3 



302 Chapter 4 

Let us formulate a theorem which establishes a principle (not a method) of logical 

inference on the basis of g.r.p. 

Theorem 4.2. Let 7t be unredundant cover for a covering matrix corresponding to a 

given system S of disjuncts. Then: 

(i). ff 7t contains exactly n literals (n is the number of different predicate symbols in 

S ) then S has a model, that is S is not a contradictory system. 

(ii). If rt contains more than n literals then let us select exactly (n+l) column- 

disjuncts: j 1 .... ,Jn+l unifiable on the basis of a unificator | find column-resolvent A 

in the same way as in propositional calculus. Then the disjunct, obtained by application 

of | to A (denoted as A | or AO), represents logical consequence of disjuncts j 1,...,Jn+ 1. 

(iii). If A = • then S is contradictory (if A ,  Q then A O should be added to S in 

order to provide the following iteration(-s) of g.r.p, on the extended covering matrix). 

Evidently, the unifiability of disjuncts J l .... ,Jn+l directly follows from Herbrand's 

theorem [7,9]. This requirement, however, may be sometimes unrealizable. Therefore, 

we should give necessary details showing how to apply g.r.p, in these cases. Return to 

the previous example. 

For the matrix in Fig.4.3 we select six column-disjuncts: D2*, D4*, D7*, D9*, 

D10*, D l l*  and find their resolvent A13*. Since non-tautological disjuncts D2, D4, D7 

are unifiable we obtain a representation of A13 in the form 

A13 = V(a) vP(f(a)) 

(on the basis of substitution x=a). Note that here and further only non-tautological 

disjuncts must be unified. Now select column-disjuncts DI* D4*, D5*, D9*, D12* 

and A13* and find their resolvent A14*. Finally, column-disjuncts D3* D6*, A14* 

D8*, D 10", D 12" produce an empty resolvent and are unified bv. substitution x=a. From 

this one can conclude that initial system (4.2) is contradictory. 

Let us prove point (ii) of theorem 4.2. According to conditions, stated in this point, 

there exists a substitution | which unifies column-disjuncts J l,...,Jn+l. Therefore, 



Logic-based problem solvers: approaches and new methods 303 

J l .... ,Jn+l are some ground examples of disjuncts D~,  ...,/-)~n+l) to which theorems 

4.1, 4.2 become applicable. It is clear that a column-resolvent represents a logical 

entailment from disjuncts D~ , . . . ,  D ~ + I  ). 

Now consider a variant in which selected column-disjuncts are non-unifiable. For 

instance, consider the following system: 

D 1 = P(f(x)) v R(a,y)  v Q(y) 

D2 = R(a,b) vP(z )  vR(c,  z) 

D3 = P(v) 

D4 = Q ( c ) v  Q ( b )  v R(c,d)  

D5 = Q ( w ) .  

(4.3) 

Select four disjuncts (as earlier, the number of disjuncts selected must be equal to n+ 1 

where n is the number of different predicate symbols): D I ..... D4. Consider the 

substitution: 

| {y=b,z=v=ffx) } 

which gives 

D 10 = P(f(x)) v R(a,b)  v Q(b) 

D2 | = R ( a ,  b) v P ( f ( x ) )  v R(c ,  f ( x ) )  

D30 = P ( f ( x ) )  

D40 = e ( c ) v  Q ( b )  v R(c,d). 

(4.3') 

Let us make the following assumption ( q~ ): 

Q(c) is false 

R(c,d) is false 

R(c ,  f ( x ) )  is false 

which gives 



304 Chapter 4 

D10 = P(f(x))  v R(a,b)  v Q(b) 

D2 | = R ( a ,  b) v P(f(x)) 

D3 | = P ( f ( x ) )  

D4 | = Q ( b ) .  

The corresponding fragment of the covering matrix is of the form 

(4.3") 

Q 

R 

R 

One can conclude that if ? is true than it is possible to produce a resolvent of the 

,system (4.3") in the form of literal P(f(x)). Thus, we have 

V x(~a -~  P ( f ( x ) )  

o r  

V x ( Q ( c ) &  R(c ,  d ) &  R(c ,  f ( x ) )  -~  P ( f ( x ) ) .  

Note that in R(c,f(x)) and P(f(x)) the arguments are concerted due to the substitution 

| Thus, we obtain a resolvent of disjuncts D 1,...,D4 in the form 

Q(c) v R(c,d) v R(c, f(x)) v P(f(x)). (4.4) 

The general idea is practically evident: 

�9 find some (partly) unifying substitution | 

�9 make a non-contradictory supposition 9 excluding some literals such that the 

remaining literals become unifiable in this substitution | ; 

�9 produce a resolvent A O ; 



Logic-based problem solvers: approaches and new methods 305 

�9 produce a general resolvent of the selected colunm-disjuncts in the following 

form 

q,  AO. 

This general depiction will br reffered to as an "extended resolution 

schcme".However, we do not give the details of the extended resolution scheme because 

there are more than one variant of its realization in general. Nevertheless, the following 

principles must be observed: 

�9 (9 is selected in such a manner that it should provide participation of each column- 

disjunct in the group resolution (that is, at least one literal of each disjunct must remain 

after excluding non-unifiable literals (if there are such literals in substitution (9 ) ;  

�9 q~ must be consistent in (9. 

Let us prove the following theoretical result. 

Assertion. The group resolution strategy on the basis of an extended resolution 

scheme is "complete",that is an empty disjunct can be deduced from any contradictory 

system of disjuncts. 

Proof is condut:ted by the demonstration of the fact that for arbitrary two disjuncts 

DR_ ~ DR_ ~ 
Dot and DI3 producing Robinson's resolvent a2  there exists an inference of a,]~ on 

the basis of g.r .p. .  

Besides, the relationship 

[-)g.r.p. t~a~ob~- "-"a~ 

is always correct. 

Consider two cases: 

Case 1. Dct and D~ are unifiable; 

Case 2. Do~ and D~ are not unifiable. 

In case 1 it is convinient to consider illustration in Fig.4:3. Take disjuncts D5 and 

D7 from (4.2) and find their Robinson's resolvent 



306 Chapter 4 

S ( a , y )  v C(y) .  

According to group resolution strategy one should select six column-disjuncts. Two 

of them/)~ and D; correspond to disjuncts DS, DT. The others are selected from the 

tautological disjuncts: Sv S (provides inclusion of literal S in column-resolvent), Cv 

C (provides inclusion of literal C in column-resolvent), etc., excluding, evidently, 

disjunct P v P since literal P( P ) is cut. The general idea is quite obvious: 

"it is necessary to exclude tautological column-disjunct which correspond to a cut 

pair of literals". 

The correctness of this exclusion is practically evident. From this,one can see that 

the group resolution strategy makes it possible to generate all the resolvents produced 

by Robinson's resolution principle in cases similar to Case 1. 

Consider Case 2. Let us start with the following illustration: 

D~ = R(x,y) v R(y,  x) v P(x,z) 

DI3 = R(a,b) v P(w,a). 

Let us, for instance, use a substitution 

| ={ y=a, x=w=b, z=u} 

which gives 

D~a - R(b,  a) v R(a,  b) v P(b, u) 

D ~  - R(a, b) v P(b, u) .  

Make a supposition 9 : R(b,a) is false which allows us to find a general resolvent: 

Doq 3 = P(b,u) v R(b,a). 

It is seen that 

Dot, DI3 t-- Doq3. 

DRob One can also see that ct,fl t-- Doq3. 



Logic-based problem solvers: approaches and new methods 3 0 7  

Let us formulate this fact as a general statement which represents a final step in 

proving the assertion. Actually, Dctl3 is obtained from D~, DI3 on the basis of 

substitution | which unifies some (sub)sets of literals in D~, DI3 containing a cut pair. 

The literals which were excluded by supposition qo are concerted in O. Therefore, one 

can write 

Dot= P(...) v . . .  v R(...) v ... v T(...). 

O 
D a takes the form of 

DO - P ( . . . ) o V . . . v R ( . . . ) o V . . . v T ( . . . ) o  , 

It is clear that if T(...)O has been excluded then it is included in a general resolvent. 

Consider the inference 

- - O  O 
In Dap literal T will be represented as T( . . . )o ,  i.e. it will be cut from Da.  This is 

also right with respect to any other literal excluded by supposition q~. Cutting these 

O O 
literals provides of remaining only those literals in D a, Dr which produce a group 

resolvent according to theorem 4.2 (point (ii)). 

Hence, we obtain 

Substitution O used in producing Robinson's resolvent is more general than that one 

used by g.r.p. This ends up the proof of the assertion. 

So, we have established that g.r.p., utilizing extended resolution scheme, represents 

a generalization of Robinson's principle because any inference on the basis of that 

former can be reproduced by means of g.r.p. The question is shifted to practical 

realizations of g.r.p.-based inference strategies. One such a strategy is suggested below. 

It combines g.r.p, and Robinson's resolution strategy in such a way that g.r.p, provides 



308 Chapter 4 

coordination and acceleration of an inference. Note that other variants are also possible, 

for instance, that one based on Herbrand's theorem. 

4.4. Implementation of group resolution principle 

4. 4.1. Preliminary remarks 

Let us start with the following 

Definition. Disjunct D with one or less occurences of each literal P(...) and one or 

less occurences of its negation P (...) is called a simple disjunct. 

Example. 

P ( x , y )  v P(a,  z) v Q(y) .  

Disjunct which is not simple will be called complex. 

Example (of a complex disjunct): 

P ( x , y )  v P(a,  y) v R(a)  v P(a,  z) v Q(y) .  

An advantage of simple disjuncts is connected to theorem which establishes 

conditions of generating a unique column-resolvent on the basis of g.r.p. In fact, in this 

case the following conclusion can be drawn: 

(A*). If resolvent A O is produced without supposition r then A O is unique (see 

theorem 4.2) 

(B*). Suppose that extended resolution scheme was used. Then if there were no 

literals in a cover excluded by supposition 9 as false then a group resolvent 

~ v A o  

is unique as well. One should think of a unique resolvent as a disjunct R represented 

in a covering matrix M by the corresponding unredundant column R.  

The conditions (A*), OB*) are rather important: 



Logic-based problem solcers." approaches and new methods" 309 

if one of theln is satisfied each time when a group resolvent is generated then an 

empty column-resolvent will be produced for a finite number of group resolutions. 

Condition (B ~) is easier then condition (A '~) because (B ~) may be satisfied when 

finding a cover rt for a covering matrix. It should be clear that if column-disjuncts, 

producing group resolvent, are simple then satisfaction of condition (B*) means that 

contrary literals, say T(...) and T(. . . )  such that T(...), T(. . . )  ~ rt are unifiable. 

A more complicated situation is connected with complex disjuncts. 

Let us consider the following example. 

D 1 = P(f(x)) v R(a,y) v Q(y) 

D2= R(a,  b) v R(c, z) v P(z) 

D3= P(v)  

D4 = Q(c) v Q (b) v R(c,d) 

D5 :  Q ( w ) ,  

Let us select for an unredundant cover rt = { R, R, P, Q } column-disjuncts D1, D2, 

D3, D5. There are two contrar 7 literals R and R in rt which must be unified. However, 

there are two occurences of literal R ( R ( a , b ) ,  R (c , z ) )  in D2 which cannot be 

unified. Therefore, making a group resolvent of disjuncts DI, D2, D3, D5 provides no 

warrants for obtaining unique resolvent. The reason is that D2 is not a simple disjunct. 

We are to point out necessary instructions for this case. Let us proceed from one 

important technique called disjunct exclusion (operation). 

4. 4.2. Disjunct exclusion 

Definition. P-resolvent of disjuncts Di, Dj is called their Robinson's resolvcnt with a 

cut literal P ( P ). 

Definition. Disjunct exclusion consists of replacement of a given disjunct D 

containing literal P ( P ), by all possible P-resolvcnts of this disjunct D and the other 

disjuncts of the system S.  



3 I0 Chapter 4 

Assertion. Excluding disjunct Di on the basis of the above introduced operation from 

the system S results in obtaining a new system S' such that S and S' arc equivalent in 

the following sense: If S is a contradictory system then S' is a contradictory system too 

and vice versa. 

Disjunct exclusion operation is valid under the following conditions: 

(i). If Di is excluded on the basis of P-resolution then there must be only one 
- = .  

occurence of literal P(...) in Di and no occurences of literal P (...). 

(ii) If P-resolvcnt of this disjunct Di with some other disjunct Dj from S contains 
. . . = .  

literal P (...) unifiable with literal P(...) in Di then this tesolvent participates in 

producing another P-rcsolvent with Di and so on until P-resolution is possible. 

Proof Let Di be of the following form: 

Di = P(tl,t2 .... ,tz) v... v Q(rl ..... rs) 

and literal P(...) in Di satisfy condition (i) above. Let us replace Di by all possible P- 

resolvents of this disjunct Di with the other disjuncts from S allowing P-resolution with 

Di. R should be clear that if new system S' is contradictory then S is contradictory too. 

So, we neeA only to prove that if S' is not a contradictory system then so is S. Assume 

that an opposite supposition is true, that is, S'is not contradictory but S ,on the contraty, 

is. It should be clear that there exists an interpretation | in which S' is true and Di is 

false. Let 

Dj= P(q 1,...,qz) v... v S(sl ..... sk) 

be another disjunct wich has a P-resolvent with disjunct Di and let their P-resolvent 

be of the form 

A Di/ = {P(q 1 , . . . , q z ) } A & P ( t l , . . . , t z ) ^ } v . . . v Q ( r l , . . . , r s ) ^ v . . . v S ( s l , . . . , s k ) ^  

where a cut pair of literals is put into the figure brackets; A is a unifuing substitution 

such that O is a particular case of A. By supposition, Dij is true in O and Di is false in 



Logic-based problem solvers: approaches and new methods 311 

O. Consequently, there exists a true literal L (common for Dj and Dij) which is different 

from P(tl ..... tz) O. 

m 

I f L ,  P( t  l , t2 , . . . , t z ) |  

P(tl .... ,tz)| ="TRUE". 

then let us set 

Then, in this supposition, D jo and D ~ remain true formulas. Suppose, however, 

that another disjunct, say, 

Dr=- P ( m l , . . . , m z )  v ... v T ( h l  ..... hi) 

6) 
becomes false in O .Clearly, Di and Df must produce their P-resolvent D~f which 

should be false in O. But this is impossible because S '  o is a satisfiable system by 

supposition. One can see that these considerations remain valid for any other similar 

disjunct Df. 

If L = P (t 1, t 2,..., tz)e then resolvent Dij must participate in producing another P- 

resolvent with Di until all literals P, unifiable with L, will be excluded. Thus, the above 

given considerations remain correct. 

Inference strategy definition 

Divide matrix M into two submatriccs: M' and M" with the same row sets and such 

that all the column-disjuncts in M' arc simple and all the colunm-disjuncts in M" arc 

complex. Our inference strategy depends upon the form of M' and M". 

Variant L (a) M'= r ( all tautological disjuncts are not taken into account), or (b) 

M' contains the single non-tautological column-disjunct, or (r there is no any available 

disjunct in M' which can be used for generating a group resolvent (i.e. each disjunct in 

M' has participated in all possible group-resolutions as a characteristic disjunct 

containing one of the cut literals. Remind the reader that a colunm-disjunct D is called 

characteristic for a given unredundant cover set a if one and only one row from 7t covers 

D (the details can be found in chapter I in the section devoted to Minimum-size cover 



312 Chapter 4 

problem)). In cases (a), (b), (c) resolvents are found on the basis of Robinson's 

resolution principle, 

- in cases (a),(b) Robinson's resolvents are produced until any two simple disjuncts 

containing a unifiable contrary pair of literals are generated. The next step is a 

transition to Variant II. 

In case (c) it is required to generate at minimum one simple disjunct in order to 

proceed from Variant II. 

Clearly, all the generated simple disjuncts are added to matrix M'. 

Variant II. Our inference strategy is connected to finding an unexcessive covering 

set rt = { i 1,i2,...iz} for matrix M at each iteration. If z=n then initial system of disjuncts 

is not contradictory (n is the number of different literals). So, we shall assume z>n. 

Covering set 7t is looked for in the following way. Let us choose some simple disjunct 

Di, for instance, 

Di= R(...) v ... v T(. . . )  

(Di shoud earlier not be excluded by means of disjunct exclusion operation because 

in our strategy all such column-disjuncts remain in matrix M but do not participate in 

group resolution). Choose some literal, say, R(...),in Di provided that R( . . . )  does not 

belong to Di. Look for another disjunct Dj containing literal R( . . . )  unifiable with 

literal R(...) from Di. If there is no such a disjunct Dj then exclude Di from M by means 

of disjunct exclusion operation. In fact, Di remains in matrix M but does not participate 

in producing new resolvents. When performing disjunct exclusion operation new 

disjuncts may be generated and added to matrix M' or M" respectively. Choose another 

disjunct DI in M' and repeat procedure by analogy. Clearly, choosing DI has sense when 

(and only when) there remain at least two non-tautological disjuncts in M'. Suppose, a 

required disjunct Dj is found. For clearity, let 

Di= R(a,x) v T(x) v Z(y,x) 

Dj= R(a ,  b) v T(f(a)) v Q(b). 



Logic-based problem solvers: approaches and new methods 313 

As follows from the general idea of our inference strategy, Di and Dj must be 

characteristic column-disjuncts for the cover ft. This means that literals T, Z, and Q 

from Di, Dj cannot belong to this cover ft. Clearly, the required cover rt exists if and 

only if there is no column DI in M covered by the rows from the set {T,Z,Q} only. 

Assume that there is no such a column DI. Then one can find an unredundant cover rt 

with n rt > n rows (because the contrary pair of literals is included in 7t ). Thus, the 

condition either (A*) or (B*) is satisfied which provides producing a "good" column- 

resolvent. (Note that this is the reason for leaving in matrix M column-disjuncts 

corresponding to that ones excluded on the basis of disjunct exclusion operation). 

Repeat the iterations on matrix M'. 

Now suppose that there is a column in matrix M' covered by row(-s) from {T,Z,Q}. 

In this case column-disjuncts Di and Dj cannot be characteristic with respect to cover 7t 

containing contrary literals R and R. Make Robinson's resolvent of Di and Dj and add 

it to M' if it is a simple disjunct or to M" if not. Repeat the iterations forbidding to use 

Di and Dj as characteristic column-disjuncts with respect to the cut pair of literals R 

and R. (However, Di and Dj may be used as characteristic column-disjuncts with 

respect to another contrary pair(s)). 

The iterations are performed until an empty column-disjunct is generated. This result 

means inconsistency of the initial system of disjuncts. If a cover with n rows is found 

then procedure also stops testifying to consistency of the system. 

It is not difficult to show that the suggested inference strategy produces an empty 

column-resolvent for every contradictory system of disjuncts. Really, group resolution 

provides generation of a finite number of unique column-resolvents. The other 

resolvents are deduced by means of Robinson's principle. 

Thus, a new inference strategy is suggested representing a generalization of 

Robinson's resolution principle. The main result consists of making a group resolvent 

for more than two disjuncts at a time which provides an acceleration of logical 

inference. 



314 Chapter 4 

4.5. Reduction algonthm with term re-wnting 

Here we give a new method of logical inference for the system of non-Horn disjuncts 

in general (disjunct is called Horn disjunct if it contains no more than one positive 

literal). The suggested method is based on some important property of Robinson's 

resolution principle used in disjunct exclusion operation outlined in the previous 

section. This property enables one to perform an equivalent transformation of a system 

of disjuncts in order to reduce the number of literals (variables). Besides, an additional 

improvement is made by using term re-writing procedure which sometimes leads to 

obtaining a solution without making any resolvents. 

4. 5.1. Formalisms 

Disjunct is a disjunction of letters (literals) taken with negation or without it. In 

order to represent disjuncts we shall use incompatibility relation symbol (#). 

Consequently, the notation 

#(X1,X2,...,X k) 

is equivalent to 

x~ v x 2 v . . . v x  k 

(accordingly to the sense of incompatibility relation). Sometimes (when it is not clear 

from context) we shall designate a disjunct written by means of #-symbol as #-disjunct. 

As before, the problem of logical inference is in answering the question "Is the given 

system S of disjuncts satisfiable (consistent) or not". To answer this question one needs 

to show whether an empty disjunct can be deduced from S or not. 

4. 5.2. Case o f  propositional system 

As was said earlier, the term re-writing procedure is an essential part of the 

suggested method. 



Logic-based problem solvers." approaches and new methods 315 

Definition. The term re-writing procedure (t.r.p.) consists of the replacement of 

each occurrence of the letter xj ( ~ )  by x/ (x  i). The letter x i ( ~ )  is considered an 

input parameter of t.r.p. 

Definition. #-disjunct is called positive (negative) if it does not contain negative 

(positive) letters. 

Example. 

(i) #(x 1 ,x 2,x3) 

(ii) #(~2,x4 ) 

- positive disjunct 

- negative disjunct. 

(It should be noted here that example (i) in traditional representation 

m b 

X1V X2V X 3 

is negative disjunct and (ii) in its own turn - positive). 

Lemma 4.1. If there is no positive (negative) #-disjuncts in the system S then S is 

trivially satisfied with interpretation I={~1, ..., Xn } ({ Xl, "", Xn })" 

Definition. A system S of disjuncts is called t.r.p.-resistant if it is not trivially 

satisfiable (resolvable) system and there is no letter x; (~/) such that t.r.p, with 

x i (x , )  as its input produces trivially satisfiable system. 

Example (of t.r.p-resistant system). 

Lemma 4.2. If an initial system S is not contradictory then S can be reduced to a 

trivially satisfiable system for a finite number of applications of t.r.p. 

The main problem consists of the question of how to transform t.r.p.-resistant 

system into trivially satisfiable one? The suggested strategy solves this problem in the 

following way: 



316 Chapter 4 

"Each time when a t.r.p-resistant system S is obtained an equivalent transformation 

H is used such that 

H:S ~ S' 

and S' is equivalent to S in the following sense" 

1) If S is a contradictory system then S' is contradictory too ; 

2) If S is satisfied in some interpretation I then S' is satisfied in interpretation I' 

such that I can be restored from I'." 

Definition. x-resolvent of disjuncts #(x,F) and #( x ,G) is called disjunct #(F,G) 

where F,G are some sets of letters. 

Theorem 4.3. Any system S of #-disjuncts containing letter x i (x i )  can be replaced 

by an equivalent (in the above stated sense) system S' which consists of all possible x i - 

resolvents derivable in S and those disjuncts from S which do not contain the letter 

x i ( ~ )  (tautological disjuncts should be excluded from S'). 

Proof can be obtained in the same way as for disjunct exclusion operation. 

Example. Let S be of the form 

#(a,b) 

#(g ,c,d) 

#(~, b ,e) 

#(a,e) 

#(a,b,~ ). 

Then, producing a-resolvents, find an equivalent system S': 

#(b,c,d) 

#(e,c,d) 

#(e, b ) 

#(c, b, d, ~). 



Logic-based problem solvers." approaches and new methods 317 

Theorem 4.3. is used as a regular basis for t.r.p.-realization in case of t.r.p.-resistant 

system. Let us consider one full example. 

#(a,b,c) 

#(~,b,d)  

#(b,~) 

#(b ,d) 

#(a,d,c). 

Obtain an equivalent system on the basis of a-resolvents" 

#go,c,d) 

#(b ,d) 

#(b,~). 

Then t.r.p with parameter "c" gives trivially satisfiable system with solution 
m m 

I'={ b, ~, d }. Restore a solution I from I' using all the re-writings made by t.r.p, and 

find I={ b, c, d }. 

Let us sum up t.r.p, in case of propositional system: 

1. Apply t.r.p, until t.r.p.-resistant system is obtained. (The possible issues of a 

trivially resolvable system deliver no difficulties.) 

2. Find x-resolvents (for some letter x in t.r.p.-resistant system) and obtain an 

equivalent system S'. Proceed from point 1. 

4.5.3. Case o f  predicate calculus 

Let us start with the following example: 

D 1= #(P(a),Q(x), R(b) )  

D2= #(P(b) ,  Q(c) )  

D3=#(P(y) ,  R(v) )  



318 Chapter 4 

m 

D4=#(P(a), Q(x)) 

D5=#(R(z),Q(z)), 

Since the system is t.r.p-resistant, find Q-resolvents" 

m B 

D6=#(P(a), P (b), R(b) ) 

D7=#(P(a), R(b) ) 

D8=#(P(b), R(c)) 

D9=#(P(a),R(x)) 

N 

and add disjunct D3 =#(P(y),R(v)) to these Q-resolvents in order to form 

equivalent system S'. When finding Q-resolvents we unify predicate arguments as 

usual. Now, find P-resolvents (there are only two of them): 

E 

DIO=#(P(b), R(b))  

Ol l=#(R(b)).  

From this, one can establish 

R(b)="TRUE". 

Let, for instance, 

P(b)="TRUE". 

Using this assignments, one can obtain 

R(b)="TRUE" 

R(x) -"  FALSE" (V xR(x) -" FALSE") 

P(b)="TRUE" 

P(a) -"TRUE" 

P(y) -"  FALSE" (V yP(y) -" FALSE") 

Q(z)-"FALSE", 

We need some general basis for obtaining an interpretation satisfying initial system 

of disjuncts. This basis consists of a regular application of Robinson's resolution 

principle. Thus, if, for instance, R(b)="TRUE '' and there is disjunct #(P(a), R(x)) then 



Logic-based problem solvers: approaches and new methods 319 

one can obtain (by means of Robinson's resolution principle) disjunct #(P(a)) 

(P(a)  - "TRUE") .  This basis is sufficient in order to restore an interpretation I for the 

initial system S of disjuncts when moving from trivially resolvable system S' to S. 

Theorem 4.4. Every system $ of #-disjuncts can be replaced by their P-resolvents 

(for some predicate symbol P used in S) if none of them contains predicate symbol P 

(P). These resolvents and the other disjuncts from $ not containing symbol P (P)  form 

a new system S' which is equivalent to S. 

Note that if some P-resolvent contains symbol P (P)  then it participates in P- 

resolution once again (if it is possible). All tautologies are excluded from S'. 

Definition. A system S of #-disjuncts is called P-contractable (P-contracted) if it can 

be replaced by an equivalent system S' which does not contain literal P(...) (P (...)). 

Theorem 4.5.A system S of #-disjuncts is contradictory if and only if one can deduce 

two contrary disjuncts from S, e.g. #(P(xl ..... xn)) and #(P (yl,...,yn)) with unifiable 

arguments. 

Consider another example. 

Dl=#(P(a ) )  

D2=#(D(y), L(a, y)) 

D 3=#(P(x), Q(y),L(x,y)) 

D4=#(D(b))  

D5-#(Q(b) ) .  

Find P-resolvent: 

D6=#(Q(y),L(a,y)) 

and delete disjuncts D I,D3. Find L-resolvent: 

D7=#(Q(y)) 

and delete disjuncts D2,D6. This results in obtaining the following equivalent 

system: 



320 Chapter 4 

D7=#(Q(y)) 

D5=#(Q(b)  

D4=#(D(b) )  

which is contradictory. According to theorem 4.4. this means that the initial system 

of disjuncts D 1 ..... D5 is contradictory too. 

Let us prove theorem 4.4. 

Let S' do not contain predicate symbol P (P)  and I' be some satisfying interpretation 

for S': 

a ( t ~ l , t ~ 2 , . . . , t ~ )  

i ,  _ t f l ( t c ~ ,  t~2,  . . . , tpq ) 

where off...), 13(...) ..... ~,(...) are true formulas in I', and to~, t13 ..... k/ are their 

arguments respectively. Then I' can be extended to some interpretation I satisfying 

initial system S of disjuncts. If S is contradictory then S' is contradictory too. Suppose 

that an oposite is true, i.e. S' is not contradictory but S ,  on the contrary, is. In this 

supposition it follows (for some literal f(...)) that 

I'---> f(tfl,tf2,...,tfv) ~I 

I'---> f (qfl,qf2 .... ,qfv) ~I 

( ~  is an implication and f(...) and f (...) are unifiable). From this one can conclude 

that there are two #-disjuncts 

#(f(tfl,tf2,...,tfv ) , Z1) 

#( f (qfl,qf2,-..,qfv), Z2) 

such that Z1,Z2 both are true formulas in the interpretation | unifying two sets of 

arguments: 

{tfl,tf2 ..... tfv } and {qfl,qf2,...,qfv}. But this is impossible because their resolvent 

#(Z 1,Z2)| is true formula in | and Z 1, Z2 both are true. 



Logic-based problem solvers." approaches and new method~ 321 

Implementation of lagical inference procedure 

Let us consider the example: 

DI" #(Z2) 

D2: #(P(x),P(a),Z 1) 

D 3" #( P (y),Z 2), 

Find P-resolvents 

D4 #(P(a),ZI,Z2) (from D2,D3) 

D5" #(P(x),ZI,Z2) ( from D2,D3). 

One can see that literal P(...) appears in P-resolvents. This means that one can use 

D4,D5 to produce another P-resolvents (if it is possible) �9 

0 6  #(Z1,Z2) ( from D3,D4) 

D7 #(Z1,Z2) (from D4,D5). 

As a result, a P-contracted system of disjuncts is found. Clearly, it may be impossible 

(under definite circumstances) to obtain X-contracted system (for definite X). Th~s fact 

immediately follows from unsolvability of first order logic (predicate calculus). In this 

case, X-resolution transforms into an endless cycle in which new X-resolvents contain 

literal X(X). The following example of disjuncts represents non-contracted system: 

#(R(x,y),R(y,z), R (x, z) ) 

#(R(a,b)). 

From this example one can see a definite advantage of t . r .p ,  because t.r.p. 

recognizes the above-given system as trivially resolvable. Consequently, in SOllle cases 

one can reckon upon the successful application of t.r.p to potentially non-contractable 

systems of disjuncts. 

Our nearest task is to point out one formalized inference procedure based on the 

introduced theoretical background. This procedure consists of the following 



322 Chapter 4 

p.l. In order to produce X-resolvents one should first of all use literal X (X=P) 

which has no more than one occurence in each disjunct (provided that such a literal P 

(P)  exists). 

p.2. Assume that one has found P-resolvent that contains literal P ( P ) .  Then this 

resolvent gets a status of a temporarily excluded disjunct if (and only if) one of the 

following conditions is observed: 

2.1. Total number of literals P (P)  remaining unexcluded in this P-resolvent does 

not exceed a maximum number of literals P (P)  in one of the disjuncts producing this 

resolven.t. 

2.2. There is some disjunct D which participates in the inference of this P-resolvent 

for the second time provided that the same literal P (P)  in D is cut. 

Rules 2.1, 2.2 are oriented to obtaining P-contracted system. These rules are proved 

later. 

p.3. Suppose that we subsequently use literals 

Pl (P1), P2 (P2), ..., Pz (Pz) 

and obtain PI - '  P2 - ' " "  Pz -  contracted systems respectively. Denote these 

systems as S1,S2,...,Sz and let S be initial system (it is indexed with index 0). Suppose 

that one has found that $z is a contradictory system. Then S is contradictory, too as 

directly follows from theorems 4.2 - 4.4. 

p.4. Let system Sz be satisfiable. (In particular, if Sz contains no disjuncts at all then 

Sz is satisfiable.) It should be clear that Sz is a satisfiable system if it may be contracted 

without obtaining a contradiction. If no temporarily excluded disjuncts have bcen 

generated then one can conclude that S is a satisfiable system. However, it may occur 

that Sz is a satisfiable system but S, on the contrary, is not. This fact may take place 

when (and only when) there are temporarily excluded disjuncts among the others. It is a 

well-known fact that Robinson's resolution strategy is semi-resolvable (i.e. it provides 

inference of an empty disjunct for any contradictory system S). Therefore, to preserve 



Logic-based problem solvers: approaches and new methods 323 

this property of our inference strategy one needs to restore all the temporarily excluded 

disjuncts (i.e. to abolish their status of temporarily excluded disjuncts). After that, one 

should resume an inference from a system S i (i ~ 0,1 ..... z) in which such disjuncts have 

appeared for the first time. 

Let us prove that the above given rules provide obtaining an empty disjunct if (.and 

only if) initial system S of disjuncts is contradictorT. Suppose that some system S i (say, 

Sz) is satisfied by interpretation I*. Make a supposition that I* cannot be extended to an 

interpretation I** satisfying the previous system Sz_ 1. This means that there are some 

logical entailments from Sz_ 1 not included in Sz. 

Let us say that disjunct ~p cuts an interpretation I* if q~ is not satisfied by I* ( cO is 

false in I*). 

Now we show that in our suppositions there exists some disjunct q~ deducible in 

Sz_ 1 which cuts this interpretation I*. There are two cases which are possible: 

Case I. System Sz_ 1 is contradictory. But if so, then one can obtain some 

contradictory P-contracted subset of Sz_ 1. 

Case II. System Sz_ 1 is satisfiable. Assume that any disjunct k such that 

cannot be deduced from Sz_ 1. In such a case I* satisfies Sz_ 1 which entails a 

contradiction. Therefore, k can be deduced from Sz_ 1. Hence, one can conclude that if 

Sz_ 1 is false in I* then it is possible to infer an empty disjunct in this interpretation I* 

Consequently, there exists contracting P-resolution providing exclusion of all the 

literals P (P )  from Sz_ 1. Clearly, this contracting P-resolution produces cutting 

disjunct k we are interestcd in. One can also see that k ~s falsc in I * - I ' h e s e  

considerations make up a proof of the following 



324 Chapter 4 

Theorem 4.6. If P-contracted system is satisfied by interpretation I* no one 

extension of which gives an interpretation I satisfying initial system S of disjuncts then 

there exists disjunct L deducible on the basis of P-resolution and cutting this 

interpretation I*. 

All that remains is to show that our scheme of creating temporarily excluded 

disjuncts provides obtaining P-contracted system. 

Any resolvent which is obtained from disjuncts D1,D2,...,Dn is called Di-based 

resolvcnt (disjunct), i=l,2,...,n. 

It should be clear that at least one disjunct from initial system S ={DI ..... Dn } takes 

part in the inference of disjunct Cm. In an appropriate index system one can conclude 

that "m" is not higher than "n". This remains correct with respect to any other Dot- 

based disjunct Ck. So, there arc only restricted-length inferences of each possible 

rcsolvent and therefore the number of this inferences in our strategy is finite. 

4.6. Conclusion 

New logical inference methods described in this chapter have some positive features: 

�9 group resolution is, in general, an acceleration of Robinson's principle since it 

provides participation in resolution making more than two disjuncts ; also it enables one 

to obtain only unique resolvents ; 

�9 reduction algorithm with term re-writing may establish satisfiability of a system of 

disjuncts (that is, it is not oriented to inference of an empty disjunct only as the most of 

intherence strategies do). 

We outlined a role of theoretical logic in problem solving. This role is dual: on the 

one hand logic is regarded as one of the technologies of solving problems and on the 

other hand, logic provides suitable programming paradigm realizible within frames of 

CAPSS. This second aspect is considered in the following chapters alongside with the 

other aspects of the implementation of programming conception of CAPSS. 



325 

Chapter 5 

PROGRAMMING CONCEPTS IN PROBLEM SOL VING 

Abstract. In this chapter we shall consider non-traditional approaches to 

programming techniques in problem solving. Strictly speaking, we shall consider the 

programming paradigm to be non-traditional if it does not fall within the boundaries of 

an impcrativc programming concept. 

Although functional and logic programming could be recognized as non-traditional 

in the abo~c mentioned sense, they cannot be considered suitable for our aims. One of 

lhc cvidcnl drawbacks of these paradigms is in the assumption of the closed domain of 

the problem on the one hand, and a lack of means for manipulating the task conccpt on 

the other. 

The first ideas for non-traditional paradigms are connected with heuristic 

programming. A.Ncwcll, J.C.Shaw and H.A.Simon suggested a form of univcrsal 

solving programs I571 GPS and LT with the basic solution principle based on 

eliminating differences between the current and the desired states of a problem. 

However, this principlc proved to be insufficient even in proposition calculus. But this 

particular idea was remarkable for extending traditional programming boundaries. The 

following attempts to move the solving concept to the theorem proving area are worthy 

of special mention. 

5.1. Programming or theorem proving ? 

Wang Hao in [58] put forward the idea of employing programming in the sense of 

theorem proving, or more precisely, for the mchanization of mathematics. The main 

advantages of this approach were connected with highly developed mathematical 



326 Chapter 5 

theories as an important premise of its implementation. This idea was supported by the 

soviet scientific school headed by academician V.M.Glushkow [59]. Consider their 

concept in more detail. The main idea lies in making human-machine systems to build 

algorithms oriented to theorem proving. The computer is used as a tool in the hands of 

the experienced mathematician. With the help of a specialized language the 

mathematician writes down the text which performs the transformation of one state of 

the theory to the another. Each state is connected with the definite set S of formulae. 

The set S is consistent, if there exists a formula f for which (S ~- f) is false. The text 

consists of the set of sentences, definitions, assertions, assumptions, theorems and 

lemmas which are also referred to as expressions. Consider the main rules for making 

expressions. 

Schemes of expressions 

A primary expression is defined as follows 

~p(x 1,'" ",Xn)=P 1Xl P2X2 "" �9 PnXnPn+ 1 (5.1.) 

where Pl ..... Pn+l "some words in the theory's alphabet, n2> 0. 

A function may be defined by the scheme Pl( )'"Pn ( )Pn+l with free positions, 

delimited by round brackets and used for variable-arguments. A finite set of the rules 

(5.1) defines some context-free language in Chomsky's classification. Examples of 

expressions: 

( ) belongs to ( ); 

( ) does not belong to ( ); 

function from ( ) to ( ); 

()is() .  

Schemes of sentences: 

let ( ) 

suppose ( ) 

since ( ) then ( ) 



Programming concepts' in problem solving 327 

denote ( ) by ( ) 

Schemes of  assertions: 

( ) ~ ( )  

( )= ( )  

( ) * ( )  

()--() 

( ) and ( ) 

(),() 

() ,  where ( ) 

( ) is divided by ( ) 

( ) c ( )  
( ) is simple 

( ) is equivalent to ( ) 

there exist ( ) ,etc. 

Schemes of  terms: 

integer number ( ) 

natural number ( ) 

set ( ) 

ring ( ) 

field ( ) 

ideal ( ) 

element ( ) 

homomorphism ( ) into ( ) 

linear space over ( ) ,etc. 



328 Chapter 5 

Example of theorem writing 

T h e o r e m .  

Let (F) be (finite field). 

The number of" elements of (F) is (q). 

Then there exists (prime number p) 

such that (q) = (pn) where (n) is (natural number). 

Proof 

Let (q~) be (homomorphism of the (ring Z) in (F) such that (q~(1)=l and Ker (q~), 

{0})). (Ker(q~)) is (the main ideal of (ring(Z))). (Ker (q~))-(pZ)where ((p)~(Z) and (p) is 

(prime number)). 

(Z/p.Z) is (a field of (characteristic p)). Each automorphism (of the ring (ZIp.Z)) is 

(identity). 

Let (F') be (an image (ZIp.Z) in (F) with (q~)). 

Let (n)-(dim(F)). 

Let({Wl,...,Wn}) be (a basis of (F)). 

(Each element F) may be represented as 

(alWl+...+akWk) 

where ((al,...,an) ~ (F')). 

The number of elements of (F) is (pn). 

End. 

The most important functional blocks of the proving system are the following: 

- Definition treatment block (DTB) 

- assumption processing (AP) 

- splitting goal (SG) 

getting auxiliary subgoal (GAS) 

- block of transformations (BT) 

- searching unproved goal (SUG) 

- searching alternative proof (SAP) 



Programming concepts in problem solving 329 

- scheduler (SH) 

- equality processing (EP) 

- induction (IN) 

- editor (ED) 

- interface with user (lldS) 

The blocks above are integrated in the functional structure shown in Fig.5.1. 

0 

a:(S.1)(S 4 .2) 

b:(S~. 1)(S~ .2) 

c:(S]. 1)($3 s . 1)(S~. 1)(S~ .1)(S 1 . 1)(S~o .1) 

d:(S 1 . 1)(S~. 1)(S~. 1)(S~ .1)(S s .1)(S 6 .I) 

e:(S~ .1) 

f:(S]. 1)(S~. 1)(S~. 1)(S; .2)(S s .1)(S~ .1) 

g '(S/ .  2)(S~ .1) 

h:(S 1 . 1)($42 .1) 

p:(Sg .1)(S 3 . 1)(S~ .1)(S 1.1)(S s . 1)($42 . 1)(S~ .1) 

r" ($91.1)($92 . 1)($93 . 1)(S~ .1) 

i:(S]. 1)($3o .1) 

j '(S].I)(S~ .1)($3.1) 

q'(S36 .l)(S~o.1) 

k:(SI.1)(S~ .1) 

I:(S~ .1)($40.1) 

m:(S1.1) 

n:(S~ .1) 

o:(S~. 1)(S~ .1) 

s:(S93 . 1)(S~. 1)(S~. 1)(S]. 1)(S~. 1)(S~ .1) 

t" (S~o. 1)(Sl20.1)(S130.1)($40.1)($50.1) 

F i g .  5 . 1 .  



330 Chapter 5 

The scheduler controls all the rest blocks by means of transferring parameters 

B ,R), where B (S A S A is a piece of information of block A produced in the operation mode 

R and B is a piece of additional information. 

AP-block has the following inputs and outputs: 

S ~ - indicates that the last assumption has already been treated; 
4 

2 _ points  to the contradiction obtained for the new assumption; $4 

GAS-block produces the following information: 

S l 5 "new goal is denied by the checking procedure; 

2 
S 5 - new goal is obtained; 

3 
S 5 - an earlier assumption coincides with the subgoal. 

EP-block is characterized by the following inputs/outputs: 

S ~ - equality has been proved; 
6 

2 _ there is no sufficient information to prove equality. $6 

IU$-block supplies a user with information S 7. 

IN-block deals with the next data: 
1 

S 8 - a goal can be proved by induction; 

2 
S 8 - a goal cannot be proved by induction; 

SUG-block produces such data items as 

S l 9 - new subgoal has been found; 

2 _ all the subgoals have already been proved; $9 
3 

S 9 - new subgoal is denied by checking procedure; 

4 
S 9 - new subgoal is tautologically true; 

SAP-block makes next outputs: 
! 

S~ 0 "new subgoal is an equation; 

S 2 ~o "new subgoal represents transformation of the previously defined formula; 

3 _ there is no alternative proof of the goal. Sl0 

ED-block produces an output in the convenient form. 

DTB-block is characterized by the following inputs/outputs: 

1 )  - the first subgoal has been treated with all terms defined; (Sl , 



Programming concepts in problem solving 3 31 

,2) - an assumption which has not earlier been countered now is placed into the (S, 

list of term definitions. 

SG-block deals with the next data: 

S 1 2 "new subgoal and new assumption are obtained; 

2 
S 2 - a subgoal is denied; 

n 
3 

S 2 - a subgoal has the form A U( i )" 
i=l 

4 
S 2' "a  subgoal may not be correctly formulated; 

S 5 2 - new subgoal is a tautology; 

BT-block can output next information: 

S ! - block cannot be applied; 
3 

2 
S 3 - new subgoal is denied by the checking procedure; 

3 
S 3 - new subgoal is a tautology; 

4 
S 3 - new subgoal is not correctly defined; 

S 5 3 "terms are not mutually concerted in the ="-equation. 

The considered approach raises a number of questions concerning theoretical and 

practical issues. For example, there is one concerning its universality. However, the 

whole idea of considering programming as a kind of problem solving in mathematics 

opens new interesting perspectives. We have pointed out two non-traditional 

approaches to problem solving programming: 

-"universal" algorithm technique and 

- theorem proving paradigm. 

Nowadays we are witnessing a return to these ideas. Consider them briefly. 

The author of [60] directly writes: "A lot of ideas have been suggested to overcome 

this crisis ... in software engineering and mathematical theory of programs. However, 

the crisis seems to be getting more and more serious". 

One outcome is in "appropriating the technologies cultivated for programming in 

theorem proving and vice versa". The paper outlines a proof checker system in linear 

algebra and a proof description language (PI)L) with the syntax based on Gentzen's 



3 3 2 Chapter 5 

natural deduction calculus (NK). PDL includes the following objects and rules (we 

reproduce only a part of them). 

5.1.1. Logical connectives 

contradiction 

\ 

& 

I 
---> and 

<----> 

all 

some 

some! 

if A then s else t 

_L (contradiction) 

(negation) 

A (and) 

v (or) 

---> (if ... then ...) 

~-> (... if and only if ...) 

~' (for all) 

3 (for some) 

3! (there exists only one) 

= (equality) 

(... is of type ...) 

5.1.2. Predicates 

<-, <, >-, > 

5.1.3. Types and type constructors 

sca scalar 

mat matrix 

nat 

seq(x) 

perm 

m..n 

natural number 

sequence of-ts 

permutation 

integer from m to n 



Programming concepts in problem solving 3 3 3 

5.1.4. Primitive functions 

col_size (o~:mat):nat 

row_size (o~:mat):nat 

(a:matli" l..col_size(a), 

j: 1..row_size(a)l ):sca 

length (cr:seq(x)):nat 

(cr'seq(x)li" 1..length(~)l ):x 

(seq{ i: l..n'nat } f(i):x):seq(x) 

domain (p:perm):nat 

id (n:nat):perm 

inv (p:perm):perm 

(p :perm* q: perm):perm 

(sum{ i:m..n } f(i):sca:sca 

( prod{i:m..n} f(i):sca):sca 

column size of a matrix 

row size of a matrix 

element of matrix 

length of a sequence 

element of a sequence 

functional definition 

domain of a permutation 

identity permutation 

inverse of a permitation 

composition 

finite indexed sum 

finite indexed product 1-I 

5.1.5. Rules for equality 

5.1.5.1. a -  a a - a  

5.1.5.2. a - b 

b a 

a=b hence b=a 

5.1.5.3. 

a - b  b - c  

a - c  



334 Chapter 5 

5.1.5.4. 
a - b  A(a) 

A(b) 

5.1.5.5. 
a - b  

t ( a ) -  t(b) 

5.1.5.6. 
al - a~ 

t(al ) - t. (a.) 

5.1.6. Induction 

[n: nat] E A (n) ] Here and further [A] is equivalent 

to "assume A"; 

A(O) A(n+l)  

Vm:nat A(m) 
(i) is used to denote logical inference path, 

5.1. 7. Logical Rules 

5.1.7.1. 

[A] [--~] 

• i 
--~ A 

5.1.7.2. 

A B 

A A B  



Programming concepts in problem solving 3 3 5 

5.1 .7 .3 .  

A B 

5.1 .7 .4 .  

A v B  B 

A 

5.1 .7 .5 .  

A v B  

[A] [n] 
�9 �9 

C C 

C 

5 .1 .7 .6  
[A] [-~A] 

C C 

C 

5.1 .7 .7 .  
[A] 

B 

A ~ B  

5.1 .7 .8 .  . . 

A ~ B  A 

B 



336 Chapter 5 

5.1.7.9. 
[A] [/q 

B A 

A +-~B 

5.1.7.10. 
[a:t] 

5.1.7.11. 

A(a) 
Vxt A(x) 

A(a) a t  

3x:t A(x) 

5.1. & Rules for sum and product 

5.1.8.1. 

[A(,,)] 

f (n) - g(n) 

Y~ f (i) - Y~ g(i) 
A(i) A(i) 

n fO) -  ngq)] 
A(i) A(i) 



Programming concepts in problem solving 3 3 7 

5.1.8.2. 
[A(,,)] 

• 
Z f q ) - 0  

A(~) 

1-l f(/)- 11 
A(i) 

Consider the theorem: "Let A be a square matrix. Then Det(A)=(tA) ''. An 

appropriate depiction in PDL is the following. 

theory determinant 

det (A: square) 

:=sum{P:perm <col_size(A)> } 

sgn(P)* prod { I" 1.. col_size(A) } A[P[I],I] 

theorem determinant_of_transpose: 

all { A:square } det(A)=det(trans(A)) 

proof 

let A: square be arbitrary 

n:=col_size (A) 

then n=col_size(trans(A)) 

det (A) 

=sum{P:perm <n>} sgn (P)*prod {I:l...n} A[P[II,I] 

by definition 

=sum{P:perm <n> sgn (inv (P))*prod {I" 1...n} A[inv(P)[I],I] 

=sum{P:perm <n> sgn (P)*prod {I" 1...n} trans(A)[P[I],I] 

since 

let P:perm <n> be arbitrary 

prod {I: 1...n} Alinv(P)[II,II 

=prod {I: 1...n} A[inv(P)[I]], P[I]] 

=prod {Il...n} trans (A)[P[I],I] 



3 3 8 Chapter 5 

Consider three possible patterns: P1, P2, P3. 

The pattern P1 includes both: 

- specifying a problem in some logical (formal) language as a set of formulae and 

then proving goal-formula by means of theorem proving technique; 

- compiling non-logical specification and applying formal methods of logical 

inference to the obtained specification. 

One can see that the latter variant is more effective because it provides a possibility 

of construction of an "external" specification language which can be problem 

dependent. This feature is essential from the practical viewpoint. 

The pattern P2 is oriented to the utilization of a logical proving system as a 

subsystem of CAPSS. In this variant logical proving mechanisms are integrated into 

intelligent dialog or intelligent helper as the components realizing control and validity 

testing of the formal transformations made by the user when solving a problem. 

Pattern P3 is the most restricted variant of logic utilization in CAPSS. It provides 

answering the questions which requires the answers: "yes" and "no". If the answer 

could not be found the system gives and indefinite reply. This pattern is helpfull in 

solving logical problems and will be paid special attention in this chapter. 

These three patterns are very important both as an automatized solution technique 

and as a paradigm of the integrating human- solver in the solution searching process. 

It is clear that these patterns should be incorporated in some way into the computer 

aided problem solving system (CAPSS). However, we must emphasize once again that 

there is something beyond these patterns that the system can achieve. 

It is evident that logical formalization of the problem may hardly be overestimated as 

a formalization tool. Its role in the searching process is rather limited. In particular, a 

proof represented as a strongly formalized chain of theory sentences, with the goal- 

statement as a result, does not reflect the human searching activity but mainly 

represents the product of this activity. We can also see that the user thinks in terms 

which are not strongly defined and may not even be correct with respect to the objects 



Programming concepts in problem solving 3 3 9 

under his consideration. To find an answer, all the necessary prerequisites should be 

considered. As we pointed out earlier, the problem considered as a partly defined 

structure is not supplied with all the necessary information. This imposes evident 

constraints on the use of logic as a universal solving approach. 

5.2. Universal algorithm paradigm 

We consider three different approaches to the universal algorithm concept. The first 

one is outlined in [61]. As the authors assert "... there should exist something, call it a 

universal weak method (UWM), that responds directly to a situation by behaving 

according to the weak method appropriate to the knowledge the agent has of the task. 

Each weak method can then be characterized by the small amount of knowledge it has 

about the task. The UWM is what is left after this characteristic knowledge is 

removed". Thus, even though the UWM does specify a nontrivial behaviour, it is a 

simple specification that provides just enough control to search a problem space. Fig. 

5.2 may serve as a pattern of UWM specification. 

The scheme shown in Fig. 5.2. is extremely general and may be regarded as a kind 

of "try-and-test" -pattern. For very large state-spaces it is unacceptable. However, the 

programming paradigm based on this, is interesting if we consider additional 

possibilities. 

(i) the possibility of (self)-learning; 

(ii) incorporating the heuristics to contract a search area; 

(iii) including the universal method as a function of the CAPSS external language. 

Point (iii) will be paid necessary attention in discussing the language conception for 

problem solving. Another approach was proposed in [62] by generalizing problem 

solving techniques such as divide-and-conquer, dynamic programming, tree and graph 

searching, integer programming, branch-and-bound method ,etc. The principle idea is 

to solve a parent problem by combining the solutions to various child problems. Thus, 

the solution to a parent problem Pi is associated with the solution to a set of child 



340 Chapter 5 

problems C i. If Ci=Q, Pi is called a leaf problem, i.e. it may be resolved without 

reference to other solutions. 

Elaboration: 

Goal: If the current problem space fails, the goal is unacceptable. 

Problem Space: ff the current state fails, the problem space is unacceptable. 

State: If the current operator fails, the state is unacceptable. 

Decision: 

Goal: If there is an acceptable available goal, vote for it. 

Goal: If there is an unacceptable available goal, veto it. 

Problem Space: If an acceptable problem space is associated with the current goal, 

vote for it. 

Problem Space: If an unacceptable problem space is associated to the current goal, 

veto it. 

State: If an acceptable state is in the current problem space, vote for it. 

State: If an unacceptable state is in the current problem space, veto it. 

Operator: If an acceptable operator is associated with the current problem space, vote 

for it. 

Operator: If an operator has already been applied to the current state, veto it. 

Fig. 5.2. 

A subset A i c C i is a satisfying subset for Pi if it is sufficient to enable the 

computation of the solution of Pi. We assume that the solution S i to a problem Pi 

depends upon the given satisfying set A i. Thus, there is a function f which constructs a 

solution S i from Ai, i.e. S i = f(Ai). 

Denote by P' a set of (sub)problems with known solutions. This is a dynamic set 

whose cardinality increases during the execution of the solving procedure. Also, 

introduce a set C/=  C i n P'.  The execution of the algorithm causes the suspension of 



Programming concepts in problem solving 341 

the problem Pi and maintains that suspension if Pi ~ P' and C i' is not a satisfying subset 

for Pi �9 As soon as this condition does not hold the problem Pi is restored. 

The main body of the general solving algorithm may now be presented as follows 

I621: 

{ main body } 

while (a main problem Po ~ P') 

do (select an unresolved problem with 

greatest precedence) 

process (selected problem) 

od 

where 

process(Pi)- 

if satisfying set for Pi is defined 

then 

Si := fi (Ci') 

P' := P' w {pi } 

restore problems depending on Pi only 

else 

expand Pi 

suspend Pi 

fi 

The main features of this general scheme are similar to that presented above. From 

our viewpoint, this scheme is more interesting for the aims of solving combinatorial 

tasks. We may conclude, however, that the universal algorithm cannot pretend to be a 

comprehensive framework for a programming paradigm in problem solving. Instead, 

we should consider the incorporation of weak-method techniques into the searching 

process that are connected to the definition of their place and means of realization. One 

of the interesting realizations of the universal paradigm is the system ALICE (A 

Language for Intelligent Combinatorial Exploration) [63]. 



342 Chapter 5 

The development of ALICE has been aimed at separating the goal specification of 

the problem from its solution. It employs a kind of declarative language for specifying 

problems. The system is oriented towards the class of complicated problems which 

require a large amount of computer resource. This general class of problems is defined 

by the common formulation of the form: 

"To find unknown X eD such that X satisfies the given constraints K(x)". 

The set D is supposed to be finite. The alphabet of ALICE consists of the next items: 

Word Meaning 

Let Definition 

TO FIND Goal 

WITH Restriction 

END End of definition 

CST Constant 

ENS Set 

COE vector of numeric coefficients 

COA 

MAT 

vector of alphabetic and numeric coefficients 

matrix 

FON function 

ING injection 

SUJ surjection 

BIJ bijection 

SUC successor 

PRE predecessor 

SYM symmetry 

VAL value 

CHE path 

ARB tree 

CIR scheme 

MIN,MAX min, max 



Programming concepts in problem solving 343 

* /  <.>.<.>.=. , .+ . - ,  , 

MOD module 

OBJETS definition of the set through its elements 

PDT set product 

INC including 

APP to belong to ... 

function definition 

QQS 

EXI 

whatever it would be ... 

there exists ... 

NON negation 

UN set union 

IN set intersection 

OR. AND disjunction, conjection 

Syntax of ALICE is defined by the following. 

<formulation>: :=<phrasc>*<data> 

<phrase>: :=<description>t<restriction>lEND 

<description>::=LET CST<constant name>l 

LET<vector><vector name> SUR<name>l 

LET MAT<matrix name> PDT<name><name> 

TO FIND <function><function name>:<name> 

<name><option>* 

<set definition>::= [<constant name>,<constant name>ll 

OBJET<object name>*l 

UN<name><name>l 

IN<name><name> 

<vector>: :=COEICOA 

<function>: :=FONIINJISURIB IJ 

<option>: :=SUCIDISIDMIIDMAICIR]ARBISUMIVAL 

<restriction>: :=WITH<logical expression> 



344 Chapter 5 

<logical expression> : :=<binary operator><logical expression> 

<logical expression>l 

NON<logical expression> 

<algebraic operator><expression expression>] 

MIN<expression>l 

MAX<expression> 

I<quantifier> APP<name><name> 

<logical expression> 

<binary operator>:: =ORIANDIOUIET 

<quantifier>: :=QQSIEXT 

<algebraic operator>: :=< I > I>__ I_< I;e 

<expression>: :=<operator><expression><expression>l 

<number>l<name> 

<operation> : :=+l -I* I/IMOD 

<number>::=<digit>l<number> 

<name>: :=<letter>l<name>. 

Consider an example of the task specification. Let it be necessary to find a Boolean 

vector x satisfying the following equations: 

0 <_ x l x  4 + 3x2x 5 - x 1 - 1 

0_< 2x 1 - 3 x  5 + x  4 - 2  

O___2x 2 +x3 - 3 .  

Specification in ALICE has the following form: 

LET 

SET I=[ 1,5] 

SET B=[0,1 ] 

TO FIND FUNCTION x:I -~ B 

WITH 

0 _~ x(1) * x(4)  + 3 * x(2)  * x ( 5 ) -  x ( 1 ) -  1 

0 _< 2 * x(1) - 3 * x(5) + x ( 4 ) -  2 



Programming concepts in problem solving 345 

0 < 2 " x ( 2 )  + x ( 3 ) -  3 

END 

Consider another example. It is necessary to assign each job from a given set T to a 

processor to minimize the total number of processors engaged and satisfy the criterion 

below 

yw(t)_< L 
t e T  

p ( t ) = r  

where W(t) is a processing time of the job teT; 

p(t) is a processor number which executes problem t. 

It is also assumed that all the processors are identical. 

This problem may be specified in ALICE as follows: 

LET 

CONSTANTS N,L 

SET T={ 1,N} 

COEFFICIENT 

W O N T  

TO FIND FUNCTION p:T ~ T 

WITH 

Vr, r ~ T  

Z,p(t)<_L 
t~T 

p ( t ) = r  

WITH 

M I N M A X  p ( t ) 
p teT 

END 



346 Chapter 5 

The main part of the solving algorithm used in ALICE is connected with constraint 

processing. There is a set of strict procedures processing the definite constraint types. A 

simple try-and-test technique is used if other effective methods cannot be applied. When 

indeterministic choice is to be employed ALICE uses a number of heuristic estimations, 

such as those shown below 

1)the number of constraints containing a given variable; 

2)complexity of expressions; 

3)the domain sizes of the variable ; 

4)coefficients values, etc. 

A scheme of the constraints analysis is applied to all the constraints in the form 

T p - T  n >_O or T p - T  n - O .  

where Tp denotes all variables prefixed by the sign "+", and T n denotes all members 

prefixed by the sign "-", for example 

in 2x  1 + x 2 - x 3 - 2 ___ 0 

- } - }. 

Thus, from the restrictions 

2x  I + x 2 - 9 _ > 0  

x 1 ~[2 ,5] ,  x 2 ~[4 ,5]  

ALICE produces new restriction 

x 1 _>2 

and from the system 

+ 2 y + 3 z > 3  

it produces y + 3z >_ 1 (using substitution x = 2 - y). The reader may find the 

necessary details in [63]. 



Programming concepts in problem solving 347 

5.3. Computer mathematics 

There are other systems in computer-aided mathematics with the programming 

paradigm which are remarkable for their incorporation of the human-solver in the 

solution process as the main component and algorithm maker. We have in mind the 

computerized algebraic systems, such as, for example, MACSYMA, REDUCE, 

muMATH, SCRATCHPAD and others. All of these have the following common 

features [64]: 

- the programming process is highly interactive: the user has the opportunity to 

control and intervene in the computing process at any time; 

- almost all the data used are the kind of mathematical expressions written in an 

ALGOL-like language; 

- the majority of the algebraic computing systems used in practice are realized in 

Lisp. 

In comparison with the conceptions considered earlier, this programming paradigm 

is associated with the scheme which is highly attractive for problem solving. Remember 

that the principle dividing responsibilities between the human-solver and the computer 

prescribes that the formal part of the problem be left to the computer and informal part 

to the human investigator. 

However, these systems of computer mathematics are not recognized as problem 

solving ones because they do not deal with the problem logical structure (regularities) 

and the search for a solution as it is understood, for example, in heuristic programming. 

5.4. Expert systems 

The traditional problem solving technology is based on running the program 

compiled by the human-solver on the computer. The majority of programs consist of an 

imperative set of precise instructions for the computer. Each instruction is exact and 

unambigious. We can see that in this case, the program represents a complete version of 



348 Chapter 5 

an algorithm written in the input language of the computer. Two basic points should be 

clarified when building a programming paradigm of problem solving: 

A: "How to solve a problem (in general)?" 

B: "How to organize solution process in the human-machine media ?" 

The traditional paradigm is the following: 

A: As it may be solved by every individual. 

B: Computer simply scans and performs presented solving procedure. 

The expert-system paradigm is as follows 

A: As it may be solved by well qualified experts. 

B: Computer derives the solution from the knowledge base by means of an inference 

mechanism. 

As the reader can see, the most significant difference in the latter paradigm is in 

point "B". This is due to the fact that a solving algorithm is considered to be a priori 

unknown and is searched for on the basis of a logical inference machine or a Bayes' 

resolution strategy. Thus, the development of informal solving strategies is an 

important part of the theory of expert systems. The paradigms given above may be 

represented in other forms. Thus, a traditional conception has the form: 

"Data + Algorithm = Program" 

similarly, an expert-system paradigm takes the following form 

"Knowledge + Inference Strategies = Problem Solving" 

In fact, both knowledge and inference mechanisms are tightly connected to each 

other. For example, Prolog as a knowledge representation language and as a logical 

inference system, is characterized by the following conceptual scheme 



Programming concepts in problem solving 349 

A: Try-and-test strategy as a universal solving approach 

B: Solution is derived by computer from the Horn-clauses specification of a problem 

prepared by human, 

Comparing the above paradigms one can conclude that the expert-systems-based 

conception is more general; its effectiveness depends crucially upon the knowledge 

treating mechanisms and the sufficiency to produce desired results. 

We should, however, expand the expert system paradigm as shown below to reflect 

human participation in the solving process: 

"Knowledge + Inference strategies + User interface = Problem-solving-system". 

When analysing this scheme one should bear in mind the following useful features of 

the expert systems: 

- availability of a knowledge base about the task and its solutions; 

- searching for a solution on the basis of inference strategies 

- usage of a form of the knowledge representation language 

Expert systems mechanisms may be useful in: 

(i) recognizing task types; 

(ii) definition of the applicable solution strategies and heuristics; 

(iii) appreciation of the quality of the solution obtained; 

(iv) formulating new subgoals. 

Consider the following frame of consulting procedure used in CAPSS. 



3 50 Chapter 5 

101 
I 

question: Is the problem reduced to the 
sequential (e.s.o.) choices. 

I -~  
I Ill 

question: Is the number of elementary 
solving operations large? 

IrES IINO i l Do not know 
I 

121 1161 
I 

You can use: 
. dynamic_ programming 
tp-transt0rm method 

31 Z-transform method 

4. A*-based searching 
procedures 

Do not know I 

> 
151 

! 

question: Can you formulate 
mathematical model of the 
problem? 

i YEs Ii No Ii Donotknow 
I ! I 

[3AI I3B[ 14 [ 

call for the method 
instantiation procedure 

13BI 
I 

question: What is to be found in the problem' 

~lement I~et ]~lgorithm I~r 

1611 1117 III ! 1 8  9 

141 
I 

Call for the learning 
editorial subsystem 



Programming concepts in problem solving 3 51 

I l l  
I 

Is the problem reduced to the system 
of (in)equations? 

[YES] [NO [ 

I i 
[13l I~1  

] 3Am 
I 

Is the problem 

I numeric ] 

optimizing ] 

logical ] 

]13] 

Y] 

question: Is the problem 
reduced to solving 
equation(s)? 

~.S el NOi [ D~ not know I 

! I 
1,31 

I 
question: Is the domain 
containing unknow value 
finite? 

! 
Illl 

YOU should specify the 
problem in the input 
anguage of CAPSS and 
all for equation making 
ubsystem , 

You should specify the characte- 
ristic properties of the 
unknow variable(s) and spe- 
cify the domain in order the 
system can exploy 
exhausting search in domain 



352 Chapter 5 

question Can you (sub)divide the problem 
into subproblems with smaller 
sizes? 

! Y~sl lNo ! ! ,D,~ ,n,~ ~ ~  i 1 
[5 i 

Formulate the 
subproblem(s) 

I 
101 

question: Will you be 
satisfied with heuristic 
solution ? 

i~i01 
, [ , 

Call: for the heuristic 
support solution 
subsyslem 

question: Will you try to 
find a solution Yourself? 

I , , 1 

1 'l', 7i 
You should specit~ the 
problem in the language 
of CAPSS and call for the 
universal heuristic 

solution strategy 



Programming concepts in problem solving 353 

161 [-v-I 
I ! 

question: Can the problem be speci- 
fied in terms of (#,>, >- ,---" ,=, t> ) - 
relations 

i~si i  Noll Donotknow I 
I ! 

1141 
I 

You should specify the prob- 
lem in the input language of 
CAPSS and call for resolutio~ 
strategy 

question: Is it possible to exclude 
bad solutions from the search area~ 

1151 
! 

formulate the exclusion 
specification 

i 
Call for the universal heuris- 
tic solution strategy with 
search area contraction 
methodology 

,oll ~o no,~no~ 

You should try to find new inter- 
pretation for the problem 

i 
Are you a success? 

I~-ol 



354 Chapter 5 

I 111 1201 
! I 

question: Can you build a solution tree in 
the form 

parent-value 

child-value 1 ... child-value N 

YEs I 

Very good: try to choose any 
other child-item which is to 
be found.This item defines a 
new subproblem 

1121 !161  
, ! 

Use local optimization 
methods: call correspondin~ 
specifications from algo- 
rithm library 

Are you a success? 

I I I~ol 
I ! 

191 I1~1 



Programming concepts in problem solving 

181 
i 

question: Can you use the technique of contracting the 
search space by introducing the effective restrictions 
on the basis of weak-strategy ? 

355 

[YES] 
! 

[ Nol 

question: Can you possibly de- 

E ~  
. . = . , .  

fine the finite domain of the 
solution localization? 

[YES] 
! 

I ~'~ 

question: Will you try to find solution by 
Yourself?. 

[YES] 

A 
]NO ] 

Call for the inductive reaso- 
ning support subsystem 

question:Will an algorithm 
reproduce a hidden regularit 
in task domain 

I~sl I~ol 
i I 

118] 1191 
] I 

Will it be form of theorem proof?. 

Call for the deductive 
reasoning support 
subsystem 

You should either recon- 
sider the problem or try 

it Yourself 



356 Chapter 5 

5.5. Evolutionary problem solution synthesis (EPSS) concept 

The E P S S  - approach is proposed in [65]. It takes into account the main features of 

the human mind as an ill-defined system, and difficulties in control mind processes. 

The model of EPSS evolves spontaneously along with the model of the problem 

solution. It is defined as 4-tuple 

M(EPSS) = < Z,C,D, RI>, 

where 

Z is a language of knowledge objects or knowledge system representation; 

C is a calculus of knowledge objects and knowledge system evolution; 

D is a model of a problem solution synthesis, and 

R I represents the controller of information interaction between the mind and the 

external models of the knowledge systems. 

The syntax of a language is user-dependant. The process of human-controlled 

solution synthesis may be interpreted as the growth of a solution tree by means of the 

following manipulations: 

- e x p a n s i o n  of the tree nodes; 

- returning to previously expanded nodes; 

- deleting nodes from the solution tree. 

In order to realize these manipulations,the following operations are introduced : 

generation (Gen(.)) and local synthesis (D(.)) as the elements of calculus C. Each 

operation transforms the current state (Ej,Mj,Cont(j)) to the (Ej+I,Mj+ 1 , Cont(j+l)) 

with a new set of the knowledge products Tj+ 1. Here: Ej represents the problem 

environment; M j is a solution model and Cont(j) is the structure of formation 

operations. Each formation operation is an indeterministic rule of the form: 



Programming concepts in problem solving 357 

<<Observational description of the required changes in the knowledge objects at E j 

and M j >, <Conditions which have to be satisfied>> ~ <Operational description of 

changes of knowledge objects at E j and M j >. 

Every rational operation causes a decrease of the system entropy. To evaluate this 

decrease numerically, the notion of Formation Energy F is introduced. The Formation 

Energy F measures the external representations of the knowledge evolution process with 

the real function it: M j --~ { 0,1 }. The law describing the changing of F is represented in 

the form 

Fj+I = Fj + aq) .Mj ,  

dFj. where a(j)= ~ ; 
dyj 

AAj - is a subjective measure of the "distance" to the solution emergence, (related to 

the time j); 

y j - is the inner formation energy needed by the mind to promote a solving process 

at the state j. 

The inner formation energy y is hard to be measured directly and it is proposed to 

employ the dependancy F = F(~,) shown in Fig.5.3. Here, the interval [0,F L] is the 

domain of EPSS destruction, the interval [F L, F N] is the domain of uncertainty, and the 

interval [F N, 1] is the domain of a succesful run of EPSS. 

L _ 

/ 
I 
[ 
I 
I 
I 

Fig.5.3 



358 Chapter 5 

The approach briefly outlined above is remarkable for the incorporation of the 

informal system such as a human mind in the solving process. There are some aspects 

which should be addressed : 

(i) The language L for problem conceptualization is user-defined and not 

predetermined. 

(ii) A form of the problem measuring is designated as Formation Energy. 

(iii) The solution Tree is augmented by a strong interaction with user, by means of 

controller R I . 

5.6. Mathematical induction and pattern recognition approaches 

These patterns are aimed at the investigation of semiformalized systems and the 

revealing of new regularities in the pattern domains. Consider the three series of 

nmnbers A, B, C below 

A: 4, 3,-6, 5 , 2 . 5  ... 

B: 1, 4, 2, 2.5,-2 ... 

C: 9, 7.75,-7, 9.5,-0.75 ... 

The pattern recognition program in arithmetic [66] will establish that C = 

=MB+A+B. Consider the basic ideas briefly. To derive an arithmetic law for the given 

number series, the program first creates a set of logical characteristics. Each 

characteristic is built as follows: a simple arithmetic function N i = fi(A,B,C) is 

calculated (for example, f i~A + 13 or fi a_ C:B ,etc) and then each of the next logical 

operators is applied to the calculated value N i : 

L 1 Ni  - O, 

if N i is an integer 

otherwise 

L 2 N i - I ,  ifN_>O 

L 2 N  i - O, otherwise 



Programming concepts in problem solving 3 5 9 

L N i - l ,  i f [ N [ > l  

L3Ni - O, otherwise .  

Given a set of logical characteristics l v. = L i N i, the program then finds the values of 

the logical functions Fm(lij,lkn), where F m is one of the given set of boolean functions: 

ab, ab,ab,ab, a vb,a vb,a vb,ab v ab. 

Then, to generalize the F m - values to the entire series A ,  B ,  C ,  the following 

conjunction is used: 

Crm -Fm [ L j l f  l ( Al , Bl , (.;1); L j 2 f  2 ( A1, BI , CI ) ] A 

Fro[ L j i l l  ( A2, B2, C 2 ); L j 2 f  2 ( A2, B2, C 2 )] A 

A . . . A  

Fm[Ljlfl  (Ak ,Bk, Ck ); Lj2U2 (Ak,Bk,  Ck )]. 

Not all the characteristics are used though, only those that provide a distinction 

bctween diffcrent number series and are the same for two different examples of thc 

series with the same arithmetic law. 

The above outlined solving pattern is evidently a kind of universal "tr3-and-test" 

strategy. There are, however, important issues which directly concern this techniquc. 

namely: 

- recognizing the problem model within the given classification of models, and 

- choosing a heuristic suitable for the given problem specification. 

Note, that the pattern recognition technique is also used in inductive logic models 

[67] and expert system inference mechanisms. 

We can also consider inductive reasoning as an attempt to remove the main 

restrictions of the deductive systems connected with the "closed world principle" 

assumption. Inductive reasoning is based on the Mill's formal schemes outlined briefly 

in the previous chapter. Formally, an inductive reasoning system tries to establish two 

binary relations: 



360 Chapter 5 

-"object X has properties Y"; 

-"W is a consequence of a reason V". 

An inductive solver uses a set of elementary solving procedures for: 

-evaluating the predicates which assert object similarity or dissimilarity. The former 

are used to find the reasons sufficient for the given phenomenom to arise; the latter arc 

used to find a set of consequences of the given reason; 

- checking up the additional conditions used to partition a given set of hypothesis 

which use the plausibility levels; 

- generating the set of consequences from the given predicates instantiated by the 

number of examples and counterexamples; 

- generalizing a number of hypotheses with the aim to establish logical laws which 

cause different combinations of phenomena; 

- establishing new facts which are unknown to user; 

- explaining of the results obtained by the induction and verifying their consistency. 

These procedures are formalized as the axioms and inference rules, so the whole 

approach is the same as in the theorem proving systems case. 

5. 7. Intellectual support concept in the problem solving system 

Practical realization of the CAPSS has a number of difficulties dependent on: 

- insufficiency of pure logic methods, theorem proving, and other techniques for 

solving various problems; 

- impossibility to reproduce effectively the mechanisms of intuition and conjecture; 

- difficulties in making interpretations solely on a formal basis ; 

- lack of a good theory explaning human measurement of a task as a psychological 

phenomenon et.al. 

The above outlined and other approaches are mainly directed towards automatic 

problem solution which is also connected with three serious drawbacks" 

1. Automatized solving systems inherit an incompleteness property as do all formal 

systems, including arithmetic, due to the well-known G6del'sincompleteness theorem; 



Programming concepts in problem solving 361 

2. In fact, the problem formalized in such systems is specified by means of 

declarative knowledge sufficient to derive a solution; 

3. A user is not directly involved in solution synthesis and loses inerest in finding a 

solving algorithm. 

As we can see these reasons are rather serious for putting forward another 

programming paradigm different fromthe "full automatization concept". This paradigm 

is connected with the supposition that there is no program in the traditional sense. 

Human - solver has at his disposal a special language (or a number of languages) which 

enables him to describe a solving process as a set of transformations of the problem's 

states. The entire process is partly organized under a user's control (to provide intuitive 

and heuristic behaviour) and partly automatically (in traditional sense). The paradigm 

includes the following basic elements: 

- insertion points and computation patterns 

- intelligent oracle 

- a problem-free user defined language (L0) 

- a formal language for problem specification (L1) 

- an operational user language to manipulate task concepts (L2) 

- making equation subsystem (MES) 

- a library of weak wethods (WML) 

- universal solving strategy and heuristic utilization. 

Let us get started to consider these elements in detail. 

5. 7.1. Languages 

To represent different optimization problems, a kind of mathematical language is 

needed. More exactly, we need some languages. 

The following is the syntax of the language L 1. 

Terms: 

(i) constants (vi) TRUE (true) 



362 Chapter 5 

(ii) variables 

(iii) functors 

(iv) oo (infinity) 

(v) ~ (empty set) 

(vii) FALSE (false) 

(viii) NULL (null element) 

(ix)_ (anonymous variable) 

(x) set 

Primitive relations 

(i) ~ (negation) 

(ii) & (conjunction) 

(iii) v (disjunction) 

(iv) ~ (implication) 

(v) .-.o (prohibition) 

(vi) >- (precedence) 

(vii) Ii (parallelism) 

(viii) : (alternativeness) 

(ix) =,>__,> (equalitylequal or more[more) 

(x) # (incompatibility) 

(xi) e (to belong to) 

(xii) r (to be a subset of) 

Quanifiers: 

* all  

�9 . . . \ {p}  

(t) 

3 

one of ... (each one of) 

for all subjects excluding those with the property p 

for the given t subjects ... 

there exists ... 

is to be found 

where such that... 



Programming concepts in problem solving 363 

Primitive functions: 

(i) +,-,*,/(addition, subtraction, 

multiplication, division) 

(ii) Z(iwherei  cD) (,~.j) 
i~/) 

1-I (i where i ~D) (1- I i )  

(iii) max(f where f ~D) 

min(f where f ~ D) 

(iv) Ycp 

(v) *q~ 

(vi)*!~p 

the value of an arbitrary element belonging to r 

the cardinality of ~p 

the sum of all elements in r It is equal to Z(X where x ~r 

(vii) value (Z where P(Z)) the value of element Z with property P(Z) 

(viii) set (T where P(T)) the subset of all elements x ~ T with the property P(x), 

Type and domain constuctors 

bool boolean variables 

sca scalar 

ma matrix 

boolmat 

unseq 

seq 

set 

graph(U,W) 

fun T ~ Q 

bifun 

surfun 

boolean matrix 

unique sequence (sequence without repeating) 

sequence 

(" intset- a set of integers ') 

~, realset- a set of real values ) 

graph with the vertex set U and arc set W 

function from T in(to) Q 

biection 

surjection 



364 Chapter 5 

infun injection 

w set union 

n set intersection 

\ set subtraction 

6_4 - "by definition"- operator 

Selected keywords: 

"corresponding to", "associated with", "let", "is". 

Elementary examples. 

Example 1. 

There are 6819 TV sets in a warehouse. 516 must be shipped to one store and 293 - 

to another. How many TV sets will be left in the warehouse after these shipments? 

W, S 1, $2, $3 • set 

TVS • sca 

! W.*TVS=6819 

!SI.*TVS=516 

$2.*TVS=293 

?S3.*TVS where ($3 w S 1 u S2=W) & (S 1 n $2=•). 

Example 2. 

To maximize" 

5X 1 + 6~2x 3 + 2~1~ 4 + 8f3x 4 ~ max 

2Xl x2 + 6x3 + 4 x3x 4 < 6 

42-1 + 3~2 + 5~3 + ~4> 4 

X ~ set, Z ~- set 



Programming concepts in problem solving 365 

X = { X  1, x 2 ,  X 3, X 4 

Z={O, 1} 

F ~ surfun X --~ Z 

?F where 

(max(5x 1 + 6~2x 3 + 2~lX 4 + 8~3~ 4 ) ) & ( ( 2 x l ~  2 + 6~  3 + 4x3~ 4) < 6) & 

( (4x l  + 3x2 + 5x3 + x4 )>4 ). 

Example 3. 

Let the following graph be given 

Fig. 5.4. 

It is required to find the minimum total length path connecting vertices 1 and 3, 

T,U,W ~ set i,j ~ sca 

PATH ~ seq 

GPAPH(T,U) 

i,j e {0,1 .... ,N} 

T={xl,x2,x3,x4,x5 } 

U-{ u( 1,2),u(2, 3 ), u(2,4), u(1,4), u(4,1 ), u(4,5), u(5,2), u(4,3 ) } 

W={2,10,1,3,6,5,4,3 } 

F ~ b ifun U ~ W 



366 Chapter 5 

where U corresponding to W 

PATH(o~,I3) ~ unseq {u(i,j)where 

(u(o~,_) ePATH)& 

(u(_,[3) e PATH)& 

(*u(i,j).! u(j,k) where j~13)} 

?PATH(I,3) where 

(min(~(r where (r=F(t))&(t e PATH))). 

The following are equivalencies on the set of primitive relations" 

(i) ~ A  -- # ( A )  

(ii) A v B ~, ( # A ) # ( # B )  

(iii) A --o B---right(A)#B 

(iv) A & B---#(A#B) 

(v) a : b -  a#b 

(vi) A ---~ B ~ A#B 

(vii)A >- S ~ right (B)#A. 

Consider now language L2. It includes the following conceptual operators. 

(i) find(xIP(x)), where P(x) is a property of an object x formalized by means of the 

predicate language and functional analysis. 

Examples: 

find(xlx2-2x+ 1=0) 

find(xlx+sinx=l/2) 

find(x,ylx+y=2,x-5y=8) 

find(xl,x2,x3,x4lxl#x2, #(x3,x2,x4), #(Y2,x3)), 

Obviously, this operator may be adequately expressed in L1, e.g., 

x ~ s c a  

?x where (x+sinx= 1/2). 



Programming concepts in problem solving 367 

(ii.a) create_.problem (situation, conditions, criterion) 

(ii,b) create_subproblem (problem, situation, conditions, criterion) 

Example. 

>create_problem (situation SO; 

f0,A1,B 1,C2,B2,fl,f2 ~ bool 

f0=A1-C2 

fl =B 1-~--~B2 

f2=~Alv~B lvB2&C2; 

criterion 

f0 & fl & f2=TRUE) 

(iii) test_validity (x ~conditions; situation; criterion) 

Example. Assuming the previously created situation SO we have 

>test_validity(x ~ A1 & B2; situation SO; 

criterion x=TRUE) 

>VALID 

(iv) derive_consequences(situation,conditions,goal) 

Example 

>derive_consequences (situation S0; ; goal *) 

/* this command produces logical consequences from SO */ 

>A1,B 1,B2,C2 

A 1,B1,B2,C2 

etc. 

(vi) changesituation (situation 1" conditions 1; 

situation 2: conditions 2) 

situation 1 is replaced by the situation 2 



368 Chapter 5 

(conditions 2 are introduced instead of conditions 1) 

(vii) create_computation._patterns (xl,x2 .... ,xn[yl,y2 ..... yn) 

Let xl,x2,...,xn be media objects and for every object x i the corresponding 

procedure(-res) which calculate x i is known. Thus, designation 

X i = q9 i (Xil, X i 2 , . . . ,  Xi t ) (*) 

is used do denote that x i is calculated by procedure qo i with inputs Xil ,Xi2 . . . . .  xit.  Let, 

for instance 

q'l:< Xl,X31X4 > 

r <lxl, x2, x5 > 

(,03: < x2, xs I xT , x9 > 

(P4 ;< X 2,x7]x4 > 

(p5"< xl  , x3,  x4 ] x6 , x 8 > 

(/96" < X3, X6]X5, X7 > 

(/97:< X5,X6IX 9 >. 

(**) 

Here a vertical bar is used to separate inputs and outputs of the procedure. The 

system (**) is called a computation pattern.This is used for automatic equation 

synthesis on the basis of the procedure given in chapter 3. To represent a computational 

pattern a kind of graphical editor is used which enables the creation of a hierarhical tree 

for the problem. Let there be the following problem: "to find the sum S, 

En l I End21 [n 2 j En 2k 1 
S = 2 + 2 2 + 2 3 + ' "+  2 k§ +"" 

for the given integer n>0. Here [x] denotes the greatest integer value t such that ~x ,  

e.g [3.21]=3, [4.09]=4 , etc. A computational pattern for this problem is shown in 

Fig.5.5. 



Programming concepts in problem solving 369 

~o l 

Fig. 5.5 

q~o and q~t are represented as follows: 

q91 a [ r  + 1]  - [ 2 r 1 -  [r]  

n,r are free variables. The resulting value of S is computed on the basis of the 

substitution ,q~l for q~o, which gives 

~-  Er]- [~] +[~1- [~]+...o+ o- o+... 

or S=[rl=r, where r=n. 

(viii) use_substitution (situation, contextl, context2). 

This operator provides a unification of the two contexts. 

Example 1. 

>use_substitution (* x 2 - x + 2; 

x ~ yl/2) 

>y.yl/2 + 2 

Example 2. 

>use_substitution(*; 

P(X,f(X),a); 

P (a,u,W)) 



370 Chapter 5 

X=a, u--f(a), W=a 

(ix) define_rule (semantic specification). 

This conceptual operator takes task's concept specification (see section 0.5.2), for 

instance: 

>define_rule( 

< MA (binary, symmetrical) > 

< R D 2 >  

< RSP 1, RSP7, RSP9 > 

<SS1 > 

< E R 2 >  

<RR3 > 

< SP5 > ). 

This enables us both to define the type of a problem within the classification 

available and determine a method of solution or a heuristic. Thus, the answer may be as 

in the following 

> This is a TA-problem" maximum zero-submatrix of a given 0,1- matrix. There is a 

number of solving methods: TA.M1, TA.M2, TA.MI5, TA.M24. Fore further 

information see the corresponding method depiction. 

(x) create insertion point (name) 

(xi) delete insertion point (name) 

(xii) run (name, inputs, outputs). 

These operators will be discussed later. 

Finally, consider language L0. As it was pointed out earlier this is a form of the user 

dependent language without a strictly outlined syntax. L0 uses graphical editors to 

represent a solution synthesis as a growing tree. Each vertex of the tree begins with the 

standard frames: 



Programming concepts in problem solving 371 

(i) What is given? 

user's specification 

(ii) What should be found? 

the specification of a 
goal statement 

(iii) Solving strategy and making subproblems 

the scheme of solution , ~  . to other 
�9 vertices of 

plan " ~  . a solution tree 

(iv) L0-depiction of a solution 

interactive man-machine 
solution synthesis 

Thus, as we can now see, languages L0,L1,L2 correctly correspond to the 

programming paradigm of CAPSS we deal with here. Namely, L0 and L2 provide 

manipulations with a problem concept by a human-solver and L 1 is used to specie' the 

formal task to lhe computer-solver. L0 is a user-defined language providing context-free 

manipulations of a problem. On the contrary, L2 is a context-dependent language with 

a formally defined syntax: It enables the user to create such mechanisms as an 

intelligent oracle and insertion points,to perform context unification and to make 

equations. 

5. 7.2. An intelligent oracle 

An intelligent oracle represents a form of the logical prover which gives one of the 

three possible answers to the user's qucstions: "VALID (TRUE) INVALID (FALSE) 

and INDEFINITE (FAIL TO ANSWER)". Consider the following logical puzzlc: "In 

the wood there live knights, liars and sorcerers. Knighls tell only truth, liars tell lies 

and a sorcerer may be either a knight or a liar. One meets persons A, B, C. 



372 Chapter 5 

It is known that one of them is a sorcerer. A says that C is a sorcerer. B says that he 

himself is not a sorcerer. And C says �9 "At the least two of us are liars". The question is 

who is the sorcerer (a knight or a liar)? 

First, the user creates the problem: 

>create_problem (situation SO; 

f 0 =  A1 -~C2 

f l  = B l u r B 2  

t2 = C1 ~ ~A1 & -~B1 v ~C1 & ~A1 v ~C1 & ~B1 ; 

f3 = A2 & --1B 2 & ~C2 v ~A2 & B2 & ~C2 v ~A2 & --,B2 & C2 

/* x = A,B,C 

x l = 1 if x is a knight and 

x l = 0 if x is a liar ; 

x2 = 1 if x is a sorcerer, and 

x2 = 0 otherwise */ 

criterion: f0 & f l  & f2=TRUE). 

Then the user may use the following fragment of interactive dialog with the oracle" 

>test_validity (x 6_A2 & A1 ; situation SO; 

criterion x=TRUE). 

>INVALID/* A2 & A1 is FALSE */ 

>test_validity (x 6_~A2 & A1 ; situation SO ; 

criterion x=TRUE) 

>INVALID 

>testval idi ty  (x A__A2 & -,A1 ; situation SO; 

criterion x=TRUE) 

>VALID 

>testvalidi ty(x AB2 & --,B 1 ; situation SO; 

criterion x=TRUE) 

>VALID 



Programming concepts in problem solving 373 

Thus, the user is able to test the validity of his conjectures. However, he is not 

thoroughly confident in the consistency of the initial model SO. He may establish 

inconsistency (derivability of the formula Z & --,Z) by means of the operator 

"derive_consequences (situation, conditions, goal)", for example, 

>derive_consequences( SO; *; *) 

This command will produce all the interpretations valid in SO: 

>A1,B 1,~C 1,--,A2,~B2,C2 

--,A 1,--,B 1,--, C 1,--,A2,B2,-~ C2 

--,A1,B 1,~C1,A2,~B2,~C2 (etc.). 

The user may change the problem specification, for example 

>change_situation (situation SO: 

f0 = AI - C 2  

fl = B 1 --~ ~B2; 

situation SO: 

t2 = C1 ---> ~A1 & -,B1). 

This operator results in adding a new formula t2 to the "old" formulas f0 and fl. It is 

not difficult to observe that, for the redefined situation sO, the user needs to make a 

greater amount of assumptions to get the answer "Sorcerer is a liar". This example 

demonstrates that there is a real share of responsibilities between the human-solver and 

a system. Evidently, that oracle is not restricted to logical puzzles. The concept outlined 

here is a programming pattern which integrates a wide field of logical and analytical 

problems. 

5. 7.3. Insertion points 

To clarify the notion of the insertion points consider an example. Suppose,the 

human-solver attempts to find a sum 



374 Chapter 5 

(all the designations are the same as in section 5.7.1). 

The following is a possible L0-specification of a solution depiction 

S - [ - ~ 1  + [.~=2 ]+. . .  +[ n~2,' ]+. . .  +0. . .  

{x+y]>__[x]+[y] 
[x-y]<_[x]-[y] 

>create_insertion_point (A 1) 

I A intset 

R A realset 

S , x ~ R  

l,n,k e I 

F A infunR---~ I 

where F(x) = max(n where n _< x) 

Q a b ifun I + I 

where Q ( . ) -  ~, (f(n~2~ ' )) 

where 

k = min(z where F( n+2'] 2 `+1 ] - -  0 ) ) ,  

The user may now use A1 as a subprogram: 

run (A1,5,x). 

x=5. 

run (A1,68,x). 

x=68. 

run (A1,321,x). 

x=321. 



Programming concepts in problem solving 375 

From this example the user can guess that the sum S(n)=n. To prove the fact ,he may 

create another insertion point 

>create_insertion_point(A2) 

define_rule(_). 

run (A2, 

< 

<SE (functional sequence)>, 

<RDI>, 

<RSP5>, 

<RR7>, 

<ERI>, 

<SS4>, 

<SP 1 >>,_ ). 

(i). One may use the scheme of inductive proof in the form 

T(n) is supposed to be TRUE 

(ii). One may try to represent the functional sum in the form 

FSum=f(0)-f( 1)+f(1)-f(2)+f(2)... e.t.c. 

(iii). One may see some analogies with the typical examples. 

(iv). One may try to apply the Z-transform method. For more information see the 

corresponding method depiction. 

Suppose, the user has decided to attempt case (ii). The system prompt may be as 

follows. 

Theorem. If function q~(x) satisfies the condition 

q:}(x+ 1)-rp(x)--f(x) 

then it is correct that 

f(O)+f(1)+...+f(n-1)=q~(n)-q~(O). 



376 Chapter 5 

Using this latter formula the user will possibly try to establish the relationship 

between 

1 Ix+ 51 and [x]. 

This relationship is a key factor in the resulting solution. 

Thus, we can see that insertion points enable the user to establish an interface with 

formal methods and system-oriented procedures. These may be user-defined 

subprograms and functions, rule specifications, and an intelligent helper (not 

considered here). 

5. 7. 4. Exhaustive search procedure 

The operator "find (xlP(x))" may be directly realized on the finite domain D ,x ~D 

with the small cardinality IDI. This may be possible due to the resolvability of the formal 

constraints P(x). Thus, for the problem 

x a_.set, Z a_.set 

X={ XI,X2,X3,X4,X 5 } 

Z={O,1} 

F A suffun x ~ Z 

?F where 

((XIX 2 VX3)&(X 1VX 3 VX2X4) ~;(X" 4 V XlX3)=TRUE)) 

the system may produce the following sequential solution procedure: 

(i) xl=0 (randomly generated value) 

x 3.1.(~ 4 v x 3 )=TRUE (reduced constraint) 

(ii) x3=0 (randomly generated value) 

0=TRUE (fail) 

x3=l (alternative assignment) 

1 =TRUE 

F A<Xl=0 , x3=1> 



Programming concepts in problem solving 

Yet another example 

U={u(1,2), u(2,3), u(2,4), u(1,4), u(4,1), u(4,5), u(5,2), u(4,3)} 

CYCLE ~ unseq {u(i,j)where 

(*u(i,j). ! u(k,j))& 

(u(k,i) e PATH)& 

(u(i,a) # u(i,b) where o~13)} 

?CYCLE 

The solution process resembles the previous one in the main features �9 

(i) u(1,2) (first choice) 

(ii) {u(1,2), u(4,1)} (second choice) 

(iii) {u(1,2), u(4,1), u(2,4)} 

>CYCLE={u(1,2), u(4,1), u(2,4)}. 

377 

5.8. Making a semantic structure of the problem 

Let there be given an L 1-specification of the problem with the form 

X,Z A set 

X={Xl,X2,X3,X 4 } 

Z={0,1} 

F:surfun X --~ Z 

?F where 

(max(5x 1 +6~2x 3 +2glX 4 +8~3~ 4 )). 

Now the question becomes how to solve this? Is it necessary to have a kind of 

universal solving procedure (for example, in terms of Tarsky's theorem [68])? However, 

we adhere to a specialized problem-dependant approach. The next step we are to realize 

is that of making a semantic structure of the above Ll-specification. Fortunately, there 

are a number of available conceptual frames for building such a structure. The reader is 

now referred directly to section 0.5 (for problem conceptualization). The frame 



378 Chapter 5 

language outlined there is quite suitable for our purposes. The result of this 

conceptualization is shown below: 

We assume the availability of an appropriate interpreter realizing mapping L 1- 

specification ~ Frame_based_semantic_representation. To continue these 

considerations we assume also that CAPSS is specialized on the definite form of a 

mathematical problem (in our case it is the discrete optimization area). A very 

advantageous feature of NP-complete problems is their reducability to each other. This 

opens us good possibilities for realizing a solving strategy based on the following 

scheme.Each method (procedure, heuristic, rule) is specified in the frame knowledge 

base by means of a semantic pattern SP i. We directly associate SP i with a general task 

concept structure (Fig. 0.6) where the task is considered to be an input Ll-specification 

unifiable with SP i. The method i is considered suitable for the problem j if 

SP i (is a generalization of) L I. 
J 

where Llj - is a L 1 - specification of the problem j. We shall use a simpler notation 

for this relation, namely 

x,l,y 

will denote that y is a realization of x. 

Two main problems are associated with �9 : 

(i) pattern unification, and 

(ii) pattern transformation. 

The problem of the pattern unification is the same as the problem of the term 

unification in Prolog. The main difficulty is connected with point (ii), i.e. pattern 

transformation. It is, therefore, necessary to give some explanation of this.. 

To apply this method to the problem with the previously defined task concept it is 

necessary to use a domain transformation. Consider the following two concepts as an 

illustration. 



Programming concepts in problem solving 379 

i 
dora.in .... 1 

[ task concepi ! 

[ 
(*) 

set_of_variables" X 1 = {x 1 , x 2, x3, x 4}" function domain 

set_of_constants: Z = {0,1}" function image 

.._ list_of_weights: W = (5,6,2,8) corresponding to X2 

set_of_variables:,X 2 = {x 1 , 7 2 x 3' x 1 x 4 '  x 3 x 4 } 

I 
concept_of_conditions ] 

.... rest ctions ] 

R 1 �9 max (5x 1 

IL pseudoboolean 

defined on X 1 by F 

1 
concept of a solution . ] 

function F: X 1 ~  Z satisfying R 

I ," , 

I conoept oe formations 

technique for solving pseudoboolean 
equations 



380 Chapter 5 

I 
domain type ] 

, , ,,,,, , ,  

[Method concept ] 

,, ! , , t , t  

set_of_objects A= {a l,a2, .... a N } 

set_of_objects B = {b 1,b2, ... ,b M } 

list_of_weights C= {CrC 2' .... ,c N } 

corresponding to A 

I 
concept_of_conditions 

:~_~ 

(**) 

__ binary relations R(A,B)c (AxB) 

__ matrix boolean coveting D with rows A and 

columns B where D(a i 'bj )=1 iff R(a i ,b 

and D(a i ,b j )=0 iffR(~ 1 ,b j )=FALSE 

j )=TRUE, 

r . . . . . . . . . .  

conceot of a solution 

a subset A*c  A where V b. 3 a. where 
- j 1 

(R(a i,b j )=TRUE) & (a i e A*) & min(Y.(c i )) 

The following transformations are a part of the allowable homomorphisms defined 

on the different task domains: 

graph (oriented, weighted ) *-~ 

matrix (boolean, asymmetrical) & list (of weights) 

equation (pseudo boolean) 

matrix (boolean, symmetrical) & list (of weights) 

equation (logical) 

matrix (boolean, symmetrical) 

system (of logical equations) -~ equation (logical) 



Programming concepts in problem solving 381 

matrix (boolean, symmetrical) ~ matrix (boolean, covering) 

system (of algebraic equations) 

equation (polynomial with one unknown) 

restriction (pseudoboolean) ~ equation (pseudoboolean) 

restriction (algebraic) ~ equation (algebraic with 

additional unknown) 

equation (algebraic, linear) ~ hyperplane, 

Is it possible to unify the concepts given by (*) and (**) with the help of the 

homomorphisms listed above? As we know, this is not a simple unification but a 

solution scheme with an indirect applicalion of the method (*) to the problem (**). 

Consider the homomorphism 

equation (pseudoboolean) 

matrix (boolean, symmetrical) & list_of_weights. 

To be useful, this scheme should be realized as below: 

equation .(pseudoboolean) { :(wlv 1 +... +wnv n ) ~ 

set_of_variables Vl={v I ..... Vn} 

set_of_constants Z={ O, 1 } 

list_of_weights W={wl,...,wn} corresponding to V2 

* v* set of variables V2={ v 1 ... }} --, 

m a x  

min 

matrix (boolean, symmetrical) {" MAT with rows V2 and columns V2 

where 

v* v* )=0 iff v* & v* �9 . . ~ FALSE MAT ( s .I , g 

v* v* v 7 v* = FALSE } & MAT(  i ,  / ) = l i f t  & g 

list__of__weights {" W = {wl,...,WN} corresponding to V2 } 

The following homomorphism should be applied next. 



382 Chapter 5 

matrix (boolean, symmetrical) 

matrix (boolean, coveting) 

which has the following concrete representation: 

matrix (boolean, symmetrical) {: MAT with rows V2 and 

columns V2 where 

M A T  (v i ,Vg )=1 iff v a, & vj ~e FALSE & 

MAT (v. ,v~ )=0 iff v* j &Vg =FALSE} 

matrix (boolean, covering) {: MAT1 with rows V2 and 

columns V3 where 

7j. MAT1 (I j )= MAT1 (i j) iffMAT (v i ,v l )=1 

MATI (ij)=0 iff (3 l,m MATI(IO) = MAT1 (m,j)=l)& 

(i~el)&(i~j). 

Thus, the last homomorphism enables us to get the following representations of the 

concepts in (**), i.e., 

-C0nciptT_of_cond;i'ions ] 

__ binary relation R(V2,V3)~ MATI(i,j)= 1 where ie V2, j e V3 

matrix (boolean, covering) MAT1 with rows V2 and 
columns V3 where 

!j. MATI(Ij)=MATI(io)=I iff (MAT(v~ ,v  t )=1) & (i<l)) 

MATI(ij) iff (3 l,m MATI(Ij)= MATI(mj)=I) & (i~l) & (i~ej)). 



Programming concepts in problem solving 

domain .type. 'i.'1 

__ set of objects V2= {~i*' "'" '~a ~ 

of objects V3= til , .  'Jm 
list of weights W= {w 1, ., w n } corresponding to V2 

383 

concept_of a solution ] 

__ a subset V~c_ V2 where 

V j  ~ V3 =1 i ~  V~ where 

(MATI(i,j)= 1 & (mi~(ci))) 

Thus, after unification with task concept (*) we have 

XI={Xl,X2,X3,X4} unified with VI={vI,V2,V3,V4} , N=4 

Z(*)={ 0,1 } unified ,~,ith Z(**)={ 0,1 } 

W(*)={ 5,6,2,8 } unified with W(**)={Wl,W2,W3,W4} 

/Wl=5, W2=6, W3=2, W4=8/ 

X2={ x l , 2 2 x 3 , 2 l x 4 , x - 3 x - 4  } unified with 

V2={v  1 ,v 2 ,v  3 ,v  4 } 

/ v ~ _  ; * * - * AX 1 V2AX2X3;V3a_.XlX4",Va~X3X 4 / 

v~' 0 0 1 0 v~ 1 0  

MAT=V~ 0 0 0 1 UhTl=  v~ 0 1 " 
v~ I 0 o 1 v~ 1 0  
v~ 0 1 1 0 v~ 0 1 

0 
0 
1 

1 

From this example (with many of the unnecessary details omitted) the reader may 

draw the conclusion that an effective resolution strategy is required for the ~,-relation. 

Its main features are similar to that used for the compilation of computer programs 

[19]. 



384 Chapter 5 

5.9. Conclusion 

Three categories of languages have been introduced and considered in this chapter �9 

L0, L1 and L2. Their role may be represented schematically by Fig. 5.6. 

El 
_ i _  

!- '"LO > 1'1" I 
lm n i I  ro 'em 

I "T' LO ! ' I" 
L2 i 

L1 

L o S  ,L 

' $ 
,, 

Fig. 5.6. 

The computer is regarded as an ally with the human-user and the special notion of 

an insertion points has been intentionally introduced to denote the interface L0 --~LI 

and L0 ~L2.  The language L I has been defined which enablcs the declarative 

specifications of a problcm to be made as an exact formal system. Ll-specification is 

translated into a semantic structure by means of the language L2. 

It has been shown that each mathematical method is provided with an appropriate 

semantic depiction SP i. So, to use method i for the problem j, a resolution strategy is 

required to establish that 

SP i ,I, (L2-j), 

i.e., that SP i is a generalization of the L2-specification corresponding to the problem 

j. 

Yet another important mechanism referred to as an intelligent oracle has been 

described. This mechanism essentially employs a theorem proving technique to produce 

three types of the answers "VALID", "INVALID", and "INDEFINITE".The user is 

entirely responsible for the correct model representation and its completeness. 

The whole approach to the CAPSS organization described above takes into 

consideration all the essential ideas of the sharing of .responsibilities between the 



Programming concepts in problem solving 385 

human-solver and the computer. To realize this approach we have introduced languages 

L0, L I and L2 (Fig.5.6.) and defined the following specialized tools: 

- intelligent oracle 

- insertion points 

- weak method specification as a subprogram (function) in programming languages 

- a universal weak operator 

find(xlP(x)). 



This Page Intentionally Left Blank



387 

Chapter 6 

FUTURE CONCEPTS: SOME PHILOSOPHICAL ISSUES 

This is the final chapter of the book where an attempt will be made to outline 

possible fi~ture directions in problem solving. An approach exists [69] which explains 

future achievements by means of the state of theoretical investigations 20 - 30 years 

before the analysed period. Thus, to predict the state of the problem solving field in 

1995 - 2000 it is necessary to return to the 1965 - 1975's investigations. Evidently, these 

terms (20 - 30 years) are rather subjective but the whole idea seems to be sound as it 

stems from the position of historical determinism. 

6. 1. Universal problem solving approach restoration 

Attempts are now being undertaken to restore a universal solving strategy, especially 

in the area of weak methods and heuristic reasoning. Naturally, they cannot be regarded 

as accidental phenomena. The main idea of a universal approach is for the 

generalization of distinct concrete algorithms which are relevant to the problems from a 

given domain. This notion of universality is much narrower than Leibniz' original 

presumption. There exist algorithmically insoluble problems that are the main obstacles 

in universal approach realization. The following theorems serve as illustrations of such 

a situation. 

Theorem 6.1. [70]. There is no algorithm which defines for any other algorithm 

whether it stops or not for the given input data. 

Theorem 6.2. [70]. The problem of deducibility in first order logic is insoluble. 

Theorem 6.3. [70]. The problem of word equivalence in associative calculus is 

insoluble. 



388 Chapter 6 

The famous ancient problem of the trisection of an angle is of a similar kind. A 

particular case of this problem for r = 90 ~ is, however, resolvable by means of 

compasses and ruler. The solution is illustrated by Fig.6.1, where BN=BM=NQ=MR=r 

and r is the radius of the circle with the centre in the point B. The problem which is 

insoluble in the given formal system may be resolvable in another formal system 

containing the former one. Thus, the trisection problem may be resolved by means of 

auxiliary tools using special geometrical ideas. One of such an idea is the notion of 

quadratrix. 

Consider Fig. 6.2. Suppose radius r rotates around point A with the velocity w - 

R 

Q 

B M 

Fig. 6.1. 

'~:~" 
_ / ~  

A A' A" 

\ 

N 

h 

Fig.6.2 



Future concepts." some philosophical issues 389 

l 
Simultaneously, the line AB is shifting to the right with the velocity v = - .  Then the 

t 

quadratrix is the line which connects the intersection points of the radius r and the line 

AB in its progression (A'B" A",B" ,etc.). (Fig. 6.3). 

,m,,~ 

! \ 
I 

! 

J 

O -quadratd• O II 

Fig. 6.3. 

Now it is clear, that if the quadratrix is given, the problem of trisection is reduced to 

dividing a given side (00' in Fig. 6.3.) into 3 equal parts. This example shoxvs the 

possible issues of an insoluble problem: 

(i) there may exist some particular variants which are effectively resolvable; 

(ii) io obtain a solution one needs auxiliary means, not represented in the theory, 

which are used to formalize the problem. 

It is, however, not clear whether such additional means are always possible. 

Evidently, deductive reasoning is insufficient to constitute a universal solving approach 

as it does not provide an extension of problem formulation. However, our hopes of 

finding a solution in non-deductive reasoning are fraught with the same defecl. This 

fact immediately follows from the next theorem. 

Theorem 6.4. [71]. There exists a totally defined incalculable function. 

"I'his theorem has far-reaching consequences in logic and problem solving. Thlls. we 

C~tlIlIOt seriously consider a t~nivcrsal strategy paradigm xvithoul itnposing strlcl 

constraitlts oil its applicability. Therefore, we should define more precisely' the 



3 90 Chapter 6 

conditions providing universal approach feasibility. Our expectations are connected, 

first of all, with the application of the universal approach to find elements of a solution. 

Evidently, they may or may not be relevant to the final result. This means that 

"universal mechanisms" are needed primarily not as comprehensive solvers but as 

auxiliary tools for extending a problem's frames. It is important in this context to define 

what form of universal mechanisms are more suitable from computational and cognitive 

viewpoints. 

We are witness to different conceptual approaches for developing this paradigm. 

Perceptrons, heuristic evaluation functions and heuristic programming, generalized 

patterns of weak methods, GPS-paradigm by Newell, Simon and Shaw, intelligent 

automation and psychological models of cognition are good explanatory examples. 

The common feature of these paradigms is in their presentation of some basic 

universal scheme modeling cognitive processes. No matter how this scheme is realized, 

it may be regarded as an intelligent virtual process (VP) specializing in definite 

problem solving activities. The structure of VP includes the following components: 

- interpreter (I) 

- analyzer (A) 

-body of VP 03) 

- planner (P). 

The interpreter provides communication between the different VPs. It recognizes 

relevant infommtion and parses it in order to get an internal problem specification. 

Thus, regarding language L1 outlined in the previous chapter, one may draw a 

conclusion that the interpreter should create a corresponding L2-specification suitable 

for further processing. 

The analyzer is responsible for forming a correct estimate of a VP's capabilities to 

solve a problem. Evidently, it should be able to define the type of problem and choose 

correctly a method or an available algorithm. It is assumed that the analyzer and the 

planner communicate strongly with each other because the latter is engaged in process 

planning and generating subgoals. The analyzer and the planner may sometimes be 

considered as a single module or even a definite part of the body of the VP. 



Future concepts." some philosophical issues 391 

The body of a VP as its main part is a set of general solving activities incorporating 

basic weak methods. It should be noted here that we do not require the VP's body to be 

extremely universal, for example, as the models of MacCulloch & Pitts. An approach by 

Lauriere [5.4] in Alice and by Seidel in [5.5] is more preferable due to taking into 

account problem's domains peculiarities. 

As it was noted earlier, one of the basic VP's functions is "find (xlP(x))" We 

suppose that it should get more serious attention to the developing of the universal 

paradigm. Evidently, to be of practical importance P(x) should be efficiently resolvable. 

The above mentioned works of Lauriere and Seidel may serve as proof of that 

statement. Thus, summing up the main issues of a universal-strategy concept ,the 

following deserves attention. 

(i) the universal approach in problem solving is justified mainly for its ability to 

extend formal representation by discovering hidden regularities in the problem's 

domain. It scarcely may be regarded a serious competitor to effective formal methods. 

However, there is a class of problems with no formal searching algorithms or with only 

inefficient solving procedures. So, to raise the efficiency of the universal approach it is 

reasonable to take into account peculiarities of the domains and use powerful 

heuristics, for example, as those in the constraint satisfaction method of Laurie. 

(ii) it follows from the above that a generalized pattern of solution techniques should 

incorporate a set of efficiently resolvable properties P(x) to enable usage of "find 

(xlP(x))" - based weak methods. 

(iii) the whole universal paradigm may be represented by the framework of an 

intelligent virtual process (VP) and its corresponding communication scheme. It comes 

down to a representation of the following general form 

problem / N 
\ / 

Universal 
weak 
reasoning 
pattern 

/ \ 
\ / 

Formal 
deductive 
reasoning 
pattern 

Fig. 6.4. 



392 Chapter 6 

Each known paradigm of the universal solving approach lies within the boundaries 

of the VP-concept. However, it should be noted that the more primitive a VP 

organization and a mathematical representation are, the more complicated should be 

the mutual VP's interconnection and specialization. This implies, by the way, that it is 

impossible on the basis of primitive mathematical formalizm alone to create a powerful 

universal solver. It seems that the problem of the co-operation of a very large number of 

primitive solvers is, as we suppose, the main difficulty in the realization of universal 

strategy approach. 

6.2. Weak methods become strong 

Evidently, we are interested in making weak methods strong enough to produce 

efficient solutions of the problems. This requires us to develop suitable searching 

patterns, for instance, involving cut technique. One needs to consider the triad <P, 

Path, Solution> where P is a problem, Path represents a solution process for the 

problem, and Solution is the resulting interpretation representing the answer. The main 

peculiarity of the considered pattern is that Path need not be an optimal one. It further 

means that weak methods suffice to get the Path provided that there is a sufficient 

cutting algorithm. Therefore, one may cut either Path or Solution to repeat the solution 

process. However, this scheme requires any criterion for the solution's optimality. As 

the reader may note, this pattern was applied to the NP-complete problems considered 

in the chapter 1. We suppose that its efficiency is rather high enabling its wide 

utilization in application systems. This paradigm suitability was also demonstrated 

through the ~-transform method in discrete optimization problems. 

Evidently, there are other patterns such as branches-and-boundary method(s) and 

A* - algorithm utilizing weak methods. So, we may draw a conclusion that further 

developments in the weak methods area are connected with extending formal 

application schemes by formalizing different searching patterns. 

The other important issue is connected with utilizing expert systems. This paradigm 

incorporates weak mechanisms into the solving policy based on the knowledge 



Future concepts." some philosophical issues 393 

available. The expert system (ES) is valuable both as a problem solving system 

paradigm and a programming concept directly utilizing weak methods. In our opinion, 

ES may be regarded as a new generation of problem solving system noteworthy for its 

orientation to the problems with a priori  unknown solving algorithms. Present 

investigations in the theory of ES, however, have concentrated mainly on the formal 

issues of knowledge representation and knowledge processing. Meantime, the tuple 

"human-problem" as a component of triad "human-problem-computer" is not paid such 

an attention as it deserves. Evidently, when solving a problem human needs in different 

languages to reach different goals. The following languages are required: 

- for the formal representation of problems; 

- for manipulating the concepts of a task; 

- for specifying solving activities (heuristics, intelligent oracle, weak methods, rules 

for cuts, etc.) and using them as procedure calls; 

- for intelligent help; 

- for creating internal concepts of a problem. 

The realizing of the family of languages provides extension of the primary ES 

framework as it assumes the involvement of the human-solver in the solution process. 

Furthermore, it requires, in our opinion, a new approach in the learning to solve 

problems as a kind of speciality. Obviously, there are two types of metaprinciples - 

universal and specific ones. As an example of the latter metaprinciple one may consider 

the principle "divide and conquer". Cantor's diagonal method is a good example of a 

specific theoretical rule which is widely used in proving algorithmic insolubility and set 

non-recursiveness. The conclusion may be drawn that to use a weak method effectively 

the human-solver should know how to interpret it in the given problem's conditions. 

Thus, the learning in problem solving is directed to the recognition of problem patterns 

and suitable solution schemes. This problem is far from being entirely resolved. 

To sum up the above considerations the following should be noted: 

- there exist formal patterns providing the utilization of weak methods to obtain a 

required solution. One such pattern was considered in this book, namely: "use a weak 

method to obtain a good approximation to the required solution. Cut either the solution 



3 94 Chapter 6 

obtained or the way it was found. Repeat the scheme until the criterion of optimality 

becomes satisfied". There is a number of practically efficient algorithms with that 

paradigm, viz. the well-known Dantzig's algorithm in linear programming, branch- 

and-bound method by Little et.al., Gomory's algorithm in integer programming ,etc. 

- in a human-machine problem solving system the human-solver should be able to 

~nterpret weak principles within a given problem's frame. Evidently, his skill is the 

subject to appropriate training and learning. In ES paradigm we can see a direct 

utilization of knowledge which is available for the solver though a human-solver is not 

immediately engaged in the solution process. As a theoretical issue of the matter it is 

required to provide formal ways of weak principles interpretation. However, this 

problem is still far from being solved. 

6.3. The role of formal logic in future developments 

Logic has a great impact on the theory and practice of problem solving. Thus, our 

expectations are strongly connected to further developments in this area. Consider some 

important issues relevant in this context. 

It is a well-known fact that logic is a semi-resolvable system due to G6del's 

incompleteness theorem. The question may be raised of the conditions disabling this 

theorem. In the paper [5] a general attempt has been made to introduce formal systems 

(called S-systems) possessing the desired property. 

Let S be a formal system in the language L(S) incorporating arithmctic. 

Let s(l~01,x) be a term in L(S) such that s(l~ol,n ) defines the G6del numbcr of thc 

proposition ~p(x) provided that x is replaced by n. Finally, let Pr s (.) be a predicate 

slating that theG6del number of the formula qo(x) is s([~p],x). S-system is defined as the 

system where one or more conditions from those given below is violated: 

G1) for each proposition cr in L(S) if S~-cy then S~-Prs([~l); 

G2) for each proposition r from L(S) if S~Pr s ([crl) then SwPr s ([Prs[~ll); 

G3) for every two propositions cr 1 ,cy2: 

SbPRs ([CSl]) & VRs ([cr]-+ (Y2l) :=> VRs ([or2]). 



Future concepts." some philosophical issues 395 

No,,,,. the lol lowing questions '~rc valid: 

- to point out al least one S-svSlelli v, ith a llOll-Clllpl 5 class of S-proble~s S-problc~ 

is defincd as a l'ornlula ~p/x) with otlc free variablc x ,~,lllch satisfies the following 

conditions: 

V x ( P r  ( s [ ~ ] , x ) )  v Pr,(s[~p], ~ ) ) ) ;  

S~- V x ( P r  , ( s [~] ,  x ) ) - -~  ~ ( x ) ) ;  

Vx(  Pr,(s[ cp], x ) )  ~ cp(x)). 

- for an arbitrary S-system to define a class of S-problems. 

Let us further proceed to the following issues of formal logic which are relevant to 

problem solving. 

(i). A theorem proving technique may be regarded as a kind of universal ,~eak 

method. All the above mentioned ideas concerning the strengthening of weak principles 

has a direct link with inference strategies in logic. This especially concerns 

optimization problems formalized in logic or by means of logic. Many v,'ell-known NP- 

problenls and the other problems in graph theory provide a good approbalion field for 

logical metl~ods. An interesting area of appli,ed logical systems is the scheduling 

theory. As an example consider lhe following problem formulation. 

Lei for the jobs X = { x l, x 2, x 3, x 4, x 5, x 6 } the following relations are fulfilled 

(X 1 #X 3) (X4#X 3) 

(• #X6) (X5#X3) 

(X2#X 4) (X5#X 6) 

(Xz#X 5) 

v~hcre (xi#x j) means that the jobs x i and xj cannot be performed by the same machine. 

Suppose, there are two machines. Let tl=2, t2=5, t3=6, t4=2,t =2. t6=4 be the processing 

tinles. It is necessary to divide jobs into two subsets X 1 and X 2 to provide 



396 Chapter 6 

max( E t,.; ) - O m i n  
Xj~X~ Xk~X2 

There are no incompatible pairs ,either in X 1 or in X 2. This scheduling problem may 

be reduced to the pseudoboolean optimization problem as follows. 

Find an interpretation providing 

(2x~2- 3 + 6 x l x  3 + 2x~2 6 + 4 x l x  6 + 5 x z x  4 + 2 ~ 2 x  4 + 5x22~ + 22-2x 5 + 

6 x ~  4 + 22-3x 4 + 6x32-- s + 223x 5 + 2 x s 2  6 + 4 ~ x  6 . . . . .  2 , _ , t ' )  - + m i n ,  
(*) 

6 
1 

i.e., the total processing time of every set (X l and X2) should be reduced from - - E  t, to 
2 

i=1 

as small as possible. Evidently, the solution of (*) defines either set X 1 or X 2 only. It 

means, that this solution does not warrant that the other set will bc compatible. To meet 

this requirement let us introduce the constraint: 

(x, ~, x,)(x, v x, )Cx, ,  v x , ) C x :  v x,)(x~ v x,)Cx, v x,)(x, v x , )  - 1 (**) 

which warrants the suitability of both sets provided that (**) is satisfied. 

The problem above is resolved by the solution 

X , -  {x:,x~,x,},X~- {x,,x~,x,}. 

(ii). Logic has "penetrated" into the fields of mathematics which were traditionally 

"non logical", e.g. linear integer programming [751, combinatorial optimization 1761 

and others. It is realized by means of suitable logic-oriented languages which arc used 

for both problem representation and solution derivation. The latter possibility is, 

however, restricted by Gedel's incompleteness thcorem. Let us review a general schcme 

of solution'making by a proving technique: 

(i) formulation of computability theorem in the form Vx3y f(x,y) (for every valid 

inputs "x" there exist corresponding outputs "y" computed by program f(.)) 

(ii) proving computability theorem 



Future concepts." some philosophical issues 397 

(iii) extracting program (algorithm) from the proof. 

Evidently, Gedel's thcorem concerns p.(ii) of the above scheme. Hoxvever, there are 

definite difficulties connected with p.(iii) as well. It is known from pure mathematics 

that so-called existcnce theorcms haxe no constructive proofs. In this case p.(iii) of the 

solutio~ schc~ne is ~lot realizable. As an example, consider the following problcm: to 

prove float there arc two irrational numbers a and b such that a b is a rational number 

Let , f J  r~2 be irrational, then assuming a=,V/2 "f~" and b=,~/2 are the desired numbers as 

(4~-vf2-2) vt~ - 2 .  On the contrary, if ,f2 vr~" is rational then a=,f2 and b=.4~ - are 

desired numbers as well. Evidently, this proof does not state irrationality or rationality 
, - _  

of "--~/2':: . therefore, it cannot be considered a constructive one. Using logic in 

theoretical and applied problems is becoming more profound. Txvo main aspects are the 

subject for fi~rther investigations: 

- developing different schemes oflogical reasoning and applying logical methods in 

various mathematical fields: 

- applying of logical formalizm in problem stating in the input languages of 

computer- aided problem solving systems. 

6.4. The human factor 

It was many times stated in this book that human is considered a decisi\e l:actor in 

problen~ solving process. His role is extremely high in the problem formulalion phase, 

dividing the problem into subproblems and making purposeful subgoals. Considering 

this role of ti~e human-solver xvc, evidentls, make computer-aided problem sol~ing 

system (CAPSS) man-dependent. It means that the efficiency of CAPS,',; \viii \a13. 

correspondi~gly to the abilities and the qualification of users. It may be found 

reasonable to build CAPSS'es with different orientation and qualification levels. From 

the ve~ abstract viewpoint there are tv,'o basic classes of problems: the ones using "t U- 

and-tesl"-principle and the others mainly dependent on "insight" and "gestalt"-concepts 

[78]. In fact, every difficult creative task requires both of these approaches. We adhere 



3 98 Chapter 6 

Io an approach which distinguishes bctwcen different levels of CAPSS specialization. 

O-/eve~ is forlncd by basic CAPSS with a general orientation, for example, to making 

equation,s [781 and solving logical puzzlcs 1791. 1-level is formed by the systems usillg 

thcorcn~ proving technique and weak methods with indistinct specialization. These 

svstcms arc more powerful and capable of solving complicated problems in an 

appropriate area providing automatic solution synthesis. 

7'he J~ilowing/eve/s arc represented by the specialized problem solving systems (for 

example, ALICE - in colnbinalorial optilnization or MACSYMA in computer 

mathematics, etc.) The specialization is neccssary whenevcr the system operates with 

difficult and serious problems. 

When considering human factor one should delimit the area of human interests 

according to his participation in the solution process. Thus, we obtain the following 

main fields where the human factor is essential. 

�9 Problem raising. 

�9 Problem formulation. 

�9 Searching for algorithm. 

�9 Reviewing and correcting factors relevant to points 1-3. 

Problem arising. It is essential What kind of problems are put forward and why. On 

the one hand, this issue is important in connection with CAPSS efficiency. On the other 

hand, the la,~vs of the problems arising are important as they are. It suffices to point out 

eminent Hilbcrt problems formulated on the l'st Mathematical Congress (Paris, 1900). 

In this connection, the problem raising may be considered as the reflection of a working 

mathematician on his work. It is a deep psychological phenomenon which needs wide 

investigation. Evidently, the theoretical backgrounds of purposeful behaviour arc 

directly conncctcd with this issuc. 

Problem formulation. Very oftcn problems canno! be solved because of 

inappropriate formulation. To climinalc possible misunderstanding, a system should 

supply the user with the ncccssars. means to facilitate the formalization process (for 

example, usage of animation as in 1781 is suitable for this purpose). A graphical editor 

enabling the creation of a problcnfs structure seems to be a useful tool as it realizes the 



Future concepts." some philosophical iz'sues 399 

conception of structured programming in problem solving. Thus. thc user is engaged in 

the process of creating the problem structure as a whole which facilitatcs his perception 

of a problem and decreases the possible difficulties in finding a solving procedure. 

Consider an illustration: "Two cars have started traveling towards each other from 

points A and B. 

The distance S A =100 km. It is known that the first car has a speed which is higher 

than that of the second car by 20" . The cars meet 2 hours after starting out. What is 
h 

the distance covered by each car if they have been moving uniformly." 

The problem structure is shown in Fig. 6.5. 

J 
' 

i 1 
$3 

1 I, 

TA T~ 

78 

Fig. 6.5 

VA(VB) denotes the speed of the car which started from A(B) and TA(TB) is the time 

elapsed until meeting. 

Every fragment of the structure (as in Fig. 6.5) defines some equation, i.e. 

1. SAB=SA+SB 

2. SA=VA*T A 



400 Chapter 6 

3 .  SB=VB*TB 

4. TA=T B 

5. VA=VB+20 

If this ~'stem is resolvable then it may be reduced to the root-equation dealing with 

one variable only. Thus, in our case 

SA=(VB+20)*T B 

SB=VB*T B 

SAB=2VB+2VB+40 

vB=15 

VA=35 

Note, that the root-equation making is performed in the bottom-up direction of the 

problem structure. 

Searching for an algorithm and correcting the searching process 

The main issue of the topic is how to organize the searching activity to provide its 

high efficiency. There is a fine analogy with inventive activity in engineering, where 

such methods were devised by H.Altshuller, as brain storming or algorithms for solving 

inventive tasks. There are also interesting works by H. Poincare and G. Birkhoff 

concerning this issue. The main problem identified by these authors is connected with 

the difficulties of investigating subconsciousness and related issues. Evidently, we are 

still far from having a mechanical representation of the intellectual activity of brain. 

Psychology gives us important facts about indirect influence of external and internal 

factors on brain productivity. The following factors are recognized to be of great 

importance: 

- d e e p  "loading" into the problem; 

- high interest in problem solution; 

- attention and ability to concentrate efforts on one subject; 

- patience; 



Future concepts: some philosophical issues 401 

- competition with other people; 

- d i s s a t i s f a c t i o n  with current situation. 

These factors have proved to be of great importance for the quality of human solving 

activities. However, it is necessary to clarify the role of computer in increasing the brain 

productivity. How may the computer stimulate the human-solver to find good solutions? 

It seems, however, that there are no direct answers to this question. The main activities 

are concentrated around the organizational help provided by the intelligent computer. 

6.5. Are there other paradigms ? 

The reader could note that our considerations were connected mainly with two basic 

paradigms in problem solving: the "universal" weak strategies and theorem proving 

techniques. Indeed, these two paradigms make a great impact on problem solving 

theory despite some serious restrictions which have been stated earlier. Now it is 

reasonable to ask if any other(s) suitable paradigm(s) exist(s). The answer, as we 

understand it, may be positive if the analogy with human thinking is taken into 

consideration. Indeed, such mechanisms as imagination and intuition are very 

important for a creative mind. Unfortunately, there is a lack of suitable formal theory to 

describe models of intuition and relevant issues. However, we place our hopes on 

further success in this field. 

We pointed out earlier that an effective paradigm will not be elementary whatever 

similarity with brain functional organization is used. It seems impossible (or at least too 

difficult) to realize a complicated and powerful artificial problem solving system based 

on primitive basic elements. In this connection our expectations are based on the 

advanced schemes such as, for instance, considering a virtual solving process. This also 

implies that we should consider the models of co-operating virtual processes and, 

therefore, interaction concepts are of great importance to us. It is necessary to recognize 

that interaction of intelligent processes is a relatively new theoretical branch with 

interesting perspectives for the entire problem. 



402 Chapter 6 

One of the promising directions in studying problem solving mechanisms consists of 

the differentiation of the relevant common operations in the solving processes. In [80] 

the following common operations are put forward: proceduralization, composition, 

generalization, and discrimination. 

Proceduralization is the common operation to produce relevant "How-knowlcdge" 

from the "What-knowledge". Thus, the following production: 

G1 IF the goal is to create a structure and there is an operation that creates 

such a structure 

THEN use that operation 

may be transformed to the procedure in a suitable context. 

If, for example, the goal is to infer formula f from the given set of formulae F(F ~ f) 

then G I transforms to a more spccific goal description: 

(;2 IF 

THEN 

the goal is to infer f from F 

use inference rules (such as linear resolution strategy). 

Composition enables us to get new productions as a combination of the others. 

Let "IF C I THEN A I" and "IF C2 THEN A2" be a pair of productions to be 

composed, where CI, C2 are the conditions and A l, A2 are the corresponding actions. 

Then their composition is "IF CI & (C2 - A1) THEN (A1 - G(C2) & A2" C2 - CI 

denotes the conditions of the second production not satisfied by structures created in the 

action of the first. 

Generalization and discrimination. The notions of generalization and discrimination 

may be simply introduced by means of the following examples [80]. Consider the 

following productions: 

IF 

THEN 

IF 

THEN 

the goal is to generate the present tense of Think 

Write Think + S 

the goal is to generate the present tense of Thank 

Write Thank + S 

Generalizing these rules, we obtain 



Future concepts: some philosophical issues 403 

IF the goal is to generate the present tense of X 

THEN Write X + S 

where X is a free variable. 

On the contrary the discrimination enables one to dislinguish bet~'ccn mutually 

incompatible cases of a given phenomenon, e.g. 

IF the goal is to generate the present tense of X and the subject of the sentence 

is singular 

THEN Write X + S 

IF the goal is to generate the present tense of X and the subject of the sentence 

is plural 

THEN Write X 

These discrimination and generalization mechanisms are very much like kno,Medge 

acquisition mechanisms that have been proposed in the artificial intelligence literature. 

Thus, summing up our considerations, the following issues deserve to be mentioned: 

�9 human's abilities such as imagination and intuition should be modeled 

effectively and an appropriate formalized theory is required to develop problem solving 

paradigms. 

�9 elementary basic concepts of solving schemes are supposed to be insufficient and 

more complicated models are needed. 

�9 theoretical interests should be shifted to the problems of the interaction between 

elementary solvers in their co-operation and specialization. 

6.6. Conclusive remarks 

In this book an attempt has been made to develop theoretical and programming 

issues of problem solving. The former aspect of the problem was considcred in a 

somewhat different way from the traditional viewpoints. 

We mcan that our notion of weak methods includes not only rule-based searching 

strategies but also a number of mathematical schemes with a high degree of abstraction. 



404 Chapter 6 

It especially concerns the approach considered in this book, where it is of primary 

importance in understanding properly the relations between solving operations. Indeed, 

in traditional approaches the main point of interest is connected with applying rules to 

the given states. They merely concern the relationship between rules and states as the 

subjects of investigation. On the contrary, in mathematics it is essential to take into 

account interrelations between solving operations and the structure of the problem as a 

whole. Thus, otlr theoretical interests were mainly connected with the structure of the 

mathematical task and possible general schemes of solution applicable to this structure. 

One o1" the inferences from this investigation may be made as follows: there are 

effective ~lnd efficient schelnes enabling weak methods to become slrollg. It iS obvious 

tlmt developing this concept is of great interest to mathematicians. Tx~o such scl~cznes 

were shown in the book dealing with discrete optimization problems. 

As far as the programming paradigm in problem solving is concerned wc have 

suggested several languages enabling us to formulate problems, modify their structures. 

a~d to b~ild efficient mechanisms such as an intelligent oracle and an intelligent 

helper. It is obvious now, that since CAPSS incorporates human and machine ~lctivities. 

the languages are required to provide interaction in the following directions: 

(i) human ~ problem 

(ii) computer ~ problem 

(iii) human ~ computer 

Obviously, the form of language for the issues (i, ii, iii) is drastically different from 

traditional forms. We would like to note that to be efficient, the language should be 

oriented to the definite class of mathematical problems. In our case such an area was 

defined in discrete optimization and logical problems. Thus, it became possible to apply 

specialized weak methods with their semantics compatible with problem concepts. 

We consider human to be the main factor in a solution searching process. Therefore, 

he (she) needs languages and an appropriate support in the problem formulation phase 

and the algorithm developing phase also. The role of the computer is essential in 

providing formal solution synthesis and tedious calculations. 



REFERENCES 

405 

1. Tyugy E.-H. Conceptyalnoe programmirovanie. - Moscow, Science, 1984 (in Russian). 

2. Tyugy E.-H., Harf M.Ya. Algorithmy structumogo synthesa program. //Programmirovanie, N 4, 

1980, p.p. 3-13 (in Russian). 

3. Demetrovics J., Knuth E., Rado P.. Computer - Aided Specification Techniques.//Computer and 

Automation Inst., Hungarian Academy of Sciences, 1989, P. 114. 

4. Liskov B., Guttag J.. Abstraction and Specification in Program Development. - The Mit Press, 

Mc.Graw-HiU Book Company, New York, 1985. 

5. Nilsson N.J. Principles of Artificial Intelligence.- Tioga publishing company, Palo Alto, California, 

1980. 

6. Korf R. Learning to solve problems by searching for macro-operators. - e.a. Pitman Adv. Publ. 

Program, 1985, p.p. 1-147. 

7. Dowsing R.D. A first course in Formal Logic and its applications in computer science - Blackwell 

Scientific Publications, 1986, P. 266. 

8. Kowalski R. Logic for problem solving. - Elsevier, North Holland Inc., 1979. 

9. Chang CH-L., Lee R.C-T. Symbolic logic and mechanical theorem proving. - Academic press, New 

York - San Francisco - London, 1973. 

10. Beth E.W. The foundations of mathematics, Amsterdam, 1959. 

11. Robinson G.A., Wos L. Paramodulation and theorem proving in first order theories with equality.// 

In Machine Intelligence, 4/Ed. B.Meltzer and D.Michie, N.Y.: American Elsevier, 1969, P. 135-150. 

12. Sibert E.E. A machine oriented logic incorporating the equality relation.//In Machine Intelligence, 

4/Ed. B.Meltzer and D.Michie. N.Y.: American Elsevier, 1969, P. 103-134. 

13. Lloyd J.W. Foundations of Logic Programming. - Springer- Verlag, Berlin-Heidelberg-New York- 

Tokio, 1984. 

14. Apt K.R. Introduction to Logic Programming - Report CS-R8741, Centre for Mathematics and 

Computer Science, 1009 AB Amsterdam, the Netherlands, p.p. 1-55, 1986. 

15. Slagle James. Studies in computer science.//Studies in Mathematics, 1986, Vol.22, p.p. 229-279, 

Washington University. 

16. Banerji Ranan. et al. Theory of problem solving.//Proc. IEEE", 1982, vol. 70, N 12, p.p. 1428 - 

1448. 



406 References 

17. Paradimitriou Ch., Steiglitz K. Combinatorial optimization: algorithms and complexity. - 

Princehton University, Inc. Englewood Cliffs, 1982. 

18. Lawler E.L. Recent Results in the theory of Machine Scheduling.//Mathematical Programming: 

The State of the Art. Edit. by A.Bachem, p.p. 202-234, Bonn, 1982. 

19. Aho A., Ullman J.. The theory of parsing, translation and compiling, vol. 1,2. Prentice-Hall, Inc., 

Englewood Cliffs, N.J., 1972. 

20. Hilbert D., Bernays P. Grundlagen der mathematik. 1 - Springer-Verlag, Berlin, 1968. 

21. Thayse A., Gribomont P. et al. Approche logique de l'intelligence artificielle. 1 De la logicue 

classique a la programmation logique. - Dunod informatique, Paris, 1988. 

22. Kaufmann A., Henry-Labordere A. Methodes et modeles de la recherche operationnelle. Paris- 

Bruxelles-Montreal, 1973, vol. 2. 

23. Lawriere J-L. Intelligence artificielle. - Resolution de problemes par rHomme et la machine. - 

C.F.PICARD-PARIS, 1986. 

24. Swamy M.N.S., Thulasiraman K. Graphs, Networks and Algorithms. John Wiley & Sons, New 

York, 1980. 

25. Reingold E.M., Nievergeld J., Deo N. Combinatorial algorithms: Theory and Practice. - Prentice- 

Hall, Inc., Englewood Cliffs, 1977. 

26. Deo N. Graph Theory with Applications to Enginneering and Computer Science, Prentice-Hall, 

Englewood Cliffs, N.J., 1974.27. Harary F. Graph Theory. Addison-Wesley, Reading, Mass., 1969. 

28. Hadamard J. Essai sur la psychologie de rinvention dans le domaine mathematique. - Paris, 

Librairie scientifique, 1959. 

29. Polya G. Mathematics and plausible reasoning, vol. 1. - Princenton univer, press. Princenton, 1954. 

30. Chicinadze V.K. Reshenie zadach nelineynoi optimizacii: metod q'-preobrazovania.- Nayka, 

Moscov, 1983 ( in Russian). 

31. Lasserre J.R. An analytical expression and algorithm for the volume of a convex polyhedron in R. 

//J. Optim. theory and appl., 1983, vol.39, N 3, p.p. 363-377. 

32. Algorithmy i programmy dla vosstanovlenia functionalnych zavisimostey./Edit. V.N. Vapnick, 

Moscow, Science, 1984, 516 p.p. (in Russian). 

33. Boender G., Rinnooy Kan A.H.G.e.a. Astochastic method for global optimization. //Mathem. 

programming.- 1982. vol.22, N 2, P. 125-140. 

34. Vapnick V.N. Vostanovlenie zavisimostey po empiricheskim dannym. Moscow, Science, 1979, 

448 p. (in Russian). 



References 407 

35. Luice K.D. Prognostic methods for economic issues (Russian edition). Moscow, Finance & 

Statistics, 1986, 133 p. 

36. Gardner E.S., Dannenbring D.G. Forecasting with exponential smoothing: some guidelines for 

model selection.//Decision Sci., 1980, vol. 11, N 2, p.p. 370-383. 

37. Jain C.L. Smoothing constant key to exponential smoothing.//J. Bus. Forecast., 1983, vol.2, N 3, 

p.p. 24-25. 

38. Seljutin V.A. Machinoe proektirovanie elektronnych ustroystv. Moscow, Soviet Radio, 1977. 

39. Sysoev V.V., PerovV.A. Razrabotka programm mnogokriterialnoy optimizacii na base 

W-preobrazovania. // Economics & Applied mathematical methods. 1976, vol.12, N 1 (in Russian). 

40. Sysoev V.V. Avtomaticheskoe proektirovanie promyslennogo konveyera i industrialnogo 

oborudovania v microelectronnom proizvodstve. Moscow, Radio & Svyaz, 1982 (in Russian). 

41. Sukharev A.G. et al. Metody optimizacii. Moscow, Science, 1983 (in Russian). 

42. Pshenichny B.N. Metody linearizacii. Moscow, Science, 1983 (in Rissian). 

43. Hardy G.G. Inequalities. Moscow, Foreign Literature, 1948, 456p. 

44. Gallab A., Allard M. In "Modem languages & logic programming". Proc. l th Int. Workshop in 

Rennes, North-Holland, 1984. 

45. Vhang Ling, Vhang Bo. The statistical inference method in heuristic search . In "Modem 

languages & logic programming". Proc. lth Int. Workshop in Rennes, North-Holland, 1984, pp. 757-759. 

46. Krakowiak S. Principes des systemes d'exploitation des ordinateurs. - Dunod Informatique, 1986. 

47. Davies D.W. et al. Computer networks and their protocols. - John Willey & Sons, New York - 

Toronto, 1980. 

48. Aho A., Hopcroft J.E., and Ullman J.D. The design and analysis of computer algorithms. Addison- 

Wesley, Reading, Mass., 1974 (VAM). 

49. Computer and job-shop scheduling theory./Ed, by E.G.Coffman, Jr. - John Willey & Sons, 1976. 

50. Uvarov S.I. Issledovanie odnoy problemy raspisania na grafe. // Automatics & Telemechanics. 

Moscow, N 7, 1985. p.p. 172- 175 (in Russian). 

51. Garey M.R., Johnson D.S. Computers and intractability: A guide to the theory of NP-completness. 

San-Francisco. W.H.Freemen & Company, 1979. 

52. Barsky A.B. Vvedenie v teoriy parallelnych vichisleniy. Moscow, Mashinostroenie, 1980 (in 

Russian). 

53. Bellman R., Kalaba R. Dynamic programming and modem control theory. Academic Press, New 

York & London, 1967. 



408 References 

54. Kotva M. Testing of simulation model validity: methodological problems. // Syst. Anal. Model. 

Simul. 5(1988), 4, p.p. 393-402. 

55. German O.V. Multiprocessornye raspisania v odnorodnych vychislitelnych sistemach. // Automatic 

and computing technics. (Riga, Latvia), N 5, 1985, p.p. 70-77 (in Russian). 

56. Phillips D.T., Garcia-Diaz A. Fundamentals of network analysis. Prentice-Hall Inc., Englewood 

Cliffs, 1981. 

57. Newell A., Shaw J.C., Simon H.A. Empirical explorations of the logic theory machine: a case 

study. Report P-951, Rond. Corp., 1957, March. 

58. Wang Hao. Toward mechanical mathematics.//IBM J. Res. Devel, 4, N 1, 1960, p.2-22. 

59. Glushkow V.M. Kapitonova Yu., et al. Postroenie yazykov matematicheskich teoriy. // Cybernetics, 

N 5, 1972, p.p. 19-28 (in Russian). 

60. Ko Sakai. Toward mechanization of Mathematics - Proof Checkers and Term Rewriting System.// 

Programming of Future Generation Computers. / Ed. by K. Fuchi, N. Nivat. Elsevier Sci. Publishers, 

1988, p.p. 335-390. 

61. Laird J.E., Newell A. A universal weak Method. Carnegie- Mellon Univ., 1983. 

62. Rayward-Smith V.J., McKeown G.P., Burton F.W. The general problem solving algorithm and its 

implementation. // New Generation Computing, 6, 1988, p.p. 41-66. Springer-Verlag and OHMSHA 

LTD. 

63. Lauriwre J.-L. Intelligence artificiell. Rwsolution de problemes par l'Homme et la machine. 

Troisieme edition, Eyrolles, Paris, 1988. 

64. Davenport J., Siret Y., Tournier E. Calcul formel. Sustwmes et algorithmes de manipulation 

algebriques. Masson, Paris-N.Y. 1987.65. Bhla J. The evolution methods in problem solving.//Advances 

in Modelling & Simulation, AMSE Press, vol. 16, N 3, 1989, p.p. 49-64. 

66. Bongard M. Problema rasposnavania. Moscow, Science, 1967 (in Russian). 

67. Havranwk T. Formal systems for data analysis.//International Journal of Man-Machine Studies, 

1981. 

68. Tarski A. A decision method of elementary algebra and geometry. - Berkeley: Univ. of California 

Press, 1951. 

69. Expert systems. Principles and case studies. / Ed. by R.Forsyth. Chapman & Hall, London, 1984. 

70. Kleene S. Introduction to methamathematics. D. Van Nostrand Company Inc., USA, 1952. 

71. Cutland N. Computability. An introduction to recursive function theory. Cambridge Univ. Press, 

1980. 



References 409 

72. Lauriere J.L. A language and program for stating and solving combinatorial problems. //Artif. 

Intel., vol. 10, 1978, p.p. 29 - 127. 

73 Seidel R. A new method for solving constraint satisfaction problems.//Proc. IJCAI (Vancouver, 

Canada, 1981), p.p. 338-342. 

74. Ershow Yu.L., Samokhvalow K.F. Novy podchod k filosofii matematiki. // Computer Systems, vol. 

101, 1984, p.p. 141-148 (in Russian). 

75. Mc. Kinnon K.I.M., Williams H.P. Constructing integer programming models by the predicate 

calculus.//Annals of Operat. Research, 21 (1989), p.p. 227-246. 

76. P. Van Hentenryck. A logic language for combinatorial optimization.//Annals of Oper. Research, 

21 (1989), p.p. 247- 274. 

77 Sackman H. Man-computer problem solving.//Auerbach Publishers Inc., N.Y., 1970. 

78. Nathan M.J. et al. An unintelligent tutoring system for solving word algebra problems. Proc. IFIP 

TC. 5 Conf. CAD/CAM Technol., Transfer- Mexico, 1988. 

79. Valentine M., and Davis R.H. The automated solution of logic puzzles.//Information Processing 

letters. 24(1987), p.p. 317 - 324. 

80. Anderson J.R. A theory of the origins of Ruman knowledge.//Artificial Intelligence, vol.40, N 1-3, 

1989, p.p. 313-351. 



This Page Intentionally Left Blank



411 

GLOSSARY 

1. Algorithm - mathematical formalism regarded as an exact and deterministic 

procedure which can be realized in the form of a computer program. An exact notion of 

Algorithm is connected with the notion of Turing machine. (Rather often Algorithm is 

associated with a mapping A---~B where A, B are discrete sets of sentences over 

corresponding languages). 

2. Algorithmically solvable problem - a problem which can regularly be solved by 

means of some algorithm ,i.e. it may be formulated and written as a sentence X of input 

language A of some Turing machine which transforms X into the sentence Y of the 

output language B where Y represents a solution of the problem { see items 1, 3, 40, 51 

of Glossary for the related information }. 

3. Algorithmicaily un(re)solvable problem - a problem which cannot be (re)solved 

by means of some algorithm, i.e. there is no suitable algorithm at all { 1, 51 }. 

4. "Black Box" - an entity with unknown inner nature which can be studied by 

exploring the links between its inputs and outputs. 

5. Boolean variable - a variable which can take only two values, e.g. "0" and "1" 

{19}. 

6. CAPSS - computer- aided problem solving system. A system specializing on 

solving problems by means of the human-machine interaction. There is a number of 

CAPSS paradigms establishing different conceptual approaches to the roles of a human 

and a computer in the solving processes. 

7. Church Thesis - an assertion which states that an intuitive and formal notions of 

computability are equivalent. 

8. Clause - a formula of the form 

B(b 1 ..... bn) :- 



412 Glossary 

A(al ..... am), 

C(cl,...,ck). 

corresponding to a disjunct { 19, 39, 49 } �9 

A(a 1,.. . ,am)v...v C(c 1 ..... ck) v B(b 1,..., bn) 

9. Complete problem - a problem X such that any other problem Y can be reduced 

to X provided that X and Y belong to the same class of problems. 

10. Combinatorial exploison - a situation which is characterized by an exponential 

growth of the number of possible interpretations for the problem X under consideration 

when its length is increased linearly { 24 }. 

11. Completeness - a property of a given formal theory TH with a language L 

consisting in the fact that for each formula q~ e L(TH) either q~ or not-q~ (~)  can be 

proved in TH. 

12. Complexity function of an algorithm - a function which measures time 

(corresponding memory sizes) required by an algorithm with respect to the length (n) of 

the task specification given in input (formal) language of some Turing machine {36 }. 

13. Concept - a semantic structure which comprises the notions linked in one of the 

following ways: 

as a function (predicate) and its arguments; 

as an action and its subjects (objects); 

as a causa and its consequences. 

14. Consistency- a property of a given formal theory TH implying that there 

is no any formula q~ e L(TH) such that both q~ and not-q~ are provable in TH { 11, 15, 

18,25,36}. 

15. Contradiction - a situation when one demonstrates that some formula and its 

negation both can be proved in a given theory { 14, 18, 25, 36 }. 



Glossary 413 

16. Criterion - a restriction on the solution in the form of a function, or an equality, 

or an inequality { 51 }. 

17. Cutting strategy - a solving strategy excluding the parts of a search tree which 

do not contain an optimal (or exact) solution {45, 51, 54 }. 

18.  O e d u c i b i l i t y  - a relation between the formulas fl,...,fn regarded as premises and 

a formula h such that there exists a logical inference of the formula h from 

fl,...,fn 

realized by means of inference rules. To prove a formula means to deduce it from the 

given set of formulas. 

19. Disjunct - a boolean formula of the form { 5,17 } 

�9 

r 

20. Domain - a set of all possible values for the problem variables { 51 }. 

21. Efficiency (of an algorithm) - means that an algorithm has a polynomial 

complexity { 12}. 

22. Equivalency of the problems A and B - means that A can be (polynomially) 

reduced to B and vice versa { 52 }. 

23. Existence theorem - a theorem of the form 

Vx3y ~oC x, y) 

asserting that for any inputs x there exist outputs y calculated by means of some 

procedure r 



414 Glossary 

24. Exponential algorithm - an algorithm with the complexity function of the 

form o(2n), n!, 2nL~ n , etc (that is, non-polynomial complexity function) { 12, 48 }. 

25. Formal  system - a mathematical structure of the form 

< L, R, IR > 

where: L is the language of a system; 

R are the rules for making well-formed formulas (correct formulas); 

IR are the inference rules. 

26. Formal  theory - is the same as a formal system {25 }. 

27. Func to r -  a term of the form 

f(tl,...,tn), 

where f is a function symbol and tl,...,tn are the terms { 59 }. 

28. G~idel's incompleteness theorem - the theorem asserting that there exist 

incomplete theories containing arithmetic of the wholes { 34 }. 

29. Heuristic algorithm - an algorithm which uses some principle or rule(-s) to find 

a solution of the problem which, however, may not be optimal { 1, 40, 47, 51 }. 

30. Heuristic evaluation function - a function h(x) estimating a lower bound of the 

number of nodes in the search tree to be open from the node x before the final node will 

be reached 54}. 

31. Hypothesis P~NP - states that each NP-complete problem (e.g. Minimum-size 

cover problem) cannot be resolved on the basis of polynomial algorithm { 12, 24, 43, 44, 

48}. 

32. Implication - a formula of the form X--->Y equivalent to not-X v Y. 

33. Inference rule - a scheme of the form 

(p 



Glossary 415 

interpreted as follows:" if each formula f l , - . . , f k  is proved then q~ should be 

considered proved formula { 18, 25, 26 }. 

34. Incomplete theory - a theory TH in which some formula cannot be proved or 

refuted {25, 28, 33, 36}. 

35. Interpretation - a set of variable bindings suiting a given model { 51 }. 

36. Language - a mathematical structure of the form 

L(TH)= < A, O, R>TH 

where: 

A is an alphabet, i.e. a set of symbols and auxiliary signs (such as 

brackets,commas, etc.) 

O are the primary objects of the theory TH such as terms and formulas; 

R is a set of the rules for producing so-called well-formed expressions 

(sentences) of the language L; 

TH is a theory which consists of the sentences of the language L which are 

called therems { 25,26 }. 

37. Logical approach to problem solving- an approach based on the theorem 

proving technique in which a problem is regarded as a theorem of some formal theory 

and a solving procedure deals with proving this theorem {23, 26, 33, 39}. 

38. Logical inference - a kind of reasoning which uses the logical inference rules 

{33, 50}. 

39. Logic programming - programming based on theorem proving technique {8, 

18,33}. 

40. Meta-procedure - a procedure which is based on weak methods. Meta-procedure 

comprises a number of principles showing how to use weak method(-s) to obtain an 

exact (optimal) solution of the problem in a practically admittable way {6, 17, 61, 62 }. 

41. Model - a number of relations between a problem's objects {20,51 }. 



416 Glossary 

42. Monotonicity - a property of the heuristic evaluation function h(x) based on the 

following relationship: 

h(x) _> h(y) if and only if node x preceds node y in a search tree { 30 }. 

43. NP - a class of problems which have the following features: 

�9 each of them requires an answer from the set {"YES","NO" } 

�9 a solution may be verified on the non-deterministic polynomial Turing 

machine. 

44. NP-complete problem - a problem complete in the class NP { 11, 43 }. 

45. Optimization problem - a problem P with a criterion of the form 

max f(xl,...,xk) (*) 

o r  

min f(xl ..... xk) (**) 

where f is a function and x l .... ,xk are its arguments. P requires to find the values of 

xl,...,xk satisfying (*) or (**). 

46.Paradigm - is a conceptual pattern of something. 

47. Partially-defined problem - a problem with inner nature partially or completely 

unknown to investigator (such a problem has a features of the "Black Box") {4, 6, 51 }. 

48. Polynomial algorithm - an algorithm with the complexity function restricted by 

some polynomial { 12,21,24 }. 

49. Predicate - a formula with the terms as its arguments which takes only two 

possible values: "0" (FALSE)and "1" (TRUE). 

50. Predicate calculus - a theory with the formulas representing predicates (so- 

called tomic formulas) or complicated formulas obtained from the atomic ones by 

means of the logical connectives and quantifiers {49 }. 

51. Problem -is a formalized mathematical structure of the form 



Glossary 417 

P=<Model, Initial_State, [Criterion], Solution, Solving_Procedure [,Proof]>, 

where: 

Model is a set of relations and functional dependencies between the objects 

from the problem's domain; 

Initial_State is a problem's specification (namely, the part which is 

formulated as "What is known"); 

Criterion represents a restriction on the Solution; 

Solution is identified with a valid interpretation for P satisfying Mode l  

Proof is a correct reasoning which validates of the Solution {20,41,45,47}. 

52. Reduceabili ty - a possibility of the transformation of a problem X to an 

equivalent problem Y { 9, 22, 44 }. 

53.Relation - a formula of predicate calculus { 49,50 }. 

54.Search tree (Search Graph)-  a tree (graph) with the nodes corresponding to the 

problem states and the arc corresponding to the possible moves between the states {29, 

30, 42}. 

55. Set characterizat ion function - a function f(x) defined as follows: 

f ( x )  - 1, i f  x be longs  to a g iven  set 

( x )  - O, o therwise  

56. Solving procedure - a procedure which finds a solution { 51 }. 

57. Solution { see 51 }. 

58. State space - is a set of the problem states. 

59. Term - an object of the formal theory which may be a variable, or a constant, or 

a functor .Terms stand for a formula's arguments {26,27}. 



418 Glossary 

60. Unification - matching the arguments of the co-named predicates for example: 

P(a,X,f(a)) and not-P(Y,Z,Z) in order to make them indiscernible. For these two one 

can obtain the desired result by the substitutions: 

Y=a 

X=Z--f(a) 

61.Universal solving strategy - an approach to solve problems by means of some 

universal calculus (in the sense of G.Leibnitz and D.Hilbert). 

62.Weak method - is a method which does not warrant obtaining an optimal (exact) 

solution, e.g. heuristic method or an approximate procedure. 



419 

INDEX 

ABSTRIPS 

algorithm 

efficient 

greedy 

heuristic 

programming 

universal 

search 

synthesis 

A* 

Hungarian 

approximation 

31 

2,4,13,25,30,69,71,80,90,98,108,117,121,130,139,14 l 

38,107,112,113 

141,228,251,252 

10,122,141,220,226,234 

6 

339,341 

29 

6,7 

217,218,392 

27O 

2,158,168.170,171,175,176,178,186,198,393 

calculus 

332, 356, 388 

computability 

consequence 

logical 

consistency 

contradiction 

284,322,332 

criterion 

15,20,38,39,41,42,80,81,85,101,102,106,107,297,302,317, 

7,20,24,26 

110,143,203 

2,40,299,302 

40,49,50,52,91,92 

46,75,106,109,11,113,117,119,121,129,142,144,202,238, 

10, 16, 37, 80, 82, 87, 89, 100, 222, 228, 232, 233. 238, 

240, 242, 246, 254, 261, 66, 76, 345, 392 

deducibility 

disjunct 

disjunction 

formalisms 

3,18,21,23,39,59,387 

285,297,299,302,303,306,308,311,312,313,316,322,323 

39,43,54,57,64,74,75,77,94,123,130,135,314 

17,314,312 



420 Index 

graph 8, 13. 28, 30, 85, 86, 145, 148, 156, 204, 206, 207. 208, 

213,223,233,236, 237, 242, 265, 293 

Hessian 184 

heuristic 

implication 

incompatibility 

incompleteness 

inference 

314, 321,324, 338, 348 

isomorphism 

interpretation 

298, 318, 323 

LISP 

method 

axiomatic 

brances-and-bounds 

deductive 

depth-first 

heuristic 

induction 

low efficiency 

meta- 

Robinson's 

smoothing 

variations 

universal 

weak 

'F-transform 

methodology 

model 

1-3,6-10,12,13,28,115,203,227,272,273,274,359,370 

11,43,70,99,101 

11,86,87,99-101,106,149,314 

3 

38,41,102,107,108,11,112,118,202,231,283,302,307,313, 

255 

2,3,5,24,36-57,59,62,67,76,80,85,96,114,130,204,227.273, 

31,297 

3 

13 

2,81,213,214,217 

16,18 

26 

9,10,121 

18 

5,9,13,20,38 

106 

117 

186 

3,339 

1,2,5,10,31,81,96,97,100,158,201,281,339,393 

159, 160,167,178,181-184,197,392 

2,15 

2,36,37,91,92,96,201,202,204,256,261,284,302 



Index 421 

paradigm 

predicate 

288, 302, 317, 319, 332 

problem 

decidability 297 

constructive 14 

convoy and enmity 14 

deflective 14 

extrapolation 177 

extreme and limit 14 

F-indefinite 

frame 

formalization 2 

intelligent 2 

logical 10 

NP-complete 

optimization 

partially defined 

partially indefinite 

secretive 14 

scheduling 

single 

transitory 14 

unsolvable 

program 

Prolog 

PRIZ 

reductio ad absurdum 

resolvent 

1,5,10,284,325,331,338,347,361,389,392,404 

21, 23, 24, 27, 28, 39-42, 44, 51, 68, 85, 102, 285, 287, 

158,182 

12 

3,11,12,38,100,156,182,378 

3,12,13,81,85,158,178,182,257 

2-5,26,80 

227 

239,242 

14 

3,5,13,149 

5,6,23-25,38,348,359 

1 O, 12,26,31,61-63,65,67,68,297,378 

31 

202,214 

65, 109, 117, 118, 120, 141, 143, 144, 299, 301, 304, 307, 

309, 310, 312, 314, 316, 319, 322, 324 



422 Index 

skolemization 44 

strategy 1,20,55,81,115,117,145,220 

cutting 81,154,201,213,223 

li~lear resolution 64 

scheduling 264 

resolution 106,112,113,307,383 

try-and-choose 121 

group resolution 305,306 

weak method 158 

in fe rence  209,307,311,312,313,323 

depth-first 210 

term 33,35,82,93,331 

theorem 

Completeness 59,106 

G6del's 8,18,40,76,360,394 

Konig's 155 

proving 39,61 

solution existence 39,284,297 

Herbrand's 302 

Tarsky's 

theory 

meta-methods 20 

problem solving 26,31,97 

scheduling 100 

trial-and-error 20 

weak methods 226 

unification 65,92,95,209,371,378,381,383 


